1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/CFG.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FastISel.h"
36 #include "llvm/CodeGen/FunctionLoweringInfo.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineMemOperand.h"
46 #include "llvm/CodeGen/MachineModuleInfo.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachinePassRegistry.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/SchedulerRegistry.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Function.h"
68 #include "llvm/IR/InlineAsm.h"
69 #include "llvm/IR/InstIterator.h"
70 #include "llvm/IR/Instruction.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Intrinsics.h"
74 #include "llvm/IR/IntrinsicsWebAssembly.h"
75 #include "llvm/IR/Metadata.h"
76 #include "llvm/IR/Statepoint.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/User.h"
79 #include "llvm/IR/Value.h"
80 #include "llvm/InitializePasses.h"
81 #include "llvm/MC/MCInstrDesc.h"
82 #include "llvm/Pass.h"
83 #include "llvm/Support/BranchProbability.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/CodeGen.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Compiler.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/KnownBits.h"
91 #include "llvm/Support/MachineValueType.h"
92 #include "llvm/Support/Timer.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Target/TargetIntrinsicInfo.h"
95 #include "llvm/Target/TargetMachine.h"
96 #include "llvm/Target/TargetOptions.h"
97 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
98 #include <algorithm>
99 #include <cassert>
100 #include <cstdint>
101 #include <iterator>
102 #include <limits>
103 #include <memory>
104 #include <string>
105 #include <utility>
106 #include <vector>
107
108 using namespace llvm;
109
110 #define DEBUG_TYPE "isel"
111
112 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
113 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
114 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
115 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
116 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
117 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
118 STATISTIC(NumFastIselFailLowerArguments,
119 "Number of entry blocks where fast isel failed to lower arguments");
120
121 static cl::opt<int> EnableFastISelAbort(
122 "fast-isel-abort", cl::Hidden,
123 cl::desc("Enable abort calls when \"fast\" instruction selection "
124 "fails to lower an instruction: 0 disable the abort, 1 will "
125 "abort but for args, calls and terminators, 2 will also "
126 "abort for argument lowering, and 3 will never fallback "
127 "to SelectionDAG."));
128
129 static cl::opt<bool> EnableFastISelFallbackReport(
130 "fast-isel-report-on-fallback", cl::Hidden,
131 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
132 "falls back to SelectionDAG."));
133
134 static cl::opt<bool>
135 UseMBPI("use-mbpi",
136 cl::desc("use Machine Branch Probability Info"),
137 cl::init(true), cl::Hidden);
138
139 #ifndef NDEBUG
140 static cl::opt<std::string>
141 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
142 cl::desc("Only display the basic block whose name "
143 "matches this for all view-*-dags options"));
144 static cl::opt<bool>
145 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
146 cl::desc("Pop up a window to show dags before the first "
147 "dag combine pass"));
148 static cl::opt<bool>
149 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
150 cl::desc("Pop up a window to show dags before legalize types"));
151 static cl::opt<bool>
152 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
153 cl::desc("Pop up a window to show dags before the post "
154 "legalize types dag combine pass"));
155 static cl::opt<bool>
156 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
157 cl::desc("Pop up a window to show dags before legalize"));
158 static cl::opt<bool>
159 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
160 cl::desc("Pop up a window to show dags before the second "
161 "dag combine pass"));
162 static cl::opt<bool>
163 ViewISelDAGs("view-isel-dags", cl::Hidden,
164 cl::desc("Pop up a window to show isel dags as they are selected"));
165 static cl::opt<bool>
166 ViewSchedDAGs("view-sched-dags", cl::Hidden,
167 cl::desc("Pop up a window to show sched dags as they are processed"));
168 static cl::opt<bool>
169 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
170 cl::desc("Pop up a window to show SUnit dags after they are processed"));
171 #else
172 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
173 ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
174 ViewDAGCombine2 = false, ViewISelDAGs = false,
175 ViewSchedDAGs = false, ViewSUnitDAGs = false;
176 #endif
177
178 //===---------------------------------------------------------------------===//
179 ///
180 /// RegisterScheduler class - Track the registration of instruction schedulers.
181 ///
182 //===---------------------------------------------------------------------===//
183 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
184 RegisterScheduler::Registry;
185
186 //===---------------------------------------------------------------------===//
187 ///
188 /// ISHeuristic command line option for instruction schedulers.
189 ///
190 //===---------------------------------------------------------------------===//
191 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
192 RegisterPassParser<RegisterScheduler>>
193 ISHeuristic("pre-RA-sched",
194 cl::init(&createDefaultScheduler), cl::Hidden,
195 cl::desc("Instruction schedulers available (before register"
196 " allocation):"));
197
198 static RegisterScheduler
199 defaultListDAGScheduler("default", "Best scheduler for the target",
200 createDefaultScheduler);
201
202 namespace llvm {
203
204 //===--------------------------------------------------------------------===//
205 /// This class is used by SelectionDAGISel to temporarily override
206 /// the optimization level on a per-function basis.
207 class OptLevelChanger {
208 SelectionDAGISel &IS;
209 CodeGenOpt::Level SavedOptLevel;
210 bool SavedFastISel;
211
212 public:
OptLevelChanger(SelectionDAGISel & ISel,CodeGenOpt::Level NewOptLevel)213 OptLevelChanger(SelectionDAGISel &ISel,
214 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
215 SavedOptLevel = IS.OptLevel;
216 SavedFastISel = IS.TM.Options.EnableFastISel;
217 if (NewOptLevel == SavedOptLevel)
218 return;
219 IS.OptLevel = NewOptLevel;
220 IS.TM.setOptLevel(NewOptLevel);
221 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
222 << IS.MF->getFunction().getName() << "\n");
223 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
224 << NewOptLevel << "\n");
225 if (NewOptLevel == CodeGenOpt::None) {
226 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
227 LLVM_DEBUG(
228 dbgs() << "\tFastISel is "
229 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
230 << "\n");
231 }
232 }
233
~OptLevelChanger()234 ~OptLevelChanger() {
235 if (IS.OptLevel == SavedOptLevel)
236 return;
237 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
238 << IS.MF->getFunction().getName() << "\n");
239 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
240 << SavedOptLevel << "\n");
241 IS.OptLevel = SavedOptLevel;
242 IS.TM.setOptLevel(SavedOptLevel);
243 IS.TM.setFastISel(SavedFastISel);
244 }
245 };
246
247 //===--------------------------------------------------------------------===//
248 /// createDefaultScheduler - This creates an instruction scheduler appropriate
249 /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)250 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
251 CodeGenOpt::Level OptLevel) {
252 const TargetLowering *TLI = IS->TLI;
253 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
254
255 // Try first to see if the Target has its own way of selecting a scheduler
256 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
257 return SchedulerCtor(IS, OptLevel);
258 }
259
260 if (OptLevel == CodeGenOpt::None ||
261 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
262 TLI->getSchedulingPreference() == Sched::Source)
263 return createSourceListDAGScheduler(IS, OptLevel);
264 if (TLI->getSchedulingPreference() == Sched::RegPressure)
265 return createBURRListDAGScheduler(IS, OptLevel);
266 if (TLI->getSchedulingPreference() == Sched::Hybrid)
267 return createHybridListDAGScheduler(IS, OptLevel);
268 if (TLI->getSchedulingPreference() == Sched::VLIW)
269 return createVLIWDAGScheduler(IS, OptLevel);
270 if (TLI->getSchedulingPreference() == Sched::Fast)
271 return createFastDAGScheduler(IS, OptLevel);
272 if (TLI->getSchedulingPreference() == Sched::Linearize)
273 return createDAGLinearizer(IS, OptLevel);
274 assert(TLI->getSchedulingPreference() == Sched::ILP &&
275 "Unknown sched type!");
276 return createILPListDAGScheduler(IS, OptLevel);
277 }
278
279 } // end namespace llvm
280
281 // EmitInstrWithCustomInserter - This method should be implemented by targets
282 // that mark instructions with the 'usesCustomInserter' flag. These
283 // instructions are special in various ways, which require special support to
284 // insert. The specified MachineInstr is created but not inserted into any
285 // basic blocks, and this method is called to expand it into a sequence of
286 // instructions, potentially also creating new basic blocks and control flow.
287 // When new basic blocks are inserted and the edges from MBB to its successors
288 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
289 // DenseMap.
290 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const291 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
292 MachineBasicBlock *MBB) const {
293 #ifndef NDEBUG
294 dbgs() << "If a target marks an instruction with "
295 "'usesCustomInserter', it must implement "
296 "TargetLowering::EmitInstrWithCustomInserter!\n";
297 #endif
298 llvm_unreachable(nullptr);
299 }
300
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const301 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
302 SDNode *Node) const {
303 assert(!MI.hasPostISelHook() &&
304 "If a target marks an instruction with 'hasPostISelHook', "
305 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
306 }
307
308 //===----------------------------------------------------------------------===//
309 // SelectionDAGISel code
310 //===----------------------------------------------------------------------===//
311
SelectionDAGISel(TargetMachine & tm,CodeGenOpt::Level OL)312 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
313 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
314 SwiftError(new SwiftErrorValueTracking()),
315 CurDAG(new SelectionDAG(tm, OL)),
316 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
317 OL)),
318 OptLevel(OL) {
319 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
320 initializeBranchProbabilityInfoWrapperPassPass(
321 *PassRegistry::getPassRegistry());
322 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
323 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
324 }
325
~SelectionDAGISel()326 SelectionDAGISel::~SelectionDAGISel() {
327 delete CurDAG;
328 delete SwiftError;
329 }
330
getAnalysisUsage(AnalysisUsage & AU) const331 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
332 if (OptLevel != CodeGenOpt::None)
333 AU.addRequired<AAResultsWrapperPass>();
334 AU.addRequired<GCModuleInfo>();
335 AU.addRequired<StackProtector>();
336 AU.addPreserved<GCModuleInfo>();
337 AU.addRequired<TargetLibraryInfoWrapperPass>();
338 AU.addRequired<TargetTransformInfoWrapperPass>();
339 if (UseMBPI && OptLevel != CodeGenOpt::None)
340 AU.addRequired<BranchProbabilityInfoWrapperPass>();
341 AU.addRequired<ProfileSummaryInfoWrapperPass>();
342 if (OptLevel != CodeGenOpt::None)
343 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
344 MachineFunctionPass::getAnalysisUsage(AU);
345 }
346
computeUsesMSVCFloatingPoint(const Triple & TT,const Function & F,MachineModuleInfo & MMI)347 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
348 MachineModuleInfo &MMI) {
349 // Only needed for MSVC
350 if (!TT.isWindowsMSVCEnvironment())
351 return;
352
353 // If it's already set, nothing to do.
354 if (MMI.usesMSVCFloatingPoint())
355 return;
356
357 for (const Instruction &I : instructions(F)) {
358 if (I.getType()->isFPOrFPVectorTy()) {
359 MMI.setUsesMSVCFloatingPoint(true);
360 return;
361 }
362 for (const auto &Op : I.operands()) {
363 if (Op->getType()->isFPOrFPVectorTy()) {
364 MMI.setUsesMSVCFloatingPoint(true);
365 return;
366 }
367 }
368 }
369 }
370
runOnMachineFunction(MachineFunction & mf)371 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
372 // If we already selected that function, we do not need to run SDISel.
373 if (mf.getProperties().hasProperty(
374 MachineFunctionProperties::Property::Selected))
375 return false;
376 // Do some sanity-checking on the command-line options.
377 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
378 "-fast-isel-abort > 0 requires -fast-isel");
379
380 const Function &Fn = mf.getFunction();
381 MF = &mf;
382
383 // Decide what flavour of variable location debug-info will be used, before
384 // we change the optimisation level.
385 UseInstrRefDebugInfo = mf.useDebugInstrRef();
386 CurDAG->useInstrRefDebugInfo(UseInstrRefDebugInfo);
387
388 // Reset the target options before resetting the optimization
389 // level below.
390 // FIXME: This is a horrible hack and should be processed via
391 // codegen looking at the optimization level explicitly when
392 // it wants to look at it.
393 TM.resetTargetOptions(Fn);
394 // Reset OptLevel to None for optnone functions.
395 CodeGenOpt::Level NewOptLevel = OptLevel;
396 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
397 NewOptLevel = CodeGenOpt::None;
398 OptLevelChanger OLC(*this, NewOptLevel);
399
400 TII = MF->getSubtarget().getInstrInfo();
401 TLI = MF->getSubtarget().getTargetLowering();
402 RegInfo = &MF->getRegInfo();
403 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
404 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
405 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
406 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
407 BlockFrequencyInfo *BFI = nullptr;
408 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
409 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
410
411 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
412
413 CurDAG->init(*MF, *ORE, this, LibInfo,
414 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
415 FuncInfo->set(Fn, *MF, CurDAG);
416 SwiftError->setFunction(*MF);
417
418 // Now get the optional analyzes if we want to.
419 // This is based on the possibly changed OptLevel (after optnone is taken
420 // into account). That's unfortunate but OK because it just means we won't
421 // ask for passes that have been required anyway.
422
423 if (UseMBPI && OptLevel != CodeGenOpt::None)
424 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
425 else
426 FuncInfo->BPI = nullptr;
427
428 if (OptLevel != CodeGenOpt::None)
429 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
430 else
431 AA = nullptr;
432
433 SDB->init(GFI, AA, LibInfo);
434
435 MF->setHasInlineAsm(false);
436
437 FuncInfo->SplitCSR = false;
438
439 // We split CSR if the target supports it for the given function
440 // and the function has only return exits.
441 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
442 FuncInfo->SplitCSR = true;
443
444 // Collect all the return blocks.
445 for (const BasicBlock &BB : Fn) {
446 if (!succ_empty(&BB))
447 continue;
448
449 const Instruction *Term = BB.getTerminator();
450 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
451 continue;
452
453 // Bail out if the exit block is not Return nor Unreachable.
454 FuncInfo->SplitCSR = false;
455 break;
456 }
457 }
458
459 MachineBasicBlock *EntryMBB = &MF->front();
460 if (FuncInfo->SplitCSR)
461 // This performs initialization so lowering for SplitCSR will be correct.
462 TLI->initializeSplitCSR(EntryMBB);
463
464 SelectAllBasicBlocks(Fn);
465 if (FastISelFailed && EnableFastISelFallbackReport) {
466 DiagnosticInfoISelFallback DiagFallback(Fn);
467 Fn.getContext().diagnose(DiagFallback);
468 }
469
470 // Replace forward-declared registers with the registers containing
471 // the desired value.
472 // Note: it is important that this happens **before** the call to
473 // EmitLiveInCopies, since implementations can skip copies of unused
474 // registers. If we don't apply the reg fixups before, some registers may
475 // appear as unused and will be skipped, resulting in bad MI.
476 MachineRegisterInfo &MRI = MF->getRegInfo();
477 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
478 E = FuncInfo->RegFixups.end();
479 I != E; ++I) {
480 Register From = I->first;
481 Register To = I->second;
482 // If To is also scheduled to be replaced, find what its ultimate
483 // replacement is.
484 while (true) {
485 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
486 if (J == E)
487 break;
488 To = J->second;
489 }
490 // Make sure the new register has a sufficiently constrained register class.
491 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
492 MRI.constrainRegClass(To, MRI.getRegClass(From));
493 // Replace it.
494
495 // Replacing one register with another won't touch the kill flags.
496 // We need to conservatively clear the kill flags as a kill on the old
497 // register might dominate existing uses of the new register.
498 if (!MRI.use_empty(To))
499 MRI.clearKillFlags(From);
500 MRI.replaceRegWith(From, To);
501 }
502
503 // If the first basic block in the function has live ins that need to be
504 // copied into vregs, emit the copies into the top of the block before
505 // emitting the code for the block.
506 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
507 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
508
509 // Insert copies in the entry block and the return blocks.
510 if (FuncInfo->SplitCSR) {
511 SmallVector<MachineBasicBlock*, 4> Returns;
512 // Collect all the return blocks.
513 for (MachineBasicBlock &MBB : mf) {
514 if (!MBB.succ_empty())
515 continue;
516
517 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
518 if (Term != MBB.end() && Term->isReturn()) {
519 Returns.push_back(&MBB);
520 continue;
521 }
522 }
523 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
524 }
525
526 DenseMap<unsigned, unsigned> LiveInMap;
527 if (!FuncInfo->ArgDbgValues.empty())
528 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
529 if (LI.second)
530 LiveInMap.insert(LI);
531
532 // Insert DBG_VALUE instructions for function arguments to the entry block.
533 bool InstrRef = MF->useDebugInstrRef();
534 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
535 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
536 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
537 "Function parameters should not be described by DBG_VALUE_LIST.");
538 bool hasFI = MI->getOperand(0).isFI();
539 Register Reg =
540 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
541 if (Register::isPhysicalRegister(Reg))
542 EntryMBB->insert(EntryMBB->begin(), MI);
543 else {
544 MachineInstr *Def = RegInfo->getVRegDef(Reg);
545 if (Def) {
546 MachineBasicBlock::iterator InsertPos = Def;
547 // FIXME: VR def may not be in entry block.
548 Def->getParent()->insert(std::next(InsertPos), MI);
549 } else
550 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
551 << Register::virtReg2Index(Reg) << "\n");
552 }
553
554 // Don't try and extend through copies in instruction referencing mode.
555 if (InstrRef)
556 continue;
557
558 // If Reg is live-in then update debug info to track its copy in a vreg.
559 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
560 if (LDI != LiveInMap.end()) {
561 assert(!hasFI && "There's no handling of frame pointer updating here yet "
562 "- add if needed");
563 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
564 MachineBasicBlock::iterator InsertPos = Def;
565 const MDNode *Variable = MI->getDebugVariable();
566 const MDNode *Expr = MI->getDebugExpression();
567 DebugLoc DL = MI->getDebugLoc();
568 bool IsIndirect = MI->isIndirectDebugValue();
569 if (IsIndirect)
570 assert(MI->getOperand(1).getImm() == 0 &&
571 "DBG_VALUE with nonzero offset");
572 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
573 "Expected inlined-at fields to agree");
574 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
575 "Didn't expect to see a DBG_VALUE_LIST here");
576 // Def is never a terminator here, so it is ok to increment InsertPos.
577 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
578 IsIndirect, LDI->second, Variable, Expr);
579
580 // If this vreg is directly copied into an exported register then
581 // that COPY instructions also need DBG_VALUE, if it is the only
582 // user of LDI->second.
583 MachineInstr *CopyUseMI = nullptr;
584 for (MachineRegisterInfo::use_instr_iterator
585 UI = RegInfo->use_instr_begin(LDI->second),
586 E = RegInfo->use_instr_end(); UI != E; ) {
587 MachineInstr *UseMI = &*(UI++);
588 if (UseMI->isDebugValue()) continue;
589 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
590 CopyUseMI = UseMI; continue;
591 }
592 // Otherwise this is another use or second copy use.
593 CopyUseMI = nullptr; break;
594 }
595 if (CopyUseMI &&
596 TRI.getRegSizeInBits(LDI->second, MRI) ==
597 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
598 // Use MI's debug location, which describes where Variable was
599 // declared, rather than whatever is attached to CopyUseMI.
600 MachineInstr *NewMI =
601 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
602 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
603 MachineBasicBlock::iterator Pos = CopyUseMI;
604 EntryMBB->insertAfter(Pos, NewMI);
605 }
606 }
607 }
608
609 // For debug-info, in instruction referencing mode, we need to perform some
610 // post-isel maintenence.
611 if (UseInstrRefDebugInfo)
612 MF->finalizeDebugInstrRefs();
613
614 // Determine if there are any calls in this machine function.
615 MachineFrameInfo &MFI = MF->getFrameInfo();
616 for (const auto &MBB : *MF) {
617 if (MFI.hasCalls() && MF->hasInlineAsm())
618 break;
619
620 for (const auto &MI : MBB) {
621 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
622 if ((MCID.isCall() && !MCID.isReturn()) ||
623 MI.isStackAligningInlineAsm()) {
624 MFI.setHasCalls(true);
625 }
626 if (MI.isInlineAsm()) {
627 MF->setHasInlineAsm(true);
628 }
629 }
630 }
631
632 // Determine if there is a call to setjmp in the machine function.
633 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
634
635 // Determine if floating point is used for msvc
636 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
637
638 // Release function-specific state. SDB and CurDAG are already cleared
639 // at this point.
640 FuncInfo->clear();
641
642 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
643 LLVM_DEBUG(MF->print(dbgs()));
644
645 return true;
646 }
647
reportFastISelFailure(MachineFunction & MF,OptimizationRemarkEmitter & ORE,OptimizationRemarkMissed & R,bool ShouldAbort)648 static void reportFastISelFailure(MachineFunction &MF,
649 OptimizationRemarkEmitter &ORE,
650 OptimizationRemarkMissed &R,
651 bool ShouldAbort) {
652 // Print the function name explicitly if we don't have a debug location (which
653 // makes the diagnostic less useful) or if we're going to emit a raw error.
654 if (!R.getLocation().isValid() || ShouldAbort)
655 R << (" (in function: " + MF.getName() + ")").str();
656
657 if (ShouldAbort)
658 report_fatal_error(Twine(R.getMsg()));
659
660 ORE.emit(R);
661 LLVM_DEBUG(dbgs() << R.getMsg() << "\n");
662 }
663
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)664 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
665 BasicBlock::const_iterator End,
666 bool &HadTailCall) {
667 // Allow creating illegal types during DAG building for the basic block.
668 CurDAG->NewNodesMustHaveLegalTypes = false;
669
670 // Lower the instructions. If a call is emitted as a tail call, cease emitting
671 // nodes for this block.
672 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
673 if (!ElidedArgCopyInstrs.count(&*I))
674 SDB->visit(*I);
675 }
676
677 // Make sure the root of the DAG is up-to-date.
678 CurDAG->setRoot(SDB->getControlRoot());
679 HadTailCall = SDB->HasTailCall;
680 SDB->resolveOrClearDbgInfo();
681 SDB->clear();
682
683 // Final step, emit the lowered DAG as machine code.
684 CodeGenAndEmitDAG();
685 }
686
ComputeLiveOutVRegInfo()687 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
688 SmallPtrSet<SDNode *, 16> Added;
689 SmallVector<SDNode*, 128> Worklist;
690
691 Worklist.push_back(CurDAG->getRoot().getNode());
692 Added.insert(CurDAG->getRoot().getNode());
693
694 KnownBits Known;
695
696 do {
697 SDNode *N = Worklist.pop_back_val();
698
699 // Otherwise, add all chain operands to the worklist.
700 for (const SDValue &Op : N->op_values())
701 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
702 Worklist.push_back(Op.getNode());
703
704 // If this is a CopyToReg with a vreg dest, process it.
705 if (N->getOpcode() != ISD::CopyToReg)
706 continue;
707
708 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
709 if (!Register::isVirtualRegister(DestReg))
710 continue;
711
712 // Ignore non-integer values.
713 SDValue Src = N->getOperand(2);
714 EVT SrcVT = Src.getValueType();
715 if (!SrcVT.isInteger())
716 continue;
717
718 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
719 Known = CurDAG->computeKnownBits(Src);
720 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
721 } while (!Worklist.empty());
722 }
723
CodeGenAndEmitDAG()724 void SelectionDAGISel::CodeGenAndEmitDAG() {
725 StringRef GroupName = "sdag";
726 StringRef GroupDescription = "Instruction Selection and Scheduling";
727 std::string BlockName;
728 bool MatchFilterBB = false; (void)MatchFilterBB;
729 #ifndef NDEBUG
730 TargetTransformInfo &TTI =
731 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
732 #endif
733
734 // Pre-type legalization allow creation of any node types.
735 CurDAG->NewNodesMustHaveLegalTypes = false;
736
737 #ifndef NDEBUG
738 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
739 FilterDAGBasicBlockName ==
740 FuncInfo->MBB->getBasicBlock()->getName());
741 #endif
742 #ifdef NDEBUG
743 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
744 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
745 ViewSUnitDAGs)
746 #endif
747 {
748 BlockName =
749 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
750 }
751 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
752 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
753 << "'\n";
754 CurDAG->dump());
755
756 #ifndef NDEBUG
757 if (TTI.hasBranchDivergence())
758 CurDAG->VerifyDAGDivergence();
759 #endif
760
761 if (ViewDAGCombine1 && MatchFilterBB)
762 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
763
764 // Run the DAG combiner in pre-legalize mode.
765 {
766 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
767 GroupDescription, TimePassesIsEnabled);
768 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
769 }
770
771 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
772 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
773 << "'\n";
774 CurDAG->dump());
775
776 #ifndef NDEBUG
777 if (TTI.hasBranchDivergence())
778 CurDAG->VerifyDAGDivergence();
779 #endif
780
781 // Second step, hack on the DAG until it only uses operations and types that
782 // the target supports.
783 if (ViewLegalizeTypesDAGs && MatchFilterBB)
784 CurDAG->viewGraph("legalize-types input for " + BlockName);
785
786 bool Changed;
787 {
788 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
789 GroupDescription, TimePassesIsEnabled);
790 Changed = CurDAG->LegalizeTypes();
791 }
792
793 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
794 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
795 << "'\n";
796 CurDAG->dump());
797
798 #ifndef NDEBUG
799 if (TTI.hasBranchDivergence())
800 CurDAG->VerifyDAGDivergence();
801 #endif
802
803 // Only allow creation of legal node types.
804 CurDAG->NewNodesMustHaveLegalTypes = true;
805
806 if (Changed) {
807 if (ViewDAGCombineLT && MatchFilterBB)
808 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
809
810 // Run the DAG combiner in post-type-legalize mode.
811 {
812 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
813 GroupName, GroupDescription, TimePassesIsEnabled);
814 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
815 }
816
817 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
818 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
819 << "'\n";
820 CurDAG->dump());
821
822 #ifndef NDEBUG
823 if (TTI.hasBranchDivergence())
824 CurDAG->VerifyDAGDivergence();
825 #endif
826 }
827
828 {
829 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
830 GroupDescription, TimePassesIsEnabled);
831 Changed = CurDAG->LegalizeVectors();
832 }
833
834 if (Changed) {
835 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
836 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
837 << "'\n";
838 CurDAG->dump());
839
840 #ifndef NDEBUG
841 if (TTI.hasBranchDivergence())
842 CurDAG->VerifyDAGDivergence();
843 #endif
844
845 {
846 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
847 GroupDescription, TimePassesIsEnabled);
848 CurDAG->LegalizeTypes();
849 }
850
851 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
852 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
853 << "'\n";
854 CurDAG->dump());
855
856 #ifndef NDEBUG
857 if (TTI.hasBranchDivergence())
858 CurDAG->VerifyDAGDivergence();
859 #endif
860
861 if (ViewDAGCombineLT && MatchFilterBB)
862 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
863
864 // Run the DAG combiner in post-type-legalize mode.
865 {
866 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
867 GroupName, GroupDescription, TimePassesIsEnabled);
868 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
869 }
870
871 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
872 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
873 << "'\n";
874 CurDAG->dump());
875
876 #ifndef NDEBUG
877 if (TTI.hasBranchDivergence())
878 CurDAG->VerifyDAGDivergence();
879 #endif
880 }
881
882 if (ViewLegalizeDAGs && MatchFilterBB)
883 CurDAG->viewGraph("legalize input for " + BlockName);
884
885 {
886 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
887 GroupDescription, TimePassesIsEnabled);
888 CurDAG->Legalize();
889 }
890
891 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
892 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
893 << "'\n";
894 CurDAG->dump());
895
896 #ifndef NDEBUG
897 if (TTI.hasBranchDivergence())
898 CurDAG->VerifyDAGDivergence();
899 #endif
900
901 if (ViewDAGCombine2 && MatchFilterBB)
902 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
903
904 // Run the DAG combiner in post-legalize mode.
905 {
906 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
907 GroupDescription, TimePassesIsEnabled);
908 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
909 }
910
911 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
912 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
913 << "'\n";
914 CurDAG->dump());
915
916 #ifndef NDEBUG
917 if (TTI.hasBranchDivergence())
918 CurDAG->VerifyDAGDivergence();
919 #endif
920
921 if (OptLevel != CodeGenOpt::None)
922 ComputeLiveOutVRegInfo();
923
924 if (ViewISelDAGs && MatchFilterBB)
925 CurDAG->viewGraph("isel input for " + BlockName);
926
927 // Third, instruction select all of the operations to machine code, adding the
928 // code to the MachineBasicBlock.
929 {
930 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
931 GroupDescription, TimePassesIsEnabled);
932 DoInstructionSelection();
933 }
934
935 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
936 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
937 << "'\n";
938 CurDAG->dump());
939
940 if (ViewSchedDAGs && MatchFilterBB)
941 CurDAG->viewGraph("scheduler input for " + BlockName);
942
943 // Schedule machine code.
944 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
945 {
946 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
947 GroupDescription, TimePassesIsEnabled);
948 Scheduler->Run(CurDAG, FuncInfo->MBB);
949 }
950
951 if (ViewSUnitDAGs && MatchFilterBB)
952 Scheduler->viewGraph();
953
954 // Emit machine code to BB. This can change 'BB' to the last block being
955 // inserted into.
956 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
957 {
958 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
959 GroupDescription, TimePassesIsEnabled);
960
961 // FuncInfo->InsertPt is passed by reference and set to the end of the
962 // scheduled instructions.
963 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
964 }
965
966 // If the block was split, make sure we update any references that are used to
967 // update PHI nodes later on.
968 if (FirstMBB != LastMBB)
969 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
970
971 // Free the scheduler state.
972 {
973 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
974 GroupDescription, TimePassesIsEnabled);
975 delete Scheduler;
976 }
977
978 // Free the SelectionDAG state, now that we're finished with it.
979 CurDAG->clear();
980 }
981
982 namespace {
983
984 /// ISelUpdater - helper class to handle updates of the instruction selection
985 /// graph.
986 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
987 SelectionDAG::allnodes_iterator &ISelPosition;
988
989 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)990 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
991 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
992
993 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
994 /// deleted is the current ISelPosition node, update ISelPosition.
995 ///
NodeDeleted(SDNode * N,SDNode * E)996 void NodeDeleted(SDNode *N, SDNode *E) override {
997 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
998 ++ISelPosition;
999 }
1000 };
1001
1002 } // end anonymous namespace
1003
1004 // This function is used to enforce the topological node id property
1005 // leveraged during instruction selection. Before the selection process all
1006 // nodes are given a non-negative id such that all nodes have a greater id than
1007 // their operands. As this holds transitively we can prune checks that a node N
1008 // is a predecessor of M another by not recursively checking through M's
1009 // operands if N's ID is larger than M's ID. This significantly improves
1010 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1011
1012 // However, when we fuse multiple nodes into a single node during the
1013 // selection we may induce a predecessor relationship between inputs and
1014 // outputs of distinct nodes being merged, violating the topological property.
1015 // Should a fused node have a successor which has yet to be selected,
1016 // our legality checks would be incorrect. To avoid this we mark all unselected
1017 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1018 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1019 // We use bit-negation to more clearly enforce that node id -1 can only be
1020 // achieved by selected nodes. As the conversion is reversable to the original
1021 // Id, topological pruning can still be leveraged when looking for unselected
1022 // nodes. This method is called internally in all ISel replacement related
1023 // functions.
EnforceNodeIdInvariant(SDNode * Node)1024 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1025 SmallVector<SDNode *, 4> Nodes;
1026 Nodes.push_back(Node);
1027
1028 while (!Nodes.empty()) {
1029 SDNode *N = Nodes.pop_back_val();
1030 for (auto *U : N->uses()) {
1031 auto UId = U->getNodeId();
1032 if (UId > 0) {
1033 InvalidateNodeId(U);
1034 Nodes.push_back(U);
1035 }
1036 }
1037 }
1038 }
1039
1040 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1041 // NodeId with the equivalent node id which is invalid for topological
1042 // pruning.
InvalidateNodeId(SDNode * N)1043 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1044 int InvalidId = -(N->getNodeId() + 1);
1045 N->setNodeId(InvalidId);
1046 }
1047
1048 // getUninvalidatedNodeId - get original uninvalidated node id.
getUninvalidatedNodeId(SDNode * N)1049 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1050 int Id = N->getNodeId();
1051 if (Id < -1)
1052 return -(Id + 1);
1053 return Id;
1054 }
1055
DoInstructionSelection()1056 void SelectionDAGISel::DoInstructionSelection() {
1057 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1058 << printMBBReference(*FuncInfo->MBB) << " '"
1059 << FuncInfo->MBB->getName() << "'\n");
1060
1061 PreprocessISelDAG();
1062
1063 // Select target instructions for the DAG.
1064 {
1065 // Number all nodes with a topological order and set DAGSize.
1066 DAGSize = CurDAG->AssignTopologicalOrder();
1067
1068 // Create a dummy node (which is not added to allnodes), that adds
1069 // a reference to the root node, preventing it from being deleted,
1070 // and tracking any changes of the root.
1071 HandleSDNode Dummy(CurDAG->getRoot());
1072 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1073 ++ISelPosition;
1074
1075 // Make sure that ISelPosition gets properly updated when nodes are deleted
1076 // in calls made from this function.
1077 ISelUpdater ISU(*CurDAG, ISelPosition);
1078
1079 // The AllNodes list is now topological-sorted. Visit the
1080 // nodes by starting at the end of the list (the root of the
1081 // graph) and preceding back toward the beginning (the entry
1082 // node).
1083 while (ISelPosition != CurDAG->allnodes_begin()) {
1084 SDNode *Node = &*--ISelPosition;
1085 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1086 // but there are currently some corner cases that it misses. Also, this
1087 // makes it theoretically possible to disable the DAGCombiner.
1088 if (Node->use_empty())
1089 continue;
1090
1091 #ifndef NDEBUG
1092 SmallVector<SDNode *, 4> Nodes;
1093 Nodes.push_back(Node);
1094
1095 while (!Nodes.empty()) {
1096 auto N = Nodes.pop_back_val();
1097 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1098 continue;
1099 for (const SDValue &Op : N->op_values()) {
1100 if (Op->getOpcode() == ISD::TokenFactor)
1101 Nodes.push_back(Op.getNode());
1102 else {
1103 // We rely on topological ordering of node ids for checking for
1104 // cycles when fusing nodes during selection. All unselected nodes
1105 // successors of an already selected node should have a negative id.
1106 // This assertion will catch such cases. If this assertion triggers
1107 // it is likely you using DAG-level Value/Node replacement functions
1108 // (versus equivalent ISEL replacement) in backend-specific
1109 // selections. See comment in EnforceNodeIdInvariant for more
1110 // details.
1111 assert(Op->getNodeId() != -1 &&
1112 "Node has already selected predecessor node");
1113 }
1114 }
1115 }
1116 #endif
1117
1118 // When we are using non-default rounding modes or FP exception behavior
1119 // FP operations are represented by StrictFP pseudo-operations. For
1120 // targets that do not (yet) understand strict FP operations directly,
1121 // we convert them to normal FP opcodes instead at this point. This
1122 // will allow them to be handled by existing target-specific instruction
1123 // selectors.
1124 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1125 // For some opcodes, we need to call TLI->getOperationAction using
1126 // the first operand type instead of the result type. Note that this
1127 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1128 EVT ActionVT;
1129 switch (Node->getOpcode()) {
1130 case ISD::STRICT_SINT_TO_FP:
1131 case ISD::STRICT_UINT_TO_FP:
1132 case ISD::STRICT_LRINT:
1133 case ISD::STRICT_LLRINT:
1134 case ISD::STRICT_LROUND:
1135 case ISD::STRICT_LLROUND:
1136 case ISD::STRICT_FSETCC:
1137 case ISD::STRICT_FSETCCS:
1138 ActionVT = Node->getOperand(1).getValueType();
1139 break;
1140 default:
1141 ActionVT = Node->getValueType(0);
1142 break;
1143 }
1144 if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1145 == TargetLowering::Expand)
1146 Node = CurDAG->mutateStrictFPToFP(Node);
1147 }
1148
1149 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1150 Node->dump(CurDAG));
1151
1152 Select(Node);
1153 }
1154
1155 CurDAG->setRoot(Dummy.getValue());
1156 }
1157
1158 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1159
1160 PostprocessISelDAG();
1161 }
1162
hasExceptionPointerOrCodeUser(const CatchPadInst * CPI)1163 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1164 for (const User *U : CPI->users()) {
1165 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1166 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1167 if (IID == Intrinsic::eh_exceptionpointer ||
1168 IID == Intrinsic::eh_exceptioncode)
1169 return true;
1170 }
1171 }
1172 return false;
1173 }
1174
1175 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1176 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1177 // and store the mapping in the function.
mapWasmLandingPadIndex(MachineBasicBlock * MBB,const CatchPadInst * CPI)1178 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1179 const CatchPadInst *CPI) {
1180 MachineFunction *MF = MBB->getParent();
1181 // In case of single catch (...), we don't emit LSDA, so we don't need
1182 // this information.
1183 bool IsSingleCatchAllClause =
1184 CPI->getNumArgOperands() == 1 &&
1185 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1186 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1187 // and they don't need LSDA info
1188 bool IsCatchLongjmp = CPI->getNumArgOperands() == 0;
1189 if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
1190 // Create a mapping from landing pad label to landing pad index.
1191 bool IntrFound = false;
1192 for (const User *U : CPI->users()) {
1193 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1194 Intrinsic::ID IID = Call->getIntrinsicID();
1195 if (IID == Intrinsic::wasm_landingpad_index) {
1196 Value *IndexArg = Call->getArgOperand(1);
1197 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1198 MF->setWasmLandingPadIndex(MBB, Index);
1199 IntrFound = true;
1200 break;
1201 }
1202 }
1203 }
1204 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1205 (void)IntrFound;
1206 }
1207 }
1208
1209 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1210 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()1211 bool SelectionDAGISel::PrepareEHLandingPad() {
1212 MachineBasicBlock *MBB = FuncInfo->MBB;
1213 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1214 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1215 const TargetRegisterClass *PtrRC =
1216 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1217
1218 auto Pers = classifyEHPersonality(PersonalityFn);
1219
1220 // Catchpads have one live-in register, which typically holds the exception
1221 // pointer or code.
1222 if (isFuncletEHPersonality(Pers)) {
1223 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1224 if (hasExceptionPointerOrCodeUser(CPI)) {
1225 // Get or create the virtual register to hold the pointer or code. Mark
1226 // the live in physreg and copy into the vreg.
1227 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1228 assert(EHPhysReg && "target lacks exception pointer register");
1229 MBB->addLiveIn(EHPhysReg);
1230 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1231 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1232 TII->get(TargetOpcode::COPY), VReg)
1233 .addReg(EHPhysReg, RegState::Kill);
1234 }
1235 }
1236 return true;
1237 }
1238
1239 // Add a label to mark the beginning of the landing pad. Deletion of the
1240 // landing pad can thus be detected via the MachineModuleInfo.
1241 MCSymbol *Label = MF->addLandingPad(MBB);
1242
1243 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1244 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1245 .addSym(Label);
1246
1247 // If the unwinder does not preserve all registers, ensure that the
1248 // function marks the clobbered registers as used.
1249 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1250 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1251 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1252
1253 if (Pers == EHPersonality::Wasm_CXX) {
1254 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1255 mapWasmLandingPadIndex(MBB, CPI);
1256 } else {
1257 // Assign the call site to the landing pad's begin label.
1258 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1259 // Mark exception register as live in.
1260 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1261 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1262 // Mark exception selector register as live in.
1263 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1264 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1265 }
1266
1267 return true;
1268 }
1269
1270 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1271 /// side-effect free and is either dead or folded into a generated instruction.
1272 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,const FunctionLoweringInfo & FuncInfo)1273 static bool isFoldedOrDeadInstruction(const Instruction *I,
1274 const FunctionLoweringInfo &FuncInfo) {
1275 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1276 !I->isTerminator() && // Terminators aren't folded.
1277 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1278 !I->isEHPad() && // EH pad instructions aren't folded.
1279 !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1280 }
1281
1282 /// Collect llvm.dbg.declare information. This is done after argument lowering
1283 /// in case the declarations refer to arguments.
processDbgDeclares(FunctionLoweringInfo & FuncInfo)1284 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1285 MachineFunction *MF = FuncInfo.MF;
1286 const DataLayout &DL = MF->getDataLayout();
1287 for (const BasicBlock &BB : *FuncInfo.Fn) {
1288 for (const Instruction &I : BB) {
1289 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1290 if (!DI)
1291 continue;
1292
1293 assert(DI->getVariable() && "Missing variable");
1294 assert(DI->getDebugLoc() && "Missing location");
1295 const Value *Address = DI->getAddress();
1296 if (!Address) {
1297 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1298 << " (bad address)\n");
1299 continue;
1300 }
1301
1302 // Look through casts and constant offset GEPs. These mostly come from
1303 // inalloca.
1304 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1305 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1306
1307 // Check if the variable is a static alloca or a byval or inalloca
1308 // argument passed in memory. If it is not, then we will ignore this
1309 // intrinsic and handle this during isel like dbg.value.
1310 int FI = std::numeric_limits<int>::max();
1311 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1312 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1313 if (SI != FuncInfo.StaticAllocaMap.end())
1314 FI = SI->second;
1315 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1316 FI = FuncInfo.getArgumentFrameIndex(Arg);
1317
1318 if (FI == std::numeric_limits<int>::max())
1319 continue;
1320
1321 DIExpression *Expr = DI->getExpression();
1322 if (Offset.getBoolValue())
1323 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1324 Offset.getZExtValue());
1325 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1326 << ", " << *DI << "\n");
1327 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1328 }
1329 }
1330 }
1331
SelectAllBasicBlocks(const Function & Fn)1332 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1333 FastISelFailed = false;
1334 // Initialize the Fast-ISel state, if needed.
1335 FastISel *FastIS = nullptr;
1336 if (TM.Options.EnableFastISel) {
1337 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1338 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1339 if (FastIS)
1340 FastIS->useInstrRefDebugInfo(UseInstrRefDebugInfo);
1341 }
1342
1343 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1344
1345 // Lower arguments up front. An RPO iteration always visits the entry block
1346 // first.
1347 assert(*RPOT.begin() == &Fn.getEntryBlock());
1348 ++NumEntryBlocks;
1349
1350 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1351 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1352 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1353
1354 CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1355
1356 if (!FastIS) {
1357 LowerArguments(Fn);
1358 } else {
1359 // See if fast isel can lower the arguments.
1360 FastIS->startNewBlock();
1361 if (!FastIS->lowerArguments()) {
1362 FastISelFailed = true;
1363 // Fast isel failed to lower these arguments
1364 ++NumFastIselFailLowerArguments;
1365
1366 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1367 Fn.getSubprogram(),
1368 &Fn.getEntryBlock());
1369 R << "FastISel didn't lower all arguments: "
1370 << ore::NV("Prototype", Fn.getType());
1371 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1372
1373 // Use SelectionDAG argument lowering
1374 LowerArguments(Fn);
1375 CurDAG->setRoot(SDB->getControlRoot());
1376 SDB->clear();
1377 CodeGenAndEmitDAG();
1378 }
1379
1380 // If we inserted any instructions at the beginning, make a note of
1381 // where they are, so we can be sure to emit subsequent instructions
1382 // after them.
1383 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1384 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1385 else
1386 FastIS->setLastLocalValue(nullptr);
1387 }
1388
1389 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1390
1391 if (FastIS && Inserted)
1392 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1393
1394 processDbgDeclares(*FuncInfo);
1395
1396 // Iterate over all basic blocks in the function.
1397 StackProtector &SP = getAnalysis<StackProtector>();
1398 for (const BasicBlock *LLVMBB : RPOT) {
1399 if (OptLevel != CodeGenOpt::None) {
1400 bool AllPredsVisited = true;
1401 for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1402 if (!FuncInfo->VisitedBBs.count(Pred)) {
1403 AllPredsVisited = false;
1404 break;
1405 }
1406 }
1407
1408 if (AllPredsVisited) {
1409 for (const PHINode &PN : LLVMBB->phis())
1410 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1411 } else {
1412 for (const PHINode &PN : LLVMBB->phis())
1413 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1414 }
1415
1416 FuncInfo->VisitedBBs.insert(LLVMBB);
1417 }
1418
1419 BasicBlock::const_iterator const Begin =
1420 LLVMBB->getFirstNonPHI()->getIterator();
1421 BasicBlock::const_iterator const End = LLVMBB->end();
1422 BasicBlock::const_iterator BI = End;
1423
1424 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1425 if (!FuncInfo->MBB)
1426 continue; // Some blocks like catchpads have no code or MBB.
1427
1428 // Insert new instructions after any phi or argument setup code.
1429 FuncInfo->InsertPt = FuncInfo->MBB->end();
1430
1431 // Setup an EH landing-pad block.
1432 FuncInfo->ExceptionPointerVirtReg = 0;
1433 FuncInfo->ExceptionSelectorVirtReg = 0;
1434 if (LLVMBB->isEHPad())
1435 if (!PrepareEHLandingPad())
1436 continue;
1437
1438 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1439 if (FastIS) {
1440 if (LLVMBB != &Fn.getEntryBlock())
1441 FastIS->startNewBlock();
1442
1443 unsigned NumFastIselRemaining = std::distance(Begin, End);
1444
1445 // Pre-assign swifterror vregs.
1446 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1447
1448 // Do FastISel on as many instructions as possible.
1449 for (; BI != Begin; --BI) {
1450 const Instruction *Inst = &*std::prev(BI);
1451
1452 // If we no longer require this instruction, skip it.
1453 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1454 ElidedArgCopyInstrs.count(Inst)) {
1455 --NumFastIselRemaining;
1456 continue;
1457 }
1458
1459 // Bottom-up: reset the insert pos at the top, after any local-value
1460 // instructions.
1461 FastIS->recomputeInsertPt();
1462
1463 // Try to select the instruction with FastISel.
1464 if (FastIS->selectInstruction(Inst)) {
1465 --NumFastIselRemaining;
1466 ++NumFastIselSuccess;
1467 // If fast isel succeeded, skip over all the folded instructions, and
1468 // then see if there is a load right before the selected instructions.
1469 // Try to fold the load if so.
1470 const Instruction *BeforeInst = Inst;
1471 while (BeforeInst != &*Begin) {
1472 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1473 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1474 break;
1475 }
1476 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1477 BeforeInst->hasOneUse() &&
1478 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1479 // If we succeeded, don't re-select the load.
1480 LLVM_DEBUG(dbgs()
1481 << "FastISel folded load: " << *BeforeInst << "\n");
1482 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1483 --NumFastIselRemaining;
1484 ++NumFastIselSuccess;
1485 }
1486 continue;
1487 }
1488
1489 FastISelFailed = true;
1490
1491 // Then handle certain instructions as single-LLVM-Instruction blocks.
1492 // We cannot separate out GCrelocates to their own blocks since we need
1493 // to keep track of gc-relocates for a particular gc-statepoint. This is
1494 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1495 // visitGCRelocate.
1496 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1497 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1498 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1499 Inst->getDebugLoc(), LLVMBB);
1500
1501 R << "FastISel missed call";
1502
1503 if (R.isEnabled() || EnableFastISelAbort) {
1504 std::string InstStrStorage;
1505 raw_string_ostream InstStr(InstStrStorage);
1506 InstStr << *Inst;
1507
1508 R << ": " << InstStr.str();
1509 }
1510
1511 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1512
1513 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1514 !Inst->use_empty()) {
1515 Register &R = FuncInfo->ValueMap[Inst];
1516 if (!R)
1517 R = FuncInfo->CreateRegs(Inst);
1518 }
1519
1520 bool HadTailCall = false;
1521 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1522 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1523
1524 // If the call was emitted as a tail call, we're done with the block.
1525 // We also need to delete any previously emitted instructions.
1526 if (HadTailCall) {
1527 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1528 --BI;
1529 break;
1530 }
1531
1532 // Recompute NumFastIselRemaining as Selection DAG instruction
1533 // selection may have handled the call, input args, etc.
1534 unsigned RemainingNow = std::distance(Begin, BI);
1535 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1536 NumFastIselRemaining = RemainingNow;
1537 continue;
1538 }
1539
1540 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1541 Inst->getDebugLoc(), LLVMBB);
1542
1543 bool ShouldAbort = EnableFastISelAbort;
1544 if (Inst->isTerminator()) {
1545 // Use a different message for terminator misses.
1546 R << "FastISel missed terminator";
1547 // Don't abort for terminator unless the level is really high
1548 ShouldAbort = (EnableFastISelAbort > 2);
1549 } else {
1550 R << "FastISel missed";
1551 }
1552
1553 if (R.isEnabled() || EnableFastISelAbort) {
1554 std::string InstStrStorage;
1555 raw_string_ostream InstStr(InstStrStorage);
1556 InstStr << *Inst;
1557 R << ": " << InstStr.str();
1558 }
1559
1560 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1561
1562 NumFastIselFailures += NumFastIselRemaining;
1563 break;
1564 }
1565
1566 FastIS->recomputeInsertPt();
1567 }
1568
1569 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1570 bool FunctionBasedInstrumentation =
1571 TLI->getSSPStackGuardCheck(*Fn.getParent());
1572 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1573 FunctionBasedInstrumentation);
1574 }
1575
1576 if (Begin != BI)
1577 ++NumDAGBlocks;
1578 else
1579 ++NumFastIselBlocks;
1580
1581 if (Begin != BI) {
1582 // Run SelectionDAG instruction selection on the remainder of the block
1583 // not handled by FastISel. If FastISel is not run, this is the entire
1584 // block.
1585 bool HadTailCall;
1586 SelectBasicBlock(Begin, BI, HadTailCall);
1587
1588 // But if FastISel was run, we already selected some of the block.
1589 // If we emitted a tail-call, we need to delete any previously emitted
1590 // instruction that follows it.
1591 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1592 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1593 }
1594
1595 if (FastIS)
1596 FastIS->finishBasicBlock();
1597 FinishBasicBlock();
1598 FuncInfo->PHINodesToUpdate.clear();
1599 ElidedArgCopyInstrs.clear();
1600 }
1601
1602 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1603
1604 SwiftError->propagateVRegs();
1605
1606 delete FastIS;
1607 SDB->clearDanglingDebugInfo();
1608 SDB->SPDescriptor.resetPerFunctionState();
1609 }
1610
1611 void
FinishBasicBlock()1612 SelectionDAGISel::FinishBasicBlock() {
1613 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1614 << FuncInfo->PHINodesToUpdate.size() << "\n";
1615 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1616 ++i) dbgs()
1617 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1618 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1619
1620 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1621 // PHI nodes in successors.
1622 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1623 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1624 assert(PHI->isPHI() &&
1625 "This is not a machine PHI node that we are updating!");
1626 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1627 continue;
1628 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1629 }
1630
1631 // Handle stack protector.
1632 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1633 // The target provides a guard check function. There is no need to
1634 // generate error handling code or to split current basic block.
1635 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1636
1637 // Add load and check to the basicblock.
1638 FuncInfo->MBB = ParentMBB;
1639 FuncInfo->InsertPt =
1640 findSplitPointForStackProtector(ParentMBB, *TII);
1641 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1642 CurDAG->setRoot(SDB->getRoot());
1643 SDB->clear();
1644 CodeGenAndEmitDAG();
1645
1646 // Clear the Per-BB State.
1647 SDB->SPDescriptor.resetPerBBState();
1648 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1649 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1650 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1651
1652 // Find the split point to split the parent mbb. At the same time copy all
1653 // physical registers used in the tail of parent mbb into virtual registers
1654 // before the split point and back into physical registers after the split
1655 // point. This prevents us needing to deal with Live-ins and many other
1656 // register allocation issues caused by us splitting the parent mbb. The
1657 // register allocator will clean up said virtual copies later on.
1658 MachineBasicBlock::iterator SplitPoint =
1659 findSplitPointForStackProtector(ParentMBB, *TII);
1660
1661 // Splice the terminator of ParentMBB into SuccessMBB.
1662 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1663 SplitPoint,
1664 ParentMBB->end());
1665
1666 // Add compare/jump on neq/jump to the parent BB.
1667 FuncInfo->MBB = ParentMBB;
1668 FuncInfo->InsertPt = ParentMBB->end();
1669 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1670 CurDAG->setRoot(SDB->getRoot());
1671 SDB->clear();
1672 CodeGenAndEmitDAG();
1673
1674 // CodeGen Failure MBB if we have not codegened it yet.
1675 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1676 if (FailureMBB->empty()) {
1677 FuncInfo->MBB = FailureMBB;
1678 FuncInfo->InsertPt = FailureMBB->end();
1679 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1680 CurDAG->setRoot(SDB->getRoot());
1681 SDB->clear();
1682 CodeGenAndEmitDAG();
1683 }
1684
1685 // Clear the Per-BB State.
1686 SDB->SPDescriptor.resetPerBBState();
1687 }
1688
1689 // Lower each BitTestBlock.
1690 for (auto &BTB : SDB->SL->BitTestCases) {
1691 // Lower header first, if it wasn't already lowered
1692 if (!BTB.Emitted) {
1693 // Set the current basic block to the mbb we wish to insert the code into
1694 FuncInfo->MBB = BTB.Parent;
1695 FuncInfo->InsertPt = FuncInfo->MBB->end();
1696 // Emit the code
1697 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1698 CurDAG->setRoot(SDB->getRoot());
1699 SDB->clear();
1700 CodeGenAndEmitDAG();
1701 }
1702
1703 BranchProbability UnhandledProb = BTB.Prob;
1704 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1705 UnhandledProb -= BTB.Cases[j].ExtraProb;
1706 // Set the current basic block to the mbb we wish to insert the code into
1707 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1708 FuncInfo->InsertPt = FuncInfo->MBB->end();
1709 // Emit the code
1710
1711 // If all cases cover a contiguous range, it is not necessary to jump to
1712 // the default block after the last bit test fails. This is because the
1713 // range check during bit test header creation has guaranteed that every
1714 // case here doesn't go outside the range. In this case, there is no need
1715 // to perform the last bit test, as it will always be true. Instead, make
1716 // the second-to-last bit-test fall through to the target of the last bit
1717 // test, and delete the last bit test.
1718
1719 MachineBasicBlock *NextMBB;
1720 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1721 // Second-to-last bit-test with contiguous range or omitted range
1722 // check: fall through to the target of the final bit test.
1723 NextMBB = BTB.Cases[j + 1].TargetBB;
1724 } else if (j + 1 == ej) {
1725 // For the last bit test, fall through to Default.
1726 NextMBB = BTB.Default;
1727 } else {
1728 // Otherwise, fall through to the next bit test.
1729 NextMBB = BTB.Cases[j + 1].ThisBB;
1730 }
1731
1732 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1733 FuncInfo->MBB);
1734
1735 CurDAG->setRoot(SDB->getRoot());
1736 SDB->clear();
1737 CodeGenAndEmitDAG();
1738
1739 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1740 // Since we're not going to use the final bit test, remove it.
1741 BTB.Cases.pop_back();
1742 break;
1743 }
1744 }
1745
1746 // Update PHI Nodes
1747 for (const std::pair<MachineInstr *, unsigned> &P :
1748 FuncInfo->PHINodesToUpdate) {
1749 MachineInstrBuilder PHI(*MF, P.first);
1750 MachineBasicBlock *PHIBB = PHI->getParent();
1751 assert(PHI->isPHI() &&
1752 "This is not a machine PHI node that we are updating!");
1753 // This is "default" BB. We have two jumps to it. From "header" BB and
1754 // from last "case" BB, unless the latter was skipped.
1755 if (PHIBB == BTB.Default) {
1756 PHI.addReg(P.second).addMBB(BTB.Parent);
1757 if (!BTB.ContiguousRange) {
1758 PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB);
1759 }
1760 }
1761 // One of "cases" BB.
1762 for (const SwitchCG::BitTestCase &BT : BTB.Cases) {
1763 MachineBasicBlock* cBB = BT.ThisBB;
1764 if (cBB->isSuccessor(PHIBB))
1765 PHI.addReg(P.second).addMBB(cBB);
1766 }
1767 }
1768 }
1769 SDB->SL->BitTestCases.clear();
1770
1771 // If the JumpTable record is filled in, then we need to emit a jump table.
1772 // Updating the PHI nodes is tricky in this case, since we need to determine
1773 // whether the PHI is a successor of the range check MBB or the jump table MBB
1774 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1775 // Lower header first, if it wasn't already lowered
1776 if (!SDB->SL->JTCases[i].first.Emitted) {
1777 // Set the current basic block to the mbb we wish to insert the code into
1778 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1779 FuncInfo->InsertPt = FuncInfo->MBB->end();
1780 // Emit the code
1781 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1782 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1783 CurDAG->setRoot(SDB->getRoot());
1784 SDB->clear();
1785 CodeGenAndEmitDAG();
1786 }
1787
1788 // Set the current basic block to the mbb we wish to insert the code into
1789 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1790 FuncInfo->InsertPt = FuncInfo->MBB->end();
1791 // Emit the code
1792 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1793 CurDAG->setRoot(SDB->getRoot());
1794 SDB->clear();
1795 CodeGenAndEmitDAG();
1796
1797 // Update PHI Nodes
1798 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1799 pi != pe; ++pi) {
1800 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1801 MachineBasicBlock *PHIBB = PHI->getParent();
1802 assert(PHI->isPHI() &&
1803 "This is not a machine PHI node that we are updating!");
1804 // "default" BB. We can go there only from header BB.
1805 if (PHIBB == SDB->SL->JTCases[i].second.Default)
1806 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1807 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1808 // JT BB. Just iterate over successors here
1809 if (FuncInfo->MBB->isSuccessor(PHIBB))
1810 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1811 }
1812 }
1813 SDB->SL->JTCases.clear();
1814
1815 // If we generated any switch lowering information, build and codegen any
1816 // additional DAGs necessary.
1817 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1818 // Set the current basic block to the mbb we wish to insert the code into
1819 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1820 FuncInfo->InsertPt = FuncInfo->MBB->end();
1821
1822 // Determine the unique successors.
1823 SmallVector<MachineBasicBlock *, 2> Succs;
1824 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1825 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1826 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1827
1828 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1829 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1830 CurDAG->setRoot(SDB->getRoot());
1831 SDB->clear();
1832 CodeGenAndEmitDAG();
1833
1834 // Remember the last block, now that any splitting is done, for use in
1835 // populating PHI nodes in successors.
1836 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1837
1838 // Handle any PHI nodes in successors of this chunk, as if we were coming
1839 // from the original BB before switch expansion. Note that PHI nodes can
1840 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1841 // handle them the right number of times.
1842 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1843 FuncInfo->MBB = Succs[i];
1844 FuncInfo->InsertPt = FuncInfo->MBB->end();
1845 // FuncInfo->MBB may have been removed from the CFG if a branch was
1846 // constant folded.
1847 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1848 for (MachineBasicBlock::iterator
1849 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1850 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1851 MachineInstrBuilder PHI(*MF, MBBI);
1852 // This value for this PHI node is recorded in PHINodesToUpdate.
1853 for (unsigned pn = 0; ; ++pn) {
1854 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1855 "Didn't find PHI entry!");
1856 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1857 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1858 break;
1859 }
1860 }
1861 }
1862 }
1863 }
1864 }
1865 SDB->SL->SwitchCases.clear();
1866 }
1867
1868 /// Create the scheduler. If a specific scheduler was specified
1869 /// via the SchedulerRegistry, use it, otherwise select the
1870 /// one preferred by the target.
1871 ///
CreateScheduler()1872 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1873 return ISHeuristic(this, OptLevel);
1874 }
1875
1876 //===----------------------------------------------------------------------===//
1877 // Helper functions used by the generated instruction selector.
1878 //===----------------------------------------------------------------------===//
1879 // Calls to these methods are generated by tblgen.
1880
1881 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1882 /// the dag combiner simplified the 255, we still want to match. RHS is the
1883 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1884 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1885 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1886 int64_t DesiredMaskS) const {
1887 const APInt &ActualMask = RHS->getAPIntValue();
1888 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1889
1890 // If the actual mask exactly matches, success!
1891 if (ActualMask == DesiredMask)
1892 return true;
1893
1894 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1895 if (!ActualMask.isSubsetOf(DesiredMask))
1896 return false;
1897
1898 // Otherwise, the DAG Combiner may have proven that the value coming in is
1899 // either already zero or is not demanded. Check for known zero input bits.
1900 APInt NeededMask = DesiredMask & ~ActualMask;
1901 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1902 return true;
1903
1904 // TODO: check to see if missing bits are just not demanded.
1905
1906 // Otherwise, this pattern doesn't match.
1907 return false;
1908 }
1909
1910 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1911 /// the dag combiner simplified the 255, we still want to match. RHS is the
1912 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1913 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1914 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1915 int64_t DesiredMaskS) const {
1916 const APInt &ActualMask = RHS->getAPIntValue();
1917 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1918
1919 // If the actual mask exactly matches, success!
1920 if (ActualMask == DesiredMask)
1921 return true;
1922
1923 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1924 if (!ActualMask.isSubsetOf(DesiredMask))
1925 return false;
1926
1927 // Otherwise, the DAG Combiner may have proven that the value coming in is
1928 // either already zero or is not demanded. Check for known zero input bits.
1929 APInt NeededMask = DesiredMask & ~ActualMask;
1930 KnownBits Known = CurDAG->computeKnownBits(LHS);
1931
1932 // If all the missing bits in the or are already known to be set, match!
1933 if (NeededMask.isSubsetOf(Known.One))
1934 return true;
1935
1936 // TODO: check to see if missing bits are just not demanded.
1937
1938 // Otherwise, this pattern doesn't match.
1939 return false;
1940 }
1941
1942 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1943 /// by tblgen. Others should not call it.
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops,const SDLoc & DL)1944 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
1945 const SDLoc &DL) {
1946 std::vector<SDValue> InOps;
1947 std::swap(InOps, Ops);
1948
1949 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1950 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1951 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1952 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
1953
1954 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1955 if (InOps[e-1].getValueType() == MVT::Glue)
1956 --e; // Don't process a glue operand if it is here.
1957
1958 while (i != e) {
1959 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1960 if (!InlineAsm::isMemKind(Flags)) {
1961 // Just skip over this operand, copying the operands verbatim.
1962 Ops.insert(Ops.end(), InOps.begin()+i,
1963 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1964 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1965 } else {
1966 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1967 "Memory operand with multiple values?");
1968
1969 unsigned TiedToOperand;
1970 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
1971 // We need the constraint ID from the operand this is tied to.
1972 unsigned CurOp = InlineAsm::Op_FirstOperand;
1973 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
1974 for (; TiedToOperand; --TiedToOperand) {
1975 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
1976 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
1977 }
1978 }
1979
1980 // Otherwise, this is a memory operand. Ask the target to select it.
1981 std::vector<SDValue> SelOps;
1982 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
1983 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
1984 report_fatal_error("Could not match memory address. Inline asm"
1985 " failure!");
1986
1987 // Add this to the output node.
1988 unsigned NewFlags =
1989 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1990 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
1991 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
1992 llvm::append_range(Ops, SelOps);
1993 i += 2;
1994 }
1995 }
1996
1997 // Add the glue input back if present.
1998 if (e != InOps.size())
1999 Ops.push_back(InOps.back());
2000 }
2001
2002 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2003 /// SDNode.
2004 ///
findGlueUse(SDNode * N)2005 static SDNode *findGlueUse(SDNode *N) {
2006 unsigned FlagResNo = N->getNumValues()-1;
2007 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2008 SDUse &Use = I.getUse();
2009 if (Use.getResNo() == FlagResNo)
2010 return Use.getUser();
2011 }
2012 return nullptr;
2013 }
2014
2015 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2016 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
findNonImmUse(SDNode * Root,SDNode * Def,SDNode * ImmedUse,bool IgnoreChains)2017 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2018 bool IgnoreChains) {
2019 SmallPtrSet<const SDNode *, 16> Visited;
2020 SmallVector<const SDNode *, 16> WorkList;
2021 // Only check if we have non-immediate uses of Def.
2022 if (ImmedUse->isOnlyUserOf(Def))
2023 return false;
2024
2025 // We don't care about paths to Def that go through ImmedUse so mark it
2026 // visited and mark non-def operands as used.
2027 Visited.insert(ImmedUse);
2028 for (const SDValue &Op : ImmedUse->op_values()) {
2029 SDNode *N = Op.getNode();
2030 // Ignore chain deps (they are validated by
2031 // HandleMergeInputChains) and immediate uses
2032 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2033 continue;
2034 if (!Visited.insert(N).second)
2035 continue;
2036 WorkList.push_back(N);
2037 }
2038
2039 // Initialize worklist to operands of Root.
2040 if (Root != ImmedUse) {
2041 for (const SDValue &Op : Root->op_values()) {
2042 SDNode *N = Op.getNode();
2043 // Ignore chains (they are validated by HandleMergeInputChains)
2044 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2045 continue;
2046 if (!Visited.insert(N).second)
2047 continue;
2048 WorkList.push_back(N);
2049 }
2050 }
2051
2052 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2053 }
2054
2055 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2056 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const2057 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2058 SDNode *Root) const {
2059 if (OptLevel == CodeGenOpt::None) return false;
2060 return N.hasOneUse();
2061 }
2062
2063 /// IsLegalToFold - Returns true if the specific operand node N of
2064 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)2065 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2066 CodeGenOpt::Level OptLevel,
2067 bool IgnoreChains) {
2068 if (OptLevel == CodeGenOpt::None) return false;
2069
2070 // If Root use can somehow reach N through a path that that doesn't contain
2071 // U then folding N would create a cycle. e.g. In the following
2072 // diagram, Root can reach N through X. If N is folded into Root, then
2073 // X is both a predecessor and a successor of U.
2074 //
2075 // [N*] //
2076 // ^ ^ //
2077 // / \ //
2078 // [U*] [X]? //
2079 // ^ ^ //
2080 // \ / //
2081 // \ / //
2082 // [Root*] //
2083 //
2084 // * indicates nodes to be folded together.
2085 //
2086 // If Root produces glue, then it gets (even more) interesting. Since it
2087 // will be "glued" together with its glue use in the scheduler, we need to
2088 // check if it might reach N.
2089 //
2090 // [N*] //
2091 // ^ ^ //
2092 // / \ //
2093 // [U*] [X]? //
2094 // ^ ^ //
2095 // \ \ //
2096 // \ | //
2097 // [Root*] | //
2098 // ^ | //
2099 // f | //
2100 // | / //
2101 // [Y] / //
2102 // ^ / //
2103 // f / //
2104 // | / //
2105 // [GU] //
2106 //
2107 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2108 // (call it Fold), then X is a predecessor of GU and a successor of
2109 // Fold. But since Fold and GU are glued together, this will create
2110 // a cycle in the scheduling graph.
2111
2112 // If the node has glue, walk down the graph to the "lowest" node in the
2113 // glueged set.
2114 EVT VT = Root->getValueType(Root->getNumValues()-1);
2115 while (VT == MVT::Glue) {
2116 SDNode *GU = findGlueUse(Root);
2117 if (!GU)
2118 break;
2119 Root = GU;
2120 VT = Root->getValueType(Root->getNumValues()-1);
2121
2122 // If our query node has a glue result with a use, we've walked up it. If
2123 // the user (which has already been selected) has a chain or indirectly uses
2124 // the chain, HandleMergeInputChains will not consider it. Because of
2125 // this, we cannot ignore chains in this predicate.
2126 IgnoreChains = false;
2127 }
2128
2129 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2130 }
2131
Select_INLINEASM(SDNode * N)2132 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2133 SDLoc DL(N);
2134
2135 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2136 SelectInlineAsmMemoryOperands(Ops, DL);
2137
2138 const EVT VTs[] = {MVT::Other, MVT::Glue};
2139 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2140 New->setNodeId(-1);
2141 ReplaceUses(N, New.getNode());
2142 CurDAG->RemoveDeadNode(N);
2143 }
2144
Select_READ_REGISTER(SDNode * Op)2145 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2146 SDLoc dl(Op);
2147 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2148 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2149
2150 EVT VT = Op->getValueType(0);
2151 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2152 Register Reg =
2153 TLI->getRegisterByName(RegStr->getString().data(), Ty,
2154 CurDAG->getMachineFunction());
2155 SDValue New = CurDAG->getCopyFromReg(
2156 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2157 New->setNodeId(-1);
2158 ReplaceUses(Op, New.getNode());
2159 CurDAG->RemoveDeadNode(Op);
2160 }
2161
Select_WRITE_REGISTER(SDNode * Op)2162 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2163 SDLoc dl(Op);
2164 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2165 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2166
2167 EVT VT = Op->getOperand(2).getValueType();
2168 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2169
2170 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2171 CurDAG->getMachineFunction());
2172 SDValue New = CurDAG->getCopyToReg(
2173 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2174 New->setNodeId(-1);
2175 ReplaceUses(Op, New.getNode());
2176 CurDAG->RemoveDeadNode(Op);
2177 }
2178
Select_UNDEF(SDNode * N)2179 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2180 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2181 }
2182
Select_FREEZE(SDNode * N)2183 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2184 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2185 // If FREEZE instruction is added later, the code below must be changed as
2186 // well.
2187 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2188 N->getOperand(0));
2189 }
2190
Select_ARITH_FENCE(SDNode * N)2191 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2192 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2193 N->getOperand(0));
2194 }
2195
pushStackMapLiveVariable(SmallVectorImpl<SDValue> & Ops,SDValue OpVal,SDLoc DL)2196 void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops,
2197 SDValue OpVal, SDLoc DL) {
2198 SDNode *OpNode = OpVal.getNode();
2199
2200 // FrameIndex nodes should have been directly emitted to TargetFrameIndex
2201 // nodes at DAG-construction time.
2202 assert(OpNode->getOpcode() != ISD::FrameIndex);
2203
2204 if (OpNode->getOpcode() == ISD::Constant) {
2205 Ops.push_back(
2206 CurDAG->getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
2207 Ops.push_back(
2208 CurDAG->getTargetConstant(cast<ConstantSDNode>(OpNode)->getZExtValue(),
2209 DL, OpVal.getValueType()));
2210 } else {
2211 Ops.push_back(OpVal);
2212 }
2213 }
2214
Select_STACKMAP(SDNode * N)2215 void SelectionDAGISel::Select_STACKMAP(SDNode *N) {
2216 SmallVector<SDValue, 32> Ops;
2217 auto *It = N->op_begin();
2218 SDLoc DL(N);
2219
2220 // Stash the chain and glue operands so we can move them to the end.
2221 SDValue Chain = *It++;
2222 SDValue InFlag = *It++;
2223
2224 // <id> operand.
2225 SDValue ID = *It++;
2226 assert(ID.getValueType() == MVT::i64);
2227 Ops.push_back(ID);
2228
2229 // <numShadowBytes> operand.
2230 SDValue Shad = *It++;
2231 assert(Shad.getValueType() == MVT::i32);
2232 Ops.push_back(Shad);
2233
2234 // Live variable operands.
2235 for (; It != N->op_end(); It++)
2236 pushStackMapLiveVariable(Ops, *It, DL);
2237
2238 Ops.push_back(Chain);
2239 Ops.push_back(InFlag);
2240
2241 SDVTList NodeTys = CurDAG->getVTList(MVT::Other, MVT::Glue);
2242 CurDAG->SelectNodeTo(N, TargetOpcode::STACKMAP, NodeTys, Ops);
2243 }
2244
Select_PATCHPOINT(SDNode * N)2245 void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) {
2246 SmallVector<SDValue, 32> Ops;
2247 auto *It = N->op_begin();
2248 SDLoc DL(N);
2249
2250 // Cache arguments that will be moved to the end in the target node.
2251 SDValue Chain = *It++;
2252 Optional<SDValue> Glue;
2253 if (It->getValueType() == MVT::Glue)
2254 Glue = *It++;
2255 SDValue RegMask = *It++;
2256
2257 // <id> operand.
2258 SDValue ID = *It++;
2259 assert(ID.getValueType() == MVT::i64);
2260 Ops.push_back(ID);
2261
2262 // <numShadowBytes> operand.
2263 SDValue Shad = *It++;
2264 assert(Shad.getValueType() == MVT::i32);
2265 Ops.push_back(Shad);
2266
2267 // Add the callee.
2268 Ops.push_back(*It++);
2269
2270 // Add <numArgs>.
2271 SDValue NumArgs = *It++;
2272 assert(NumArgs.getValueType() == MVT::i32);
2273 Ops.push_back(NumArgs);
2274
2275 // Calling convention.
2276 Ops.push_back(*It++);
2277
2278 // Push the args for the call.
2279 for (uint64_t I = cast<ConstantSDNode>(NumArgs)->getZExtValue(); I != 0; I--)
2280 Ops.push_back(*It++);
2281
2282 // Now push the live variables.
2283 for (; It != N->op_end(); It++)
2284 pushStackMapLiveVariable(Ops, *It, DL);
2285
2286 // Finally, the regmask, chain and (if present) glue are moved to the end.
2287 Ops.push_back(RegMask);
2288 Ops.push_back(Chain);
2289 if (Glue.has_value())
2290 Ops.push_back(Glue.value());
2291
2292 SDVTList NodeTys = N->getVTList();
2293 CurDAG->SelectNodeTo(N, TargetOpcode::PATCHPOINT, NodeTys, Ops);
2294 }
2295
2296 /// GetVBR - decode a vbr encoding whose top bit is set.
2297 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)2298 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2299 assert(Val >= 128 && "Not a VBR");
2300 Val &= 127; // Remove first vbr bit.
2301
2302 unsigned Shift = 7;
2303 uint64_t NextBits;
2304 do {
2305 NextBits = MatcherTable[Idx++];
2306 Val |= (NextBits&127) << Shift;
2307 Shift += 7;
2308 } while (NextBits & 128);
2309
2310 return Val;
2311 }
2312
2313 /// When a match is complete, this method updates uses of interior chain results
2314 /// to use the new results.
UpdateChains(SDNode * NodeToMatch,SDValue InputChain,SmallVectorImpl<SDNode * > & ChainNodesMatched,bool isMorphNodeTo)2315 void SelectionDAGISel::UpdateChains(
2316 SDNode *NodeToMatch, SDValue InputChain,
2317 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2318 SmallVector<SDNode*, 4> NowDeadNodes;
2319
2320 // Now that all the normal results are replaced, we replace the chain and
2321 // glue results if present.
2322 if (!ChainNodesMatched.empty()) {
2323 assert(InputChain.getNode() &&
2324 "Matched input chains but didn't produce a chain");
2325 // Loop over all of the nodes we matched that produced a chain result.
2326 // Replace all the chain results with the final chain we ended up with.
2327 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2328 SDNode *ChainNode = ChainNodesMatched[i];
2329 // If ChainNode is null, it's because we replaced it on a previous
2330 // iteration and we cleared it out of the map. Just skip it.
2331 if (!ChainNode)
2332 continue;
2333
2334 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2335 "Deleted node left in chain");
2336
2337 // Don't replace the results of the root node if we're doing a
2338 // MorphNodeTo.
2339 if (ChainNode == NodeToMatch && isMorphNodeTo)
2340 continue;
2341
2342 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2343 if (ChainVal.getValueType() == MVT::Glue)
2344 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2345 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2346 SelectionDAG::DAGNodeDeletedListener NDL(
2347 *CurDAG, [&](SDNode *N, SDNode *E) {
2348 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2349 static_cast<SDNode *>(nullptr));
2350 });
2351 if (ChainNode->getOpcode() != ISD::TokenFactor)
2352 ReplaceUses(ChainVal, InputChain);
2353
2354 // If the node became dead and we haven't already seen it, delete it.
2355 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2356 !llvm::is_contained(NowDeadNodes, ChainNode))
2357 NowDeadNodes.push_back(ChainNode);
2358 }
2359 }
2360
2361 if (!NowDeadNodes.empty())
2362 CurDAG->RemoveDeadNodes(NowDeadNodes);
2363
2364 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2365 }
2366
2367 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2368 /// operation for when the pattern matched at least one node with a chains. The
2369 /// input vector contains a list of all of the chained nodes that we match. We
2370 /// must determine if this is a valid thing to cover (i.e. matching it won't
2371 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2372 /// be used as the input node chain for the generated nodes.
2373 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)2374 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2375 SelectionDAG *CurDAG) {
2376
2377 SmallPtrSet<const SDNode *, 16> Visited;
2378 SmallVector<const SDNode *, 8> Worklist;
2379 SmallVector<SDValue, 3> InputChains;
2380 unsigned int Max = 8192;
2381
2382 // Quick exit on trivial merge.
2383 if (ChainNodesMatched.size() == 1)
2384 return ChainNodesMatched[0]->getOperand(0);
2385
2386 // Add chains that aren't already added (internal). Peek through
2387 // token factors.
2388 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2389 if (V.getValueType() != MVT::Other)
2390 return;
2391 if (V->getOpcode() == ISD::EntryToken)
2392 return;
2393 if (!Visited.insert(V.getNode()).second)
2394 return;
2395 if (V->getOpcode() == ISD::TokenFactor) {
2396 for (const SDValue &Op : V->op_values())
2397 AddChains(Op);
2398 } else
2399 InputChains.push_back(V);
2400 };
2401
2402 for (auto *N : ChainNodesMatched) {
2403 Worklist.push_back(N);
2404 Visited.insert(N);
2405 }
2406
2407 while (!Worklist.empty())
2408 AddChains(Worklist.pop_back_val()->getOperand(0));
2409
2410 // Skip the search if there are no chain dependencies.
2411 if (InputChains.size() == 0)
2412 return CurDAG->getEntryNode();
2413
2414 // If one of these chains is a successor of input, we must have a
2415 // node that is both the predecessor and successor of the
2416 // to-be-merged nodes. Fail.
2417 Visited.clear();
2418 for (SDValue V : InputChains)
2419 Worklist.push_back(V.getNode());
2420
2421 for (auto *N : ChainNodesMatched)
2422 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2423 return SDValue();
2424
2425 // Return merged chain.
2426 if (InputChains.size() == 1)
2427 return InputChains[0];
2428 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2429 MVT::Other, InputChains);
2430 }
2431
2432 /// MorphNode - Handle morphing a node in place for the selector.
2433 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,ArrayRef<SDValue> Ops,unsigned EmitNodeInfo)2434 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2435 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2436 // It is possible we're using MorphNodeTo to replace a node with no
2437 // normal results with one that has a normal result (or we could be
2438 // adding a chain) and the input could have glue and chains as well.
2439 // In this case we need to shift the operands down.
2440 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2441 // than the old isel though.
2442 int OldGlueResultNo = -1, OldChainResultNo = -1;
2443
2444 unsigned NTMNumResults = Node->getNumValues();
2445 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2446 OldGlueResultNo = NTMNumResults-1;
2447 if (NTMNumResults != 1 &&
2448 Node->getValueType(NTMNumResults-2) == MVT::Other)
2449 OldChainResultNo = NTMNumResults-2;
2450 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2451 OldChainResultNo = NTMNumResults-1;
2452
2453 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2454 // that this deletes operands of the old node that become dead.
2455 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2456
2457 // MorphNodeTo can operate in two ways: if an existing node with the
2458 // specified operands exists, it can just return it. Otherwise, it
2459 // updates the node in place to have the requested operands.
2460 if (Res == Node) {
2461 // If we updated the node in place, reset the node ID. To the isel,
2462 // this should be just like a newly allocated machine node.
2463 Res->setNodeId(-1);
2464 }
2465
2466 unsigned ResNumResults = Res->getNumValues();
2467 // Move the glue if needed.
2468 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2469 (unsigned)OldGlueResultNo != ResNumResults-1)
2470 ReplaceUses(SDValue(Node, OldGlueResultNo),
2471 SDValue(Res, ResNumResults - 1));
2472
2473 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2474 --ResNumResults;
2475
2476 // Move the chain reference if needed.
2477 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2478 (unsigned)OldChainResultNo != ResNumResults-1)
2479 ReplaceUses(SDValue(Node, OldChainResultNo),
2480 SDValue(Res, ResNumResults - 1));
2481
2482 // Otherwise, no replacement happened because the node already exists. Replace
2483 // Uses of the old node with the new one.
2484 if (Res != Node) {
2485 ReplaceNode(Node, Res);
2486 } else {
2487 EnforceNodeIdInvariant(Res);
2488 }
2489
2490 return Res;
2491 }
2492
2493 /// CheckSame - Implements OP_CheckSame.
2494 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2495 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2496 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2497 // Accept if it is exactly the same as a previously recorded node.
2498 unsigned RecNo = MatcherTable[MatcherIndex++];
2499 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2500 return N == RecordedNodes[RecNo].first;
2501 }
2502
2503 /// CheckChildSame - Implements OP_CheckChildXSame.
CheckChildSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes,unsigned ChildNo)2504 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2505 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2506 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2507 unsigned ChildNo) {
2508 if (ChildNo >= N.getNumOperands())
2509 return false; // Match fails if out of range child #.
2510 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2511 RecordedNodes);
2512 }
2513
2514 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2515 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2516 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2517 const SelectionDAGISel &SDISel) {
2518 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2519 }
2520
2521 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2522 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2523 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2524 const SelectionDAGISel &SDISel, SDNode *N) {
2525 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2526 }
2527
2528 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2529 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2530 SDNode *N) {
2531 uint16_t Opc = MatcherTable[MatcherIndex++];
2532 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2533 return N->getOpcode() == Opc;
2534 }
2535
2536 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2537 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2538 const TargetLowering *TLI, const DataLayout &DL) {
2539 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2540 if (N.getValueType() == VT) return true;
2541
2542 // Handle the case when VT is iPTR.
2543 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2544 }
2545
2546 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL,unsigned ChildNo)2547 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2548 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2549 unsigned ChildNo) {
2550 if (ChildNo >= N.getNumOperands())
2551 return false; // Match fails if out of range child #.
2552 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2553 DL);
2554 }
2555
2556 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2557 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2558 SDValue N) {
2559 return cast<CondCodeSDNode>(N)->get() ==
2560 (ISD::CondCode)MatcherTable[MatcherIndex++];
2561 }
2562
2563 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChild2CondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2564 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2565 SDValue N) {
2566 if (2 >= N.getNumOperands())
2567 return false;
2568 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2569 }
2570
2571 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2572 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2573 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2574 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2575 if (cast<VTSDNode>(N)->getVT() == VT)
2576 return true;
2577
2578 // Handle the case when VT is iPTR.
2579 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2580 }
2581
2582 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2583 // shifted left by 1.
decodeSignRotatedValue(uint64_t V)2584 static uint64_t decodeSignRotatedValue(uint64_t V) {
2585 if ((V & 1) == 0)
2586 return V >> 1;
2587 if (V != 1)
2588 return -(V >> 1);
2589 // There is no such thing as -0 with integers. "-0" really means MININT.
2590 return 1ULL << 63;
2591 }
2592
2593 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2594 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2595 SDValue N) {
2596 int64_t Val = MatcherTable[MatcherIndex++];
2597 if (Val & 128)
2598 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2599
2600 Val = decodeSignRotatedValue(Val);
2601
2602 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2603 return C && C->getSExtValue() == Val;
2604 }
2605
2606 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,unsigned ChildNo)2607 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2608 SDValue N, unsigned ChildNo) {
2609 if (ChildNo >= N.getNumOperands())
2610 return false; // Match fails if out of range child #.
2611 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2612 }
2613
2614 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2615 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2616 SDValue N, const SelectionDAGISel &SDISel) {
2617 int64_t Val = MatcherTable[MatcherIndex++];
2618 if (Val & 128)
2619 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2620
2621 if (N->getOpcode() != ISD::AND) return false;
2622
2623 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2624 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2625 }
2626
2627 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2628 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2629 const SelectionDAGISel &SDISel) {
2630 int64_t Val = MatcherTable[MatcherIndex++];
2631 if (Val & 128)
2632 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2633
2634 if (N->getOpcode() != ISD::OR) return false;
2635
2636 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2637 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2638 }
2639
2640 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2641 /// scope, evaluate the current node. If the current predicate is known to
2642 /// fail, set Result=true and return anything. If the current predicate is
2643 /// known to pass, set Result=false and return the MatcherIndex to continue
2644 /// with. If the current predicate is unknown, set Result=false and return the
2645 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2646 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2647 unsigned Index, SDValue N,
2648 bool &Result,
2649 const SelectionDAGISel &SDISel,
2650 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2651 switch (Table[Index++]) {
2652 default:
2653 Result = false;
2654 return Index-1; // Could not evaluate this predicate.
2655 case SelectionDAGISel::OPC_CheckSame:
2656 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2657 return Index;
2658 case SelectionDAGISel::OPC_CheckChild0Same:
2659 case SelectionDAGISel::OPC_CheckChild1Same:
2660 case SelectionDAGISel::OPC_CheckChild2Same:
2661 case SelectionDAGISel::OPC_CheckChild3Same:
2662 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2663 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2664 return Index;
2665 case SelectionDAGISel::OPC_CheckPatternPredicate:
2666 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2667 return Index;
2668 case SelectionDAGISel::OPC_CheckPredicate:
2669 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2670 return Index;
2671 case SelectionDAGISel::OPC_CheckOpcode:
2672 Result = !::CheckOpcode(Table, Index, N.getNode());
2673 return Index;
2674 case SelectionDAGISel::OPC_CheckType:
2675 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2676 SDISel.CurDAG->getDataLayout());
2677 return Index;
2678 case SelectionDAGISel::OPC_CheckTypeRes: {
2679 unsigned Res = Table[Index++];
2680 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2681 SDISel.CurDAG->getDataLayout());
2682 return Index;
2683 }
2684 case SelectionDAGISel::OPC_CheckChild0Type:
2685 case SelectionDAGISel::OPC_CheckChild1Type:
2686 case SelectionDAGISel::OPC_CheckChild2Type:
2687 case SelectionDAGISel::OPC_CheckChild3Type:
2688 case SelectionDAGISel::OPC_CheckChild4Type:
2689 case SelectionDAGISel::OPC_CheckChild5Type:
2690 case SelectionDAGISel::OPC_CheckChild6Type:
2691 case SelectionDAGISel::OPC_CheckChild7Type:
2692 Result = !::CheckChildType(
2693 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2694 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2695 return Index;
2696 case SelectionDAGISel::OPC_CheckCondCode:
2697 Result = !::CheckCondCode(Table, Index, N);
2698 return Index;
2699 case SelectionDAGISel::OPC_CheckChild2CondCode:
2700 Result = !::CheckChild2CondCode(Table, Index, N);
2701 return Index;
2702 case SelectionDAGISel::OPC_CheckValueType:
2703 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2704 SDISel.CurDAG->getDataLayout());
2705 return Index;
2706 case SelectionDAGISel::OPC_CheckInteger:
2707 Result = !::CheckInteger(Table, Index, N);
2708 return Index;
2709 case SelectionDAGISel::OPC_CheckChild0Integer:
2710 case SelectionDAGISel::OPC_CheckChild1Integer:
2711 case SelectionDAGISel::OPC_CheckChild2Integer:
2712 case SelectionDAGISel::OPC_CheckChild3Integer:
2713 case SelectionDAGISel::OPC_CheckChild4Integer:
2714 Result = !::CheckChildInteger(Table, Index, N,
2715 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2716 return Index;
2717 case SelectionDAGISel::OPC_CheckAndImm:
2718 Result = !::CheckAndImm(Table, Index, N, SDISel);
2719 return Index;
2720 case SelectionDAGISel::OPC_CheckOrImm:
2721 Result = !::CheckOrImm(Table, Index, N, SDISel);
2722 return Index;
2723 }
2724 }
2725
2726 namespace {
2727
2728 struct MatchScope {
2729 /// FailIndex - If this match fails, this is the index to continue with.
2730 unsigned FailIndex;
2731
2732 /// NodeStack - The node stack when the scope was formed.
2733 SmallVector<SDValue, 4> NodeStack;
2734
2735 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2736 unsigned NumRecordedNodes;
2737
2738 /// NumMatchedMemRefs - The number of matched memref entries.
2739 unsigned NumMatchedMemRefs;
2740
2741 /// InputChain/InputGlue - The current chain/glue
2742 SDValue InputChain, InputGlue;
2743
2744 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2745 bool HasChainNodesMatched;
2746 };
2747
2748 /// \A DAG update listener to keep the matching state
2749 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2750 /// change the DAG while matching. X86 addressing mode matcher is an example
2751 /// for this.
2752 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2753 {
2754 SDNode **NodeToMatch;
2755 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2756 SmallVectorImpl<MatchScope> &MatchScopes;
2757
2758 public:
MatchStateUpdater(SelectionDAG & DAG,SDNode ** NodeToMatch,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RN,SmallVectorImpl<MatchScope> & MS)2759 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2760 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2761 SmallVectorImpl<MatchScope> &MS)
2762 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2763 RecordedNodes(RN), MatchScopes(MS) {}
2764
NodeDeleted(SDNode * N,SDNode * E)2765 void NodeDeleted(SDNode *N, SDNode *E) override {
2766 // Some early-returns here to avoid the search if we deleted the node or
2767 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2768 // do, so it's unnecessary to update matching state at that point).
2769 // Neither of these can occur currently because we only install this
2770 // update listener during matching a complex patterns.
2771 if (!E || E->isMachineOpcode())
2772 return;
2773 // Check if NodeToMatch was updated.
2774 if (N == *NodeToMatch)
2775 *NodeToMatch = E;
2776 // Performing linear search here does not matter because we almost never
2777 // run this code. You'd have to have a CSE during complex pattern
2778 // matching.
2779 for (auto &I : RecordedNodes)
2780 if (I.first.getNode() == N)
2781 I.first.setNode(E);
2782
2783 for (auto &I : MatchScopes)
2784 for (auto &J : I.NodeStack)
2785 if (J.getNode() == N)
2786 J.setNode(E);
2787 }
2788 };
2789
2790 } // end anonymous namespace
2791
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2792 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2793 const unsigned char *MatcherTable,
2794 unsigned TableSize) {
2795 // FIXME: Should these even be selected? Handle these cases in the caller?
2796 switch (NodeToMatch->getOpcode()) {
2797 default:
2798 break;
2799 case ISD::EntryToken: // These nodes remain the same.
2800 case ISD::BasicBlock:
2801 case ISD::Register:
2802 case ISD::RegisterMask:
2803 case ISD::HANDLENODE:
2804 case ISD::MDNODE_SDNODE:
2805 case ISD::TargetConstant:
2806 case ISD::TargetConstantFP:
2807 case ISD::TargetConstantPool:
2808 case ISD::TargetFrameIndex:
2809 case ISD::TargetExternalSymbol:
2810 case ISD::MCSymbol:
2811 case ISD::TargetBlockAddress:
2812 case ISD::TargetJumpTable:
2813 case ISD::TargetGlobalTLSAddress:
2814 case ISD::TargetGlobalAddress:
2815 case ISD::TokenFactor:
2816 case ISD::CopyFromReg:
2817 case ISD::CopyToReg:
2818 case ISD::EH_LABEL:
2819 case ISD::ANNOTATION_LABEL:
2820 case ISD::LIFETIME_START:
2821 case ISD::LIFETIME_END:
2822 case ISD::PSEUDO_PROBE:
2823 NodeToMatch->setNodeId(-1); // Mark selected.
2824 return;
2825 case ISD::AssertSext:
2826 case ISD::AssertZext:
2827 case ISD::AssertAlign:
2828 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2829 CurDAG->RemoveDeadNode(NodeToMatch);
2830 return;
2831 case ISD::INLINEASM:
2832 case ISD::INLINEASM_BR:
2833 Select_INLINEASM(NodeToMatch);
2834 return;
2835 case ISD::READ_REGISTER:
2836 Select_READ_REGISTER(NodeToMatch);
2837 return;
2838 case ISD::WRITE_REGISTER:
2839 Select_WRITE_REGISTER(NodeToMatch);
2840 return;
2841 case ISD::UNDEF:
2842 Select_UNDEF(NodeToMatch);
2843 return;
2844 case ISD::FREEZE:
2845 Select_FREEZE(NodeToMatch);
2846 return;
2847 case ISD::ARITH_FENCE:
2848 Select_ARITH_FENCE(NodeToMatch);
2849 return;
2850 case ISD::STACKMAP:
2851 Select_STACKMAP(NodeToMatch);
2852 return;
2853 case ISD::PATCHPOINT:
2854 Select_PATCHPOINT(NodeToMatch);
2855 return;
2856 }
2857
2858 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2859
2860 // Set up the node stack with NodeToMatch as the only node on the stack.
2861 SmallVector<SDValue, 8> NodeStack;
2862 SDValue N = SDValue(NodeToMatch, 0);
2863 NodeStack.push_back(N);
2864
2865 // MatchScopes - Scopes used when matching, if a match failure happens, this
2866 // indicates where to continue checking.
2867 SmallVector<MatchScope, 8> MatchScopes;
2868
2869 // RecordedNodes - This is the set of nodes that have been recorded by the
2870 // state machine. The second value is the parent of the node, or null if the
2871 // root is recorded.
2872 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2873
2874 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2875 // pattern.
2876 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2877
2878 // These are the current input chain and glue for use when generating nodes.
2879 // Various Emit operations change these. For example, emitting a copytoreg
2880 // uses and updates these.
2881 SDValue InputChain, InputGlue;
2882
2883 // ChainNodesMatched - If a pattern matches nodes that have input/output
2884 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2885 // which ones they are. The result is captured into this list so that we can
2886 // update the chain results when the pattern is complete.
2887 SmallVector<SDNode*, 3> ChainNodesMatched;
2888
2889 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2890
2891 // Determine where to start the interpreter. Normally we start at opcode #0,
2892 // but if the state machine starts with an OPC_SwitchOpcode, then we
2893 // accelerate the first lookup (which is guaranteed to be hot) with the
2894 // OpcodeOffset table.
2895 unsigned MatcherIndex = 0;
2896
2897 if (!OpcodeOffset.empty()) {
2898 // Already computed the OpcodeOffset table, just index into it.
2899 if (N.getOpcode() < OpcodeOffset.size())
2900 MatcherIndex = OpcodeOffset[N.getOpcode()];
2901 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2902
2903 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2904 // Otherwise, the table isn't computed, but the state machine does start
2905 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2906 // is the first time we're selecting an instruction.
2907 unsigned Idx = 1;
2908 while (true) {
2909 // Get the size of this case.
2910 unsigned CaseSize = MatcherTable[Idx++];
2911 if (CaseSize & 128)
2912 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2913 if (CaseSize == 0) break;
2914
2915 // Get the opcode, add the index to the table.
2916 uint16_t Opc = MatcherTable[Idx++];
2917 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2918 if (Opc >= OpcodeOffset.size())
2919 OpcodeOffset.resize((Opc+1)*2);
2920 OpcodeOffset[Opc] = Idx;
2921 Idx += CaseSize;
2922 }
2923
2924 // Okay, do the lookup for the first opcode.
2925 if (N.getOpcode() < OpcodeOffset.size())
2926 MatcherIndex = OpcodeOffset[N.getOpcode()];
2927 }
2928
2929 while (true) {
2930 assert(MatcherIndex < TableSize && "Invalid index");
2931 #ifndef NDEBUG
2932 unsigned CurrentOpcodeIndex = MatcherIndex;
2933 #endif
2934 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2935 switch (Opcode) {
2936 case OPC_Scope: {
2937 // Okay, the semantics of this operation are that we should push a scope
2938 // then evaluate the first child. However, pushing a scope only to have
2939 // the first check fail (which then pops it) is inefficient. If we can
2940 // determine immediately that the first check (or first several) will
2941 // immediately fail, don't even bother pushing a scope for them.
2942 unsigned FailIndex;
2943
2944 while (true) {
2945 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2946 if (NumToSkip & 128)
2947 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2948 // Found the end of the scope with no match.
2949 if (NumToSkip == 0) {
2950 FailIndex = 0;
2951 break;
2952 }
2953
2954 FailIndex = MatcherIndex+NumToSkip;
2955
2956 unsigned MatcherIndexOfPredicate = MatcherIndex;
2957 (void)MatcherIndexOfPredicate; // silence warning.
2958
2959 // If we can't evaluate this predicate without pushing a scope (e.g. if
2960 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2961 // push the scope and evaluate the full predicate chain.
2962 bool Result;
2963 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2964 Result, *this, RecordedNodes);
2965 if (!Result)
2966 break;
2967
2968 LLVM_DEBUG(
2969 dbgs() << " Skipped scope entry (due to false predicate) at "
2970 << "index " << MatcherIndexOfPredicate << ", continuing at "
2971 << FailIndex << "\n");
2972 ++NumDAGIselRetries;
2973
2974 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2975 // move to the next case.
2976 MatcherIndex = FailIndex;
2977 }
2978
2979 // If the whole scope failed to match, bail.
2980 if (FailIndex == 0) break;
2981
2982 // Push a MatchScope which indicates where to go if the first child fails
2983 // to match.
2984 MatchScope NewEntry;
2985 NewEntry.FailIndex = FailIndex;
2986 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2987 NewEntry.NumRecordedNodes = RecordedNodes.size();
2988 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2989 NewEntry.InputChain = InputChain;
2990 NewEntry.InputGlue = InputGlue;
2991 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2992 MatchScopes.push_back(NewEntry);
2993 continue;
2994 }
2995 case OPC_RecordNode: {
2996 // Remember this node, it may end up being an operand in the pattern.
2997 SDNode *Parent = nullptr;
2998 if (NodeStack.size() > 1)
2999 Parent = NodeStack[NodeStack.size()-2].getNode();
3000 RecordedNodes.push_back(std::make_pair(N, Parent));
3001 continue;
3002 }
3003
3004 case OPC_RecordChild0: case OPC_RecordChild1:
3005 case OPC_RecordChild2: case OPC_RecordChild3:
3006 case OPC_RecordChild4: case OPC_RecordChild5:
3007 case OPC_RecordChild6: case OPC_RecordChild7: {
3008 unsigned ChildNo = Opcode-OPC_RecordChild0;
3009 if (ChildNo >= N.getNumOperands())
3010 break; // Match fails if out of range child #.
3011
3012 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3013 N.getNode()));
3014 continue;
3015 }
3016 case OPC_RecordMemRef:
3017 if (auto *MN = dyn_cast<MemSDNode>(N))
3018 MatchedMemRefs.push_back(MN->getMemOperand());
3019 else {
3020 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3021 dbgs() << '\n');
3022 }
3023
3024 continue;
3025
3026 case OPC_CaptureGlueInput:
3027 // If the current node has an input glue, capture it in InputGlue.
3028 if (N->getNumOperands() != 0 &&
3029 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3030 InputGlue = N->getOperand(N->getNumOperands()-1);
3031 continue;
3032
3033 case OPC_MoveChild: {
3034 unsigned ChildNo = MatcherTable[MatcherIndex++];
3035 if (ChildNo >= N.getNumOperands())
3036 break; // Match fails if out of range child #.
3037 N = N.getOperand(ChildNo);
3038 NodeStack.push_back(N);
3039 continue;
3040 }
3041
3042 case OPC_MoveChild0: case OPC_MoveChild1:
3043 case OPC_MoveChild2: case OPC_MoveChild3:
3044 case OPC_MoveChild4: case OPC_MoveChild5:
3045 case OPC_MoveChild6: case OPC_MoveChild7: {
3046 unsigned ChildNo = Opcode-OPC_MoveChild0;
3047 if (ChildNo >= N.getNumOperands())
3048 break; // Match fails if out of range child #.
3049 N = N.getOperand(ChildNo);
3050 NodeStack.push_back(N);
3051 continue;
3052 }
3053
3054 case OPC_MoveParent:
3055 // Pop the current node off the NodeStack.
3056 NodeStack.pop_back();
3057 assert(!NodeStack.empty() && "Node stack imbalance!");
3058 N = NodeStack.back();
3059 continue;
3060
3061 case OPC_CheckSame:
3062 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3063 continue;
3064
3065 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3066 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3067 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3068 Opcode-OPC_CheckChild0Same))
3069 break;
3070 continue;
3071
3072 case OPC_CheckPatternPredicate:
3073 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3074 continue;
3075 case OPC_CheckPredicate:
3076 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3077 N.getNode()))
3078 break;
3079 continue;
3080 case OPC_CheckPredicateWithOperands: {
3081 unsigned OpNum = MatcherTable[MatcherIndex++];
3082 SmallVector<SDValue, 8> Operands;
3083
3084 for (unsigned i = 0; i < OpNum; ++i)
3085 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3086
3087 unsigned PredNo = MatcherTable[MatcherIndex++];
3088 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3089 break;
3090 continue;
3091 }
3092 case OPC_CheckComplexPat: {
3093 unsigned CPNum = MatcherTable[MatcherIndex++];
3094 unsigned RecNo = MatcherTable[MatcherIndex++];
3095 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3096
3097 // If target can modify DAG during matching, keep the matching state
3098 // consistent.
3099 std::unique_ptr<MatchStateUpdater> MSU;
3100 if (ComplexPatternFuncMutatesDAG())
3101 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3102 MatchScopes));
3103
3104 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3105 RecordedNodes[RecNo].first, CPNum,
3106 RecordedNodes))
3107 break;
3108 continue;
3109 }
3110 case OPC_CheckOpcode:
3111 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3112 continue;
3113
3114 case OPC_CheckType:
3115 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3116 CurDAG->getDataLayout()))
3117 break;
3118 continue;
3119
3120 case OPC_CheckTypeRes: {
3121 unsigned Res = MatcherTable[MatcherIndex++];
3122 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3123 CurDAG->getDataLayout()))
3124 break;
3125 continue;
3126 }
3127
3128 case OPC_SwitchOpcode: {
3129 unsigned CurNodeOpcode = N.getOpcode();
3130 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3131 unsigned CaseSize;
3132 while (true) {
3133 // Get the size of this case.
3134 CaseSize = MatcherTable[MatcherIndex++];
3135 if (CaseSize & 128)
3136 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3137 if (CaseSize == 0) break;
3138
3139 uint16_t Opc = MatcherTable[MatcherIndex++];
3140 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3141
3142 // If the opcode matches, then we will execute this case.
3143 if (CurNodeOpcode == Opc)
3144 break;
3145
3146 // Otherwise, skip over this case.
3147 MatcherIndex += CaseSize;
3148 }
3149
3150 // If no cases matched, bail out.
3151 if (CaseSize == 0) break;
3152
3153 // Otherwise, execute the case we found.
3154 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3155 << MatcherIndex << "\n");
3156 continue;
3157 }
3158
3159 case OPC_SwitchType: {
3160 MVT CurNodeVT = N.getSimpleValueType();
3161 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3162 unsigned CaseSize;
3163 while (true) {
3164 // Get the size of this case.
3165 CaseSize = MatcherTable[MatcherIndex++];
3166 if (CaseSize & 128)
3167 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3168 if (CaseSize == 0) break;
3169
3170 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3171 if (CaseVT == MVT::iPTR)
3172 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3173
3174 // If the VT matches, then we will execute this case.
3175 if (CurNodeVT == CaseVT)
3176 break;
3177
3178 // Otherwise, skip over this case.
3179 MatcherIndex += CaseSize;
3180 }
3181
3182 // If no cases matched, bail out.
3183 if (CaseSize == 0) break;
3184
3185 // Otherwise, execute the case we found.
3186 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3187 << "] from " << SwitchStart << " to " << MatcherIndex
3188 << '\n');
3189 continue;
3190 }
3191 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3192 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3193 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3194 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3195 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3196 CurDAG->getDataLayout(),
3197 Opcode - OPC_CheckChild0Type))
3198 break;
3199 continue;
3200 case OPC_CheckCondCode:
3201 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3202 continue;
3203 case OPC_CheckChild2CondCode:
3204 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3205 continue;
3206 case OPC_CheckValueType:
3207 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3208 CurDAG->getDataLayout()))
3209 break;
3210 continue;
3211 case OPC_CheckInteger:
3212 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3213 continue;
3214 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3215 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3216 case OPC_CheckChild4Integer:
3217 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3218 Opcode-OPC_CheckChild0Integer)) break;
3219 continue;
3220 case OPC_CheckAndImm:
3221 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3222 continue;
3223 case OPC_CheckOrImm:
3224 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3225 continue;
3226 case OPC_CheckImmAllOnesV:
3227 if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3228 break;
3229 continue;
3230 case OPC_CheckImmAllZerosV:
3231 if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3232 break;
3233 continue;
3234
3235 case OPC_CheckFoldableChainNode: {
3236 assert(NodeStack.size() != 1 && "No parent node");
3237 // Verify that all intermediate nodes between the root and this one have
3238 // a single use (ignoring chains, which are handled in UpdateChains).
3239 bool HasMultipleUses = false;
3240 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3241 unsigned NNonChainUses = 0;
3242 SDNode *NS = NodeStack[i].getNode();
3243 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3244 if (UI.getUse().getValueType() != MVT::Other)
3245 if (++NNonChainUses > 1) {
3246 HasMultipleUses = true;
3247 break;
3248 }
3249 if (HasMultipleUses) break;
3250 }
3251 if (HasMultipleUses) break;
3252
3253 // Check to see that the target thinks this is profitable to fold and that
3254 // we can fold it without inducing cycles in the graph.
3255 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3256 NodeToMatch) ||
3257 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3258 NodeToMatch, OptLevel,
3259 true/*We validate our own chains*/))
3260 break;
3261
3262 continue;
3263 }
3264 case OPC_EmitInteger:
3265 case OPC_EmitStringInteger: {
3266 MVT::SimpleValueType VT =
3267 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3268 int64_t Val = MatcherTable[MatcherIndex++];
3269 if (Val & 128)
3270 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3271 if (Opcode == OPC_EmitInteger)
3272 Val = decodeSignRotatedValue(Val);
3273 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3274 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3275 VT), nullptr));
3276 continue;
3277 }
3278 case OPC_EmitRegister: {
3279 MVT::SimpleValueType VT =
3280 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3281 unsigned RegNo = MatcherTable[MatcherIndex++];
3282 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3283 CurDAG->getRegister(RegNo, VT), nullptr));
3284 continue;
3285 }
3286 case OPC_EmitRegister2: {
3287 // For targets w/ more than 256 register names, the register enum
3288 // values are stored in two bytes in the matcher table (just like
3289 // opcodes).
3290 MVT::SimpleValueType VT =
3291 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3292 unsigned RegNo = MatcherTable[MatcherIndex++];
3293 RegNo |= MatcherTable[MatcherIndex++] << 8;
3294 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3295 CurDAG->getRegister(RegNo, VT), nullptr));
3296 continue;
3297 }
3298
3299 case OPC_EmitConvertToTarget: {
3300 // Convert from IMM/FPIMM to target version.
3301 unsigned RecNo = MatcherTable[MatcherIndex++];
3302 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3303 SDValue Imm = RecordedNodes[RecNo].first;
3304
3305 if (Imm->getOpcode() == ISD::Constant) {
3306 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3307 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3308 Imm.getValueType());
3309 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3310 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3311 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3312 Imm.getValueType());
3313 }
3314
3315 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3316 continue;
3317 }
3318
3319 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3320 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3321 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3322 // These are space-optimized forms of OPC_EmitMergeInputChains.
3323 assert(!InputChain.getNode() &&
3324 "EmitMergeInputChains should be the first chain producing node");
3325 assert(ChainNodesMatched.empty() &&
3326 "Should only have one EmitMergeInputChains per match");
3327
3328 // Read all of the chained nodes.
3329 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3330 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3331 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3332
3333 // If the chained node is not the root, we can't fold it if it has
3334 // multiple uses.
3335 // FIXME: What if other value results of the node have uses not matched
3336 // by this pattern?
3337 if (ChainNodesMatched.back() != NodeToMatch &&
3338 !RecordedNodes[RecNo].first.hasOneUse()) {
3339 ChainNodesMatched.clear();
3340 break;
3341 }
3342
3343 // Merge the input chains if they are not intra-pattern references.
3344 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3345
3346 if (!InputChain.getNode())
3347 break; // Failed to merge.
3348 continue;
3349 }
3350
3351 case OPC_EmitMergeInputChains: {
3352 assert(!InputChain.getNode() &&
3353 "EmitMergeInputChains should be the first chain producing node");
3354 // This node gets a list of nodes we matched in the input that have
3355 // chains. We want to token factor all of the input chains to these nodes
3356 // together. However, if any of the input chains is actually one of the
3357 // nodes matched in this pattern, then we have an intra-match reference.
3358 // Ignore these because the newly token factored chain should not refer to
3359 // the old nodes.
3360 unsigned NumChains = MatcherTable[MatcherIndex++];
3361 assert(NumChains != 0 && "Can't TF zero chains");
3362
3363 assert(ChainNodesMatched.empty() &&
3364 "Should only have one EmitMergeInputChains per match");
3365
3366 // Read all of the chained nodes.
3367 for (unsigned i = 0; i != NumChains; ++i) {
3368 unsigned RecNo = MatcherTable[MatcherIndex++];
3369 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3370 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3371
3372 // If the chained node is not the root, we can't fold it if it has
3373 // multiple uses.
3374 // FIXME: What if other value results of the node have uses not matched
3375 // by this pattern?
3376 if (ChainNodesMatched.back() != NodeToMatch &&
3377 !RecordedNodes[RecNo].first.hasOneUse()) {
3378 ChainNodesMatched.clear();
3379 break;
3380 }
3381 }
3382
3383 // If the inner loop broke out, the match fails.
3384 if (ChainNodesMatched.empty())
3385 break;
3386
3387 // Merge the input chains if they are not intra-pattern references.
3388 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3389
3390 if (!InputChain.getNode())
3391 break; // Failed to merge.
3392
3393 continue;
3394 }
3395
3396 case OPC_EmitCopyToReg:
3397 case OPC_EmitCopyToReg2: {
3398 unsigned RecNo = MatcherTable[MatcherIndex++];
3399 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3400 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3401 if (Opcode == OPC_EmitCopyToReg2)
3402 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3403
3404 if (!InputChain.getNode())
3405 InputChain = CurDAG->getEntryNode();
3406
3407 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3408 DestPhysReg, RecordedNodes[RecNo].first,
3409 InputGlue);
3410
3411 InputGlue = InputChain.getValue(1);
3412 continue;
3413 }
3414
3415 case OPC_EmitNodeXForm: {
3416 unsigned XFormNo = MatcherTable[MatcherIndex++];
3417 unsigned RecNo = MatcherTable[MatcherIndex++];
3418 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3419 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3420 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3421 continue;
3422 }
3423 case OPC_Coverage: {
3424 // This is emitted right before MorphNode/EmitNode.
3425 // So it should be safe to assume that this node has been selected
3426 unsigned index = MatcherTable[MatcherIndex++];
3427 index |= (MatcherTable[MatcherIndex++] << 8);
3428 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3429 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3430 continue;
3431 }
3432
3433 case OPC_EmitNode: case OPC_MorphNodeTo:
3434 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3435 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3436 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3437 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3438 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3439 // Get the result VT list.
3440 unsigned NumVTs;
3441 // If this is one of the compressed forms, get the number of VTs based
3442 // on the Opcode. Otherwise read the next byte from the table.
3443 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3444 NumVTs = Opcode - OPC_MorphNodeTo0;
3445 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3446 NumVTs = Opcode - OPC_EmitNode0;
3447 else
3448 NumVTs = MatcherTable[MatcherIndex++];
3449 SmallVector<EVT, 4> VTs;
3450 for (unsigned i = 0; i != NumVTs; ++i) {
3451 MVT::SimpleValueType VT =
3452 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3453 if (VT == MVT::iPTR)
3454 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3455 VTs.push_back(VT);
3456 }
3457
3458 if (EmitNodeInfo & OPFL_Chain)
3459 VTs.push_back(MVT::Other);
3460 if (EmitNodeInfo & OPFL_GlueOutput)
3461 VTs.push_back(MVT::Glue);
3462
3463 // This is hot code, so optimize the two most common cases of 1 and 2
3464 // results.
3465 SDVTList VTList;
3466 if (VTs.size() == 1)
3467 VTList = CurDAG->getVTList(VTs[0]);
3468 else if (VTs.size() == 2)
3469 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3470 else
3471 VTList = CurDAG->getVTList(VTs);
3472
3473 // Get the operand list.
3474 unsigned NumOps = MatcherTable[MatcherIndex++];
3475 SmallVector<SDValue, 8> Ops;
3476 for (unsigned i = 0; i != NumOps; ++i) {
3477 unsigned RecNo = MatcherTable[MatcherIndex++];
3478 if (RecNo & 128)
3479 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3480
3481 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3482 Ops.push_back(RecordedNodes[RecNo].first);
3483 }
3484
3485 // If there are variadic operands to add, handle them now.
3486 if (EmitNodeInfo & OPFL_VariadicInfo) {
3487 // Determine the start index to copy from.
3488 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3489 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3490 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3491 "Invalid variadic node");
3492 // Copy all of the variadic operands, not including a potential glue
3493 // input.
3494 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3495 i != e; ++i) {
3496 SDValue V = NodeToMatch->getOperand(i);
3497 if (V.getValueType() == MVT::Glue) break;
3498 Ops.push_back(V);
3499 }
3500 }
3501
3502 // If this has chain/glue inputs, add them.
3503 if (EmitNodeInfo & OPFL_Chain)
3504 Ops.push_back(InputChain);
3505 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3506 Ops.push_back(InputGlue);
3507
3508 // Check whether any matched node could raise an FP exception. Since all
3509 // such nodes must have a chain, it suffices to check ChainNodesMatched.
3510 // We need to perform this check before potentially modifying one of the
3511 // nodes via MorphNode.
3512 bool MayRaiseFPException =
3513 llvm::any_of(ChainNodesMatched, [this](SDNode *N) {
3514 return mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept();
3515 });
3516
3517 // Create the node.
3518 MachineSDNode *Res = nullptr;
3519 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3520 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3521 if (!IsMorphNodeTo) {
3522 // If this is a normal EmitNode command, just create the new node and
3523 // add the results to the RecordedNodes list.
3524 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3525 VTList, Ops);
3526
3527 // Add all the non-glue/non-chain results to the RecordedNodes list.
3528 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3529 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3530 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3531 nullptr));
3532 }
3533 } else {
3534 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3535 "NodeToMatch was removed partway through selection");
3536 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3537 SDNode *E) {
3538 CurDAG->salvageDebugInfo(*N);
3539 auto &Chain = ChainNodesMatched;
3540 assert((!E || !is_contained(Chain, N)) &&
3541 "Chain node replaced during MorphNode");
3542 llvm::erase_value(Chain, N);
3543 });
3544 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3545 Ops, EmitNodeInfo));
3546 }
3547
3548 // Set the NoFPExcept flag when no original matched node could
3549 // raise an FP exception, but the new node potentially might.
3550 if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3551 SDNodeFlags Flags = Res->getFlags();
3552 Flags.setNoFPExcept(true);
3553 Res->setFlags(Flags);
3554 }
3555
3556 // If the node had chain/glue results, update our notion of the current
3557 // chain and glue.
3558 if (EmitNodeInfo & OPFL_GlueOutput) {
3559 InputGlue = SDValue(Res, VTs.size()-1);
3560 if (EmitNodeInfo & OPFL_Chain)
3561 InputChain = SDValue(Res, VTs.size()-2);
3562 } else if (EmitNodeInfo & OPFL_Chain)
3563 InputChain = SDValue(Res, VTs.size()-1);
3564
3565 // If the OPFL_MemRefs glue is set on this node, slap all of the
3566 // accumulated memrefs onto it.
3567 //
3568 // FIXME: This is vastly incorrect for patterns with multiple outputs
3569 // instructions that access memory and for ComplexPatterns that match
3570 // loads.
3571 if (EmitNodeInfo & OPFL_MemRefs) {
3572 // Only attach load or store memory operands if the generated
3573 // instruction may load or store.
3574 const MCInstrDesc &MCID = TII->get(TargetOpc);
3575 bool mayLoad = MCID.mayLoad();
3576 bool mayStore = MCID.mayStore();
3577
3578 // We expect to have relatively few of these so just filter them into a
3579 // temporary buffer so that we can easily add them to the instruction.
3580 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3581 for (MachineMemOperand *MMO : MatchedMemRefs) {
3582 if (MMO->isLoad()) {
3583 if (mayLoad)
3584 FilteredMemRefs.push_back(MMO);
3585 } else if (MMO->isStore()) {
3586 if (mayStore)
3587 FilteredMemRefs.push_back(MMO);
3588 } else {
3589 FilteredMemRefs.push_back(MMO);
3590 }
3591 }
3592
3593 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3594 }
3595
3596 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3597 << " Dropping mem operands\n";
3598 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3599 << " node: ";
3600 Res->dump(CurDAG););
3601
3602 // If this was a MorphNodeTo then we're completely done!
3603 if (IsMorphNodeTo) {
3604 // Update chain uses.
3605 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3606 return;
3607 }
3608 continue;
3609 }
3610
3611 case OPC_CompleteMatch: {
3612 // The match has been completed, and any new nodes (if any) have been
3613 // created. Patch up references to the matched dag to use the newly
3614 // created nodes.
3615 unsigned NumResults = MatcherTable[MatcherIndex++];
3616
3617 for (unsigned i = 0; i != NumResults; ++i) {
3618 unsigned ResSlot = MatcherTable[MatcherIndex++];
3619 if (ResSlot & 128)
3620 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3621
3622 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3623 SDValue Res = RecordedNodes[ResSlot].first;
3624
3625 assert(i < NodeToMatch->getNumValues() &&
3626 NodeToMatch->getValueType(i) != MVT::Other &&
3627 NodeToMatch->getValueType(i) != MVT::Glue &&
3628 "Invalid number of results to complete!");
3629 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3630 NodeToMatch->getValueType(i) == MVT::iPTR ||
3631 Res.getValueType() == MVT::iPTR ||
3632 NodeToMatch->getValueType(i).getSizeInBits() ==
3633 Res.getValueSizeInBits()) &&
3634 "invalid replacement");
3635 ReplaceUses(SDValue(NodeToMatch, i), Res);
3636 }
3637
3638 // Update chain uses.
3639 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3640
3641 // If the root node defines glue, we need to update it to the glue result.
3642 // TODO: This never happens in our tests and I think it can be removed /
3643 // replaced with an assert, but if we do it this the way the change is
3644 // NFC.
3645 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3646 MVT::Glue &&
3647 InputGlue.getNode())
3648 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3649 InputGlue);
3650
3651 assert(NodeToMatch->use_empty() &&
3652 "Didn't replace all uses of the node?");
3653 CurDAG->RemoveDeadNode(NodeToMatch);
3654
3655 return;
3656 }
3657 }
3658
3659 // If the code reached this point, then the match failed. See if there is
3660 // another child to try in the current 'Scope', otherwise pop it until we
3661 // find a case to check.
3662 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3663 << "\n");
3664 ++NumDAGIselRetries;
3665 while (true) {
3666 if (MatchScopes.empty()) {
3667 CannotYetSelect(NodeToMatch);
3668 return;
3669 }
3670
3671 // Restore the interpreter state back to the point where the scope was
3672 // formed.
3673 MatchScope &LastScope = MatchScopes.back();
3674 RecordedNodes.resize(LastScope.NumRecordedNodes);
3675 NodeStack.clear();
3676 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3677 N = NodeStack.back();
3678
3679 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3680 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3681 MatcherIndex = LastScope.FailIndex;
3682
3683 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3684
3685 InputChain = LastScope.InputChain;
3686 InputGlue = LastScope.InputGlue;
3687 if (!LastScope.HasChainNodesMatched)
3688 ChainNodesMatched.clear();
3689
3690 // Check to see what the offset is at the new MatcherIndex. If it is zero
3691 // we have reached the end of this scope, otherwise we have another child
3692 // in the current scope to try.
3693 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3694 if (NumToSkip & 128)
3695 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3696
3697 // If we have another child in this scope to match, update FailIndex and
3698 // try it.
3699 if (NumToSkip != 0) {
3700 LastScope.FailIndex = MatcherIndex+NumToSkip;
3701 break;
3702 }
3703
3704 // End of this scope, pop it and try the next child in the containing
3705 // scope.
3706 MatchScopes.pop_back();
3707 }
3708 }
3709 }
3710
3711 /// Return whether the node may raise an FP exception.
mayRaiseFPException(SDNode * N) const3712 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3713 // For machine opcodes, consult the MCID flag.
3714 if (N->isMachineOpcode()) {
3715 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3716 return MCID.mayRaiseFPException();
3717 }
3718
3719 // For ISD opcodes, only StrictFP opcodes may raise an FP
3720 // exception.
3721 if (N->isTargetOpcode())
3722 return N->isTargetStrictFPOpcode();
3723 return N->isStrictFPOpcode();
3724 }
3725
isOrEquivalentToAdd(const SDNode * N) const3726 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3727 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3728 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3729 if (!C)
3730 return false;
3731
3732 // Detect when "or" is used to add an offset to a stack object.
3733 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3734 MachineFrameInfo &MFI = MF->getFrameInfo();
3735 Align A = MFI.getObjectAlign(FN->getIndex());
3736 int32_t Off = C->getSExtValue();
3737 // If the alleged offset fits in the zero bits guaranteed by
3738 // the alignment, then this or is really an add.
3739 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3740 }
3741 return false;
3742 }
3743
CannotYetSelect(SDNode * N)3744 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3745 std::string msg;
3746 raw_string_ostream Msg(msg);
3747 Msg << "Cannot select: ";
3748
3749 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3750 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3751 N->getOpcode() != ISD::INTRINSIC_VOID) {
3752 N->printrFull(Msg, CurDAG);
3753 Msg << "\nIn function: " << MF->getName();
3754 } else {
3755 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3756 unsigned iid =
3757 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3758 if (iid < Intrinsic::num_intrinsics)
3759 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
3760 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3761 Msg << "target intrinsic %" << TII->getName(iid);
3762 else
3763 Msg << "unknown intrinsic #" << iid;
3764 }
3765 report_fatal_error(Twine(Msg.str()));
3766 }
3767
3768 char SelectionDAGISel::ID = 0;
3769