1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBuilder.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachinePassRegistry.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/SchedulerRegistry.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/StackProtector.h" 55 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/ValueTypes.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DataLayout.h" 64 #include "llvm/IR/DebugInfoMetadata.h" 65 #include "llvm/IR/DebugLoc.h" 66 #include "llvm/IR/DiagnosticInfo.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/InlineAsm.h" 70 #include "llvm/IR/InstIterator.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instruction.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsWebAssembly.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Type.h" 79 #include "llvm/IR/User.h" 80 #include "llvm/IR/Value.h" 81 #include "llvm/InitializePasses.h" 82 #include "llvm/MC/MCInstrDesc.h" 83 #include "llvm/MC/MCRegisterInfo.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/BranchProbability.h" 86 #include "llvm/Support/Casting.h" 87 #include "llvm/Support/CodeGen.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Compiler.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/KnownBits.h" 93 #include "llvm/Support/MachineValueType.h" 94 #include "llvm/Support/Timer.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <iterator> 104 #include <limits> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 #include <vector> 109 110 using namespace llvm; 111 112 #define DEBUG_TYPE "isel" 113 114 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 115 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 116 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 117 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 118 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 119 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 120 STATISTIC(NumFastIselFailLowerArguments, 121 "Number of entry blocks where fast isel failed to lower arguments"); 122 123 static cl::opt<int> EnableFastISelAbort( 124 "fast-isel-abort", cl::Hidden, 125 cl::desc("Enable abort calls when \"fast\" instruction selection " 126 "fails to lower an instruction: 0 disable the abort, 1 will " 127 "abort but for args, calls and terminators, 2 will also " 128 "abort for argument lowering, and 3 will never fallback " 129 "to SelectionDAG.")); 130 131 static cl::opt<bool> EnableFastISelFallbackReport( 132 "fast-isel-report-on-fallback", cl::Hidden, 133 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 134 "falls back to SelectionDAG.")); 135 136 static cl::opt<bool> 137 UseMBPI("use-mbpi", 138 cl::desc("use Machine Branch Probability Info"), 139 cl::init(true), cl::Hidden); 140 141 #ifndef NDEBUG 142 static cl::opt<std::string> 143 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 144 cl::desc("Only display the basic block whose name " 145 "matches this for all view-*-dags options")); 146 static cl::opt<bool> 147 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 148 cl::desc("Pop up a window to show dags before the first " 149 "dag combine pass")); 150 static cl::opt<bool> 151 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 152 cl::desc("Pop up a window to show dags before legalize types")); 153 static cl::opt<bool> 154 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 155 cl::desc("Pop up a window to show dags before the post " 156 "legalize types dag combine pass")); 157 static cl::opt<bool> 158 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 159 cl::desc("Pop up a window to show dags before legalize")); 160 static cl::opt<bool> 161 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 162 cl::desc("Pop up a window to show dags before the second " 163 "dag combine pass")); 164 static cl::opt<bool> 165 ViewISelDAGs("view-isel-dags", cl::Hidden, 166 cl::desc("Pop up a window to show isel dags as they are selected")); 167 static cl::opt<bool> 168 ViewSchedDAGs("view-sched-dags", cl::Hidden, 169 cl::desc("Pop up a window to show sched dags as they are processed")); 170 static cl::opt<bool> 171 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 172 cl::desc("Pop up a window to show SUnit dags after they are processed")); 173 #else 174 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, 175 ViewDAGCombineLT = false, ViewLegalizeDAGs = false, 176 ViewDAGCombine2 = false, ViewISelDAGs = false, 177 ViewSchedDAGs = false, ViewSUnitDAGs = false; 178 #endif 179 180 //===---------------------------------------------------------------------===// 181 /// 182 /// RegisterScheduler class - Track the registration of instruction schedulers. 183 /// 184 //===---------------------------------------------------------------------===// 185 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 186 RegisterScheduler::Registry; 187 188 //===---------------------------------------------------------------------===// 189 /// 190 /// ISHeuristic command line option for instruction schedulers. 191 /// 192 //===---------------------------------------------------------------------===// 193 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 194 RegisterPassParser<RegisterScheduler>> 195 ISHeuristic("pre-RA-sched", 196 cl::init(&createDefaultScheduler), cl::Hidden, 197 cl::desc("Instruction schedulers available (before register" 198 " allocation):")); 199 200 static RegisterScheduler 201 defaultListDAGScheduler("default", "Best scheduler for the target", 202 createDefaultScheduler); 203 204 namespace llvm { 205 206 //===--------------------------------------------------------------------===// 207 /// This class is used by SelectionDAGISel to temporarily override 208 /// the optimization level on a per-function basis. 209 class OptLevelChanger { 210 SelectionDAGISel &IS; 211 CodeGenOpt::Level SavedOptLevel; 212 bool SavedFastISel; 213 214 public: 215 OptLevelChanger(SelectionDAGISel &ISel, 216 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 217 SavedOptLevel = IS.OptLevel; 218 SavedFastISel = IS.TM.Options.EnableFastISel; 219 if (NewOptLevel == SavedOptLevel) 220 return; 221 IS.OptLevel = NewOptLevel; 222 IS.TM.setOptLevel(NewOptLevel); 223 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 224 << IS.MF->getFunction().getName() << "\n"); 225 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 226 << NewOptLevel << "\n"); 227 if (NewOptLevel == CodeGenOpt::None) { 228 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 229 LLVM_DEBUG( 230 dbgs() << "\tFastISel is " 231 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 232 << "\n"); 233 } 234 } 235 236 ~OptLevelChanger() { 237 if (IS.OptLevel == SavedOptLevel) 238 return; 239 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 240 << IS.MF->getFunction().getName() << "\n"); 241 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 242 << SavedOptLevel << "\n"); 243 IS.OptLevel = SavedOptLevel; 244 IS.TM.setOptLevel(SavedOptLevel); 245 IS.TM.setFastISel(SavedFastISel); 246 } 247 }; 248 249 //===--------------------------------------------------------------------===// 250 /// createDefaultScheduler - This creates an instruction scheduler appropriate 251 /// for the target. 252 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 253 CodeGenOpt::Level OptLevel) { 254 const TargetLowering *TLI = IS->TLI; 255 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 256 257 // Try first to see if the Target has its own way of selecting a scheduler 258 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 259 return SchedulerCtor(IS, OptLevel); 260 } 261 262 if (OptLevel == CodeGenOpt::None || 263 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 264 TLI->getSchedulingPreference() == Sched::Source) 265 return createSourceListDAGScheduler(IS, OptLevel); 266 if (TLI->getSchedulingPreference() == Sched::RegPressure) 267 return createBURRListDAGScheduler(IS, OptLevel); 268 if (TLI->getSchedulingPreference() == Sched::Hybrid) 269 return createHybridListDAGScheduler(IS, OptLevel); 270 if (TLI->getSchedulingPreference() == Sched::VLIW) 271 return createVLIWDAGScheduler(IS, OptLevel); 272 assert(TLI->getSchedulingPreference() == Sched::ILP && 273 "Unknown sched type!"); 274 return createILPListDAGScheduler(IS, OptLevel); 275 } 276 277 } // end namespace llvm 278 279 // EmitInstrWithCustomInserter - This method should be implemented by targets 280 // that mark instructions with the 'usesCustomInserter' flag. These 281 // instructions are special in various ways, which require special support to 282 // insert. The specified MachineInstr is created but not inserted into any 283 // basic blocks, and this method is called to expand it into a sequence of 284 // instructions, potentially also creating new basic blocks and control flow. 285 // When new basic blocks are inserted and the edges from MBB to its successors 286 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 287 // DenseMap. 288 MachineBasicBlock * 289 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 290 MachineBasicBlock *MBB) const { 291 #ifndef NDEBUG 292 dbgs() << "If a target marks an instruction with " 293 "'usesCustomInserter', it must implement " 294 "TargetLowering::EmitInstrWithCustomInserter!"; 295 #endif 296 llvm_unreachable(nullptr); 297 } 298 299 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 300 SDNode *Node) const { 301 assert(!MI.hasPostISelHook() && 302 "If a target marks an instruction with 'hasPostISelHook', " 303 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 304 } 305 306 //===----------------------------------------------------------------------===// 307 // SelectionDAGISel code 308 //===----------------------------------------------------------------------===// 309 310 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) 311 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), 312 SwiftError(new SwiftErrorValueTracking()), 313 CurDAG(new SelectionDAG(tm, OL)), 314 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError, 315 OL)), 316 AA(), GFI(), OptLevel(OL), DAGSize(0) { 317 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 318 initializeBranchProbabilityInfoWrapperPassPass( 319 *PassRegistry::getPassRegistry()); 320 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 321 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 322 } 323 324 SelectionDAGISel::~SelectionDAGISel() { 325 delete CurDAG; 326 delete SwiftError; 327 } 328 329 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 330 if (OptLevel != CodeGenOpt::None) 331 AU.addRequired<AAResultsWrapperPass>(); 332 AU.addRequired<GCModuleInfo>(); 333 AU.addRequired<StackProtector>(); 334 AU.addPreserved<GCModuleInfo>(); 335 AU.addRequired<TargetLibraryInfoWrapperPass>(); 336 AU.addRequired<TargetTransformInfoWrapperPass>(); 337 if (UseMBPI && OptLevel != CodeGenOpt::None) 338 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 339 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 340 if (OptLevel != CodeGenOpt::None) 341 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 342 MachineFunctionPass::getAnalysisUsage(AU); 343 } 344 345 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 346 /// may trap on it. In this case we have to split the edge so that the path 347 /// through the predecessor block that doesn't go to the phi block doesn't 348 /// execute the possibly trapping instruction. If available, we pass domtree 349 /// and loop info to be updated when we split critical edges. This is because 350 /// SelectionDAGISel preserves these analyses. 351 /// This is required for correctness, so it must be done at -O0. 352 /// 353 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 354 LoopInfo *LI) { 355 // Loop for blocks with phi nodes. 356 for (BasicBlock &BB : Fn) { 357 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 358 if (!PN) continue; 359 360 ReprocessBlock: 361 // For each block with a PHI node, check to see if any of the input values 362 // are potentially trapping constant expressions. Constant expressions are 363 // the only potentially trapping value that can occur as the argument to a 364 // PHI. 365 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 367 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 368 if (!CE || !CE->canTrap()) continue; 369 370 // The only case we have to worry about is when the edge is critical. 371 // Since this block has a PHI Node, we assume it has multiple input 372 // edges: check to see if the pred has multiple successors. 373 BasicBlock *Pred = PN->getIncomingBlock(i); 374 if (Pred->getTerminator()->getNumSuccessors() == 1) 375 continue; 376 377 // Okay, we have to split this edge. 378 SplitCriticalEdge( 379 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 380 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 381 goto ReprocessBlock; 382 } 383 } 384 } 385 386 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 387 MachineModuleInfo &MMI) { 388 // Only needed for MSVC 389 if (!TT.isWindowsMSVCEnvironment()) 390 return; 391 392 // If it's already set, nothing to do. 393 if (MMI.usesMSVCFloatingPoint()) 394 return; 395 396 for (const Instruction &I : instructions(F)) { 397 if (I.getType()->isFPOrFPVectorTy()) { 398 MMI.setUsesMSVCFloatingPoint(true); 399 return; 400 } 401 for (const auto &Op : I.operands()) { 402 if (Op->getType()->isFPOrFPVectorTy()) { 403 MMI.setUsesMSVCFloatingPoint(true); 404 return; 405 } 406 } 407 } 408 } 409 410 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 411 // If we already selected that function, we do not need to run SDISel. 412 if (mf.getProperties().hasProperty( 413 MachineFunctionProperties::Property::Selected)) 414 return false; 415 // Do some sanity-checking on the command-line options. 416 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 417 "-fast-isel-abort > 0 requires -fast-isel"); 418 419 const Function &Fn = mf.getFunction(); 420 MF = &mf; 421 422 // Reset the target options before resetting the optimization 423 // level below. 424 // FIXME: This is a horrible hack and should be processed via 425 // codegen looking at the optimization level explicitly when 426 // it wants to look at it. 427 TM.resetTargetOptions(Fn); 428 // Reset OptLevel to None for optnone functions. 429 CodeGenOpt::Level NewOptLevel = OptLevel; 430 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 431 NewOptLevel = CodeGenOpt::None; 432 OptLevelChanger OLC(*this, NewOptLevel); 433 434 TII = MF->getSubtarget().getInstrInfo(); 435 TLI = MF->getSubtarget().getTargetLowering(); 436 RegInfo = &MF->getRegInfo(); 437 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 438 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 439 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 440 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 441 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 442 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 443 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 444 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 445 BlockFrequencyInfo *BFI = nullptr; 446 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None) 447 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); 448 449 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 450 451 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 452 453 CurDAG->init(*MF, *ORE, this, LibInfo, 454 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI); 455 FuncInfo->set(Fn, *MF, CurDAG); 456 SwiftError->setFunction(*MF); 457 458 // Now get the optional analyzes if we want to. 459 // This is based on the possibly changed OptLevel (after optnone is taken 460 // into account). That's unfortunate but OK because it just means we won't 461 // ask for passes that have been required anyway. 462 463 if (UseMBPI && OptLevel != CodeGenOpt::None) 464 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 465 else 466 FuncInfo->BPI = nullptr; 467 468 if (OptLevel != CodeGenOpt::None) 469 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 470 else 471 AA = nullptr; 472 473 SDB->init(GFI, AA, LibInfo); 474 475 MF->setHasInlineAsm(false); 476 477 FuncInfo->SplitCSR = false; 478 479 // We split CSR if the target supports it for the given function 480 // and the function has only return exits. 481 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 482 FuncInfo->SplitCSR = true; 483 484 // Collect all the return blocks. 485 for (const BasicBlock &BB : Fn) { 486 if (!succ_empty(&BB)) 487 continue; 488 489 const Instruction *Term = BB.getTerminator(); 490 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 491 continue; 492 493 // Bail out if the exit block is not Return nor Unreachable. 494 FuncInfo->SplitCSR = false; 495 break; 496 } 497 } 498 499 MachineBasicBlock *EntryMBB = &MF->front(); 500 if (FuncInfo->SplitCSR) 501 // This performs initialization so lowering for SplitCSR will be correct. 502 TLI->initializeSplitCSR(EntryMBB); 503 504 SelectAllBasicBlocks(Fn); 505 if (FastISelFailed && EnableFastISelFallbackReport) { 506 DiagnosticInfoISelFallback DiagFallback(Fn); 507 Fn.getContext().diagnose(DiagFallback); 508 } 509 510 // Replace forward-declared registers with the registers containing 511 // the desired value. 512 // Note: it is important that this happens **before** the call to 513 // EmitLiveInCopies, since implementations can skip copies of unused 514 // registers. If we don't apply the reg fixups before, some registers may 515 // appear as unused and will be skipped, resulting in bad MI. 516 MachineRegisterInfo &MRI = MF->getRegInfo(); 517 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), 518 E = FuncInfo->RegFixups.end(); 519 I != E; ++I) { 520 Register From = I->first; 521 Register To = I->second; 522 // If To is also scheduled to be replaced, find what its ultimate 523 // replacement is. 524 while (true) { 525 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To); 526 if (J == E) 527 break; 528 To = J->second; 529 } 530 // Make sure the new register has a sufficiently constrained register class. 531 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 532 MRI.constrainRegClass(To, MRI.getRegClass(From)); 533 // Replace it. 534 535 // Replacing one register with another won't touch the kill flags. 536 // We need to conservatively clear the kill flags as a kill on the old 537 // register might dominate existing uses of the new register. 538 if (!MRI.use_empty(To)) 539 MRI.clearKillFlags(From); 540 MRI.replaceRegWith(From, To); 541 } 542 543 // If the first basic block in the function has live ins that need to be 544 // copied into vregs, emit the copies into the top of the block before 545 // emitting the code for the block. 546 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 547 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 548 549 // Insert copies in the entry block and the return blocks. 550 if (FuncInfo->SplitCSR) { 551 SmallVector<MachineBasicBlock*, 4> Returns; 552 // Collect all the return blocks. 553 for (MachineBasicBlock &MBB : mf) { 554 if (!MBB.succ_empty()) 555 continue; 556 557 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 558 if (Term != MBB.end() && Term->isReturn()) { 559 Returns.push_back(&MBB); 560 continue; 561 } 562 } 563 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 564 } 565 566 DenseMap<unsigned, unsigned> LiveInMap; 567 if (!FuncInfo->ArgDbgValues.empty()) 568 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 569 if (LI.second) 570 LiveInMap.insert(LI); 571 572 // Insert DBG_VALUE instructions for function arguments to the entry block. 573 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 574 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 575 bool hasFI = MI->getOperand(0).isFI(); 576 Register Reg = 577 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 578 if (Register::isPhysicalRegister(Reg)) 579 EntryMBB->insert(EntryMBB->begin(), MI); 580 else { 581 MachineInstr *Def = RegInfo->getVRegDef(Reg); 582 if (Def) { 583 MachineBasicBlock::iterator InsertPos = Def; 584 // FIXME: VR def may not be in entry block. 585 Def->getParent()->insert(std::next(InsertPos), MI); 586 } else 587 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 588 << Register::virtReg2Index(Reg) << "\n"); 589 } 590 591 // If Reg is live-in then update debug info to track its copy in a vreg. 592 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 593 if (LDI != LiveInMap.end()) { 594 assert(!hasFI && "There's no handling of frame pointer updating here yet " 595 "- add if needed"); 596 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 597 MachineBasicBlock::iterator InsertPos = Def; 598 const MDNode *Variable = MI->getDebugVariable(); 599 const MDNode *Expr = MI->getDebugExpression(); 600 DebugLoc DL = MI->getDebugLoc(); 601 bool IsIndirect = MI->isIndirectDebugValue(); 602 if (IsIndirect) 603 assert(MI->getOperand(1).getImm() == 0 && 604 "DBG_VALUE with nonzero offset"); 605 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 606 "Expected inlined-at fields to agree"); 607 // Def is never a terminator here, so it is ok to increment InsertPos. 608 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 609 IsIndirect, LDI->second, Variable, Expr); 610 611 // If this vreg is directly copied into an exported register then 612 // that COPY instructions also need DBG_VALUE, if it is the only 613 // user of LDI->second. 614 MachineInstr *CopyUseMI = nullptr; 615 for (MachineRegisterInfo::use_instr_iterator 616 UI = RegInfo->use_instr_begin(LDI->second), 617 E = RegInfo->use_instr_end(); UI != E; ) { 618 MachineInstr *UseMI = &*(UI++); 619 if (UseMI->isDebugValue()) continue; 620 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 621 CopyUseMI = UseMI; continue; 622 } 623 // Otherwise this is another use or second copy use. 624 CopyUseMI = nullptr; break; 625 } 626 if (CopyUseMI && 627 TRI.getRegSizeInBits(LDI->second, MRI) == 628 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) { 629 // Use MI's debug location, which describes where Variable was 630 // declared, rather than whatever is attached to CopyUseMI. 631 MachineInstr *NewMI = 632 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 633 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 634 MachineBasicBlock::iterator Pos = CopyUseMI; 635 EntryMBB->insertAfter(Pos, NewMI); 636 } 637 } 638 } 639 640 // Determine if there are any calls in this machine function. 641 MachineFrameInfo &MFI = MF->getFrameInfo(); 642 for (const auto &MBB : *MF) { 643 if (MFI.hasCalls() && MF->hasInlineAsm()) 644 break; 645 646 for (const auto &MI : MBB) { 647 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 648 if ((MCID.isCall() && !MCID.isReturn()) || 649 MI.isStackAligningInlineAsm()) { 650 MFI.setHasCalls(true); 651 } 652 if (MI.isInlineAsm()) { 653 MF->setHasInlineAsm(true); 654 } 655 } 656 } 657 658 // Determine if there is a call to setjmp in the machine function. 659 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 660 661 // Determine if floating point is used for msvc 662 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 663 664 // Replace forward-declared registers with the registers containing 665 // the desired value. 666 for (DenseMap<Register, Register>::iterator 667 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 668 I != E; ++I) { 669 Register From = I->first; 670 Register To = I->second; 671 // If To is also scheduled to be replaced, find what its ultimate 672 // replacement is. 673 while (true) { 674 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To); 675 if (J == E) break; 676 To = J->second; 677 } 678 // Make sure the new register has a sufficiently constrained register class. 679 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 680 MRI.constrainRegClass(To, MRI.getRegClass(From)); 681 // Replace it. 682 683 684 // Replacing one register with another won't touch the kill flags. 685 // We need to conservatively clear the kill flags as a kill on the old 686 // register might dominate existing uses of the new register. 687 if (!MRI.use_empty(To)) 688 MRI.clearKillFlags(From); 689 MRI.replaceRegWith(From, To); 690 } 691 692 TLI->finalizeLowering(*MF); 693 694 // Release function-specific state. SDB and CurDAG are already cleared 695 // at this point. 696 FuncInfo->clear(); 697 698 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 699 LLVM_DEBUG(MF->print(dbgs())); 700 701 return true; 702 } 703 704 static void reportFastISelFailure(MachineFunction &MF, 705 OptimizationRemarkEmitter &ORE, 706 OptimizationRemarkMissed &R, 707 bool ShouldAbort) { 708 // Print the function name explicitly if we don't have a debug location (which 709 // makes the diagnostic less useful) or if we're going to emit a raw error. 710 if (!R.getLocation().isValid() || ShouldAbort) 711 R << (" (in function: " + MF.getName() + ")").str(); 712 713 if (ShouldAbort) 714 report_fatal_error(R.getMsg()); 715 716 ORE.emit(R); 717 } 718 719 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 720 BasicBlock::const_iterator End, 721 bool &HadTailCall) { 722 // Allow creating illegal types during DAG building for the basic block. 723 CurDAG->NewNodesMustHaveLegalTypes = false; 724 725 // Lower the instructions. If a call is emitted as a tail call, cease emitting 726 // nodes for this block. 727 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 728 if (!ElidedArgCopyInstrs.count(&*I)) 729 SDB->visit(*I); 730 } 731 732 // Make sure the root of the DAG is up-to-date. 733 CurDAG->setRoot(SDB->getControlRoot()); 734 HadTailCall = SDB->HasTailCall; 735 SDB->resolveOrClearDbgInfo(); 736 SDB->clear(); 737 738 // Final step, emit the lowered DAG as machine code. 739 CodeGenAndEmitDAG(); 740 } 741 742 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 743 SmallPtrSet<SDNode *, 16> Added; 744 SmallVector<SDNode*, 128> Worklist; 745 746 Worklist.push_back(CurDAG->getRoot().getNode()); 747 Added.insert(CurDAG->getRoot().getNode()); 748 749 KnownBits Known; 750 751 do { 752 SDNode *N = Worklist.pop_back_val(); 753 754 // Otherwise, add all chain operands to the worklist. 755 for (const SDValue &Op : N->op_values()) 756 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second) 757 Worklist.push_back(Op.getNode()); 758 759 // If this is a CopyToReg with a vreg dest, process it. 760 if (N->getOpcode() != ISD::CopyToReg) 761 continue; 762 763 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 764 if (!Register::isVirtualRegister(DestReg)) 765 continue; 766 767 // Ignore non-integer values. 768 SDValue Src = N->getOperand(2); 769 EVT SrcVT = Src.getValueType(); 770 if (!SrcVT.isInteger()) 771 continue; 772 773 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 774 Known = CurDAG->computeKnownBits(Src); 775 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 776 } while (!Worklist.empty()); 777 } 778 779 void SelectionDAGISel::CodeGenAndEmitDAG() { 780 StringRef GroupName = "sdag"; 781 StringRef GroupDescription = "Instruction Selection and Scheduling"; 782 std::string BlockName; 783 bool MatchFilterBB = false; (void)MatchFilterBB; 784 #ifndef NDEBUG 785 TargetTransformInfo &TTI = 786 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 787 #endif 788 789 // Pre-type legalization allow creation of any node types. 790 CurDAG->NewNodesMustHaveLegalTypes = false; 791 792 #ifndef NDEBUG 793 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 794 FilterDAGBasicBlockName == 795 FuncInfo->MBB->getBasicBlock()->getName()); 796 #endif 797 #ifdef NDEBUG 798 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || 799 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || 800 ViewSUnitDAGs) 801 #endif 802 { 803 BlockName = 804 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 805 } 806 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 807 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 808 << "'\n"; 809 CurDAG->dump()); 810 811 if (ViewDAGCombine1 && MatchFilterBB) 812 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 813 814 // Run the DAG combiner in pre-legalize mode. 815 { 816 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 817 GroupDescription, TimePassesIsEnabled); 818 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 819 } 820 821 #ifndef NDEBUG 822 if (TTI.hasBranchDivergence()) 823 CurDAG->VerifyDAGDiverence(); 824 #endif 825 826 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 827 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 828 << "'\n"; 829 CurDAG->dump()); 830 831 // Second step, hack on the DAG until it only uses operations and types that 832 // the target supports. 833 if (ViewLegalizeTypesDAGs && MatchFilterBB) 834 CurDAG->viewGraph("legalize-types input for " + BlockName); 835 836 bool Changed; 837 { 838 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 839 GroupDescription, TimePassesIsEnabled); 840 Changed = CurDAG->LegalizeTypes(); 841 } 842 843 #ifndef NDEBUG 844 if (TTI.hasBranchDivergence()) 845 CurDAG->VerifyDAGDiverence(); 846 #endif 847 848 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 849 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 850 << "'\n"; 851 CurDAG->dump()); 852 853 // Only allow creation of legal node types. 854 CurDAG->NewNodesMustHaveLegalTypes = true; 855 856 if (Changed) { 857 if (ViewDAGCombineLT && MatchFilterBB) 858 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 859 860 // Run the DAG combiner in post-type-legalize mode. 861 { 862 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 863 GroupName, GroupDescription, TimePassesIsEnabled); 864 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 865 } 866 867 #ifndef NDEBUG 868 if (TTI.hasBranchDivergence()) 869 CurDAG->VerifyDAGDiverence(); 870 #endif 871 872 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 873 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 874 << "'\n"; 875 CurDAG->dump()); 876 } 877 878 { 879 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 880 GroupDescription, TimePassesIsEnabled); 881 Changed = CurDAG->LegalizeVectors(); 882 } 883 884 if (Changed) { 885 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 886 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 887 << "'\n"; 888 CurDAG->dump()); 889 890 { 891 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 892 GroupDescription, TimePassesIsEnabled); 893 CurDAG->LegalizeTypes(); 894 } 895 896 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 897 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 898 << "'\n"; 899 CurDAG->dump()); 900 901 if (ViewDAGCombineLT && MatchFilterBB) 902 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 903 904 // Run the DAG combiner in post-type-legalize mode. 905 { 906 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 907 GroupName, GroupDescription, TimePassesIsEnabled); 908 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 909 } 910 911 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 912 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 913 << "'\n"; 914 CurDAG->dump()); 915 916 #ifndef NDEBUG 917 if (TTI.hasBranchDivergence()) 918 CurDAG->VerifyDAGDiverence(); 919 #endif 920 } 921 922 if (ViewLegalizeDAGs && MatchFilterBB) 923 CurDAG->viewGraph("legalize input for " + BlockName); 924 925 { 926 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 927 GroupDescription, TimePassesIsEnabled); 928 CurDAG->Legalize(); 929 } 930 931 #ifndef NDEBUG 932 if (TTI.hasBranchDivergence()) 933 CurDAG->VerifyDAGDiverence(); 934 #endif 935 936 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 937 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 938 << "'\n"; 939 CurDAG->dump()); 940 941 if (ViewDAGCombine2 && MatchFilterBB) 942 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 943 944 // Run the DAG combiner in post-legalize mode. 945 { 946 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 947 GroupDescription, TimePassesIsEnabled); 948 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 949 } 950 951 #ifndef NDEBUG 952 if (TTI.hasBranchDivergence()) 953 CurDAG->VerifyDAGDiverence(); 954 #endif 955 956 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 957 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 958 << "'\n"; 959 CurDAG->dump()); 960 961 if (OptLevel != CodeGenOpt::None) 962 ComputeLiveOutVRegInfo(); 963 964 if (ViewISelDAGs && MatchFilterBB) 965 CurDAG->viewGraph("isel input for " + BlockName); 966 967 // Third, instruction select all of the operations to machine code, adding the 968 // code to the MachineBasicBlock. 969 { 970 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 971 GroupDescription, TimePassesIsEnabled); 972 DoInstructionSelection(); 973 } 974 975 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 976 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 977 << "'\n"; 978 CurDAG->dump()); 979 980 if (ViewSchedDAGs && MatchFilterBB) 981 CurDAG->viewGraph("scheduler input for " + BlockName); 982 983 // Schedule machine code. 984 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 985 { 986 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 987 GroupDescription, TimePassesIsEnabled); 988 Scheduler->Run(CurDAG, FuncInfo->MBB); 989 } 990 991 if (ViewSUnitDAGs && MatchFilterBB) 992 Scheduler->viewGraph(); 993 994 // Emit machine code to BB. This can change 'BB' to the last block being 995 // inserted into. 996 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 997 { 998 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 999 GroupDescription, TimePassesIsEnabled); 1000 1001 // FuncInfo->InsertPt is passed by reference and set to the end of the 1002 // scheduled instructions. 1003 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 1004 } 1005 1006 // If the block was split, make sure we update any references that are used to 1007 // update PHI nodes later on. 1008 if (FirstMBB != LastMBB) 1009 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 1010 1011 // Free the scheduler state. 1012 { 1013 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1014 GroupDescription, TimePassesIsEnabled); 1015 delete Scheduler; 1016 } 1017 1018 // Free the SelectionDAG state, now that we're finished with it. 1019 CurDAG->clear(); 1020 } 1021 1022 namespace { 1023 1024 /// ISelUpdater - helper class to handle updates of the instruction selection 1025 /// graph. 1026 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1027 SelectionDAG::allnodes_iterator &ISelPosition; 1028 1029 public: 1030 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1031 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1032 1033 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1034 /// deleted is the current ISelPosition node, update ISelPosition. 1035 /// 1036 void NodeDeleted(SDNode *N, SDNode *E) override { 1037 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1038 ++ISelPosition; 1039 } 1040 }; 1041 1042 } // end anonymous namespace 1043 1044 // This function is used to enforce the topological node id property 1045 // property leveraged during Instruction selection. Before selection all 1046 // nodes are given a non-negative id such that all nodes have a larger id than 1047 // their operands. As this holds transitively we can prune checks that a node N 1048 // is a predecessor of M another by not recursively checking through M's 1049 // operands if N's ID is larger than M's ID. This is significantly improves 1050 // performance of for various legality checks (e.g. IsLegalToFold / 1051 // UpdateChains). 1052 1053 // However, when we fuse multiple nodes into a single node 1054 // during selection we may induce a predecessor relationship between inputs and 1055 // outputs of distinct nodes being merged violating the topological property. 1056 // Should a fused node have a successor which has yet to be selected, our 1057 // legality checks would be incorrect. To avoid this we mark all unselected 1058 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => 1059 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1060 // We use bit-negation to more clearly enforce that node id -1 can only be 1061 // achieved by selected nodes). As the conversion is reversable the original Id, 1062 // topological pruning can still be leveraged when looking for unselected nodes. 1063 // This method is call internally in all ISel replacement calls. 1064 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1065 SmallVector<SDNode *, 4> Nodes; 1066 Nodes.push_back(Node); 1067 1068 while (!Nodes.empty()) { 1069 SDNode *N = Nodes.pop_back_val(); 1070 for (auto *U : N->uses()) { 1071 auto UId = U->getNodeId(); 1072 if (UId > 0) { 1073 InvalidateNodeId(U); 1074 Nodes.push_back(U); 1075 } 1076 } 1077 } 1078 } 1079 1080 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a 1081 // NodeId with the equivalent node id which is invalid for topological 1082 // pruning. 1083 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1084 int InvalidId = -(N->getNodeId() + 1); 1085 N->setNodeId(InvalidId); 1086 } 1087 1088 // getUninvalidatedNodeId - get original uninvalidated node id. 1089 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1090 int Id = N->getNodeId(); 1091 if (Id < -1) 1092 return -(Id + 1); 1093 return Id; 1094 } 1095 1096 void SelectionDAGISel::DoInstructionSelection() { 1097 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1098 << printMBBReference(*FuncInfo->MBB) << " '" 1099 << FuncInfo->MBB->getName() << "'\n"); 1100 1101 PreprocessISelDAG(); 1102 1103 // Select target instructions for the DAG. 1104 { 1105 // Number all nodes with a topological order and set DAGSize. 1106 DAGSize = CurDAG->AssignTopologicalOrder(); 1107 1108 // Create a dummy node (which is not added to allnodes), that adds 1109 // a reference to the root node, preventing it from being deleted, 1110 // and tracking any changes of the root. 1111 HandleSDNode Dummy(CurDAG->getRoot()); 1112 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1113 ++ISelPosition; 1114 1115 // Make sure that ISelPosition gets properly updated when nodes are deleted 1116 // in calls made from this function. 1117 ISelUpdater ISU(*CurDAG, ISelPosition); 1118 1119 // The AllNodes list is now topological-sorted. Visit the 1120 // nodes by starting at the end of the list (the root of the 1121 // graph) and preceding back toward the beginning (the entry 1122 // node). 1123 while (ISelPosition != CurDAG->allnodes_begin()) { 1124 SDNode *Node = &*--ISelPosition; 1125 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1126 // but there are currently some corner cases that it misses. Also, this 1127 // makes it theoretically possible to disable the DAGCombiner. 1128 if (Node->use_empty()) 1129 continue; 1130 1131 #ifndef NDEBUG 1132 SmallVector<SDNode *, 4> Nodes; 1133 Nodes.push_back(Node); 1134 1135 while (!Nodes.empty()) { 1136 auto N = Nodes.pop_back_val(); 1137 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1138 continue; 1139 for (const SDValue &Op : N->op_values()) { 1140 if (Op->getOpcode() == ISD::TokenFactor) 1141 Nodes.push_back(Op.getNode()); 1142 else { 1143 // We rely on topological ordering of node ids for checking for 1144 // cycles when fusing nodes during selection. All unselected nodes 1145 // successors of an already selected node should have a negative id. 1146 // This assertion will catch such cases. If this assertion triggers 1147 // it is likely you using DAG-level Value/Node replacement functions 1148 // (versus equivalent ISEL replacement) in backend-specific 1149 // selections. See comment in EnforceNodeIdInvariant for more 1150 // details. 1151 assert(Op->getNodeId() != -1 && 1152 "Node has already selected predecessor node"); 1153 } 1154 } 1155 } 1156 #endif 1157 1158 // When we are using non-default rounding modes or FP exception behavior 1159 // FP operations are represented by StrictFP pseudo-operations. For 1160 // targets that do not (yet) understand strict FP operations directly, 1161 // we convert them to normal FP opcodes instead at this point. This 1162 // will allow them to be handled by existing target-specific instruction 1163 // selectors. 1164 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { 1165 // For some opcodes, we need to call TLI->getOperationAction using 1166 // the first operand type instead of the result type. Note that this 1167 // must match what SelectionDAGLegalize::LegalizeOp is doing. 1168 EVT ActionVT; 1169 switch (Node->getOpcode()) { 1170 case ISD::STRICT_SINT_TO_FP: 1171 case ISD::STRICT_UINT_TO_FP: 1172 case ISD::STRICT_LRINT: 1173 case ISD::STRICT_LLRINT: 1174 case ISD::STRICT_LROUND: 1175 case ISD::STRICT_LLROUND: 1176 case ISD::STRICT_FSETCC: 1177 case ISD::STRICT_FSETCCS: 1178 ActionVT = Node->getOperand(1).getValueType(); 1179 break; 1180 default: 1181 ActionVT = Node->getValueType(0); 1182 break; 1183 } 1184 if (TLI->getOperationAction(Node->getOpcode(), ActionVT) 1185 == TargetLowering::Expand) 1186 Node = CurDAG->mutateStrictFPToFP(Node); 1187 } 1188 1189 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1190 Node->dump(CurDAG)); 1191 1192 Select(Node); 1193 } 1194 1195 CurDAG->setRoot(Dummy.getValue()); 1196 } 1197 1198 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1199 1200 PostprocessISelDAG(); 1201 } 1202 1203 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1204 for (const User *U : CPI->users()) { 1205 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1206 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1207 if (IID == Intrinsic::eh_exceptionpointer || 1208 IID == Intrinsic::eh_exceptioncode) 1209 return true; 1210 } 1211 } 1212 return false; 1213 } 1214 1215 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1216 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1217 // and store the mapping in the function. 1218 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1219 const CatchPadInst *CPI) { 1220 MachineFunction *MF = MBB->getParent(); 1221 // In case of single catch (...), we don't emit LSDA, so we don't need 1222 // this information. 1223 bool IsSingleCatchAllClause = 1224 CPI->getNumArgOperands() == 1 && 1225 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1226 if (!IsSingleCatchAllClause) { 1227 // Create a mapping from landing pad label to landing pad index. 1228 bool IntrFound = false; 1229 for (const User *U : CPI->users()) { 1230 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1231 Intrinsic::ID IID = Call->getIntrinsicID(); 1232 if (IID == Intrinsic::wasm_landingpad_index) { 1233 Value *IndexArg = Call->getArgOperand(1); 1234 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1235 MF->setWasmLandingPadIndex(MBB, Index); 1236 IntrFound = true; 1237 break; 1238 } 1239 } 1240 } 1241 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1242 (void)IntrFound; 1243 } 1244 } 1245 1246 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1247 /// do other setup for EH landing-pad blocks. 1248 bool SelectionDAGISel::PrepareEHLandingPad() { 1249 MachineBasicBlock *MBB = FuncInfo->MBB; 1250 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1251 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1252 const TargetRegisterClass *PtrRC = 1253 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1254 1255 auto Pers = classifyEHPersonality(PersonalityFn); 1256 1257 // Catchpads have one live-in register, which typically holds the exception 1258 // pointer or code. 1259 if (isFuncletEHPersonality(Pers)) { 1260 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1261 if (hasExceptionPointerOrCodeUser(CPI)) { 1262 // Get or create the virtual register to hold the pointer or code. Mark 1263 // the live in physreg and copy into the vreg. 1264 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1265 assert(EHPhysReg && "target lacks exception pointer register"); 1266 MBB->addLiveIn(EHPhysReg); 1267 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1268 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1269 TII->get(TargetOpcode::COPY), VReg) 1270 .addReg(EHPhysReg, RegState::Kill); 1271 } 1272 } 1273 return true; 1274 } 1275 1276 // Add a label to mark the beginning of the landing pad. Deletion of the 1277 // landing pad can thus be detected via the MachineModuleInfo. 1278 MCSymbol *Label = MF->addLandingPad(MBB); 1279 1280 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1281 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1282 .addSym(Label); 1283 1284 if (Pers == EHPersonality::Wasm_CXX) { 1285 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1286 mapWasmLandingPadIndex(MBB, CPI); 1287 } else { 1288 // Assign the call site to the landing pad's begin label. 1289 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1290 // Mark exception register as live in. 1291 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1292 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1293 // Mark exception selector register as live in. 1294 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1295 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1296 } 1297 1298 return true; 1299 } 1300 1301 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1302 /// side-effect free and is either dead or folded into a generated instruction. 1303 /// Return false if it needs to be emitted. 1304 static bool isFoldedOrDeadInstruction(const Instruction *I, 1305 const FunctionLoweringInfo &FuncInfo) { 1306 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1307 !I->isTerminator() && // Terminators aren't folded. 1308 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1309 !I->isEHPad() && // EH pad instructions aren't folded. 1310 !FuncInfo.isExportedInst(I); // Exported instrs must be computed. 1311 } 1312 1313 /// Collect llvm.dbg.declare information. This is done after argument lowering 1314 /// in case the declarations refer to arguments. 1315 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { 1316 MachineFunction *MF = FuncInfo.MF; 1317 const DataLayout &DL = MF->getDataLayout(); 1318 for (const BasicBlock &BB : *FuncInfo.Fn) { 1319 for (const Instruction &I : BB) { 1320 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1321 if (!DI) 1322 continue; 1323 1324 assert(DI->getVariable() && "Missing variable"); 1325 assert(DI->getDebugLoc() && "Missing location"); 1326 const Value *Address = DI->getAddress(); 1327 if (!Address) { 1328 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI 1329 << " (bad address)\n"); 1330 continue; 1331 } 1332 1333 // Look through casts and constant offset GEPs. These mostly come from 1334 // inalloca. 1335 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1336 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1337 1338 // Check if the variable is a static alloca or a byval or inalloca 1339 // argument passed in memory. If it is not, then we will ignore this 1340 // intrinsic and handle this during isel like dbg.value. 1341 int FI = std::numeric_limits<int>::max(); 1342 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1343 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1344 if (SI != FuncInfo.StaticAllocaMap.end()) 1345 FI = SI->second; 1346 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1347 FI = FuncInfo.getArgumentFrameIndex(Arg); 1348 1349 if (FI == std::numeric_limits<int>::max()) 1350 continue; 1351 1352 DIExpression *Expr = DI->getExpression(); 1353 if (Offset.getBoolValue()) 1354 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1355 Offset.getZExtValue()); 1356 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI 1357 << ", " << *DI << "\n"); 1358 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1359 } 1360 } 1361 } 1362 1363 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1364 FastISelFailed = false; 1365 // Initialize the Fast-ISel state, if needed. 1366 FastISel *FastIS = nullptr; 1367 if (TM.Options.EnableFastISel) { 1368 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1369 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1370 } 1371 1372 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1373 1374 // Lower arguments up front. An RPO iteration always visits the entry block 1375 // first. 1376 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1377 ++NumEntryBlocks; 1378 1379 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1380 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1381 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1382 1383 CurDAG->setFunctionLoweringInfo(FuncInfo.get()); 1384 1385 if (!FastIS) { 1386 LowerArguments(Fn); 1387 } else { 1388 // See if fast isel can lower the arguments. 1389 FastIS->startNewBlock(); 1390 if (!FastIS->lowerArguments()) { 1391 FastISelFailed = true; 1392 // Fast isel failed to lower these arguments 1393 ++NumFastIselFailLowerArguments; 1394 1395 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1396 Fn.getSubprogram(), 1397 &Fn.getEntryBlock()); 1398 R << "FastISel didn't lower all arguments: " 1399 << ore::NV("Prototype", Fn.getType()); 1400 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1401 1402 // Use SelectionDAG argument lowering 1403 LowerArguments(Fn); 1404 CurDAG->setRoot(SDB->getControlRoot()); 1405 SDB->clear(); 1406 CodeGenAndEmitDAG(); 1407 } 1408 1409 // If we inserted any instructions at the beginning, make a note of 1410 // where they are, so we can be sure to emit subsequent instructions 1411 // after them. 1412 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1413 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1414 else 1415 FastIS->setLastLocalValue(nullptr); 1416 } 1417 1418 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1419 1420 if (FastIS && Inserted) 1421 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1422 1423 processDbgDeclares(*FuncInfo); 1424 1425 // Iterate over all basic blocks in the function. 1426 StackProtector &SP = getAnalysis<StackProtector>(); 1427 for (const BasicBlock *LLVMBB : RPOT) { 1428 if (OptLevel != CodeGenOpt::None) { 1429 bool AllPredsVisited = true; 1430 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1431 PI != PE; ++PI) { 1432 if (!FuncInfo->VisitedBBs.count(*PI)) { 1433 AllPredsVisited = false; 1434 break; 1435 } 1436 } 1437 1438 if (AllPredsVisited) { 1439 for (const PHINode &PN : LLVMBB->phis()) 1440 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1441 } else { 1442 for (const PHINode &PN : LLVMBB->phis()) 1443 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1444 } 1445 1446 FuncInfo->VisitedBBs.insert(LLVMBB); 1447 } 1448 1449 BasicBlock::const_iterator const Begin = 1450 LLVMBB->getFirstNonPHI()->getIterator(); 1451 BasicBlock::const_iterator const End = LLVMBB->end(); 1452 BasicBlock::const_iterator BI = End; 1453 1454 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1455 if (!FuncInfo->MBB) 1456 continue; // Some blocks like catchpads have no code or MBB. 1457 1458 // Insert new instructions after any phi or argument setup code. 1459 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1460 1461 // Setup an EH landing-pad block. 1462 FuncInfo->ExceptionPointerVirtReg = 0; 1463 FuncInfo->ExceptionSelectorVirtReg = 0; 1464 if (LLVMBB->isEHPad()) 1465 if (!PrepareEHLandingPad()) 1466 continue; 1467 1468 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1469 if (FastIS) { 1470 if (LLVMBB != &Fn.getEntryBlock()) 1471 FastIS->startNewBlock(); 1472 1473 unsigned NumFastIselRemaining = std::distance(Begin, End); 1474 1475 // Pre-assign swifterror vregs. 1476 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1477 1478 // Do FastISel on as many instructions as possible. 1479 for (; BI != Begin; --BI) { 1480 const Instruction *Inst = &*std::prev(BI); 1481 1482 // If we no longer require this instruction, skip it. 1483 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) || 1484 ElidedArgCopyInstrs.count(Inst)) { 1485 --NumFastIselRemaining; 1486 continue; 1487 } 1488 1489 // Bottom-up: reset the insert pos at the top, after any local-value 1490 // instructions. 1491 FastIS->recomputeInsertPt(); 1492 1493 // Try to select the instruction with FastISel. 1494 if (FastIS->selectInstruction(Inst)) { 1495 --NumFastIselRemaining; 1496 ++NumFastIselSuccess; 1497 // If fast isel succeeded, skip over all the folded instructions, and 1498 // then see if there is a load right before the selected instructions. 1499 // Try to fold the load if so. 1500 const Instruction *BeforeInst = Inst; 1501 while (BeforeInst != &*Begin) { 1502 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1503 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo)) 1504 break; 1505 } 1506 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1507 BeforeInst->hasOneUse() && 1508 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1509 // If we succeeded, don't re-select the load. 1510 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1511 --NumFastIselRemaining; 1512 ++NumFastIselSuccess; 1513 } 1514 continue; 1515 } 1516 1517 FastISelFailed = true; 1518 1519 // Then handle certain instructions as single-LLVM-Instruction blocks. 1520 // We cannot separate out GCrelocates to their own blocks since we need 1521 // to keep track of gc-relocates for a particular gc-statepoint. This is 1522 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1523 // visitGCRelocate. 1524 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) && 1525 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) { 1526 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1527 Inst->getDebugLoc(), LLVMBB); 1528 1529 R << "FastISel missed call"; 1530 1531 if (R.isEnabled() || EnableFastISelAbort) { 1532 std::string InstStrStorage; 1533 raw_string_ostream InstStr(InstStrStorage); 1534 InstStr << *Inst; 1535 1536 R << ": " << InstStr.str(); 1537 } 1538 1539 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1540 1541 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1542 !Inst->use_empty()) { 1543 Register &R = FuncInfo->ValueMap[Inst]; 1544 if (!R) 1545 R = FuncInfo->CreateRegs(Inst); 1546 } 1547 1548 bool HadTailCall = false; 1549 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1550 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1551 1552 // If the call was emitted as a tail call, we're done with the block. 1553 // We also need to delete any previously emitted instructions. 1554 if (HadTailCall) { 1555 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1556 --BI; 1557 break; 1558 } 1559 1560 // Recompute NumFastIselRemaining as Selection DAG instruction 1561 // selection may have handled the call, input args, etc. 1562 unsigned RemainingNow = std::distance(Begin, BI); 1563 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1564 NumFastIselRemaining = RemainingNow; 1565 continue; 1566 } 1567 1568 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1569 Inst->getDebugLoc(), LLVMBB); 1570 1571 bool ShouldAbort = EnableFastISelAbort; 1572 if (Inst->isTerminator()) { 1573 // Use a different message for terminator misses. 1574 R << "FastISel missed terminator"; 1575 // Don't abort for terminator unless the level is really high 1576 ShouldAbort = (EnableFastISelAbort > 2); 1577 } else { 1578 R << "FastISel missed"; 1579 } 1580 1581 if (R.isEnabled() || EnableFastISelAbort) { 1582 std::string InstStrStorage; 1583 raw_string_ostream InstStr(InstStrStorage); 1584 InstStr << *Inst; 1585 R << ": " << InstStr.str(); 1586 } 1587 1588 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1589 1590 NumFastIselFailures += NumFastIselRemaining; 1591 break; 1592 } 1593 1594 FastIS->recomputeInsertPt(); 1595 } 1596 1597 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1598 bool FunctionBasedInstrumentation = 1599 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1600 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1601 FunctionBasedInstrumentation); 1602 } 1603 1604 if (Begin != BI) 1605 ++NumDAGBlocks; 1606 else 1607 ++NumFastIselBlocks; 1608 1609 if (Begin != BI) { 1610 // Run SelectionDAG instruction selection on the remainder of the block 1611 // not handled by FastISel. If FastISel is not run, this is the entire 1612 // block. 1613 bool HadTailCall; 1614 SelectBasicBlock(Begin, BI, HadTailCall); 1615 1616 // But if FastISel was run, we already selected some of the block. 1617 // If we emitted a tail-call, we need to delete any previously emitted 1618 // instruction that follows it. 1619 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1620 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1621 } 1622 1623 if (FastIS) 1624 FastIS->finishBasicBlock(); 1625 FinishBasicBlock(); 1626 FuncInfo->PHINodesToUpdate.clear(); 1627 ElidedArgCopyInstrs.clear(); 1628 } 1629 1630 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1631 1632 SwiftError->propagateVRegs(); 1633 1634 delete FastIS; 1635 SDB->clearDanglingDebugInfo(); 1636 SDB->SPDescriptor.resetPerFunctionState(); 1637 } 1638 1639 /// Given that the input MI is before a partial terminator sequence TSeq, return 1640 /// true if M + TSeq also a partial terminator sequence. 1641 /// 1642 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1643 /// lowering copy vregs into physical registers, which are then passed into 1644 /// terminator instructors so we can satisfy ABI constraints. A partial 1645 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1646 /// may be the whole terminator sequence). 1647 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1648 // If we do not have a copy or an implicit def, we return true if and only if 1649 // MI is a debug value. 1650 if (!MI.isCopy() && !MI.isImplicitDef()) 1651 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1652 // physical registers if there is debug info associated with the terminator 1653 // of our mbb. We want to include said debug info in our terminator 1654 // sequence, so we return true in that case. 1655 return MI.isDebugValue(); 1656 1657 // We have left the terminator sequence if we are not doing one of the 1658 // following: 1659 // 1660 // 1. Copying a vreg into a physical register. 1661 // 2. Copying a vreg into a vreg. 1662 // 3. Defining a register via an implicit def. 1663 1664 // OPI should always be a register definition... 1665 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1666 if (!OPI->isReg() || !OPI->isDef()) 1667 return false; 1668 1669 // Defining any register via an implicit def is always ok. 1670 if (MI.isImplicitDef()) 1671 return true; 1672 1673 // Grab the copy source... 1674 MachineInstr::const_mop_iterator OPI2 = OPI; 1675 ++OPI2; 1676 assert(OPI2 != MI.operands_end() 1677 && "Should have a copy implying we should have 2 arguments."); 1678 1679 // Make sure that the copy dest is not a vreg when the copy source is a 1680 // physical register. 1681 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) && 1682 Register::isPhysicalRegister(OPI2->getReg()))) 1683 return false; 1684 1685 return true; 1686 } 1687 1688 /// Find the split point at which to splice the end of BB into its success stack 1689 /// protector check machine basic block. 1690 /// 1691 /// On many platforms, due to ABI constraints, terminators, even before register 1692 /// allocation, use physical registers. This creates an issue for us since 1693 /// physical registers at this point can not travel across basic 1694 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1695 /// when they enter functions and moves them through a sequence of copies back 1696 /// into the physical registers right before the terminator creating a 1697 /// ``Terminator Sequence''. This function is searching for the beginning of the 1698 /// terminator sequence so that we can ensure that we splice off not just the 1699 /// terminator, but additionally the copies that move the vregs into the 1700 /// physical registers. 1701 static MachineBasicBlock::iterator 1702 FindSplitPointForStackProtector(MachineBasicBlock *BB) { 1703 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1704 // 1705 if (SplitPoint == BB->begin()) 1706 return SplitPoint; 1707 1708 MachineBasicBlock::iterator Start = BB->begin(); 1709 MachineBasicBlock::iterator Previous = SplitPoint; 1710 --Previous; 1711 1712 while (MIIsInTerminatorSequence(*Previous)) { 1713 SplitPoint = Previous; 1714 if (Previous == Start) 1715 break; 1716 --Previous; 1717 } 1718 1719 return SplitPoint; 1720 } 1721 1722 void 1723 SelectionDAGISel::FinishBasicBlock() { 1724 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1725 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1726 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1727 ++i) dbgs() 1728 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1729 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1730 1731 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1732 // PHI nodes in successors. 1733 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1734 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1735 assert(PHI->isPHI() && 1736 "This is not a machine PHI node that we are updating!"); 1737 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1738 continue; 1739 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1740 } 1741 1742 // Handle stack protector. 1743 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1744 // The target provides a guard check function. There is no need to 1745 // generate error handling code or to split current basic block. 1746 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1747 1748 // Add load and check to the basicblock. 1749 FuncInfo->MBB = ParentMBB; 1750 FuncInfo->InsertPt = 1751 FindSplitPointForStackProtector(ParentMBB); 1752 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1753 CurDAG->setRoot(SDB->getRoot()); 1754 SDB->clear(); 1755 CodeGenAndEmitDAG(); 1756 1757 // Clear the Per-BB State. 1758 SDB->SPDescriptor.resetPerBBState(); 1759 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1760 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1761 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1762 1763 // Find the split point to split the parent mbb. At the same time copy all 1764 // physical registers used in the tail of parent mbb into virtual registers 1765 // before the split point and back into physical registers after the split 1766 // point. This prevents us needing to deal with Live-ins and many other 1767 // register allocation issues caused by us splitting the parent mbb. The 1768 // register allocator will clean up said virtual copies later on. 1769 MachineBasicBlock::iterator SplitPoint = 1770 FindSplitPointForStackProtector(ParentMBB); 1771 1772 // Splice the terminator of ParentMBB into SuccessMBB. 1773 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1774 SplitPoint, 1775 ParentMBB->end()); 1776 1777 // Add compare/jump on neq/jump to the parent BB. 1778 FuncInfo->MBB = ParentMBB; 1779 FuncInfo->InsertPt = ParentMBB->end(); 1780 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1781 CurDAG->setRoot(SDB->getRoot()); 1782 SDB->clear(); 1783 CodeGenAndEmitDAG(); 1784 1785 // CodeGen Failure MBB if we have not codegened it yet. 1786 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1787 if (FailureMBB->empty()) { 1788 FuncInfo->MBB = FailureMBB; 1789 FuncInfo->InsertPt = FailureMBB->end(); 1790 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1791 CurDAG->setRoot(SDB->getRoot()); 1792 SDB->clear(); 1793 CodeGenAndEmitDAG(); 1794 } 1795 1796 // Clear the Per-BB State. 1797 SDB->SPDescriptor.resetPerBBState(); 1798 } 1799 1800 // Lower each BitTestBlock. 1801 for (auto &BTB : SDB->SL->BitTestCases) { 1802 // Lower header first, if it wasn't already lowered 1803 if (!BTB.Emitted) { 1804 // Set the current basic block to the mbb we wish to insert the code into 1805 FuncInfo->MBB = BTB.Parent; 1806 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1807 // Emit the code 1808 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1809 CurDAG->setRoot(SDB->getRoot()); 1810 SDB->clear(); 1811 CodeGenAndEmitDAG(); 1812 } 1813 1814 BranchProbability UnhandledProb = BTB.Prob; 1815 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1816 UnhandledProb -= BTB.Cases[j].ExtraProb; 1817 // Set the current basic block to the mbb we wish to insert the code into 1818 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1819 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1820 // Emit the code 1821 1822 // If all cases cover a contiguous range, it is not necessary to jump to 1823 // the default block after the last bit test fails. This is because the 1824 // range check during bit test header creation has guaranteed that every 1825 // case here doesn't go outside the range. In this case, there is no need 1826 // to perform the last bit test, as it will always be true. Instead, make 1827 // the second-to-last bit-test fall through to the target of the last bit 1828 // test, and delete the last bit test. 1829 1830 MachineBasicBlock *NextMBB; 1831 if (BTB.ContiguousRange && j + 2 == ej) { 1832 // Second-to-last bit-test with contiguous range: fall through to the 1833 // target of the final bit test. 1834 NextMBB = BTB.Cases[j + 1].TargetBB; 1835 } else if (j + 1 == ej) { 1836 // For the last bit test, fall through to Default. 1837 NextMBB = BTB.Default; 1838 } else { 1839 // Otherwise, fall through to the next bit test. 1840 NextMBB = BTB.Cases[j + 1].ThisBB; 1841 } 1842 1843 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1844 FuncInfo->MBB); 1845 1846 CurDAG->setRoot(SDB->getRoot()); 1847 SDB->clear(); 1848 CodeGenAndEmitDAG(); 1849 1850 if (BTB.ContiguousRange && j + 2 == ej) { 1851 // Since we're not going to use the final bit test, remove it. 1852 BTB.Cases.pop_back(); 1853 break; 1854 } 1855 } 1856 1857 // Update PHI Nodes 1858 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1859 pi != pe; ++pi) { 1860 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1861 MachineBasicBlock *PHIBB = PHI->getParent(); 1862 assert(PHI->isPHI() && 1863 "This is not a machine PHI node that we are updating!"); 1864 // This is "default" BB. We have two jumps to it. From "header" BB and 1865 // from last "case" BB, unless the latter was skipped. 1866 if (PHIBB == BTB.Default) { 1867 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1868 if (!BTB.ContiguousRange) { 1869 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1870 .addMBB(BTB.Cases.back().ThisBB); 1871 } 1872 } 1873 // One of "cases" BB. 1874 for (unsigned j = 0, ej = BTB.Cases.size(); 1875 j != ej; ++j) { 1876 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1877 if (cBB->isSuccessor(PHIBB)) 1878 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1879 } 1880 } 1881 } 1882 SDB->SL->BitTestCases.clear(); 1883 1884 // If the JumpTable record is filled in, then we need to emit a jump table. 1885 // Updating the PHI nodes is tricky in this case, since we need to determine 1886 // whether the PHI is a successor of the range check MBB or the jump table MBB 1887 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1888 // Lower header first, if it wasn't already lowered 1889 if (!SDB->SL->JTCases[i].first.Emitted) { 1890 // Set the current basic block to the mbb we wish to insert the code into 1891 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1892 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1893 // Emit the code 1894 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1895 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1896 CurDAG->setRoot(SDB->getRoot()); 1897 SDB->clear(); 1898 CodeGenAndEmitDAG(); 1899 } 1900 1901 // Set the current basic block to the mbb we wish to insert the code into 1902 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1903 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1904 // Emit the code 1905 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1906 CurDAG->setRoot(SDB->getRoot()); 1907 SDB->clear(); 1908 CodeGenAndEmitDAG(); 1909 1910 // Update PHI Nodes 1911 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1912 pi != pe; ++pi) { 1913 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1914 MachineBasicBlock *PHIBB = PHI->getParent(); 1915 assert(PHI->isPHI() && 1916 "This is not a machine PHI node that we are updating!"); 1917 // "default" BB. We can go there only from header BB. 1918 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1919 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1920 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1921 // JT BB. Just iterate over successors here 1922 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1923 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1924 } 1925 } 1926 SDB->SL->JTCases.clear(); 1927 1928 // If we generated any switch lowering information, build and codegen any 1929 // additional DAGs necessary. 1930 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1931 // Set the current basic block to the mbb we wish to insert the code into 1932 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1933 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1934 1935 // Determine the unique successors. 1936 SmallVector<MachineBasicBlock *, 2> Succs; 1937 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1938 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1939 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1940 1941 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1942 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1943 CurDAG->setRoot(SDB->getRoot()); 1944 SDB->clear(); 1945 CodeGenAndEmitDAG(); 1946 1947 // Remember the last block, now that any splitting is done, for use in 1948 // populating PHI nodes in successors. 1949 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1950 1951 // Handle any PHI nodes in successors of this chunk, as if we were coming 1952 // from the original BB before switch expansion. Note that PHI nodes can 1953 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1954 // handle them the right number of times. 1955 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1956 FuncInfo->MBB = Succs[i]; 1957 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1958 // FuncInfo->MBB may have been removed from the CFG if a branch was 1959 // constant folded. 1960 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1961 for (MachineBasicBlock::iterator 1962 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1963 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1964 MachineInstrBuilder PHI(*MF, MBBI); 1965 // This value for this PHI node is recorded in PHINodesToUpdate. 1966 for (unsigned pn = 0; ; ++pn) { 1967 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1968 "Didn't find PHI entry!"); 1969 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1970 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1971 break; 1972 } 1973 } 1974 } 1975 } 1976 } 1977 } 1978 SDB->SL->SwitchCases.clear(); 1979 } 1980 1981 /// Create the scheduler. If a specific scheduler was specified 1982 /// via the SchedulerRegistry, use it, otherwise select the 1983 /// one preferred by the target. 1984 /// 1985 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1986 return ISHeuristic(this, OptLevel); 1987 } 1988 1989 //===----------------------------------------------------------------------===// 1990 // Helper functions used by the generated instruction selector. 1991 //===----------------------------------------------------------------------===// 1992 // Calls to these methods are generated by tblgen. 1993 1994 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1995 /// the dag combiner simplified the 255, we still want to match. RHS is the 1996 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1997 /// specified in the .td file (e.g. 255). 1998 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1999 int64_t DesiredMaskS) const { 2000 const APInt &ActualMask = RHS->getAPIntValue(); 2001 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2002 2003 // If the actual mask exactly matches, success! 2004 if (ActualMask == DesiredMask) 2005 return true; 2006 2007 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2008 if (!ActualMask.isSubsetOf(DesiredMask)) 2009 return false; 2010 2011 // Otherwise, the DAG Combiner may have proven that the value coming in is 2012 // either already zero or is not demanded. Check for known zero input bits. 2013 APInt NeededMask = DesiredMask & ~ActualMask; 2014 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 2015 return true; 2016 2017 // TODO: check to see if missing bits are just not demanded. 2018 2019 // Otherwise, this pattern doesn't match. 2020 return false; 2021 } 2022 2023 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 2024 /// the dag combiner simplified the 255, we still want to match. RHS is the 2025 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 2026 /// specified in the .td file (e.g. 255). 2027 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 2028 int64_t DesiredMaskS) const { 2029 const APInt &ActualMask = RHS->getAPIntValue(); 2030 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2031 2032 // If the actual mask exactly matches, success! 2033 if (ActualMask == DesiredMask) 2034 return true; 2035 2036 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2037 if (!ActualMask.isSubsetOf(DesiredMask)) 2038 return false; 2039 2040 // Otherwise, the DAG Combiner may have proven that the value coming in is 2041 // either already zero or is not demanded. Check for known zero input bits. 2042 APInt NeededMask = DesiredMask & ~ActualMask; 2043 KnownBits Known = CurDAG->computeKnownBits(LHS); 2044 2045 // If all the missing bits in the or are already known to be set, match! 2046 if (NeededMask.isSubsetOf(Known.One)) 2047 return true; 2048 2049 // TODO: check to see if missing bits are just not demanded. 2050 2051 // Otherwise, this pattern doesn't match. 2052 return false; 2053 } 2054 2055 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2056 /// by tblgen. Others should not call it. 2057 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2058 const SDLoc &DL) { 2059 std::vector<SDValue> InOps; 2060 std::swap(InOps, Ops); 2061 2062 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2063 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2064 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2065 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2066 2067 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2068 if (InOps[e-1].getValueType() == MVT::Glue) 2069 --e; // Don't process a glue operand if it is here. 2070 2071 while (i != e) { 2072 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2073 if (!InlineAsm::isMemKind(Flags)) { 2074 // Just skip over this operand, copying the operands verbatim. 2075 Ops.insert(Ops.end(), InOps.begin()+i, 2076 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2077 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2078 } else { 2079 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2080 "Memory operand with multiple values?"); 2081 2082 unsigned TiedToOperand; 2083 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2084 // We need the constraint ID from the operand this is tied to. 2085 unsigned CurOp = InlineAsm::Op_FirstOperand; 2086 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2087 for (; TiedToOperand; --TiedToOperand) { 2088 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2089 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2090 } 2091 } 2092 2093 // Otherwise, this is a memory operand. Ask the target to select it. 2094 std::vector<SDValue> SelOps; 2095 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2096 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2097 report_fatal_error("Could not match memory address. Inline asm" 2098 " failure!"); 2099 2100 // Add this to the output node. 2101 unsigned NewFlags = 2102 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2103 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2104 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2105 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 2106 i += 2; 2107 } 2108 } 2109 2110 // Add the glue input back if present. 2111 if (e != InOps.size()) 2112 Ops.push_back(InOps.back()); 2113 } 2114 2115 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2116 /// SDNode. 2117 /// 2118 static SDNode *findGlueUse(SDNode *N) { 2119 unsigned FlagResNo = N->getNumValues()-1; 2120 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2121 SDUse &Use = I.getUse(); 2122 if (Use.getResNo() == FlagResNo) 2123 return Use.getUser(); 2124 } 2125 return nullptr; 2126 } 2127 2128 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2129 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2130 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2131 bool IgnoreChains) { 2132 SmallPtrSet<const SDNode *, 16> Visited; 2133 SmallVector<const SDNode *, 16> WorkList; 2134 // Only check if we have non-immediate uses of Def. 2135 if (ImmedUse->isOnlyUserOf(Def)) 2136 return false; 2137 2138 // We don't care about paths to Def that go through ImmedUse so mark it 2139 // visited and mark non-def operands as used. 2140 Visited.insert(ImmedUse); 2141 for (const SDValue &Op : ImmedUse->op_values()) { 2142 SDNode *N = Op.getNode(); 2143 // Ignore chain deps (they are validated by 2144 // HandleMergeInputChains) and immediate uses 2145 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2146 continue; 2147 if (!Visited.insert(N).second) 2148 continue; 2149 WorkList.push_back(N); 2150 } 2151 2152 // Initialize worklist to operands of Root. 2153 if (Root != ImmedUse) { 2154 for (const SDValue &Op : Root->op_values()) { 2155 SDNode *N = Op.getNode(); 2156 // Ignore chains (they are validated by HandleMergeInputChains) 2157 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2158 continue; 2159 if (!Visited.insert(N).second) 2160 continue; 2161 WorkList.push_back(N); 2162 } 2163 } 2164 2165 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2166 } 2167 2168 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2169 /// operand node N of U during instruction selection that starts at Root. 2170 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2171 SDNode *Root) const { 2172 if (OptLevel == CodeGenOpt::None) return false; 2173 return N.hasOneUse(); 2174 } 2175 2176 /// IsLegalToFold - Returns true if the specific operand node N of 2177 /// U can be folded during instruction selection that starts at Root. 2178 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2179 CodeGenOpt::Level OptLevel, 2180 bool IgnoreChains) { 2181 if (OptLevel == CodeGenOpt::None) return false; 2182 2183 // If Root use can somehow reach N through a path that that doesn't contain 2184 // U then folding N would create a cycle. e.g. In the following 2185 // diagram, Root can reach N through X. If N is folded into Root, then 2186 // X is both a predecessor and a successor of U. 2187 // 2188 // [N*] // 2189 // ^ ^ // 2190 // / \ // 2191 // [U*] [X]? // 2192 // ^ ^ // 2193 // \ / // 2194 // \ / // 2195 // [Root*] // 2196 // 2197 // * indicates nodes to be folded together. 2198 // 2199 // If Root produces glue, then it gets (even more) interesting. Since it 2200 // will be "glued" together with its glue use in the scheduler, we need to 2201 // check if it might reach N. 2202 // 2203 // [N*] // 2204 // ^ ^ // 2205 // / \ // 2206 // [U*] [X]? // 2207 // ^ ^ // 2208 // \ \ // 2209 // \ | // 2210 // [Root*] | // 2211 // ^ | // 2212 // f | // 2213 // | / // 2214 // [Y] / // 2215 // ^ / // 2216 // f / // 2217 // | / // 2218 // [GU] // 2219 // 2220 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2221 // (call it Fold), then X is a predecessor of GU and a successor of 2222 // Fold. But since Fold and GU are glued together, this will create 2223 // a cycle in the scheduling graph. 2224 2225 // If the node has glue, walk down the graph to the "lowest" node in the 2226 // glueged set. 2227 EVT VT = Root->getValueType(Root->getNumValues()-1); 2228 while (VT == MVT::Glue) { 2229 SDNode *GU = findGlueUse(Root); 2230 if (!GU) 2231 break; 2232 Root = GU; 2233 VT = Root->getValueType(Root->getNumValues()-1); 2234 2235 // If our query node has a glue result with a use, we've walked up it. If 2236 // the user (which has already been selected) has a chain or indirectly uses 2237 // the chain, HandleMergeInputChains will not consider it. Because of 2238 // this, we cannot ignore chains in this predicate. 2239 IgnoreChains = false; 2240 } 2241 2242 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2243 } 2244 2245 void SelectionDAGISel::Select_INLINEASM(SDNode *N) { 2246 SDLoc DL(N); 2247 2248 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2249 SelectInlineAsmMemoryOperands(Ops, DL); 2250 2251 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2252 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops); 2253 New->setNodeId(-1); 2254 ReplaceUses(N, New.getNode()); 2255 CurDAG->RemoveDeadNode(N); 2256 } 2257 2258 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2259 SDLoc dl(Op); 2260 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2261 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2262 2263 EVT VT = Op->getValueType(0); 2264 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2265 Register Reg = 2266 TLI->getRegisterByName(RegStr->getString().data(), Ty, 2267 CurDAG->getMachineFunction()); 2268 SDValue New = CurDAG->getCopyFromReg( 2269 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2270 New->setNodeId(-1); 2271 ReplaceUses(Op, New.getNode()); 2272 CurDAG->RemoveDeadNode(Op); 2273 } 2274 2275 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2276 SDLoc dl(Op); 2277 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2278 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2279 2280 EVT VT = Op->getOperand(2).getValueType(); 2281 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2282 2283 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, 2284 CurDAG->getMachineFunction()); 2285 SDValue New = CurDAG->getCopyToReg( 2286 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2287 New->setNodeId(-1); 2288 ReplaceUses(Op, New.getNode()); 2289 CurDAG->RemoveDeadNode(Op); 2290 } 2291 2292 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2293 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2294 } 2295 2296 void SelectionDAGISel::Select_FREEZE(SDNode *N) { 2297 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. 2298 // If FREEZE instruction is added later, the code below must be changed as 2299 // well. 2300 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0), 2301 N->getOperand(0)); 2302 } 2303 2304 /// GetVBR - decode a vbr encoding whose top bit is set. 2305 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2306 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2307 assert(Val >= 128 && "Not a VBR"); 2308 Val &= 127; // Remove first vbr bit. 2309 2310 unsigned Shift = 7; 2311 uint64_t NextBits; 2312 do { 2313 NextBits = MatcherTable[Idx++]; 2314 Val |= (NextBits&127) << Shift; 2315 Shift += 7; 2316 } while (NextBits & 128); 2317 2318 return Val; 2319 } 2320 2321 /// When a match is complete, this method updates uses of interior chain results 2322 /// to use the new results. 2323 void SelectionDAGISel::UpdateChains( 2324 SDNode *NodeToMatch, SDValue InputChain, 2325 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2326 SmallVector<SDNode*, 4> NowDeadNodes; 2327 2328 // Now that all the normal results are replaced, we replace the chain and 2329 // glue results if present. 2330 if (!ChainNodesMatched.empty()) { 2331 assert(InputChain.getNode() && 2332 "Matched input chains but didn't produce a chain"); 2333 // Loop over all of the nodes we matched that produced a chain result. 2334 // Replace all the chain results with the final chain we ended up with. 2335 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2336 SDNode *ChainNode = ChainNodesMatched[i]; 2337 // If ChainNode is null, it's because we replaced it on a previous 2338 // iteration and we cleared it out of the map. Just skip it. 2339 if (!ChainNode) 2340 continue; 2341 2342 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2343 "Deleted node left in chain"); 2344 2345 // Don't replace the results of the root node if we're doing a 2346 // MorphNodeTo. 2347 if (ChainNode == NodeToMatch && isMorphNodeTo) 2348 continue; 2349 2350 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2351 if (ChainVal.getValueType() == MVT::Glue) 2352 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2353 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2354 SelectionDAG::DAGNodeDeletedListener NDL( 2355 *CurDAG, [&](SDNode *N, SDNode *E) { 2356 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2357 static_cast<SDNode *>(nullptr)); 2358 }); 2359 if (ChainNode->getOpcode() != ISD::TokenFactor) 2360 ReplaceUses(ChainVal, InputChain); 2361 2362 // If the node became dead and we haven't already seen it, delete it. 2363 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2364 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2365 NowDeadNodes.push_back(ChainNode); 2366 } 2367 } 2368 2369 if (!NowDeadNodes.empty()) 2370 CurDAG->RemoveDeadNodes(NowDeadNodes); 2371 2372 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2373 } 2374 2375 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2376 /// operation for when the pattern matched at least one node with a chains. The 2377 /// input vector contains a list of all of the chained nodes that we match. We 2378 /// must determine if this is a valid thing to cover (i.e. matching it won't 2379 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2380 /// be used as the input node chain for the generated nodes. 2381 static SDValue 2382 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2383 SelectionDAG *CurDAG) { 2384 2385 SmallPtrSet<const SDNode *, 16> Visited; 2386 SmallVector<const SDNode *, 8> Worklist; 2387 SmallVector<SDValue, 3> InputChains; 2388 unsigned int Max = 8192; 2389 2390 // Quick exit on trivial merge. 2391 if (ChainNodesMatched.size() == 1) 2392 return ChainNodesMatched[0]->getOperand(0); 2393 2394 // Add chains that aren't already added (internal). Peek through 2395 // token factors. 2396 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2397 if (V.getValueType() != MVT::Other) 2398 return; 2399 if (V->getOpcode() == ISD::EntryToken) 2400 return; 2401 if (!Visited.insert(V.getNode()).second) 2402 return; 2403 if (V->getOpcode() == ISD::TokenFactor) { 2404 for (const SDValue &Op : V->op_values()) 2405 AddChains(Op); 2406 } else 2407 InputChains.push_back(V); 2408 }; 2409 2410 for (auto *N : ChainNodesMatched) { 2411 Worklist.push_back(N); 2412 Visited.insert(N); 2413 } 2414 2415 while (!Worklist.empty()) 2416 AddChains(Worklist.pop_back_val()->getOperand(0)); 2417 2418 // Skip the search if there are no chain dependencies. 2419 if (InputChains.size() == 0) 2420 return CurDAG->getEntryNode(); 2421 2422 // If one of these chains is a successor of input, we must have a 2423 // node that is both the predecessor and successor of the 2424 // to-be-merged nodes. Fail. 2425 Visited.clear(); 2426 for (SDValue V : InputChains) 2427 Worklist.push_back(V.getNode()); 2428 2429 for (auto *N : ChainNodesMatched) 2430 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2431 return SDValue(); 2432 2433 // Return merged chain. 2434 if (InputChains.size() == 1) 2435 return InputChains[0]; 2436 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2437 MVT::Other, InputChains); 2438 } 2439 2440 /// MorphNode - Handle morphing a node in place for the selector. 2441 SDNode *SelectionDAGISel:: 2442 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2443 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2444 // It is possible we're using MorphNodeTo to replace a node with no 2445 // normal results with one that has a normal result (or we could be 2446 // adding a chain) and the input could have glue and chains as well. 2447 // In this case we need to shift the operands down. 2448 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2449 // than the old isel though. 2450 int OldGlueResultNo = -1, OldChainResultNo = -1; 2451 2452 unsigned NTMNumResults = Node->getNumValues(); 2453 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2454 OldGlueResultNo = NTMNumResults-1; 2455 if (NTMNumResults != 1 && 2456 Node->getValueType(NTMNumResults-2) == MVT::Other) 2457 OldChainResultNo = NTMNumResults-2; 2458 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2459 OldChainResultNo = NTMNumResults-1; 2460 2461 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2462 // that this deletes operands of the old node that become dead. 2463 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2464 2465 // MorphNodeTo can operate in two ways: if an existing node with the 2466 // specified operands exists, it can just return it. Otherwise, it 2467 // updates the node in place to have the requested operands. 2468 if (Res == Node) { 2469 // If we updated the node in place, reset the node ID. To the isel, 2470 // this should be just like a newly allocated machine node. 2471 Res->setNodeId(-1); 2472 } 2473 2474 unsigned ResNumResults = Res->getNumValues(); 2475 // Move the glue if needed. 2476 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2477 (unsigned)OldGlueResultNo != ResNumResults-1) 2478 ReplaceUses(SDValue(Node, OldGlueResultNo), 2479 SDValue(Res, ResNumResults - 1)); 2480 2481 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2482 --ResNumResults; 2483 2484 // Move the chain reference if needed. 2485 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2486 (unsigned)OldChainResultNo != ResNumResults-1) 2487 ReplaceUses(SDValue(Node, OldChainResultNo), 2488 SDValue(Res, ResNumResults - 1)); 2489 2490 // Otherwise, no replacement happened because the node already exists. Replace 2491 // Uses of the old node with the new one. 2492 if (Res != Node) { 2493 ReplaceNode(Node, Res); 2494 } else { 2495 EnforceNodeIdInvariant(Res); 2496 } 2497 2498 return Res; 2499 } 2500 2501 /// CheckSame - Implements OP_CheckSame. 2502 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2503 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2504 SDValue N, 2505 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2506 // Accept if it is exactly the same as a previously recorded node. 2507 unsigned RecNo = MatcherTable[MatcherIndex++]; 2508 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2509 return N == RecordedNodes[RecNo].first; 2510 } 2511 2512 /// CheckChildSame - Implements OP_CheckChildXSame. 2513 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2514 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2515 SDValue N, 2516 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes, 2517 unsigned ChildNo) { 2518 if (ChildNo >= N.getNumOperands()) 2519 return false; // Match fails if out of range child #. 2520 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2521 RecordedNodes); 2522 } 2523 2524 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2525 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2526 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2527 const SelectionDAGISel &SDISel) { 2528 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2529 } 2530 2531 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2532 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2533 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2534 const SelectionDAGISel &SDISel, SDNode *N) { 2535 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2536 } 2537 2538 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2539 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2540 SDNode *N) { 2541 uint16_t Opc = MatcherTable[MatcherIndex++]; 2542 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2543 return N->getOpcode() == Opc; 2544 } 2545 2546 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2547 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2548 const TargetLowering *TLI, const DataLayout &DL) { 2549 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2550 if (N.getValueType() == VT) return true; 2551 2552 // Handle the case when VT is iPTR. 2553 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2554 } 2555 2556 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2557 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2558 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2559 unsigned ChildNo) { 2560 if (ChildNo >= N.getNumOperands()) 2561 return false; // Match fails if out of range child #. 2562 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2563 DL); 2564 } 2565 2566 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2567 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2568 SDValue N) { 2569 return cast<CondCodeSDNode>(N)->get() == 2570 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2571 } 2572 2573 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2574 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2575 SDValue N) { 2576 if (2 >= N.getNumOperands()) 2577 return false; 2578 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2579 } 2580 2581 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2582 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2583 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2584 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2585 if (cast<VTSDNode>(N)->getVT() == VT) 2586 return true; 2587 2588 // Handle the case when VT is iPTR. 2589 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2590 } 2591 2592 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2593 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2594 SDValue N) { 2595 int64_t Val = MatcherTable[MatcherIndex++]; 2596 if (Val & 128) 2597 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2598 2599 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2600 return C && C->getSExtValue() == Val; 2601 } 2602 2603 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2604 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2605 SDValue N, unsigned ChildNo) { 2606 if (ChildNo >= N.getNumOperands()) 2607 return false; // Match fails if out of range child #. 2608 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2609 } 2610 2611 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2612 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2613 SDValue N, const SelectionDAGISel &SDISel) { 2614 int64_t Val = MatcherTable[MatcherIndex++]; 2615 if (Val & 128) 2616 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2617 2618 if (N->getOpcode() != ISD::AND) return false; 2619 2620 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2621 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2622 } 2623 2624 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2625 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2626 SDValue N, const SelectionDAGISel &SDISel) { 2627 int64_t Val = MatcherTable[MatcherIndex++]; 2628 if (Val & 128) 2629 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2630 2631 if (N->getOpcode() != ISD::OR) return false; 2632 2633 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2634 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2635 } 2636 2637 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2638 /// scope, evaluate the current node. If the current predicate is known to 2639 /// fail, set Result=true and return anything. If the current predicate is 2640 /// known to pass, set Result=false and return the MatcherIndex to continue 2641 /// with. If the current predicate is unknown, set Result=false and return the 2642 /// MatcherIndex to continue with. 2643 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2644 unsigned Index, SDValue N, 2645 bool &Result, 2646 const SelectionDAGISel &SDISel, 2647 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2648 switch (Table[Index++]) { 2649 default: 2650 Result = false; 2651 return Index-1; // Could not evaluate this predicate. 2652 case SelectionDAGISel::OPC_CheckSame: 2653 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2654 return Index; 2655 case SelectionDAGISel::OPC_CheckChild0Same: 2656 case SelectionDAGISel::OPC_CheckChild1Same: 2657 case SelectionDAGISel::OPC_CheckChild2Same: 2658 case SelectionDAGISel::OPC_CheckChild3Same: 2659 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2660 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2661 return Index; 2662 case SelectionDAGISel::OPC_CheckPatternPredicate: 2663 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2664 return Index; 2665 case SelectionDAGISel::OPC_CheckPredicate: 2666 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2667 return Index; 2668 case SelectionDAGISel::OPC_CheckOpcode: 2669 Result = !::CheckOpcode(Table, Index, N.getNode()); 2670 return Index; 2671 case SelectionDAGISel::OPC_CheckType: 2672 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2673 SDISel.CurDAG->getDataLayout()); 2674 return Index; 2675 case SelectionDAGISel::OPC_CheckTypeRes: { 2676 unsigned Res = Table[Index++]; 2677 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2678 SDISel.CurDAG->getDataLayout()); 2679 return Index; 2680 } 2681 case SelectionDAGISel::OPC_CheckChild0Type: 2682 case SelectionDAGISel::OPC_CheckChild1Type: 2683 case SelectionDAGISel::OPC_CheckChild2Type: 2684 case SelectionDAGISel::OPC_CheckChild3Type: 2685 case SelectionDAGISel::OPC_CheckChild4Type: 2686 case SelectionDAGISel::OPC_CheckChild5Type: 2687 case SelectionDAGISel::OPC_CheckChild6Type: 2688 case SelectionDAGISel::OPC_CheckChild7Type: 2689 Result = !::CheckChildType( 2690 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2691 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2692 return Index; 2693 case SelectionDAGISel::OPC_CheckCondCode: 2694 Result = !::CheckCondCode(Table, Index, N); 2695 return Index; 2696 case SelectionDAGISel::OPC_CheckChild2CondCode: 2697 Result = !::CheckChild2CondCode(Table, Index, N); 2698 return Index; 2699 case SelectionDAGISel::OPC_CheckValueType: 2700 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2701 SDISel.CurDAG->getDataLayout()); 2702 return Index; 2703 case SelectionDAGISel::OPC_CheckInteger: 2704 Result = !::CheckInteger(Table, Index, N); 2705 return Index; 2706 case SelectionDAGISel::OPC_CheckChild0Integer: 2707 case SelectionDAGISel::OPC_CheckChild1Integer: 2708 case SelectionDAGISel::OPC_CheckChild2Integer: 2709 case SelectionDAGISel::OPC_CheckChild3Integer: 2710 case SelectionDAGISel::OPC_CheckChild4Integer: 2711 Result = !::CheckChildInteger(Table, Index, N, 2712 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2713 return Index; 2714 case SelectionDAGISel::OPC_CheckAndImm: 2715 Result = !::CheckAndImm(Table, Index, N, SDISel); 2716 return Index; 2717 case SelectionDAGISel::OPC_CheckOrImm: 2718 Result = !::CheckOrImm(Table, Index, N, SDISel); 2719 return Index; 2720 } 2721 } 2722 2723 namespace { 2724 2725 struct MatchScope { 2726 /// FailIndex - If this match fails, this is the index to continue with. 2727 unsigned FailIndex; 2728 2729 /// NodeStack - The node stack when the scope was formed. 2730 SmallVector<SDValue, 4> NodeStack; 2731 2732 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2733 unsigned NumRecordedNodes; 2734 2735 /// NumMatchedMemRefs - The number of matched memref entries. 2736 unsigned NumMatchedMemRefs; 2737 2738 /// InputChain/InputGlue - The current chain/glue 2739 SDValue InputChain, InputGlue; 2740 2741 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2742 bool HasChainNodesMatched; 2743 }; 2744 2745 /// \A DAG update listener to keep the matching state 2746 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2747 /// change the DAG while matching. X86 addressing mode matcher is an example 2748 /// for this. 2749 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2750 { 2751 SDNode **NodeToMatch; 2752 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2753 SmallVectorImpl<MatchScope> &MatchScopes; 2754 2755 public: 2756 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2757 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2758 SmallVectorImpl<MatchScope> &MS) 2759 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2760 RecordedNodes(RN), MatchScopes(MS) {} 2761 2762 void NodeDeleted(SDNode *N, SDNode *E) override { 2763 // Some early-returns here to avoid the search if we deleted the node or 2764 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2765 // do, so it's unnecessary to update matching state at that point). 2766 // Neither of these can occur currently because we only install this 2767 // update listener during matching a complex patterns. 2768 if (!E || E->isMachineOpcode()) 2769 return; 2770 // Check if NodeToMatch was updated. 2771 if (N == *NodeToMatch) 2772 *NodeToMatch = E; 2773 // Performing linear search here does not matter because we almost never 2774 // run this code. You'd have to have a CSE during complex pattern 2775 // matching. 2776 for (auto &I : RecordedNodes) 2777 if (I.first.getNode() == N) 2778 I.first.setNode(E); 2779 2780 for (auto &I : MatchScopes) 2781 for (auto &J : I.NodeStack) 2782 if (J.getNode() == N) 2783 J.setNode(E); 2784 } 2785 }; 2786 2787 } // end anonymous namespace 2788 2789 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2790 const unsigned char *MatcherTable, 2791 unsigned TableSize) { 2792 // FIXME: Should these even be selected? Handle these cases in the caller? 2793 switch (NodeToMatch->getOpcode()) { 2794 default: 2795 break; 2796 case ISD::EntryToken: // These nodes remain the same. 2797 case ISD::BasicBlock: 2798 case ISD::Register: 2799 case ISD::RegisterMask: 2800 case ISD::HANDLENODE: 2801 case ISD::MDNODE_SDNODE: 2802 case ISD::TargetConstant: 2803 case ISD::TargetConstantFP: 2804 case ISD::TargetConstantPool: 2805 case ISD::TargetFrameIndex: 2806 case ISD::TargetExternalSymbol: 2807 case ISD::MCSymbol: 2808 case ISD::TargetBlockAddress: 2809 case ISD::TargetJumpTable: 2810 case ISD::TargetGlobalTLSAddress: 2811 case ISD::TargetGlobalAddress: 2812 case ISD::TokenFactor: 2813 case ISD::CopyFromReg: 2814 case ISD::CopyToReg: 2815 case ISD::EH_LABEL: 2816 case ISD::ANNOTATION_LABEL: 2817 case ISD::LIFETIME_START: 2818 case ISD::LIFETIME_END: 2819 NodeToMatch->setNodeId(-1); // Mark selected. 2820 return; 2821 case ISD::AssertSext: 2822 case ISD::AssertZext: 2823 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2824 CurDAG->RemoveDeadNode(NodeToMatch); 2825 return; 2826 case ISD::INLINEASM: 2827 case ISD::INLINEASM_BR: 2828 Select_INLINEASM(NodeToMatch); 2829 return; 2830 case ISD::READ_REGISTER: 2831 Select_READ_REGISTER(NodeToMatch); 2832 return; 2833 case ISD::WRITE_REGISTER: 2834 Select_WRITE_REGISTER(NodeToMatch); 2835 return; 2836 case ISD::UNDEF: 2837 Select_UNDEF(NodeToMatch); 2838 return; 2839 case ISD::FREEZE: 2840 Select_FREEZE(NodeToMatch); 2841 return; 2842 } 2843 2844 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2845 2846 // Set up the node stack with NodeToMatch as the only node on the stack. 2847 SmallVector<SDValue, 8> NodeStack; 2848 SDValue N = SDValue(NodeToMatch, 0); 2849 NodeStack.push_back(N); 2850 2851 // MatchScopes - Scopes used when matching, if a match failure happens, this 2852 // indicates where to continue checking. 2853 SmallVector<MatchScope, 8> MatchScopes; 2854 2855 // RecordedNodes - This is the set of nodes that have been recorded by the 2856 // state machine. The second value is the parent of the node, or null if the 2857 // root is recorded. 2858 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2859 2860 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2861 // pattern. 2862 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2863 2864 // These are the current input chain and glue for use when generating nodes. 2865 // Various Emit operations change these. For example, emitting a copytoreg 2866 // uses and updates these. 2867 SDValue InputChain, InputGlue; 2868 2869 // ChainNodesMatched - If a pattern matches nodes that have input/output 2870 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2871 // which ones they are. The result is captured into this list so that we can 2872 // update the chain results when the pattern is complete. 2873 SmallVector<SDNode*, 3> ChainNodesMatched; 2874 2875 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2876 2877 // Determine where to start the interpreter. Normally we start at opcode #0, 2878 // but if the state machine starts with an OPC_SwitchOpcode, then we 2879 // accelerate the first lookup (which is guaranteed to be hot) with the 2880 // OpcodeOffset table. 2881 unsigned MatcherIndex = 0; 2882 2883 if (!OpcodeOffset.empty()) { 2884 // Already computed the OpcodeOffset table, just index into it. 2885 if (N.getOpcode() < OpcodeOffset.size()) 2886 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2887 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2888 2889 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2890 // Otherwise, the table isn't computed, but the state machine does start 2891 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2892 // is the first time we're selecting an instruction. 2893 unsigned Idx = 1; 2894 while (true) { 2895 // Get the size of this case. 2896 unsigned CaseSize = MatcherTable[Idx++]; 2897 if (CaseSize & 128) 2898 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2899 if (CaseSize == 0) break; 2900 2901 // Get the opcode, add the index to the table. 2902 uint16_t Opc = MatcherTable[Idx++]; 2903 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2904 if (Opc >= OpcodeOffset.size()) 2905 OpcodeOffset.resize((Opc+1)*2); 2906 OpcodeOffset[Opc] = Idx; 2907 Idx += CaseSize; 2908 } 2909 2910 // Okay, do the lookup for the first opcode. 2911 if (N.getOpcode() < OpcodeOffset.size()) 2912 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2913 } 2914 2915 while (true) { 2916 assert(MatcherIndex < TableSize && "Invalid index"); 2917 #ifndef NDEBUG 2918 unsigned CurrentOpcodeIndex = MatcherIndex; 2919 #endif 2920 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2921 switch (Opcode) { 2922 case OPC_Scope: { 2923 // Okay, the semantics of this operation are that we should push a scope 2924 // then evaluate the first child. However, pushing a scope only to have 2925 // the first check fail (which then pops it) is inefficient. If we can 2926 // determine immediately that the first check (or first several) will 2927 // immediately fail, don't even bother pushing a scope for them. 2928 unsigned FailIndex; 2929 2930 while (true) { 2931 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2932 if (NumToSkip & 128) 2933 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2934 // Found the end of the scope with no match. 2935 if (NumToSkip == 0) { 2936 FailIndex = 0; 2937 break; 2938 } 2939 2940 FailIndex = MatcherIndex+NumToSkip; 2941 2942 unsigned MatcherIndexOfPredicate = MatcherIndex; 2943 (void)MatcherIndexOfPredicate; // silence warning. 2944 2945 // If we can't evaluate this predicate without pushing a scope (e.g. if 2946 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2947 // push the scope and evaluate the full predicate chain. 2948 bool Result; 2949 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2950 Result, *this, RecordedNodes); 2951 if (!Result) 2952 break; 2953 2954 LLVM_DEBUG( 2955 dbgs() << " Skipped scope entry (due to false predicate) at " 2956 << "index " << MatcherIndexOfPredicate << ", continuing at " 2957 << FailIndex << "\n"); 2958 ++NumDAGIselRetries; 2959 2960 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2961 // move to the next case. 2962 MatcherIndex = FailIndex; 2963 } 2964 2965 // If the whole scope failed to match, bail. 2966 if (FailIndex == 0) break; 2967 2968 // Push a MatchScope which indicates where to go if the first child fails 2969 // to match. 2970 MatchScope NewEntry; 2971 NewEntry.FailIndex = FailIndex; 2972 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2973 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2974 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2975 NewEntry.InputChain = InputChain; 2976 NewEntry.InputGlue = InputGlue; 2977 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2978 MatchScopes.push_back(NewEntry); 2979 continue; 2980 } 2981 case OPC_RecordNode: { 2982 // Remember this node, it may end up being an operand in the pattern. 2983 SDNode *Parent = nullptr; 2984 if (NodeStack.size() > 1) 2985 Parent = NodeStack[NodeStack.size()-2].getNode(); 2986 RecordedNodes.push_back(std::make_pair(N, Parent)); 2987 continue; 2988 } 2989 2990 case OPC_RecordChild0: case OPC_RecordChild1: 2991 case OPC_RecordChild2: case OPC_RecordChild3: 2992 case OPC_RecordChild4: case OPC_RecordChild5: 2993 case OPC_RecordChild6: case OPC_RecordChild7: { 2994 unsigned ChildNo = Opcode-OPC_RecordChild0; 2995 if (ChildNo >= N.getNumOperands()) 2996 break; // Match fails if out of range child #. 2997 2998 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2999 N.getNode())); 3000 continue; 3001 } 3002 case OPC_RecordMemRef: 3003 if (auto *MN = dyn_cast<MemSDNode>(N)) 3004 MatchedMemRefs.push_back(MN->getMemOperand()); 3005 else { 3006 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 3007 dbgs() << '\n'); 3008 } 3009 3010 continue; 3011 3012 case OPC_CaptureGlueInput: 3013 // If the current node has an input glue, capture it in InputGlue. 3014 if (N->getNumOperands() != 0 && 3015 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 3016 InputGlue = N->getOperand(N->getNumOperands()-1); 3017 continue; 3018 3019 case OPC_MoveChild: { 3020 unsigned ChildNo = MatcherTable[MatcherIndex++]; 3021 if (ChildNo >= N.getNumOperands()) 3022 break; // Match fails if out of range child #. 3023 N = N.getOperand(ChildNo); 3024 NodeStack.push_back(N); 3025 continue; 3026 } 3027 3028 case OPC_MoveChild0: case OPC_MoveChild1: 3029 case OPC_MoveChild2: case OPC_MoveChild3: 3030 case OPC_MoveChild4: case OPC_MoveChild5: 3031 case OPC_MoveChild6: case OPC_MoveChild7: { 3032 unsigned ChildNo = Opcode-OPC_MoveChild0; 3033 if (ChildNo >= N.getNumOperands()) 3034 break; // Match fails if out of range child #. 3035 N = N.getOperand(ChildNo); 3036 NodeStack.push_back(N); 3037 continue; 3038 } 3039 3040 case OPC_MoveParent: 3041 // Pop the current node off the NodeStack. 3042 NodeStack.pop_back(); 3043 assert(!NodeStack.empty() && "Node stack imbalance!"); 3044 N = NodeStack.back(); 3045 continue; 3046 3047 case OPC_CheckSame: 3048 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 3049 continue; 3050 3051 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3052 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3053 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3054 Opcode-OPC_CheckChild0Same)) 3055 break; 3056 continue; 3057 3058 case OPC_CheckPatternPredicate: 3059 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3060 continue; 3061 case OPC_CheckPredicate: 3062 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3063 N.getNode())) 3064 break; 3065 continue; 3066 case OPC_CheckPredicateWithOperands: { 3067 unsigned OpNum = MatcherTable[MatcherIndex++]; 3068 SmallVector<SDValue, 8> Operands; 3069 3070 for (unsigned i = 0; i < OpNum; ++i) 3071 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3072 3073 unsigned PredNo = MatcherTable[MatcherIndex++]; 3074 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3075 break; 3076 continue; 3077 } 3078 case OPC_CheckComplexPat: { 3079 unsigned CPNum = MatcherTable[MatcherIndex++]; 3080 unsigned RecNo = MatcherTable[MatcherIndex++]; 3081 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3082 3083 // If target can modify DAG during matching, keep the matching state 3084 // consistent. 3085 std::unique_ptr<MatchStateUpdater> MSU; 3086 if (ComplexPatternFuncMutatesDAG()) 3087 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3088 MatchScopes)); 3089 3090 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3091 RecordedNodes[RecNo].first, CPNum, 3092 RecordedNodes)) 3093 break; 3094 continue; 3095 } 3096 case OPC_CheckOpcode: 3097 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3098 continue; 3099 3100 case OPC_CheckType: 3101 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3102 CurDAG->getDataLayout())) 3103 break; 3104 continue; 3105 3106 case OPC_CheckTypeRes: { 3107 unsigned Res = MatcherTable[MatcherIndex++]; 3108 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3109 CurDAG->getDataLayout())) 3110 break; 3111 continue; 3112 } 3113 3114 case OPC_SwitchOpcode: { 3115 unsigned CurNodeOpcode = N.getOpcode(); 3116 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3117 unsigned CaseSize; 3118 while (true) { 3119 // Get the size of this case. 3120 CaseSize = MatcherTable[MatcherIndex++]; 3121 if (CaseSize & 128) 3122 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3123 if (CaseSize == 0) break; 3124 3125 uint16_t Opc = MatcherTable[MatcherIndex++]; 3126 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3127 3128 // If the opcode matches, then we will execute this case. 3129 if (CurNodeOpcode == Opc) 3130 break; 3131 3132 // Otherwise, skip over this case. 3133 MatcherIndex += CaseSize; 3134 } 3135 3136 // If no cases matched, bail out. 3137 if (CaseSize == 0) break; 3138 3139 // Otherwise, execute the case we found. 3140 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3141 << MatcherIndex << "\n"); 3142 continue; 3143 } 3144 3145 case OPC_SwitchType: { 3146 MVT CurNodeVT = N.getSimpleValueType(); 3147 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3148 unsigned CaseSize; 3149 while (true) { 3150 // Get the size of this case. 3151 CaseSize = MatcherTable[MatcherIndex++]; 3152 if (CaseSize & 128) 3153 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3154 if (CaseSize == 0) break; 3155 3156 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3157 if (CaseVT == MVT::iPTR) 3158 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3159 3160 // If the VT matches, then we will execute this case. 3161 if (CurNodeVT == CaseVT) 3162 break; 3163 3164 // Otherwise, skip over this case. 3165 MatcherIndex += CaseSize; 3166 } 3167 3168 // If no cases matched, bail out. 3169 if (CaseSize == 0) break; 3170 3171 // Otherwise, execute the case we found. 3172 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3173 << "] from " << SwitchStart << " to " << MatcherIndex 3174 << '\n'); 3175 continue; 3176 } 3177 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3178 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3179 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3180 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3181 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3182 CurDAG->getDataLayout(), 3183 Opcode - OPC_CheckChild0Type)) 3184 break; 3185 continue; 3186 case OPC_CheckCondCode: 3187 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3188 continue; 3189 case OPC_CheckChild2CondCode: 3190 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3191 continue; 3192 case OPC_CheckValueType: 3193 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3194 CurDAG->getDataLayout())) 3195 break; 3196 continue; 3197 case OPC_CheckInteger: 3198 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3199 continue; 3200 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3201 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3202 case OPC_CheckChild4Integer: 3203 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3204 Opcode-OPC_CheckChild0Integer)) break; 3205 continue; 3206 case OPC_CheckAndImm: 3207 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3208 continue; 3209 case OPC_CheckOrImm: 3210 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3211 continue; 3212 case OPC_CheckImmAllOnesV: 3213 if (!ISD::isBuildVectorAllOnes(N.getNode())) break; 3214 continue; 3215 case OPC_CheckImmAllZerosV: 3216 if (!ISD::isBuildVectorAllZeros(N.getNode())) break; 3217 continue; 3218 3219 case OPC_CheckFoldableChainNode: { 3220 assert(NodeStack.size() != 1 && "No parent node"); 3221 // Verify that all intermediate nodes between the root and this one have 3222 // a single use (ignoring chains, which are handled in UpdateChains). 3223 bool HasMultipleUses = false; 3224 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { 3225 unsigned NNonChainUses = 0; 3226 SDNode *NS = NodeStack[i].getNode(); 3227 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI) 3228 if (UI.getUse().getValueType() != MVT::Other) 3229 if (++NNonChainUses > 1) { 3230 HasMultipleUses = true; 3231 break; 3232 } 3233 if (HasMultipleUses) break; 3234 } 3235 if (HasMultipleUses) break; 3236 3237 // Check to see that the target thinks this is profitable to fold and that 3238 // we can fold it without inducing cycles in the graph. 3239 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3240 NodeToMatch) || 3241 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3242 NodeToMatch, OptLevel, 3243 true/*We validate our own chains*/)) 3244 break; 3245 3246 continue; 3247 } 3248 case OPC_EmitInteger: { 3249 MVT::SimpleValueType VT = 3250 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3251 int64_t Val = MatcherTable[MatcherIndex++]; 3252 if (Val & 128) 3253 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3254 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3255 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3256 VT), nullptr)); 3257 continue; 3258 } 3259 case OPC_EmitRegister: { 3260 MVT::SimpleValueType VT = 3261 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3262 unsigned RegNo = MatcherTable[MatcherIndex++]; 3263 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3264 CurDAG->getRegister(RegNo, VT), nullptr)); 3265 continue; 3266 } 3267 case OPC_EmitRegister2: { 3268 // For targets w/ more than 256 register names, the register enum 3269 // values are stored in two bytes in the matcher table (just like 3270 // opcodes). 3271 MVT::SimpleValueType VT = 3272 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3273 unsigned RegNo = MatcherTable[MatcherIndex++]; 3274 RegNo |= MatcherTable[MatcherIndex++] << 8; 3275 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3276 CurDAG->getRegister(RegNo, VT), nullptr)); 3277 continue; 3278 } 3279 3280 case OPC_EmitConvertToTarget: { 3281 // Convert from IMM/FPIMM to target version. 3282 unsigned RecNo = MatcherTable[MatcherIndex++]; 3283 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3284 SDValue Imm = RecordedNodes[RecNo].first; 3285 3286 if (Imm->getOpcode() == ISD::Constant) { 3287 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3288 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3289 Imm.getValueType()); 3290 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3291 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3292 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3293 Imm.getValueType()); 3294 } 3295 3296 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3297 continue; 3298 } 3299 3300 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3301 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3302 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3303 // These are space-optimized forms of OPC_EmitMergeInputChains. 3304 assert(!InputChain.getNode() && 3305 "EmitMergeInputChains should be the first chain producing node"); 3306 assert(ChainNodesMatched.empty() && 3307 "Should only have one EmitMergeInputChains per match"); 3308 3309 // Read all of the chained nodes. 3310 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3311 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3312 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3313 3314 // FIXME: What if other value results of the node have uses not matched 3315 // by this pattern? 3316 if (ChainNodesMatched.back() != NodeToMatch && 3317 !RecordedNodes[RecNo].first.hasOneUse()) { 3318 ChainNodesMatched.clear(); 3319 break; 3320 } 3321 3322 // Merge the input chains if they are not intra-pattern references. 3323 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3324 3325 if (!InputChain.getNode()) 3326 break; // Failed to merge. 3327 continue; 3328 } 3329 3330 case OPC_EmitMergeInputChains: { 3331 assert(!InputChain.getNode() && 3332 "EmitMergeInputChains should be the first chain producing node"); 3333 // This node gets a list of nodes we matched in the input that have 3334 // chains. We want to token factor all of the input chains to these nodes 3335 // together. However, if any of the input chains is actually one of the 3336 // nodes matched in this pattern, then we have an intra-match reference. 3337 // Ignore these because the newly token factored chain should not refer to 3338 // the old nodes. 3339 unsigned NumChains = MatcherTable[MatcherIndex++]; 3340 assert(NumChains != 0 && "Can't TF zero chains"); 3341 3342 assert(ChainNodesMatched.empty() && 3343 "Should only have one EmitMergeInputChains per match"); 3344 3345 // Read all of the chained nodes. 3346 for (unsigned i = 0; i != NumChains; ++i) { 3347 unsigned RecNo = MatcherTable[MatcherIndex++]; 3348 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3349 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3350 3351 // FIXME: What if other value results of the node have uses not matched 3352 // by this pattern? 3353 if (ChainNodesMatched.back() != NodeToMatch && 3354 !RecordedNodes[RecNo].first.hasOneUse()) { 3355 ChainNodesMatched.clear(); 3356 break; 3357 } 3358 } 3359 3360 // If the inner loop broke out, the match fails. 3361 if (ChainNodesMatched.empty()) 3362 break; 3363 3364 // Merge the input chains if they are not intra-pattern references. 3365 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3366 3367 if (!InputChain.getNode()) 3368 break; // Failed to merge. 3369 3370 continue; 3371 } 3372 3373 case OPC_EmitCopyToReg: 3374 case OPC_EmitCopyToReg2: { 3375 unsigned RecNo = MatcherTable[MatcherIndex++]; 3376 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3377 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3378 if (Opcode == OPC_EmitCopyToReg2) 3379 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3380 3381 if (!InputChain.getNode()) 3382 InputChain = CurDAG->getEntryNode(); 3383 3384 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3385 DestPhysReg, RecordedNodes[RecNo].first, 3386 InputGlue); 3387 3388 InputGlue = InputChain.getValue(1); 3389 continue; 3390 } 3391 3392 case OPC_EmitNodeXForm: { 3393 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3394 unsigned RecNo = MatcherTable[MatcherIndex++]; 3395 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3396 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3397 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3398 continue; 3399 } 3400 case OPC_Coverage: { 3401 // This is emitted right before MorphNode/EmitNode. 3402 // So it should be safe to assume that this node has been selected 3403 unsigned index = MatcherTable[MatcherIndex++]; 3404 index |= (MatcherTable[MatcherIndex++] << 8); 3405 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3406 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3407 continue; 3408 } 3409 3410 case OPC_EmitNode: case OPC_MorphNodeTo: 3411 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3412 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3413 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3414 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3415 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3416 // Get the result VT list. 3417 unsigned NumVTs; 3418 // If this is one of the compressed forms, get the number of VTs based 3419 // on the Opcode. Otherwise read the next byte from the table. 3420 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3421 NumVTs = Opcode - OPC_MorphNodeTo0; 3422 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3423 NumVTs = Opcode - OPC_EmitNode0; 3424 else 3425 NumVTs = MatcherTable[MatcherIndex++]; 3426 SmallVector<EVT, 4> VTs; 3427 for (unsigned i = 0; i != NumVTs; ++i) { 3428 MVT::SimpleValueType VT = 3429 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3430 if (VT == MVT::iPTR) 3431 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3432 VTs.push_back(VT); 3433 } 3434 3435 if (EmitNodeInfo & OPFL_Chain) 3436 VTs.push_back(MVT::Other); 3437 if (EmitNodeInfo & OPFL_GlueOutput) 3438 VTs.push_back(MVT::Glue); 3439 3440 // This is hot code, so optimize the two most common cases of 1 and 2 3441 // results. 3442 SDVTList VTList; 3443 if (VTs.size() == 1) 3444 VTList = CurDAG->getVTList(VTs[0]); 3445 else if (VTs.size() == 2) 3446 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3447 else 3448 VTList = CurDAG->getVTList(VTs); 3449 3450 // Get the operand list. 3451 unsigned NumOps = MatcherTable[MatcherIndex++]; 3452 SmallVector<SDValue, 8> Ops; 3453 for (unsigned i = 0; i != NumOps; ++i) { 3454 unsigned RecNo = MatcherTable[MatcherIndex++]; 3455 if (RecNo & 128) 3456 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3457 3458 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3459 Ops.push_back(RecordedNodes[RecNo].first); 3460 } 3461 3462 // If there are variadic operands to add, handle them now. 3463 if (EmitNodeInfo & OPFL_VariadicInfo) { 3464 // Determine the start index to copy from. 3465 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3466 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3467 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3468 "Invalid variadic node"); 3469 // Copy all of the variadic operands, not including a potential glue 3470 // input. 3471 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3472 i != e; ++i) { 3473 SDValue V = NodeToMatch->getOperand(i); 3474 if (V.getValueType() == MVT::Glue) break; 3475 Ops.push_back(V); 3476 } 3477 } 3478 3479 // If this has chain/glue inputs, add them. 3480 if (EmitNodeInfo & OPFL_Chain) 3481 Ops.push_back(InputChain); 3482 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3483 Ops.push_back(InputGlue); 3484 3485 // Check whether any matched node could raise an FP exception. Since all 3486 // such nodes must have a chain, it suffices to check ChainNodesMatched. 3487 // We need to perform this check before potentially modifying one of the 3488 // nodes via MorphNode. 3489 bool MayRaiseFPException = false; 3490 for (auto *N : ChainNodesMatched) 3491 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) { 3492 MayRaiseFPException = true; 3493 break; 3494 } 3495 3496 // Create the node. 3497 MachineSDNode *Res = nullptr; 3498 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3499 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3500 if (!IsMorphNodeTo) { 3501 // If this is a normal EmitNode command, just create the new node and 3502 // add the results to the RecordedNodes list. 3503 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3504 VTList, Ops); 3505 3506 // Add all the non-glue/non-chain results to the RecordedNodes list. 3507 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3508 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3509 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3510 nullptr)); 3511 } 3512 } else { 3513 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3514 "NodeToMatch was removed partway through selection"); 3515 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3516 SDNode *E) { 3517 CurDAG->salvageDebugInfo(*N); 3518 auto &Chain = ChainNodesMatched; 3519 assert((!E || !is_contained(Chain, N)) && 3520 "Chain node replaced during MorphNode"); 3521 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); 3522 }); 3523 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3524 Ops, EmitNodeInfo)); 3525 } 3526 3527 // Set the NoFPExcept flag when no original matched node could 3528 // raise an FP exception, but the new node potentially might. 3529 if (!MayRaiseFPException && mayRaiseFPException(Res)) { 3530 SDNodeFlags Flags = Res->getFlags(); 3531 Flags.setNoFPExcept(true); 3532 Res->setFlags(Flags); 3533 } 3534 3535 // If the node had chain/glue results, update our notion of the current 3536 // chain and glue. 3537 if (EmitNodeInfo & OPFL_GlueOutput) { 3538 InputGlue = SDValue(Res, VTs.size()-1); 3539 if (EmitNodeInfo & OPFL_Chain) 3540 InputChain = SDValue(Res, VTs.size()-2); 3541 } else if (EmitNodeInfo & OPFL_Chain) 3542 InputChain = SDValue(Res, VTs.size()-1); 3543 3544 // If the OPFL_MemRefs glue is set on this node, slap all of the 3545 // accumulated memrefs onto it. 3546 // 3547 // FIXME: This is vastly incorrect for patterns with multiple outputs 3548 // instructions that access memory and for ComplexPatterns that match 3549 // loads. 3550 if (EmitNodeInfo & OPFL_MemRefs) { 3551 // Only attach load or store memory operands if the generated 3552 // instruction may load or store. 3553 const MCInstrDesc &MCID = TII->get(TargetOpc); 3554 bool mayLoad = MCID.mayLoad(); 3555 bool mayStore = MCID.mayStore(); 3556 3557 // We expect to have relatively few of these so just filter them into a 3558 // temporary buffer so that we can easily add them to the instruction. 3559 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3560 for (MachineMemOperand *MMO : MatchedMemRefs) { 3561 if (MMO->isLoad()) { 3562 if (mayLoad) 3563 FilteredMemRefs.push_back(MMO); 3564 } else if (MMO->isStore()) { 3565 if (mayStore) 3566 FilteredMemRefs.push_back(MMO); 3567 } else { 3568 FilteredMemRefs.push_back(MMO); 3569 } 3570 } 3571 3572 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3573 } 3574 3575 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3576 << " Dropping mem operands\n"; 3577 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3578 << " node: "; 3579 Res->dump(CurDAG);); 3580 3581 // If this was a MorphNodeTo then we're completely done! 3582 if (IsMorphNodeTo) { 3583 // Update chain uses. 3584 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3585 return; 3586 } 3587 continue; 3588 } 3589 3590 case OPC_CompleteMatch: { 3591 // The match has been completed, and any new nodes (if any) have been 3592 // created. Patch up references to the matched dag to use the newly 3593 // created nodes. 3594 unsigned NumResults = MatcherTable[MatcherIndex++]; 3595 3596 for (unsigned i = 0; i != NumResults; ++i) { 3597 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3598 if (ResSlot & 128) 3599 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3600 3601 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3602 SDValue Res = RecordedNodes[ResSlot].first; 3603 3604 assert(i < NodeToMatch->getNumValues() && 3605 NodeToMatch->getValueType(i) != MVT::Other && 3606 NodeToMatch->getValueType(i) != MVT::Glue && 3607 "Invalid number of results to complete!"); 3608 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3609 NodeToMatch->getValueType(i) == MVT::iPTR || 3610 Res.getValueType() == MVT::iPTR || 3611 NodeToMatch->getValueType(i).getSizeInBits() == 3612 Res.getValueSizeInBits()) && 3613 "invalid replacement"); 3614 ReplaceUses(SDValue(NodeToMatch, i), Res); 3615 } 3616 3617 // Update chain uses. 3618 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3619 3620 // If the root node defines glue, we need to update it to the glue result. 3621 // TODO: This never happens in our tests and I think it can be removed / 3622 // replaced with an assert, but if we do it this the way the change is 3623 // NFC. 3624 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3625 MVT::Glue && 3626 InputGlue.getNode()) 3627 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3628 InputGlue); 3629 3630 assert(NodeToMatch->use_empty() && 3631 "Didn't replace all uses of the node?"); 3632 CurDAG->RemoveDeadNode(NodeToMatch); 3633 3634 return; 3635 } 3636 } 3637 3638 // If the code reached this point, then the match failed. See if there is 3639 // another child to try in the current 'Scope', otherwise pop it until we 3640 // find a case to check. 3641 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3642 << "\n"); 3643 ++NumDAGIselRetries; 3644 while (true) { 3645 if (MatchScopes.empty()) { 3646 CannotYetSelect(NodeToMatch); 3647 return; 3648 } 3649 3650 // Restore the interpreter state back to the point where the scope was 3651 // formed. 3652 MatchScope &LastScope = MatchScopes.back(); 3653 RecordedNodes.resize(LastScope.NumRecordedNodes); 3654 NodeStack.clear(); 3655 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3656 N = NodeStack.back(); 3657 3658 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3659 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3660 MatcherIndex = LastScope.FailIndex; 3661 3662 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3663 3664 InputChain = LastScope.InputChain; 3665 InputGlue = LastScope.InputGlue; 3666 if (!LastScope.HasChainNodesMatched) 3667 ChainNodesMatched.clear(); 3668 3669 // Check to see what the offset is at the new MatcherIndex. If it is zero 3670 // we have reached the end of this scope, otherwise we have another child 3671 // in the current scope to try. 3672 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3673 if (NumToSkip & 128) 3674 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3675 3676 // If we have another child in this scope to match, update FailIndex and 3677 // try it. 3678 if (NumToSkip != 0) { 3679 LastScope.FailIndex = MatcherIndex+NumToSkip; 3680 break; 3681 } 3682 3683 // End of this scope, pop it and try the next child in the containing 3684 // scope. 3685 MatchScopes.pop_back(); 3686 } 3687 } 3688 } 3689 3690 /// Return whether the node may raise an FP exception. 3691 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { 3692 // For machine opcodes, consult the MCID flag. 3693 if (N->isMachineOpcode()) { 3694 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 3695 return MCID.mayRaiseFPException(); 3696 } 3697 3698 // For ISD opcodes, only StrictFP opcodes may raise an FP 3699 // exception. 3700 if (N->isTargetOpcode()) 3701 return N->isTargetStrictFPOpcode(); 3702 return N->isStrictFPOpcode(); 3703 } 3704 3705 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3706 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3707 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3708 if (!C) 3709 return false; 3710 3711 // Detect when "or" is used to add an offset to a stack object. 3712 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3713 MachineFrameInfo &MFI = MF->getFrameInfo(); 3714 Align A = MFI.getObjectAlign(FN->getIndex()); 3715 int32_t Off = C->getSExtValue(); 3716 // If the alleged offset fits in the zero bits guaranteed by 3717 // the alignment, then this or is really an add. 3718 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); 3719 } 3720 return false; 3721 } 3722 3723 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3724 std::string msg; 3725 raw_string_ostream Msg(msg); 3726 Msg << "Cannot select: "; 3727 3728 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3729 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3730 N->getOpcode() != ISD::INTRINSIC_VOID) { 3731 N->printrFull(Msg, CurDAG); 3732 Msg << "\nIn function: " << MF->getName(); 3733 } else { 3734 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3735 unsigned iid = 3736 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3737 if (iid < Intrinsic::num_intrinsics) 3738 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); 3739 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3740 Msg << "target intrinsic %" << TII->getName(iid); 3741 else 3742 Msg << "unknown intrinsic #" << iid; 3743 } 3744 report_fatal_error(Msg.str()); 3745 } 3746 3747 char SelectionDAGISel::ID = 0; 3748