1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachinePassRegistry.h" 47 #include "llvm/CodeGen/MachineRegisterInfo.h" 48 #include "llvm/CodeGen/SchedulerRegistry.h" 49 #include "llvm/CodeGen/SelectionDAG.h" 50 #include "llvm/CodeGen/SelectionDAGNodes.h" 51 #include "llvm/CodeGen/StackProtector.h" 52 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/DebugInfoMetadata.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DiagnosticInfo.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/InlineAsm.h" 67 #include "llvm/IR/InstIterator.h" 68 #include "llvm/IR/InstrTypes.h" 69 #include "llvm/IR/Instruction.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/Intrinsics.h" 73 #include "llvm/IR/Metadata.h" 74 #include "llvm/IR/Type.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/MC/MCInstrDesc.h" 78 #include "llvm/MC/MCRegisterInfo.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/Timer.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetIntrinsicInfo.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <string> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 #define DEBUG_TYPE "isel" 108 109 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 110 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 111 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 112 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 113 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 114 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 115 STATISTIC(NumFastIselFailLowerArguments, 116 "Number of entry blocks where fast isel failed to lower arguments"); 117 118 static cl::opt<int> EnableFastISelAbort( 119 "fast-isel-abort", cl::Hidden, 120 cl::desc("Enable abort calls when \"fast\" instruction selection " 121 "fails to lower an instruction: 0 disable the abort, 1 will " 122 "abort but for args, calls and terminators, 2 will also " 123 "abort for argument lowering, and 3 will never fallback " 124 "to SelectionDAG.")); 125 126 static cl::opt<bool> EnableFastISelFallbackReport( 127 "fast-isel-report-on-fallback", cl::Hidden, 128 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 129 "falls back to SelectionDAG.")); 130 131 static cl::opt<bool> 132 UseMBPI("use-mbpi", 133 cl::desc("use Machine Branch Probability Info"), 134 cl::init(true), cl::Hidden); 135 136 #ifndef NDEBUG 137 static cl::opt<std::string> 138 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 139 cl::desc("Only display the basic block whose name " 140 "matches this for all view-*-dags options")); 141 static cl::opt<bool> 142 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 143 cl::desc("Pop up a window to show dags before the first " 144 "dag combine pass")); 145 static cl::opt<bool> 146 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 147 cl::desc("Pop up a window to show dags before legalize types")); 148 static cl::opt<bool> 149 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 150 cl::desc("Pop up a window to show dags before legalize")); 151 static cl::opt<bool> 152 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 153 cl::desc("Pop up a window to show dags before the second " 154 "dag combine pass")); 155 static cl::opt<bool> 156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 157 cl::desc("Pop up a window to show dags before the post legalize types" 158 " dag combine pass")); 159 static cl::opt<bool> 160 ViewISelDAGs("view-isel-dags", cl::Hidden, 161 cl::desc("Pop up a window to show isel dags as they are selected")); 162 static cl::opt<bool> 163 ViewSchedDAGs("view-sched-dags", cl::Hidden, 164 cl::desc("Pop up a window to show sched dags as they are processed")); 165 static cl::opt<bool> 166 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 167 cl::desc("Pop up a window to show SUnit dags after they are processed")); 168 #else 169 static const bool ViewDAGCombine1 = false, 170 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 171 ViewDAGCombine2 = false, 172 ViewDAGCombineLT = false, 173 ViewISelDAGs = false, ViewSchedDAGs = false, 174 ViewSUnitDAGs = false; 175 #endif 176 177 //===---------------------------------------------------------------------===// 178 /// 179 /// RegisterScheduler class - Track the registration of instruction schedulers. 180 /// 181 //===---------------------------------------------------------------------===// 182 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 183 RegisterScheduler::Registry; 184 185 //===---------------------------------------------------------------------===// 186 /// 187 /// ISHeuristic command line option for instruction schedulers. 188 /// 189 //===---------------------------------------------------------------------===// 190 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 191 RegisterPassParser<RegisterScheduler>> 192 ISHeuristic("pre-RA-sched", 193 cl::init(&createDefaultScheduler), cl::Hidden, 194 cl::desc("Instruction schedulers available (before register" 195 " allocation):")); 196 197 static RegisterScheduler 198 defaultListDAGScheduler("default", "Best scheduler for the target", 199 createDefaultScheduler); 200 201 namespace llvm { 202 203 //===--------------------------------------------------------------------===// 204 /// This class is used by SelectionDAGISel to temporarily override 205 /// the optimization level on a per-function basis. 206 class OptLevelChanger { 207 SelectionDAGISel &IS; 208 CodeGenOpt::Level SavedOptLevel; 209 bool SavedFastISel; 210 211 public: 212 OptLevelChanger(SelectionDAGISel &ISel, 213 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 214 SavedOptLevel = IS.OptLevel; 215 if (NewOptLevel == SavedOptLevel) 216 return; 217 IS.OptLevel = NewOptLevel; 218 IS.TM.setOptLevel(NewOptLevel); 219 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 220 << IS.MF->getFunction().getName() << "\n"); 221 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 222 << NewOptLevel << "\n"); 223 SavedFastISel = IS.TM.Options.EnableFastISel; 224 if (NewOptLevel == CodeGenOpt::None) { 225 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 226 LLVM_DEBUG( 227 dbgs() << "\tFastISel is " 228 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 229 << "\n"); 230 } 231 } 232 233 ~OptLevelChanger() { 234 if (IS.OptLevel == SavedOptLevel) 235 return; 236 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 237 << IS.MF->getFunction().getName() << "\n"); 238 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 239 << SavedOptLevel << "\n"); 240 IS.OptLevel = SavedOptLevel; 241 IS.TM.setOptLevel(SavedOptLevel); 242 IS.TM.setFastISel(SavedFastISel); 243 } 244 }; 245 246 //===--------------------------------------------------------------------===// 247 /// createDefaultScheduler - This creates an instruction scheduler appropriate 248 /// for the target. 249 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 250 CodeGenOpt::Level OptLevel) { 251 const TargetLowering *TLI = IS->TLI; 252 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 253 254 // Try first to see if the Target has its own way of selecting a scheduler 255 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 256 return SchedulerCtor(IS, OptLevel); 257 } 258 259 if (OptLevel == CodeGenOpt::None || 260 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 261 TLI->getSchedulingPreference() == Sched::Source) 262 return createSourceListDAGScheduler(IS, OptLevel); 263 if (TLI->getSchedulingPreference() == Sched::RegPressure) 264 return createBURRListDAGScheduler(IS, OptLevel); 265 if (TLI->getSchedulingPreference() == Sched::Hybrid) 266 return createHybridListDAGScheduler(IS, OptLevel); 267 if (TLI->getSchedulingPreference() == Sched::VLIW) 268 return createVLIWDAGScheduler(IS, OptLevel); 269 assert(TLI->getSchedulingPreference() == Sched::ILP && 270 "Unknown sched type!"); 271 return createILPListDAGScheduler(IS, OptLevel); 272 } 273 274 } // end namespace llvm 275 276 // EmitInstrWithCustomInserter - This method should be implemented by targets 277 // that mark instructions with the 'usesCustomInserter' flag. These 278 // instructions are special in various ways, which require special support to 279 // insert. The specified MachineInstr is created but not inserted into any 280 // basic blocks, and this method is called to expand it into a sequence of 281 // instructions, potentially also creating new basic blocks and control flow. 282 // When new basic blocks are inserted and the edges from MBB to its successors 283 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 284 // DenseMap. 285 MachineBasicBlock * 286 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 287 MachineBasicBlock *MBB) const { 288 #ifndef NDEBUG 289 dbgs() << "If a target marks an instruction with " 290 "'usesCustomInserter', it must implement " 291 "TargetLowering::EmitInstrWithCustomInserter!"; 292 #endif 293 llvm_unreachable(nullptr); 294 } 295 296 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 297 SDNode *Node) const { 298 assert(!MI.hasPostISelHook() && 299 "If a target marks an instruction with 'hasPostISelHook', " 300 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 301 } 302 303 //===----------------------------------------------------------------------===// 304 // SelectionDAGISel code 305 //===----------------------------------------------------------------------===// 306 307 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 308 CodeGenOpt::Level OL) : 309 MachineFunctionPass(ID), TM(tm), 310 FuncInfo(new FunctionLoweringInfo()), 311 SwiftError(new SwiftErrorValueTracking()), 312 CurDAG(new SelectionDAG(tm, OL)), 313 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, *SwiftError, OL)), 314 AA(), GFI(), 315 OptLevel(OL), 316 DAGSize(0) { 317 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 318 initializeBranchProbabilityInfoWrapperPassPass( 319 *PassRegistry::getPassRegistry()); 320 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 321 initializeTargetLibraryInfoWrapperPassPass( 322 *PassRegistry::getPassRegistry()); 323 } 324 325 SelectionDAGISel::~SelectionDAGISel() { 326 delete SDB; 327 delete CurDAG; 328 delete FuncInfo; 329 delete SwiftError; 330 } 331 332 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 333 if (OptLevel != CodeGenOpt::None) 334 AU.addRequired<AAResultsWrapperPass>(); 335 AU.addRequired<GCModuleInfo>(); 336 AU.addRequired<StackProtector>(); 337 AU.addPreserved<GCModuleInfo>(); 338 AU.addRequired<TargetLibraryInfoWrapperPass>(); 339 AU.addRequired<TargetTransformInfoWrapperPass>(); 340 if (UseMBPI && OptLevel != CodeGenOpt::None) 341 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 342 MachineFunctionPass::getAnalysisUsage(AU); 343 } 344 345 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 346 /// may trap on it. In this case we have to split the edge so that the path 347 /// through the predecessor block that doesn't go to the phi block doesn't 348 /// execute the possibly trapping instruction. If available, we pass domtree 349 /// and loop info to be updated when we split critical edges. This is because 350 /// SelectionDAGISel preserves these analyses. 351 /// This is required for correctness, so it must be done at -O0. 352 /// 353 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 354 LoopInfo *LI) { 355 // Loop for blocks with phi nodes. 356 for (BasicBlock &BB : Fn) { 357 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 358 if (!PN) continue; 359 360 ReprocessBlock: 361 // For each block with a PHI node, check to see if any of the input values 362 // are potentially trapping constant expressions. Constant expressions are 363 // the only potentially trapping value that can occur as the argument to a 364 // PHI. 365 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 367 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 368 if (!CE || !CE->canTrap()) continue; 369 370 // The only case we have to worry about is when the edge is critical. 371 // Since this block has a PHI Node, we assume it has multiple input 372 // edges: check to see if the pred has multiple successors. 373 BasicBlock *Pred = PN->getIncomingBlock(i); 374 if (Pred->getTerminator()->getNumSuccessors() == 1) 375 continue; 376 377 // Okay, we have to split this edge. 378 SplitCriticalEdge( 379 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 380 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 381 goto ReprocessBlock; 382 } 383 } 384 } 385 386 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 387 MachineModuleInfo &MMI) { 388 // Only needed for MSVC 389 if (!TT.isWindowsMSVCEnvironment()) 390 return; 391 392 // If it's already set, nothing to do. 393 if (MMI.usesMSVCFloatingPoint()) 394 return; 395 396 for (const Instruction &I : instructions(F)) { 397 if (I.getType()->isFPOrFPVectorTy()) { 398 MMI.setUsesMSVCFloatingPoint(true); 399 return; 400 } 401 for (const auto &Op : I.operands()) { 402 if (Op->getType()->isFPOrFPVectorTy()) { 403 MMI.setUsesMSVCFloatingPoint(true); 404 return; 405 } 406 } 407 } 408 } 409 410 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 411 // If we already selected that function, we do not need to run SDISel. 412 if (mf.getProperties().hasProperty( 413 MachineFunctionProperties::Property::Selected)) 414 return false; 415 // Do some sanity-checking on the command-line options. 416 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 417 "-fast-isel-abort > 0 requires -fast-isel"); 418 419 const Function &Fn = mf.getFunction(); 420 MF = &mf; 421 422 // Reset the target options before resetting the optimization 423 // level below. 424 // FIXME: This is a horrible hack and should be processed via 425 // codegen looking at the optimization level explicitly when 426 // it wants to look at it. 427 TM.resetTargetOptions(Fn); 428 // Reset OptLevel to None for optnone functions. 429 CodeGenOpt::Level NewOptLevel = OptLevel; 430 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 431 NewOptLevel = CodeGenOpt::None; 432 OptLevelChanger OLC(*this, NewOptLevel); 433 434 TII = MF->getSubtarget().getInstrInfo(); 435 TLI = MF->getSubtarget().getTargetLowering(); 436 RegInfo = &MF->getRegInfo(); 437 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 438 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 439 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 440 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 441 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 442 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 443 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 444 445 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 446 447 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 448 449 CurDAG->init(*MF, *ORE, this, LibInfo, 450 getAnalysisIfAvailable<LegacyDivergenceAnalysis>()); 451 FuncInfo->set(Fn, *MF, CurDAG); 452 SwiftError->setFunction(*MF); 453 454 // Now get the optional analyzes if we want to. 455 // This is based on the possibly changed OptLevel (after optnone is taken 456 // into account). That's unfortunate but OK because it just means we won't 457 // ask for passes that have been required anyway. 458 459 if (UseMBPI && OptLevel != CodeGenOpt::None) 460 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 461 else 462 FuncInfo->BPI = nullptr; 463 464 if (OptLevel != CodeGenOpt::None) 465 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 466 else 467 AA = nullptr; 468 469 SDB->init(GFI, AA, LibInfo); 470 471 MF->setHasInlineAsm(false); 472 473 FuncInfo->SplitCSR = false; 474 475 // We split CSR if the target supports it for the given function 476 // and the function has only return exits. 477 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 478 FuncInfo->SplitCSR = true; 479 480 // Collect all the return blocks. 481 for (const BasicBlock &BB : Fn) { 482 if (!succ_empty(&BB)) 483 continue; 484 485 const Instruction *Term = BB.getTerminator(); 486 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 487 continue; 488 489 // Bail out if the exit block is not Return nor Unreachable. 490 FuncInfo->SplitCSR = false; 491 break; 492 } 493 } 494 495 MachineBasicBlock *EntryMBB = &MF->front(); 496 if (FuncInfo->SplitCSR) 497 // This performs initialization so lowering for SplitCSR will be correct. 498 TLI->initializeSplitCSR(EntryMBB); 499 500 SelectAllBasicBlocks(Fn); 501 if (FastISelFailed && EnableFastISelFallbackReport) { 502 DiagnosticInfoISelFallback DiagFallback(Fn); 503 Fn.getContext().diagnose(DiagFallback); 504 } 505 506 // Replace forward-declared registers with the registers containing 507 // the desired value. 508 // Note: it is important that this happens **before** the call to 509 // EmitLiveInCopies, since implementations can skip copies of unused 510 // registers. If we don't apply the reg fixups before, some registers may 511 // appear as unused and will be skipped, resulting in bad MI. 512 MachineRegisterInfo &MRI = MF->getRegInfo(); 513 for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(), 514 E = FuncInfo->RegFixups.end(); 515 I != E; ++I) { 516 unsigned From = I->first; 517 unsigned To = I->second; 518 // If To is also scheduled to be replaced, find what its ultimate 519 // replacement is. 520 while (true) { 521 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 522 if (J == E) 523 break; 524 To = J->second; 525 } 526 // Make sure the new register has a sufficiently constrained register class. 527 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 528 MRI.constrainRegClass(To, MRI.getRegClass(From)); 529 // Replace it. 530 531 // Replacing one register with another won't touch the kill flags. 532 // We need to conservatively clear the kill flags as a kill on the old 533 // register might dominate existing uses of the new register. 534 if (!MRI.use_empty(To)) 535 MRI.clearKillFlags(From); 536 MRI.replaceRegWith(From, To); 537 } 538 539 // If the first basic block in the function has live ins that need to be 540 // copied into vregs, emit the copies into the top of the block before 541 // emitting the code for the block. 542 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 543 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 544 545 // Insert copies in the entry block and the return blocks. 546 if (FuncInfo->SplitCSR) { 547 SmallVector<MachineBasicBlock*, 4> Returns; 548 // Collect all the return blocks. 549 for (MachineBasicBlock &MBB : mf) { 550 if (!MBB.succ_empty()) 551 continue; 552 553 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 554 if (Term != MBB.end() && Term->isReturn()) { 555 Returns.push_back(&MBB); 556 continue; 557 } 558 } 559 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 560 } 561 562 DenseMap<unsigned, unsigned> LiveInMap; 563 if (!FuncInfo->ArgDbgValues.empty()) 564 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 565 if (LI.second) 566 LiveInMap.insert(LI); 567 568 // Insert DBG_VALUE instructions for function arguments to the entry block. 569 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 570 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 571 bool hasFI = MI->getOperand(0).isFI(); 572 Register Reg = 573 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 574 if (Register::isPhysicalRegister(Reg)) 575 EntryMBB->insert(EntryMBB->begin(), MI); 576 else { 577 MachineInstr *Def = RegInfo->getVRegDef(Reg); 578 if (Def) { 579 MachineBasicBlock::iterator InsertPos = Def; 580 // FIXME: VR def may not be in entry block. 581 Def->getParent()->insert(std::next(InsertPos), MI); 582 } else 583 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 584 << Register::virtReg2Index(Reg) << "\n"); 585 } 586 587 // If Reg is live-in then update debug info to track its copy in a vreg. 588 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 589 if (LDI != LiveInMap.end()) { 590 assert(!hasFI && "There's no handling of frame pointer updating here yet " 591 "- add if needed"); 592 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 593 MachineBasicBlock::iterator InsertPos = Def; 594 const MDNode *Variable = MI->getDebugVariable(); 595 const MDNode *Expr = MI->getDebugExpression(); 596 DebugLoc DL = MI->getDebugLoc(); 597 bool IsIndirect = MI->isIndirectDebugValue(); 598 if (IsIndirect) 599 assert(MI->getOperand(1).getImm() == 0 && 600 "DBG_VALUE with nonzero offset"); 601 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 602 "Expected inlined-at fields to agree"); 603 // Def is never a terminator here, so it is ok to increment InsertPos. 604 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 605 IsIndirect, LDI->second, Variable, Expr); 606 607 // If this vreg is directly copied into an exported register then 608 // that COPY instructions also need DBG_VALUE, if it is the only 609 // user of LDI->second. 610 MachineInstr *CopyUseMI = nullptr; 611 for (MachineRegisterInfo::use_instr_iterator 612 UI = RegInfo->use_instr_begin(LDI->second), 613 E = RegInfo->use_instr_end(); UI != E; ) { 614 MachineInstr *UseMI = &*(UI++); 615 if (UseMI->isDebugValue()) continue; 616 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 617 CopyUseMI = UseMI; continue; 618 } 619 // Otherwise this is another use or second copy use. 620 CopyUseMI = nullptr; break; 621 } 622 if (CopyUseMI) { 623 // Use MI's debug location, which describes where Variable was 624 // declared, rather than whatever is attached to CopyUseMI. 625 MachineInstr *NewMI = 626 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 627 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 628 MachineBasicBlock::iterator Pos = CopyUseMI; 629 EntryMBB->insertAfter(Pos, NewMI); 630 } 631 } 632 } 633 634 // Determine if there are any calls in this machine function. 635 MachineFrameInfo &MFI = MF->getFrameInfo(); 636 for (const auto &MBB : *MF) { 637 if (MFI.hasCalls() && MF->hasInlineAsm()) 638 break; 639 640 for (const auto &MI : MBB) { 641 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 642 if ((MCID.isCall() && !MCID.isReturn()) || 643 MI.isStackAligningInlineAsm()) { 644 MFI.setHasCalls(true); 645 } 646 if (MI.isInlineAsm()) { 647 MF->setHasInlineAsm(true); 648 } 649 } 650 } 651 652 // Determine if there is a call to setjmp in the machine function. 653 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 654 655 // Determine if floating point is used for msvc 656 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 657 658 // Replace forward-declared registers with the registers containing 659 // the desired value. 660 for (DenseMap<unsigned, unsigned>::iterator 661 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 662 I != E; ++I) { 663 unsigned From = I->first; 664 unsigned To = I->second; 665 // If To is also scheduled to be replaced, find what its ultimate 666 // replacement is. 667 while (true) { 668 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 669 if (J == E) break; 670 To = J->second; 671 } 672 // Make sure the new register has a sufficiently constrained register class. 673 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 674 MRI.constrainRegClass(To, MRI.getRegClass(From)); 675 // Replace it. 676 677 678 // Replacing one register with another won't touch the kill flags. 679 // We need to conservatively clear the kill flags as a kill on the old 680 // register might dominate existing uses of the new register. 681 if (!MRI.use_empty(To)) 682 MRI.clearKillFlags(From); 683 MRI.replaceRegWith(From, To); 684 } 685 686 TLI->finalizeLowering(*MF); 687 688 // Release function-specific state. SDB and CurDAG are already cleared 689 // at this point. 690 FuncInfo->clear(); 691 692 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 693 LLVM_DEBUG(MF->print(dbgs())); 694 695 return true; 696 } 697 698 static void reportFastISelFailure(MachineFunction &MF, 699 OptimizationRemarkEmitter &ORE, 700 OptimizationRemarkMissed &R, 701 bool ShouldAbort) { 702 // Print the function name explicitly if we don't have a debug location (which 703 // makes the diagnostic less useful) or if we're going to emit a raw error. 704 if (!R.getLocation().isValid() || ShouldAbort) 705 R << (" (in function: " + MF.getName() + ")").str(); 706 707 if (ShouldAbort) 708 report_fatal_error(R.getMsg()); 709 710 ORE.emit(R); 711 } 712 713 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 714 BasicBlock::const_iterator End, 715 bool &HadTailCall) { 716 // Allow creating illegal types during DAG building for the basic block. 717 CurDAG->NewNodesMustHaveLegalTypes = false; 718 719 // Lower the instructions. If a call is emitted as a tail call, cease emitting 720 // nodes for this block. 721 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 722 if (!ElidedArgCopyInstrs.count(&*I)) 723 SDB->visit(*I); 724 } 725 726 // Make sure the root of the DAG is up-to-date. 727 CurDAG->setRoot(SDB->getControlRoot()); 728 HadTailCall = SDB->HasTailCall; 729 SDB->resolveOrClearDbgInfo(); 730 SDB->clear(); 731 732 // Final step, emit the lowered DAG as machine code. 733 CodeGenAndEmitDAG(); 734 } 735 736 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 737 SmallPtrSet<SDNode*, 16> VisitedNodes; 738 SmallVector<SDNode*, 128> Worklist; 739 740 Worklist.push_back(CurDAG->getRoot().getNode()); 741 742 KnownBits Known; 743 744 do { 745 SDNode *N = Worklist.pop_back_val(); 746 747 // If we've already seen this node, ignore it. 748 if (!VisitedNodes.insert(N).second) 749 continue; 750 751 // Otherwise, add all chain operands to the worklist. 752 for (const SDValue &Op : N->op_values()) 753 if (Op.getValueType() == MVT::Other) 754 Worklist.push_back(Op.getNode()); 755 756 // If this is a CopyToReg with a vreg dest, process it. 757 if (N->getOpcode() != ISD::CopyToReg) 758 continue; 759 760 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 761 if (!Register::isVirtualRegister(DestReg)) 762 continue; 763 764 // Ignore non-integer values. 765 SDValue Src = N->getOperand(2); 766 EVT SrcVT = Src.getValueType(); 767 if (!SrcVT.isInteger()) 768 continue; 769 770 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 771 Known = CurDAG->computeKnownBits(Src); 772 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 773 } while (!Worklist.empty()); 774 } 775 776 void SelectionDAGISel::CodeGenAndEmitDAG() { 777 StringRef GroupName = "sdag"; 778 StringRef GroupDescription = "Instruction Selection and Scheduling"; 779 std::string BlockName; 780 bool MatchFilterBB = false; (void)MatchFilterBB; 781 #ifndef NDEBUG 782 TargetTransformInfo &TTI = 783 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 784 #endif 785 786 // Pre-type legalization allow creation of any node types. 787 CurDAG->NewNodesMustHaveLegalTypes = false; 788 789 #ifndef NDEBUG 790 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 791 FilterDAGBasicBlockName == 792 FuncInfo->MBB->getBasicBlock()->getName()); 793 #endif 794 #ifdef NDEBUG 795 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 796 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 797 ViewSUnitDAGs) 798 #endif 799 { 800 BlockName = 801 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 802 } 803 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 804 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 805 << "'\n"; 806 CurDAG->dump()); 807 808 if (ViewDAGCombine1 && MatchFilterBB) 809 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 810 811 // Run the DAG combiner in pre-legalize mode. 812 { 813 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 814 GroupDescription, TimePassesIsEnabled); 815 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 816 } 817 818 #ifndef NDEBUG 819 if (TTI.hasBranchDivergence()) 820 CurDAG->VerifyDAGDiverence(); 821 #endif 822 823 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 824 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 825 << "'\n"; 826 CurDAG->dump()); 827 828 // Second step, hack on the DAG until it only uses operations and types that 829 // the target supports. 830 if (ViewLegalizeTypesDAGs && MatchFilterBB) 831 CurDAG->viewGraph("legalize-types input for " + BlockName); 832 833 bool Changed; 834 { 835 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 836 GroupDescription, TimePassesIsEnabled); 837 Changed = CurDAG->LegalizeTypes(); 838 } 839 840 #ifndef NDEBUG 841 if (TTI.hasBranchDivergence()) 842 CurDAG->VerifyDAGDiverence(); 843 #endif 844 845 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 846 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 847 << "'\n"; 848 CurDAG->dump()); 849 850 // Only allow creation of legal node types. 851 CurDAG->NewNodesMustHaveLegalTypes = true; 852 853 if (Changed) { 854 if (ViewDAGCombineLT && MatchFilterBB) 855 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 856 857 // Run the DAG combiner in post-type-legalize mode. 858 { 859 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 860 GroupName, GroupDescription, TimePassesIsEnabled); 861 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 862 } 863 864 #ifndef NDEBUG 865 if (TTI.hasBranchDivergence()) 866 CurDAG->VerifyDAGDiverence(); 867 #endif 868 869 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 870 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 871 << "'\n"; 872 CurDAG->dump()); 873 } 874 875 { 876 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 877 GroupDescription, TimePassesIsEnabled); 878 Changed = CurDAG->LegalizeVectors(); 879 } 880 881 if (Changed) { 882 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 883 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 884 << "'\n"; 885 CurDAG->dump()); 886 887 { 888 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 889 GroupDescription, TimePassesIsEnabled); 890 CurDAG->LegalizeTypes(); 891 } 892 893 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 894 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 895 << "'\n"; 896 CurDAG->dump()); 897 898 if (ViewDAGCombineLT && MatchFilterBB) 899 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 900 901 // Run the DAG combiner in post-type-legalize mode. 902 { 903 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 904 GroupName, GroupDescription, TimePassesIsEnabled); 905 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 906 } 907 908 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 909 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 910 << "'\n"; 911 CurDAG->dump()); 912 913 #ifndef NDEBUG 914 if (TTI.hasBranchDivergence()) 915 CurDAG->VerifyDAGDiverence(); 916 #endif 917 } 918 919 if (ViewLegalizeDAGs && MatchFilterBB) 920 CurDAG->viewGraph("legalize input for " + BlockName); 921 922 { 923 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 924 GroupDescription, TimePassesIsEnabled); 925 CurDAG->Legalize(); 926 } 927 928 #ifndef NDEBUG 929 if (TTI.hasBranchDivergence()) 930 CurDAG->VerifyDAGDiverence(); 931 #endif 932 933 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 934 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 935 << "'\n"; 936 CurDAG->dump()); 937 938 if (ViewDAGCombine2 && MatchFilterBB) 939 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 940 941 // Run the DAG combiner in post-legalize mode. 942 { 943 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 944 GroupDescription, TimePassesIsEnabled); 945 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 946 } 947 948 #ifndef NDEBUG 949 if (TTI.hasBranchDivergence()) 950 CurDAG->VerifyDAGDiverence(); 951 #endif 952 953 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 954 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 955 << "'\n"; 956 CurDAG->dump()); 957 958 if (OptLevel != CodeGenOpt::None) 959 ComputeLiveOutVRegInfo(); 960 961 if (ViewISelDAGs && MatchFilterBB) 962 CurDAG->viewGraph("isel input for " + BlockName); 963 964 // Third, instruction select all of the operations to machine code, adding the 965 // code to the MachineBasicBlock. 966 { 967 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 968 GroupDescription, TimePassesIsEnabled); 969 DoInstructionSelection(); 970 } 971 972 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 973 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 974 << "'\n"; 975 CurDAG->dump()); 976 977 if (ViewSchedDAGs && MatchFilterBB) 978 CurDAG->viewGraph("scheduler input for " + BlockName); 979 980 // Schedule machine code. 981 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 982 { 983 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 984 GroupDescription, TimePassesIsEnabled); 985 Scheduler->Run(CurDAG, FuncInfo->MBB); 986 } 987 988 if (ViewSUnitDAGs && MatchFilterBB) 989 Scheduler->viewGraph(); 990 991 // Emit machine code to BB. This can change 'BB' to the last block being 992 // inserted into. 993 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 994 { 995 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 996 GroupDescription, TimePassesIsEnabled); 997 998 // FuncInfo->InsertPt is passed by reference and set to the end of the 999 // scheduled instructions. 1000 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 1001 } 1002 1003 // If the block was split, make sure we update any references that are used to 1004 // update PHI nodes later on. 1005 if (FirstMBB != LastMBB) 1006 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 1007 1008 // Free the scheduler state. 1009 { 1010 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1011 GroupDescription, TimePassesIsEnabled); 1012 delete Scheduler; 1013 } 1014 1015 // Free the SelectionDAG state, now that we're finished with it. 1016 CurDAG->clear(); 1017 } 1018 1019 namespace { 1020 1021 /// ISelUpdater - helper class to handle updates of the instruction selection 1022 /// graph. 1023 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1024 SelectionDAG::allnodes_iterator &ISelPosition; 1025 1026 public: 1027 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1028 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1029 1030 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1031 /// deleted is the current ISelPosition node, update ISelPosition. 1032 /// 1033 void NodeDeleted(SDNode *N, SDNode *E) override { 1034 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1035 ++ISelPosition; 1036 } 1037 }; 1038 1039 } // end anonymous namespace 1040 1041 // This function is used to enforce the topological node id property 1042 // property leveraged during Instruction selection. Before selection all 1043 // nodes are given a non-negative id such that all nodes have a larger id than 1044 // their operands. As this holds transitively we can prune checks that a node N 1045 // is a predecessor of M another by not recursively checking through M's 1046 // operands if N's ID is larger than M's ID. This is significantly improves 1047 // performance of for various legality checks (e.g. IsLegalToFold / 1048 // UpdateChains). 1049 1050 // However, when we fuse multiple nodes into a single node 1051 // during selection we may induce a predecessor relationship between inputs and 1052 // outputs of distinct nodes being merged violating the topological property. 1053 // Should a fused node have a successor which has yet to be selected, our 1054 // legality checks would be incorrect. To avoid this we mark all unselected 1055 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => 1056 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1057 // We use bit-negation to more clearly enforce that node id -1 can only be 1058 // achieved by selected nodes). As the conversion is reversable the original Id, 1059 // topological pruning can still be leveraged when looking for unselected nodes. 1060 // This method is call internally in all ISel replacement calls. 1061 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1062 SmallVector<SDNode *, 4> Nodes; 1063 Nodes.push_back(Node); 1064 1065 while (!Nodes.empty()) { 1066 SDNode *N = Nodes.pop_back_val(); 1067 for (auto *U : N->uses()) { 1068 auto UId = U->getNodeId(); 1069 if (UId > 0) { 1070 InvalidateNodeId(U); 1071 Nodes.push_back(U); 1072 } 1073 } 1074 } 1075 } 1076 1077 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a 1078 // NodeId with the equivalent node id which is invalid for topological 1079 // pruning. 1080 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1081 int InvalidId = -(N->getNodeId() + 1); 1082 N->setNodeId(InvalidId); 1083 } 1084 1085 // getUninvalidatedNodeId - get original uninvalidated node id. 1086 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1087 int Id = N->getNodeId(); 1088 if (Id < -1) 1089 return -(Id + 1); 1090 return Id; 1091 } 1092 1093 void SelectionDAGISel::DoInstructionSelection() { 1094 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1095 << printMBBReference(*FuncInfo->MBB) << " '" 1096 << FuncInfo->MBB->getName() << "'\n"); 1097 1098 PreprocessISelDAG(); 1099 1100 // Select target instructions for the DAG. 1101 { 1102 // Number all nodes with a topological order and set DAGSize. 1103 DAGSize = CurDAG->AssignTopologicalOrder(); 1104 1105 // Create a dummy node (which is not added to allnodes), that adds 1106 // a reference to the root node, preventing it from being deleted, 1107 // and tracking any changes of the root. 1108 HandleSDNode Dummy(CurDAG->getRoot()); 1109 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1110 ++ISelPosition; 1111 1112 // Make sure that ISelPosition gets properly updated when nodes are deleted 1113 // in calls made from this function. 1114 ISelUpdater ISU(*CurDAG, ISelPosition); 1115 1116 // The AllNodes list is now topological-sorted. Visit the 1117 // nodes by starting at the end of the list (the root of the 1118 // graph) and preceding back toward the beginning (the entry 1119 // node). 1120 while (ISelPosition != CurDAG->allnodes_begin()) { 1121 SDNode *Node = &*--ISelPosition; 1122 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1123 // but there are currently some corner cases that it misses. Also, this 1124 // makes it theoretically possible to disable the DAGCombiner. 1125 if (Node->use_empty()) 1126 continue; 1127 1128 #ifndef NDEBUG 1129 SmallVector<SDNode *, 4> Nodes; 1130 Nodes.push_back(Node); 1131 1132 while (!Nodes.empty()) { 1133 auto N = Nodes.pop_back_val(); 1134 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1135 continue; 1136 for (const SDValue &Op : N->op_values()) { 1137 if (Op->getOpcode() == ISD::TokenFactor) 1138 Nodes.push_back(Op.getNode()); 1139 else { 1140 // We rely on topological ordering of node ids for checking for 1141 // cycles when fusing nodes during selection. All unselected nodes 1142 // successors of an already selected node should have a negative id. 1143 // This assertion will catch such cases. If this assertion triggers 1144 // it is likely you using DAG-level Value/Node replacement functions 1145 // (versus equivalent ISEL replacement) in backend-specific 1146 // selections. See comment in EnforceNodeIdInvariant for more 1147 // details. 1148 assert(Op->getNodeId() != -1 && 1149 "Node has already selected predecessor node"); 1150 } 1151 } 1152 } 1153 #endif 1154 1155 // When we are using non-default rounding modes or FP exception behavior 1156 // FP operations are represented by StrictFP pseudo-operations. For 1157 // targets that do not (yet) understand strict FP operations directly, 1158 // we convert them to normal FP opcodes instead at this point. This 1159 // will allow them to be handled by existing target-specific instruction 1160 // selectors. 1161 if (Node->isStrictFPOpcode() && 1162 (TLI->getOperationAction(Node->getOpcode(), Node->getValueType(0)) 1163 != TargetLowering::Legal)) 1164 Node = CurDAG->mutateStrictFPToFP(Node); 1165 1166 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1167 Node->dump(CurDAG)); 1168 1169 Select(Node); 1170 } 1171 1172 CurDAG->setRoot(Dummy.getValue()); 1173 } 1174 1175 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1176 1177 PostprocessISelDAG(); 1178 } 1179 1180 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1181 for (const User *U : CPI->users()) { 1182 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1183 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1184 if (IID == Intrinsic::eh_exceptionpointer || 1185 IID == Intrinsic::eh_exceptioncode) 1186 return true; 1187 } 1188 } 1189 return false; 1190 } 1191 1192 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1193 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1194 // and store the mapping in the function. 1195 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1196 const CatchPadInst *CPI) { 1197 MachineFunction *MF = MBB->getParent(); 1198 // In case of single catch (...), we don't emit LSDA, so we don't need 1199 // this information. 1200 bool IsSingleCatchAllClause = 1201 CPI->getNumArgOperands() == 1 && 1202 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1203 if (!IsSingleCatchAllClause) { 1204 // Create a mapping from landing pad label to landing pad index. 1205 bool IntrFound = false; 1206 for (const User *U : CPI->users()) { 1207 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1208 Intrinsic::ID IID = Call->getIntrinsicID(); 1209 if (IID == Intrinsic::wasm_landingpad_index) { 1210 Value *IndexArg = Call->getArgOperand(1); 1211 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1212 MF->setWasmLandingPadIndex(MBB, Index); 1213 IntrFound = true; 1214 break; 1215 } 1216 } 1217 } 1218 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1219 (void)IntrFound; 1220 } 1221 } 1222 1223 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1224 /// do other setup for EH landing-pad blocks. 1225 bool SelectionDAGISel::PrepareEHLandingPad() { 1226 MachineBasicBlock *MBB = FuncInfo->MBB; 1227 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1228 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1229 const TargetRegisterClass *PtrRC = 1230 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1231 1232 auto Pers = classifyEHPersonality(PersonalityFn); 1233 1234 // Catchpads have one live-in register, which typically holds the exception 1235 // pointer or code. 1236 if (isFuncletEHPersonality(Pers)) { 1237 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1238 if (hasExceptionPointerOrCodeUser(CPI)) { 1239 // Get or create the virtual register to hold the pointer or code. Mark 1240 // the live in physreg and copy into the vreg. 1241 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1242 assert(EHPhysReg && "target lacks exception pointer register"); 1243 MBB->addLiveIn(EHPhysReg); 1244 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1245 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1246 TII->get(TargetOpcode::COPY), VReg) 1247 .addReg(EHPhysReg, RegState::Kill); 1248 } 1249 } 1250 return true; 1251 } 1252 1253 // Add a label to mark the beginning of the landing pad. Deletion of the 1254 // landing pad can thus be detected via the MachineModuleInfo. 1255 MCSymbol *Label = MF->addLandingPad(MBB); 1256 1257 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1258 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1259 .addSym(Label); 1260 1261 if (Pers == EHPersonality::Wasm_CXX) { 1262 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1263 mapWasmLandingPadIndex(MBB, CPI); 1264 } else { 1265 // Assign the call site to the landing pad's begin label. 1266 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1267 // Mark exception register as live in. 1268 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1269 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1270 // Mark exception selector register as live in. 1271 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1272 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1273 } 1274 1275 return true; 1276 } 1277 1278 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1279 /// side-effect free and is either dead or folded into a generated instruction. 1280 /// Return false if it needs to be emitted. 1281 static bool isFoldedOrDeadInstruction(const Instruction *I, 1282 FunctionLoweringInfo *FuncInfo) { 1283 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1284 !I->isTerminator() && // Terminators aren't folded. 1285 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1286 !I->isEHPad() && // EH pad instructions aren't folded. 1287 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 1288 } 1289 1290 /// Collect llvm.dbg.declare information. This is done after argument lowering 1291 /// in case the declarations refer to arguments. 1292 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) { 1293 MachineFunction *MF = FuncInfo->MF; 1294 const DataLayout &DL = MF->getDataLayout(); 1295 for (const BasicBlock &BB : *FuncInfo->Fn) { 1296 for (const Instruction &I : BB) { 1297 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1298 if (!DI) 1299 continue; 1300 1301 assert(DI->getVariable() && "Missing variable"); 1302 assert(DI->getDebugLoc() && "Missing location"); 1303 const Value *Address = DI->getAddress(); 1304 if (!Address) 1305 continue; 1306 1307 // Look through casts and constant offset GEPs. These mostly come from 1308 // inalloca. 1309 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1310 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1311 1312 // Check if the variable is a static alloca or a byval or inalloca 1313 // argument passed in memory. If it is not, then we will ignore this 1314 // intrinsic and handle this during isel like dbg.value. 1315 int FI = std::numeric_limits<int>::max(); 1316 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1317 auto SI = FuncInfo->StaticAllocaMap.find(AI); 1318 if (SI != FuncInfo->StaticAllocaMap.end()) 1319 FI = SI->second; 1320 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1321 FI = FuncInfo->getArgumentFrameIndex(Arg); 1322 1323 if (FI == std::numeric_limits<int>::max()) 1324 continue; 1325 1326 DIExpression *Expr = DI->getExpression(); 1327 if (Offset.getBoolValue()) 1328 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1329 Offset.getZExtValue()); 1330 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1331 } 1332 } 1333 } 1334 1335 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1336 FastISelFailed = false; 1337 // Initialize the Fast-ISel state, if needed. 1338 FastISel *FastIS = nullptr; 1339 if (TM.Options.EnableFastISel) { 1340 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1341 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1342 } 1343 1344 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1345 1346 // Lower arguments up front. An RPO iteration always visits the entry block 1347 // first. 1348 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1349 ++NumEntryBlocks; 1350 1351 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1352 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1353 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1354 1355 CurDAG->setFunctionLoweringInfo(FuncInfo); 1356 1357 if (!FastIS) { 1358 LowerArguments(Fn); 1359 } else { 1360 // See if fast isel can lower the arguments. 1361 FastIS->startNewBlock(); 1362 if (!FastIS->lowerArguments()) { 1363 FastISelFailed = true; 1364 // Fast isel failed to lower these arguments 1365 ++NumFastIselFailLowerArguments; 1366 1367 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1368 Fn.getSubprogram(), 1369 &Fn.getEntryBlock()); 1370 R << "FastISel didn't lower all arguments: " 1371 << ore::NV("Prototype", Fn.getType()); 1372 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1373 1374 // Use SelectionDAG argument lowering 1375 LowerArguments(Fn); 1376 CurDAG->setRoot(SDB->getControlRoot()); 1377 SDB->clear(); 1378 CodeGenAndEmitDAG(); 1379 } 1380 1381 // If we inserted any instructions at the beginning, make a note of 1382 // where they are, so we can be sure to emit subsequent instructions 1383 // after them. 1384 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1385 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1386 else 1387 FastIS->setLastLocalValue(nullptr); 1388 } 1389 1390 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1391 1392 if (FastIS && Inserted) 1393 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1394 1395 processDbgDeclares(FuncInfo); 1396 1397 // Iterate over all basic blocks in the function. 1398 StackProtector &SP = getAnalysis<StackProtector>(); 1399 for (const BasicBlock *LLVMBB : RPOT) { 1400 if (OptLevel != CodeGenOpt::None) { 1401 bool AllPredsVisited = true; 1402 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1403 PI != PE; ++PI) { 1404 if (!FuncInfo->VisitedBBs.count(*PI)) { 1405 AllPredsVisited = false; 1406 break; 1407 } 1408 } 1409 1410 if (AllPredsVisited) { 1411 for (const PHINode &PN : LLVMBB->phis()) 1412 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1413 } else { 1414 for (const PHINode &PN : LLVMBB->phis()) 1415 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1416 } 1417 1418 FuncInfo->VisitedBBs.insert(LLVMBB); 1419 } 1420 1421 BasicBlock::const_iterator const Begin = 1422 LLVMBB->getFirstNonPHI()->getIterator(); 1423 BasicBlock::const_iterator const End = LLVMBB->end(); 1424 BasicBlock::const_iterator BI = End; 1425 1426 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1427 if (!FuncInfo->MBB) 1428 continue; // Some blocks like catchpads have no code or MBB. 1429 1430 // Insert new instructions after any phi or argument setup code. 1431 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1432 1433 // Setup an EH landing-pad block. 1434 FuncInfo->ExceptionPointerVirtReg = 0; 1435 FuncInfo->ExceptionSelectorVirtReg = 0; 1436 if (LLVMBB->isEHPad()) 1437 if (!PrepareEHLandingPad()) 1438 continue; 1439 1440 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1441 if (FastIS) { 1442 if (LLVMBB != &Fn.getEntryBlock()) 1443 FastIS->startNewBlock(); 1444 1445 unsigned NumFastIselRemaining = std::distance(Begin, End); 1446 1447 // Pre-assign swifterror vregs. 1448 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1449 1450 // Do FastISel on as many instructions as possible. 1451 for (; BI != Begin; --BI) { 1452 const Instruction *Inst = &*std::prev(BI); 1453 1454 // If we no longer require this instruction, skip it. 1455 if (isFoldedOrDeadInstruction(Inst, FuncInfo) || 1456 ElidedArgCopyInstrs.count(Inst)) { 1457 --NumFastIselRemaining; 1458 continue; 1459 } 1460 1461 // Bottom-up: reset the insert pos at the top, after any local-value 1462 // instructions. 1463 FastIS->recomputeInsertPt(); 1464 1465 // Try to select the instruction with FastISel. 1466 if (FastIS->selectInstruction(Inst)) { 1467 --NumFastIselRemaining; 1468 ++NumFastIselSuccess; 1469 // If fast isel succeeded, skip over all the folded instructions, and 1470 // then see if there is a load right before the selected instructions. 1471 // Try to fold the load if so. 1472 const Instruction *BeforeInst = Inst; 1473 while (BeforeInst != &*Begin) { 1474 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1475 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1476 break; 1477 } 1478 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1479 BeforeInst->hasOneUse() && 1480 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1481 // If we succeeded, don't re-select the load. 1482 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1483 --NumFastIselRemaining; 1484 ++NumFastIselSuccess; 1485 } 1486 continue; 1487 } 1488 1489 FastISelFailed = true; 1490 1491 // Then handle certain instructions as single-LLVM-Instruction blocks. 1492 // We cannot separate out GCrelocates to their own blocks since we need 1493 // to keep track of gc-relocates for a particular gc-statepoint. This is 1494 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1495 // visitGCRelocate. 1496 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) && 1497 !isGCResult(Inst)) { 1498 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1499 Inst->getDebugLoc(), LLVMBB); 1500 1501 R << "FastISel missed call"; 1502 1503 if (R.isEnabled() || EnableFastISelAbort) { 1504 std::string InstStrStorage; 1505 raw_string_ostream InstStr(InstStrStorage); 1506 InstStr << *Inst; 1507 1508 R << ": " << InstStr.str(); 1509 } 1510 1511 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1512 1513 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1514 !Inst->use_empty()) { 1515 unsigned &R = FuncInfo->ValueMap[Inst]; 1516 if (!R) 1517 R = FuncInfo->CreateRegs(Inst); 1518 } 1519 1520 bool HadTailCall = false; 1521 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1522 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1523 1524 // If the call was emitted as a tail call, we're done with the block. 1525 // We also need to delete any previously emitted instructions. 1526 if (HadTailCall) { 1527 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1528 --BI; 1529 break; 1530 } 1531 1532 // Recompute NumFastIselRemaining as Selection DAG instruction 1533 // selection may have handled the call, input args, etc. 1534 unsigned RemainingNow = std::distance(Begin, BI); 1535 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1536 NumFastIselRemaining = RemainingNow; 1537 continue; 1538 } 1539 1540 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1541 Inst->getDebugLoc(), LLVMBB); 1542 1543 bool ShouldAbort = EnableFastISelAbort; 1544 if (Inst->isTerminator()) { 1545 // Use a different message for terminator misses. 1546 R << "FastISel missed terminator"; 1547 // Don't abort for terminator unless the level is really high 1548 ShouldAbort = (EnableFastISelAbort > 2); 1549 } else { 1550 R << "FastISel missed"; 1551 } 1552 1553 if (R.isEnabled() || EnableFastISelAbort) { 1554 std::string InstStrStorage; 1555 raw_string_ostream InstStr(InstStrStorage); 1556 InstStr << *Inst; 1557 R << ": " << InstStr.str(); 1558 } 1559 1560 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1561 1562 NumFastIselFailures += NumFastIselRemaining; 1563 break; 1564 } 1565 1566 FastIS->recomputeInsertPt(); 1567 } 1568 1569 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1570 bool FunctionBasedInstrumentation = 1571 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1572 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1573 FunctionBasedInstrumentation); 1574 } 1575 1576 if (Begin != BI) 1577 ++NumDAGBlocks; 1578 else 1579 ++NumFastIselBlocks; 1580 1581 if (Begin != BI) { 1582 // Run SelectionDAG instruction selection on the remainder of the block 1583 // not handled by FastISel. If FastISel is not run, this is the entire 1584 // block. 1585 bool HadTailCall; 1586 SelectBasicBlock(Begin, BI, HadTailCall); 1587 1588 // But if FastISel was run, we already selected some of the block. 1589 // If we emitted a tail-call, we need to delete any previously emitted 1590 // instruction that follows it. 1591 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1592 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1593 } 1594 1595 if (FastIS) 1596 FastIS->finishBasicBlock(); 1597 FinishBasicBlock(); 1598 FuncInfo->PHINodesToUpdate.clear(); 1599 ElidedArgCopyInstrs.clear(); 1600 } 1601 1602 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1603 1604 SwiftError->propagateVRegs(); 1605 1606 delete FastIS; 1607 SDB->clearDanglingDebugInfo(); 1608 SDB->SPDescriptor.resetPerFunctionState(); 1609 } 1610 1611 /// Given that the input MI is before a partial terminator sequence TSeq, return 1612 /// true if M + TSeq also a partial terminator sequence. 1613 /// 1614 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1615 /// lowering copy vregs into physical registers, which are then passed into 1616 /// terminator instructors so we can satisfy ABI constraints. A partial 1617 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1618 /// may be the whole terminator sequence). 1619 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1620 // If we do not have a copy or an implicit def, we return true if and only if 1621 // MI is a debug value. 1622 if (!MI.isCopy() && !MI.isImplicitDef()) 1623 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1624 // physical registers if there is debug info associated with the terminator 1625 // of our mbb. We want to include said debug info in our terminator 1626 // sequence, so we return true in that case. 1627 return MI.isDebugValue(); 1628 1629 // We have left the terminator sequence if we are not doing one of the 1630 // following: 1631 // 1632 // 1. Copying a vreg into a physical register. 1633 // 2. Copying a vreg into a vreg. 1634 // 3. Defining a register via an implicit def. 1635 1636 // OPI should always be a register definition... 1637 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1638 if (!OPI->isReg() || !OPI->isDef()) 1639 return false; 1640 1641 // Defining any register via an implicit def is always ok. 1642 if (MI.isImplicitDef()) 1643 return true; 1644 1645 // Grab the copy source... 1646 MachineInstr::const_mop_iterator OPI2 = OPI; 1647 ++OPI2; 1648 assert(OPI2 != MI.operands_end() 1649 && "Should have a copy implying we should have 2 arguments."); 1650 1651 // Make sure that the copy dest is not a vreg when the copy source is a 1652 // physical register. 1653 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) && 1654 Register::isPhysicalRegister(OPI2->getReg()))) 1655 return false; 1656 1657 return true; 1658 } 1659 1660 /// Find the split point at which to splice the end of BB into its success stack 1661 /// protector check machine basic block. 1662 /// 1663 /// On many platforms, due to ABI constraints, terminators, even before register 1664 /// allocation, use physical registers. This creates an issue for us since 1665 /// physical registers at this point can not travel across basic 1666 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1667 /// when they enter functions and moves them through a sequence of copies back 1668 /// into the physical registers right before the terminator creating a 1669 /// ``Terminator Sequence''. This function is searching for the beginning of the 1670 /// terminator sequence so that we can ensure that we splice off not just the 1671 /// terminator, but additionally the copies that move the vregs into the 1672 /// physical registers. 1673 static MachineBasicBlock::iterator 1674 FindSplitPointForStackProtector(MachineBasicBlock *BB) { 1675 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1676 // 1677 if (SplitPoint == BB->begin()) 1678 return SplitPoint; 1679 1680 MachineBasicBlock::iterator Start = BB->begin(); 1681 MachineBasicBlock::iterator Previous = SplitPoint; 1682 --Previous; 1683 1684 while (MIIsInTerminatorSequence(*Previous)) { 1685 SplitPoint = Previous; 1686 if (Previous == Start) 1687 break; 1688 --Previous; 1689 } 1690 1691 return SplitPoint; 1692 } 1693 1694 void 1695 SelectionDAGISel::FinishBasicBlock() { 1696 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1697 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1698 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1699 ++i) dbgs() 1700 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1701 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1702 1703 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1704 // PHI nodes in successors. 1705 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1706 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1707 assert(PHI->isPHI() && 1708 "This is not a machine PHI node that we are updating!"); 1709 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1710 continue; 1711 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1712 } 1713 1714 // Handle stack protector. 1715 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1716 // The target provides a guard check function. There is no need to 1717 // generate error handling code or to split current basic block. 1718 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1719 1720 // Add load and check to the basicblock. 1721 FuncInfo->MBB = ParentMBB; 1722 FuncInfo->InsertPt = 1723 FindSplitPointForStackProtector(ParentMBB); 1724 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1725 CurDAG->setRoot(SDB->getRoot()); 1726 SDB->clear(); 1727 CodeGenAndEmitDAG(); 1728 1729 // Clear the Per-BB State. 1730 SDB->SPDescriptor.resetPerBBState(); 1731 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1732 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1733 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1734 1735 // Find the split point to split the parent mbb. At the same time copy all 1736 // physical registers used in the tail of parent mbb into virtual registers 1737 // before the split point and back into physical registers after the split 1738 // point. This prevents us needing to deal with Live-ins and many other 1739 // register allocation issues caused by us splitting the parent mbb. The 1740 // register allocator will clean up said virtual copies later on. 1741 MachineBasicBlock::iterator SplitPoint = 1742 FindSplitPointForStackProtector(ParentMBB); 1743 1744 // Splice the terminator of ParentMBB into SuccessMBB. 1745 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1746 SplitPoint, 1747 ParentMBB->end()); 1748 1749 // Add compare/jump on neq/jump to the parent BB. 1750 FuncInfo->MBB = ParentMBB; 1751 FuncInfo->InsertPt = ParentMBB->end(); 1752 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1753 CurDAG->setRoot(SDB->getRoot()); 1754 SDB->clear(); 1755 CodeGenAndEmitDAG(); 1756 1757 // CodeGen Failure MBB if we have not codegened it yet. 1758 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1759 if (FailureMBB->empty()) { 1760 FuncInfo->MBB = FailureMBB; 1761 FuncInfo->InsertPt = FailureMBB->end(); 1762 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1763 CurDAG->setRoot(SDB->getRoot()); 1764 SDB->clear(); 1765 CodeGenAndEmitDAG(); 1766 } 1767 1768 // Clear the Per-BB State. 1769 SDB->SPDescriptor.resetPerBBState(); 1770 } 1771 1772 // Lower each BitTestBlock. 1773 for (auto &BTB : SDB->SL->BitTestCases) { 1774 // Lower header first, if it wasn't already lowered 1775 if (!BTB.Emitted) { 1776 // Set the current basic block to the mbb we wish to insert the code into 1777 FuncInfo->MBB = BTB.Parent; 1778 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1779 // Emit the code 1780 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1781 CurDAG->setRoot(SDB->getRoot()); 1782 SDB->clear(); 1783 CodeGenAndEmitDAG(); 1784 } 1785 1786 BranchProbability UnhandledProb = BTB.Prob; 1787 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1788 UnhandledProb -= BTB.Cases[j].ExtraProb; 1789 // Set the current basic block to the mbb we wish to insert the code into 1790 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1791 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1792 // Emit the code 1793 1794 // If all cases cover a contiguous range, it is not necessary to jump to 1795 // the default block after the last bit test fails. This is because the 1796 // range check during bit test header creation has guaranteed that every 1797 // case here doesn't go outside the range. In this case, there is no need 1798 // to perform the last bit test, as it will always be true. Instead, make 1799 // the second-to-last bit-test fall through to the target of the last bit 1800 // test, and delete the last bit test. 1801 1802 MachineBasicBlock *NextMBB; 1803 if (BTB.ContiguousRange && j + 2 == ej) { 1804 // Second-to-last bit-test with contiguous range: fall through to the 1805 // target of the final bit test. 1806 NextMBB = BTB.Cases[j + 1].TargetBB; 1807 } else if (j + 1 == ej) { 1808 // For the last bit test, fall through to Default. 1809 NextMBB = BTB.Default; 1810 } else { 1811 // Otherwise, fall through to the next bit test. 1812 NextMBB = BTB.Cases[j + 1].ThisBB; 1813 } 1814 1815 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1816 FuncInfo->MBB); 1817 1818 CurDAG->setRoot(SDB->getRoot()); 1819 SDB->clear(); 1820 CodeGenAndEmitDAG(); 1821 1822 if (BTB.ContiguousRange && j + 2 == ej) { 1823 // Since we're not going to use the final bit test, remove it. 1824 BTB.Cases.pop_back(); 1825 break; 1826 } 1827 } 1828 1829 // Update PHI Nodes 1830 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1831 pi != pe; ++pi) { 1832 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1833 MachineBasicBlock *PHIBB = PHI->getParent(); 1834 assert(PHI->isPHI() && 1835 "This is not a machine PHI node that we are updating!"); 1836 // This is "default" BB. We have two jumps to it. From "header" BB and 1837 // from last "case" BB, unless the latter was skipped. 1838 if (PHIBB == BTB.Default) { 1839 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1840 if (!BTB.ContiguousRange) { 1841 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1842 .addMBB(BTB.Cases.back().ThisBB); 1843 } 1844 } 1845 // One of "cases" BB. 1846 for (unsigned j = 0, ej = BTB.Cases.size(); 1847 j != ej; ++j) { 1848 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1849 if (cBB->isSuccessor(PHIBB)) 1850 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1851 } 1852 } 1853 } 1854 SDB->SL->BitTestCases.clear(); 1855 1856 // If the JumpTable record is filled in, then we need to emit a jump table. 1857 // Updating the PHI nodes is tricky in this case, since we need to determine 1858 // whether the PHI is a successor of the range check MBB or the jump table MBB 1859 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1860 // Lower header first, if it wasn't already lowered 1861 if (!SDB->SL->JTCases[i].first.Emitted) { 1862 // Set the current basic block to the mbb we wish to insert the code into 1863 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1864 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1865 // Emit the code 1866 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1867 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1868 CurDAG->setRoot(SDB->getRoot()); 1869 SDB->clear(); 1870 CodeGenAndEmitDAG(); 1871 } 1872 1873 // Set the current basic block to the mbb we wish to insert the code into 1874 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1875 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1876 // Emit the code 1877 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1878 CurDAG->setRoot(SDB->getRoot()); 1879 SDB->clear(); 1880 CodeGenAndEmitDAG(); 1881 1882 // Update PHI Nodes 1883 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1884 pi != pe; ++pi) { 1885 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1886 MachineBasicBlock *PHIBB = PHI->getParent(); 1887 assert(PHI->isPHI() && 1888 "This is not a machine PHI node that we are updating!"); 1889 // "default" BB. We can go there only from header BB. 1890 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1891 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1892 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1893 // JT BB. Just iterate over successors here 1894 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1895 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1896 } 1897 } 1898 SDB->SL->JTCases.clear(); 1899 1900 // If we generated any switch lowering information, build and codegen any 1901 // additional DAGs necessary. 1902 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1903 // Set the current basic block to the mbb we wish to insert the code into 1904 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1905 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1906 1907 // Determine the unique successors. 1908 SmallVector<MachineBasicBlock *, 2> Succs; 1909 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1910 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1911 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1912 1913 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1914 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1915 CurDAG->setRoot(SDB->getRoot()); 1916 SDB->clear(); 1917 CodeGenAndEmitDAG(); 1918 1919 // Remember the last block, now that any splitting is done, for use in 1920 // populating PHI nodes in successors. 1921 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1922 1923 // Handle any PHI nodes in successors of this chunk, as if we were coming 1924 // from the original BB before switch expansion. Note that PHI nodes can 1925 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1926 // handle them the right number of times. 1927 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1928 FuncInfo->MBB = Succs[i]; 1929 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1930 // FuncInfo->MBB may have been removed from the CFG if a branch was 1931 // constant folded. 1932 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1933 for (MachineBasicBlock::iterator 1934 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1935 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1936 MachineInstrBuilder PHI(*MF, MBBI); 1937 // This value for this PHI node is recorded in PHINodesToUpdate. 1938 for (unsigned pn = 0; ; ++pn) { 1939 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1940 "Didn't find PHI entry!"); 1941 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1942 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1943 break; 1944 } 1945 } 1946 } 1947 } 1948 } 1949 } 1950 SDB->SL->SwitchCases.clear(); 1951 } 1952 1953 /// Create the scheduler. If a specific scheduler was specified 1954 /// via the SchedulerRegistry, use it, otherwise select the 1955 /// one preferred by the target. 1956 /// 1957 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1958 return ISHeuristic(this, OptLevel); 1959 } 1960 1961 //===----------------------------------------------------------------------===// 1962 // Helper functions used by the generated instruction selector. 1963 //===----------------------------------------------------------------------===// 1964 // Calls to these methods are generated by tblgen. 1965 1966 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1967 /// the dag combiner simplified the 255, we still want to match. RHS is the 1968 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1969 /// specified in the .td file (e.g. 255). 1970 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1971 int64_t DesiredMaskS) const { 1972 const APInt &ActualMask = RHS->getAPIntValue(); 1973 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1974 1975 // If the actual mask exactly matches, success! 1976 if (ActualMask == DesiredMask) 1977 return true; 1978 1979 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1980 if (!ActualMask.isSubsetOf(DesiredMask)) 1981 return false; 1982 1983 // Otherwise, the DAG Combiner may have proven that the value coming in is 1984 // either already zero or is not demanded. Check for known zero input bits. 1985 APInt NeededMask = DesiredMask & ~ActualMask; 1986 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1987 return true; 1988 1989 // TODO: check to see if missing bits are just not demanded. 1990 1991 // Otherwise, this pattern doesn't match. 1992 return false; 1993 } 1994 1995 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1996 /// the dag combiner simplified the 255, we still want to match. RHS is the 1997 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1998 /// specified in the .td file (e.g. 255). 1999 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 2000 int64_t DesiredMaskS) const { 2001 const APInt &ActualMask = RHS->getAPIntValue(); 2002 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2003 2004 // If the actual mask exactly matches, success! 2005 if (ActualMask == DesiredMask) 2006 return true; 2007 2008 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2009 if (!ActualMask.isSubsetOf(DesiredMask)) 2010 return false; 2011 2012 // Otherwise, the DAG Combiner may have proven that the value coming in is 2013 // either already zero or is not demanded. Check for known zero input bits. 2014 APInt NeededMask = DesiredMask & ~ActualMask; 2015 KnownBits Known = CurDAG->computeKnownBits(LHS); 2016 2017 // If all the missing bits in the or are already known to be set, match! 2018 if (NeededMask.isSubsetOf(Known.One)) 2019 return true; 2020 2021 // TODO: check to see if missing bits are just not demanded. 2022 2023 // Otherwise, this pattern doesn't match. 2024 return false; 2025 } 2026 2027 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2028 /// by tblgen. Others should not call it. 2029 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2030 const SDLoc &DL) { 2031 std::vector<SDValue> InOps; 2032 std::swap(InOps, Ops); 2033 2034 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2035 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2036 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2037 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2038 2039 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2040 if (InOps[e-1].getValueType() == MVT::Glue) 2041 --e; // Don't process a glue operand if it is here. 2042 2043 while (i != e) { 2044 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2045 if (!InlineAsm::isMemKind(Flags)) { 2046 // Just skip over this operand, copying the operands verbatim. 2047 Ops.insert(Ops.end(), InOps.begin()+i, 2048 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2049 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2050 } else { 2051 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2052 "Memory operand with multiple values?"); 2053 2054 unsigned TiedToOperand; 2055 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2056 // We need the constraint ID from the operand this is tied to. 2057 unsigned CurOp = InlineAsm::Op_FirstOperand; 2058 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2059 for (; TiedToOperand; --TiedToOperand) { 2060 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2061 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2062 } 2063 } 2064 2065 // Otherwise, this is a memory operand. Ask the target to select it. 2066 std::vector<SDValue> SelOps; 2067 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2068 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2069 report_fatal_error("Could not match memory address. Inline asm" 2070 " failure!"); 2071 2072 // Add this to the output node. 2073 unsigned NewFlags = 2074 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2075 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2076 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2077 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 2078 i += 2; 2079 } 2080 } 2081 2082 // Add the glue input back if present. 2083 if (e != InOps.size()) 2084 Ops.push_back(InOps.back()); 2085 } 2086 2087 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2088 /// SDNode. 2089 /// 2090 static SDNode *findGlueUse(SDNode *N) { 2091 unsigned FlagResNo = N->getNumValues()-1; 2092 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2093 SDUse &Use = I.getUse(); 2094 if (Use.getResNo() == FlagResNo) 2095 return Use.getUser(); 2096 } 2097 return nullptr; 2098 } 2099 2100 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2101 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2102 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2103 bool IgnoreChains) { 2104 SmallPtrSet<const SDNode *, 16> Visited; 2105 SmallVector<const SDNode *, 16> WorkList; 2106 // Only check if we have non-immediate uses of Def. 2107 if (ImmedUse->isOnlyUserOf(Def)) 2108 return false; 2109 2110 // We don't care about paths to Def that go through ImmedUse so mark it 2111 // visited and mark non-def operands as used. 2112 Visited.insert(ImmedUse); 2113 for (const SDValue &Op : ImmedUse->op_values()) { 2114 SDNode *N = Op.getNode(); 2115 // Ignore chain deps (they are validated by 2116 // HandleMergeInputChains) and immediate uses 2117 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2118 continue; 2119 if (!Visited.insert(N).second) 2120 continue; 2121 WorkList.push_back(N); 2122 } 2123 2124 // Initialize worklist to operands of Root. 2125 if (Root != ImmedUse) { 2126 for (const SDValue &Op : Root->op_values()) { 2127 SDNode *N = Op.getNode(); 2128 // Ignore chains (they are validated by HandleMergeInputChains) 2129 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2130 continue; 2131 if (!Visited.insert(N).second) 2132 continue; 2133 WorkList.push_back(N); 2134 } 2135 } 2136 2137 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2138 } 2139 2140 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2141 /// operand node N of U during instruction selection that starts at Root. 2142 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2143 SDNode *Root) const { 2144 if (OptLevel == CodeGenOpt::None) return false; 2145 return N.hasOneUse(); 2146 } 2147 2148 /// IsLegalToFold - Returns true if the specific operand node N of 2149 /// U can be folded during instruction selection that starts at Root. 2150 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2151 CodeGenOpt::Level OptLevel, 2152 bool IgnoreChains) { 2153 if (OptLevel == CodeGenOpt::None) return false; 2154 2155 // If Root use can somehow reach N through a path that that doesn't contain 2156 // U then folding N would create a cycle. e.g. In the following 2157 // diagram, Root can reach N through X. If N is folded into Root, then 2158 // X is both a predecessor and a successor of U. 2159 // 2160 // [N*] // 2161 // ^ ^ // 2162 // / \ // 2163 // [U*] [X]? // 2164 // ^ ^ // 2165 // \ / // 2166 // \ / // 2167 // [Root*] // 2168 // 2169 // * indicates nodes to be folded together. 2170 // 2171 // If Root produces glue, then it gets (even more) interesting. Since it 2172 // will be "glued" together with its glue use in the scheduler, we need to 2173 // check if it might reach N. 2174 // 2175 // [N*] // 2176 // ^ ^ // 2177 // / \ // 2178 // [U*] [X]? // 2179 // ^ ^ // 2180 // \ \ // 2181 // \ | // 2182 // [Root*] | // 2183 // ^ | // 2184 // f | // 2185 // | / // 2186 // [Y] / // 2187 // ^ / // 2188 // f / // 2189 // | / // 2190 // [GU] // 2191 // 2192 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2193 // (call it Fold), then X is a predecessor of GU and a successor of 2194 // Fold. But since Fold and GU are glued together, this will create 2195 // a cycle in the scheduling graph. 2196 2197 // If the node has glue, walk down the graph to the "lowest" node in the 2198 // glueged set. 2199 EVT VT = Root->getValueType(Root->getNumValues()-1); 2200 while (VT == MVT::Glue) { 2201 SDNode *GU = findGlueUse(Root); 2202 if (!GU) 2203 break; 2204 Root = GU; 2205 VT = Root->getValueType(Root->getNumValues()-1); 2206 2207 // If our query node has a glue result with a use, we've walked up it. If 2208 // the user (which has already been selected) has a chain or indirectly uses 2209 // the chain, HandleMergeInputChains will not consider it. Because of 2210 // this, we cannot ignore chains in this predicate. 2211 IgnoreChains = false; 2212 } 2213 2214 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2215 } 2216 2217 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) { 2218 SDLoc DL(N); 2219 2220 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2221 SelectInlineAsmMemoryOperands(Ops, DL); 2222 2223 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2224 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops); 2225 New->setNodeId(-1); 2226 ReplaceUses(N, New.getNode()); 2227 CurDAG->RemoveDeadNode(N); 2228 } 2229 2230 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2231 SDLoc dl(Op); 2232 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2233 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2234 unsigned Reg = 2235 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), 2236 *CurDAG); 2237 SDValue New = CurDAG->getCopyFromReg( 2238 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2239 New->setNodeId(-1); 2240 ReplaceUses(Op, New.getNode()); 2241 CurDAG->RemoveDeadNode(Op); 2242 } 2243 2244 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2245 SDLoc dl(Op); 2246 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2247 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2248 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), 2249 Op->getOperand(2).getValueType(), 2250 *CurDAG); 2251 SDValue New = CurDAG->getCopyToReg( 2252 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2253 New->setNodeId(-1); 2254 ReplaceUses(Op, New.getNode()); 2255 CurDAG->RemoveDeadNode(Op); 2256 } 2257 2258 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2259 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2260 } 2261 2262 /// GetVBR - decode a vbr encoding whose top bit is set. 2263 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2264 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2265 assert(Val >= 128 && "Not a VBR"); 2266 Val &= 127; // Remove first vbr bit. 2267 2268 unsigned Shift = 7; 2269 uint64_t NextBits; 2270 do { 2271 NextBits = MatcherTable[Idx++]; 2272 Val |= (NextBits&127) << Shift; 2273 Shift += 7; 2274 } while (NextBits & 128); 2275 2276 return Val; 2277 } 2278 2279 /// When a match is complete, this method updates uses of interior chain results 2280 /// to use the new results. 2281 void SelectionDAGISel::UpdateChains( 2282 SDNode *NodeToMatch, SDValue InputChain, 2283 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2284 SmallVector<SDNode*, 4> NowDeadNodes; 2285 2286 // Now that all the normal results are replaced, we replace the chain and 2287 // glue results if present. 2288 if (!ChainNodesMatched.empty()) { 2289 assert(InputChain.getNode() && 2290 "Matched input chains but didn't produce a chain"); 2291 // Loop over all of the nodes we matched that produced a chain result. 2292 // Replace all the chain results with the final chain we ended up with. 2293 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2294 SDNode *ChainNode = ChainNodesMatched[i]; 2295 // If ChainNode is null, it's because we replaced it on a previous 2296 // iteration and we cleared it out of the map. Just skip it. 2297 if (!ChainNode) 2298 continue; 2299 2300 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2301 "Deleted node left in chain"); 2302 2303 // Don't replace the results of the root node if we're doing a 2304 // MorphNodeTo. 2305 if (ChainNode == NodeToMatch && isMorphNodeTo) 2306 continue; 2307 2308 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2309 if (ChainVal.getValueType() == MVT::Glue) 2310 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2311 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2312 SelectionDAG::DAGNodeDeletedListener NDL( 2313 *CurDAG, [&](SDNode *N, SDNode *E) { 2314 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2315 static_cast<SDNode *>(nullptr)); 2316 }); 2317 if (ChainNode->getOpcode() != ISD::TokenFactor) 2318 ReplaceUses(ChainVal, InputChain); 2319 2320 // If the node became dead and we haven't already seen it, delete it. 2321 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2322 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2323 NowDeadNodes.push_back(ChainNode); 2324 } 2325 } 2326 2327 if (!NowDeadNodes.empty()) 2328 CurDAG->RemoveDeadNodes(NowDeadNodes); 2329 2330 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2331 } 2332 2333 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2334 /// operation for when the pattern matched at least one node with a chains. The 2335 /// input vector contains a list of all of the chained nodes that we match. We 2336 /// must determine if this is a valid thing to cover (i.e. matching it won't 2337 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2338 /// be used as the input node chain for the generated nodes. 2339 static SDValue 2340 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2341 SelectionDAG *CurDAG) { 2342 2343 SmallPtrSet<const SDNode *, 16> Visited; 2344 SmallVector<const SDNode *, 8> Worklist; 2345 SmallVector<SDValue, 3> InputChains; 2346 unsigned int Max = 8192; 2347 2348 // Quick exit on trivial merge. 2349 if (ChainNodesMatched.size() == 1) 2350 return ChainNodesMatched[0]->getOperand(0); 2351 2352 // Add chains that aren't already added (internal). Peek through 2353 // token factors. 2354 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2355 if (V.getValueType() != MVT::Other) 2356 return; 2357 if (V->getOpcode() == ISD::EntryToken) 2358 return; 2359 if (!Visited.insert(V.getNode()).second) 2360 return; 2361 if (V->getOpcode() == ISD::TokenFactor) { 2362 for (const SDValue &Op : V->op_values()) 2363 AddChains(Op); 2364 } else 2365 InputChains.push_back(V); 2366 }; 2367 2368 for (auto *N : ChainNodesMatched) { 2369 Worklist.push_back(N); 2370 Visited.insert(N); 2371 } 2372 2373 while (!Worklist.empty()) 2374 AddChains(Worklist.pop_back_val()->getOperand(0)); 2375 2376 // Skip the search if there are no chain dependencies. 2377 if (InputChains.size() == 0) 2378 return CurDAG->getEntryNode(); 2379 2380 // If one of these chains is a successor of input, we must have a 2381 // node that is both the predecessor and successor of the 2382 // to-be-merged nodes. Fail. 2383 Visited.clear(); 2384 for (SDValue V : InputChains) 2385 Worklist.push_back(V.getNode()); 2386 2387 for (auto *N : ChainNodesMatched) 2388 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2389 return SDValue(); 2390 2391 // Return merged chain. 2392 if (InputChains.size() == 1) 2393 return InputChains[0]; 2394 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2395 MVT::Other, InputChains); 2396 } 2397 2398 /// MorphNode - Handle morphing a node in place for the selector. 2399 SDNode *SelectionDAGISel:: 2400 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2401 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2402 // It is possible we're using MorphNodeTo to replace a node with no 2403 // normal results with one that has a normal result (or we could be 2404 // adding a chain) and the input could have glue and chains as well. 2405 // In this case we need to shift the operands down. 2406 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2407 // than the old isel though. 2408 int OldGlueResultNo = -1, OldChainResultNo = -1; 2409 2410 unsigned NTMNumResults = Node->getNumValues(); 2411 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2412 OldGlueResultNo = NTMNumResults-1; 2413 if (NTMNumResults != 1 && 2414 Node->getValueType(NTMNumResults-2) == MVT::Other) 2415 OldChainResultNo = NTMNumResults-2; 2416 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2417 OldChainResultNo = NTMNumResults-1; 2418 2419 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2420 // that this deletes operands of the old node that become dead. 2421 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2422 2423 // MorphNodeTo can operate in two ways: if an existing node with the 2424 // specified operands exists, it can just return it. Otherwise, it 2425 // updates the node in place to have the requested operands. 2426 if (Res == Node) { 2427 // If we updated the node in place, reset the node ID. To the isel, 2428 // this should be just like a newly allocated machine node. 2429 Res->setNodeId(-1); 2430 } 2431 2432 unsigned ResNumResults = Res->getNumValues(); 2433 // Move the glue if needed. 2434 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2435 (unsigned)OldGlueResultNo != ResNumResults-1) 2436 ReplaceUses(SDValue(Node, OldGlueResultNo), 2437 SDValue(Res, ResNumResults - 1)); 2438 2439 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2440 --ResNumResults; 2441 2442 // Move the chain reference if needed. 2443 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2444 (unsigned)OldChainResultNo != ResNumResults-1) 2445 ReplaceUses(SDValue(Node, OldChainResultNo), 2446 SDValue(Res, ResNumResults - 1)); 2447 2448 // Otherwise, no replacement happened because the node already exists. Replace 2449 // Uses of the old node with the new one. 2450 if (Res != Node) { 2451 ReplaceNode(Node, Res); 2452 } else { 2453 EnforceNodeIdInvariant(Res); 2454 } 2455 2456 return Res; 2457 } 2458 2459 /// CheckSame - Implements OP_CheckSame. 2460 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2461 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2462 SDValue N, 2463 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2464 // Accept if it is exactly the same as a previously recorded node. 2465 unsigned RecNo = MatcherTable[MatcherIndex++]; 2466 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2467 return N == RecordedNodes[RecNo].first; 2468 } 2469 2470 /// CheckChildSame - Implements OP_CheckChildXSame. 2471 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2472 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2473 SDValue N, 2474 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes, 2475 unsigned ChildNo) { 2476 if (ChildNo >= N.getNumOperands()) 2477 return false; // Match fails if out of range child #. 2478 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2479 RecordedNodes); 2480 } 2481 2482 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2483 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2484 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2485 const SelectionDAGISel &SDISel) { 2486 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2487 } 2488 2489 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2490 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2491 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2492 const SelectionDAGISel &SDISel, SDNode *N) { 2493 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2494 } 2495 2496 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2497 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2498 SDNode *N) { 2499 uint16_t Opc = MatcherTable[MatcherIndex++]; 2500 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2501 return N->getOpcode() == Opc; 2502 } 2503 2504 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2505 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2506 const TargetLowering *TLI, const DataLayout &DL) { 2507 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2508 if (N.getValueType() == VT) return true; 2509 2510 // Handle the case when VT is iPTR. 2511 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2512 } 2513 2514 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2515 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2516 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2517 unsigned ChildNo) { 2518 if (ChildNo >= N.getNumOperands()) 2519 return false; // Match fails if out of range child #. 2520 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2521 DL); 2522 } 2523 2524 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2525 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2526 SDValue N) { 2527 return cast<CondCodeSDNode>(N)->get() == 2528 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2529 } 2530 2531 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2532 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2533 SDValue N) { 2534 if (2 >= N.getNumOperands()) 2535 return false; 2536 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2537 } 2538 2539 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2540 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2541 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2542 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2543 if (cast<VTSDNode>(N)->getVT() == VT) 2544 return true; 2545 2546 // Handle the case when VT is iPTR. 2547 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2548 } 2549 2550 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2551 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2552 SDValue N) { 2553 int64_t Val = MatcherTable[MatcherIndex++]; 2554 if (Val & 128) 2555 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2556 2557 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2558 return C && C->getSExtValue() == Val; 2559 } 2560 2561 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2562 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2563 SDValue N, unsigned ChildNo) { 2564 if (ChildNo >= N.getNumOperands()) 2565 return false; // Match fails if out of range child #. 2566 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2567 } 2568 2569 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2570 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2571 SDValue N, const SelectionDAGISel &SDISel) { 2572 int64_t Val = MatcherTable[MatcherIndex++]; 2573 if (Val & 128) 2574 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2575 2576 if (N->getOpcode() != ISD::AND) return false; 2577 2578 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2579 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2580 } 2581 2582 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2583 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2584 SDValue N, const SelectionDAGISel &SDISel) { 2585 int64_t Val = MatcherTable[MatcherIndex++]; 2586 if (Val & 128) 2587 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2588 2589 if (N->getOpcode() != ISD::OR) return false; 2590 2591 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2592 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2593 } 2594 2595 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2596 /// scope, evaluate the current node. If the current predicate is known to 2597 /// fail, set Result=true and return anything. If the current predicate is 2598 /// known to pass, set Result=false and return the MatcherIndex to continue 2599 /// with. If the current predicate is unknown, set Result=false and return the 2600 /// MatcherIndex to continue with. 2601 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2602 unsigned Index, SDValue N, 2603 bool &Result, 2604 const SelectionDAGISel &SDISel, 2605 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2606 switch (Table[Index++]) { 2607 default: 2608 Result = false; 2609 return Index-1; // Could not evaluate this predicate. 2610 case SelectionDAGISel::OPC_CheckSame: 2611 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2612 return Index; 2613 case SelectionDAGISel::OPC_CheckChild0Same: 2614 case SelectionDAGISel::OPC_CheckChild1Same: 2615 case SelectionDAGISel::OPC_CheckChild2Same: 2616 case SelectionDAGISel::OPC_CheckChild3Same: 2617 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2618 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2619 return Index; 2620 case SelectionDAGISel::OPC_CheckPatternPredicate: 2621 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2622 return Index; 2623 case SelectionDAGISel::OPC_CheckPredicate: 2624 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2625 return Index; 2626 case SelectionDAGISel::OPC_CheckOpcode: 2627 Result = !::CheckOpcode(Table, Index, N.getNode()); 2628 return Index; 2629 case SelectionDAGISel::OPC_CheckType: 2630 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2631 SDISel.CurDAG->getDataLayout()); 2632 return Index; 2633 case SelectionDAGISel::OPC_CheckTypeRes: { 2634 unsigned Res = Table[Index++]; 2635 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2636 SDISel.CurDAG->getDataLayout()); 2637 return Index; 2638 } 2639 case SelectionDAGISel::OPC_CheckChild0Type: 2640 case SelectionDAGISel::OPC_CheckChild1Type: 2641 case SelectionDAGISel::OPC_CheckChild2Type: 2642 case SelectionDAGISel::OPC_CheckChild3Type: 2643 case SelectionDAGISel::OPC_CheckChild4Type: 2644 case SelectionDAGISel::OPC_CheckChild5Type: 2645 case SelectionDAGISel::OPC_CheckChild6Type: 2646 case SelectionDAGISel::OPC_CheckChild7Type: 2647 Result = !::CheckChildType( 2648 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2649 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2650 return Index; 2651 case SelectionDAGISel::OPC_CheckCondCode: 2652 Result = !::CheckCondCode(Table, Index, N); 2653 return Index; 2654 case SelectionDAGISel::OPC_CheckChild2CondCode: 2655 Result = !::CheckChild2CondCode(Table, Index, N); 2656 return Index; 2657 case SelectionDAGISel::OPC_CheckValueType: 2658 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2659 SDISel.CurDAG->getDataLayout()); 2660 return Index; 2661 case SelectionDAGISel::OPC_CheckInteger: 2662 Result = !::CheckInteger(Table, Index, N); 2663 return Index; 2664 case SelectionDAGISel::OPC_CheckChild0Integer: 2665 case SelectionDAGISel::OPC_CheckChild1Integer: 2666 case SelectionDAGISel::OPC_CheckChild2Integer: 2667 case SelectionDAGISel::OPC_CheckChild3Integer: 2668 case SelectionDAGISel::OPC_CheckChild4Integer: 2669 Result = !::CheckChildInteger(Table, Index, N, 2670 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2671 return Index; 2672 case SelectionDAGISel::OPC_CheckAndImm: 2673 Result = !::CheckAndImm(Table, Index, N, SDISel); 2674 return Index; 2675 case SelectionDAGISel::OPC_CheckOrImm: 2676 Result = !::CheckOrImm(Table, Index, N, SDISel); 2677 return Index; 2678 } 2679 } 2680 2681 namespace { 2682 2683 struct MatchScope { 2684 /// FailIndex - If this match fails, this is the index to continue with. 2685 unsigned FailIndex; 2686 2687 /// NodeStack - The node stack when the scope was formed. 2688 SmallVector<SDValue, 4> NodeStack; 2689 2690 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2691 unsigned NumRecordedNodes; 2692 2693 /// NumMatchedMemRefs - The number of matched memref entries. 2694 unsigned NumMatchedMemRefs; 2695 2696 /// InputChain/InputGlue - The current chain/glue 2697 SDValue InputChain, InputGlue; 2698 2699 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2700 bool HasChainNodesMatched; 2701 }; 2702 2703 /// \A DAG update listener to keep the matching state 2704 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2705 /// change the DAG while matching. X86 addressing mode matcher is an example 2706 /// for this. 2707 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2708 { 2709 SDNode **NodeToMatch; 2710 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2711 SmallVectorImpl<MatchScope> &MatchScopes; 2712 2713 public: 2714 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2715 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2716 SmallVectorImpl<MatchScope> &MS) 2717 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2718 RecordedNodes(RN), MatchScopes(MS) {} 2719 2720 void NodeDeleted(SDNode *N, SDNode *E) override { 2721 // Some early-returns here to avoid the search if we deleted the node or 2722 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2723 // do, so it's unnecessary to update matching state at that point). 2724 // Neither of these can occur currently because we only install this 2725 // update listener during matching a complex patterns. 2726 if (!E || E->isMachineOpcode()) 2727 return; 2728 // Check if NodeToMatch was updated. 2729 if (N == *NodeToMatch) 2730 *NodeToMatch = E; 2731 // Performing linear search here does not matter because we almost never 2732 // run this code. You'd have to have a CSE during complex pattern 2733 // matching. 2734 for (auto &I : RecordedNodes) 2735 if (I.first.getNode() == N) 2736 I.first.setNode(E); 2737 2738 for (auto &I : MatchScopes) 2739 for (auto &J : I.NodeStack) 2740 if (J.getNode() == N) 2741 J.setNode(E); 2742 } 2743 }; 2744 2745 } // end anonymous namespace 2746 2747 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2748 const unsigned char *MatcherTable, 2749 unsigned TableSize) { 2750 // FIXME: Should these even be selected? Handle these cases in the caller? 2751 switch (NodeToMatch->getOpcode()) { 2752 default: 2753 break; 2754 case ISD::EntryToken: // These nodes remain the same. 2755 case ISD::BasicBlock: 2756 case ISD::Register: 2757 case ISD::RegisterMask: 2758 case ISD::HANDLENODE: 2759 case ISD::MDNODE_SDNODE: 2760 case ISD::TargetConstant: 2761 case ISD::TargetConstantFP: 2762 case ISD::TargetConstantPool: 2763 case ISD::TargetFrameIndex: 2764 case ISD::TargetExternalSymbol: 2765 case ISD::MCSymbol: 2766 case ISD::TargetBlockAddress: 2767 case ISD::TargetJumpTable: 2768 case ISD::TargetGlobalTLSAddress: 2769 case ISD::TargetGlobalAddress: 2770 case ISD::TokenFactor: 2771 case ISD::CopyFromReg: 2772 case ISD::CopyToReg: 2773 case ISD::EH_LABEL: 2774 case ISD::ANNOTATION_LABEL: 2775 case ISD::LIFETIME_START: 2776 case ISD::LIFETIME_END: 2777 NodeToMatch->setNodeId(-1); // Mark selected. 2778 return; 2779 case ISD::AssertSext: 2780 case ISD::AssertZext: 2781 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2782 CurDAG->RemoveDeadNode(NodeToMatch); 2783 return; 2784 case ISD::INLINEASM: 2785 case ISD::INLINEASM_BR: 2786 Select_INLINEASM(NodeToMatch, 2787 NodeToMatch->getOpcode() == ISD::INLINEASM_BR); 2788 return; 2789 case ISD::READ_REGISTER: 2790 Select_READ_REGISTER(NodeToMatch); 2791 return; 2792 case ISD::WRITE_REGISTER: 2793 Select_WRITE_REGISTER(NodeToMatch); 2794 return; 2795 case ISD::UNDEF: 2796 Select_UNDEF(NodeToMatch); 2797 return; 2798 } 2799 2800 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2801 2802 // Set up the node stack with NodeToMatch as the only node on the stack. 2803 SmallVector<SDValue, 8> NodeStack; 2804 SDValue N = SDValue(NodeToMatch, 0); 2805 NodeStack.push_back(N); 2806 2807 // MatchScopes - Scopes used when matching, if a match failure happens, this 2808 // indicates where to continue checking. 2809 SmallVector<MatchScope, 8> MatchScopes; 2810 2811 // RecordedNodes - This is the set of nodes that have been recorded by the 2812 // state machine. The second value is the parent of the node, or null if the 2813 // root is recorded. 2814 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2815 2816 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2817 // pattern. 2818 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2819 2820 // These are the current input chain and glue for use when generating nodes. 2821 // Various Emit operations change these. For example, emitting a copytoreg 2822 // uses and updates these. 2823 SDValue InputChain, InputGlue; 2824 2825 // ChainNodesMatched - If a pattern matches nodes that have input/output 2826 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2827 // which ones they are. The result is captured into this list so that we can 2828 // update the chain results when the pattern is complete. 2829 SmallVector<SDNode*, 3> ChainNodesMatched; 2830 2831 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2832 2833 // Determine where to start the interpreter. Normally we start at opcode #0, 2834 // but if the state machine starts with an OPC_SwitchOpcode, then we 2835 // accelerate the first lookup (which is guaranteed to be hot) with the 2836 // OpcodeOffset table. 2837 unsigned MatcherIndex = 0; 2838 2839 if (!OpcodeOffset.empty()) { 2840 // Already computed the OpcodeOffset table, just index into it. 2841 if (N.getOpcode() < OpcodeOffset.size()) 2842 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2843 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2844 2845 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2846 // Otherwise, the table isn't computed, but the state machine does start 2847 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2848 // is the first time we're selecting an instruction. 2849 unsigned Idx = 1; 2850 while (true) { 2851 // Get the size of this case. 2852 unsigned CaseSize = MatcherTable[Idx++]; 2853 if (CaseSize & 128) 2854 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2855 if (CaseSize == 0) break; 2856 2857 // Get the opcode, add the index to the table. 2858 uint16_t Opc = MatcherTable[Idx++]; 2859 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2860 if (Opc >= OpcodeOffset.size()) 2861 OpcodeOffset.resize((Opc+1)*2); 2862 OpcodeOffset[Opc] = Idx; 2863 Idx += CaseSize; 2864 } 2865 2866 // Okay, do the lookup for the first opcode. 2867 if (N.getOpcode() < OpcodeOffset.size()) 2868 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2869 } 2870 2871 while (true) { 2872 assert(MatcherIndex < TableSize && "Invalid index"); 2873 #ifndef NDEBUG 2874 unsigned CurrentOpcodeIndex = MatcherIndex; 2875 #endif 2876 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2877 switch (Opcode) { 2878 case OPC_Scope: { 2879 // Okay, the semantics of this operation are that we should push a scope 2880 // then evaluate the first child. However, pushing a scope only to have 2881 // the first check fail (which then pops it) is inefficient. If we can 2882 // determine immediately that the first check (or first several) will 2883 // immediately fail, don't even bother pushing a scope for them. 2884 unsigned FailIndex; 2885 2886 while (true) { 2887 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2888 if (NumToSkip & 128) 2889 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2890 // Found the end of the scope with no match. 2891 if (NumToSkip == 0) { 2892 FailIndex = 0; 2893 break; 2894 } 2895 2896 FailIndex = MatcherIndex+NumToSkip; 2897 2898 unsigned MatcherIndexOfPredicate = MatcherIndex; 2899 (void)MatcherIndexOfPredicate; // silence warning. 2900 2901 // If we can't evaluate this predicate without pushing a scope (e.g. if 2902 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2903 // push the scope and evaluate the full predicate chain. 2904 bool Result; 2905 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2906 Result, *this, RecordedNodes); 2907 if (!Result) 2908 break; 2909 2910 LLVM_DEBUG( 2911 dbgs() << " Skipped scope entry (due to false predicate) at " 2912 << "index " << MatcherIndexOfPredicate << ", continuing at " 2913 << FailIndex << "\n"); 2914 ++NumDAGIselRetries; 2915 2916 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2917 // move to the next case. 2918 MatcherIndex = FailIndex; 2919 } 2920 2921 // If the whole scope failed to match, bail. 2922 if (FailIndex == 0) break; 2923 2924 // Push a MatchScope which indicates where to go if the first child fails 2925 // to match. 2926 MatchScope NewEntry; 2927 NewEntry.FailIndex = FailIndex; 2928 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2929 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2930 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2931 NewEntry.InputChain = InputChain; 2932 NewEntry.InputGlue = InputGlue; 2933 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2934 MatchScopes.push_back(NewEntry); 2935 continue; 2936 } 2937 case OPC_RecordNode: { 2938 // Remember this node, it may end up being an operand in the pattern. 2939 SDNode *Parent = nullptr; 2940 if (NodeStack.size() > 1) 2941 Parent = NodeStack[NodeStack.size()-2].getNode(); 2942 RecordedNodes.push_back(std::make_pair(N, Parent)); 2943 continue; 2944 } 2945 2946 case OPC_RecordChild0: case OPC_RecordChild1: 2947 case OPC_RecordChild2: case OPC_RecordChild3: 2948 case OPC_RecordChild4: case OPC_RecordChild5: 2949 case OPC_RecordChild6: case OPC_RecordChild7: { 2950 unsigned ChildNo = Opcode-OPC_RecordChild0; 2951 if (ChildNo >= N.getNumOperands()) 2952 break; // Match fails if out of range child #. 2953 2954 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2955 N.getNode())); 2956 continue; 2957 } 2958 case OPC_RecordMemRef: 2959 if (auto *MN = dyn_cast<MemSDNode>(N)) 2960 MatchedMemRefs.push_back(MN->getMemOperand()); 2961 else { 2962 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 2963 dbgs() << '\n'); 2964 } 2965 2966 continue; 2967 2968 case OPC_CaptureGlueInput: 2969 // If the current node has an input glue, capture it in InputGlue. 2970 if (N->getNumOperands() != 0 && 2971 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2972 InputGlue = N->getOperand(N->getNumOperands()-1); 2973 continue; 2974 2975 case OPC_MoveChild: { 2976 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2977 if (ChildNo >= N.getNumOperands()) 2978 break; // Match fails if out of range child #. 2979 N = N.getOperand(ChildNo); 2980 NodeStack.push_back(N); 2981 continue; 2982 } 2983 2984 case OPC_MoveChild0: case OPC_MoveChild1: 2985 case OPC_MoveChild2: case OPC_MoveChild3: 2986 case OPC_MoveChild4: case OPC_MoveChild5: 2987 case OPC_MoveChild6: case OPC_MoveChild7: { 2988 unsigned ChildNo = Opcode-OPC_MoveChild0; 2989 if (ChildNo >= N.getNumOperands()) 2990 break; // Match fails if out of range child #. 2991 N = N.getOperand(ChildNo); 2992 NodeStack.push_back(N); 2993 continue; 2994 } 2995 2996 case OPC_MoveParent: 2997 // Pop the current node off the NodeStack. 2998 NodeStack.pop_back(); 2999 assert(!NodeStack.empty() && "Node stack imbalance!"); 3000 N = NodeStack.back(); 3001 continue; 3002 3003 case OPC_CheckSame: 3004 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 3005 continue; 3006 3007 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3008 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3009 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3010 Opcode-OPC_CheckChild0Same)) 3011 break; 3012 continue; 3013 3014 case OPC_CheckPatternPredicate: 3015 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3016 continue; 3017 case OPC_CheckPredicate: 3018 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3019 N.getNode())) 3020 break; 3021 continue; 3022 case OPC_CheckPredicateWithOperands: { 3023 unsigned OpNum = MatcherTable[MatcherIndex++]; 3024 SmallVector<SDValue, 8> Operands; 3025 3026 for (unsigned i = 0; i < OpNum; ++i) 3027 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3028 3029 unsigned PredNo = MatcherTable[MatcherIndex++]; 3030 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3031 break; 3032 continue; 3033 } 3034 case OPC_CheckComplexPat: { 3035 unsigned CPNum = MatcherTable[MatcherIndex++]; 3036 unsigned RecNo = MatcherTable[MatcherIndex++]; 3037 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3038 3039 // If target can modify DAG during matching, keep the matching state 3040 // consistent. 3041 std::unique_ptr<MatchStateUpdater> MSU; 3042 if (ComplexPatternFuncMutatesDAG()) 3043 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3044 MatchScopes)); 3045 3046 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3047 RecordedNodes[RecNo].first, CPNum, 3048 RecordedNodes)) 3049 break; 3050 continue; 3051 } 3052 case OPC_CheckOpcode: 3053 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3054 continue; 3055 3056 case OPC_CheckType: 3057 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3058 CurDAG->getDataLayout())) 3059 break; 3060 continue; 3061 3062 case OPC_CheckTypeRes: { 3063 unsigned Res = MatcherTable[MatcherIndex++]; 3064 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3065 CurDAG->getDataLayout())) 3066 break; 3067 continue; 3068 } 3069 3070 case OPC_SwitchOpcode: { 3071 unsigned CurNodeOpcode = N.getOpcode(); 3072 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3073 unsigned CaseSize; 3074 while (true) { 3075 // Get the size of this case. 3076 CaseSize = MatcherTable[MatcherIndex++]; 3077 if (CaseSize & 128) 3078 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3079 if (CaseSize == 0) break; 3080 3081 uint16_t Opc = MatcherTable[MatcherIndex++]; 3082 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3083 3084 // If the opcode matches, then we will execute this case. 3085 if (CurNodeOpcode == Opc) 3086 break; 3087 3088 // Otherwise, skip over this case. 3089 MatcherIndex += CaseSize; 3090 } 3091 3092 // If no cases matched, bail out. 3093 if (CaseSize == 0) break; 3094 3095 // Otherwise, execute the case we found. 3096 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3097 << MatcherIndex << "\n"); 3098 continue; 3099 } 3100 3101 case OPC_SwitchType: { 3102 MVT CurNodeVT = N.getSimpleValueType(); 3103 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3104 unsigned CaseSize; 3105 while (true) { 3106 // Get the size of this case. 3107 CaseSize = MatcherTable[MatcherIndex++]; 3108 if (CaseSize & 128) 3109 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3110 if (CaseSize == 0) break; 3111 3112 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3113 if (CaseVT == MVT::iPTR) 3114 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3115 3116 // If the VT matches, then we will execute this case. 3117 if (CurNodeVT == CaseVT) 3118 break; 3119 3120 // Otherwise, skip over this case. 3121 MatcherIndex += CaseSize; 3122 } 3123 3124 // If no cases matched, bail out. 3125 if (CaseSize == 0) break; 3126 3127 // Otherwise, execute the case we found. 3128 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3129 << "] from " << SwitchStart << " to " << MatcherIndex 3130 << '\n'); 3131 continue; 3132 } 3133 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3134 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3135 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3136 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3137 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3138 CurDAG->getDataLayout(), 3139 Opcode - OPC_CheckChild0Type)) 3140 break; 3141 continue; 3142 case OPC_CheckCondCode: 3143 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3144 continue; 3145 case OPC_CheckChild2CondCode: 3146 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3147 continue; 3148 case OPC_CheckValueType: 3149 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3150 CurDAG->getDataLayout())) 3151 break; 3152 continue; 3153 case OPC_CheckInteger: 3154 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3155 continue; 3156 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3157 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3158 case OPC_CheckChild4Integer: 3159 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3160 Opcode-OPC_CheckChild0Integer)) break; 3161 continue; 3162 case OPC_CheckAndImm: 3163 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3164 continue; 3165 case OPC_CheckOrImm: 3166 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3167 continue; 3168 case OPC_CheckImmAllOnesV: 3169 if (!ISD::isBuildVectorAllOnes(N.getNode())) break; 3170 continue; 3171 case OPC_CheckImmAllZerosV: 3172 if (!ISD::isBuildVectorAllZeros(N.getNode())) break; 3173 continue; 3174 3175 case OPC_CheckFoldableChainNode: { 3176 assert(NodeStack.size() != 1 && "No parent node"); 3177 // Verify that all intermediate nodes between the root and this one have 3178 // a single use. 3179 bool HasMultipleUses = false; 3180 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 3181 if (!NodeStack[i].getNode()->hasOneUse()) { 3182 HasMultipleUses = true; 3183 break; 3184 } 3185 if (HasMultipleUses) break; 3186 3187 // Check to see that the target thinks this is profitable to fold and that 3188 // we can fold it without inducing cycles in the graph. 3189 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3190 NodeToMatch) || 3191 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3192 NodeToMatch, OptLevel, 3193 true/*We validate our own chains*/)) 3194 break; 3195 3196 continue; 3197 } 3198 case OPC_EmitInteger: { 3199 MVT::SimpleValueType VT = 3200 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3201 int64_t Val = MatcherTable[MatcherIndex++]; 3202 if (Val & 128) 3203 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3204 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3205 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3206 VT), nullptr)); 3207 continue; 3208 } 3209 case OPC_EmitRegister: { 3210 MVT::SimpleValueType VT = 3211 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3212 unsigned RegNo = MatcherTable[MatcherIndex++]; 3213 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3214 CurDAG->getRegister(RegNo, VT), nullptr)); 3215 continue; 3216 } 3217 case OPC_EmitRegister2: { 3218 // For targets w/ more than 256 register names, the register enum 3219 // values are stored in two bytes in the matcher table (just like 3220 // opcodes). 3221 MVT::SimpleValueType VT = 3222 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3223 unsigned RegNo = MatcherTable[MatcherIndex++]; 3224 RegNo |= MatcherTable[MatcherIndex++] << 8; 3225 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3226 CurDAG->getRegister(RegNo, VT), nullptr)); 3227 continue; 3228 } 3229 3230 case OPC_EmitConvertToTarget: { 3231 // Convert from IMM/FPIMM to target version. 3232 unsigned RecNo = MatcherTable[MatcherIndex++]; 3233 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3234 SDValue Imm = RecordedNodes[RecNo].first; 3235 3236 if (Imm->getOpcode() == ISD::Constant) { 3237 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3238 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3239 Imm.getValueType()); 3240 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3241 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3242 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3243 Imm.getValueType()); 3244 } 3245 3246 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3247 continue; 3248 } 3249 3250 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3251 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3252 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3253 // These are space-optimized forms of OPC_EmitMergeInputChains. 3254 assert(!InputChain.getNode() && 3255 "EmitMergeInputChains should be the first chain producing node"); 3256 assert(ChainNodesMatched.empty() && 3257 "Should only have one EmitMergeInputChains per match"); 3258 3259 // Read all of the chained nodes. 3260 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3261 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3262 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3263 3264 // FIXME: What if other value results of the node have uses not matched 3265 // by this pattern? 3266 if (ChainNodesMatched.back() != NodeToMatch && 3267 !RecordedNodes[RecNo].first.hasOneUse()) { 3268 ChainNodesMatched.clear(); 3269 break; 3270 } 3271 3272 // Merge the input chains if they are not intra-pattern references. 3273 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3274 3275 if (!InputChain.getNode()) 3276 break; // Failed to merge. 3277 continue; 3278 } 3279 3280 case OPC_EmitMergeInputChains: { 3281 assert(!InputChain.getNode() && 3282 "EmitMergeInputChains should be the first chain producing node"); 3283 // This node gets a list of nodes we matched in the input that have 3284 // chains. We want to token factor all of the input chains to these nodes 3285 // together. However, if any of the input chains is actually one of the 3286 // nodes matched in this pattern, then we have an intra-match reference. 3287 // Ignore these because the newly token factored chain should not refer to 3288 // the old nodes. 3289 unsigned NumChains = MatcherTable[MatcherIndex++]; 3290 assert(NumChains != 0 && "Can't TF zero chains"); 3291 3292 assert(ChainNodesMatched.empty() && 3293 "Should only have one EmitMergeInputChains per match"); 3294 3295 // Read all of the chained nodes. 3296 for (unsigned i = 0; i != NumChains; ++i) { 3297 unsigned RecNo = MatcherTable[MatcherIndex++]; 3298 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3299 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3300 3301 // FIXME: What if other value results of the node have uses not matched 3302 // by this pattern? 3303 if (ChainNodesMatched.back() != NodeToMatch && 3304 !RecordedNodes[RecNo].first.hasOneUse()) { 3305 ChainNodesMatched.clear(); 3306 break; 3307 } 3308 } 3309 3310 // If the inner loop broke out, the match fails. 3311 if (ChainNodesMatched.empty()) 3312 break; 3313 3314 // Merge the input chains if they are not intra-pattern references. 3315 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3316 3317 if (!InputChain.getNode()) 3318 break; // Failed to merge. 3319 3320 continue; 3321 } 3322 3323 case OPC_EmitCopyToReg: 3324 case OPC_EmitCopyToReg2: { 3325 unsigned RecNo = MatcherTable[MatcherIndex++]; 3326 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3327 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3328 if (Opcode == OPC_EmitCopyToReg2) 3329 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3330 3331 if (!InputChain.getNode()) 3332 InputChain = CurDAG->getEntryNode(); 3333 3334 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3335 DestPhysReg, RecordedNodes[RecNo].first, 3336 InputGlue); 3337 3338 InputGlue = InputChain.getValue(1); 3339 continue; 3340 } 3341 3342 case OPC_EmitNodeXForm: { 3343 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3344 unsigned RecNo = MatcherTable[MatcherIndex++]; 3345 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3346 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3347 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3348 continue; 3349 } 3350 case OPC_Coverage: { 3351 // This is emitted right before MorphNode/EmitNode. 3352 // So it should be safe to assume that this node has been selected 3353 unsigned index = MatcherTable[MatcherIndex++]; 3354 index |= (MatcherTable[MatcherIndex++] << 8); 3355 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3356 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3357 continue; 3358 } 3359 3360 case OPC_EmitNode: case OPC_MorphNodeTo: 3361 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3362 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3363 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3364 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3365 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3366 // Get the result VT list. 3367 unsigned NumVTs; 3368 // If this is one of the compressed forms, get the number of VTs based 3369 // on the Opcode. Otherwise read the next byte from the table. 3370 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3371 NumVTs = Opcode - OPC_MorphNodeTo0; 3372 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3373 NumVTs = Opcode - OPC_EmitNode0; 3374 else 3375 NumVTs = MatcherTable[MatcherIndex++]; 3376 SmallVector<EVT, 4> VTs; 3377 for (unsigned i = 0; i != NumVTs; ++i) { 3378 MVT::SimpleValueType VT = 3379 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3380 if (VT == MVT::iPTR) 3381 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3382 VTs.push_back(VT); 3383 } 3384 3385 if (EmitNodeInfo & OPFL_Chain) 3386 VTs.push_back(MVT::Other); 3387 if (EmitNodeInfo & OPFL_GlueOutput) 3388 VTs.push_back(MVT::Glue); 3389 3390 // This is hot code, so optimize the two most common cases of 1 and 2 3391 // results. 3392 SDVTList VTList; 3393 if (VTs.size() == 1) 3394 VTList = CurDAG->getVTList(VTs[0]); 3395 else if (VTs.size() == 2) 3396 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3397 else 3398 VTList = CurDAG->getVTList(VTs); 3399 3400 // Get the operand list. 3401 unsigned NumOps = MatcherTable[MatcherIndex++]; 3402 SmallVector<SDValue, 8> Ops; 3403 for (unsigned i = 0; i != NumOps; ++i) { 3404 unsigned RecNo = MatcherTable[MatcherIndex++]; 3405 if (RecNo & 128) 3406 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3407 3408 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3409 Ops.push_back(RecordedNodes[RecNo].first); 3410 } 3411 3412 // If there are variadic operands to add, handle them now. 3413 if (EmitNodeInfo & OPFL_VariadicInfo) { 3414 // Determine the start index to copy from. 3415 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3416 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3417 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3418 "Invalid variadic node"); 3419 // Copy all of the variadic operands, not including a potential glue 3420 // input. 3421 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3422 i != e; ++i) { 3423 SDValue V = NodeToMatch->getOperand(i); 3424 if (V.getValueType() == MVT::Glue) break; 3425 Ops.push_back(V); 3426 } 3427 } 3428 3429 // If this has chain/glue inputs, add them. 3430 if (EmitNodeInfo & OPFL_Chain) 3431 Ops.push_back(InputChain); 3432 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3433 Ops.push_back(InputGlue); 3434 3435 // Create the node. 3436 MachineSDNode *Res = nullptr; 3437 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3438 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3439 if (!IsMorphNodeTo) { 3440 // If this is a normal EmitNode command, just create the new node and 3441 // add the results to the RecordedNodes list. 3442 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3443 VTList, Ops); 3444 3445 // Add all the non-glue/non-chain results to the RecordedNodes list. 3446 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3447 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3448 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3449 nullptr)); 3450 } 3451 } else { 3452 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3453 "NodeToMatch was removed partway through selection"); 3454 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3455 SDNode *E) { 3456 CurDAG->salvageDebugInfo(*N); 3457 auto &Chain = ChainNodesMatched; 3458 assert((!E || !is_contained(Chain, N)) && 3459 "Chain node replaced during MorphNode"); 3460 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); 3461 }); 3462 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3463 Ops, EmitNodeInfo)); 3464 } 3465 3466 // If the node had chain/glue results, update our notion of the current 3467 // chain and glue. 3468 if (EmitNodeInfo & OPFL_GlueOutput) { 3469 InputGlue = SDValue(Res, VTs.size()-1); 3470 if (EmitNodeInfo & OPFL_Chain) 3471 InputChain = SDValue(Res, VTs.size()-2); 3472 } else if (EmitNodeInfo & OPFL_Chain) 3473 InputChain = SDValue(Res, VTs.size()-1); 3474 3475 // If the OPFL_MemRefs glue is set on this node, slap all of the 3476 // accumulated memrefs onto it. 3477 // 3478 // FIXME: This is vastly incorrect for patterns with multiple outputs 3479 // instructions that access memory and for ComplexPatterns that match 3480 // loads. 3481 if (EmitNodeInfo & OPFL_MemRefs) { 3482 // Only attach load or store memory operands if the generated 3483 // instruction may load or store. 3484 const MCInstrDesc &MCID = TII->get(TargetOpc); 3485 bool mayLoad = MCID.mayLoad(); 3486 bool mayStore = MCID.mayStore(); 3487 3488 // We expect to have relatively few of these so just filter them into a 3489 // temporary buffer so that we can easily add them to the instruction. 3490 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3491 for (MachineMemOperand *MMO : MatchedMemRefs) { 3492 if (MMO->isLoad()) { 3493 if (mayLoad) 3494 FilteredMemRefs.push_back(MMO); 3495 } else if (MMO->isStore()) { 3496 if (mayStore) 3497 FilteredMemRefs.push_back(MMO); 3498 } else { 3499 FilteredMemRefs.push_back(MMO); 3500 } 3501 } 3502 3503 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3504 } 3505 3506 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3507 << " Dropping mem operands\n"; 3508 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3509 << " node: "; 3510 Res->dump(CurDAG);); 3511 3512 // If this was a MorphNodeTo then we're completely done! 3513 if (IsMorphNodeTo) { 3514 // Update chain uses. 3515 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3516 return; 3517 } 3518 continue; 3519 } 3520 3521 case OPC_CompleteMatch: { 3522 // The match has been completed, and any new nodes (if any) have been 3523 // created. Patch up references to the matched dag to use the newly 3524 // created nodes. 3525 unsigned NumResults = MatcherTable[MatcherIndex++]; 3526 3527 for (unsigned i = 0; i != NumResults; ++i) { 3528 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3529 if (ResSlot & 128) 3530 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3531 3532 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3533 SDValue Res = RecordedNodes[ResSlot].first; 3534 3535 assert(i < NodeToMatch->getNumValues() && 3536 NodeToMatch->getValueType(i) != MVT::Other && 3537 NodeToMatch->getValueType(i) != MVT::Glue && 3538 "Invalid number of results to complete!"); 3539 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3540 NodeToMatch->getValueType(i) == MVT::iPTR || 3541 Res.getValueType() == MVT::iPTR || 3542 NodeToMatch->getValueType(i).getSizeInBits() == 3543 Res.getValueSizeInBits()) && 3544 "invalid replacement"); 3545 ReplaceUses(SDValue(NodeToMatch, i), Res); 3546 } 3547 3548 // Update chain uses. 3549 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3550 3551 // If the root node defines glue, we need to update it to the glue result. 3552 // TODO: This never happens in our tests and I think it can be removed / 3553 // replaced with an assert, but if we do it this the way the change is 3554 // NFC. 3555 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3556 MVT::Glue && 3557 InputGlue.getNode()) 3558 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3559 InputGlue); 3560 3561 assert(NodeToMatch->use_empty() && 3562 "Didn't replace all uses of the node?"); 3563 CurDAG->RemoveDeadNode(NodeToMatch); 3564 3565 return; 3566 } 3567 } 3568 3569 // If the code reached this point, then the match failed. See if there is 3570 // another child to try in the current 'Scope', otherwise pop it until we 3571 // find a case to check. 3572 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3573 << "\n"); 3574 ++NumDAGIselRetries; 3575 while (true) { 3576 if (MatchScopes.empty()) { 3577 CannotYetSelect(NodeToMatch); 3578 return; 3579 } 3580 3581 // Restore the interpreter state back to the point where the scope was 3582 // formed. 3583 MatchScope &LastScope = MatchScopes.back(); 3584 RecordedNodes.resize(LastScope.NumRecordedNodes); 3585 NodeStack.clear(); 3586 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3587 N = NodeStack.back(); 3588 3589 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3590 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3591 MatcherIndex = LastScope.FailIndex; 3592 3593 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3594 3595 InputChain = LastScope.InputChain; 3596 InputGlue = LastScope.InputGlue; 3597 if (!LastScope.HasChainNodesMatched) 3598 ChainNodesMatched.clear(); 3599 3600 // Check to see what the offset is at the new MatcherIndex. If it is zero 3601 // we have reached the end of this scope, otherwise we have another child 3602 // in the current scope to try. 3603 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3604 if (NumToSkip & 128) 3605 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3606 3607 // If we have another child in this scope to match, update FailIndex and 3608 // try it. 3609 if (NumToSkip != 0) { 3610 LastScope.FailIndex = MatcherIndex+NumToSkip; 3611 break; 3612 } 3613 3614 // End of this scope, pop it and try the next child in the containing 3615 // scope. 3616 MatchScopes.pop_back(); 3617 } 3618 } 3619 } 3620 3621 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3622 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3623 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3624 if (!C) 3625 return false; 3626 3627 // Detect when "or" is used to add an offset to a stack object. 3628 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3629 MachineFrameInfo &MFI = MF->getFrameInfo(); 3630 unsigned A = MFI.getObjectAlignment(FN->getIndex()); 3631 assert(isPowerOf2_32(A) && "Unexpected alignment"); 3632 int32_t Off = C->getSExtValue(); 3633 // If the alleged offset fits in the zero bits guaranteed by 3634 // the alignment, then this or is really an add. 3635 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off)); 3636 } 3637 return false; 3638 } 3639 3640 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3641 std::string msg; 3642 raw_string_ostream Msg(msg); 3643 Msg << "Cannot select: "; 3644 3645 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3646 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3647 N->getOpcode() != ISD::INTRINSIC_VOID) { 3648 N->printrFull(Msg, CurDAG); 3649 Msg << "\nIn function: " << MF->getName(); 3650 } else { 3651 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3652 unsigned iid = 3653 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3654 if (iid < Intrinsic::num_intrinsics) 3655 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); 3656 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3657 Msg << "target intrinsic %" << TII->getName(iid); 3658 else 3659 Msg << "unknown intrinsic #" << iid; 3660 } 3661 report_fatal_error(Msg.str()); 3662 } 3663 3664 char SelectionDAGISel::ID = 0; 3665