1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAGISel class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "ScheduleDAGSDNodes.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 35 #include "llvm/CodeGen/SchedulerRegistry.h" 36 #include "llvm/CodeGen/SelectionDAGISel.h" 37 #include "llvm/CodeGen/StackProtector.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfo.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/Timer.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetIntrinsicInfo.h" 56 #include "llvm/Target/TargetLowering.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include "llvm/Target/TargetOptions.h" 59 #include "llvm/Target/TargetRegisterInfo.h" 60 #include "llvm/Target/TargetSubtargetInfo.h" 61 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 62 #include <algorithm> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "isel" 67 68 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 69 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 70 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 71 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 72 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 73 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 74 STATISTIC(NumFastIselFailLowerArguments, 75 "Number of entry blocks where fast isel failed to lower arguments"); 76 77 #ifndef NDEBUG 78 static cl::opt<bool> 79 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden, 80 cl::desc("Enable extra verbose messages in the \"fast\" " 81 "instruction selector")); 82 83 // Terminators 84 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret"); 85 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br"); 86 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch"); 87 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr"); 88 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke"); 89 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume"); 90 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable"); 91 92 // Standard binary operators... 93 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add"); 94 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd"); 95 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub"); 96 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub"); 97 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul"); 98 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul"); 99 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv"); 100 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv"); 101 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv"); 102 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem"); 103 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem"); 104 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem"); 105 106 // Logical operators... 107 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And"); 108 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or"); 109 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor"); 110 111 // Memory instructions... 112 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca"); 113 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load"); 114 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store"); 115 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg"); 116 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM"); 117 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence"); 118 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr"); 119 120 // Convert instructions... 121 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc"); 122 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt"); 123 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt"); 124 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc"); 125 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt"); 126 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI"); 127 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI"); 128 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP"); 129 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP"); 130 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr"); 131 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt"); 132 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast"); 133 134 // Other instructions... 135 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp"); 136 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp"); 137 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI"); 138 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select"); 139 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call"); 140 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl"); 141 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr"); 142 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr"); 143 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg"); 144 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement"); 145 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement"); 146 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector"); 147 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue"); 148 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue"); 149 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad"); 150 151 // Intrinsic instructions... 152 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call"); 153 STATISTIC(NumFastIselFailSAddWithOverflow, 154 "Fast isel fails on sadd.with.overflow"); 155 STATISTIC(NumFastIselFailUAddWithOverflow, 156 "Fast isel fails on uadd.with.overflow"); 157 STATISTIC(NumFastIselFailSSubWithOverflow, 158 "Fast isel fails on ssub.with.overflow"); 159 STATISTIC(NumFastIselFailUSubWithOverflow, 160 "Fast isel fails on usub.with.overflow"); 161 STATISTIC(NumFastIselFailSMulWithOverflow, 162 "Fast isel fails on smul.with.overflow"); 163 STATISTIC(NumFastIselFailUMulWithOverflow, 164 "Fast isel fails on umul.with.overflow"); 165 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress"); 166 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call"); 167 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call"); 168 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call"); 169 #endif 170 171 static cl::opt<bool> 172 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, 173 cl::desc("Enable verbose messages in the \"fast\" " 174 "instruction selector")); 175 static cl::opt<int> EnableFastISelAbort( 176 "fast-isel-abort", cl::Hidden, 177 cl::desc("Enable abort calls when \"fast\" instruction selection " 178 "fails to lower an instruction: 0 disable the abort, 1 will " 179 "abort but for args, calls and terminators, 2 will also " 180 "abort for argument lowering, and 3 will never fallback " 181 "to SelectionDAG.")); 182 183 static cl::opt<bool> 184 UseMBPI("use-mbpi", 185 cl::desc("use Machine Branch Probability Info"), 186 cl::init(true), cl::Hidden); 187 188 #ifndef NDEBUG 189 static cl::opt<std::string> 190 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 191 cl::desc("Only display the basic block whose name " 192 "matches this for all view-*-dags options")); 193 static cl::opt<bool> 194 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 195 cl::desc("Pop up a window to show dags before the first " 196 "dag combine pass")); 197 static cl::opt<bool> 198 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 199 cl::desc("Pop up a window to show dags before legalize types")); 200 static cl::opt<bool> 201 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 202 cl::desc("Pop up a window to show dags before legalize")); 203 static cl::opt<bool> 204 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 205 cl::desc("Pop up a window to show dags before the second " 206 "dag combine pass")); 207 static cl::opt<bool> 208 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 209 cl::desc("Pop up a window to show dags before the post legalize types" 210 " dag combine pass")); 211 static cl::opt<bool> 212 ViewISelDAGs("view-isel-dags", cl::Hidden, 213 cl::desc("Pop up a window to show isel dags as they are selected")); 214 static cl::opt<bool> 215 ViewSchedDAGs("view-sched-dags", cl::Hidden, 216 cl::desc("Pop up a window to show sched dags as they are processed")); 217 static cl::opt<bool> 218 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 219 cl::desc("Pop up a window to show SUnit dags after they are processed")); 220 #else 221 static const bool ViewDAGCombine1 = false, 222 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 223 ViewDAGCombine2 = false, 224 ViewDAGCombineLT = false, 225 ViewISelDAGs = false, ViewSchedDAGs = false, 226 ViewSUnitDAGs = false; 227 #endif 228 229 //===---------------------------------------------------------------------===// 230 /// 231 /// RegisterScheduler class - Track the registration of instruction schedulers. 232 /// 233 //===---------------------------------------------------------------------===// 234 MachinePassRegistry RegisterScheduler::Registry; 235 236 //===---------------------------------------------------------------------===// 237 /// 238 /// ISHeuristic command line option for instruction schedulers. 239 /// 240 //===---------------------------------------------------------------------===// 241 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 242 RegisterPassParser<RegisterScheduler> > 243 ISHeuristic("pre-RA-sched", 244 cl::init(&createDefaultScheduler), cl::Hidden, 245 cl::desc("Instruction schedulers available (before register" 246 " allocation):")); 247 248 static RegisterScheduler 249 defaultListDAGScheduler("default", "Best scheduler for the target", 250 createDefaultScheduler); 251 252 namespace llvm { 253 //===--------------------------------------------------------------------===// 254 /// \brief This class is used by SelectionDAGISel to temporarily override 255 /// the optimization level on a per-function basis. 256 class OptLevelChanger { 257 SelectionDAGISel &IS; 258 CodeGenOpt::Level SavedOptLevel; 259 bool SavedFastISel; 260 261 public: 262 OptLevelChanger(SelectionDAGISel &ISel, 263 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 264 SavedOptLevel = IS.OptLevel; 265 if (NewOptLevel == SavedOptLevel) 266 return; 267 IS.OptLevel = NewOptLevel; 268 IS.TM.setOptLevel(NewOptLevel); 269 DEBUG(dbgs() << "\nChanging optimization level for Function " 270 << IS.MF->getFunction()->getName() << "\n"); 271 DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel 272 << " ; After: -O" << NewOptLevel << "\n"); 273 SavedFastISel = IS.TM.Options.EnableFastISel; 274 if (NewOptLevel == CodeGenOpt::None) { 275 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 276 DEBUG(dbgs() << "\tFastISel is " 277 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 278 << "\n"); 279 } 280 } 281 282 ~OptLevelChanger() { 283 if (IS.OptLevel == SavedOptLevel) 284 return; 285 DEBUG(dbgs() << "\nRestoring optimization level for Function " 286 << IS.MF->getFunction()->getName() << "\n"); 287 DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel 288 << " ; After: -O" << SavedOptLevel << "\n"); 289 IS.OptLevel = SavedOptLevel; 290 IS.TM.setOptLevel(SavedOptLevel); 291 IS.TM.setFastISel(SavedFastISel); 292 } 293 }; 294 295 //===--------------------------------------------------------------------===// 296 /// createDefaultScheduler - This creates an instruction scheduler appropriate 297 /// for the target. 298 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 299 CodeGenOpt::Level OptLevel) { 300 const TargetLowering *TLI = IS->TLI; 301 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 302 303 // Try first to see if the Target has its own way of selecting a scheduler 304 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 305 return SchedulerCtor(IS, OptLevel); 306 } 307 308 if (OptLevel == CodeGenOpt::None || 309 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 310 TLI->getSchedulingPreference() == Sched::Source) 311 return createSourceListDAGScheduler(IS, OptLevel); 312 if (TLI->getSchedulingPreference() == Sched::RegPressure) 313 return createBURRListDAGScheduler(IS, OptLevel); 314 if (TLI->getSchedulingPreference() == Sched::Hybrid) 315 return createHybridListDAGScheduler(IS, OptLevel); 316 if (TLI->getSchedulingPreference() == Sched::VLIW) 317 return createVLIWDAGScheduler(IS, OptLevel); 318 assert(TLI->getSchedulingPreference() == Sched::ILP && 319 "Unknown sched type!"); 320 return createILPListDAGScheduler(IS, OptLevel); 321 } 322 } // end namespace llvm 323 324 // EmitInstrWithCustomInserter - This method should be implemented by targets 325 // that mark instructions with the 'usesCustomInserter' flag. These 326 // instructions are special in various ways, which require special support to 327 // insert. The specified MachineInstr is created but not inserted into any 328 // basic blocks, and this method is called to expand it into a sequence of 329 // instructions, potentially also creating new basic blocks and control flow. 330 // When new basic blocks are inserted and the edges from MBB to its successors 331 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 332 // DenseMap. 333 MachineBasicBlock * 334 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 335 MachineBasicBlock *MBB) const { 336 #ifndef NDEBUG 337 dbgs() << "If a target marks an instruction with " 338 "'usesCustomInserter', it must implement " 339 "TargetLowering::EmitInstrWithCustomInserter!"; 340 #endif 341 llvm_unreachable(nullptr); 342 } 343 344 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 345 SDNode *Node) const { 346 assert(!MI->hasPostISelHook() && 347 "If a target marks an instruction with 'hasPostISelHook', " 348 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 349 } 350 351 //===----------------------------------------------------------------------===// 352 // SelectionDAGISel code 353 //===----------------------------------------------------------------------===// 354 355 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 356 CodeGenOpt::Level OL) : 357 MachineFunctionPass(ID), TM(tm), 358 FuncInfo(new FunctionLoweringInfo()), 359 CurDAG(new SelectionDAG(tm, OL)), 360 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), 361 GFI(), 362 OptLevel(OL), 363 DAGSize(0) { 364 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 365 initializeBranchProbabilityInfoWrapperPassPass( 366 *PassRegistry::getPassRegistry()); 367 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 368 initializeTargetLibraryInfoWrapperPassPass( 369 *PassRegistry::getPassRegistry()); 370 } 371 372 SelectionDAGISel::~SelectionDAGISel() { 373 delete SDB; 374 delete CurDAG; 375 delete FuncInfo; 376 } 377 378 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 379 AU.addRequired<AAResultsWrapperPass>(); 380 AU.addRequired<GCModuleInfo>(); 381 AU.addRequired<StackProtector>(); 382 AU.addPreserved<StackProtector>(); 383 AU.addPreserved<GCModuleInfo>(); 384 AU.addRequired<TargetLibraryInfoWrapperPass>(); 385 if (UseMBPI && OptLevel != CodeGenOpt::None) 386 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 387 MachineFunctionPass::getAnalysisUsage(AU); 388 } 389 390 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 391 /// may trap on it. In this case we have to split the edge so that the path 392 /// through the predecessor block that doesn't go to the phi block doesn't 393 /// execute the possibly trapping instruction. 394 /// 395 /// This is required for correctness, so it must be done at -O0. 396 /// 397 static void SplitCriticalSideEffectEdges(Function &Fn) { 398 // Loop for blocks with phi nodes. 399 for (BasicBlock &BB : Fn) { 400 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 401 if (!PN) continue; 402 403 ReprocessBlock: 404 // For each block with a PHI node, check to see if any of the input values 405 // are potentially trapping constant expressions. Constant expressions are 406 // the only potentially trapping value that can occur as the argument to a 407 // PHI. 408 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 409 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 410 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 411 if (!CE || !CE->canTrap()) continue; 412 413 // The only case we have to worry about is when the edge is critical. 414 // Since this block has a PHI Node, we assume it has multiple input 415 // edges: check to see if the pred has multiple successors. 416 BasicBlock *Pred = PN->getIncomingBlock(i); 417 if (Pred->getTerminator()->getNumSuccessors() == 1) 418 continue; 419 420 // Okay, we have to split this edge. 421 SplitCriticalEdge( 422 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 423 CriticalEdgeSplittingOptions().setMergeIdenticalEdges()); 424 goto ReprocessBlock; 425 } 426 } 427 } 428 429 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 430 // Do some sanity-checking on the command-line options. 431 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) && 432 "-fast-isel-verbose requires -fast-isel"); 433 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 434 "-fast-isel-abort > 0 requires -fast-isel"); 435 436 const Function &Fn = *mf.getFunction(); 437 MF = &mf; 438 439 // Reset the target options before resetting the optimization 440 // level below. 441 // FIXME: This is a horrible hack and should be processed via 442 // codegen looking at the optimization level explicitly when 443 // it wants to look at it. 444 TM.resetTargetOptions(Fn); 445 // Reset OptLevel to None for optnone functions. 446 CodeGenOpt::Level NewOptLevel = OptLevel; 447 if (Fn.hasFnAttribute(Attribute::OptimizeNone)) 448 NewOptLevel = CodeGenOpt::None; 449 OptLevelChanger OLC(*this, NewOptLevel); 450 451 TII = MF->getSubtarget().getInstrInfo(); 452 TLI = MF->getSubtarget().getTargetLowering(); 453 RegInfo = &MF->getRegInfo(); 454 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 455 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 456 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 457 458 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 459 460 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn)); 461 462 CurDAG->init(*MF); 463 FuncInfo->set(Fn, *MF, CurDAG); 464 465 if (UseMBPI && OptLevel != CodeGenOpt::None) 466 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 467 else 468 FuncInfo->BPI = nullptr; 469 470 SDB->init(GFI, *AA, LibInfo); 471 472 MF->setHasInlineAsm(false); 473 474 FuncInfo->SplitCSR = false; 475 476 // We split CSR if the target supports it for the given function 477 // and the function has only return exits. 478 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 479 FuncInfo->SplitCSR = true; 480 481 // Collect all the return blocks. 482 for (const BasicBlock &BB : Fn) { 483 if (!succ_empty(&BB)) 484 continue; 485 486 const TerminatorInst *Term = BB.getTerminator(); 487 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 488 continue; 489 490 // Bail out if the exit block is not Return nor Unreachable. 491 FuncInfo->SplitCSR = false; 492 break; 493 } 494 } 495 496 MachineBasicBlock *EntryMBB = &MF->front(); 497 if (FuncInfo->SplitCSR) 498 // This performs initialization so lowering for SplitCSR will be correct. 499 TLI->initializeSplitCSR(EntryMBB); 500 501 SelectAllBasicBlocks(Fn); 502 503 // If the first basic block in the function has live ins that need to be 504 // copied into vregs, emit the copies into the top of the block before 505 // emitting the code for the block. 506 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 507 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 508 509 // Insert copies in the entry block and the return blocks. 510 if (FuncInfo->SplitCSR) { 511 SmallVector<MachineBasicBlock*, 4> Returns; 512 // Collect all the return blocks. 513 for (MachineBasicBlock &MBB : mf) { 514 if (!MBB.succ_empty()) 515 continue; 516 517 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 518 if (Term != MBB.end() && Term->isReturn()) { 519 Returns.push_back(&MBB); 520 continue; 521 } 522 } 523 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 524 } 525 526 DenseMap<unsigned, unsigned> LiveInMap; 527 if (!FuncInfo->ArgDbgValues.empty()) 528 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), 529 E = RegInfo->livein_end(); LI != E; ++LI) 530 if (LI->second) 531 LiveInMap.insert(std::make_pair(LI->first, LI->second)); 532 533 // Insert DBG_VALUE instructions for function arguments to the entry block. 534 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 535 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 536 bool hasFI = MI->getOperand(0).isFI(); 537 unsigned Reg = 538 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 539 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 540 EntryMBB->insert(EntryMBB->begin(), MI); 541 else { 542 MachineInstr *Def = RegInfo->getVRegDef(Reg); 543 if (Def) { 544 MachineBasicBlock::iterator InsertPos = Def; 545 // FIXME: VR def may not be in entry block. 546 Def->getParent()->insert(std::next(InsertPos), MI); 547 } else 548 DEBUG(dbgs() << "Dropping debug info for dead vreg" 549 << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); 550 } 551 552 // If Reg is live-in then update debug info to track its copy in a vreg. 553 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 554 if (LDI != LiveInMap.end()) { 555 assert(!hasFI && "There's no handling of frame pointer updating here yet " 556 "- add if needed"); 557 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 558 MachineBasicBlock::iterator InsertPos = Def; 559 const MDNode *Variable = MI->getDebugVariable(); 560 const MDNode *Expr = MI->getDebugExpression(); 561 DebugLoc DL = MI->getDebugLoc(); 562 bool IsIndirect = MI->isIndirectDebugValue(); 563 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 564 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 565 "Expected inlined-at fields to agree"); 566 // Def is never a terminator here, so it is ok to increment InsertPos. 567 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 568 IsIndirect, LDI->second, Offset, Variable, Expr); 569 570 // If this vreg is directly copied into an exported register then 571 // that COPY instructions also need DBG_VALUE, if it is the only 572 // user of LDI->second. 573 MachineInstr *CopyUseMI = nullptr; 574 for (MachineRegisterInfo::use_instr_iterator 575 UI = RegInfo->use_instr_begin(LDI->second), 576 E = RegInfo->use_instr_end(); UI != E; ) { 577 MachineInstr *UseMI = &*(UI++); 578 if (UseMI->isDebugValue()) continue; 579 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 580 CopyUseMI = UseMI; continue; 581 } 582 // Otherwise this is another use or second copy use. 583 CopyUseMI = nullptr; break; 584 } 585 if (CopyUseMI) { 586 // Use MI's debug location, which describes where Variable was 587 // declared, rather than whatever is attached to CopyUseMI. 588 MachineInstr *NewMI = 589 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 590 CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr); 591 MachineBasicBlock::iterator Pos = CopyUseMI; 592 EntryMBB->insertAfter(Pos, NewMI); 593 } 594 } 595 } 596 597 // Determine if there are any calls in this machine function. 598 MachineFrameInfo *MFI = MF->getFrameInfo(); 599 for (const auto &MBB : *MF) { 600 if (MFI->hasCalls() && MF->hasInlineAsm()) 601 break; 602 603 for (const auto &MI : MBB) { 604 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 605 if ((MCID.isCall() && !MCID.isReturn()) || 606 MI.isStackAligningInlineAsm()) { 607 MFI->setHasCalls(true); 608 } 609 if (MI.isInlineAsm()) { 610 MF->setHasInlineAsm(true); 611 } 612 } 613 } 614 615 // Determine if there is a call to setjmp in the machine function. 616 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 617 618 // Replace forward-declared registers with the registers containing 619 // the desired value. 620 MachineRegisterInfo &MRI = MF->getRegInfo(); 621 for (DenseMap<unsigned, unsigned>::iterator 622 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 623 I != E; ++I) { 624 unsigned From = I->first; 625 unsigned To = I->second; 626 // If To is also scheduled to be replaced, find what its ultimate 627 // replacement is. 628 for (;;) { 629 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 630 if (J == E) break; 631 To = J->second; 632 } 633 // Make sure the new register has a sufficiently constrained register class. 634 if (TargetRegisterInfo::isVirtualRegister(From) && 635 TargetRegisterInfo::isVirtualRegister(To)) 636 MRI.constrainRegClass(To, MRI.getRegClass(From)); 637 // Replace it. 638 639 640 // Replacing one register with another won't touch the kill flags. 641 // We need to conservatively clear the kill flags as a kill on the old 642 // register might dominate existing uses of the new register. 643 if (!MRI.use_empty(To)) 644 MRI.clearKillFlags(From); 645 MRI.replaceRegWith(From, To); 646 } 647 648 if (TLI->hasCopyImplyingStackAdjustment(MF)) 649 MFI->setHasCopyImplyingStackAdjustment(true); 650 651 // Freeze the set of reserved registers now that MachineFrameInfo has been 652 // set up. All the information required by getReservedRegs() should be 653 // available now. 654 MRI.freezeReservedRegs(*MF); 655 656 // Release function-specific state. SDB and CurDAG are already cleared 657 // at this point. 658 FuncInfo->clear(); 659 660 DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 661 DEBUG(MF->print(dbgs())); 662 663 return true; 664 } 665 666 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 667 BasicBlock::const_iterator End, 668 bool &HadTailCall) { 669 // Lower the instructions. If a call is emitted as a tail call, cease emitting 670 // nodes for this block. 671 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) 672 SDB->visit(*I); 673 674 // Make sure the root of the DAG is up-to-date. 675 CurDAG->setRoot(SDB->getControlRoot()); 676 HadTailCall = SDB->HasTailCall; 677 SDB->clear(); 678 679 // Final step, emit the lowered DAG as machine code. 680 CodeGenAndEmitDAG(); 681 } 682 683 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 684 SmallPtrSet<SDNode*, 16> VisitedNodes; 685 SmallVector<SDNode*, 128> Worklist; 686 687 Worklist.push_back(CurDAG->getRoot().getNode()); 688 689 APInt KnownZero; 690 APInt KnownOne; 691 692 do { 693 SDNode *N = Worklist.pop_back_val(); 694 695 // If we've already seen this node, ignore it. 696 if (!VisitedNodes.insert(N).second) 697 continue; 698 699 // Otherwise, add all chain operands to the worklist. 700 for (const SDValue &Op : N->op_values()) 701 if (Op.getValueType() == MVT::Other) 702 Worklist.push_back(Op.getNode()); 703 704 // If this is a CopyToReg with a vreg dest, process it. 705 if (N->getOpcode() != ISD::CopyToReg) 706 continue; 707 708 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 709 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 710 continue; 711 712 // Ignore non-scalar or non-integer values. 713 SDValue Src = N->getOperand(2); 714 EVT SrcVT = Src.getValueType(); 715 if (!SrcVT.isInteger() || SrcVT.isVector()) 716 continue; 717 718 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 719 CurDAG->computeKnownBits(Src, KnownZero, KnownOne); 720 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); 721 } while (!Worklist.empty()); 722 } 723 724 void SelectionDAGISel::CodeGenAndEmitDAG() { 725 std::string GroupName; 726 if (TimePassesIsEnabled) 727 GroupName = "Instruction Selection and Scheduling"; 728 std::string BlockName; 729 int BlockNumber = -1; 730 (void)BlockNumber; 731 bool MatchFilterBB = false; (void)MatchFilterBB; 732 #ifndef NDEBUG 733 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 734 FilterDAGBasicBlockName == 735 FuncInfo->MBB->getBasicBlock()->getName().str()); 736 #endif 737 #ifdef NDEBUG 738 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 739 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 740 ViewSUnitDAGs) 741 #endif 742 { 743 BlockNumber = FuncInfo->MBB->getNumber(); 744 BlockName = 745 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 746 } 747 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber 748 << " '" << BlockName << "'\n"; CurDAG->dump()); 749 750 if (ViewDAGCombine1 && MatchFilterBB) 751 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 752 753 // Run the DAG combiner in pre-legalize mode. 754 { 755 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); 756 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel); 757 } 758 759 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber 760 << " '" << BlockName << "'\n"; CurDAG->dump()); 761 762 // Second step, hack on the DAG until it only uses operations and types that 763 // the target supports. 764 if (ViewLegalizeTypesDAGs && MatchFilterBB) 765 CurDAG->viewGraph("legalize-types input for " + BlockName); 766 767 bool Changed; 768 { 769 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); 770 Changed = CurDAG->LegalizeTypes(); 771 } 772 773 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber 774 << " '" << BlockName << "'\n"; CurDAG->dump()); 775 776 CurDAG->NewNodesMustHaveLegalTypes = true; 777 778 if (Changed) { 779 if (ViewDAGCombineLT && MatchFilterBB) 780 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 781 782 // Run the DAG combiner in post-type-legalize mode. 783 { 784 NamedRegionTimer T("DAG Combining after legalize types", GroupName, 785 TimePassesIsEnabled); 786 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel); 787 } 788 789 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber 790 << " '" << BlockName << "'\n"; CurDAG->dump()); 791 792 } 793 794 { 795 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); 796 Changed = CurDAG->LegalizeVectors(); 797 } 798 799 if (Changed) { 800 { 801 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); 802 CurDAG->LegalizeTypes(); 803 } 804 805 if (ViewDAGCombineLT && MatchFilterBB) 806 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 807 808 // Run the DAG combiner in post-type-legalize mode. 809 { 810 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, 811 TimePassesIsEnabled); 812 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel); 813 } 814 815 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" 816 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); 817 } 818 819 if (ViewLegalizeDAGs && MatchFilterBB) 820 CurDAG->viewGraph("legalize input for " + BlockName); 821 822 { 823 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); 824 CurDAG->Legalize(); 825 } 826 827 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber 828 << " '" << BlockName << "'\n"; CurDAG->dump()); 829 830 if (ViewDAGCombine2 && MatchFilterBB) 831 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 832 833 // Run the DAG combiner in post-legalize mode. 834 { 835 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); 836 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel); 837 } 838 839 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber 840 << " '" << BlockName << "'\n"; CurDAG->dump()); 841 842 if (OptLevel != CodeGenOpt::None) 843 ComputeLiveOutVRegInfo(); 844 845 if (ViewISelDAGs && MatchFilterBB) 846 CurDAG->viewGraph("isel input for " + BlockName); 847 848 // Third, instruction select all of the operations to machine code, adding the 849 // code to the MachineBasicBlock. 850 { 851 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); 852 DoInstructionSelection(); 853 } 854 855 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber 856 << " '" << BlockName << "'\n"; CurDAG->dump()); 857 858 if (ViewSchedDAGs && MatchFilterBB) 859 CurDAG->viewGraph("scheduler input for " + BlockName); 860 861 // Schedule machine code. 862 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 863 { 864 NamedRegionTimer T("Instruction Scheduling", GroupName, 865 TimePassesIsEnabled); 866 Scheduler->Run(CurDAG, FuncInfo->MBB); 867 } 868 869 if (ViewSUnitDAGs && MatchFilterBB) 870 Scheduler->viewGraph(); 871 872 // Emit machine code to BB. This can change 'BB' to the last block being 873 // inserted into. 874 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 875 { 876 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); 877 878 // FuncInfo->InsertPt is passed by reference and set to the end of the 879 // scheduled instructions. 880 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 881 } 882 883 // If the block was split, make sure we update any references that are used to 884 // update PHI nodes later on. 885 if (FirstMBB != LastMBB) 886 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 887 888 // Free the scheduler state. 889 { 890 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, 891 TimePassesIsEnabled); 892 delete Scheduler; 893 } 894 895 // Free the SelectionDAG state, now that we're finished with it. 896 CurDAG->clear(); 897 } 898 899 namespace { 900 /// ISelUpdater - helper class to handle updates of the instruction selection 901 /// graph. 902 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 903 SelectionDAG::allnodes_iterator &ISelPosition; 904 public: 905 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 906 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 907 908 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 909 /// deleted is the current ISelPosition node, update ISelPosition. 910 /// 911 void NodeDeleted(SDNode *N, SDNode *E) override { 912 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 913 ++ISelPosition; 914 } 915 }; 916 } // end anonymous namespace 917 918 void SelectionDAGISel::DoInstructionSelection() { 919 DEBUG(dbgs() << "===== Instruction selection begins: BB#" 920 << FuncInfo->MBB->getNumber() 921 << " '" << FuncInfo->MBB->getName() << "'\n"); 922 923 PreprocessISelDAG(); 924 925 // Select target instructions for the DAG. 926 { 927 // Number all nodes with a topological order and set DAGSize. 928 DAGSize = CurDAG->AssignTopologicalOrder(); 929 930 // Create a dummy node (which is not added to allnodes), that adds 931 // a reference to the root node, preventing it from being deleted, 932 // and tracking any changes of the root. 933 HandleSDNode Dummy(CurDAG->getRoot()); 934 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 935 ++ISelPosition; 936 937 // Make sure that ISelPosition gets properly updated when nodes are deleted 938 // in calls made from this function. 939 ISelUpdater ISU(*CurDAG, ISelPosition); 940 941 // The AllNodes list is now topological-sorted. Visit the 942 // nodes by starting at the end of the list (the root of the 943 // graph) and preceding back toward the beginning (the entry 944 // node). 945 while (ISelPosition != CurDAG->allnodes_begin()) { 946 SDNode *Node = &*--ISelPosition; 947 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 948 // but there are currently some corner cases that it misses. Also, this 949 // makes it theoretically possible to disable the DAGCombiner. 950 if (Node->use_empty()) 951 continue; 952 953 SDNode *ResNode = Select(Node); 954 955 // FIXME: This is pretty gross. 'Select' should be changed to not return 956 // anything at all and this code should be nuked with a tactical strike. 957 958 // If node should not be replaced, continue with the next one. 959 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) 960 continue; 961 // Replace node. 962 if (ResNode) { 963 ReplaceUses(Node, ResNode); 964 } 965 966 // If after the replacement this node is not used any more, 967 // remove this dead node. 968 if (Node->use_empty()) // Don't delete EntryToken, etc. 969 CurDAG->RemoveDeadNode(Node); 970 } 971 972 CurDAG->setRoot(Dummy.getValue()); 973 } 974 975 DEBUG(dbgs() << "===== Instruction selection ends:\n"); 976 977 PostprocessISelDAG(); 978 } 979 980 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 981 for (const User *U : CPI->users()) { 982 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 983 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 984 if (IID == Intrinsic::eh_exceptionpointer || 985 IID == Intrinsic::eh_exceptioncode) 986 return true; 987 } 988 } 989 return false; 990 } 991 992 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 993 /// do other setup for EH landing-pad blocks. 994 bool SelectionDAGISel::PrepareEHLandingPad() { 995 MachineBasicBlock *MBB = FuncInfo->MBB; 996 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 997 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 998 const TargetRegisterClass *PtrRC = 999 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1000 1001 // Catchpads have one live-in register, which typically holds the exception 1002 // pointer or code. 1003 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1004 if (hasExceptionPointerOrCodeUser(CPI)) { 1005 // Get or create the virtual register to hold the pointer or code. Mark 1006 // the live in physreg and copy into the vreg. 1007 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1008 assert(EHPhysReg && "target lacks exception pointer register"); 1009 MBB->addLiveIn(EHPhysReg); 1010 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1011 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1012 TII->get(TargetOpcode::COPY), VReg) 1013 .addReg(EHPhysReg, RegState::Kill); 1014 } 1015 return true; 1016 } 1017 1018 if (!LLVMBB->isLandingPad()) 1019 return true; 1020 1021 // Add a label to mark the beginning of the landing pad. Deletion of the 1022 // landing pad can thus be detected via the MachineModuleInfo. 1023 MCSymbol *Label = MF->getMMI().addLandingPad(MBB); 1024 1025 // Assign the call site to the landing pad's begin label. 1026 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1027 1028 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1029 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1030 .addSym(Label); 1031 1032 // Mark exception register as live in. 1033 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1034 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1035 1036 // Mark exception selector register as live in. 1037 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1038 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1039 1040 return true; 1041 } 1042 1043 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1044 /// side-effect free and is either dead or folded into a generated instruction. 1045 /// Return false if it needs to be emitted. 1046 static bool isFoldedOrDeadInstruction(const Instruction *I, 1047 FunctionLoweringInfo *FuncInfo) { 1048 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1049 !isa<TerminatorInst>(I) && // Terminators aren't folded. 1050 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1051 !I->isEHPad() && // EH pad instructions aren't folded. 1052 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 1053 } 1054 1055 #ifndef NDEBUG 1056 // Collect per Instruction statistics for fast-isel misses. Only those 1057 // instructions that cause the bail are accounted for. It does not account for 1058 // instructions higher in the block. Thus, summing the per instructions stats 1059 // will not add up to what is reported by NumFastIselFailures. 1060 static void collectFailStats(const Instruction *I) { 1061 switch (I->getOpcode()) { 1062 default: assert (0 && "<Invalid operator> "); 1063 1064 // Terminators 1065 case Instruction::Ret: NumFastIselFailRet++; return; 1066 case Instruction::Br: NumFastIselFailBr++; return; 1067 case Instruction::Switch: NumFastIselFailSwitch++; return; 1068 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return; 1069 case Instruction::Invoke: NumFastIselFailInvoke++; return; 1070 case Instruction::Resume: NumFastIselFailResume++; return; 1071 case Instruction::Unreachable: NumFastIselFailUnreachable++; return; 1072 1073 // Standard binary operators... 1074 case Instruction::Add: NumFastIselFailAdd++; return; 1075 case Instruction::FAdd: NumFastIselFailFAdd++; return; 1076 case Instruction::Sub: NumFastIselFailSub++; return; 1077 case Instruction::FSub: NumFastIselFailFSub++; return; 1078 case Instruction::Mul: NumFastIselFailMul++; return; 1079 case Instruction::FMul: NumFastIselFailFMul++; return; 1080 case Instruction::UDiv: NumFastIselFailUDiv++; return; 1081 case Instruction::SDiv: NumFastIselFailSDiv++; return; 1082 case Instruction::FDiv: NumFastIselFailFDiv++; return; 1083 case Instruction::URem: NumFastIselFailURem++; return; 1084 case Instruction::SRem: NumFastIselFailSRem++; return; 1085 case Instruction::FRem: NumFastIselFailFRem++; return; 1086 1087 // Logical operators... 1088 case Instruction::And: NumFastIselFailAnd++; return; 1089 case Instruction::Or: NumFastIselFailOr++; return; 1090 case Instruction::Xor: NumFastIselFailXor++; return; 1091 1092 // Memory instructions... 1093 case Instruction::Alloca: NumFastIselFailAlloca++; return; 1094 case Instruction::Load: NumFastIselFailLoad++; return; 1095 case Instruction::Store: NumFastIselFailStore++; return; 1096 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return; 1097 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return; 1098 case Instruction::Fence: NumFastIselFailFence++; return; 1099 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return; 1100 1101 // Convert instructions... 1102 case Instruction::Trunc: NumFastIselFailTrunc++; return; 1103 case Instruction::ZExt: NumFastIselFailZExt++; return; 1104 case Instruction::SExt: NumFastIselFailSExt++; return; 1105 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return; 1106 case Instruction::FPExt: NumFastIselFailFPExt++; return; 1107 case Instruction::FPToUI: NumFastIselFailFPToUI++; return; 1108 case Instruction::FPToSI: NumFastIselFailFPToSI++; return; 1109 case Instruction::UIToFP: NumFastIselFailUIToFP++; return; 1110 case Instruction::SIToFP: NumFastIselFailSIToFP++; return; 1111 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return; 1112 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return; 1113 case Instruction::BitCast: NumFastIselFailBitCast++; return; 1114 1115 // Other instructions... 1116 case Instruction::ICmp: NumFastIselFailICmp++; return; 1117 case Instruction::FCmp: NumFastIselFailFCmp++; return; 1118 case Instruction::PHI: NumFastIselFailPHI++; return; 1119 case Instruction::Select: NumFastIselFailSelect++; return; 1120 case Instruction::Call: { 1121 if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) { 1122 switch (Intrinsic->getIntrinsicID()) { 1123 default: 1124 NumFastIselFailIntrinsicCall++; return; 1125 case Intrinsic::sadd_with_overflow: 1126 NumFastIselFailSAddWithOverflow++; return; 1127 case Intrinsic::uadd_with_overflow: 1128 NumFastIselFailUAddWithOverflow++; return; 1129 case Intrinsic::ssub_with_overflow: 1130 NumFastIselFailSSubWithOverflow++; return; 1131 case Intrinsic::usub_with_overflow: 1132 NumFastIselFailUSubWithOverflow++; return; 1133 case Intrinsic::smul_with_overflow: 1134 NumFastIselFailSMulWithOverflow++; return; 1135 case Intrinsic::umul_with_overflow: 1136 NumFastIselFailUMulWithOverflow++; return; 1137 case Intrinsic::frameaddress: 1138 NumFastIselFailFrameaddress++; return; 1139 case Intrinsic::sqrt: 1140 NumFastIselFailSqrt++; return; 1141 case Intrinsic::experimental_stackmap: 1142 NumFastIselFailStackMap++; return; 1143 case Intrinsic::experimental_patchpoint_void: // fall-through 1144 case Intrinsic::experimental_patchpoint_i64: 1145 NumFastIselFailPatchPoint++; return; 1146 } 1147 } 1148 NumFastIselFailCall++; 1149 return; 1150 } 1151 case Instruction::Shl: NumFastIselFailShl++; return; 1152 case Instruction::LShr: NumFastIselFailLShr++; return; 1153 case Instruction::AShr: NumFastIselFailAShr++; return; 1154 case Instruction::VAArg: NumFastIselFailVAArg++; return; 1155 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return; 1156 case Instruction::InsertElement: NumFastIselFailInsertElement++; return; 1157 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return; 1158 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return; 1159 case Instruction::InsertValue: NumFastIselFailInsertValue++; return; 1160 case Instruction::LandingPad: NumFastIselFailLandingPad++; return; 1161 } 1162 } 1163 #endif // NDEBUG 1164 1165 /// Set up SwiftErrorVals by going through the function. If the function has 1166 /// swifterror argument, it will be the first entry. 1167 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI, 1168 FunctionLoweringInfo *FuncInfo) { 1169 if (!TLI->supportSwiftError()) 1170 return; 1171 1172 FuncInfo->SwiftErrorVals.clear(); 1173 FuncInfo->SwiftErrorMap.clear(); 1174 FuncInfo->SwiftErrorWorklist.clear(); 1175 1176 // Check if function has a swifterror argument. 1177 for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end(); 1178 AI != AE; ++AI) 1179 if (AI->hasSwiftErrorAttr()) 1180 FuncInfo->SwiftErrorVals.push_back(&*AI); 1181 1182 for (const auto &LLVMBB : Fn) 1183 for (const auto &Inst : LLVMBB) { 1184 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst)) 1185 if (Alloca->isSwiftError()) 1186 FuncInfo->SwiftErrorVals.push_back(Alloca); 1187 } 1188 } 1189 1190 /// For each basic block, merge incoming swifterror values or simply propagate 1191 /// them. The merged results will be saved in SwiftErrorMap. For predecessors 1192 /// that are not yet visited, we create virtual registers to hold the swifterror 1193 /// values and save them in SwiftErrorWorklist. 1194 static void mergeIncomingSwiftErrors(FunctionLoweringInfo *FuncInfo, 1195 const TargetLowering *TLI, 1196 const TargetInstrInfo *TII, 1197 const BasicBlock *LLVMBB, 1198 SelectionDAGBuilder *SDB) { 1199 if (!TLI->supportSwiftError()) 1200 return; 1201 1202 // We should only do this when we have swifterror parameter or swifterror 1203 // alloc. 1204 if (FuncInfo->SwiftErrorVals.empty()) 1205 return; 1206 1207 // At beginning of a basic block, insert PHI nodes or get the virtual 1208 // register from the only predecessor, and update SwiftErrorMap; if one 1209 // of the predecessors is not visited, update SwiftErrorWorklist. 1210 // At end of a basic block, if a block is in SwiftErrorWorklist, insert copy 1211 // to sync up the virtual register assignment. 1212 1213 // Always create a virtual register for each swifterror value in entry block. 1214 auto &DL = SDB->DAG.getDataLayout(); 1215 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 1216 if (pred_begin(LLVMBB) == pred_end(LLVMBB)) { 1217 for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { 1218 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); 1219 // Assign Undef to Vreg. We construct MI directly to make sure it works 1220 // with FastISel. 1221 BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1222 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 1223 FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); 1224 } 1225 return; 1226 } 1227 1228 if (auto *UniquePred = LLVMBB->getUniquePredecessor()) { 1229 auto *UniquePredMBB = FuncInfo->MBBMap[UniquePred]; 1230 if (!FuncInfo->SwiftErrorMap.count(UniquePredMBB)) { 1231 // Update SwiftErrorWorklist with a new virtual register. 1232 for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { 1233 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); 1234 FuncInfo->SwiftErrorWorklist[UniquePredMBB].push_back(VReg); 1235 // Propagate the information from the single predecessor. 1236 FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); 1237 } 1238 return; 1239 } 1240 // Propagate the information from the single predecessor. 1241 FuncInfo->SwiftErrorMap[FuncInfo->MBB] = 1242 FuncInfo->SwiftErrorMap[UniquePredMBB]; 1243 return; 1244 } 1245 1246 // For the case of multiple predecessors, update SwiftErrorWorklist. 1247 // Handle the case where we have two or more predecessors being the same. 1248 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1249 PI != PE; ++PI) { 1250 auto *PredMBB = FuncInfo->MBBMap[*PI]; 1251 if (!FuncInfo->SwiftErrorMap.count(PredMBB) && 1252 !FuncInfo->SwiftErrorWorklist.count(PredMBB)) { 1253 for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { 1254 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); 1255 // When we actually visit the basic block PredMBB, we will materialize 1256 // the virtual register assignment in copySwiftErrorsToFinalVRegs. 1257 FuncInfo->SwiftErrorWorklist[PredMBB].push_back(VReg); 1258 } 1259 } 1260 } 1261 1262 // For the case of multiple predecessors, create a virtual register for 1263 // each swifterror value and generate Phi node. 1264 for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { 1265 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); 1266 FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); 1267 1268 MachineInstrBuilder SwiftErrorPHI = BuildMI(*FuncInfo->MBB, 1269 FuncInfo->MBB->begin(), SDB->getCurDebugLoc(), 1270 TII->get(TargetOpcode::PHI), VReg); 1271 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1272 PI != PE; ++PI) { 1273 auto *PredMBB = FuncInfo->MBBMap[*PI]; 1274 unsigned SwiftErrorReg = FuncInfo->SwiftErrorMap.count(PredMBB) ? 1275 FuncInfo->SwiftErrorMap[PredMBB][I] : 1276 FuncInfo->SwiftErrorWorklist[PredMBB][I]; 1277 SwiftErrorPHI.addReg(SwiftErrorReg) 1278 .addMBB(PredMBB); 1279 } 1280 } 1281 } 1282 1283 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1284 // Initialize the Fast-ISel state, if needed. 1285 FastISel *FastIS = nullptr; 1286 if (TM.Options.EnableFastISel) 1287 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1288 1289 setupSwiftErrorVals(Fn, TLI, FuncInfo); 1290 1291 // Iterate over all basic blocks in the function. 1292 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1293 for (ReversePostOrderTraversal<const Function*>::rpo_iterator 1294 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { 1295 const BasicBlock *LLVMBB = *I; 1296 1297 if (OptLevel != CodeGenOpt::None) { 1298 bool AllPredsVisited = true; 1299 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1300 PI != PE; ++PI) { 1301 if (!FuncInfo->VisitedBBs.count(*PI)) { 1302 AllPredsVisited = false; 1303 break; 1304 } 1305 } 1306 1307 if (AllPredsVisited) { 1308 for (BasicBlock::const_iterator I = LLVMBB->begin(); 1309 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 1310 FuncInfo->ComputePHILiveOutRegInfo(PN); 1311 } else { 1312 for (BasicBlock::const_iterator I = LLVMBB->begin(); 1313 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 1314 FuncInfo->InvalidatePHILiveOutRegInfo(PN); 1315 } 1316 1317 FuncInfo->VisitedBBs.insert(LLVMBB); 1318 } 1319 1320 BasicBlock::const_iterator const Begin = 1321 LLVMBB->getFirstNonPHI()->getIterator(); 1322 BasicBlock::const_iterator const End = LLVMBB->end(); 1323 BasicBlock::const_iterator BI = End; 1324 1325 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1326 if (!FuncInfo->MBB) 1327 continue; // Some blocks like catchpads have no code or MBB. 1328 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 1329 mergeIncomingSwiftErrors(FuncInfo, TLI, TII, LLVMBB, SDB); 1330 1331 // Setup an EH landing-pad block. 1332 FuncInfo->ExceptionPointerVirtReg = 0; 1333 FuncInfo->ExceptionSelectorVirtReg = 0; 1334 if (LLVMBB->isEHPad()) 1335 if (!PrepareEHLandingPad()) 1336 continue; 1337 1338 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1339 if (FastIS) { 1340 FastIS->startNewBlock(); 1341 1342 // Emit code for any incoming arguments. This must happen before 1343 // beginning FastISel on the entry block. 1344 if (LLVMBB == &Fn.getEntryBlock()) { 1345 ++NumEntryBlocks; 1346 1347 // Lower any arguments needed in this block if this is the entry block. 1348 if (!FastIS->lowerArguments()) { 1349 // Fast isel failed to lower these arguments 1350 ++NumFastIselFailLowerArguments; 1351 if (EnableFastISelAbort > 1) 1352 report_fatal_error("FastISel didn't lower all arguments"); 1353 1354 // Use SelectionDAG argument lowering 1355 LowerArguments(Fn); 1356 CurDAG->setRoot(SDB->getControlRoot()); 1357 SDB->clear(); 1358 CodeGenAndEmitDAG(); 1359 } 1360 1361 // If we inserted any instructions at the beginning, make a note of 1362 // where they are, so we can be sure to emit subsequent instructions 1363 // after them. 1364 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1365 FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt)); 1366 else 1367 FastIS->setLastLocalValue(nullptr); 1368 } 1369 1370 unsigned NumFastIselRemaining = std::distance(Begin, End); 1371 // Do FastISel on as many instructions as possible. 1372 for (; BI != Begin; --BI) { 1373 const Instruction *Inst = &*std::prev(BI); 1374 1375 // If we no longer require this instruction, skip it. 1376 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) { 1377 --NumFastIselRemaining; 1378 continue; 1379 } 1380 1381 // Bottom-up: reset the insert pos at the top, after any local-value 1382 // instructions. 1383 FastIS->recomputeInsertPt(); 1384 1385 // Try to select the instruction with FastISel. 1386 if (FastIS->selectInstruction(Inst)) { 1387 --NumFastIselRemaining; 1388 ++NumFastIselSuccess; 1389 // If fast isel succeeded, skip over all the folded instructions, and 1390 // then see if there is a load right before the selected instructions. 1391 // Try to fold the load if so. 1392 const Instruction *BeforeInst = Inst; 1393 while (BeforeInst != &*Begin) { 1394 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1395 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1396 break; 1397 } 1398 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1399 BeforeInst->hasOneUse() && 1400 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1401 // If we succeeded, don't re-select the load. 1402 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1403 --NumFastIselRemaining; 1404 ++NumFastIselSuccess; 1405 } 1406 continue; 1407 } 1408 1409 #ifndef NDEBUG 1410 if (EnableFastISelVerbose2) 1411 collectFailStats(Inst); 1412 #endif 1413 1414 // Then handle certain instructions as single-LLVM-Instruction blocks. 1415 if (isa<CallInst>(Inst)) { 1416 1417 if (EnableFastISelVerbose || EnableFastISelAbort) { 1418 dbgs() << "FastISel missed call: "; 1419 Inst->dump(); 1420 } 1421 if (EnableFastISelAbort > 2) 1422 // FastISel selector couldn't handle something and bailed. 1423 // For the purpose of debugging, just abort. 1424 report_fatal_error("FastISel didn't select the entire block"); 1425 1426 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1427 !Inst->use_empty()) { 1428 unsigned &R = FuncInfo->ValueMap[Inst]; 1429 if (!R) 1430 R = FuncInfo->CreateRegs(Inst->getType()); 1431 } 1432 1433 bool HadTailCall = false; 1434 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1435 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1436 1437 // If the call was emitted as a tail call, we're done with the block. 1438 // We also need to delete any previously emitted instructions. 1439 if (HadTailCall) { 1440 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1441 --BI; 1442 break; 1443 } 1444 1445 // Recompute NumFastIselRemaining as Selection DAG instruction 1446 // selection may have handled the call, input args, etc. 1447 unsigned RemainingNow = std::distance(Begin, BI); 1448 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1449 NumFastIselRemaining = RemainingNow; 1450 continue; 1451 } 1452 1453 bool ShouldAbort = EnableFastISelAbort; 1454 if (EnableFastISelVerbose || EnableFastISelAbort) { 1455 if (isa<TerminatorInst>(Inst)) { 1456 // Use a different message for terminator misses. 1457 dbgs() << "FastISel missed terminator: "; 1458 // Don't abort unless for terminator unless the level is really high 1459 ShouldAbort = (EnableFastISelAbort > 2); 1460 } else { 1461 dbgs() << "FastISel miss: "; 1462 } 1463 Inst->dump(); 1464 } 1465 if (ShouldAbort) 1466 // FastISel selector couldn't handle something and bailed. 1467 // For the purpose of debugging, just abort. 1468 report_fatal_error("FastISel didn't select the entire block"); 1469 1470 NumFastIselFailures += NumFastIselRemaining; 1471 break; 1472 } 1473 1474 FastIS->recomputeInsertPt(); 1475 } else { 1476 // Lower any arguments needed in this block if this is the entry block. 1477 if (LLVMBB == &Fn.getEntryBlock()) { 1478 ++NumEntryBlocks; 1479 LowerArguments(Fn); 1480 } 1481 } 1482 if (getAnalysis<StackProtector>().shouldEmitSDCheck(*LLVMBB)) 1483 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB]); 1484 1485 if (Begin != BI) 1486 ++NumDAGBlocks; 1487 else 1488 ++NumFastIselBlocks; 1489 1490 if (Begin != BI) { 1491 // Run SelectionDAG instruction selection on the remainder of the block 1492 // not handled by FastISel. If FastISel is not run, this is the entire 1493 // block. 1494 bool HadTailCall; 1495 SelectBasicBlock(Begin, BI, HadTailCall); 1496 } 1497 1498 FinishBasicBlock(); 1499 FuncInfo->PHINodesToUpdate.clear(); 1500 } 1501 1502 delete FastIS; 1503 SDB->clearDanglingDebugInfo(); 1504 SDB->SPDescriptor.resetPerFunctionState(); 1505 } 1506 1507 /// Given that the input MI is before a partial terminator sequence TSeq, return 1508 /// true if M + TSeq also a partial terminator sequence. 1509 /// 1510 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1511 /// lowering copy vregs into physical registers, which are then passed into 1512 /// terminator instructors so we can satisfy ABI constraints. A partial 1513 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1514 /// may be the whole terminator sequence). 1515 static bool MIIsInTerminatorSequence(const MachineInstr *MI) { 1516 // If we do not have a copy or an implicit def, we return true if and only if 1517 // MI is a debug value. 1518 if (!MI->isCopy() && !MI->isImplicitDef()) 1519 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1520 // physical registers if there is debug info associated with the terminator 1521 // of our mbb. We want to include said debug info in our terminator 1522 // sequence, so we return true in that case. 1523 return MI->isDebugValue(); 1524 1525 // We have left the terminator sequence if we are not doing one of the 1526 // following: 1527 // 1528 // 1. Copying a vreg into a physical register. 1529 // 2. Copying a vreg into a vreg. 1530 // 3. Defining a register via an implicit def. 1531 1532 // OPI should always be a register definition... 1533 MachineInstr::const_mop_iterator OPI = MI->operands_begin(); 1534 if (!OPI->isReg() || !OPI->isDef()) 1535 return false; 1536 1537 // Defining any register via an implicit def is always ok. 1538 if (MI->isImplicitDef()) 1539 return true; 1540 1541 // Grab the copy source... 1542 MachineInstr::const_mop_iterator OPI2 = OPI; 1543 ++OPI2; 1544 assert(OPI2 != MI->operands_end() 1545 && "Should have a copy implying we should have 2 arguments."); 1546 1547 // Make sure that the copy dest is not a vreg when the copy source is a 1548 // physical register. 1549 if (!OPI2->isReg() || 1550 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && 1551 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) 1552 return false; 1553 1554 return true; 1555 } 1556 1557 /// Find the split point at which to splice the end of BB into its success stack 1558 /// protector check machine basic block. 1559 /// 1560 /// On many platforms, due to ABI constraints, terminators, even before register 1561 /// allocation, use physical registers. This creates an issue for us since 1562 /// physical registers at this point can not travel across basic 1563 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1564 /// when they enter functions and moves them through a sequence of copies back 1565 /// into the physical registers right before the terminator creating a 1566 /// ``Terminator Sequence''. This function is searching for the beginning of the 1567 /// terminator sequence so that we can ensure that we splice off not just the 1568 /// terminator, but additionally the copies that move the vregs into the 1569 /// physical registers. 1570 static MachineBasicBlock::iterator 1571 FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) { 1572 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1573 // 1574 if (SplitPoint == BB->begin()) 1575 return SplitPoint; 1576 1577 MachineBasicBlock::iterator Start = BB->begin(); 1578 MachineBasicBlock::iterator Previous = SplitPoint; 1579 --Previous; 1580 1581 while (MIIsInTerminatorSequence(Previous)) { 1582 SplitPoint = Previous; 1583 if (Previous == Start) 1584 break; 1585 --Previous; 1586 } 1587 1588 return SplitPoint; 1589 } 1590 1591 void 1592 SelectionDAGISel::FinishBasicBlock() { 1593 DEBUG(dbgs() << "Total amount of phi nodes to update: " 1594 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1595 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) 1596 dbgs() << "Node " << i << " : (" 1597 << FuncInfo->PHINodesToUpdate[i].first 1598 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1599 1600 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1601 // PHI nodes in successors. 1602 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1603 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1604 assert(PHI->isPHI() && 1605 "This is not a machine PHI node that we are updating!"); 1606 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1607 continue; 1608 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1609 } 1610 1611 // Handle stack protector. 1612 if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1613 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1614 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1615 1616 // Find the split point to split the parent mbb. At the same time copy all 1617 // physical registers used in the tail of parent mbb into virtual registers 1618 // before the split point and back into physical registers after the split 1619 // point. This prevents us needing to deal with Live-ins and many other 1620 // register allocation issues caused by us splitting the parent mbb. The 1621 // register allocator will clean up said virtual copies later on. 1622 MachineBasicBlock::iterator SplitPoint = 1623 FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc()); 1624 1625 // Splice the terminator of ParentMBB into SuccessMBB. 1626 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1627 SplitPoint, 1628 ParentMBB->end()); 1629 1630 // Add compare/jump on neq/jump to the parent BB. 1631 FuncInfo->MBB = ParentMBB; 1632 FuncInfo->InsertPt = ParentMBB->end(); 1633 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1634 CurDAG->setRoot(SDB->getRoot()); 1635 SDB->clear(); 1636 CodeGenAndEmitDAG(); 1637 1638 // CodeGen Failure MBB if we have not codegened it yet. 1639 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1640 if (FailureMBB->empty()) { 1641 FuncInfo->MBB = FailureMBB; 1642 FuncInfo->InsertPt = FailureMBB->end(); 1643 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1644 CurDAG->setRoot(SDB->getRoot()); 1645 SDB->clear(); 1646 CodeGenAndEmitDAG(); 1647 } 1648 1649 // Clear the Per-BB State. 1650 SDB->SPDescriptor.resetPerBBState(); 1651 } 1652 1653 // Lower each BitTestBlock. 1654 for (auto &BTB : SDB->BitTestCases) { 1655 // Lower header first, if it wasn't already lowered 1656 if (!BTB.Emitted) { 1657 // Set the current basic block to the mbb we wish to insert the code into 1658 FuncInfo->MBB = BTB.Parent; 1659 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1660 // Emit the code 1661 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1662 CurDAG->setRoot(SDB->getRoot()); 1663 SDB->clear(); 1664 CodeGenAndEmitDAG(); 1665 } 1666 1667 BranchProbability UnhandledProb = BTB.Prob; 1668 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1669 UnhandledProb -= BTB.Cases[j].ExtraProb; 1670 // Set the current basic block to the mbb we wish to insert the code into 1671 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1672 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1673 // Emit the code 1674 1675 // If all cases cover a contiguous range, it is not necessary to jump to 1676 // the default block after the last bit test fails. This is because the 1677 // range check during bit test header creation has guaranteed that every 1678 // case here doesn't go outside the range. In this case, there is no need 1679 // to perform the last bit test, as it will always be true. Instead, make 1680 // the second-to-last bit-test fall through to the target of the last bit 1681 // test, and delete the last bit test. 1682 1683 MachineBasicBlock *NextMBB; 1684 if (BTB.ContiguousRange && j + 2 == ej) { 1685 // Second-to-last bit-test with contiguous range: fall through to the 1686 // target of the final bit test. 1687 NextMBB = BTB.Cases[j + 1].TargetBB; 1688 } else if (j + 1 == ej) { 1689 // For the last bit test, fall through to Default. 1690 NextMBB = BTB.Default; 1691 } else { 1692 // Otherwise, fall through to the next bit test. 1693 NextMBB = BTB.Cases[j + 1].ThisBB; 1694 } 1695 1696 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1697 FuncInfo->MBB); 1698 1699 CurDAG->setRoot(SDB->getRoot()); 1700 SDB->clear(); 1701 CodeGenAndEmitDAG(); 1702 1703 if (BTB.ContiguousRange && j + 2 == ej) { 1704 // Since we're not going to use the final bit test, remove it. 1705 BTB.Cases.pop_back(); 1706 break; 1707 } 1708 } 1709 1710 // Update PHI Nodes 1711 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1712 pi != pe; ++pi) { 1713 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1714 MachineBasicBlock *PHIBB = PHI->getParent(); 1715 assert(PHI->isPHI() && 1716 "This is not a machine PHI node that we are updating!"); 1717 // This is "default" BB. We have two jumps to it. From "header" BB and 1718 // from last "case" BB, unless the latter was skipped. 1719 if (PHIBB == BTB.Default) { 1720 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1721 if (!BTB.ContiguousRange) { 1722 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1723 .addMBB(BTB.Cases.back().ThisBB); 1724 } 1725 } 1726 // One of "cases" BB. 1727 for (unsigned j = 0, ej = BTB.Cases.size(); 1728 j != ej; ++j) { 1729 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1730 if (cBB->isSuccessor(PHIBB)) 1731 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1732 } 1733 } 1734 } 1735 SDB->BitTestCases.clear(); 1736 1737 // If the JumpTable record is filled in, then we need to emit a jump table. 1738 // Updating the PHI nodes is tricky in this case, since we need to determine 1739 // whether the PHI is a successor of the range check MBB or the jump table MBB 1740 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { 1741 // Lower header first, if it wasn't already lowered 1742 if (!SDB->JTCases[i].first.Emitted) { 1743 // Set the current basic block to the mbb we wish to insert the code into 1744 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; 1745 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1746 // Emit the code 1747 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, 1748 FuncInfo->MBB); 1749 CurDAG->setRoot(SDB->getRoot()); 1750 SDB->clear(); 1751 CodeGenAndEmitDAG(); 1752 } 1753 1754 // Set the current basic block to the mbb we wish to insert the code into 1755 FuncInfo->MBB = SDB->JTCases[i].second.MBB; 1756 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1757 // Emit the code 1758 SDB->visitJumpTable(SDB->JTCases[i].second); 1759 CurDAG->setRoot(SDB->getRoot()); 1760 SDB->clear(); 1761 CodeGenAndEmitDAG(); 1762 1763 // Update PHI Nodes 1764 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1765 pi != pe; ++pi) { 1766 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1767 MachineBasicBlock *PHIBB = PHI->getParent(); 1768 assert(PHI->isPHI() && 1769 "This is not a machine PHI node that we are updating!"); 1770 // "default" BB. We can go there only from header BB. 1771 if (PHIBB == SDB->JTCases[i].second.Default) 1772 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1773 .addMBB(SDB->JTCases[i].first.HeaderBB); 1774 // JT BB. Just iterate over successors here 1775 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1776 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1777 } 1778 } 1779 SDB->JTCases.clear(); 1780 1781 // If we generated any switch lowering information, build and codegen any 1782 // additional DAGs necessary. 1783 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { 1784 // Set the current basic block to the mbb we wish to insert the code into 1785 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; 1786 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1787 1788 // Determine the unique successors. 1789 SmallVector<MachineBasicBlock *, 2> Succs; 1790 Succs.push_back(SDB->SwitchCases[i].TrueBB); 1791 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) 1792 Succs.push_back(SDB->SwitchCases[i].FalseBB); 1793 1794 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1795 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); 1796 CurDAG->setRoot(SDB->getRoot()); 1797 SDB->clear(); 1798 CodeGenAndEmitDAG(); 1799 1800 // Remember the last block, now that any splitting is done, for use in 1801 // populating PHI nodes in successors. 1802 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1803 1804 // Handle any PHI nodes in successors of this chunk, as if we were coming 1805 // from the original BB before switch expansion. Note that PHI nodes can 1806 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1807 // handle them the right number of times. 1808 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1809 FuncInfo->MBB = Succs[i]; 1810 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1811 // FuncInfo->MBB may have been removed from the CFG if a branch was 1812 // constant folded. 1813 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1814 for (MachineBasicBlock::iterator 1815 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1816 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1817 MachineInstrBuilder PHI(*MF, MBBI); 1818 // This value for this PHI node is recorded in PHINodesToUpdate. 1819 for (unsigned pn = 0; ; ++pn) { 1820 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1821 "Didn't find PHI entry!"); 1822 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1823 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1824 break; 1825 } 1826 } 1827 } 1828 } 1829 } 1830 } 1831 SDB->SwitchCases.clear(); 1832 } 1833 1834 /// Create the scheduler. If a specific scheduler was specified 1835 /// via the SchedulerRegistry, use it, otherwise select the 1836 /// one preferred by the target. 1837 /// 1838 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1839 return ISHeuristic(this, OptLevel); 1840 } 1841 1842 //===----------------------------------------------------------------------===// 1843 // Helper functions used by the generated instruction selector. 1844 //===----------------------------------------------------------------------===// 1845 // Calls to these methods are generated by tblgen. 1846 1847 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1848 /// the dag combiner simplified the 255, we still want to match. RHS is the 1849 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1850 /// specified in the .td file (e.g. 255). 1851 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1852 int64_t DesiredMaskS) const { 1853 const APInt &ActualMask = RHS->getAPIntValue(); 1854 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1855 1856 // If the actual mask exactly matches, success! 1857 if (ActualMask == DesiredMask) 1858 return true; 1859 1860 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1861 if (ActualMask.intersects(~DesiredMask)) 1862 return false; 1863 1864 // Otherwise, the DAG Combiner may have proven that the value coming in is 1865 // either already zero or is not demanded. Check for known zero input bits. 1866 APInt NeededMask = DesiredMask & ~ActualMask; 1867 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1868 return true; 1869 1870 // TODO: check to see if missing bits are just not demanded. 1871 1872 // Otherwise, this pattern doesn't match. 1873 return false; 1874 } 1875 1876 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1877 /// the dag combiner simplified the 255, we still want to match. RHS is the 1878 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1879 /// specified in the .td file (e.g. 255). 1880 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1881 int64_t DesiredMaskS) const { 1882 const APInt &ActualMask = RHS->getAPIntValue(); 1883 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1884 1885 // If the actual mask exactly matches, success! 1886 if (ActualMask == DesiredMask) 1887 return true; 1888 1889 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1890 if (ActualMask.intersects(~DesiredMask)) 1891 return false; 1892 1893 // Otherwise, the DAG Combiner may have proven that the value coming in is 1894 // either already zero or is not demanded. Check for known zero input bits. 1895 APInt NeededMask = DesiredMask & ~ActualMask; 1896 1897 APInt KnownZero, KnownOne; 1898 CurDAG->computeKnownBits(LHS, KnownZero, KnownOne); 1899 1900 // If all the missing bits in the or are already known to be set, match! 1901 if ((NeededMask & KnownOne) == NeededMask) 1902 return true; 1903 1904 // TODO: check to see if missing bits are just not demanded. 1905 1906 // Otherwise, this pattern doesn't match. 1907 return false; 1908 } 1909 1910 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1911 /// by tblgen. Others should not call it. 1912 void SelectionDAGISel:: 1913 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SDLoc DL) { 1914 std::vector<SDValue> InOps; 1915 std::swap(InOps, Ops); 1916 1917 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1918 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1919 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1920 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1921 1922 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1923 if (InOps[e-1].getValueType() == MVT::Glue) 1924 --e; // Don't process a glue operand if it is here. 1925 1926 while (i != e) { 1927 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 1928 if (!InlineAsm::isMemKind(Flags)) { 1929 // Just skip over this operand, copying the operands verbatim. 1930 Ops.insert(Ops.end(), InOps.begin()+i, 1931 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 1932 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 1933 } else { 1934 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 1935 "Memory operand with multiple values?"); 1936 1937 unsigned TiedToOperand; 1938 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 1939 // We need the constraint ID from the operand this is tied to. 1940 unsigned CurOp = InlineAsm::Op_FirstOperand; 1941 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 1942 for (; TiedToOperand; --TiedToOperand) { 1943 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 1944 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 1945 } 1946 } 1947 1948 // Otherwise, this is a memory operand. Ask the target to select it. 1949 std::vector<SDValue> SelOps; 1950 if (SelectInlineAsmMemoryOperand(InOps[i+1], 1951 InlineAsm::getMemoryConstraintID(Flags), 1952 SelOps)) 1953 report_fatal_error("Could not match memory address. Inline asm" 1954 " failure!"); 1955 1956 // Add this to the output node. 1957 unsigned NewFlags = 1958 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 1959 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 1960 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 1961 i += 2; 1962 } 1963 } 1964 1965 // Add the glue input back if present. 1966 if (e != InOps.size()) 1967 Ops.push_back(InOps.back()); 1968 } 1969 1970 /// findGlueUse - Return use of MVT::Glue value produced by the specified 1971 /// SDNode. 1972 /// 1973 static SDNode *findGlueUse(SDNode *N) { 1974 unsigned FlagResNo = N->getNumValues()-1; 1975 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1976 SDUse &Use = I.getUse(); 1977 if (Use.getResNo() == FlagResNo) 1978 return Use.getUser(); 1979 } 1980 return nullptr; 1981 } 1982 1983 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". 1984 /// This function recursively traverses up the operand chain, ignoring 1985 /// certain nodes. 1986 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, 1987 SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited, 1988 bool IgnoreChains) { 1989 // The NodeID's are given uniques ID's where a node ID is guaranteed to be 1990 // greater than all of its (recursive) operands. If we scan to a point where 1991 // 'use' is smaller than the node we're scanning for, then we know we will 1992 // never find it. 1993 // 1994 // The Use may be -1 (unassigned) if it is a newly allocated node. This can 1995 // happen because we scan down to newly selected nodes in the case of glue 1996 // uses. 1997 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) 1998 return false; 1999 2000 // Don't revisit nodes if we already scanned it and didn't fail, we know we 2001 // won't fail if we scan it again. 2002 if (!Visited.insert(Use).second) 2003 return false; 2004 2005 for (const SDValue &Op : Use->op_values()) { 2006 // Ignore chain uses, they are validated by HandleMergeInputChains. 2007 if (Op.getValueType() == MVT::Other && IgnoreChains) 2008 continue; 2009 2010 SDNode *N = Op.getNode(); 2011 if (N == Def) { 2012 if (Use == ImmedUse || Use == Root) 2013 continue; // We are not looking for immediate use. 2014 assert(N != Root); 2015 return true; 2016 } 2017 2018 // Traverse up the operand chain. 2019 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) 2020 return true; 2021 } 2022 return false; 2023 } 2024 2025 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2026 /// operand node N of U during instruction selection that starts at Root. 2027 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2028 SDNode *Root) const { 2029 if (OptLevel == CodeGenOpt::None) return false; 2030 return N.hasOneUse(); 2031 } 2032 2033 /// IsLegalToFold - Returns true if the specific operand node N of 2034 /// U can be folded during instruction selection that starts at Root. 2035 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2036 CodeGenOpt::Level OptLevel, 2037 bool IgnoreChains) { 2038 if (OptLevel == CodeGenOpt::None) return false; 2039 2040 // If Root use can somehow reach N through a path that that doesn't contain 2041 // U then folding N would create a cycle. e.g. In the following 2042 // diagram, Root can reach N through X. If N is folded into into Root, then 2043 // X is both a predecessor and a successor of U. 2044 // 2045 // [N*] // 2046 // ^ ^ // 2047 // / \ // 2048 // [U*] [X]? // 2049 // ^ ^ // 2050 // \ / // 2051 // \ / // 2052 // [Root*] // 2053 // 2054 // * indicates nodes to be folded together. 2055 // 2056 // If Root produces glue, then it gets (even more) interesting. Since it 2057 // will be "glued" together with its glue use in the scheduler, we need to 2058 // check if it might reach N. 2059 // 2060 // [N*] // 2061 // ^ ^ // 2062 // / \ // 2063 // [U*] [X]? // 2064 // ^ ^ // 2065 // \ \ // 2066 // \ | // 2067 // [Root*] | // 2068 // ^ | // 2069 // f | // 2070 // | / // 2071 // [Y] / // 2072 // ^ / // 2073 // f / // 2074 // | / // 2075 // [GU] // 2076 // 2077 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2078 // (call it Fold), then X is a predecessor of GU and a successor of 2079 // Fold. But since Fold and GU are glued together, this will create 2080 // a cycle in the scheduling graph. 2081 2082 // If the node has glue, walk down the graph to the "lowest" node in the 2083 // glueged set. 2084 EVT VT = Root->getValueType(Root->getNumValues()-1); 2085 while (VT == MVT::Glue) { 2086 SDNode *GU = findGlueUse(Root); 2087 if (!GU) 2088 break; 2089 Root = GU; 2090 VT = Root->getValueType(Root->getNumValues()-1); 2091 2092 // If our query node has a glue result with a use, we've walked up it. If 2093 // the user (which has already been selected) has a chain or indirectly uses 2094 // the chain, our WalkChainUsers predicate will not consider it. Because of 2095 // this, we cannot ignore chains in this predicate. 2096 IgnoreChains = false; 2097 } 2098 2099 2100 SmallPtrSet<SDNode*, 16> Visited; 2101 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); 2102 } 2103 2104 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { 2105 SDLoc DL(N); 2106 2107 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2108 SelectInlineAsmMemoryOperands(Ops, DL); 2109 2110 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2111 SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops); 2112 New->setNodeId(-1); 2113 return New.getNode(); 2114 } 2115 2116 SDNode 2117 *SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2118 SDLoc dl(Op); 2119 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2120 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2121 unsigned Reg = 2122 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), 2123 *CurDAG); 2124 SDValue New = CurDAG->getCopyFromReg( 2125 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2126 New->setNodeId(-1); 2127 return New.getNode(); 2128 } 2129 2130 SDNode 2131 *SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2132 SDLoc dl(Op); 2133 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2134 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2135 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), 2136 Op->getOperand(2).getValueType(), 2137 *CurDAG); 2138 SDValue New = CurDAG->getCopyToReg( 2139 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2140 New->setNodeId(-1); 2141 return New.getNode(); 2142 } 2143 2144 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { 2145 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); 2146 } 2147 2148 /// GetVBR - decode a vbr encoding whose top bit is set. 2149 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2150 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2151 assert(Val >= 128 && "Not a VBR"); 2152 Val &= 127; // Remove first vbr bit. 2153 2154 unsigned Shift = 7; 2155 uint64_t NextBits; 2156 do { 2157 NextBits = MatcherTable[Idx++]; 2158 Val |= (NextBits&127) << Shift; 2159 Shift += 7; 2160 } while (NextBits & 128); 2161 2162 return Val; 2163 } 2164 2165 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of 2166 /// interior glue and chain results to use the new glue and chain results. 2167 void SelectionDAGISel:: 2168 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, 2169 const SmallVectorImpl<SDNode*> &ChainNodesMatched, 2170 SDValue InputGlue, 2171 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, 2172 bool isMorphNodeTo) { 2173 SmallVector<SDNode*, 4> NowDeadNodes; 2174 2175 // Now that all the normal results are replaced, we replace the chain and 2176 // glue results if present. 2177 if (!ChainNodesMatched.empty()) { 2178 assert(InputChain.getNode() && 2179 "Matched input chains but didn't produce a chain"); 2180 // Loop over all of the nodes we matched that produced a chain result. 2181 // Replace all the chain results with the final chain we ended up with. 2182 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2183 SDNode *ChainNode = ChainNodesMatched[i]; 2184 2185 // If this node was already deleted, don't look at it. 2186 if (ChainNode->getOpcode() == ISD::DELETED_NODE) 2187 continue; 2188 2189 // Don't replace the results of the root node if we're doing a 2190 // MorphNodeTo. 2191 if (ChainNode == NodeToMatch && isMorphNodeTo) 2192 continue; 2193 2194 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2195 if (ChainVal.getValueType() == MVT::Glue) 2196 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2197 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2198 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); 2199 2200 // If the node became dead and we haven't already seen it, delete it. 2201 if (ChainNode->use_empty() && 2202 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2203 NowDeadNodes.push_back(ChainNode); 2204 } 2205 } 2206 2207 // If the result produces glue, update any glue results in the matched 2208 // pattern with the glue result. 2209 if (InputGlue.getNode()) { 2210 // Handle any interior nodes explicitly marked. 2211 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { 2212 SDNode *FRN = GlueResultNodesMatched[i]; 2213 2214 // If this node was already deleted, don't look at it. 2215 if (FRN->getOpcode() == ISD::DELETED_NODE) 2216 continue; 2217 2218 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && 2219 "Doesn't have a glue result"); 2220 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), 2221 InputGlue); 2222 2223 // If the node became dead and we haven't already seen it, delete it. 2224 if (FRN->use_empty() && 2225 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) 2226 NowDeadNodes.push_back(FRN); 2227 } 2228 } 2229 2230 if (!NowDeadNodes.empty()) 2231 CurDAG->RemoveDeadNodes(NowDeadNodes); 2232 2233 DEBUG(dbgs() << "ISEL: Match complete!\n"); 2234 } 2235 2236 enum ChainResult { 2237 CR_Simple, 2238 CR_InducesCycle, 2239 CR_LeadsToInteriorNode 2240 }; 2241 2242 /// WalkChainUsers - Walk down the users of the specified chained node that is 2243 /// part of the pattern we're matching, looking at all of the users we find. 2244 /// This determines whether something is an interior node, whether we have a 2245 /// non-pattern node in between two pattern nodes (which prevent folding because 2246 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched 2247 /// between pattern nodes (in which case the TF becomes part of the pattern). 2248 /// 2249 /// The walk we do here is guaranteed to be small because we quickly get down to 2250 /// already selected nodes "below" us. 2251 static ChainResult 2252 WalkChainUsers(const SDNode *ChainedNode, 2253 SmallVectorImpl<SDNode *> &ChainedNodesInPattern, 2254 DenseMap<const SDNode *, ChainResult> &TokenFactorResult, 2255 SmallVectorImpl<SDNode *> &InteriorChainedNodes) { 2256 ChainResult Result = CR_Simple; 2257 2258 for (SDNode::use_iterator UI = ChainedNode->use_begin(), 2259 E = ChainedNode->use_end(); UI != E; ++UI) { 2260 // Make sure the use is of the chain, not some other value we produce. 2261 if (UI.getUse().getValueType() != MVT::Other) continue; 2262 2263 SDNode *User = *UI; 2264 2265 if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph. 2266 continue; 2267 2268 // If we see an already-selected machine node, then we've gone beyond the 2269 // pattern that we're selecting down into the already selected chunk of the 2270 // DAG. 2271 unsigned UserOpcode = User->getOpcode(); 2272 if (User->isMachineOpcode() || 2273 UserOpcode == ISD::CopyToReg || 2274 UserOpcode == ISD::CopyFromReg || 2275 UserOpcode == ISD::INLINEASM || 2276 UserOpcode == ISD::EH_LABEL || 2277 UserOpcode == ISD::LIFETIME_START || 2278 UserOpcode == ISD::LIFETIME_END) { 2279 // If their node ID got reset to -1 then they've already been selected. 2280 // Treat them like a MachineOpcode. 2281 if (User->getNodeId() == -1) 2282 continue; 2283 } 2284 2285 // If we have a TokenFactor, we handle it specially. 2286 if (User->getOpcode() != ISD::TokenFactor) { 2287 // If the node isn't a token factor and isn't part of our pattern, then it 2288 // must be a random chained node in between two nodes we're selecting. 2289 // This happens when we have something like: 2290 // x = load ptr 2291 // call 2292 // y = x+4 2293 // store y -> ptr 2294 // Because we structurally match the load/store as a read/modify/write, 2295 // but the call is chained between them. We cannot fold in this case 2296 // because it would induce a cycle in the graph. 2297 if (!std::count(ChainedNodesInPattern.begin(), 2298 ChainedNodesInPattern.end(), User)) 2299 return CR_InducesCycle; 2300 2301 // Otherwise we found a node that is part of our pattern. For example in: 2302 // x = load ptr 2303 // y = x+4 2304 // store y -> ptr 2305 // This would happen when we're scanning down from the load and see the 2306 // store as a user. Record that there is a use of ChainedNode that is 2307 // part of the pattern and keep scanning uses. 2308 Result = CR_LeadsToInteriorNode; 2309 InteriorChainedNodes.push_back(User); 2310 continue; 2311 } 2312 2313 // If we found a TokenFactor, there are two cases to consider: first if the 2314 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no 2315 // uses of the TF are in our pattern) we just want to ignore it. Second, 2316 // the TokenFactor can be sandwiched in between two chained nodes, like so: 2317 // [Load chain] 2318 // ^ 2319 // | 2320 // [Load] 2321 // ^ ^ 2322 // | \ DAG's like cheese 2323 // / \ do you? 2324 // / | 2325 // [TokenFactor] [Op] 2326 // ^ ^ 2327 // | | 2328 // \ / 2329 // \ / 2330 // [Store] 2331 // 2332 // In this case, the TokenFactor becomes part of our match and we rewrite it 2333 // as a new TokenFactor. 2334 // 2335 // To distinguish these two cases, do a recursive walk down the uses. 2336 auto MemoizeResult = TokenFactorResult.find(User); 2337 bool Visited = MemoizeResult != TokenFactorResult.end(); 2338 // Recursively walk chain users only if the result is not memoized. 2339 if (!Visited) { 2340 auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult, 2341 InteriorChainedNodes); 2342 MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first; 2343 } 2344 switch (MemoizeResult->second) { 2345 case CR_Simple: 2346 // If the uses of the TokenFactor are just already-selected nodes, ignore 2347 // it, it is "below" our pattern. 2348 continue; 2349 case CR_InducesCycle: 2350 // If the uses of the TokenFactor lead to nodes that are not part of our 2351 // pattern that are not selected, folding would turn this into a cycle, 2352 // bail out now. 2353 return CR_InducesCycle; 2354 case CR_LeadsToInteriorNode: 2355 break; // Otherwise, keep processing. 2356 } 2357 2358 // Okay, we know we're in the interesting interior case. The TokenFactor 2359 // is now going to be considered part of the pattern so that we rewrite its 2360 // uses (it may have uses that are not part of the pattern) with the 2361 // ultimate chain result of the generated code. We will also add its chain 2362 // inputs as inputs to the ultimate TokenFactor we create. 2363 Result = CR_LeadsToInteriorNode; 2364 if (!Visited) { 2365 ChainedNodesInPattern.push_back(User); 2366 InteriorChainedNodes.push_back(User); 2367 } 2368 } 2369 2370 return Result; 2371 } 2372 2373 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2374 /// operation for when the pattern matched at least one node with a chains. The 2375 /// input vector contains a list of all of the chained nodes that we match. We 2376 /// must determine if this is a valid thing to cover (i.e. matching it won't 2377 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2378 /// be used as the input node chain for the generated nodes. 2379 static SDValue 2380 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2381 SelectionDAG *CurDAG) { 2382 // Used for memoization. Without it WalkChainUsers could take exponential 2383 // time to run. 2384 DenseMap<const SDNode *, ChainResult> TokenFactorResult; 2385 // Walk all of the chained nodes we've matched, recursively scanning down the 2386 // users of the chain result. This adds any TokenFactor nodes that are caught 2387 // in between chained nodes to the chained and interior nodes list. 2388 SmallVector<SDNode*, 3> InteriorChainedNodes; 2389 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2390 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, 2391 TokenFactorResult, 2392 InteriorChainedNodes) == CR_InducesCycle) 2393 return SDValue(); // Would induce a cycle. 2394 } 2395 2396 // Okay, we have walked all the matched nodes and collected TokenFactor nodes 2397 // that we are interested in. Form our input TokenFactor node. 2398 SmallVector<SDValue, 3> InputChains; 2399 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2400 // Add the input chain of this node to the InputChains list (which will be 2401 // the operands of the generated TokenFactor) if it's not an interior node. 2402 SDNode *N = ChainNodesMatched[i]; 2403 if (N->getOpcode() != ISD::TokenFactor) { 2404 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) 2405 continue; 2406 2407 // Otherwise, add the input chain. 2408 SDValue InChain = ChainNodesMatched[i]->getOperand(0); 2409 assert(InChain.getValueType() == MVT::Other && "Not a chain"); 2410 InputChains.push_back(InChain); 2411 continue; 2412 } 2413 2414 // If we have a token factor, we want to add all inputs of the token factor 2415 // that are not part of the pattern we're matching. 2416 for (const SDValue &Op : N->op_values()) { 2417 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), 2418 Op.getNode())) 2419 InputChains.push_back(Op); 2420 } 2421 } 2422 2423 if (InputChains.size() == 1) 2424 return InputChains[0]; 2425 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2426 MVT::Other, InputChains); 2427 } 2428 2429 /// MorphNode - Handle morphing a node in place for the selector. 2430 SDNode *SelectionDAGISel:: 2431 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2432 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2433 // It is possible we're using MorphNodeTo to replace a node with no 2434 // normal results with one that has a normal result (or we could be 2435 // adding a chain) and the input could have glue and chains as well. 2436 // In this case we need to shift the operands down. 2437 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2438 // than the old isel though. 2439 int OldGlueResultNo = -1, OldChainResultNo = -1; 2440 2441 unsigned NTMNumResults = Node->getNumValues(); 2442 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2443 OldGlueResultNo = NTMNumResults-1; 2444 if (NTMNumResults != 1 && 2445 Node->getValueType(NTMNumResults-2) == MVT::Other) 2446 OldChainResultNo = NTMNumResults-2; 2447 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2448 OldChainResultNo = NTMNumResults-1; 2449 2450 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2451 // that this deletes operands of the old node that become dead. 2452 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2453 2454 // MorphNodeTo can operate in two ways: if an existing node with the 2455 // specified operands exists, it can just return it. Otherwise, it 2456 // updates the node in place to have the requested operands. 2457 if (Res == Node) { 2458 // If we updated the node in place, reset the node ID. To the isel, 2459 // this should be just like a newly allocated machine node. 2460 Res->setNodeId(-1); 2461 } 2462 2463 unsigned ResNumResults = Res->getNumValues(); 2464 // Move the glue if needed. 2465 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2466 (unsigned)OldGlueResultNo != ResNumResults-1) 2467 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), 2468 SDValue(Res, ResNumResults-1)); 2469 2470 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2471 --ResNumResults; 2472 2473 // Move the chain reference if needed. 2474 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2475 (unsigned)OldChainResultNo != ResNumResults-1) 2476 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), 2477 SDValue(Res, ResNumResults-1)); 2478 2479 // Otherwise, no replacement happened because the node already exists. Replace 2480 // Uses of the old node with the new one. 2481 if (Res != Node) 2482 CurDAG->ReplaceAllUsesWith(Node, Res); 2483 2484 return Res; 2485 } 2486 2487 /// CheckSame - Implements OP_CheckSame. 2488 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2489 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2490 SDValue N, 2491 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2492 // Accept if it is exactly the same as a previously recorded node. 2493 unsigned RecNo = MatcherTable[MatcherIndex++]; 2494 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2495 return N == RecordedNodes[RecNo].first; 2496 } 2497 2498 /// CheckChildSame - Implements OP_CheckChildXSame. 2499 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2500 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2501 SDValue N, 2502 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes, 2503 unsigned ChildNo) { 2504 if (ChildNo >= N.getNumOperands()) 2505 return false; // Match fails if out of range child #. 2506 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2507 RecordedNodes); 2508 } 2509 2510 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2511 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2512 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2513 const SelectionDAGISel &SDISel) { 2514 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2515 } 2516 2517 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2518 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2519 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2520 const SelectionDAGISel &SDISel, SDNode *N) { 2521 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2522 } 2523 2524 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2525 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2526 SDNode *N) { 2527 uint16_t Opc = MatcherTable[MatcherIndex++]; 2528 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2529 return N->getOpcode() == Opc; 2530 } 2531 2532 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2533 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2534 const TargetLowering *TLI, const DataLayout &DL) { 2535 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2536 if (N.getValueType() == VT) return true; 2537 2538 // Handle the case when VT is iPTR. 2539 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2540 } 2541 2542 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2543 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2544 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2545 unsigned ChildNo) { 2546 if (ChildNo >= N.getNumOperands()) 2547 return false; // Match fails if out of range child #. 2548 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2549 DL); 2550 } 2551 2552 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2553 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2554 SDValue N) { 2555 return cast<CondCodeSDNode>(N)->get() == 2556 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2557 } 2558 2559 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2560 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2561 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2562 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2563 if (cast<VTSDNode>(N)->getVT() == VT) 2564 return true; 2565 2566 // Handle the case when VT is iPTR. 2567 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2568 } 2569 2570 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2571 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2572 SDValue N) { 2573 int64_t Val = MatcherTable[MatcherIndex++]; 2574 if (Val & 128) 2575 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2576 2577 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2578 return C && C->getSExtValue() == Val; 2579 } 2580 2581 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2582 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2583 SDValue N, unsigned ChildNo) { 2584 if (ChildNo >= N.getNumOperands()) 2585 return false; // Match fails if out of range child #. 2586 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2587 } 2588 2589 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2590 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2591 SDValue N, const SelectionDAGISel &SDISel) { 2592 int64_t Val = MatcherTable[MatcherIndex++]; 2593 if (Val & 128) 2594 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2595 2596 if (N->getOpcode() != ISD::AND) return false; 2597 2598 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2599 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2600 } 2601 2602 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2603 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2604 SDValue N, const SelectionDAGISel &SDISel) { 2605 int64_t Val = MatcherTable[MatcherIndex++]; 2606 if (Val & 128) 2607 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2608 2609 if (N->getOpcode() != ISD::OR) return false; 2610 2611 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2612 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2613 } 2614 2615 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2616 /// scope, evaluate the current node. If the current predicate is known to 2617 /// fail, set Result=true and return anything. If the current predicate is 2618 /// known to pass, set Result=false and return the MatcherIndex to continue 2619 /// with. If the current predicate is unknown, set Result=false and return the 2620 /// MatcherIndex to continue with. 2621 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2622 unsigned Index, SDValue N, 2623 bool &Result, 2624 const SelectionDAGISel &SDISel, 2625 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2626 switch (Table[Index++]) { 2627 default: 2628 Result = false; 2629 return Index-1; // Could not evaluate this predicate. 2630 case SelectionDAGISel::OPC_CheckSame: 2631 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2632 return Index; 2633 case SelectionDAGISel::OPC_CheckChild0Same: 2634 case SelectionDAGISel::OPC_CheckChild1Same: 2635 case SelectionDAGISel::OPC_CheckChild2Same: 2636 case SelectionDAGISel::OPC_CheckChild3Same: 2637 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2638 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2639 return Index; 2640 case SelectionDAGISel::OPC_CheckPatternPredicate: 2641 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2642 return Index; 2643 case SelectionDAGISel::OPC_CheckPredicate: 2644 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2645 return Index; 2646 case SelectionDAGISel::OPC_CheckOpcode: 2647 Result = !::CheckOpcode(Table, Index, N.getNode()); 2648 return Index; 2649 case SelectionDAGISel::OPC_CheckType: 2650 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2651 SDISel.CurDAG->getDataLayout()); 2652 return Index; 2653 case SelectionDAGISel::OPC_CheckChild0Type: 2654 case SelectionDAGISel::OPC_CheckChild1Type: 2655 case SelectionDAGISel::OPC_CheckChild2Type: 2656 case SelectionDAGISel::OPC_CheckChild3Type: 2657 case SelectionDAGISel::OPC_CheckChild4Type: 2658 case SelectionDAGISel::OPC_CheckChild5Type: 2659 case SelectionDAGISel::OPC_CheckChild6Type: 2660 case SelectionDAGISel::OPC_CheckChild7Type: 2661 Result = !::CheckChildType( 2662 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2663 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2664 return Index; 2665 case SelectionDAGISel::OPC_CheckCondCode: 2666 Result = !::CheckCondCode(Table, Index, N); 2667 return Index; 2668 case SelectionDAGISel::OPC_CheckValueType: 2669 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2670 SDISel.CurDAG->getDataLayout()); 2671 return Index; 2672 case SelectionDAGISel::OPC_CheckInteger: 2673 Result = !::CheckInteger(Table, Index, N); 2674 return Index; 2675 case SelectionDAGISel::OPC_CheckChild0Integer: 2676 case SelectionDAGISel::OPC_CheckChild1Integer: 2677 case SelectionDAGISel::OPC_CheckChild2Integer: 2678 case SelectionDAGISel::OPC_CheckChild3Integer: 2679 case SelectionDAGISel::OPC_CheckChild4Integer: 2680 Result = !::CheckChildInteger(Table, Index, N, 2681 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2682 return Index; 2683 case SelectionDAGISel::OPC_CheckAndImm: 2684 Result = !::CheckAndImm(Table, Index, N, SDISel); 2685 return Index; 2686 case SelectionDAGISel::OPC_CheckOrImm: 2687 Result = !::CheckOrImm(Table, Index, N, SDISel); 2688 return Index; 2689 } 2690 } 2691 2692 namespace { 2693 struct MatchScope { 2694 /// FailIndex - If this match fails, this is the index to continue with. 2695 unsigned FailIndex; 2696 2697 /// NodeStack - The node stack when the scope was formed. 2698 SmallVector<SDValue, 4> NodeStack; 2699 2700 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2701 unsigned NumRecordedNodes; 2702 2703 /// NumMatchedMemRefs - The number of matched memref entries. 2704 unsigned NumMatchedMemRefs; 2705 2706 /// InputChain/InputGlue - The current chain/glue 2707 SDValue InputChain, InputGlue; 2708 2709 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2710 bool HasChainNodesMatched, HasGlueResultNodesMatched; 2711 }; 2712 2713 /// \\brief A DAG update listener to keep the matching state 2714 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2715 /// change the DAG while matching. X86 addressing mode matcher is an example 2716 /// for this. 2717 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2718 { 2719 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes; 2720 SmallVectorImpl<MatchScope> &MatchScopes; 2721 public: 2722 MatchStateUpdater(SelectionDAG &DAG, 2723 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN, 2724 SmallVectorImpl<MatchScope> &MS) : 2725 SelectionDAG::DAGUpdateListener(DAG), 2726 RecordedNodes(RN), MatchScopes(MS) { } 2727 2728 void NodeDeleted(SDNode *N, SDNode *E) override { 2729 // Some early-returns here to avoid the search if we deleted the node or 2730 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2731 // do, so it's unnecessary to update matching state at that point). 2732 // Neither of these can occur currently because we only install this 2733 // update listener during matching a complex patterns. 2734 if (!E || E->isMachineOpcode()) 2735 return; 2736 // Performing linear search here does not matter because we almost never 2737 // run this code. You'd have to have a CSE during complex pattern 2738 // matching. 2739 for (auto &I : RecordedNodes) 2740 if (I.first.getNode() == N) 2741 I.first.setNode(E); 2742 2743 for (auto &I : MatchScopes) 2744 for (auto &J : I.NodeStack) 2745 if (J.getNode() == N) 2746 J.setNode(E); 2747 } 2748 }; 2749 } // end anonymous namespace 2750 2751 SDNode *SelectionDAGISel:: 2752 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, 2753 unsigned TableSize) { 2754 // FIXME: Should these even be selected? Handle these cases in the caller? 2755 switch (NodeToMatch->getOpcode()) { 2756 default: 2757 break; 2758 case ISD::EntryToken: // These nodes remain the same. 2759 case ISD::BasicBlock: 2760 case ISD::Register: 2761 case ISD::RegisterMask: 2762 case ISD::HANDLENODE: 2763 case ISD::MDNODE_SDNODE: 2764 case ISD::TargetConstant: 2765 case ISD::TargetConstantFP: 2766 case ISD::TargetConstantPool: 2767 case ISD::TargetFrameIndex: 2768 case ISD::TargetExternalSymbol: 2769 case ISD::MCSymbol: 2770 case ISD::TargetBlockAddress: 2771 case ISD::TargetJumpTable: 2772 case ISD::TargetGlobalTLSAddress: 2773 case ISD::TargetGlobalAddress: 2774 case ISD::TokenFactor: 2775 case ISD::CopyFromReg: 2776 case ISD::CopyToReg: 2777 case ISD::EH_LABEL: 2778 case ISD::LIFETIME_START: 2779 case ISD::LIFETIME_END: 2780 NodeToMatch->setNodeId(-1); // Mark selected. 2781 return nullptr; 2782 case ISD::AssertSext: 2783 case ISD::AssertZext: 2784 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), 2785 NodeToMatch->getOperand(0)); 2786 return nullptr; 2787 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); 2788 case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch); 2789 case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch); 2790 case ISD::UNDEF: return Select_UNDEF(NodeToMatch); 2791 } 2792 2793 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2794 2795 // Set up the node stack with NodeToMatch as the only node on the stack. 2796 SmallVector<SDValue, 8> NodeStack; 2797 SDValue N = SDValue(NodeToMatch, 0); 2798 NodeStack.push_back(N); 2799 2800 // MatchScopes - Scopes used when matching, if a match failure happens, this 2801 // indicates where to continue checking. 2802 SmallVector<MatchScope, 8> MatchScopes; 2803 2804 // RecordedNodes - This is the set of nodes that have been recorded by the 2805 // state machine. The second value is the parent of the node, or null if the 2806 // root is recorded. 2807 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2808 2809 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2810 // pattern. 2811 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2812 2813 // These are the current input chain and glue for use when generating nodes. 2814 // Various Emit operations change these. For example, emitting a copytoreg 2815 // uses and updates these. 2816 SDValue InputChain, InputGlue; 2817 2818 // ChainNodesMatched - If a pattern matches nodes that have input/output 2819 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2820 // which ones they are. The result is captured into this list so that we can 2821 // update the chain results when the pattern is complete. 2822 SmallVector<SDNode*, 3> ChainNodesMatched; 2823 SmallVector<SDNode*, 3> GlueResultNodesMatched; 2824 2825 DEBUG(dbgs() << "ISEL: Starting pattern match on root node: "; 2826 NodeToMatch->dump(CurDAG); 2827 dbgs() << '\n'); 2828 2829 // Determine where to start the interpreter. Normally we start at opcode #0, 2830 // but if the state machine starts with an OPC_SwitchOpcode, then we 2831 // accelerate the first lookup (which is guaranteed to be hot) with the 2832 // OpcodeOffset table. 2833 unsigned MatcherIndex = 0; 2834 2835 if (!OpcodeOffset.empty()) { 2836 // Already computed the OpcodeOffset table, just index into it. 2837 if (N.getOpcode() < OpcodeOffset.size()) 2838 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2839 DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2840 2841 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2842 // Otherwise, the table isn't computed, but the state machine does start 2843 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2844 // is the first time we're selecting an instruction. 2845 unsigned Idx = 1; 2846 while (1) { 2847 // Get the size of this case. 2848 unsigned CaseSize = MatcherTable[Idx++]; 2849 if (CaseSize & 128) 2850 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2851 if (CaseSize == 0) break; 2852 2853 // Get the opcode, add the index to the table. 2854 uint16_t Opc = MatcherTable[Idx++]; 2855 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2856 if (Opc >= OpcodeOffset.size()) 2857 OpcodeOffset.resize((Opc+1)*2); 2858 OpcodeOffset[Opc] = Idx; 2859 Idx += CaseSize; 2860 } 2861 2862 // Okay, do the lookup for the first opcode. 2863 if (N.getOpcode() < OpcodeOffset.size()) 2864 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2865 } 2866 2867 while (1) { 2868 assert(MatcherIndex < TableSize && "Invalid index"); 2869 #ifndef NDEBUG 2870 unsigned CurrentOpcodeIndex = MatcherIndex; 2871 #endif 2872 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2873 switch (Opcode) { 2874 case OPC_Scope: { 2875 // Okay, the semantics of this operation are that we should push a scope 2876 // then evaluate the first child. However, pushing a scope only to have 2877 // the first check fail (which then pops it) is inefficient. If we can 2878 // determine immediately that the first check (or first several) will 2879 // immediately fail, don't even bother pushing a scope for them. 2880 unsigned FailIndex; 2881 2882 while (1) { 2883 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2884 if (NumToSkip & 128) 2885 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2886 // Found the end of the scope with no match. 2887 if (NumToSkip == 0) { 2888 FailIndex = 0; 2889 break; 2890 } 2891 2892 FailIndex = MatcherIndex+NumToSkip; 2893 2894 unsigned MatcherIndexOfPredicate = MatcherIndex; 2895 (void)MatcherIndexOfPredicate; // silence warning. 2896 2897 // If we can't evaluate this predicate without pushing a scope (e.g. if 2898 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2899 // push the scope and evaluate the full predicate chain. 2900 bool Result; 2901 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2902 Result, *this, RecordedNodes); 2903 if (!Result) 2904 break; 2905 2906 DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at " 2907 << "index " << MatcherIndexOfPredicate 2908 << ", continuing at " << FailIndex << "\n"); 2909 ++NumDAGIselRetries; 2910 2911 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2912 // move to the next case. 2913 MatcherIndex = FailIndex; 2914 } 2915 2916 // If the whole scope failed to match, bail. 2917 if (FailIndex == 0) break; 2918 2919 // Push a MatchScope which indicates where to go if the first child fails 2920 // to match. 2921 MatchScope NewEntry; 2922 NewEntry.FailIndex = FailIndex; 2923 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2924 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2925 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2926 NewEntry.InputChain = InputChain; 2927 NewEntry.InputGlue = InputGlue; 2928 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2929 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); 2930 MatchScopes.push_back(NewEntry); 2931 continue; 2932 } 2933 case OPC_RecordNode: { 2934 // Remember this node, it may end up being an operand in the pattern. 2935 SDNode *Parent = nullptr; 2936 if (NodeStack.size() > 1) 2937 Parent = NodeStack[NodeStack.size()-2].getNode(); 2938 RecordedNodes.push_back(std::make_pair(N, Parent)); 2939 continue; 2940 } 2941 2942 case OPC_RecordChild0: case OPC_RecordChild1: 2943 case OPC_RecordChild2: case OPC_RecordChild3: 2944 case OPC_RecordChild4: case OPC_RecordChild5: 2945 case OPC_RecordChild6: case OPC_RecordChild7: { 2946 unsigned ChildNo = Opcode-OPC_RecordChild0; 2947 if (ChildNo >= N.getNumOperands()) 2948 break; // Match fails if out of range child #. 2949 2950 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2951 N.getNode())); 2952 continue; 2953 } 2954 case OPC_RecordMemRef: 2955 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); 2956 continue; 2957 2958 case OPC_CaptureGlueInput: 2959 // If the current node has an input glue, capture it in InputGlue. 2960 if (N->getNumOperands() != 0 && 2961 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2962 InputGlue = N->getOperand(N->getNumOperands()-1); 2963 continue; 2964 2965 case OPC_MoveChild: { 2966 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2967 if (ChildNo >= N.getNumOperands()) 2968 break; // Match fails if out of range child #. 2969 N = N.getOperand(ChildNo); 2970 NodeStack.push_back(N); 2971 continue; 2972 } 2973 2974 case OPC_MoveParent: 2975 // Pop the current node off the NodeStack. 2976 NodeStack.pop_back(); 2977 assert(!NodeStack.empty() && "Node stack imbalance!"); 2978 N = NodeStack.back(); 2979 continue; 2980 2981 case OPC_CheckSame: 2982 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2983 continue; 2984 2985 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 2986 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 2987 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 2988 Opcode-OPC_CheckChild0Same)) 2989 break; 2990 continue; 2991 2992 case OPC_CheckPatternPredicate: 2993 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 2994 continue; 2995 case OPC_CheckPredicate: 2996 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 2997 N.getNode())) 2998 break; 2999 continue; 3000 case OPC_CheckComplexPat: { 3001 unsigned CPNum = MatcherTable[MatcherIndex++]; 3002 unsigned RecNo = MatcherTable[MatcherIndex++]; 3003 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3004 3005 // If target can modify DAG during matching, keep the matching state 3006 // consistent. 3007 std::unique_ptr<MatchStateUpdater> MSU; 3008 if (ComplexPatternFuncMutatesDAG()) 3009 MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes, 3010 MatchScopes)); 3011 3012 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3013 RecordedNodes[RecNo].first, CPNum, 3014 RecordedNodes)) 3015 break; 3016 continue; 3017 } 3018 case OPC_CheckOpcode: 3019 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3020 continue; 3021 3022 case OPC_CheckType: 3023 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3024 CurDAG->getDataLayout())) 3025 break; 3026 continue; 3027 3028 case OPC_SwitchOpcode: { 3029 unsigned CurNodeOpcode = N.getOpcode(); 3030 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3031 unsigned CaseSize; 3032 while (1) { 3033 // Get the size of this case. 3034 CaseSize = MatcherTable[MatcherIndex++]; 3035 if (CaseSize & 128) 3036 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3037 if (CaseSize == 0) break; 3038 3039 uint16_t Opc = MatcherTable[MatcherIndex++]; 3040 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3041 3042 // If the opcode matches, then we will execute this case. 3043 if (CurNodeOpcode == Opc) 3044 break; 3045 3046 // Otherwise, skip over this case. 3047 MatcherIndex += CaseSize; 3048 } 3049 3050 // If no cases matched, bail out. 3051 if (CaseSize == 0) break; 3052 3053 // Otherwise, execute the case we found. 3054 DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart 3055 << " to " << MatcherIndex << "\n"); 3056 continue; 3057 } 3058 3059 case OPC_SwitchType: { 3060 MVT CurNodeVT = N.getSimpleValueType(); 3061 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3062 unsigned CaseSize; 3063 while (1) { 3064 // Get the size of this case. 3065 CaseSize = MatcherTable[MatcherIndex++]; 3066 if (CaseSize & 128) 3067 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3068 if (CaseSize == 0) break; 3069 3070 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3071 if (CaseVT == MVT::iPTR) 3072 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3073 3074 // If the VT matches, then we will execute this case. 3075 if (CurNodeVT == CaseVT) 3076 break; 3077 3078 // Otherwise, skip over this case. 3079 MatcherIndex += CaseSize; 3080 } 3081 3082 // If no cases matched, bail out. 3083 if (CaseSize == 0) break; 3084 3085 // Otherwise, execute the case we found. 3086 DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3087 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); 3088 continue; 3089 } 3090 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3091 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3092 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3093 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3094 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3095 CurDAG->getDataLayout(), 3096 Opcode - OPC_CheckChild0Type)) 3097 break; 3098 continue; 3099 case OPC_CheckCondCode: 3100 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3101 continue; 3102 case OPC_CheckValueType: 3103 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3104 CurDAG->getDataLayout())) 3105 break; 3106 continue; 3107 case OPC_CheckInteger: 3108 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3109 continue; 3110 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3111 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3112 case OPC_CheckChild4Integer: 3113 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3114 Opcode-OPC_CheckChild0Integer)) break; 3115 continue; 3116 case OPC_CheckAndImm: 3117 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3118 continue; 3119 case OPC_CheckOrImm: 3120 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3121 continue; 3122 3123 case OPC_CheckFoldableChainNode: { 3124 assert(NodeStack.size() != 1 && "No parent node"); 3125 // Verify that all intermediate nodes between the root and this one have 3126 // a single use. 3127 bool HasMultipleUses = false; 3128 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 3129 if (!NodeStack[i].hasOneUse()) { 3130 HasMultipleUses = true; 3131 break; 3132 } 3133 if (HasMultipleUses) break; 3134 3135 // Check to see that the target thinks this is profitable to fold and that 3136 // we can fold it without inducing cycles in the graph. 3137 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3138 NodeToMatch) || 3139 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3140 NodeToMatch, OptLevel, 3141 true/*We validate our own chains*/)) 3142 break; 3143 3144 continue; 3145 } 3146 case OPC_EmitInteger: { 3147 MVT::SimpleValueType VT = 3148 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3149 int64_t Val = MatcherTable[MatcherIndex++]; 3150 if (Val & 128) 3151 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3152 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3153 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3154 VT), nullptr)); 3155 continue; 3156 } 3157 case OPC_EmitRegister: { 3158 MVT::SimpleValueType VT = 3159 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3160 unsigned RegNo = MatcherTable[MatcherIndex++]; 3161 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3162 CurDAG->getRegister(RegNo, VT), nullptr)); 3163 continue; 3164 } 3165 case OPC_EmitRegister2: { 3166 // For targets w/ more than 256 register names, the register enum 3167 // values are stored in two bytes in the matcher table (just like 3168 // opcodes). 3169 MVT::SimpleValueType VT = 3170 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3171 unsigned RegNo = MatcherTable[MatcherIndex++]; 3172 RegNo |= MatcherTable[MatcherIndex++] << 8; 3173 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3174 CurDAG->getRegister(RegNo, VT), nullptr)); 3175 continue; 3176 } 3177 3178 case OPC_EmitConvertToTarget: { 3179 // Convert from IMM/FPIMM to target version. 3180 unsigned RecNo = MatcherTable[MatcherIndex++]; 3181 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3182 SDValue Imm = RecordedNodes[RecNo].first; 3183 3184 if (Imm->getOpcode() == ISD::Constant) { 3185 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3186 Imm = CurDAG->getConstant(*Val, SDLoc(NodeToMatch), Imm.getValueType(), 3187 true); 3188 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3189 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3190 Imm = CurDAG->getConstantFP(*Val, SDLoc(NodeToMatch), 3191 Imm.getValueType(), true); 3192 } 3193 3194 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3195 continue; 3196 } 3197 3198 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3199 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3200 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3201 // These are space-optimized forms of OPC_EmitMergeInputChains. 3202 assert(!InputChain.getNode() && 3203 "EmitMergeInputChains should be the first chain producing node"); 3204 assert(ChainNodesMatched.empty() && 3205 "Should only have one EmitMergeInputChains per match"); 3206 3207 // Read all of the chained nodes. 3208 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3209 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3210 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3211 3212 // FIXME: What if other value results of the node have uses not matched 3213 // by this pattern? 3214 if (ChainNodesMatched.back() != NodeToMatch && 3215 !RecordedNodes[RecNo].first.hasOneUse()) { 3216 ChainNodesMatched.clear(); 3217 break; 3218 } 3219 3220 // Merge the input chains if they are not intra-pattern references. 3221 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3222 3223 if (!InputChain.getNode()) 3224 break; // Failed to merge. 3225 continue; 3226 } 3227 3228 case OPC_EmitMergeInputChains: { 3229 assert(!InputChain.getNode() && 3230 "EmitMergeInputChains should be the first chain producing node"); 3231 // This node gets a list of nodes we matched in the input that have 3232 // chains. We want to token factor all of the input chains to these nodes 3233 // together. However, if any of the input chains is actually one of the 3234 // nodes matched in this pattern, then we have an intra-match reference. 3235 // Ignore these because the newly token factored chain should not refer to 3236 // the old nodes. 3237 unsigned NumChains = MatcherTable[MatcherIndex++]; 3238 assert(NumChains != 0 && "Can't TF zero chains"); 3239 3240 assert(ChainNodesMatched.empty() && 3241 "Should only have one EmitMergeInputChains per match"); 3242 3243 // Read all of the chained nodes. 3244 for (unsigned i = 0; i != NumChains; ++i) { 3245 unsigned RecNo = MatcherTable[MatcherIndex++]; 3246 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3247 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3248 3249 // FIXME: What if other value results of the node have uses not matched 3250 // by this pattern? 3251 if (ChainNodesMatched.back() != NodeToMatch && 3252 !RecordedNodes[RecNo].first.hasOneUse()) { 3253 ChainNodesMatched.clear(); 3254 break; 3255 } 3256 } 3257 3258 // If the inner loop broke out, the match fails. 3259 if (ChainNodesMatched.empty()) 3260 break; 3261 3262 // Merge the input chains if they are not intra-pattern references. 3263 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3264 3265 if (!InputChain.getNode()) 3266 break; // Failed to merge. 3267 3268 continue; 3269 } 3270 3271 case OPC_EmitCopyToReg: { 3272 unsigned RecNo = MatcherTable[MatcherIndex++]; 3273 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3274 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3275 3276 if (!InputChain.getNode()) 3277 InputChain = CurDAG->getEntryNode(); 3278 3279 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3280 DestPhysReg, RecordedNodes[RecNo].first, 3281 InputGlue); 3282 3283 InputGlue = InputChain.getValue(1); 3284 continue; 3285 } 3286 3287 case OPC_EmitNodeXForm: { 3288 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3289 unsigned RecNo = MatcherTable[MatcherIndex++]; 3290 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3291 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3292 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3293 continue; 3294 } 3295 3296 case OPC_EmitNode: 3297 case OPC_MorphNodeTo: { 3298 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3299 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3300 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3301 // Get the result VT list. 3302 unsigned NumVTs = MatcherTable[MatcherIndex++]; 3303 SmallVector<EVT, 4> VTs; 3304 for (unsigned i = 0; i != NumVTs; ++i) { 3305 MVT::SimpleValueType VT = 3306 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3307 if (VT == MVT::iPTR) 3308 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3309 VTs.push_back(VT); 3310 } 3311 3312 if (EmitNodeInfo & OPFL_Chain) 3313 VTs.push_back(MVT::Other); 3314 if (EmitNodeInfo & OPFL_GlueOutput) 3315 VTs.push_back(MVT::Glue); 3316 3317 // This is hot code, so optimize the two most common cases of 1 and 2 3318 // results. 3319 SDVTList VTList; 3320 if (VTs.size() == 1) 3321 VTList = CurDAG->getVTList(VTs[0]); 3322 else if (VTs.size() == 2) 3323 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3324 else 3325 VTList = CurDAG->getVTList(VTs); 3326 3327 // Get the operand list. 3328 unsigned NumOps = MatcherTable[MatcherIndex++]; 3329 SmallVector<SDValue, 8> Ops; 3330 for (unsigned i = 0; i != NumOps; ++i) { 3331 unsigned RecNo = MatcherTable[MatcherIndex++]; 3332 if (RecNo & 128) 3333 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3334 3335 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3336 Ops.push_back(RecordedNodes[RecNo].first); 3337 } 3338 3339 // If there are variadic operands to add, handle them now. 3340 if (EmitNodeInfo & OPFL_VariadicInfo) { 3341 // Determine the start index to copy from. 3342 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3343 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3344 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3345 "Invalid variadic node"); 3346 // Copy all of the variadic operands, not including a potential glue 3347 // input. 3348 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3349 i != e; ++i) { 3350 SDValue V = NodeToMatch->getOperand(i); 3351 if (V.getValueType() == MVT::Glue) break; 3352 Ops.push_back(V); 3353 } 3354 } 3355 3356 // If this has chain/glue inputs, add them. 3357 if (EmitNodeInfo & OPFL_Chain) 3358 Ops.push_back(InputChain); 3359 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3360 Ops.push_back(InputGlue); 3361 3362 // Create the node. 3363 SDNode *Res = nullptr; 3364 if (Opcode != OPC_MorphNodeTo) { 3365 // If this is a normal EmitNode command, just create the new node and 3366 // add the results to the RecordedNodes list. 3367 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3368 VTList, Ops); 3369 3370 // Add all the non-glue/non-chain results to the RecordedNodes list. 3371 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3372 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3373 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3374 nullptr)); 3375 } 3376 3377 } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) { 3378 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo); 3379 } else { 3380 // NodeToMatch was eliminated by CSE when the target changed the DAG. 3381 // We will visit the equivalent node later. 3382 DEBUG(dbgs() << "Node was eliminated by CSE\n"); 3383 return nullptr; 3384 } 3385 3386 // If the node had chain/glue results, update our notion of the current 3387 // chain and glue. 3388 if (EmitNodeInfo & OPFL_GlueOutput) { 3389 InputGlue = SDValue(Res, VTs.size()-1); 3390 if (EmitNodeInfo & OPFL_Chain) 3391 InputChain = SDValue(Res, VTs.size()-2); 3392 } else if (EmitNodeInfo & OPFL_Chain) 3393 InputChain = SDValue(Res, VTs.size()-1); 3394 3395 // If the OPFL_MemRefs glue is set on this node, slap all of the 3396 // accumulated memrefs onto it. 3397 // 3398 // FIXME: This is vastly incorrect for patterns with multiple outputs 3399 // instructions that access memory and for ComplexPatterns that match 3400 // loads. 3401 if (EmitNodeInfo & OPFL_MemRefs) { 3402 // Only attach load or store memory operands if the generated 3403 // instruction may load or store. 3404 const MCInstrDesc &MCID = TII->get(TargetOpc); 3405 bool mayLoad = MCID.mayLoad(); 3406 bool mayStore = MCID.mayStore(); 3407 3408 unsigned NumMemRefs = 0; 3409 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 3410 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 3411 if ((*I)->isLoad()) { 3412 if (mayLoad) 3413 ++NumMemRefs; 3414 } else if ((*I)->isStore()) { 3415 if (mayStore) 3416 ++NumMemRefs; 3417 } else { 3418 ++NumMemRefs; 3419 } 3420 } 3421 3422 MachineSDNode::mmo_iterator MemRefs = 3423 MF->allocateMemRefsArray(NumMemRefs); 3424 3425 MachineSDNode::mmo_iterator MemRefsPos = MemRefs; 3426 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 3427 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 3428 if ((*I)->isLoad()) { 3429 if (mayLoad) 3430 *MemRefsPos++ = *I; 3431 } else if ((*I)->isStore()) { 3432 if (mayStore) 3433 *MemRefsPos++ = *I; 3434 } else { 3435 *MemRefsPos++ = *I; 3436 } 3437 } 3438 3439 cast<MachineSDNode>(Res) 3440 ->setMemRefs(MemRefs, MemRefs + NumMemRefs); 3441 } 3442 3443 DEBUG(dbgs() << " " 3444 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") 3445 << " node: "; Res->dump(CurDAG); dbgs() << "\n"); 3446 3447 // If this was a MorphNodeTo then we're completely done! 3448 if (Opcode == OPC_MorphNodeTo) { 3449 // Update chain and glue uses. 3450 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 3451 InputGlue, GlueResultNodesMatched, true); 3452 return Res; 3453 } 3454 continue; 3455 } 3456 3457 case OPC_MarkGlueResults: { 3458 unsigned NumNodes = MatcherTable[MatcherIndex++]; 3459 3460 // Read and remember all the glue-result nodes. 3461 for (unsigned i = 0; i != NumNodes; ++i) { 3462 unsigned RecNo = MatcherTable[MatcherIndex++]; 3463 if (RecNo & 128) 3464 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3465 3466 assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults"); 3467 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3468 } 3469 continue; 3470 } 3471 3472 case OPC_CompleteMatch: { 3473 // The match has been completed, and any new nodes (if any) have been 3474 // created. Patch up references to the matched dag to use the newly 3475 // created nodes. 3476 unsigned NumResults = MatcherTable[MatcherIndex++]; 3477 3478 for (unsigned i = 0; i != NumResults; ++i) { 3479 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3480 if (ResSlot & 128) 3481 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3482 3483 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3484 SDValue Res = RecordedNodes[ResSlot].first; 3485 3486 assert(i < NodeToMatch->getNumValues() && 3487 NodeToMatch->getValueType(i) != MVT::Other && 3488 NodeToMatch->getValueType(i) != MVT::Glue && 3489 "Invalid number of results to complete!"); 3490 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3491 NodeToMatch->getValueType(i) == MVT::iPTR || 3492 Res.getValueType() == MVT::iPTR || 3493 NodeToMatch->getValueType(i).getSizeInBits() == 3494 Res.getValueType().getSizeInBits()) && 3495 "invalid replacement"); 3496 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); 3497 } 3498 3499 // If the root node defines glue, add it to the glue nodes to update list. 3500 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) 3501 GlueResultNodesMatched.push_back(NodeToMatch); 3502 3503 // Update chain and glue uses. 3504 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 3505 InputGlue, GlueResultNodesMatched, false); 3506 3507 assert(NodeToMatch->use_empty() && 3508 "Didn't replace all uses of the node?"); 3509 3510 // FIXME: We just return here, which interacts correctly with SelectRoot 3511 // above. We should fix this to not return an SDNode* anymore. 3512 return nullptr; 3513 } 3514 } 3515 3516 // If the code reached this point, then the match failed. See if there is 3517 // another child to try in the current 'Scope', otherwise pop it until we 3518 // find a case to check. 3519 DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); 3520 ++NumDAGIselRetries; 3521 while (1) { 3522 if (MatchScopes.empty()) { 3523 CannotYetSelect(NodeToMatch); 3524 return nullptr; 3525 } 3526 3527 // Restore the interpreter state back to the point where the scope was 3528 // formed. 3529 MatchScope &LastScope = MatchScopes.back(); 3530 RecordedNodes.resize(LastScope.NumRecordedNodes); 3531 NodeStack.clear(); 3532 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3533 N = NodeStack.back(); 3534 3535 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3536 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3537 MatcherIndex = LastScope.FailIndex; 3538 3539 DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3540 3541 InputChain = LastScope.InputChain; 3542 InputGlue = LastScope.InputGlue; 3543 if (!LastScope.HasChainNodesMatched) 3544 ChainNodesMatched.clear(); 3545 if (!LastScope.HasGlueResultNodesMatched) 3546 GlueResultNodesMatched.clear(); 3547 3548 // Check to see what the offset is at the new MatcherIndex. If it is zero 3549 // we have reached the end of this scope, otherwise we have another child 3550 // in the current scope to try. 3551 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3552 if (NumToSkip & 128) 3553 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3554 3555 // If we have another child in this scope to match, update FailIndex and 3556 // try it. 3557 if (NumToSkip != 0) { 3558 LastScope.FailIndex = MatcherIndex+NumToSkip; 3559 break; 3560 } 3561 3562 // End of this scope, pop it and try the next child in the containing 3563 // scope. 3564 MatchScopes.pop_back(); 3565 } 3566 } 3567 } 3568 3569 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3570 std::string msg; 3571 raw_string_ostream Msg(msg); 3572 Msg << "Cannot select: "; 3573 3574 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3575 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3576 N->getOpcode() != ISD::INTRINSIC_VOID) { 3577 N->printrFull(Msg, CurDAG); 3578 Msg << "\nIn function: " << MF->getName(); 3579 } else { 3580 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3581 unsigned iid = 3582 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3583 if (iid < Intrinsic::num_intrinsics) 3584 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); 3585 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3586 Msg << "target intrinsic %" << TII->getName(iid); 3587 else 3588 Msg << "unknown intrinsic #" << iid; 3589 } 3590 report_fatal_error(Msg.str()); 3591 } 3592 3593 char SelectionDAGISel::ID = 0; 3594