1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InlineAsm.h"
70 #include "llvm/IR/InstIterator.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Statepoint.h"
79 #include "llvm/IR/Type.h"
80 #include "llvm/IR/User.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/InitializePasses.h"
83 #include "llvm/MC/MCInstrDesc.h"
84 #include "llvm/MC/MCRegisterInfo.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CodeGen.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include "llvm/Support/KnownBits.h"
94 #include "llvm/Support/MachineValueType.h"
95 #include "llvm/Support/Timer.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
101 #include <algorithm>
102 #include <cassert>
103 #include <cstdint>
104 #include <iterator>
105 #include <limits>
106 #include <memory>
107 #include <string>
108 #include <utility>
109 #include <vector>
110 
111 using namespace llvm;
112 
113 #define DEBUG_TYPE "isel"
114 
115 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
116 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
117 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
118 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
119 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
120 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
121 STATISTIC(NumFastIselFailLowerArguments,
122           "Number of entry blocks where fast isel failed to lower arguments");
123 
124 static cl::opt<int> EnableFastISelAbort(
125     "fast-isel-abort", cl::Hidden,
126     cl::desc("Enable abort calls when \"fast\" instruction selection "
127              "fails to lower an instruction: 0 disable the abort, 1 will "
128              "abort but for args, calls and terminators, 2 will also "
129              "abort for argument lowering, and 3 will never fallback "
130              "to SelectionDAG."));
131 
132 static cl::opt<bool> EnableFastISelFallbackReport(
133     "fast-isel-report-on-fallback", cl::Hidden,
134     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
135              "falls back to SelectionDAG."));
136 
137 static cl::opt<bool>
138 UseMBPI("use-mbpi",
139         cl::desc("use Machine Branch Probability Info"),
140         cl::init(true), cl::Hidden);
141 
142 #ifndef NDEBUG
143 static cl::opt<std::string>
144 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
145                         cl::desc("Only display the basic block whose name "
146                                  "matches this for all view-*-dags options"));
147 static cl::opt<bool>
148 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
149           cl::desc("Pop up a window to show dags before the first "
150                    "dag combine pass"));
151 static cl::opt<bool>
152 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
153           cl::desc("Pop up a window to show dags before legalize types"));
154 static cl::opt<bool>
155     ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
156                      cl::desc("Pop up a window to show dags before the post "
157                               "legalize types dag combine pass"));
158 static cl::opt<bool>
159     ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
160                      cl::desc("Pop up a window to show dags before legalize"));
161 static cl::opt<bool>
162 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
163           cl::desc("Pop up a window to show dags before the second "
164                    "dag combine pass"));
165 static cl::opt<bool>
166 ViewISelDAGs("view-isel-dags", cl::Hidden,
167           cl::desc("Pop up a window to show isel dags as they are selected"));
168 static cl::opt<bool>
169 ViewSchedDAGs("view-sched-dags", cl::Hidden,
170           cl::desc("Pop up a window to show sched dags as they are processed"));
171 static cl::opt<bool>
172 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
173       cl::desc("Pop up a window to show SUnit dags after they are processed"));
174 #else
175 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
176                   ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
177                   ViewDAGCombine2 = false, ViewISelDAGs = false,
178                   ViewSchedDAGs = false, ViewSUnitDAGs = false;
179 #endif
180 
181 //===---------------------------------------------------------------------===//
182 ///
183 /// RegisterScheduler class - Track the registration of instruction schedulers.
184 ///
185 //===---------------------------------------------------------------------===//
186 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
187     RegisterScheduler::Registry;
188 
189 //===---------------------------------------------------------------------===//
190 ///
191 /// ISHeuristic command line option for instruction schedulers.
192 ///
193 //===---------------------------------------------------------------------===//
194 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
195                RegisterPassParser<RegisterScheduler>>
196 ISHeuristic("pre-RA-sched",
197             cl::init(&createDefaultScheduler), cl::Hidden,
198             cl::desc("Instruction schedulers available (before register"
199                      " allocation):"));
200 
201 static RegisterScheduler
202 defaultListDAGScheduler("default", "Best scheduler for the target",
203                         createDefaultScheduler);
204 
205 namespace llvm {
206 
207   //===--------------------------------------------------------------------===//
208   /// This class is used by SelectionDAGISel to temporarily override
209   /// the optimization level on a per-function basis.
210   class OptLevelChanger {
211     SelectionDAGISel &IS;
212     CodeGenOpt::Level SavedOptLevel;
213     bool SavedFastISel;
214 
215   public:
216     OptLevelChanger(SelectionDAGISel &ISel,
217                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
218       SavedOptLevel = IS.OptLevel;
219       SavedFastISel = IS.TM.Options.EnableFastISel;
220       if (NewOptLevel == SavedOptLevel)
221         return;
222       IS.OptLevel = NewOptLevel;
223       IS.TM.setOptLevel(NewOptLevel);
224       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
225                         << IS.MF->getFunction().getName() << "\n");
226       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
227                         << NewOptLevel << "\n");
228       if (NewOptLevel == CodeGenOpt::None) {
229         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
230         LLVM_DEBUG(
231             dbgs() << "\tFastISel is "
232                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
233                    << "\n");
234       }
235     }
236 
237     ~OptLevelChanger() {
238       if (IS.OptLevel == SavedOptLevel)
239         return;
240       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
241                         << IS.MF->getFunction().getName() << "\n");
242       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
243                         << SavedOptLevel << "\n");
244       IS.OptLevel = SavedOptLevel;
245       IS.TM.setOptLevel(SavedOptLevel);
246       IS.TM.setFastISel(SavedFastISel);
247     }
248   };
249 
250   //===--------------------------------------------------------------------===//
251   /// createDefaultScheduler - This creates an instruction scheduler appropriate
252   /// for the target.
253   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
254                                              CodeGenOpt::Level OptLevel) {
255     const TargetLowering *TLI = IS->TLI;
256     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
257 
258     // Try first to see if the Target has its own way of selecting a scheduler
259     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
260       return SchedulerCtor(IS, OptLevel);
261     }
262 
263     if (OptLevel == CodeGenOpt::None ||
264         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
265         TLI->getSchedulingPreference() == Sched::Source)
266       return createSourceListDAGScheduler(IS, OptLevel);
267     if (TLI->getSchedulingPreference() == Sched::RegPressure)
268       return createBURRListDAGScheduler(IS, OptLevel);
269     if (TLI->getSchedulingPreference() == Sched::Hybrid)
270       return createHybridListDAGScheduler(IS, OptLevel);
271     if (TLI->getSchedulingPreference() == Sched::VLIW)
272       return createVLIWDAGScheduler(IS, OptLevel);
273     if (TLI->getSchedulingPreference() == Sched::Fast)
274       return createFastDAGScheduler(IS, OptLevel);
275     if (TLI->getSchedulingPreference() == Sched::Linearize)
276       return createDAGLinearizer(IS, OptLevel);
277     assert(TLI->getSchedulingPreference() == Sched::ILP &&
278            "Unknown sched type!");
279     return createILPListDAGScheduler(IS, OptLevel);
280   }
281 
282 } // end namespace llvm
283 
284 // EmitInstrWithCustomInserter - This method should be implemented by targets
285 // that mark instructions with the 'usesCustomInserter' flag.  These
286 // instructions are special in various ways, which require special support to
287 // insert.  The specified MachineInstr is created but not inserted into any
288 // basic blocks, and this method is called to expand it into a sequence of
289 // instructions, potentially also creating new basic blocks and control flow.
290 // When new basic blocks are inserted and the edges from MBB to its successors
291 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
292 // DenseMap.
293 MachineBasicBlock *
294 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
295                                             MachineBasicBlock *MBB) const {
296 #ifndef NDEBUG
297   dbgs() << "If a target marks an instruction with "
298           "'usesCustomInserter', it must implement "
299           "TargetLowering::EmitInstrWithCustomInserter!";
300 #endif
301   llvm_unreachable(nullptr);
302 }
303 
304 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
305                                                    SDNode *Node) const {
306   assert(!MI.hasPostISelHook() &&
307          "If a target marks an instruction with 'hasPostISelHook', "
308          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
309 }
310 
311 //===----------------------------------------------------------------------===//
312 // SelectionDAGISel code
313 //===----------------------------------------------------------------------===//
314 
315 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
316     : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
317       SwiftError(new SwiftErrorValueTracking()),
318       CurDAG(new SelectionDAG(tm, OL)),
319       SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
320                                                 OL)),
321       AA(), GFI(), OptLevel(OL), DAGSize(0) {
322   initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
323   initializeBranchProbabilityInfoWrapperPassPass(
324       *PassRegistry::getPassRegistry());
325   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
326   initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
327 }
328 
329 SelectionDAGISel::~SelectionDAGISel() {
330   delete CurDAG;
331   delete SwiftError;
332 }
333 
334 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
335   if (OptLevel != CodeGenOpt::None)
336     AU.addRequired<AAResultsWrapperPass>();
337   AU.addRequired<GCModuleInfo>();
338   AU.addRequired<StackProtector>();
339   AU.addPreserved<GCModuleInfo>();
340   AU.addRequired<TargetLibraryInfoWrapperPass>();
341   AU.addRequired<TargetTransformInfoWrapperPass>();
342   if (UseMBPI && OptLevel != CodeGenOpt::None)
343     AU.addRequired<BranchProbabilityInfoWrapperPass>();
344   AU.addRequired<ProfileSummaryInfoWrapperPass>();
345   if (OptLevel != CodeGenOpt::None)
346     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
347   MachineFunctionPass::getAnalysisUsage(AU);
348 }
349 
350 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
351 /// may trap on it.  In this case we have to split the edge so that the path
352 /// through the predecessor block that doesn't go to the phi block doesn't
353 /// execute the possibly trapping instruction. If available, we pass domtree
354 /// and loop info to be updated when we split critical edges. This is because
355 /// SelectionDAGISel preserves these analyses.
356 /// This is required for correctness, so it must be done at -O0.
357 ///
358 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
359                                          LoopInfo *LI) {
360   // Loop for blocks with phi nodes.
361   for (BasicBlock &BB : Fn) {
362     PHINode *PN = dyn_cast<PHINode>(BB.begin());
363     if (!PN) continue;
364 
365   ReprocessBlock:
366     // For each block with a PHI node, check to see if any of the input values
367     // are potentially trapping constant expressions.  Constant expressions are
368     // the only potentially trapping value that can occur as the argument to a
369     // PHI.
370     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
371       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
372         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
373         if (!CE || !CE->canTrap()) continue;
374 
375         // The only case we have to worry about is when the edge is critical.
376         // Since this block has a PHI Node, we assume it has multiple input
377         // edges: check to see if the pred has multiple successors.
378         BasicBlock *Pred = PN->getIncomingBlock(i);
379         if (Pred->getTerminator()->getNumSuccessors() == 1)
380           continue;
381 
382         // Okay, we have to split this edge.
383         SplitCriticalEdge(
384             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
385             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
386         goto ReprocessBlock;
387       }
388   }
389 }
390 
391 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
392                                          MachineModuleInfo &MMI) {
393   // Only needed for MSVC
394   if (!TT.isWindowsMSVCEnvironment())
395     return;
396 
397   // If it's already set, nothing to do.
398   if (MMI.usesMSVCFloatingPoint())
399     return;
400 
401   for (const Instruction &I : instructions(F)) {
402     if (I.getType()->isFPOrFPVectorTy()) {
403       MMI.setUsesMSVCFloatingPoint(true);
404       return;
405     }
406     for (const auto &Op : I.operands()) {
407       if (Op->getType()->isFPOrFPVectorTy()) {
408         MMI.setUsesMSVCFloatingPoint(true);
409         return;
410       }
411     }
412   }
413 }
414 
415 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
416   // If we already selected that function, we do not need to run SDISel.
417   if (mf.getProperties().hasProperty(
418           MachineFunctionProperties::Property::Selected))
419     return false;
420   // Do some sanity-checking on the command-line options.
421   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
422          "-fast-isel-abort > 0 requires -fast-isel");
423 
424   const Function &Fn = mf.getFunction();
425   MF = &mf;
426 
427   // Reset the target options before resetting the optimization
428   // level below.
429   // FIXME: This is a horrible hack and should be processed via
430   // codegen looking at the optimization level explicitly when
431   // it wants to look at it.
432   TM.resetTargetOptions(Fn);
433   // Reset OptLevel to None for optnone functions.
434   CodeGenOpt::Level NewOptLevel = OptLevel;
435   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
436     NewOptLevel = CodeGenOpt::None;
437   OptLevelChanger OLC(*this, NewOptLevel);
438 
439   TII = MF->getSubtarget().getInstrInfo();
440   TLI = MF->getSubtarget().getTargetLowering();
441   RegInfo = &MF->getRegInfo();
442   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
443   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
444   ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
445   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
446   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
447   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
448   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
449   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
450   BlockFrequencyInfo *BFI = nullptr;
451   if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
452     BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
453 
454   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
455 
456   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
457 
458   CurDAG->init(*MF, *ORE, this, LibInfo,
459                getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
460   FuncInfo->set(Fn, *MF, CurDAG);
461   SwiftError->setFunction(*MF);
462 
463   // Now get the optional analyzes if we want to.
464   // This is based on the possibly changed OptLevel (after optnone is taken
465   // into account).  That's unfortunate but OK because it just means we won't
466   // ask for passes that have been required anyway.
467 
468   if (UseMBPI && OptLevel != CodeGenOpt::None)
469     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
470   else
471     FuncInfo->BPI = nullptr;
472 
473   if (OptLevel != CodeGenOpt::None)
474     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
475   else
476     AA = nullptr;
477 
478   SDB->init(GFI, AA, LibInfo);
479 
480   MF->setHasInlineAsm(false);
481 
482   FuncInfo->SplitCSR = false;
483 
484   // We split CSR if the target supports it for the given function
485   // and the function has only return exits.
486   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
487     FuncInfo->SplitCSR = true;
488 
489     // Collect all the return blocks.
490     for (const BasicBlock &BB : Fn) {
491       if (!succ_empty(&BB))
492         continue;
493 
494       const Instruction *Term = BB.getTerminator();
495       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
496         continue;
497 
498       // Bail out if the exit block is not Return nor Unreachable.
499       FuncInfo->SplitCSR = false;
500       break;
501     }
502   }
503 
504   MachineBasicBlock *EntryMBB = &MF->front();
505   if (FuncInfo->SplitCSR)
506     // This performs initialization so lowering for SplitCSR will be correct.
507     TLI->initializeSplitCSR(EntryMBB);
508 
509   SelectAllBasicBlocks(Fn);
510   if (FastISelFailed && EnableFastISelFallbackReport) {
511     DiagnosticInfoISelFallback DiagFallback(Fn);
512     Fn.getContext().diagnose(DiagFallback);
513   }
514 
515   // Replace forward-declared registers with the registers containing
516   // the desired value.
517   // Note: it is important that this happens **before** the call to
518   // EmitLiveInCopies, since implementations can skip copies of unused
519   // registers. If we don't apply the reg fixups before, some registers may
520   // appear as unused and will be skipped, resulting in bad MI.
521   MachineRegisterInfo &MRI = MF->getRegInfo();
522   for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
523                                               E = FuncInfo->RegFixups.end();
524        I != E; ++I) {
525     Register From = I->first;
526     Register To = I->second;
527     // If To is also scheduled to be replaced, find what its ultimate
528     // replacement is.
529     while (true) {
530       DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
531       if (J == E)
532         break;
533       To = J->second;
534     }
535     // Make sure the new register has a sufficiently constrained register class.
536     if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
537       MRI.constrainRegClass(To, MRI.getRegClass(From));
538     // Replace it.
539 
540     // Replacing one register with another won't touch the kill flags.
541     // We need to conservatively clear the kill flags as a kill on the old
542     // register might dominate existing uses of the new register.
543     if (!MRI.use_empty(To))
544       MRI.clearKillFlags(From);
545     MRI.replaceRegWith(From, To);
546   }
547 
548   // If the first basic block in the function has live ins that need to be
549   // copied into vregs, emit the copies into the top of the block before
550   // emitting the code for the block.
551   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
552   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
553 
554   // Insert copies in the entry block and the return blocks.
555   if (FuncInfo->SplitCSR) {
556     SmallVector<MachineBasicBlock*, 4> Returns;
557     // Collect all the return blocks.
558     for (MachineBasicBlock &MBB : mf) {
559       if (!MBB.succ_empty())
560         continue;
561 
562       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
563       if (Term != MBB.end() && Term->isReturn()) {
564         Returns.push_back(&MBB);
565         continue;
566       }
567     }
568     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
569   }
570 
571   DenseMap<unsigned, unsigned> LiveInMap;
572   if (!FuncInfo->ArgDbgValues.empty())
573     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
574       if (LI.second)
575         LiveInMap.insert(LI);
576 
577   // Insert DBG_VALUE instructions for function arguments to the entry block.
578   bool InstrRef = MF->useDebugInstrRef();
579   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
580     MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
581     assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
582            "Function parameters should not be described by DBG_VALUE_LIST.");
583     bool hasFI = MI->getOperand(0).isFI();
584     Register Reg =
585         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
586     if (Register::isPhysicalRegister(Reg))
587       EntryMBB->insert(EntryMBB->begin(), MI);
588     else {
589       MachineInstr *Def = RegInfo->getVRegDef(Reg);
590       if (Def) {
591         MachineBasicBlock::iterator InsertPos = Def;
592         // FIXME: VR def may not be in entry block.
593         Def->getParent()->insert(std::next(InsertPos), MI);
594       } else
595         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
596                           << Register::virtReg2Index(Reg) << "\n");
597     }
598 
599     // Don't try and extend through copies in instruction referencing mode.
600     if (InstrRef)
601       continue;
602 
603     // If Reg is live-in then update debug info to track its copy in a vreg.
604     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
605     if (LDI != LiveInMap.end()) {
606       assert(!hasFI && "There's no handling of frame pointer updating here yet "
607                        "- add if needed");
608       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
609       MachineBasicBlock::iterator InsertPos = Def;
610       const MDNode *Variable = MI->getDebugVariable();
611       const MDNode *Expr = MI->getDebugExpression();
612       DebugLoc DL = MI->getDebugLoc();
613       bool IsIndirect = MI->isIndirectDebugValue();
614       if (IsIndirect)
615         assert(MI->getOperand(1).getImm() == 0 &&
616                "DBG_VALUE with nonzero offset");
617       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
618              "Expected inlined-at fields to agree");
619       assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
620              "Didn't expect to see a DBG_VALUE_LIST here");
621       // Def is never a terminator here, so it is ok to increment InsertPos.
622       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
623               IsIndirect, LDI->second, Variable, Expr);
624 
625       // If this vreg is directly copied into an exported register then
626       // that COPY instructions also need DBG_VALUE, if it is the only
627       // user of LDI->second.
628       MachineInstr *CopyUseMI = nullptr;
629       for (MachineRegisterInfo::use_instr_iterator
630            UI = RegInfo->use_instr_begin(LDI->second),
631            E = RegInfo->use_instr_end(); UI != E; ) {
632         MachineInstr *UseMI = &*(UI++);
633         if (UseMI->isDebugValue()) continue;
634         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
635           CopyUseMI = UseMI; continue;
636         }
637         // Otherwise this is another use or second copy use.
638         CopyUseMI = nullptr; break;
639       }
640       if (CopyUseMI &&
641           TRI.getRegSizeInBits(LDI->second, MRI) ==
642               TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
643         // Use MI's debug location, which describes where Variable was
644         // declared, rather than whatever is attached to CopyUseMI.
645         MachineInstr *NewMI =
646             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
647                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
648         MachineBasicBlock::iterator Pos = CopyUseMI;
649         EntryMBB->insertAfter(Pos, NewMI);
650       }
651     }
652   }
653 
654   // For debug-info, in instruction referencing mode, we need to perform some
655   // post-isel maintenence.
656   MF->finalizeDebugInstrRefs();
657 
658   // Determine if there are any calls in this machine function.
659   MachineFrameInfo &MFI = MF->getFrameInfo();
660   for (const auto &MBB : *MF) {
661     if (MFI.hasCalls() && MF->hasInlineAsm())
662       break;
663 
664     for (const auto &MI : MBB) {
665       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
666       if ((MCID.isCall() && !MCID.isReturn()) ||
667           MI.isStackAligningInlineAsm()) {
668         MFI.setHasCalls(true);
669       }
670       if (MI.isInlineAsm()) {
671         MF->setHasInlineAsm(true);
672       }
673     }
674   }
675 
676   // Determine if there is a call to setjmp in the machine function.
677   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
678 
679   // Determine if floating point is used for msvc
680   computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
681 
682   // Release function-specific state. SDB and CurDAG are already cleared
683   // at this point.
684   FuncInfo->clear();
685 
686   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
687   LLVM_DEBUG(MF->print(dbgs()));
688 
689   return true;
690 }
691 
692 static void reportFastISelFailure(MachineFunction &MF,
693                                   OptimizationRemarkEmitter &ORE,
694                                   OptimizationRemarkMissed &R,
695                                   bool ShouldAbort) {
696   // Print the function name explicitly if we don't have a debug location (which
697   // makes the diagnostic less useful) or if we're going to emit a raw error.
698   if (!R.getLocation().isValid() || ShouldAbort)
699     R << (" (in function: " + MF.getName() + ")").str();
700 
701   if (ShouldAbort)
702     report_fatal_error(R.getMsg());
703 
704   ORE.emit(R);
705 }
706 
707 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
708                                         BasicBlock::const_iterator End,
709                                         bool &HadTailCall) {
710   // Allow creating illegal types during DAG building for the basic block.
711   CurDAG->NewNodesMustHaveLegalTypes = false;
712 
713   // Lower the instructions. If a call is emitted as a tail call, cease emitting
714   // nodes for this block.
715   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
716     if (!ElidedArgCopyInstrs.count(&*I))
717       SDB->visit(*I);
718   }
719 
720   // Make sure the root of the DAG is up-to-date.
721   CurDAG->setRoot(SDB->getControlRoot());
722   HadTailCall = SDB->HasTailCall;
723   SDB->resolveOrClearDbgInfo();
724   SDB->clear();
725 
726   // Final step, emit the lowered DAG as machine code.
727   CodeGenAndEmitDAG();
728 }
729 
730 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
731   SmallPtrSet<SDNode *, 16> Added;
732   SmallVector<SDNode*, 128> Worklist;
733 
734   Worklist.push_back(CurDAG->getRoot().getNode());
735   Added.insert(CurDAG->getRoot().getNode());
736 
737   KnownBits Known;
738 
739   do {
740     SDNode *N = Worklist.pop_back_val();
741 
742     // Otherwise, add all chain operands to the worklist.
743     for (const SDValue &Op : N->op_values())
744       if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
745         Worklist.push_back(Op.getNode());
746 
747     // If this is a CopyToReg with a vreg dest, process it.
748     if (N->getOpcode() != ISD::CopyToReg)
749       continue;
750 
751     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
752     if (!Register::isVirtualRegister(DestReg))
753       continue;
754 
755     // Ignore non-integer values.
756     SDValue Src = N->getOperand(2);
757     EVT SrcVT = Src.getValueType();
758     if (!SrcVT.isInteger())
759       continue;
760 
761     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
762     Known = CurDAG->computeKnownBits(Src);
763     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
764   } while (!Worklist.empty());
765 }
766 
767 void SelectionDAGISel::CodeGenAndEmitDAG() {
768   StringRef GroupName = "sdag";
769   StringRef GroupDescription = "Instruction Selection and Scheduling";
770   std::string BlockName;
771   bool MatchFilterBB = false; (void)MatchFilterBB;
772 #ifndef NDEBUG
773   TargetTransformInfo &TTI =
774       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
775 #endif
776 
777   // Pre-type legalization allow creation of any node types.
778   CurDAG->NewNodesMustHaveLegalTypes = false;
779 
780 #ifndef NDEBUG
781   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
782                    FilterDAGBasicBlockName ==
783                        FuncInfo->MBB->getBasicBlock()->getName());
784 #endif
785 #ifdef NDEBUG
786   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
787       ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
788       ViewSUnitDAGs)
789 #endif
790   {
791     BlockName =
792         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
793   }
794   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
795                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
796                     << "'\n";
797              CurDAG->dump());
798 
799 #ifndef NDEBUG
800   if (TTI.hasBranchDivergence())
801     CurDAG->VerifyDAGDivergence();
802 #endif
803 
804   if (ViewDAGCombine1 && MatchFilterBB)
805     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
806 
807   // Run the DAG combiner in pre-legalize mode.
808   {
809     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
810                        GroupDescription, TimePassesIsEnabled);
811     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
812   }
813 
814   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
815                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
816                     << "'\n";
817              CurDAG->dump());
818 
819 #ifndef NDEBUG
820   if (TTI.hasBranchDivergence())
821     CurDAG->VerifyDAGDivergence();
822 #endif
823 
824   // Second step, hack on the DAG until it only uses operations and types that
825   // the target supports.
826   if (ViewLegalizeTypesDAGs && MatchFilterBB)
827     CurDAG->viewGraph("legalize-types input for " + BlockName);
828 
829   bool Changed;
830   {
831     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
832                        GroupDescription, TimePassesIsEnabled);
833     Changed = CurDAG->LegalizeTypes();
834   }
835 
836   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
837                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
838                     << "'\n";
839              CurDAG->dump());
840 
841 #ifndef NDEBUG
842   if (TTI.hasBranchDivergence())
843     CurDAG->VerifyDAGDivergence();
844 #endif
845 
846   // Only allow creation of legal node types.
847   CurDAG->NewNodesMustHaveLegalTypes = true;
848 
849   if (Changed) {
850     if (ViewDAGCombineLT && MatchFilterBB)
851       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
852 
853     // Run the DAG combiner in post-type-legalize mode.
854     {
855       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
856                          GroupName, GroupDescription, TimePassesIsEnabled);
857       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
858     }
859 
860     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
861                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
862                       << "'\n";
863                CurDAG->dump());
864 
865 #ifndef NDEBUG
866     if (TTI.hasBranchDivergence())
867       CurDAG->VerifyDAGDivergence();
868 #endif
869   }
870 
871   {
872     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
873                        GroupDescription, TimePassesIsEnabled);
874     Changed = CurDAG->LegalizeVectors();
875   }
876 
877   if (Changed) {
878     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
879                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
880                       << "'\n";
881                CurDAG->dump());
882 
883 #ifndef NDEBUG
884     if (TTI.hasBranchDivergence())
885       CurDAG->VerifyDAGDivergence();
886 #endif
887 
888     {
889       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
890                          GroupDescription, TimePassesIsEnabled);
891       CurDAG->LegalizeTypes();
892     }
893 
894     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
895                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
896                       << "'\n";
897                CurDAG->dump());
898 
899 #ifndef NDEBUG
900     if (TTI.hasBranchDivergence())
901       CurDAG->VerifyDAGDivergence();
902 #endif
903 
904     if (ViewDAGCombineLT && MatchFilterBB)
905       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
906 
907     // Run the DAG combiner in post-type-legalize mode.
908     {
909       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
910                          GroupName, GroupDescription, TimePassesIsEnabled);
911       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
912     }
913 
914     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
915                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
916                       << "'\n";
917                CurDAG->dump());
918 
919 #ifndef NDEBUG
920     if (TTI.hasBranchDivergence())
921       CurDAG->VerifyDAGDivergence();
922 #endif
923   }
924 
925   if (ViewLegalizeDAGs && MatchFilterBB)
926     CurDAG->viewGraph("legalize input for " + BlockName);
927 
928   {
929     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
930                        GroupDescription, TimePassesIsEnabled);
931     CurDAG->Legalize();
932   }
933 
934   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
935                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
936                     << "'\n";
937              CurDAG->dump());
938 
939 #ifndef NDEBUG
940   if (TTI.hasBranchDivergence())
941     CurDAG->VerifyDAGDivergence();
942 #endif
943 
944   if (ViewDAGCombine2 && MatchFilterBB)
945     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
946 
947   // Run the DAG combiner in post-legalize mode.
948   {
949     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
950                        GroupDescription, TimePassesIsEnabled);
951     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
952   }
953 
954   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
955                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
956                     << "'\n";
957              CurDAG->dump());
958 
959 #ifndef NDEBUG
960   if (TTI.hasBranchDivergence())
961     CurDAG->VerifyDAGDivergence();
962 #endif
963 
964   if (OptLevel != CodeGenOpt::None)
965     ComputeLiveOutVRegInfo();
966 
967   if (ViewISelDAGs && MatchFilterBB)
968     CurDAG->viewGraph("isel input for " + BlockName);
969 
970   // Third, instruction select all of the operations to machine code, adding the
971   // code to the MachineBasicBlock.
972   {
973     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
974                        GroupDescription, TimePassesIsEnabled);
975     DoInstructionSelection();
976   }
977 
978   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
979                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
980                     << "'\n";
981              CurDAG->dump());
982 
983   if (ViewSchedDAGs && MatchFilterBB)
984     CurDAG->viewGraph("scheduler input for " + BlockName);
985 
986   // Schedule machine code.
987   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
988   {
989     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
990                        GroupDescription, TimePassesIsEnabled);
991     Scheduler->Run(CurDAG, FuncInfo->MBB);
992   }
993 
994   if (ViewSUnitDAGs && MatchFilterBB)
995     Scheduler->viewGraph();
996 
997   // Emit machine code to BB.  This can change 'BB' to the last block being
998   // inserted into.
999   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
1000   {
1001     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
1002                        GroupDescription, TimePassesIsEnabled);
1003 
1004     // FuncInfo->InsertPt is passed by reference and set to the end of the
1005     // scheduled instructions.
1006     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1007   }
1008 
1009   // If the block was split, make sure we update any references that are used to
1010   // update PHI nodes later on.
1011   if (FirstMBB != LastMBB)
1012     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1013 
1014   // Free the scheduler state.
1015   {
1016     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1017                        GroupDescription, TimePassesIsEnabled);
1018     delete Scheduler;
1019   }
1020 
1021   // Free the SelectionDAG state, now that we're finished with it.
1022   CurDAG->clear();
1023 }
1024 
1025 namespace {
1026 
1027 /// ISelUpdater - helper class to handle updates of the instruction selection
1028 /// graph.
1029 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1030   SelectionDAG::allnodes_iterator &ISelPosition;
1031 
1032 public:
1033   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1034     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1035 
1036   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1037   /// deleted is the current ISelPosition node, update ISelPosition.
1038   ///
1039   void NodeDeleted(SDNode *N, SDNode *E) override {
1040     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1041       ++ISelPosition;
1042   }
1043 };
1044 
1045 } // end anonymous namespace
1046 
1047 // This function is used to enforce the topological node id property
1048 // leveraged during instruction selection. Before the selection process all
1049 // nodes are given a non-negative id such that all nodes have a greater id than
1050 // their operands. As this holds transitively we can prune checks that a node N
1051 // is a predecessor of M another by not recursively checking through M's
1052 // operands if N's ID is larger than M's ID. This significantly improves
1053 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1054 
1055 // However, when we fuse multiple nodes into a single node during the
1056 // selection we may induce a predecessor relationship between inputs and
1057 // outputs of distinct nodes being merged, violating the topological property.
1058 // Should a fused node have a successor which has yet to be selected,
1059 // our legality checks would be incorrect. To avoid this we mark all unselected
1060 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1061 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1062 // We use bit-negation to more clearly enforce that node id -1 can only be
1063 // achieved by selected nodes. As the conversion is reversable to the original
1064 // Id, topological pruning can still be leveraged when looking for unselected
1065 // nodes. This method is called internally in all ISel replacement related
1066 // functions.
1067 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1068   SmallVector<SDNode *, 4> Nodes;
1069   Nodes.push_back(Node);
1070 
1071   while (!Nodes.empty()) {
1072     SDNode *N = Nodes.pop_back_val();
1073     for (auto *U : N->uses()) {
1074       auto UId = U->getNodeId();
1075       if (UId > 0) {
1076         InvalidateNodeId(U);
1077         Nodes.push_back(U);
1078       }
1079     }
1080   }
1081 }
1082 
1083 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1084 // NodeId with the equivalent node id which is invalid for topological
1085 // pruning.
1086 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1087   int InvalidId = -(N->getNodeId() + 1);
1088   N->setNodeId(InvalidId);
1089 }
1090 
1091 // getUninvalidatedNodeId - get original uninvalidated node id.
1092 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1093   int Id = N->getNodeId();
1094   if (Id < -1)
1095     return -(Id + 1);
1096   return Id;
1097 }
1098 
1099 void SelectionDAGISel::DoInstructionSelection() {
1100   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1101                     << printMBBReference(*FuncInfo->MBB) << " '"
1102                     << FuncInfo->MBB->getName() << "'\n");
1103 
1104   PreprocessISelDAG();
1105 
1106   // Select target instructions for the DAG.
1107   {
1108     // Number all nodes with a topological order and set DAGSize.
1109     DAGSize = CurDAG->AssignTopologicalOrder();
1110 
1111     // Create a dummy node (which is not added to allnodes), that adds
1112     // a reference to the root node, preventing it from being deleted,
1113     // and tracking any changes of the root.
1114     HandleSDNode Dummy(CurDAG->getRoot());
1115     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1116     ++ISelPosition;
1117 
1118     // Make sure that ISelPosition gets properly updated when nodes are deleted
1119     // in calls made from this function.
1120     ISelUpdater ISU(*CurDAG, ISelPosition);
1121 
1122     // The AllNodes list is now topological-sorted. Visit the
1123     // nodes by starting at the end of the list (the root of the
1124     // graph) and preceding back toward the beginning (the entry
1125     // node).
1126     while (ISelPosition != CurDAG->allnodes_begin()) {
1127       SDNode *Node = &*--ISelPosition;
1128       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1129       // but there are currently some corner cases that it misses. Also, this
1130       // makes it theoretically possible to disable the DAGCombiner.
1131       if (Node->use_empty())
1132         continue;
1133 
1134 #ifndef NDEBUG
1135       SmallVector<SDNode *, 4> Nodes;
1136       Nodes.push_back(Node);
1137 
1138       while (!Nodes.empty()) {
1139         auto N = Nodes.pop_back_val();
1140         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1141           continue;
1142         for (const SDValue &Op : N->op_values()) {
1143           if (Op->getOpcode() == ISD::TokenFactor)
1144             Nodes.push_back(Op.getNode());
1145           else {
1146             // We rely on topological ordering of node ids for checking for
1147             // cycles when fusing nodes during selection. All unselected nodes
1148             // successors of an already selected node should have a negative id.
1149             // This assertion will catch such cases. If this assertion triggers
1150             // it is likely you using DAG-level Value/Node replacement functions
1151             // (versus equivalent ISEL replacement) in backend-specific
1152             // selections. See comment in EnforceNodeIdInvariant for more
1153             // details.
1154             assert(Op->getNodeId() != -1 &&
1155                    "Node has already selected predecessor node");
1156           }
1157         }
1158       }
1159 #endif
1160 
1161       // When we are using non-default rounding modes or FP exception behavior
1162       // FP operations are represented by StrictFP pseudo-operations.  For
1163       // targets that do not (yet) understand strict FP operations directly,
1164       // we convert them to normal FP opcodes instead at this point.  This
1165       // will allow them to be handled by existing target-specific instruction
1166       // selectors.
1167       if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1168         // For some opcodes, we need to call TLI->getOperationAction using
1169         // the first operand type instead of the result type.  Note that this
1170         // must match what SelectionDAGLegalize::LegalizeOp is doing.
1171         EVT ActionVT;
1172         switch (Node->getOpcode()) {
1173         case ISD::STRICT_SINT_TO_FP:
1174         case ISD::STRICT_UINT_TO_FP:
1175         case ISD::STRICT_LRINT:
1176         case ISD::STRICT_LLRINT:
1177         case ISD::STRICT_LROUND:
1178         case ISD::STRICT_LLROUND:
1179         case ISD::STRICT_FSETCC:
1180         case ISD::STRICT_FSETCCS:
1181           ActionVT = Node->getOperand(1).getValueType();
1182           break;
1183         default:
1184           ActionVT = Node->getValueType(0);
1185           break;
1186         }
1187         if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1188             == TargetLowering::Expand)
1189           Node = CurDAG->mutateStrictFPToFP(Node);
1190       }
1191 
1192       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1193                  Node->dump(CurDAG));
1194 
1195       Select(Node);
1196     }
1197 
1198     CurDAG->setRoot(Dummy.getValue());
1199   }
1200 
1201   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1202 
1203   PostprocessISelDAG();
1204 }
1205 
1206 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1207   for (const User *U : CPI->users()) {
1208     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1209       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1210       if (IID == Intrinsic::eh_exceptionpointer ||
1211           IID == Intrinsic::eh_exceptioncode)
1212         return true;
1213     }
1214   }
1215   return false;
1216 }
1217 
1218 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1219 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1220 // and store the mapping in the function.
1221 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1222                                    const CatchPadInst *CPI) {
1223   MachineFunction *MF = MBB->getParent();
1224   // In case of single catch (...), we don't emit LSDA, so we don't need
1225   // this information.
1226   bool IsSingleCatchAllClause =
1227       CPI->getNumArgOperands() == 1 &&
1228       cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1229   // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1230   // and they don't need LSDA info
1231   bool IsCatchLongjmp = CPI->getNumArgOperands() == 0;
1232   if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
1233     // Create a mapping from landing pad label to landing pad index.
1234     bool IntrFound = false;
1235     for (const User *U : CPI->users()) {
1236       if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1237         Intrinsic::ID IID = Call->getIntrinsicID();
1238         if (IID == Intrinsic::wasm_landingpad_index) {
1239           Value *IndexArg = Call->getArgOperand(1);
1240           int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1241           MF->setWasmLandingPadIndex(MBB, Index);
1242           IntrFound = true;
1243           break;
1244         }
1245       }
1246     }
1247     assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1248     (void)IntrFound;
1249   }
1250 }
1251 
1252 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1253 /// do other setup for EH landing-pad blocks.
1254 bool SelectionDAGISel::PrepareEHLandingPad() {
1255   MachineBasicBlock *MBB = FuncInfo->MBB;
1256   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1257   const BasicBlock *LLVMBB = MBB->getBasicBlock();
1258   const TargetRegisterClass *PtrRC =
1259       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1260 
1261   auto Pers = classifyEHPersonality(PersonalityFn);
1262 
1263   // Catchpads have one live-in register, which typically holds the exception
1264   // pointer or code.
1265   if (isFuncletEHPersonality(Pers)) {
1266     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1267       if (hasExceptionPointerOrCodeUser(CPI)) {
1268         // Get or create the virtual register to hold the pointer or code.  Mark
1269         // the live in physreg and copy into the vreg.
1270         MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1271         assert(EHPhysReg && "target lacks exception pointer register");
1272         MBB->addLiveIn(EHPhysReg);
1273         unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1274         BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1275                 TII->get(TargetOpcode::COPY), VReg)
1276             .addReg(EHPhysReg, RegState::Kill);
1277       }
1278     }
1279     return true;
1280   }
1281 
1282   // Add a label to mark the beginning of the landing pad.  Deletion of the
1283   // landing pad can thus be detected via the MachineModuleInfo.
1284   MCSymbol *Label = MF->addLandingPad(MBB);
1285 
1286   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1287   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1288     .addSym(Label);
1289 
1290   // If the unwinder does not preserve all registers, ensure that the
1291   // function marks the clobbered registers as used.
1292   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1293   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1294     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1295 
1296   if (Pers == EHPersonality::Wasm_CXX) {
1297     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1298       mapWasmLandingPadIndex(MBB, CPI);
1299   } else {
1300     // Assign the call site to the landing pad's begin label.
1301     MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1302     // Mark exception register as live in.
1303     if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1304       FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1305     // Mark exception selector register as live in.
1306     if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1307       FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1308   }
1309 
1310   return true;
1311 }
1312 
1313 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1314 /// side-effect free and is either dead or folded into a generated instruction.
1315 /// Return false if it needs to be emitted.
1316 static bool isFoldedOrDeadInstruction(const Instruction *I,
1317                                       const FunctionLoweringInfo &FuncInfo) {
1318   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1319          !I->isTerminator() &&     // Terminators aren't folded.
1320          !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1321          !I->isEHPad() &&             // EH pad instructions aren't folded.
1322          !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1323 }
1324 
1325 /// Collect llvm.dbg.declare information. This is done after argument lowering
1326 /// in case the declarations refer to arguments.
1327 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1328   MachineFunction *MF = FuncInfo.MF;
1329   const DataLayout &DL = MF->getDataLayout();
1330   for (const BasicBlock &BB : *FuncInfo.Fn) {
1331     for (const Instruction &I : BB) {
1332       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1333       if (!DI)
1334         continue;
1335 
1336       assert(DI->getVariable() && "Missing variable");
1337       assert(DI->getDebugLoc() && "Missing location");
1338       const Value *Address = DI->getAddress();
1339       if (!Address) {
1340         LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1341                           << " (bad address)\n");
1342         continue;
1343       }
1344 
1345       // Look through casts and constant offset GEPs. These mostly come from
1346       // inalloca.
1347       APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1348       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1349 
1350       // Check if the variable is a static alloca or a byval or inalloca
1351       // argument passed in memory. If it is not, then we will ignore this
1352       // intrinsic and handle this during isel like dbg.value.
1353       int FI = std::numeric_limits<int>::max();
1354       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1355         auto SI = FuncInfo.StaticAllocaMap.find(AI);
1356         if (SI != FuncInfo.StaticAllocaMap.end())
1357           FI = SI->second;
1358       } else if (const auto *Arg = dyn_cast<Argument>(Address))
1359         FI = FuncInfo.getArgumentFrameIndex(Arg);
1360 
1361       if (FI == std::numeric_limits<int>::max())
1362         continue;
1363 
1364       DIExpression *Expr = DI->getExpression();
1365       if (Offset.getBoolValue())
1366         Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1367                                      Offset.getZExtValue());
1368       LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1369                         << ", " << *DI << "\n");
1370       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1371     }
1372   }
1373 }
1374 
1375 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1376   FastISelFailed = false;
1377   // Initialize the Fast-ISel state, if needed.
1378   FastISel *FastIS = nullptr;
1379   if (TM.Options.EnableFastISel) {
1380     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1381     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1382   }
1383 
1384   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1385 
1386   // Lower arguments up front. An RPO iteration always visits the entry block
1387   // first.
1388   assert(*RPOT.begin() == &Fn.getEntryBlock());
1389   ++NumEntryBlocks;
1390 
1391   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1392   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1393   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1394 
1395   CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1396 
1397   if (!FastIS) {
1398     LowerArguments(Fn);
1399   } else {
1400     // See if fast isel can lower the arguments.
1401     FastIS->startNewBlock();
1402     if (!FastIS->lowerArguments()) {
1403       FastISelFailed = true;
1404       // Fast isel failed to lower these arguments
1405       ++NumFastIselFailLowerArguments;
1406 
1407       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1408                                  Fn.getSubprogram(),
1409                                  &Fn.getEntryBlock());
1410       R << "FastISel didn't lower all arguments: "
1411         << ore::NV("Prototype", Fn.getType());
1412       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1413 
1414       // Use SelectionDAG argument lowering
1415       LowerArguments(Fn);
1416       CurDAG->setRoot(SDB->getControlRoot());
1417       SDB->clear();
1418       CodeGenAndEmitDAG();
1419     }
1420 
1421     // If we inserted any instructions at the beginning, make a note of
1422     // where they are, so we can be sure to emit subsequent instructions
1423     // after them.
1424     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1425       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1426     else
1427       FastIS->setLastLocalValue(nullptr);
1428   }
1429 
1430   bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1431 
1432   if (FastIS && Inserted)
1433     FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1434 
1435   processDbgDeclares(*FuncInfo);
1436 
1437   // Iterate over all basic blocks in the function.
1438   StackProtector &SP = getAnalysis<StackProtector>();
1439   for (const BasicBlock *LLVMBB : RPOT) {
1440     if (OptLevel != CodeGenOpt::None) {
1441       bool AllPredsVisited = true;
1442       for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1443         if (!FuncInfo->VisitedBBs.count(Pred)) {
1444           AllPredsVisited = false;
1445           break;
1446         }
1447       }
1448 
1449       if (AllPredsVisited) {
1450         for (const PHINode &PN : LLVMBB->phis())
1451           FuncInfo->ComputePHILiveOutRegInfo(&PN);
1452       } else {
1453         for (const PHINode &PN : LLVMBB->phis())
1454           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1455       }
1456 
1457       FuncInfo->VisitedBBs.insert(LLVMBB);
1458     }
1459 
1460     BasicBlock::const_iterator const Begin =
1461         LLVMBB->getFirstNonPHI()->getIterator();
1462     BasicBlock::const_iterator const End = LLVMBB->end();
1463     BasicBlock::const_iterator BI = End;
1464 
1465     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1466     if (!FuncInfo->MBB)
1467       continue; // Some blocks like catchpads have no code or MBB.
1468 
1469     // Insert new instructions after any phi or argument setup code.
1470     FuncInfo->InsertPt = FuncInfo->MBB->end();
1471 
1472     // Setup an EH landing-pad block.
1473     FuncInfo->ExceptionPointerVirtReg = 0;
1474     FuncInfo->ExceptionSelectorVirtReg = 0;
1475     if (LLVMBB->isEHPad())
1476       if (!PrepareEHLandingPad())
1477         continue;
1478 
1479     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1480     if (FastIS) {
1481       if (LLVMBB != &Fn.getEntryBlock())
1482         FastIS->startNewBlock();
1483 
1484       unsigned NumFastIselRemaining = std::distance(Begin, End);
1485 
1486       // Pre-assign swifterror vregs.
1487       SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1488 
1489       // Do FastISel on as many instructions as possible.
1490       for (; BI != Begin; --BI) {
1491         const Instruction *Inst = &*std::prev(BI);
1492 
1493         // If we no longer require this instruction, skip it.
1494         if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1495             ElidedArgCopyInstrs.count(Inst)) {
1496           --NumFastIselRemaining;
1497           continue;
1498         }
1499 
1500         // Bottom-up: reset the insert pos at the top, after any local-value
1501         // instructions.
1502         FastIS->recomputeInsertPt();
1503 
1504         // Try to select the instruction with FastISel.
1505         if (FastIS->selectInstruction(Inst)) {
1506           --NumFastIselRemaining;
1507           ++NumFastIselSuccess;
1508           // If fast isel succeeded, skip over all the folded instructions, and
1509           // then see if there is a load right before the selected instructions.
1510           // Try to fold the load if so.
1511           const Instruction *BeforeInst = Inst;
1512           while (BeforeInst != &*Begin) {
1513             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1514             if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1515               break;
1516           }
1517           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1518               BeforeInst->hasOneUse() &&
1519               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1520             // If we succeeded, don't re-select the load.
1521             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1522             --NumFastIselRemaining;
1523             ++NumFastIselSuccess;
1524           }
1525           continue;
1526         }
1527 
1528         FastISelFailed = true;
1529 
1530         // Then handle certain instructions as single-LLVM-Instruction blocks.
1531         // We cannot separate out GCrelocates to their own blocks since we need
1532         // to keep track of gc-relocates for a particular gc-statepoint. This is
1533         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1534         // visitGCRelocate.
1535         if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1536             !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1537           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1538                                      Inst->getDebugLoc(), LLVMBB);
1539 
1540           R << "FastISel missed call";
1541 
1542           if (R.isEnabled() || EnableFastISelAbort) {
1543             std::string InstStrStorage;
1544             raw_string_ostream InstStr(InstStrStorage);
1545             InstStr << *Inst;
1546 
1547             R << ": " << InstStr.str();
1548           }
1549 
1550           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1551 
1552           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1553               !Inst->use_empty()) {
1554             Register &R = FuncInfo->ValueMap[Inst];
1555             if (!R)
1556               R = FuncInfo->CreateRegs(Inst);
1557           }
1558 
1559           bool HadTailCall = false;
1560           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1561           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1562 
1563           // If the call was emitted as a tail call, we're done with the block.
1564           // We also need to delete any previously emitted instructions.
1565           if (HadTailCall) {
1566             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1567             --BI;
1568             break;
1569           }
1570 
1571           // Recompute NumFastIselRemaining as Selection DAG instruction
1572           // selection may have handled the call, input args, etc.
1573           unsigned RemainingNow = std::distance(Begin, BI);
1574           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1575           NumFastIselRemaining = RemainingNow;
1576           continue;
1577         }
1578 
1579         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1580                                    Inst->getDebugLoc(), LLVMBB);
1581 
1582         bool ShouldAbort = EnableFastISelAbort;
1583         if (Inst->isTerminator()) {
1584           // Use a different message for terminator misses.
1585           R << "FastISel missed terminator";
1586           // Don't abort for terminator unless the level is really high
1587           ShouldAbort = (EnableFastISelAbort > 2);
1588         } else {
1589           R << "FastISel missed";
1590         }
1591 
1592         if (R.isEnabled() || EnableFastISelAbort) {
1593           std::string InstStrStorage;
1594           raw_string_ostream InstStr(InstStrStorage);
1595           InstStr << *Inst;
1596           R << ": " << InstStr.str();
1597         }
1598 
1599         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1600 
1601         NumFastIselFailures += NumFastIselRemaining;
1602         break;
1603       }
1604 
1605       FastIS->recomputeInsertPt();
1606     }
1607 
1608     if (SP.shouldEmitSDCheck(*LLVMBB)) {
1609       bool FunctionBasedInstrumentation =
1610           TLI->getSSPStackGuardCheck(*Fn.getParent());
1611       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1612                                    FunctionBasedInstrumentation);
1613     }
1614 
1615     if (Begin != BI)
1616       ++NumDAGBlocks;
1617     else
1618       ++NumFastIselBlocks;
1619 
1620     if (Begin != BI) {
1621       // Run SelectionDAG instruction selection on the remainder of the block
1622       // not handled by FastISel. If FastISel is not run, this is the entire
1623       // block.
1624       bool HadTailCall;
1625       SelectBasicBlock(Begin, BI, HadTailCall);
1626 
1627       // But if FastISel was run, we already selected some of the block.
1628       // If we emitted a tail-call, we need to delete any previously emitted
1629       // instruction that follows it.
1630       if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1631         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1632     }
1633 
1634     if (FastIS)
1635       FastIS->finishBasicBlock();
1636     FinishBasicBlock();
1637     FuncInfo->PHINodesToUpdate.clear();
1638     ElidedArgCopyInstrs.clear();
1639   }
1640 
1641   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1642 
1643   SwiftError->propagateVRegs();
1644 
1645   delete FastIS;
1646   SDB->clearDanglingDebugInfo();
1647   SDB->SPDescriptor.resetPerFunctionState();
1648 }
1649 
1650 /// Given that the input MI is before a partial terminator sequence TSeq, return
1651 /// true if M + TSeq also a partial terminator sequence.
1652 ///
1653 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1654 /// lowering copy vregs into physical registers, which are then passed into
1655 /// terminator instructors so we can satisfy ABI constraints. A partial
1656 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1657 /// may be the whole terminator sequence).
1658 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1659   // If we do not have a copy or an implicit def, we return true if and only if
1660   // MI is a debug value.
1661   if (!MI.isCopy() && !MI.isImplicitDef())
1662     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1663     // physical registers if there is debug info associated with the terminator
1664     // of our mbb. We want to include said debug info in our terminator
1665     // sequence, so we return true in that case.
1666     return MI.isDebugInstr();
1667 
1668   // We have left the terminator sequence if we are not doing one of the
1669   // following:
1670   //
1671   // 1. Copying a vreg into a physical register.
1672   // 2. Copying a vreg into a vreg.
1673   // 3. Defining a register via an implicit def.
1674 
1675   // OPI should always be a register definition...
1676   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1677   if (!OPI->isReg() || !OPI->isDef())
1678     return false;
1679 
1680   // Defining any register via an implicit def is always ok.
1681   if (MI.isImplicitDef())
1682     return true;
1683 
1684   // Grab the copy source...
1685   MachineInstr::const_mop_iterator OPI2 = OPI;
1686   ++OPI2;
1687   assert(OPI2 != MI.operands_end()
1688          && "Should have a copy implying we should have 2 arguments.");
1689 
1690   // Make sure that the copy dest is not a vreg when the copy source is a
1691   // physical register.
1692   if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1693                          Register::isPhysicalRegister(OPI2->getReg())))
1694     return false;
1695 
1696   return true;
1697 }
1698 
1699 /// Find the split point at which to splice the end of BB into its success stack
1700 /// protector check machine basic block.
1701 ///
1702 /// On many platforms, due to ABI constraints, terminators, even before register
1703 /// allocation, use physical registers. This creates an issue for us since
1704 /// physical registers at this point can not travel across basic
1705 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1706 /// when they enter functions and moves them through a sequence of copies back
1707 /// into the physical registers right before the terminator creating a
1708 /// ``Terminator Sequence''. This function is searching for the beginning of the
1709 /// terminator sequence so that we can ensure that we splice off not just the
1710 /// terminator, but additionally the copies that move the vregs into the
1711 /// physical registers.
1712 static MachineBasicBlock::iterator
1713 FindSplitPointForStackProtector(MachineBasicBlock *BB,
1714                                 const TargetInstrInfo &TII) {
1715   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1716   if (SplitPoint == BB->begin())
1717     return SplitPoint;
1718 
1719   MachineBasicBlock::iterator Start = BB->begin();
1720   MachineBasicBlock::iterator Previous = SplitPoint;
1721   --Previous;
1722 
1723   if (TII.isTailCall(*SplitPoint) &&
1724       Previous->getOpcode() == TII.getCallFrameDestroyOpcode()) {
1725     // call itself, then we must insert before the sequence even starts. For
1726     // example:
1727     //     <split point>
1728     //     ADJCALLSTACKDOWN ...
1729     //     <Moves>
1730     //     ADJCALLSTACKUP ...
1731     //     TAILJMP somewhere
1732     // On the other hand, it could be an unrelated call in which case this tail call
1733     // has to register moves of its own and should be the split point. For example:
1734     //     ADJCALLSTACKDOWN
1735     //     CALL something_else
1736     //     ADJCALLSTACKUP
1737     //     <split point>
1738     //     TAILJMP somewhere
1739     do {
1740       --Previous;
1741       if (Previous->isCall())
1742         return SplitPoint;
1743     } while(Previous->getOpcode() != TII.getCallFrameSetupOpcode());
1744 
1745     return Previous;
1746   }
1747 
1748   while (MIIsInTerminatorSequence(*Previous)) {
1749     SplitPoint = Previous;
1750     if (Previous == Start)
1751       break;
1752     --Previous;
1753   }
1754 
1755   return SplitPoint;
1756 }
1757 
1758 void
1759 SelectionDAGISel::FinishBasicBlock() {
1760   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1761                     << FuncInfo->PHINodesToUpdate.size() << "\n";
1762              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1763                   ++i) dbgs()
1764              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1765              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1766 
1767   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1768   // PHI nodes in successors.
1769   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1770     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1771     assert(PHI->isPHI() &&
1772            "This is not a machine PHI node that we are updating!");
1773     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1774       continue;
1775     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1776   }
1777 
1778   // Handle stack protector.
1779   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1780     // The target provides a guard check function. There is no need to
1781     // generate error handling code or to split current basic block.
1782     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1783 
1784     // Add load and check to the basicblock.
1785     FuncInfo->MBB = ParentMBB;
1786     FuncInfo->InsertPt =
1787         FindSplitPointForStackProtector(ParentMBB, *TII);
1788     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1789     CurDAG->setRoot(SDB->getRoot());
1790     SDB->clear();
1791     CodeGenAndEmitDAG();
1792 
1793     // Clear the Per-BB State.
1794     SDB->SPDescriptor.resetPerBBState();
1795   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1796     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1797     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1798 
1799     // Find the split point to split the parent mbb. At the same time copy all
1800     // physical registers used in the tail of parent mbb into virtual registers
1801     // before the split point and back into physical registers after the split
1802     // point. This prevents us needing to deal with Live-ins and many other
1803     // register allocation issues caused by us splitting the parent mbb. The
1804     // register allocator will clean up said virtual copies later on.
1805     MachineBasicBlock::iterator SplitPoint =
1806         FindSplitPointForStackProtector(ParentMBB, *TII);
1807 
1808     // Splice the terminator of ParentMBB into SuccessMBB.
1809     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1810                        SplitPoint,
1811                        ParentMBB->end());
1812 
1813     // Add compare/jump on neq/jump to the parent BB.
1814     FuncInfo->MBB = ParentMBB;
1815     FuncInfo->InsertPt = ParentMBB->end();
1816     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1817     CurDAG->setRoot(SDB->getRoot());
1818     SDB->clear();
1819     CodeGenAndEmitDAG();
1820 
1821     // CodeGen Failure MBB if we have not codegened it yet.
1822     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1823     if (FailureMBB->empty()) {
1824       FuncInfo->MBB = FailureMBB;
1825       FuncInfo->InsertPt = FailureMBB->end();
1826       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1827       CurDAG->setRoot(SDB->getRoot());
1828       SDB->clear();
1829       CodeGenAndEmitDAG();
1830     }
1831 
1832     // Clear the Per-BB State.
1833     SDB->SPDescriptor.resetPerBBState();
1834   }
1835 
1836   // Lower each BitTestBlock.
1837   for (auto &BTB : SDB->SL->BitTestCases) {
1838     // Lower header first, if it wasn't already lowered
1839     if (!BTB.Emitted) {
1840       // Set the current basic block to the mbb we wish to insert the code into
1841       FuncInfo->MBB = BTB.Parent;
1842       FuncInfo->InsertPt = FuncInfo->MBB->end();
1843       // Emit the code
1844       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1845       CurDAG->setRoot(SDB->getRoot());
1846       SDB->clear();
1847       CodeGenAndEmitDAG();
1848     }
1849 
1850     BranchProbability UnhandledProb = BTB.Prob;
1851     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1852       UnhandledProb -= BTB.Cases[j].ExtraProb;
1853       // Set the current basic block to the mbb we wish to insert the code into
1854       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1855       FuncInfo->InsertPt = FuncInfo->MBB->end();
1856       // Emit the code
1857 
1858       // If all cases cover a contiguous range, it is not necessary to jump to
1859       // the default block after the last bit test fails. This is because the
1860       // range check during bit test header creation has guaranteed that every
1861       // case here doesn't go outside the range. In this case, there is no need
1862       // to perform the last bit test, as it will always be true. Instead, make
1863       // the second-to-last bit-test fall through to the target of the last bit
1864       // test, and delete the last bit test.
1865 
1866       MachineBasicBlock *NextMBB;
1867       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1868         // Second-to-last bit-test with contiguous range or omitted range
1869         // check: fall through to the target of the final bit test.
1870         NextMBB = BTB.Cases[j + 1].TargetBB;
1871       } else if (j + 1 == ej) {
1872         // For the last bit test, fall through to Default.
1873         NextMBB = BTB.Default;
1874       } else {
1875         // Otherwise, fall through to the next bit test.
1876         NextMBB = BTB.Cases[j + 1].ThisBB;
1877       }
1878 
1879       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1880                             FuncInfo->MBB);
1881 
1882       CurDAG->setRoot(SDB->getRoot());
1883       SDB->clear();
1884       CodeGenAndEmitDAG();
1885 
1886       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1887         // Since we're not going to use the final bit test, remove it.
1888         BTB.Cases.pop_back();
1889         break;
1890       }
1891     }
1892 
1893     // Update PHI Nodes
1894     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1895          pi != pe; ++pi) {
1896       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1897       MachineBasicBlock *PHIBB = PHI->getParent();
1898       assert(PHI->isPHI() &&
1899              "This is not a machine PHI node that we are updating!");
1900       // This is "default" BB. We have two jumps to it. From "header" BB and
1901       // from last "case" BB, unless the latter was skipped.
1902       if (PHIBB == BTB.Default) {
1903         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1904         if (!BTB.ContiguousRange) {
1905           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1906               .addMBB(BTB.Cases.back().ThisBB);
1907          }
1908       }
1909       // One of "cases" BB.
1910       for (unsigned j = 0, ej = BTB.Cases.size();
1911            j != ej; ++j) {
1912         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1913         if (cBB->isSuccessor(PHIBB))
1914           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1915       }
1916     }
1917   }
1918   SDB->SL->BitTestCases.clear();
1919 
1920   // If the JumpTable record is filled in, then we need to emit a jump table.
1921   // Updating the PHI nodes is tricky in this case, since we need to determine
1922   // whether the PHI is a successor of the range check MBB or the jump table MBB
1923   for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1924     // Lower header first, if it wasn't already lowered
1925     if (!SDB->SL->JTCases[i].first.Emitted) {
1926       // Set the current basic block to the mbb we wish to insert the code into
1927       FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1928       FuncInfo->InsertPt = FuncInfo->MBB->end();
1929       // Emit the code
1930       SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1931                                 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1932       CurDAG->setRoot(SDB->getRoot());
1933       SDB->clear();
1934       CodeGenAndEmitDAG();
1935     }
1936 
1937     // Set the current basic block to the mbb we wish to insert the code into
1938     FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1939     FuncInfo->InsertPt = FuncInfo->MBB->end();
1940     // Emit the code
1941     SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1942     CurDAG->setRoot(SDB->getRoot());
1943     SDB->clear();
1944     CodeGenAndEmitDAG();
1945 
1946     // Update PHI Nodes
1947     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1948          pi != pe; ++pi) {
1949       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1950       MachineBasicBlock *PHIBB = PHI->getParent();
1951       assert(PHI->isPHI() &&
1952              "This is not a machine PHI node that we are updating!");
1953       // "default" BB. We can go there only from header BB.
1954       if (PHIBB == SDB->SL->JTCases[i].second.Default)
1955         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1956            .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1957       // JT BB. Just iterate over successors here
1958       if (FuncInfo->MBB->isSuccessor(PHIBB))
1959         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1960     }
1961   }
1962   SDB->SL->JTCases.clear();
1963 
1964   // If we generated any switch lowering information, build and codegen any
1965   // additional DAGs necessary.
1966   for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1967     // Set the current basic block to the mbb we wish to insert the code into
1968     FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1969     FuncInfo->InsertPt = FuncInfo->MBB->end();
1970 
1971     // Determine the unique successors.
1972     SmallVector<MachineBasicBlock *, 2> Succs;
1973     Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1974     if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1975       Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1976 
1977     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1978     SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1979     CurDAG->setRoot(SDB->getRoot());
1980     SDB->clear();
1981     CodeGenAndEmitDAG();
1982 
1983     // Remember the last block, now that any splitting is done, for use in
1984     // populating PHI nodes in successors.
1985     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1986 
1987     // Handle any PHI nodes in successors of this chunk, as if we were coming
1988     // from the original BB before switch expansion.  Note that PHI nodes can
1989     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1990     // handle them the right number of times.
1991     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1992       FuncInfo->MBB = Succs[i];
1993       FuncInfo->InsertPt = FuncInfo->MBB->end();
1994       // FuncInfo->MBB may have been removed from the CFG if a branch was
1995       // constant folded.
1996       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1997         for (MachineBasicBlock::iterator
1998              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1999              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2000           MachineInstrBuilder PHI(*MF, MBBI);
2001           // This value for this PHI node is recorded in PHINodesToUpdate.
2002           for (unsigned pn = 0; ; ++pn) {
2003             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2004                    "Didn't find PHI entry!");
2005             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2006               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2007               break;
2008             }
2009           }
2010         }
2011       }
2012     }
2013   }
2014   SDB->SL->SwitchCases.clear();
2015 }
2016 
2017 /// Create the scheduler. If a specific scheduler was specified
2018 /// via the SchedulerRegistry, use it, otherwise select the
2019 /// one preferred by the target.
2020 ///
2021 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2022   return ISHeuristic(this, OptLevel);
2023 }
2024 
2025 //===----------------------------------------------------------------------===//
2026 // Helper functions used by the generated instruction selector.
2027 //===----------------------------------------------------------------------===//
2028 // Calls to these methods are generated by tblgen.
2029 
2030 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
2031 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2032 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2033 /// specified in the .td file (e.g. 255).
2034 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2035                                     int64_t DesiredMaskS) const {
2036   const APInt &ActualMask = RHS->getAPIntValue();
2037   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2038 
2039   // If the actual mask exactly matches, success!
2040   if (ActualMask == DesiredMask)
2041     return true;
2042 
2043   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2044   if (!ActualMask.isSubsetOf(DesiredMask))
2045     return false;
2046 
2047   // Otherwise, the DAG Combiner may have proven that the value coming in is
2048   // either already zero or is not demanded.  Check for known zero input bits.
2049   APInt NeededMask = DesiredMask & ~ActualMask;
2050   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2051     return true;
2052 
2053   // TODO: check to see if missing bits are just not demanded.
2054 
2055   // Otherwise, this pattern doesn't match.
2056   return false;
2057 }
2058 
2059 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2060 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2061 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2062 /// specified in the .td file (e.g. 255).
2063 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2064                                    int64_t DesiredMaskS) const {
2065   const APInt &ActualMask = RHS->getAPIntValue();
2066   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2067 
2068   // If the actual mask exactly matches, success!
2069   if (ActualMask == DesiredMask)
2070     return true;
2071 
2072   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2073   if (!ActualMask.isSubsetOf(DesiredMask))
2074     return false;
2075 
2076   // Otherwise, the DAG Combiner may have proven that the value coming in is
2077   // either already zero or is not demanded.  Check for known zero input bits.
2078   APInt NeededMask = DesiredMask & ~ActualMask;
2079   KnownBits Known = CurDAG->computeKnownBits(LHS);
2080 
2081   // If all the missing bits in the or are already known to be set, match!
2082   if (NeededMask.isSubsetOf(Known.One))
2083     return true;
2084 
2085   // TODO: check to see if missing bits are just not demanded.
2086 
2087   // Otherwise, this pattern doesn't match.
2088   return false;
2089 }
2090 
2091 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2092 /// by tblgen.  Others should not call it.
2093 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2094                                                      const SDLoc &DL) {
2095   std::vector<SDValue> InOps;
2096   std::swap(InOps, Ops);
2097 
2098   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2099   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2100   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2101   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2102 
2103   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2104   if (InOps[e-1].getValueType() == MVT::Glue)
2105     --e;  // Don't process a glue operand if it is here.
2106 
2107   while (i != e) {
2108     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2109     if (!InlineAsm::isMemKind(Flags)) {
2110       // Just skip over this operand, copying the operands verbatim.
2111       Ops.insert(Ops.end(), InOps.begin()+i,
2112                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2113       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2114     } else {
2115       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2116              "Memory operand with multiple values?");
2117 
2118       unsigned TiedToOperand;
2119       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2120         // We need the constraint ID from the operand this is tied to.
2121         unsigned CurOp = InlineAsm::Op_FirstOperand;
2122         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2123         for (; TiedToOperand; --TiedToOperand) {
2124           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2125           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2126         }
2127       }
2128 
2129       // Otherwise, this is a memory operand.  Ask the target to select it.
2130       std::vector<SDValue> SelOps;
2131       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2132       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2133         report_fatal_error("Could not match memory address.  Inline asm"
2134                            " failure!");
2135 
2136       // Add this to the output node.
2137       unsigned NewFlags =
2138         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2139       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2140       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2141       llvm::append_range(Ops, SelOps);
2142       i += 2;
2143     }
2144   }
2145 
2146   // Add the glue input back if present.
2147   if (e != InOps.size())
2148     Ops.push_back(InOps.back());
2149 }
2150 
2151 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2152 /// SDNode.
2153 ///
2154 static SDNode *findGlueUse(SDNode *N) {
2155   unsigned FlagResNo = N->getNumValues()-1;
2156   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2157     SDUse &Use = I.getUse();
2158     if (Use.getResNo() == FlagResNo)
2159       return Use.getUser();
2160   }
2161   return nullptr;
2162 }
2163 
2164 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2165 /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2166 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2167                           bool IgnoreChains) {
2168   SmallPtrSet<const SDNode *, 16> Visited;
2169   SmallVector<const SDNode *, 16> WorkList;
2170   // Only check if we have non-immediate uses of Def.
2171   if (ImmedUse->isOnlyUserOf(Def))
2172     return false;
2173 
2174   // We don't care about paths to Def that go through ImmedUse so mark it
2175   // visited and mark non-def operands as used.
2176   Visited.insert(ImmedUse);
2177   for (const SDValue &Op : ImmedUse->op_values()) {
2178     SDNode *N = Op.getNode();
2179     // Ignore chain deps (they are validated by
2180     // HandleMergeInputChains) and immediate uses
2181     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2182       continue;
2183     if (!Visited.insert(N).second)
2184       continue;
2185     WorkList.push_back(N);
2186   }
2187 
2188   // Initialize worklist to operands of Root.
2189   if (Root != ImmedUse) {
2190     for (const SDValue &Op : Root->op_values()) {
2191       SDNode *N = Op.getNode();
2192       // Ignore chains (they are validated by HandleMergeInputChains)
2193       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2194         continue;
2195       if (!Visited.insert(N).second)
2196         continue;
2197       WorkList.push_back(N);
2198     }
2199   }
2200 
2201   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2202 }
2203 
2204 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2205 /// operand node N of U during instruction selection that starts at Root.
2206 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2207                                           SDNode *Root) const {
2208   if (OptLevel == CodeGenOpt::None) return false;
2209   return N.hasOneUse();
2210 }
2211 
2212 /// IsLegalToFold - Returns true if the specific operand node N of
2213 /// U can be folded during instruction selection that starts at Root.
2214 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2215                                      CodeGenOpt::Level OptLevel,
2216                                      bool IgnoreChains) {
2217   if (OptLevel == CodeGenOpt::None) return false;
2218 
2219   // If Root use can somehow reach N through a path that that doesn't contain
2220   // U then folding N would create a cycle. e.g. In the following
2221   // diagram, Root can reach N through X. If N is folded into Root, then
2222   // X is both a predecessor and a successor of U.
2223   //
2224   //          [N*]           //
2225   //         ^   ^           //
2226   //        /     \          //
2227   //      [U*]    [X]?       //
2228   //        ^     ^          //
2229   //         \   /           //
2230   //          \ /            //
2231   //         [Root*]         //
2232   //
2233   // * indicates nodes to be folded together.
2234   //
2235   // If Root produces glue, then it gets (even more) interesting. Since it
2236   // will be "glued" together with its glue use in the scheduler, we need to
2237   // check if it might reach N.
2238   //
2239   //          [N*]           //
2240   //         ^   ^           //
2241   //        /     \          //
2242   //      [U*]    [X]?       //
2243   //        ^       ^        //
2244   //         \       \       //
2245   //          \      |       //
2246   //         [Root*] |       //
2247   //          ^      |       //
2248   //          f      |       //
2249   //          |      /       //
2250   //         [Y]    /        //
2251   //           ^   /         //
2252   //           f  /          //
2253   //           | /           //
2254   //          [GU]           //
2255   //
2256   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2257   // (call it Fold), then X is a predecessor of GU and a successor of
2258   // Fold. But since Fold and GU are glued together, this will create
2259   // a cycle in the scheduling graph.
2260 
2261   // If the node has glue, walk down the graph to the "lowest" node in the
2262   // glueged set.
2263   EVT VT = Root->getValueType(Root->getNumValues()-1);
2264   while (VT == MVT::Glue) {
2265     SDNode *GU = findGlueUse(Root);
2266     if (!GU)
2267       break;
2268     Root = GU;
2269     VT = Root->getValueType(Root->getNumValues()-1);
2270 
2271     // If our query node has a glue result with a use, we've walked up it.  If
2272     // the user (which has already been selected) has a chain or indirectly uses
2273     // the chain, HandleMergeInputChains will not consider it.  Because of
2274     // this, we cannot ignore chains in this predicate.
2275     IgnoreChains = false;
2276   }
2277 
2278   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2279 }
2280 
2281 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2282   SDLoc DL(N);
2283 
2284   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2285   SelectInlineAsmMemoryOperands(Ops, DL);
2286 
2287   const EVT VTs[] = {MVT::Other, MVT::Glue};
2288   SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2289   New->setNodeId(-1);
2290   ReplaceUses(N, New.getNode());
2291   CurDAG->RemoveDeadNode(N);
2292 }
2293 
2294 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2295   SDLoc dl(Op);
2296   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2297   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2298 
2299   EVT VT = Op->getValueType(0);
2300   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2301   Register Reg =
2302       TLI->getRegisterByName(RegStr->getString().data(), Ty,
2303                              CurDAG->getMachineFunction());
2304   SDValue New = CurDAG->getCopyFromReg(
2305                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2306   New->setNodeId(-1);
2307   ReplaceUses(Op, New.getNode());
2308   CurDAG->RemoveDeadNode(Op);
2309 }
2310 
2311 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2312   SDLoc dl(Op);
2313   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2314   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2315 
2316   EVT VT = Op->getOperand(2).getValueType();
2317   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2318 
2319   Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2320                                         CurDAG->getMachineFunction());
2321   SDValue New = CurDAG->getCopyToReg(
2322                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2323   New->setNodeId(-1);
2324   ReplaceUses(Op, New.getNode());
2325   CurDAG->RemoveDeadNode(Op);
2326 }
2327 
2328 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2329   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2330 }
2331 
2332 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2333   // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2334   // If FREEZE instruction is added later, the code below must be changed as
2335   // well.
2336   CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2337                        N->getOperand(0));
2338 }
2339 
2340 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2341   CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2342                        N->getOperand(0));
2343 }
2344 
2345 /// GetVBR - decode a vbr encoding whose top bit is set.
2346 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
2347 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2348   assert(Val >= 128 && "Not a VBR");
2349   Val &= 127;  // Remove first vbr bit.
2350 
2351   unsigned Shift = 7;
2352   uint64_t NextBits;
2353   do {
2354     NextBits = MatcherTable[Idx++];
2355     Val |= (NextBits&127) << Shift;
2356     Shift += 7;
2357   } while (NextBits & 128);
2358 
2359   return Val;
2360 }
2361 
2362 /// When a match is complete, this method updates uses of interior chain results
2363 /// to use the new results.
2364 void SelectionDAGISel::UpdateChains(
2365     SDNode *NodeToMatch, SDValue InputChain,
2366     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2367   SmallVector<SDNode*, 4> NowDeadNodes;
2368 
2369   // Now that all the normal results are replaced, we replace the chain and
2370   // glue results if present.
2371   if (!ChainNodesMatched.empty()) {
2372     assert(InputChain.getNode() &&
2373            "Matched input chains but didn't produce a chain");
2374     // Loop over all of the nodes we matched that produced a chain result.
2375     // Replace all the chain results with the final chain we ended up with.
2376     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2377       SDNode *ChainNode = ChainNodesMatched[i];
2378       // If ChainNode is null, it's because we replaced it on a previous
2379       // iteration and we cleared it out of the map. Just skip it.
2380       if (!ChainNode)
2381         continue;
2382 
2383       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2384              "Deleted node left in chain");
2385 
2386       // Don't replace the results of the root node if we're doing a
2387       // MorphNodeTo.
2388       if (ChainNode == NodeToMatch && isMorphNodeTo)
2389         continue;
2390 
2391       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2392       if (ChainVal.getValueType() == MVT::Glue)
2393         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2394       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2395       SelectionDAG::DAGNodeDeletedListener NDL(
2396           *CurDAG, [&](SDNode *N, SDNode *E) {
2397             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2398                          static_cast<SDNode *>(nullptr));
2399           });
2400       if (ChainNode->getOpcode() != ISD::TokenFactor)
2401         ReplaceUses(ChainVal, InputChain);
2402 
2403       // If the node became dead and we haven't already seen it, delete it.
2404       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2405           !llvm::is_contained(NowDeadNodes, ChainNode))
2406         NowDeadNodes.push_back(ChainNode);
2407     }
2408   }
2409 
2410   if (!NowDeadNodes.empty())
2411     CurDAG->RemoveDeadNodes(NowDeadNodes);
2412 
2413   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2414 }
2415 
2416 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2417 /// operation for when the pattern matched at least one node with a chains.  The
2418 /// input vector contains a list of all of the chained nodes that we match.  We
2419 /// must determine if this is a valid thing to cover (i.e. matching it won't
2420 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2421 /// be used as the input node chain for the generated nodes.
2422 static SDValue
2423 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2424                        SelectionDAG *CurDAG) {
2425 
2426   SmallPtrSet<const SDNode *, 16> Visited;
2427   SmallVector<const SDNode *, 8> Worklist;
2428   SmallVector<SDValue, 3> InputChains;
2429   unsigned int Max = 8192;
2430 
2431   // Quick exit on trivial merge.
2432   if (ChainNodesMatched.size() == 1)
2433     return ChainNodesMatched[0]->getOperand(0);
2434 
2435   // Add chains that aren't already added (internal). Peek through
2436   // token factors.
2437   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2438     if (V.getValueType() != MVT::Other)
2439       return;
2440     if (V->getOpcode() == ISD::EntryToken)
2441       return;
2442     if (!Visited.insert(V.getNode()).second)
2443       return;
2444     if (V->getOpcode() == ISD::TokenFactor) {
2445       for (const SDValue &Op : V->op_values())
2446         AddChains(Op);
2447     } else
2448       InputChains.push_back(V);
2449   };
2450 
2451   for (auto *N : ChainNodesMatched) {
2452     Worklist.push_back(N);
2453     Visited.insert(N);
2454   }
2455 
2456   while (!Worklist.empty())
2457     AddChains(Worklist.pop_back_val()->getOperand(0));
2458 
2459   // Skip the search if there are no chain dependencies.
2460   if (InputChains.size() == 0)
2461     return CurDAG->getEntryNode();
2462 
2463   // If one of these chains is a successor of input, we must have a
2464   // node that is both the predecessor and successor of the
2465   // to-be-merged nodes. Fail.
2466   Visited.clear();
2467   for (SDValue V : InputChains)
2468     Worklist.push_back(V.getNode());
2469 
2470   for (auto *N : ChainNodesMatched)
2471     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2472       return SDValue();
2473 
2474   // Return merged chain.
2475   if (InputChains.size() == 1)
2476     return InputChains[0];
2477   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2478                          MVT::Other, InputChains);
2479 }
2480 
2481 /// MorphNode - Handle morphing a node in place for the selector.
2482 SDNode *SelectionDAGISel::
2483 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2484           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2485   // It is possible we're using MorphNodeTo to replace a node with no
2486   // normal results with one that has a normal result (or we could be
2487   // adding a chain) and the input could have glue and chains as well.
2488   // In this case we need to shift the operands down.
2489   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2490   // than the old isel though.
2491   int OldGlueResultNo = -1, OldChainResultNo = -1;
2492 
2493   unsigned NTMNumResults = Node->getNumValues();
2494   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2495     OldGlueResultNo = NTMNumResults-1;
2496     if (NTMNumResults != 1 &&
2497         Node->getValueType(NTMNumResults-2) == MVT::Other)
2498       OldChainResultNo = NTMNumResults-2;
2499   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2500     OldChainResultNo = NTMNumResults-1;
2501 
2502   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2503   // that this deletes operands of the old node that become dead.
2504   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2505 
2506   // MorphNodeTo can operate in two ways: if an existing node with the
2507   // specified operands exists, it can just return it.  Otherwise, it
2508   // updates the node in place to have the requested operands.
2509   if (Res == Node) {
2510     // If we updated the node in place, reset the node ID.  To the isel,
2511     // this should be just like a newly allocated machine node.
2512     Res->setNodeId(-1);
2513   }
2514 
2515   unsigned ResNumResults = Res->getNumValues();
2516   // Move the glue if needed.
2517   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2518       (unsigned)OldGlueResultNo != ResNumResults-1)
2519     ReplaceUses(SDValue(Node, OldGlueResultNo),
2520                 SDValue(Res, ResNumResults - 1));
2521 
2522   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2523     --ResNumResults;
2524 
2525   // Move the chain reference if needed.
2526   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2527       (unsigned)OldChainResultNo != ResNumResults-1)
2528     ReplaceUses(SDValue(Node, OldChainResultNo),
2529                 SDValue(Res, ResNumResults - 1));
2530 
2531   // Otherwise, no replacement happened because the node already exists. Replace
2532   // Uses of the old node with the new one.
2533   if (Res != Node) {
2534     ReplaceNode(Node, Res);
2535   } else {
2536     EnforceNodeIdInvariant(Res);
2537   }
2538 
2539   return Res;
2540 }
2541 
2542 /// CheckSame - Implements OP_CheckSame.
2543 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2544 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2545           const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2546   // Accept if it is exactly the same as a previously recorded node.
2547   unsigned RecNo = MatcherTable[MatcherIndex++];
2548   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2549   return N == RecordedNodes[RecNo].first;
2550 }
2551 
2552 /// CheckChildSame - Implements OP_CheckChildXSame.
2553 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2554     const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2555     const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2556     unsigned ChildNo) {
2557   if (ChildNo >= N.getNumOperands())
2558     return false;  // Match fails if out of range child #.
2559   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2560                      RecordedNodes);
2561 }
2562 
2563 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2564 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2565 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2566                       const SelectionDAGISel &SDISel) {
2567   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2568 }
2569 
2570 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2571 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2572 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2573                    const SelectionDAGISel &SDISel, SDNode *N) {
2574   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2575 }
2576 
2577 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2578 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2579             SDNode *N) {
2580   uint16_t Opc = MatcherTable[MatcherIndex++];
2581   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2582   return N->getOpcode() == Opc;
2583 }
2584 
2585 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2586 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2587           const TargetLowering *TLI, const DataLayout &DL) {
2588   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2589   if (N.getValueType() == VT) return true;
2590 
2591   // Handle the case when VT is iPTR.
2592   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2593 }
2594 
2595 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2596 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2597                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2598                unsigned ChildNo) {
2599   if (ChildNo >= N.getNumOperands())
2600     return false;  // Match fails if out of range child #.
2601   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2602                      DL);
2603 }
2604 
2605 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2606 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2607               SDValue N) {
2608   return cast<CondCodeSDNode>(N)->get() ==
2609       (ISD::CondCode)MatcherTable[MatcherIndex++];
2610 }
2611 
2612 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2613 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2614                     SDValue N) {
2615   if (2 >= N.getNumOperands())
2616     return false;
2617   return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2618 }
2619 
2620 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2621 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2622                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2623   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2624   if (cast<VTSDNode>(N)->getVT() == VT)
2625     return true;
2626 
2627   // Handle the case when VT is iPTR.
2628   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2629 }
2630 
2631 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2632 // shifted left by 1.
2633 static uint64_t decodeSignRotatedValue(uint64_t V) {
2634   if ((V & 1) == 0)
2635     return V >> 1;
2636   if (V != 1)
2637     return -(V >> 1);
2638   // There is no such thing as -0 with integers.  "-0" really means MININT.
2639   return 1ULL << 63;
2640 }
2641 
2642 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2643 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2644              SDValue N) {
2645   int64_t Val = MatcherTable[MatcherIndex++];
2646   if (Val & 128)
2647     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2648 
2649   Val = decodeSignRotatedValue(Val);
2650 
2651   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2652   return C && C->getSExtValue() == Val;
2653 }
2654 
2655 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2656 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2657                   SDValue N, unsigned ChildNo) {
2658   if (ChildNo >= N.getNumOperands())
2659     return false;  // Match fails if out of range child #.
2660   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2661 }
2662 
2663 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2664 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2665             SDValue N, const SelectionDAGISel &SDISel) {
2666   int64_t Val = MatcherTable[MatcherIndex++];
2667   if (Val & 128)
2668     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2669 
2670   if (N->getOpcode() != ISD::AND) return false;
2671 
2672   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2673   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2674 }
2675 
2676 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2677 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2678            const SelectionDAGISel &SDISel) {
2679   int64_t Val = MatcherTable[MatcherIndex++];
2680   if (Val & 128)
2681     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2682 
2683   if (N->getOpcode() != ISD::OR) return false;
2684 
2685   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2686   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2687 }
2688 
2689 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2690 /// scope, evaluate the current node.  If the current predicate is known to
2691 /// fail, set Result=true and return anything.  If the current predicate is
2692 /// known to pass, set Result=false and return the MatcherIndex to continue
2693 /// with.  If the current predicate is unknown, set Result=false and return the
2694 /// MatcherIndex to continue with.
2695 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2696                                        unsigned Index, SDValue N,
2697                                        bool &Result,
2698                                        const SelectionDAGISel &SDISel,
2699                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2700   switch (Table[Index++]) {
2701   default:
2702     Result = false;
2703     return Index-1;  // Could not evaluate this predicate.
2704   case SelectionDAGISel::OPC_CheckSame:
2705     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2706     return Index;
2707   case SelectionDAGISel::OPC_CheckChild0Same:
2708   case SelectionDAGISel::OPC_CheckChild1Same:
2709   case SelectionDAGISel::OPC_CheckChild2Same:
2710   case SelectionDAGISel::OPC_CheckChild3Same:
2711     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2712                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2713     return Index;
2714   case SelectionDAGISel::OPC_CheckPatternPredicate:
2715     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2716     return Index;
2717   case SelectionDAGISel::OPC_CheckPredicate:
2718     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2719     return Index;
2720   case SelectionDAGISel::OPC_CheckOpcode:
2721     Result = !::CheckOpcode(Table, Index, N.getNode());
2722     return Index;
2723   case SelectionDAGISel::OPC_CheckType:
2724     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2725                           SDISel.CurDAG->getDataLayout());
2726     return Index;
2727   case SelectionDAGISel::OPC_CheckTypeRes: {
2728     unsigned Res = Table[Index++];
2729     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2730                           SDISel.CurDAG->getDataLayout());
2731     return Index;
2732   }
2733   case SelectionDAGISel::OPC_CheckChild0Type:
2734   case SelectionDAGISel::OPC_CheckChild1Type:
2735   case SelectionDAGISel::OPC_CheckChild2Type:
2736   case SelectionDAGISel::OPC_CheckChild3Type:
2737   case SelectionDAGISel::OPC_CheckChild4Type:
2738   case SelectionDAGISel::OPC_CheckChild5Type:
2739   case SelectionDAGISel::OPC_CheckChild6Type:
2740   case SelectionDAGISel::OPC_CheckChild7Type:
2741     Result = !::CheckChildType(
2742                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2743                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2744     return Index;
2745   case SelectionDAGISel::OPC_CheckCondCode:
2746     Result = !::CheckCondCode(Table, Index, N);
2747     return Index;
2748   case SelectionDAGISel::OPC_CheckChild2CondCode:
2749     Result = !::CheckChild2CondCode(Table, Index, N);
2750     return Index;
2751   case SelectionDAGISel::OPC_CheckValueType:
2752     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2753                                SDISel.CurDAG->getDataLayout());
2754     return Index;
2755   case SelectionDAGISel::OPC_CheckInteger:
2756     Result = !::CheckInteger(Table, Index, N);
2757     return Index;
2758   case SelectionDAGISel::OPC_CheckChild0Integer:
2759   case SelectionDAGISel::OPC_CheckChild1Integer:
2760   case SelectionDAGISel::OPC_CheckChild2Integer:
2761   case SelectionDAGISel::OPC_CheckChild3Integer:
2762   case SelectionDAGISel::OPC_CheckChild4Integer:
2763     Result = !::CheckChildInteger(Table, Index, N,
2764                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2765     return Index;
2766   case SelectionDAGISel::OPC_CheckAndImm:
2767     Result = !::CheckAndImm(Table, Index, N, SDISel);
2768     return Index;
2769   case SelectionDAGISel::OPC_CheckOrImm:
2770     Result = !::CheckOrImm(Table, Index, N, SDISel);
2771     return Index;
2772   }
2773 }
2774 
2775 namespace {
2776 
2777 struct MatchScope {
2778   /// FailIndex - If this match fails, this is the index to continue with.
2779   unsigned FailIndex;
2780 
2781   /// NodeStack - The node stack when the scope was formed.
2782   SmallVector<SDValue, 4> NodeStack;
2783 
2784   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2785   unsigned NumRecordedNodes;
2786 
2787   /// NumMatchedMemRefs - The number of matched memref entries.
2788   unsigned NumMatchedMemRefs;
2789 
2790   /// InputChain/InputGlue - The current chain/glue
2791   SDValue InputChain, InputGlue;
2792 
2793   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2794   bool HasChainNodesMatched;
2795 };
2796 
2797 /// \A DAG update listener to keep the matching state
2798 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2799 /// change the DAG while matching.  X86 addressing mode matcher is an example
2800 /// for this.
2801 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2802 {
2803   SDNode **NodeToMatch;
2804   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2805   SmallVectorImpl<MatchScope> &MatchScopes;
2806 
2807 public:
2808   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2809                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2810                     SmallVectorImpl<MatchScope> &MS)
2811       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2812         RecordedNodes(RN), MatchScopes(MS) {}
2813 
2814   void NodeDeleted(SDNode *N, SDNode *E) override {
2815     // Some early-returns here to avoid the search if we deleted the node or
2816     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2817     // do, so it's unnecessary to update matching state at that point).
2818     // Neither of these can occur currently because we only install this
2819     // update listener during matching a complex patterns.
2820     if (!E || E->isMachineOpcode())
2821       return;
2822     // Check if NodeToMatch was updated.
2823     if (N == *NodeToMatch)
2824       *NodeToMatch = E;
2825     // Performing linear search here does not matter because we almost never
2826     // run this code.  You'd have to have a CSE during complex pattern
2827     // matching.
2828     for (auto &I : RecordedNodes)
2829       if (I.first.getNode() == N)
2830         I.first.setNode(E);
2831 
2832     for (auto &I : MatchScopes)
2833       for (auto &J : I.NodeStack)
2834         if (J.getNode() == N)
2835           J.setNode(E);
2836   }
2837 };
2838 
2839 } // end anonymous namespace
2840 
2841 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2842                                         const unsigned char *MatcherTable,
2843                                         unsigned TableSize) {
2844   // FIXME: Should these even be selected?  Handle these cases in the caller?
2845   switch (NodeToMatch->getOpcode()) {
2846   default:
2847     break;
2848   case ISD::EntryToken:       // These nodes remain the same.
2849   case ISD::BasicBlock:
2850   case ISD::Register:
2851   case ISD::RegisterMask:
2852   case ISD::HANDLENODE:
2853   case ISD::MDNODE_SDNODE:
2854   case ISD::TargetConstant:
2855   case ISD::TargetConstantFP:
2856   case ISD::TargetConstantPool:
2857   case ISD::TargetFrameIndex:
2858   case ISD::TargetExternalSymbol:
2859   case ISD::MCSymbol:
2860   case ISD::TargetBlockAddress:
2861   case ISD::TargetJumpTable:
2862   case ISD::TargetGlobalTLSAddress:
2863   case ISD::TargetGlobalAddress:
2864   case ISD::TokenFactor:
2865   case ISD::CopyFromReg:
2866   case ISD::CopyToReg:
2867   case ISD::EH_LABEL:
2868   case ISD::ANNOTATION_LABEL:
2869   case ISD::LIFETIME_START:
2870   case ISD::LIFETIME_END:
2871   case ISD::PSEUDO_PROBE:
2872     NodeToMatch->setNodeId(-1); // Mark selected.
2873     return;
2874   case ISD::AssertSext:
2875   case ISD::AssertZext:
2876   case ISD::AssertAlign:
2877     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2878     CurDAG->RemoveDeadNode(NodeToMatch);
2879     return;
2880   case ISD::INLINEASM:
2881   case ISD::INLINEASM_BR:
2882     Select_INLINEASM(NodeToMatch);
2883     return;
2884   case ISD::READ_REGISTER:
2885     Select_READ_REGISTER(NodeToMatch);
2886     return;
2887   case ISD::WRITE_REGISTER:
2888     Select_WRITE_REGISTER(NodeToMatch);
2889     return;
2890   case ISD::UNDEF:
2891     Select_UNDEF(NodeToMatch);
2892     return;
2893   case ISD::FREEZE:
2894     Select_FREEZE(NodeToMatch);
2895     return;
2896   case ISD::ARITH_FENCE:
2897     Select_ARITH_FENCE(NodeToMatch);
2898     return;
2899   }
2900 
2901   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2902 
2903   // Set up the node stack with NodeToMatch as the only node on the stack.
2904   SmallVector<SDValue, 8> NodeStack;
2905   SDValue N = SDValue(NodeToMatch, 0);
2906   NodeStack.push_back(N);
2907 
2908   // MatchScopes - Scopes used when matching, if a match failure happens, this
2909   // indicates where to continue checking.
2910   SmallVector<MatchScope, 8> MatchScopes;
2911 
2912   // RecordedNodes - This is the set of nodes that have been recorded by the
2913   // state machine.  The second value is the parent of the node, or null if the
2914   // root is recorded.
2915   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2916 
2917   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2918   // pattern.
2919   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2920 
2921   // These are the current input chain and glue for use when generating nodes.
2922   // Various Emit operations change these.  For example, emitting a copytoreg
2923   // uses and updates these.
2924   SDValue InputChain, InputGlue;
2925 
2926   // ChainNodesMatched - If a pattern matches nodes that have input/output
2927   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2928   // which ones they are.  The result is captured into this list so that we can
2929   // update the chain results when the pattern is complete.
2930   SmallVector<SDNode*, 3> ChainNodesMatched;
2931 
2932   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2933 
2934   // Determine where to start the interpreter.  Normally we start at opcode #0,
2935   // but if the state machine starts with an OPC_SwitchOpcode, then we
2936   // accelerate the first lookup (which is guaranteed to be hot) with the
2937   // OpcodeOffset table.
2938   unsigned MatcherIndex = 0;
2939 
2940   if (!OpcodeOffset.empty()) {
2941     // Already computed the OpcodeOffset table, just index into it.
2942     if (N.getOpcode() < OpcodeOffset.size())
2943       MatcherIndex = OpcodeOffset[N.getOpcode()];
2944     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2945 
2946   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2947     // Otherwise, the table isn't computed, but the state machine does start
2948     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2949     // is the first time we're selecting an instruction.
2950     unsigned Idx = 1;
2951     while (true) {
2952       // Get the size of this case.
2953       unsigned CaseSize = MatcherTable[Idx++];
2954       if (CaseSize & 128)
2955         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2956       if (CaseSize == 0) break;
2957 
2958       // Get the opcode, add the index to the table.
2959       uint16_t Opc = MatcherTable[Idx++];
2960       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2961       if (Opc >= OpcodeOffset.size())
2962         OpcodeOffset.resize((Opc+1)*2);
2963       OpcodeOffset[Opc] = Idx;
2964       Idx += CaseSize;
2965     }
2966 
2967     // Okay, do the lookup for the first opcode.
2968     if (N.getOpcode() < OpcodeOffset.size())
2969       MatcherIndex = OpcodeOffset[N.getOpcode()];
2970   }
2971 
2972   while (true) {
2973     assert(MatcherIndex < TableSize && "Invalid index");
2974 #ifndef NDEBUG
2975     unsigned CurrentOpcodeIndex = MatcherIndex;
2976 #endif
2977     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2978     switch (Opcode) {
2979     case OPC_Scope: {
2980       // Okay, the semantics of this operation are that we should push a scope
2981       // then evaluate the first child.  However, pushing a scope only to have
2982       // the first check fail (which then pops it) is inefficient.  If we can
2983       // determine immediately that the first check (or first several) will
2984       // immediately fail, don't even bother pushing a scope for them.
2985       unsigned FailIndex;
2986 
2987       while (true) {
2988         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2989         if (NumToSkip & 128)
2990           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2991         // Found the end of the scope with no match.
2992         if (NumToSkip == 0) {
2993           FailIndex = 0;
2994           break;
2995         }
2996 
2997         FailIndex = MatcherIndex+NumToSkip;
2998 
2999         unsigned MatcherIndexOfPredicate = MatcherIndex;
3000         (void)MatcherIndexOfPredicate; // silence warning.
3001 
3002         // If we can't evaluate this predicate without pushing a scope (e.g. if
3003         // it is a 'MoveParent') or if the predicate succeeds on this node, we
3004         // push the scope and evaluate the full predicate chain.
3005         bool Result;
3006         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3007                                               Result, *this, RecordedNodes);
3008         if (!Result)
3009           break;
3010 
3011         LLVM_DEBUG(
3012             dbgs() << "  Skipped scope entry (due to false predicate) at "
3013                    << "index " << MatcherIndexOfPredicate << ", continuing at "
3014                    << FailIndex << "\n");
3015         ++NumDAGIselRetries;
3016 
3017         // Otherwise, we know that this case of the Scope is guaranteed to fail,
3018         // move to the next case.
3019         MatcherIndex = FailIndex;
3020       }
3021 
3022       // If the whole scope failed to match, bail.
3023       if (FailIndex == 0) break;
3024 
3025       // Push a MatchScope which indicates where to go if the first child fails
3026       // to match.
3027       MatchScope NewEntry;
3028       NewEntry.FailIndex = FailIndex;
3029       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3030       NewEntry.NumRecordedNodes = RecordedNodes.size();
3031       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3032       NewEntry.InputChain = InputChain;
3033       NewEntry.InputGlue = InputGlue;
3034       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3035       MatchScopes.push_back(NewEntry);
3036       continue;
3037     }
3038     case OPC_RecordNode: {
3039       // Remember this node, it may end up being an operand in the pattern.
3040       SDNode *Parent = nullptr;
3041       if (NodeStack.size() > 1)
3042         Parent = NodeStack[NodeStack.size()-2].getNode();
3043       RecordedNodes.push_back(std::make_pair(N, Parent));
3044       continue;
3045     }
3046 
3047     case OPC_RecordChild0: case OPC_RecordChild1:
3048     case OPC_RecordChild2: case OPC_RecordChild3:
3049     case OPC_RecordChild4: case OPC_RecordChild5:
3050     case OPC_RecordChild6: case OPC_RecordChild7: {
3051       unsigned ChildNo = Opcode-OPC_RecordChild0;
3052       if (ChildNo >= N.getNumOperands())
3053         break;  // Match fails if out of range child #.
3054 
3055       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3056                                              N.getNode()));
3057       continue;
3058     }
3059     case OPC_RecordMemRef:
3060       if (auto *MN = dyn_cast<MemSDNode>(N))
3061         MatchedMemRefs.push_back(MN->getMemOperand());
3062       else {
3063         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3064                    dbgs() << '\n');
3065       }
3066 
3067       continue;
3068 
3069     case OPC_CaptureGlueInput:
3070       // If the current node has an input glue, capture it in InputGlue.
3071       if (N->getNumOperands() != 0 &&
3072           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3073         InputGlue = N->getOperand(N->getNumOperands()-1);
3074       continue;
3075 
3076     case OPC_MoveChild: {
3077       unsigned ChildNo = MatcherTable[MatcherIndex++];
3078       if (ChildNo >= N.getNumOperands())
3079         break;  // Match fails if out of range child #.
3080       N = N.getOperand(ChildNo);
3081       NodeStack.push_back(N);
3082       continue;
3083     }
3084 
3085     case OPC_MoveChild0: case OPC_MoveChild1:
3086     case OPC_MoveChild2: case OPC_MoveChild3:
3087     case OPC_MoveChild4: case OPC_MoveChild5:
3088     case OPC_MoveChild6: case OPC_MoveChild7: {
3089       unsigned ChildNo = Opcode-OPC_MoveChild0;
3090       if (ChildNo >= N.getNumOperands())
3091         break;  // Match fails if out of range child #.
3092       N = N.getOperand(ChildNo);
3093       NodeStack.push_back(N);
3094       continue;
3095     }
3096 
3097     case OPC_MoveParent:
3098       // Pop the current node off the NodeStack.
3099       NodeStack.pop_back();
3100       assert(!NodeStack.empty() && "Node stack imbalance!");
3101       N = NodeStack.back();
3102       continue;
3103 
3104     case OPC_CheckSame:
3105       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3106       continue;
3107 
3108     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3109     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3110       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3111                             Opcode-OPC_CheckChild0Same))
3112         break;
3113       continue;
3114 
3115     case OPC_CheckPatternPredicate:
3116       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3117       continue;
3118     case OPC_CheckPredicate:
3119       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3120                                 N.getNode()))
3121         break;
3122       continue;
3123     case OPC_CheckPredicateWithOperands: {
3124       unsigned OpNum = MatcherTable[MatcherIndex++];
3125       SmallVector<SDValue, 8> Operands;
3126 
3127       for (unsigned i = 0; i < OpNum; ++i)
3128         Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3129 
3130       unsigned PredNo = MatcherTable[MatcherIndex++];
3131       if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3132         break;
3133       continue;
3134     }
3135     case OPC_CheckComplexPat: {
3136       unsigned CPNum = MatcherTable[MatcherIndex++];
3137       unsigned RecNo = MatcherTable[MatcherIndex++];
3138       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3139 
3140       // If target can modify DAG during matching, keep the matching state
3141       // consistent.
3142       std::unique_ptr<MatchStateUpdater> MSU;
3143       if (ComplexPatternFuncMutatesDAG())
3144         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3145                                         MatchScopes));
3146 
3147       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3148                                RecordedNodes[RecNo].first, CPNum,
3149                                RecordedNodes))
3150         break;
3151       continue;
3152     }
3153     case OPC_CheckOpcode:
3154       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3155       continue;
3156 
3157     case OPC_CheckType:
3158       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3159                        CurDAG->getDataLayout()))
3160         break;
3161       continue;
3162 
3163     case OPC_CheckTypeRes: {
3164       unsigned Res = MatcherTable[MatcherIndex++];
3165       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3166                        CurDAG->getDataLayout()))
3167         break;
3168       continue;
3169     }
3170 
3171     case OPC_SwitchOpcode: {
3172       unsigned CurNodeOpcode = N.getOpcode();
3173       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3174       unsigned CaseSize;
3175       while (true) {
3176         // Get the size of this case.
3177         CaseSize = MatcherTable[MatcherIndex++];
3178         if (CaseSize & 128)
3179           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3180         if (CaseSize == 0) break;
3181 
3182         uint16_t Opc = MatcherTable[MatcherIndex++];
3183         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3184 
3185         // If the opcode matches, then we will execute this case.
3186         if (CurNodeOpcode == Opc)
3187           break;
3188 
3189         // Otherwise, skip over this case.
3190         MatcherIndex += CaseSize;
3191       }
3192 
3193       // If no cases matched, bail out.
3194       if (CaseSize == 0) break;
3195 
3196       // Otherwise, execute the case we found.
3197       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3198                         << MatcherIndex << "\n");
3199       continue;
3200     }
3201 
3202     case OPC_SwitchType: {
3203       MVT CurNodeVT = N.getSimpleValueType();
3204       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3205       unsigned CaseSize;
3206       while (true) {
3207         // Get the size of this case.
3208         CaseSize = MatcherTable[MatcherIndex++];
3209         if (CaseSize & 128)
3210           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3211         if (CaseSize == 0) break;
3212 
3213         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3214         if (CaseVT == MVT::iPTR)
3215           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3216 
3217         // If the VT matches, then we will execute this case.
3218         if (CurNodeVT == CaseVT)
3219           break;
3220 
3221         // Otherwise, skip over this case.
3222         MatcherIndex += CaseSize;
3223       }
3224 
3225       // If no cases matched, bail out.
3226       if (CaseSize == 0) break;
3227 
3228       // Otherwise, execute the case we found.
3229       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3230                         << "] from " << SwitchStart << " to " << MatcherIndex
3231                         << '\n');
3232       continue;
3233     }
3234     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3235     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3236     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3237     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3238       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3239                             CurDAG->getDataLayout(),
3240                             Opcode - OPC_CheckChild0Type))
3241         break;
3242       continue;
3243     case OPC_CheckCondCode:
3244       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3245       continue;
3246     case OPC_CheckChild2CondCode:
3247       if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3248       continue;
3249     case OPC_CheckValueType:
3250       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3251                             CurDAG->getDataLayout()))
3252         break;
3253       continue;
3254     case OPC_CheckInteger:
3255       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3256       continue;
3257     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3258     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3259     case OPC_CheckChild4Integer:
3260       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3261                                Opcode-OPC_CheckChild0Integer)) break;
3262       continue;
3263     case OPC_CheckAndImm:
3264       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3265       continue;
3266     case OPC_CheckOrImm:
3267       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3268       continue;
3269     case OPC_CheckImmAllOnesV:
3270       if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3271         break;
3272       continue;
3273     case OPC_CheckImmAllZerosV:
3274       if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3275         break;
3276       continue;
3277 
3278     case OPC_CheckFoldableChainNode: {
3279       assert(NodeStack.size() != 1 && "No parent node");
3280       // Verify that all intermediate nodes between the root and this one have
3281       // a single use (ignoring chains, which are handled in UpdateChains).
3282       bool HasMultipleUses = false;
3283       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3284         unsigned NNonChainUses = 0;
3285         SDNode *NS = NodeStack[i].getNode();
3286         for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3287           if (UI.getUse().getValueType() != MVT::Other)
3288             if (++NNonChainUses > 1) {
3289               HasMultipleUses = true;
3290               break;
3291             }
3292         if (HasMultipleUses) break;
3293       }
3294       if (HasMultipleUses) break;
3295 
3296       // Check to see that the target thinks this is profitable to fold and that
3297       // we can fold it without inducing cycles in the graph.
3298       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3299                               NodeToMatch) ||
3300           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3301                          NodeToMatch, OptLevel,
3302                          true/*We validate our own chains*/))
3303         break;
3304 
3305       continue;
3306     }
3307     case OPC_EmitInteger:
3308     case OPC_EmitStringInteger: {
3309       MVT::SimpleValueType VT =
3310         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3311       int64_t Val = MatcherTable[MatcherIndex++];
3312       if (Val & 128)
3313         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3314       if (Opcode == OPC_EmitInteger)
3315         Val = decodeSignRotatedValue(Val);
3316       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3317                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3318                                                         VT), nullptr));
3319       continue;
3320     }
3321     case OPC_EmitRegister: {
3322       MVT::SimpleValueType VT =
3323         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3324       unsigned RegNo = MatcherTable[MatcherIndex++];
3325       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3326                               CurDAG->getRegister(RegNo, VT), nullptr));
3327       continue;
3328     }
3329     case OPC_EmitRegister2: {
3330       // For targets w/ more than 256 register names, the register enum
3331       // values are stored in two bytes in the matcher table (just like
3332       // opcodes).
3333       MVT::SimpleValueType VT =
3334         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3335       unsigned RegNo = MatcherTable[MatcherIndex++];
3336       RegNo |= MatcherTable[MatcherIndex++] << 8;
3337       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3338                               CurDAG->getRegister(RegNo, VT), nullptr));
3339       continue;
3340     }
3341 
3342     case OPC_EmitConvertToTarget:  {
3343       // Convert from IMM/FPIMM to target version.
3344       unsigned RecNo = MatcherTable[MatcherIndex++];
3345       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3346       SDValue Imm = RecordedNodes[RecNo].first;
3347 
3348       if (Imm->getOpcode() == ISD::Constant) {
3349         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3350         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3351                                         Imm.getValueType());
3352       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3353         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3354         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3355                                           Imm.getValueType());
3356       }
3357 
3358       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3359       continue;
3360     }
3361 
3362     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3363     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3364     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3365       // These are space-optimized forms of OPC_EmitMergeInputChains.
3366       assert(!InputChain.getNode() &&
3367              "EmitMergeInputChains should be the first chain producing node");
3368       assert(ChainNodesMatched.empty() &&
3369              "Should only have one EmitMergeInputChains per match");
3370 
3371       // Read all of the chained nodes.
3372       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3373       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3374       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3375 
3376       // FIXME: What if other value results of the node have uses not matched
3377       // by this pattern?
3378       if (ChainNodesMatched.back() != NodeToMatch &&
3379           !RecordedNodes[RecNo].first.hasOneUse()) {
3380         ChainNodesMatched.clear();
3381         break;
3382       }
3383 
3384       // Merge the input chains if they are not intra-pattern references.
3385       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3386 
3387       if (!InputChain.getNode())
3388         break;  // Failed to merge.
3389       continue;
3390     }
3391 
3392     case OPC_EmitMergeInputChains: {
3393       assert(!InputChain.getNode() &&
3394              "EmitMergeInputChains should be the first chain producing node");
3395       // This node gets a list of nodes we matched in the input that have
3396       // chains.  We want to token factor all of the input chains to these nodes
3397       // together.  However, if any of the input chains is actually one of the
3398       // nodes matched in this pattern, then we have an intra-match reference.
3399       // Ignore these because the newly token factored chain should not refer to
3400       // the old nodes.
3401       unsigned NumChains = MatcherTable[MatcherIndex++];
3402       assert(NumChains != 0 && "Can't TF zero chains");
3403 
3404       assert(ChainNodesMatched.empty() &&
3405              "Should only have one EmitMergeInputChains per match");
3406 
3407       // Read all of the chained nodes.
3408       for (unsigned i = 0; i != NumChains; ++i) {
3409         unsigned RecNo = MatcherTable[MatcherIndex++];
3410         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3411         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3412 
3413         // FIXME: What if other value results of the node have uses not matched
3414         // by this pattern?
3415         if (ChainNodesMatched.back() != NodeToMatch &&
3416             !RecordedNodes[RecNo].first.hasOneUse()) {
3417           ChainNodesMatched.clear();
3418           break;
3419         }
3420       }
3421 
3422       // If the inner loop broke out, the match fails.
3423       if (ChainNodesMatched.empty())
3424         break;
3425 
3426       // Merge the input chains if they are not intra-pattern references.
3427       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3428 
3429       if (!InputChain.getNode())
3430         break;  // Failed to merge.
3431 
3432       continue;
3433     }
3434 
3435     case OPC_EmitCopyToReg:
3436     case OPC_EmitCopyToReg2: {
3437       unsigned RecNo = MatcherTable[MatcherIndex++];
3438       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3439       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3440       if (Opcode == OPC_EmitCopyToReg2)
3441         DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3442 
3443       if (!InputChain.getNode())
3444         InputChain = CurDAG->getEntryNode();
3445 
3446       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3447                                         DestPhysReg, RecordedNodes[RecNo].first,
3448                                         InputGlue);
3449 
3450       InputGlue = InputChain.getValue(1);
3451       continue;
3452     }
3453 
3454     case OPC_EmitNodeXForm: {
3455       unsigned XFormNo = MatcherTable[MatcherIndex++];
3456       unsigned RecNo = MatcherTable[MatcherIndex++];
3457       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3458       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3459       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3460       continue;
3461     }
3462     case OPC_Coverage: {
3463       // This is emitted right before MorphNode/EmitNode.
3464       // So it should be safe to assume that this node has been selected
3465       unsigned index = MatcherTable[MatcherIndex++];
3466       index |= (MatcherTable[MatcherIndex++] << 8);
3467       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3468       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3469       continue;
3470     }
3471 
3472     case OPC_EmitNode:     case OPC_MorphNodeTo:
3473     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3474     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3475       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3476       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3477       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3478       // Get the result VT list.
3479       unsigned NumVTs;
3480       // If this is one of the compressed forms, get the number of VTs based
3481       // on the Opcode. Otherwise read the next byte from the table.
3482       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3483         NumVTs = Opcode - OPC_MorphNodeTo0;
3484       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3485         NumVTs = Opcode - OPC_EmitNode0;
3486       else
3487         NumVTs = MatcherTable[MatcherIndex++];
3488       SmallVector<EVT, 4> VTs;
3489       for (unsigned i = 0; i != NumVTs; ++i) {
3490         MVT::SimpleValueType VT =
3491           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3492         if (VT == MVT::iPTR)
3493           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3494         VTs.push_back(VT);
3495       }
3496 
3497       if (EmitNodeInfo & OPFL_Chain)
3498         VTs.push_back(MVT::Other);
3499       if (EmitNodeInfo & OPFL_GlueOutput)
3500         VTs.push_back(MVT::Glue);
3501 
3502       // This is hot code, so optimize the two most common cases of 1 and 2
3503       // results.
3504       SDVTList VTList;
3505       if (VTs.size() == 1)
3506         VTList = CurDAG->getVTList(VTs[0]);
3507       else if (VTs.size() == 2)
3508         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3509       else
3510         VTList = CurDAG->getVTList(VTs);
3511 
3512       // Get the operand list.
3513       unsigned NumOps = MatcherTable[MatcherIndex++];
3514       SmallVector<SDValue, 8> Ops;
3515       for (unsigned i = 0; i != NumOps; ++i) {
3516         unsigned RecNo = MatcherTable[MatcherIndex++];
3517         if (RecNo & 128)
3518           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3519 
3520         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3521         Ops.push_back(RecordedNodes[RecNo].first);
3522       }
3523 
3524       // If there are variadic operands to add, handle them now.
3525       if (EmitNodeInfo & OPFL_VariadicInfo) {
3526         // Determine the start index to copy from.
3527         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3528         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3529         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3530                "Invalid variadic node");
3531         // Copy all of the variadic operands, not including a potential glue
3532         // input.
3533         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3534              i != e; ++i) {
3535           SDValue V = NodeToMatch->getOperand(i);
3536           if (V.getValueType() == MVT::Glue) break;
3537           Ops.push_back(V);
3538         }
3539       }
3540 
3541       // If this has chain/glue inputs, add them.
3542       if (EmitNodeInfo & OPFL_Chain)
3543         Ops.push_back(InputChain);
3544       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3545         Ops.push_back(InputGlue);
3546 
3547       // Check whether any matched node could raise an FP exception.  Since all
3548       // such nodes must have a chain, it suffices to check ChainNodesMatched.
3549       // We need to perform this check before potentially modifying one of the
3550       // nodes via MorphNode.
3551       bool MayRaiseFPException = false;
3552       for (auto *N : ChainNodesMatched)
3553         if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3554           MayRaiseFPException = true;
3555           break;
3556         }
3557 
3558       // Create the node.
3559       MachineSDNode *Res = nullptr;
3560       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3561                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3562       if (!IsMorphNodeTo) {
3563         // If this is a normal EmitNode command, just create the new node and
3564         // add the results to the RecordedNodes list.
3565         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3566                                      VTList, Ops);
3567 
3568         // Add all the non-glue/non-chain results to the RecordedNodes list.
3569         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3570           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3571           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3572                                                              nullptr));
3573         }
3574       } else {
3575         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3576                "NodeToMatch was removed partway through selection");
3577         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3578                                                               SDNode *E) {
3579           CurDAG->salvageDebugInfo(*N);
3580           auto &Chain = ChainNodesMatched;
3581           assert((!E || !is_contained(Chain, N)) &&
3582                  "Chain node replaced during MorphNode");
3583           llvm::erase_value(Chain, N);
3584         });
3585         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3586                                             Ops, EmitNodeInfo));
3587       }
3588 
3589       // Set the NoFPExcept flag when no original matched node could
3590       // raise an FP exception, but the new node potentially might.
3591       if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3592         SDNodeFlags Flags = Res->getFlags();
3593         Flags.setNoFPExcept(true);
3594         Res->setFlags(Flags);
3595       }
3596 
3597       // If the node had chain/glue results, update our notion of the current
3598       // chain and glue.
3599       if (EmitNodeInfo & OPFL_GlueOutput) {
3600         InputGlue = SDValue(Res, VTs.size()-1);
3601         if (EmitNodeInfo & OPFL_Chain)
3602           InputChain = SDValue(Res, VTs.size()-2);
3603       } else if (EmitNodeInfo & OPFL_Chain)
3604         InputChain = SDValue(Res, VTs.size()-1);
3605 
3606       // If the OPFL_MemRefs glue is set on this node, slap all of the
3607       // accumulated memrefs onto it.
3608       //
3609       // FIXME: This is vastly incorrect for patterns with multiple outputs
3610       // instructions that access memory and for ComplexPatterns that match
3611       // loads.
3612       if (EmitNodeInfo & OPFL_MemRefs) {
3613         // Only attach load or store memory operands if the generated
3614         // instruction may load or store.
3615         const MCInstrDesc &MCID = TII->get(TargetOpc);
3616         bool mayLoad = MCID.mayLoad();
3617         bool mayStore = MCID.mayStore();
3618 
3619         // We expect to have relatively few of these so just filter them into a
3620         // temporary buffer so that we can easily add them to the instruction.
3621         SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3622         for (MachineMemOperand *MMO : MatchedMemRefs) {
3623           if (MMO->isLoad()) {
3624             if (mayLoad)
3625               FilteredMemRefs.push_back(MMO);
3626           } else if (MMO->isStore()) {
3627             if (mayStore)
3628               FilteredMemRefs.push_back(MMO);
3629           } else {
3630             FilteredMemRefs.push_back(MMO);
3631           }
3632         }
3633 
3634         CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3635       }
3636 
3637       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3638                      << "  Dropping mem operands\n";
3639                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3640                         << " node: ";
3641                  Res->dump(CurDAG););
3642 
3643       // If this was a MorphNodeTo then we're completely done!
3644       if (IsMorphNodeTo) {
3645         // Update chain uses.
3646         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3647         return;
3648       }
3649       continue;
3650     }
3651 
3652     case OPC_CompleteMatch: {
3653       // The match has been completed, and any new nodes (if any) have been
3654       // created.  Patch up references to the matched dag to use the newly
3655       // created nodes.
3656       unsigned NumResults = MatcherTable[MatcherIndex++];
3657 
3658       for (unsigned i = 0; i != NumResults; ++i) {
3659         unsigned ResSlot = MatcherTable[MatcherIndex++];
3660         if (ResSlot & 128)
3661           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3662 
3663         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3664         SDValue Res = RecordedNodes[ResSlot].first;
3665 
3666         assert(i < NodeToMatch->getNumValues() &&
3667                NodeToMatch->getValueType(i) != MVT::Other &&
3668                NodeToMatch->getValueType(i) != MVT::Glue &&
3669                "Invalid number of results to complete!");
3670         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3671                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3672                 Res.getValueType() == MVT::iPTR ||
3673                 NodeToMatch->getValueType(i).getSizeInBits() ==
3674                     Res.getValueSizeInBits()) &&
3675                "invalid replacement");
3676         ReplaceUses(SDValue(NodeToMatch, i), Res);
3677       }
3678 
3679       // Update chain uses.
3680       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3681 
3682       // If the root node defines glue, we need to update it to the glue result.
3683       // TODO: This never happens in our tests and I think it can be removed /
3684       // replaced with an assert, but if we do it this the way the change is
3685       // NFC.
3686       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3687               MVT::Glue &&
3688           InputGlue.getNode())
3689         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3690                     InputGlue);
3691 
3692       assert(NodeToMatch->use_empty() &&
3693              "Didn't replace all uses of the node?");
3694       CurDAG->RemoveDeadNode(NodeToMatch);
3695 
3696       return;
3697     }
3698     }
3699 
3700     // If the code reached this point, then the match failed.  See if there is
3701     // another child to try in the current 'Scope', otherwise pop it until we
3702     // find a case to check.
3703     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3704                       << "\n");
3705     ++NumDAGIselRetries;
3706     while (true) {
3707       if (MatchScopes.empty()) {
3708         CannotYetSelect(NodeToMatch);
3709         return;
3710       }
3711 
3712       // Restore the interpreter state back to the point where the scope was
3713       // formed.
3714       MatchScope &LastScope = MatchScopes.back();
3715       RecordedNodes.resize(LastScope.NumRecordedNodes);
3716       NodeStack.clear();
3717       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3718       N = NodeStack.back();
3719 
3720       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3721         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3722       MatcherIndex = LastScope.FailIndex;
3723 
3724       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3725 
3726       InputChain = LastScope.InputChain;
3727       InputGlue = LastScope.InputGlue;
3728       if (!LastScope.HasChainNodesMatched)
3729         ChainNodesMatched.clear();
3730 
3731       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3732       // we have reached the end of this scope, otherwise we have another child
3733       // in the current scope to try.
3734       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3735       if (NumToSkip & 128)
3736         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3737 
3738       // If we have another child in this scope to match, update FailIndex and
3739       // try it.
3740       if (NumToSkip != 0) {
3741         LastScope.FailIndex = MatcherIndex+NumToSkip;
3742         break;
3743       }
3744 
3745       // End of this scope, pop it and try the next child in the containing
3746       // scope.
3747       MatchScopes.pop_back();
3748     }
3749   }
3750 }
3751 
3752 /// Return whether the node may raise an FP exception.
3753 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3754   // For machine opcodes, consult the MCID flag.
3755   if (N->isMachineOpcode()) {
3756     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3757     return MCID.mayRaiseFPException();
3758   }
3759 
3760   // For ISD opcodes, only StrictFP opcodes may raise an FP
3761   // exception.
3762   if (N->isTargetOpcode())
3763     return N->isTargetStrictFPOpcode();
3764   return N->isStrictFPOpcode();
3765 }
3766 
3767 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3768   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3769   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3770   if (!C)
3771     return false;
3772 
3773   // Detect when "or" is used to add an offset to a stack object.
3774   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3775     MachineFrameInfo &MFI = MF->getFrameInfo();
3776     Align A = MFI.getObjectAlign(FN->getIndex());
3777     int32_t Off = C->getSExtValue();
3778     // If the alleged offset fits in the zero bits guaranteed by
3779     // the alignment, then this or is really an add.
3780     return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3781   }
3782   return false;
3783 }
3784 
3785 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3786   std::string msg;
3787   raw_string_ostream Msg(msg);
3788   Msg << "Cannot select: ";
3789 
3790   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3791       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3792       N->getOpcode() != ISD::INTRINSIC_VOID) {
3793     N->printrFull(Msg, CurDAG);
3794     Msg << "\nIn function: " << MF->getName();
3795   } else {
3796     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3797     unsigned iid =
3798       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3799     if (iid < Intrinsic::num_intrinsics)
3800       Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
3801     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3802       Msg << "target intrinsic %" << TII->getName(iid);
3803     else
3804       Msg << "unknown intrinsic #" << iid;
3805   }
3806   report_fatal_error(Msg.str());
3807 }
3808 
3809 char SelectionDAGISel::ID = 0;
3810