1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GCMetadata.h"
27 #include "llvm/CodeGen/GCStrategy.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34 #include "llvm/CodeGen/SchedulerRegistry.h"
35 #include "llvm/CodeGen/SelectionDAGISel.h"
36 #include "llvm/CodeGen/StackProtector.h"
37 #include "llvm/CodeGen/WinEHFuncInfo.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfo.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Timer.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetInstrInfo.h"
54 #include "llvm/Target/TargetIntrinsicInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
58 #include "llvm/Target/TargetRegisterInfo.h"
59 #include "llvm/Target/TargetSubtargetInfo.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include <algorithm>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "isel"
66 
67 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
68 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
69 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
70 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
71 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
72 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
73 STATISTIC(NumFastIselFailLowerArguments,
74           "Number of entry blocks where fast isel failed to lower arguments");
75 
76 #ifndef NDEBUG
77 static cl::opt<bool>
78 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
79           cl::desc("Enable extra verbose messages in the \"fast\" "
80                    "instruction selector"));
81 
82   // Terminators
83 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
84 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
85 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
86 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
87 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
88 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
89 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
90 
91   // Standard binary operators...
92 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
93 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
94 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
95 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
96 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
97 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
98 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
99 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
100 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
101 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
102 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
103 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
104 
105   // Logical operators...
106 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
107 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
108 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
109 
110   // Memory instructions...
111 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
112 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
113 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
114 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
115 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
116 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
117 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
118 
119   // Convert instructions...
120 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
121 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
122 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
123 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
124 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
125 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
126 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
127 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
128 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
129 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
130 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
131 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
132 
133   // Other instructions...
134 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
135 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
136 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
137 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
138 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
139 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
140 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
141 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
142 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
143 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
144 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
145 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
146 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
147 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
148 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
149 
150 // Intrinsic instructions...
151 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call");
152 STATISTIC(NumFastIselFailSAddWithOverflow,
153           "Fast isel fails on sadd.with.overflow");
154 STATISTIC(NumFastIselFailUAddWithOverflow,
155           "Fast isel fails on uadd.with.overflow");
156 STATISTIC(NumFastIselFailSSubWithOverflow,
157           "Fast isel fails on ssub.with.overflow");
158 STATISTIC(NumFastIselFailUSubWithOverflow,
159           "Fast isel fails on usub.with.overflow");
160 STATISTIC(NumFastIselFailSMulWithOverflow,
161           "Fast isel fails on smul.with.overflow");
162 STATISTIC(NumFastIselFailUMulWithOverflow,
163           "Fast isel fails on umul.with.overflow");
164 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress");
165 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call");
166 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call");
167 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call");
168 #endif
169 
170 static cl::opt<bool>
171 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
172           cl::desc("Enable verbose messages in the \"fast\" "
173                    "instruction selector"));
174 static cl::opt<int> EnableFastISelAbort(
175     "fast-isel-abort", cl::Hidden,
176     cl::desc("Enable abort calls when \"fast\" instruction selection "
177              "fails to lower an instruction: 0 disable the abort, 1 will "
178              "abort but for args, calls and terminators, 2 will also "
179              "abort for argument lowering, and 3 will never fallback "
180              "to SelectionDAG."));
181 
182 static cl::opt<bool>
183 UseMBPI("use-mbpi",
184         cl::desc("use Machine Branch Probability Info"),
185         cl::init(true), cl::Hidden);
186 
187 #ifndef NDEBUG
188 static cl::opt<std::string>
189 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
190                         cl::desc("Only display the basic block whose name "
191                                  "matches this for all view-*-dags options"));
192 static cl::opt<bool>
193 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
194           cl::desc("Pop up a window to show dags before the first "
195                    "dag combine pass"));
196 static cl::opt<bool>
197 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
198           cl::desc("Pop up a window to show dags before legalize types"));
199 static cl::opt<bool>
200 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
201           cl::desc("Pop up a window to show dags before legalize"));
202 static cl::opt<bool>
203 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
204           cl::desc("Pop up a window to show dags before the second "
205                    "dag combine pass"));
206 static cl::opt<bool>
207 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
208           cl::desc("Pop up a window to show dags before the post legalize types"
209                    " dag combine pass"));
210 static cl::opt<bool>
211 ViewISelDAGs("view-isel-dags", cl::Hidden,
212           cl::desc("Pop up a window to show isel dags as they are selected"));
213 static cl::opt<bool>
214 ViewSchedDAGs("view-sched-dags", cl::Hidden,
215           cl::desc("Pop up a window to show sched dags as they are processed"));
216 static cl::opt<bool>
217 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
218       cl::desc("Pop up a window to show SUnit dags after they are processed"));
219 #else
220 static const bool ViewDAGCombine1 = false,
221                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
222                   ViewDAGCombine2 = false,
223                   ViewDAGCombineLT = false,
224                   ViewISelDAGs = false, ViewSchedDAGs = false,
225                   ViewSUnitDAGs = false;
226 #endif
227 
228 //===---------------------------------------------------------------------===//
229 ///
230 /// RegisterScheduler class - Track the registration of instruction schedulers.
231 ///
232 //===---------------------------------------------------------------------===//
233 MachinePassRegistry RegisterScheduler::Registry;
234 
235 //===---------------------------------------------------------------------===//
236 ///
237 /// ISHeuristic command line option for instruction schedulers.
238 ///
239 //===---------------------------------------------------------------------===//
240 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
241                RegisterPassParser<RegisterScheduler> >
242 ISHeuristic("pre-RA-sched",
243             cl::init(&createDefaultScheduler), cl::Hidden,
244             cl::desc("Instruction schedulers available (before register"
245                      " allocation):"));
246 
247 static RegisterScheduler
248 defaultListDAGScheduler("default", "Best scheduler for the target",
249                         createDefaultScheduler);
250 
251 namespace llvm {
252   //===--------------------------------------------------------------------===//
253   /// \brief This class is used by SelectionDAGISel to temporarily override
254   /// the optimization level on a per-function basis.
255   class OptLevelChanger {
256     SelectionDAGISel &IS;
257     CodeGenOpt::Level SavedOptLevel;
258     bool SavedFastISel;
259 
260   public:
261     OptLevelChanger(SelectionDAGISel &ISel,
262                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
263       SavedOptLevel = IS.OptLevel;
264       if (NewOptLevel == SavedOptLevel)
265         return;
266       IS.OptLevel = NewOptLevel;
267       IS.TM.setOptLevel(NewOptLevel);
268       DEBUG(dbgs() << "\nChanging optimization level for Function "
269             << IS.MF->getFunction()->getName() << "\n");
270       DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
271             << " ; After: -O" << NewOptLevel << "\n");
272       SavedFastISel = IS.TM.Options.EnableFastISel;
273       if (NewOptLevel == CodeGenOpt::None) {
274         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
275         DEBUG(dbgs() << "\tFastISel is "
276               << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
277               << "\n");
278       }
279     }
280 
281     ~OptLevelChanger() {
282       if (IS.OptLevel == SavedOptLevel)
283         return;
284       DEBUG(dbgs() << "\nRestoring optimization level for Function "
285             << IS.MF->getFunction()->getName() << "\n");
286       DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
287             << " ; After: -O" << SavedOptLevel << "\n");
288       IS.OptLevel = SavedOptLevel;
289       IS.TM.setOptLevel(SavedOptLevel);
290       IS.TM.setFastISel(SavedFastISel);
291     }
292   };
293 
294   //===--------------------------------------------------------------------===//
295   /// createDefaultScheduler - This creates an instruction scheduler appropriate
296   /// for the target.
297   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
298                                              CodeGenOpt::Level OptLevel) {
299     const TargetLowering *TLI = IS->TLI;
300     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
301 
302     // Try first to see if the Target has its own way of selecting a scheduler
303     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
304       return SchedulerCtor(IS, OptLevel);
305     }
306 
307     if (OptLevel == CodeGenOpt::None ||
308         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
309         TLI->getSchedulingPreference() == Sched::Source)
310       return createSourceListDAGScheduler(IS, OptLevel);
311     if (TLI->getSchedulingPreference() == Sched::RegPressure)
312       return createBURRListDAGScheduler(IS, OptLevel);
313     if (TLI->getSchedulingPreference() == Sched::Hybrid)
314       return createHybridListDAGScheduler(IS, OptLevel);
315     if (TLI->getSchedulingPreference() == Sched::VLIW)
316       return createVLIWDAGScheduler(IS, OptLevel);
317     assert(TLI->getSchedulingPreference() == Sched::ILP &&
318            "Unknown sched type!");
319     return createILPListDAGScheduler(IS, OptLevel);
320   }
321 } // end namespace llvm
322 
323 // EmitInstrWithCustomInserter - This method should be implemented by targets
324 // that mark instructions with the 'usesCustomInserter' flag.  These
325 // instructions are special in various ways, which require special support to
326 // insert.  The specified MachineInstr is created but not inserted into any
327 // basic blocks, and this method is called to expand it into a sequence of
328 // instructions, potentially also creating new basic blocks and control flow.
329 // When new basic blocks are inserted and the edges from MBB to its successors
330 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
331 // DenseMap.
332 MachineBasicBlock *
333 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
334                                             MachineBasicBlock *MBB) const {
335 #ifndef NDEBUG
336   dbgs() << "If a target marks an instruction with "
337           "'usesCustomInserter', it must implement "
338           "TargetLowering::EmitInstrWithCustomInserter!";
339 #endif
340   llvm_unreachable(nullptr);
341 }
342 
343 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
344                                                    SDNode *Node) const {
345   assert(!MI.hasPostISelHook() &&
346          "If a target marks an instruction with 'hasPostISelHook', "
347          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
348 }
349 
350 //===----------------------------------------------------------------------===//
351 // SelectionDAGISel code
352 //===----------------------------------------------------------------------===//
353 
354 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
355                                    CodeGenOpt::Level OL) :
356   MachineFunctionPass(ID), TM(tm),
357   FuncInfo(new FunctionLoweringInfo()),
358   CurDAG(new SelectionDAG(tm, OL)),
359   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
360   GFI(),
361   OptLevel(OL),
362   DAGSize(0) {
363     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
364     initializeBranchProbabilityInfoWrapperPassPass(
365         *PassRegistry::getPassRegistry());
366     initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
367     initializeTargetLibraryInfoWrapperPassPass(
368         *PassRegistry::getPassRegistry());
369   }
370 
371 SelectionDAGISel::~SelectionDAGISel() {
372   delete SDB;
373   delete CurDAG;
374   delete FuncInfo;
375 }
376 
377 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
378   AU.addRequired<AAResultsWrapperPass>();
379   AU.addRequired<GCModuleInfo>();
380   AU.addRequired<StackProtector>();
381   AU.addPreserved<StackProtector>();
382   AU.addPreserved<GCModuleInfo>();
383   AU.addRequired<TargetLibraryInfoWrapperPass>();
384   if (UseMBPI && OptLevel != CodeGenOpt::None)
385     AU.addRequired<BranchProbabilityInfoWrapperPass>();
386   MachineFunctionPass::getAnalysisUsage(AU);
387 }
388 
389 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
390 /// may trap on it.  In this case we have to split the edge so that the path
391 /// through the predecessor block that doesn't go to the phi block doesn't
392 /// execute the possibly trapping instruction.
393 ///
394 /// This is required for correctness, so it must be done at -O0.
395 ///
396 static void SplitCriticalSideEffectEdges(Function &Fn) {
397   // Loop for blocks with phi nodes.
398   for (BasicBlock &BB : Fn) {
399     PHINode *PN = dyn_cast<PHINode>(BB.begin());
400     if (!PN) continue;
401 
402   ReprocessBlock:
403     // For each block with a PHI node, check to see if any of the input values
404     // are potentially trapping constant expressions.  Constant expressions are
405     // the only potentially trapping value that can occur as the argument to a
406     // PHI.
407     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
408       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
409         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
410         if (!CE || !CE->canTrap()) continue;
411 
412         // The only case we have to worry about is when the edge is critical.
413         // Since this block has a PHI Node, we assume it has multiple input
414         // edges: check to see if the pred has multiple successors.
415         BasicBlock *Pred = PN->getIncomingBlock(i);
416         if (Pred->getTerminator()->getNumSuccessors() == 1)
417           continue;
418 
419         // Okay, we have to split this edge.
420         SplitCriticalEdge(
421             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
422             CriticalEdgeSplittingOptions().setMergeIdenticalEdges());
423         goto ReprocessBlock;
424       }
425   }
426 }
427 
428 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
429   // If we already selected that function, we do not need to run SDISel.
430   if (mf.getProperties().hasProperty(
431           MachineFunctionProperties::Property::Selected))
432     return false;
433   // Do some sanity-checking on the command-line options.
434   assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
435          "-fast-isel-verbose requires -fast-isel");
436   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
437          "-fast-isel-abort > 0 requires -fast-isel");
438 
439   const Function &Fn = *mf.getFunction();
440   MF = &mf;
441 
442   // Reset the target options before resetting the optimization
443   // level below.
444   // FIXME: This is a horrible hack and should be processed via
445   // codegen looking at the optimization level explicitly when
446   // it wants to look at it.
447   TM.resetTargetOptions(Fn);
448   // Reset OptLevel to None for optnone functions.
449   CodeGenOpt::Level NewOptLevel = OptLevel;
450   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
451     NewOptLevel = CodeGenOpt::None;
452   OptLevelChanger OLC(*this, NewOptLevel);
453 
454   TII = MF->getSubtarget().getInstrInfo();
455   TLI = MF->getSubtarget().getTargetLowering();
456   RegInfo = &MF->getRegInfo();
457   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
458   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
459   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
460 
461   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
462 
463   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn));
464 
465   CurDAG->init(*MF);
466   FuncInfo->set(Fn, *MF, CurDAG);
467 
468   if (UseMBPI && OptLevel != CodeGenOpt::None)
469     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
470   else
471     FuncInfo->BPI = nullptr;
472 
473   SDB->init(GFI, *AA, LibInfo);
474 
475   MF->setHasInlineAsm(false);
476 
477   FuncInfo->SplitCSR = false;
478 
479   // We split CSR if the target supports it for the given function
480   // and the function has only return exits.
481   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
482     FuncInfo->SplitCSR = true;
483 
484     // Collect all the return blocks.
485     for (const BasicBlock &BB : Fn) {
486       if (!succ_empty(&BB))
487         continue;
488 
489       const TerminatorInst *Term = BB.getTerminator();
490       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
491         continue;
492 
493       // Bail out if the exit block is not Return nor Unreachable.
494       FuncInfo->SplitCSR = false;
495       break;
496     }
497   }
498 
499   MachineBasicBlock *EntryMBB = &MF->front();
500   if (FuncInfo->SplitCSR)
501     // This performs initialization so lowering for SplitCSR will be correct.
502     TLI->initializeSplitCSR(EntryMBB);
503 
504   SelectAllBasicBlocks(Fn);
505 
506   // If the first basic block in the function has live ins that need to be
507   // copied into vregs, emit the copies into the top of the block before
508   // emitting the code for the block.
509   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
510   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
511 
512   // Insert copies in the entry block and the return blocks.
513   if (FuncInfo->SplitCSR) {
514     SmallVector<MachineBasicBlock*, 4> Returns;
515     // Collect all the return blocks.
516     for (MachineBasicBlock &MBB : mf) {
517       if (!MBB.succ_empty())
518         continue;
519 
520       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
521       if (Term != MBB.end() && Term->isReturn()) {
522         Returns.push_back(&MBB);
523         continue;
524       }
525     }
526     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
527   }
528 
529   DenseMap<unsigned, unsigned> LiveInMap;
530   if (!FuncInfo->ArgDbgValues.empty())
531     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
532            E = RegInfo->livein_end(); LI != E; ++LI)
533       if (LI->second)
534         LiveInMap.insert(std::make_pair(LI->first, LI->second));
535 
536   // Insert DBG_VALUE instructions for function arguments to the entry block.
537   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
538     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
539     bool hasFI = MI->getOperand(0).isFI();
540     unsigned Reg =
541         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
542     if (TargetRegisterInfo::isPhysicalRegister(Reg))
543       EntryMBB->insert(EntryMBB->begin(), MI);
544     else {
545       MachineInstr *Def = RegInfo->getVRegDef(Reg);
546       if (Def) {
547         MachineBasicBlock::iterator InsertPos = Def;
548         // FIXME: VR def may not be in entry block.
549         Def->getParent()->insert(std::next(InsertPos), MI);
550       } else
551         DEBUG(dbgs() << "Dropping debug info for dead vreg"
552               << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
553     }
554 
555     // If Reg is live-in then update debug info to track its copy in a vreg.
556     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
557     if (LDI != LiveInMap.end()) {
558       assert(!hasFI && "There's no handling of frame pointer updating here yet "
559                        "- add if needed");
560       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
561       MachineBasicBlock::iterator InsertPos = Def;
562       const MDNode *Variable = MI->getDebugVariable();
563       const MDNode *Expr = MI->getDebugExpression();
564       DebugLoc DL = MI->getDebugLoc();
565       bool IsIndirect = MI->isIndirectDebugValue();
566       unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
567       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
568              "Expected inlined-at fields to agree");
569       // Def is never a terminator here, so it is ok to increment InsertPos.
570       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
571               IsIndirect, LDI->second, Offset, Variable, Expr);
572 
573       // If this vreg is directly copied into an exported register then
574       // that COPY instructions also need DBG_VALUE, if it is the only
575       // user of LDI->second.
576       MachineInstr *CopyUseMI = nullptr;
577       for (MachineRegisterInfo::use_instr_iterator
578            UI = RegInfo->use_instr_begin(LDI->second),
579            E = RegInfo->use_instr_end(); UI != E; ) {
580         MachineInstr *UseMI = &*(UI++);
581         if (UseMI->isDebugValue()) continue;
582         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
583           CopyUseMI = UseMI; continue;
584         }
585         // Otherwise this is another use or second copy use.
586         CopyUseMI = nullptr; break;
587       }
588       if (CopyUseMI) {
589         // Use MI's debug location, which describes where Variable was
590         // declared, rather than whatever is attached to CopyUseMI.
591         MachineInstr *NewMI =
592             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
593                     CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
594         MachineBasicBlock::iterator Pos = CopyUseMI;
595         EntryMBB->insertAfter(Pos, NewMI);
596       }
597     }
598   }
599 
600   // Determine if there are any calls in this machine function.
601   MachineFrameInfo &MFI = MF->getFrameInfo();
602   for (const auto &MBB : *MF) {
603     if (MFI.hasCalls() && MF->hasInlineAsm())
604       break;
605 
606     for (const auto &MI : MBB) {
607       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
608       if ((MCID.isCall() && !MCID.isReturn()) ||
609           MI.isStackAligningInlineAsm()) {
610         MFI.setHasCalls(true);
611       }
612       if (MI.isInlineAsm()) {
613         MF->setHasInlineAsm(true);
614       }
615     }
616   }
617 
618   // Determine if there is a call to setjmp in the machine function.
619   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
620 
621   // Replace forward-declared registers with the registers containing
622   // the desired value.
623   MachineRegisterInfo &MRI = MF->getRegInfo();
624   for (DenseMap<unsigned, unsigned>::iterator
625        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
626        I != E; ++I) {
627     unsigned From = I->first;
628     unsigned To = I->second;
629     // If To is also scheduled to be replaced, find what its ultimate
630     // replacement is.
631     for (;;) {
632       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
633       if (J == E) break;
634       To = J->second;
635     }
636     // Make sure the new register has a sufficiently constrained register class.
637     if (TargetRegisterInfo::isVirtualRegister(From) &&
638         TargetRegisterInfo::isVirtualRegister(To))
639       MRI.constrainRegClass(To, MRI.getRegClass(From));
640     // Replace it.
641 
642 
643     // Replacing one register with another won't touch the kill flags.
644     // We need to conservatively clear the kill flags as a kill on the old
645     // register might dominate existing uses of the new register.
646     if (!MRI.use_empty(To))
647       MRI.clearKillFlags(From);
648     MRI.replaceRegWith(From, To);
649   }
650 
651   if (TLI->hasCopyImplyingStackAdjustment(MF))
652     MFI.setHasCopyImplyingStackAdjustment(true);
653 
654   // Freeze the set of reserved registers now that MachineFrameInfo has been
655   // set up. All the information required by getReservedRegs() should be
656   // available now.
657   MRI.freezeReservedRegs(*MF);
658 
659   // Release function-specific state. SDB and CurDAG are already cleared
660   // at this point.
661   FuncInfo->clear();
662 
663   DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
664   DEBUG(MF->print(dbgs()));
665 
666   return true;
667 }
668 
669 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
670                                         BasicBlock::const_iterator End,
671                                         bool &HadTailCall) {
672   // Lower the instructions. If a call is emitted as a tail call, cease emitting
673   // nodes for this block.
674   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
675     SDB->visit(*I);
676 
677   // Make sure the root of the DAG is up-to-date.
678   CurDAG->setRoot(SDB->getControlRoot());
679   HadTailCall = SDB->HasTailCall;
680   SDB->clear();
681 
682   // Final step, emit the lowered DAG as machine code.
683   CodeGenAndEmitDAG();
684 }
685 
686 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
687   SmallPtrSet<SDNode*, 16> VisitedNodes;
688   SmallVector<SDNode*, 128> Worklist;
689 
690   Worklist.push_back(CurDAG->getRoot().getNode());
691 
692   APInt KnownZero;
693   APInt KnownOne;
694 
695   do {
696     SDNode *N = Worklist.pop_back_val();
697 
698     // If we've already seen this node, ignore it.
699     if (!VisitedNodes.insert(N).second)
700       continue;
701 
702     // Otherwise, add all chain operands to the worklist.
703     for (const SDValue &Op : N->op_values())
704       if (Op.getValueType() == MVT::Other)
705         Worklist.push_back(Op.getNode());
706 
707     // If this is a CopyToReg with a vreg dest, process it.
708     if (N->getOpcode() != ISD::CopyToReg)
709       continue;
710 
711     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
712     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
713       continue;
714 
715     // Ignore non-scalar or non-integer values.
716     SDValue Src = N->getOperand(2);
717     EVT SrcVT = Src.getValueType();
718     if (!SrcVT.isInteger() || SrcVT.isVector())
719       continue;
720 
721     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
722     CurDAG->computeKnownBits(Src, KnownZero, KnownOne);
723     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
724   } while (!Worklist.empty());
725 }
726 
727 void SelectionDAGISel::CodeGenAndEmitDAG() {
728   std::string GroupName;
729   if (TimePassesIsEnabled)
730     GroupName = "Instruction Selection and Scheduling";
731   std::string BlockName;
732   int BlockNumber = -1;
733   (void)BlockNumber;
734   bool MatchFilterBB = false; (void)MatchFilterBB;
735 #ifndef NDEBUG
736   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
737                    FilterDAGBasicBlockName ==
738                        FuncInfo->MBB->getBasicBlock()->getName().str());
739 #endif
740 #ifdef NDEBUG
741   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
742       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
743       ViewSUnitDAGs)
744 #endif
745   {
746     BlockNumber = FuncInfo->MBB->getNumber();
747     BlockName =
748         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
749   }
750   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
751         << " '" << BlockName << "'\n"; CurDAG->dump());
752 
753   if (ViewDAGCombine1 && MatchFilterBB)
754     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
755 
756   // Run the DAG combiner in pre-legalize mode.
757   {
758     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
759     CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
760   }
761 
762   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
763         << " '" << BlockName << "'\n"; CurDAG->dump());
764 
765   // Second step, hack on the DAG until it only uses operations and types that
766   // the target supports.
767   if (ViewLegalizeTypesDAGs && MatchFilterBB)
768     CurDAG->viewGraph("legalize-types input for " + BlockName);
769 
770   bool Changed;
771   {
772     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
773     Changed = CurDAG->LegalizeTypes();
774   }
775 
776   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
777         << " '" << BlockName << "'\n"; CurDAG->dump());
778 
779   CurDAG->NewNodesMustHaveLegalTypes = true;
780 
781   if (Changed) {
782     if (ViewDAGCombineLT && MatchFilterBB)
783       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
784 
785     // Run the DAG combiner in post-type-legalize mode.
786     {
787       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
788                          TimePassesIsEnabled);
789       CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
790     }
791 
792     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
793           << " '" << BlockName << "'\n"; CurDAG->dump());
794 
795   }
796 
797   {
798     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
799     Changed = CurDAG->LegalizeVectors();
800   }
801 
802   if (Changed) {
803     {
804       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
805       CurDAG->LegalizeTypes();
806     }
807 
808     if (ViewDAGCombineLT && MatchFilterBB)
809       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
810 
811     // Run the DAG combiner in post-type-legalize mode.
812     {
813       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
814                          TimePassesIsEnabled);
815       CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
816     }
817 
818     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
819           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
820   }
821 
822   if (ViewLegalizeDAGs && MatchFilterBB)
823     CurDAG->viewGraph("legalize input for " + BlockName);
824 
825   {
826     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
827     CurDAG->Legalize();
828   }
829 
830   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
831         << " '" << BlockName << "'\n"; CurDAG->dump());
832 
833   if (ViewDAGCombine2 && MatchFilterBB)
834     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
835 
836   // Run the DAG combiner in post-legalize mode.
837   {
838     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
839     CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
840   }
841 
842   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
843         << " '" << BlockName << "'\n"; CurDAG->dump());
844 
845   if (OptLevel != CodeGenOpt::None)
846     ComputeLiveOutVRegInfo();
847 
848   if (ViewISelDAGs && MatchFilterBB)
849     CurDAG->viewGraph("isel input for " + BlockName);
850 
851   // Third, instruction select all of the operations to machine code, adding the
852   // code to the MachineBasicBlock.
853   {
854     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
855     DoInstructionSelection();
856   }
857 
858   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
859         << " '" << BlockName << "'\n"; CurDAG->dump());
860 
861   if (ViewSchedDAGs && MatchFilterBB)
862     CurDAG->viewGraph("scheduler input for " + BlockName);
863 
864   // Schedule machine code.
865   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
866   {
867     NamedRegionTimer T("Instruction Scheduling", GroupName,
868                        TimePassesIsEnabled);
869     Scheduler->Run(CurDAG, FuncInfo->MBB);
870   }
871 
872   if (ViewSUnitDAGs && MatchFilterBB)
873     Scheduler->viewGraph();
874 
875   // Emit machine code to BB.  This can change 'BB' to the last block being
876   // inserted into.
877   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
878   {
879     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
880 
881     // FuncInfo->InsertPt is passed by reference and set to the end of the
882     // scheduled instructions.
883     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
884   }
885 
886   // If the block was split, make sure we update any references that are used to
887   // update PHI nodes later on.
888   if (FirstMBB != LastMBB)
889     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
890 
891   // Free the scheduler state.
892   {
893     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
894                        TimePassesIsEnabled);
895     delete Scheduler;
896   }
897 
898   // Free the SelectionDAG state, now that we're finished with it.
899   CurDAG->clear();
900 }
901 
902 namespace {
903 /// ISelUpdater - helper class to handle updates of the instruction selection
904 /// graph.
905 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
906   SelectionDAG::allnodes_iterator &ISelPosition;
907 public:
908   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
909     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
910 
911   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
912   /// deleted is the current ISelPosition node, update ISelPosition.
913   ///
914   void NodeDeleted(SDNode *N, SDNode *E) override {
915     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
916       ++ISelPosition;
917   }
918 };
919 } // end anonymous namespace
920 
921 void SelectionDAGISel::DoInstructionSelection() {
922   DEBUG(dbgs() << "===== Instruction selection begins: BB#"
923         << FuncInfo->MBB->getNumber()
924         << " '" << FuncInfo->MBB->getName() << "'\n");
925 
926   PreprocessISelDAG();
927 
928   // Select target instructions for the DAG.
929   {
930     // Number all nodes with a topological order and set DAGSize.
931     DAGSize = CurDAG->AssignTopologicalOrder();
932 
933     // Create a dummy node (which is not added to allnodes), that adds
934     // a reference to the root node, preventing it from being deleted,
935     // and tracking any changes of the root.
936     HandleSDNode Dummy(CurDAG->getRoot());
937     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
938     ++ISelPosition;
939 
940     // Make sure that ISelPosition gets properly updated when nodes are deleted
941     // in calls made from this function.
942     ISelUpdater ISU(*CurDAG, ISelPosition);
943 
944     // The AllNodes list is now topological-sorted. Visit the
945     // nodes by starting at the end of the list (the root of the
946     // graph) and preceding back toward the beginning (the entry
947     // node).
948     while (ISelPosition != CurDAG->allnodes_begin()) {
949       SDNode *Node = &*--ISelPosition;
950       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
951       // but there are currently some corner cases that it misses. Also, this
952       // makes it theoretically possible to disable the DAGCombiner.
953       if (Node->use_empty())
954         continue;
955 
956       Select(Node);
957     }
958 
959     CurDAG->setRoot(Dummy.getValue());
960   }
961 
962   DEBUG(dbgs() << "===== Instruction selection ends:\n");
963 
964   PostprocessISelDAG();
965 }
966 
967 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
968   for (const User *U : CPI->users()) {
969     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
970       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
971       if (IID == Intrinsic::eh_exceptionpointer ||
972           IID == Intrinsic::eh_exceptioncode)
973         return true;
974     }
975   }
976   return false;
977 }
978 
979 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
980 /// do other setup for EH landing-pad blocks.
981 bool SelectionDAGISel::PrepareEHLandingPad() {
982   MachineBasicBlock *MBB = FuncInfo->MBB;
983   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
984   const BasicBlock *LLVMBB = MBB->getBasicBlock();
985   const TargetRegisterClass *PtrRC =
986       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
987 
988   // Catchpads have one live-in register, which typically holds the exception
989   // pointer or code.
990   if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
991     if (hasExceptionPointerOrCodeUser(CPI)) {
992       // Get or create the virtual register to hold the pointer or code.  Mark
993       // the live in physreg and copy into the vreg.
994       MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
995       assert(EHPhysReg && "target lacks exception pointer register");
996       MBB->addLiveIn(EHPhysReg);
997       unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
998       BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
999               TII->get(TargetOpcode::COPY), VReg)
1000           .addReg(EHPhysReg, RegState::Kill);
1001     }
1002     return true;
1003   }
1004 
1005   if (!LLVMBB->isLandingPad())
1006     return true;
1007 
1008   // Add a label to mark the beginning of the landing pad.  Deletion of the
1009   // landing pad can thus be detected via the MachineModuleInfo.
1010   MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
1011 
1012   // Assign the call site to the landing pad's begin label.
1013   MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1014 
1015   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1016   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1017     .addSym(Label);
1018 
1019   // Mark exception register as live in.
1020   if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1021     FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1022 
1023   // Mark exception selector register as live in.
1024   if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1025     FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1026 
1027   return true;
1028 }
1029 
1030 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1031 /// side-effect free and is either dead or folded into a generated instruction.
1032 /// Return false if it needs to be emitted.
1033 static bool isFoldedOrDeadInstruction(const Instruction *I,
1034                                       FunctionLoweringInfo *FuncInfo) {
1035   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1036          !isa<TerminatorInst>(I) &&    // Terminators aren't folded.
1037          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
1038          !I->isEHPad() &&              // EH pad instructions aren't folded.
1039          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1040 }
1041 
1042 #ifndef NDEBUG
1043 // Collect per Instruction statistics for fast-isel misses.  Only those
1044 // instructions that cause the bail are accounted for.  It does not account for
1045 // instructions higher in the block.  Thus, summing the per instructions stats
1046 // will not add up to what is reported by NumFastIselFailures.
1047 static void collectFailStats(const Instruction *I) {
1048   switch (I->getOpcode()) {
1049   default: assert (0 && "<Invalid operator> ");
1050 
1051   // Terminators
1052   case Instruction::Ret:         NumFastIselFailRet++; return;
1053   case Instruction::Br:          NumFastIselFailBr++; return;
1054   case Instruction::Switch:      NumFastIselFailSwitch++; return;
1055   case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
1056   case Instruction::Invoke:      NumFastIselFailInvoke++; return;
1057   case Instruction::Resume:      NumFastIselFailResume++; return;
1058   case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
1059 
1060   // Standard binary operators...
1061   case Instruction::Add:  NumFastIselFailAdd++; return;
1062   case Instruction::FAdd: NumFastIselFailFAdd++; return;
1063   case Instruction::Sub:  NumFastIselFailSub++; return;
1064   case Instruction::FSub: NumFastIselFailFSub++; return;
1065   case Instruction::Mul:  NumFastIselFailMul++; return;
1066   case Instruction::FMul: NumFastIselFailFMul++; return;
1067   case Instruction::UDiv: NumFastIselFailUDiv++; return;
1068   case Instruction::SDiv: NumFastIselFailSDiv++; return;
1069   case Instruction::FDiv: NumFastIselFailFDiv++; return;
1070   case Instruction::URem: NumFastIselFailURem++; return;
1071   case Instruction::SRem: NumFastIselFailSRem++; return;
1072   case Instruction::FRem: NumFastIselFailFRem++; return;
1073 
1074   // Logical operators...
1075   case Instruction::And: NumFastIselFailAnd++; return;
1076   case Instruction::Or:  NumFastIselFailOr++; return;
1077   case Instruction::Xor: NumFastIselFailXor++; return;
1078 
1079   // Memory instructions...
1080   case Instruction::Alloca:        NumFastIselFailAlloca++; return;
1081   case Instruction::Load:          NumFastIselFailLoad++; return;
1082   case Instruction::Store:         NumFastIselFailStore++; return;
1083   case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
1084   case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
1085   case Instruction::Fence:         NumFastIselFailFence++; return;
1086   case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
1087 
1088   // Convert instructions...
1089   case Instruction::Trunc:    NumFastIselFailTrunc++; return;
1090   case Instruction::ZExt:     NumFastIselFailZExt++; return;
1091   case Instruction::SExt:     NumFastIselFailSExt++; return;
1092   case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
1093   case Instruction::FPExt:    NumFastIselFailFPExt++; return;
1094   case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
1095   case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
1096   case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
1097   case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
1098   case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
1099   case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
1100   case Instruction::BitCast:  NumFastIselFailBitCast++; return;
1101 
1102   // Other instructions...
1103   case Instruction::ICmp:           NumFastIselFailICmp++; return;
1104   case Instruction::FCmp:           NumFastIselFailFCmp++; return;
1105   case Instruction::PHI:            NumFastIselFailPHI++; return;
1106   case Instruction::Select:         NumFastIselFailSelect++; return;
1107   case Instruction::Call: {
1108     if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) {
1109       switch (Intrinsic->getIntrinsicID()) {
1110       default:
1111         NumFastIselFailIntrinsicCall++; return;
1112       case Intrinsic::sadd_with_overflow:
1113         NumFastIselFailSAddWithOverflow++; return;
1114       case Intrinsic::uadd_with_overflow:
1115         NumFastIselFailUAddWithOverflow++; return;
1116       case Intrinsic::ssub_with_overflow:
1117         NumFastIselFailSSubWithOverflow++; return;
1118       case Intrinsic::usub_with_overflow:
1119         NumFastIselFailUSubWithOverflow++; return;
1120       case Intrinsic::smul_with_overflow:
1121         NumFastIselFailSMulWithOverflow++; return;
1122       case Intrinsic::umul_with_overflow:
1123         NumFastIselFailUMulWithOverflow++; return;
1124       case Intrinsic::frameaddress:
1125         NumFastIselFailFrameaddress++; return;
1126       case Intrinsic::sqrt:
1127           NumFastIselFailSqrt++; return;
1128       case Intrinsic::experimental_stackmap:
1129         NumFastIselFailStackMap++; return;
1130       case Intrinsic::experimental_patchpoint_void: // fall-through
1131       case Intrinsic::experimental_patchpoint_i64:
1132         NumFastIselFailPatchPoint++; return;
1133       }
1134     }
1135     NumFastIselFailCall++;
1136     return;
1137   }
1138   case Instruction::Shl:            NumFastIselFailShl++; return;
1139   case Instruction::LShr:           NumFastIselFailLShr++; return;
1140   case Instruction::AShr:           NumFastIselFailAShr++; return;
1141   case Instruction::VAArg:          NumFastIselFailVAArg++; return;
1142   case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
1143   case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
1144   case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
1145   case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
1146   case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
1147   case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
1148   }
1149 }
1150 #endif // NDEBUG
1151 
1152 /// Set up SwiftErrorVals by going through the function. If the function has
1153 /// swifterror argument, it will be the first entry.
1154 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
1155                                 FunctionLoweringInfo *FuncInfo) {
1156   if (!TLI->supportSwiftError())
1157     return;
1158 
1159   FuncInfo->SwiftErrorVals.clear();
1160   FuncInfo->SwiftErrorVRegDefMap.clear();
1161   FuncInfo->SwiftErrorVRegUpwardsUse.clear();
1162   FuncInfo->SwiftErrorArg = nullptr;
1163 
1164   // Check if function has a swifterror argument.
1165   bool HaveSeenSwiftErrorArg = false;
1166   for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
1167        AI != AE; ++AI)
1168     if (AI->hasSwiftErrorAttr()) {
1169       assert(!HaveSeenSwiftErrorArg &&
1170              "Must have only one swifterror parameter");
1171       (void)HaveSeenSwiftErrorArg; // silence warning.
1172       HaveSeenSwiftErrorArg = true;
1173       FuncInfo->SwiftErrorArg = &*AI;
1174       FuncInfo->SwiftErrorVals.push_back(&*AI);
1175     }
1176 
1177   for (const auto &LLVMBB : Fn)
1178     for (const auto &Inst : LLVMBB) {
1179       if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
1180         if (Alloca->isSwiftError())
1181           FuncInfo->SwiftErrorVals.push_back(Alloca);
1182     }
1183 }
1184 
1185 static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
1186                                                 const TargetLowering *TLI,
1187                                                 const TargetInstrInfo *TII,
1188                                                 const BasicBlock *LLVMBB,
1189                                                 SelectionDAGBuilder *SDB) {
1190   if (!TLI->supportSwiftError())
1191     return;
1192 
1193   // We only need to do this when we have swifterror parameter or swifterror
1194   // alloc.
1195   if (FuncInfo->SwiftErrorVals.empty())
1196     return;
1197 
1198   if (pred_begin(LLVMBB) == pred_end(LLVMBB)) {
1199     auto &DL = FuncInfo->MF->getDataLayout();
1200     auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1201     for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1202       // We will always generate a copy from the argument. It is always used at
1203       // least by the 'return' of the swifterror.
1204       if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
1205         continue;
1206       unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1207       // Assign Undef to Vreg. We construct MI directly to make sure it works
1208       // with FastISel.
1209       BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
1210               SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
1211               VReg);
1212       FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
1213     }
1214   }
1215 }
1216 
1217 /// Propagate swifterror values through the machine function CFG.
1218 static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
1219   auto *TLI = FuncInfo->TLI;
1220   if (!TLI->supportSwiftError())
1221     return;
1222 
1223   // We only need to do this when we have swifterror parameter or swifterror
1224   // alloc.
1225   if (FuncInfo->SwiftErrorVals.empty())
1226     return;
1227 
1228   // For each machine basic block in reverse post order.
1229   ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
1230   for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
1231            It = RPOT.begin(),
1232            E = RPOT.end();
1233        It != E; ++It) {
1234     MachineBasicBlock *MBB = *It;
1235 
1236     // For each swifterror value in the function.
1237     for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1238       auto Key = std::make_pair(MBB, SwiftErrorVal);
1239       auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1240       auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
1241       bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
1242       unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
1243       bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
1244       assert(!(UpwardsUse && !DownwardDef) &&
1245              "We can't have an upwards use but no downwards def");
1246 
1247       // If there is no upwards exposed use and an entry for the swifterror in
1248       // the def map for this value we don't need to do anything: We already
1249       // have a downward def for this basic block.
1250       if (!UpwardsUse && DownwardDef)
1251         continue;
1252 
1253       // Otherwise we either have an upwards exposed use vreg that we need to
1254       // materialize or need to forward the downward def from predecessors.
1255 
1256       // Check whether we have a single vreg def from all predecessors.
1257       // Otherwise we need a phi.
1258       SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
1259       SmallSet<const MachineBasicBlock*, 8> Visited;
1260       for (auto *Pred : MBB->predecessors()) {
1261         if (!Visited.insert(Pred).second)
1262           continue;
1263         VRegs.push_back(std::make_pair(
1264             Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
1265         if (Pred != MBB)
1266           continue;
1267         // We have a self-edge.
1268         // If there was no upwards use in this basic block there is now one: the
1269         // phi needs to use it self.
1270         if (!UpwardsUse) {
1271           UpwardsUse = true;
1272           UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1273           assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
1274           UUseVReg = UUseIt->second;
1275         }
1276       }
1277 
1278       // We need a phi node if we have more than one predecessor with different
1279       // downward defs.
1280       bool needPHI =
1281           VRegs.size() >= 1 &&
1282           std::find_if(
1283               VRegs.begin(), VRegs.end(),
1284               [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
1285                   -> bool { return V.second != VRegs[0].second; }) !=
1286               VRegs.end();
1287 
1288       // If there is no upwards exposed used and we don't need a phi just
1289       // forward the swifterror vreg from the predecessor(s).
1290       if (!UpwardsUse && !needPHI) {
1291         assert(!VRegs.empty() &&
1292                "No predecessors? The entry block should bail out earlier");
1293         // Just forward the swifterror vreg from the predecessor(s).
1294         FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
1295         continue;
1296       }
1297 
1298       auto DLoc = isa<Instruction>(SwiftErrorVal)
1299                       ? dyn_cast<Instruction>(SwiftErrorVal)->getDebugLoc()
1300                       : DebugLoc();
1301       const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
1302 
1303       // If we don't need a phi create a copy to the upward exposed vreg.
1304       if (!needPHI) {
1305         assert(UpwardsUse);
1306         unsigned DestReg = UUseVReg;
1307         BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
1308                 DestReg)
1309             .addReg(VRegs[0].second);
1310         continue;
1311       }
1312 
1313       // We need a phi: if there is an upwards exposed use we already have a
1314       // destination virtual register number otherwise we generate a new one.
1315       auto &DL = FuncInfo->MF->getDataLayout();
1316       auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1317       unsigned PHIVReg =
1318           UpwardsUse ? UUseVReg
1319                      : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1320       MachineInstrBuilder SwiftErrorPHI =
1321           BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
1322                   TII->get(TargetOpcode::PHI), PHIVReg);
1323       for (auto BBRegPair : VRegs) {
1324         SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
1325       }
1326 
1327       // We did not have a definition in this block before: store the phi's vreg
1328       // as this block downward exposed def.
1329       if (!UpwardsUse)
1330         FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
1331     }
1332   }
1333 }
1334 
1335 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1336   // Initialize the Fast-ISel state, if needed.
1337   FastISel *FastIS = nullptr;
1338   if (TM.Options.EnableFastISel)
1339     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1340 
1341   setupSwiftErrorVals(Fn, TLI, FuncInfo);
1342 
1343   // Iterate over all basic blocks in the function.
1344   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1345   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1346        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1347     const BasicBlock *LLVMBB = *I;
1348 
1349     if (OptLevel != CodeGenOpt::None) {
1350       bool AllPredsVisited = true;
1351       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1352            PI != PE; ++PI) {
1353         if (!FuncInfo->VisitedBBs.count(*PI)) {
1354           AllPredsVisited = false;
1355           break;
1356         }
1357       }
1358 
1359       if (AllPredsVisited) {
1360         for (BasicBlock::const_iterator I = LLVMBB->begin();
1361              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1362           FuncInfo->ComputePHILiveOutRegInfo(PN);
1363       } else {
1364         for (BasicBlock::const_iterator I = LLVMBB->begin();
1365              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1366           FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1367       }
1368 
1369       FuncInfo->VisitedBBs.insert(LLVMBB);
1370     }
1371 
1372     BasicBlock::const_iterator const Begin =
1373         LLVMBB->getFirstNonPHI()->getIterator();
1374     BasicBlock::const_iterator const End = LLVMBB->end();
1375     BasicBlock::const_iterator BI = End;
1376 
1377     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1378     if (!FuncInfo->MBB)
1379       continue; // Some blocks like catchpads have no code or MBB.
1380     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1381     createSwiftErrorEntriesInEntryBlock(FuncInfo, TLI, TII, LLVMBB, SDB);
1382 
1383     // Setup an EH landing-pad block.
1384     FuncInfo->ExceptionPointerVirtReg = 0;
1385     FuncInfo->ExceptionSelectorVirtReg = 0;
1386     if (LLVMBB->isEHPad())
1387       if (!PrepareEHLandingPad())
1388         continue;
1389 
1390     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1391     if (FastIS) {
1392       FastIS->startNewBlock();
1393 
1394       // Emit code for any incoming arguments. This must happen before
1395       // beginning FastISel on the entry block.
1396       if (LLVMBB == &Fn.getEntryBlock()) {
1397         ++NumEntryBlocks;
1398 
1399         // Lower any arguments needed in this block if this is the entry block.
1400         if (!FastIS->lowerArguments()) {
1401           // Fast isel failed to lower these arguments
1402           ++NumFastIselFailLowerArguments;
1403           if (EnableFastISelAbort > 1)
1404             report_fatal_error("FastISel didn't lower all arguments");
1405 
1406           // Use SelectionDAG argument lowering
1407           LowerArguments(Fn);
1408           CurDAG->setRoot(SDB->getControlRoot());
1409           SDB->clear();
1410           CodeGenAndEmitDAG();
1411         }
1412 
1413         // If we inserted any instructions at the beginning, make a note of
1414         // where they are, so we can be sure to emit subsequent instructions
1415         // after them.
1416         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1417           FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1418         else
1419           FastIS->setLastLocalValue(nullptr);
1420       }
1421 
1422       unsigned NumFastIselRemaining = std::distance(Begin, End);
1423       // Do FastISel on as many instructions as possible.
1424       for (; BI != Begin; --BI) {
1425         const Instruction *Inst = &*std::prev(BI);
1426 
1427         // If we no longer require this instruction, skip it.
1428         if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1429           --NumFastIselRemaining;
1430           continue;
1431         }
1432 
1433         // Bottom-up: reset the insert pos at the top, after any local-value
1434         // instructions.
1435         FastIS->recomputeInsertPt();
1436 
1437         // Try to select the instruction with FastISel.
1438         if (FastIS->selectInstruction(Inst)) {
1439           --NumFastIselRemaining;
1440           ++NumFastIselSuccess;
1441           // If fast isel succeeded, skip over all the folded instructions, and
1442           // then see if there is a load right before the selected instructions.
1443           // Try to fold the load if so.
1444           const Instruction *BeforeInst = Inst;
1445           while (BeforeInst != &*Begin) {
1446             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1447             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1448               break;
1449           }
1450           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1451               BeforeInst->hasOneUse() &&
1452               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1453             // If we succeeded, don't re-select the load.
1454             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1455             --NumFastIselRemaining;
1456             ++NumFastIselSuccess;
1457           }
1458           continue;
1459         }
1460 
1461 #ifndef NDEBUG
1462         if (EnableFastISelVerbose2)
1463           collectFailStats(Inst);
1464 #endif
1465 
1466         // Then handle certain instructions as single-LLVM-Instruction blocks.
1467         if (isa<CallInst>(Inst)) {
1468 
1469           if (EnableFastISelVerbose || EnableFastISelAbort) {
1470             dbgs() << "FastISel missed call: ";
1471             Inst->dump();
1472           }
1473           if (EnableFastISelAbort > 2)
1474             // FastISel selector couldn't handle something and bailed.
1475             // For the purpose of debugging, just abort.
1476             report_fatal_error("FastISel didn't select the entire block");
1477 
1478           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1479               !Inst->use_empty()) {
1480             unsigned &R = FuncInfo->ValueMap[Inst];
1481             if (!R)
1482               R = FuncInfo->CreateRegs(Inst->getType());
1483           }
1484 
1485           bool HadTailCall = false;
1486           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1487           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1488 
1489           // If the call was emitted as a tail call, we're done with the block.
1490           // We also need to delete any previously emitted instructions.
1491           if (HadTailCall) {
1492             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1493             --BI;
1494             break;
1495           }
1496 
1497           // Recompute NumFastIselRemaining as Selection DAG instruction
1498           // selection may have handled the call, input args, etc.
1499           unsigned RemainingNow = std::distance(Begin, BI);
1500           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1501           NumFastIselRemaining = RemainingNow;
1502           continue;
1503         }
1504 
1505         bool ShouldAbort = EnableFastISelAbort;
1506         if (EnableFastISelVerbose || EnableFastISelAbort) {
1507           if (isa<TerminatorInst>(Inst)) {
1508             // Use a different message for terminator misses.
1509             dbgs() << "FastISel missed terminator: ";
1510             // Don't abort unless for terminator unless the level is really high
1511             ShouldAbort = (EnableFastISelAbort > 2);
1512           } else {
1513             dbgs() << "FastISel miss: ";
1514           }
1515           Inst->dump();
1516         }
1517         if (ShouldAbort)
1518           // FastISel selector couldn't handle something and bailed.
1519           // For the purpose of debugging, just abort.
1520           report_fatal_error("FastISel didn't select the entire block");
1521 
1522         NumFastIselFailures += NumFastIselRemaining;
1523         break;
1524       }
1525 
1526       FastIS->recomputeInsertPt();
1527     } else {
1528       // Lower any arguments needed in this block if this is the entry block.
1529       if (LLVMBB == &Fn.getEntryBlock()) {
1530         ++NumEntryBlocks;
1531         LowerArguments(Fn);
1532       }
1533     }
1534     if (getAnalysis<StackProtector>().shouldEmitSDCheck(*LLVMBB)) {
1535       bool FunctionBasedInstrumentation =
1536           TLI->getSSPStackGuardCheck(*Fn.getParent());
1537       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1538                                    FunctionBasedInstrumentation);
1539     }
1540 
1541     if (Begin != BI)
1542       ++NumDAGBlocks;
1543     else
1544       ++NumFastIselBlocks;
1545 
1546     if (Begin != BI) {
1547       // Run SelectionDAG instruction selection on the remainder of the block
1548       // not handled by FastISel. If FastISel is not run, this is the entire
1549       // block.
1550       bool HadTailCall;
1551       SelectBasicBlock(Begin, BI, HadTailCall);
1552     }
1553 
1554     FinishBasicBlock();
1555     FuncInfo->PHINodesToUpdate.clear();
1556   }
1557 
1558   propagateSwiftErrorVRegs(FuncInfo);
1559 
1560   delete FastIS;
1561   SDB->clearDanglingDebugInfo();
1562   SDB->SPDescriptor.resetPerFunctionState();
1563 }
1564 
1565 /// Given that the input MI is before a partial terminator sequence TSeq, return
1566 /// true if M + TSeq also a partial terminator sequence.
1567 ///
1568 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1569 /// lowering copy vregs into physical registers, which are then passed into
1570 /// terminator instructors so we can satisfy ABI constraints. A partial
1571 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1572 /// may be the whole terminator sequence).
1573 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1574   // If we do not have a copy or an implicit def, we return true if and only if
1575   // MI is a debug value.
1576   if (!MI.isCopy() && !MI.isImplicitDef())
1577     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1578     // physical registers if there is debug info associated with the terminator
1579     // of our mbb. We want to include said debug info in our terminator
1580     // sequence, so we return true in that case.
1581     return MI.isDebugValue();
1582 
1583   // We have left the terminator sequence if we are not doing one of the
1584   // following:
1585   //
1586   // 1. Copying a vreg into a physical register.
1587   // 2. Copying a vreg into a vreg.
1588   // 3. Defining a register via an implicit def.
1589 
1590   // OPI should always be a register definition...
1591   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1592   if (!OPI->isReg() || !OPI->isDef())
1593     return false;
1594 
1595   // Defining any register via an implicit def is always ok.
1596   if (MI.isImplicitDef())
1597     return true;
1598 
1599   // Grab the copy source...
1600   MachineInstr::const_mop_iterator OPI2 = OPI;
1601   ++OPI2;
1602   assert(OPI2 != MI.operands_end()
1603          && "Should have a copy implying we should have 2 arguments.");
1604 
1605   // Make sure that the copy dest is not a vreg when the copy source is a
1606   // physical register.
1607   if (!OPI2->isReg() ||
1608       (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1609        TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1610     return false;
1611 
1612   return true;
1613 }
1614 
1615 /// Find the split point at which to splice the end of BB into its success stack
1616 /// protector check machine basic block.
1617 ///
1618 /// On many platforms, due to ABI constraints, terminators, even before register
1619 /// allocation, use physical registers. This creates an issue for us since
1620 /// physical registers at this point can not travel across basic
1621 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1622 /// when they enter functions and moves them through a sequence of copies back
1623 /// into the physical registers right before the terminator creating a
1624 /// ``Terminator Sequence''. This function is searching for the beginning of the
1625 /// terminator sequence so that we can ensure that we splice off not just the
1626 /// terminator, but additionally the copies that move the vregs into the
1627 /// physical registers.
1628 static MachineBasicBlock::iterator
1629 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1630   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1631   //
1632   if (SplitPoint == BB->begin())
1633     return SplitPoint;
1634 
1635   MachineBasicBlock::iterator Start = BB->begin();
1636   MachineBasicBlock::iterator Previous = SplitPoint;
1637   --Previous;
1638 
1639   while (MIIsInTerminatorSequence(*Previous)) {
1640     SplitPoint = Previous;
1641     if (Previous == Start)
1642       break;
1643     --Previous;
1644   }
1645 
1646   return SplitPoint;
1647 }
1648 
1649 void
1650 SelectionDAGISel::FinishBasicBlock() {
1651   DEBUG(dbgs() << "Total amount of phi nodes to update: "
1652                << FuncInfo->PHINodesToUpdate.size() << "\n";
1653         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1654           dbgs() << "Node " << i << " : ("
1655                  << FuncInfo->PHINodesToUpdate[i].first
1656                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1657 
1658   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1659   // PHI nodes in successors.
1660   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1661     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1662     assert(PHI->isPHI() &&
1663            "This is not a machine PHI node that we are updating!");
1664     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1665       continue;
1666     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1667   }
1668 
1669   // Handle stack protector.
1670   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1671     // The target provides a guard check function. There is no need to
1672     // generate error handling code or to split current basic block.
1673     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1674 
1675     // Add load and check to the basicblock.
1676     FuncInfo->MBB = ParentMBB;
1677     FuncInfo->InsertPt =
1678         FindSplitPointForStackProtector(ParentMBB);
1679     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1680     CurDAG->setRoot(SDB->getRoot());
1681     SDB->clear();
1682     CodeGenAndEmitDAG();
1683 
1684     // Clear the Per-BB State.
1685     SDB->SPDescriptor.resetPerBBState();
1686   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1687     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1688     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1689 
1690     // Find the split point to split the parent mbb. At the same time copy all
1691     // physical registers used in the tail of parent mbb into virtual registers
1692     // before the split point and back into physical registers after the split
1693     // point. This prevents us needing to deal with Live-ins and many other
1694     // register allocation issues caused by us splitting the parent mbb. The
1695     // register allocator will clean up said virtual copies later on.
1696     MachineBasicBlock::iterator SplitPoint =
1697         FindSplitPointForStackProtector(ParentMBB);
1698 
1699     // Splice the terminator of ParentMBB into SuccessMBB.
1700     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1701                        SplitPoint,
1702                        ParentMBB->end());
1703 
1704     // Add compare/jump on neq/jump to the parent BB.
1705     FuncInfo->MBB = ParentMBB;
1706     FuncInfo->InsertPt = ParentMBB->end();
1707     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1708     CurDAG->setRoot(SDB->getRoot());
1709     SDB->clear();
1710     CodeGenAndEmitDAG();
1711 
1712     // CodeGen Failure MBB if we have not codegened it yet.
1713     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1714     if (FailureMBB->empty()) {
1715       FuncInfo->MBB = FailureMBB;
1716       FuncInfo->InsertPt = FailureMBB->end();
1717       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1718       CurDAG->setRoot(SDB->getRoot());
1719       SDB->clear();
1720       CodeGenAndEmitDAG();
1721     }
1722 
1723     // Clear the Per-BB State.
1724     SDB->SPDescriptor.resetPerBBState();
1725   }
1726 
1727   // Lower each BitTestBlock.
1728   for (auto &BTB : SDB->BitTestCases) {
1729     // Lower header first, if it wasn't already lowered
1730     if (!BTB.Emitted) {
1731       // Set the current basic block to the mbb we wish to insert the code into
1732       FuncInfo->MBB = BTB.Parent;
1733       FuncInfo->InsertPt = FuncInfo->MBB->end();
1734       // Emit the code
1735       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1736       CurDAG->setRoot(SDB->getRoot());
1737       SDB->clear();
1738       CodeGenAndEmitDAG();
1739     }
1740 
1741     BranchProbability UnhandledProb = BTB.Prob;
1742     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1743       UnhandledProb -= BTB.Cases[j].ExtraProb;
1744       // Set the current basic block to the mbb we wish to insert the code into
1745       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1746       FuncInfo->InsertPt = FuncInfo->MBB->end();
1747       // Emit the code
1748 
1749       // If all cases cover a contiguous range, it is not necessary to jump to
1750       // the default block after the last bit test fails. This is because the
1751       // range check during bit test header creation has guaranteed that every
1752       // case here doesn't go outside the range. In this case, there is no need
1753       // to perform the last bit test, as it will always be true. Instead, make
1754       // the second-to-last bit-test fall through to the target of the last bit
1755       // test, and delete the last bit test.
1756 
1757       MachineBasicBlock *NextMBB;
1758       if (BTB.ContiguousRange && j + 2 == ej) {
1759         // Second-to-last bit-test with contiguous range: fall through to the
1760         // target of the final bit test.
1761         NextMBB = BTB.Cases[j + 1].TargetBB;
1762       } else if (j + 1 == ej) {
1763         // For the last bit test, fall through to Default.
1764         NextMBB = BTB.Default;
1765       } else {
1766         // Otherwise, fall through to the next bit test.
1767         NextMBB = BTB.Cases[j + 1].ThisBB;
1768       }
1769 
1770       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1771                             FuncInfo->MBB);
1772 
1773       CurDAG->setRoot(SDB->getRoot());
1774       SDB->clear();
1775       CodeGenAndEmitDAG();
1776 
1777       if (BTB.ContiguousRange && j + 2 == ej) {
1778         // Since we're not going to use the final bit test, remove it.
1779         BTB.Cases.pop_back();
1780         break;
1781       }
1782     }
1783 
1784     // Update PHI Nodes
1785     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1786          pi != pe; ++pi) {
1787       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1788       MachineBasicBlock *PHIBB = PHI->getParent();
1789       assert(PHI->isPHI() &&
1790              "This is not a machine PHI node that we are updating!");
1791       // This is "default" BB. We have two jumps to it. From "header" BB and
1792       // from last "case" BB, unless the latter was skipped.
1793       if (PHIBB == BTB.Default) {
1794         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1795         if (!BTB.ContiguousRange) {
1796           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1797               .addMBB(BTB.Cases.back().ThisBB);
1798          }
1799       }
1800       // One of "cases" BB.
1801       for (unsigned j = 0, ej = BTB.Cases.size();
1802            j != ej; ++j) {
1803         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1804         if (cBB->isSuccessor(PHIBB))
1805           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1806       }
1807     }
1808   }
1809   SDB->BitTestCases.clear();
1810 
1811   // If the JumpTable record is filled in, then we need to emit a jump table.
1812   // Updating the PHI nodes is tricky in this case, since we need to determine
1813   // whether the PHI is a successor of the range check MBB or the jump table MBB
1814   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1815     // Lower header first, if it wasn't already lowered
1816     if (!SDB->JTCases[i].first.Emitted) {
1817       // Set the current basic block to the mbb we wish to insert the code into
1818       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1819       FuncInfo->InsertPt = FuncInfo->MBB->end();
1820       // Emit the code
1821       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1822                                 FuncInfo->MBB);
1823       CurDAG->setRoot(SDB->getRoot());
1824       SDB->clear();
1825       CodeGenAndEmitDAG();
1826     }
1827 
1828     // Set the current basic block to the mbb we wish to insert the code into
1829     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1830     FuncInfo->InsertPt = FuncInfo->MBB->end();
1831     // Emit the code
1832     SDB->visitJumpTable(SDB->JTCases[i].second);
1833     CurDAG->setRoot(SDB->getRoot());
1834     SDB->clear();
1835     CodeGenAndEmitDAG();
1836 
1837     // Update PHI Nodes
1838     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1839          pi != pe; ++pi) {
1840       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1841       MachineBasicBlock *PHIBB = PHI->getParent();
1842       assert(PHI->isPHI() &&
1843              "This is not a machine PHI node that we are updating!");
1844       // "default" BB. We can go there only from header BB.
1845       if (PHIBB == SDB->JTCases[i].second.Default)
1846         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1847            .addMBB(SDB->JTCases[i].first.HeaderBB);
1848       // JT BB. Just iterate over successors here
1849       if (FuncInfo->MBB->isSuccessor(PHIBB))
1850         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1851     }
1852   }
1853   SDB->JTCases.clear();
1854 
1855   // If we generated any switch lowering information, build and codegen any
1856   // additional DAGs necessary.
1857   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1858     // Set the current basic block to the mbb we wish to insert the code into
1859     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1860     FuncInfo->InsertPt = FuncInfo->MBB->end();
1861 
1862     // Determine the unique successors.
1863     SmallVector<MachineBasicBlock *, 2> Succs;
1864     Succs.push_back(SDB->SwitchCases[i].TrueBB);
1865     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1866       Succs.push_back(SDB->SwitchCases[i].FalseBB);
1867 
1868     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1869     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1870     CurDAG->setRoot(SDB->getRoot());
1871     SDB->clear();
1872     CodeGenAndEmitDAG();
1873 
1874     // Remember the last block, now that any splitting is done, for use in
1875     // populating PHI nodes in successors.
1876     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1877 
1878     // Handle any PHI nodes in successors of this chunk, as if we were coming
1879     // from the original BB before switch expansion.  Note that PHI nodes can
1880     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1881     // handle them the right number of times.
1882     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1883       FuncInfo->MBB = Succs[i];
1884       FuncInfo->InsertPt = FuncInfo->MBB->end();
1885       // FuncInfo->MBB may have been removed from the CFG if a branch was
1886       // constant folded.
1887       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1888         for (MachineBasicBlock::iterator
1889              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1890              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1891           MachineInstrBuilder PHI(*MF, MBBI);
1892           // This value for this PHI node is recorded in PHINodesToUpdate.
1893           for (unsigned pn = 0; ; ++pn) {
1894             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1895                    "Didn't find PHI entry!");
1896             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1897               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1898               break;
1899             }
1900           }
1901         }
1902       }
1903     }
1904   }
1905   SDB->SwitchCases.clear();
1906 }
1907 
1908 /// Create the scheduler. If a specific scheduler was specified
1909 /// via the SchedulerRegistry, use it, otherwise select the
1910 /// one preferred by the target.
1911 ///
1912 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1913   return ISHeuristic(this, OptLevel);
1914 }
1915 
1916 //===----------------------------------------------------------------------===//
1917 // Helper functions used by the generated instruction selector.
1918 //===----------------------------------------------------------------------===//
1919 // Calls to these methods are generated by tblgen.
1920 
1921 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1922 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1923 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1924 /// specified in the .td file (e.g. 255).
1925 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1926                                     int64_t DesiredMaskS) const {
1927   const APInt &ActualMask = RHS->getAPIntValue();
1928   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1929 
1930   // If the actual mask exactly matches, success!
1931   if (ActualMask == DesiredMask)
1932     return true;
1933 
1934   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1935   if (ActualMask.intersects(~DesiredMask))
1936     return false;
1937 
1938   // Otherwise, the DAG Combiner may have proven that the value coming in is
1939   // either already zero or is not demanded.  Check for known zero input bits.
1940   APInt NeededMask = DesiredMask & ~ActualMask;
1941   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1942     return true;
1943 
1944   // TODO: check to see if missing bits are just not demanded.
1945 
1946   // Otherwise, this pattern doesn't match.
1947   return false;
1948 }
1949 
1950 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1951 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1952 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1953 /// specified in the .td file (e.g. 255).
1954 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1955                                    int64_t DesiredMaskS) const {
1956   const APInt &ActualMask = RHS->getAPIntValue();
1957   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1958 
1959   // If the actual mask exactly matches, success!
1960   if (ActualMask == DesiredMask)
1961     return true;
1962 
1963   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1964   if (ActualMask.intersects(~DesiredMask))
1965     return false;
1966 
1967   // Otherwise, the DAG Combiner may have proven that the value coming in is
1968   // either already zero or is not demanded.  Check for known zero input bits.
1969   APInt NeededMask = DesiredMask & ~ActualMask;
1970 
1971   APInt KnownZero, KnownOne;
1972   CurDAG->computeKnownBits(LHS, KnownZero, KnownOne);
1973 
1974   // If all the missing bits in the or are already known to be set, match!
1975   if ((NeededMask & KnownOne) == NeededMask)
1976     return true;
1977 
1978   // TODO: check to see if missing bits are just not demanded.
1979 
1980   // Otherwise, this pattern doesn't match.
1981   return false;
1982 }
1983 
1984 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1985 /// by tblgen.  Others should not call it.
1986 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
1987                                                      const SDLoc &DL) {
1988   std::vector<SDValue> InOps;
1989   std::swap(InOps, Ops);
1990 
1991   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1992   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1993   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1994   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1995 
1996   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1997   if (InOps[e-1].getValueType() == MVT::Glue)
1998     --e;  // Don't process a glue operand if it is here.
1999 
2000   while (i != e) {
2001     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2002     if (!InlineAsm::isMemKind(Flags)) {
2003       // Just skip over this operand, copying the operands verbatim.
2004       Ops.insert(Ops.end(), InOps.begin()+i,
2005                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2006       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2007     } else {
2008       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2009              "Memory operand with multiple values?");
2010 
2011       unsigned TiedToOperand;
2012       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2013         // We need the constraint ID from the operand this is tied to.
2014         unsigned CurOp = InlineAsm::Op_FirstOperand;
2015         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2016         for (; TiedToOperand; --TiedToOperand) {
2017           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2018           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2019         }
2020       }
2021 
2022       // Otherwise, this is a memory operand.  Ask the target to select it.
2023       std::vector<SDValue> SelOps;
2024       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2025       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2026         report_fatal_error("Could not match memory address.  Inline asm"
2027                            " failure!");
2028 
2029       // Add this to the output node.
2030       unsigned NewFlags =
2031         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2032       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2033       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2034       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2035       i += 2;
2036     }
2037   }
2038 
2039   // Add the glue input back if present.
2040   if (e != InOps.size())
2041     Ops.push_back(InOps.back());
2042 }
2043 
2044 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2045 /// SDNode.
2046 ///
2047 static SDNode *findGlueUse(SDNode *N) {
2048   unsigned FlagResNo = N->getNumValues()-1;
2049   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2050     SDUse &Use = I.getUse();
2051     if (Use.getResNo() == FlagResNo)
2052       return Use.getUser();
2053   }
2054   return nullptr;
2055 }
2056 
2057 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
2058 /// This function recursively traverses up the operand chain, ignoring
2059 /// certain nodes.
2060 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
2061                           SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
2062                           bool IgnoreChains) {
2063   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
2064   // greater than all of its (recursive) operands.  If we scan to a point where
2065   // 'use' is smaller than the node we're scanning for, then we know we will
2066   // never find it.
2067   //
2068   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
2069   // happen because we scan down to newly selected nodes in the case of glue
2070   // uses.
2071   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
2072     return false;
2073 
2074   // Don't revisit nodes if we already scanned it and didn't fail, we know we
2075   // won't fail if we scan it again.
2076   if (!Visited.insert(Use).second)
2077     return false;
2078 
2079   for (const SDValue &Op : Use->op_values()) {
2080     // Ignore chain uses, they are validated by HandleMergeInputChains.
2081     if (Op.getValueType() == MVT::Other && IgnoreChains)
2082       continue;
2083 
2084     SDNode *N = Op.getNode();
2085     if (N == Def) {
2086       if (Use == ImmedUse || Use == Root)
2087         continue;  // We are not looking for immediate use.
2088       assert(N != Root);
2089       return true;
2090     }
2091 
2092     // Traverse up the operand chain.
2093     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
2094       return true;
2095   }
2096   return false;
2097 }
2098 
2099 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2100 /// operand node N of U during instruction selection that starts at Root.
2101 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2102                                           SDNode *Root) const {
2103   if (OptLevel == CodeGenOpt::None) return false;
2104   return N.hasOneUse();
2105 }
2106 
2107 /// IsLegalToFold - Returns true if the specific operand node N of
2108 /// U can be folded during instruction selection that starts at Root.
2109 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2110                                      CodeGenOpt::Level OptLevel,
2111                                      bool IgnoreChains) {
2112   if (OptLevel == CodeGenOpt::None) return false;
2113 
2114   // If Root use can somehow reach N through a path that that doesn't contain
2115   // U then folding N would create a cycle. e.g. In the following
2116   // diagram, Root can reach N through X. If N is folded into into Root, then
2117   // X is both a predecessor and a successor of U.
2118   //
2119   //          [N*]           //
2120   //         ^   ^           //
2121   //        /     \          //
2122   //      [U*]    [X]?       //
2123   //        ^     ^          //
2124   //         \   /           //
2125   //          \ /            //
2126   //         [Root*]         //
2127   //
2128   // * indicates nodes to be folded together.
2129   //
2130   // If Root produces glue, then it gets (even more) interesting. Since it
2131   // will be "glued" together with its glue use in the scheduler, we need to
2132   // check if it might reach N.
2133   //
2134   //          [N*]           //
2135   //         ^   ^           //
2136   //        /     \          //
2137   //      [U*]    [X]?       //
2138   //        ^       ^        //
2139   //         \       \       //
2140   //          \      |       //
2141   //         [Root*] |       //
2142   //          ^      |       //
2143   //          f      |       //
2144   //          |      /       //
2145   //         [Y]    /        //
2146   //           ^   /         //
2147   //           f  /          //
2148   //           | /           //
2149   //          [GU]           //
2150   //
2151   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2152   // (call it Fold), then X is a predecessor of GU and a successor of
2153   // Fold. But since Fold and GU are glued together, this will create
2154   // a cycle in the scheduling graph.
2155 
2156   // If the node has glue, walk down the graph to the "lowest" node in the
2157   // glueged set.
2158   EVT VT = Root->getValueType(Root->getNumValues()-1);
2159   while (VT == MVT::Glue) {
2160     SDNode *GU = findGlueUse(Root);
2161     if (!GU)
2162       break;
2163     Root = GU;
2164     VT = Root->getValueType(Root->getNumValues()-1);
2165 
2166     // If our query node has a glue result with a use, we've walked up it.  If
2167     // the user (which has already been selected) has a chain or indirectly uses
2168     // the chain, our WalkChainUsers predicate will not consider it.  Because of
2169     // this, we cannot ignore chains in this predicate.
2170     IgnoreChains = false;
2171   }
2172 
2173 
2174   SmallPtrSet<SDNode*, 16> Visited;
2175   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
2176 }
2177 
2178 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2179   SDLoc DL(N);
2180 
2181   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2182   SelectInlineAsmMemoryOperands(Ops, DL);
2183 
2184   const EVT VTs[] = {MVT::Other, MVT::Glue};
2185   SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
2186   New->setNodeId(-1);
2187   ReplaceUses(N, New.getNode());
2188   CurDAG->RemoveDeadNode(N);
2189 }
2190 
2191 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2192   SDLoc dl(Op);
2193   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2194   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2195   unsigned Reg =
2196       TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2197                              *CurDAG);
2198   SDValue New = CurDAG->getCopyFromReg(
2199                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2200   New->setNodeId(-1);
2201   ReplaceUses(Op, New.getNode());
2202   CurDAG->RemoveDeadNode(Op);
2203 }
2204 
2205 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2206   SDLoc dl(Op);
2207   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2208   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2209   unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2210                                         Op->getOperand(2).getValueType(),
2211                                         *CurDAG);
2212   SDValue New = CurDAG->getCopyToReg(
2213                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2214   New->setNodeId(-1);
2215   ReplaceUses(Op, New.getNode());
2216   CurDAG->RemoveDeadNode(Op);
2217 }
2218 
2219 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2220   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2221 }
2222 
2223 /// GetVBR - decode a vbr encoding whose top bit is set.
2224 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2225 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2226   assert(Val >= 128 && "Not a VBR");
2227   Val &= 127;  // Remove first vbr bit.
2228 
2229   unsigned Shift = 7;
2230   uint64_t NextBits;
2231   do {
2232     NextBits = MatcherTable[Idx++];
2233     Val |= (NextBits&127) << Shift;
2234     Shift += 7;
2235   } while (NextBits & 128);
2236 
2237   return Val;
2238 }
2239 
2240 /// When a match is complete, this method updates uses of interior chain results
2241 /// to use the new results.
2242 void SelectionDAGISel::UpdateChains(
2243     SDNode *NodeToMatch, SDValue InputChain,
2244     const SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2245   SmallVector<SDNode*, 4> NowDeadNodes;
2246 
2247   // Now that all the normal results are replaced, we replace the chain and
2248   // glue results if present.
2249   if (!ChainNodesMatched.empty()) {
2250     assert(InputChain.getNode() &&
2251            "Matched input chains but didn't produce a chain");
2252     // Loop over all of the nodes we matched that produced a chain result.
2253     // Replace all the chain results with the final chain we ended up with.
2254     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2255       SDNode *ChainNode = ChainNodesMatched[i];
2256       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2257              "Deleted node left in chain");
2258 
2259       // Don't replace the results of the root node if we're doing a
2260       // MorphNodeTo.
2261       if (ChainNode == NodeToMatch && isMorphNodeTo)
2262         continue;
2263 
2264       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2265       if (ChainVal.getValueType() == MVT::Glue)
2266         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2267       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2268       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
2269 
2270       // If the node became dead and we haven't already seen it, delete it.
2271       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2272           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2273         NowDeadNodes.push_back(ChainNode);
2274     }
2275   }
2276 
2277   if (!NowDeadNodes.empty())
2278     CurDAG->RemoveDeadNodes(NowDeadNodes);
2279 
2280   DEBUG(dbgs() << "ISEL: Match complete!\n");
2281 }
2282 
2283 enum ChainResult {
2284   CR_Simple,
2285   CR_InducesCycle,
2286   CR_LeadsToInteriorNode
2287 };
2288 
2289 /// WalkChainUsers - Walk down the users of the specified chained node that is
2290 /// part of the pattern we're matching, looking at all of the users we find.
2291 /// This determines whether something is an interior node, whether we have a
2292 /// non-pattern node in between two pattern nodes (which prevent folding because
2293 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
2294 /// between pattern nodes (in which case the TF becomes part of the pattern).
2295 ///
2296 /// The walk we do here is guaranteed to be small because we quickly get down to
2297 /// already selected nodes "below" us.
2298 static ChainResult
2299 WalkChainUsers(const SDNode *ChainedNode,
2300                SmallVectorImpl<SDNode *> &ChainedNodesInPattern,
2301                DenseMap<const SDNode *, ChainResult> &TokenFactorResult,
2302                SmallVectorImpl<SDNode *> &InteriorChainedNodes) {
2303   ChainResult Result = CR_Simple;
2304 
2305   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
2306          E = ChainedNode->use_end(); UI != E; ++UI) {
2307     // Make sure the use is of the chain, not some other value we produce.
2308     if (UI.getUse().getValueType() != MVT::Other) continue;
2309 
2310     SDNode *User = *UI;
2311 
2312     if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
2313       continue;
2314 
2315     // If we see an already-selected machine node, then we've gone beyond the
2316     // pattern that we're selecting down into the already selected chunk of the
2317     // DAG.
2318     unsigned UserOpcode = User->getOpcode();
2319     if (User->isMachineOpcode() ||
2320         UserOpcode == ISD::CopyToReg ||
2321         UserOpcode == ISD::CopyFromReg ||
2322         UserOpcode == ISD::INLINEASM ||
2323         UserOpcode == ISD::EH_LABEL ||
2324         UserOpcode == ISD::LIFETIME_START ||
2325         UserOpcode == ISD::LIFETIME_END) {
2326       // If their node ID got reset to -1 then they've already been selected.
2327       // Treat them like a MachineOpcode.
2328       if (User->getNodeId() == -1)
2329         continue;
2330     }
2331 
2332     // If we have a TokenFactor, we handle it specially.
2333     if (User->getOpcode() != ISD::TokenFactor) {
2334       // If the node isn't a token factor and isn't part of our pattern, then it
2335       // must be a random chained node in between two nodes we're selecting.
2336       // This happens when we have something like:
2337       //   x = load ptr
2338       //   call
2339       //   y = x+4
2340       //   store y -> ptr
2341       // Because we structurally match the load/store as a read/modify/write,
2342       // but the call is chained between them.  We cannot fold in this case
2343       // because it would induce a cycle in the graph.
2344       if (!std::count(ChainedNodesInPattern.begin(),
2345                       ChainedNodesInPattern.end(), User))
2346         return CR_InducesCycle;
2347 
2348       // Otherwise we found a node that is part of our pattern.  For example in:
2349       //   x = load ptr
2350       //   y = x+4
2351       //   store y -> ptr
2352       // This would happen when we're scanning down from the load and see the
2353       // store as a user.  Record that there is a use of ChainedNode that is
2354       // part of the pattern and keep scanning uses.
2355       Result = CR_LeadsToInteriorNode;
2356       InteriorChainedNodes.push_back(User);
2357       continue;
2358     }
2359 
2360     // If we found a TokenFactor, there are two cases to consider: first if the
2361     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
2362     // uses of the TF are in our pattern) we just want to ignore it.  Second,
2363     // the TokenFactor can be sandwiched in between two chained nodes, like so:
2364     //     [Load chain]
2365     //         ^
2366     //         |
2367     //       [Load]
2368     //       ^    ^
2369     //       |    \                    DAG's like cheese
2370     //      /       \                       do you?
2371     //     /         |
2372     // [TokenFactor] [Op]
2373     //     ^          ^
2374     //     |          |
2375     //      \        /
2376     //       \      /
2377     //       [Store]
2378     //
2379     // In this case, the TokenFactor becomes part of our match and we rewrite it
2380     // as a new TokenFactor.
2381     //
2382     // To distinguish these two cases, do a recursive walk down the uses.
2383     auto MemoizeResult = TokenFactorResult.find(User);
2384     bool Visited = MemoizeResult != TokenFactorResult.end();
2385     // Recursively walk chain users only if the result is not memoized.
2386     if (!Visited) {
2387       auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult,
2388                                 InteriorChainedNodes);
2389       MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first;
2390     }
2391     switch (MemoizeResult->second) {
2392     case CR_Simple:
2393       // If the uses of the TokenFactor are just already-selected nodes, ignore
2394       // it, it is "below" our pattern.
2395       continue;
2396     case CR_InducesCycle:
2397       // If the uses of the TokenFactor lead to nodes that are not part of our
2398       // pattern that are not selected, folding would turn this into a cycle,
2399       // bail out now.
2400       return CR_InducesCycle;
2401     case CR_LeadsToInteriorNode:
2402       break;  // Otherwise, keep processing.
2403     }
2404 
2405     // Okay, we know we're in the interesting interior case.  The TokenFactor
2406     // is now going to be considered part of the pattern so that we rewrite its
2407     // uses (it may have uses that are not part of the pattern) with the
2408     // ultimate chain result of the generated code.  We will also add its chain
2409     // inputs as inputs to the ultimate TokenFactor we create.
2410     Result = CR_LeadsToInteriorNode;
2411     if (!Visited) {
2412       ChainedNodesInPattern.push_back(User);
2413       InteriorChainedNodes.push_back(User);
2414     }
2415   }
2416 
2417   return Result;
2418 }
2419 
2420 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2421 /// operation for when the pattern matched at least one node with a chains.  The
2422 /// input vector contains a list of all of the chained nodes that we match.  We
2423 /// must determine if this is a valid thing to cover (i.e. matching it won't
2424 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2425 /// be used as the input node chain for the generated nodes.
2426 static SDValue
2427 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2428                        SelectionDAG *CurDAG) {
2429   // Used for memoization. Without it WalkChainUsers could take exponential
2430   // time to run.
2431   DenseMap<const SDNode *, ChainResult> TokenFactorResult;
2432   // Walk all of the chained nodes we've matched, recursively scanning down the
2433   // users of the chain result. This adds any TokenFactor nodes that are caught
2434   // in between chained nodes to the chained and interior nodes list.
2435   SmallVector<SDNode*, 3> InteriorChainedNodes;
2436   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2437     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2438                        TokenFactorResult,
2439                        InteriorChainedNodes) == CR_InducesCycle)
2440       return SDValue(); // Would induce a cycle.
2441   }
2442 
2443   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2444   // that we are interested in.  Form our input TokenFactor node.
2445   SmallVector<SDValue, 3> InputChains;
2446   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2447     // Add the input chain of this node to the InputChains list (which will be
2448     // the operands of the generated TokenFactor) if it's not an interior node.
2449     SDNode *N = ChainNodesMatched[i];
2450     if (N->getOpcode() != ISD::TokenFactor) {
2451       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2452         continue;
2453 
2454       // Otherwise, add the input chain.
2455       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2456       assert(InChain.getValueType() == MVT::Other && "Not a chain");
2457       InputChains.push_back(InChain);
2458       continue;
2459     }
2460 
2461     // If we have a token factor, we want to add all inputs of the token factor
2462     // that are not part of the pattern we're matching.
2463     for (const SDValue &Op : N->op_values()) {
2464       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2465                       Op.getNode()))
2466         InputChains.push_back(Op);
2467     }
2468   }
2469 
2470   if (InputChains.size() == 1)
2471     return InputChains[0];
2472   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2473                          MVT::Other, InputChains);
2474 }
2475 
2476 /// MorphNode - Handle morphing a node in place for the selector.
2477 SDNode *SelectionDAGISel::
2478 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2479           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2480   // It is possible we're using MorphNodeTo to replace a node with no
2481   // normal results with one that has a normal result (or we could be
2482   // adding a chain) and the input could have glue and chains as well.
2483   // In this case we need to shift the operands down.
2484   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2485   // than the old isel though.
2486   int OldGlueResultNo = -1, OldChainResultNo = -1;
2487 
2488   unsigned NTMNumResults = Node->getNumValues();
2489   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2490     OldGlueResultNo = NTMNumResults-1;
2491     if (NTMNumResults != 1 &&
2492         Node->getValueType(NTMNumResults-2) == MVT::Other)
2493       OldChainResultNo = NTMNumResults-2;
2494   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2495     OldChainResultNo = NTMNumResults-1;
2496 
2497   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2498   // that this deletes operands of the old node that become dead.
2499   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2500 
2501   // MorphNodeTo can operate in two ways: if an existing node with the
2502   // specified operands exists, it can just return it.  Otherwise, it
2503   // updates the node in place to have the requested operands.
2504   if (Res == Node) {
2505     // If we updated the node in place, reset the node ID.  To the isel,
2506     // this should be just like a newly allocated machine node.
2507     Res->setNodeId(-1);
2508   }
2509 
2510   unsigned ResNumResults = Res->getNumValues();
2511   // Move the glue if needed.
2512   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2513       (unsigned)OldGlueResultNo != ResNumResults-1)
2514     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2515                                       SDValue(Res, ResNumResults-1));
2516 
2517   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2518     --ResNumResults;
2519 
2520   // Move the chain reference if needed.
2521   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2522       (unsigned)OldChainResultNo != ResNumResults-1)
2523     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2524                                       SDValue(Res, ResNumResults-1));
2525 
2526   // Otherwise, no replacement happened because the node already exists. Replace
2527   // Uses of the old node with the new one.
2528   if (Res != Node) {
2529     CurDAG->ReplaceAllUsesWith(Node, Res);
2530     CurDAG->RemoveDeadNode(Node);
2531   }
2532 
2533   return Res;
2534 }
2535 
2536 /// CheckSame - Implements OP_CheckSame.
2537 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2538 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2539           SDValue N,
2540           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2541   // Accept if it is exactly the same as a previously recorded node.
2542   unsigned RecNo = MatcherTable[MatcherIndex++];
2543   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2544   return N == RecordedNodes[RecNo].first;
2545 }
2546 
2547 /// CheckChildSame - Implements OP_CheckChildXSame.
2548 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2549 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2550              SDValue N,
2551              const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2552              unsigned ChildNo) {
2553   if (ChildNo >= N.getNumOperands())
2554     return false;  // Match fails if out of range child #.
2555   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2556                      RecordedNodes);
2557 }
2558 
2559 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2560 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2561 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2562                       const SelectionDAGISel &SDISel) {
2563   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2564 }
2565 
2566 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2567 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2568 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2569                    const SelectionDAGISel &SDISel, SDNode *N) {
2570   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2571 }
2572 
2573 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2574 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2575             SDNode *N) {
2576   uint16_t Opc = MatcherTable[MatcherIndex++];
2577   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2578   return N->getOpcode() == Opc;
2579 }
2580 
2581 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2582 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2583           const TargetLowering *TLI, const DataLayout &DL) {
2584   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2585   if (N.getValueType() == VT) return true;
2586 
2587   // Handle the case when VT is iPTR.
2588   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2589 }
2590 
2591 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2592 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2593                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2594                unsigned ChildNo) {
2595   if (ChildNo >= N.getNumOperands())
2596     return false;  // Match fails if out of range child #.
2597   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2598                      DL);
2599 }
2600 
2601 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2602 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2603               SDValue N) {
2604   return cast<CondCodeSDNode>(N)->get() ==
2605       (ISD::CondCode)MatcherTable[MatcherIndex++];
2606 }
2607 
2608 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2609 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2610                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2611   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2612   if (cast<VTSDNode>(N)->getVT() == VT)
2613     return true;
2614 
2615   // Handle the case when VT is iPTR.
2616   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2617 }
2618 
2619 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2620 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2621              SDValue N) {
2622   int64_t Val = MatcherTable[MatcherIndex++];
2623   if (Val & 128)
2624     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2625 
2626   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2627   return C && C->getSExtValue() == Val;
2628 }
2629 
2630 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2631 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2632                   SDValue N, unsigned ChildNo) {
2633   if (ChildNo >= N.getNumOperands())
2634     return false;  // Match fails if out of range child #.
2635   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2636 }
2637 
2638 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2639 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2640             SDValue N, const SelectionDAGISel &SDISel) {
2641   int64_t Val = MatcherTable[MatcherIndex++];
2642   if (Val & 128)
2643     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2644 
2645   if (N->getOpcode() != ISD::AND) return false;
2646 
2647   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2648   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2649 }
2650 
2651 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2652 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2653            SDValue N, const SelectionDAGISel &SDISel) {
2654   int64_t Val = MatcherTable[MatcherIndex++];
2655   if (Val & 128)
2656     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2657 
2658   if (N->getOpcode() != ISD::OR) return false;
2659 
2660   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2661   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2662 }
2663 
2664 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2665 /// scope, evaluate the current node.  If the current predicate is known to
2666 /// fail, set Result=true and return anything.  If the current predicate is
2667 /// known to pass, set Result=false and return the MatcherIndex to continue
2668 /// with.  If the current predicate is unknown, set Result=false and return the
2669 /// MatcherIndex to continue with.
2670 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2671                                        unsigned Index, SDValue N,
2672                                        bool &Result,
2673                                        const SelectionDAGISel &SDISel,
2674                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2675   switch (Table[Index++]) {
2676   default:
2677     Result = false;
2678     return Index-1;  // Could not evaluate this predicate.
2679   case SelectionDAGISel::OPC_CheckSame:
2680     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2681     return Index;
2682   case SelectionDAGISel::OPC_CheckChild0Same:
2683   case SelectionDAGISel::OPC_CheckChild1Same:
2684   case SelectionDAGISel::OPC_CheckChild2Same:
2685   case SelectionDAGISel::OPC_CheckChild3Same:
2686     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2687                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2688     return Index;
2689   case SelectionDAGISel::OPC_CheckPatternPredicate:
2690     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2691     return Index;
2692   case SelectionDAGISel::OPC_CheckPredicate:
2693     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2694     return Index;
2695   case SelectionDAGISel::OPC_CheckOpcode:
2696     Result = !::CheckOpcode(Table, Index, N.getNode());
2697     return Index;
2698   case SelectionDAGISel::OPC_CheckType:
2699     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2700                           SDISel.CurDAG->getDataLayout());
2701     return Index;
2702   case SelectionDAGISel::OPC_CheckChild0Type:
2703   case SelectionDAGISel::OPC_CheckChild1Type:
2704   case SelectionDAGISel::OPC_CheckChild2Type:
2705   case SelectionDAGISel::OPC_CheckChild3Type:
2706   case SelectionDAGISel::OPC_CheckChild4Type:
2707   case SelectionDAGISel::OPC_CheckChild5Type:
2708   case SelectionDAGISel::OPC_CheckChild6Type:
2709   case SelectionDAGISel::OPC_CheckChild7Type:
2710     Result = !::CheckChildType(
2711                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2712                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2713     return Index;
2714   case SelectionDAGISel::OPC_CheckCondCode:
2715     Result = !::CheckCondCode(Table, Index, N);
2716     return Index;
2717   case SelectionDAGISel::OPC_CheckValueType:
2718     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2719                                SDISel.CurDAG->getDataLayout());
2720     return Index;
2721   case SelectionDAGISel::OPC_CheckInteger:
2722     Result = !::CheckInteger(Table, Index, N);
2723     return Index;
2724   case SelectionDAGISel::OPC_CheckChild0Integer:
2725   case SelectionDAGISel::OPC_CheckChild1Integer:
2726   case SelectionDAGISel::OPC_CheckChild2Integer:
2727   case SelectionDAGISel::OPC_CheckChild3Integer:
2728   case SelectionDAGISel::OPC_CheckChild4Integer:
2729     Result = !::CheckChildInteger(Table, Index, N,
2730                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2731     return Index;
2732   case SelectionDAGISel::OPC_CheckAndImm:
2733     Result = !::CheckAndImm(Table, Index, N, SDISel);
2734     return Index;
2735   case SelectionDAGISel::OPC_CheckOrImm:
2736     Result = !::CheckOrImm(Table, Index, N, SDISel);
2737     return Index;
2738   }
2739 }
2740 
2741 namespace {
2742 struct MatchScope {
2743   /// FailIndex - If this match fails, this is the index to continue with.
2744   unsigned FailIndex;
2745 
2746   /// NodeStack - The node stack when the scope was formed.
2747   SmallVector<SDValue, 4> NodeStack;
2748 
2749   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2750   unsigned NumRecordedNodes;
2751 
2752   /// NumMatchedMemRefs - The number of matched memref entries.
2753   unsigned NumMatchedMemRefs;
2754 
2755   /// InputChain/InputGlue - The current chain/glue
2756   SDValue InputChain, InputGlue;
2757 
2758   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2759   bool HasChainNodesMatched;
2760 };
2761 
2762 /// \\brief A DAG update listener to keep the matching state
2763 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2764 /// change the DAG while matching.  X86 addressing mode matcher is an example
2765 /// for this.
2766 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2767 {
2768       SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
2769       SmallVectorImpl<MatchScope> &MatchScopes;
2770 public:
2771   MatchStateUpdater(SelectionDAG &DAG,
2772                     SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
2773                     SmallVectorImpl<MatchScope> &MS) :
2774     SelectionDAG::DAGUpdateListener(DAG),
2775     RecordedNodes(RN), MatchScopes(MS) { }
2776 
2777   void NodeDeleted(SDNode *N, SDNode *E) override {
2778     // Some early-returns here to avoid the search if we deleted the node or
2779     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2780     // do, so it's unnecessary to update matching state at that point).
2781     // Neither of these can occur currently because we only install this
2782     // update listener during matching a complex patterns.
2783     if (!E || E->isMachineOpcode())
2784       return;
2785     // Performing linear search here does not matter because we almost never
2786     // run this code.  You'd have to have a CSE during complex pattern
2787     // matching.
2788     for (auto &I : RecordedNodes)
2789       if (I.first.getNode() == N)
2790         I.first.setNode(E);
2791 
2792     for (auto &I : MatchScopes)
2793       for (auto &J : I.NodeStack)
2794         if (J.getNode() == N)
2795           J.setNode(E);
2796   }
2797 };
2798 } // end anonymous namespace
2799 
2800 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2801                                         const unsigned char *MatcherTable,
2802                                         unsigned TableSize) {
2803   // FIXME: Should these even be selected?  Handle these cases in the caller?
2804   switch (NodeToMatch->getOpcode()) {
2805   default:
2806     break;
2807   case ISD::EntryToken:       // These nodes remain the same.
2808   case ISD::BasicBlock:
2809   case ISD::Register:
2810   case ISD::RegisterMask:
2811   case ISD::HANDLENODE:
2812   case ISD::MDNODE_SDNODE:
2813   case ISD::TargetConstant:
2814   case ISD::TargetConstantFP:
2815   case ISD::TargetConstantPool:
2816   case ISD::TargetFrameIndex:
2817   case ISD::TargetExternalSymbol:
2818   case ISD::MCSymbol:
2819   case ISD::TargetBlockAddress:
2820   case ISD::TargetJumpTable:
2821   case ISD::TargetGlobalTLSAddress:
2822   case ISD::TargetGlobalAddress:
2823   case ISD::TokenFactor:
2824   case ISD::CopyFromReg:
2825   case ISD::CopyToReg:
2826   case ISD::EH_LABEL:
2827   case ISD::LIFETIME_START:
2828   case ISD::LIFETIME_END:
2829     NodeToMatch->setNodeId(-1); // Mark selected.
2830     return;
2831   case ISD::AssertSext:
2832   case ISD::AssertZext:
2833     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2834                                       NodeToMatch->getOperand(0));
2835     CurDAG->RemoveDeadNode(NodeToMatch);
2836     return;
2837   case ISD::INLINEASM:
2838     Select_INLINEASM(NodeToMatch);
2839     return;
2840   case ISD::READ_REGISTER:
2841     Select_READ_REGISTER(NodeToMatch);
2842     return;
2843   case ISD::WRITE_REGISTER:
2844     Select_WRITE_REGISTER(NodeToMatch);
2845     return;
2846   case ISD::UNDEF:
2847     Select_UNDEF(NodeToMatch);
2848     return;
2849   }
2850 
2851   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2852 
2853   // Set up the node stack with NodeToMatch as the only node on the stack.
2854   SmallVector<SDValue, 8> NodeStack;
2855   SDValue N = SDValue(NodeToMatch, 0);
2856   NodeStack.push_back(N);
2857 
2858   // MatchScopes - Scopes used when matching, if a match failure happens, this
2859   // indicates where to continue checking.
2860   SmallVector<MatchScope, 8> MatchScopes;
2861 
2862   // RecordedNodes - This is the set of nodes that have been recorded by the
2863   // state machine.  The second value is the parent of the node, or null if the
2864   // root is recorded.
2865   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2866 
2867   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2868   // pattern.
2869   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2870 
2871   // These are the current input chain and glue for use when generating nodes.
2872   // Various Emit operations change these.  For example, emitting a copytoreg
2873   // uses and updates these.
2874   SDValue InputChain, InputGlue;
2875 
2876   // ChainNodesMatched - If a pattern matches nodes that have input/output
2877   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2878   // which ones they are.  The result is captured into this list so that we can
2879   // update the chain results when the pattern is complete.
2880   SmallVector<SDNode*, 3> ChainNodesMatched;
2881 
2882   DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2883         NodeToMatch->dump(CurDAG);
2884         dbgs() << '\n');
2885 
2886   // Determine where to start the interpreter.  Normally we start at opcode #0,
2887   // but if the state machine starts with an OPC_SwitchOpcode, then we
2888   // accelerate the first lookup (which is guaranteed to be hot) with the
2889   // OpcodeOffset table.
2890   unsigned MatcherIndex = 0;
2891 
2892   if (!OpcodeOffset.empty()) {
2893     // Already computed the OpcodeOffset table, just index into it.
2894     if (N.getOpcode() < OpcodeOffset.size())
2895       MatcherIndex = OpcodeOffset[N.getOpcode()];
2896     DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2897 
2898   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2899     // Otherwise, the table isn't computed, but the state machine does start
2900     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2901     // is the first time we're selecting an instruction.
2902     unsigned Idx = 1;
2903     while (1) {
2904       // Get the size of this case.
2905       unsigned CaseSize = MatcherTable[Idx++];
2906       if (CaseSize & 128)
2907         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2908       if (CaseSize == 0) break;
2909 
2910       // Get the opcode, add the index to the table.
2911       uint16_t Opc = MatcherTable[Idx++];
2912       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2913       if (Opc >= OpcodeOffset.size())
2914         OpcodeOffset.resize((Opc+1)*2);
2915       OpcodeOffset[Opc] = Idx;
2916       Idx += CaseSize;
2917     }
2918 
2919     // Okay, do the lookup for the first opcode.
2920     if (N.getOpcode() < OpcodeOffset.size())
2921       MatcherIndex = OpcodeOffset[N.getOpcode()];
2922   }
2923 
2924   while (1) {
2925     assert(MatcherIndex < TableSize && "Invalid index");
2926 #ifndef NDEBUG
2927     unsigned CurrentOpcodeIndex = MatcherIndex;
2928 #endif
2929     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2930     switch (Opcode) {
2931     case OPC_Scope: {
2932       // Okay, the semantics of this operation are that we should push a scope
2933       // then evaluate the first child.  However, pushing a scope only to have
2934       // the first check fail (which then pops it) is inefficient.  If we can
2935       // determine immediately that the first check (or first several) will
2936       // immediately fail, don't even bother pushing a scope for them.
2937       unsigned FailIndex;
2938 
2939       while (1) {
2940         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2941         if (NumToSkip & 128)
2942           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2943         // Found the end of the scope with no match.
2944         if (NumToSkip == 0) {
2945           FailIndex = 0;
2946           break;
2947         }
2948 
2949         FailIndex = MatcherIndex+NumToSkip;
2950 
2951         unsigned MatcherIndexOfPredicate = MatcherIndex;
2952         (void)MatcherIndexOfPredicate; // silence warning.
2953 
2954         // If we can't evaluate this predicate without pushing a scope (e.g. if
2955         // it is a 'MoveParent') or if the predicate succeeds on this node, we
2956         // push the scope and evaluate the full predicate chain.
2957         bool Result;
2958         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2959                                               Result, *this, RecordedNodes);
2960         if (!Result)
2961           break;
2962 
2963         DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2964                      << "index " << MatcherIndexOfPredicate
2965                      << ", continuing at " << FailIndex << "\n");
2966         ++NumDAGIselRetries;
2967 
2968         // Otherwise, we know that this case of the Scope is guaranteed to fail,
2969         // move to the next case.
2970         MatcherIndex = FailIndex;
2971       }
2972 
2973       // If the whole scope failed to match, bail.
2974       if (FailIndex == 0) break;
2975 
2976       // Push a MatchScope which indicates where to go if the first child fails
2977       // to match.
2978       MatchScope NewEntry;
2979       NewEntry.FailIndex = FailIndex;
2980       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2981       NewEntry.NumRecordedNodes = RecordedNodes.size();
2982       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2983       NewEntry.InputChain = InputChain;
2984       NewEntry.InputGlue = InputGlue;
2985       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2986       MatchScopes.push_back(NewEntry);
2987       continue;
2988     }
2989     case OPC_RecordNode: {
2990       // Remember this node, it may end up being an operand in the pattern.
2991       SDNode *Parent = nullptr;
2992       if (NodeStack.size() > 1)
2993         Parent = NodeStack[NodeStack.size()-2].getNode();
2994       RecordedNodes.push_back(std::make_pair(N, Parent));
2995       continue;
2996     }
2997 
2998     case OPC_RecordChild0: case OPC_RecordChild1:
2999     case OPC_RecordChild2: case OPC_RecordChild3:
3000     case OPC_RecordChild4: case OPC_RecordChild5:
3001     case OPC_RecordChild6: case OPC_RecordChild7: {
3002       unsigned ChildNo = Opcode-OPC_RecordChild0;
3003       if (ChildNo >= N.getNumOperands())
3004         break;  // Match fails if out of range child #.
3005 
3006       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3007                                              N.getNode()));
3008       continue;
3009     }
3010     case OPC_RecordMemRef:
3011       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
3012       continue;
3013 
3014     case OPC_CaptureGlueInput:
3015       // If the current node has an input glue, capture it in InputGlue.
3016       if (N->getNumOperands() != 0 &&
3017           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3018         InputGlue = N->getOperand(N->getNumOperands()-1);
3019       continue;
3020 
3021     case OPC_MoveChild: {
3022       unsigned ChildNo = MatcherTable[MatcherIndex++];
3023       if (ChildNo >= N.getNumOperands())
3024         break;  // Match fails if out of range child #.
3025       N = N.getOperand(ChildNo);
3026       NodeStack.push_back(N);
3027       continue;
3028     }
3029 
3030     case OPC_MoveChild0: case OPC_MoveChild1:
3031     case OPC_MoveChild2: case OPC_MoveChild3:
3032     case OPC_MoveChild4: case OPC_MoveChild5:
3033     case OPC_MoveChild6: case OPC_MoveChild7: {
3034       unsigned ChildNo = Opcode-OPC_MoveChild0;
3035       if (ChildNo >= N.getNumOperands())
3036         break;  // Match fails if out of range child #.
3037       N = N.getOperand(ChildNo);
3038       NodeStack.push_back(N);
3039       continue;
3040     }
3041 
3042     case OPC_MoveParent:
3043       // Pop the current node off the NodeStack.
3044       NodeStack.pop_back();
3045       assert(!NodeStack.empty() && "Node stack imbalance!");
3046       N = NodeStack.back();
3047       continue;
3048 
3049     case OPC_CheckSame:
3050       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3051       continue;
3052 
3053     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3054     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3055       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3056                             Opcode-OPC_CheckChild0Same))
3057         break;
3058       continue;
3059 
3060     case OPC_CheckPatternPredicate:
3061       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3062       continue;
3063     case OPC_CheckPredicate:
3064       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3065                                 N.getNode()))
3066         break;
3067       continue;
3068     case OPC_CheckComplexPat: {
3069       unsigned CPNum = MatcherTable[MatcherIndex++];
3070       unsigned RecNo = MatcherTable[MatcherIndex++];
3071       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3072 
3073       // If target can modify DAG during matching, keep the matching state
3074       // consistent.
3075       std::unique_ptr<MatchStateUpdater> MSU;
3076       if (ComplexPatternFuncMutatesDAG())
3077         MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
3078                                         MatchScopes));
3079 
3080       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3081                                RecordedNodes[RecNo].first, CPNum,
3082                                RecordedNodes))
3083         break;
3084       continue;
3085     }
3086     case OPC_CheckOpcode:
3087       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3088       continue;
3089 
3090     case OPC_CheckType:
3091       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3092                        CurDAG->getDataLayout()))
3093         break;
3094       continue;
3095 
3096     case OPC_SwitchOpcode: {
3097       unsigned CurNodeOpcode = N.getOpcode();
3098       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3099       unsigned CaseSize;
3100       while (1) {
3101         // Get the size of this case.
3102         CaseSize = MatcherTable[MatcherIndex++];
3103         if (CaseSize & 128)
3104           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3105         if (CaseSize == 0) break;
3106 
3107         uint16_t Opc = MatcherTable[MatcherIndex++];
3108         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3109 
3110         // If the opcode matches, then we will execute this case.
3111         if (CurNodeOpcode == Opc)
3112           break;
3113 
3114         // Otherwise, skip over this case.
3115         MatcherIndex += CaseSize;
3116       }
3117 
3118       // If no cases matched, bail out.
3119       if (CaseSize == 0) break;
3120 
3121       // Otherwise, execute the case we found.
3122       DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
3123                    << " to " << MatcherIndex << "\n");
3124       continue;
3125     }
3126 
3127     case OPC_SwitchType: {
3128       MVT CurNodeVT = N.getSimpleValueType();
3129       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3130       unsigned CaseSize;
3131       while (1) {
3132         // Get the size of this case.
3133         CaseSize = MatcherTable[MatcherIndex++];
3134         if (CaseSize & 128)
3135           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3136         if (CaseSize == 0) break;
3137 
3138         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3139         if (CaseVT == MVT::iPTR)
3140           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3141 
3142         // If the VT matches, then we will execute this case.
3143         if (CurNodeVT == CaseVT)
3144           break;
3145 
3146         // Otherwise, skip over this case.
3147         MatcherIndex += CaseSize;
3148       }
3149 
3150       // If no cases matched, bail out.
3151       if (CaseSize == 0) break;
3152 
3153       // Otherwise, execute the case we found.
3154       DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3155                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
3156       continue;
3157     }
3158     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3159     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3160     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3161     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3162       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3163                             CurDAG->getDataLayout(),
3164                             Opcode - OPC_CheckChild0Type))
3165         break;
3166       continue;
3167     case OPC_CheckCondCode:
3168       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3169       continue;
3170     case OPC_CheckValueType:
3171       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3172                             CurDAG->getDataLayout()))
3173         break;
3174       continue;
3175     case OPC_CheckInteger:
3176       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3177       continue;
3178     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3179     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3180     case OPC_CheckChild4Integer:
3181       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3182                                Opcode-OPC_CheckChild0Integer)) break;
3183       continue;
3184     case OPC_CheckAndImm:
3185       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3186       continue;
3187     case OPC_CheckOrImm:
3188       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3189       continue;
3190 
3191     case OPC_CheckFoldableChainNode: {
3192       assert(NodeStack.size() != 1 && "No parent node");
3193       // Verify that all intermediate nodes between the root and this one have
3194       // a single use.
3195       bool HasMultipleUses = false;
3196       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3197         if (!NodeStack[i].hasOneUse()) {
3198           HasMultipleUses = true;
3199           break;
3200         }
3201       if (HasMultipleUses) break;
3202 
3203       // Check to see that the target thinks this is profitable to fold and that
3204       // we can fold it without inducing cycles in the graph.
3205       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3206                               NodeToMatch) ||
3207           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3208                          NodeToMatch, OptLevel,
3209                          true/*We validate our own chains*/))
3210         break;
3211 
3212       continue;
3213     }
3214     case OPC_EmitInteger: {
3215       MVT::SimpleValueType VT =
3216         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3217       int64_t Val = MatcherTable[MatcherIndex++];
3218       if (Val & 128)
3219         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3220       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3221                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3222                                                         VT), nullptr));
3223       continue;
3224     }
3225     case OPC_EmitRegister: {
3226       MVT::SimpleValueType VT =
3227         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3228       unsigned RegNo = MatcherTable[MatcherIndex++];
3229       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3230                               CurDAG->getRegister(RegNo, VT), nullptr));
3231       continue;
3232     }
3233     case OPC_EmitRegister2: {
3234       // For targets w/ more than 256 register names, the register enum
3235       // values are stored in two bytes in the matcher table (just like
3236       // opcodes).
3237       MVT::SimpleValueType VT =
3238         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3239       unsigned RegNo = MatcherTable[MatcherIndex++];
3240       RegNo |= MatcherTable[MatcherIndex++] << 8;
3241       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3242                               CurDAG->getRegister(RegNo, VT), nullptr));
3243       continue;
3244     }
3245 
3246     case OPC_EmitConvertToTarget:  {
3247       // Convert from IMM/FPIMM to target version.
3248       unsigned RecNo = MatcherTable[MatcherIndex++];
3249       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3250       SDValue Imm = RecordedNodes[RecNo].first;
3251 
3252       if (Imm->getOpcode() == ISD::Constant) {
3253         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3254         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3255                                         Imm.getValueType());
3256       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3257         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3258         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3259                                           Imm.getValueType());
3260       }
3261 
3262       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3263       continue;
3264     }
3265 
3266     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3267     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3268     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3269       // These are space-optimized forms of OPC_EmitMergeInputChains.
3270       assert(!InputChain.getNode() &&
3271              "EmitMergeInputChains should be the first chain producing node");
3272       assert(ChainNodesMatched.empty() &&
3273              "Should only have one EmitMergeInputChains per match");
3274 
3275       // Read all of the chained nodes.
3276       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3277       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3278       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3279 
3280       // FIXME: What if other value results of the node have uses not matched
3281       // by this pattern?
3282       if (ChainNodesMatched.back() != NodeToMatch &&
3283           !RecordedNodes[RecNo].first.hasOneUse()) {
3284         ChainNodesMatched.clear();
3285         break;
3286       }
3287 
3288       // Merge the input chains if they are not intra-pattern references.
3289       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3290 
3291       if (!InputChain.getNode())
3292         break;  // Failed to merge.
3293       continue;
3294     }
3295 
3296     case OPC_EmitMergeInputChains: {
3297       assert(!InputChain.getNode() &&
3298              "EmitMergeInputChains should be the first chain producing node");
3299       // This node gets a list of nodes we matched in the input that have
3300       // chains.  We want to token factor all of the input chains to these nodes
3301       // together.  However, if any of the input chains is actually one of the
3302       // nodes matched in this pattern, then we have an intra-match reference.
3303       // Ignore these because the newly token factored chain should not refer to
3304       // the old nodes.
3305       unsigned NumChains = MatcherTable[MatcherIndex++];
3306       assert(NumChains != 0 && "Can't TF zero chains");
3307 
3308       assert(ChainNodesMatched.empty() &&
3309              "Should only have one EmitMergeInputChains per match");
3310 
3311       // Read all of the chained nodes.
3312       for (unsigned i = 0; i != NumChains; ++i) {
3313         unsigned RecNo = MatcherTable[MatcherIndex++];
3314         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3315         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3316 
3317         // FIXME: What if other value results of the node have uses not matched
3318         // by this pattern?
3319         if (ChainNodesMatched.back() != NodeToMatch &&
3320             !RecordedNodes[RecNo].first.hasOneUse()) {
3321           ChainNodesMatched.clear();
3322           break;
3323         }
3324       }
3325 
3326       // If the inner loop broke out, the match fails.
3327       if (ChainNodesMatched.empty())
3328         break;
3329 
3330       // Merge the input chains if they are not intra-pattern references.
3331       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3332 
3333       if (!InputChain.getNode())
3334         break;  // Failed to merge.
3335 
3336       continue;
3337     }
3338 
3339     case OPC_EmitCopyToReg: {
3340       unsigned RecNo = MatcherTable[MatcherIndex++];
3341       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3342       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3343 
3344       if (!InputChain.getNode())
3345         InputChain = CurDAG->getEntryNode();
3346 
3347       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3348                                         DestPhysReg, RecordedNodes[RecNo].first,
3349                                         InputGlue);
3350 
3351       InputGlue = InputChain.getValue(1);
3352       continue;
3353     }
3354 
3355     case OPC_EmitNodeXForm: {
3356       unsigned XFormNo = MatcherTable[MatcherIndex++];
3357       unsigned RecNo = MatcherTable[MatcherIndex++];
3358       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3359       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3360       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3361       continue;
3362     }
3363 
3364     case OPC_EmitNode:     case OPC_MorphNodeTo:
3365     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3366     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3367       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3368       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3369       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3370       // Get the result VT list.
3371       unsigned NumVTs;
3372       // If this is one of the compressed forms, get the number of VTs based
3373       // on the Opcode. Otherwise read the next byte from the table.
3374       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3375         NumVTs = Opcode - OPC_MorphNodeTo0;
3376       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3377         NumVTs = Opcode - OPC_EmitNode0;
3378       else
3379         NumVTs = MatcherTable[MatcherIndex++];
3380       SmallVector<EVT, 4> VTs;
3381       for (unsigned i = 0; i != NumVTs; ++i) {
3382         MVT::SimpleValueType VT =
3383           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3384         if (VT == MVT::iPTR)
3385           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3386         VTs.push_back(VT);
3387       }
3388 
3389       if (EmitNodeInfo & OPFL_Chain)
3390         VTs.push_back(MVT::Other);
3391       if (EmitNodeInfo & OPFL_GlueOutput)
3392         VTs.push_back(MVT::Glue);
3393 
3394       // This is hot code, so optimize the two most common cases of 1 and 2
3395       // results.
3396       SDVTList VTList;
3397       if (VTs.size() == 1)
3398         VTList = CurDAG->getVTList(VTs[0]);
3399       else if (VTs.size() == 2)
3400         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3401       else
3402         VTList = CurDAG->getVTList(VTs);
3403 
3404       // Get the operand list.
3405       unsigned NumOps = MatcherTable[MatcherIndex++];
3406       SmallVector<SDValue, 8> Ops;
3407       for (unsigned i = 0; i != NumOps; ++i) {
3408         unsigned RecNo = MatcherTable[MatcherIndex++];
3409         if (RecNo & 128)
3410           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3411 
3412         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3413         Ops.push_back(RecordedNodes[RecNo].first);
3414       }
3415 
3416       // If there are variadic operands to add, handle them now.
3417       if (EmitNodeInfo & OPFL_VariadicInfo) {
3418         // Determine the start index to copy from.
3419         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3420         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3421         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3422                "Invalid variadic node");
3423         // Copy all of the variadic operands, not including a potential glue
3424         // input.
3425         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3426              i != e; ++i) {
3427           SDValue V = NodeToMatch->getOperand(i);
3428           if (V.getValueType() == MVT::Glue) break;
3429           Ops.push_back(V);
3430         }
3431       }
3432 
3433       // If this has chain/glue inputs, add them.
3434       if (EmitNodeInfo & OPFL_Chain)
3435         Ops.push_back(InputChain);
3436       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3437         Ops.push_back(InputGlue);
3438 
3439       // Create the node.
3440       SDNode *Res = nullptr;
3441       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3442                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3443       if (!IsMorphNodeTo) {
3444         // If this is a normal EmitNode command, just create the new node and
3445         // add the results to the RecordedNodes list.
3446         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3447                                      VTList, Ops);
3448 
3449         // Add all the non-glue/non-chain results to the RecordedNodes list.
3450         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3451           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3452           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3453                                                              nullptr));
3454         }
3455 
3456       } else {
3457         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3458                "NodeToMatch was removed partway through selection");
3459         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3460                                                               SDNode *E) {
3461           auto &Chain = ChainNodesMatched;
3462           assert((!E || !is_contained(Chain, N)) &&
3463                  "Chain node replaced during MorphNode");
3464           Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3465         });
3466         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
3467       }
3468 
3469       // If the node had chain/glue results, update our notion of the current
3470       // chain and glue.
3471       if (EmitNodeInfo & OPFL_GlueOutput) {
3472         InputGlue = SDValue(Res, VTs.size()-1);
3473         if (EmitNodeInfo & OPFL_Chain)
3474           InputChain = SDValue(Res, VTs.size()-2);
3475       } else if (EmitNodeInfo & OPFL_Chain)
3476         InputChain = SDValue(Res, VTs.size()-1);
3477 
3478       // If the OPFL_MemRefs glue is set on this node, slap all of the
3479       // accumulated memrefs onto it.
3480       //
3481       // FIXME: This is vastly incorrect for patterns with multiple outputs
3482       // instructions that access memory and for ComplexPatterns that match
3483       // loads.
3484       if (EmitNodeInfo & OPFL_MemRefs) {
3485         // Only attach load or store memory operands if the generated
3486         // instruction may load or store.
3487         const MCInstrDesc &MCID = TII->get(TargetOpc);
3488         bool mayLoad = MCID.mayLoad();
3489         bool mayStore = MCID.mayStore();
3490 
3491         unsigned NumMemRefs = 0;
3492         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3493                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3494           if ((*I)->isLoad()) {
3495             if (mayLoad)
3496               ++NumMemRefs;
3497           } else if ((*I)->isStore()) {
3498             if (mayStore)
3499               ++NumMemRefs;
3500           } else {
3501             ++NumMemRefs;
3502           }
3503         }
3504 
3505         MachineSDNode::mmo_iterator MemRefs =
3506           MF->allocateMemRefsArray(NumMemRefs);
3507 
3508         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3509         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3510                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3511           if ((*I)->isLoad()) {
3512             if (mayLoad)
3513               *MemRefsPos++ = *I;
3514           } else if ((*I)->isStore()) {
3515             if (mayStore)
3516               *MemRefsPos++ = *I;
3517           } else {
3518             *MemRefsPos++ = *I;
3519           }
3520         }
3521 
3522         cast<MachineSDNode>(Res)
3523           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3524       }
3525 
3526       DEBUG(dbgs() << "  "
3527                    << (IsMorphNodeTo ? "Morphed" : "Created")
3528                    << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3529 
3530       // If this was a MorphNodeTo then we're completely done!
3531       if (IsMorphNodeTo) {
3532         // Update chain uses.
3533         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3534         return;
3535       }
3536       continue;
3537     }
3538 
3539     case OPC_CompleteMatch: {
3540       // The match has been completed, and any new nodes (if any) have been
3541       // created.  Patch up references to the matched dag to use the newly
3542       // created nodes.
3543       unsigned NumResults = MatcherTable[MatcherIndex++];
3544 
3545       for (unsigned i = 0; i != NumResults; ++i) {
3546         unsigned ResSlot = MatcherTable[MatcherIndex++];
3547         if (ResSlot & 128)
3548           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3549 
3550         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3551         SDValue Res = RecordedNodes[ResSlot].first;
3552 
3553         assert(i < NodeToMatch->getNumValues() &&
3554                NodeToMatch->getValueType(i) != MVT::Other &&
3555                NodeToMatch->getValueType(i) != MVT::Glue &&
3556                "Invalid number of results to complete!");
3557         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3558                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3559                 Res.getValueType() == MVT::iPTR ||
3560                 NodeToMatch->getValueType(i).getSizeInBits() ==
3561                     Res.getValueSizeInBits()) &&
3562                "invalid replacement");
3563         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3564       }
3565 
3566       // Update chain uses.
3567       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3568 
3569       // If the root node defines glue, we need to update it to the glue result.
3570       // TODO: This never happens in our tests and I think it can be removed /
3571       // replaced with an assert, but if we do it this the way the change is
3572       // NFC.
3573       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3574               MVT::Glue &&
3575           InputGlue.getNode())
3576         CurDAG->ReplaceAllUsesOfValueWith(
3577             SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue);
3578 
3579       assert(NodeToMatch->use_empty() &&
3580              "Didn't replace all uses of the node?");
3581       CurDAG->RemoveDeadNode(NodeToMatch);
3582 
3583       return;
3584     }
3585     }
3586 
3587     // If the code reached this point, then the match failed.  See if there is
3588     // another child to try in the current 'Scope', otherwise pop it until we
3589     // find a case to check.
3590     DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3591     ++NumDAGIselRetries;
3592     while (1) {
3593       if (MatchScopes.empty()) {
3594         CannotYetSelect(NodeToMatch);
3595         return;
3596       }
3597 
3598       // Restore the interpreter state back to the point where the scope was
3599       // formed.
3600       MatchScope &LastScope = MatchScopes.back();
3601       RecordedNodes.resize(LastScope.NumRecordedNodes);
3602       NodeStack.clear();
3603       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3604       N = NodeStack.back();
3605 
3606       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3607         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3608       MatcherIndex = LastScope.FailIndex;
3609 
3610       DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3611 
3612       InputChain = LastScope.InputChain;
3613       InputGlue = LastScope.InputGlue;
3614       if (!LastScope.HasChainNodesMatched)
3615         ChainNodesMatched.clear();
3616 
3617       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3618       // we have reached the end of this scope, otherwise we have another child
3619       // in the current scope to try.
3620       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3621       if (NumToSkip & 128)
3622         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3623 
3624       // If we have another child in this scope to match, update FailIndex and
3625       // try it.
3626       if (NumToSkip != 0) {
3627         LastScope.FailIndex = MatcherIndex+NumToSkip;
3628         break;
3629       }
3630 
3631       // End of this scope, pop it and try the next child in the containing
3632       // scope.
3633       MatchScopes.pop_back();
3634     }
3635   }
3636 }
3637 
3638 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3639   std::string msg;
3640   raw_string_ostream Msg(msg);
3641   Msg << "Cannot select: ";
3642 
3643   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3644       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3645       N->getOpcode() != ISD::INTRINSIC_VOID) {
3646     N->printrFull(Msg, CurDAG);
3647     Msg << "\nIn function: " << MF->getName();
3648   } else {
3649     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3650     unsigned iid =
3651       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3652     if (iid < Intrinsic::num_intrinsics)
3653       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3654     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3655       Msg << "target intrinsic %" << TII->getName(iid);
3656     else
3657       Msg << "unknown intrinsic #" << iid;
3658   }
3659   report_fatal_error(Msg.str());
3660 }
3661 
3662 char SelectionDAGISel::ID = 0;
3663