1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachinePassRegistry.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/SchedulerRegistry.h"
49 #include "llvm/CodeGen/SelectionDAG.h"
50 #include "llvm/CodeGen/SelectionDAGNodes.h"
51 #include "llvm/CodeGen/StackProtector.h"
52 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugInfoMetadata.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DiagnosticInfo.h"
64 #include "llvm/IR/Dominators.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/InlineAsm.h"
67 #include "llvm/IR/InstIterator.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instruction.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Intrinsics.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/Type.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/MC/MCInstrDesc.h"
78 #include "llvm/MC/MCRegisterInfo.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/Timer.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetIntrinsicInfo.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include <algorithm>
96 #include <cassert>
97 #include <cstdint>
98 #include <iterator>
99 #include <limits>
100 #include <memory>
101 #include <string>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 
107 #define DEBUG_TYPE "isel"
108 
109 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
110 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
111 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
112 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
113 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
114 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
115 STATISTIC(NumFastIselFailLowerArguments,
116           "Number of entry blocks where fast isel failed to lower arguments");
117 
118 static cl::opt<int> EnableFastISelAbort(
119     "fast-isel-abort", cl::Hidden,
120     cl::desc("Enable abort calls when \"fast\" instruction selection "
121              "fails to lower an instruction: 0 disable the abort, 1 will "
122              "abort but for args, calls and terminators, 2 will also "
123              "abort for argument lowering, and 3 will never fallback "
124              "to SelectionDAG."));
125 
126 static cl::opt<bool> EnableFastISelFallbackReport(
127     "fast-isel-report-on-fallback", cl::Hidden,
128     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
129              "falls back to SelectionDAG."));
130 
131 static cl::opt<bool>
132 UseMBPI("use-mbpi",
133         cl::desc("use Machine Branch Probability Info"),
134         cl::init(true), cl::Hidden);
135 
136 #ifndef NDEBUG
137 static cl::opt<std::string>
138 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
139                         cl::desc("Only display the basic block whose name "
140                                  "matches this for all view-*-dags options"));
141 static cl::opt<bool>
142 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
143           cl::desc("Pop up a window to show dags before the first "
144                    "dag combine pass"));
145 static cl::opt<bool>
146 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
147           cl::desc("Pop up a window to show dags before legalize types"));
148 static cl::opt<bool>
149 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
150           cl::desc("Pop up a window to show dags before legalize"));
151 static cl::opt<bool>
152 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
153           cl::desc("Pop up a window to show dags before the second "
154                    "dag combine pass"));
155 static cl::opt<bool>
156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
157           cl::desc("Pop up a window to show dags before the post legalize types"
158                    " dag combine pass"));
159 static cl::opt<bool>
160 ViewISelDAGs("view-isel-dags", cl::Hidden,
161           cl::desc("Pop up a window to show isel dags as they are selected"));
162 static cl::opt<bool>
163 ViewSchedDAGs("view-sched-dags", cl::Hidden,
164           cl::desc("Pop up a window to show sched dags as they are processed"));
165 static cl::opt<bool>
166 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
167       cl::desc("Pop up a window to show SUnit dags after they are processed"));
168 #else
169 static const bool ViewDAGCombine1 = false,
170                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
171                   ViewDAGCombine2 = false,
172                   ViewDAGCombineLT = false,
173                   ViewISelDAGs = false, ViewSchedDAGs = false,
174                   ViewSUnitDAGs = false;
175 #endif
176 
177 //===---------------------------------------------------------------------===//
178 ///
179 /// RegisterScheduler class - Track the registration of instruction schedulers.
180 ///
181 //===---------------------------------------------------------------------===//
182 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
183     RegisterScheduler::Registry;
184 
185 //===---------------------------------------------------------------------===//
186 ///
187 /// ISHeuristic command line option for instruction schedulers.
188 ///
189 //===---------------------------------------------------------------------===//
190 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
191                RegisterPassParser<RegisterScheduler>>
192 ISHeuristic("pre-RA-sched",
193             cl::init(&createDefaultScheduler), cl::Hidden,
194             cl::desc("Instruction schedulers available (before register"
195                      " allocation):"));
196 
197 static RegisterScheduler
198 defaultListDAGScheduler("default", "Best scheduler for the target",
199                         createDefaultScheduler);
200 
201 namespace llvm {
202 
203   //===--------------------------------------------------------------------===//
204   /// This class is used by SelectionDAGISel to temporarily override
205   /// the optimization level on a per-function basis.
206   class OptLevelChanger {
207     SelectionDAGISel &IS;
208     CodeGenOpt::Level SavedOptLevel;
209     bool SavedFastISel;
210 
211   public:
212     OptLevelChanger(SelectionDAGISel &ISel,
213                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
214       SavedOptLevel = IS.OptLevel;
215       if (NewOptLevel == SavedOptLevel)
216         return;
217       IS.OptLevel = NewOptLevel;
218       IS.TM.setOptLevel(NewOptLevel);
219       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
220                         << IS.MF->getFunction().getName() << "\n");
221       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
222                         << NewOptLevel << "\n");
223       SavedFastISel = IS.TM.Options.EnableFastISel;
224       if (NewOptLevel == CodeGenOpt::None) {
225         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
226         LLVM_DEBUG(
227             dbgs() << "\tFastISel is "
228                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
229                    << "\n");
230       }
231     }
232 
233     ~OptLevelChanger() {
234       if (IS.OptLevel == SavedOptLevel)
235         return;
236       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
237                         << IS.MF->getFunction().getName() << "\n");
238       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
239                         << SavedOptLevel << "\n");
240       IS.OptLevel = SavedOptLevel;
241       IS.TM.setOptLevel(SavedOptLevel);
242       IS.TM.setFastISel(SavedFastISel);
243     }
244   };
245 
246   //===--------------------------------------------------------------------===//
247   /// createDefaultScheduler - This creates an instruction scheduler appropriate
248   /// for the target.
249   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
250                                              CodeGenOpt::Level OptLevel) {
251     const TargetLowering *TLI = IS->TLI;
252     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
253 
254     // Try first to see if the Target has its own way of selecting a scheduler
255     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
256       return SchedulerCtor(IS, OptLevel);
257     }
258 
259     if (OptLevel == CodeGenOpt::None ||
260         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
261         TLI->getSchedulingPreference() == Sched::Source)
262       return createSourceListDAGScheduler(IS, OptLevel);
263     if (TLI->getSchedulingPreference() == Sched::RegPressure)
264       return createBURRListDAGScheduler(IS, OptLevel);
265     if (TLI->getSchedulingPreference() == Sched::Hybrid)
266       return createHybridListDAGScheduler(IS, OptLevel);
267     if (TLI->getSchedulingPreference() == Sched::VLIW)
268       return createVLIWDAGScheduler(IS, OptLevel);
269     assert(TLI->getSchedulingPreference() == Sched::ILP &&
270            "Unknown sched type!");
271     return createILPListDAGScheduler(IS, OptLevel);
272   }
273 
274 } // end namespace llvm
275 
276 // EmitInstrWithCustomInserter - This method should be implemented by targets
277 // that mark instructions with the 'usesCustomInserter' flag.  These
278 // instructions are special in various ways, which require special support to
279 // insert.  The specified MachineInstr is created but not inserted into any
280 // basic blocks, and this method is called to expand it into a sequence of
281 // instructions, potentially also creating new basic blocks and control flow.
282 // When new basic blocks are inserted and the edges from MBB to its successors
283 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
284 // DenseMap.
285 MachineBasicBlock *
286 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
287                                             MachineBasicBlock *MBB) const {
288 #ifndef NDEBUG
289   dbgs() << "If a target marks an instruction with "
290           "'usesCustomInserter', it must implement "
291           "TargetLowering::EmitInstrWithCustomInserter!";
292 #endif
293   llvm_unreachable(nullptr);
294 }
295 
296 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
297                                                    SDNode *Node) const {
298   assert(!MI.hasPostISelHook() &&
299          "If a target marks an instruction with 'hasPostISelHook', "
300          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
301 }
302 
303 //===----------------------------------------------------------------------===//
304 // SelectionDAGISel code
305 //===----------------------------------------------------------------------===//
306 
307 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
308                                    CodeGenOpt::Level OL) :
309   MachineFunctionPass(ID), TM(tm),
310   FuncInfo(new FunctionLoweringInfo()),
311   SwiftError(new SwiftErrorValueTracking()),
312   CurDAG(new SelectionDAG(tm, OL)),
313   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, *SwiftError, OL)),
314   AA(), GFI(),
315   OptLevel(OL),
316   DAGSize(0) {
317     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
318     initializeBranchProbabilityInfoWrapperPassPass(
319         *PassRegistry::getPassRegistry());
320     initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
321     initializeTargetLibraryInfoWrapperPassPass(
322         *PassRegistry::getPassRegistry());
323   }
324 
325 SelectionDAGISel::~SelectionDAGISel() {
326   delete SDB;
327   delete CurDAG;
328   delete FuncInfo;
329   delete SwiftError;
330 }
331 
332 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
333   if (OptLevel != CodeGenOpt::None)
334     AU.addRequired<AAResultsWrapperPass>();
335   AU.addRequired<GCModuleInfo>();
336   AU.addRequired<StackProtector>();
337   AU.addPreserved<GCModuleInfo>();
338   AU.addRequired<TargetLibraryInfoWrapperPass>();
339   AU.addRequired<TargetTransformInfoWrapperPass>();
340   if (UseMBPI && OptLevel != CodeGenOpt::None)
341     AU.addRequired<BranchProbabilityInfoWrapperPass>();
342   MachineFunctionPass::getAnalysisUsage(AU);
343 }
344 
345 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
346 /// may trap on it.  In this case we have to split the edge so that the path
347 /// through the predecessor block that doesn't go to the phi block doesn't
348 /// execute the possibly trapping instruction. If available, we pass domtree
349 /// and loop info to be updated when we split critical edges. This is because
350 /// SelectionDAGISel preserves these analyses.
351 /// This is required for correctness, so it must be done at -O0.
352 ///
353 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
354                                          LoopInfo *LI) {
355   // Loop for blocks with phi nodes.
356   for (BasicBlock &BB : Fn) {
357     PHINode *PN = dyn_cast<PHINode>(BB.begin());
358     if (!PN) continue;
359 
360   ReprocessBlock:
361     // For each block with a PHI node, check to see if any of the input values
362     // are potentially trapping constant expressions.  Constant expressions are
363     // the only potentially trapping value that can occur as the argument to a
364     // PHI.
365     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
366       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
367         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
368         if (!CE || !CE->canTrap()) continue;
369 
370         // The only case we have to worry about is when the edge is critical.
371         // Since this block has a PHI Node, we assume it has multiple input
372         // edges: check to see if the pred has multiple successors.
373         BasicBlock *Pred = PN->getIncomingBlock(i);
374         if (Pred->getTerminator()->getNumSuccessors() == 1)
375           continue;
376 
377         // Okay, we have to split this edge.
378         SplitCriticalEdge(
379             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
380             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
381         goto ReprocessBlock;
382       }
383   }
384 }
385 
386 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
387                                          MachineModuleInfo &MMI) {
388   // Only needed for MSVC
389   if (!TT.isKnownWindowsMSVCEnvironment())
390     return;
391 
392   // If it's already set, nothing to do.
393   if (MMI.usesMSVCFloatingPoint())
394     return;
395 
396   for (const Instruction &I : instructions(F)) {
397     if (I.getType()->isFPOrFPVectorTy()) {
398       MMI.setUsesMSVCFloatingPoint(true);
399       return;
400     }
401     for (const auto &Op : I.operands()) {
402       if (Op->getType()->isFPOrFPVectorTy()) {
403         MMI.setUsesMSVCFloatingPoint(true);
404         return;
405       }
406     }
407   }
408 }
409 
410 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
411   // If we already selected that function, we do not need to run SDISel.
412   if (mf.getProperties().hasProperty(
413           MachineFunctionProperties::Property::Selected))
414     return false;
415   // Do some sanity-checking on the command-line options.
416   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
417          "-fast-isel-abort > 0 requires -fast-isel");
418 
419   const Function &Fn = mf.getFunction();
420   MF = &mf;
421 
422   // Reset the target options before resetting the optimization
423   // level below.
424   // FIXME: This is a horrible hack and should be processed via
425   // codegen looking at the optimization level explicitly when
426   // it wants to look at it.
427   TM.resetTargetOptions(Fn);
428   // Reset OptLevel to None for optnone functions.
429   CodeGenOpt::Level NewOptLevel = OptLevel;
430   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
431     NewOptLevel = CodeGenOpt::None;
432   OptLevelChanger OLC(*this, NewOptLevel);
433 
434   TII = MF->getSubtarget().getInstrInfo();
435   TLI = MF->getSubtarget().getTargetLowering();
436   RegInfo = &MF->getRegInfo();
437   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
438   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
439   ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
440   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
441   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
442   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
443   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
444 
445   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
446 
447   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
448 
449   CurDAG->init(*MF, *ORE, this, LibInfo,
450    getAnalysisIfAvailable<LegacyDivergenceAnalysis>());
451   FuncInfo->set(Fn, *MF, CurDAG);
452   SwiftError->setFunction(*MF);
453 
454   // Now get the optional analyzes if we want to.
455   // This is based on the possibly changed OptLevel (after optnone is taken
456   // into account).  That's unfortunate but OK because it just means we won't
457   // ask for passes that have been required anyway.
458 
459   if (UseMBPI && OptLevel != CodeGenOpt::None)
460     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
461   else
462     FuncInfo->BPI = nullptr;
463 
464   if (OptLevel != CodeGenOpt::None)
465     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
466   else
467     AA = nullptr;
468 
469   SDB->init(GFI, AA, LibInfo);
470 
471   MF->setHasInlineAsm(false);
472 
473   FuncInfo->SplitCSR = false;
474 
475   // We split CSR if the target supports it for the given function
476   // and the function has only return exits.
477   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
478     FuncInfo->SplitCSR = true;
479 
480     // Collect all the return blocks.
481     for (const BasicBlock &BB : Fn) {
482       if (!succ_empty(&BB))
483         continue;
484 
485       const Instruction *Term = BB.getTerminator();
486       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
487         continue;
488 
489       // Bail out if the exit block is not Return nor Unreachable.
490       FuncInfo->SplitCSR = false;
491       break;
492     }
493   }
494 
495   MachineBasicBlock *EntryMBB = &MF->front();
496   if (FuncInfo->SplitCSR)
497     // This performs initialization so lowering for SplitCSR will be correct.
498     TLI->initializeSplitCSR(EntryMBB);
499 
500   SelectAllBasicBlocks(Fn);
501   if (FastISelFailed && EnableFastISelFallbackReport) {
502     DiagnosticInfoISelFallback DiagFallback(Fn);
503     Fn.getContext().diagnose(DiagFallback);
504   }
505 
506   // Replace forward-declared registers with the registers containing
507   // the desired value.
508   // Note: it is important that this happens **before** the call to
509   // EmitLiveInCopies, since implementations can skip copies of unused
510   // registers. If we don't apply the reg fixups before, some registers may
511   // appear as unused and will be skipped, resulting in bad MI.
512   MachineRegisterInfo &MRI = MF->getRegInfo();
513   for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(),
514                                               E = FuncInfo->RegFixups.end();
515        I != E; ++I) {
516     unsigned From = I->first;
517     unsigned To = I->second;
518     // If To is also scheduled to be replaced, find what its ultimate
519     // replacement is.
520     while (true) {
521       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
522       if (J == E)
523         break;
524       To = J->second;
525     }
526     // Make sure the new register has a sufficiently constrained register class.
527     if (TargetRegisterInfo::isVirtualRegister(From) &&
528         TargetRegisterInfo::isVirtualRegister(To))
529       MRI.constrainRegClass(To, MRI.getRegClass(From));
530     // Replace it.
531 
532     // Replacing one register with another won't touch the kill flags.
533     // We need to conservatively clear the kill flags as a kill on the old
534     // register might dominate existing uses of the new register.
535     if (!MRI.use_empty(To))
536       MRI.clearKillFlags(From);
537     MRI.replaceRegWith(From, To);
538   }
539 
540   // If the first basic block in the function has live ins that need to be
541   // copied into vregs, emit the copies into the top of the block before
542   // emitting the code for the block.
543   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
544   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
545 
546   // Insert copies in the entry block and the return blocks.
547   if (FuncInfo->SplitCSR) {
548     SmallVector<MachineBasicBlock*, 4> Returns;
549     // Collect all the return blocks.
550     for (MachineBasicBlock &MBB : mf) {
551       if (!MBB.succ_empty())
552         continue;
553 
554       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
555       if (Term != MBB.end() && Term->isReturn()) {
556         Returns.push_back(&MBB);
557         continue;
558       }
559     }
560     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
561   }
562 
563   DenseMap<unsigned, unsigned> LiveInMap;
564   if (!FuncInfo->ArgDbgValues.empty())
565     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
566       if (LI.second)
567         LiveInMap.insert(LI);
568 
569   // Insert DBG_VALUE instructions for function arguments to the entry block.
570   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
571     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
572     bool hasFI = MI->getOperand(0).isFI();
573     unsigned Reg =
574         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
575     if (TargetRegisterInfo::isPhysicalRegister(Reg))
576       EntryMBB->insert(EntryMBB->begin(), MI);
577     else {
578       MachineInstr *Def = RegInfo->getVRegDef(Reg);
579       if (Def) {
580         MachineBasicBlock::iterator InsertPos = Def;
581         // FIXME: VR def may not be in entry block.
582         Def->getParent()->insert(std::next(InsertPos), MI);
583       } else
584         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
585                           << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
586     }
587 
588     // If Reg is live-in then update debug info to track its copy in a vreg.
589     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
590     if (LDI != LiveInMap.end()) {
591       assert(!hasFI && "There's no handling of frame pointer updating here yet "
592                        "- add if needed");
593       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
594       MachineBasicBlock::iterator InsertPos = Def;
595       const MDNode *Variable = MI->getDebugVariable();
596       const MDNode *Expr = MI->getDebugExpression();
597       DebugLoc DL = MI->getDebugLoc();
598       bool IsIndirect = MI->isIndirectDebugValue();
599       if (IsIndirect)
600         assert(MI->getOperand(1).getImm() == 0 &&
601                "DBG_VALUE with nonzero offset");
602       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
603              "Expected inlined-at fields to agree");
604       // Def is never a terminator here, so it is ok to increment InsertPos.
605       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
606               IsIndirect, LDI->second, Variable, Expr);
607 
608       // If this vreg is directly copied into an exported register then
609       // that COPY instructions also need DBG_VALUE, if it is the only
610       // user of LDI->second.
611       MachineInstr *CopyUseMI = nullptr;
612       for (MachineRegisterInfo::use_instr_iterator
613            UI = RegInfo->use_instr_begin(LDI->second),
614            E = RegInfo->use_instr_end(); UI != E; ) {
615         MachineInstr *UseMI = &*(UI++);
616         if (UseMI->isDebugValue()) continue;
617         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
618           CopyUseMI = UseMI; continue;
619         }
620         // Otherwise this is another use or second copy use.
621         CopyUseMI = nullptr; break;
622       }
623       if (CopyUseMI) {
624         // Use MI's debug location, which describes where Variable was
625         // declared, rather than whatever is attached to CopyUseMI.
626         MachineInstr *NewMI =
627             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
628                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
629         MachineBasicBlock::iterator Pos = CopyUseMI;
630         EntryMBB->insertAfter(Pos, NewMI);
631       }
632     }
633   }
634 
635   // Determine if there are any calls in this machine function.
636   MachineFrameInfo &MFI = MF->getFrameInfo();
637   for (const auto &MBB : *MF) {
638     if (MFI.hasCalls() && MF->hasInlineAsm())
639       break;
640 
641     for (const auto &MI : MBB) {
642       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
643       if ((MCID.isCall() && !MCID.isReturn()) ||
644           MI.isStackAligningInlineAsm()) {
645         MFI.setHasCalls(true);
646       }
647       if (MI.isInlineAsm()) {
648         MF->setHasInlineAsm(true);
649       }
650     }
651   }
652 
653   // Determine if there is a call to setjmp in the machine function.
654   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
655 
656   // Determine if floating point is used for msvc
657   computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
658 
659   TLI->finalizeLowering(*MF);
660 
661   // Release function-specific state. SDB and CurDAG are already cleared
662   // at this point.
663   FuncInfo->clear();
664 
665   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
666   LLVM_DEBUG(MF->print(dbgs()));
667 
668   return true;
669 }
670 
671 static void reportFastISelFailure(MachineFunction &MF,
672                                   OptimizationRemarkEmitter &ORE,
673                                   OptimizationRemarkMissed &R,
674                                   bool ShouldAbort) {
675   // Print the function name explicitly if we don't have a debug location (which
676   // makes the diagnostic less useful) or if we're going to emit a raw error.
677   if (!R.getLocation().isValid() || ShouldAbort)
678     R << (" (in function: " + MF.getName() + ")").str();
679 
680   if (ShouldAbort)
681     report_fatal_error(R.getMsg());
682 
683   ORE.emit(R);
684 }
685 
686 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
687                                         BasicBlock::const_iterator End,
688                                         bool &HadTailCall) {
689   // Allow creating illegal types during DAG building for the basic block.
690   CurDAG->NewNodesMustHaveLegalTypes = false;
691 
692   // Lower the instructions. If a call is emitted as a tail call, cease emitting
693   // nodes for this block.
694   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
695     if (!ElidedArgCopyInstrs.count(&*I))
696       SDB->visit(*I);
697   }
698 
699   // Make sure the root of the DAG is up-to-date.
700   CurDAG->setRoot(SDB->getControlRoot());
701   HadTailCall = SDB->HasTailCall;
702   SDB->resolveOrClearDbgInfo();
703   SDB->clear();
704 
705   // Final step, emit the lowered DAG as machine code.
706   CodeGenAndEmitDAG();
707 }
708 
709 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
710   SmallPtrSet<SDNode*, 16> VisitedNodes;
711   SmallVector<SDNode*, 128> Worklist;
712 
713   Worklist.push_back(CurDAG->getRoot().getNode());
714 
715   KnownBits Known;
716 
717   do {
718     SDNode *N = Worklist.pop_back_val();
719 
720     // If we've already seen this node, ignore it.
721     if (!VisitedNodes.insert(N).second)
722       continue;
723 
724     // Otherwise, add all chain operands to the worklist.
725     for (const SDValue &Op : N->op_values())
726       if (Op.getValueType() == MVT::Other)
727         Worklist.push_back(Op.getNode());
728 
729     // If this is a CopyToReg with a vreg dest, process it.
730     if (N->getOpcode() != ISD::CopyToReg)
731       continue;
732 
733     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
734     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
735       continue;
736 
737     // Ignore non-integer values.
738     SDValue Src = N->getOperand(2);
739     EVT SrcVT = Src.getValueType();
740     if (!SrcVT.isInteger())
741       continue;
742 
743     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
744     Known = CurDAG->computeKnownBits(Src);
745     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
746   } while (!Worklist.empty());
747 }
748 
749 void SelectionDAGISel::CodeGenAndEmitDAG() {
750   StringRef GroupName = "sdag";
751   StringRef GroupDescription = "Instruction Selection and Scheduling";
752   std::string BlockName;
753   bool MatchFilterBB = false; (void)MatchFilterBB;
754 #ifndef NDEBUG
755   TargetTransformInfo &TTI =
756       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
757 #endif
758 
759   // Pre-type legalization allow creation of any node types.
760   CurDAG->NewNodesMustHaveLegalTypes = false;
761 
762 #ifndef NDEBUG
763   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
764                    FilterDAGBasicBlockName ==
765                        FuncInfo->MBB->getBasicBlock()->getName());
766 #endif
767 #ifdef NDEBUG
768   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
769       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
770       ViewSUnitDAGs)
771 #endif
772   {
773     BlockName =
774         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
775   }
776   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
777                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
778                     << "'\n";
779              CurDAG->dump());
780 
781   if (ViewDAGCombine1 && MatchFilterBB)
782     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
783 
784   // Run the DAG combiner in pre-legalize mode.
785   {
786     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
787                        GroupDescription, TimePassesIsEnabled);
788     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
789   }
790 
791 #ifndef NDEBUG
792   if (TTI.hasBranchDivergence())
793     CurDAG->VerifyDAGDiverence();
794 #endif
795 
796   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
797                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
798                     << "'\n";
799              CurDAG->dump());
800 
801   // Second step, hack on the DAG until it only uses operations and types that
802   // the target supports.
803   if (ViewLegalizeTypesDAGs && MatchFilterBB)
804     CurDAG->viewGraph("legalize-types input for " + BlockName);
805 
806   bool Changed;
807   {
808     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
809                        GroupDescription, TimePassesIsEnabled);
810     Changed = CurDAG->LegalizeTypes();
811   }
812 
813 #ifndef NDEBUG
814   if (TTI.hasBranchDivergence())
815     CurDAG->VerifyDAGDiverence();
816 #endif
817 
818   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
819                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
820                     << "'\n";
821              CurDAG->dump());
822 
823   // Only allow creation of legal node types.
824   CurDAG->NewNodesMustHaveLegalTypes = true;
825 
826   if (Changed) {
827     if (ViewDAGCombineLT && MatchFilterBB)
828       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
829 
830     // Run the DAG combiner in post-type-legalize mode.
831     {
832       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
833                          GroupName, GroupDescription, TimePassesIsEnabled);
834       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
835     }
836 
837 #ifndef NDEBUG
838     if (TTI.hasBranchDivergence())
839       CurDAG->VerifyDAGDiverence();
840 #endif
841 
842     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
843                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
844                       << "'\n";
845                CurDAG->dump());
846   }
847 
848   {
849     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
850                        GroupDescription, TimePassesIsEnabled);
851     Changed = CurDAG->LegalizeVectors();
852   }
853 
854   if (Changed) {
855     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
856                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
857                       << "'\n";
858                CurDAG->dump());
859 
860     {
861       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
862                          GroupDescription, TimePassesIsEnabled);
863       CurDAG->LegalizeTypes();
864     }
865 
866     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
867                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
868                       << "'\n";
869                CurDAG->dump());
870 
871     if (ViewDAGCombineLT && MatchFilterBB)
872       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
873 
874     // Run the DAG combiner in post-type-legalize mode.
875     {
876       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
877                          GroupName, GroupDescription, TimePassesIsEnabled);
878       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
879     }
880 
881     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
882                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
883                       << "'\n";
884                CurDAG->dump());
885 
886 #ifndef NDEBUG
887     if (TTI.hasBranchDivergence())
888       CurDAG->VerifyDAGDiverence();
889 #endif
890   }
891 
892   if (ViewLegalizeDAGs && MatchFilterBB)
893     CurDAG->viewGraph("legalize input for " + BlockName);
894 
895   {
896     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
897                        GroupDescription, TimePassesIsEnabled);
898     CurDAG->Legalize();
899   }
900 
901 #ifndef NDEBUG
902   if (TTI.hasBranchDivergence())
903     CurDAG->VerifyDAGDiverence();
904 #endif
905 
906   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
907                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
908                     << "'\n";
909              CurDAG->dump());
910 
911   if (ViewDAGCombine2 && MatchFilterBB)
912     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
913 
914   // Run the DAG combiner in post-legalize mode.
915   {
916     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
917                        GroupDescription, TimePassesIsEnabled);
918     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
919   }
920 
921 #ifndef NDEBUG
922   if (TTI.hasBranchDivergence())
923     CurDAG->VerifyDAGDiverence();
924 #endif
925 
926   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
927                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
928                     << "'\n";
929              CurDAG->dump());
930 
931   if (OptLevel != CodeGenOpt::None)
932     ComputeLiveOutVRegInfo();
933 
934   if (ViewISelDAGs && MatchFilterBB)
935     CurDAG->viewGraph("isel input for " + BlockName);
936 
937   // Third, instruction select all of the operations to machine code, adding the
938   // code to the MachineBasicBlock.
939   {
940     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
941                        GroupDescription, TimePassesIsEnabled);
942     DoInstructionSelection();
943   }
944 
945   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
946                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
947                     << "'\n";
948              CurDAG->dump());
949 
950   if (ViewSchedDAGs && MatchFilterBB)
951     CurDAG->viewGraph("scheduler input for " + BlockName);
952 
953   // Schedule machine code.
954   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
955   {
956     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
957                        GroupDescription, TimePassesIsEnabled);
958     Scheduler->Run(CurDAG, FuncInfo->MBB);
959   }
960 
961   if (ViewSUnitDAGs && MatchFilterBB)
962     Scheduler->viewGraph();
963 
964   // Emit machine code to BB.  This can change 'BB' to the last block being
965   // inserted into.
966   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
967   {
968     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
969                        GroupDescription, TimePassesIsEnabled);
970 
971     // FuncInfo->InsertPt is passed by reference and set to the end of the
972     // scheduled instructions.
973     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
974   }
975 
976   // If the block was split, make sure we update any references that are used to
977   // update PHI nodes later on.
978   if (FirstMBB != LastMBB)
979     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
980 
981   // Free the scheduler state.
982   {
983     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
984                        GroupDescription, TimePassesIsEnabled);
985     delete Scheduler;
986   }
987 
988   // Free the SelectionDAG state, now that we're finished with it.
989   CurDAG->clear();
990 }
991 
992 namespace {
993 
994 /// ISelUpdater - helper class to handle updates of the instruction selection
995 /// graph.
996 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
997   SelectionDAG::allnodes_iterator &ISelPosition;
998 
999 public:
1000   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1001     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1002 
1003   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1004   /// deleted is the current ISelPosition node, update ISelPosition.
1005   ///
1006   void NodeDeleted(SDNode *N, SDNode *E) override {
1007     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1008       ++ISelPosition;
1009   }
1010 };
1011 
1012 } // end anonymous namespace
1013 
1014 // This function is used to enforce the topological node id property
1015 // property leveraged during Instruction selection. Before selection all
1016 // nodes are given a non-negative id such that all nodes have a larger id than
1017 // their operands. As this holds transitively we can prune checks that a node N
1018 // is a predecessor of M another by not recursively checking through M's
1019 // operands if N's ID is larger than M's ID. This is significantly improves
1020 // performance of for various legality checks (e.g. IsLegalToFold /
1021 // UpdateChains).
1022 
1023 // However, when we fuse multiple nodes into a single node
1024 // during selection we may induce a predecessor relationship between inputs and
1025 // outputs of distinct nodes being merged violating the topological property.
1026 // Should a fused node have a successor which has yet to be selected, our
1027 // legality checks would be incorrect. To avoid this we mark all unselected
1028 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1029 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1030 // We use bit-negation to more clearly enforce that node id -1 can only be
1031 // achieved by selected nodes). As the conversion is reversable the original Id,
1032 // topological pruning can still be leveraged when looking for unselected nodes.
1033 // This method is call internally in all ISel replacement calls.
1034 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1035   SmallVector<SDNode *, 4> Nodes;
1036   Nodes.push_back(Node);
1037 
1038   while (!Nodes.empty()) {
1039     SDNode *N = Nodes.pop_back_val();
1040     for (auto *U : N->uses()) {
1041       auto UId = U->getNodeId();
1042       if (UId > 0) {
1043         InvalidateNodeId(U);
1044         Nodes.push_back(U);
1045       }
1046     }
1047   }
1048 }
1049 
1050 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1051 // NodeId with the equivalent node id which is invalid for topological
1052 // pruning.
1053 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1054   int InvalidId = -(N->getNodeId() + 1);
1055   N->setNodeId(InvalidId);
1056 }
1057 
1058 // getUninvalidatedNodeId - get original uninvalidated node id.
1059 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1060   int Id = N->getNodeId();
1061   if (Id < -1)
1062     return -(Id + 1);
1063   return Id;
1064 }
1065 
1066 void SelectionDAGISel::DoInstructionSelection() {
1067   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1068                     << printMBBReference(*FuncInfo->MBB) << " '"
1069                     << FuncInfo->MBB->getName() << "'\n");
1070 
1071   PreprocessISelDAG();
1072 
1073   // Select target instructions for the DAG.
1074   {
1075     // Number all nodes with a topological order and set DAGSize.
1076     DAGSize = CurDAG->AssignTopologicalOrder();
1077 
1078     // Create a dummy node (which is not added to allnodes), that adds
1079     // a reference to the root node, preventing it from being deleted,
1080     // and tracking any changes of the root.
1081     HandleSDNode Dummy(CurDAG->getRoot());
1082     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1083     ++ISelPosition;
1084 
1085     // Make sure that ISelPosition gets properly updated when nodes are deleted
1086     // in calls made from this function.
1087     ISelUpdater ISU(*CurDAG, ISelPosition);
1088 
1089     // The AllNodes list is now topological-sorted. Visit the
1090     // nodes by starting at the end of the list (the root of the
1091     // graph) and preceding back toward the beginning (the entry
1092     // node).
1093     while (ISelPosition != CurDAG->allnodes_begin()) {
1094       SDNode *Node = &*--ISelPosition;
1095       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1096       // but there are currently some corner cases that it misses. Also, this
1097       // makes it theoretically possible to disable the DAGCombiner.
1098       if (Node->use_empty())
1099         continue;
1100 
1101 #ifndef NDEBUG
1102       SmallVector<SDNode *, 4> Nodes;
1103       Nodes.push_back(Node);
1104 
1105       while (!Nodes.empty()) {
1106         auto N = Nodes.pop_back_val();
1107         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1108           continue;
1109         for (const SDValue &Op : N->op_values()) {
1110           if (Op->getOpcode() == ISD::TokenFactor)
1111             Nodes.push_back(Op.getNode());
1112           else {
1113             // We rely on topological ordering of node ids for checking for
1114             // cycles when fusing nodes during selection. All unselected nodes
1115             // successors of an already selected node should have a negative id.
1116             // This assertion will catch such cases. If this assertion triggers
1117             // it is likely you using DAG-level Value/Node replacement functions
1118             // (versus equivalent ISEL replacement) in backend-specific
1119             // selections. See comment in EnforceNodeIdInvariant for more
1120             // details.
1121             assert(Op->getNodeId() != -1 &&
1122                    "Node has already selected predecessor node");
1123           }
1124         }
1125       }
1126 #endif
1127 
1128       // When we are using non-default rounding modes or FP exception behavior
1129       // FP operations are represented by StrictFP pseudo-operations.  For
1130       // targets that do not (yet) understand strict FP operations directly,
1131       // we convert them to normal FP opcodes instead at this point.  This
1132       // will allow them to be handled by existing target-specific instruction
1133       // selectors.
1134       if (Node->isStrictFPOpcode() &&
1135           (TLI->getOperationAction(Node->getOpcode(), Node->getValueType(0))
1136            != TargetLowering::Legal))
1137         Node = CurDAG->mutateStrictFPToFP(Node);
1138 
1139       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1140                  Node->dump(CurDAG));
1141 
1142       Select(Node);
1143     }
1144 
1145     CurDAG->setRoot(Dummy.getValue());
1146   }
1147 
1148   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1149 
1150   PostprocessISelDAG();
1151 }
1152 
1153 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1154   for (const User *U : CPI->users()) {
1155     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1156       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1157       if (IID == Intrinsic::eh_exceptionpointer ||
1158           IID == Intrinsic::eh_exceptioncode)
1159         return true;
1160     }
1161   }
1162   return false;
1163 }
1164 
1165 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1166 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1167 // and store the mapping in the function.
1168 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1169                                    const CatchPadInst *CPI) {
1170   MachineFunction *MF = MBB->getParent();
1171   // In case of single catch (...), we don't emit LSDA, so we don't need
1172   // this information.
1173   bool IsSingleCatchAllClause =
1174       CPI->getNumArgOperands() == 1 &&
1175       cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1176   if (!IsSingleCatchAllClause) {
1177     // Create a mapping from landing pad label to landing pad index.
1178     bool IntrFound = false;
1179     for (const User *U : CPI->users()) {
1180       if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1181         Intrinsic::ID IID = Call->getIntrinsicID();
1182         if (IID == Intrinsic::wasm_landingpad_index) {
1183           Value *IndexArg = Call->getArgOperand(1);
1184           int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1185           MF->setWasmLandingPadIndex(MBB, Index);
1186           IntrFound = true;
1187           break;
1188         }
1189       }
1190     }
1191     assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1192     (void)IntrFound;
1193   }
1194 }
1195 
1196 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1197 /// do other setup for EH landing-pad blocks.
1198 bool SelectionDAGISel::PrepareEHLandingPad() {
1199   MachineBasicBlock *MBB = FuncInfo->MBB;
1200   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1201   const BasicBlock *LLVMBB = MBB->getBasicBlock();
1202   const TargetRegisterClass *PtrRC =
1203       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1204 
1205   auto Pers = classifyEHPersonality(PersonalityFn);
1206 
1207   // Catchpads have one live-in register, which typically holds the exception
1208   // pointer or code.
1209   if (isFuncletEHPersonality(Pers)) {
1210     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1211       if (hasExceptionPointerOrCodeUser(CPI)) {
1212         // Get or create the virtual register to hold the pointer or code.  Mark
1213         // the live in physreg and copy into the vreg.
1214         MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1215         assert(EHPhysReg && "target lacks exception pointer register");
1216         MBB->addLiveIn(EHPhysReg);
1217         unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1218         BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1219                 TII->get(TargetOpcode::COPY), VReg)
1220             .addReg(EHPhysReg, RegState::Kill);
1221       }
1222     }
1223     return true;
1224   }
1225 
1226   // Add a label to mark the beginning of the landing pad.  Deletion of the
1227   // landing pad can thus be detected via the MachineModuleInfo.
1228   MCSymbol *Label = MF->addLandingPad(MBB);
1229 
1230   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1231   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1232     .addSym(Label);
1233 
1234   if (Pers == EHPersonality::Wasm_CXX) {
1235     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1236       mapWasmLandingPadIndex(MBB, CPI);
1237   } else {
1238     // Assign the call site to the landing pad's begin label.
1239     MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1240     // Mark exception register as live in.
1241     if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1242       FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1243     // Mark exception selector register as live in.
1244     if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1245       FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1246   }
1247 
1248   return true;
1249 }
1250 
1251 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1252 /// side-effect free and is either dead or folded into a generated instruction.
1253 /// Return false if it needs to be emitted.
1254 static bool isFoldedOrDeadInstruction(const Instruction *I,
1255                                       FunctionLoweringInfo *FuncInfo) {
1256   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1257          !I->isTerminator() &&     // Terminators aren't folded.
1258          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
1259          !I->isEHPad() &&              // EH pad instructions aren't folded.
1260          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1261 }
1262 
1263 /// Collect llvm.dbg.declare information. This is done after argument lowering
1264 /// in case the declarations refer to arguments.
1265 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1266   MachineFunction *MF = FuncInfo->MF;
1267   const DataLayout &DL = MF->getDataLayout();
1268   for (const BasicBlock &BB : *FuncInfo->Fn) {
1269     for (const Instruction &I : BB) {
1270       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1271       if (!DI)
1272         continue;
1273 
1274       assert(DI->getVariable() && "Missing variable");
1275       assert(DI->getDebugLoc() && "Missing location");
1276       const Value *Address = DI->getAddress();
1277       if (!Address)
1278         continue;
1279 
1280       // Look through casts and constant offset GEPs. These mostly come from
1281       // inalloca.
1282       APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1283       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1284 
1285       // Check if the variable is a static alloca or a byval or inalloca
1286       // argument passed in memory. If it is not, then we will ignore this
1287       // intrinsic and handle this during isel like dbg.value.
1288       int FI = std::numeric_limits<int>::max();
1289       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1290         auto SI = FuncInfo->StaticAllocaMap.find(AI);
1291         if (SI != FuncInfo->StaticAllocaMap.end())
1292           FI = SI->second;
1293       } else if (const auto *Arg = dyn_cast<Argument>(Address))
1294         FI = FuncInfo->getArgumentFrameIndex(Arg);
1295 
1296       if (FI == std::numeric_limits<int>::max())
1297         continue;
1298 
1299       DIExpression *Expr = DI->getExpression();
1300       if (Offset.getBoolValue())
1301         Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1302                                      Offset.getZExtValue());
1303       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1304     }
1305   }
1306 }
1307 
1308 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1309   FastISelFailed = false;
1310   // Initialize the Fast-ISel state, if needed.
1311   FastISel *FastIS = nullptr;
1312   if (TM.Options.EnableFastISel) {
1313     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1314     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1315   }
1316 
1317   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1318 
1319   // Lower arguments up front. An RPO iteration always visits the entry block
1320   // first.
1321   assert(*RPOT.begin() == &Fn.getEntryBlock());
1322   ++NumEntryBlocks;
1323 
1324   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1325   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1326   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1327 
1328   CurDAG->setFunctionLoweringInfo(FuncInfo);
1329 
1330   if (!FastIS) {
1331     LowerArguments(Fn);
1332   } else {
1333     // See if fast isel can lower the arguments.
1334     FastIS->startNewBlock();
1335     if (!FastIS->lowerArguments()) {
1336       FastISelFailed = true;
1337       // Fast isel failed to lower these arguments
1338       ++NumFastIselFailLowerArguments;
1339 
1340       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1341                                  Fn.getSubprogram(),
1342                                  &Fn.getEntryBlock());
1343       R << "FastISel didn't lower all arguments: "
1344         << ore::NV("Prototype", Fn.getType());
1345       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1346 
1347       // Use SelectionDAG argument lowering
1348       LowerArguments(Fn);
1349       CurDAG->setRoot(SDB->getControlRoot());
1350       SDB->clear();
1351       CodeGenAndEmitDAG();
1352     }
1353 
1354     // If we inserted any instructions at the beginning, make a note of
1355     // where they are, so we can be sure to emit subsequent instructions
1356     // after them.
1357     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1358       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1359     else
1360       FastIS->setLastLocalValue(nullptr);
1361   }
1362 
1363   bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1364 
1365   if (FastIS && Inserted)
1366     FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1367 
1368   processDbgDeclares(FuncInfo);
1369 
1370   // Iterate over all basic blocks in the function.
1371   StackProtector &SP = getAnalysis<StackProtector>();
1372   for (const BasicBlock *LLVMBB : RPOT) {
1373     if (OptLevel != CodeGenOpt::None) {
1374       bool AllPredsVisited = true;
1375       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1376            PI != PE; ++PI) {
1377         if (!FuncInfo->VisitedBBs.count(*PI)) {
1378           AllPredsVisited = false;
1379           break;
1380         }
1381       }
1382 
1383       if (AllPredsVisited) {
1384         for (const PHINode &PN : LLVMBB->phis())
1385           FuncInfo->ComputePHILiveOutRegInfo(&PN);
1386       } else {
1387         for (const PHINode &PN : LLVMBB->phis())
1388           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1389       }
1390 
1391       FuncInfo->VisitedBBs.insert(LLVMBB);
1392     }
1393 
1394     BasicBlock::const_iterator const Begin =
1395         LLVMBB->getFirstNonPHI()->getIterator();
1396     BasicBlock::const_iterator const End = LLVMBB->end();
1397     BasicBlock::const_iterator BI = End;
1398 
1399     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1400     if (!FuncInfo->MBB)
1401       continue; // Some blocks like catchpads have no code or MBB.
1402 
1403     // Insert new instructions after any phi or argument setup code.
1404     FuncInfo->InsertPt = FuncInfo->MBB->end();
1405 
1406     // Setup an EH landing-pad block.
1407     FuncInfo->ExceptionPointerVirtReg = 0;
1408     FuncInfo->ExceptionSelectorVirtReg = 0;
1409     if (LLVMBB->isEHPad())
1410       if (!PrepareEHLandingPad())
1411         continue;
1412 
1413     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1414     if (FastIS) {
1415       if (LLVMBB != &Fn.getEntryBlock())
1416         FastIS->startNewBlock();
1417 
1418       unsigned NumFastIselRemaining = std::distance(Begin, End);
1419 
1420       // Pre-assign swifterror vregs.
1421       SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1422 
1423       // Do FastISel on as many instructions as possible.
1424       for (; BI != Begin; --BI) {
1425         const Instruction *Inst = &*std::prev(BI);
1426 
1427         // If we no longer require this instruction, skip it.
1428         if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1429             ElidedArgCopyInstrs.count(Inst)) {
1430           --NumFastIselRemaining;
1431           continue;
1432         }
1433 
1434         // Bottom-up: reset the insert pos at the top, after any local-value
1435         // instructions.
1436         FastIS->recomputeInsertPt();
1437 
1438         // Try to select the instruction with FastISel.
1439         if (FastIS->selectInstruction(Inst)) {
1440           --NumFastIselRemaining;
1441           ++NumFastIselSuccess;
1442           // If fast isel succeeded, skip over all the folded instructions, and
1443           // then see if there is a load right before the selected instructions.
1444           // Try to fold the load if so.
1445           const Instruction *BeforeInst = Inst;
1446           while (BeforeInst != &*Begin) {
1447             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1448             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1449               break;
1450           }
1451           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1452               BeforeInst->hasOneUse() &&
1453               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1454             // If we succeeded, don't re-select the load.
1455             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1456             --NumFastIselRemaining;
1457             ++NumFastIselSuccess;
1458           }
1459           continue;
1460         }
1461 
1462         FastISelFailed = true;
1463 
1464         // Then handle certain instructions as single-LLVM-Instruction blocks.
1465         // We cannot separate out GCrelocates to their own blocks since we need
1466         // to keep track of gc-relocates for a particular gc-statepoint. This is
1467         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1468         // visitGCRelocate.
1469         if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
1470             !isGCResult(Inst)) {
1471           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1472                                      Inst->getDebugLoc(), LLVMBB);
1473 
1474           R << "FastISel missed call";
1475 
1476           if (R.isEnabled() || EnableFastISelAbort) {
1477             std::string InstStrStorage;
1478             raw_string_ostream InstStr(InstStrStorage);
1479             InstStr << *Inst;
1480 
1481             R << ": " << InstStr.str();
1482           }
1483 
1484           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1485 
1486           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1487               !Inst->use_empty()) {
1488             unsigned &R = FuncInfo->ValueMap[Inst];
1489             if (!R)
1490               R = FuncInfo->CreateRegs(Inst);
1491           }
1492 
1493           bool HadTailCall = false;
1494           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1495           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1496 
1497           // If the call was emitted as a tail call, we're done with the block.
1498           // We also need to delete any previously emitted instructions.
1499           if (HadTailCall) {
1500             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1501             --BI;
1502             break;
1503           }
1504 
1505           // Recompute NumFastIselRemaining as Selection DAG instruction
1506           // selection may have handled the call, input args, etc.
1507           unsigned RemainingNow = std::distance(Begin, BI);
1508           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1509           NumFastIselRemaining = RemainingNow;
1510           continue;
1511         }
1512 
1513         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1514                                    Inst->getDebugLoc(), LLVMBB);
1515 
1516         bool ShouldAbort = EnableFastISelAbort;
1517         if (Inst->isTerminator()) {
1518           // Use a different message for terminator misses.
1519           R << "FastISel missed terminator";
1520           // Don't abort for terminator unless the level is really high
1521           ShouldAbort = (EnableFastISelAbort > 2);
1522         } else {
1523           R << "FastISel missed";
1524         }
1525 
1526         if (R.isEnabled() || EnableFastISelAbort) {
1527           std::string InstStrStorage;
1528           raw_string_ostream InstStr(InstStrStorage);
1529           InstStr << *Inst;
1530           R << ": " << InstStr.str();
1531         }
1532 
1533         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1534 
1535         NumFastIselFailures += NumFastIselRemaining;
1536         break;
1537       }
1538 
1539       FastIS->recomputeInsertPt();
1540     }
1541 
1542     if (SP.shouldEmitSDCheck(*LLVMBB)) {
1543       bool FunctionBasedInstrumentation =
1544           TLI->getSSPStackGuardCheck(*Fn.getParent());
1545       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1546                                    FunctionBasedInstrumentation);
1547     }
1548 
1549     if (Begin != BI)
1550       ++NumDAGBlocks;
1551     else
1552       ++NumFastIselBlocks;
1553 
1554     if (Begin != BI) {
1555       // Run SelectionDAG instruction selection on the remainder of the block
1556       // not handled by FastISel. If FastISel is not run, this is the entire
1557       // block.
1558       bool HadTailCall;
1559       SelectBasicBlock(Begin, BI, HadTailCall);
1560 
1561       // But if FastISel was run, we already selected some of the block.
1562       // If we emitted a tail-call, we need to delete any previously emitted
1563       // instruction that follows it.
1564       if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1565         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1566     }
1567 
1568     if (FastIS)
1569       FastIS->finishBasicBlock();
1570     FinishBasicBlock();
1571     FuncInfo->PHINodesToUpdate.clear();
1572     ElidedArgCopyInstrs.clear();
1573   }
1574 
1575   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1576 
1577   SwiftError->propagateVRegs();
1578 
1579   delete FastIS;
1580   SDB->clearDanglingDebugInfo();
1581   SDB->SPDescriptor.resetPerFunctionState();
1582 }
1583 
1584 /// Given that the input MI is before a partial terminator sequence TSeq, return
1585 /// true if M + TSeq also a partial terminator sequence.
1586 ///
1587 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1588 /// lowering copy vregs into physical registers, which are then passed into
1589 /// terminator instructors so we can satisfy ABI constraints. A partial
1590 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1591 /// may be the whole terminator sequence).
1592 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1593   // If we do not have a copy or an implicit def, we return true if and only if
1594   // MI is a debug value.
1595   if (!MI.isCopy() && !MI.isImplicitDef())
1596     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1597     // physical registers if there is debug info associated with the terminator
1598     // of our mbb. We want to include said debug info in our terminator
1599     // sequence, so we return true in that case.
1600     return MI.isDebugValue();
1601 
1602   // We have left the terminator sequence if we are not doing one of the
1603   // following:
1604   //
1605   // 1. Copying a vreg into a physical register.
1606   // 2. Copying a vreg into a vreg.
1607   // 3. Defining a register via an implicit def.
1608 
1609   // OPI should always be a register definition...
1610   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1611   if (!OPI->isReg() || !OPI->isDef())
1612     return false;
1613 
1614   // Defining any register via an implicit def is always ok.
1615   if (MI.isImplicitDef())
1616     return true;
1617 
1618   // Grab the copy source...
1619   MachineInstr::const_mop_iterator OPI2 = OPI;
1620   ++OPI2;
1621   assert(OPI2 != MI.operands_end()
1622          && "Should have a copy implying we should have 2 arguments.");
1623 
1624   // Make sure that the copy dest is not a vreg when the copy source is a
1625   // physical register.
1626   if (!OPI2->isReg() ||
1627       (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1628        TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1629     return false;
1630 
1631   return true;
1632 }
1633 
1634 /// Find the split point at which to splice the end of BB into its success stack
1635 /// protector check machine basic block.
1636 ///
1637 /// On many platforms, due to ABI constraints, terminators, even before register
1638 /// allocation, use physical registers. This creates an issue for us since
1639 /// physical registers at this point can not travel across basic
1640 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1641 /// when they enter functions and moves them through a sequence of copies back
1642 /// into the physical registers right before the terminator creating a
1643 /// ``Terminator Sequence''. This function is searching for the beginning of the
1644 /// terminator sequence so that we can ensure that we splice off not just the
1645 /// terminator, but additionally the copies that move the vregs into the
1646 /// physical registers.
1647 static MachineBasicBlock::iterator
1648 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1649   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1650   //
1651   if (SplitPoint == BB->begin())
1652     return SplitPoint;
1653 
1654   MachineBasicBlock::iterator Start = BB->begin();
1655   MachineBasicBlock::iterator Previous = SplitPoint;
1656   --Previous;
1657 
1658   while (MIIsInTerminatorSequence(*Previous)) {
1659     SplitPoint = Previous;
1660     if (Previous == Start)
1661       break;
1662     --Previous;
1663   }
1664 
1665   return SplitPoint;
1666 }
1667 
1668 void
1669 SelectionDAGISel::FinishBasicBlock() {
1670   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1671                     << FuncInfo->PHINodesToUpdate.size() << "\n";
1672              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1673                   ++i) dbgs()
1674              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1675              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1676 
1677   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1678   // PHI nodes in successors.
1679   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1680     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1681     assert(PHI->isPHI() &&
1682            "This is not a machine PHI node that we are updating!");
1683     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1684       continue;
1685     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1686   }
1687 
1688   // Handle stack protector.
1689   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1690     // The target provides a guard check function. There is no need to
1691     // generate error handling code or to split current basic block.
1692     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1693 
1694     // Add load and check to the basicblock.
1695     FuncInfo->MBB = ParentMBB;
1696     FuncInfo->InsertPt =
1697         FindSplitPointForStackProtector(ParentMBB);
1698     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1699     CurDAG->setRoot(SDB->getRoot());
1700     SDB->clear();
1701     CodeGenAndEmitDAG();
1702 
1703     // Clear the Per-BB State.
1704     SDB->SPDescriptor.resetPerBBState();
1705   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1706     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1707     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1708 
1709     // Find the split point to split the parent mbb. At the same time copy all
1710     // physical registers used in the tail of parent mbb into virtual registers
1711     // before the split point and back into physical registers after the split
1712     // point. This prevents us needing to deal with Live-ins and many other
1713     // register allocation issues caused by us splitting the parent mbb. The
1714     // register allocator will clean up said virtual copies later on.
1715     MachineBasicBlock::iterator SplitPoint =
1716         FindSplitPointForStackProtector(ParentMBB);
1717 
1718     // Splice the terminator of ParentMBB into SuccessMBB.
1719     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1720                        SplitPoint,
1721                        ParentMBB->end());
1722 
1723     // Add compare/jump on neq/jump to the parent BB.
1724     FuncInfo->MBB = ParentMBB;
1725     FuncInfo->InsertPt = ParentMBB->end();
1726     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1727     CurDAG->setRoot(SDB->getRoot());
1728     SDB->clear();
1729     CodeGenAndEmitDAG();
1730 
1731     // CodeGen Failure MBB if we have not codegened it yet.
1732     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1733     if (FailureMBB->empty()) {
1734       FuncInfo->MBB = FailureMBB;
1735       FuncInfo->InsertPt = FailureMBB->end();
1736       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1737       CurDAG->setRoot(SDB->getRoot());
1738       SDB->clear();
1739       CodeGenAndEmitDAG();
1740     }
1741 
1742     // Clear the Per-BB State.
1743     SDB->SPDescriptor.resetPerBBState();
1744   }
1745 
1746   // Lower each BitTestBlock.
1747   for (auto &BTB : SDB->SL->BitTestCases) {
1748     // Lower header first, if it wasn't already lowered
1749     if (!BTB.Emitted) {
1750       // Set the current basic block to the mbb we wish to insert the code into
1751       FuncInfo->MBB = BTB.Parent;
1752       FuncInfo->InsertPt = FuncInfo->MBB->end();
1753       // Emit the code
1754       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1755       CurDAG->setRoot(SDB->getRoot());
1756       SDB->clear();
1757       CodeGenAndEmitDAG();
1758     }
1759 
1760     BranchProbability UnhandledProb = BTB.Prob;
1761     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1762       UnhandledProb -= BTB.Cases[j].ExtraProb;
1763       // Set the current basic block to the mbb we wish to insert the code into
1764       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1765       FuncInfo->InsertPt = FuncInfo->MBB->end();
1766       // Emit the code
1767 
1768       // If all cases cover a contiguous range, it is not necessary to jump to
1769       // the default block after the last bit test fails. This is because the
1770       // range check during bit test header creation has guaranteed that every
1771       // case here doesn't go outside the range. In this case, there is no need
1772       // to perform the last bit test, as it will always be true. Instead, make
1773       // the second-to-last bit-test fall through to the target of the last bit
1774       // test, and delete the last bit test.
1775 
1776       MachineBasicBlock *NextMBB;
1777       if (BTB.ContiguousRange && j + 2 == ej) {
1778         // Second-to-last bit-test with contiguous range: fall through to the
1779         // target of the final bit test.
1780         NextMBB = BTB.Cases[j + 1].TargetBB;
1781       } else if (j + 1 == ej) {
1782         // For the last bit test, fall through to Default.
1783         NextMBB = BTB.Default;
1784       } else {
1785         // Otherwise, fall through to the next bit test.
1786         NextMBB = BTB.Cases[j + 1].ThisBB;
1787       }
1788 
1789       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1790                             FuncInfo->MBB);
1791 
1792       CurDAG->setRoot(SDB->getRoot());
1793       SDB->clear();
1794       CodeGenAndEmitDAG();
1795 
1796       if (BTB.ContiguousRange && j + 2 == ej) {
1797         // Since we're not going to use the final bit test, remove it.
1798         BTB.Cases.pop_back();
1799         break;
1800       }
1801     }
1802 
1803     // Update PHI Nodes
1804     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1805          pi != pe; ++pi) {
1806       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1807       MachineBasicBlock *PHIBB = PHI->getParent();
1808       assert(PHI->isPHI() &&
1809              "This is not a machine PHI node that we are updating!");
1810       // This is "default" BB. We have two jumps to it. From "header" BB and
1811       // from last "case" BB, unless the latter was skipped.
1812       if (PHIBB == BTB.Default) {
1813         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1814         if (!BTB.ContiguousRange) {
1815           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1816               .addMBB(BTB.Cases.back().ThisBB);
1817          }
1818       }
1819       // One of "cases" BB.
1820       for (unsigned j = 0, ej = BTB.Cases.size();
1821            j != ej; ++j) {
1822         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1823         if (cBB->isSuccessor(PHIBB))
1824           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1825       }
1826     }
1827   }
1828   SDB->SL->BitTestCases.clear();
1829 
1830   // If the JumpTable record is filled in, then we need to emit a jump table.
1831   // Updating the PHI nodes is tricky in this case, since we need to determine
1832   // whether the PHI is a successor of the range check MBB or the jump table MBB
1833   for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1834     // Lower header first, if it wasn't already lowered
1835     if (!SDB->SL->JTCases[i].first.Emitted) {
1836       // Set the current basic block to the mbb we wish to insert the code into
1837       FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1838       FuncInfo->InsertPt = FuncInfo->MBB->end();
1839       // Emit the code
1840       SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1841                                 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1842       CurDAG->setRoot(SDB->getRoot());
1843       SDB->clear();
1844       CodeGenAndEmitDAG();
1845     }
1846 
1847     // Set the current basic block to the mbb we wish to insert the code into
1848     FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1849     FuncInfo->InsertPt = FuncInfo->MBB->end();
1850     // Emit the code
1851     SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1852     CurDAG->setRoot(SDB->getRoot());
1853     SDB->clear();
1854     CodeGenAndEmitDAG();
1855 
1856     // Update PHI Nodes
1857     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1858          pi != pe; ++pi) {
1859       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1860       MachineBasicBlock *PHIBB = PHI->getParent();
1861       assert(PHI->isPHI() &&
1862              "This is not a machine PHI node that we are updating!");
1863       // "default" BB. We can go there only from header BB.
1864       if (PHIBB == SDB->SL->JTCases[i].second.Default)
1865         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1866            .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1867       // JT BB. Just iterate over successors here
1868       if (FuncInfo->MBB->isSuccessor(PHIBB))
1869         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1870     }
1871   }
1872   SDB->SL->JTCases.clear();
1873 
1874   // If we generated any switch lowering information, build and codegen any
1875   // additional DAGs necessary.
1876   for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1877     // Set the current basic block to the mbb we wish to insert the code into
1878     FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1879     FuncInfo->InsertPt = FuncInfo->MBB->end();
1880 
1881     // Determine the unique successors.
1882     SmallVector<MachineBasicBlock *, 2> Succs;
1883     Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1884     if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1885       Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1886 
1887     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1888     SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1889     CurDAG->setRoot(SDB->getRoot());
1890     SDB->clear();
1891     CodeGenAndEmitDAG();
1892 
1893     // Remember the last block, now that any splitting is done, for use in
1894     // populating PHI nodes in successors.
1895     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1896 
1897     // Handle any PHI nodes in successors of this chunk, as if we were coming
1898     // from the original BB before switch expansion.  Note that PHI nodes can
1899     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1900     // handle them the right number of times.
1901     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1902       FuncInfo->MBB = Succs[i];
1903       FuncInfo->InsertPt = FuncInfo->MBB->end();
1904       // FuncInfo->MBB may have been removed from the CFG if a branch was
1905       // constant folded.
1906       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1907         for (MachineBasicBlock::iterator
1908              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1909              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1910           MachineInstrBuilder PHI(*MF, MBBI);
1911           // This value for this PHI node is recorded in PHINodesToUpdate.
1912           for (unsigned pn = 0; ; ++pn) {
1913             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1914                    "Didn't find PHI entry!");
1915             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1916               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1917               break;
1918             }
1919           }
1920         }
1921       }
1922     }
1923   }
1924   SDB->SL->SwitchCases.clear();
1925 }
1926 
1927 /// Create the scheduler. If a specific scheduler was specified
1928 /// via the SchedulerRegistry, use it, otherwise select the
1929 /// one preferred by the target.
1930 ///
1931 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1932   return ISHeuristic(this, OptLevel);
1933 }
1934 
1935 //===----------------------------------------------------------------------===//
1936 // Helper functions used by the generated instruction selector.
1937 //===----------------------------------------------------------------------===//
1938 // Calls to these methods are generated by tblgen.
1939 
1940 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1941 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1942 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1943 /// specified in the .td file (e.g. 255).
1944 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1945                                     int64_t DesiredMaskS) const {
1946   const APInt &ActualMask = RHS->getAPIntValue();
1947   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1948 
1949   // If the actual mask exactly matches, success!
1950   if (ActualMask == DesiredMask)
1951     return true;
1952 
1953   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1954   if (!ActualMask.isSubsetOf(DesiredMask))
1955     return false;
1956 
1957   // Otherwise, the DAG Combiner may have proven that the value coming in is
1958   // either already zero or is not demanded.  Check for known zero input bits.
1959   APInt NeededMask = DesiredMask & ~ActualMask;
1960   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1961     return true;
1962 
1963   // TODO: check to see if missing bits are just not demanded.
1964 
1965   // Otherwise, this pattern doesn't match.
1966   return false;
1967 }
1968 
1969 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1970 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1971 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1972 /// specified in the .td file (e.g. 255).
1973 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1974                                    int64_t DesiredMaskS) const {
1975   const APInt &ActualMask = RHS->getAPIntValue();
1976   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1977 
1978   // If the actual mask exactly matches, success!
1979   if (ActualMask == DesiredMask)
1980     return true;
1981 
1982   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1983   if (!ActualMask.isSubsetOf(DesiredMask))
1984     return false;
1985 
1986   // Otherwise, the DAG Combiner may have proven that the value coming in is
1987   // either already zero or is not demanded.  Check for known zero input bits.
1988   APInt NeededMask = DesiredMask & ~ActualMask;
1989   KnownBits Known = CurDAG->computeKnownBits(LHS);
1990 
1991   // If all the missing bits in the or are already known to be set, match!
1992   if (NeededMask.isSubsetOf(Known.One))
1993     return true;
1994 
1995   // TODO: check to see if missing bits are just not demanded.
1996 
1997   // Otherwise, this pattern doesn't match.
1998   return false;
1999 }
2000 
2001 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2002 /// by tblgen.  Others should not call it.
2003 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2004                                                      const SDLoc &DL) {
2005   std::vector<SDValue> InOps;
2006   std::swap(InOps, Ops);
2007 
2008   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2009   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2010   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2011   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2012 
2013   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2014   if (InOps[e-1].getValueType() == MVT::Glue)
2015     --e;  // Don't process a glue operand if it is here.
2016 
2017   while (i != e) {
2018     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2019     if (!InlineAsm::isMemKind(Flags)) {
2020       // Just skip over this operand, copying the operands verbatim.
2021       Ops.insert(Ops.end(), InOps.begin()+i,
2022                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2023       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2024     } else {
2025       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2026              "Memory operand with multiple values?");
2027 
2028       unsigned TiedToOperand;
2029       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2030         // We need the constraint ID from the operand this is tied to.
2031         unsigned CurOp = InlineAsm::Op_FirstOperand;
2032         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2033         for (; TiedToOperand; --TiedToOperand) {
2034           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2035           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2036         }
2037       }
2038 
2039       // Otherwise, this is a memory operand.  Ask the target to select it.
2040       std::vector<SDValue> SelOps;
2041       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2042       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2043         report_fatal_error("Could not match memory address.  Inline asm"
2044                            " failure!");
2045 
2046       // Add this to the output node.
2047       unsigned NewFlags =
2048         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2049       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2050       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2051       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2052       i += 2;
2053     }
2054   }
2055 
2056   // Add the glue input back if present.
2057   if (e != InOps.size())
2058     Ops.push_back(InOps.back());
2059 }
2060 
2061 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2062 /// SDNode.
2063 ///
2064 static SDNode *findGlueUse(SDNode *N) {
2065   unsigned FlagResNo = N->getNumValues()-1;
2066   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2067     SDUse &Use = I.getUse();
2068     if (Use.getResNo() == FlagResNo)
2069       return Use.getUser();
2070   }
2071   return nullptr;
2072 }
2073 
2074 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2075 /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2076 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2077                           bool IgnoreChains) {
2078   SmallPtrSet<const SDNode *, 16> Visited;
2079   SmallVector<const SDNode *, 16> WorkList;
2080   // Only check if we have non-immediate uses of Def.
2081   if (ImmedUse->isOnlyUserOf(Def))
2082     return false;
2083 
2084   // We don't care about paths to Def that go through ImmedUse so mark it
2085   // visited and mark non-def operands as used.
2086   Visited.insert(ImmedUse);
2087   for (const SDValue &Op : ImmedUse->op_values()) {
2088     SDNode *N = Op.getNode();
2089     // Ignore chain deps (they are validated by
2090     // HandleMergeInputChains) and immediate uses
2091     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2092       continue;
2093     if (!Visited.insert(N).second)
2094       continue;
2095     WorkList.push_back(N);
2096   }
2097 
2098   // Initialize worklist to operands of Root.
2099   if (Root != ImmedUse) {
2100     for (const SDValue &Op : Root->op_values()) {
2101       SDNode *N = Op.getNode();
2102       // Ignore chains (they are validated by HandleMergeInputChains)
2103       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2104         continue;
2105       if (!Visited.insert(N).second)
2106         continue;
2107       WorkList.push_back(N);
2108     }
2109   }
2110 
2111   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2112 }
2113 
2114 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2115 /// operand node N of U during instruction selection that starts at Root.
2116 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2117                                           SDNode *Root) const {
2118   if (OptLevel == CodeGenOpt::None) return false;
2119   return N.hasOneUse();
2120 }
2121 
2122 /// IsLegalToFold - Returns true if the specific operand node N of
2123 /// U can be folded during instruction selection that starts at Root.
2124 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2125                                      CodeGenOpt::Level OptLevel,
2126                                      bool IgnoreChains) {
2127   if (OptLevel == CodeGenOpt::None) return false;
2128 
2129   // If Root use can somehow reach N through a path that that doesn't contain
2130   // U then folding N would create a cycle. e.g. In the following
2131   // diagram, Root can reach N through X. If N is folded into Root, then
2132   // X is both a predecessor and a successor of U.
2133   //
2134   //          [N*]           //
2135   //         ^   ^           //
2136   //        /     \          //
2137   //      [U*]    [X]?       //
2138   //        ^     ^          //
2139   //         \   /           //
2140   //          \ /            //
2141   //         [Root*]         //
2142   //
2143   // * indicates nodes to be folded together.
2144   //
2145   // If Root produces glue, then it gets (even more) interesting. Since it
2146   // will be "glued" together with its glue use in the scheduler, we need to
2147   // check if it might reach N.
2148   //
2149   //          [N*]           //
2150   //         ^   ^           //
2151   //        /     \          //
2152   //      [U*]    [X]?       //
2153   //        ^       ^        //
2154   //         \       \       //
2155   //          \      |       //
2156   //         [Root*] |       //
2157   //          ^      |       //
2158   //          f      |       //
2159   //          |      /       //
2160   //         [Y]    /        //
2161   //           ^   /         //
2162   //           f  /          //
2163   //           | /           //
2164   //          [GU]           //
2165   //
2166   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2167   // (call it Fold), then X is a predecessor of GU and a successor of
2168   // Fold. But since Fold and GU are glued together, this will create
2169   // a cycle in the scheduling graph.
2170 
2171   // If the node has glue, walk down the graph to the "lowest" node in the
2172   // glueged set.
2173   EVT VT = Root->getValueType(Root->getNumValues()-1);
2174   while (VT == MVT::Glue) {
2175     SDNode *GU = findGlueUse(Root);
2176     if (!GU)
2177       break;
2178     Root = GU;
2179     VT = Root->getValueType(Root->getNumValues()-1);
2180 
2181     // If our query node has a glue result with a use, we've walked up it.  If
2182     // the user (which has already been selected) has a chain or indirectly uses
2183     // the chain, HandleMergeInputChains will not consider it.  Because of
2184     // this, we cannot ignore chains in this predicate.
2185     IgnoreChains = false;
2186   }
2187 
2188   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2189 }
2190 
2191 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
2192   SDLoc DL(N);
2193 
2194   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2195   SelectInlineAsmMemoryOperands(Ops, DL);
2196 
2197   const EVT VTs[] = {MVT::Other, MVT::Glue};
2198   SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
2199   New->setNodeId(-1);
2200   ReplaceUses(N, New.getNode());
2201   CurDAG->RemoveDeadNode(N);
2202 }
2203 
2204 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2205   SDLoc dl(Op);
2206   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2207   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2208   unsigned Reg =
2209       TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2210                              *CurDAG);
2211   SDValue New = CurDAG->getCopyFromReg(
2212                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2213   New->setNodeId(-1);
2214   ReplaceUses(Op, New.getNode());
2215   CurDAG->RemoveDeadNode(Op);
2216 }
2217 
2218 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2219   SDLoc dl(Op);
2220   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2221   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2222   unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2223                                         Op->getOperand(2).getValueType(),
2224                                         *CurDAG);
2225   SDValue New = CurDAG->getCopyToReg(
2226                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2227   New->setNodeId(-1);
2228   ReplaceUses(Op, New.getNode());
2229   CurDAG->RemoveDeadNode(Op);
2230 }
2231 
2232 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2233   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2234 }
2235 
2236 /// GetVBR - decode a vbr encoding whose top bit is set.
2237 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2238 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2239   assert(Val >= 128 && "Not a VBR");
2240   Val &= 127;  // Remove first vbr bit.
2241 
2242   unsigned Shift = 7;
2243   uint64_t NextBits;
2244   do {
2245     NextBits = MatcherTable[Idx++];
2246     Val |= (NextBits&127) << Shift;
2247     Shift += 7;
2248   } while (NextBits & 128);
2249 
2250   return Val;
2251 }
2252 
2253 /// When a match is complete, this method updates uses of interior chain results
2254 /// to use the new results.
2255 void SelectionDAGISel::UpdateChains(
2256     SDNode *NodeToMatch, SDValue InputChain,
2257     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2258   SmallVector<SDNode*, 4> NowDeadNodes;
2259 
2260   // Now that all the normal results are replaced, we replace the chain and
2261   // glue results if present.
2262   if (!ChainNodesMatched.empty()) {
2263     assert(InputChain.getNode() &&
2264            "Matched input chains but didn't produce a chain");
2265     // Loop over all of the nodes we matched that produced a chain result.
2266     // Replace all the chain results with the final chain we ended up with.
2267     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2268       SDNode *ChainNode = ChainNodesMatched[i];
2269       // If ChainNode is null, it's because we replaced it on a previous
2270       // iteration and we cleared it out of the map. Just skip it.
2271       if (!ChainNode)
2272         continue;
2273 
2274       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2275              "Deleted node left in chain");
2276 
2277       // Don't replace the results of the root node if we're doing a
2278       // MorphNodeTo.
2279       if (ChainNode == NodeToMatch && isMorphNodeTo)
2280         continue;
2281 
2282       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2283       if (ChainVal.getValueType() == MVT::Glue)
2284         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2285       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2286       SelectionDAG::DAGNodeDeletedListener NDL(
2287           *CurDAG, [&](SDNode *N, SDNode *E) {
2288             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2289                          static_cast<SDNode *>(nullptr));
2290           });
2291       if (ChainNode->getOpcode() != ISD::TokenFactor)
2292         ReplaceUses(ChainVal, InputChain);
2293 
2294       // If the node became dead and we haven't already seen it, delete it.
2295       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2296           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2297         NowDeadNodes.push_back(ChainNode);
2298     }
2299   }
2300 
2301   if (!NowDeadNodes.empty())
2302     CurDAG->RemoveDeadNodes(NowDeadNodes);
2303 
2304   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2305 }
2306 
2307 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2308 /// operation for when the pattern matched at least one node with a chains.  The
2309 /// input vector contains a list of all of the chained nodes that we match.  We
2310 /// must determine if this is a valid thing to cover (i.e. matching it won't
2311 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2312 /// be used as the input node chain for the generated nodes.
2313 static SDValue
2314 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2315                        SelectionDAG *CurDAG) {
2316 
2317   SmallPtrSet<const SDNode *, 16> Visited;
2318   SmallVector<const SDNode *, 8> Worklist;
2319   SmallVector<SDValue, 3> InputChains;
2320   unsigned int Max = 8192;
2321 
2322   // Quick exit on trivial merge.
2323   if (ChainNodesMatched.size() == 1)
2324     return ChainNodesMatched[0]->getOperand(0);
2325 
2326   // Add chains that aren't already added (internal). Peek through
2327   // token factors.
2328   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2329     if (V.getValueType() != MVT::Other)
2330       return;
2331     if (V->getOpcode() == ISD::EntryToken)
2332       return;
2333     if (!Visited.insert(V.getNode()).second)
2334       return;
2335     if (V->getOpcode() == ISD::TokenFactor) {
2336       for (const SDValue &Op : V->op_values())
2337         AddChains(Op);
2338     } else
2339       InputChains.push_back(V);
2340   };
2341 
2342   for (auto *N : ChainNodesMatched) {
2343     Worklist.push_back(N);
2344     Visited.insert(N);
2345   }
2346 
2347   while (!Worklist.empty())
2348     AddChains(Worklist.pop_back_val()->getOperand(0));
2349 
2350   // Skip the search if there are no chain dependencies.
2351   if (InputChains.size() == 0)
2352     return CurDAG->getEntryNode();
2353 
2354   // If one of these chains is a successor of input, we must have a
2355   // node that is both the predecessor and successor of the
2356   // to-be-merged nodes. Fail.
2357   Visited.clear();
2358   for (SDValue V : InputChains)
2359     Worklist.push_back(V.getNode());
2360 
2361   for (auto *N : ChainNodesMatched)
2362     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2363       return SDValue();
2364 
2365   // Return merged chain.
2366   if (InputChains.size() == 1)
2367     return InputChains[0];
2368   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2369                          MVT::Other, InputChains);
2370 }
2371 
2372 /// MorphNode - Handle morphing a node in place for the selector.
2373 SDNode *SelectionDAGISel::
2374 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2375           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2376   // It is possible we're using MorphNodeTo to replace a node with no
2377   // normal results with one that has a normal result (or we could be
2378   // adding a chain) and the input could have glue and chains as well.
2379   // In this case we need to shift the operands down.
2380   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2381   // than the old isel though.
2382   int OldGlueResultNo = -1, OldChainResultNo = -1;
2383 
2384   unsigned NTMNumResults = Node->getNumValues();
2385   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2386     OldGlueResultNo = NTMNumResults-1;
2387     if (NTMNumResults != 1 &&
2388         Node->getValueType(NTMNumResults-2) == MVT::Other)
2389       OldChainResultNo = NTMNumResults-2;
2390   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2391     OldChainResultNo = NTMNumResults-1;
2392 
2393   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2394   // that this deletes operands of the old node that become dead.
2395   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2396 
2397   // MorphNodeTo can operate in two ways: if an existing node with the
2398   // specified operands exists, it can just return it.  Otherwise, it
2399   // updates the node in place to have the requested operands.
2400   if (Res == Node) {
2401     // If we updated the node in place, reset the node ID.  To the isel,
2402     // this should be just like a newly allocated machine node.
2403     Res->setNodeId(-1);
2404   }
2405 
2406   unsigned ResNumResults = Res->getNumValues();
2407   // Move the glue if needed.
2408   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2409       (unsigned)OldGlueResultNo != ResNumResults-1)
2410     ReplaceUses(SDValue(Node, OldGlueResultNo),
2411                 SDValue(Res, ResNumResults - 1));
2412 
2413   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2414     --ResNumResults;
2415 
2416   // Move the chain reference if needed.
2417   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2418       (unsigned)OldChainResultNo != ResNumResults-1)
2419     ReplaceUses(SDValue(Node, OldChainResultNo),
2420                 SDValue(Res, ResNumResults - 1));
2421 
2422   // Otherwise, no replacement happened because the node already exists. Replace
2423   // Uses of the old node with the new one.
2424   if (Res != Node) {
2425     ReplaceNode(Node, Res);
2426   } else {
2427     EnforceNodeIdInvariant(Res);
2428   }
2429 
2430   return Res;
2431 }
2432 
2433 /// CheckSame - Implements OP_CheckSame.
2434 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2435 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2436           SDValue N,
2437           const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2438   // Accept if it is exactly the same as a previously recorded node.
2439   unsigned RecNo = MatcherTable[MatcherIndex++];
2440   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2441   return N == RecordedNodes[RecNo].first;
2442 }
2443 
2444 /// CheckChildSame - Implements OP_CheckChildXSame.
2445 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2446 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2447               SDValue N,
2448               const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2449               unsigned ChildNo) {
2450   if (ChildNo >= N.getNumOperands())
2451     return false;  // Match fails if out of range child #.
2452   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2453                      RecordedNodes);
2454 }
2455 
2456 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2457 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2458 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2459                       const SelectionDAGISel &SDISel) {
2460   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2461 }
2462 
2463 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2464 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2465 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2466                    const SelectionDAGISel &SDISel, SDNode *N) {
2467   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2468 }
2469 
2470 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2471 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2472             SDNode *N) {
2473   uint16_t Opc = MatcherTable[MatcherIndex++];
2474   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2475   return N->getOpcode() == Opc;
2476 }
2477 
2478 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2479 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2480           const TargetLowering *TLI, const DataLayout &DL) {
2481   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2482   if (N.getValueType() == VT) return true;
2483 
2484   // Handle the case when VT is iPTR.
2485   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2486 }
2487 
2488 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2489 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2490                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2491                unsigned ChildNo) {
2492   if (ChildNo >= N.getNumOperands())
2493     return false;  // Match fails if out of range child #.
2494   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2495                      DL);
2496 }
2497 
2498 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2499 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2500               SDValue N) {
2501   return cast<CondCodeSDNode>(N)->get() ==
2502       (ISD::CondCode)MatcherTable[MatcherIndex++];
2503 }
2504 
2505 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2506 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2507                     SDValue N) {
2508   if (2 >= N.getNumOperands())
2509     return false;
2510   return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2511 }
2512 
2513 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2514 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2515                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2516   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2517   if (cast<VTSDNode>(N)->getVT() == VT)
2518     return true;
2519 
2520   // Handle the case when VT is iPTR.
2521   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2522 }
2523 
2524 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2525 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2526              SDValue N) {
2527   int64_t Val = MatcherTable[MatcherIndex++];
2528   if (Val & 128)
2529     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2530 
2531   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2532   return C && C->getSExtValue() == Val;
2533 }
2534 
2535 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2536 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2537                   SDValue N, unsigned ChildNo) {
2538   if (ChildNo >= N.getNumOperands())
2539     return false;  // Match fails if out of range child #.
2540   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2541 }
2542 
2543 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2544 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2545             SDValue N, const SelectionDAGISel &SDISel) {
2546   int64_t Val = MatcherTable[MatcherIndex++];
2547   if (Val & 128)
2548     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2549 
2550   if (N->getOpcode() != ISD::AND) return false;
2551 
2552   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2553   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2554 }
2555 
2556 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2557 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2558            SDValue N, const SelectionDAGISel &SDISel) {
2559   int64_t Val = MatcherTable[MatcherIndex++];
2560   if (Val & 128)
2561     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2562 
2563   if (N->getOpcode() != ISD::OR) return false;
2564 
2565   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2566   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2567 }
2568 
2569 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2570 /// scope, evaluate the current node.  If the current predicate is known to
2571 /// fail, set Result=true and return anything.  If the current predicate is
2572 /// known to pass, set Result=false and return the MatcherIndex to continue
2573 /// with.  If the current predicate is unknown, set Result=false and return the
2574 /// MatcherIndex to continue with.
2575 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2576                                        unsigned Index, SDValue N,
2577                                        bool &Result,
2578                                        const SelectionDAGISel &SDISel,
2579                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2580   switch (Table[Index++]) {
2581   default:
2582     Result = false;
2583     return Index-1;  // Could not evaluate this predicate.
2584   case SelectionDAGISel::OPC_CheckSame:
2585     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2586     return Index;
2587   case SelectionDAGISel::OPC_CheckChild0Same:
2588   case SelectionDAGISel::OPC_CheckChild1Same:
2589   case SelectionDAGISel::OPC_CheckChild2Same:
2590   case SelectionDAGISel::OPC_CheckChild3Same:
2591     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2592                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2593     return Index;
2594   case SelectionDAGISel::OPC_CheckPatternPredicate:
2595     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2596     return Index;
2597   case SelectionDAGISel::OPC_CheckPredicate:
2598     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2599     return Index;
2600   case SelectionDAGISel::OPC_CheckOpcode:
2601     Result = !::CheckOpcode(Table, Index, N.getNode());
2602     return Index;
2603   case SelectionDAGISel::OPC_CheckType:
2604     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2605                           SDISel.CurDAG->getDataLayout());
2606     return Index;
2607   case SelectionDAGISel::OPC_CheckTypeRes: {
2608     unsigned Res = Table[Index++];
2609     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2610                           SDISel.CurDAG->getDataLayout());
2611     return Index;
2612   }
2613   case SelectionDAGISel::OPC_CheckChild0Type:
2614   case SelectionDAGISel::OPC_CheckChild1Type:
2615   case SelectionDAGISel::OPC_CheckChild2Type:
2616   case SelectionDAGISel::OPC_CheckChild3Type:
2617   case SelectionDAGISel::OPC_CheckChild4Type:
2618   case SelectionDAGISel::OPC_CheckChild5Type:
2619   case SelectionDAGISel::OPC_CheckChild6Type:
2620   case SelectionDAGISel::OPC_CheckChild7Type:
2621     Result = !::CheckChildType(
2622                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2623                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2624     return Index;
2625   case SelectionDAGISel::OPC_CheckCondCode:
2626     Result = !::CheckCondCode(Table, Index, N);
2627     return Index;
2628   case SelectionDAGISel::OPC_CheckChild2CondCode:
2629     Result = !::CheckChild2CondCode(Table, Index, N);
2630     return Index;
2631   case SelectionDAGISel::OPC_CheckValueType:
2632     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2633                                SDISel.CurDAG->getDataLayout());
2634     return Index;
2635   case SelectionDAGISel::OPC_CheckInteger:
2636     Result = !::CheckInteger(Table, Index, N);
2637     return Index;
2638   case SelectionDAGISel::OPC_CheckChild0Integer:
2639   case SelectionDAGISel::OPC_CheckChild1Integer:
2640   case SelectionDAGISel::OPC_CheckChild2Integer:
2641   case SelectionDAGISel::OPC_CheckChild3Integer:
2642   case SelectionDAGISel::OPC_CheckChild4Integer:
2643     Result = !::CheckChildInteger(Table, Index, N,
2644                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2645     return Index;
2646   case SelectionDAGISel::OPC_CheckAndImm:
2647     Result = !::CheckAndImm(Table, Index, N, SDISel);
2648     return Index;
2649   case SelectionDAGISel::OPC_CheckOrImm:
2650     Result = !::CheckOrImm(Table, Index, N, SDISel);
2651     return Index;
2652   }
2653 }
2654 
2655 namespace {
2656 
2657 struct MatchScope {
2658   /// FailIndex - If this match fails, this is the index to continue with.
2659   unsigned FailIndex;
2660 
2661   /// NodeStack - The node stack when the scope was formed.
2662   SmallVector<SDValue, 4> NodeStack;
2663 
2664   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2665   unsigned NumRecordedNodes;
2666 
2667   /// NumMatchedMemRefs - The number of matched memref entries.
2668   unsigned NumMatchedMemRefs;
2669 
2670   /// InputChain/InputGlue - The current chain/glue
2671   SDValue InputChain, InputGlue;
2672 
2673   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2674   bool HasChainNodesMatched;
2675 };
2676 
2677 /// \A DAG update listener to keep the matching state
2678 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2679 /// change the DAG while matching.  X86 addressing mode matcher is an example
2680 /// for this.
2681 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2682 {
2683   SDNode **NodeToMatch;
2684   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2685   SmallVectorImpl<MatchScope> &MatchScopes;
2686 
2687 public:
2688   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2689                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2690                     SmallVectorImpl<MatchScope> &MS)
2691       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2692         RecordedNodes(RN), MatchScopes(MS) {}
2693 
2694   void NodeDeleted(SDNode *N, SDNode *E) override {
2695     // Some early-returns here to avoid the search if we deleted the node or
2696     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2697     // do, so it's unnecessary to update matching state at that point).
2698     // Neither of these can occur currently because we only install this
2699     // update listener during matching a complex patterns.
2700     if (!E || E->isMachineOpcode())
2701       return;
2702     // Check if NodeToMatch was updated.
2703     if (N == *NodeToMatch)
2704       *NodeToMatch = E;
2705     // Performing linear search here does not matter because we almost never
2706     // run this code.  You'd have to have a CSE during complex pattern
2707     // matching.
2708     for (auto &I : RecordedNodes)
2709       if (I.first.getNode() == N)
2710         I.first.setNode(E);
2711 
2712     for (auto &I : MatchScopes)
2713       for (auto &J : I.NodeStack)
2714         if (J.getNode() == N)
2715           J.setNode(E);
2716   }
2717 };
2718 
2719 } // end anonymous namespace
2720 
2721 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2722                                         const unsigned char *MatcherTable,
2723                                         unsigned TableSize) {
2724   // FIXME: Should these even be selected?  Handle these cases in the caller?
2725   switch (NodeToMatch->getOpcode()) {
2726   default:
2727     break;
2728   case ISD::EntryToken:       // These nodes remain the same.
2729   case ISD::BasicBlock:
2730   case ISD::Register:
2731   case ISD::RegisterMask:
2732   case ISD::HANDLENODE:
2733   case ISD::MDNODE_SDNODE:
2734   case ISD::TargetConstant:
2735   case ISD::TargetConstantFP:
2736   case ISD::TargetConstantPool:
2737   case ISD::TargetFrameIndex:
2738   case ISD::TargetExternalSymbol:
2739   case ISD::MCSymbol:
2740   case ISD::TargetBlockAddress:
2741   case ISD::TargetJumpTable:
2742   case ISD::TargetGlobalTLSAddress:
2743   case ISD::TargetGlobalAddress:
2744   case ISD::TokenFactor:
2745   case ISD::CopyFromReg:
2746   case ISD::CopyToReg:
2747   case ISD::EH_LABEL:
2748   case ISD::ANNOTATION_LABEL:
2749   case ISD::LIFETIME_START:
2750   case ISD::LIFETIME_END:
2751     NodeToMatch->setNodeId(-1); // Mark selected.
2752     return;
2753   case ISD::AssertSext:
2754   case ISD::AssertZext:
2755     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2756     CurDAG->RemoveDeadNode(NodeToMatch);
2757     return;
2758   case ISD::INLINEASM:
2759   case ISD::INLINEASM_BR:
2760     Select_INLINEASM(NodeToMatch,
2761                      NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
2762     return;
2763   case ISD::READ_REGISTER:
2764     Select_READ_REGISTER(NodeToMatch);
2765     return;
2766   case ISD::WRITE_REGISTER:
2767     Select_WRITE_REGISTER(NodeToMatch);
2768     return;
2769   case ISD::UNDEF:
2770     Select_UNDEF(NodeToMatch);
2771     return;
2772   }
2773 
2774   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2775 
2776   // Set up the node stack with NodeToMatch as the only node on the stack.
2777   SmallVector<SDValue, 8> NodeStack;
2778   SDValue N = SDValue(NodeToMatch, 0);
2779   NodeStack.push_back(N);
2780 
2781   // MatchScopes - Scopes used when matching, if a match failure happens, this
2782   // indicates where to continue checking.
2783   SmallVector<MatchScope, 8> MatchScopes;
2784 
2785   // RecordedNodes - This is the set of nodes that have been recorded by the
2786   // state machine.  The second value is the parent of the node, or null if the
2787   // root is recorded.
2788   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2789 
2790   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2791   // pattern.
2792   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2793 
2794   // These are the current input chain and glue for use when generating nodes.
2795   // Various Emit operations change these.  For example, emitting a copytoreg
2796   // uses and updates these.
2797   SDValue InputChain, InputGlue;
2798 
2799   // ChainNodesMatched - If a pattern matches nodes that have input/output
2800   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2801   // which ones they are.  The result is captured into this list so that we can
2802   // update the chain results when the pattern is complete.
2803   SmallVector<SDNode*, 3> ChainNodesMatched;
2804 
2805   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2806 
2807   // Determine where to start the interpreter.  Normally we start at opcode #0,
2808   // but if the state machine starts with an OPC_SwitchOpcode, then we
2809   // accelerate the first lookup (which is guaranteed to be hot) with the
2810   // OpcodeOffset table.
2811   unsigned MatcherIndex = 0;
2812 
2813   if (!OpcodeOffset.empty()) {
2814     // Already computed the OpcodeOffset table, just index into it.
2815     if (N.getOpcode() < OpcodeOffset.size())
2816       MatcherIndex = OpcodeOffset[N.getOpcode()];
2817     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2818 
2819   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2820     // Otherwise, the table isn't computed, but the state machine does start
2821     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2822     // is the first time we're selecting an instruction.
2823     unsigned Idx = 1;
2824     while (true) {
2825       // Get the size of this case.
2826       unsigned CaseSize = MatcherTable[Idx++];
2827       if (CaseSize & 128)
2828         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2829       if (CaseSize == 0) break;
2830 
2831       // Get the opcode, add the index to the table.
2832       uint16_t Opc = MatcherTable[Idx++];
2833       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2834       if (Opc >= OpcodeOffset.size())
2835         OpcodeOffset.resize((Opc+1)*2);
2836       OpcodeOffset[Opc] = Idx;
2837       Idx += CaseSize;
2838     }
2839 
2840     // Okay, do the lookup for the first opcode.
2841     if (N.getOpcode() < OpcodeOffset.size())
2842       MatcherIndex = OpcodeOffset[N.getOpcode()];
2843   }
2844 
2845   while (true) {
2846     assert(MatcherIndex < TableSize && "Invalid index");
2847 #ifndef NDEBUG
2848     unsigned CurrentOpcodeIndex = MatcherIndex;
2849 #endif
2850     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2851     switch (Opcode) {
2852     case OPC_Scope: {
2853       // Okay, the semantics of this operation are that we should push a scope
2854       // then evaluate the first child.  However, pushing a scope only to have
2855       // the first check fail (which then pops it) is inefficient.  If we can
2856       // determine immediately that the first check (or first several) will
2857       // immediately fail, don't even bother pushing a scope for them.
2858       unsigned FailIndex;
2859 
2860       while (true) {
2861         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2862         if (NumToSkip & 128)
2863           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2864         // Found the end of the scope with no match.
2865         if (NumToSkip == 0) {
2866           FailIndex = 0;
2867           break;
2868         }
2869 
2870         FailIndex = MatcherIndex+NumToSkip;
2871 
2872         unsigned MatcherIndexOfPredicate = MatcherIndex;
2873         (void)MatcherIndexOfPredicate; // silence warning.
2874 
2875         // If we can't evaluate this predicate without pushing a scope (e.g. if
2876         // it is a 'MoveParent') or if the predicate succeeds on this node, we
2877         // push the scope and evaluate the full predicate chain.
2878         bool Result;
2879         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2880                                               Result, *this, RecordedNodes);
2881         if (!Result)
2882           break;
2883 
2884         LLVM_DEBUG(
2885             dbgs() << "  Skipped scope entry (due to false predicate) at "
2886                    << "index " << MatcherIndexOfPredicate << ", continuing at "
2887                    << FailIndex << "\n");
2888         ++NumDAGIselRetries;
2889 
2890         // Otherwise, we know that this case of the Scope is guaranteed to fail,
2891         // move to the next case.
2892         MatcherIndex = FailIndex;
2893       }
2894 
2895       // If the whole scope failed to match, bail.
2896       if (FailIndex == 0) break;
2897 
2898       // Push a MatchScope which indicates where to go if the first child fails
2899       // to match.
2900       MatchScope NewEntry;
2901       NewEntry.FailIndex = FailIndex;
2902       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2903       NewEntry.NumRecordedNodes = RecordedNodes.size();
2904       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2905       NewEntry.InputChain = InputChain;
2906       NewEntry.InputGlue = InputGlue;
2907       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2908       MatchScopes.push_back(NewEntry);
2909       continue;
2910     }
2911     case OPC_RecordNode: {
2912       // Remember this node, it may end up being an operand in the pattern.
2913       SDNode *Parent = nullptr;
2914       if (NodeStack.size() > 1)
2915         Parent = NodeStack[NodeStack.size()-2].getNode();
2916       RecordedNodes.push_back(std::make_pair(N, Parent));
2917       continue;
2918     }
2919 
2920     case OPC_RecordChild0: case OPC_RecordChild1:
2921     case OPC_RecordChild2: case OPC_RecordChild3:
2922     case OPC_RecordChild4: case OPC_RecordChild5:
2923     case OPC_RecordChild6: case OPC_RecordChild7: {
2924       unsigned ChildNo = Opcode-OPC_RecordChild0;
2925       if (ChildNo >= N.getNumOperands())
2926         break;  // Match fails if out of range child #.
2927 
2928       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2929                                              N.getNode()));
2930       continue;
2931     }
2932     case OPC_RecordMemRef:
2933       if (auto *MN = dyn_cast<MemSDNode>(N))
2934         MatchedMemRefs.push_back(MN->getMemOperand());
2935       else {
2936         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2937                    dbgs() << '\n');
2938       }
2939 
2940       continue;
2941 
2942     case OPC_CaptureGlueInput:
2943       // If the current node has an input glue, capture it in InputGlue.
2944       if (N->getNumOperands() != 0 &&
2945           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2946         InputGlue = N->getOperand(N->getNumOperands()-1);
2947       continue;
2948 
2949     case OPC_MoveChild: {
2950       unsigned ChildNo = MatcherTable[MatcherIndex++];
2951       if (ChildNo >= N.getNumOperands())
2952         break;  // Match fails if out of range child #.
2953       N = N.getOperand(ChildNo);
2954       NodeStack.push_back(N);
2955       continue;
2956     }
2957 
2958     case OPC_MoveChild0: case OPC_MoveChild1:
2959     case OPC_MoveChild2: case OPC_MoveChild3:
2960     case OPC_MoveChild4: case OPC_MoveChild5:
2961     case OPC_MoveChild6: case OPC_MoveChild7: {
2962       unsigned ChildNo = Opcode-OPC_MoveChild0;
2963       if (ChildNo >= N.getNumOperands())
2964         break;  // Match fails if out of range child #.
2965       N = N.getOperand(ChildNo);
2966       NodeStack.push_back(N);
2967       continue;
2968     }
2969 
2970     case OPC_MoveParent:
2971       // Pop the current node off the NodeStack.
2972       NodeStack.pop_back();
2973       assert(!NodeStack.empty() && "Node stack imbalance!");
2974       N = NodeStack.back();
2975       continue;
2976 
2977     case OPC_CheckSame:
2978       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2979       continue;
2980 
2981     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2982     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2983       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2984                             Opcode-OPC_CheckChild0Same))
2985         break;
2986       continue;
2987 
2988     case OPC_CheckPatternPredicate:
2989       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2990       continue;
2991     case OPC_CheckPredicate:
2992       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2993                                 N.getNode()))
2994         break;
2995       continue;
2996     case OPC_CheckPredicateWithOperands: {
2997       unsigned OpNum = MatcherTable[MatcherIndex++];
2998       SmallVector<SDValue, 8> Operands;
2999 
3000       for (unsigned i = 0; i < OpNum; ++i)
3001         Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3002 
3003       unsigned PredNo = MatcherTable[MatcherIndex++];
3004       if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3005         break;
3006       continue;
3007     }
3008     case OPC_CheckComplexPat: {
3009       unsigned CPNum = MatcherTable[MatcherIndex++];
3010       unsigned RecNo = MatcherTable[MatcherIndex++];
3011       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3012 
3013       // If target can modify DAG during matching, keep the matching state
3014       // consistent.
3015       std::unique_ptr<MatchStateUpdater> MSU;
3016       if (ComplexPatternFuncMutatesDAG())
3017         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3018                                         MatchScopes));
3019 
3020       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3021                                RecordedNodes[RecNo].first, CPNum,
3022                                RecordedNodes))
3023         break;
3024       continue;
3025     }
3026     case OPC_CheckOpcode:
3027       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3028       continue;
3029 
3030     case OPC_CheckType:
3031       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3032                        CurDAG->getDataLayout()))
3033         break;
3034       continue;
3035 
3036     case OPC_CheckTypeRes: {
3037       unsigned Res = MatcherTable[MatcherIndex++];
3038       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3039                        CurDAG->getDataLayout()))
3040         break;
3041       continue;
3042     }
3043 
3044     case OPC_SwitchOpcode: {
3045       unsigned CurNodeOpcode = N.getOpcode();
3046       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3047       unsigned CaseSize;
3048       while (true) {
3049         // Get the size of this case.
3050         CaseSize = MatcherTable[MatcherIndex++];
3051         if (CaseSize & 128)
3052           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3053         if (CaseSize == 0) break;
3054 
3055         uint16_t Opc = MatcherTable[MatcherIndex++];
3056         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3057 
3058         // If the opcode matches, then we will execute this case.
3059         if (CurNodeOpcode == Opc)
3060           break;
3061 
3062         // Otherwise, skip over this case.
3063         MatcherIndex += CaseSize;
3064       }
3065 
3066       // If no cases matched, bail out.
3067       if (CaseSize == 0) break;
3068 
3069       // Otherwise, execute the case we found.
3070       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3071                         << MatcherIndex << "\n");
3072       continue;
3073     }
3074 
3075     case OPC_SwitchType: {
3076       MVT CurNodeVT = N.getSimpleValueType();
3077       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3078       unsigned CaseSize;
3079       while (true) {
3080         // Get the size of this case.
3081         CaseSize = MatcherTable[MatcherIndex++];
3082         if (CaseSize & 128)
3083           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3084         if (CaseSize == 0) break;
3085 
3086         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3087         if (CaseVT == MVT::iPTR)
3088           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3089 
3090         // If the VT matches, then we will execute this case.
3091         if (CurNodeVT == CaseVT)
3092           break;
3093 
3094         // Otherwise, skip over this case.
3095         MatcherIndex += CaseSize;
3096       }
3097 
3098       // If no cases matched, bail out.
3099       if (CaseSize == 0) break;
3100 
3101       // Otherwise, execute the case we found.
3102       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3103                         << "] from " << SwitchStart << " to " << MatcherIndex
3104                         << '\n');
3105       continue;
3106     }
3107     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3108     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3109     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3110     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3111       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3112                             CurDAG->getDataLayout(),
3113                             Opcode - OPC_CheckChild0Type))
3114         break;
3115       continue;
3116     case OPC_CheckCondCode:
3117       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3118       continue;
3119     case OPC_CheckChild2CondCode:
3120       if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3121       continue;
3122     case OPC_CheckValueType:
3123       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3124                             CurDAG->getDataLayout()))
3125         break;
3126       continue;
3127     case OPC_CheckInteger:
3128       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3129       continue;
3130     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3131     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3132     case OPC_CheckChild4Integer:
3133       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3134                                Opcode-OPC_CheckChild0Integer)) break;
3135       continue;
3136     case OPC_CheckAndImm:
3137       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3138       continue;
3139     case OPC_CheckOrImm:
3140       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3141       continue;
3142     case OPC_CheckImmAllOnesV:
3143       if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3144       continue;
3145     case OPC_CheckImmAllZerosV:
3146       if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3147       continue;
3148 
3149     case OPC_CheckFoldableChainNode: {
3150       assert(NodeStack.size() != 1 && "No parent node");
3151       // Verify that all intermediate nodes between the root and this one have
3152       // a single use.
3153       bool HasMultipleUses = false;
3154       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3155         if (!NodeStack[i].getNode()->hasOneUse()) {
3156           HasMultipleUses = true;
3157           break;
3158         }
3159       if (HasMultipleUses) break;
3160 
3161       // Check to see that the target thinks this is profitable to fold and that
3162       // we can fold it without inducing cycles in the graph.
3163       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3164                               NodeToMatch) ||
3165           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3166                          NodeToMatch, OptLevel,
3167                          true/*We validate our own chains*/))
3168         break;
3169 
3170       continue;
3171     }
3172     case OPC_EmitInteger: {
3173       MVT::SimpleValueType VT =
3174         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3175       int64_t Val = MatcherTable[MatcherIndex++];
3176       if (Val & 128)
3177         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3178       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3179                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3180                                                         VT), nullptr));
3181       continue;
3182     }
3183     case OPC_EmitRegister: {
3184       MVT::SimpleValueType VT =
3185         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3186       unsigned RegNo = MatcherTable[MatcherIndex++];
3187       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3188                               CurDAG->getRegister(RegNo, VT), nullptr));
3189       continue;
3190     }
3191     case OPC_EmitRegister2: {
3192       // For targets w/ more than 256 register names, the register enum
3193       // values are stored in two bytes in the matcher table (just like
3194       // opcodes).
3195       MVT::SimpleValueType VT =
3196         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3197       unsigned RegNo = MatcherTable[MatcherIndex++];
3198       RegNo |= MatcherTable[MatcherIndex++] << 8;
3199       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3200                               CurDAG->getRegister(RegNo, VT), nullptr));
3201       continue;
3202     }
3203 
3204     case OPC_EmitConvertToTarget:  {
3205       // Convert from IMM/FPIMM to target version.
3206       unsigned RecNo = MatcherTable[MatcherIndex++];
3207       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3208       SDValue Imm = RecordedNodes[RecNo].first;
3209 
3210       if (Imm->getOpcode() == ISD::Constant) {
3211         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3212         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3213                                         Imm.getValueType());
3214       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3215         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3216         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3217                                           Imm.getValueType());
3218       }
3219 
3220       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3221       continue;
3222     }
3223 
3224     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3225     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3226     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3227       // These are space-optimized forms of OPC_EmitMergeInputChains.
3228       assert(!InputChain.getNode() &&
3229              "EmitMergeInputChains should be the first chain producing node");
3230       assert(ChainNodesMatched.empty() &&
3231              "Should only have one EmitMergeInputChains per match");
3232 
3233       // Read all of the chained nodes.
3234       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3235       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3236       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3237 
3238       // FIXME: What if other value results of the node have uses not matched
3239       // by this pattern?
3240       if (ChainNodesMatched.back() != NodeToMatch &&
3241           !RecordedNodes[RecNo].first.hasOneUse()) {
3242         ChainNodesMatched.clear();
3243         break;
3244       }
3245 
3246       // Merge the input chains if they are not intra-pattern references.
3247       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3248 
3249       if (!InputChain.getNode())
3250         break;  // Failed to merge.
3251       continue;
3252     }
3253 
3254     case OPC_EmitMergeInputChains: {
3255       assert(!InputChain.getNode() &&
3256              "EmitMergeInputChains should be the first chain producing node");
3257       // This node gets a list of nodes we matched in the input that have
3258       // chains.  We want to token factor all of the input chains to these nodes
3259       // together.  However, if any of the input chains is actually one of the
3260       // nodes matched in this pattern, then we have an intra-match reference.
3261       // Ignore these because the newly token factored chain should not refer to
3262       // the old nodes.
3263       unsigned NumChains = MatcherTable[MatcherIndex++];
3264       assert(NumChains != 0 && "Can't TF zero chains");
3265 
3266       assert(ChainNodesMatched.empty() &&
3267              "Should only have one EmitMergeInputChains per match");
3268 
3269       // Read all of the chained nodes.
3270       for (unsigned i = 0; i != NumChains; ++i) {
3271         unsigned RecNo = MatcherTable[MatcherIndex++];
3272         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3273         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3274 
3275         // FIXME: What if other value results of the node have uses not matched
3276         // by this pattern?
3277         if (ChainNodesMatched.back() != NodeToMatch &&
3278             !RecordedNodes[RecNo].first.hasOneUse()) {
3279           ChainNodesMatched.clear();
3280           break;
3281         }
3282       }
3283 
3284       // If the inner loop broke out, the match fails.
3285       if (ChainNodesMatched.empty())
3286         break;
3287 
3288       // Merge the input chains if they are not intra-pattern references.
3289       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3290 
3291       if (!InputChain.getNode())
3292         break;  // Failed to merge.
3293 
3294       continue;
3295     }
3296 
3297     case OPC_EmitCopyToReg: {
3298       unsigned RecNo = MatcherTable[MatcherIndex++];
3299       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3300       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3301 
3302       if (!InputChain.getNode())
3303         InputChain = CurDAG->getEntryNode();
3304 
3305       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3306                                         DestPhysReg, RecordedNodes[RecNo].first,
3307                                         InputGlue);
3308 
3309       InputGlue = InputChain.getValue(1);
3310       continue;
3311     }
3312 
3313     case OPC_EmitNodeXForm: {
3314       unsigned XFormNo = MatcherTable[MatcherIndex++];
3315       unsigned RecNo = MatcherTable[MatcherIndex++];
3316       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3317       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3318       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3319       continue;
3320     }
3321     case OPC_Coverage: {
3322       // This is emitted right before MorphNode/EmitNode.
3323       // So it should be safe to assume that this node has been selected
3324       unsigned index = MatcherTable[MatcherIndex++];
3325       index |= (MatcherTable[MatcherIndex++] << 8);
3326       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3327       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3328       continue;
3329     }
3330 
3331     case OPC_EmitNode:     case OPC_MorphNodeTo:
3332     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3333     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3334       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3335       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3336       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3337       // Get the result VT list.
3338       unsigned NumVTs;
3339       // If this is one of the compressed forms, get the number of VTs based
3340       // on the Opcode. Otherwise read the next byte from the table.
3341       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3342         NumVTs = Opcode - OPC_MorphNodeTo0;
3343       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3344         NumVTs = Opcode - OPC_EmitNode0;
3345       else
3346         NumVTs = MatcherTable[MatcherIndex++];
3347       SmallVector<EVT, 4> VTs;
3348       for (unsigned i = 0; i != NumVTs; ++i) {
3349         MVT::SimpleValueType VT =
3350           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3351         if (VT == MVT::iPTR)
3352           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3353         VTs.push_back(VT);
3354       }
3355 
3356       if (EmitNodeInfo & OPFL_Chain)
3357         VTs.push_back(MVT::Other);
3358       if (EmitNodeInfo & OPFL_GlueOutput)
3359         VTs.push_back(MVT::Glue);
3360 
3361       // This is hot code, so optimize the two most common cases of 1 and 2
3362       // results.
3363       SDVTList VTList;
3364       if (VTs.size() == 1)
3365         VTList = CurDAG->getVTList(VTs[0]);
3366       else if (VTs.size() == 2)
3367         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3368       else
3369         VTList = CurDAG->getVTList(VTs);
3370 
3371       // Get the operand list.
3372       unsigned NumOps = MatcherTable[MatcherIndex++];
3373       SmallVector<SDValue, 8> Ops;
3374       for (unsigned i = 0; i != NumOps; ++i) {
3375         unsigned RecNo = MatcherTable[MatcherIndex++];
3376         if (RecNo & 128)
3377           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3378 
3379         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3380         Ops.push_back(RecordedNodes[RecNo].first);
3381       }
3382 
3383       // If there are variadic operands to add, handle them now.
3384       if (EmitNodeInfo & OPFL_VariadicInfo) {
3385         // Determine the start index to copy from.
3386         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3387         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3388         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3389                "Invalid variadic node");
3390         // Copy all of the variadic operands, not including a potential glue
3391         // input.
3392         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3393              i != e; ++i) {
3394           SDValue V = NodeToMatch->getOperand(i);
3395           if (V.getValueType() == MVT::Glue) break;
3396           Ops.push_back(V);
3397         }
3398       }
3399 
3400       // If this has chain/glue inputs, add them.
3401       if (EmitNodeInfo & OPFL_Chain)
3402         Ops.push_back(InputChain);
3403       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3404         Ops.push_back(InputGlue);
3405 
3406       // Create the node.
3407       MachineSDNode *Res = nullptr;
3408       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3409                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3410       if (!IsMorphNodeTo) {
3411         // If this is a normal EmitNode command, just create the new node and
3412         // add the results to the RecordedNodes list.
3413         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3414                                      VTList, Ops);
3415 
3416         // Add all the non-glue/non-chain results to the RecordedNodes list.
3417         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3418           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3419           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3420                                                              nullptr));
3421         }
3422       } else {
3423         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3424                "NodeToMatch was removed partway through selection");
3425         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3426                                                               SDNode *E) {
3427           CurDAG->salvageDebugInfo(*N);
3428           auto &Chain = ChainNodesMatched;
3429           assert((!E || !is_contained(Chain, N)) &&
3430                  "Chain node replaced during MorphNode");
3431           Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3432         });
3433         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3434                                             Ops, EmitNodeInfo));
3435       }
3436 
3437       // If the node had chain/glue results, update our notion of the current
3438       // chain and glue.
3439       if (EmitNodeInfo & OPFL_GlueOutput) {
3440         InputGlue = SDValue(Res, VTs.size()-1);
3441         if (EmitNodeInfo & OPFL_Chain)
3442           InputChain = SDValue(Res, VTs.size()-2);
3443       } else if (EmitNodeInfo & OPFL_Chain)
3444         InputChain = SDValue(Res, VTs.size()-1);
3445 
3446       // If the OPFL_MemRefs glue is set on this node, slap all of the
3447       // accumulated memrefs onto it.
3448       //
3449       // FIXME: This is vastly incorrect for patterns with multiple outputs
3450       // instructions that access memory and for ComplexPatterns that match
3451       // loads.
3452       if (EmitNodeInfo & OPFL_MemRefs) {
3453         // Only attach load or store memory operands if the generated
3454         // instruction may load or store.
3455         const MCInstrDesc &MCID = TII->get(TargetOpc);
3456         bool mayLoad = MCID.mayLoad();
3457         bool mayStore = MCID.mayStore();
3458 
3459         // We expect to have relatively few of these so just filter them into a
3460         // temporary buffer so that we can easily add them to the instruction.
3461         SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3462         for (MachineMemOperand *MMO : MatchedMemRefs) {
3463           if (MMO->isLoad()) {
3464             if (mayLoad)
3465               FilteredMemRefs.push_back(MMO);
3466           } else if (MMO->isStore()) {
3467             if (mayStore)
3468               FilteredMemRefs.push_back(MMO);
3469           } else {
3470             FilteredMemRefs.push_back(MMO);
3471           }
3472         }
3473 
3474         CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3475       }
3476 
3477       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3478                      << "  Dropping mem operands\n";
3479                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3480                         << " node: ";
3481                  Res->dump(CurDAG););
3482 
3483       // If this was a MorphNodeTo then we're completely done!
3484       if (IsMorphNodeTo) {
3485         // Update chain uses.
3486         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3487         return;
3488       }
3489       continue;
3490     }
3491 
3492     case OPC_CompleteMatch: {
3493       // The match has been completed, and any new nodes (if any) have been
3494       // created.  Patch up references to the matched dag to use the newly
3495       // created nodes.
3496       unsigned NumResults = MatcherTable[MatcherIndex++];
3497 
3498       for (unsigned i = 0; i != NumResults; ++i) {
3499         unsigned ResSlot = MatcherTable[MatcherIndex++];
3500         if (ResSlot & 128)
3501           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3502 
3503         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3504         SDValue Res = RecordedNodes[ResSlot].first;
3505 
3506         assert(i < NodeToMatch->getNumValues() &&
3507                NodeToMatch->getValueType(i) != MVT::Other &&
3508                NodeToMatch->getValueType(i) != MVT::Glue &&
3509                "Invalid number of results to complete!");
3510         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3511                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3512                 Res.getValueType() == MVT::iPTR ||
3513                 NodeToMatch->getValueType(i).getSizeInBits() ==
3514                     Res.getValueSizeInBits()) &&
3515                "invalid replacement");
3516         ReplaceUses(SDValue(NodeToMatch, i), Res);
3517       }
3518 
3519       // Update chain uses.
3520       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3521 
3522       // If the root node defines glue, we need to update it to the glue result.
3523       // TODO: This never happens in our tests and I think it can be removed /
3524       // replaced with an assert, but if we do it this the way the change is
3525       // NFC.
3526       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3527               MVT::Glue &&
3528           InputGlue.getNode())
3529         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3530                     InputGlue);
3531 
3532       assert(NodeToMatch->use_empty() &&
3533              "Didn't replace all uses of the node?");
3534       CurDAG->RemoveDeadNode(NodeToMatch);
3535 
3536       return;
3537     }
3538     }
3539 
3540     // If the code reached this point, then the match failed.  See if there is
3541     // another child to try in the current 'Scope', otherwise pop it until we
3542     // find a case to check.
3543     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3544                       << "\n");
3545     ++NumDAGIselRetries;
3546     while (true) {
3547       if (MatchScopes.empty()) {
3548         CannotYetSelect(NodeToMatch);
3549         return;
3550       }
3551 
3552       // Restore the interpreter state back to the point where the scope was
3553       // formed.
3554       MatchScope &LastScope = MatchScopes.back();
3555       RecordedNodes.resize(LastScope.NumRecordedNodes);
3556       NodeStack.clear();
3557       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3558       N = NodeStack.back();
3559 
3560       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3561         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3562       MatcherIndex = LastScope.FailIndex;
3563 
3564       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3565 
3566       InputChain = LastScope.InputChain;
3567       InputGlue = LastScope.InputGlue;
3568       if (!LastScope.HasChainNodesMatched)
3569         ChainNodesMatched.clear();
3570 
3571       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3572       // we have reached the end of this scope, otherwise we have another child
3573       // in the current scope to try.
3574       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3575       if (NumToSkip & 128)
3576         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3577 
3578       // If we have another child in this scope to match, update FailIndex and
3579       // try it.
3580       if (NumToSkip != 0) {
3581         LastScope.FailIndex = MatcherIndex+NumToSkip;
3582         break;
3583       }
3584 
3585       // End of this scope, pop it and try the next child in the containing
3586       // scope.
3587       MatchScopes.pop_back();
3588     }
3589   }
3590 }
3591 
3592 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3593   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3594   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3595   if (!C)
3596     return false;
3597 
3598   // Detect when "or" is used to add an offset to a stack object.
3599   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3600     MachineFrameInfo &MFI = MF->getFrameInfo();
3601     unsigned A = MFI.getObjectAlignment(FN->getIndex());
3602     assert(isPowerOf2_32(A) && "Unexpected alignment");
3603     int32_t Off = C->getSExtValue();
3604     // If the alleged offset fits in the zero bits guaranteed by
3605     // the alignment, then this or is really an add.
3606     return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3607   }
3608   return false;
3609 }
3610 
3611 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3612   std::string msg;
3613   raw_string_ostream Msg(msg);
3614   Msg << "Cannot select: ";
3615 
3616   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3617       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3618       N->getOpcode() != ISD::INTRINSIC_VOID) {
3619     N->printrFull(Msg, CurDAG);
3620     Msg << "\nIn function: " << MF->getName();
3621   } else {
3622     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3623     unsigned iid =
3624       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3625     if (iid < Intrinsic::num_intrinsics)
3626       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3627     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3628       Msg << "target intrinsic %" << TII->getName(iid);
3629     else
3630       Msg << "unknown intrinsic #" << iid;
3631   }
3632   report_fatal_error(Msg.str());
3633 }
3634 
3635 char SelectionDAGISel::ID = 0;
3636