1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the ScheduleDAG class, which is a base class used by
10 // scheduling implementation classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ScheduleDAGSDNodes.h"
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "pre-RA-sched"
38
39 STATISTIC(LoadsClustered, "Number of loads clustered together");
40
41 // This allows the latency-based scheduler to notice high latency instructions
42 // without a target itinerary. The choice of number here has more to do with
43 // balancing scheduler heuristics than with the actual machine latency.
44 static cl::opt<int> HighLatencyCycles(
45 "sched-high-latency-cycles", cl::Hidden, cl::init(10),
46 cl::desc("Roughly estimate the number of cycles that 'long latency'"
47 "instructions take for targets with no itinerary"));
48
ScheduleDAGSDNodes(MachineFunction & mf)49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
50 : ScheduleDAG(mf), InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
51
52 /// Run - perform scheduling.
53 ///
Run(SelectionDAG * dag,MachineBasicBlock * bb)54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55 BB = bb;
56 DAG = dag;
57
58 // Clear the scheduler's SUnit DAG.
59 ScheduleDAG::clearDAG();
60 Sequence.clear();
61
62 // Invoke the target's selection of scheduler.
63 Schedule();
64 }
65
66 /// NewSUnit - Creates a new SUnit and return a ptr to it.
67 ///
newSUnit(SDNode * N)68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69 #ifndef NDEBUG
70 const SUnit *Addr = nullptr;
71 if (!SUnits.empty())
72 Addr = &SUnits[0];
73 #endif
74 SUnits.emplace_back(N, (unsigned)SUnits.size());
75 assert((Addr == nullptr || Addr == &SUnits[0]) &&
76 "SUnits std::vector reallocated on the fly!");
77 SUnits.back().OrigNode = &SUnits.back();
78 SUnit *SU = &SUnits.back();
79 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80 if (!N ||
81 (N->isMachineOpcode() &&
82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83 SU->SchedulingPref = Sched::None;
84 else
85 SU->SchedulingPref = TLI.getSchedulingPreference(N);
86 return SU;
87 }
88
Clone(SUnit * Old)89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90 SUnit *SU = newSUnit(Old->getNode());
91 SU->OrigNode = Old->OrigNode;
92 SU->Latency = Old->Latency;
93 SU->isVRegCycle = Old->isVRegCycle;
94 SU->isCall = Old->isCall;
95 SU->isCallOp = Old->isCallOp;
96 SU->isTwoAddress = Old->isTwoAddress;
97 SU->isCommutable = Old->isCommutable;
98 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100 SU->isScheduleHigh = Old->isScheduleHigh;
101 SU->isScheduleLow = Old->isScheduleLow;
102 SU->SchedulingPref = Old->SchedulingPref;
103 Old->isCloned = true;
104 return SU;
105 }
106
107 /// CheckForPhysRegDependency - Check if the dependency between def and use of
108 /// a specified operand is a physical register dependency. If so, returns the
109 /// register and the cost of copying the register.
CheckForPhysRegDependency(SDNode * Def,SDNode * User,unsigned Op,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII,unsigned & PhysReg,int & Cost)110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111 const TargetRegisterInfo *TRI,
112 const TargetInstrInfo *TII,
113 unsigned &PhysReg, int &Cost) {
114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115 return;
116
117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118 if (Register::isVirtualRegister(Reg))
119 return;
120
121 unsigned ResNo = User->getOperand(2).getResNo();
122 if (Def->getOpcode() == ISD::CopyFromReg &&
123 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
124 PhysReg = Reg;
125 } else if (Def->isMachineOpcode()) {
126 const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
127 if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg))
128 PhysReg = Reg;
129 }
130
131 if (PhysReg != 0) {
132 const TargetRegisterClass *RC =
133 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
134 Cost = RC->getCopyCost();
135 }
136 }
137
138 // Helper for AddGlue to clone node operands.
CloneNodeWithValues(SDNode * N,SelectionDAG * DAG,ArrayRef<EVT> VTs,SDValue ExtraOper=SDValue ())139 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
140 SDValue ExtraOper = SDValue()) {
141 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
142 if (ExtraOper.getNode())
143 Ops.push_back(ExtraOper);
144
145 SDVTList VTList = DAG->getVTList(VTs);
146 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
147
148 // Store memory references.
149 SmallVector<MachineMemOperand *, 2> MMOs;
150 if (MN)
151 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end());
152
153 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
154
155 // Reset the memory references
156 if (MN)
157 DAG->setNodeMemRefs(MN, MMOs);
158 }
159
AddGlue(SDNode * N,SDValue Glue,bool AddGlue,SelectionDAG * DAG)160 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
161 SDNode *GlueDestNode = Glue.getNode();
162
163 // Don't add glue from a node to itself.
164 if (GlueDestNode == N) return false;
165
166 // Don't add a glue operand to something that already uses glue.
167 if (GlueDestNode &&
168 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
169 return false;
170 }
171 // Don't add glue to something that already has a glue value.
172 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
173
174 SmallVector<EVT, 4> VTs(N->values());
175 if (AddGlue)
176 VTs.push_back(MVT::Glue);
177
178 CloneNodeWithValues(N, DAG, VTs, Glue);
179
180 return true;
181 }
182
183 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
184 // node even though simply shrinking the value list is sufficient.
RemoveUnusedGlue(SDNode * N,SelectionDAG * DAG)185 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
186 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
187 !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
188 "expected an unused glue value");
189
190 CloneNodeWithValues(N, DAG,
191 makeArrayRef(N->value_begin(), N->getNumValues() - 1));
192 }
193
194 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
195 /// This function finds loads of the same base and different offsets. If the
196 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
197 /// outputs to ensure they are scheduled together and in order. This
198 /// optimization may benefit some targets by improving cache locality.
ClusterNeighboringLoads(SDNode * Node)199 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
200 SDValue Chain;
201 unsigned NumOps = Node->getNumOperands();
202 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
203 Chain = Node->getOperand(NumOps-1);
204 if (!Chain)
205 return;
206
207 // Skip any load instruction that has a tied input. There may be an additional
208 // dependency requiring a different order than by increasing offsets, and the
209 // added glue may introduce a cycle.
210 auto hasTiedInput = [this](const SDNode *N) {
211 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
212 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) {
213 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1)
214 return true;
215 }
216
217 return false;
218 };
219
220 // Look for other loads of the same chain. Find loads that are loading from
221 // the same base pointer and different offsets.
222 SmallPtrSet<SDNode*, 16> Visited;
223 SmallVector<int64_t, 4> Offsets;
224 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
225 bool Cluster = false;
226 SDNode *Base = Node;
227
228 if (hasTiedInput(Base))
229 return;
230
231 // This algorithm requires a reasonably low use count before finding a match
232 // to avoid uselessly blowing up compile time in large blocks.
233 unsigned UseCount = 0;
234 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
235 I != E && UseCount < 100; ++I, ++UseCount) {
236 if (I.getUse().getResNo() != Chain.getResNo())
237 continue;
238
239 SDNode *User = *I;
240 if (User == Node || !Visited.insert(User).second)
241 continue;
242 int64_t Offset1, Offset2;
243 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
244 Offset1 == Offset2 ||
245 hasTiedInput(User)) {
246 // FIXME: Should be ok if they addresses are identical. But earlier
247 // optimizations really should have eliminated one of the loads.
248 continue;
249 }
250 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
251 Offsets.push_back(Offset1);
252 O2SMap.insert(std::make_pair(Offset2, User));
253 Offsets.push_back(Offset2);
254 if (Offset2 < Offset1)
255 Base = User;
256 Cluster = true;
257 // Reset UseCount to allow more matches.
258 UseCount = 0;
259 }
260
261 if (!Cluster)
262 return;
263
264 // Sort them in increasing order.
265 llvm::sort(Offsets);
266
267 // Check if the loads are close enough.
268 SmallVector<SDNode*, 4> Loads;
269 unsigned NumLoads = 0;
270 int64_t BaseOff = Offsets[0];
271 SDNode *BaseLoad = O2SMap[BaseOff];
272 Loads.push_back(BaseLoad);
273 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
274 int64_t Offset = Offsets[i];
275 SDNode *Load = O2SMap[Offset];
276 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
277 break; // Stop right here. Ignore loads that are further away.
278 Loads.push_back(Load);
279 ++NumLoads;
280 }
281
282 if (NumLoads == 0)
283 return;
284
285 // Cluster loads by adding MVT::Glue outputs and inputs. This also
286 // ensure they are scheduled in order of increasing addresses.
287 SDNode *Lead = Loads[0];
288 SDValue InGlue;
289 if (AddGlue(Lead, InGlue, true, DAG))
290 InGlue = SDValue(Lead, Lead->getNumValues() - 1);
291 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
292 bool OutGlue = I < E - 1;
293 SDNode *Load = Loads[I];
294
295 // If AddGlue fails, we could leave an unsused glue value. This should not
296 // cause any
297 if (AddGlue(Load, InGlue, OutGlue, DAG)) {
298 if (OutGlue)
299 InGlue = SDValue(Load, Load->getNumValues() - 1);
300
301 ++LoadsClustered;
302 }
303 else if (!OutGlue && InGlue.getNode())
304 RemoveUnusedGlue(InGlue.getNode(), DAG);
305 }
306 }
307
308 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
309 ///
ClusterNodes()310 void ScheduleDAGSDNodes::ClusterNodes() {
311 for (SDNode &NI : DAG->allnodes()) {
312 SDNode *Node = &NI;
313 if (!Node || !Node->isMachineOpcode())
314 continue;
315
316 unsigned Opc = Node->getMachineOpcode();
317 const MCInstrDesc &MCID = TII->get(Opc);
318 if (MCID.mayLoad())
319 // Cluster loads from "near" addresses into combined SUnits.
320 ClusterNeighboringLoads(Node);
321 }
322 }
323
BuildSchedUnits()324 void ScheduleDAGSDNodes::BuildSchedUnits() {
325 // During scheduling, the NodeId field of SDNode is used to map SDNodes
326 // to their associated SUnits by holding SUnits table indices. A value
327 // of -1 means the SDNode does not yet have an associated SUnit.
328 unsigned NumNodes = 0;
329 for (SDNode &NI : DAG->allnodes()) {
330 NI.setNodeId(-1);
331 ++NumNodes;
332 }
333
334 // Reserve entries in the vector for each of the SUnits we are creating. This
335 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
336 // invalidated.
337 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
338 // This is a temporary workaround.
339 SUnits.reserve(NumNodes * 2);
340
341 // Add all nodes in depth first order.
342 SmallVector<SDNode*, 64> Worklist;
343 SmallPtrSet<SDNode*, 32> Visited;
344 Worklist.push_back(DAG->getRoot().getNode());
345 Visited.insert(DAG->getRoot().getNode());
346
347 SmallVector<SUnit*, 8> CallSUnits;
348 while (!Worklist.empty()) {
349 SDNode *NI = Worklist.pop_back_val();
350
351 // Add all operands to the worklist unless they've already been added.
352 for (const SDValue &Op : NI->op_values())
353 if (Visited.insert(Op.getNode()).second)
354 Worklist.push_back(Op.getNode());
355
356 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
357 continue;
358
359 // If this node has already been processed, stop now.
360 if (NI->getNodeId() != -1) continue;
361
362 SUnit *NodeSUnit = newSUnit(NI);
363
364 // See if anything is glued to this node, if so, add them to glued
365 // nodes. Nodes can have at most one glue input and one glue output. Glue
366 // is required to be the last operand and result of a node.
367
368 // Scan up to find glued preds.
369 SDNode *N = NI;
370 while (N->getNumOperands() &&
371 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
372 N = N->getOperand(N->getNumOperands()-1).getNode();
373 assert(N->getNodeId() == -1 && "Node already inserted!");
374 N->setNodeId(NodeSUnit->NodeNum);
375 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
376 NodeSUnit->isCall = true;
377 }
378
379 // Scan down to find any glued succs.
380 N = NI;
381 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
382 SDValue GlueVal(N, N->getNumValues()-1);
383
384 // There are either zero or one users of the Glue result.
385 bool HasGlueUse = false;
386 for (SDNode *U : N->uses())
387 if (GlueVal.isOperandOf(U)) {
388 HasGlueUse = true;
389 assert(N->getNodeId() == -1 && "Node already inserted!");
390 N->setNodeId(NodeSUnit->NodeNum);
391 N = U;
392 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
393 NodeSUnit->isCall = true;
394 break;
395 }
396 if (!HasGlueUse) break;
397 }
398
399 if (NodeSUnit->isCall)
400 CallSUnits.push_back(NodeSUnit);
401
402 // Schedule zero-latency TokenFactor below any nodes that may increase the
403 // schedule height. Otherwise, ancestors of the TokenFactor may appear to
404 // have false stalls.
405 if (NI->getOpcode() == ISD::TokenFactor)
406 NodeSUnit->isScheduleLow = true;
407
408 // If there are glue operands involved, N is now the bottom-most node
409 // of the sequence of nodes that are glued together.
410 // Update the SUnit.
411 NodeSUnit->setNode(N);
412 assert(N->getNodeId() == -1 && "Node already inserted!");
413 N->setNodeId(NodeSUnit->NodeNum);
414
415 // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
416 InitNumRegDefsLeft(NodeSUnit);
417
418 // Assign the Latency field of NodeSUnit using target-provided information.
419 computeLatency(NodeSUnit);
420 }
421
422 // Find all call operands.
423 while (!CallSUnits.empty()) {
424 SUnit *SU = CallSUnits.pop_back_val();
425 for (const SDNode *SUNode = SU->getNode(); SUNode;
426 SUNode = SUNode->getGluedNode()) {
427 if (SUNode->getOpcode() != ISD::CopyToReg)
428 continue;
429 SDNode *SrcN = SUNode->getOperand(2).getNode();
430 if (isPassiveNode(SrcN)) continue; // Not scheduled.
431 SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
432 SrcSU->isCallOp = true;
433 }
434 }
435 }
436
AddSchedEdges()437 void ScheduleDAGSDNodes::AddSchedEdges() {
438 const TargetSubtargetInfo &ST = MF.getSubtarget();
439
440 // Check to see if the scheduler cares about latencies.
441 bool UnitLatencies = forceUnitLatencies();
442
443 // Pass 2: add the preds, succs, etc.
444 for (SUnit &SU : SUnits) {
445 SDNode *MainNode = SU.getNode();
446
447 if (MainNode->isMachineOpcode()) {
448 unsigned Opc = MainNode->getMachineOpcode();
449 const MCInstrDesc &MCID = TII->get(Opc);
450 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
451 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
452 SU.isTwoAddress = true;
453 break;
454 }
455 }
456 if (MCID.isCommutable())
457 SU.isCommutable = true;
458 }
459
460 // Find all predecessors and successors of the group.
461 for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) {
462 if (N->isMachineOpcode() &&
463 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
464 SU.hasPhysRegClobbers = true;
465 unsigned NumUsed = InstrEmitter::CountResults(N);
466 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
467 --NumUsed; // Skip over unused values at the end.
468 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
469 SU.hasPhysRegDefs = true;
470 }
471
472 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
473 SDNode *OpN = N->getOperand(i).getNode();
474 unsigned DefIdx = N->getOperand(i).getResNo();
475 if (isPassiveNode(OpN)) continue; // Not scheduled.
476 SUnit *OpSU = &SUnits[OpN->getNodeId()];
477 assert(OpSU && "Node has no SUnit!");
478 if (OpSU == &SU)
479 continue; // In the same group.
480
481 EVT OpVT = N->getOperand(i).getValueType();
482 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
483 bool isChain = OpVT == MVT::Other;
484
485 unsigned PhysReg = 0;
486 int Cost = 1;
487 // Determine if this is a physical register dependency.
488 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
489 assert((PhysReg == 0 || !isChain) &&
490 "Chain dependence via physreg data?");
491 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
492 // emits a copy from the physical register to a virtual register unless
493 // it requires a cross class copy (cost < 0). That means we are only
494 // treating "expensive to copy" register dependency as physical register
495 // dependency. This may change in the future though.
496 if (Cost >= 0 && !StressSched)
497 PhysReg = 0;
498
499 // If this is a ctrl dep, latency is 1.
500 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
501 // Special-case TokenFactor chains as zero-latency.
502 if(isChain && OpN->getOpcode() == ISD::TokenFactor)
503 OpLatency = 0;
504
505 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
506 : SDep(OpSU, SDep::Data, PhysReg);
507 Dep.setLatency(OpLatency);
508 if (!isChain && !UnitLatencies) {
509 computeOperandLatency(OpN, N, i, Dep);
510 ST.adjustSchedDependency(OpSU, DefIdx, &SU, i, Dep);
511 }
512
513 if (!SU.addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
514 // Multiple register uses are combined in the same SUnit. For example,
515 // we could have a set of glued nodes with all their defs consumed by
516 // another set of glued nodes. Register pressure tracking sees this as
517 // a single use, so to keep pressure balanced we reduce the defs.
518 //
519 // We can't tell (without more book-keeping) if this results from
520 // glued nodes or duplicate operands. As long as we don't reduce
521 // NumRegDefsLeft to zero, we handle the common cases well.
522 --OpSU->NumRegDefsLeft;
523 }
524 }
525 }
526 }
527 }
528
529 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
530 /// are input. This SUnit graph is similar to the SelectionDAG, but
531 /// excludes nodes that aren't interesting to scheduling, and represents
532 /// glued together nodes with a single SUnit.
BuildSchedGraph(AAResults * AA)533 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) {
534 // Cluster certain nodes which should be scheduled together.
535 ClusterNodes();
536 // Populate the SUnits array.
537 BuildSchedUnits();
538 // Compute all the scheduling dependencies between nodes.
539 AddSchedEdges();
540 }
541
542 // Initialize NumNodeDefs for the current Node's opcode.
InitNodeNumDefs()543 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
544 // Check for phys reg copy.
545 if (!Node)
546 return;
547
548 if (!Node->isMachineOpcode()) {
549 if (Node->getOpcode() == ISD::CopyFromReg)
550 NodeNumDefs = 1;
551 else
552 NodeNumDefs = 0;
553 return;
554 }
555 unsigned POpc = Node->getMachineOpcode();
556 if (POpc == TargetOpcode::IMPLICIT_DEF) {
557 // No register need be allocated for this.
558 NodeNumDefs = 0;
559 return;
560 }
561 if (POpc == TargetOpcode::PATCHPOINT &&
562 Node->getValueType(0) == MVT::Other) {
563 // PATCHPOINT is defined to have one result, but it might really have none
564 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
565 // real definition.
566 NodeNumDefs = 0;
567 return;
568 }
569 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
570 // Some instructions define regs that are not represented in the selection DAG
571 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
572 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
573 DefIdx = 0;
574 }
575
576 // Construct a RegDefIter for this SUnit and find the first valid value.
RegDefIter(const SUnit * SU,const ScheduleDAGSDNodes * SD)577 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
578 const ScheduleDAGSDNodes *SD)
579 : SchedDAG(SD), Node(SU->getNode()) {
580 InitNodeNumDefs();
581 Advance();
582 }
583
584 // Advance to the next valid value defined by the SUnit.
Advance()585 void ScheduleDAGSDNodes::RegDefIter::Advance() {
586 for (;Node;) { // Visit all glued nodes.
587 for (;DefIdx < NodeNumDefs; ++DefIdx) {
588 if (!Node->hasAnyUseOfValue(DefIdx))
589 continue;
590 ValueType = Node->getSimpleValueType(DefIdx);
591 ++DefIdx;
592 return; // Found a normal regdef.
593 }
594 Node = Node->getGluedNode();
595 if (!Node) {
596 return; // No values left to visit.
597 }
598 InitNodeNumDefs();
599 }
600 }
601
InitNumRegDefsLeft(SUnit * SU)602 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
603 assert(SU->NumRegDefsLeft == 0 && "expect a new node");
604 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
605 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
606 ++SU->NumRegDefsLeft;
607 }
608 }
609
computeLatency(SUnit * SU)610 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
611 SDNode *N = SU->getNode();
612
613 // TokenFactor operands are considered zero latency, and some schedulers
614 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
615 // whenever node latency is nonzero.
616 if (N && N->getOpcode() == ISD::TokenFactor) {
617 SU->Latency = 0;
618 return;
619 }
620
621 // Check to see if the scheduler cares about latencies.
622 if (forceUnitLatencies()) {
623 SU->Latency = 1;
624 return;
625 }
626
627 if (!InstrItins || InstrItins->isEmpty()) {
628 if (N && N->isMachineOpcode() &&
629 TII->isHighLatencyDef(N->getMachineOpcode()))
630 SU->Latency = HighLatencyCycles;
631 else
632 SU->Latency = 1;
633 return;
634 }
635
636 // Compute the latency for the node. We use the sum of the latencies for
637 // all nodes glued together into this SUnit.
638 SU->Latency = 0;
639 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
640 if (N->isMachineOpcode())
641 SU->Latency += TII->getInstrLatency(InstrItins, N);
642 }
643
computeOperandLatency(SDNode * Def,SDNode * Use,unsigned OpIdx,SDep & dep) const644 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
645 unsigned OpIdx, SDep& dep) const{
646 // Check to see if the scheduler cares about latencies.
647 if (forceUnitLatencies())
648 return;
649
650 if (dep.getKind() != SDep::Data)
651 return;
652
653 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
654 if (Use->isMachineOpcode())
655 // Adjust the use operand index by num of defs.
656 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
657 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
658 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
659 !BB->succ_empty()) {
660 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
661 if (Register::isVirtualRegister(Reg))
662 // This copy is a liveout value. It is likely coalesced, so reduce the
663 // latency so not to penalize the def.
664 // FIXME: need target specific adjustment here?
665 Latency = (Latency > 1) ? Latency - 1 : 1;
666 }
667 if (Latency >= 0)
668 dep.setLatency(Latency);
669 }
670
dumpNode(const SUnit & SU) const671 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const {
672 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
673 dumpNodeName(SU);
674 dbgs() << ": ";
675
676 if (!SU.getNode()) {
677 dbgs() << "PHYS REG COPY\n";
678 return;
679 }
680
681 SU.getNode()->dump(DAG);
682 dbgs() << "\n";
683 SmallVector<SDNode *, 4> GluedNodes;
684 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode())
685 GluedNodes.push_back(N);
686 while (!GluedNodes.empty()) {
687 dbgs() << " ";
688 GluedNodes.back()->dump(DAG);
689 dbgs() << "\n";
690 GluedNodes.pop_back();
691 }
692 #endif
693 }
694
dump() const695 void ScheduleDAGSDNodes::dump() const {
696 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
697 if (EntrySU.getNode() != nullptr)
698 dumpNodeAll(EntrySU);
699 for (const SUnit &SU : SUnits)
700 dumpNodeAll(SU);
701 if (ExitSU.getNode() != nullptr)
702 dumpNodeAll(ExitSU);
703 #endif
704 }
705
706 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const707 void ScheduleDAGSDNodes::dumpSchedule() const {
708 for (const SUnit *SU : Sequence) {
709 if (SU)
710 dumpNode(*SU);
711 else
712 dbgs() << "**** NOOP ****\n";
713 }
714 }
715 #endif
716
717 #ifndef NDEBUG
718 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
719 /// their state is consistent with the nodes listed in Sequence.
720 ///
VerifyScheduledSequence(bool isBottomUp)721 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
722 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
723 unsigned Noops = llvm::count(Sequence, nullptr);
724 assert(Sequence.size() - Noops == ScheduledNodes &&
725 "The number of nodes scheduled doesn't match the expected number!");
726 }
727 #endif // NDEBUG
728
729 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
730 static void
ProcessSDDbgValues(SDNode * N,SelectionDAG * DAG,InstrEmitter & Emitter,SmallVectorImpl<std::pair<unsigned,MachineInstr * >> & Orders,DenseMap<SDValue,Register> & VRBaseMap,unsigned Order)731 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
732 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
733 DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) {
734 if (!N->getHasDebugValue())
735 return;
736
737 /// Returns true if \p DV has any VReg operand locations which don't exist in
738 /// VRBaseMap.
739 auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) {
740 for (const SDDbgOperand &L : DV->getLocationOps()) {
741 if (L.getKind() == SDDbgOperand::SDNODE &&
742 VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0)
743 return true;
744 }
745 return false;
746 };
747
748 // Opportunistically insert immediate dbg_value uses, i.e. those with the same
749 // source order number as N.
750 MachineBasicBlock *BB = Emitter.getBlock();
751 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
752 for (auto *DV : DAG->GetDbgValues(N)) {
753 if (DV->isEmitted())
754 continue;
755 unsigned DVOrder = DV->getOrder();
756 if (Order != 0 && DVOrder != Order)
757 continue;
758 // If DV has any VReg location operands which haven't been mapped then
759 // either that node is no longer available or we just haven't visited the
760 // node yet. In the former case we should emit an undef dbg_value, but we
761 // can do it later. And for the latter we'll want to wait until all
762 // dependent nodes have been visited.
763 if (!DV->isInvalidated() && HasUnknownVReg(DV))
764 continue;
765 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
766 if (!DbgMI)
767 continue;
768 Orders.push_back({DVOrder, DbgMI});
769 BB->insert(InsertPos, DbgMI);
770 }
771 }
772
773 // ProcessSourceNode - Process nodes with source order numbers. These are added
774 // to a vector which EmitSchedule uses to determine how to insert dbg_value
775 // instructions in the right order.
776 static void
ProcessSourceNode(SDNode * N,SelectionDAG * DAG,InstrEmitter & Emitter,DenseMap<SDValue,Register> & VRBaseMap,SmallVectorImpl<std::pair<unsigned,MachineInstr * >> & Orders,SmallSet<Register,8> & Seen,MachineInstr * NewInsn)777 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
778 DenseMap<SDValue, Register> &VRBaseMap,
779 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders,
780 SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) {
781 unsigned Order = N->getIROrder();
782 if (!Order || Seen.count(Order)) {
783 // Process any valid SDDbgValues even if node does not have any order
784 // assigned.
785 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
786 return;
787 }
788
789 // If a new instruction was generated for this Order number, record it.
790 // Otherwise, leave this order number unseen: we will either find later
791 // instructions for it, or leave it unseen if there were no instructions at
792 // all.
793 if (NewInsn) {
794 Seen.insert(Order);
795 Orders.push_back({Order, NewInsn});
796 }
797
798 // Even if no instruction was generated, a Value may have become defined via
799 // earlier nodes. Try to process them now.
800 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
801 }
802
803 void ScheduleDAGSDNodes::
EmitPhysRegCopy(SUnit * SU,DenseMap<SUnit *,Register> & VRBaseMap,MachineBasicBlock::iterator InsertPos)804 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap,
805 MachineBasicBlock::iterator InsertPos) {
806 for (const SDep &Pred : SU->Preds) {
807 if (Pred.isCtrl())
808 continue; // ignore chain preds
809 if (Pred.getSUnit()->CopyDstRC) {
810 // Copy to physical register.
811 DenseMap<SUnit *, Register>::iterator VRI =
812 VRBaseMap.find(Pred.getSUnit());
813 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
814 // Find the destination physical register.
815 Register Reg;
816 for (const SDep &Succ : SU->Succs) {
817 if (Succ.isCtrl())
818 continue; // ignore chain preds
819 if (Succ.getReg()) {
820 Reg = Succ.getReg();
821 break;
822 }
823 }
824 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
825 .addReg(VRI->second);
826 } else {
827 // Copy from physical register.
828 assert(Pred.getReg() && "Unknown physical register!");
829 Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
830 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
831 (void)isNew; // Silence compiler warning.
832 assert(isNew && "Node emitted out of order - early");
833 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
834 .addReg(Pred.getReg());
835 }
836 break;
837 }
838 }
839
840 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
841 /// InsertPos and MachineBasicBlock that contains this insertion
842 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
843 /// not necessarily refer to returned BB. The emitter may split blocks.
844 MachineBasicBlock *ScheduleDAGSDNodes::
EmitSchedule(MachineBasicBlock::iterator & InsertPos)845 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
846 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos,
847 DAG->getUseInstrRefDebugInfo());
848 DenseMap<SDValue, Register> VRBaseMap;
849 DenseMap<SUnit*, Register> CopyVRBaseMap;
850 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
851 SmallSet<Register, 8> Seen;
852 bool HasDbg = DAG->hasDebugValues();
853
854 // Emit a node, and determine where its first instruction is for debuginfo.
855 // Zero, one, or multiple instructions can be created when emitting a node.
856 auto EmitNode =
857 [&](SDNode *Node, bool IsClone, bool IsCloned,
858 DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * {
859 // Fetch instruction prior to this, or end() if nonexistant.
860 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) {
861 if (I == BB->begin())
862 return BB->end();
863 else
864 return std::prev(Emitter.getInsertPos());
865 };
866
867 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos());
868 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap);
869 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos());
870
871 // If the iterator did not change, no instructions were inserted.
872 if (Before == After)
873 return nullptr;
874
875 MachineInstr *MI;
876 if (Before == BB->end()) {
877 // There were no prior instructions; the new ones must start at the
878 // beginning of the block.
879 MI = &Emitter.getBlock()->instr_front();
880 } else {
881 // Return first instruction after the pre-existing instructions.
882 MI = &*std::next(Before);
883 }
884
885 if (MI->isCandidateForCallSiteEntry() &&
886 DAG->getTarget().Options.EmitCallSiteInfo)
887 MF.addCallArgsForwardingRegs(MI, DAG->getCallSiteInfo(Node));
888
889 if (DAG->getNoMergeSiteInfo(Node)) {
890 MI->setFlag(MachineInstr::MIFlag::NoMerge);
891 }
892
893 return MI;
894 };
895
896 // If this is the first BB, emit byval parameter dbg_value's.
897 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
898 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
899 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
900 for (; PDI != PDE; ++PDI) {
901 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
902 if (DbgMI) {
903 BB->insert(InsertPos, DbgMI);
904 // We re-emit the dbg_value closer to its use, too, after instructions
905 // are emitted to the BB.
906 (*PDI)->clearIsEmitted();
907 }
908 }
909 }
910
911 for (SUnit *SU : Sequence) {
912 if (!SU) {
913 // Null SUnit* is a noop.
914 TII->insertNoop(*Emitter.getBlock(), InsertPos);
915 continue;
916 }
917
918 // For pre-regalloc scheduling, create instructions corresponding to the
919 // SDNode and any glued SDNodes and append them to the block.
920 if (!SU->getNode()) {
921 // Emit a copy.
922 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
923 continue;
924 }
925
926 SmallVector<SDNode *, 4> GluedNodes;
927 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
928 GluedNodes.push_back(N);
929 while (!GluedNodes.empty()) {
930 SDNode *N = GluedNodes.back();
931 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
932 // Remember the source order of the inserted instruction.
933 if (HasDbg)
934 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn);
935
936 if (MDNode *MD = DAG->getHeapAllocSite(N))
937 if (NewInsn && NewInsn->isCall())
938 NewInsn->setHeapAllocMarker(MF, MD);
939
940 GluedNodes.pop_back();
941 }
942 auto NewInsn =
943 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
944 // Remember the source order of the inserted instruction.
945 if (HasDbg)
946 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen,
947 NewInsn);
948
949 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) {
950 if (NewInsn && NewInsn->isCall())
951 NewInsn->setHeapAllocMarker(MF, MD);
952 }
953 }
954
955 // Insert all the dbg_values which have not already been inserted in source
956 // order sequence.
957 if (HasDbg) {
958 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
959
960 // Sort the source order instructions and use the order to insert debug
961 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
962 // regardless of the host's implementation fo std::sort.
963 llvm::stable_sort(Orders, less_first());
964 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
965 [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
966 return LHS->getOrder() < RHS->getOrder();
967 });
968
969 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
970 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
971 // Now emit the rest according to source order.
972 unsigned LastOrder = 0;
973 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
974 unsigned Order = Orders[i].first;
975 MachineInstr *MI = Orders[i].second;
976 // Insert all SDDbgValue's whose order(s) are before "Order".
977 assert(MI);
978 for (; DI != DE; ++DI) {
979 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
980 break;
981 if ((*DI)->isEmitted())
982 continue;
983
984 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
985 if (DbgMI) {
986 if (!LastOrder)
987 // Insert to start of the BB (after PHIs).
988 BB->insert(BBBegin, DbgMI);
989 else {
990 // Insert at the instruction, which may be in a different
991 // block, if the block was split by a custom inserter.
992 MachineBasicBlock::iterator Pos = MI;
993 MI->getParent()->insert(Pos, DbgMI);
994 }
995 }
996 }
997 LastOrder = Order;
998 }
999 // Add trailing DbgValue's before the terminator. FIXME: May want to add
1000 // some of them before one or more conditional branches?
1001 SmallVector<MachineInstr*, 8> DbgMIs;
1002 for (; DI != DE; ++DI) {
1003 if ((*DI)->isEmitted())
1004 continue;
1005 assert((*DI)->getOrder() >= LastOrder &&
1006 "emitting DBG_VALUE out of order");
1007 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
1008 DbgMIs.push_back(DbgMI);
1009 }
1010
1011 MachineBasicBlock *InsertBB = Emitter.getBlock();
1012 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
1013 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
1014
1015 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
1016 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
1017 // Now emit the rest according to source order.
1018 LastOrder = 0;
1019 for (const auto &InstrOrder : Orders) {
1020 unsigned Order = InstrOrder.first;
1021 MachineInstr *MI = InstrOrder.second;
1022 if (!MI)
1023 continue;
1024
1025 // Insert all SDDbgLabel's whose order(s) are before "Order".
1026 for (; DLI != DLE &&
1027 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
1028 ++DLI) {
1029 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
1030 if (DbgMI) {
1031 if (!LastOrder)
1032 // Insert to start of the BB (after PHIs).
1033 BB->insert(BBBegin, DbgMI);
1034 else {
1035 // Insert at the instruction, which may be in a different
1036 // block, if the block was split by a custom inserter.
1037 MachineBasicBlock::iterator Pos = MI;
1038 MI->getParent()->insert(Pos, DbgMI);
1039 }
1040 }
1041 }
1042 if (DLI == DLE)
1043 break;
1044
1045 LastOrder = Order;
1046 }
1047 }
1048
1049 InsertPos = Emitter.getInsertPos();
1050 // In some cases, DBG_VALUEs might be inserted after the first terminator,
1051 // which results in an invalid MBB. If that happens, move the DBG_VALUEs
1052 // before the first terminator.
1053 MachineBasicBlock *InsertBB = Emitter.getBlock();
1054 auto FirstTerm = InsertBB->getFirstTerminator();
1055 if (FirstTerm != InsertBB->end()) {
1056 assert(!FirstTerm->isDebugValue() &&
1057 "first terminator cannot be a debug value");
1058 for (MachineInstr &MI : make_early_inc_range(
1059 make_range(std::next(FirstTerm), InsertBB->end()))) {
1060 // Only scan up to insertion point.
1061 if (&MI == InsertPos)
1062 break;
1063
1064 if (!MI.isDebugValue())
1065 continue;
1066
1067 // The DBG_VALUE was referencing a value produced by a terminator. By
1068 // moving the DBG_VALUE, the referenced value also needs invalidating.
1069 MI.getOperand(0).ChangeToRegister(0, false);
1070 MI.moveBefore(&*FirstTerm);
1071 }
1072 }
1073 return InsertBB;
1074 }
1075
1076 /// Return the basic block label.
getDAGName() const1077 std::string ScheduleDAGSDNodes::getDAGName() const {
1078 return "sunit-dag." + BB->getFullName();
1079 }
1080