1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a fast scheduler.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstrEmitter.h"
14 #include "SDNodeDbgValue.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/SchedulerRegistry.h"
19 #include "llvm/CodeGen/SelectionDAGISel.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
27
28 #define DEBUG_TYPE "pre-RA-sched"
29
30 STATISTIC(NumUnfolds, "Number of nodes unfolded");
31 STATISTIC(NumDups, "Number of duplicated nodes");
32 STATISTIC(NumPRCopies, "Number of physical copies");
33
34 static RegisterScheduler
35 fastDAGScheduler("fast", "Fast suboptimal list scheduling",
36 createFastDAGScheduler);
37 static RegisterScheduler
38 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
39 createDAGLinearizer);
40
41
42 namespace {
43 /// FastPriorityQueue - A degenerate priority queue that considers
44 /// all nodes to have the same priority.
45 ///
46 struct FastPriorityQueue {
47 SmallVector<SUnit *, 16> Queue;
48
empty__anon9389022c0111::FastPriorityQueue49 bool empty() const { return Queue.empty(); }
50
push__anon9389022c0111::FastPriorityQueue51 void push(SUnit *U) {
52 Queue.push_back(U);
53 }
54
pop__anon9389022c0111::FastPriorityQueue55 SUnit *pop() {
56 if (empty()) return nullptr;
57 return Queue.pop_back_val();
58 }
59 };
60
61 //===----------------------------------------------------------------------===//
62 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
63 ///
64 class ScheduleDAGFast : public ScheduleDAGSDNodes {
65 private:
66 /// AvailableQueue - The priority queue to use for the available SUnits.
67 FastPriorityQueue AvailableQueue;
68
69 /// LiveRegDefs - A set of physical registers and their definition
70 /// that are "live". These nodes must be scheduled before any other nodes that
71 /// modifies the registers can be scheduled.
72 unsigned NumLiveRegs;
73 std::vector<SUnit*> LiveRegDefs;
74 std::vector<unsigned> LiveRegCycles;
75
76 public:
ScheduleDAGFast(MachineFunction & mf)77 ScheduleDAGFast(MachineFunction &mf)
78 : ScheduleDAGSDNodes(mf) {}
79
80 void Schedule() override;
81
82 /// AddPred - adds a predecessor edge to SUnit SU.
83 /// This returns true if this is a new predecessor.
AddPred(SUnit * SU,const SDep & D)84 void AddPred(SUnit *SU, const SDep &D) {
85 SU->addPred(D);
86 }
87
88 /// RemovePred - removes a predecessor edge from SUnit SU.
89 /// This returns true if an edge was removed.
RemovePred(SUnit * SU,const SDep & D)90 void RemovePred(SUnit *SU, const SDep &D) {
91 SU->removePred(D);
92 }
93
94 private:
95 void ReleasePred(SUnit *SU, SDep *PredEdge);
96 void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
97 void ScheduleNodeBottomUp(SUnit*, unsigned);
98 SUnit *CopyAndMoveSuccessors(SUnit*);
99 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
100 const TargetRegisterClass*,
101 const TargetRegisterClass*,
102 SmallVectorImpl<SUnit*>&);
103 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
104 void ListScheduleBottomUp();
105
106 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
forceUnitLatencies() const107 bool forceUnitLatencies() const override { return true; }
108 };
109 } // end anonymous namespace
110
111
112 /// Schedule - Schedule the DAG using list scheduling.
Schedule()113 void ScheduleDAGFast::Schedule() {
114 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
115
116 NumLiveRegs = 0;
117 LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
118 LiveRegCycles.resize(TRI->getNumRegs(), 0);
119
120 // Build the scheduling graph.
121 BuildSchedGraph(nullptr);
122
123 LLVM_DEBUG(dump());
124
125 // Execute the actual scheduling loop.
126 ListScheduleBottomUp();
127 }
128
129 //===----------------------------------------------------------------------===//
130 // Bottom-Up Scheduling
131 //===----------------------------------------------------------------------===//
132
133 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
134 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,SDep * PredEdge)135 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
136 SUnit *PredSU = PredEdge->getSUnit();
137
138 #ifndef NDEBUG
139 if (PredSU->NumSuccsLeft == 0) {
140 dbgs() << "*** Scheduling failed! ***\n";
141 dumpNode(*PredSU);
142 dbgs() << " has been released too many times!\n";
143 llvm_unreachable(nullptr);
144 }
145 #endif
146 --PredSU->NumSuccsLeft;
147
148 // If all the node's successors are scheduled, this node is ready
149 // to be scheduled. Ignore the special EntrySU node.
150 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
151 PredSU->isAvailable = true;
152 AvailableQueue.push(PredSU);
153 }
154 }
155
ReleasePredecessors(SUnit * SU,unsigned CurCycle)156 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
157 // Bottom up: release predecessors
158 for (SDep &Pred : SU->Preds) {
159 ReleasePred(SU, &Pred);
160 if (Pred.isAssignedRegDep()) {
161 // This is a physical register dependency and it's impossible or
162 // expensive to copy the register. Make sure nothing that can
163 // clobber the register is scheduled between the predecessor and
164 // this node.
165 if (!LiveRegDefs[Pred.getReg()]) {
166 ++NumLiveRegs;
167 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
168 LiveRegCycles[Pred.getReg()] = CurCycle;
169 }
170 }
171 }
172 }
173
174 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
175 /// count of its predecessors. If a predecessor pending count is zero, add it to
176 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU,unsigned CurCycle)177 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
178 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
179 LLVM_DEBUG(dumpNode(*SU));
180
181 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
182 SU->setHeightToAtLeast(CurCycle);
183 Sequence.push_back(SU);
184
185 ReleasePredecessors(SU, CurCycle);
186
187 // Release all the implicit physical register defs that are live.
188 for (SDep &Succ : SU->Succs) {
189 if (Succ.isAssignedRegDep()) {
190 if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) {
191 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
192 assert(LiveRegDefs[Succ.getReg()] == SU &&
193 "Physical register dependency violated?");
194 --NumLiveRegs;
195 LiveRegDefs[Succ.getReg()] = nullptr;
196 LiveRegCycles[Succ.getReg()] = 0;
197 }
198 }
199 }
200
201 SU->isScheduled = true;
202 }
203
204 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
205 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)206 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
207 if (SU->getNode()->getGluedNode())
208 return nullptr;
209
210 SDNode *N = SU->getNode();
211 if (!N)
212 return nullptr;
213
214 SUnit *NewSU;
215 bool TryUnfold = false;
216 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
217 MVT VT = N->getSimpleValueType(i);
218 if (VT == MVT::Glue)
219 return nullptr;
220 else if (VT == MVT::Other)
221 TryUnfold = true;
222 }
223 for (const SDValue &Op : N->op_values()) {
224 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
225 if (VT == MVT::Glue)
226 return nullptr;
227 }
228
229 if (TryUnfold) {
230 SmallVector<SDNode*, 2> NewNodes;
231 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
232 return nullptr;
233
234 LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
235 assert(NewNodes.size() == 2 && "Expected a load folding node!");
236
237 N = NewNodes[1];
238 SDNode *LoadNode = NewNodes[0];
239 unsigned NumVals = N->getNumValues();
240 unsigned OldNumVals = SU->getNode()->getNumValues();
241 for (unsigned i = 0; i != NumVals; ++i)
242 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
243 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
244 SDValue(LoadNode, 1));
245
246 SUnit *NewSU = newSUnit(N);
247 assert(N->getNodeId() == -1 && "Node already inserted!");
248 N->setNodeId(NewSU->NodeNum);
249
250 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
251 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
252 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
253 NewSU->isTwoAddress = true;
254 break;
255 }
256 }
257 if (MCID.isCommutable())
258 NewSU->isCommutable = true;
259
260 // LoadNode may already exist. This can happen when there is another
261 // load from the same location and producing the same type of value
262 // but it has different alignment or volatileness.
263 bool isNewLoad = true;
264 SUnit *LoadSU;
265 if (LoadNode->getNodeId() != -1) {
266 LoadSU = &SUnits[LoadNode->getNodeId()];
267 isNewLoad = false;
268 } else {
269 LoadSU = newSUnit(LoadNode);
270 LoadNode->setNodeId(LoadSU->NodeNum);
271 }
272
273 SDep ChainPred;
274 SmallVector<SDep, 4> ChainSuccs;
275 SmallVector<SDep, 4> LoadPreds;
276 SmallVector<SDep, 4> NodePreds;
277 SmallVector<SDep, 4> NodeSuccs;
278 for (SDep &Pred : SU->Preds) {
279 if (Pred.isCtrl())
280 ChainPred = Pred;
281 else if (Pred.getSUnit()->getNode() &&
282 Pred.getSUnit()->getNode()->isOperandOf(LoadNode))
283 LoadPreds.push_back(Pred);
284 else
285 NodePreds.push_back(Pred);
286 }
287 for (SDep &Succ : SU->Succs) {
288 if (Succ.isCtrl())
289 ChainSuccs.push_back(Succ);
290 else
291 NodeSuccs.push_back(Succ);
292 }
293
294 if (ChainPred.getSUnit()) {
295 RemovePred(SU, ChainPred);
296 if (isNewLoad)
297 AddPred(LoadSU, ChainPred);
298 }
299 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
300 const SDep &Pred = LoadPreds[i];
301 RemovePred(SU, Pred);
302 if (isNewLoad) {
303 AddPred(LoadSU, Pred);
304 }
305 }
306 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
307 const SDep &Pred = NodePreds[i];
308 RemovePred(SU, Pred);
309 AddPred(NewSU, Pred);
310 }
311 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
312 SDep D = NodeSuccs[i];
313 SUnit *SuccDep = D.getSUnit();
314 D.setSUnit(SU);
315 RemovePred(SuccDep, D);
316 D.setSUnit(NewSU);
317 AddPred(SuccDep, D);
318 }
319 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
320 SDep D = ChainSuccs[i];
321 SUnit *SuccDep = D.getSUnit();
322 D.setSUnit(SU);
323 RemovePred(SuccDep, D);
324 if (isNewLoad) {
325 D.setSUnit(LoadSU);
326 AddPred(SuccDep, D);
327 }
328 }
329 if (isNewLoad) {
330 SDep D(LoadSU, SDep::Barrier);
331 D.setLatency(LoadSU->Latency);
332 AddPred(NewSU, D);
333 }
334
335 ++NumUnfolds;
336
337 if (NewSU->NumSuccsLeft == 0) {
338 NewSU->isAvailable = true;
339 return NewSU;
340 }
341 SU = NewSU;
342 }
343
344 LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
345 NewSU = Clone(SU);
346
347 // New SUnit has the exact same predecessors.
348 for (SDep &Pred : SU->Preds)
349 if (!Pred.isArtificial())
350 AddPred(NewSU, Pred);
351
352 // Only copy scheduled successors. Cut them from old node's successor
353 // list and move them over.
354 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
355 for (SDep &Succ : SU->Succs) {
356 if (Succ.isArtificial())
357 continue;
358 SUnit *SuccSU = Succ.getSUnit();
359 if (SuccSU->isScheduled) {
360 SDep D = Succ;
361 D.setSUnit(NewSU);
362 AddPred(SuccSU, D);
363 D.setSUnit(SU);
364 DelDeps.push_back(std::make_pair(SuccSU, D));
365 }
366 }
367 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
368 RemovePred(DelDeps[i].first, DelDeps[i].second);
369
370 ++NumDups;
371 return NewSU;
372 }
373
374 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
375 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVectorImpl<SUnit * > & Copies)376 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
377 const TargetRegisterClass *DestRC,
378 const TargetRegisterClass *SrcRC,
379 SmallVectorImpl<SUnit*> &Copies) {
380 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
381 CopyFromSU->CopySrcRC = SrcRC;
382 CopyFromSU->CopyDstRC = DestRC;
383
384 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
385 CopyToSU->CopySrcRC = DestRC;
386 CopyToSU->CopyDstRC = SrcRC;
387
388 // Only copy scheduled successors. Cut them from old node's successor
389 // list and move them over.
390 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
391 for (SDep &Succ : SU->Succs) {
392 if (Succ.isArtificial())
393 continue;
394 SUnit *SuccSU = Succ.getSUnit();
395 if (SuccSU->isScheduled) {
396 SDep D = Succ;
397 D.setSUnit(CopyToSU);
398 AddPred(SuccSU, D);
399 DelDeps.push_back(std::make_pair(SuccSU, Succ));
400 }
401 }
402 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
403 RemovePred(DelDeps[i].first, DelDeps[i].second);
404 }
405 SDep FromDep(SU, SDep::Data, Reg);
406 FromDep.setLatency(SU->Latency);
407 AddPred(CopyFromSU, FromDep);
408 SDep ToDep(CopyFromSU, SDep::Data, 0);
409 ToDep.setLatency(CopyFromSU->Latency);
410 AddPred(CopyToSU, ToDep);
411
412 Copies.push_back(CopyFromSU);
413 Copies.push_back(CopyToSU);
414
415 ++NumPRCopies;
416 }
417
418 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
419 /// definition of the specified node.
420 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)421 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
422 const TargetInstrInfo *TII) {
423 unsigned NumRes;
424 if (N->getOpcode() == ISD::CopyFromReg) {
425 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
426 NumRes = 1;
427 } else {
428 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
429 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
430 NumRes = MCID.getNumDefs();
431 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
432 if (Reg == *ImpDef)
433 break;
434 ++NumRes;
435 }
436 }
437 return N->getSimpleValueType(NumRes);
438 }
439
440 /// CheckForLiveRegDef - Return true and update live register vector if the
441 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,std::vector<SUnit * > & LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs,const TargetRegisterInfo * TRI,const SDNode * Node=nullptr)442 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
443 std::vector<SUnit *> &LiveRegDefs,
444 SmallSet<unsigned, 4> &RegAdded,
445 SmallVectorImpl<unsigned> &LRegs,
446 const TargetRegisterInfo *TRI,
447 const SDNode *Node = nullptr) {
448 bool Added = false;
449 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
450 // Check if Ref is live.
451 if (!LiveRegDefs[*AI])
452 continue;
453
454 // Allow multiple uses of the same def.
455 if (LiveRegDefs[*AI] == SU)
456 continue;
457
458 // Allow multiple uses of same def
459 if (Node && LiveRegDefs[*AI]->getNode() == Node)
460 continue;
461
462 // Add Reg to the set of interfering live regs.
463 if (RegAdded.insert(*AI).second) {
464 LRegs.push_back(*AI);
465 Added = true;
466 }
467 }
468 return Added;
469 }
470
471 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
472 /// scheduling of the given node to satisfy live physical register dependencies.
473 /// If the specific node is the last one that's available to schedule, do
474 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
DelayForLiveRegsBottomUp(SUnit * SU,SmallVectorImpl<unsigned> & LRegs)475 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
476 SmallVectorImpl<unsigned> &LRegs){
477 if (NumLiveRegs == 0)
478 return false;
479
480 SmallSet<unsigned, 4> RegAdded;
481 // If this node would clobber any "live" register, then it's not ready.
482 for (SDep &Pred : SU->Preds) {
483 if (Pred.isAssignedRegDep()) {
484 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs,
485 RegAdded, LRegs, TRI);
486 }
487 }
488
489 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
490 if (Node->getOpcode() == ISD::INLINEASM ||
491 Node->getOpcode() == ISD::INLINEASM_BR) {
492 // Inline asm can clobber physical defs.
493 unsigned NumOps = Node->getNumOperands();
494 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
495 --NumOps; // Ignore the glue operand.
496
497 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
498 unsigned Flags =
499 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
500 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
501
502 ++i; // Skip the ID value.
503 if (InlineAsm::isRegDefKind(Flags) ||
504 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
505 InlineAsm::isClobberKind(Flags)) {
506 // Check for def of register or earlyclobber register.
507 for (; NumVals; --NumVals, ++i) {
508 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
509 if (Register::isPhysicalRegister(Reg))
510 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
511 }
512 } else
513 i += NumVals;
514 }
515 continue;
516 }
517
518 if (Node->getOpcode() == ISD::CopyToReg) {
519 Register Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
520 if (Reg.isPhysical()) {
521 SDNode *SrcNode = Node->getOperand(2).getNode();
522 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI, SrcNode);
523 }
524 }
525
526 if (!Node->isMachineOpcode())
527 continue;
528 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
529 if (!MCID.ImplicitDefs)
530 continue;
531 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
532 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
533 }
534 }
535 return !LRegs.empty();
536 }
537
538
539 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
540 /// schedulers.
ListScheduleBottomUp()541 void ScheduleDAGFast::ListScheduleBottomUp() {
542 unsigned CurCycle = 0;
543
544 // Release any predecessors of the special Exit node.
545 ReleasePredecessors(&ExitSU, CurCycle);
546
547 // Add root to Available queue.
548 if (!SUnits.empty()) {
549 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
550 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
551 RootSU->isAvailable = true;
552 AvailableQueue.push(RootSU);
553 }
554
555 // While Available queue is not empty, grab the node with the highest
556 // priority. If it is not ready put it back. Schedule the node.
557 SmallVector<SUnit*, 4> NotReady;
558 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
559 Sequence.reserve(SUnits.size());
560 while (!AvailableQueue.empty()) {
561 bool Delayed = false;
562 LRegsMap.clear();
563 SUnit *CurSU = AvailableQueue.pop();
564 while (CurSU) {
565 SmallVector<unsigned, 4> LRegs;
566 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
567 break;
568 Delayed = true;
569 LRegsMap.insert(std::make_pair(CurSU, LRegs));
570
571 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
572 NotReady.push_back(CurSU);
573 CurSU = AvailableQueue.pop();
574 }
575
576 // All candidates are delayed due to live physical reg dependencies.
577 // Try code duplication or inserting cross class copies
578 // to resolve it.
579 if (Delayed && !CurSU) {
580 if (!CurSU) {
581 // Try duplicating the nodes that produces these
582 // "expensive to copy" values to break the dependency. In case even
583 // that doesn't work, insert cross class copies.
584 SUnit *TrySU = NotReady[0];
585 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
586 assert(LRegs.size() == 1 && "Can't handle this yet!");
587 unsigned Reg = LRegs[0];
588 SUnit *LRDef = LiveRegDefs[Reg];
589 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
590 const TargetRegisterClass *RC =
591 TRI->getMinimalPhysRegClass(Reg, VT);
592 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
593
594 // If cross copy register class is the same as RC, then it must be
595 // possible copy the value directly. Do not try duplicate the def.
596 // If cross copy register class is not the same as RC, then it's
597 // possible to copy the value but it require cross register class copies
598 // and it is expensive.
599 // If cross copy register class is null, then it's not possible to copy
600 // the value at all.
601 SUnit *NewDef = nullptr;
602 if (DestRC != RC) {
603 NewDef = CopyAndMoveSuccessors(LRDef);
604 if (!DestRC && !NewDef)
605 report_fatal_error("Can't handle live physical "
606 "register dependency!");
607 }
608 if (!NewDef) {
609 // Issue copies, these can be expensive cross register class copies.
610 SmallVector<SUnit*, 2> Copies;
611 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
612 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
613 << " to SU #" << Copies.front()->NodeNum << "\n");
614 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
615 NewDef = Copies.back();
616 }
617
618 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
619 << " to SU #" << TrySU->NodeNum << "\n");
620 LiveRegDefs[Reg] = NewDef;
621 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
622 TrySU->isAvailable = false;
623 CurSU = NewDef;
624 }
625
626 if (!CurSU) {
627 llvm_unreachable("Unable to resolve live physical register dependencies!");
628 }
629 }
630
631 // Add the nodes that aren't ready back onto the available list.
632 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
633 NotReady[i]->isPending = false;
634 // May no longer be available due to backtracking.
635 if (NotReady[i]->isAvailable)
636 AvailableQueue.push(NotReady[i]);
637 }
638 NotReady.clear();
639
640 if (CurSU)
641 ScheduleNodeBottomUp(CurSU, CurCycle);
642 ++CurCycle;
643 }
644
645 // Reverse the order since it is bottom up.
646 std::reverse(Sequence.begin(), Sequence.end());
647
648 #ifndef NDEBUG
649 VerifyScheduledSequence(/*isBottomUp=*/true);
650 #endif
651 }
652
653
654 namespace {
655 //===----------------------------------------------------------------------===//
656 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
657 // DAG in topological order.
658 // IMPORTANT: this may not work for targets with phyreg dependency.
659 //
660 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
661 public:
ScheduleDAGLinearize(MachineFunction & mf)662 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
663
664 void Schedule() override;
665
666 MachineBasicBlock *
667 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
668
669 private:
670 std::vector<SDNode*> Sequence;
671 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user
672
673 void ScheduleNode(SDNode *N);
674 };
675 } // end anonymous namespace
676
ScheduleNode(SDNode * N)677 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
678 if (N->getNodeId() != 0)
679 llvm_unreachable(nullptr);
680
681 if (!N->isMachineOpcode() &&
682 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
683 // These nodes do not need to be translated into MIs.
684 return;
685
686 LLVM_DEBUG(dbgs() << "\n*** Scheduling: ");
687 LLVM_DEBUG(N->dump(DAG));
688 Sequence.push_back(N);
689
690 unsigned NumOps = N->getNumOperands();
691 if (unsigned NumLeft = NumOps) {
692 SDNode *GluedOpN = nullptr;
693 do {
694 const SDValue &Op = N->getOperand(NumLeft-1);
695 SDNode *OpN = Op.getNode();
696
697 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
698 // Schedule glue operand right above N.
699 GluedOpN = OpN;
700 assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
701 OpN->setNodeId(0);
702 ScheduleNode(OpN);
703 continue;
704 }
705
706 if (OpN == GluedOpN)
707 // Glue operand is already scheduled.
708 continue;
709
710 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
711 if (DI != GluedMap.end() && DI->second != N)
712 // Users of glues are counted against the glued users.
713 OpN = DI->second;
714
715 unsigned Degree = OpN->getNodeId();
716 assert(Degree > 0 && "Predecessor over-released!");
717 OpN->setNodeId(--Degree);
718 if (Degree == 0)
719 ScheduleNode(OpN);
720 } while (--NumLeft);
721 }
722 }
723
724 /// findGluedUser - Find the representative use of a glue value by walking
725 /// the use chain.
findGluedUser(SDNode * N)726 static SDNode *findGluedUser(SDNode *N) {
727 while (SDNode *Glued = N->getGluedUser())
728 N = Glued;
729 return N;
730 }
731
Schedule()732 void ScheduleDAGLinearize::Schedule() {
733 LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n");
734
735 SmallVector<SDNode*, 8> Glues;
736 unsigned DAGSize = 0;
737 for (SDNode &Node : DAG->allnodes()) {
738 SDNode *N = &Node;
739
740 // Use node id to record degree.
741 unsigned Degree = N->use_size();
742 N->setNodeId(Degree);
743 unsigned NumVals = N->getNumValues();
744 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
745 N->hasAnyUseOfValue(NumVals-1)) {
746 SDNode *User = findGluedUser(N);
747 if (User) {
748 Glues.push_back(N);
749 GluedMap.insert(std::make_pair(N, User));
750 }
751 }
752
753 if (N->isMachineOpcode() ||
754 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
755 ++DAGSize;
756 }
757
758 for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
759 SDNode *Glue = Glues[i];
760 SDNode *GUser = GluedMap[Glue];
761 unsigned Degree = Glue->getNodeId();
762 unsigned UDegree = GUser->getNodeId();
763
764 // Glue user must be scheduled together with the glue operand. So other
765 // users of the glue operand must be treated as its users.
766 SDNode *ImmGUser = Glue->getGluedUser();
767 for (const SDNode *U : Glue->uses())
768 if (U == ImmGUser)
769 --Degree;
770 GUser->setNodeId(UDegree + Degree);
771 Glue->setNodeId(1);
772 }
773
774 Sequence.reserve(DAGSize);
775 ScheduleNode(DAG->getRoot().getNode());
776 }
777
778 MachineBasicBlock*
EmitSchedule(MachineBasicBlock::iterator & InsertPos)779 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
780 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos,
781 DAG->getUseInstrRefDebugInfo());
782 DenseMap<SDValue, Register> VRBaseMap;
783
784 LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n"; });
785
786 unsigned NumNodes = Sequence.size();
787 MachineBasicBlock *BB = Emitter.getBlock();
788 for (unsigned i = 0; i != NumNodes; ++i) {
789 SDNode *N = Sequence[NumNodes-i-1];
790 LLVM_DEBUG(N->dump(DAG));
791 Emitter.EmitNode(N, false, false, VRBaseMap);
792
793 // Emit any debug values associated with the node.
794 if (N->getHasDebugValue()) {
795 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
796 for (auto *DV : DAG->GetDbgValues(N)) {
797 if (!DV->isEmitted())
798 if (auto *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap))
799 BB->insert(InsertPos, DbgMI);
800 }
801 }
802 }
803
804 LLVM_DEBUG(dbgs() << '\n');
805
806 InsertPos = Emitter.getInsertPos();
807 return Emitter.getBlock();
808 }
809
810 //===----------------------------------------------------------------------===//
811 // Public Constructor Functions
812 //===----------------------------------------------------------------------===//
813
814 llvm::ScheduleDAGSDNodes *
createFastDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level)815 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
816 return new ScheduleDAGFast(*IS->MF);
817 }
818
819 llvm::ScheduleDAGSDNodes *
createDAGLinearizer(SelectionDAGISel * IS,CodeGenOpt::Level)820 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
821 return new ScheduleDAGLinearize(*IS->MF);
822 }
823