1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "function-lowering-info" 44 45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 46 /// PHI nodes or outside of the basic block that defines it, or used by a 47 /// switch or atomic instruction, which may expand to multiple basic blocks. 48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 49 if (I->use_empty()) return false; 50 if (isa<PHINode>(I)) return true; 51 const BasicBlock *BB = I->getParent(); 52 for (const User *U : I->users()) 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 56 return false; 57 } 58 59 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 60 // For the users of the source value being used for compare instruction, if 61 // the number of signed predicate is greater than unsigned predicate, we 62 // prefer to use SIGN_EXTEND. 63 // 64 // With this optimization, we would be able to reduce some redundant sign or 65 // zero extension instruction, and eventually more machine CSE opportunities 66 // can be exposed. 67 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 68 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 69 for (const User *U : V->users()) { 70 if (const auto *CI = dyn_cast<CmpInst>(U)) { 71 NumOfSigned += CI->isSigned(); 72 NumOfUnsigned += CI->isUnsigned(); 73 } 74 } 75 if (NumOfSigned > NumOfUnsigned) 76 ExtendKind = ISD::SIGN_EXTEND; 77 78 return ExtendKind; 79 } 80 81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 82 SelectionDAG *DAG) { 83 Fn = &fn; 84 MF = &mf; 85 TLI = MF->getSubtarget().getTargetLowering(); 86 RegInfo = &MF->getRegInfo(); 87 88 // Check whether the function can return without sret-demotion. 89 SmallVector<ISD::OutputArg, 4> Outs; 90 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 91 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 92 Fn->isVarArg(), Outs, Fn->getContext()); 93 94 // Initialize the mapping of values to registers. This is only set up for 95 // instruction values that are used outside of the block that defines 96 // them. 97 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 98 for (; BB != EB; ++BB) 99 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 100 I != E; ++I) { 101 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 102 // Static allocas can be folded into the initial stack frame adjustment. 103 if (AI->isStaticAlloca()) { 104 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 105 Type *Ty = AI->getAllocatedType(); 106 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 107 unsigned Align = 108 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 109 AI->getAlignment()); 110 111 TySize *= CUI->getZExtValue(); // Get total allocated size. 112 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 113 114 StaticAllocaMap[AI] = 115 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 116 117 } else { 118 unsigned Align = std::max( 119 (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( 120 AI->getAllocatedType()), 121 AI->getAlignment()); 122 unsigned StackAlign = 123 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 124 if (Align <= StackAlign) 125 Align = 0; 126 // Inform the Frame Information that we have variable-sized objects. 127 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 128 } 129 } 130 131 // Look for inline asm that clobbers the SP register. 132 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 133 ImmutableCallSite CS(I); 134 if (isa<InlineAsm>(CS.getCalledValue())) { 135 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 136 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 137 std::vector<TargetLowering::AsmOperandInfo> Ops = 138 TLI->ParseConstraints(TRI, CS); 139 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 140 TargetLowering::AsmOperandInfo &Op = Ops[I]; 141 if (Op.Type == InlineAsm::isClobber) { 142 // Clobbers don't have SDValue operands, hence SDValue(). 143 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 144 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 145 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 146 Op.ConstraintVT); 147 if (PhysReg.first == SP) 148 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); 149 } 150 } 151 } 152 } 153 154 // Look for calls to the @llvm.va_start intrinsic. We can omit some 155 // prologue boilerplate for variadic functions that don't examine their 156 // arguments. 157 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 158 if (II->getIntrinsicID() == Intrinsic::vastart) 159 MF->getFrameInfo()->setHasVAStart(true); 160 } 161 162 // If we have a musttail call in a variadic funciton, we need to ensure we 163 // forward implicit register parameters. 164 if (const auto *CI = dyn_cast<CallInst>(I)) { 165 if (CI->isMustTailCall() && Fn->isVarArg()) 166 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 167 } 168 169 // Mark values used outside their block as exported, by allocating 170 // a virtual register for them. 171 if (isUsedOutsideOfDefiningBlock(I)) 172 if (!isa<AllocaInst>(I) || 173 !StaticAllocaMap.count(cast<AllocaInst>(I))) 174 InitializeRegForValue(I); 175 176 // Collect llvm.dbg.declare information. This is done now instead of 177 // during the initial isel pass through the IR so that it is done 178 // in a predictable order. 179 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 180 MachineModuleInfo &MMI = MF->getMMI(); 181 DIVariable DIVar(DI->getVariable()); 182 assert((!DIVar || DIVar.isVariable()) && 183 "Variable in DbgDeclareInst should be either null or a DIVariable."); 184 if (MMI.hasDebugInfo() && 185 DIVar && 186 !DI->getDebugLoc().isUnknown()) { 187 // Don't handle byval struct arguments or VLAs, for example. 188 // Non-byval arguments are handled here (they refer to the stack 189 // temporary alloca at this point). 190 const Value *Address = DI->getAddress(); 191 if (Address) { 192 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 193 Address = BCI->getOperand(0); 194 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 195 DenseMap<const AllocaInst *, int>::iterator SI = 196 StaticAllocaMap.find(AI); 197 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 198 int FI = SI->second; 199 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 200 FI, DI->getDebugLoc()); 201 } 202 } 203 } 204 } 205 } 206 207 // Decide the preferred extend type for a value. 208 PreferredExtendType[I] = getPreferredExtendForValue(I); 209 } 210 211 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 212 // also creates the initial PHI MachineInstrs, though none of the input 213 // operands are populated. 214 for (BB = Fn->begin(); BB != EB; ++BB) { 215 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 216 MBBMap[BB] = MBB; 217 MF->push_back(MBB); 218 219 // Transfer the address-taken flag. This is necessary because there could 220 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 221 // the first one should be marked. 222 if (BB->hasAddressTaken()) 223 MBB->setHasAddressTaken(); 224 225 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 226 // appropriate. 227 for (BasicBlock::const_iterator I = BB->begin(); 228 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 229 if (PN->use_empty()) continue; 230 231 // Skip empty types 232 if (PN->getType()->isEmptyTy()) 233 continue; 234 235 DebugLoc DL = PN->getDebugLoc(); 236 unsigned PHIReg = ValueMap[PN]; 237 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 238 239 SmallVector<EVT, 4> ValueVTs; 240 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 241 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 242 EVT VT = ValueVTs[vti]; 243 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 244 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 245 for (unsigned i = 0; i != NumRegisters; ++i) 246 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 247 PHIReg += NumRegisters; 248 } 249 } 250 } 251 252 // Mark landing pad blocks. 253 for (BB = Fn->begin(); BB != EB; ++BB) 254 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 255 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 256 } 257 258 /// clear - Clear out all the function-specific state. This returns this 259 /// FunctionLoweringInfo to an empty state, ready to be used for a 260 /// different function. 261 void FunctionLoweringInfo::clear() { 262 assert(CatchInfoFound.size() == CatchInfoLost.size() && 263 "Not all catch info was assigned to a landing pad!"); 264 265 MBBMap.clear(); 266 ValueMap.clear(); 267 StaticAllocaMap.clear(); 268 #ifndef NDEBUG 269 CatchInfoLost.clear(); 270 CatchInfoFound.clear(); 271 #endif 272 LiveOutRegInfo.clear(); 273 VisitedBBs.clear(); 274 ArgDbgValues.clear(); 275 ByValArgFrameIndexMap.clear(); 276 RegFixups.clear(); 277 StatepointStackSlots.clear(); 278 PreferredExtendType.clear(); 279 } 280 281 /// CreateReg - Allocate a single virtual register for the given type. 282 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 283 return RegInfo->createVirtualRegister( 284 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 285 } 286 287 /// CreateRegs - Allocate the appropriate number of virtual registers of 288 /// the correctly promoted or expanded types. Assign these registers 289 /// consecutive vreg numbers and return the first assigned number. 290 /// 291 /// In the case that the given value has struct or array type, this function 292 /// will assign registers for each member or element. 293 /// 294 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 295 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 296 297 SmallVector<EVT, 4> ValueVTs; 298 ComputeValueVTs(*TLI, Ty, ValueVTs); 299 300 unsigned FirstReg = 0; 301 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 302 EVT ValueVT = ValueVTs[Value]; 303 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 304 305 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 306 for (unsigned i = 0; i != NumRegs; ++i) { 307 unsigned R = CreateReg(RegisterVT); 308 if (!FirstReg) FirstReg = R; 309 } 310 } 311 return FirstReg; 312 } 313 314 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 315 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 316 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 317 /// the larger bit width by zero extension. The bit width must be no smaller 318 /// than the LiveOutInfo's existing bit width. 319 const FunctionLoweringInfo::LiveOutInfo * 320 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 321 if (!LiveOutRegInfo.inBounds(Reg)) 322 return nullptr; 323 324 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 325 if (!LOI->IsValid) 326 return nullptr; 327 328 if (BitWidth > LOI->KnownZero.getBitWidth()) { 329 LOI->NumSignBits = 1; 330 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 331 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 332 } 333 334 return LOI; 335 } 336 337 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 338 /// register based on the LiveOutInfo of its operands. 339 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 340 Type *Ty = PN->getType(); 341 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 342 return; 343 344 SmallVector<EVT, 1> ValueVTs; 345 ComputeValueVTs(*TLI, Ty, ValueVTs); 346 assert(ValueVTs.size() == 1 && 347 "PHIs with non-vector integer types should have a single VT."); 348 EVT IntVT = ValueVTs[0]; 349 350 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 351 return; 352 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 353 unsigned BitWidth = IntVT.getSizeInBits(); 354 355 unsigned DestReg = ValueMap[PN]; 356 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 357 return; 358 LiveOutRegInfo.grow(DestReg); 359 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 360 361 Value *V = PN->getIncomingValue(0); 362 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 363 DestLOI.NumSignBits = 1; 364 APInt Zero(BitWidth, 0); 365 DestLOI.KnownZero = Zero; 366 DestLOI.KnownOne = Zero; 367 return; 368 } 369 370 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 371 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 372 DestLOI.NumSignBits = Val.getNumSignBits(); 373 DestLOI.KnownZero = ~Val; 374 DestLOI.KnownOne = Val; 375 } else { 376 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 377 "CopyToReg node was created."); 378 unsigned SrcReg = ValueMap[V]; 379 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 380 DestLOI.IsValid = false; 381 return; 382 } 383 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 384 if (!SrcLOI) { 385 DestLOI.IsValid = false; 386 return; 387 } 388 DestLOI = *SrcLOI; 389 } 390 391 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 392 DestLOI.KnownOne.getBitWidth() == BitWidth && 393 "Masks should have the same bit width as the type."); 394 395 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 396 Value *V = PN->getIncomingValue(i); 397 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 398 DestLOI.NumSignBits = 1; 399 APInt Zero(BitWidth, 0); 400 DestLOI.KnownZero = Zero; 401 DestLOI.KnownOne = Zero; 402 return; 403 } 404 405 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 406 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 407 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 408 DestLOI.KnownZero &= ~Val; 409 DestLOI.KnownOne &= Val; 410 continue; 411 } 412 413 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 414 "its CopyToReg node was created."); 415 unsigned SrcReg = ValueMap[V]; 416 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 417 DestLOI.IsValid = false; 418 return; 419 } 420 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 421 if (!SrcLOI) { 422 DestLOI.IsValid = false; 423 return; 424 } 425 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 426 DestLOI.KnownZero &= SrcLOI->KnownZero; 427 DestLOI.KnownOne &= SrcLOI->KnownOne; 428 } 429 } 430 431 /// setArgumentFrameIndex - Record frame index for the byval 432 /// argument. This overrides previous frame index entry for this argument, 433 /// if any. 434 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 435 int FI) { 436 ByValArgFrameIndexMap[A] = FI; 437 } 438 439 /// getArgumentFrameIndex - Get frame index for the byval argument. 440 /// If the argument does not have any assigned frame index then 0 is 441 /// returned. 442 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 443 DenseMap<const Argument *, int>::iterator I = 444 ByValArgFrameIndexMap.find(A); 445 if (I != ByValArgFrameIndexMap.end()) 446 return I->second; 447 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 448 return 0; 449 } 450 451 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 452 /// being passed to this variadic function, and set the MachineModuleInfo's 453 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 454 /// reference to _fltused on Windows, which will link in MSVCRT's 455 /// floating-point support. 456 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 457 MachineModuleInfo *MMI) 458 { 459 FunctionType *FT = cast<FunctionType>( 460 I.getCalledValue()->getType()->getContainedType(0)); 461 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 462 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 463 Type* T = I.getArgOperand(i)->getType(); 464 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 465 i != e; ++i) { 466 if (i->isFloatingPointTy()) { 467 MMI->setUsesVAFloatArgument(true); 468 return; 469 } 470 } 471 } 472 } 473 } 474 475 /// AddLandingPadInfo - Extract the exception handling information from the 476 /// landingpad instruction and add them to the specified machine module info. 477 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 478 MachineBasicBlock *MBB) { 479 MMI.addPersonality(MBB, 480 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 481 482 if (I.isCleanup()) 483 MMI.addCleanup(MBB); 484 485 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 486 // but we need to do it this way because of how the DWARF EH emitter 487 // processes the clauses. 488 for (unsigned i = I.getNumClauses(); i != 0; --i) { 489 Value *Val = I.getClause(i - 1); 490 if (I.isCatch(i - 1)) { 491 MMI.addCatchTypeInfo(MBB, 492 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 493 } else { 494 // Add filters in a list. 495 Constant *CVal = cast<Constant>(Val); 496 SmallVector<const GlobalValue*, 4> FilterList; 497 for (User::op_iterator 498 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 499 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 500 501 MMI.addFilterTypeInfo(MBB, FilterList); 502 } 503 } 504 } 505