1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 #define DEBUG_TYPE "function-lowering-info"
42
43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
44 /// PHI nodes or outside of the basic block that defines it, or used by a
45 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
47 if (I->use_empty()) return false;
48 if (isa<PHINode>(I)) return true;
49 const BasicBlock *BB = I->getParent();
50 for (const User *U : I->users())
51 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
52 return true;
53
54 return false;
55 }
56
getPreferredExtendForValue(const Instruction * I)57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) {
58 // For the users of the source value being used for compare instruction, if
59 // the number of signed predicate is greater than unsigned predicate, we
60 // prefer to use SIGN_EXTEND.
61 //
62 // With this optimization, we would be able to reduce some redundant sign or
63 // zero extension instruction, and eventually more machine CSE opportunities
64 // can be exposed.
65 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
66 unsigned NumOfSigned = 0, NumOfUnsigned = 0;
67 for (const User *U : I->users()) {
68 if (const auto *CI = dyn_cast<CmpInst>(U)) {
69 NumOfSigned += CI->isSigned();
70 NumOfUnsigned += CI->isUnsigned();
71 }
72 }
73 if (NumOfSigned > NumOfUnsigned)
74 ExtendKind = ISD::SIGN_EXTEND;
75
76 return ExtendKind;
77 }
78
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)79 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
80 SelectionDAG *DAG) {
81 Fn = &fn;
82 MF = &mf;
83 TLI = MF->getSubtarget().getTargetLowering();
84 RegInfo = &MF->getRegInfo();
85 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
86 DA = DAG->getDivergenceAnalysis();
87
88 // Check whether the function can return without sret-demotion.
89 SmallVector<ISD::OutputArg, 4> Outs;
90 CallingConv::ID CC = Fn->getCallingConv();
91
92 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
93 mf.getDataLayout());
94 CanLowerReturn =
95 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
96
97 // If this personality uses funclets, we need to do a bit more work.
98 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
99 EHPersonality Personality = classifyEHPersonality(
100 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
101 if (isFuncletEHPersonality(Personality)) {
102 // Calculate state numbers if we haven't already.
103 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
104 if (Personality == EHPersonality::MSVC_CXX)
105 calculateWinCXXEHStateNumbers(&fn, EHInfo);
106 else if (isAsynchronousEHPersonality(Personality))
107 calculateSEHStateNumbers(&fn, EHInfo);
108 else if (Personality == EHPersonality::CoreCLR)
109 calculateClrEHStateNumbers(&fn, EHInfo);
110
111 // Map all BB references in the WinEH data to MBBs.
112 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
113 for (WinEHHandlerType &H : TBME.HandlerArray) {
114 if (const AllocaInst *AI = H.CatchObj.Alloca)
115 CatchObjects.insert({AI, {}}).first->second.push_back(
116 &H.CatchObj.FrameIndex);
117 else
118 H.CatchObj.FrameIndex = INT_MAX;
119 }
120 }
121 }
122 if (Personality == EHPersonality::Wasm_CXX) {
123 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
124 calculateWasmEHInfo(&fn, EHInfo);
125 }
126
127 // Initialize the mapping of values to registers. This is only set up for
128 // instruction values that are used outside of the block that defines
129 // them.
130 const Align StackAlign = TFI->getStackAlign();
131 for (const BasicBlock &BB : *Fn) {
132 for (const Instruction &I : BB) {
133 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
134 Type *Ty = AI->getAllocatedType();
135 Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty);
136 // The "specified" alignment is the alignment written on the alloca,
137 // or the preferred alignment of the type if none is specified.
138 //
139 // (Unspecified alignment on allocas will be going away soon.)
140 Align SpecifiedAlign = AI->getAlign();
141
142 // If the preferred alignment of the type is higher than the specified
143 // alignment of the alloca, promote the alignment, as long as it doesn't
144 // require realigning the stack.
145 //
146 // FIXME: Do we really want to second-guess the IR in isel?
147 Align Alignment =
148 std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign);
149
150 // Static allocas can be folded into the initial stack frame
151 // adjustment. For targets that don't realign the stack, don't
152 // do this if there is an extra alignment requirement.
153 if (AI->isStaticAlloca() &&
154 (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
155 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
156 uint64_t TySize =
157 MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize();
158
159 TySize *= CUI->getZExtValue(); // Get total allocated size.
160 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
161 int FrameIndex = INT_MAX;
162 auto Iter = CatchObjects.find(AI);
163 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
164 FrameIndex = MF->getFrameInfo().CreateFixedObject(
165 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
166 MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
167 } else {
168 FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
169 false, AI);
170 }
171
172 // Scalable vectors may need a special StackID to distinguish
173 // them from other (fixed size) stack objects.
174 if (isa<ScalableVectorType>(Ty))
175 MF->getFrameInfo().setStackID(FrameIndex,
176 TFI->getStackIDForScalableVectors());
177
178 StaticAllocaMap[AI] = FrameIndex;
179 // Update the catch handler information.
180 if (Iter != CatchObjects.end()) {
181 for (int *CatchObjPtr : Iter->second)
182 *CatchObjPtr = FrameIndex;
183 }
184 } else {
185 // FIXME: Overaligned static allocas should be grouped into
186 // a single dynamic allocation instead of using a separate
187 // stack allocation for each one.
188 // Inform the Frame Information that we have variable-sized objects.
189 MF->getFrameInfo().CreateVariableSizedObject(
190 Alignment <= StackAlign ? Align(1) : Alignment, AI);
191 }
192 } else if (auto *Call = dyn_cast<CallBase>(&I)) {
193 // Look for inline asm that clobbers the SP register.
194 if (Call->isInlineAsm()) {
195 Register SP = TLI->getStackPointerRegisterToSaveRestore();
196 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
197 std::vector<TargetLowering::AsmOperandInfo> Ops =
198 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
199 *Call);
200 for (TargetLowering::AsmOperandInfo &Op : Ops) {
201 if (Op.Type == InlineAsm::isClobber) {
202 // Clobbers don't have SDValue operands, hence SDValue().
203 TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
204 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
205 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
206 Op.ConstraintVT);
207 if (PhysReg.first == SP)
208 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
209 }
210 }
211 }
212 // Look for calls to the @llvm.va_start intrinsic. We can omit some
213 // prologue boilerplate for variadic functions that don't examine their
214 // arguments.
215 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
216 if (II->getIntrinsicID() == Intrinsic::vastart)
217 MF->getFrameInfo().setHasVAStart(true);
218 }
219
220 // If we have a musttail call in a variadic function, we need to ensure
221 // we forward implicit register parameters.
222 if (const auto *CI = dyn_cast<CallInst>(&I)) {
223 if (CI->isMustTailCall() && Fn->isVarArg())
224 MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
225 }
226 }
227
228 // Mark values used outside their block as exported, by allocating
229 // a virtual register for them.
230 if (isUsedOutsideOfDefiningBlock(&I))
231 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
232 InitializeRegForValue(&I);
233
234 // Decide the preferred extend type for a value.
235 PreferredExtendType[&I] = getPreferredExtendForValue(&I);
236 }
237 }
238
239 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
240 // also creates the initial PHI MachineInstrs, though none of the input
241 // operands are populated.
242 for (const BasicBlock &BB : *Fn) {
243 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
244 // are really data, and no instructions can live here.
245 if (BB.isEHPad()) {
246 const Instruction *PadInst = BB.getFirstNonPHI();
247 // If this is a non-landingpad EH pad, mark this function as using
248 // funclets.
249 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
250 // setting this in such cases in order to improve frame layout.
251 if (!isa<LandingPadInst>(PadInst)) {
252 MF->setHasEHScopes(true);
253 MF->setHasEHFunclets(true);
254 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
255 }
256 if (isa<CatchSwitchInst>(PadInst)) {
257 assert(&*BB.begin() == PadInst &&
258 "WinEHPrepare failed to remove PHIs from imaginary BBs");
259 continue;
260 }
261 if (isa<FuncletPadInst>(PadInst))
262 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
263 }
264
265 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
266 MBBMap[&BB] = MBB;
267 MF->push_back(MBB);
268
269 // Transfer the address-taken flag. This is necessary because there could
270 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
271 // the first one should be marked.
272 if (BB.hasAddressTaken())
273 MBB->setHasAddressTaken();
274
275 // Mark landing pad blocks.
276 if (BB.isEHPad())
277 MBB->setIsEHPad();
278
279 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
280 // appropriate.
281 for (const PHINode &PN : BB.phis()) {
282 if (PN.use_empty())
283 continue;
284
285 // Skip empty types
286 if (PN.getType()->isEmptyTy())
287 continue;
288
289 DebugLoc DL = PN.getDebugLoc();
290 unsigned PHIReg = ValueMap[&PN];
291 assert(PHIReg && "PHI node does not have an assigned virtual register!");
292
293 SmallVector<EVT, 4> ValueVTs;
294 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
295 for (EVT VT : ValueVTs) {
296 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
297 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
298 for (unsigned i = 0; i != NumRegisters; ++i)
299 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
300 PHIReg += NumRegisters;
301 }
302 }
303 }
304
305 if (isFuncletEHPersonality(Personality)) {
306 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
307
308 // Map all BB references in the WinEH data to MBBs.
309 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
310 for (WinEHHandlerType &H : TBME.HandlerArray) {
311 if (H.Handler)
312 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
313 }
314 }
315 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
316 if (UME.Cleanup)
317 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
318 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
319 const auto *BB = UME.Handler.get<const BasicBlock *>();
320 UME.Handler = MBBMap[BB];
321 }
322 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
323 const auto *BB = CME.Handler.get<const BasicBlock *>();
324 CME.Handler = MBBMap[BB];
325 }
326 }
327
328 else if (Personality == EHPersonality::Wasm_CXX) {
329 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
330 // Map all BB references in the Wasm EH data to MBBs.
331 DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
332 for (auto &KV : EHInfo.SrcToUnwindDest) {
333 const auto *Src = KV.first.get<const BasicBlock *>();
334 const auto *Dest = KV.second.get<const BasicBlock *>();
335 SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
336 }
337 EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
338 DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
339 for (auto &KV : EHInfo.UnwindDestToSrcs) {
340 const auto *Dest = KV.first.get<const BasicBlock *>();
341 UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
342 for (const auto P : KV.second)
343 UnwindDestToSrcs[MBBMap[Dest]].insert(
344 MBBMap[P.get<const BasicBlock *>()]);
345 }
346 EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
347 }
348 }
349
350 /// clear - Clear out all the function-specific state. This returns this
351 /// FunctionLoweringInfo to an empty state, ready to be used for a
352 /// different function.
clear()353 void FunctionLoweringInfo::clear() {
354 MBBMap.clear();
355 ValueMap.clear();
356 VirtReg2Value.clear();
357 StaticAllocaMap.clear();
358 LiveOutRegInfo.clear();
359 VisitedBBs.clear();
360 ArgDbgValues.clear();
361 DescribedArgs.clear();
362 ByValArgFrameIndexMap.clear();
363 RegFixups.clear();
364 RegsWithFixups.clear();
365 StatepointStackSlots.clear();
366 StatepointRelocationMaps.clear();
367 PreferredExtendType.clear();
368 }
369
370 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT,bool isDivergent)371 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
372 return RegInfo->createVirtualRegister(
373 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
374 }
375
376 /// CreateRegs - Allocate the appropriate number of virtual registers of
377 /// the correctly promoted or expanded types. Assign these registers
378 /// consecutive vreg numbers and return the first assigned number.
379 ///
380 /// In the case that the given value has struct or array type, this function
381 /// will assign registers for each member or element.
382 ///
CreateRegs(Type * Ty,bool isDivergent)383 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
384 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
385
386 SmallVector<EVT, 4> ValueVTs;
387 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
388
389 Register FirstReg;
390 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
391 EVT ValueVT = ValueVTs[Value];
392 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
393
394 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
395 for (unsigned i = 0; i != NumRegs; ++i) {
396 Register R = CreateReg(RegisterVT, isDivergent);
397 if (!FirstReg) FirstReg = R;
398 }
399 }
400 return FirstReg;
401 }
402
CreateRegs(const Value * V)403 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
404 return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
405 !TLI->requiresUniformRegister(*MF, V));
406 }
407
408 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
409 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
410 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
411 /// the larger bit width by zero extension. The bit width must be no smaller
412 /// than the LiveOutInfo's existing bit width.
413 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(Register Reg,unsigned BitWidth)414 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
415 if (!LiveOutRegInfo.inBounds(Reg))
416 return nullptr;
417
418 LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
419 if (!LOI->IsValid)
420 return nullptr;
421
422 if (BitWidth > LOI->Known.getBitWidth()) {
423 LOI->NumSignBits = 1;
424 LOI->Known = LOI->Known.anyext(BitWidth);
425 }
426
427 return LOI;
428 }
429
430 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
431 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)432 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
433 Type *Ty = PN->getType();
434 if (!Ty->isIntegerTy() || Ty->isVectorTy())
435 return;
436
437 SmallVector<EVT, 1> ValueVTs;
438 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
439 assert(ValueVTs.size() == 1 &&
440 "PHIs with non-vector integer types should have a single VT.");
441 EVT IntVT = ValueVTs[0];
442
443 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
444 return;
445 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
446 unsigned BitWidth = IntVT.getSizeInBits();
447
448 auto It = ValueMap.find(PN);
449 if (It == ValueMap.end())
450 return;
451
452 Register DestReg = It->second;
453 if (DestReg == 0)
454 return
455 assert(Register::isVirtualRegister(DestReg) && "Expected a virtual reg");
456 LiveOutRegInfo.grow(DestReg);
457 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
458
459 Value *V = PN->getIncomingValue(0);
460 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
461 DestLOI.NumSignBits = 1;
462 DestLOI.Known = KnownBits(BitWidth);
463 return;
464 }
465
466 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
467 APInt Val;
468 if (TLI->signExtendConstant(CI))
469 Val = CI->getValue().sext(BitWidth);
470 else
471 Val = CI->getValue().zext(BitWidth);
472 DestLOI.NumSignBits = Val.getNumSignBits();
473 DestLOI.Known = KnownBits::makeConstant(Val);
474 } else {
475 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
476 "CopyToReg node was created.");
477 Register SrcReg = ValueMap[V];
478 if (!Register::isVirtualRegister(SrcReg)) {
479 DestLOI.IsValid = false;
480 return;
481 }
482 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
483 if (!SrcLOI) {
484 DestLOI.IsValid = false;
485 return;
486 }
487 DestLOI = *SrcLOI;
488 }
489
490 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
491 DestLOI.Known.One.getBitWidth() == BitWidth &&
492 "Masks should have the same bit width as the type.");
493
494 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
495 Value *V = PN->getIncomingValue(i);
496 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
497 DestLOI.NumSignBits = 1;
498 DestLOI.Known = KnownBits(BitWidth);
499 return;
500 }
501
502 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
503 APInt Val;
504 if (TLI->signExtendConstant(CI))
505 Val = CI->getValue().sext(BitWidth);
506 else
507 Val = CI->getValue().zext(BitWidth);
508 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
509 DestLOI.Known.Zero &= ~Val;
510 DestLOI.Known.One &= Val;
511 continue;
512 }
513
514 assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
515 "its CopyToReg node was created.");
516 Register SrcReg = ValueMap[V];
517 if (!SrcReg.isVirtual()) {
518 DestLOI.IsValid = false;
519 return;
520 }
521 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
522 if (!SrcLOI) {
523 DestLOI.IsValid = false;
524 return;
525 }
526 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
527 DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known);
528 }
529 }
530
531 /// setArgumentFrameIndex - Record frame index for the byval
532 /// argument. This overrides previous frame index entry for this argument,
533 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)534 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
535 int FI) {
536 ByValArgFrameIndexMap[A] = FI;
537 }
538
539 /// getArgumentFrameIndex - Get frame index for the byval argument.
540 /// If the argument does not have any assigned frame index then 0 is
541 /// returned.
getArgumentFrameIndex(const Argument * A)542 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
543 auto I = ByValArgFrameIndexMap.find(A);
544 if (I != ByValArgFrameIndexMap.end())
545 return I->second;
546 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
547 return INT_MAX;
548 }
549
getCatchPadExceptionPointerVReg(const Value * CPI,const TargetRegisterClass * RC)550 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
551 const Value *CPI, const TargetRegisterClass *RC) {
552 MachineRegisterInfo &MRI = MF->getRegInfo();
553 auto I = CatchPadExceptionPointers.insert({CPI, 0});
554 Register &VReg = I.first->second;
555 if (I.second)
556 VReg = MRI.createVirtualRegister(RC);
557 assert(VReg && "null vreg in exception pointer table!");
558 return VReg;
559 }
560
561 const Value *
getValueFromVirtualReg(Register Vreg)562 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
563 if (VirtReg2Value.empty()) {
564 SmallVector<EVT, 4> ValueVTs;
565 for (auto &P : ValueMap) {
566 ValueVTs.clear();
567 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
568 P.first->getType(), ValueVTs);
569 unsigned Reg = P.second;
570 for (EVT VT : ValueVTs) {
571 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
572 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
573 VirtReg2Value[Reg++] = P.first;
574 }
575 }
576 }
577 return VirtReg2Value.lookup(Vreg);
578 }
579