1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "function-lowering-info" 44 45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 46 /// PHI nodes or outside of the basic block that defines it, or used by a 47 /// switch or atomic instruction, which may expand to multiple basic blocks. 48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 49 if (I->use_empty()) return false; 50 if (isa<PHINode>(I)) return true; 51 const BasicBlock *BB = I->getParent(); 52 for (const User *U : I->users()) 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 56 return false; 57 } 58 59 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 60 SelectionDAG *DAG) { 61 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 62 63 Fn = &fn; 64 MF = &mf; 65 RegInfo = &MF->getRegInfo(); 66 67 // Check whether the function can return without sret-demotion. 68 SmallVector<ISD::OutputArg, 4> Outs; 69 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 70 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 71 Fn->isVarArg(), 72 Outs, Fn->getContext()); 73 74 // Initialize the mapping of values to registers. This is only set up for 75 // instruction values that are used outside of the block that defines 76 // them. 77 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 78 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 79 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 80 // Don't fold inalloca allocas or other dynamic allocas into the initial 81 // stack frame allocation, even if they are in the entry block. 82 if (!AI->isStaticAlloca()) 83 continue; 84 85 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 86 Type *Ty = AI->getAllocatedType(); 87 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 88 unsigned Align = 89 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 90 AI->getAlignment()); 91 92 TySize *= CUI->getZExtValue(); // Get total allocated size. 93 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 94 95 StaticAllocaMap[AI] = 96 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 97 } 98 } 99 100 for (; BB != EB; ++BB) 101 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 102 I != E; ++I) { 103 // Look for dynamic allocas. 104 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 105 if (!AI->isStaticAlloca()) { 106 unsigned Align = std::max( 107 (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( 108 AI->getAllocatedType()), 109 AI->getAlignment()); 110 unsigned StackAlign = 111 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 112 if (Align <= StackAlign) 113 Align = 0; 114 // Inform the Frame Information that we have variable-sized objects. 115 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 116 } 117 } 118 119 // Look for inline asm that clobbers the SP register. 120 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 121 ImmutableCallSite CS(I); 122 if (isa<InlineAsm>(CS.getCalledValue())) { 123 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 124 std::vector<TargetLowering::AsmOperandInfo> Ops = 125 TLI->ParseConstraints(CS); 126 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 127 TargetLowering::AsmOperandInfo &Op = Ops[I]; 128 if (Op.Type == InlineAsm::isClobber) { 129 // Clobbers don't have SDValue operands, hence SDValue(). 130 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 131 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 132 TLI->getRegForInlineAsmConstraint(Op.ConstraintCode, 133 Op.ConstraintVT); 134 if (PhysReg.first == SP) 135 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); 136 } 137 } 138 } 139 } 140 141 // Look for calls to the @llvm.va_start intrinsic. We can omit some 142 // prologue boilerplate for variadic functions that don't examine their 143 // arguments. 144 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 145 if (II->getIntrinsicID() == Intrinsic::vastart) 146 MF->getFrameInfo()->setHasVAStart(true); 147 } 148 149 // If we have a musttail call in a variadic funciton, we need to ensure we 150 // forward implicit register parameters. 151 if (const auto *CI = dyn_cast<CallInst>(I)) { 152 if (CI->isMustTailCall() && Fn->isVarArg()) 153 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 154 } 155 156 // Mark values used outside their block as exported, by allocating 157 // a virtual register for them. 158 if (isUsedOutsideOfDefiningBlock(I)) 159 if (!isa<AllocaInst>(I) || 160 !StaticAllocaMap.count(cast<AllocaInst>(I))) 161 InitializeRegForValue(I); 162 163 // Collect llvm.dbg.declare information. This is done now instead of 164 // during the initial isel pass through the IR so that it is done 165 // in a predictable order. 166 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 167 MachineModuleInfo &MMI = MF->getMMI(); 168 DIVariable DIVar(DI->getVariable()); 169 assert((!DIVar || DIVar.isVariable()) && 170 "Variable in DbgDeclareInst should be either null or a DIVariable."); 171 if (MMI.hasDebugInfo() && 172 DIVar && 173 !DI->getDebugLoc().isUnknown()) { 174 // Don't handle byval struct arguments or VLAs, for example. 175 // Non-byval arguments are handled here (they refer to the stack 176 // temporary alloca at this point). 177 const Value *Address = DI->getAddress(); 178 if (Address) { 179 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 180 Address = BCI->getOperand(0); 181 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 182 DenseMap<const AllocaInst *, int>::iterator SI = 183 StaticAllocaMap.find(AI); 184 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 185 int FI = SI->second; 186 MMI.setVariableDbgInfo(DI->getVariable(), 187 FI, DI->getDebugLoc()); 188 } 189 } 190 } 191 } 192 } 193 } 194 195 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 196 // also creates the initial PHI MachineInstrs, though none of the input 197 // operands are populated. 198 for (BB = Fn->begin(); BB != EB; ++BB) { 199 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 200 MBBMap[BB] = MBB; 201 MF->push_back(MBB); 202 203 // Transfer the address-taken flag. This is necessary because there could 204 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 205 // the first one should be marked. 206 if (BB->hasAddressTaken()) 207 MBB->setHasAddressTaken(); 208 209 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 210 // appropriate. 211 for (BasicBlock::const_iterator I = BB->begin(); 212 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 213 if (PN->use_empty()) continue; 214 215 // Skip empty types 216 if (PN->getType()->isEmptyTy()) 217 continue; 218 219 DebugLoc DL = PN->getDebugLoc(); 220 unsigned PHIReg = ValueMap[PN]; 221 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 222 223 SmallVector<EVT, 4> ValueVTs; 224 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 225 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 226 EVT VT = ValueVTs[vti]; 227 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 228 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 229 for (unsigned i = 0; i != NumRegisters; ++i) 230 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 231 PHIReg += NumRegisters; 232 } 233 } 234 } 235 236 // Mark landing pad blocks. 237 for (BB = Fn->begin(); BB != EB; ++BB) 238 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 239 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 240 } 241 242 /// clear - Clear out all the function-specific state. This returns this 243 /// FunctionLoweringInfo to an empty state, ready to be used for a 244 /// different function. 245 void FunctionLoweringInfo::clear() { 246 assert(CatchInfoFound.size() == CatchInfoLost.size() && 247 "Not all catch info was assigned to a landing pad!"); 248 249 MBBMap.clear(); 250 ValueMap.clear(); 251 StaticAllocaMap.clear(); 252 #ifndef NDEBUG 253 CatchInfoLost.clear(); 254 CatchInfoFound.clear(); 255 #endif 256 LiveOutRegInfo.clear(); 257 VisitedBBs.clear(); 258 ArgDbgValues.clear(); 259 ByValArgFrameIndexMap.clear(); 260 RegFixups.clear(); 261 } 262 263 /// CreateReg - Allocate a single virtual register for the given type. 264 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 265 return RegInfo->createVirtualRegister( 266 TM.getSubtargetImpl()->getTargetLowering()->getRegClassFor(VT)); 267 } 268 269 /// CreateRegs - Allocate the appropriate number of virtual registers of 270 /// the correctly promoted or expanded types. Assign these registers 271 /// consecutive vreg numbers and return the first assigned number. 272 /// 273 /// In the case that the given value has struct or array type, this function 274 /// will assign registers for each member or element. 275 /// 276 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 277 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 278 279 SmallVector<EVT, 4> ValueVTs; 280 ComputeValueVTs(*TLI, Ty, ValueVTs); 281 282 unsigned FirstReg = 0; 283 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 284 EVT ValueVT = ValueVTs[Value]; 285 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 286 287 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 288 for (unsigned i = 0; i != NumRegs; ++i) { 289 unsigned R = CreateReg(RegisterVT); 290 if (!FirstReg) FirstReg = R; 291 } 292 } 293 return FirstReg; 294 } 295 296 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 297 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 298 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 299 /// the larger bit width by zero extension. The bit width must be no smaller 300 /// than the LiveOutInfo's existing bit width. 301 const FunctionLoweringInfo::LiveOutInfo * 302 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 303 if (!LiveOutRegInfo.inBounds(Reg)) 304 return nullptr; 305 306 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 307 if (!LOI->IsValid) 308 return nullptr; 309 310 if (BitWidth > LOI->KnownZero.getBitWidth()) { 311 LOI->NumSignBits = 1; 312 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 313 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 314 } 315 316 return LOI; 317 } 318 319 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 320 /// register based on the LiveOutInfo of its operands. 321 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 322 Type *Ty = PN->getType(); 323 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 324 return; 325 326 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 327 328 SmallVector<EVT, 1> ValueVTs; 329 ComputeValueVTs(*TLI, Ty, ValueVTs); 330 assert(ValueVTs.size() == 1 && 331 "PHIs with non-vector integer types should have a single VT."); 332 EVT IntVT = ValueVTs[0]; 333 334 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 335 return; 336 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 337 unsigned BitWidth = IntVT.getSizeInBits(); 338 339 unsigned DestReg = ValueMap[PN]; 340 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 341 return; 342 LiveOutRegInfo.grow(DestReg); 343 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 344 345 Value *V = PN->getIncomingValue(0); 346 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 347 DestLOI.NumSignBits = 1; 348 APInt Zero(BitWidth, 0); 349 DestLOI.KnownZero = Zero; 350 DestLOI.KnownOne = Zero; 351 return; 352 } 353 354 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 355 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 356 DestLOI.NumSignBits = Val.getNumSignBits(); 357 DestLOI.KnownZero = ~Val; 358 DestLOI.KnownOne = Val; 359 } else { 360 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 361 "CopyToReg node was created."); 362 unsigned SrcReg = ValueMap[V]; 363 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 364 DestLOI.IsValid = false; 365 return; 366 } 367 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 368 if (!SrcLOI) { 369 DestLOI.IsValid = false; 370 return; 371 } 372 DestLOI = *SrcLOI; 373 } 374 375 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 376 DestLOI.KnownOne.getBitWidth() == BitWidth && 377 "Masks should have the same bit width as the type."); 378 379 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 380 Value *V = PN->getIncomingValue(i); 381 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 382 DestLOI.NumSignBits = 1; 383 APInt Zero(BitWidth, 0); 384 DestLOI.KnownZero = Zero; 385 DestLOI.KnownOne = Zero; 386 return; 387 } 388 389 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 390 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 391 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 392 DestLOI.KnownZero &= ~Val; 393 DestLOI.KnownOne &= Val; 394 continue; 395 } 396 397 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 398 "its CopyToReg node was created."); 399 unsigned SrcReg = ValueMap[V]; 400 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 401 DestLOI.IsValid = false; 402 return; 403 } 404 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 405 if (!SrcLOI) { 406 DestLOI.IsValid = false; 407 return; 408 } 409 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 410 DestLOI.KnownZero &= SrcLOI->KnownZero; 411 DestLOI.KnownOne &= SrcLOI->KnownOne; 412 } 413 } 414 415 /// setArgumentFrameIndex - Record frame index for the byval 416 /// argument. This overrides previous frame index entry for this argument, 417 /// if any. 418 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 419 int FI) { 420 ByValArgFrameIndexMap[A] = FI; 421 } 422 423 /// getArgumentFrameIndex - Get frame index for the byval argument. 424 /// If the argument does not have any assigned frame index then 0 is 425 /// returned. 426 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 427 DenseMap<const Argument *, int>::iterator I = 428 ByValArgFrameIndexMap.find(A); 429 if (I != ByValArgFrameIndexMap.end()) 430 return I->second; 431 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 432 return 0; 433 } 434 435 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 436 /// being passed to this variadic function, and set the MachineModuleInfo's 437 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 438 /// reference to _fltused on Windows, which will link in MSVCRT's 439 /// floating-point support. 440 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 441 MachineModuleInfo *MMI) 442 { 443 FunctionType *FT = cast<FunctionType>( 444 I.getCalledValue()->getType()->getContainedType(0)); 445 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 446 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 447 Type* T = I.getArgOperand(i)->getType(); 448 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 449 i != e; ++i) { 450 if (i->isFloatingPointTy()) { 451 MMI->setUsesVAFloatArgument(true); 452 return; 453 } 454 } 455 } 456 } 457 } 458 459 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 460 /// call, and add them to the specified machine basic block. 461 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 462 MachineBasicBlock *MBB) { 463 // Inform the MachineModuleInfo of the personality for this landing pad. 464 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 465 assert(CE->getOpcode() == Instruction::BitCast && 466 isa<Function>(CE->getOperand(0)) && 467 "Personality should be a function"); 468 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 469 470 // Gather all the type infos for this landing pad and pass them along to 471 // MachineModuleInfo. 472 std::vector<const GlobalVariable *> TyInfo; 473 unsigned N = I.getNumArgOperands(); 474 475 for (unsigned i = N - 1; i > 1; --i) { 476 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 477 unsigned FilterLength = CI->getZExtValue(); 478 unsigned FirstCatch = i + FilterLength + !FilterLength; 479 assert(FirstCatch <= N && "Invalid filter length"); 480 481 if (FirstCatch < N) { 482 TyInfo.reserve(N - FirstCatch); 483 for (unsigned j = FirstCatch; j < N; ++j) 484 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 485 MMI->addCatchTypeInfo(MBB, TyInfo); 486 TyInfo.clear(); 487 } 488 489 if (!FilterLength) { 490 // Cleanup. 491 MMI->addCleanup(MBB); 492 } else { 493 // Filter. 494 TyInfo.reserve(FilterLength - 1); 495 for (unsigned j = i + 1; j < FirstCatch; ++j) 496 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 497 MMI->addFilterTypeInfo(MBB, TyInfo); 498 TyInfo.clear(); 499 } 500 501 N = i; 502 } 503 } 504 505 if (N > 2) { 506 TyInfo.reserve(N - 2); 507 for (unsigned j = 2; j < N; ++j) 508 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 509 MMI->addCatchTypeInfo(MBB, TyInfo); 510 } 511 } 512 513 /// AddLandingPadInfo - Extract the exception handling information from the 514 /// landingpad instruction and add them to the specified machine module info. 515 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 516 MachineBasicBlock *MBB) { 517 MMI.addPersonality(MBB, 518 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 519 520 if (I.isCleanup()) 521 MMI.addCleanup(MBB); 522 523 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 524 // but we need to do it this way because of how the DWARF EH emitter 525 // processes the clauses. 526 for (unsigned i = I.getNumClauses(); i != 0; --i) { 527 Value *Val = I.getClause(i - 1); 528 if (I.isCatch(i - 1)) { 529 MMI.addCatchTypeInfo(MBB, 530 dyn_cast<GlobalVariable>(Val->stripPointerCasts())); 531 } else { 532 // Add filters in a list. 533 Constant *CVal = cast<Constant>(Val); 534 SmallVector<const GlobalVariable*, 4> FilterList; 535 for (User::op_iterator 536 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 537 FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); 538 539 MMI.addFilterTypeInfo(MBB, FilterList); 540 } 541 } 542 } 543