1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/WinEHFuncInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "function-lowering-info" 46 47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 48 /// PHI nodes or outside of the basic block that defines it, or used by a 49 /// switch or atomic instruction, which may expand to multiple basic blocks. 50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 51 if (I->use_empty()) return false; 52 if (isa<PHINode>(I)) return true; 53 const BasicBlock *BB = I->getParent(); 54 for (const User *U : I->users()) 55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 56 return true; 57 58 return false; 59 } 60 61 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 62 // For the users of the source value being used for compare instruction, if 63 // the number of signed predicate is greater than unsigned predicate, we 64 // prefer to use SIGN_EXTEND. 65 // 66 // With this optimization, we would be able to reduce some redundant sign or 67 // zero extension instruction, and eventually more machine CSE opportunities 68 // can be exposed. 69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 70 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 71 for (const User *U : V->users()) { 72 if (const auto *CI = dyn_cast<CmpInst>(U)) { 73 NumOfSigned += CI->isSigned(); 74 NumOfUnsigned += CI->isUnsigned(); 75 } 76 } 77 if (NumOfSigned > NumOfUnsigned) 78 ExtendKind = ISD::SIGN_EXTEND; 79 80 return ExtendKind; 81 } 82 83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 84 SelectionDAG *DAG) { 85 Fn = &fn; 86 MF = &mf; 87 TLI = MF->getSubtarget().getTargetLowering(); 88 RegInfo = &MF->getRegInfo(); 89 MachineModuleInfo &MMI = MF->getMMI(); 90 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 91 unsigned StackAlign = TFI->getStackAlignment(); 92 93 // Check whether the function can return without sret-demotion. 94 SmallVector<ISD::OutputArg, 4> Outs; 95 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 96 mf.getDataLayout()); 97 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 98 Fn->isVarArg(), Outs, Fn->getContext()); 99 100 // If this personality uses funclets, we need to do a bit more work. 101 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 102 EHPersonality Personality = classifyEHPersonality( 103 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 104 if (isFuncletEHPersonality(Personality)) { 105 // Calculate state numbers if we haven't already. 106 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 107 if (Personality == EHPersonality::MSVC_CXX) 108 calculateWinCXXEHStateNumbers(&fn, EHInfo); 109 else if (isAsynchronousEHPersonality(Personality)) 110 calculateSEHStateNumbers(&fn, EHInfo); 111 else if (Personality == EHPersonality::CoreCLR) 112 calculateClrEHStateNumbers(&fn, EHInfo); 113 114 // Map all BB references in the WinEH data to MBBs. 115 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 116 for (WinEHHandlerType &H : TBME.HandlerArray) { 117 if (const AllocaInst *AI = H.CatchObj.Alloca) 118 CatchObjects.insert({AI, {}}).first->second.push_back( 119 &H.CatchObj.FrameIndex); 120 else 121 H.CatchObj.FrameIndex = INT_MAX; 122 } 123 } 124 } 125 126 // Initialize the mapping of values to registers. This is only set up for 127 // instruction values that are used outside of the block that defines 128 // them. 129 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 130 for (; BB != EB; ++BB) 131 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 132 I != E; ++I) { 133 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 134 Type *Ty = AI->getAllocatedType(); 135 unsigned Align = 136 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 137 AI->getAlignment()); 138 139 // Static allocas can be folded into the initial stack frame 140 // adjustment. For targets that don't realign the stack, don't 141 // do this if there is an extra alignment requirement. 142 if (AI->isStaticAlloca() && 143 (TFI->isStackRealignable() || (Align <= StackAlign))) { 144 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 145 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 146 147 TySize *= CUI->getZExtValue(); // Get total allocated size. 148 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 149 int FrameIndex = INT_MAX; 150 auto Iter = CatchObjects.find(AI); 151 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 152 FrameIndex = MF->getFrameInfo().CreateFixedObject( 153 TySize, 0, /*Immutable=*/false, /*isAliased=*/true); 154 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); 155 } else { 156 FrameIndex = 157 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); 158 } 159 160 StaticAllocaMap[AI] = FrameIndex; 161 // Update the catch handler information. 162 if (Iter != CatchObjects.end()) { 163 for (int *CatchObjPtr : Iter->second) 164 *CatchObjPtr = FrameIndex; 165 } 166 } else { 167 // FIXME: Overaligned static allocas should be grouped into 168 // a single dynamic allocation instead of using a separate 169 // stack allocation for each one. 170 if (Align <= StackAlign) 171 Align = 0; 172 // Inform the Frame Information that we have variable-sized objects. 173 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); 174 } 175 } 176 177 // Look for inline asm that clobbers the SP register. 178 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 179 ImmutableCallSite CS(&*I); 180 if (isa<InlineAsm>(CS.getCalledValue())) { 181 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 182 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 183 std::vector<TargetLowering::AsmOperandInfo> Ops = 184 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 185 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 186 TargetLowering::AsmOperandInfo &Op = Ops[I]; 187 if (Op.Type == InlineAsm::isClobber) { 188 // Clobbers don't have SDValue operands, hence SDValue(). 189 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 190 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 191 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 192 Op.ConstraintVT); 193 if (PhysReg.first == SP) 194 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 195 } 196 } 197 } 198 } 199 200 // Look for calls to the @llvm.va_start intrinsic. We can omit some 201 // prologue boilerplate for variadic functions that don't examine their 202 // arguments. 203 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 204 if (II->getIntrinsicID() == Intrinsic::vastart) 205 MF->getFrameInfo().setHasVAStart(true); 206 } 207 208 // If we have a musttail call in a variadic function, we need to ensure we 209 // forward implicit register parameters. 210 if (const auto *CI = dyn_cast<CallInst>(I)) { 211 if (CI->isMustTailCall() && Fn->isVarArg()) 212 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 213 } 214 215 // Mark values used outside their block as exported, by allocating 216 // a virtual register for them. 217 if (isUsedOutsideOfDefiningBlock(&*I)) 218 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I))) 219 InitializeRegForValue(&*I); 220 221 // Collect llvm.dbg.declare information. This is done now instead of 222 // during the initial isel pass through the IR so that it is done 223 // in a predictable order. 224 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 225 assert(DI->getVariable() && "Missing variable"); 226 assert(DI->getDebugLoc() && "Missing location"); 227 if (MMI.hasDebugInfo()) { 228 // Don't handle byval struct arguments or VLAs, for example. 229 // Non-byval arguments are handled here (they refer to the stack 230 // temporary alloca at this point). 231 const Value *Address = DI->getAddress(); 232 if (Address) { 233 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 234 Address = BCI->getOperand(0); 235 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 236 DenseMap<const AllocaInst *, int>::iterator SI = 237 StaticAllocaMap.find(AI); 238 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 239 int FI = SI->second; 240 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 241 FI, DI->getDebugLoc()); 242 } 243 } 244 } 245 } 246 } 247 248 // Decide the preferred extend type for a value. 249 PreferredExtendType[&*I] = getPreferredExtendForValue(&*I); 250 } 251 252 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 253 // also creates the initial PHI MachineInstrs, though none of the input 254 // operands are populated. 255 for (BB = Fn->begin(); BB != EB; ++BB) { 256 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 257 // are really data, and no instructions can live here. 258 if (BB->isEHPad()) { 259 const Instruction *I = BB->getFirstNonPHI(); 260 // If this is a non-landingpad EH pad, mark this function as using 261 // funclets. 262 // FIXME: SEH catchpads do not create funclets, so we could avoid setting 263 // this in such cases in order to improve frame layout. 264 if (!isa<LandingPadInst>(I)) { 265 MMI.setHasEHFunclets(true); 266 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 267 } 268 if (isa<CatchSwitchInst>(I)) { 269 assert(&*BB->begin() == I && 270 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 271 continue; 272 } 273 if (isa<FuncletPadInst>(I)) 274 assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs"); 275 } 276 277 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB); 278 MBBMap[&*BB] = MBB; 279 MF->push_back(MBB); 280 281 // Transfer the address-taken flag. This is necessary because there could 282 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 283 // the first one should be marked. 284 if (BB->hasAddressTaken()) 285 MBB->setHasAddressTaken(); 286 287 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 288 // appropriate. 289 for (BasicBlock::const_iterator I = BB->begin(); 290 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 291 if (PN->use_empty()) continue; 292 293 // Skip empty types 294 if (PN->getType()->isEmptyTy()) 295 continue; 296 297 DebugLoc DL = PN->getDebugLoc(); 298 unsigned PHIReg = ValueMap[PN]; 299 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 300 301 SmallVector<EVT, 4> ValueVTs; 302 ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs); 303 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 304 EVT VT = ValueVTs[vti]; 305 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 306 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 307 for (unsigned i = 0; i != NumRegisters; ++i) 308 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 309 PHIReg += NumRegisters; 310 } 311 } 312 } 313 314 // Mark landing pad blocks. 315 SmallVector<const LandingPadInst *, 4> LPads; 316 for (BB = Fn->begin(); BB != EB; ++BB) { 317 const Instruction *FNP = BB->getFirstNonPHI(); 318 if (BB->isEHPad() && MBBMap.count(&*BB)) 319 MBBMap[&*BB]->setIsEHPad(); 320 if (const auto *LPI = dyn_cast<LandingPadInst>(FNP)) 321 LPads.push_back(LPI); 322 } 323 324 if (!isFuncletEHPersonality(Personality)) 325 return; 326 327 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 328 329 // Map all BB references in the WinEH data to MBBs. 330 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 331 for (WinEHHandlerType &H : TBME.HandlerArray) { 332 if (H.Handler) 333 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 334 } 335 } 336 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 337 if (UME.Cleanup) 338 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 339 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 340 const BasicBlock *BB = UME.Handler.get<const BasicBlock *>(); 341 UME.Handler = MBBMap[BB]; 342 } 343 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 344 const BasicBlock *BB = CME.Handler.get<const BasicBlock *>(); 345 CME.Handler = MBBMap[BB]; 346 } 347 } 348 349 /// clear - Clear out all the function-specific state. This returns this 350 /// FunctionLoweringInfo to an empty state, ready to be used for a 351 /// different function. 352 void FunctionLoweringInfo::clear() { 353 MBBMap.clear(); 354 ValueMap.clear(); 355 StaticAllocaMap.clear(); 356 LiveOutRegInfo.clear(); 357 VisitedBBs.clear(); 358 ArgDbgValues.clear(); 359 ByValArgFrameIndexMap.clear(); 360 RegFixups.clear(); 361 StatepointStackSlots.clear(); 362 StatepointSpillMaps.clear(); 363 PreferredExtendType.clear(); 364 } 365 366 /// CreateReg - Allocate a single virtual register for the given type. 367 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 368 return RegInfo->createVirtualRegister( 369 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 370 } 371 372 /// CreateRegs - Allocate the appropriate number of virtual registers of 373 /// the correctly promoted or expanded types. Assign these registers 374 /// consecutive vreg numbers and return the first assigned number. 375 /// 376 /// In the case that the given value has struct or array type, this function 377 /// will assign registers for each member or element. 378 /// 379 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 380 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 381 382 SmallVector<EVT, 4> ValueVTs; 383 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 384 385 unsigned FirstReg = 0; 386 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 387 EVT ValueVT = ValueVTs[Value]; 388 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 389 390 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 391 for (unsigned i = 0; i != NumRegs; ++i) { 392 unsigned R = CreateReg(RegisterVT); 393 if (!FirstReg) FirstReg = R; 394 } 395 } 396 return FirstReg; 397 } 398 399 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 400 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 401 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 402 /// the larger bit width by zero extension. The bit width must be no smaller 403 /// than the LiveOutInfo's existing bit width. 404 const FunctionLoweringInfo::LiveOutInfo * 405 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 406 if (!LiveOutRegInfo.inBounds(Reg)) 407 return nullptr; 408 409 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 410 if (!LOI->IsValid) 411 return nullptr; 412 413 if (BitWidth > LOI->KnownZero.getBitWidth()) { 414 LOI->NumSignBits = 1; 415 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 416 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 417 } 418 419 return LOI; 420 } 421 422 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 423 /// register based on the LiveOutInfo of its operands. 424 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 425 Type *Ty = PN->getType(); 426 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 427 return; 428 429 SmallVector<EVT, 1> ValueVTs; 430 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 431 assert(ValueVTs.size() == 1 && 432 "PHIs with non-vector integer types should have a single VT."); 433 EVT IntVT = ValueVTs[0]; 434 435 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 436 return; 437 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 438 unsigned BitWidth = IntVT.getSizeInBits(); 439 440 unsigned DestReg = ValueMap[PN]; 441 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 442 return; 443 LiveOutRegInfo.grow(DestReg); 444 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 445 446 Value *V = PN->getIncomingValue(0); 447 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 448 DestLOI.NumSignBits = 1; 449 APInt Zero(BitWidth, 0); 450 DestLOI.KnownZero = Zero; 451 DestLOI.KnownOne = Zero; 452 return; 453 } 454 455 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 456 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 457 DestLOI.NumSignBits = Val.getNumSignBits(); 458 DestLOI.KnownZero = ~Val; 459 DestLOI.KnownOne = Val; 460 } else { 461 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 462 "CopyToReg node was created."); 463 unsigned SrcReg = ValueMap[V]; 464 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 465 DestLOI.IsValid = false; 466 return; 467 } 468 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 469 if (!SrcLOI) { 470 DestLOI.IsValid = false; 471 return; 472 } 473 DestLOI = *SrcLOI; 474 } 475 476 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 477 DestLOI.KnownOne.getBitWidth() == BitWidth && 478 "Masks should have the same bit width as the type."); 479 480 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 481 Value *V = PN->getIncomingValue(i); 482 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 483 DestLOI.NumSignBits = 1; 484 APInt Zero(BitWidth, 0); 485 DestLOI.KnownZero = Zero; 486 DestLOI.KnownOne = Zero; 487 return; 488 } 489 490 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 491 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 492 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 493 DestLOI.KnownZero &= ~Val; 494 DestLOI.KnownOne &= Val; 495 continue; 496 } 497 498 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 499 "its CopyToReg node was created."); 500 unsigned SrcReg = ValueMap[V]; 501 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 502 DestLOI.IsValid = false; 503 return; 504 } 505 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 506 if (!SrcLOI) { 507 DestLOI.IsValid = false; 508 return; 509 } 510 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 511 DestLOI.KnownZero &= SrcLOI->KnownZero; 512 DestLOI.KnownOne &= SrcLOI->KnownOne; 513 } 514 } 515 516 /// setArgumentFrameIndex - Record frame index for the byval 517 /// argument. This overrides previous frame index entry for this argument, 518 /// if any. 519 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 520 int FI) { 521 ByValArgFrameIndexMap[A] = FI; 522 } 523 524 /// getArgumentFrameIndex - Get frame index for the byval argument. 525 /// If the argument does not have any assigned frame index then 0 is 526 /// returned. 527 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 528 DenseMap<const Argument *, int>::iterator I = 529 ByValArgFrameIndexMap.find(A); 530 if (I != ByValArgFrameIndexMap.end()) 531 return I->second; 532 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 533 return 0; 534 } 535 536 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 537 const Value *CPI, const TargetRegisterClass *RC) { 538 MachineRegisterInfo &MRI = MF->getRegInfo(); 539 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 540 unsigned &VReg = I.first->second; 541 if (I.second) 542 VReg = MRI.createVirtualRegister(RC); 543 assert(VReg && "null vreg in exception pointer table!"); 544 return VReg; 545 } 546 547 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 548 /// being passed to this variadic function, and set the MachineModuleInfo's 549 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 550 /// reference to _fltused on Windows, which will link in MSVCRT's 551 /// floating-point support. 552 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 553 MachineModuleInfo *MMI) 554 { 555 FunctionType *FT = cast<FunctionType>( 556 I.getCalledValue()->getType()->getContainedType(0)); 557 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 558 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 559 Type* T = I.getArgOperand(i)->getType(); 560 for (auto i : post_order(T)) { 561 if (i->isFloatingPointTy()) { 562 MMI->setUsesVAFloatArgument(true); 563 return; 564 } 565 } 566 } 567 } 568 } 569 570 /// AddLandingPadInfo - Extract the exception handling information from the 571 /// landingpad instruction and add them to the specified machine module info. 572 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 573 MachineBasicBlock *MBB) { 574 if (const auto *PF = dyn_cast<Function>( 575 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 576 MMI.addPersonality(PF); 577 578 if (I.isCleanup()) 579 MMI.addCleanup(MBB); 580 581 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 582 // but we need to do it this way because of how the DWARF EH emitter 583 // processes the clauses. 584 for (unsigned i = I.getNumClauses(); i != 0; --i) { 585 Value *Val = I.getClause(i - 1); 586 if (I.isCatch(i - 1)) { 587 MMI.addCatchTypeInfo(MBB, 588 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 589 } else { 590 // Add filters in a list. 591 Constant *CVal = cast<Constant>(Val); 592 SmallVector<const GlobalValue*, 4> FilterList; 593 for (User::op_iterator 594 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 595 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 596 597 MMI.addFilterTypeInfo(MBB, FilterList); 598 } 599 } 600 } 601 602 unsigned 603 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB, 604 const Value *Val) { 605 auto Key = std::make_pair(MBB, Val); 606 auto It = SwiftErrorVRegDefMap.find(Key); 607 // If this is the first use of this swifterror value in this basic block, 608 // create a new virtual register. 609 // After we processed all basic blocks we will satisfy this "upwards exposed 610 // use" by inserting a copy or phi at the beginning of this block. 611 if (It == SwiftErrorVRegDefMap.end()) { 612 auto &DL = MF->getDataLayout(); 613 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 614 auto VReg = MF->getRegInfo().createVirtualRegister(RC); 615 SwiftErrorVRegDefMap[Key] = VReg; 616 SwiftErrorVRegUpwardsUse[Key] = VReg; 617 return VReg; 618 } else return It->second; 619 } 620 621 void FunctionLoweringInfo::setCurrentSwiftErrorVReg( 622 const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) { 623 SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg; 624 } 625