1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "function-lowering-info" 44 45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 46 /// PHI nodes or outside of the basic block that defines it, or used by a 47 /// switch or atomic instruction, which may expand to multiple basic blocks. 48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 49 if (I->use_empty()) return false; 50 if (isa<PHINode>(I)) return true; 51 const BasicBlock *BB = I->getParent(); 52 for (const User *U : I->users()) 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 56 return false; 57 } 58 59 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 60 // For the users of the source value being used for compare instruction, if 61 // the number of signed predicate is greater than unsigned predicate, we 62 // prefer to use SIGN_EXTEND. 63 // 64 // With this optimization, we would be able to reduce some redundant sign or 65 // zero extension instruction, and eventually more machine CSE opportunities 66 // can be exposed. 67 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 68 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 69 for (const User *U : V->users()) { 70 if (const auto *CI = dyn_cast<CmpInst>(U)) { 71 NumOfSigned += CI->isSigned(); 72 NumOfUnsigned += CI->isUnsigned(); 73 } 74 } 75 if (NumOfSigned > NumOfUnsigned) 76 ExtendKind = ISD::SIGN_EXTEND; 77 78 return ExtendKind; 79 } 80 81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 82 SelectionDAG *DAG) { 83 Fn = &fn; 84 MF = &mf; 85 TLI = MF->getSubtarget().getTargetLowering(); 86 RegInfo = &MF->getRegInfo(); 87 88 // Check whether the function can return without sret-demotion. 89 SmallVector<ISD::OutputArg, 4> Outs; 90 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 91 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 92 Fn->isVarArg(), Outs, Fn->getContext()); 93 94 // Initialize the mapping of values to registers. This is only set up for 95 // instruction values that are used outside of the block that defines 96 // them. 97 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 98 for (; BB != EB; ++BB) 99 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 100 I != E; ++I) { 101 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 102 // Static allocas can be folded into the initial stack frame adjustment. 103 if (AI->isStaticAlloca()) { 104 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 105 Type *Ty = AI->getAllocatedType(); 106 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 107 unsigned Align = 108 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 109 AI->getAlignment()); 110 111 TySize *= CUI->getZExtValue(); // Get total allocated size. 112 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 113 114 StaticAllocaMap[AI] = 115 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 116 117 } else { 118 unsigned Align = std::max( 119 (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( 120 AI->getAllocatedType()), 121 AI->getAlignment()); 122 unsigned StackAlign = 123 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 124 if (Align <= StackAlign) 125 Align = 0; 126 // Inform the Frame Information that we have variable-sized objects. 127 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 128 } 129 } 130 131 // Look for inline asm that clobbers the SP register. 132 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 133 ImmutableCallSite CS(I); 134 if (isa<InlineAsm>(CS.getCalledValue())) { 135 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 136 std::vector<TargetLowering::AsmOperandInfo> Ops = 137 TLI->ParseConstraints(CS); 138 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 139 TargetLowering::AsmOperandInfo &Op = Ops[I]; 140 if (Op.Type == InlineAsm::isClobber) { 141 // Clobbers don't have SDValue operands, hence SDValue(). 142 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 143 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 144 TLI->getRegForInlineAsmConstraint(Op.ConstraintCode, 145 Op.ConstraintVT); 146 if (PhysReg.first == SP) 147 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); 148 } 149 } 150 } 151 } 152 153 // Look for calls to the @llvm.va_start intrinsic. We can omit some 154 // prologue boilerplate for variadic functions that don't examine their 155 // arguments. 156 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 157 if (II->getIntrinsicID() == Intrinsic::vastart) 158 MF->getFrameInfo()->setHasVAStart(true); 159 } 160 161 // If we have a musttail call in a variadic funciton, we need to ensure we 162 // forward implicit register parameters. 163 if (const auto *CI = dyn_cast<CallInst>(I)) { 164 if (CI->isMustTailCall() && Fn->isVarArg()) 165 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 166 } 167 168 // Mark values used outside their block as exported, by allocating 169 // a virtual register for them. 170 if (isUsedOutsideOfDefiningBlock(I)) 171 if (!isa<AllocaInst>(I) || 172 !StaticAllocaMap.count(cast<AllocaInst>(I))) 173 InitializeRegForValue(I); 174 175 // Collect llvm.dbg.declare information. This is done now instead of 176 // during the initial isel pass through the IR so that it is done 177 // in a predictable order. 178 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 179 MachineModuleInfo &MMI = MF->getMMI(); 180 DIVariable DIVar(DI->getVariable()); 181 assert((!DIVar || DIVar.isVariable()) && 182 "Variable in DbgDeclareInst should be either null or a DIVariable."); 183 if (MMI.hasDebugInfo() && 184 DIVar && 185 !DI->getDebugLoc().isUnknown()) { 186 // Don't handle byval struct arguments or VLAs, for example. 187 // Non-byval arguments are handled here (they refer to the stack 188 // temporary alloca at this point). 189 const Value *Address = DI->getAddress(); 190 if (Address) { 191 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 192 Address = BCI->getOperand(0); 193 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 194 DenseMap<const AllocaInst *, int>::iterator SI = 195 StaticAllocaMap.find(AI); 196 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 197 int FI = SI->second; 198 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 199 FI, DI->getDebugLoc()); 200 } 201 } 202 } 203 } 204 } 205 206 // Decide the preferred extend type for a value. 207 PreferredExtendType[I] = getPreferredExtendForValue(I); 208 } 209 210 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 211 // also creates the initial PHI MachineInstrs, though none of the input 212 // operands are populated. 213 for (BB = Fn->begin(); BB != EB; ++BB) { 214 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 215 MBBMap[BB] = MBB; 216 MF->push_back(MBB); 217 218 // Transfer the address-taken flag. This is necessary because there could 219 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 220 // the first one should be marked. 221 if (BB->hasAddressTaken()) 222 MBB->setHasAddressTaken(); 223 224 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 225 // appropriate. 226 for (BasicBlock::const_iterator I = BB->begin(); 227 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 228 if (PN->use_empty()) continue; 229 230 // Skip empty types 231 if (PN->getType()->isEmptyTy()) 232 continue; 233 234 DebugLoc DL = PN->getDebugLoc(); 235 unsigned PHIReg = ValueMap[PN]; 236 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 237 238 SmallVector<EVT, 4> ValueVTs; 239 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 240 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 241 EVT VT = ValueVTs[vti]; 242 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 243 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 244 for (unsigned i = 0; i != NumRegisters; ++i) 245 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 246 PHIReg += NumRegisters; 247 } 248 } 249 } 250 251 // Mark landing pad blocks. 252 for (BB = Fn->begin(); BB != EB; ++BB) 253 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 254 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 255 } 256 257 /// clear - Clear out all the function-specific state. This returns this 258 /// FunctionLoweringInfo to an empty state, ready to be used for a 259 /// different function. 260 void FunctionLoweringInfo::clear() { 261 assert(CatchInfoFound.size() == CatchInfoLost.size() && 262 "Not all catch info was assigned to a landing pad!"); 263 264 MBBMap.clear(); 265 ValueMap.clear(); 266 StaticAllocaMap.clear(); 267 #ifndef NDEBUG 268 CatchInfoLost.clear(); 269 CatchInfoFound.clear(); 270 #endif 271 LiveOutRegInfo.clear(); 272 VisitedBBs.clear(); 273 ArgDbgValues.clear(); 274 ByValArgFrameIndexMap.clear(); 275 RegFixups.clear(); 276 PreferredExtendType.clear(); 277 } 278 279 /// CreateReg - Allocate a single virtual register for the given type. 280 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 281 return RegInfo->createVirtualRegister( 282 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 283 } 284 285 /// CreateRegs - Allocate the appropriate number of virtual registers of 286 /// the correctly promoted or expanded types. Assign these registers 287 /// consecutive vreg numbers and return the first assigned number. 288 /// 289 /// In the case that the given value has struct or array type, this function 290 /// will assign registers for each member or element. 291 /// 292 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 293 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 294 295 SmallVector<EVT, 4> ValueVTs; 296 ComputeValueVTs(*TLI, Ty, ValueVTs); 297 298 unsigned FirstReg = 0; 299 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 300 EVT ValueVT = ValueVTs[Value]; 301 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 302 303 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 304 for (unsigned i = 0; i != NumRegs; ++i) { 305 unsigned R = CreateReg(RegisterVT); 306 if (!FirstReg) FirstReg = R; 307 } 308 } 309 return FirstReg; 310 } 311 312 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 313 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 314 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 315 /// the larger bit width by zero extension. The bit width must be no smaller 316 /// than the LiveOutInfo's existing bit width. 317 const FunctionLoweringInfo::LiveOutInfo * 318 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 319 if (!LiveOutRegInfo.inBounds(Reg)) 320 return nullptr; 321 322 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 323 if (!LOI->IsValid) 324 return nullptr; 325 326 if (BitWidth > LOI->KnownZero.getBitWidth()) { 327 LOI->NumSignBits = 1; 328 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 329 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 330 } 331 332 return LOI; 333 } 334 335 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 336 /// register based on the LiveOutInfo of its operands. 337 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 338 Type *Ty = PN->getType(); 339 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 340 return; 341 342 SmallVector<EVT, 1> ValueVTs; 343 ComputeValueVTs(*TLI, Ty, ValueVTs); 344 assert(ValueVTs.size() == 1 && 345 "PHIs with non-vector integer types should have a single VT."); 346 EVT IntVT = ValueVTs[0]; 347 348 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 349 return; 350 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 351 unsigned BitWidth = IntVT.getSizeInBits(); 352 353 unsigned DestReg = ValueMap[PN]; 354 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 355 return; 356 LiveOutRegInfo.grow(DestReg); 357 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 358 359 Value *V = PN->getIncomingValue(0); 360 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 361 DestLOI.NumSignBits = 1; 362 APInt Zero(BitWidth, 0); 363 DestLOI.KnownZero = Zero; 364 DestLOI.KnownOne = Zero; 365 return; 366 } 367 368 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 369 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 370 DestLOI.NumSignBits = Val.getNumSignBits(); 371 DestLOI.KnownZero = ~Val; 372 DestLOI.KnownOne = Val; 373 } else { 374 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 375 "CopyToReg node was created."); 376 unsigned SrcReg = ValueMap[V]; 377 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 378 DestLOI.IsValid = false; 379 return; 380 } 381 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 382 if (!SrcLOI) { 383 DestLOI.IsValid = false; 384 return; 385 } 386 DestLOI = *SrcLOI; 387 } 388 389 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 390 DestLOI.KnownOne.getBitWidth() == BitWidth && 391 "Masks should have the same bit width as the type."); 392 393 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 394 Value *V = PN->getIncomingValue(i); 395 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 396 DestLOI.NumSignBits = 1; 397 APInt Zero(BitWidth, 0); 398 DestLOI.KnownZero = Zero; 399 DestLOI.KnownOne = Zero; 400 return; 401 } 402 403 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 404 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 405 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 406 DestLOI.KnownZero &= ~Val; 407 DestLOI.KnownOne &= Val; 408 continue; 409 } 410 411 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 412 "its CopyToReg node was created."); 413 unsigned SrcReg = ValueMap[V]; 414 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 415 DestLOI.IsValid = false; 416 return; 417 } 418 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 419 if (!SrcLOI) { 420 DestLOI.IsValid = false; 421 return; 422 } 423 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 424 DestLOI.KnownZero &= SrcLOI->KnownZero; 425 DestLOI.KnownOne &= SrcLOI->KnownOne; 426 } 427 } 428 429 /// setArgumentFrameIndex - Record frame index for the byval 430 /// argument. This overrides previous frame index entry for this argument, 431 /// if any. 432 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 433 int FI) { 434 ByValArgFrameIndexMap[A] = FI; 435 } 436 437 /// getArgumentFrameIndex - Get frame index for the byval argument. 438 /// If the argument does not have any assigned frame index then 0 is 439 /// returned. 440 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 441 DenseMap<const Argument *, int>::iterator I = 442 ByValArgFrameIndexMap.find(A); 443 if (I != ByValArgFrameIndexMap.end()) 444 return I->second; 445 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 446 return 0; 447 } 448 449 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 450 /// being passed to this variadic function, and set the MachineModuleInfo's 451 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 452 /// reference to _fltused on Windows, which will link in MSVCRT's 453 /// floating-point support. 454 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 455 MachineModuleInfo *MMI) 456 { 457 FunctionType *FT = cast<FunctionType>( 458 I.getCalledValue()->getType()->getContainedType(0)); 459 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 460 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 461 Type* T = I.getArgOperand(i)->getType(); 462 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 463 i != e; ++i) { 464 if (i->isFloatingPointTy()) { 465 MMI->setUsesVAFloatArgument(true); 466 return; 467 } 468 } 469 } 470 } 471 } 472 473 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 474 /// call, and add them to the specified machine basic block. 475 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 476 MachineBasicBlock *MBB) { 477 // Inform the MachineModuleInfo of the personality for this landing pad. 478 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 479 assert(CE->getOpcode() == Instruction::BitCast && 480 isa<Function>(CE->getOperand(0)) && 481 "Personality should be a function"); 482 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 483 484 // Gather all the type infos for this landing pad and pass them along to 485 // MachineModuleInfo. 486 std::vector<const GlobalVariable *> TyInfo; 487 unsigned N = I.getNumArgOperands(); 488 489 for (unsigned i = N - 1; i > 1; --i) { 490 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 491 unsigned FilterLength = CI->getZExtValue(); 492 unsigned FirstCatch = i + FilterLength + !FilterLength; 493 assert(FirstCatch <= N && "Invalid filter length"); 494 495 if (FirstCatch < N) { 496 TyInfo.reserve(N - FirstCatch); 497 for (unsigned j = FirstCatch; j < N; ++j) 498 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 499 MMI->addCatchTypeInfo(MBB, TyInfo); 500 TyInfo.clear(); 501 } 502 503 if (!FilterLength) { 504 // Cleanup. 505 MMI->addCleanup(MBB); 506 } else { 507 // Filter. 508 TyInfo.reserve(FilterLength - 1); 509 for (unsigned j = i + 1; j < FirstCatch; ++j) 510 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 511 MMI->addFilterTypeInfo(MBB, TyInfo); 512 TyInfo.clear(); 513 } 514 515 N = i; 516 } 517 } 518 519 if (N > 2) { 520 TyInfo.reserve(N - 2); 521 for (unsigned j = 2; j < N; ++j) 522 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 523 MMI->addCatchTypeInfo(MBB, TyInfo); 524 } 525 } 526 527 /// AddLandingPadInfo - Extract the exception handling information from the 528 /// landingpad instruction and add them to the specified machine module info. 529 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 530 MachineBasicBlock *MBB) { 531 MMI.addPersonality(MBB, 532 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 533 534 if (I.isCleanup()) 535 MMI.addCleanup(MBB); 536 537 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 538 // but we need to do it this way because of how the DWARF EH emitter 539 // processes the clauses. 540 for (unsigned i = I.getNumClauses(); i != 0; --i) { 541 Value *Val = I.getClause(i - 1); 542 if (I.isCatch(i - 1)) { 543 MMI.addCatchTypeInfo(MBB, 544 dyn_cast<GlobalVariable>(Val->stripPointerCasts())); 545 } else { 546 // Add filters in a list. 547 Constant *CVal = cast<Constant>(Val); 548 SmallVector<const GlobalVariable*, 4> FilterList; 549 for (User::op_iterator 550 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 551 FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); 552 553 MMI.addFilterTypeInfo(MBB, FilterList); 554 } 555 } 556 } 557