1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "function-lowering-info" 16 #include "llvm/CodeGen/FunctionLoweringInfo.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include <algorithm> 40 using namespace llvm; 41 42 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 43 /// PHI nodes or outside of the basic block that defines it, or used by a 44 /// switch or atomic instruction, which may expand to multiple basic blocks. 45 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 46 if (I->use_empty()) return false; 47 if (isa<PHINode>(I)) return true; 48 const BasicBlock *BB = I->getParent(); 49 for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); 50 UI != E; ++UI) { 51 const User *U = *UI; 52 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 53 return true; 54 } 55 return false; 56 } 57 58 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { 59 const TargetLowering *TLI = TM.getTargetLowering(); 60 61 Fn = &fn; 62 MF = &mf; 63 RegInfo = &MF->getRegInfo(); 64 65 // Check whether the function can return without sret-demotion. 66 SmallVector<ISD::OutputArg, 4> Outs; 67 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 68 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 69 Fn->isVarArg(), 70 Outs, Fn->getContext()); 71 72 // Initialize the mapping of values to registers. This is only set up for 73 // instruction values that are used outside of the block that defines 74 // them. 75 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 76 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 77 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) 78 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 79 Type *Ty = AI->getAllocatedType(); 80 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 81 unsigned Align = 82 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 83 AI->getAlignment()); 84 85 TySize *= CUI->getZExtValue(); // Get total allocated size. 86 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 87 88 // The object may need to be placed onto the stack near the stack 89 // protector if one exists. Determine here if this object is a suitable 90 // candidate. I.e., it would trigger the creation of a stack protector. 91 bool MayNeedSP = 92 (AI->isArrayAllocation() || 93 (TySize >= 8 && isa<ArrayType>(Ty) && 94 cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8))); 95 StaticAllocaMap[AI] = 96 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, 97 MayNeedSP, AI); 98 } 99 100 for (; BB != EB; ++BB) 101 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 102 I != E; ++I) { 103 // Mark values used outside their block as exported, by allocating 104 // a virtual register for them. 105 if (isUsedOutsideOfDefiningBlock(I)) 106 if (!isa<AllocaInst>(I) || 107 !StaticAllocaMap.count(cast<AllocaInst>(I))) 108 InitializeRegForValue(I); 109 110 // Collect llvm.dbg.declare information. This is done now instead of 111 // during the initial isel pass through the IR so that it is done 112 // in a predictable order. 113 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 114 MachineModuleInfo &MMI = MF->getMMI(); 115 if (MMI.hasDebugInfo() && 116 DIVariable(DI->getVariable()).Verify() && 117 !DI->getDebugLoc().isUnknown()) { 118 // Don't handle byval struct arguments or VLAs, for example. 119 // Non-byval arguments are handled here (they refer to the stack 120 // temporary alloca at this point). 121 const Value *Address = DI->getAddress(); 122 if (Address) { 123 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 124 Address = BCI->getOperand(0); 125 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 126 DenseMap<const AllocaInst *, int>::iterator SI = 127 StaticAllocaMap.find(AI); 128 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 129 int FI = SI->second; 130 MMI.setVariableDbgInfo(DI->getVariable(), 131 FI, DI->getDebugLoc()); 132 } 133 } 134 } 135 } 136 } 137 } 138 139 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 140 // also creates the initial PHI MachineInstrs, though none of the input 141 // operands are populated. 142 for (BB = Fn->begin(); BB != EB; ++BB) { 143 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 144 MBBMap[BB] = MBB; 145 MF->push_back(MBB); 146 147 // Transfer the address-taken flag. This is necessary because there could 148 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 149 // the first one should be marked. 150 if (BB->hasAddressTaken()) 151 MBB->setHasAddressTaken(); 152 153 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 154 // appropriate. 155 for (BasicBlock::const_iterator I = BB->begin(); 156 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 157 if (PN->use_empty()) continue; 158 159 // Skip empty types 160 if (PN->getType()->isEmptyTy()) 161 continue; 162 163 DebugLoc DL = PN->getDebugLoc(); 164 unsigned PHIReg = ValueMap[PN]; 165 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 166 167 SmallVector<EVT, 4> ValueVTs; 168 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 169 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 170 EVT VT = ValueVTs[vti]; 171 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 172 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 173 for (unsigned i = 0; i != NumRegisters; ++i) 174 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 175 PHIReg += NumRegisters; 176 } 177 } 178 } 179 180 // Mark landing pad blocks. 181 for (BB = Fn->begin(); BB != EB; ++BB) 182 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 183 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 184 } 185 186 /// clear - Clear out all the function-specific state. This returns this 187 /// FunctionLoweringInfo to an empty state, ready to be used for a 188 /// different function. 189 void FunctionLoweringInfo::clear() { 190 assert(CatchInfoFound.size() == CatchInfoLost.size() && 191 "Not all catch info was assigned to a landing pad!"); 192 193 MBBMap.clear(); 194 ValueMap.clear(); 195 StaticAllocaMap.clear(); 196 #ifndef NDEBUG 197 CatchInfoLost.clear(); 198 CatchInfoFound.clear(); 199 #endif 200 LiveOutRegInfo.clear(); 201 VisitedBBs.clear(); 202 ArgDbgValues.clear(); 203 ByValArgFrameIndexMap.clear(); 204 RegFixups.clear(); 205 } 206 207 /// CreateReg - Allocate a single virtual register for the given type. 208 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 209 return RegInfo-> 210 createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT)); 211 } 212 213 /// CreateRegs - Allocate the appropriate number of virtual registers of 214 /// the correctly promoted or expanded types. Assign these registers 215 /// consecutive vreg numbers and return the first assigned number. 216 /// 217 /// In the case that the given value has struct or array type, this function 218 /// will assign registers for each member or element. 219 /// 220 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 221 const TargetLowering *TLI = TM.getTargetLowering(); 222 223 SmallVector<EVT, 4> ValueVTs; 224 ComputeValueVTs(*TLI, Ty, ValueVTs); 225 226 unsigned FirstReg = 0; 227 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 228 EVT ValueVT = ValueVTs[Value]; 229 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 230 231 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 232 for (unsigned i = 0; i != NumRegs; ++i) { 233 unsigned R = CreateReg(RegisterVT); 234 if (!FirstReg) FirstReg = R; 235 } 236 } 237 return FirstReg; 238 } 239 240 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 241 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 242 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 243 /// the larger bit width by zero extension. The bit width must be no smaller 244 /// than the LiveOutInfo's existing bit width. 245 const FunctionLoweringInfo::LiveOutInfo * 246 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 247 if (!LiveOutRegInfo.inBounds(Reg)) 248 return NULL; 249 250 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 251 if (!LOI->IsValid) 252 return NULL; 253 254 if (BitWidth > LOI->KnownZero.getBitWidth()) { 255 LOI->NumSignBits = 1; 256 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 257 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 258 } 259 260 return LOI; 261 } 262 263 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 264 /// register based on the LiveOutInfo of its operands. 265 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 266 Type *Ty = PN->getType(); 267 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 268 return; 269 270 const TargetLowering *TLI = TM.getTargetLowering(); 271 272 SmallVector<EVT, 1> ValueVTs; 273 ComputeValueVTs(*TLI, Ty, ValueVTs); 274 assert(ValueVTs.size() == 1 && 275 "PHIs with non-vector integer types should have a single VT."); 276 EVT IntVT = ValueVTs[0]; 277 278 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 279 return; 280 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 281 unsigned BitWidth = IntVT.getSizeInBits(); 282 283 unsigned DestReg = ValueMap[PN]; 284 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 285 return; 286 LiveOutRegInfo.grow(DestReg); 287 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 288 289 Value *V = PN->getIncomingValue(0); 290 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 291 DestLOI.NumSignBits = 1; 292 APInt Zero(BitWidth, 0); 293 DestLOI.KnownZero = Zero; 294 DestLOI.KnownOne = Zero; 295 return; 296 } 297 298 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 299 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 300 DestLOI.NumSignBits = Val.getNumSignBits(); 301 DestLOI.KnownZero = ~Val; 302 DestLOI.KnownOne = Val; 303 } else { 304 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 305 "CopyToReg node was created."); 306 unsigned SrcReg = ValueMap[V]; 307 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 308 DestLOI.IsValid = false; 309 return; 310 } 311 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 312 if (!SrcLOI) { 313 DestLOI.IsValid = false; 314 return; 315 } 316 DestLOI = *SrcLOI; 317 } 318 319 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 320 DestLOI.KnownOne.getBitWidth() == BitWidth && 321 "Masks should have the same bit width as the type."); 322 323 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 324 Value *V = PN->getIncomingValue(i); 325 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 326 DestLOI.NumSignBits = 1; 327 APInt Zero(BitWidth, 0); 328 DestLOI.KnownZero = Zero; 329 DestLOI.KnownOne = Zero; 330 return; 331 } 332 333 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 334 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 335 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 336 DestLOI.KnownZero &= ~Val; 337 DestLOI.KnownOne &= Val; 338 continue; 339 } 340 341 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 342 "its CopyToReg node was created."); 343 unsigned SrcReg = ValueMap[V]; 344 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 345 DestLOI.IsValid = false; 346 return; 347 } 348 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 349 if (!SrcLOI) { 350 DestLOI.IsValid = false; 351 return; 352 } 353 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 354 DestLOI.KnownZero &= SrcLOI->KnownZero; 355 DestLOI.KnownOne &= SrcLOI->KnownOne; 356 } 357 } 358 359 /// setArgumentFrameIndex - Record frame index for the byval 360 /// argument. This overrides previous frame index entry for this argument, 361 /// if any. 362 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 363 int FI) { 364 ByValArgFrameIndexMap[A] = FI; 365 } 366 367 /// getArgumentFrameIndex - Get frame index for the byval argument. 368 /// If the argument does not have any assigned frame index then 0 is 369 /// returned. 370 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 371 DenseMap<const Argument *, int>::iterator I = 372 ByValArgFrameIndexMap.find(A); 373 if (I != ByValArgFrameIndexMap.end()) 374 return I->second; 375 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 376 return 0; 377 } 378 379 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 380 /// being passed to this variadic function, and set the MachineModuleInfo's 381 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 382 /// reference to _fltused on Windows, which will link in MSVCRT's 383 /// floating-point support. 384 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 385 MachineModuleInfo *MMI) 386 { 387 FunctionType *FT = cast<FunctionType>( 388 I.getCalledValue()->getType()->getContainedType(0)); 389 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 390 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 391 Type* T = I.getArgOperand(i)->getType(); 392 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 393 i != e; ++i) { 394 if (i->isFloatingPointTy()) { 395 MMI->setUsesVAFloatArgument(true); 396 return; 397 } 398 } 399 } 400 } 401 } 402 403 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 404 /// call, and add them to the specified machine basic block. 405 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 406 MachineBasicBlock *MBB) { 407 // Inform the MachineModuleInfo of the personality for this landing pad. 408 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 409 assert(CE->getOpcode() == Instruction::BitCast && 410 isa<Function>(CE->getOperand(0)) && 411 "Personality should be a function"); 412 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 413 414 // Gather all the type infos for this landing pad and pass them along to 415 // MachineModuleInfo. 416 std::vector<const GlobalVariable *> TyInfo; 417 unsigned N = I.getNumArgOperands(); 418 419 for (unsigned i = N - 1; i > 1; --i) { 420 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 421 unsigned FilterLength = CI->getZExtValue(); 422 unsigned FirstCatch = i + FilterLength + !FilterLength; 423 assert(FirstCatch <= N && "Invalid filter length"); 424 425 if (FirstCatch < N) { 426 TyInfo.reserve(N - FirstCatch); 427 for (unsigned j = FirstCatch; j < N; ++j) 428 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 429 MMI->addCatchTypeInfo(MBB, TyInfo); 430 TyInfo.clear(); 431 } 432 433 if (!FilterLength) { 434 // Cleanup. 435 MMI->addCleanup(MBB); 436 } else { 437 // Filter. 438 TyInfo.reserve(FilterLength - 1); 439 for (unsigned j = i + 1; j < FirstCatch; ++j) 440 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 441 MMI->addFilterTypeInfo(MBB, TyInfo); 442 TyInfo.clear(); 443 } 444 445 N = i; 446 } 447 } 448 449 if (N > 2) { 450 TyInfo.reserve(N - 2); 451 for (unsigned j = 2; j < N; ++j) 452 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 453 MMI->addCatchTypeInfo(MBB, TyInfo); 454 } 455 } 456 457 /// AddLandingPadInfo - Extract the exception handling information from the 458 /// landingpad instruction and add them to the specified machine module info. 459 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 460 MachineBasicBlock *MBB) { 461 MMI.addPersonality(MBB, 462 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 463 464 if (I.isCleanup()) 465 MMI.addCleanup(MBB); 466 467 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 468 // but we need to do it this way because of how the DWARF EH emitter 469 // processes the clauses. 470 for (unsigned i = I.getNumClauses(); i != 0; --i) { 471 Value *Val = I.getClause(i - 1); 472 if (I.isCatch(i - 1)) { 473 MMI.addCatchTypeInfo(MBB, 474 dyn_cast<GlobalVariable>(Val->stripPointerCasts())); 475 } else { 476 // Add filters in a list. 477 Constant *CVal = cast<Constant>(Val); 478 SmallVector<const GlobalVariable*, 4> FilterList; 479 for (User::op_iterator 480 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 481 FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); 482 483 MMI.addFilterTypeInfo(MBB, FilterList); 484 } 485 } 486 } 487