1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/CodeGen/Analysis.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "function-lowering-info" 44 45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 46 /// PHI nodes or outside of the basic block that defines it, or used by a 47 /// switch or atomic instruction, which may expand to multiple basic blocks. 48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 49 if (I->use_empty()) return false; 50 if (isa<PHINode>(I)) return true; 51 const BasicBlock *BB = I->getParent(); 52 for (const User *U : I->users()) 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 56 return false; 57 } 58 59 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 60 // For the users of the source value being used for compare instruction, if 61 // the number of signed predicate is greater than unsigned predicate, we 62 // prefer to use SIGN_EXTEND. 63 // 64 // With this optimization, we would be able to reduce some redundant sign or 65 // zero extension instruction, and eventually more machine CSE opportunities 66 // can be exposed. 67 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 68 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 69 for (const User *U : V->users()) { 70 if (const auto *CI = dyn_cast<CmpInst>(U)) { 71 NumOfSigned += CI->isSigned(); 72 NumOfUnsigned += CI->isUnsigned(); 73 } 74 } 75 if (NumOfSigned > NumOfUnsigned) 76 ExtendKind = ISD::SIGN_EXTEND; 77 78 return ExtendKind; 79 } 80 81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 82 SelectionDAG *DAG) { 83 Fn = &fn; 84 MF = &mf; 85 TLI = MF->getSubtarget().getTargetLowering(); 86 RegInfo = &MF->getRegInfo(); 87 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 88 unsigned StackAlign = TFI->getStackAlignment(); 89 90 // Check whether the function can return without sret-demotion. 91 SmallVector<ISD::OutputArg, 4> Outs; 92 CallingConv::ID CC = Fn->getCallingConv(); 93 94 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 95 mf.getDataLayout()); 96 CanLowerReturn = 97 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); 98 99 // If this personality uses funclets, we need to do a bit more work. 100 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 101 EHPersonality Personality = classifyEHPersonality( 102 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 103 if (isFuncletEHPersonality(Personality)) { 104 // Calculate state numbers if we haven't already. 105 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 106 if (Personality == EHPersonality::MSVC_CXX) 107 calculateWinCXXEHStateNumbers(&fn, EHInfo); 108 else if (isAsynchronousEHPersonality(Personality)) 109 calculateSEHStateNumbers(&fn, EHInfo); 110 else if (Personality == EHPersonality::CoreCLR) 111 calculateClrEHStateNumbers(&fn, EHInfo); 112 113 // Map all BB references in the WinEH data to MBBs. 114 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 115 for (WinEHHandlerType &H : TBME.HandlerArray) { 116 if (const AllocaInst *AI = H.CatchObj.Alloca) 117 CatchObjects.insert({AI, {}}).first->second.push_back( 118 &H.CatchObj.FrameIndex); 119 else 120 H.CatchObj.FrameIndex = INT_MAX; 121 } 122 } 123 } 124 if (Personality == EHPersonality::Wasm_CXX) { 125 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 126 calculateWasmEHInfo(&fn, EHInfo); 127 } 128 129 // Initialize the mapping of values to registers. This is only set up for 130 // instruction values that are used outside of the block that defines 131 // them. 132 for (const BasicBlock &BB : *Fn) { 133 for (const Instruction &I : BB) { 134 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 135 Type *Ty = AI->getAllocatedType(); 136 unsigned Align = 137 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 138 AI->getAlignment()); 139 140 // Static allocas can be folded into the initial stack frame 141 // adjustment. For targets that don't realign the stack, don't 142 // do this if there is an extra alignment requirement. 143 if (AI->isStaticAlloca() && 144 (TFI->isStackRealignable() || (Align <= StackAlign))) { 145 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 146 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 147 148 TySize *= CUI->getZExtValue(); // Get total allocated size. 149 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 150 int FrameIndex = INT_MAX; 151 auto Iter = CatchObjects.find(AI); 152 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 153 FrameIndex = MF->getFrameInfo().CreateFixedObject( 154 TySize, 0, /*Immutable=*/false, /*isAliased=*/true); 155 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); 156 } else { 157 FrameIndex = 158 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); 159 } 160 161 StaticAllocaMap[AI] = FrameIndex; 162 // Update the catch handler information. 163 if (Iter != CatchObjects.end()) { 164 for (int *CatchObjPtr : Iter->second) 165 *CatchObjPtr = FrameIndex; 166 } 167 } else { 168 // FIXME: Overaligned static allocas should be grouped into 169 // a single dynamic allocation instead of using a separate 170 // stack allocation for each one. 171 if (Align <= StackAlign) 172 Align = 0; 173 // Inform the Frame Information that we have variable-sized objects. 174 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); 175 } 176 } 177 178 // Look for inline asm that clobbers the SP register. 179 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 180 ImmutableCallSite CS(&I); 181 if (isa<InlineAsm>(CS.getCalledValue())) { 182 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 183 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 184 std::vector<TargetLowering::AsmOperandInfo> Ops = 185 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 186 for (TargetLowering::AsmOperandInfo &Op : Ops) { 187 if (Op.Type == InlineAsm::isClobber) { 188 // Clobbers don't have SDValue operands, hence SDValue(). 189 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 190 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 191 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 192 Op.ConstraintVT); 193 if (PhysReg.first == SP) 194 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 195 } 196 } 197 } 198 } 199 200 // Look for calls to the @llvm.va_start intrinsic. We can omit some 201 // prologue boilerplate for variadic functions that don't examine their 202 // arguments. 203 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 204 if (II->getIntrinsicID() == Intrinsic::vastart) 205 MF->getFrameInfo().setHasVAStart(true); 206 } 207 208 // If we have a musttail call in a variadic function, we need to ensure we 209 // forward implicit register parameters. 210 if (const auto *CI = dyn_cast<CallInst>(&I)) { 211 if (CI->isMustTailCall() && Fn->isVarArg()) 212 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 213 } 214 215 // Mark values used outside their block as exported, by allocating 216 // a virtual register for them. 217 if (isUsedOutsideOfDefiningBlock(&I)) 218 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 219 InitializeRegForValue(&I); 220 221 // Decide the preferred extend type for a value. 222 PreferredExtendType[&I] = getPreferredExtendForValue(&I); 223 } 224 } 225 226 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 227 // also creates the initial PHI MachineInstrs, though none of the input 228 // operands are populated. 229 for (const BasicBlock &BB : *Fn) { 230 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 231 // are really data, and no instructions can live here. 232 if (BB.isEHPad()) { 233 const Instruction *PadInst = BB.getFirstNonPHI(); 234 // If this is a non-landingpad EH pad, mark this function as using 235 // funclets. 236 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid 237 // setting this in such cases in order to improve frame layout. 238 if (!isa<LandingPadInst>(PadInst)) { 239 MF->setHasEHScopes(true); 240 MF->setHasEHFunclets(true); 241 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 242 } 243 if (isa<CatchSwitchInst>(PadInst)) { 244 assert(&*BB.begin() == PadInst && 245 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 246 continue; 247 } 248 if (isa<FuncletPadInst>(PadInst)) 249 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 250 } 251 252 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 253 MBBMap[&BB] = MBB; 254 MF->push_back(MBB); 255 256 // Transfer the address-taken flag. This is necessary because there could 257 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 258 // the first one should be marked. 259 if (BB.hasAddressTaken()) 260 MBB->setHasAddressTaken(); 261 262 // Mark landing pad blocks. 263 if (BB.isEHPad()) 264 MBB->setIsEHPad(); 265 266 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 267 // appropriate. 268 for (const PHINode &PN : BB.phis()) { 269 if (PN.use_empty()) 270 continue; 271 272 // Skip empty types 273 if (PN.getType()->isEmptyTy()) 274 continue; 275 276 DebugLoc DL = PN.getDebugLoc(); 277 unsigned PHIReg = ValueMap[&PN]; 278 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 279 280 SmallVector<EVT, 4> ValueVTs; 281 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); 282 for (EVT VT : ValueVTs) { 283 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 284 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 285 for (unsigned i = 0; i != NumRegisters; ++i) 286 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 287 PHIReg += NumRegisters; 288 } 289 } 290 } 291 292 if (isFuncletEHPersonality(Personality)) { 293 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 294 295 // Map all BB references in the WinEH data to MBBs. 296 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 297 for (WinEHHandlerType &H : TBME.HandlerArray) { 298 if (H.Handler) 299 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 300 } 301 } 302 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 303 if (UME.Cleanup) 304 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 305 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 306 const auto *BB = UME.Handler.get<const BasicBlock *>(); 307 UME.Handler = MBBMap[BB]; 308 } 309 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 310 const auto *BB = CME.Handler.get<const BasicBlock *>(); 311 CME.Handler = MBBMap[BB]; 312 } 313 } 314 315 else if (Personality == EHPersonality::Wasm_CXX) { 316 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 317 // Map all BB references in the WinEH data to MBBs. 318 DenseMap<BBOrMBB, BBOrMBB> NewMap; 319 for (auto &KV : EHInfo.EHPadUnwindMap) { 320 const auto *Src = KV.first.get<const BasicBlock *>(); 321 const auto *Dst = KV.second.get<const BasicBlock *>(); 322 NewMap[MBBMap[Src]] = MBBMap[Dst]; 323 } 324 EHInfo.EHPadUnwindMap = std::move(NewMap); 325 NewMap.clear(); 326 for (auto &KV : EHInfo.ThrowUnwindMap) { 327 const auto *Src = KV.first.get<const BasicBlock *>(); 328 const auto *Dst = KV.second.get<const BasicBlock *>(); 329 NewMap[MBBMap[Src]] = MBBMap[Dst]; 330 } 331 EHInfo.ThrowUnwindMap = std::move(NewMap); 332 } 333 } 334 335 /// clear - Clear out all the function-specific state. This returns this 336 /// FunctionLoweringInfo to an empty state, ready to be used for a 337 /// different function. 338 void FunctionLoweringInfo::clear() { 339 MBBMap.clear(); 340 ValueMap.clear(); 341 VirtReg2Value.clear(); 342 StaticAllocaMap.clear(); 343 LiveOutRegInfo.clear(); 344 VisitedBBs.clear(); 345 ArgDbgValues.clear(); 346 ByValArgFrameIndexMap.clear(); 347 RegFixups.clear(); 348 RegsWithFixups.clear(); 349 StatepointStackSlots.clear(); 350 StatepointSpillMaps.clear(); 351 PreferredExtendType.clear(); 352 } 353 354 /// CreateReg - Allocate a single virtual register for the given type. 355 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 356 return RegInfo->createVirtualRegister( 357 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 358 } 359 360 /// CreateRegs - Allocate the appropriate number of virtual registers of 361 /// the correctly promoted or expanded types. Assign these registers 362 /// consecutive vreg numbers and return the first assigned number. 363 /// 364 /// In the case that the given value has struct or array type, this function 365 /// will assign registers for each member or element. 366 /// 367 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 368 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 369 370 SmallVector<EVT, 4> ValueVTs; 371 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 372 373 unsigned FirstReg = 0; 374 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 375 EVT ValueVT = ValueVTs[Value]; 376 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 377 378 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 379 for (unsigned i = 0; i != NumRegs; ++i) { 380 unsigned R = CreateReg(RegisterVT); 381 if (!FirstReg) FirstReg = R; 382 } 383 } 384 return FirstReg; 385 } 386 387 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 388 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 389 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 390 /// the larger bit width by zero extension. The bit width must be no smaller 391 /// than the LiveOutInfo's existing bit width. 392 const FunctionLoweringInfo::LiveOutInfo * 393 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 394 if (!LiveOutRegInfo.inBounds(Reg)) 395 return nullptr; 396 397 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 398 if (!LOI->IsValid) 399 return nullptr; 400 401 if (BitWidth > LOI->Known.getBitWidth()) { 402 LOI->NumSignBits = 1; 403 LOI->Known = LOI->Known.zextOrTrunc(BitWidth); 404 } 405 406 return LOI; 407 } 408 409 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 410 /// register based on the LiveOutInfo of its operands. 411 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 412 Type *Ty = PN->getType(); 413 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 414 return; 415 416 SmallVector<EVT, 1> ValueVTs; 417 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 418 assert(ValueVTs.size() == 1 && 419 "PHIs with non-vector integer types should have a single VT."); 420 EVT IntVT = ValueVTs[0]; 421 422 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 423 return; 424 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 425 unsigned BitWidth = IntVT.getSizeInBits(); 426 427 unsigned DestReg = ValueMap[PN]; 428 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 429 return; 430 LiveOutRegInfo.grow(DestReg); 431 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 432 433 Value *V = PN->getIncomingValue(0); 434 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 435 DestLOI.NumSignBits = 1; 436 DestLOI.Known = KnownBits(BitWidth); 437 return; 438 } 439 440 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 441 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 442 DestLOI.NumSignBits = Val.getNumSignBits(); 443 DestLOI.Known.Zero = ~Val; 444 DestLOI.Known.One = Val; 445 } else { 446 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 447 "CopyToReg node was created."); 448 unsigned SrcReg = ValueMap[V]; 449 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 450 DestLOI.IsValid = false; 451 return; 452 } 453 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 454 if (!SrcLOI) { 455 DestLOI.IsValid = false; 456 return; 457 } 458 DestLOI = *SrcLOI; 459 } 460 461 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && 462 DestLOI.Known.One.getBitWidth() == BitWidth && 463 "Masks should have the same bit width as the type."); 464 465 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 466 Value *V = PN->getIncomingValue(i); 467 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 468 DestLOI.NumSignBits = 1; 469 DestLOI.Known = KnownBits(BitWidth); 470 return; 471 } 472 473 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 474 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 475 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 476 DestLOI.Known.Zero &= ~Val; 477 DestLOI.Known.One &= Val; 478 continue; 479 } 480 481 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 482 "its CopyToReg node was created."); 483 unsigned SrcReg = ValueMap[V]; 484 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 485 DestLOI.IsValid = false; 486 return; 487 } 488 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 489 if (!SrcLOI) { 490 DestLOI.IsValid = false; 491 return; 492 } 493 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 494 DestLOI.Known.Zero &= SrcLOI->Known.Zero; 495 DestLOI.Known.One &= SrcLOI->Known.One; 496 } 497 } 498 499 /// setArgumentFrameIndex - Record frame index for the byval 500 /// argument. This overrides previous frame index entry for this argument, 501 /// if any. 502 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 503 int FI) { 504 ByValArgFrameIndexMap[A] = FI; 505 } 506 507 /// getArgumentFrameIndex - Get frame index for the byval argument. 508 /// If the argument does not have any assigned frame index then 0 is 509 /// returned. 510 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 511 auto I = ByValArgFrameIndexMap.find(A); 512 if (I != ByValArgFrameIndexMap.end()) 513 return I->second; 514 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 515 return INT_MAX; 516 } 517 518 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 519 const Value *CPI, const TargetRegisterClass *RC) { 520 MachineRegisterInfo &MRI = MF->getRegInfo(); 521 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 522 unsigned &VReg = I.first->second; 523 if (I.second) 524 VReg = MRI.createVirtualRegister(RC); 525 assert(VReg && "null vreg in exception pointer table!"); 526 return VReg; 527 } 528 529 unsigned 530 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB, 531 const Value *Val) { 532 auto Key = std::make_pair(MBB, Val); 533 auto It = SwiftErrorVRegDefMap.find(Key); 534 // If this is the first use of this swifterror value in this basic block, 535 // create a new virtual register. 536 // After we processed all basic blocks we will satisfy this "upwards exposed 537 // use" by inserting a copy or phi at the beginning of this block. 538 if (It == SwiftErrorVRegDefMap.end()) { 539 auto &DL = MF->getDataLayout(); 540 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 541 auto VReg = MF->getRegInfo().createVirtualRegister(RC); 542 SwiftErrorVRegDefMap[Key] = VReg; 543 SwiftErrorVRegUpwardsUse[Key] = VReg; 544 return VReg; 545 } else return It->second; 546 } 547 548 void FunctionLoweringInfo::setCurrentSwiftErrorVReg( 549 const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) { 550 SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg; 551 } 552 553 std::pair<unsigned, bool> 554 FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) { 555 auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true); 556 auto It = SwiftErrorVRegDefUses.find(Key); 557 if (It == SwiftErrorVRegDefUses.end()) { 558 auto &DL = MF->getDataLayout(); 559 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 560 unsigned VReg = MF->getRegInfo().createVirtualRegister(RC); 561 SwiftErrorVRegDefUses[Key] = VReg; 562 return std::make_pair(VReg, true); 563 } 564 return std::make_pair(It->second, false); 565 } 566 567 std::pair<unsigned, bool> 568 FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) { 569 auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false); 570 auto It = SwiftErrorVRegDefUses.find(Key); 571 if (It == SwiftErrorVRegDefUses.end()) { 572 unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val); 573 SwiftErrorVRegDefUses[Key] = VReg; 574 return std::make_pair(VReg, true); 575 } 576 return std::make_pair(It->second, false); 577 } 578 579 const Value * 580 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) { 581 if (VirtReg2Value.empty()) { 582 for (auto &P : ValueMap) { 583 VirtReg2Value[P.second] = P.first; 584 } 585 } 586 return VirtReg2Value[Vreg]; 587 } 588