1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/WinEHFuncInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "function-lowering-info" 46 47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 48 /// PHI nodes or outside of the basic block that defines it, or used by a 49 /// switch or atomic instruction, which may expand to multiple basic blocks. 50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 51 if (I->use_empty()) return false; 52 if (isa<PHINode>(I)) return true; 53 const BasicBlock *BB = I->getParent(); 54 for (const User *U : I->users()) 55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 56 return true; 57 58 return false; 59 } 60 61 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 62 // For the users of the source value being used for compare instruction, if 63 // the number of signed predicate is greater than unsigned predicate, we 64 // prefer to use SIGN_EXTEND. 65 // 66 // With this optimization, we would be able to reduce some redundant sign or 67 // zero extension instruction, and eventually more machine CSE opportunities 68 // can be exposed. 69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 70 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 71 for (const User *U : V->users()) { 72 if (const auto *CI = dyn_cast<CmpInst>(U)) { 73 NumOfSigned += CI->isSigned(); 74 NumOfUnsigned += CI->isUnsigned(); 75 } 76 } 77 if (NumOfSigned > NumOfUnsigned) 78 ExtendKind = ISD::SIGN_EXTEND; 79 80 return ExtendKind; 81 } 82 83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 84 SelectionDAG *DAG) { 85 Fn = &fn; 86 MF = &mf; 87 TLI = MF->getSubtarget().getTargetLowering(); 88 RegInfo = &MF->getRegInfo(); 89 MachineModuleInfo &MMI = MF->getMMI(); 90 91 // Check whether the function can return without sret-demotion. 92 SmallVector<ISD::OutputArg, 4> Outs; 93 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 94 mf.getDataLayout()); 95 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 96 Fn->isVarArg(), Outs, Fn->getContext()); 97 98 // Initialize the mapping of values to registers. This is only set up for 99 // instruction values that are used outside of the block that defines 100 // them. 101 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 102 for (; BB != EB; ++BB) 103 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 104 I != E; ++I) { 105 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 106 // Static allocas can be folded into the initial stack frame adjustment. 107 if (AI->isStaticAlloca()) { 108 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 109 Type *Ty = AI->getAllocatedType(); 110 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 111 unsigned Align = 112 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 113 AI->getAlignment()); 114 115 TySize *= CUI->getZExtValue(); // Get total allocated size. 116 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 117 118 StaticAllocaMap[AI] = 119 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 120 121 } else { 122 unsigned Align = 123 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment( 124 AI->getAllocatedType()), 125 AI->getAlignment()); 126 unsigned StackAlign = 127 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 128 if (Align <= StackAlign) 129 Align = 0; 130 // Inform the Frame Information that we have variable-sized objects. 131 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 132 } 133 } 134 135 // Look for inline asm that clobbers the SP register. 136 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 137 ImmutableCallSite CS(&*I); 138 if (isa<InlineAsm>(CS.getCalledValue())) { 139 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 140 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 141 std::vector<TargetLowering::AsmOperandInfo> Ops = 142 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 143 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 144 TargetLowering::AsmOperandInfo &Op = Ops[I]; 145 if (Op.Type == InlineAsm::isClobber) { 146 // Clobbers don't have SDValue operands, hence SDValue(). 147 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 148 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 149 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 150 Op.ConstraintVT); 151 if (PhysReg.first == SP) 152 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true); 153 } 154 } 155 } 156 } 157 158 // Look for calls to the @llvm.va_start intrinsic. We can omit some 159 // prologue boilerplate for variadic functions that don't examine their 160 // arguments. 161 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 162 if (II->getIntrinsicID() == Intrinsic::vastart) 163 MF->getFrameInfo()->setHasVAStart(true); 164 } 165 166 // If we have a musttail call in a variadic funciton, we need to ensure we 167 // forward implicit register parameters. 168 if (const auto *CI = dyn_cast<CallInst>(I)) { 169 if (CI->isMustTailCall() && Fn->isVarArg()) 170 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 171 } 172 173 // Mark values used outside their block as exported, by allocating 174 // a virtual register for them. 175 if (isUsedOutsideOfDefiningBlock(&*I)) 176 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I))) 177 InitializeRegForValue(&*I); 178 179 // Collect llvm.dbg.declare information. This is done now instead of 180 // during the initial isel pass through the IR so that it is done 181 // in a predictable order. 182 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 183 assert(DI->getVariable() && "Missing variable"); 184 assert(DI->getDebugLoc() && "Missing location"); 185 if (MMI.hasDebugInfo()) { 186 // Don't handle byval struct arguments or VLAs, for example. 187 // Non-byval arguments are handled here (they refer to the stack 188 // temporary alloca at this point). 189 const Value *Address = DI->getAddress(); 190 if (Address) { 191 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 192 Address = BCI->getOperand(0); 193 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 194 DenseMap<const AllocaInst *, int>::iterator SI = 195 StaticAllocaMap.find(AI); 196 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 197 int FI = SI->second; 198 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 199 FI, DI->getDebugLoc()); 200 } 201 } 202 } 203 } 204 } 205 206 // Decide the preferred extend type for a value. 207 PreferredExtendType[&*I] = getPreferredExtendForValue(&*I); 208 } 209 210 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 211 // also creates the initial PHI MachineInstrs, though none of the input 212 // operands are populated. 213 for (BB = Fn->begin(); BB != EB; ++BB) { 214 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 215 // are really data, and no instructions can live here. 216 if (BB->isEHPad()) { 217 const Instruction *I = BB->getFirstNonPHI(); 218 // If this is a non-landingpad EH pad, mark this function as using 219 // funclets. 220 // FIXME: SEH catchpads do not create funclets, so we could avoid setting 221 // this in such cases in order to improve frame layout. 222 if (!isa<LandingPadInst>(I)) { 223 MMI.setHasEHFunclets(true); 224 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true); 225 } 226 if (isa<CatchEndPadInst>(I) || isa<CleanupEndPadInst>(I)) { 227 assert(&*BB->begin() == I && 228 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 229 continue; 230 } 231 if (isa<CatchPadInst>(I) || isa<CleanupPadInst>(I)) 232 assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs"); 233 } 234 235 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB); 236 MBBMap[&*BB] = MBB; 237 MF->push_back(MBB); 238 239 // Transfer the address-taken flag. This is necessary because there could 240 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 241 // the first one should be marked. 242 if (BB->hasAddressTaken()) 243 MBB->setHasAddressTaken(); 244 245 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 246 // appropriate. 247 for (BasicBlock::const_iterator I = BB->begin(); 248 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 249 if (PN->use_empty()) continue; 250 251 // Skip empty types 252 if (PN->getType()->isEmptyTy()) 253 continue; 254 255 DebugLoc DL = PN->getDebugLoc(); 256 unsigned PHIReg = ValueMap[PN]; 257 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 258 259 SmallVector<EVT, 4> ValueVTs; 260 ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs); 261 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 262 EVT VT = ValueVTs[vti]; 263 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 264 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 265 for (unsigned i = 0; i != NumRegisters; ++i) 266 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 267 PHIReg += NumRegisters; 268 } 269 } 270 } 271 272 // Mark landing pad blocks. 273 SmallVector<const LandingPadInst *, 4> LPads; 274 for (BB = Fn->begin(); BB != EB; ++BB) { 275 const Instruction *FNP = BB->getFirstNonPHI(); 276 if (BB->isEHPad() && MBBMap.count(&*BB)) 277 MBBMap[&*BB]->setIsEHPad(); 278 if (const auto *LPI = dyn_cast<LandingPadInst>(FNP)) 279 LPads.push_back(LPI); 280 } 281 282 // If this personality uses funclets, we need to do a bit more work. 283 if (!Fn->hasPersonalityFn()) 284 return; 285 EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn()); 286 if (!isFuncletEHPersonality(Personality)) 287 return; 288 289 // Calculate state numbers if we haven't already. 290 WinEHFuncInfo &EHInfo = MMI.getWinEHFuncInfo(&fn); 291 if (Personality == EHPersonality::MSVC_CXX) 292 calculateWinCXXEHStateNumbers(&fn, EHInfo); 293 else if (isAsynchronousEHPersonality(Personality)) 294 calculateSEHStateNumbers(&fn, EHInfo); 295 else if (Personality == EHPersonality::CoreCLR) 296 calculateClrEHStateNumbers(&fn, EHInfo); 297 298 calculateCatchReturnSuccessorColors(&fn, EHInfo); 299 300 // Map all BB references in the WinEH data to MBBs. 301 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 302 for (WinEHHandlerType &H : TBME.HandlerArray) { 303 if (H.CatchObj.Alloca) { 304 assert(StaticAllocaMap.count(H.CatchObj.Alloca)); 305 H.CatchObj.FrameIndex = StaticAllocaMap[H.CatchObj.Alloca]; 306 } else { 307 H.CatchObj.FrameIndex = INT_MAX; 308 } 309 if (H.Handler) 310 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 311 } 312 } 313 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 314 if (UME.Cleanup) 315 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 316 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 317 const BasicBlock *BB = UME.Handler.get<const BasicBlock *>(); 318 UME.Handler = MBBMap[BB]; 319 } 320 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 321 const BasicBlock *BB = CME.Handler.get<const BasicBlock *>(); 322 CME.Handler = MBBMap[BB]; 323 } 324 325 // If there's an explicit EH registration node on the stack, record its 326 // frame index. 327 if (EHInfo.EHRegNode && EHInfo.EHRegNode->getParent()->getParent() == Fn) { 328 assert(StaticAllocaMap.count(EHInfo.EHRegNode)); 329 EHInfo.EHRegNodeFrameIndex = StaticAllocaMap[EHInfo.EHRegNode]; 330 } 331 332 // Copy the state numbers to LandingPadInfo for the current function, which 333 // could be a handler or the parent. This should happen for 32-bit SEH and 334 // C++ EH. 335 if (Personality == EHPersonality::MSVC_CXX || 336 Personality == EHPersonality::MSVC_X86SEH) { 337 for (const LandingPadInst *LP : LPads) { 338 MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; 339 MMI.addWinEHState(LPadMBB, EHInfo.EHPadStateMap[LP]); 340 } 341 } 342 } 343 344 /// clear - Clear out all the function-specific state. This returns this 345 /// FunctionLoweringInfo to an empty state, ready to be used for a 346 /// different function. 347 void FunctionLoweringInfo::clear() { 348 MBBMap.clear(); 349 ValueMap.clear(); 350 StaticAllocaMap.clear(); 351 LiveOutRegInfo.clear(); 352 VisitedBBs.clear(); 353 ArgDbgValues.clear(); 354 ByValArgFrameIndexMap.clear(); 355 RegFixups.clear(); 356 StatepointStackSlots.clear(); 357 StatepointRelocatedValues.clear(); 358 PreferredExtendType.clear(); 359 } 360 361 /// CreateReg - Allocate a single virtual register for the given type. 362 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 363 return RegInfo->createVirtualRegister( 364 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 365 } 366 367 /// CreateRegs - Allocate the appropriate number of virtual registers of 368 /// the correctly promoted or expanded types. Assign these registers 369 /// consecutive vreg numbers and return the first assigned number. 370 /// 371 /// In the case that the given value has struct or array type, this function 372 /// will assign registers for each member or element. 373 /// 374 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 375 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 376 377 SmallVector<EVT, 4> ValueVTs; 378 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 379 380 unsigned FirstReg = 0; 381 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 382 EVT ValueVT = ValueVTs[Value]; 383 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 384 385 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 386 for (unsigned i = 0; i != NumRegs; ++i) { 387 unsigned R = CreateReg(RegisterVT); 388 if (!FirstReg) FirstReg = R; 389 } 390 } 391 return FirstReg; 392 } 393 394 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 395 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 396 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 397 /// the larger bit width by zero extension. The bit width must be no smaller 398 /// than the LiveOutInfo's existing bit width. 399 const FunctionLoweringInfo::LiveOutInfo * 400 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 401 if (!LiveOutRegInfo.inBounds(Reg)) 402 return nullptr; 403 404 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 405 if (!LOI->IsValid) 406 return nullptr; 407 408 if (BitWidth > LOI->KnownZero.getBitWidth()) { 409 LOI->NumSignBits = 1; 410 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 411 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 412 } 413 414 return LOI; 415 } 416 417 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 418 /// register based on the LiveOutInfo of its operands. 419 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 420 Type *Ty = PN->getType(); 421 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 422 return; 423 424 SmallVector<EVT, 1> ValueVTs; 425 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 426 assert(ValueVTs.size() == 1 && 427 "PHIs with non-vector integer types should have a single VT."); 428 EVT IntVT = ValueVTs[0]; 429 430 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 431 return; 432 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 433 unsigned BitWidth = IntVT.getSizeInBits(); 434 435 unsigned DestReg = ValueMap[PN]; 436 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 437 return; 438 LiveOutRegInfo.grow(DestReg); 439 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 440 441 Value *V = PN->getIncomingValue(0); 442 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 443 DestLOI.NumSignBits = 1; 444 APInt Zero(BitWidth, 0); 445 DestLOI.KnownZero = Zero; 446 DestLOI.KnownOne = Zero; 447 return; 448 } 449 450 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 451 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 452 DestLOI.NumSignBits = Val.getNumSignBits(); 453 DestLOI.KnownZero = ~Val; 454 DestLOI.KnownOne = Val; 455 } else { 456 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 457 "CopyToReg node was created."); 458 unsigned SrcReg = ValueMap[V]; 459 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 460 DestLOI.IsValid = false; 461 return; 462 } 463 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 464 if (!SrcLOI) { 465 DestLOI.IsValid = false; 466 return; 467 } 468 DestLOI = *SrcLOI; 469 } 470 471 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 472 DestLOI.KnownOne.getBitWidth() == BitWidth && 473 "Masks should have the same bit width as the type."); 474 475 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 476 Value *V = PN->getIncomingValue(i); 477 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 478 DestLOI.NumSignBits = 1; 479 APInt Zero(BitWidth, 0); 480 DestLOI.KnownZero = Zero; 481 DestLOI.KnownOne = Zero; 482 return; 483 } 484 485 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 486 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 487 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 488 DestLOI.KnownZero &= ~Val; 489 DestLOI.KnownOne &= Val; 490 continue; 491 } 492 493 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 494 "its CopyToReg node was created."); 495 unsigned SrcReg = ValueMap[V]; 496 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 497 DestLOI.IsValid = false; 498 return; 499 } 500 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 501 if (!SrcLOI) { 502 DestLOI.IsValid = false; 503 return; 504 } 505 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 506 DestLOI.KnownZero &= SrcLOI->KnownZero; 507 DestLOI.KnownOne &= SrcLOI->KnownOne; 508 } 509 } 510 511 /// setArgumentFrameIndex - Record frame index for the byval 512 /// argument. This overrides previous frame index entry for this argument, 513 /// if any. 514 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 515 int FI) { 516 ByValArgFrameIndexMap[A] = FI; 517 } 518 519 /// getArgumentFrameIndex - Get frame index for the byval argument. 520 /// If the argument does not have any assigned frame index then 0 is 521 /// returned. 522 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 523 DenseMap<const Argument *, int>::iterator I = 524 ByValArgFrameIndexMap.find(A); 525 if (I != ByValArgFrameIndexMap.end()) 526 return I->second; 527 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 528 return 0; 529 } 530 531 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 532 const Value *CPI, const TargetRegisterClass *RC) { 533 MachineRegisterInfo &MRI = MF->getRegInfo(); 534 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 535 unsigned &VReg = I.first->second; 536 if (I.second) 537 VReg = MRI.createVirtualRegister(RC); 538 assert(VReg && "null vreg in exception pointer table!"); 539 return VReg; 540 } 541 542 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 543 /// being passed to this variadic function, and set the MachineModuleInfo's 544 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 545 /// reference to _fltused on Windows, which will link in MSVCRT's 546 /// floating-point support. 547 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 548 MachineModuleInfo *MMI) 549 { 550 FunctionType *FT = cast<FunctionType>( 551 I.getCalledValue()->getType()->getContainedType(0)); 552 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 553 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 554 Type* T = I.getArgOperand(i)->getType(); 555 for (auto i : post_order(T)) { 556 if (i->isFloatingPointTy()) { 557 MMI->setUsesVAFloatArgument(true); 558 return; 559 } 560 } 561 } 562 } 563 } 564 565 /// AddLandingPadInfo - Extract the exception handling information from the 566 /// landingpad instruction and add them to the specified machine module info. 567 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 568 MachineBasicBlock *MBB) { 569 if (const auto *PF = dyn_cast<Function>( 570 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 571 MMI.addPersonality(PF); 572 573 if (I.isCleanup()) 574 MMI.addCleanup(MBB); 575 576 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 577 // but we need to do it this way because of how the DWARF EH emitter 578 // processes the clauses. 579 for (unsigned i = I.getNumClauses(); i != 0; --i) { 580 Value *Val = I.getClause(i - 1); 581 if (I.isCatch(i - 1)) { 582 MMI.addCatchTypeInfo(MBB, 583 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 584 } else { 585 // Add filters in a list. 586 Constant *CVal = cast<Constant>(Val); 587 SmallVector<const GlobalValue*, 4> FilterList; 588 for (User::op_iterator 589 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 590 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 591 592 MMI.addFilterTypeInfo(MBB, FilterList); 593 } 594 } 595 } 596