1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "function-lowering-info" 16 #include "llvm/CodeGen/FunctionLoweringInfo.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Function.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Analysis/DebugInfo.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include "llvm/Target/TargetData.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetLowering.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 42 /// PHI nodes or outside of the basic block that defines it, or used by a 43 /// switch or atomic instruction, which may expand to multiple basic blocks. 44 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 45 if (I->use_empty()) return false; 46 if (isa<PHINode>(I)) return true; 47 const BasicBlock *BB = I->getParent(); 48 for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); 49 UI != E; ++UI) { 50 const User *U = *UI; 51 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 52 return true; 53 } 54 return false; 55 } 56 57 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 58 /// entry block, return true. This includes arguments used by switches, since 59 /// the switch may expand into multiple basic blocks. 60 static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) { 61 // With FastISel active, we may be splitting blocks, so force creation 62 // of virtual registers for all non-dead arguments. 63 if (EnableFastISel) 64 return A->use_empty(); 65 66 const BasicBlock *Entry = A->getParent()->begin(); 67 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 68 UI != E; ++UI) { 69 const User *U = *UI; 70 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 71 return false; // Use not in entry block. 72 } 73 return true; 74 } 75 76 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli) 77 : TLI(tli) { 78 } 79 80 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { 81 Fn = &fn; 82 MF = &mf; 83 RegInfo = &MF->getRegInfo(); 84 85 // Check whether the function can return without sret-demotion. 86 SmallVector<ISD::OutputArg, 4> Outs; 87 GetReturnInfo(Fn->getReturnType(), 88 Fn->getAttributes().getRetAttributes(), Outs, TLI); 89 CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), Fn->isVarArg(), 90 Outs, Fn->getContext()); 91 92 // Create a vreg for each argument register that is not dead and is used 93 // outside of the entry block for the function. 94 for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); 95 AI != E; ++AI) 96 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) 97 InitializeRegForValue(AI); 98 99 // Initialize the mapping of values to registers. This is only set up for 100 // instruction values that are used outside of the block that defines 101 // them. 102 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 103 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 104 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) 105 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 106 const Type *Ty = AI->getAllocatedType(); 107 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 108 unsigned Align = 109 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 110 AI->getAlignment()); 111 112 TySize *= CUI->getZExtValue(); // Get total allocated size. 113 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 114 115 // The object may need to be placed onto the stack near the stack 116 // protector if one exists. Determine here if this object is a suitable 117 // candidate. I.e., it would trigger the creation of a stack protector. 118 bool MayNeedSP = 119 (AI->isArrayAllocation() || 120 (TySize > 8 && isa<ArrayType>(Ty) && 121 cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8))); 122 StaticAllocaMap[AI] = 123 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP); 124 } 125 126 for (; BB != EB; ++BB) 127 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 128 // Mark values used outside their block as exported, by allocating 129 // a virtual register for them. 130 if (isUsedOutsideOfDefiningBlock(I)) 131 if (!isa<AllocaInst>(I) || 132 !StaticAllocaMap.count(cast<AllocaInst>(I))) 133 InitializeRegForValue(I); 134 135 // Collect llvm.dbg.declare information. This is done now instead of 136 // during the initial isel pass through the IR so that it is done 137 // in a predictable order. 138 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 139 MachineModuleInfo &MMI = MF->getMMI(); 140 if (MMI.hasDebugInfo() && 141 DIVariable(DI->getVariable()).Verify() && 142 !DI->getDebugLoc().isUnknown()) { 143 // Don't handle byval struct arguments or VLAs, for example. 144 // Non-byval arguments are handled here (they refer to the stack 145 // temporary alloca at this point). 146 const Value *Address = DI->getAddress(); 147 if (Address) { 148 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 149 Address = BCI->getOperand(0); 150 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 151 DenseMap<const AllocaInst *, int>::iterator SI = 152 StaticAllocaMap.find(AI); 153 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 154 int FI = SI->second; 155 MMI.setVariableDbgInfo(DI->getVariable(), 156 FI, DI->getDebugLoc()); 157 } 158 } 159 } 160 } 161 } 162 } 163 164 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 165 // also creates the initial PHI MachineInstrs, though none of the input 166 // operands are populated. 167 for (BB = Fn->begin(); BB != EB; ++BB) { 168 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 169 MBBMap[BB] = MBB; 170 MF->push_back(MBB); 171 172 // Transfer the address-taken flag. This is necessary because there could 173 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 174 // the first one should be marked. 175 if (BB->hasAddressTaken()) 176 MBB->setHasAddressTaken(); 177 178 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 179 // appropriate. 180 for (BasicBlock::const_iterator I = BB->begin(); 181 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 182 if (PN->use_empty()) continue; 183 184 DebugLoc DL = PN->getDebugLoc(); 185 unsigned PHIReg = ValueMap[PN]; 186 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 187 188 SmallVector<EVT, 4> ValueVTs; 189 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 190 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 191 EVT VT = ValueVTs[vti]; 192 unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); 193 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 194 for (unsigned i = 0; i != NumRegisters; ++i) 195 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 196 PHIReg += NumRegisters; 197 } 198 } 199 } 200 201 // Mark landing pad blocks. 202 for (BB = Fn->begin(); BB != EB; ++BB) 203 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 204 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 205 } 206 207 /// clear - Clear out all the function-specific state. This returns this 208 /// FunctionLoweringInfo to an empty state, ready to be used for a 209 /// different function. 210 void FunctionLoweringInfo::clear() { 211 assert(CatchInfoFound.size() == CatchInfoLost.size() && 212 "Not all catch info was assigned to a landing pad!"); 213 214 MBBMap.clear(); 215 ValueMap.clear(); 216 StaticAllocaMap.clear(); 217 #ifndef NDEBUG 218 CatchInfoLost.clear(); 219 CatchInfoFound.clear(); 220 #endif 221 LiveOutRegInfo.clear(); 222 VisitedBBs.clear(); 223 ArgDbgValues.clear(); 224 ByValArgFrameIndexMap.clear(); 225 RegFixups.clear(); 226 } 227 228 /// CreateReg - Allocate a single virtual register for the given type. 229 unsigned FunctionLoweringInfo::CreateReg(EVT VT) { 230 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); 231 } 232 233 /// CreateRegs - Allocate the appropriate number of virtual registers of 234 /// the correctly promoted or expanded types. Assign these registers 235 /// consecutive vreg numbers and return the first assigned number. 236 /// 237 /// In the case that the given value has struct or array type, this function 238 /// will assign registers for each member or element. 239 /// 240 unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) { 241 SmallVector<EVT, 4> ValueVTs; 242 ComputeValueVTs(TLI, Ty, ValueVTs); 243 244 unsigned FirstReg = 0; 245 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 246 EVT ValueVT = ValueVTs[Value]; 247 EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT); 248 249 unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT); 250 for (unsigned i = 0; i != NumRegs; ++i) { 251 unsigned R = CreateReg(RegisterVT); 252 if (!FirstReg) FirstReg = R; 253 } 254 } 255 return FirstReg; 256 } 257 258 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 259 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 260 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 261 /// the larger bit width by zero extension. The bit width must be no smaller 262 /// than the LiveOutInfo's existing bit width. 263 const FunctionLoweringInfo::LiveOutInfo * 264 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 265 if (!LiveOutRegInfo.inBounds(Reg)) 266 return NULL; 267 268 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 269 if (!LOI->IsValid) 270 return NULL; 271 272 if (BitWidth > LOI->KnownZero.getBitWidth()) { 273 LOI->NumSignBits = 1; 274 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 275 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 276 } 277 278 return LOI; 279 } 280 281 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 282 /// register based on the LiveOutInfo of its operands. 283 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 284 const Type *Ty = PN->getType(); 285 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 286 return; 287 288 SmallVector<EVT, 1> ValueVTs; 289 ComputeValueVTs(TLI, Ty, ValueVTs); 290 assert(ValueVTs.size() == 1 && 291 "PHIs with non-vector integer types should have a single VT."); 292 EVT IntVT = ValueVTs[0]; 293 294 if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1) 295 return; 296 IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT); 297 unsigned BitWidth = IntVT.getSizeInBits(); 298 299 unsigned DestReg = ValueMap[PN]; 300 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 301 return; 302 LiveOutRegInfo.grow(DestReg); 303 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 304 305 Value *V = PN->getIncomingValue(0); 306 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 307 DestLOI.NumSignBits = 1; 308 APInt Zero(BitWidth, 0); 309 DestLOI.KnownZero = Zero; 310 DestLOI.KnownOne = Zero; 311 return; 312 } 313 314 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 315 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 316 DestLOI.NumSignBits = Val.getNumSignBits(); 317 DestLOI.KnownZero = ~Val; 318 DestLOI.KnownOne = Val; 319 } else { 320 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 321 "CopyToReg node was created."); 322 unsigned SrcReg = ValueMap[V]; 323 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 324 DestLOI.IsValid = false; 325 return; 326 } 327 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 328 if (!SrcLOI) { 329 DestLOI.IsValid = false; 330 return; 331 } 332 DestLOI = *SrcLOI; 333 } 334 335 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 336 DestLOI.KnownOne.getBitWidth() == BitWidth && 337 "Masks should have the same bit width as the type."); 338 339 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 340 Value *V = PN->getIncomingValue(i); 341 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 342 DestLOI.NumSignBits = 1; 343 APInt Zero(BitWidth, 0); 344 DestLOI.KnownZero = Zero; 345 DestLOI.KnownOne = Zero; 346 return; 347 } 348 349 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 350 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 351 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 352 DestLOI.KnownZero &= ~Val; 353 DestLOI.KnownOne &= Val; 354 continue; 355 } 356 357 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 358 "its CopyToReg node was created."); 359 unsigned SrcReg = ValueMap[V]; 360 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 361 DestLOI.IsValid = false; 362 return; 363 } 364 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 365 if (!SrcLOI) { 366 DestLOI.IsValid = false; 367 return; 368 } 369 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 370 DestLOI.KnownZero &= SrcLOI->KnownZero; 371 DestLOI.KnownOne &= SrcLOI->KnownOne; 372 } 373 } 374 375 /// setByValArgumentFrameIndex - Record frame index for the byval 376 /// argument. This overrides previous frame index entry for this argument, 377 /// if any. 378 void FunctionLoweringInfo::setByValArgumentFrameIndex(const Argument *A, 379 int FI) { 380 assert (A->hasByValAttr() && "Argument does not have byval attribute!"); 381 ByValArgFrameIndexMap[A] = FI; 382 } 383 384 /// getByValArgumentFrameIndex - Get frame index for the byval argument. 385 /// If the argument does not have any assigned frame index then 0 is 386 /// returned. 387 int FunctionLoweringInfo::getByValArgumentFrameIndex(const Argument *A) { 388 assert (A->hasByValAttr() && "Argument does not have byval attribute!"); 389 DenseMap<const Argument *, int>::iterator I = 390 ByValArgFrameIndexMap.find(A); 391 if (I != ByValArgFrameIndexMap.end()) 392 return I->second; 393 DEBUG(dbgs() << "Argument does not have assigned frame index!"); 394 return 0; 395 } 396 397 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 398 /// call, and add them to the specified machine basic block. 399 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 400 MachineBasicBlock *MBB) { 401 // Inform the MachineModuleInfo of the personality for this landing pad. 402 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 403 assert(CE->getOpcode() == Instruction::BitCast && 404 isa<Function>(CE->getOperand(0)) && 405 "Personality should be a function"); 406 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 407 408 // Gather all the type infos for this landing pad and pass them along to 409 // MachineModuleInfo. 410 std::vector<const GlobalVariable *> TyInfo; 411 unsigned N = I.getNumArgOperands(); 412 413 for (unsigned i = N - 1; i > 1; --i) { 414 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 415 unsigned FilterLength = CI->getZExtValue(); 416 unsigned FirstCatch = i + FilterLength + !FilterLength; 417 assert(FirstCatch <= N && "Invalid filter length"); 418 419 if (FirstCatch < N) { 420 TyInfo.reserve(N - FirstCatch); 421 for (unsigned j = FirstCatch; j < N; ++j) 422 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 423 MMI->addCatchTypeInfo(MBB, TyInfo); 424 TyInfo.clear(); 425 } 426 427 if (!FilterLength) { 428 // Cleanup. 429 MMI->addCleanup(MBB); 430 } else { 431 // Filter. 432 TyInfo.reserve(FilterLength - 1); 433 for (unsigned j = i + 1; j < FirstCatch; ++j) 434 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 435 MMI->addFilterTypeInfo(MBB, TyInfo); 436 TyInfo.clear(); 437 } 438 439 N = i; 440 } 441 } 442 443 if (N > 2) { 444 TyInfo.reserve(N - 2); 445 for (unsigned j = 2; j < N; ++j) 446 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 447 MMI->addCatchTypeInfo(MBB, TyInfo); 448 } 449 } 450 451 void llvm::CopyCatchInfo(const BasicBlock *SuccBB, const BasicBlock *LPad, 452 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { 453 SmallPtrSet<const BasicBlock*, 4> Visited; 454 455 // The 'eh.selector' call may not be in the direct successor of a basic block, 456 // but could be several successors deeper. If we don't find it, try going one 457 // level further. <rdar://problem/8824861> 458 while (Visited.insert(SuccBB)) { 459 for (BasicBlock::const_iterator I = SuccBB->begin(), E = --SuccBB->end(); 460 I != E; ++I) 461 if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { 462 // Apply the catch info to LPad. 463 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[LPad]); 464 #ifndef NDEBUG 465 if (!FLI.MBBMap[SuccBB]->isLandingPad()) 466 FLI.CatchInfoFound.insert(EHSel); 467 #endif 468 return; 469 } 470 471 const BranchInst *Br = dyn_cast<BranchInst>(SuccBB->getTerminator()); 472 if (Br && Br->isUnconditional()) 473 SuccBB = Br->getSuccessor(0); 474 else 475 break; 476 } 477 } 478