1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/WinEHFuncInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "function-lowering-info" 46 47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 48 /// PHI nodes or outside of the basic block that defines it, or used by a 49 /// switch or atomic instruction, which may expand to multiple basic blocks. 50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 51 if (I->use_empty()) return false; 52 if (isa<PHINode>(I)) return true; 53 const BasicBlock *BB = I->getParent(); 54 for (const User *U : I->users()) 55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 56 return true; 57 58 return false; 59 } 60 61 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 62 // For the users of the source value being used for compare instruction, if 63 // the number of signed predicate is greater than unsigned predicate, we 64 // prefer to use SIGN_EXTEND. 65 // 66 // With this optimization, we would be able to reduce some redundant sign or 67 // zero extension instruction, and eventually more machine CSE opportunities 68 // can be exposed. 69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 70 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 71 for (const User *U : V->users()) { 72 if (const auto *CI = dyn_cast<CmpInst>(U)) { 73 NumOfSigned += CI->isSigned(); 74 NumOfUnsigned += CI->isUnsigned(); 75 } 76 } 77 if (NumOfSigned > NumOfUnsigned) 78 ExtendKind = ISD::SIGN_EXTEND; 79 80 return ExtendKind; 81 } 82 83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 84 SelectionDAG *DAG) { 85 Fn = &fn; 86 MF = &mf; 87 TLI = MF->getSubtarget().getTargetLowering(); 88 RegInfo = &MF->getRegInfo(); 89 MachineModuleInfo &MMI = MF->getMMI(); 90 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 91 92 // Check whether the function can return without sret-demotion. 93 SmallVector<ISD::OutputArg, 4> Outs; 94 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 95 mf.getDataLayout()); 96 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 97 Fn->isVarArg(), Outs, Fn->getContext()); 98 99 // Initialize the mapping of values to registers. This is only set up for 100 // instruction values that are used outside of the block that defines 101 // them. 102 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 103 for (; BB != EB; ++BB) 104 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 105 I != E; ++I) { 106 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 107 Type *Ty = AI->getAllocatedType(); 108 unsigned Align = 109 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 110 AI->getAlignment()); 111 unsigned StackAlign = TFI->getStackAlignment(); 112 113 // Static allocas can be folded into the initial stack frame 114 // adjustment. For targets that don't realign the stack, don't 115 // do this if there is an extra alignment requirement. 116 if (AI->isStaticAlloca() && 117 (TFI->isStackRealignable() || (Align <= StackAlign))) { 118 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 119 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 120 121 TySize *= CUI->getZExtValue(); // Get total allocated size. 122 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 123 124 StaticAllocaMap[AI] = 125 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 126 } else { 127 // FIXME: Overaligned static allocas should be grouped into 128 // a single dynamic allocation instead of using a separate 129 // stack allocation for each one. 130 if (Align <= StackAlign) 131 Align = 0; 132 // Inform the Frame Information that we have variable-sized objects. 133 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 134 } 135 } 136 137 // Look for inline asm that clobbers the SP register. 138 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 139 ImmutableCallSite CS(&*I); 140 if (isa<InlineAsm>(CS.getCalledValue())) { 141 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 142 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 143 std::vector<TargetLowering::AsmOperandInfo> Ops = 144 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 145 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 146 TargetLowering::AsmOperandInfo &Op = Ops[I]; 147 if (Op.Type == InlineAsm::isClobber) { 148 // Clobbers don't have SDValue operands, hence SDValue(). 149 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 150 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 151 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 152 Op.ConstraintVT); 153 if (PhysReg.first == SP) 154 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true); 155 } 156 } 157 } 158 } 159 160 // Look for calls to the @llvm.va_start intrinsic. We can omit some 161 // prologue boilerplate for variadic functions that don't examine their 162 // arguments. 163 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 164 if (II->getIntrinsicID() == Intrinsic::vastart) 165 MF->getFrameInfo()->setHasVAStart(true); 166 } 167 168 // If we have a musttail call in a variadic function, we need to ensure we 169 // forward implicit register parameters. 170 if (const auto *CI = dyn_cast<CallInst>(I)) { 171 if (CI->isMustTailCall() && Fn->isVarArg()) 172 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 173 } 174 175 // Mark values used outside their block as exported, by allocating 176 // a virtual register for them. 177 if (isUsedOutsideOfDefiningBlock(&*I)) 178 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I))) 179 InitializeRegForValue(&*I); 180 181 // Collect llvm.dbg.declare information. This is done now instead of 182 // during the initial isel pass through the IR so that it is done 183 // in a predictable order. 184 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 185 assert(DI->getVariable() && "Missing variable"); 186 assert(DI->getDebugLoc() && "Missing location"); 187 if (MMI.hasDebugInfo()) { 188 // Don't handle byval struct arguments or VLAs, for example. 189 // Non-byval arguments are handled here (they refer to the stack 190 // temporary alloca at this point). 191 const Value *Address = DI->getAddress(); 192 if (Address) { 193 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 194 Address = BCI->getOperand(0); 195 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 196 DenseMap<const AllocaInst *, int>::iterator SI = 197 StaticAllocaMap.find(AI); 198 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 199 int FI = SI->second; 200 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 201 FI, DI->getDebugLoc()); 202 } 203 } 204 } 205 } 206 } 207 208 // Decide the preferred extend type for a value. 209 PreferredExtendType[&*I] = getPreferredExtendForValue(&*I); 210 } 211 212 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 213 // also creates the initial PHI MachineInstrs, though none of the input 214 // operands are populated. 215 for (BB = Fn->begin(); BB != EB; ++BB) { 216 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 217 // are really data, and no instructions can live here. 218 if (BB->isEHPad()) { 219 const Instruction *I = BB->getFirstNonPHI(); 220 // If this is a non-landingpad EH pad, mark this function as using 221 // funclets. 222 // FIXME: SEH catchpads do not create funclets, so we could avoid setting 223 // this in such cases in order to improve frame layout. 224 if (!isa<LandingPadInst>(I)) { 225 MMI.setHasEHFunclets(true); 226 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true); 227 } 228 if (isa<CatchSwitchInst>(I)) { 229 assert(&*BB->begin() == I && 230 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 231 continue; 232 } 233 if (isa<FuncletPadInst>(I)) 234 assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs"); 235 } 236 237 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB); 238 MBBMap[&*BB] = MBB; 239 MF->push_back(MBB); 240 241 // Transfer the address-taken flag. This is necessary because there could 242 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 243 // the first one should be marked. 244 if (BB->hasAddressTaken()) 245 MBB->setHasAddressTaken(); 246 247 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 248 // appropriate. 249 for (BasicBlock::const_iterator I = BB->begin(); 250 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 251 if (PN->use_empty()) continue; 252 253 // Skip empty types 254 if (PN->getType()->isEmptyTy()) 255 continue; 256 257 DebugLoc DL = PN->getDebugLoc(); 258 unsigned PHIReg = ValueMap[PN]; 259 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 260 261 SmallVector<EVT, 4> ValueVTs; 262 ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs); 263 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 264 EVT VT = ValueVTs[vti]; 265 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 266 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 267 for (unsigned i = 0; i != NumRegisters; ++i) 268 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 269 PHIReg += NumRegisters; 270 } 271 } 272 } 273 274 // Mark landing pad blocks. 275 SmallVector<const LandingPadInst *, 4> LPads; 276 for (BB = Fn->begin(); BB != EB; ++BB) { 277 const Instruction *FNP = BB->getFirstNonPHI(); 278 if (BB->isEHPad() && MBBMap.count(&*BB)) 279 MBBMap[&*BB]->setIsEHPad(); 280 if (const auto *LPI = dyn_cast<LandingPadInst>(FNP)) 281 LPads.push_back(LPI); 282 } 283 284 // If this personality uses funclets, we need to do a bit more work. 285 if (!Fn->hasPersonalityFn()) 286 return; 287 EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn()); 288 if (!isFuncletEHPersonality(Personality)) 289 return; 290 291 // Calculate state numbers if we haven't already. 292 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 293 if (Personality == EHPersonality::MSVC_CXX) 294 calculateWinCXXEHStateNumbers(&fn, EHInfo); 295 else if (isAsynchronousEHPersonality(Personality)) 296 calculateSEHStateNumbers(&fn, EHInfo); 297 else if (Personality == EHPersonality::CoreCLR) 298 calculateClrEHStateNumbers(&fn, EHInfo); 299 300 // Map all BB references in the WinEH data to MBBs. 301 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 302 for (WinEHHandlerType &H : TBME.HandlerArray) { 303 if (H.CatchObj.Alloca) { 304 assert(StaticAllocaMap.count(H.CatchObj.Alloca)); 305 H.CatchObj.FrameIndex = StaticAllocaMap[H.CatchObj.Alloca]; 306 } else { 307 H.CatchObj.FrameIndex = INT_MAX; 308 } 309 if (H.Handler) 310 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 311 } 312 } 313 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 314 if (UME.Cleanup) 315 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 316 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 317 const BasicBlock *BB = UME.Handler.get<const BasicBlock *>(); 318 UME.Handler = MBBMap[BB]; 319 } 320 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 321 const BasicBlock *BB = CME.Handler.get<const BasicBlock *>(); 322 CME.Handler = MBBMap[BB]; 323 } 324 } 325 326 /// clear - Clear out all the function-specific state. This returns this 327 /// FunctionLoweringInfo to an empty state, ready to be used for a 328 /// different function. 329 void FunctionLoweringInfo::clear() { 330 MBBMap.clear(); 331 ValueMap.clear(); 332 StaticAllocaMap.clear(); 333 LiveOutRegInfo.clear(); 334 VisitedBBs.clear(); 335 ArgDbgValues.clear(); 336 ByValArgFrameIndexMap.clear(); 337 RegFixups.clear(); 338 StatepointStackSlots.clear(); 339 StatepointRelocatedValues.clear(); 340 PreferredExtendType.clear(); 341 } 342 343 /// CreateReg - Allocate a single virtual register for the given type. 344 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 345 return RegInfo->createVirtualRegister( 346 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 347 } 348 349 /// CreateRegs - Allocate the appropriate number of virtual registers of 350 /// the correctly promoted or expanded types. Assign these registers 351 /// consecutive vreg numbers and return the first assigned number. 352 /// 353 /// In the case that the given value has struct or array type, this function 354 /// will assign registers for each member or element. 355 /// 356 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 357 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 358 359 SmallVector<EVT, 4> ValueVTs; 360 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 361 362 unsigned FirstReg = 0; 363 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 364 EVT ValueVT = ValueVTs[Value]; 365 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 366 367 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 368 for (unsigned i = 0; i != NumRegs; ++i) { 369 unsigned R = CreateReg(RegisterVT); 370 if (!FirstReg) FirstReg = R; 371 } 372 } 373 return FirstReg; 374 } 375 376 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 377 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 378 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 379 /// the larger bit width by zero extension. The bit width must be no smaller 380 /// than the LiveOutInfo's existing bit width. 381 const FunctionLoweringInfo::LiveOutInfo * 382 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 383 if (!LiveOutRegInfo.inBounds(Reg)) 384 return nullptr; 385 386 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 387 if (!LOI->IsValid) 388 return nullptr; 389 390 if (BitWidth > LOI->KnownZero.getBitWidth()) { 391 LOI->NumSignBits = 1; 392 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 393 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 394 } 395 396 return LOI; 397 } 398 399 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 400 /// register based on the LiveOutInfo of its operands. 401 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 402 Type *Ty = PN->getType(); 403 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 404 return; 405 406 SmallVector<EVT, 1> ValueVTs; 407 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 408 assert(ValueVTs.size() == 1 && 409 "PHIs with non-vector integer types should have a single VT."); 410 EVT IntVT = ValueVTs[0]; 411 412 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 413 return; 414 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 415 unsigned BitWidth = IntVT.getSizeInBits(); 416 417 unsigned DestReg = ValueMap[PN]; 418 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 419 return; 420 LiveOutRegInfo.grow(DestReg); 421 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 422 423 Value *V = PN->getIncomingValue(0); 424 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 425 DestLOI.NumSignBits = 1; 426 APInt Zero(BitWidth, 0); 427 DestLOI.KnownZero = Zero; 428 DestLOI.KnownOne = Zero; 429 return; 430 } 431 432 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 433 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 434 DestLOI.NumSignBits = Val.getNumSignBits(); 435 DestLOI.KnownZero = ~Val; 436 DestLOI.KnownOne = Val; 437 } else { 438 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 439 "CopyToReg node was created."); 440 unsigned SrcReg = ValueMap[V]; 441 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 442 DestLOI.IsValid = false; 443 return; 444 } 445 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 446 if (!SrcLOI) { 447 DestLOI.IsValid = false; 448 return; 449 } 450 DestLOI = *SrcLOI; 451 } 452 453 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 454 DestLOI.KnownOne.getBitWidth() == BitWidth && 455 "Masks should have the same bit width as the type."); 456 457 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 458 Value *V = PN->getIncomingValue(i); 459 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 460 DestLOI.NumSignBits = 1; 461 APInt Zero(BitWidth, 0); 462 DestLOI.KnownZero = Zero; 463 DestLOI.KnownOne = Zero; 464 return; 465 } 466 467 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 468 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 469 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 470 DestLOI.KnownZero &= ~Val; 471 DestLOI.KnownOne &= Val; 472 continue; 473 } 474 475 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 476 "its CopyToReg node was created."); 477 unsigned SrcReg = ValueMap[V]; 478 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 479 DestLOI.IsValid = false; 480 return; 481 } 482 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 483 if (!SrcLOI) { 484 DestLOI.IsValid = false; 485 return; 486 } 487 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 488 DestLOI.KnownZero &= SrcLOI->KnownZero; 489 DestLOI.KnownOne &= SrcLOI->KnownOne; 490 } 491 } 492 493 /// setArgumentFrameIndex - Record frame index for the byval 494 /// argument. This overrides previous frame index entry for this argument, 495 /// if any. 496 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 497 int FI) { 498 ByValArgFrameIndexMap[A] = FI; 499 } 500 501 /// getArgumentFrameIndex - Get frame index for the byval argument. 502 /// If the argument does not have any assigned frame index then 0 is 503 /// returned. 504 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 505 DenseMap<const Argument *, int>::iterator I = 506 ByValArgFrameIndexMap.find(A); 507 if (I != ByValArgFrameIndexMap.end()) 508 return I->second; 509 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 510 return 0; 511 } 512 513 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 514 const Value *CPI, const TargetRegisterClass *RC) { 515 MachineRegisterInfo &MRI = MF->getRegInfo(); 516 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 517 unsigned &VReg = I.first->second; 518 if (I.second) 519 VReg = MRI.createVirtualRegister(RC); 520 assert(VReg && "null vreg in exception pointer table!"); 521 return VReg; 522 } 523 524 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 525 /// being passed to this variadic function, and set the MachineModuleInfo's 526 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 527 /// reference to _fltused on Windows, which will link in MSVCRT's 528 /// floating-point support. 529 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 530 MachineModuleInfo *MMI) 531 { 532 FunctionType *FT = cast<FunctionType>( 533 I.getCalledValue()->getType()->getContainedType(0)); 534 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 535 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 536 Type* T = I.getArgOperand(i)->getType(); 537 for (auto i : post_order(T)) { 538 if (i->isFloatingPointTy()) { 539 MMI->setUsesVAFloatArgument(true); 540 return; 541 } 542 } 543 } 544 } 545 } 546 547 /// AddLandingPadInfo - Extract the exception handling information from the 548 /// landingpad instruction and add them to the specified machine module info. 549 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 550 MachineBasicBlock *MBB) { 551 if (const auto *PF = dyn_cast<Function>( 552 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 553 MMI.addPersonality(PF); 554 555 if (I.isCleanup()) 556 MMI.addCleanup(MBB); 557 558 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 559 // but we need to do it this way because of how the DWARF EH emitter 560 // processes the clauses. 561 for (unsigned i = I.getNumClauses(); i != 0; --i) { 562 Value *Val = I.getClause(i - 1); 563 if (I.isCatch(i - 1)) { 564 MMI.addCatchTypeInfo(MBB, 565 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 566 } else { 567 // Add filters in a list. 568 Constant *CVal = cast<Constant>(Val); 569 SmallVector<const GlobalValue*, 4> FilterList; 570 for (User::op_iterator 571 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 572 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 573 574 MMI.addFilterTypeInfo(MBB, FilterList); 575 } 576 } 577 } 578