1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
16 #include "llvm/CodeGen/Analysis.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include <algorithm>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "function-lowering-info"
44 
45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
46 /// PHI nodes or outside of the basic block that defines it, or used by a
47 /// switch or atomic instruction, which may expand to multiple basic blocks.
48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
49   if (I->use_empty()) return false;
50   if (isa<PHINode>(I)) return true;
51   const BasicBlock *BB = I->getParent();
52   for (const User *U : I->users())
53     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
54       return true;
55 
56   return false;
57 }
58 
59 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
60   // For the users of the source value being used for compare instruction, if
61   // the number of signed predicate is greater than unsigned predicate, we
62   // prefer to use SIGN_EXTEND.
63   //
64   // With this optimization, we would be able to reduce some redundant sign or
65   // zero extension instruction, and eventually more machine CSE opportunities
66   // can be exposed.
67   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
68   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
69   for (const User *U : V->users()) {
70     if (const auto *CI = dyn_cast<CmpInst>(U)) {
71       NumOfSigned += CI->isSigned();
72       NumOfUnsigned += CI->isUnsigned();
73     }
74   }
75   if (NumOfSigned > NumOfUnsigned)
76     ExtendKind = ISD::SIGN_EXTEND;
77 
78   return ExtendKind;
79 }
80 
81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
82                                SelectionDAG *DAG) {
83   Fn = &fn;
84   MF = &mf;
85   TLI = MF->getSubtarget().getTargetLowering();
86   RegInfo = &MF->getRegInfo();
87   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
88   DA = DAG->getDivergenceAnalysis();
89 
90   // Check whether the function can return without sret-demotion.
91   SmallVector<ISD::OutputArg, 4> Outs;
92   CallingConv::ID CC = Fn->getCallingConv();
93 
94   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
95                 mf.getDataLayout());
96   CanLowerReturn =
97       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
98 
99   // If this personality uses funclets, we need to do a bit more work.
100   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
101   EHPersonality Personality = classifyEHPersonality(
102       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
103   if (isFuncletEHPersonality(Personality)) {
104     // Calculate state numbers if we haven't already.
105     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
106     if (Personality == EHPersonality::MSVC_CXX)
107       calculateWinCXXEHStateNumbers(&fn, EHInfo);
108     else if (isAsynchronousEHPersonality(Personality))
109       calculateSEHStateNumbers(&fn, EHInfo);
110     else if (Personality == EHPersonality::CoreCLR)
111       calculateClrEHStateNumbers(&fn, EHInfo);
112 
113     // Map all BB references in the WinEH data to MBBs.
114     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
115       for (WinEHHandlerType &H : TBME.HandlerArray) {
116         if (const AllocaInst *AI = H.CatchObj.Alloca)
117           CatchObjects.insert({AI, {}}).first->second.push_back(
118               &H.CatchObj.FrameIndex);
119         else
120           H.CatchObj.FrameIndex = INT_MAX;
121       }
122     }
123   }
124   if (Personality == EHPersonality::Wasm_CXX) {
125     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
126     calculateWasmEHInfo(&fn, EHInfo);
127   }
128 
129   // Initialize the mapping of values to registers.  This is only set up for
130   // instruction values that are used outside of the block that defines
131   // them.
132   const Align StackAlign = TFI->getStackAlign();
133   for (const BasicBlock &BB : *Fn) {
134     for (const Instruction &I : BB) {
135       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
136         Type *Ty = AI->getAllocatedType();
137         Align Alignment =
138             max(MF->getDataLayout().getPrefTypeAlign(Ty), AI->getAlign());
139 
140         // Static allocas can be folded into the initial stack frame
141         // adjustment. For targets that don't realign the stack, don't
142         // do this if there is an extra alignment requirement.
143         if (AI->isStaticAlloca() &&
144             (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
145           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
146           uint64_t TySize =
147               MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize();
148 
149           TySize *= CUI->getZExtValue();   // Get total allocated size.
150           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
151           int FrameIndex = INT_MAX;
152           auto Iter = CatchObjects.find(AI);
153           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
154             FrameIndex = MF->getFrameInfo().CreateFixedObject(
155                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
156             MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
157           } else {
158             FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
159                                                               false, AI);
160           }
161 
162           // Scalable vectors may need a special StackID to distinguish
163           // them from other (fixed size) stack objects.
164           if (isa<ScalableVectorType>(Ty))
165             MF->getFrameInfo().setStackID(FrameIndex,
166                                           TFI->getStackIDForScalableVectors());
167 
168           StaticAllocaMap[AI] = FrameIndex;
169           // Update the catch handler information.
170           if (Iter != CatchObjects.end()) {
171             for (int *CatchObjPtr : Iter->second)
172               *CatchObjPtr = FrameIndex;
173           }
174         } else {
175           // FIXME: Overaligned static allocas should be grouped into
176           // a single dynamic allocation instead of using a separate
177           // stack allocation for each one.
178           // Inform the Frame Information that we have variable-sized objects.
179           MF->getFrameInfo().CreateVariableSizedObject(
180               Alignment <= StackAlign ? 0 : Alignment.value(), AI);
181         }
182       }
183 
184       // Look for inline asm that clobbers the SP register.
185       if (auto *Call = dyn_cast<CallBase>(&I)) {
186         if (Call->isInlineAsm()) {
187           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
188           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
189           std::vector<TargetLowering::AsmOperandInfo> Ops =
190               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
191                                     *Call);
192           for (TargetLowering::AsmOperandInfo &Op : Ops) {
193             if (Op.Type == InlineAsm::isClobber) {
194               // Clobbers don't have SDValue operands, hence SDValue().
195               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
196               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
197                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
198                                                     Op.ConstraintVT);
199               if (PhysReg.first == SP)
200                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
201             }
202           }
203         }
204       }
205 
206       // Look for calls to the @llvm.va_start intrinsic. We can omit some
207       // prologue boilerplate for variadic functions that don't examine their
208       // arguments.
209       if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
210         if (II->getIntrinsicID() == Intrinsic::vastart)
211           MF->getFrameInfo().setHasVAStart(true);
212       }
213 
214       // If we have a musttail call in a variadic function, we need to ensure we
215       // forward implicit register parameters.
216       if (const auto *CI = dyn_cast<CallInst>(&I)) {
217         if (CI->isMustTailCall() && Fn->isVarArg())
218           MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
219       }
220 
221       // Mark values used outside their block as exported, by allocating
222       // a virtual register for them.
223       if (isUsedOutsideOfDefiningBlock(&I))
224         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
225           InitializeRegForValue(&I);
226 
227       // Decide the preferred extend type for a value.
228       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
229     }
230   }
231 
232   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
233   // also creates the initial PHI MachineInstrs, though none of the input
234   // operands are populated.
235   for (const BasicBlock &BB : *Fn) {
236     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
237     // are really data, and no instructions can live here.
238     if (BB.isEHPad()) {
239       const Instruction *PadInst = BB.getFirstNonPHI();
240       // If this is a non-landingpad EH pad, mark this function as using
241       // funclets.
242       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
243       // setting this in such cases in order to improve frame layout.
244       if (!isa<LandingPadInst>(PadInst)) {
245         MF->setHasEHScopes(true);
246         MF->setHasEHFunclets(true);
247         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
248       }
249       if (isa<CatchSwitchInst>(PadInst)) {
250         assert(&*BB.begin() == PadInst &&
251                "WinEHPrepare failed to remove PHIs from imaginary BBs");
252         continue;
253       }
254       if (isa<FuncletPadInst>(PadInst))
255         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
256     }
257 
258     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
259     MBBMap[&BB] = MBB;
260     MF->push_back(MBB);
261 
262     // Transfer the address-taken flag. This is necessary because there could
263     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
264     // the first one should be marked.
265     if (BB.hasAddressTaken())
266       MBB->setHasAddressTaken();
267 
268     // Mark landing pad blocks.
269     if (BB.isEHPad())
270       MBB->setIsEHPad();
271 
272     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
273     // appropriate.
274     for (const PHINode &PN : BB.phis()) {
275       if (PN.use_empty())
276         continue;
277 
278       // Skip empty types
279       if (PN.getType()->isEmptyTy())
280         continue;
281 
282       DebugLoc DL = PN.getDebugLoc();
283       unsigned PHIReg = ValueMap[&PN];
284       assert(PHIReg && "PHI node does not have an assigned virtual register!");
285 
286       SmallVector<EVT, 4> ValueVTs;
287       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
288       for (EVT VT : ValueVTs) {
289         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
290         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
291         for (unsigned i = 0; i != NumRegisters; ++i)
292           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
293         PHIReg += NumRegisters;
294       }
295     }
296   }
297 
298   if (isFuncletEHPersonality(Personality)) {
299     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
300 
301     // Map all BB references in the WinEH data to MBBs.
302     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
303       for (WinEHHandlerType &H : TBME.HandlerArray) {
304         if (H.Handler)
305           H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
306       }
307     }
308     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
309       if (UME.Cleanup)
310         UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
311     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
312       const auto *BB = UME.Handler.get<const BasicBlock *>();
313       UME.Handler = MBBMap[BB];
314     }
315     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
316       const auto *BB = CME.Handler.get<const BasicBlock *>();
317       CME.Handler = MBBMap[BB];
318     }
319   }
320 
321   else if (Personality == EHPersonality::Wasm_CXX) {
322     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
323     // Map all BB references in the WinEH data to MBBs.
324     DenseMap<BBOrMBB, BBOrMBB> NewMap;
325     for (auto &KV : EHInfo.EHPadUnwindMap) {
326       const auto *Src = KV.first.get<const BasicBlock *>();
327       const auto *Dst = KV.second.get<const BasicBlock *>();
328       NewMap[MBBMap[Src]] = MBBMap[Dst];
329     }
330     EHInfo.EHPadUnwindMap = std::move(NewMap);
331   }
332 }
333 
334 /// clear - Clear out all the function-specific state. This returns this
335 /// FunctionLoweringInfo to an empty state, ready to be used for a
336 /// different function.
337 void FunctionLoweringInfo::clear() {
338   MBBMap.clear();
339   ValueMap.clear();
340   VirtReg2Value.clear();
341   StaticAllocaMap.clear();
342   LiveOutRegInfo.clear();
343   VisitedBBs.clear();
344   ArgDbgValues.clear();
345   DescribedArgs.clear();
346   ByValArgFrameIndexMap.clear();
347   RegFixups.clear();
348   RegsWithFixups.clear();
349   StatepointStackSlots.clear();
350   StatepointSpillMaps.clear();
351   PreferredExtendType.clear();
352 }
353 
354 /// CreateReg - Allocate a single virtual register for the given type.
355 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
356   return RegInfo->createVirtualRegister(
357       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
358 }
359 
360 /// CreateRegs - Allocate the appropriate number of virtual registers of
361 /// the correctly promoted or expanded types.  Assign these registers
362 /// consecutive vreg numbers and return the first assigned number.
363 ///
364 /// In the case that the given value has struct or array type, this function
365 /// will assign registers for each member or element.
366 ///
367 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
368   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
369 
370   SmallVector<EVT, 4> ValueVTs;
371   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
372 
373   Register FirstReg;
374   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
375     EVT ValueVT = ValueVTs[Value];
376     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
377 
378     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
379     for (unsigned i = 0; i != NumRegs; ++i) {
380       Register R = CreateReg(RegisterVT, isDivergent);
381       if (!FirstReg) FirstReg = R;
382     }
383   }
384   return FirstReg;
385 }
386 
387 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
388   return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
389                     !TLI->requiresUniformRegister(*MF, V));
390 }
391 
392 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
393 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
394 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
395 /// the larger bit width by zero extension. The bit width must be no smaller
396 /// than the LiveOutInfo's existing bit width.
397 const FunctionLoweringInfo::LiveOutInfo *
398 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
399   if (!LiveOutRegInfo.inBounds(Reg))
400     return nullptr;
401 
402   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
403   if (!LOI->IsValid)
404     return nullptr;
405 
406   if (BitWidth > LOI->Known.getBitWidth()) {
407     LOI->NumSignBits = 1;
408     LOI->Known = LOI->Known.anyext(BitWidth);
409   }
410 
411   return LOI;
412 }
413 
414 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
415 /// register based on the LiveOutInfo of its operands.
416 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
417   Type *Ty = PN->getType();
418   if (!Ty->isIntegerTy() || Ty->isVectorTy())
419     return;
420 
421   SmallVector<EVT, 1> ValueVTs;
422   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
423   assert(ValueVTs.size() == 1 &&
424          "PHIs with non-vector integer types should have a single VT.");
425   EVT IntVT = ValueVTs[0];
426 
427   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
428     return;
429   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
430   unsigned BitWidth = IntVT.getSizeInBits();
431 
432   Register DestReg = ValueMap[PN];
433   if (!Register::isVirtualRegister(DestReg))
434     return;
435   LiveOutRegInfo.grow(DestReg);
436   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
437 
438   Value *V = PN->getIncomingValue(0);
439   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
440     DestLOI.NumSignBits = 1;
441     DestLOI.Known = KnownBits(BitWidth);
442     return;
443   }
444 
445   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
446     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
447     DestLOI.NumSignBits = Val.getNumSignBits();
448     DestLOI.Known.Zero = ~Val;
449     DestLOI.Known.One = Val;
450   } else {
451     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
452                                 "CopyToReg node was created.");
453     Register SrcReg = ValueMap[V];
454     if (!Register::isVirtualRegister(SrcReg)) {
455       DestLOI.IsValid = false;
456       return;
457     }
458     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
459     if (!SrcLOI) {
460       DestLOI.IsValid = false;
461       return;
462     }
463     DestLOI = *SrcLOI;
464   }
465 
466   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
467          DestLOI.Known.One.getBitWidth() == BitWidth &&
468          "Masks should have the same bit width as the type.");
469 
470   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
471     Value *V = PN->getIncomingValue(i);
472     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
473       DestLOI.NumSignBits = 1;
474       DestLOI.Known = KnownBits(BitWidth);
475       return;
476     }
477 
478     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
479       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
480       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
481       DestLOI.Known.Zero &= ~Val;
482       DestLOI.Known.One &= Val;
483       continue;
484     }
485 
486     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
487                                 "its CopyToReg node was created.");
488     Register SrcReg = ValueMap[V];
489     if (!SrcReg.isVirtual()) {
490       DestLOI.IsValid = false;
491       return;
492     }
493     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
494     if (!SrcLOI) {
495       DestLOI.IsValid = false;
496       return;
497     }
498     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
499     DestLOI.Known.Zero &= SrcLOI->Known.Zero;
500     DestLOI.Known.One &= SrcLOI->Known.One;
501   }
502 }
503 
504 /// setArgumentFrameIndex - Record frame index for the byval
505 /// argument. This overrides previous frame index entry for this argument,
506 /// if any.
507 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
508                                                  int FI) {
509   ByValArgFrameIndexMap[A] = FI;
510 }
511 
512 /// getArgumentFrameIndex - Get frame index for the byval argument.
513 /// If the argument does not have any assigned frame index then 0 is
514 /// returned.
515 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
516   auto I = ByValArgFrameIndexMap.find(A);
517   if (I != ByValArgFrameIndexMap.end())
518     return I->second;
519   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
520   return INT_MAX;
521 }
522 
523 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
524     const Value *CPI, const TargetRegisterClass *RC) {
525   MachineRegisterInfo &MRI = MF->getRegInfo();
526   auto I = CatchPadExceptionPointers.insert({CPI, 0});
527   Register &VReg = I.first->second;
528   if (I.second)
529     VReg = MRI.createVirtualRegister(RC);
530   assert(VReg && "null vreg in exception pointer table!");
531   return VReg;
532 }
533 
534 const Value *
535 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
536   if (VirtReg2Value.empty()) {
537     SmallVector<EVT, 4> ValueVTs;
538     for (auto &P : ValueMap) {
539       ValueVTs.clear();
540       ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
541                       P.first->getType(), ValueVTs);
542       unsigned Reg = P.second;
543       for (EVT VT : ValueVTs) {
544         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
545         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
546           VirtReg2Value[Reg++] = P.first;
547       }
548     }
549   }
550   return VirtReg2Value.lookup(Vreg);
551 }
552