1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "function-lowering-info" 16 #include "llvm/CodeGen/FunctionLoweringInfo.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include <algorithm> 40 using namespace llvm; 41 42 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 43 /// PHI nodes or outside of the basic block that defines it, or used by a 44 /// switch or atomic instruction, which may expand to multiple basic blocks. 45 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 46 if (I->use_empty()) return false; 47 if (isa<PHINode>(I)) return true; 48 const BasicBlock *BB = I->getParent(); 49 for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); 50 UI != E; ++UI) { 51 const User *U = *UI; 52 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 53 return true; 54 } 55 return false; 56 } 57 58 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { 59 const TargetLowering *TLI = TM.getTargetLowering(); 60 61 Fn = &fn; 62 MF = &mf; 63 RegInfo = &MF->getRegInfo(); 64 65 // Check whether the function can return without sret-demotion. 66 SmallVector<ISD::OutputArg, 4> Outs; 67 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 68 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 69 Fn->isVarArg(), 70 Outs, Fn->getContext()); 71 72 // Initialize the mapping of values to registers. This is only set up for 73 // instruction values that are used outside of the block that defines 74 // them. 75 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 76 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 77 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 78 // Don't fold inalloca allocas or other dynamic allocas into the initial 79 // stack frame allocation, even if they are in the entry block. 80 if (!AI->isStaticAlloca()) 81 continue; 82 83 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 84 Type *Ty = AI->getAllocatedType(); 85 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 86 unsigned Align = 87 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 88 AI->getAlignment()); 89 90 TySize *= CUI->getZExtValue(); // Get total allocated size. 91 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 92 93 StaticAllocaMap[AI] = 94 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 95 } 96 } 97 98 for (; BB != EB; ++BB) 99 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 100 I != E; ++I) { 101 // Mark values used outside their block as exported, by allocating 102 // a virtual register for them. 103 if (isUsedOutsideOfDefiningBlock(I)) 104 if (!isa<AllocaInst>(I) || 105 !StaticAllocaMap.count(cast<AllocaInst>(I))) 106 InitializeRegForValue(I); 107 108 // Collect llvm.dbg.declare information. This is done now instead of 109 // during the initial isel pass through the IR so that it is done 110 // in a predictable order. 111 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 112 MachineModuleInfo &MMI = MF->getMMI(); 113 DIVariable DIVar(DI->getVariable()); 114 assert((!DIVar || DIVar.isVariable()) && 115 "Variable in DbgDeclareInst should be either null or a DIVariable."); 116 if (MMI.hasDebugInfo() && 117 DIVar && 118 !DI->getDebugLoc().isUnknown()) { 119 // Don't handle byval struct arguments or VLAs, for example. 120 // Non-byval arguments are handled here (they refer to the stack 121 // temporary alloca at this point). 122 const Value *Address = DI->getAddress(); 123 if (Address) { 124 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 125 Address = BCI->getOperand(0); 126 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 127 DenseMap<const AllocaInst *, int>::iterator SI = 128 StaticAllocaMap.find(AI); 129 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 130 int FI = SI->second; 131 MMI.setVariableDbgInfo(DI->getVariable(), 132 FI, DI->getDebugLoc()); 133 } 134 } 135 } 136 } 137 } 138 } 139 140 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 141 // also creates the initial PHI MachineInstrs, though none of the input 142 // operands are populated. 143 for (BB = Fn->begin(); BB != EB; ++BB) { 144 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 145 MBBMap[BB] = MBB; 146 MF->push_back(MBB); 147 148 // Transfer the address-taken flag. This is necessary because there could 149 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 150 // the first one should be marked. 151 if (BB->hasAddressTaken()) 152 MBB->setHasAddressTaken(); 153 154 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 155 // appropriate. 156 for (BasicBlock::const_iterator I = BB->begin(); 157 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 158 if (PN->use_empty()) continue; 159 160 // Skip empty types 161 if (PN->getType()->isEmptyTy()) 162 continue; 163 164 DebugLoc DL = PN->getDebugLoc(); 165 unsigned PHIReg = ValueMap[PN]; 166 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 167 168 SmallVector<EVT, 4> ValueVTs; 169 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 170 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 171 EVT VT = ValueVTs[vti]; 172 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 173 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 174 for (unsigned i = 0; i != NumRegisters; ++i) 175 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 176 PHIReg += NumRegisters; 177 } 178 } 179 } 180 181 // Mark landing pad blocks. 182 for (BB = Fn->begin(); BB != EB; ++BB) 183 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 184 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 185 } 186 187 /// clear - Clear out all the function-specific state. This returns this 188 /// FunctionLoweringInfo to an empty state, ready to be used for a 189 /// different function. 190 void FunctionLoweringInfo::clear() { 191 assert(CatchInfoFound.size() == CatchInfoLost.size() && 192 "Not all catch info was assigned to a landing pad!"); 193 194 MBBMap.clear(); 195 ValueMap.clear(); 196 StaticAllocaMap.clear(); 197 #ifndef NDEBUG 198 CatchInfoLost.clear(); 199 CatchInfoFound.clear(); 200 #endif 201 LiveOutRegInfo.clear(); 202 VisitedBBs.clear(); 203 ArgDbgValues.clear(); 204 ByValArgFrameIndexMap.clear(); 205 RegFixups.clear(); 206 } 207 208 /// CreateReg - Allocate a single virtual register for the given type. 209 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 210 return RegInfo-> 211 createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT)); 212 } 213 214 /// CreateRegs - Allocate the appropriate number of virtual registers of 215 /// the correctly promoted or expanded types. Assign these registers 216 /// consecutive vreg numbers and return the first assigned number. 217 /// 218 /// In the case that the given value has struct or array type, this function 219 /// will assign registers for each member or element. 220 /// 221 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 222 const TargetLowering *TLI = TM.getTargetLowering(); 223 224 SmallVector<EVT, 4> ValueVTs; 225 ComputeValueVTs(*TLI, Ty, ValueVTs); 226 227 unsigned FirstReg = 0; 228 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 229 EVT ValueVT = ValueVTs[Value]; 230 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 231 232 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 233 for (unsigned i = 0; i != NumRegs; ++i) { 234 unsigned R = CreateReg(RegisterVT); 235 if (!FirstReg) FirstReg = R; 236 } 237 } 238 return FirstReg; 239 } 240 241 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 242 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 243 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 244 /// the larger bit width by zero extension. The bit width must be no smaller 245 /// than the LiveOutInfo's existing bit width. 246 const FunctionLoweringInfo::LiveOutInfo * 247 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 248 if (!LiveOutRegInfo.inBounds(Reg)) 249 return NULL; 250 251 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 252 if (!LOI->IsValid) 253 return NULL; 254 255 if (BitWidth > LOI->KnownZero.getBitWidth()) { 256 LOI->NumSignBits = 1; 257 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 258 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 259 } 260 261 return LOI; 262 } 263 264 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 265 /// register based on the LiveOutInfo of its operands. 266 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 267 Type *Ty = PN->getType(); 268 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 269 return; 270 271 const TargetLowering *TLI = TM.getTargetLowering(); 272 273 SmallVector<EVT, 1> ValueVTs; 274 ComputeValueVTs(*TLI, Ty, ValueVTs); 275 assert(ValueVTs.size() == 1 && 276 "PHIs with non-vector integer types should have a single VT."); 277 EVT IntVT = ValueVTs[0]; 278 279 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 280 return; 281 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 282 unsigned BitWidth = IntVT.getSizeInBits(); 283 284 unsigned DestReg = ValueMap[PN]; 285 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 286 return; 287 LiveOutRegInfo.grow(DestReg); 288 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 289 290 Value *V = PN->getIncomingValue(0); 291 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 292 DestLOI.NumSignBits = 1; 293 APInt Zero(BitWidth, 0); 294 DestLOI.KnownZero = Zero; 295 DestLOI.KnownOne = Zero; 296 return; 297 } 298 299 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 300 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 301 DestLOI.NumSignBits = Val.getNumSignBits(); 302 DestLOI.KnownZero = ~Val; 303 DestLOI.KnownOne = Val; 304 } else { 305 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 306 "CopyToReg node was created."); 307 unsigned SrcReg = ValueMap[V]; 308 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 309 DestLOI.IsValid = false; 310 return; 311 } 312 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 313 if (!SrcLOI) { 314 DestLOI.IsValid = false; 315 return; 316 } 317 DestLOI = *SrcLOI; 318 } 319 320 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 321 DestLOI.KnownOne.getBitWidth() == BitWidth && 322 "Masks should have the same bit width as the type."); 323 324 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 325 Value *V = PN->getIncomingValue(i); 326 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 327 DestLOI.NumSignBits = 1; 328 APInt Zero(BitWidth, 0); 329 DestLOI.KnownZero = Zero; 330 DestLOI.KnownOne = Zero; 331 return; 332 } 333 334 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 335 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 336 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 337 DestLOI.KnownZero &= ~Val; 338 DestLOI.KnownOne &= Val; 339 continue; 340 } 341 342 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 343 "its CopyToReg node was created."); 344 unsigned SrcReg = ValueMap[V]; 345 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 346 DestLOI.IsValid = false; 347 return; 348 } 349 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 350 if (!SrcLOI) { 351 DestLOI.IsValid = false; 352 return; 353 } 354 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 355 DestLOI.KnownZero &= SrcLOI->KnownZero; 356 DestLOI.KnownOne &= SrcLOI->KnownOne; 357 } 358 } 359 360 /// setArgumentFrameIndex - Record frame index for the byval 361 /// argument. This overrides previous frame index entry for this argument, 362 /// if any. 363 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 364 int FI) { 365 ByValArgFrameIndexMap[A] = FI; 366 } 367 368 /// getArgumentFrameIndex - Get frame index for the byval argument. 369 /// If the argument does not have any assigned frame index then 0 is 370 /// returned. 371 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 372 DenseMap<const Argument *, int>::iterator I = 373 ByValArgFrameIndexMap.find(A); 374 if (I != ByValArgFrameIndexMap.end()) 375 return I->second; 376 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 377 return 0; 378 } 379 380 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 381 /// being passed to this variadic function, and set the MachineModuleInfo's 382 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 383 /// reference to _fltused on Windows, which will link in MSVCRT's 384 /// floating-point support. 385 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 386 MachineModuleInfo *MMI) 387 { 388 FunctionType *FT = cast<FunctionType>( 389 I.getCalledValue()->getType()->getContainedType(0)); 390 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 391 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 392 Type* T = I.getArgOperand(i)->getType(); 393 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 394 i != e; ++i) { 395 if (i->isFloatingPointTy()) { 396 MMI->setUsesVAFloatArgument(true); 397 return; 398 } 399 } 400 } 401 } 402 } 403 404 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 405 /// call, and add them to the specified machine basic block. 406 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 407 MachineBasicBlock *MBB) { 408 // Inform the MachineModuleInfo of the personality for this landing pad. 409 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 410 assert(CE->getOpcode() == Instruction::BitCast && 411 isa<Function>(CE->getOperand(0)) && 412 "Personality should be a function"); 413 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 414 415 // Gather all the type infos for this landing pad and pass them along to 416 // MachineModuleInfo. 417 std::vector<const GlobalVariable *> TyInfo; 418 unsigned N = I.getNumArgOperands(); 419 420 for (unsigned i = N - 1; i > 1; --i) { 421 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 422 unsigned FilterLength = CI->getZExtValue(); 423 unsigned FirstCatch = i + FilterLength + !FilterLength; 424 assert(FirstCatch <= N && "Invalid filter length"); 425 426 if (FirstCatch < N) { 427 TyInfo.reserve(N - FirstCatch); 428 for (unsigned j = FirstCatch; j < N; ++j) 429 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 430 MMI->addCatchTypeInfo(MBB, TyInfo); 431 TyInfo.clear(); 432 } 433 434 if (!FilterLength) { 435 // Cleanup. 436 MMI->addCleanup(MBB); 437 } else { 438 // Filter. 439 TyInfo.reserve(FilterLength - 1); 440 for (unsigned j = i + 1; j < FirstCatch; ++j) 441 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 442 MMI->addFilterTypeInfo(MBB, TyInfo); 443 TyInfo.clear(); 444 } 445 446 N = i; 447 } 448 } 449 450 if (N > 2) { 451 TyInfo.reserve(N - 2); 452 for (unsigned j = 2; j < N; ++j) 453 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 454 MMI->addCatchTypeInfo(MBB, TyInfo); 455 } 456 } 457 458 /// AddLandingPadInfo - Extract the exception handling information from the 459 /// landingpad instruction and add them to the specified machine module info. 460 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 461 MachineBasicBlock *MBB) { 462 MMI.addPersonality(MBB, 463 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 464 465 if (I.isCleanup()) 466 MMI.addCleanup(MBB); 467 468 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 469 // but we need to do it this way because of how the DWARF EH emitter 470 // processes the clauses. 471 for (unsigned i = I.getNumClauses(); i != 0; --i) { 472 Value *Val = I.getClause(i - 1); 473 if (I.isCatch(i - 1)) { 474 MMI.addCatchTypeInfo(MBB, 475 dyn_cast<GlobalVariable>(Val->stripPointerCasts())); 476 } else { 477 // Add filters in a list. 478 Constant *CVal = cast<Constant>(Val); 479 SmallVector<const GlobalVariable*, 4> FilterList; 480 for (User::op_iterator 481 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 482 FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); 483 484 MMI.addFilterTypeInfo(MBB, FilterList); 485 } 486 } 487 } 488