1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating functions from LLVM IR into 10 // Machine IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/FunctionLoweringInfo.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstrBuilder.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/CodeGen/WasmEHFuncInfo.h" 26 #include "llvm/CodeGen/WinEHFuncInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include <algorithm> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "function-lowering-info" 43 44 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 45 /// PHI nodes or outside of the basic block that defines it, or used by a 46 /// switch or atomic instruction, which may expand to multiple basic blocks. 47 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 48 if (I->use_empty()) return false; 49 if (isa<PHINode>(I)) return true; 50 const BasicBlock *BB = I->getParent(); 51 for (const User *U : I->users()) 52 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 53 return true; 54 55 return false; 56 } 57 58 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 59 // For the users of the source value being used for compare instruction, if 60 // the number of signed predicate is greater than unsigned predicate, we 61 // prefer to use SIGN_EXTEND. 62 // 63 // With this optimization, we would be able to reduce some redundant sign or 64 // zero extension instruction, and eventually more machine CSE opportunities 65 // can be exposed. 66 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 67 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 68 for (const User *U : V->users()) { 69 if (const auto *CI = dyn_cast<CmpInst>(U)) { 70 NumOfSigned += CI->isSigned(); 71 NumOfUnsigned += CI->isUnsigned(); 72 } 73 } 74 if (NumOfSigned > NumOfUnsigned) 75 ExtendKind = ISD::SIGN_EXTEND; 76 77 return ExtendKind; 78 } 79 80 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 81 SelectionDAG *DAG) { 82 Fn = &fn; 83 MF = &mf; 84 TLI = MF->getSubtarget().getTargetLowering(); 85 RegInfo = &MF->getRegInfo(); 86 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 87 unsigned StackAlign = TFI->getStackAlignment(); 88 89 // Check whether the function can return without sret-demotion. 90 SmallVector<ISD::OutputArg, 4> Outs; 91 CallingConv::ID CC = Fn->getCallingConv(); 92 93 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 94 mf.getDataLayout()); 95 CanLowerReturn = 96 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); 97 98 // If this personality uses funclets, we need to do a bit more work. 99 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 100 EHPersonality Personality = classifyEHPersonality( 101 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 102 if (isFuncletEHPersonality(Personality)) { 103 // Calculate state numbers if we haven't already. 104 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 105 if (Personality == EHPersonality::MSVC_CXX) 106 calculateWinCXXEHStateNumbers(&fn, EHInfo); 107 else if (isAsynchronousEHPersonality(Personality)) 108 calculateSEHStateNumbers(&fn, EHInfo); 109 else if (Personality == EHPersonality::CoreCLR) 110 calculateClrEHStateNumbers(&fn, EHInfo); 111 112 // Map all BB references in the WinEH data to MBBs. 113 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 114 for (WinEHHandlerType &H : TBME.HandlerArray) { 115 if (const AllocaInst *AI = H.CatchObj.Alloca) 116 CatchObjects.insert({AI, {}}).first->second.push_back( 117 &H.CatchObj.FrameIndex); 118 else 119 H.CatchObj.FrameIndex = INT_MAX; 120 } 121 } 122 } 123 if (Personality == EHPersonality::Wasm_CXX) { 124 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 125 calculateWasmEHInfo(&fn, EHInfo); 126 } 127 128 // Initialize the mapping of values to registers. This is only set up for 129 // instruction values that are used outside of the block that defines 130 // them. 131 for (const BasicBlock &BB : *Fn) { 132 for (const Instruction &I : BB) { 133 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 134 Type *Ty = AI->getAllocatedType(); 135 unsigned Align = 136 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 137 AI->getAlignment()); 138 139 // Static allocas can be folded into the initial stack frame 140 // adjustment. For targets that don't realign the stack, don't 141 // do this if there is an extra alignment requirement. 142 if (AI->isStaticAlloca() && 143 (TFI->isStackRealignable() || (Align <= StackAlign))) { 144 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 145 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 146 147 TySize *= CUI->getZExtValue(); // Get total allocated size. 148 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 149 int FrameIndex = INT_MAX; 150 auto Iter = CatchObjects.find(AI); 151 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 152 FrameIndex = MF->getFrameInfo().CreateFixedObject( 153 TySize, 0, /*Immutable=*/false, /*isAliased=*/true); 154 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); 155 } else { 156 FrameIndex = 157 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); 158 } 159 160 StaticAllocaMap[AI] = FrameIndex; 161 // Update the catch handler information. 162 if (Iter != CatchObjects.end()) { 163 for (int *CatchObjPtr : Iter->second) 164 *CatchObjPtr = FrameIndex; 165 } 166 } else { 167 // FIXME: Overaligned static allocas should be grouped into 168 // a single dynamic allocation instead of using a separate 169 // stack allocation for each one. 170 if (Align <= StackAlign) 171 Align = 0; 172 // Inform the Frame Information that we have variable-sized objects. 173 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); 174 } 175 } 176 177 // Look for inline asm that clobbers the SP register. 178 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 179 ImmutableCallSite CS(&I); 180 if (isa<InlineAsm>(CS.getCalledValue())) { 181 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 182 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 183 std::vector<TargetLowering::AsmOperandInfo> Ops = 184 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 185 for (TargetLowering::AsmOperandInfo &Op : Ops) { 186 if (Op.Type == InlineAsm::isClobber) { 187 // Clobbers don't have SDValue operands, hence SDValue(). 188 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 189 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 190 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 191 Op.ConstraintVT); 192 if (PhysReg.first == SP) 193 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 194 } 195 } 196 } 197 } 198 199 // Look for calls to the @llvm.va_start intrinsic. We can omit some 200 // prologue boilerplate for variadic functions that don't examine their 201 // arguments. 202 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 203 if (II->getIntrinsicID() == Intrinsic::vastart) 204 MF->getFrameInfo().setHasVAStart(true); 205 } 206 207 // If we have a musttail call in a variadic function, we need to ensure we 208 // forward implicit register parameters. 209 if (const auto *CI = dyn_cast<CallInst>(&I)) { 210 if (CI->isMustTailCall() && Fn->isVarArg()) 211 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 212 } 213 214 // Mark values used outside their block as exported, by allocating 215 // a virtual register for them. 216 if (isUsedOutsideOfDefiningBlock(&I)) 217 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 218 InitializeRegForValue(&I); 219 220 // Decide the preferred extend type for a value. 221 PreferredExtendType[&I] = getPreferredExtendForValue(&I); 222 } 223 } 224 225 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 226 // also creates the initial PHI MachineInstrs, though none of the input 227 // operands are populated. 228 for (const BasicBlock &BB : *Fn) { 229 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 230 // are really data, and no instructions can live here. 231 if (BB.isEHPad()) { 232 const Instruction *PadInst = BB.getFirstNonPHI(); 233 // If this is a non-landingpad EH pad, mark this function as using 234 // funclets. 235 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid 236 // setting this in such cases in order to improve frame layout. 237 if (!isa<LandingPadInst>(PadInst)) { 238 MF->setHasEHScopes(true); 239 MF->setHasEHFunclets(true); 240 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 241 } 242 if (isa<CatchSwitchInst>(PadInst)) { 243 assert(&*BB.begin() == PadInst && 244 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 245 continue; 246 } 247 if (isa<FuncletPadInst>(PadInst)) 248 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 249 } 250 251 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 252 MBBMap[&BB] = MBB; 253 MF->push_back(MBB); 254 255 // Transfer the address-taken flag. This is necessary because there could 256 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 257 // the first one should be marked. 258 if (BB.hasAddressTaken()) 259 MBB->setHasAddressTaken(); 260 261 // Mark landing pad blocks. 262 if (BB.isEHPad()) 263 MBB->setIsEHPad(); 264 265 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 266 // appropriate. 267 for (const PHINode &PN : BB.phis()) { 268 if (PN.use_empty()) 269 continue; 270 271 // Skip empty types 272 if (PN.getType()->isEmptyTy()) 273 continue; 274 275 DebugLoc DL = PN.getDebugLoc(); 276 unsigned PHIReg = ValueMap[&PN]; 277 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 278 279 SmallVector<EVT, 4> ValueVTs; 280 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); 281 for (EVT VT : ValueVTs) { 282 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 283 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 284 for (unsigned i = 0; i != NumRegisters; ++i) 285 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 286 PHIReg += NumRegisters; 287 } 288 } 289 } 290 291 if (isFuncletEHPersonality(Personality)) { 292 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 293 294 // Map all BB references in the WinEH data to MBBs. 295 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 296 for (WinEHHandlerType &H : TBME.HandlerArray) { 297 if (H.Handler) 298 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 299 } 300 } 301 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 302 if (UME.Cleanup) 303 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 304 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 305 const auto *BB = UME.Handler.get<const BasicBlock *>(); 306 UME.Handler = MBBMap[BB]; 307 } 308 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 309 const auto *BB = CME.Handler.get<const BasicBlock *>(); 310 CME.Handler = MBBMap[BB]; 311 } 312 } 313 314 else if (Personality == EHPersonality::Wasm_CXX) { 315 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 316 // Map all BB references in the WinEH data to MBBs. 317 DenseMap<BBOrMBB, BBOrMBB> NewMap; 318 for (auto &KV : EHInfo.EHPadUnwindMap) { 319 const auto *Src = KV.first.get<const BasicBlock *>(); 320 const auto *Dst = KV.second.get<const BasicBlock *>(); 321 NewMap[MBBMap[Src]] = MBBMap[Dst]; 322 } 323 EHInfo.EHPadUnwindMap = std::move(NewMap); 324 } 325 } 326 327 /// clear - Clear out all the function-specific state. This returns this 328 /// FunctionLoweringInfo to an empty state, ready to be used for a 329 /// different function. 330 void FunctionLoweringInfo::clear() { 331 MBBMap.clear(); 332 ValueMap.clear(); 333 VirtReg2Value.clear(); 334 StaticAllocaMap.clear(); 335 LiveOutRegInfo.clear(); 336 VisitedBBs.clear(); 337 ArgDbgValues.clear(); 338 DescribedArgs.clear(); 339 ByValArgFrameIndexMap.clear(); 340 RegFixups.clear(); 341 RegsWithFixups.clear(); 342 StatepointStackSlots.clear(); 343 StatepointSpillMaps.clear(); 344 PreferredExtendType.clear(); 345 } 346 347 /// CreateReg - Allocate a single virtual register for the given type. 348 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 349 return RegInfo->createVirtualRegister( 350 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 351 } 352 353 /// CreateRegs - Allocate the appropriate number of virtual registers of 354 /// the correctly promoted or expanded types. Assign these registers 355 /// consecutive vreg numbers and return the first assigned number. 356 /// 357 /// In the case that the given value has struct or array type, this function 358 /// will assign registers for each member or element. 359 /// 360 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 361 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 362 363 SmallVector<EVT, 4> ValueVTs; 364 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 365 366 unsigned FirstReg = 0; 367 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 368 EVT ValueVT = ValueVTs[Value]; 369 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 370 371 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 372 for (unsigned i = 0; i != NumRegs; ++i) { 373 unsigned R = CreateReg(RegisterVT); 374 if (!FirstReg) FirstReg = R; 375 } 376 } 377 return FirstReg; 378 } 379 380 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 381 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 382 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 383 /// the larger bit width by zero extension. The bit width must be no smaller 384 /// than the LiveOutInfo's existing bit width. 385 const FunctionLoweringInfo::LiveOutInfo * 386 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 387 if (!LiveOutRegInfo.inBounds(Reg)) 388 return nullptr; 389 390 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 391 if (!LOI->IsValid) 392 return nullptr; 393 394 if (BitWidth > LOI->Known.getBitWidth()) { 395 LOI->NumSignBits = 1; 396 LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */); 397 } 398 399 return LOI; 400 } 401 402 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 403 /// register based on the LiveOutInfo of its operands. 404 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 405 Type *Ty = PN->getType(); 406 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 407 return; 408 409 SmallVector<EVT, 1> ValueVTs; 410 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 411 assert(ValueVTs.size() == 1 && 412 "PHIs with non-vector integer types should have a single VT."); 413 EVT IntVT = ValueVTs[0]; 414 415 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 416 return; 417 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 418 unsigned BitWidth = IntVT.getSizeInBits(); 419 420 unsigned DestReg = ValueMap[PN]; 421 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 422 return; 423 LiveOutRegInfo.grow(DestReg); 424 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 425 426 Value *V = PN->getIncomingValue(0); 427 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 428 DestLOI.NumSignBits = 1; 429 DestLOI.Known = KnownBits(BitWidth); 430 return; 431 } 432 433 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 434 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 435 DestLOI.NumSignBits = Val.getNumSignBits(); 436 DestLOI.Known.Zero = ~Val; 437 DestLOI.Known.One = Val; 438 } else { 439 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 440 "CopyToReg node was created."); 441 unsigned SrcReg = ValueMap[V]; 442 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 443 DestLOI.IsValid = false; 444 return; 445 } 446 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 447 if (!SrcLOI) { 448 DestLOI.IsValid = false; 449 return; 450 } 451 DestLOI = *SrcLOI; 452 } 453 454 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && 455 DestLOI.Known.One.getBitWidth() == BitWidth && 456 "Masks should have the same bit width as the type."); 457 458 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 459 Value *V = PN->getIncomingValue(i); 460 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 461 DestLOI.NumSignBits = 1; 462 DestLOI.Known = KnownBits(BitWidth); 463 return; 464 } 465 466 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 467 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 468 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 469 DestLOI.Known.Zero &= ~Val; 470 DestLOI.Known.One &= Val; 471 continue; 472 } 473 474 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 475 "its CopyToReg node was created."); 476 unsigned SrcReg = ValueMap[V]; 477 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 478 DestLOI.IsValid = false; 479 return; 480 } 481 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 482 if (!SrcLOI) { 483 DestLOI.IsValid = false; 484 return; 485 } 486 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 487 DestLOI.Known.Zero &= SrcLOI->Known.Zero; 488 DestLOI.Known.One &= SrcLOI->Known.One; 489 } 490 } 491 492 /// setArgumentFrameIndex - Record frame index for the byval 493 /// argument. This overrides previous frame index entry for this argument, 494 /// if any. 495 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 496 int FI) { 497 ByValArgFrameIndexMap[A] = FI; 498 } 499 500 /// getArgumentFrameIndex - Get frame index for the byval argument. 501 /// If the argument does not have any assigned frame index then 0 is 502 /// returned. 503 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 504 auto I = ByValArgFrameIndexMap.find(A); 505 if (I != ByValArgFrameIndexMap.end()) 506 return I->second; 507 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 508 return INT_MAX; 509 } 510 511 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 512 const Value *CPI, const TargetRegisterClass *RC) { 513 MachineRegisterInfo &MRI = MF->getRegInfo(); 514 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 515 unsigned &VReg = I.first->second; 516 if (I.second) 517 VReg = MRI.createVirtualRegister(RC); 518 assert(VReg && "null vreg in exception pointer table!"); 519 return VReg; 520 } 521 522 unsigned 523 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB, 524 const Value *Val) { 525 auto Key = std::make_pair(MBB, Val); 526 auto It = SwiftErrorVRegDefMap.find(Key); 527 // If this is the first use of this swifterror value in this basic block, 528 // create a new virtual register. 529 // After we processed all basic blocks we will satisfy this "upwards exposed 530 // use" by inserting a copy or phi at the beginning of this block. 531 if (It == SwiftErrorVRegDefMap.end()) { 532 auto &DL = MF->getDataLayout(); 533 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 534 auto VReg = MF->getRegInfo().createVirtualRegister(RC); 535 SwiftErrorVRegDefMap[Key] = VReg; 536 SwiftErrorVRegUpwardsUse[Key] = VReg; 537 return VReg; 538 } else return It->second; 539 } 540 541 void FunctionLoweringInfo::setCurrentSwiftErrorVReg( 542 const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) { 543 SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg; 544 } 545 546 std::pair<unsigned, bool> 547 FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) { 548 auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true); 549 auto It = SwiftErrorVRegDefUses.find(Key); 550 if (It == SwiftErrorVRegDefUses.end()) { 551 auto &DL = MF->getDataLayout(); 552 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 553 unsigned VReg = MF->getRegInfo().createVirtualRegister(RC); 554 SwiftErrorVRegDefUses[Key] = VReg; 555 return std::make_pair(VReg, true); 556 } 557 return std::make_pair(It->second, false); 558 } 559 560 std::pair<unsigned, bool> 561 FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) { 562 auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false); 563 auto It = SwiftErrorVRegDefUses.find(Key); 564 if (It == SwiftErrorVRegDefUses.end()) { 565 unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val); 566 SwiftErrorVRegDefUses[Key] = VReg; 567 return std::make_pair(VReg, true); 568 } 569 return std::make_pair(It->second, false); 570 } 571 572 const Value * 573 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) { 574 if (VirtReg2Value.empty()) { 575 SmallVector<EVT, 4> ValueVTs; 576 for (auto &P : ValueMap) { 577 ValueVTs.clear(); 578 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(), 579 P.first->getType(), ValueVTs); 580 unsigned Reg = P.second; 581 for (EVT VT : ValueVTs) { 582 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 583 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 584 VirtReg2Value[Reg++] = P.first; 585 } 586 } 587 } 588 return VirtReg2Value.lookup(Vreg); 589 } 590