1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/WasmEHFuncInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include <algorithm>
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "function-lowering-info"
43 
44 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
45 /// PHI nodes or outside of the basic block that defines it, or used by a
46 /// switch or atomic instruction, which may expand to multiple basic blocks.
47 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
48   if (I->use_empty()) return false;
49   if (isa<PHINode>(I)) return true;
50   const BasicBlock *BB = I->getParent();
51   for (const User *U : I->users())
52     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
53       return true;
54 
55   return false;
56 }
57 
58 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
59   // For the users of the source value being used for compare instruction, if
60   // the number of signed predicate is greater than unsigned predicate, we
61   // prefer to use SIGN_EXTEND.
62   //
63   // With this optimization, we would be able to reduce some redundant sign or
64   // zero extension instruction, and eventually more machine CSE opportunities
65   // can be exposed.
66   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
67   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
68   for (const User *U : V->users()) {
69     if (const auto *CI = dyn_cast<CmpInst>(U)) {
70       NumOfSigned += CI->isSigned();
71       NumOfUnsigned += CI->isUnsigned();
72     }
73   }
74   if (NumOfSigned > NumOfUnsigned)
75     ExtendKind = ISD::SIGN_EXTEND;
76 
77   return ExtendKind;
78 }
79 
80 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
81                                SelectionDAG *DAG) {
82   Fn = &fn;
83   MF = &mf;
84   TLI = MF->getSubtarget().getTargetLowering();
85   RegInfo = &MF->getRegInfo();
86   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
87   unsigned StackAlign = TFI->getStackAlignment();
88 
89   // Check whether the function can return without sret-demotion.
90   SmallVector<ISD::OutputArg, 4> Outs;
91   CallingConv::ID CC = Fn->getCallingConv();
92 
93   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
94                 mf.getDataLayout());
95   CanLowerReturn =
96       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
97 
98   // If this personality uses funclets, we need to do a bit more work.
99   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
100   EHPersonality Personality = classifyEHPersonality(
101       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
102   if (isFuncletEHPersonality(Personality)) {
103     // Calculate state numbers if we haven't already.
104     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
105     if (Personality == EHPersonality::MSVC_CXX)
106       calculateWinCXXEHStateNumbers(&fn, EHInfo);
107     else if (isAsynchronousEHPersonality(Personality))
108       calculateSEHStateNumbers(&fn, EHInfo);
109     else if (Personality == EHPersonality::CoreCLR)
110       calculateClrEHStateNumbers(&fn, EHInfo);
111 
112     // Map all BB references in the WinEH data to MBBs.
113     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
114       for (WinEHHandlerType &H : TBME.HandlerArray) {
115         if (const AllocaInst *AI = H.CatchObj.Alloca)
116           CatchObjects.insert({AI, {}}).first->second.push_back(
117               &H.CatchObj.FrameIndex);
118         else
119           H.CatchObj.FrameIndex = INT_MAX;
120       }
121     }
122   }
123   if (Personality == EHPersonality::Wasm_CXX) {
124     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
125     calculateWasmEHInfo(&fn, EHInfo);
126   }
127 
128   // Initialize the mapping of values to registers.  This is only set up for
129   // instruction values that are used outside of the block that defines
130   // them.
131   for (const BasicBlock &BB : *Fn) {
132     for (const Instruction &I : BB) {
133       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
134         Type *Ty = AI->getAllocatedType();
135         unsigned Align =
136           std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
137                    AI->getAlignment());
138 
139         // Static allocas can be folded into the initial stack frame
140         // adjustment. For targets that don't realign the stack, don't
141         // do this if there is an extra alignment requirement.
142         if (AI->isStaticAlloca() &&
143             (TFI->isStackRealignable() || (Align <= StackAlign))) {
144           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
145           uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
146 
147           TySize *= CUI->getZExtValue();   // Get total allocated size.
148           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
149           int FrameIndex = INT_MAX;
150           auto Iter = CatchObjects.find(AI);
151           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
152             FrameIndex = MF->getFrameInfo().CreateFixedObject(
153                 TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
154             MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
155           } else {
156             FrameIndex =
157                 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
158           }
159 
160           StaticAllocaMap[AI] = FrameIndex;
161           // Update the catch handler information.
162           if (Iter != CatchObjects.end()) {
163             for (int *CatchObjPtr : Iter->second)
164               *CatchObjPtr = FrameIndex;
165           }
166         } else {
167           // FIXME: Overaligned static allocas should be grouped into
168           // a single dynamic allocation instead of using a separate
169           // stack allocation for each one.
170           if (Align <= StackAlign)
171             Align = 0;
172           // Inform the Frame Information that we have variable-sized objects.
173           MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
174         }
175       }
176 
177       // Look for inline asm that clobbers the SP register.
178       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
179         ImmutableCallSite CS(&I);
180         if (isa<InlineAsm>(CS.getCalledValue())) {
181           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
182           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
183           std::vector<TargetLowering::AsmOperandInfo> Ops =
184               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
185           for (TargetLowering::AsmOperandInfo &Op : Ops) {
186             if (Op.Type == InlineAsm::isClobber) {
187               // Clobbers don't have SDValue operands, hence SDValue().
188               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
189               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
190                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
191                                                     Op.ConstraintVT);
192               if (PhysReg.first == SP)
193                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
194             }
195           }
196         }
197       }
198 
199       // Look for calls to the @llvm.va_start intrinsic. We can omit some
200       // prologue boilerplate for variadic functions that don't examine their
201       // arguments.
202       if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
203         if (II->getIntrinsicID() == Intrinsic::vastart)
204           MF->getFrameInfo().setHasVAStart(true);
205       }
206 
207       // If we have a musttail call in a variadic function, we need to ensure we
208       // forward implicit register parameters.
209       if (const auto *CI = dyn_cast<CallInst>(&I)) {
210         if (CI->isMustTailCall() && Fn->isVarArg())
211           MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
212       }
213 
214       // Mark values used outside their block as exported, by allocating
215       // a virtual register for them.
216       if (isUsedOutsideOfDefiningBlock(&I))
217         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
218           InitializeRegForValue(&I);
219 
220       // Decide the preferred extend type for a value.
221       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
222     }
223   }
224 
225   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
226   // also creates the initial PHI MachineInstrs, though none of the input
227   // operands are populated.
228   for (const BasicBlock &BB : *Fn) {
229     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
230     // are really data, and no instructions can live here.
231     if (BB.isEHPad()) {
232       const Instruction *PadInst = BB.getFirstNonPHI();
233       // If this is a non-landingpad EH pad, mark this function as using
234       // funclets.
235       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
236       // setting this in such cases in order to improve frame layout.
237       if (!isa<LandingPadInst>(PadInst)) {
238         MF->setHasEHScopes(true);
239         MF->setHasEHFunclets(true);
240         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
241       }
242       if (isa<CatchSwitchInst>(PadInst)) {
243         assert(&*BB.begin() == PadInst &&
244                "WinEHPrepare failed to remove PHIs from imaginary BBs");
245         continue;
246       }
247       if (isa<FuncletPadInst>(PadInst))
248         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
249     }
250 
251     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
252     MBBMap[&BB] = MBB;
253     MF->push_back(MBB);
254 
255     // Transfer the address-taken flag. This is necessary because there could
256     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
257     // the first one should be marked.
258     if (BB.hasAddressTaken())
259       MBB->setHasAddressTaken();
260 
261     // Mark landing pad blocks.
262     if (BB.isEHPad())
263       MBB->setIsEHPad();
264 
265     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
266     // appropriate.
267     for (const PHINode &PN : BB.phis()) {
268       if (PN.use_empty())
269         continue;
270 
271       // Skip empty types
272       if (PN.getType()->isEmptyTy())
273         continue;
274 
275       DebugLoc DL = PN.getDebugLoc();
276       unsigned PHIReg = ValueMap[&PN];
277       assert(PHIReg && "PHI node does not have an assigned virtual register!");
278 
279       SmallVector<EVT, 4> ValueVTs;
280       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
281       for (EVT VT : ValueVTs) {
282         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
283         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
284         for (unsigned i = 0; i != NumRegisters; ++i)
285           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
286         PHIReg += NumRegisters;
287       }
288     }
289   }
290 
291   if (isFuncletEHPersonality(Personality)) {
292     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
293 
294     // Map all BB references in the WinEH data to MBBs.
295     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
296       for (WinEHHandlerType &H : TBME.HandlerArray) {
297         if (H.Handler)
298           H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
299       }
300     }
301     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
302       if (UME.Cleanup)
303         UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
304     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
305       const auto *BB = UME.Handler.get<const BasicBlock *>();
306       UME.Handler = MBBMap[BB];
307     }
308     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
309       const auto *BB = CME.Handler.get<const BasicBlock *>();
310       CME.Handler = MBBMap[BB];
311     }
312   }
313 
314   else if (Personality == EHPersonality::Wasm_CXX) {
315     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
316     // Map all BB references in the WinEH data to MBBs.
317     DenseMap<BBOrMBB, BBOrMBB> NewMap;
318     for (auto &KV : EHInfo.EHPadUnwindMap) {
319       const auto *Src = KV.first.get<const BasicBlock *>();
320       const auto *Dst = KV.second.get<const BasicBlock *>();
321       NewMap[MBBMap[Src]] = MBBMap[Dst];
322     }
323     EHInfo.EHPadUnwindMap = std::move(NewMap);
324   }
325 }
326 
327 /// clear - Clear out all the function-specific state. This returns this
328 /// FunctionLoweringInfo to an empty state, ready to be used for a
329 /// different function.
330 void FunctionLoweringInfo::clear() {
331   MBBMap.clear();
332   ValueMap.clear();
333   VirtReg2Value.clear();
334   StaticAllocaMap.clear();
335   LiveOutRegInfo.clear();
336   VisitedBBs.clear();
337   ArgDbgValues.clear();
338   DescribedArgs.clear();
339   ByValArgFrameIndexMap.clear();
340   RegFixups.clear();
341   RegsWithFixups.clear();
342   StatepointStackSlots.clear();
343   StatepointSpillMaps.clear();
344   PreferredExtendType.clear();
345 }
346 
347 /// CreateReg - Allocate a single virtual register for the given type.
348 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
349   return RegInfo->createVirtualRegister(
350       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
351 }
352 
353 /// CreateRegs - Allocate the appropriate number of virtual registers of
354 /// the correctly promoted or expanded types.  Assign these registers
355 /// consecutive vreg numbers and return the first assigned number.
356 ///
357 /// In the case that the given value has struct or array type, this function
358 /// will assign registers for each member or element.
359 ///
360 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
361   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
362 
363   SmallVector<EVT, 4> ValueVTs;
364   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
365 
366   unsigned FirstReg = 0;
367   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
368     EVT ValueVT = ValueVTs[Value];
369     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
370 
371     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
372     for (unsigned i = 0; i != NumRegs; ++i) {
373       unsigned R = CreateReg(RegisterVT);
374       if (!FirstReg) FirstReg = R;
375     }
376   }
377   return FirstReg;
378 }
379 
380 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
381 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
382 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
383 /// the larger bit width by zero extension. The bit width must be no smaller
384 /// than the LiveOutInfo's existing bit width.
385 const FunctionLoweringInfo::LiveOutInfo *
386 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
387   if (!LiveOutRegInfo.inBounds(Reg))
388     return nullptr;
389 
390   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
391   if (!LOI->IsValid)
392     return nullptr;
393 
394   if (BitWidth > LOI->Known.getBitWidth()) {
395     LOI->NumSignBits = 1;
396     LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */);
397   }
398 
399   return LOI;
400 }
401 
402 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
403 /// register based on the LiveOutInfo of its operands.
404 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
405   Type *Ty = PN->getType();
406   if (!Ty->isIntegerTy() || Ty->isVectorTy())
407     return;
408 
409   SmallVector<EVT, 1> ValueVTs;
410   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
411   assert(ValueVTs.size() == 1 &&
412          "PHIs with non-vector integer types should have a single VT.");
413   EVT IntVT = ValueVTs[0];
414 
415   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
416     return;
417   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
418   unsigned BitWidth = IntVT.getSizeInBits();
419 
420   unsigned DestReg = ValueMap[PN];
421   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
422     return;
423   LiveOutRegInfo.grow(DestReg);
424   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
425 
426   Value *V = PN->getIncomingValue(0);
427   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
428     DestLOI.NumSignBits = 1;
429     DestLOI.Known = KnownBits(BitWidth);
430     return;
431   }
432 
433   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
434     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
435     DestLOI.NumSignBits = Val.getNumSignBits();
436     DestLOI.Known.Zero = ~Val;
437     DestLOI.Known.One = Val;
438   } else {
439     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
440                                 "CopyToReg node was created.");
441     unsigned SrcReg = ValueMap[V];
442     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
443       DestLOI.IsValid = false;
444       return;
445     }
446     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
447     if (!SrcLOI) {
448       DestLOI.IsValid = false;
449       return;
450     }
451     DestLOI = *SrcLOI;
452   }
453 
454   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
455          DestLOI.Known.One.getBitWidth() == BitWidth &&
456          "Masks should have the same bit width as the type.");
457 
458   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
459     Value *V = PN->getIncomingValue(i);
460     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
461       DestLOI.NumSignBits = 1;
462       DestLOI.Known = KnownBits(BitWidth);
463       return;
464     }
465 
466     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
467       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
468       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
469       DestLOI.Known.Zero &= ~Val;
470       DestLOI.Known.One &= Val;
471       continue;
472     }
473 
474     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
475                                 "its CopyToReg node was created.");
476     unsigned SrcReg = ValueMap[V];
477     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
478       DestLOI.IsValid = false;
479       return;
480     }
481     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
482     if (!SrcLOI) {
483       DestLOI.IsValid = false;
484       return;
485     }
486     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
487     DestLOI.Known.Zero &= SrcLOI->Known.Zero;
488     DestLOI.Known.One &= SrcLOI->Known.One;
489   }
490 }
491 
492 /// setArgumentFrameIndex - Record frame index for the byval
493 /// argument. This overrides previous frame index entry for this argument,
494 /// if any.
495 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
496                                                  int FI) {
497   ByValArgFrameIndexMap[A] = FI;
498 }
499 
500 /// getArgumentFrameIndex - Get frame index for the byval argument.
501 /// If the argument does not have any assigned frame index then 0 is
502 /// returned.
503 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
504   auto I = ByValArgFrameIndexMap.find(A);
505   if (I != ByValArgFrameIndexMap.end())
506     return I->second;
507   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
508   return INT_MAX;
509 }
510 
511 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
512     const Value *CPI, const TargetRegisterClass *RC) {
513   MachineRegisterInfo &MRI = MF->getRegInfo();
514   auto I = CatchPadExceptionPointers.insert({CPI, 0});
515   unsigned &VReg = I.first->second;
516   if (I.second)
517     VReg = MRI.createVirtualRegister(RC);
518   assert(VReg && "null vreg in exception pointer table!");
519   return VReg;
520 }
521 
522 unsigned
523 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB,
524                                                 const Value *Val) {
525   auto Key = std::make_pair(MBB, Val);
526   auto It = SwiftErrorVRegDefMap.find(Key);
527   // If this is the first use of this swifterror value in this basic block,
528   // create a new virtual register.
529   // After we processed all basic blocks we will satisfy this "upwards exposed
530   // use" by inserting a copy or phi at the beginning of this block.
531   if (It == SwiftErrorVRegDefMap.end()) {
532     auto &DL = MF->getDataLayout();
533     const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
534     auto VReg = MF->getRegInfo().createVirtualRegister(RC);
535     SwiftErrorVRegDefMap[Key] = VReg;
536     SwiftErrorVRegUpwardsUse[Key] = VReg;
537     return VReg;
538   } else return It->second;
539 }
540 
541 void FunctionLoweringInfo::setCurrentSwiftErrorVReg(
542     const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) {
543   SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg;
544 }
545 
546 std::pair<unsigned, bool>
547 FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) {
548   auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true);
549   auto It = SwiftErrorVRegDefUses.find(Key);
550   if (It == SwiftErrorVRegDefUses.end()) {
551     auto &DL = MF->getDataLayout();
552     const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
553     unsigned VReg =  MF->getRegInfo().createVirtualRegister(RC);
554     SwiftErrorVRegDefUses[Key] = VReg;
555     return std::make_pair(VReg, true);
556   }
557   return std::make_pair(It->second, false);
558 }
559 
560 std::pair<unsigned, bool>
561 FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) {
562   auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false);
563   auto It = SwiftErrorVRegDefUses.find(Key);
564   if (It == SwiftErrorVRegDefUses.end()) {
565     unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val);
566     SwiftErrorVRegDefUses[Key] = VReg;
567     return std::make_pair(VReg, true);
568   }
569   return std::make_pair(It->second, false);
570 }
571 
572 const Value *
573 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
574   if (VirtReg2Value.empty()) {
575     SmallVector<EVT, 4> ValueVTs;
576     for (auto &P : ValueMap) {
577       ValueVTs.clear();
578       ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
579                       P.first->getType(), ValueVTs);
580       unsigned Reg = P.second;
581       for (EVT VT : ValueVTs) {
582         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
583         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
584           VirtReg2Value[Reg++] = P.first;
585       }
586     }
587   }
588   return VirtReg2Value.lookup(Vreg);
589 }
590