1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating functions from LLVM IR into 10 // Machine IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/FunctionLoweringInfo.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetFrameLowering.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/CodeGen/WinEHFuncInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "function-lowering-info" 45 46 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 47 /// PHI nodes or outside of the basic block that defines it, or used by a 48 /// switch or atomic instruction, which may expand to multiple basic blocks. 49 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 50 if (I->use_empty()) return false; 51 if (isa<PHINode>(I)) return true; 52 const BasicBlock *BB = I->getParent(); 53 for (const User *U : I->users()) 54 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 55 return true; 56 57 return false; 58 } 59 60 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 61 SelectionDAG *DAG) { 62 Fn = &fn; 63 MF = &mf; 64 TLI = MF->getSubtarget().getTargetLowering(); 65 RegInfo = &MF->getRegInfo(); 66 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 67 DA = DAG->getDivergenceAnalysis(); 68 69 // Check whether the function can return without sret-demotion. 70 SmallVector<ISD::OutputArg, 4> Outs; 71 CallingConv::ID CC = Fn->getCallingConv(); 72 73 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 74 mf.getDataLayout()); 75 CanLowerReturn = 76 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); 77 78 // If this personality uses funclets, we need to do a bit more work. 79 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 80 EHPersonality Personality = classifyEHPersonality( 81 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 82 if (isFuncletEHPersonality(Personality)) { 83 // Calculate state numbers if we haven't already. 84 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 85 if (Personality == EHPersonality::MSVC_CXX) 86 calculateWinCXXEHStateNumbers(&fn, EHInfo); 87 else if (isAsynchronousEHPersonality(Personality)) 88 calculateSEHStateNumbers(&fn, EHInfo); 89 else if (Personality == EHPersonality::CoreCLR) 90 calculateClrEHStateNumbers(&fn, EHInfo); 91 92 // Map all BB references in the WinEH data to MBBs. 93 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 94 for (WinEHHandlerType &H : TBME.HandlerArray) { 95 if (const AllocaInst *AI = H.CatchObj.Alloca) 96 CatchObjects.insert({AI, {}}).first->second.push_back( 97 &H.CatchObj.FrameIndex); 98 else 99 H.CatchObj.FrameIndex = INT_MAX; 100 } 101 } 102 } 103 if (Personality == EHPersonality::Wasm_CXX) { 104 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 105 calculateWasmEHInfo(&fn, EHInfo); 106 } 107 108 // Initialize the mapping of values to registers. This is only set up for 109 // instruction values that are used outside of the block that defines 110 // them. 111 const Align StackAlign = TFI->getStackAlign(); 112 for (const BasicBlock &BB : *Fn) { 113 for (const Instruction &I : BB) { 114 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 115 Type *Ty = AI->getAllocatedType(); 116 Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty); 117 // The "specified" alignment is the alignment written on the alloca, 118 // or the preferred alignment of the type if none is specified. 119 // 120 // (Unspecified alignment on allocas will be going away soon.) 121 Align SpecifiedAlign = AI->getAlign(); 122 123 // If the preferred alignment of the type is higher than the specified 124 // alignment of the alloca, promote the alignment, as long as it doesn't 125 // require realigning the stack. 126 // 127 // FIXME: Do we really want to second-guess the IR in isel? 128 Align Alignment = 129 std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign); 130 131 // Static allocas can be folded into the initial stack frame 132 // adjustment. For targets that don't realign the stack, don't 133 // do this if there is an extra alignment requirement. 134 if (AI->isStaticAlloca() && 135 (TFI->isStackRealignable() || (Alignment <= StackAlign))) { 136 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 137 uint64_t TySize = 138 MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize(); 139 140 TySize *= CUI->getZExtValue(); // Get total allocated size. 141 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 142 int FrameIndex = INT_MAX; 143 auto Iter = CatchObjects.find(AI); 144 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 145 FrameIndex = MF->getFrameInfo().CreateFixedObject( 146 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true); 147 MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment); 148 } else { 149 FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment, 150 false, AI); 151 } 152 153 // Scalable vectors may need a special StackID to distinguish 154 // them from other (fixed size) stack objects. 155 if (isa<ScalableVectorType>(Ty)) 156 MF->getFrameInfo().setStackID(FrameIndex, 157 TFI->getStackIDForScalableVectors()); 158 159 StaticAllocaMap[AI] = FrameIndex; 160 // Update the catch handler information. 161 if (Iter != CatchObjects.end()) { 162 for (int *CatchObjPtr : Iter->second) 163 *CatchObjPtr = FrameIndex; 164 } 165 } else { 166 // FIXME: Overaligned static allocas should be grouped into 167 // a single dynamic allocation instead of using a separate 168 // stack allocation for each one. 169 // Inform the Frame Information that we have variable-sized objects. 170 MF->getFrameInfo().CreateVariableSizedObject( 171 Alignment <= StackAlign ? Align(1) : Alignment, AI); 172 } 173 } else if (auto *Call = dyn_cast<CallBase>(&I)) { 174 // Look for inline asm that clobbers the SP register. 175 if (Call->isInlineAsm()) { 176 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 177 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 178 std::vector<TargetLowering::AsmOperandInfo> Ops = 179 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, 180 *Call); 181 for (TargetLowering::AsmOperandInfo &Op : Ops) { 182 if (Op.Type == InlineAsm::isClobber) { 183 // Clobbers don't have SDValue operands, hence SDValue(). 184 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 185 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 186 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 187 Op.ConstraintVT); 188 if (PhysReg.first == SP) 189 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 190 } 191 } 192 } 193 // Look for calls to the @llvm.va_start intrinsic. We can omit some 194 // prologue boilerplate for variadic functions that don't examine their 195 // arguments. 196 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 197 if (II->getIntrinsicID() == Intrinsic::vastart) 198 MF->getFrameInfo().setHasVAStart(true); 199 } 200 201 // If we have a musttail call in a variadic function, we need to ensure 202 // we forward implicit register parameters. 203 if (const auto *CI = dyn_cast<CallInst>(&I)) { 204 if (CI->isMustTailCall() && Fn->isVarArg()) 205 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 206 } 207 } 208 209 // Mark values used outside their block as exported, by allocating 210 // a virtual register for them. 211 if (isUsedOutsideOfDefiningBlock(&I)) 212 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 213 InitializeRegForValue(&I); 214 } 215 } 216 217 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 218 // also creates the initial PHI MachineInstrs, though none of the input 219 // operands are populated. 220 for (const BasicBlock &BB : *Fn) { 221 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 222 // are really data, and no instructions can live here. 223 if (BB.isEHPad()) { 224 const Instruction *PadInst = BB.getFirstNonPHI(); 225 // If this is a non-landingpad EH pad, mark this function as using 226 // funclets. 227 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid 228 // setting this in such cases in order to improve frame layout. 229 if (!isa<LandingPadInst>(PadInst)) { 230 MF->setHasEHScopes(true); 231 MF->setHasEHFunclets(true); 232 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 233 } 234 if (isa<CatchSwitchInst>(PadInst)) { 235 assert(&*BB.begin() == PadInst && 236 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 237 continue; 238 } 239 if (isa<FuncletPadInst>(PadInst)) 240 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 241 } 242 243 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 244 MBBMap[&BB] = MBB; 245 MF->push_back(MBB); 246 247 // Transfer the address-taken flag. This is necessary because there could 248 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 249 // the first one should be marked. 250 if (BB.hasAddressTaken()) 251 MBB->setHasAddressTaken(); 252 253 // Mark landing pad blocks. 254 if (BB.isEHPad()) 255 MBB->setIsEHPad(); 256 257 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 258 // appropriate. 259 for (const PHINode &PN : BB.phis()) { 260 if (PN.use_empty()) 261 continue; 262 263 // Skip empty types 264 if (PN.getType()->isEmptyTy()) 265 continue; 266 267 DebugLoc DL = PN.getDebugLoc(); 268 unsigned PHIReg = ValueMap[&PN]; 269 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 270 271 SmallVector<EVT, 4> ValueVTs; 272 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); 273 for (EVT VT : ValueVTs) { 274 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 275 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 276 for (unsigned i = 0; i != NumRegisters; ++i) 277 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 278 PHIReg += NumRegisters; 279 } 280 } 281 } 282 283 if (isFuncletEHPersonality(Personality)) { 284 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 285 286 // Map all BB references in the WinEH data to MBBs. 287 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 288 for (WinEHHandlerType &H : TBME.HandlerArray) { 289 if (H.Handler) 290 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 291 } 292 } 293 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 294 if (UME.Cleanup) 295 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 296 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 297 const auto *BB = UME.Handler.get<const BasicBlock *>(); 298 UME.Handler = MBBMap[BB]; 299 } 300 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 301 const auto *BB = CME.Handler.get<const BasicBlock *>(); 302 CME.Handler = MBBMap[BB]; 303 } 304 } 305 306 else if (Personality == EHPersonality::Wasm_CXX) { 307 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 308 // Map all BB references in the Wasm EH data to MBBs. 309 DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest; 310 for (auto &KV : EHInfo.SrcToUnwindDest) { 311 const auto *Src = KV.first.get<const BasicBlock *>(); 312 const auto *Dest = KV.second.get<const BasicBlock *>(); 313 SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest]; 314 } 315 EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest); 316 DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs; 317 for (auto &KV : EHInfo.UnwindDestToSrcs) { 318 const auto *Dest = KV.first.get<const BasicBlock *>(); 319 UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>(); 320 for (const auto P : KV.second) 321 UnwindDestToSrcs[MBBMap[Dest]].insert( 322 MBBMap[P.get<const BasicBlock *>()]); 323 } 324 EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs); 325 } 326 } 327 328 /// clear - Clear out all the function-specific state. This returns this 329 /// FunctionLoweringInfo to an empty state, ready to be used for a 330 /// different function. 331 void FunctionLoweringInfo::clear() { 332 MBBMap.clear(); 333 ValueMap.clear(); 334 VirtReg2Value.clear(); 335 StaticAllocaMap.clear(); 336 LiveOutRegInfo.clear(); 337 VisitedBBs.clear(); 338 ArgDbgValues.clear(); 339 DescribedArgs.clear(); 340 ByValArgFrameIndexMap.clear(); 341 RegFixups.clear(); 342 RegsWithFixups.clear(); 343 StatepointStackSlots.clear(); 344 StatepointRelocationMaps.clear(); 345 PreferredExtendType.clear(); 346 } 347 348 /// CreateReg - Allocate a single virtual register for the given type. 349 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) { 350 return RegInfo->createVirtualRegister( 351 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent)); 352 } 353 354 /// CreateRegs - Allocate the appropriate number of virtual registers of 355 /// the correctly promoted or expanded types. Assign these registers 356 /// consecutive vreg numbers and return the first assigned number. 357 /// 358 /// In the case that the given value has struct or array type, this function 359 /// will assign registers for each member or element. 360 /// 361 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) { 362 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 363 364 SmallVector<EVT, 4> ValueVTs; 365 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 366 367 Register FirstReg; 368 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 369 EVT ValueVT = ValueVTs[Value]; 370 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 371 372 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 373 for (unsigned i = 0; i != NumRegs; ++i) { 374 Register R = CreateReg(RegisterVT, isDivergent); 375 if (!FirstReg) FirstReg = R; 376 } 377 } 378 return FirstReg; 379 } 380 381 Register FunctionLoweringInfo::CreateRegs(const Value *V) { 382 return CreateRegs(V->getType(), DA && DA->isDivergent(V) && 383 !TLI->requiresUniformRegister(*MF, V)); 384 } 385 386 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 387 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 388 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 389 /// the larger bit width by zero extension. The bit width must be no smaller 390 /// than the LiveOutInfo's existing bit width. 391 const FunctionLoweringInfo::LiveOutInfo * 392 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) { 393 if (!LiveOutRegInfo.inBounds(Reg)) 394 return nullptr; 395 396 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 397 if (!LOI->IsValid) 398 return nullptr; 399 400 if (BitWidth > LOI->Known.getBitWidth()) { 401 LOI->NumSignBits = 1; 402 LOI->Known = LOI->Known.anyext(BitWidth); 403 } 404 405 return LOI; 406 } 407 408 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 409 /// register based on the LiveOutInfo of its operands. 410 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 411 Type *Ty = PN->getType(); 412 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 413 return; 414 415 SmallVector<EVT, 1> ValueVTs; 416 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 417 assert(ValueVTs.size() == 1 && 418 "PHIs with non-vector integer types should have a single VT."); 419 EVT IntVT = ValueVTs[0]; 420 421 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 422 return; 423 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 424 unsigned BitWidth = IntVT.getSizeInBits(); 425 426 Register DestReg = ValueMap[PN]; 427 if (!Register::isVirtualRegister(DestReg)) 428 return; 429 LiveOutRegInfo.grow(DestReg); 430 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 431 432 Value *V = PN->getIncomingValue(0); 433 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 434 DestLOI.NumSignBits = 1; 435 DestLOI.Known = KnownBits(BitWidth); 436 return; 437 } 438 439 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 440 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 441 DestLOI.NumSignBits = Val.getNumSignBits(); 442 DestLOI.Known = KnownBits::makeConstant(Val); 443 } else { 444 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 445 "CopyToReg node was created."); 446 Register SrcReg = ValueMap[V]; 447 if (!Register::isVirtualRegister(SrcReg)) { 448 DestLOI.IsValid = false; 449 return; 450 } 451 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 452 if (!SrcLOI) { 453 DestLOI.IsValid = false; 454 return; 455 } 456 DestLOI = *SrcLOI; 457 } 458 459 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && 460 DestLOI.Known.One.getBitWidth() == BitWidth && 461 "Masks should have the same bit width as the type."); 462 463 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 464 Value *V = PN->getIncomingValue(i); 465 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 466 DestLOI.NumSignBits = 1; 467 DestLOI.Known = KnownBits(BitWidth); 468 return; 469 } 470 471 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 472 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 473 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 474 DestLOI.Known.Zero &= ~Val; 475 DestLOI.Known.One &= Val; 476 continue; 477 } 478 479 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 480 "its CopyToReg node was created."); 481 Register SrcReg = ValueMap[V]; 482 if (!SrcReg.isVirtual()) { 483 DestLOI.IsValid = false; 484 return; 485 } 486 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 487 if (!SrcLOI) { 488 DestLOI.IsValid = false; 489 return; 490 } 491 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 492 DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known); 493 } 494 } 495 496 /// setArgumentFrameIndex - Record frame index for the byval 497 /// argument. This overrides previous frame index entry for this argument, 498 /// if any. 499 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 500 int FI) { 501 ByValArgFrameIndexMap[A] = FI; 502 } 503 504 /// getArgumentFrameIndex - Get frame index for the byval argument. 505 /// If the argument does not have any assigned frame index then 0 is 506 /// returned. 507 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 508 auto I = ByValArgFrameIndexMap.find(A); 509 if (I != ByValArgFrameIndexMap.end()) 510 return I->second; 511 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 512 return INT_MAX; 513 } 514 515 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 516 const Value *CPI, const TargetRegisterClass *RC) { 517 MachineRegisterInfo &MRI = MF->getRegInfo(); 518 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 519 Register &VReg = I.first->second; 520 if (I.second) 521 VReg = MRI.createVirtualRegister(RC); 522 assert(VReg && "null vreg in exception pointer table!"); 523 return VReg; 524 } 525 526 const Value * 527 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) { 528 if (VirtReg2Value.empty()) { 529 SmallVector<EVT, 4> ValueVTs; 530 for (auto &P : ValueMap) { 531 ValueVTs.clear(); 532 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(), 533 P.first->getType(), ValueVTs); 534 unsigned Reg = P.second; 535 for (EVT VT : ValueVTs) { 536 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 537 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 538 VirtReg2Value[Reg++] = P.first; 539 } 540 } 541 } 542 return VirtReg2Value.lookup(Vreg); 543 } 544