1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/CodeGen/Analysis.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "function-lowering-info" 44 45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 46 /// PHI nodes or outside of the basic block that defines it, or used by a 47 /// switch or atomic instruction, which may expand to multiple basic blocks. 48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 49 if (I->use_empty()) return false; 50 if (isa<PHINode>(I)) return true; 51 const BasicBlock *BB = I->getParent(); 52 for (const User *U : I->users()) 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 56 return false; 57 } 58 59 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 60 // For the users of the source value being used for compare instruction, if 61 // the number of signed predicate is greater than unsigned predicate, we 62 // prefer to use SIGN_EXTEND. 63 // 64 // With this optimization, we would be able to reduce some redundant sign or 65 // zero extension instruction, and eventually more machine CSE opportunities 66 // can be exposed. 67 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 68 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 69 for (const User *U : V->users()) { 70 if (const auto *CI = dyn_cast<CmpInst>(U)) { 71 NumOfSigned += CI->isSigned(); 72 NumOfUnsigned += CI->isUnsigned(); 73 } 74 } 75 if (NumOfSigned > NumOfUnsigned) 76 ExtendKind = ISD::SIGN_EXTEND; 77 78 return ExtendKind; 79 } 80 81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 82 SelectionDAG *DAG) { 83 Fn = &fn; 84 MF = &mf; 85 TLI = MF->getSubtarget().getTargetLowering(); 86 RegInfo = &MF->getRegInfo(); 87 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 88 unsigned StackAlign = TFI->getStackAlignment(); 89 90 // Check whether the function can return without sret-demotion. 91 SmallVector<ISD::OutputArg, 4> Outs; 92 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 93 mf.getDataLayout()); 94 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 95 Fn->isVarArg(), Outs, Fn->getContext()); 96 97 // If this personality uses funclets, we need to do a bit more work. 98 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 99 EHPersonality Personality = classifyEHPersonality( 100 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 101 if (isFuncletEHPersonality(Personality)) { 102 // Calculate state numbers if we haven't already. 103 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 104 if (Personality == EHPersonality::MSVC_CXX) 105 calculateWinCXXEHStateNumbers(&fn, EHInfo); 106 else if (isAsynchronousEHPersonality(Personality)) 107 calculateSEHStateNumbers(&fn, EHInfo); 108 else if (Personality == EHPersonality::CoreCLR) 109 calculateClrEHStateNumbers(&fn, EHInfo); 110 111 // Map all BB references in the WinEH data to MBBs. 112 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 113 for (WinEHHandlerType &H : TBME.HandlerArray) { 114 if (const AllocaInst *AI = H.CatchObj.Alloca) 115 CatchObjects.insert({AI, {}}).first->second.push_back( 116 &H.CatchObj.FrameIndex); 117 else 118 H.CatchObj.FrameIndex = INT_MAX; 119 } 120 } 121 } 122 if (Personality == EHPersonality::Wasm_CXX) { 123 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 124 calculateWasmEHInfo(&fn, EHInfo); 125 } 126 127 // Initialize the mapping of values to registers. This is only set up for 128 // instruction values that are used outside of the block that defines 129 // them. 130 for (const BasicBlock &BB : *Fn) { 131 for (const Instruction &I : BB) { 132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 133 Type *Ty = AI->getAllocatedType(); 134 unsigned Align = 135 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 136 AI->getAlignment()); 137 138 // Static allocas can be folded into the initial stack frame 139 // adjustment. For targets that don't realign the stack, don't 140 // do this if there is an extra alignment requirement. 141 if (AI->isStaticAlloca() && 142 (TFI->isStackRealignable() || (Align <= StackAlign))) { 143 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 144 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 145 146 TySize *= CUI->getZExtValue(); // Get total allocated size. 147 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 148 int FrameIndex = INT_MAX; 149 auto Iter = CatchObjects.find(AI); 150 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 151 FrameIndex = MF->getFrameInfo().CreateFixedObject( 152 TySize, 0, /*Immutable=*/false, /*isAliased=*/true); 153 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); 154 } else { 155 FrameIndex = 156 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); 157 } 158 159 StaticAllocaMap[AI] = FrameIndex; 160 // Update the catch handler information. 161 if (Iter != CatchObjects.end()) { 162 for (int *CatchObjPtr : Iter->second) 163 *CatchObjPtr = FrameIndex; 164 } 165 } else { 166 // FIXME: Overaligned static allocas should be grouped into 167 // a single dynamic allocation instead of using a separate 168 // stack allocation for each one. 169 if (Align <= StackAlign) 170 Align = 0; 171 // Inform the Frame Information that we have variable-sized objects. 172 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); 173 } 174 } 175 176 // Look for inline asm that clobbers the SP register. 177 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 178 ImmutableCallSite CS(&I); 179 if (isa<InlineAsm>(CS.getCalledValue())) { 180 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 181 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 182 std::vector<TargetLowering::AsmOperandInfo> Ops = 183 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 184 for (TargetLowering::AsmOperandInfo &Op : Ops) { 185 if (Op.Type == InlineAsm::isClobber) { 186 // Clobbers don't have SDValue operands, hence SDValue(). 187 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 188 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 189 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 190 Op.ConstraintVT); 191 if (PhysReg.first == SP) 192 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 193 } 194 } 195 } 196 } 197 198 // Look for calls to the @llvm.va_start intrinsic. We can omit some 199 // prologue boilerplate for variadic functions that don't examine their 200 // arguments. 201 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 202 if (II->getIntrinsicID() == Intrinsic::vastart) 203 MF->getFrameInfo().setHasVAStart(true); 204 } 205 206 // If we have a musttail call in a variadic function, we need to ensure we 207 // forward implicit register parameters. 208 if (const auto *CI = dyn_cast<CallInst>(&I)) { 209 if (CI->isMustTailCall() && Fn->isVarArg()) 210 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 211 } 212 213 // Mark values used outside their block as exported, by allocating 214 // a virtual register for them. 215 if (isUsedOutsideOfDefiningBlock(&I)) 216 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 217 InitializeRegForValue(&I); 218 219 // Decide the preferred extend type for a value. 220 PreferredExtendType[&I] = getPreferredExtendForValue(&I); 221 } 222 } 223 224 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 225 // also creates the initial PHI MachineInstrs, though none of the input 226 // operands are populated. 227 for (const BasicBlock &BB : *Fn) { 228 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 229 // are really data, and no instructions can live here. 230 if (BB.isEHPad()) { 231 const Instruction *PadInst = BB.getFirstNonPHI(); 232 // If this is a non-landingpad EH pad, mark this function as using 233 // funclets. 234 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid 235 // setting this in such cases in order to improve frame layout. 236 if (!isa<LandingPadInst>(PadInst)) { 237 MF->setHasEHScopes(true); 238 MF->setHasEHFunclets(true); 239 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 240 } 241 if (isa<CatchSwitchInst>(PadInst)) { 242 assert(&*BB.begin() == PadInst && 243 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 244 continue; 245 } 246 if (isa<FuncletPadInst>(PadInst)) 247 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 248 } 249 250 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 251 MBBMap[&BB] = MBB; 252 MF->push_back(MBB); 253 254 // Transfer the address-taken flag. This is necessary because there could 255 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 256 // the first one should be marked. 257 if (BB.hasAddressTaken()) 258 MBB->setHasAddressTaken(); 259 260 // Mark landing pad blocks. 261 if (BB.isEHPad()) 262 MBB->setIsEHPad(); 263 264 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 265 // appropriate. 266 for (const PHINode &PN : BB.phis()) { 267 if (PN.use_empty()) 268 continue; 269 270 // Skip empty types 271 if (PN.getType()->isEmptyTy()) 272 continue; 273 274 DebugLoc DL = PN.getDebugLoc(); 275 unsigned PHIReg = ValueMap[&PN]; 276 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 277 278 SmallVector<EVT, 4> ValueVTs; 279 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); 280 for (EVT VT : ValueVTs) { 281 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 282 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 283 for (unsigned i = 0; i != NumRegisters; ++i) 284 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 285 PHIReg += NumRegisters; 286 } 287 } 288 } 289 290 if (isFuncletEHPersonality(Personality)) { 291 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 292 293 // Map all BB references in the WinEH data to MBBs. 294 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 295 for (WinEHHandlerType &H : TBME.HandlerArray) { 296 if (H.Handler) 297 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 298 } 299 } 300 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 301 if (UME.Cleanup) 302 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 303 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 304 const auto *BB = UME.Handler.get<const BasicBlock *>(); 305 UME.Handler = MBBMap[BB]; 306 } 307 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 308 const auto *BB = CME.Handler.get<const BasicBlock *>(); 309 CME.Handler = MBBMap[BB]; 310 } 311 } 312 313 else if (Personality == EHPersonality::Wasm_CXX) { 314 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); 315 // Map all BB references in the WinEH data to MBBs. 316 DenseMap<BBOrMBB, BBOrMBB> NewMap; 317 for (auto &KV : EHInfo.EHPadUnwindMap) { 318 const auto *Src = KV.first.get<const BasicBlock *>(); 319 const auto *Dst = KV.second.get<const BasicBlock *>(); 320 NewMap[MBBMap[Src]] = MBBMap[Dst]; 321 } 322 EHInfo.EHPadUnwindMap = std::move(NewMap); 323 NewMap.clear(); 324 for (auto &KV : EHInfo.ThrowUnwindMap) { 325 const auto *Src = KV.first.get<const BasicBlock *>(); 326 const auto *Dst = KV.second.get<const BasicBlock *>(); 327 NewMap[MBBMap[Src]] = MBBMap[Dst]; 328 } 329 EHInfo.ThrowUnwindMap = std::move(NewMap); 330 } 331 } 332 333 /// clear - Clear out all the function-specific state. This returns this 334 /// FunctionLoweringInfo to an empty state, ready to be used for a 335 /// different function. 336 void FunctionLoweringInfo::clear() { 337 MBBMap.clear(); 338 ValueMap.clear(); 339 VirtReg2Value.clear(); 340 StaticAllocaMap.clear(); 341 LiveOutRegInfo.clear(); 342 VisitedBBs.clear(); 343 ArgDbgValues.clear(); 344 ByValArgFrameIndexMap.clear(); 345 RegFixups.clear(); 346 RegsWithFixups.clear(); 347 StatepointStackSlots.clear(); 348 StatepointSpillMaps.clear(); 349 PreferredExtendType.clear(); 350 } 351 352 /// CreateReg - Allocate a single virtual register for the given type. 353 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 354 return RegInfo->createVirtualRegister( 355 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 356 } 357 358 /// CreateRegs - Allocate the appropriate number of virtual registers of 359 /// the correctly promoted or expanded types. Assign these registers 360 /// consecutive vreg numbers and return the first assigned number. 361 /// 362 /// In the case that the given value has struct or array type, this function 363 /// will assign registers for each member or element. 364 /// 365 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 366 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 367 368 SmallVector<EVT, 4> ValueVTs; 369 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 370 371 unsigned FirstReg = 0; 372 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 373 EVT ValueVT = ValueVTs[Value]; 374 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 375 376 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 377 for (unsigned i = 0; i != NumRegs; ++i) { 378 unsigned R = CreateReg(RegisterVT); 379 if (!FirstReg) FirstReg = R; 380 } 381 } 382 return FirstReg; 383 } 384 385 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 386 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 387 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 388 /// the larger bit width by zero extension. The bit width must be no smaller 389 /// than the LiveOutInfo's existing bit width. 390 const FunctionLoweringInfo::LiveOutInfo * 391 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 392 if (!LiveOutRegInfo.inBounds(Reg)) 393 return nullptr; 394 395 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 396 if (!LOI->IsValid) 397 return nullptr; 398 399 if (BitWidth > LOI->Known.getBitWidth()) { 400 LOI->NumSignBits = 1; 401 LOI->Known = LOI->Known.zextOrTrunc(BitWidth); 402 } 403 404 return LOI; 405 } 406 407 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 408 /// register based on the LiveOutInfo of its operands. 409 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 410 Type *Ty = PN->getType(); 411 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 412 return; 413 414 SmallVector<EVT, 1> ValueVTs; 415 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 416 assert(ValueVTs.size() == 1 && 417 "PHIs with non-vector integer types should have a single VT."); 418 EVT IntVT = ValueVTs[0]; 419 420 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 421 return; 422 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 423 unsigned BitWidth = IntVT.getSizeInBits(); 424 425 unsigned DestReg = ValueMap[PN]; 426 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 427 return; 428 LiveOutRegInfo.grow(DestReg); 429 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 430 431 Value *V = PN->getIncomingValue(0); 432 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 433 DestLOI.NumSignBits = 1; 434 DestLOI.Known = KnownBits(BitWidth); 435 return; 436 } 437 438 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 439 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 440 DestLOI.NumSignBits = Val.getNumSignBits(); 441 DestLOI.Known.Zero = ~Val; 442 DestLOI.Known.One = Val; 443 } else { 444 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 445 "CopyToReg node was created."); 446 unsigned SrcReg = ValueMap[V]; 447 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 448 DestLOI.IsValid = false; 449 return; 450 } 451 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 452 if (!SrcLOI) { 453 DestLOI.IsValid = false; 454 return; 455 } 456 DestLOI = *SrcLOI; 457 } 458 459 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && 460 DestLOI.Known.One.getBitWidth() == BitWidth && 461 "Masks should have the same bit width as the type."); 462 463 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 464 Value *V = PN->getIncomingValue(i); 465 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 466 DestLOI.NumSignBits = 1; 467 DestLOI.Known = KnownBits(BitWidth); 468 return; 469 } 470 471 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 472 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 473 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 474 DestLOI.Known.Zero &= ~Val; 475 DestLOI.Known.One &= Val; 476 continue; 477 } 478 479 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 480 "its CopyToReg node was created."); 481 unsigned SrcReg = ValueMap[V]; 482 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 483 DestLOI.IsValid = false; 484 return; 485 } 486 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 487 if (!SrcLOI) { 488 DestLOI.IsValid = false; 489 return; 490 } 491 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 492 DestLOI.Known.Zero &= SrcLOI->Known.Zero; 493 DestLOI.Known.One &= SrcLOI->Known.One; 494 } 495 } 496 497 /// setArgumentFrameIndex - Record frame index for the byval 498 /// argument. This overrides previous frame index entry for this argument, 499 /// if any. 500 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 501 int FI) { 502 ByValArgFrameIndexMap[A] = FI; 503 } 504 505 /// getArgumentFrameIndex - Get frame index for the byval argument. 506 /// If the argument does not have any assigned frame index then 0 is 507 /// returned. 508 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 509 auto I = ByValArgFrameIndexMap.find(A); 510 if (I != ByValArgFrameIndexMap.end()) 511 return I->second; 512 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 513 return INT_MAX; 514 } 515 516 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 517 const Value *CPI, const TargetRegisterClass *RC) { 518 MachineRegisterInfo &MRI = MF->getRegInfo(); 519 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 520 unsigned &VReg = I.first->second; 521 if (I.second) 522 VReg = MRI.createVirtualRegister(RC); 523 assert(VReg && "null vreg in exception pointer table!"); 524 return VReg; 525 } 526 527 unsigned 528 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB, 529 const Value *Val) { 530 auto Key = std::make_pair(MBB, Val); 531 auto It = SwiftErrorVRegDefMap.find(Key); 532 // If this is the first use of this swifterror value in this basic block, 533 // create a new virtual register. 534 // After we processed all basic blocks we will satisfy this "upwards exposed 535 // use" by inserting a copy or phi at the beginning of this block. 536 if (It == SwiftErrorVRegDefMap.end()) { 537 auto &DL = MF->getDataLayout(); 538 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 539 auto VReg = MF->getRegInfo().createVirtualRegister(RC); 540 SwiftErrorVRegDefMap[Key] = VReg; 541 SwiftErrorVRegUpwardsUse[Key] = VReg; 542 return VReg; 543 } else return It->second; 544 } 545 546 void FunctionLoweringInfo::setCurrentSwiftErrorVReg( 547 const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) { 548 SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg; 549 } 550 551 std::pair<unsigned, bool> 552 FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) { 553 auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true); 554 auto It = SwiftErrorVRegDefUses.find(Key); 555 if (It == SwiftErrorVRegDefUses.end()) { 556 auto &DL = MF->getDataLayout(); 557 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 558 unsigned VReg = MF->getRegInfo().createVirtualRegister(RC); 559 SwiftErrorVRegDefUses[Key] = VReg; 560 return std::make_pair(VReg, true); 561 } 562 return std::make_pair(It->second, false); 563 } 564 565 std::pair<unsigned, bool> 566 FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) { 567 auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false); 568 auto It = SwiftErrorVRegDefUses.find(Key); 569 if (It == SwiftErrorVRegDefUses.end()) { 570 unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val); 571 SwiftErrorVRegDefUses[Key] = VReg; 572 return std::make_pair(VReg, true); 573 } 574 return std::make_pair(It->second, false); 575 } 576 577 const Value * 578 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) { 579 if (VirtReg2Value.empty()) { 580 for (auto &P : ValueMap) { 581 VirtReg2Value[P.second] = P.first; 582 } 583 } 584 return VirtReg2Value[Vreg]; 585 } 586