1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "function-lowering-info" 16 #include "llvm/CodeGen/FunctionLoweringInfo.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Function.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Analysis/DebugInfo.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include "llvm/Target/TargetData.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetLowering.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 42 /// PHI nodes or outside of the basic block that defines it, or used by a 43 /// switch or atomic instruction, which may expand to multiple basic blocks. 44 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 45 if (I->use_empty()) return false; 46 if (isa<PHINode>(I)) return true; 47 const BasicBlock *BB = I->getParent(); 48 for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); 49 UI != E; ++UI) { 50 const User *U = *UI; 51 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 52 return true; 53 } 54 return false; 55 } 56 57 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 58 /// entry block, return true. This includes arguments used by switches, since 59 /// the switch may expand into multiple basic blocks. 60 static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) { 61 // With FastISel active, we may be splitting blocks, so force creation 62 // of virtual registers for all non-dead arguments. 63 if (EnableFastISel) 64 return A->use_empty(); 65 66 const BasicBlock *Entry = A->getParent()->begin(); 67 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 68 UI != E; ++UI) { 69 const User *U = *UI; 70 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 71 return false; // Use not in entry block. 72 } 73 return true; 74 } 75 76 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli) 77 : TLI(tli) { 78 } 79 80 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { 81 Fn = &fn; 82 MF = &mf; 83 RegInfo = &MF->getRegInfo(); 84 85 // Check whether the function can return without sret-demotion. 86 SmallVector<ISD::OutputArg, 4> Outs; 87 GetReturnInfo(Fn->getReturnType(), 88 Fn->getAttributes().getRetAttributes(), Outs, TLI); 89 CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), Fn->isVarArg(), 90 Outs, Fn->getContext()); 91 92 // Create a vreg for each argument register that is not dead and is used 93 // outside of the entry block for the function. 94 for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); 95 AI != E; ++AI) 96 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) 97 InitializeRegForValue(AI); 98 99 // Initialize the mapping of values to registers. This is only set up for 100 // instruction values that are used outside of the block that defines 101 // them. 102 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 103 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 104 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) 105 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 106 const Type *Ty = AI->getAllocatedType(); 107 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 108 unsigned Align = 109 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 110 AI->getAlignment()); 111 112 TySize *= CUI->getZExtValue(); // Get total allocated size. 113 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 114 115 // The object may need to be placed onto the stack near the stack 116 // protector if one exists. Determine here if this object is a suitable 117 // candidate. I.e., it would trigger the creation of a stack protector. 118 bool MayNeedSP = 119 (AI->isArrayAllocation() || 120 (TySize > 8 && isa<ArrayType>(Ty) && 121 cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8))); 122 StaticAllocaMap[AI] = 123 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP); 124 } 125 126 for (; BB != EB; ++BB) 127 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 128 // Mark values used outside their block as exported, by allocating 129 // a virtual register for them. 130 if (isUsedOutsideOfDefiningBlock(I)) 131 if (!isa<AllocaInst>(I) || 132 !StaticAllocaMap.count(cast<AllocaInst>(I))) 133 InitializeRegForValue(I); 134 135 // Collect llvm.dbg.declare information. This is done now instead of 136 // during the initial isel pass through the IR so that it is done 137 // in a predictable order. 138 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 139 MachineModuleInfo &MMI = MF->getMMI(); 140 if (MMI.hasDebugInfo() && 141 DIVariable(DI->getVariable()).Verify() && 142 !DI->getDebugLoc().isUnknown()) { 143 // Don't handle byval struct arguments or VLAs, for example. 144 // Non-byval arguments are handled here (they refer to the stack 145 // temporary alloca at this point). 146 const Value *Address = DI->getAddress(); 147 if (Address) { 148 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 149 Address = BCI->getOperand(0); 150 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 151 DenseMap<const AllocaInst *, int>::iterator SI = 152 StaticAllocaMap.find(AI); 153 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 154 int FI = SI->second; 155 MMI.setVariableDbgInfo(DI->getVariable(), 156 FI, DI->getDebugLoc()); 157 } 158 } 159 } 160 } 161 } 162 } 163 164 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 165 // also creates the initial PHI MachineInstrs, though none of the input 166 // operands are populated. 167 for (BB = Fn->begin(); BB != EB; ++BB) { 168 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 169 MBBMap[BB] = MBB; 170 MF->push_back(MBB); 171 172 // Transfer the address-taken flag. This is necessary because there could 173 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 174 // the first one should be marked. 175 if (BB->hasAddressTaken()) 176 MBB->setHasAddressTaken(); 177 178 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 179 // appropriate. 180 for (BasicBlock::const_iterator I = BB->begin(); 181 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 182 if (PN->use_empty()) continue; 183 184 DebugLoc DL = PN->getDebugLoc(); 185 unsigned PHIReg = ValueMap[PN]; 186 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 187 188 SmallVector<EVT, 4> ValueVTs; 189 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 190 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 191 EVT VT = ValueVTs[vti]; 192 unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); 193 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 194 for (unsigned i = 0; i != NumRegisters; ++i) 195 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 196 PHIReg += NumRegisters; 197 } 198 } 199 } 200 201 // Mark landing pad blocks. 202 for (BB = Fn->begin(); BB != EB; ++BB) 203 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 204 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 205 } 206 207 /// clear - Clear out all the function-specific state. This returns this 208 /// FunctionLoweringInfo to an empty state, ready to be used for a 209 /// different function. 210 void FunctionLoweringInfo::clear() { 211 assert(CatchInfoFound.size() == CatchInfoLost.size() && 212 "Not all catch info was assigned to a landing pad!"); 213 214 MBBMap.clear(); 215 ValueMap.clear(); 216 StaticAllocaMap.clear(); 217 #ifndef NDEBUG 218 CatchInfoLost.clear(); 219 CatchInfoFound.clear(); 220 #endif 221 LiveOutRegInfo.clear(); 222 ArgDbgValues.clear(); 223 ByValArgFrameIndexMap.clear(); 224 RegFixups.clear(); 225 } 226 227 /// CreateReg - Allocate a single virtual register for the given type. 228 unsigned FunctionLoweringInfo::CreateReg(EVT VT) { 229 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); 230 } 231 232 /// CreateRegs - Allocate the appropriate number of virtual registers of 233 /// the correctly promoted or expanded types. Assign these registers 234 /// consecutive vreg numbers and return the first assigned number. 235 /// 236 /// In the case that the given value has struct or array type, this function 237 /// will assign registers for each member or element. 238 /// 239 unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) { 240 SmallVector<EVT, 4> ValueVTs; 241 ComputeValueVTs(TLI, Ty, ValueVTs); 242 243 unsigned FirstReg = 0; 244 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 245 EVT ValueVT = ValueVTs[Value]; 246 EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT); 247 248 unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT); 249 for (unsigned i = 0; i != NumRegs; ++i) { 250 unsigned R = CreateReg(RegisterVT); 251 if (!FirstReg) FirstReg = R; 252 } 253 } 254 return FirstReg; 255 } 256 257 /// setByValArgumentFrameIndex - Record frame index for the byval 258 /// argument. This overrides previous frame index entry for this argument, 259 /// if any. 260 void FunctionLoweringInfo::setByValArgumentFrameIndex(const Argument *A, 261 int FI) { 262 assert (A->hasByValAttr() && "Argument does not have byval attribute!"); 263 ByValArgFrameIndexMap[A] = FI; 264 } 265 266 /// getByValArgumentFrameIndex - Get frame index for the byval argument. 267 /// If the argument does not have any assigned frame index then 0 is 268 /// returned. 269 int FunctionLoweringInfo::getByValArgumentFrameIndex(const Argument *A) { 270 assert (A->hasByValAttr() && "Argument does not have byval attribute!"); 271 DenseMap<const Argument *, int>::iterator I = 272 ByValArgFrameIndexMap.find(A); 273 if (I != ByValArgFrameIndexMap.end()) 274 return I->second; 275 DEBUG(dbgs() << "Argument does not have assigned frame index!"); 276 return 0; 277 } 278 279 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 280 /// call, and add them to the specified machine basic block. 281 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 282 MachineBasicBlock *MBB) { 283 // Inform the MachineModuleInfo of the personality for this landing pad. 284 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 285 assert(CE->getOpcode() == Instruction::BitCast && 286 isa<Function>(CE->getOperand(0)) && 287 "Personality should be a function"); 288 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 289 290 // Gather all the type infos for this landing pad and pass them along to 291 // MachineModuleInfo. 292 std::vector<const GlobalVariable *> TyInfo; 293 unsigned N = I.getNumArgOperands(); 294 295 for (unsigned i = N - 1; i > 1; --i) { 296 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 297 unsigned FilterLength = CI->getZExtValue(); 298 unsigned FirstCatch = i + FilterLength + !FilterLength; 299 assert(FirstCatch <= N && "Invalid filter length"); 300 301 if (FirstCatch < N) { 302 TyInfo.reserve(N - FirstCatch); 303 for (unsigned j = FirstCatch; j < N; ++j) 304 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 305 MMI->addCatchTypeInfo(MBB, TyInfo); 306 TyInfo.clear(); 307 } 308 309 if (!FilterLength) { 310 // Cleanup. 311 MMI->addCleanup(MBB); 312 } else { 313 // Filter. 314 TyInfo.reserve(FilterLength - 1); 315 for (unsigned j = i + 1; j < FirstCatch; ++j) 316 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 317 MMI->addFilterTypeInfo(MBB, TyInfo); 318 TyInfo.clear(); 319 } 320 321 N = i; 322 } 323 } 324 325 if (N > 2) { 326 TyInfo.reserve(N - 2); 327 for (unsigned j = 2; j < N; ++j) 328 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 329 MMI->addCatchTypeInfo(MBB, TyInfo); 330 } 331 } 332 333 void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB, 334 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { 335 for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end(); 336 I != E; ++I) 337 if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { 338 // Apply the catch info to DestBB. 339 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]); 340 #ifndef NDEBUG 341 if (!FLI.MBBMap[SrcBB]->isLandingPad()) 342 FLI.CatchInfoFound.insert(EHSel); 343 #endif 344 } 345 } 346