1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/WinEHFuncInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "function-lowering-info" 46 47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 48 /// PHI nodes or outside of the basic block that defines it, or used by a 49 /// switch or atomic instruction, which may expand to multiple basic blocks. 50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 51 if (I->use_empty()) return false; 52 if (isa<PHINode>(I)) return true; 53 const BasicBlock *BB = I->getParent(); 54 for (const User *U : I->users()) 55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 56 return true; 57 58 return false; 59 } 60 61 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 62 // For the users of the source value being used for compare instruction, if 63 // the number of signed predicate is greater than unsigned predicate, we 64 // prefer to use SIGN_EXTEND. 65 // 66 // With this optimization, we would be able to reduce some redundant sign or 67 // zero extension instruction, and eventually more machine CSE opportunities 68 // can be exposed. 69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 70 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 71 for (const User *U : V->users()) { 72 if (const auto *CI = dyn_cast<CmpInst>(U)) { 73 NumOfSigned += CI->isSigned(); 74 NumOfUnsigned += CI->isUnsigned(); 75 } 76 } 77 if (NumOfSigned > NumOfUnsigned) 78 ExtendKind = ISD::SIGN_EXTEND; 79 80 return ExtendKind; 81 } 82 83 namespace { 84 struct WinEHNumbering { 85 WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), NextState(0) {} 86 87 WinEHFuncInfo &FuncInfo; 88 int NextState; 89 90 SmallVector<ActionHandler *, 4> HandlerStack; 91 SmallPtrSet<const Function *, 4> VisitedHandlers; 92 93 int currentEHNumber() const { 94 return HandlerStack.empty() ? -1 : HandlerStack.back()->getEHState(); 95 } 96 97 void parseEHActions(const IntrinsicInst *II, 98 SmallVectorImpl<ActionHandler *> &Actions); 99 void createUnwindMapEntry(int ToState, ActionHandler *AH); 100 void createTryBlockMapEntry(int TryLow, int TryHigh, 101 ArrayRef<CatchHandler *> Handlers); 102 void processCallSite(ArrayRef<ActionHandler *> Actions, ImmutableCallSite CS); 103 void calculateStateNumbers(const Function &F); 104 }; 105 } 106 107 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 108 SelectionDAG *DAG) { 109 Fn = &fn; 110 MF = &mf; 111 TLI = MF->getSubtarget().getTargetLowering(); 112 RegInfo = &MF->getRegInfo(); 113 MachineModuleInfo &MMI = MF->getMMI(); 114 115 // Check whether the function can return without sret-demotion. 116 SmallVector<ISD::OutputArg, 4> Outs; 117 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 118 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 119 Fn->isVarArg(), Outs, Fn->getContext()); 120 121 // Initialize the mapping of values to registers. This is only set up for 122 // instruction values that are used outside of the block that defines 123 // them. 124 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 125 for (; BB != EB; ++BB) 126 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 127 I != E; ++I) { 128 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 129 // Static allocas can be folded into the initial stack frame adjustment. 130 if (AI->isStaticAlloca()) { 131 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 132 Type *Ty = AI->getAllocatedType(); 133 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 134 unsigned Align = 135 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 136 AI->getAlignment()); 137 138 TySize *= CUI->getZExtValue(); // Get total allocated size. 139 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 140 141 StaticAllocaMap[AI] = 142 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 143 144 } else { 145 unsigned Align = std::max( 146 (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( 147 AI->getAllocatedType()), 148 AI->getAlignment()); 149 unsigned StackAlign = 150 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 151 if (Align <= StackAlign) 152 Align = 0; 153 // Inform the Frame Information that we have variable-sized objects. 154 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 155 } 156 } 157 158 // Look for inline asm that clobbers the SP register. 159 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 160 ImmutableCallSite CS(I); 161 if (isa<InlineAsm>(CS.getCalledValue())) { 162 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 163 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 164 std::vector<TargetLowering::AsmOperandInfo> Ops = 165 TLI->ParseConstraints(TRI, CS); 166 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 167 TargetLowering::AsmOperandInfo &Op = Ops[I]; 168 if (Op.Type == InlineAsm::isClobber) { 169 // Clobbers don't have SDValue operands, hence SDValue(). 170 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 171 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 172 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 173 Op.ConstraintVT); 174 if (PhysReg.first == SP) 175 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); 176 } 177 } 178 } 179 } 180 181 // Look for calls to the @llvm.va_start intrinsic. We can omit some 182 // prologue boilerplate for variadic functions that don't examine their 183 // arguments. 184 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 185 if (II->getIntrinsicID() == Intrinsic::vastart) 186 MF->getFrameInfo()->setHasVAStart(true); 187 } 188 189 // If we have a musttail call in a variadic funciton, we need to ensure we 190 // forward implicit register parameters. 191 if (const auto *CI = dyn_cast<CallInst>(I)) { 192 if (CI->isMustTailCall() && Fn->isVarArg()) 193 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 194 } 195 196 // Mark values used outside their block as exported, by allocating 197 // a virtual register for them. 198 if (isUsedOutsideOfDefiningBlock(I)) 199 if (!isa<AllocaInst>(I) || 200 !StaticAllocaMap.count(cast<AllocaInst>(I))) 201 InitializeRegForValue(I); 202 203 // Collect llvm.dbg.declare information. This is done now instead of 204 // during the initial isel pass through the IR so that it is done 205 // in a predictable order. 206 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 207 DIVariable DIVar(DI->getVariable()); 208 assert((!DIVar || DIVar.isVariable()) && 209 "Variable in DbgDeclareInst should be either null or a DIVariable."); 210 if (MMI.hasDebugInfo() && DIVar && DI->getDebugLoc()) { 211 // Don't handle byval struct arguments or VLAs, for example. 212 // Non-byval arguments are handled here (they refer to the stack 213 // temporary alloca at this point). 214 const Value *Address = DI->getAddress(); 215 if (Address) { 216 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 217 Address = BCI->getOperand(0); 218 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 219 DenseMap<const AllocaInst *, int>::iterator SI = 220 StaticAllocaMap.find(AI); 221 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 222 int FI = SI->second; 223 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 224 FI, DI->getDebugLoc()); 225 } 226 } 227 } 228 } 229 } 230 231 // Decide the preferred extend type for a value. 232 PreferredExtendType[I] = getPreferredExtendForValue(I); 233 } 234 235 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 236 // also creates the initial PHI MachineInstrs, though none of the input 237 // operands are populated. 238 for (BB = Fn->begin(); BB != EB; ++BB) { 239 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 240 MBBMap[BB] = MBB; 241 MF->push_back(MBB); 242 243 // Transfer the address-taken flag. This is necessary because there could 244 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 245 // the first one should be marked. 246 if (BB->hasAddressTaken()) 247 MBB->setHasAddressTaken(); 248 249 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 250 // appropriate. 251 for (BasicBlock::const_iterator I = BB->begin(); 252 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 253 if (PN->use_empty()) continue; 254 255 // Skip empty types 256 if (PN->getType()->isEmptyTy()) 257 continue; 258 259 DebugLoc DL = PN->getDebugLoc(); 260 unsigned PHIReg = ValueMap[PN]; 261 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 262 263 SmallVector<EVT, 4> ValueVTs; 264 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 265 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 266 EVT VT = ValueVTs[vti]; 267 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 268 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 269 for (unsigned i = 0; i != NumRegisters; ++i) 270 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 271 PHIReg += NumRegisters; 272 } 273 } 274 } 275 276 // Mark landing pad blocks. 277 for (BB = Fn->begin(); BB != EB; ++BB) 278 if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 279 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 280 281 // Calculate EH numbers for WinEH. 282 if (fn.getFnAttribute("wineh-parent").getValueAsString() == fn.getName()) { 283 WinEHNumbering Num(MMI.getWinEHFuncInfo(&fn)); 284 Num.calculateStateNumbers(fn); 285 // Pop everything on the handler stack. 286 Num.processCallSite(None, ImmutableCallSite()); 287 } 288 } 289 290 void WinEHNumbering::parseEHActions(const IntrinsicInst *II, 291 SmallVectorImpl<ActionHandler *> &Actions) { 292 for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) { 293 uint64_t ActionKind = 294 cast<ConstantInt>(II->getArgOperand(I))->getZExtValue(); 295 if (ActionKind == /*catch=*/1) { 296 auto *Selector = cast<Constant>(II->getArgOperand(I + 1)); 297 Value *CatchObject = II->getArgOperand(I + 2); 298 Constant *Handler = cast<Constant>(II->getArgOperand(I + 3)); 299 I += 4; 300 auto *CH = new CatchHandler(/*BB=*/nullptr, Selector, /*NextBB=*/nullptr); 301 CH->setExceptionVar(CatchObject); 302 CH->setHandlerBlockOrFunc(Handler); 303 Actions.push_back(CH); 304 } else { 305 assert(ActionKind == 0 && "expected a cleanup or a catch action!"); 306 Constant *Handler = cast<Constant>(II->getArgOperand(I + 1)); 307 I += 2; 308 auto *CH = new CleanupHandler(/*BB=*/nullptr); 309 CH->setHandlerBlockOrFunc(Handler); 310 Actions.push_back(CH); 311 } 312 } 313 std::reverse(Actions.begin(), Actions.end()); 314 } 315 316 void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) { 317 WinEHUnwindMapEntry UME; 318 UME.ToState = ToState; 319 if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH)) 320 UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc()); 321 else 322 UME.Cleanup = nullptr; 323 FuncInfo.UnwindMap.push_back(UME); 324 } 325 326 void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh, 327 ArrayRef<CatchHandler *> Handlers) { 328 WinEHTryBlockMapEntry TBME; 329 TBME.TryLow = TryLow; 330 TBME.TryHigh = TryHigh; 331 // FIXME: This should be revisited when we want to throw inside a catch 332 // handler. 333 TBME.CatchHigh = INT_MAX; 334 assert(TBME.TryLow <= TBME.TryHigh); 335 assert(TBME.CatchHigh > TBME.TryHigh); 336 for (CatchHandler *CH : Handlers) { 337 WinEHHandlerType HT; 338 if (CH->getSelector()->isNullValue()) { 339 HT.Adjectives = 0x40; 340 HT.TypeDescriptor = nullptr; 341 } else { 342 auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts()); 343 // Selectors are always pointers to GlobalVariables with 'struct' type. 344 // The struct has two fields, adjectives and a type descriptor. 345 auto *CS = cast<ConstantStruct>(GV->getInitializer()); 346 HT.Adjectives = 347 cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue(); 348 HT.TypeDescriptor = 349 cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts()); 350 } 351 HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc()); 352 // FIXME: We don't support catching objects yet! 353 HT.CatchObjIdx = INT_MAX; 354 HT.CatchObjOffset = 0; 355 TBME.HandlerArray.push_back(HT); 356 } 357 FuncInfo.TryBlockMap.push_back(TBME); 358 } 359 360 static void print_name(const Value *V) { 361 #ifndef NDEBUG 362 if (!V) { 363 DEBUG(dbgs() << "null"); 364 return; 365 } 366 367 if (const auto *F = dyn_cast<Function>(V)) 368 DEBUG(dbgs() << F->getName()); 369 else 370 DEBUG(V->dump()); 371 #endif 372 } 373 374 void WinEHNumbering::processCallSite(ArrayRef<ActionHandler *> Actions, 375 ImmutableCallSite CS) { 376 int FirstMismatch = 0; 377 for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E; 378 ++FirstMismatch) { 379 if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() != 380 Actions[FirstMismatch]->getHandlerBlockOrFunc()) 381 break; 382 delete Actions[FirstMismatch]; 383 } 384 385 bool EnteringScope = (int)Actions.size() > FirstMismatch; 386 387 // Don't recurse while we are looping over the handler stack. Instead, defer 388 // the numbering of the catch handlers until we are done popping. 389 SmallVector<CatchHandler *, 4> PoppedCatches; 390 for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) { 391 if (auto *CH = dyn_cast<CatchHandler>(HandlerStack.back())) { 392 PoppedCatches.push_back(CH); 393 } else { 394 // Delete cleanup handlers 395 delete HandlerStack.back(); 396 } 397 HandlerStack.pop_back(); 398 } 399 400 // We need to create a new state number if we are exiting a try scope and we 401 // will not push any more actions. 402 int TryHigh = NextState - 1; 403 if (!EnteringScope && !PoppedCatches.empty()) { 404 createUnwindMapEntry(currentEHNumber(), nullptr); 405 ++NextState; 406 } 407 408 int LastTryLowIdx = 0; 409 for (int I = 0, E = PoppedCatches.size(); I != E; ++I) { 410 CatchHandler *CH = PoppedCatches[I]; 411 if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) { 412 int TryLow = CH->getEHState(); 413 auto Handlers = 414 makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1); 415 createTryBlockMapEntry(TryLow, TryHigh, Handlers); 416 LastTryLowIdx = I + 1; 417 } 418 } 419 420 for (CatchHandler *CH : PoppedCatches) { 421 if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) 422 calculateStateNumbers(*F); 423 delete CH; 424 } 425 426 bool LastActionWasCatch = false; 427 for (size_t I = FirstMismatch; I != Actions.size(); ++I) { 428 // We can reuse eh states when pushing two catches for the same invoke. 429 bool CurrActionIsCatch = isa<CatchHandler>(Actions[I]); 430 // FIXME: Reenable this optimization! 431 if (CurrActionIsCatch && LastActionWasCatch && false) { 432 Actions[I]->setEHState(currentEHNumber()); 433 } else { 434 createUnwindMapEntry(currentEHNumber(), Actions[I]); 435 Actions[I]->setEHState(NextState); 436 NextState++; 437 DEBUG(dbgs() << "Creating unwind map entry for: ("); 438 print_name(Actions[I]->getHandlerBlockOrFunc()); 439 DEBUG(dbgs() << ", " << currentEHNumber() << ")\n"); 440 } 441 HandlerStack.push_back(Actions[I]); 442 LastActionWasCatch = CurrActionIsCatch; 443 } 444 445 DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: "); 446 print_name(CS ? CS.getCalledValue() : nullptr); 447 DEBUG(dbgs() << '\n'); 448 } 449 450 void WinEHNumbering::calculateStateNumbers(const Function &F) { 451 auto I = VisitedHandlers.insert(&F); 452 if (!I.second) 453 return; // We've already visited this handler, don't renumber it. 454 455 DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n'); 456 SmallVector<ActionHandler *, 4> ActionList; 457 for (const BasicBlock &BB : F) { 458 for (const Instruction &I : BB) { 459 const auto *CI = dyn_cast<CallInst>(&I); 460 if (!CI || CI->doesNotThrow()) 461 continue; 462 processCallSite(None, CI); 463 } 464 const auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 465 if (!II) 466 continue; 467 const LandingPadInst *LPI = II->getLandingPadInst(); 468 auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode()); 469 if (!ActionsCall) 470 continue; 471 assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions); 472 parseEHActions(ActionsCall, ActionList); 473 processCallSite(ActionList, II); 474 ActionList.clear(); 475 FuncInfo.LandingPadStateMap[LPI] = currentEHNumber(); 476 } 477 } 478 479 /// clear - Clear out all the function-specific state. This returns this 480 /// FunctionLoweringInfo to an empty state, ready to be used for a 481 /// different function. 482 void FunctionLoweringInfo::clear() { 483 assert(CatchInfoFound.size() == CatchInfoLost.size() && 484 "Not all catch info was assigned to a landing pad!"); 485 486 MBBMap.clear(); 487 ValueMap.clear(); 488 StaticAllocaMap.clear(); 489 #ifndef NDEBUG 490 CatchInfoLost.clear(); 491 CatchInfoFound.clear(); 492 #endif 493 LiveOutRegInfo.clear(); 494 VisitedBBs.clear(); 495 ArgDbgValues.clear(); 496 ByValArgFrameIndexMap.clear(); 497 RegFixups.clear(); 498 StatepointStackSlots.clear(); 499 PreferredExtendType.clear(); 500 } 501 502 /// CreateReg - Allocate a single virtual register for the given type. 503 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 504 return RegInfo->createVirtualRegister( 505 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 506 } 507 508 /// CreateRegs - Allocate the appropriate number of virtual registers of 509 /// the correctly promoted or expanded types. Assign these registers 510 /// consecutive vreg numbers and return the first assigned number. 511 /// 512 /// In the case that the given value has struct or array type, this function 513 /// will assign registers for each member or element. 514 /// 515 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 516 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 517 518 SmallVector<EVT, 4> ValueVTs; 519 ComputeValueVTs(*TLI, Ty, ValueVTs); 520 521 unsigned FirstReg = 0; 522 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 523 EVT ValueVT = ValueVTs[Value]; 524 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 525 526 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 527 for (unsigned i = 0; i != NumRegs; ++i) { 528 unsigned R = CreateReg(RegisterVT); 529 if (!FirstReg) FirstReg = R; 530 } 531 } 532 return FirstReg; 533 } 534 535 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 536 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 537 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 538 /// the larger bit width by zero extension. The bit width must be no smaller 539 /// than the LiveOutInfo's existing bit width. 540 const FunctionLoweringInfo::LiveOutInfo * 541 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 542 if (!LiveOutRegInfo.inBounds(Reg)) 543 return nullptr; 544 545 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 546 if (!LOI->IsValid) 547 return nullptr; 548 549 if (BitWidth > LOI->KnownZero.getBitWidth()) { 550 LOI->NumSignBits = 1; 551 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 552 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 553 } 554 555 return LOI; 556 } 557 558 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 559 /// register based on the LiveOutInfo of its operands. 560 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 561 Type *Ty = PN->getType(); 562 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 563 return; 564 565 SmallVector<EVT, 1> ValueVTs; 566 ComputeValueVTs(*TLI, Ty, ValueVTs); 567 assert(ValueVTs.size() == 1 && 568 "PHIs with non-vector integer types should have a single VT."); 569 EVT IntVT = ValueVTs[0]; 570 571 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 572 return; 573 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 574 unsigned BitWidth = IntVT.getSizeInBits(); 575 576 unsigned DestReg = ValueMap[PN]; 577 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 578 return; 579 LiveOutRegInfo.grow(DestReg); 580 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 581 582 Value *V = PN->getIncomingValue(0); 583 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 584 DestLOI.NumSignBits = 1; 585 APInt Zero(BitWidth, 0); 586 DestLOI.KnownZero = Zero; 587 DestLOI.KnownOne = Zero; 588 return; 589 } 590 591 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 592 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 593 DestLOI.NumSignBits = Val.getNumSignBits(); 594 DestLOI.KnownZero = ~Val; 595 DestLOI.KnownOne = Val; 596 } else { 597 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 598 "CopyToReg node was created."); 599 unsigned SrcReg = ValueMap[V]; 600 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 601 DestLOI.IsValid = false; 602 return; 603 } 604 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 605 if (!SrcLOI) { 606 DestLOI.IsValid = false; 607 return; 608 } 609 DestLOI = *SrcLOI; 610 } 611 612 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 613 DestLOI.KnownOne.getBitWidth() == BitWidth && 614 "Masks should have the same bit width as the type."); 615 616 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 617 Value *V = PN->getIncomingValue(i); 618 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 619 DestLOI.NumSignBits = 1; 620 APInt Zero(BitWidth, 0); 621 DestLOI.KnownZero = Zero; 622 DestLOI.KnownOne = Zero; 623 return; 624 } 625 626 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 627 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 628 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 629 DestLOI.KnownZero &= ~Val; 630 DestLOI.KnownOne &= Val; 631 continue; 632 } 633 634 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 635 "its CopyToReg node was created."); 636 unsigned SrcReg = ValueMap[V]; 637 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 638 DestLOI.IsValid = false; 639 return; 640 } 641 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 642 if (!SrcLOI) { 643 DestLOI.IsValid = false; 644 return; 645 } 646 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 647 DestLOI.KnownZero &= SrcLOI->KnownZero; 648 DestLOI.KnownOne &= SrcLOI->KnownOne; 649 } 650 } 651 652 /// setArgumentFrameIndex - Record frame index for the byval 653 /// argument. This overrides previous frame index entry for this argument, 654 /// if any. 655 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 656 int FI) { 657 ByValArgFrameIndexMap[A] = FI; 658 } 659 660 /// getArgumentFrameIndex - Get frame index for the byval argument. 661 /// If the argument does not have any assigned frame index then 0 is 662 /// returned. 663 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 664 DenseMap<const Argument *, int>::iterator I = 665 ByValArgFrameIndexMap.find(A); 666 if (I != ByValArgFrameIndexMap.end()) 667 return I->second; 668 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 669 return 0; 670 } 671 672 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 673 /// being passed to this variadic function, and set the MachineModuleInfo's 674 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 675 /// reference to _fltused on Windows, which will link in MSVCRT's 676 /// floating-point support. 677 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 678 MachineModuleInfo *MMI) 679 { 680 FunctionType *FT = cast<FunctionType>( 681 I.getCalledValue()->getType()->getContainedType(0)); 682 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 683 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 684 Type* T = I.getArgOperand(i)->getType(); 685 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 686 i != e; ++i) { 687 if (i->isFloatingPointTy()) { 688 MMI->setUsesVAFloatArgument(true); 689 return; 690 } 691 } 692 } 693 } 694 } 695 696 /// AddLandingPadInfo - Extract the exception handling information from the 697 /// landingpad instruction and add them to the specified machine module info. 698 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 699 MachineBasicBlock *MBB) { 700 MMI.addPersonality(MBB, 701 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 702 703 if (I.isCleanup()) 704 MMI.addCleanup(MBB); 705 706 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 707 // but we need to do it this way because of how the DWARF EH emitter 708 // processes the clauses. 709 for (unsigned i = I.getNumClauses(); i != 0; --i) { 710 Value *Val = I.getClause(i - 1); 711 if (I.isCatch(i - 1)) { 712 MMI.addCatchTypeInfo(MBB, 713 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 714 } else { 715 // Add filters in a list. 716 Constant *CVal = cast<Constant>(Val); 717 SmallVector<const GlobalValue*, 4> FilterList; 718 for (User::op_iterator 719 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 720 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 721 722 MMI.addFilterTypeInfo(MBB, FilterList); 723 } 724 } 725 } 726