1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "function-lowering-info" 16 #include "llvm/CodeGen/FunctionLoweringInfo.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Function.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Analysis/DebugInfo.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include "llvm/Target/TargetData.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetLowering.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 42 /// PHI nodes or outside of the basic block that defines it, or used by a 43 /// switch or atomic instruction, which may expand to multiple basic blocks. 44 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 45 if (I->use_empty()) return false; 46 if (isa<PHINode>(I)) return true; 47 const BasicBlock *BB = I->getParent(); 48 for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); 49 UI != E; ++UI) { 50 const User *U = *UI; 51 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 52 return true; 53 } 54 return false; 55 } 56 57 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli) 58 : TLI(tli) { 59 } 60 61 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { 62 Fn = &fn; 63 MF = &mf; 64 RegInfo = &MF->getRegInfo(); 65 66 // Check whether the function can return without sret-demotion. 67 SmallVector<ISD::OutputArg, 4> Outs; 68 GetReturnInfo(Fn->getReturnType(), 69 Fn->getAttributes().getRetAttributes(), Outs, TLI); 70 CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), Fn->isVarArg(), 71 Outs, Fn->getContext()); 72 73 // Initialize the mapping of values to registers. This is only set up for 74 // instruction values that are used outside of the block that defines 75 // them. 76 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 77 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 78 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) 79 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 80 const Type *Ty = AI->getAllocatedType(); 81 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 82 unsigned Align = 83 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 84 AI->getAlignment()); 85 86 TySize *= CUI->getZExtValue(); // Get total allocated size. 87 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 88 89 // The object may need to be placed onto the stack near the stack 90 // protector if one exists. Determine here if this object is a suitable 91 // candidate. I.e., it would trigger the creation of a stack protector. 92 bool MayNeedSP = 93 (AI->isArrayAllocation() || 94 (TySize > 8 && isa<ArrayType>(Ty) && 95 cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8))); 96 StaticAllocaMap[AI] = 97 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP); 98 } 99 100 for (; BB != EB; ++BB) 101 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 102 // Mark values used outside their block as exported, by allocating 103 // a virtual register for them. 104 if (isUsedOutsideOfDefiningBlock(I)) 105 if (!isa<AllocaInst>(I) || 106 !StaticAllocaMap.count(cast<AllocaInst>(I))) 107 InitializeRegForValue(I); 108 109 // Collect llvm.dbg.declare information. This is done now instead of 110 // during the initial isel pass through the IR so that it is done 111 // in a predictable order. 112 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 113 MachineModuleInfo &MMI = MF->getMMI(); 114 if (MMI.hasDebugInfo() && 115 DIVariable(DI->getVariable()).Verify() && 116 !DI->getDebugLoc().isUnknown()) { 117 // Don't handle byval struct arguments or VLAs, for example. 118 // Non-byval arguments are handled here (they refer to the stack 119 // temporary alloca at this point). 120 const Value *Address = DI->getAddress(); 121 if (Address) { 122 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 123 Address = BCI->getOperand(0); 124 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 125 DenseMap<const AllocaInst *, int>::iterator SI = 126 StaticAllocaMap.find(AI); 127 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 128 int FI = SI->second; 129 MMI.setVariableDbgInfo(DI->getVariable(), 130 FI, DI->getDebugLoc()); 131 } 132 } 133 } 134 } 135 } 136 } 137 138 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 139 // also creates the initial PHI MachineInstrs, though none of the input 140 // operands are populated. 141 for (BB = Fn->begin(); BB != EB; ++BB) { 142 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 143 MBBMap[BB] = MBB; 144 MF->push_back(MBB); 145 146 // Transfer the address-taken flag. This is necessary because there could 147 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 148 // the first one should be marked. 149 if (BB->hasAddressTaken()) 150 MBB->setHasAddressTaken(); 151 152 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 153 // appropriate. 154 for (BasicBlock::const_iterator I = BB->begin(); 155 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 156 if (PN->use_empty()) continue; 157 158 DebugLoc DL = PN->getDebugLoc(); 159 unsigned PHIReg = ValueMap[PN]; 160 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 161 162 SmallVector<EVT, 4> ValueVTs; 163 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 164 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 165 EVT VT = ValueVTs[vti]; 166 unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); 167 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 168 for (unsigned i = 0; i != NumRegisters; ++i) 169 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 170 PHIReg += NumRegisters; 171 } 172 } 173 } 174 175 // Mark landing pad blocks. 176 for (BB = Fn->begin(); BB != EB; ++BB) 177 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 178 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 179 } 180 181 /// clear - Clear out all the function-specific state. This returns this 182 /// FunctionLoweringInfo to an empty state, ready to be used for a 183 /// different function. 184 void FunctionLoweringInfo::clear() { 185 assert(CatchInfoFound.size() == CatchInfoLost.size() && 186 "Not all catch info was assigned to a landing pad!"); 187 188 MBBMap.clear(); 189 ValueMap.clear(); 190 StaticAllocaMap.clear(); 191 #ifndef NDEBUG 192 CatchInfoLost.clear(); 193 CatchInfoFound.clear(); 194 #endif 195 LiveOutRegInfo.clear(); 196 VisitedBBs.clear(); 197 ArgDbgValues.clear(); 198 ByValArgFrameIndexMap.clear(); 199 RegFixups.clear(); 200 } 201 202 /// CreateReg - Allocate a single virtual register for the given type. 203 unsigned FunctionLoweringInfo::CreateReg(EVT VT) { 204 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); 205 } 206 207 /// CreateRegs - Allocate the appropriate number of virtual registers of 208 /// the correctly promoted or expanded types. Assign these registers 209 /// consecutive vreg numbers and return the first assigned number. 210 /// 211 /// In the case that the given value has struct or array type, this function 212 /// will assign registers for each member or element. 213 /// 214 unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) { 215 SmallVector<EVT, 4> ValueVTs; 216 ComputeValueVTs(TLI, Ty, ValueVTs); 217 218 unsigned FirstReg = 0; 219 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 220 EVT ValueVT = ValueVTs[Value]; 221 EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT); 222 223 unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT); 224 for (unsigned i = 0; i != NumRegs; ++i) { 225 unsigned R = CreateReg(RegisterVT); 226 if (!FirstReg) FirstReg = R; 227 } 228 } 229 return FirstReg; 230 } 231 232 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 233 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 234 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 235 /// the larger bit width by zero extension. The bit width must be no smaller 236 /// than the LiveOutInfo's existing bit width. 237 const FunctionLoweringInfo::LiveOutInfo * 238 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 239 if (!LiveOutRegInfo.inBounds(Reg)) 240 return NULL; 241 242 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 243 if (!LOI->IsValid) 244 return NULL; 245 246 if (BitWidth > LOI->KnownZero.getBitWidth()) { 247 LOI->NumSignBits = 1; 248 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 249 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 250 } 251 252 return LOI; 253 } 254 255 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 256 /// register based on the LiveOutInfo of its operands. 257 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 258 const Type *Ty = PN->getType(); 259 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 260 return; 261 262 SmallVector<EVT, 1> ValueVTs; 263 ComputeValueVTs(TLI, Ty, ValueVTs); 264 assert(ValueVTs.size() == 1 && 265 "PHIs with non-vector integer types should have a single VT."); 266 EVT IntVT = ValueVTs[0]; 267 268 if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1) 269 return; 270 IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT); 271 unsigned BitWidth = IntVT.getSizeInBits(); 272 273 unsigned DestReg = ValueMap[PN]; 274 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 275 return; 276 LiveOutRegInfo.grow(DestReg); 277 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 278 279 Value *V = PN->getIncomingValue(0); 280 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 281 DestLOI.NumSignBits = 1; 282 APInt Zero(BitWidth, 0); 283 DestLOI.KnownZero = Zero; 284 DestLOI.KnownOne = Zero; 285 return; 286 } 287 288 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 289 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 290 DestLOI.NumSignBits = Val.getNumSignBits(); 291 DestLOI.KnownZero = ~Val; 292 DestLOI.KnownOne = Val; 293 } else { 294 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 295 "CopyToReg node was created."); 296 unsigned SrcReg = ValueMap[V]; 297 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 298 DestLOI.IsValid = false; 299 return; 300 } 301 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 302 if (!SrcLOI) { 303 DestLOI.IsValid = false; 304 return; 305 } 306 DestLOI = *SrcLOI; 307 } 308 309 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 310 DestLOI.KnownOne.getBitWidth() == BitWidth && 311 "Masks should have the same bit width as the type."); 312 313 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 314 Value *V = PN->getIncomingValue(i); 315 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 316 DestLOI.NumSignBits = 1; 317 APInt Zero(BitWidth, 0); 318 DestLOI.KnownZero = Zero; 319 DestLOI.KnownOne = Zero; 320 return; 321 } 322 323 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 324 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 325 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 326 DestLOI.KnownZero &= ~Val; 327 DestLOI.KnownOne &= Val; 328 continue; 329 } 330 331 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 332 "its CopyToReg node was created."); 333 unsigned SrcReg = ValueMap[V]; 334 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 335 DestLOI.IsValid = false; 336 return; 337 } 338 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 339 if (!SrcLOI) { 340 DestLOI.IsValid = false; 341 return; 342 } 343 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 344 DestLOI.KnownZero &= SrcLOI->KnownZero; 345 DestLOI.KnownOne &= SrcLOI->KnownOne; 346 } 347 } 348 349 /// setByValArgumentFrameIndex - Record frame index for the byval 350 /// argument. This overrides previous frame index entry for this argument, 351 /// if any. 352 void FunctionLoweringInfo::setByValArgumentFrameIndex(const Argument *A, 353 int FI) { 354 assert (A->hasByValAttr() && "Argument does not have byval attribute!"); 355 ByValArgFrameIndexMap[A] = FI; 356 } 357 358 /// getByValArgumentFrameIndex - Get frame index for the byval argument. 359 /// If the argument does not have any assigned frame index then 0 is 360 /// returned. 361 int FunctionLoweringInfo::getByValArgumentFrameIndex(const Argument *A) { 362 assert (A->hasByValAttr() && "Argument does not have byval attribute!"); 363 DenseMap<const Argument *, int>::iterator I = 364 ByValArgFrameIndexMap.find(A); 365 if (I != ByValArgFrameIndexMap.end()) 366 return I->second; 367 DEBUG(dbgs() << "Argument does not have assigned frame index!"); 368 return 0; 369 } 370 371 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 372 /// call, and add them to the specified machine basic block. 373 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 374 MachineBasicBlock *MBB) { 375 // Inform the MachineModuleInfo of the personality for this landing pad. 376 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 377 assert(CE->getOpcode() == Instruction::BitCast && 378 isa<Function>(CE->getOperand(0)) && 379 "Personality should be a function"); 380 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 381 382 // Gather all the type infos for this landing pad and pass them along to 383 // MachineModuleInfo. 384 std::vector<const GlobalVariable *> TyInfo; 385 unsigned N = I.getNumArgOperands(); 386 387 for (unsigned i = N - 1; i > 1; --i) { 388 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 389 unsigned FilterLength = CI->getZExtValue(); 390 unsigned FirstCatch = i + FilterLength + !FilterLength; 391 assert(FirstCatch <= N && "Invalid filter length"); 392 393 if (FirstCatch < N) { 394 TyInfo.reserve(N - FirstCatch); 395 for (unsigned j = FirstCatch; j < N; ++j) 396 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 397 MMI->addCatchTypeInfo(MBB, TyInfo); 398 TyInfo.clear(); 399 } 400 401 if (!FilterLength) { 402 // Cleanup. 403 MMI->addCleanup(MBB); 404 } else { 405 // Filter. 406 TyInfo.reserve(FilterLength - 1); 407 for (unsigned j = i + 1; j < FirstCatch; ++j) 408 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 409 MMI->addFilterTypeInfo(MBB, TyInfo); 410 TyInfo.clear(); 411 } 412 413 N = i; 414 } 415 } 416 417 if (N > 2) { 418 TyInfo.reserve(N - 2); 419 for (unsigned j = 2; j < N; ++j) 420 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 421 MMI->addCatchTypeInfo(MBB, TyInfo); 422 } 423 } 424 425 void llvm::CopyCatchInfo(const BasicBlock *SuccBB, const BasicBlock *LPad, 426 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { 427 SmallPtrSet<const BasicBlock*, 4> Visited; 428 429 // The 'eh.selector' call may not be in the direct successor of a basic block, 430 // but could be several successors deeper. If we don't find it, try going one 431 // level further. <rdar://problem/8824861> 432 while (Visited.insert(SuccBB)) { 433 for (BasicBlock::const_iterator I = SuccBB->begin(), E = --SuccBB->end(); 434 I != E; ++I) 435 if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { 436 // Apply the catch info to LPad. 437 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[LPad]); 438 #ifndef NDEBUG 439 if (!FLI.MBBMap[SuccBB]->isLandingPad()) 440 FLI.CatchInfoFound.insert(EHSel); 441 #endif 442 return; 443 } 444 445 const BranchInst *Br = dyn_cast<BranchInst>(SuccBB->getTerminator()); 446 if (Br && Br->isUnconditional()) 447 SuccBB = Br->getSuccessor(0); 448 else 449 break; 450 } 451 } 452