1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/WinEHFuncInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "function-lowering-info" 46 47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 48 /// PHI nodes or outside of the basic block that defines it, or used by a 49 /// switch or atomic instruction, which may expand to multiple basic blocks. 50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 51 if (I->use_empty()) return false; 52 if (isa<PHINode>(I)) return true; 53 const BasicBlock *BB = I->getParent(); 54 for (const User *U : I->users()) 55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 56 return true; 57 58 return false; 59 } 60 61 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 62 // For the users of the source value being used for compare instruction, if 63 // the number of signed predicate is greater than unsigned predicate, we 64 // prefer to use SIGN_EXTEND. 65 // 66 // With this optimization, we would be able to reduce some redundant sign or 67 // zero extension instruction, and eventually more machine CSE opportunities 68 // can be exposed. 69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 70 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 71 for (const User *U : V->users()) { 72 if (const auto *CI = dyn_cast<CmpInst>(U)) { 73 NumOfSigned += CI->isSigned(); 74 NumOfUnsigned += CI->isUnsigned(); 75 } 76 } 77 if (NumOfSigned > NumOfUnsigned) 78 ExtendKind = ISD::SIGN_EXTEND; 79 80 return ExtendKind; 81 } 82 83 namespace { 84 struct WinEHNumbering { 85 WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), NextState(0) {} 86 87 WinEHFuncInfo &FuncInfo; 88 int NextState; 89 90 SmallVector<ActionHandler *, 4> HandlerStack; 91 SmallPtrSet<const Function *, 4> VisitedHandlers; 92 93 int currentEHNumber() const { 94 return HandlerStack.empty() ? -1 : HandlerStack.back()->getEHState(); 95 } 96 97 void createUnwindMapEntry(int ToState, ActionHandler *AH); 98 void createTryBlockMapEntry(int TryLow, int TryHigh, 99 ArrayRef<CatchHandler *> Handlers); 100 void processCallSite(ArrayRef<ActionHandler *> Actions, ImmutableCallSite CS); 101 void calculateStateNumbers(const Function &F); 102 }; 103 } 104 105 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 106 SelectionDAG *DAG) { 107 Fn = &fn; 108 MF = &mf; 109 TLI = MF->getSubtarget().getTargetLowering(); 110 RegInfo = &MF->getRegInfo(); 111 MachineModuleInfo &MMI = MF->getMMI(); 112 113 // Check whether the function can return without sret-demotion. 114 SmallVector<ISD::OutputArg, 4> Outs; 115 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 116 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 117 Fn->isVarArg(), Outs, Fn->getContext()); 118 119 // Initialize the mapping of values to registers. This is only set up for 120 // instruction values that are used outside of the block that defines 121 // them. 122 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 123 for (; BB != EB; ++BB) 124 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 125 I != E; ++I) { 126 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 127 // Static allocas can be folded into the initial stack frame adjustment. 128 if (AI->isStaticAlloca()) { 129 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 130 Type *Ty = AI->getAllocatedType(); 131 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 132 unsigned Align = 133 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 134 AI->getAlignment()); 135 136 TySize *= CUI->getZExtValue(); // Get total allocated size. 137 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 138 139 StaticAllocaMap[AI] = 140 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 141 142 } else { 143 unsigned Align = std::max( 144 (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( 145 AI->getAllocatedType()), 146 AI->getAlignment()); 147 unsigned StackAlign = 148 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 149 if (Align <= StackAlign) 150 Align = 0; 151 // Inform the Frame Information that we have variable-sized objects. 152 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 153 } 154 } 155 156 // Look for inline asm that clobbers the SP register. 157 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 158 ImmutableCallSite CS(I); 159 if (isa<InlineAsm>(CS.getCalledValue())) { 160 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 161 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 162 std::vector<TargetLowering::AsmOperandInfo> Ops = 163 TLI->ParseConstraints(TRI, CS); 164 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 165 TargetLowering::AsmOperandInfo &Op = Ops[I]; 166 if (Op.Type == InlineAsm::isClobber) { 167 // Clobbers don't have SDValue operands, hence SDValue(). 168 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 169 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 170 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 171 Op.ConstraintVT); 172 if (PhysReg.first == SP) 173 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); 174 } 175 } 176 } 177 } 178 179 // Look for calls to the @llvm.va_start intrinsic. We can omit some 180 // prologue boilerplate for variadic functions that don't examine their 181 // arguments. 182 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 183 if (II->getIntrinsicID() == Intrinsic::vastart) 184 MF->getFrameInfo()->setHasVAStart(true); 185 } 186 187 // If we have a musttail call in a variadic funciton, we need to ensure we 188 // forward implicit register parameters. 189 if (const auto *CI = dyn_cast<CallInst>(I)) { 190 if (CI->isMustTailCall() && Fn->isVarArg()) 191 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 192 } 193 194 // Mark values used outside their block as exported, by allocating 195 // a virtual register for them. 196 if (isUsedOutsideOfDefiningBlock(I)) 197 if (!isa<AllocaInst>(I) || 198 !StaticAllocaMap.count(cast<AllocaInst>(I))) 199 InitializeRegForValue(I); 200 201 // Collect llvm.dbg.declare information. This is done now instead of 202 // during the initial isel pass through the IR so that it is done 203 // in a predictable order. 204 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 205 assert(DI->getVariable() && "Missing variable"); 206 assert(DI->getDebugLoc() && "Missing location"); 207 if (MMI.hasDebugInfo()) { 208 // Don't handle byval struct arguments or VLAs, for example. 209 // Non-byval arguments are handled here (they refer to the stack 210 // temporary alloca at this point). 211 const Value *Address = DI->getAddress(); 212 if (Address) { 213 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 214 Address = BCI->getOperand(0); 215 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 216 DenseMap<const AllocaInst *, int>::iterator SI = 217 StaticAllocaMap.find(AI); 218 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 219 int FI = SI->second; 220 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 221 FI, DI->getDebugLoc()); 222 } 223 } 224 } 225 } 226 } 227 228 // Decide the preferred extend type for a value. 229 PreferredExtendType[I] = getPreferredExtendForValue(I); 230 } 231 232 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 233 // also creates the initial PHI MachineInstrs, though none of the input 234 // operands are populated. 235 for (BB = Fn->begin(); BB != EB; ++BB) { 236 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 237 MBBMap[BB] = MBB; 238 MF->push_back(MBB); 239 240 // Transfer the address-taken flag. This is necessary because there could 241 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 242 // the first one should be marked. 243 if (BB->hasAddressTaken()) 244 MBB->setHasAddressTaken(); 245 246 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 247 // appropriate. 248 for (BasicBlock::const_iterator I = BB->begin(); 249 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 250 if (PN->use_empty()) continue; 251 252 // Skip empty types 253 if (PN->getType()->isEmptyTy()) 254 continue; 255 256 DebugLoc DL = PN->getDebugLoc(); 257 unsigned PHIReg = ValueMap[PN]; 258 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 259 260 SmallVector<EVT, 4> ValueVTs; 261 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 262 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 263 EVT VT = ValueVTs[vti]; 264 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 265 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 266 for (unsigned i = 0; i != NumRegisters; ++i) 267 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 268 PHIReg += NumRegisters; 269 } 270 } 271 } 272 273 // Mark landing pad blocks. 274 SmallVector<const LandingPadInst *, 4> LPads; 275 for (BB = Fn->begin(); BB != EB; ++BB) { 276 if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 277 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 278 if (BB->isLandingPad()) 279 LPads.push_back(BB->getLandingPadInst()); 280 } 281 282 // If this is an MSVC EH personality, we need to do a bit more work. 283 EHPersonality Personality = EHPersonality::Unknown; 284 if (!LPads.empty()) 285 Personality = classifyEHPersonality(LPads.back()->getPersonalityFn()); 286 if (!isMSVCEHPersonality(Personality)) 287 return; 288 289 WinEHFuncInfo *EHInfo = nullptr; 290 if (Personality == EHPersonality::MSVC_Win64SEH) { 291 addSEHHandlersForLPads(LPads); 292 } else if (Personality == EHPersonality::MSVC_CXX) { 293 const Function *WinEHParentFn = MMI.getWinEHParent(&fn); 294 EHInfo = &MMI.getWinEHFuncInfo(WinEHParentFn); 295 if (EHInfo->LandingPadStateMap.empty()) { 296 WinEHNumbering Num(*EHInfo); 297 Num.calculateStateNumbers(*WinEHParentFn); 298 // Pop everything on the handler stack. 299 Num.processCallSite(None, ImmutableCallSite()); 300 } 301 302 // Copy the state numbers to LandingPadInfo for the current function, which 303 // could be a handler or the parent. 304 for (const LandingPadInst *LP : LPads) { 305 MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; 306 MMI.addWinEHState(LPadMBB, EHInfo->LandingPadStateMap[LP]); 307 } 308 } 309 } 310 311 void FunctionLoweringInfo::addSEHHandlersForLPads( 312 ArrayRef<const LandingPadInst *> LPads) { 313 MachineModuleInfo &MMI = MF->getMMI(); 314 315 // Iterate over all landing pads with llvm.eh.actions calls. 316 for (const LandingPadInst *LP : LPads) { 317 const IntrinsicInst *ActionsCall = 318 dyn_cast<IntrinsicInst>(LP->getNextNode()); 319 if (!ActionsCall || 320 ActionsCall->getIntrinsicID() != Intrinsic::eh_actions) 321 continue; 322 323 // Parse the llvm.eh.actions call we found. 324 MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; 325 SmallVector<ActionHandler *, 4> Actions; 326 parseEHActions(ActionsCall, Actions); 327 328 // Iterate EH actions from most to least precedence, which means 329 // iterating in reverse. 330 for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) { 331 ActionHandler *Action = *I; 332 if (auto *CH = dyn_cast<CatchHandler>(Action)) { 333 const auto *Filter = 334 dyn_cast<Function>(CH->getSelector()->stripPointerCasts()); 335 assert((Filter || CH->getSelector()->isNullValue()) && 336 "expected function or catch-all"); 337 const auto *RecoverBA = 338 cast<BlockAddress>(CH->getHandlerBlockOrFunc()); 339 MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA); 340 } else { 341 assert(isa<CleanupHandler>(Action)); 342 const auto *Fini = cast<Function>(Action->getHandlerBlockOrFunc()); 343 MMI.addSEHCleanupHandler(LPadMBB, Fini); 344 } 345 } 346 DeleteContainerPointers(Actions); 347 } 348 } 349 350 void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) { 351 WinEHUnwindMapEntry UME; 352 UME.ToState = ToState; 353 if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH)) 354 UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc()); 355 else 356 UME.Cleanup = nullptr; 357 FuncInfo.UnwindMap.push_back(UME); 358 } 359 360 void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh, 361 ArrayRef<CatchHandler *> Handlers) { 362 WinEHTryBlockMapEntry TBME; 363 TBME.TryLow = TryLow; 364 TBME.TryHigh = TryHigh; 365 assert(TBME.TryLow <= TBME.TryHigh); 366 for (CatchHandler *CH : Handlers) { 367 WinEHHandlerType HT; 368 if (CH->getSelector()->isNullValue()) { 369 HT.Adjectives = 0x40; 370 HT.TypeDescriptor = nullptr; 371 } else { 372 auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts()); 373 // Selectors are always pointers to GlobalVariables with 'struct' type. 374 // The struct has two fields, adjectives and a type descriptor. 375 auto *CS = cast<ConstantStruct>(GV->getInitializer()); 376 HT.Adjectives = 377 cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue(); 378 HT.TypeDescriptor = 379 cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts()); 380 } 381 HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc()); 382 HT.CatchObjRecoverIdx = CH->getExceptionVarIndex(); 383 TBME.HandlerArray.push_back(HT); 384 } 385 FuncInfo.TryBlockMap.push_back(TBME); 386 } 387 388 static void print_name(const Value *V) { 389 #ifndef NDEBUG 390 if (!V) { 391 DEBUG(dbgs() << "null"); 392 return; 393 } 394 395 if (const auto *F = dyn_cast<Function>(V)) 396 DEBUG(dbgs() << F->getName()); 397 else 398 DEBUG(V->dump()); 399 #endif 400 } 401 402 void WinEHNumbering::processCallSite(ArrayRef<ActionHandler *> Actions, 403 ImmutableCallSite CS) { 404 int FirstMismatch = 0; 405 for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E; 406 ++FirstMismatch) { 407 if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() != 408 Actions[FirstMismatch]->getHandlerBlockOrFunc()) 409 break; 410 delete Actions[FirstMismatch]; 411 } 412 413 bool EnteringScope = (int)Actions.size() > FirstMismatch; 414 415 // Don't recurse while we are looping over the handler stack. Instead, defer 416 // the numbering of the catch handlers until we are done popping. 417 SmallVector<CatchHandler *, 4> PoppedCatches; 418 for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) { 419 if (auto *CH = dyn_cast<CatchHandler>(HandlerStack.back())) { 420 PoppedCatches.push_back(CH); 421 } else { 422 // Delete cleanup handlers 423 delete HandlerStack.back(); 424 } 425 HandlerStack.pop_back(); 426 } 427 428 // We need to create a new state number if we are exiting a try scope and we 429 // will not push any more actions. 430 int TryHigh = NextState - 1; 431 if (!EnteringScope && !PoppedCatches.empty()) { 432 createUnwindMapEntry(currentEHNumber(), nullptr); 433 ++NextState; 434 } 435 436 int LastTryLowIdx = 0; 437 for (int I = 0, E = PoppedCatches.size(); I != E; ++I) { 438 CatchHandler *CH = PoppedCatches[I]; 439 if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) { 440 int TryLow = CH->getEHState(); 441 auto Handlers = 442 makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1); 443 createTryBlockMapEntry(TryLow, TryHigh, Handlers); 444 LastTryLowIdx = I + 1; 445 } 446 } 447 448 for (CatchHandler *CH : PoppedCatches) { 449 if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) 450 calculateStateNumbers(*F); 451 delete CH; 452 } 453 454 bool LastActionWasCatch = false; 455 for (size_t I = FirstMismatch; I != Actions.size(); ++I) { 456 // We can reuse eh states when pushing two catches for the same invoke. 457 bool CurrActionIsCatch = isa<CatchHandler>(Actions[I]); 458 // FIXME: Reenable this optimization! 459 if (CurrActionIsCatch && LastActionWasCatch && false) { 460 Actions[I]->setEHState(currentEHNumber()); 461 } else { 462 createUnwindMapEntry(currentEHNumber(), Actions[I]); 463 Actions[I]->setEHState(NextState); 464 NextState++; 465 DEBUG(dbgs() << "Creating unwind map entry for: ("); 466 print_name(Actions[I]->getHandlerBlockOrFunc()); 467 DEBUG(dbgs() << ", " << currentEHNumber() << ")\n"); 468 } 469 HandlerStack.push_back(Actions[I]); 470 LastActionWasCatch = CurrActionIsCatch; 471 } 472 473 DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: "); 474 print_name(CS ? CS.getCalledValue() : nullptr); 475 DEBUG(dbgs() << '\n'); 476 } 477 478 void WinEHNumbering::calculateStateNumbers(const Function &F) { 479 auto I = VisitedHandlers.insert(&F); 480 if (!I.second) 481 return; // We've already visited this handler, don't renumber it. 482 483 DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n'); 484 SmallVector<ActionHandler *, 4> ActionList; 485 for (const BasicBlock &BB : F) { 486 for (const Instruction &I : BB) { 487 const auto *CI = dyn_cast<CallInst>(&I); 488 if (!CI || CI->doesNotThrow()) 489 continue; 490 processCallSite(None, CI); 491 } 492 const auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 493 if (!II) 494 continue; 495 const LandingPadInst *LPI = II->getLandingPadInst(); 496 auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode()); 497 if (!ActionsCall) 498 continue; 499 assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions); 500 parseEHActions(ActionsCall, ActionList); 501 processCallSite(ActionList, II); 502 ActionList.clear(); 503 FuncInfo.LandingPadStateMap[LPI] = currentEHNumber(); 504 } 505 506 FuncInfo.CatchHandlerMaxState[&F] = NextState - 1; 507 } 508 509 /// clear - Clear out all the function-specific state. This returns this 510 /// FunctionLoweringInfo to an empty state, ready to be used for a 511 /// different function. 512 void FunctionLoweringInfo::clear() { 513 assert(CatchInfoFound.size() == CatchInfoLost.size() && 514 "Not all catch info was assigned to a landing pad!"); 515 516 MBBMap.clear(); 517 ValueMap.clear(); 518 StaticAllocaMap.clear(); 519 #ifndef NDEBUG 520 CatchInfoLost.clear(); 521 CatchInfoFound.clear(); 522 #endif 523 LiveOutRegInfo.clear(); 524 VisitedBBs.clear(); 525 ArgDbgValues.clear(); 526 ByValArgFrameIndexMap.clear(); 527 RegFixups.clear(); 528 StatepointStackSlots.clear(); 529 PreferredExtendType.clear(); 530 } 531 532 /// CreateReg - Allocate a single virtual register for the given type. 533 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 534 return RegInfo->createVirtualRegister( 535 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 536 } 537 538 /// CreateRegs - Allocate the appropriate number of virtual registers of 539 /// the correctly promoted or expanded types. Assign these registers 540 /// consecutive vreg numbers and return the first assigned number. 541 /// 542 /// In the case that the given value has struct or array type, this function 543 /// will assign registers for each member or element. 544 /// 545 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 546 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 547 548 SmallVector<EVT, 4> ValueVTs; 549 ComputeValueVTs(*TLI, Ty, ValueVTs); 550 551 unsigned FirstReg = 0; 552 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 553 EVT ValueVT = ValueVTs[Value]; 554 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 555 556 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 557 for (unsigned i = 0; i != NumRegs; ++i) { 558 unsigned R = CreateReg(RegisterVT); 559 if (!FirstReg) FirstReg = R; 560 } 561 } 562 return FirstReg; 563 } 564 565 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 566 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 567 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 568 /// the larger bit width by zero extension. The bit width must be no smaller 569 /// than the LiveOutInfo's existing bit width. 570 const FunctionLoweringInfo::LiveOutInfo * 571 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 572 if (!LiveOutRegInfo.inBounds(Reg)) 573 return nullptr; 574 575 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 576 if (!LOI->IsValid) 577 return nullptr; 578 579 if (BitWidth > LOI->KnownZero.getBitWidth()) { 580 LOI->NumSignBits = 1; 581 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 582 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 583 } 584 585 return LOI; 586 } 587 588 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 589 /// register based on the LiveOutInfo of its operands. 590 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 591 Type *Ty = PN->getType(); 592 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 593 return; 594 595 SmallVector<EVT, 1> ValueVTs; 596 ComputeValueVTs(*TLI, Ty, ValueVTs); 597 assert(ValueVTs.size() == 1 && 598 "PHIs with non-vector integer types should have a single VT."); 599 EVT IntVT = ValueVTs[0]; 600 601 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 602 return; 603 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 604 unsigned BitWidth = IntVT.getSizeInBits(); 605 606 unsigned DestReg = ValueMap[PN]; 607 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 608 return; 609 LiveOutRegInfo.grow(DestReg); 610 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 611 612 Value *V = PN->getIncomingValue(0); 613 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 614 DestLOI.NumSignBits = 1; 615 APInt Zero(BitWidth, 0); 616 DestLOI.KnownZero = Zero; 617 DestLOI.KnownOne = Zero; 618 return; 619 } 620 621 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 622 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 623 DestLOI.NumSignBits = Val.getNumSignBits(); 624 DestLOI.KnownZero = ~Val; 625 DestLOI.KnownOne = Val; 626 } else { 627 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 628 "CopyToReg node was created."); 629 unsigned SrcReg = ValueMap[V]; 630 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 631 DestLOI.IsValid = false; 632 return; 633 } 634 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 635 if (!SrcLOI) { 636 DestLOI.IsValid = false; 637 return; 638 } 639 DestLOI = *SrcLOI; 640 } 641 642 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 643 DestLOI.KnownOne.getBitWidth() == BitWidth && 644 "Masks should have the same bit width as the type."); 645 646 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 647 Value *V = PN->getIncomingValue(i); 648 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 649 DestLOI.NumSignBits = 1; 650 APInt Zero(BitWidth, 0); 651 DestLOI.KnownZero = Zero; 652 DestLOI.KnownOne = Zero; 653 return; 654 } 655 656 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 657 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 658 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 659 DestLOI.KnownZero &= ~Val; 660 DestLOI.KnownOne &= Val; 661 continue; 662 } 663 664 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 665 "its CopyToReg node was created."); 666 unsigned SrcReg = ValueMap[V]; 667 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 668 DestLOI.IsValid = false; 669 return; 670 } 671 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 672 if (!SrcLOI) { 673 DestLOI.IsValid = false; 674 return; 675 } 676 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 677 DestLOI.KnownZero &= SrcLOI->KnownZero; 678 DestLOI.KnownOne &= SrcLOI->KnownOne; 679 } 680 } 681 682 /// setArgumentFrameIndex - Record frame index for the byval 683 /// argument. This overrides previous frame index entry for this argument, 684 /// if any. 685 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 686 int FI) { 687 ByValArgFrameIndexMap[A] = FI; 688 } 689 690 /// getArgumentFrameIndex - Get frame index for the byval argument. 691 /// If the argument does not have any assigned frame index then 0 is 692 /// returned. 693 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 694 DenseMap<const Argument *, int>::iterator I = 695 ByValArgFrameIndexMap.find(A); 696 if (I != ByValArgFrameIndexMap.end()) 697 return I->second; 698 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 699 return 0; 700 } 701 702 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 703 /// being passed to this variadic function, and set the MachineModuleInfo's 704 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 705 /// reference to _fltused on Windows, which will link in MSVCRT's 706 /// floating-point support. 707 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 708 MachineModuleInfo *MMI) 709 { 710 FunctionType *FT = cast<FunctionType>( 711 I.getCalledValue()->getType()->getContainedType(0)); 712 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 713 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 714 Type* T = I.getArgOperand(i)->getType(); 715 for (auto i : post_order(T)) { 716 if (i->isFloatingPointTy()) { 717 MMI->setUsesVAFloatArgument(true); 718 return; 719 } 720 } 721 } 722 } 723 } 724 725 /// AddLandingPadInfo - Extract the exception handling information from the 726 /// landingpad instruction and add them to the specified machine module info. 727 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 728 MachineBasicBlock *MBB) { 729 MMI.addPersonality(MBB, 730 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 731 732 if (I.isCleanup()) 733 MMI.addCleanup(MBB); 734 735 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 736 // but we need to do it this way because of how the DWARF EH emitter 737 // processes the clauses. 738 for (unsigned i = I.getNumClauses(); i != 0; --i) { 739 Value *Val = I.getClause(i - 1); 740 if (I.isCatch(i - 1)) { 741 MMI.addCatchTypeInfo(MBB, 742 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 743 } else { 744 // Add filters in a list. 745 Constant *CVal = cast<Constant>(Val); 746 SmallVector<const GlobalValue*, 4> FilterList; 747 for (User::op_iterator 748 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 749 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 750 751 MMI.addFilterTypeInfo(MBB, FilterList); 752 } 753 } 754 } 755