1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
16 #include "llvm/CodeGen/Analysis.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include <algorithm>
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "function-lowering-info"
43 
44 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
45 /// PHI nodes or outside of the basic block that defines it, or used by a
46 /// switch or atomic instruction, which may expand to multiple basic blocks.
47 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
48   if (I->use_empty()) return false;
49   if (isa<PHINode>(I)) return true;
50   const BasicBlock *BB = I->getParent();
51   for (const User *U : I->users())
52     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
53       return true;
54 
55   return false;
56 }
57 
58 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
59   // For the users of the source value being used for compare instruction, if
60   // the number of signed predicate is greater than unsigned predicate, we
61   // prefer to use SIGN_EXTEND.
62   //
63   // With this optimization, we would be able to reduce some redundant sign or
64   // zero extension instruction, and eventually more machine CSE opportunities
65   // can be exposed.
66   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
67   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
68   for (const User *U : V->users()) {
69     if (const auto *CI = dyn_cast<CmpInst>(U)) {
70       NumOfSigned += CI->isSigned();
71       NumOfUnsigned += CI->isUnsigned();
72     }
73   }
74   if (NumOfSigned > NumOfUnsigned)
75     ExtendKind = ISD::SIGN_EXTEND;
76 
77   return ExtendKind;
78 }
79 
80 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
81                                SelectionDAG *DAG) {
82   Fn = &fn;
83   MF = &mf;
84   TLI = MF->getSubtarget().getTargetLowering();
85   RegInfo = &MF->getRegInfo();
86   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
87   unsigned StackAlign = TFI->getStackAlignment();
88 
89   // Check whether the function can return without sret-demotion.
90   SmallVector<ISD::OutputArg, 4> Outs;
91   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
92                 mf.getDataLayout());
93   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
94                                        Fn->isVarArg(), Outs, Fn->getContext());
95 
96   // If this personality uses funclets, we need to do a bit more work.
97   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
98   EHPersonality Personality = classifyEHPersonality(
99       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
100   if (isFuncletEHPersonality(Personality)) {
101     // Calculate state numbers if we haven't already.
102     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
103     if (Personality == EHPersonality::MSVC_CXX)
104       calculateWinCXXEHStateNumbers(&fn, EHInfo);
105     else if (isAsynchronousEHPersonality(Personality))
106       calculateSEHStateNumbers(&fn, EHInfo);
107     else if (Personality == EHPersonality::CoreCLR)
108       calculateClrEHStateNumbers(&fn, EHInfo);
109 
110     // Map all BB references in the WinEH data to MBBs.
111     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
112       for (WinEHHandlerType &H : TBME.HandlerArray) {
113         if (const AllocaInst *AI = H.CatchObj.Alloca)
114           CatchObjects.insert({AI, {}}).first->second.push_back(
115               &H.CatchObj.FrameIndex);
116         else
117           H.CatchObj.FrameIndex = INT_MAX;
118       }
119     }
120   }
121 
122   // Initialize the mapping of values to registers.  This is only set up for
123   // instruction values that are used outside of the block that defines
124   // them.
125   for (const BasicBlock &BB : *Fn) {
126     for (const Instruction &I : BB) {
127       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
128         Type *Ty = AI->getAllocatedType();
129         unsigned Align =
130           std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
131                    AI->getAlignment());
132 
133         // Static allocas can be folded into the initial stack frame
134         // adjustment. For targets that don't realign the stack, don't
135         // do this if there is an extra alignment requirement.
136         if (AI->isStaticAlloca() &&
137             (TFI->isStackRealignable() || (Align <= StackAlign))) {
138           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
139           uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
140 
141           TySize *= CUI->getZExtValue();   // Get total allocated size.
142           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
143           int FrameIndex = INT_MAX;
144           auto Iter = CatchObjects.find(AI);
145           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
146             FrameIndex = MF->getFrameInfo().CreateFixedObject(
147                 TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
148             MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
149           } else {
150             FrameIndex =
151                 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
152           }
153 
154           StaticAllocaMap[AI] = FrameIndex;
155           // Update the catch handler information.
156           if (Iter != CatchObjects.end()) {
157             for (int *CatchObjPtr : Iter->second)
158               *CatchObjPtr = FrameIndex;
159           }
160         } else {
161           // FIXME: Overaligned static allocas should be grouped into
162           // a single dynamic allocation instead of using a separate
163           // stack allocation for each one.
164           if (Align <= StackAlign)
165             Align = 0;
166           // Inform the Frame Information that we have variable-sized objects.
167           MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
168         }
169       }
170 
171       // Look for inline asm that clobbers the SP register.
172       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
173         ImmutableCallSite CS(&I);
174         if (isa<InlineAsm>(CS.getCalledValue())) {
175           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
176           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
177           std::vector<TargetLowering::AsmOperandInfo> Ops =
178               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
179           for (TargetLowering::AsmOperandInfo &Op : Ops) {
180             if (Op.Type == InlineAsm::isClobber) {
181               // Clobbers don't have SDValue operands, hence SDValue().
182               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
183               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
184                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
185                                                     Op.ConstraintVT);
186               if (PhysReg.first == SP)
187                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
188             }
189           }
190         }
191       }
192 
193       // Look for calls to the @llvm.va_start intrinsic. We can omit some
194       // prologue boilerplate for variadic functions that don't examine their
195       // arguments.
196       if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
197         if (II->getIntrinsicID() == Intrinsic::vastart)
198           MF->getFrameInfo().setHasVAStart(true);
199       }
200 
201       // If we have a musttail call in a variadic function, we need to ensure we
202       // forward implicit register parameters.
203       if (const auto *CI = dyn_cast<CallInst>(&I)) {
204         if (CI->isMustTailCall() && Fn->isVarArg())
205           MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
206       }
207 
208       // Mark values used outside their block as exported, by allocating
209       // a virtual register for them.
210       if (isUsedOutsideOfDefiningBlock(&I))
211         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
212           InitializeRegForValue(&I);
213 
214       // Decide the preferred extend type for a value.
215       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
216     }
217   }
218 
219   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
220   // also creates the initial PHI MachineInstrs, though none of the input
221   // operands are populated.
222   for (const BasicBlock &BB : *Fn) {
223     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
224     // are really data, and no instructions can live here.
225     if (BB.isEHPad()) {
226       const Instruction *PadInst = BB.getFirstNonPHI();
227       // If this is a non-landingpad EH pad, mark this function as using
228       // funclets.
229       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
230       // setting this in such cases in order to improve frame layout.
231       if (!isa<LandingPadInst>(PadInst)) {
232         MF->setHasEHScopes(true);
233         MF->setHasEHFunclets(true);
234         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
235       }
236       if (isa<CatchSwitchInst>(PadInst)) {
237         assert(&*BB.begin() == PadInst &&
238                "WinEHPrepare failed to remove PHIs from imaginary BBs");
239         continue;
240       }
241       if (isa<FuncletPadInst>(PadInst))
242         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
243     }
244 
245     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
246     MBBMap[&BB] = MBB;
247     MF->push_back(MBB);
248 
249     // Transfer the address-taken flag. This is necessary because there could
250     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
251     // the first one should be marked.
252     if (BB.hasAddressTaken())
253       MBB->setHasAddressTaken();
254 
255     // Mark landing pad blocks.
256     if (BB.isEHPad())
257       MBB->setIsEHPad();
258 
259     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
260     // appropriate.
261     for (const PHINode &PN : BB.phis()) {
262       if (PN.use_empty())
263         continue;
264 
265       // Skip empty types
266       if (PN.getType()->isEmptyTy())
267         continue;
268 
269       DebugLoc DL = PN.getDebugLoc();
270       unsigned PHIReg = ValueMap[&PN];
271       assert(PHIReg && "PHI node does not have an assigned virtual register!");
272 
273       SmallVector<EVT, 4> ValueVTs;
274       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
275       for (EVT VT : ValueVTs) {
276         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
277         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
278         for (unsigned i = 0; i != NumRegisters; ++i)
279           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
280         PHIReg += NumRegisters;
281       }
282     }
283   }
284 
285   if (!isFuncletEHPersonality(Personality))
286     return;
287 
288   WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
289 
290   // Map all BB references in the WinEH data to MBBs.
291   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
292     for (WinEHHandlerType &H : TBME.HandlerArray) {
293       if (H.Handler)
294         H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
295     }
296   }
297   for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
298     if (UME.Cleanup)
299       UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
300   for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
301     const BasicBlock *BB = UME.Handler.get<const BasicBlock *>();
302     UME.Handler = MBBMap[BB];
303   }
304   for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
305     const BasicBlock *BB = CME.Handler.get<const BasicBlock *>();
306     CME.Handler = MBBMap[BB];
307   }
308 }
309 
310 /// clear - Clear out all the function-specific state. This returns this
311 /// FunctionLoweringInfo to an empty state, ready to be used for a
312 /// different function.
313 void FunctionLoweringInfo::clear() {
314   MBBMap.clear();
315   ValueMap.clear();
316   VirtReg2Value.clear();
317   StaticAllocaMap.clear();
318   LiveOutRegInfo.clear();
319   VisitedBBs.clear();
320   ArgDbgValues.clear();
321   ByValArgFrameIndexMap.clear();
322   RegFixups.clear();
323   RegsWithFixups.clear();
324   StatepointStackSlots.clear();
325   StatepointSpillMaps.clear();
326   PreferredExtendType.clear();
327 }
328 
329 /// CreateReg - Allocate a single virtual register for the given type.
330 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
331   return RegInfo->createVirtualRegister(
332       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
333 }
334 
335 /// CreateRegs - Allocate the appropriate number of virtual registers of
336 /// the correctly promoted or expanded types.  Assign these registers
337 /// consecutive vreg numbers and return the first assigned number.
338 ///
339 /// In the case that the given value has struct or array type, this function
340 /// will assign registers for each member or element.
341 ///
342 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
343   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
344 
345   SmallVector<EVT, 4> ValueVTs;
346   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
347 
348   unsigned FirstReg = 0;
349   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
350     EVT ValueVT = ValueVTs[Value];
351     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
352 
353     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
354     for (unsigned i = 0; i != NumRegs; ++i) {
355       unsigned R = CreateReg(RegisterVT);
356       if (!FirstReg) FirstReg = R;
357     }
358   }
359   return FirstReg;
360 }
361 
362 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
363 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
364 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
365 /// the larger bit width by zero extension. The bit width must be no smaller
366 /// than the LiveOutInfo's existing bit width.
367 const FunctionLoweringInfo::LiveOutInfo *
368 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
369   if (!LiveOutRegInfo.inBounds(Reg))
370     return nullptr;
371 
372   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
373   if (!LOI->IsValid)
374     return nullptr;
375 
376   if (BitWidth > LOI->Known.getBitWidth()) {
377     LOI->NumSignBits = 1;
378     LOI->Known = LOI->Known.zextOrTrunc(BitWidth);
379   }
380 
381   return LOI;
382 }
383 
384 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
385 /// register based on the LiveOutInfo of its operands.
386 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
387   Type *Ty = PN->getType();
388   if (!Ty->isIntegerTy() || Ty->isVectorTy())
389     return;
390 
391   SmallVector<EVT, 1> ValueVTs;
392   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
393   assert(ValueVTs.size() == 1 &&
394          "PHIs with non-vector integer types should have a single VT.");
395   EVT IntVT = ValueVTs[0];
396 
397   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
398     return;
399   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
400   unsigned BitWidth = IntVT.getSizeInBits();
401 
402   unsigned DestReg = ValueMap[PN];
403   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
404     return;
405   LiveOutRegInfo.grow(DestReg);
406   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
407 
408   Value *V = PN->getIncomingValue(0);
409   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
410     DestLOI.NumSignBits = 1;
411     DestLOI.Known = KnownBits(BitWidth);
412     return;
413   }
414 
415   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
416     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
417     DestLOI.NumSignBits = Val.getNumSignBits();
418     DestLOI.Known.Zero = ~Val;
419     DestLOI.Known.One = Val;
420   } else {
421     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
422                                 "CopyToReg node was created.");
423     unsigned SrcReg = ValueMap[V];
424     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
425       DestLOI.IsValid = false;
426       return;
427     }
428     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
429     if (!SrcLOI) {
430       DestLOI.IsValid = false;
431       return;
432     }
433     DestLOI = *SrcLOI;
434   }
435 
436   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
437          DestLOI.Known.One.getBitWidth() == BitWidth &&
438          "Masks should have the same bit width as the type.");
439 
440   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
441     Value *V = PN->getIncomingValue(i);
442     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
443       DestLOI.NumSignBits = 1;
444       DestLOI.Known = KnownBits(BitWidth);
445       return;
446     }
447 
448     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
449       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
450       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
451       DestLOI.Known.Zero &= ~Val;
452       DestLOI.Known.One &= Val;
453       continue;
454     }
455 
456     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
457                                 "its CopyToReg node was created.");
458     unsigned SrcReg = ValueMap[V];
459     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
460       DestLOI.IsValid = false;
461       return;
462     }
463     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
464     if (!SrcLOI) {
465       DestLOI.IsValid = false;
466       return;
467     }
468     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
469     DestLOI.Known.Zero &= SrcLOI->Known.Zero;
470     DestLOI.Known.One &= SrcLOI->Known.One;
471   }
472 }
473 
474 /// setArgumentFrameIndex - Record frame index for the byval
475 /// argument. This overrides previous frame index entry for this argument,
476 /// if any.
477 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
478                                                  int FI) {
479   ByValArgFrameIndexMap[A] = FI;
480 }
481 
482 /// getArgumentFrameIndex - Get frame index for the byval argument.
483 /// If the argument does not have any assigned frame index then 0 is
484 /// returned.
485 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
486   auto I = ByValArgFrameIndexMap.find(A);
487   if (I != ByValArgFrameIndexMap.end())
488     return I->second;
489   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
490   return INT_MAX;
491 }
492 
493 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
494     const Value *CPI, const TargetRegisterClass *RC) {
495   MachineRegisterInfo &MRI = MF->getRegInfo();
496   auto I = CatchPadExceptionPointers.insert({CPI, 0});
497   unsigned &VReg = I.first->second;
498   if (I.second)
499     VReg = MRI.createVirtualRegister(RC);
500   assert(VReg && "null vreg in exception pointer table!");
501   return VReg;
502 }
503 
504 unsigned
505 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB,
506                                                 const Value *Val) {
507   auto Key = std::make_pair(MBB, Val);
508   auto It = SwiftErrorVRegDefMap.find(Key);
509   // If this is the first use of this swifterror value in this basic block,
510   // create a new virtual register.
511   // After we processed all basic blocks we will satisfy this "upwards exposed
512   // use" by inserting a copy or phi at the beginning of this block.
513   if (It == SwiftErrorVRegDefMap.end()) {
514     auto &DL = MF->getDataLayout();
515     const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
516     auto VReg = MF->getRegInfo().createVirtualRegister(RC);
517     SwiftErrorVRegDefMap[Key] = VReg;
518     SwiftErrorVRegUpwardsUse[Key] = VReg;
519     return VReg;
520   } else return It->second;
521 }
522 
523 void FunctionLoweringInfo::setCurrentSwiftErrorVReg(
524     const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) {
525   SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg;
526 }
527 
528 std::pair<unsigned, bool>
529 FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) {
530   auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true);
531   auto It = SwiftErrorVRegDefUses.find(Key);
532   if (It == SwiftErrorVRegDefUses.end()) {
533     auto &DL = MF->getDataLayout();
534     const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
535     unsigned VReg =  MF->getRegInfo().createVirtualRegister(RC);
536     SwiftErrorVRegDefUses[Key] = VReg;
537     return std::make_pair(VReg, true);
538   }
539   return std::make_pair(It->second, false);
540 }
541 
542 std::pair<unsigned, bool>
543 FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) {
544   auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false);
545   auto It = SwiftErrorVRegDefUses.find(Key);
546   if (It == SwiftErrorVRegDefUses.end()) {
547     unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val);
548     SwiftErrorVRegDefUses[Key] = VReg;
549     return std::make_pair(VReg, true);
550   }
551   return std::make_pair(It->second, false);
552 }
553 
554 const Value *
555 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
556   if (VirtReg2Value.empty()) {
557     for (auto &P : ValueMap) {
558       VirtReg2Value[P.second] = P.first;
559     }
560   }
561   return VirtReg2Value[Vreg];
562 }
563