1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/CodeGen/Analysis.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineModuleInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/WinEHFuncInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetFrameLowering.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "function-lowering-info" 45 46 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 47 /// PHI nodes or outside of the basic block that defines it, or used by a 48 /// switch or atomic instruction, which may expand to multiple basic blocks. 49 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 50 if (I->use_empty()) return false; 51 if (isa<PHINode>(I)) return true; 52 const BasicBlock *BB = I->getParent(); 53 for (const User *U : I->users()) 54 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 55 return true; 56 57 return false; 58 } 59 60 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 61 // For the users of the source value being used for compare instruction, if 62 // the number of signed predicate is greater than unsigned predicate, we 63 // prefer to use SIGN_EXTEND. 64 // 65 // With this optimization, we would be able to reduce some redundant sign or 66 // zero extension instruction, and eventually more machine CSE opportunities 67 // can be exposed. 68 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 69 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 70 for (const User *U : V->users()) { 71 if (const auto *CI = dyn_cast<CmpInst>(U)) { 72 NumOfSigned += CI->isSigned(); 73 NumOfUnsigned += CI->isUnsigned(); 74 } 75 } 76 if (NumOfSigned > NumOfUnsigned) 77 ExtendKind = ISD::SIGN_EXTEND; 78 79 return ExtendKind; 80 } 81 82 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 83 SelectionDAG *DAG) { 84 Fn = &fn; 85 MF = &mf; 86 TLI = MF->getSubtarget().getTargetLowering(); 87 RegInfo = &MF->getRegInfo(); 88 MachineModuleInfo &MMI = MF->getMMI(); 89 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 90 unsigned StackAlign = TFI->getStackAlignment(); 91 92 // Check whether the function can return without sret-demotion. 93 SmallVector<ISD::OutputArg, 4> Outs; 94 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 95 mf.getDataLayout()); 96 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 97 Fn->isVarArg(), Outs, Fn->getContext()); 98 99 // If this personality uses funclets, we need to do a bit more work. 100 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; 101 EHPersonality Personality = classifyEHPersonality( 102 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); 103 if (isFuncletEHPersonality(Personality)) { 104 // Calculate state numbers if we haven't already. 105 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 106 if (Personality == EHPersonality::MSVC_CXX) 107 calculateWinCXXEHStateNumbers(&fn, EHInfo); 108 else if (isAsynchronousEHPersonality(Personality)) 109 calculateSEHStateNumbers(&fn, EHInfo); 110 else if (Personality == EHPersonality::CoreCLR) 111 calculateClrEHStateNumbers(&fn, EHInfo); 112 113 // Map all BB references in the WinEH data to MBBs. 114 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 115 for (WinEHHandlerType &H : TBME.HandlerArray) { 116 if (const AllocaInst *AI = H.CatchObj.Alloca) 117 CatchObjects.insert({AI, {}}).first->second.push_back( 118 &H.CatchObj.FrameIndex); 119 else 120 H.CatchObj.FrameIndex = INT_MAX; 121 } 122 } 123 } 124 125 // Initialize the mapping of values to registers. This is only set up for 126 // instruction values that are used outside of the block that defines 127 // them. 128 for (const BasicBlock &BB : *Fn) { 129 for (const Instruction &I : BB) { 130 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 131 Type *Ty = AI->getAllocatedType(); 132 unsigned Align = 133 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 134 AI->getAlignment()); 135 136 // Static allocas can be folded into the initial stack frame 137 // adjustment. For targets that don't realign the stack, don't 138 // do this if there is an extra alignment requirement. 139 if (AI->isStaticAlloca() && 140 (TFI->isStackRealignable() || (Align <= StackAlign))) { 141 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 142 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 143 144 TySize *= CUI->getZExtValue(); // Get total allocated size. 145 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 146 int FrameIndex = INT_MAX; 147 auto Iter = CatchObjects.find(AI); 148 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { 149 FrameIndex = MF->getFrameInfo().CreateFixedObject( 150 TySize, 0, /*Immutable=*/false, /*isAliased=*/true); 151 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); 152 } else { 153 FrameIndex = 154 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); 155 } 156 157 StaticAllocaMap[AI] = FrameIndex; 158 // Update the catch handler information. 159 if (Iter != CatchObjects.end()) { 160 for (int *CatchObjPtr : Iter->second) 161 *CatchObjPtr = FrameIndex; 162 } 163 } else { 164 // FIXME: Overaligned static allocas should be grouped into 165 // a single dynamic allocation instead of using a separate 166 // stack allocation for each one. 167 if (Align <= StackAlign) 168 Align = 0; 169 // Inform the Frame Information that we have variable-sized objects. 170 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); 171 } 172 } 173 174 // Look for inline asm that clobbers the SP register. 175 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 176 ImmutableCallSite CS(&I); 177 if (isa<InlineAsm>(CS.getCalledValue())) { 178 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 179 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 180 std::vector<TargetLowering::AsmOperandInfo> Ops = 181 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 182 for (TargetLowering::AsmOperandInfo &Op : Ops) { 183 if (Op.Type == InlineAsm::isClobber) { 184 // Clobbers don't have SDValue operands, hence SDValue(). 185 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 186 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 187 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 188 Op.ConstraintVT); 189 if (PhysReg.first == SP) 190 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 191 } 192 } 193 } 194 } 195 196 // Look for calls to the @llvm.va_start intrinsic. We can omit some 197 // prologue boilerplate for variadic functions that don't examine their 198 // arguments. 199 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 200 if (II->getIntrinsicID() == Intrinsic::vastart) 201 MF->getFrameInfo().setHasVAStart(true); 202 } 203 204 // If we have a musttail call in a variadic function, we need to ensure we 205 // forward implicit register parameters. 206 if (const auto *CI = dyn_cast<CallInst>(&I)) { 207 if (CI->isMustTailCall() && Fn->isVarArg()) 208 MF->getFrameInfo().setHasMustTailInVarArgFunc(true); 209 } 210 211 // Mark values used outside their block as exported, by allocating 212 // a virtual register for them. 213 if (isUsedOutsideOfDefiningBlock(&I)) 214 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) 215 InitializeRegForValue(&I); 216 217 // Collect llvm.dbg.declare information. This is done now instead of 218 // during the initial isel pass through the IR so that it is done 219 // in a predictable order. 220 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I)) { 221 assert(DI->getVariable() && "Missing variable"); 222 assert(DI->getDebugLoc() && "Missing location"); 223 if (MMI.hasDebugInfo()) { 224 // Don't handle byval struct arguments or VLAs, for example. 225 // Non-byval arguments are handled here (they refer to the stack 226 // temporary alloca at this point). 227 const Value *Address = DI->getAddress(); 228 if (Address) { 229 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 230 Address = BCI->getOperand(0); 231 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 232 DenseMap<const AllocaInst *, int>::iterator SI = 233 StaticAllocaMap.find(AI); 234 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 235 int FI = SI->second; 236 MF->setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 237 FI, DI->getDebugLoc()); 238 } 239 } 240 } 241 } 242 } 243 244 // Decide the preferred extend type for a value. 245 PreferredExtendType[&I] = getPreferredExtendForValue(&I); 246 } 247 } 248 249 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 250 // also creates the initial PHI MachineInstrs, though none of the input 251 // operands are populated. 252 for (const BasicBlock &BB : *Fn) { 253 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 254 // are really data, and no instructions can live here. 255 if (BB.isEHPad()) { 256 const Instruction *PadInst = BB.getFirstNonPHI(); 257 // If this is a non-landingpad EH pad, mark this function as using 258 // funclets. 259 // FIXME: SEH catchpads do not create funclets, so we could avoid setting 260 // this in such cases in order to improve frame layout. 261 if (!isa<LandingPadInst>(PadInst)) { 262 MF->setHasEHFunclets(true); 263 MF->getFrameInfo().setHasOpaqueSPAdjustment(true); 264 } 265 if (isa<CatchSwitchInst>(PadInst)) { 266 assert(&*BB.begin() == PadInst && 267 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 268 continue; 269 } 270 if (isa<FuncletPadInst>(PadInst)) 271 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); 272 } 273 274 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); 275 MBBMap[&BB] = MBB; 276 MF->push_back(MBB); 277 278 // Transfer the address-taken flag. This is necessary because there could 279 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 280 // the first one should be marked. 281 if (BB.hasAddressTaken()) 282 MBB->setHasAddressTaken(); 283 284 // Mark landing pad blocks. 285 if (BB.isEHPad()) 286 MBB->setIsEHPad(); 287 288 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 289 // appropriate. 290 for (BasicBlock::const_iterator I = BB.begin(); 291 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 292 if (PN->use_empty()) continue; 293 294 // Skip empty types 295 if (PN->getType()->isEmptyTy()) 296 continue; 297 298 DebugLoc DL = PN->getDebugLoc(); 299 unsigned PHIReg = ValueMap[PN]; 300 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 301 302 SmallVector<EVT, 4> ValueVTs; 303 ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs); 304 for (EVT VT : ValueVTs) { 305 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 306 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 307 for (unsigned i = 0; i != NumRegisters; ++i) 308 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 309 PHIReg += NumRegisters; 310 } 311 } 312 } 313 314 if (!isFuncletEHPersonality(Personality)) 315 return; 316 317 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); 318 319 // Map all BB references in the WinEH data to MBBs. 320 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 321 for (WinEHHandlerType &H : TBME.HandlerArray) { 322 if (H.Handler) 323 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; 324 } 325 } 326 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) 327 if (UME.Cleanup) 328 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; 329 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 330 const BasicBlock *BB = UME.Handler.get<const BasicBlock *>(); 331 UME.Handler = MBBMap[BB]; 332 } 333 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { 334 const BasicBlock *BB = CME.Handler.get<const BasicBlock *>(); 335 CME.Handler = MBBMap[BB]; 336 } 337 } 338 339 /// clear - Clear out all the function-specific state. This returns this 340 /// FunctionLoweringInfo to an empty state, ready to be used for a 341 /// different function. 342 void FunctionLoweringInfo::clear() { 343 MBBMap.clear(); 344 ValueMap.clear(); 345 StaticAllocaMap.clear(); 346 LiveOutRegInfo.clear(); 347 VisitedBBs.clear(); 348 ArgDbgValues.clear(); 349 ByValArgFrameIndexMap.clear(); 350 RegFixups.clear(); 351 StatepointStackSlots.clear(); 352 StatepointSpillMaps.clear(); 353 PreferredExtendType.clear(); 354 } 355 356 /// CreateReg - Allocate a single virtual register for the given type. 357 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 358 return RegInfo->createVirtualRegister( 359 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 360 } 361 362 /// CreateRegs - Allocate the appropriate number of virtual registers of 363 /// the correctly promoted or expanded types. Assign these registers 364 /// consecutive vreg numbers and return the first assigned number. 365 /// 366 /// In the case that the given value has struct or array type, this function 367 /// will assign registers for each member or element. 368 /// 369 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 370 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 371 372 SmallVector<EVT, 4> ValueVTs; 373 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 374 375 unsigned FirstReg = 0; 376 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 377 EVT ValueVT = ValueVTs[Value]; 378 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 379 380 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 381 for (unsigned i = 0; i != NumRegs; ++i) { 382 unsigned R = CreateReg(RegisterVT); 383 if (!FirstReg) FirstReg = R; 384 } 385 } 386 return FirstReg; 387 } 388 389 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 390 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 391 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 392 /// the larger bit width by zero extension. The bit width must be no smaller 393 /// than the LiveOutInfo's existing bit width. 394 const FunctionLoweringInfo::LiveOutInfo * 395 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 396 if (!LiveOutRegInfo.inBounds(Reg)) 397 return nullptr; 398 399 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 400 if (!LOI->IsValid) 401 return nullptr; 402 403 if (BitWidth > LOI->KnownZero.getBitWidth()) { 404 LOI->NumSignBits = 1; 405 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 406 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 407 } 408 409 return LOI; 410 } 411 412 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 413 /// register based on the LiveOutInfo of its operands. 414 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 415 Type *Ty = PN->getType(); 416 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 417 return; 418 419 SmallVector<EVT, 1> ValueVTs; 420 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 421 assert(ValueVTs.size() == 1 && 422 "PHIs with non-vector integer types should have a single VT."); 423 EVT IntVT = ValueVTs[0]; 424 425 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 426 return; 427 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 428 unsigned BitWidth = IntVT.getSizeInBits(); 429 430 unsigned DestReg = ValueMap[PN]; 431 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 432 return; 433 LiveOutRegInfo.grow(DestReg); 434 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 435 436 Value *V = PN->getIncomingValue(0); 437 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 438 DestLOI.NumSignBits = 1; 439 APInt Zero(BitWidth, 0); 440 DestLOI.KnownZero = Zero; 441 DestLOI.KnownOne = Zero; 442 return; 443 } 444 445 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 446 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 447 DestLOI.NumSignBits = Val.getNumSignBits(); 448 DestLOI.KnownZero = ~Val; 449 DestLOI.KnownOne = Val; 450 } else { 451 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 452 "CopyToReg node was created."); 453 unsigned SrcReg = ValueMap[V]; 454 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 455 DestLOI.IsValid = false; 456 return; 457 } 458 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 459 if (!SrcLOI) { 460 DestLOI.IsValid = false; 461 return; 462 } 463 DestLOI = *SrcLOI; 464 } 465 466 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 467 DestLOI.KnownOne.getBitWidth() == BitWidth && 468 "Masks should have the same bit width as the type."); 469 470 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 471 Value *V = PN->getIncomingValue(i); 472 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 473 DestLOI.NumSignBits = 1; 474 APInt Zero(BitWidth, 0); 475 DestLOI.KnownZero = Zero; 476 DestLOI.KnownOne = Zero; 477 return; 478 } 479 480 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 481 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 482 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 483 DestLOI.KnownZero &= ~Val; 484 DestLOI.KnownOne &= Val; 485 continue; 486 } 487 488 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 489 "its CopyToReg node was created."); 490 unsigned SrcReg = ValueMap[V]; 491 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 492 DestLOI.IsValid = false; 493 return; 494 } 495 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 496 if (!SrcLOI) { 497 DestLOI.IsValid = false; 498 return; 499 } 500 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 501 DestLOI.KnownZero &= SrcLOI->KnownZero; 502 DestLOI.KnownOne &= SrcLOI->KnownOne; 503 } 504 } 505 506 /// setArgumentFrameIndex - Record frame index for the byval 507 /// argument. This overrides previous frame index entry for this argument, 508 /// if any. 509 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 510 int FI) { 511 ByValArgFrameIndexMap[A] = FI; 512 } 513 514 /// getArgumentFrameIndex - Get frame index for the byval argument. 515 /// If the argument does not have any assigned frame index then 0 is 516 /// returned. 517 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 518 DenseMap<const Argument *, int>::iterator I = 519 ByValArgFrameIndexMap.find(A); 520 if (I != ByValArgFrameIndexMap.end()) 521 return I->second; 522 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 523 return 0; 524 } 525 526 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( 527 const Value *CPI, const TargetRegisterClass *RC) { 528 MachineRegisterInfo &MRI = MF->getRegInfo(); 529 auto I = CatchPadExceptionPointers.insert({CPI, 0}); 530 unsigned &VReg = I.first->second; 531 if (I.second) 532 VReg = MRI.createVirtualRegister(RC); 533 assert(VReg && "null vreg in exception pointer table!"); 534 return VReg; 535 } 536 537 unsigned 538 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB, 539 const Value *Val) { 540 auto Key = std::make_pair(MBB, Val); 541 auto It = SwiftErrorVRegDefMap.find(Key); 542 // If this is the first use of this swifterror value in this basic block, 543 // create a new virtual register. 544 // After we processed all basic blocks we will satisfy this "upwards exposed 545 // use" by inserting a copy or phi at the beginning of this block. 546 if (It == SwiftErrorVRegDefMap.end()) { 547 auto &DL = MF->getDataLayout(); 548 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); 549 auto VReg = MF->getRegInfo().createVirtualRegister(RC); 550 SwiftErrorVRegDefMap[Key] = VReg; 551 SwiftErrorVRegUpwardsUse[Key] = VReg; 552 return VReg; 553 } else return It->second; 554 } 555 556 void FunctionLoweringInfo::setCurrentSwiftErrorVReg( 557 const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) { 558 SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg; 559 } 560