1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
16 #include "llvm/CodeGen/Analysis.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include <algorithm>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "function-lowering-info"
44 
45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
46 /// PHI nodes or outside of the basic block that defines it, or used by a
47 /// switch or atomic instruction, which may expand to multiple basic blocks.
48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
49   if (I->use_empty()) return false;
50   if (isa<PHINode>(I)) return true;
51   const BasicBlock *BB = I->getParent();
52   for (const User *U : I->users())
53     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
54       return true;
55 
56   return false;
57 }
58 
59 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
60   // For the users of the source value being used for compare instruction, if
61   // the number of signed predicate is greater than unsigned predicate, we
62   // prefer to use SIGN_EXTEND.
63   //
64   // With this optimization, we would be able to reduce some redundant sign or
65   // zero extension instruction, and eventually more machine CSE opportunities
66   // can be exposed.
67   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
68   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
69   for (const User *U : V->users()) {
70     if (const auto *CI = dyn_cast<CmpInst>(U)) {
71       NumOfSigned += CI->isSigned();
72       NumOfUnsigned += CI->isUnsigned();
73     }
74   }
75   if (NumOfSigned > NumOfUnsigned)
76     ExtendKind = ISD::SIGN_EXTEND;
77 
78   return ExtendKind;
79 }
80 
81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
82                                SelectionDAG *DAG) {
83   Fn = &fn;
84   MF = &mf;
85   TLI = MF->getSubtarget().getTargetLowering();
86   RegInfo = &MF->getRegInfo();
87   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
88   DA = DAG->getDivergenceAnalysis();
89 
90   // Check whether the function can return without sret-demotion.
91   SmallVector<ISD::OutputArg, 4> Outs;
92   CallingConv::ID CC = Fn->getCallingConv();
93 
94   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
95                 mf.getDataLayout());
96   CanLowerReturn =
97       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
98 
99   // If this personality uses funclets, we need to do a bit more work.
100   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
101   EHPersonality Personality = classifyEHPersonality(
102       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
103   if (isFuncletEHPersonality(Personality)) {
104     // Calculate state numbers if we haven't already.
105     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
106     if (Personality == EHPersonality::MSVC_CXX)
107       calculateWinCXXEHStateNumbers(&fn, EHInfo);
108     else if (isAsynchronousEHPersonality(Personality))
109       calculateSEHStateNumbers(&fn, EHInfo);
110     else if (Personality == EHPersonality::CoreCLR)
111       calculateClrEHStateNumbers(&fn, EHInfo);
112 
113     // Map all BB references in the WinEH data to MBBs.
114     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
115       for (WinEHHandlerType &H : TBME.HandlerArray) {
116         if (const AllocaInst *AI = H.CatchObj.Alloca)
117           CatchObjects.insert({AI, {}}).first->second.push_back(
118               &H.CatchObj.FrameIndex);
119         else
120           H.CatchObj.FrameIndex = INT_MAX;
121       }
122     }
123   }
124   if (Personality == EHPersonality::Wasm_CXX) {
125     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
126     calculateWasmEHInfo(&fn, EHInfo);
127   }
128 
129   // Initialize the mapping of values to registers.  This is only set up for
130   // instruction values that are used outside of the block that defines
131   // them.
132   const Align StackAlign = TFI->getStackAlign();
133   for (const BasicBlock &BB : *Fn) {
134     for (const Instruction &I : BB) {
135       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
136         Type *Ty = AI->getAllocatedType();
137         Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty);
138         // The "specified" alignment is the alignment written on the alloca,
139         // or the preferred alignment of the type if none is specified.
140         //
141         // (Unspecified alignment on allocas will be going away soon.)
142         Align SpecifiedAlign = AI->getAlign();
143 
144         // If the preferred alignment of the type is higher than the specified
145         // alignment of the alloca, promote the alignment, as long as it doesn't
146         // require realigning the stack.
147         //
148         // FIXME: Do we really want to second-guess the IR in isel?
149         Align Alignment =
150             std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign);
151 
152         // Static allocas can be folded into the initial stack frame
153         // adjustment. For targets that don't realign the stack, don't
154         // do this if there is an extra alignment requirement.
155         if (AI->isStaticAlloca() &&
156             (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
157           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
158           uint64_t TySize =
159               MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize();
160 
161           TySize *= CUI->getZExtValue();   // Get total allocated size.
162           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
163           int FrameIndex = INT_MAX;
164           auto Iter = CatchObjects.find(AI);
165           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
166             FrameIndex = MF->getFrameInfo().CreateFixedObject(
167                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
168             MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
169           } else {
170             FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
171                                                               false, AI);
172           }
173 
174           // Scalable vectors may need a special StackID to distinguish
175           // them from other (fixed size) stack objects.
176           if (isa<ScalableVectorType>(Ty))
177             MF->getFrameInfo().setStackID(FrameIndex,
178                                           TFI->getStackIDForScalableVectors());
179 
180           StaticAllocaMap[AI] = FrameIndex;
181           // Update the catch handler information.
182           if (Iter != CatchObjects.end()) {
183             for (int *CatchObjPtr : Iter->second)
184               *CatchObjPtr = FrameIndex;
185           }
186         } else {
187           // FIXME: Overaligned static allocas should be grouped into
188           // a single dynamic allocation instead of using a separate
189           // stack allocation for each one.
190           // Inform the Frame Information that we have variable-sized objects.
191           MF->getFrameInfo().CreateVariableSizedObject(
192               Alignment <= StackAlign ? 0 : Alignment.value(), AI);
193         }
194       }
195 
196       // Look for inline asm that clobbers the SP register.
197       if (auto *Call = dyn_cast<CallBase>(&I)) {
198         if (Call->isInlineAsm()) {
199           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
200           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
201           std::vector<TargetLowering::AsmOperandInfo> Ops =
202               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
203                                     *Call);
204           for (TargetLowering::AsmOperandInfo &Op : Ops) {
205             if (Op.Type == InlineAsm::isClobber) {
206               // Clobbers don't have SDValue operands, hence SDValue().
207               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
208               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
209                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
210                                                     Op.ConstraintVT);
211               if (PhysReg.first == SP)
212                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
213             }
214           }
215         }
216       }
217 
218       // Look for calls to the @llvm.va_start intrinsic. We can omit some
219       // prologue boilerplate for variadic functions that don't examine their
220       // arguments.
221       if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
222         if (II->getIntrinsicID() == Intrinsic::vastart)
223           MF->getFrameInfo().setHasVAStart(true);
224       }
225 
226       // If we have a musttail call in a variadic function, we need to ensure we
227       // forward implicit register parameters.
228       if (const auto *CI = dyn_cast<CallInst>(&I)) {
229         if (CI->isMustTailCall() && Fn->isVarArg())
230           MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
231       }
232 
233       // Mark values used outside their block as exported, by allocating
234       // a virtual register for them.
235       if (isUsedOutsideOfDefiningBlock(&I))
236         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
237           InitializeRegForValue(&I);
238 
239       // Decide the preferred extend type for a value.
240       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
241     }
242   }
243 
244   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
245   // also creates the initial PHI MachineInstrs, though none of the input
246   // operands are populated.
247   for (const BasicBlock &BB : *Fn) {
248     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
249     // are really data, and no instructions can live here.
250     if (BB.isEHPad()) {
251       const Instruction *PadInst = BB.getFirstNonPHI();
252       // If this is a non-landingpad EH pad, mark this function as using
253       // funclets.
254       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
255       // setting this in such cases in order to improve frame layout.
256       if (!isa<LandingPadInst>(PadInst)) {
257         MF->setHasEHScopes(true);
258         MF->setHasEHFunclets(true);
259         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
260       }
261       if (isa<CatchSwitchInst>(PadInst)) {
262         assert(&*BB.begin() == PadInst &&
263                "WinEHPrepare failed to remove PHIs from imaginary BBs");
264         continue;
265       }
266       if (isa<FuncletPadInst>(PadInst))
267         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
268     }
269 
270     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
271     MBBMap[&BB] = MBB;
272     MF->push_back(MBB);
273 
274     // Transfer the address-taken flag. This is necessary because there could
275     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
276     // the first one should be marked.
277     if (BB.hasAddressTaken())
278       MBB->setHasAddressTaken();
279 
280     // Mark landing pad blocks.
281     if (BB.isEHPad())
282       MBB->setIsEHPad();
283 
284     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
285     // appropriate.
286     for (const PHINode &PN : BB.phis()) {
287       if (PN.use_empty())
288         continue;
289 
290       // Skip empty types
291       if (PN.getType()->isEmptyTy())
292         continue;
293 
294       DebugLoc DL = PN.getDebugLoc();
295       unsigned PHIReg = ValueMap[&PN];
296       assert(PHIReg && "PHI node does not have an assigned virtual register!");
297 
298       SmallVector<EVT, 4> ValueVTs;
299       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
300       for (EVT VT : ValueVTs) {
301         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
302         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
303         for (unsigned i = 0; i != NumRegisters; ++i)
304           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
305         PHIReg += NumRegisters;
306       }
307     }
308   }
309 
310   if (isFuncletEHPersonality(Personality)) {
311     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
312 
313     // Map all BB references in the WinEH data to MBBs.
314     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
315       for (WinEHHandlerType &H : TBME.HandlerArray) {
316         if (H.Handler)
317           H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
318       }
319     }
320     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
321       if (UME.Cleanup)
322         UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
323     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
324       const auto *BB = UME.Handler.get<const BasicBlock *>();
325       UME.Handler = MBBMap[BB];
326     }
327     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
328       const auto *BB = CME.Handler.get<const BasicBlock *>();
329       CME.Handler = MBBMap[BB];
330     }
331   }
332 
333   else if (Personality == EHPersonality::Wasm_CXX) {
334     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
335     // Map all BB references in the WinEH data to MBBs.
336     DenseMap<BBOrMBB, BBOrMBB> NewMap;
337     for (auto &KV : EHInfo.EHPadUnwindMap) {
338       const auto *Src = KV.first.get<const BasicBlock *>();
339       const auto *Dst = KV.second.get<const BasicBlock *>();
340       NewMap[MBBMap[Src]] = MBBMap[Dst];
341     }
342     EHInfo.EHPadUnwindMap = std::move(NewMap);
343   }
344 }
345 
346 /// clear - Clear out all the function-specific state. This returns this
347 /// FunctionLoweringInfo to an empty state, ready to be used for a
348 /// different function.
349 void FunctionLoweringInfo::clear() {
350   MBBMap.clear();
351   ValueMap.clear();
352   VirtReg2Value.clear();
353   StaticAllocaMap.clear();
354   LiveOutRegInfo.clear();
355   VisitedBBs.clear();
356   ArgDbgValues.clear();
357   DescribedArgs.clear();
358   ByValArgFrameIndexMap.clear();
359   RegFixups.clear();
360   RegsWithFixups.clear();
361   StatepointStackSlots.clear();
362   StatepointSpillMaps.clear();
363   PreferredExtendType.clear();
364 }
365 
366 /// CreateReg - Allocate a single virtual register for the given type.
367 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
368   return RegInfo->createVirtualRegister(
369       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
370 }
371 
372 /// CreateRegs - Allocate the appropriate number of virtual registers of
373 /// the correctly promoted or expanded types.  Assign these registers
374 /// consecutive vreg numbers and return the first assigned number.
375 ///
376 /// In the case that the given value has struct or array type, this function
377 /// will assign registers for each member or element.
378 ///
379 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
380   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
381 
382   SmallVector<EVT, 4> ValueVTs;
383   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
384 
385   Register FirstReg;
386   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
387     EVT ValueVT = ValueVTs[Value];
388     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
389 
390     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
391     for (unsigned i = 0; i != NumRegs; ++i) {
392       Register R = CreateReg(RegisterVT, isDivergent);
393       if (!FirstReg) FirstReg = R;
394     }
395   }
396   return FirstReg;
397 }
398 
399 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
400   return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
401                     !TLI->requiresUniformRegister(*MF, V));
402 }
403 
404 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
405 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
406 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
407 /// the larger bit width by zero extension. The bit width must be no smaller
408 /// than the LiveOutInfo's existing bit width.
409 const FunctionLoweringInfo::LiveOutInfo *
410 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
411   if (!LiveOutRegInfo.inBounds(Reg))
412     return nullptr;
413 
414   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
415   if (!LOI->IsValid)
416     return nullptr;
417 
418   if (BitWidth > LOI->Known.getBitWidth()) {
419     LOI->NumSignBits = 1;
420     LOI->Known = LOI->Known.anyext(BitWidth);
421   }
422 
423   return LOI;
424 }
425 
426 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
427 /// register based on the LiveOutInfo of its operands.
428 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
429   Type *Ty = PN->getType();
430   if (!Ty->isIntegerTy() || Ty->isVectorTy())
431     return;
432 
433   SmallVector<EVT, 1> ValueVTs;
434   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
435   assert(ValueVTs.size() == 1 &&
436          "PHIs with non-vector integer types should have a single VT.");
437   EVT IntVT = ValueVTs[0];
438 
439   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
440     return;
441   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
442   unsigned BitWidth = IntVT.getSizeInBits();
443 
444   Register DestReg = ValueMap[PN];
445   if (!Register::isVirtualRegister(DestReg))
446     return;
447   LiveOutRegInfo.grow(DestReg);
448   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
449 
450   Value *V = PN->getIncomingValue(0);
451   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
452     DestLOI.NumSignBits = 1;
453     DestLOI.Known = KnownBits(BitWidth);
454     return;
455   }
456 
457   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
458     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
459     DestLOI.NumSignBits = Val.getNumSignBits();
460     DestLOI.Known.Zero = ~Val;
461     DestLOI.Known.One = Val;
462   } else {
463     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
464                                 "CopyToReg node was created.");
465     Register SrcReg = ValueMap[V];
466     if (!Register::isVirtualRegister(SrcReg)) {
467       DestLOI.IsValid = false;
468       return;
469     }
470     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
471     if (!SrcLOI) {
472       DestLOI.IsValid = false;
473       return;
474     }
475     DestLOI = *SrcLOI;
476   }
477 
478   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
479          DestLOI.Known.One.getBitWidth() == BitWidth &&
480          "Masks should have the same bit width as the type.");
481 
482   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
483     Value *V = PN->getIncomingValue(i);
484     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
485       DestLOI.NumSignBits = 1;
486       DestLOI.Known = KnownBits(BitWidth);
487       return;
488     }
489 
490     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
491       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
492       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
493       DestLOI.Known.Zero &= ~Val;
494       DestLOI.Known.One &= Val;
495       continue;
496     }
497 
498     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
499                                 "its CopyToReg node was created.");
500     Register SrcReg = ValueMap[V];
501     if (!SrcReg.isVirtual()) {
502       DestLOI.IsValid = false;
503       return;
504     }
505     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
506     if (!SrcLOI) {
507       DestLOI.IsValid = false;
508       return;
509     }
510     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
511     DestLOI.Known.Zero &= SrcLOI->Known.Zero;
512     DestLOI.Known.One &= SrcLOI->Known.One;
513   }
514 }
515 
516 /// setArgumentFrameIndex - Record frame index for the byval
517 /// argument. This overrides previous frame index entry for this argument,
518 /// if any.
519 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
520                                                  int FI) {
521   ByValArgFrameIndexMap[A] = FI;
522 }
523 
524 /// getArgumentFrameIndex - Get frame index for the byval argument.
525 /// If the argument does not have any assigned frame index then 0 is
526 /// returned.
527 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
528   auto I = ByValArgFrameIndexMap.find(A);
529   if (I != ByValArgFrameIndexMap.end())
530     return I->second;
531   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
532   return INT_MAX;
533 }
534 
535 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
536     const Value *CPI, const TargetRegisterClass *RC) {
537   MachineRegisterInfo &MRI = MF->getRegInfo();
538   auto I = CatchPadExceptionPointers.insert({CPI, 0});
539   Register &VReg = I.first->second;
540   if (I.second)
541     VReg = MRI.createVirtualRegister(RC);
542   assert(VReg && "null vreg in exception pointer table!");
543   return VReg;
544 }
545 
546 const Value *
547 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
548   if (VirtReg2Value.empty()) {
549     SmallVector<EVT, 4> ValueVTs;
550     for (auto &P : ValueMap) {
551       ValueVTs.clear();
552       ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
553                       P.first->getType(), ValueVTs);
554       unsigned Reg = P.second;
555       for (EVT VT : ValueVTs) {
556         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
557         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
558           VirtReg2Value[Reg++] = P.first;
559       }
560     }
561   }
562   return VirtReg2Value.lookup(Vreg);
563 }
564