1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "function-lowering-info" 44 45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 46 /// PHI nodes or outside of the basic block that defines it, or used by a 47 /// switch or atomic instruction, which may expand to multiple basic blocks. 48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 49 if (I->use_empty()) return false; 50 if (isa<PHINode>(I)) return true; 51 const BasicBlock *BB = I->getParent(); 52 for (const User *U : I->users()) 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 56 return false; 57 } 58 59 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 60 SelectionDAG *DAG) { 61 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 62 63 Fn = &fn; 64 MF = &mf; 65 RegInfo = &MF->getRegInfo(); 66 67 // Check whether the function can return without sret-demotion. 68 SmallVector<ISD::OutputArg, 4> Outs; 69 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 70 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 71 Fn->isVarArg(), 72 Outs, Fn->getContext()); 73 74 // Initialize the mapping of values to registers. This is only set up for 75 // instruction values that are used outside of the block that defines 76 // them. 77 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 78 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 79 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 80 // Don't fold inalloca allocas or other dynamic allocas into the initial 81 // stack frame allocation, even if they are in the entry block. 82 if (!AI->isStaticAlloca()) 83 continue; 84 85 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 86 Type *Ty = AI->getAllocatedType(); 87 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 88 unsigned Align = 89 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 90 AI->getAlignment()); 91 92 TySize *= CUI->getZExtValue(); // Get total allocated size. 93 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 94 95 StaticAllocaMap[AI] = 96 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 97 } 98 } 99 100 for (; BB != EB; ++BB) 101 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 102 I != E; ++I) { 103 // Look for dynamic allocas. 104 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 105 if (!AI->isStaticAlloca()) { 106 unsigned Align = std::max( 107 (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( 108 AI->getAllocatedType()), 109 AI->getAlignment()); 110 unsigned StackAlign = 111 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 112 if (Align <= StackAlign) 113 Align = 0; 114 // Inform the Frame Information that we have variable-sized objects. 115 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 116 } 117 } 118 119 // Look for inline asm that clobbers the SP register. 120 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 121 ImmutableCallSite CS(I); 122 if (isa<InlineAsm>(CS.getCalledValue())) { 123 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 124 std::vector<TargetLowering::AsmOperandInfo> Ops = 125 TLI->ParseConstraints(CS); 126 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 127 TargetLowering::AsmOperandInfo &Op = Ops[I]; 128 if (Op.Type == InlineAsm::isClobber) { 129 // Clobbers don't have SDValue operands, hence SDValue(). 130 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 131 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 132 TLI->getRegForInlineAsmConstraint(Op.ConstraintCode, 133 Op.ConstraintVT); 134 if (PhysReg.first == SP) 135 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); 136 } 137 } 138 } 139 } 140 141 // Mark values used outside their block as exported, by allocating 142 // a virtual register for them. 143 if (isUsedOutsideOfDefiningBlock(I)) 144 if (!isa<AllocaInst>(I) || 145 !StaticAllocaMap.count(cast<AllocaInst>(I))) 146 InitializeRegForValue(I); 147 148 // Collect llvm.dbg.declare information. This is done now instead of 149 // during the initial isel pass through the IR so that it is done 150 // in a predictable order. 151 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 152 MachineModuleInfo &MMI = MF->getMMI(); 153 DIVariable DIVar(DI->getVariable()); 154 assert((!DIVar || DIVar.isVariable()) && 155 "Variable in DbgDeclareInst should be either null or a DIVariable."); 156 if (MMI.hasDebugInfo() && 157 DIVar && 158 !DI->getDebugLoc().isUnknown()) { 159 // Don't handle byval struct arguments or VLAs, for example. 160 // Non-byval arguments are handled here (they refer to the stack 161 // temporary alloca at this point). 162 const Value *Address = DI->getAddress(); 163 if (Address) { 164 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 165 Address = BCI->getOperand(0); 166 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 167 DenseMap<const AllocaInst *, int>::iterator SI = 168 StaticAllocaMap.find(AI); 169 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 170 int FI = SI->second; 171 MMI.setVariableDbgInfo(DI->getVariable(), 172 FI, DI->getDebugLoc()); 173 } 174 } 175 } 176 } 177 } 178 } 179 180 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 181 // also creates the initial PHI MachineInstrs, though none of the input 182 // operands are populated. 183 for (BB = Fn->begin(); BB != EB; ++BB) { 184 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 185 MBBMap[BB] = MBB; 186 MF->push_back(MBB); 187 188 // Transfer the address-taken flag. This is necessary because there could 189 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 190 // the first one should be marked. 191 if (BB->hasAddressTaken()) 192 MBB->setHasAddressTaken(); 193 194 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 195 // appropriate. 196 for (BasicBlock::const_iterator I = BB->begin(); 197 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 198 if (PN->use_empty()) continue; 199 200 // Skip empty types 201 if (PN->getType()->isEmptyTy()) 202 continue; 203 204 DebugLoc DL = PN->getDebugLoc(); 205 unsigned PHIReg = ValueMap[PN]; 206 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 207 208 SmallVector<EVT, 4> ValueVTs; 209 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 210 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 211 EVT VT = ValueVTs[vti]; 212 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 213 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 214 for (unsigned i = 0; i != NumRegisters; ++i) 215 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 216 PHIReg += NumRegisters; 217 } 218 } 219 } 220 221 // Mark landing pad blocks. 222 for (BB = Fn->begin(); BB != EB; ++BB) 223 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 224 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 225 } 226 227 /// clear - Clear out all the function-specific state. This returns this 228 /// FunctionLoweringInfo to an empty state, ready to be used for a 229 /// different function. 230 void FunctionLoweringInfo::clear() { 231 assert(CatchInfoFound.size() == CatchInfoLost.size() && 232 "Not all catch info was assigned to a landing pad!"); 233 234 MBBMap.clear(); 235 ValueMap.clear(); 236 StaticAllocaMap.clear(); 237 #ifndef NDEBUG 238 CatchInfoLost.clear(); 239 CatchInfoFound.clear(); 240 #endif 241 LiveOutRegInfo.clear(); 242 VisitedBBs.clear(); 243 ArgDbgValues.clear(); 244 ByValArgFrameIndexMap.clear(); 245 RegFixups.clear(); 246 } 247 248 /// CreateReg - Allocate a single virtual register for the given type. 249 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 250 return RegInfo->createVirtualRegister( 251 TM.getSubtargetImpl()->getTargetLowering()->getRegClassFor(VT)); 252 } 253 254 /// CreateRegs - Allocate the appropriate number of virtual registers of 255 /// the correctly promoted or expanded types. Assign these registers 256 /// consecutive vreg numbers and return the first assigned number. 257 /// 258 /// In the case that the given value has struct or array type, this function 259 /// will assign registers for each member or element. 260 /// 261 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 262 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 263 264 SmallVector<EVT, 4> ValueVTs; 265 ComputeValueVTs(*TLI, Ty, ValueVTs); 266 267 unsigned FirstReg = 0; 268 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 269 EVT ValueVT = ValueVTs[Value]; 270 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 271 272 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 273 for (unsigned i = 0; i != NumRegs; ++i) { 274 unsigned R = CreateReg(RegisterVT); 275 if (!FirstReg) FirstReg = R; 276 } 277 } 278 return FirstReg; 279 } 280 281 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 282 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 283 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 284 /// the larger bit width by zero extension. The bit width must be no smaller 285 /// than the LiveOutInfo's existing bit width. 286 const FunctionLoweringInfo::LiveOutInfo * 287 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 288 if (!LiveOutRegInfo.inBounds(Reg)) 289 return nullptr; 290 291 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 292 if (!LOI->IsValid) 293 return nullptr; 294 295 if (BitWidth > LOI->KnownZero.getBitWidth()) { 296 LOI->NumSignBits = 1; 297 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 298 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 299 } 300 301 return LOI; 302 } 303 304 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 305 /// register based on the LiveOutInfo of its operands. 306 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 307 Type *Ty = PN->getType(); 308 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 309 return; 310 311 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 312 313 SmallVector<EVT, 1> ValueVTs; 314 ComputeValueVTs(*TLI, Ty, ValueVTs); 315 assert(ValueVTs.size() == 1 && 316 "PHIs with non-vector integer types should have a single VT."); 317 EVT IntVT = ValueVTs[0]; 318 319 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 320 return; 321 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 322 unsigned BitWidth = IntVT.getSizeInBits(); 323 324 unsigned DestReg = ValueMap[PN]; 325 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 326 return; 327 LiveOutRegInfo.grow(DestReg); 328 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 329 330 Value *V = PN->getIncomingValue(0); 331 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 332 DestLOI.NumSignBits = 1; 333 APInt Zero(BitWidth, 0); 334 DestLOI.KnownZero = Zero; 335 DestLOI.KnownOne = Zero; 336 return; 337 } 338 339 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 340 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 341 DestLOI.NumSignBits = Val.getNumSignBits(); 342 DestLOI.KnownZero = ~Val; 343 DestLOI.KnownOne = Val; 344 } else { 345 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 346 "CopyToReg node was created."); 347 unsigned SrcReg = ValueMap[V]; 348 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 349 DestLOI.IsValid = false; 350 return; 351 } 352 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 353 if (!SrcLOI) { 354 DestLOI.IsValid = false; 355 return; 356 } 357 DestLOI = *SrcLOI; 358 } 359 360 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 361 DestLOI.KnownOne.getBitWidth() == BitWidth && 362 "Masks should have the same bit width as the type."); 363 364 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 365 Value *V = PN->getIncomingValue(i); 366 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 367 DestLOI.NumSignBits = 1; 368 APInt Zero(BitWidth, 0); 369 DestLOI.KnownZero = Zero; 370 DestLOI.KnownOne = Zero; 371 return; 372 } 373 374 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 375 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 376 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 377 DestLOI.KnownZero &= ~Val; 378 DestLOI.KnownOne &= Val; 379 continue; 380 } 381 382 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 383 "its CopyToReg node was created."); 384 unsigned SrcReg = ValueMap[V]; 385 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 386 DestLOI.IsValid = false; 387 return; 388 } 389 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 390 if (!SrcLOI) { 391 DestLOI.IsValid = false; 392 return; 393 } 394 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 395 DestLOI.KnownZero &= SrcLOI->KnownZero; 396 DestLOI.KnownOne &= SrcLOI->KnownOne; 397 } 398 } 399 400 /// setArgumentFrameIndex - Record frame index for the byval 401 /// argument. This overrides previous frame index entry for this argument, 402 /// if any. 403 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 404 int FI) { 405 ByValArgFrameIndexMap[A] = FI; 406 } 407 408 /// getArgumentFrameIndex - Get frame index for the byval argument. 409 /// If the argument does not have any assigned frame index then 0 is 410 /// returned. 411 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 412 DenseMap<const Argument *, int>::iterator I = 413 ByValArgFrameIndexMap.find(A); 414 if (I != ByValArgFrameIndexMap.end()) 415 return I->second; 416 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 417 return 0; 418 } 419 420 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 421 /// being passed to this variadic function, and set the MachineModuleInfo's 422 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 423 /// reference to _fltused on Windows, which will link in MSVCRT's 424 /// floating-point support. 425 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 426 MachineModuleInfo *MMI) 427 { 428 FunctionType *FT = cast<FunctionType>( 429 I.getCalledValue()->getType()->getContainedType(0)); 430 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 431 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 432 Type* T = I.getArgOperand(i)->getType(); 433 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 434 i != e; ++i) { 435 if (i->isFloatingPointTy()) { 436 MMI->setUsesVAFloatArgument(true); 437 return; 438 } 439 } 440 } 441 } 442 } 443 444 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 445 /// call, and add them to the specified machine basic block. 446 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 447 MachineBasicBlock *MBB) { 448 // Inform the MachineModuleInfo of the personality for this landing pad. 449 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 450 assert(CE->getOpcode() == Instruction::BitCast && 451 isa<Function>(CE->getOperand(0)) && 452 "Personality should be a function"); 453 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 454 455 // Gather all the type infos for this landing pad and pass them along to 456 // MachineModuleInfo. 457 std::vector<const GlobalVariable *> TyInfo; 458 unsigned N = I.getNumArgOperands(); 459 460 for (unsigned i = N - 1; i > 1; --i) { 461 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 462 unsigned FilterLength = CI->getZExtValue(); 463 unsigned FirstCatch = i + FilterLength + !FilterLength; 464 assert(FirstCatch <= N && "Invalid filter length"); 465 466 if (FirstCatch < N) { 467 TyInfo.reserve(N - FirstCatch); 468 for (unsigned j = FirstCatch; j < N; ++j) 469 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 470 MMI->addCatchTypeInfo(MBB, TyInfo); 471 TyInfo.clear(); 472 } 473 474 if (!FilterLength) { 475 // Cleanup. 476 MMI->addCleanup(MBB); 477 } else { 478 // Filter. 479 TyInfo.reserve(FilterLength - 1); 480 for (unsigned j = i + 1; j < FirstCatch; ++j) 481 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 482 MMI->addFilterTypeInfo(MBB, TyInfo); 483 TyInfo.clear(); 484 } 485 486 N = i; 487 } 488 } 489 490 if (N > 2) { 491 TyInfo.reserve(N - 2); 492 for (unsigned j = 2; j < N; ++j) 493 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 494 MMI->addCatchTypeInfo(MBB, TyInfo); 495 } 496 } 497 498 /// AddLandingPadInfo - Extract the exception handling information from the 499 /// landingpad instruction and add them to the specified machine module info. 500 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 501 MachineBasicBlock *MBB) { 502 MMI.addPersonality(MBB, 503 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 504 505 if (I.isCleanup()) 506 MMI.addCleanup(MBB); 507 508 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 509 // but we need to do it this way because of how the DWARF EH emitter 510 // processes the clauses. 511 for (unsigned i = I.getNumClauses(); i != 0; --i) { 512 Value *Val = I.getClause(i - 1); 513 if (I.isCatch(i - 1)) { 514 MMI.addCatchTypeInfo(MBB, 515 dyn_cast<GlobalVariable>(Val->stripPointerCasts())); 516 } else { 517 // Add filters in a list. 518 Constant *CVal = cast<Constant>(Val); 519 SmallVector<const GlobalVariable*, 4> FilterList; 520 for (User::op_iterator 521 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 522 FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); 523 524 MMI.addFilterTypeInfo(MBB, FilterList); 525 } 526 } 527 } 528