1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/WinEHFuncInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "function-lowering-info" 46 47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 48 /// PHI nodes or outside of the basic block that defines it, or used by a 49 /// switch or atomic instruction, which may expand to multiple basic blocks. 50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 51 if (I->use_empty()) return false; 52 if (isa<PHINode>(I)) return true; 53 const BasicBlock *BB = I->getParent(); 54 for (const User *U : I->users()) 55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 56 return true; 57 58 return false; 59 } 60 61 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 62 // For the users of the source value being used for compare instruction, if 63 // the number of signed predicate is greater than unsigned predicate, we 64 // prefer to use SIGN_EXTEND. 65 // 66 // With this optimization, we would be able to reduce some redundant sign or 67 // zero extension instruction, and eventually more machine CSE opportunities 68 // can be exposed. 69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 70 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 71 for (const User *U : V->users()) { 72 if (const auto *CI = dyn_cast<CmpInst>(U)) { 73 NumOfSigned += CI->isSigned(); 74 NumOfUnsigned += CI->isUnsigned(); 75 } 76 } 77 if (NumOfSigned > NumOfUnsigned) 78 ExtendKind = ISD::SIGN_EXTEND; 79 80 return ExtendKind; 81 } 82 83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 84 SelectionDAG *DAG) { 85 Fn = &fn; 86 MF = &mf; 87 TLI = MF->getSubtarget().getTargetLowering(); 88 RegInfo = &MF->getRegInfo(); 89 MachineModuleInfo &MMI = MF->getMMI(); 90 91 // Check whether the function can return without sret-demotion. 92 SmallVector<ISD::OutputArg, 4> Outs; 93 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 94 mf.getDataLayout()); 95 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 96 Fn->isVarArg(), Outs, Fn->getContext()); 97 98 // Initialize the mapping of values to registers. This is only set up for 99 // instruction values that are used outside of the block that defines 100 // them. 101 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 102 for (; BB != EB; ++BB) 103 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 104 I != E; ++I) { 105 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 106 // Static allocas can be folded into the initial stack frame adjustment. 107 if (AI->isStaticAlloca()) { 108 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 109 Type *Ty = AI->getAllocatedType(); 110 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 111 unsigned Align = 112 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 113 AI->getAlignment()); 114 115 TySize *= CUI->getZExtValue(); // Get total allocated size. 116 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 117 118 StaticAllocaMap[AI] = 119 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 120 121 } else { 122 unsigned Align = 123 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment( 124 AI->getAllocatedType()), 125 AI->getAlignment()); 126 unsigned StackAlign = 127 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 128 if (Align <= StackAlign) 129 Align = 0; 130 // Inform the Frame Information that we have variable-sized objects. 131 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 132 } 133 } 134 135 // Look for inline asm that clobbers the SP register. 136 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 137 ImmutableCallSite CS(I); 138 if (isa<InlineAsm>(CS.getCalledValue())) { 139 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 140 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 141 std::vector<TargetLowering::AsmOperandInfo> Ops = 142 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 143 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 144 TargetLowering::AsmOperandInfo &Op = Ops[I]; 145 if (Op.Type == InlineAsm::isClobber) { 146 // Clobbers don't have SDValue operands, hence SDValue(). 147 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 148 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 149 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 150 Op.ConstraintVT); 151 if (PhysReg.first == SP) 152 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true); 153 } 154 } 155 } 156 } 157 158 // Look for calls to the @llvm.va_start intrinsic. We can omit some 159 // prologue boilerplate for variadic functions that don't examine their 160 // arguments. 161 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 162 if (II->getIntrinsicID() == Intrinsic::vastart) 163 MF->getFrameInfo()->setHasVAStart(true); 164 } 165 166 // If we have a musttail call in a variadic funciton, we need to ensure we 167 // forward implicit register parameters. 168 if (const auto *CI = dyn_cast<CallInst>(I)) { 169 if (CI->isMustTailCall() && Fn->isVarArg()) 170 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 171 } 172 173 // Mark values used outside their block as exported, by allocating 174 // a virtual register for them. 175 if (isUsedOutsideOfDefiningBlock(I)) 176 if (!isa<AllocaInst>(I) || 177 !StaticAllocaMap.count(cast<AllocaInst>(I))) 178 InitializeRegForValue(I); 179 180 // Collect llvm.dbg.declare information. This is done now instead of 181 // during the initial isel pass through the IR so that it is done 182 // in a predictable order. 183 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 184 assert(DI->getVariable() && "Missing variable"); 185 assert(DI->getDebugLoc() && "Missing location"); 186 if (MMI.hasDebugInfo()) { 187 // Don't handle byval struct arguments or VLAs, for example. 188 // Non-byval arguments are handled here (they refer to the stack 189 // temporary alloca at this point). 190 const Value *Address = DI->getAddress(); 191 if (Address) { 192 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 193 Address = BCI->getOperand(0); 194 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 195 DenseMap<const AllocaInst *, int>::iterator SI = 196 StaticAllocaMap.find(AI); 197 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 198 int FI = SI->second; 199 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 200 FI, DI->getDebugLoc()); 201 } 202 } 203 } 204 } 205 } 206 207 // Decide the preferred extend type for a value. 208 PreferredExtendType[I] = getPreferredExtendForValue(I); 209 } 210 211 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 212 // also creates the initial PHI MachineInstrs, though none of the input 213 // operands are populated. 214 for (BB = Fn->begin(); BB != EB; ++BB) { 215 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks 216 // are really data, and no instructions can live here. 217 if (BB->isEHPad()) { 218 const Instruction *I = BB->getFirstNonPHI(); 219 if (!isa<LandingPadInst>(I)) 220 MMI.setHasEHFunclets(true); 221 if (isa<CatchPadInst>(I) || isa<CatchEndPadInst>(I) || 222 isa<CleanupEndPadInst>(I)) { 223 assert(&*BB->begin() == I && 224 "WinEHPrepare failed to remove PHIs from imaginary BBs"); 225 continue; 226 } 227 } 228 229 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 230 MBBMap[BB] = MBB; 231 MF->push_back(MBB); 232 233 // Transfer the address-taken flag. This is necessary because there could 234 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 235 // the first one should be marked. 236 if (BB->hasAddressTaken()) 237 MBB->setHasAddressTaken(); 238 239 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 240 // appropriate. 241 for (BasicBlock::const_iterator I = BB->begin(); 242 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 243 if (PN->use_empty()) continue; 244 245 // Skip empty types 246 if (PN->getType()->isEmptyTy()) 247 continue; 248 249 DebugLoc DL = PN->getDebugLoc(); 250 unsigned PHIReg = ValueMap[PN]; 251 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 252 253 SmallVector<EVT, 4> ValueVTs; 254 ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs); 255 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 256 EVT VT = ValueVTs[vti]; 257 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 258 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 259 for (unsigned i = 0; i != NumRegisters; ++i) 260 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 261 PHIReg += NumRegisters; 262 } 263 } 264 } 265 266 // Mark landing pad blocks. 267 SmallVector<const LandingPadInst *, 4> LPads; 268 for (BB = Fn->begin(); BB != EB; ++BB) { 269 const Instruction *FNP = BB->getFirstNonPHI(); 270 if (BB->isEHPad() && MBBMap.count(BB)) 271 MBBMap[BB]->setIsEHPad(); 272 if (const auto *LPI = dyn_cast<LandingPadInst>(FNP)) 273 LPads.push_back(LPI); 274 } 275 276 // If this is an MSVC EH personality, we need to do a bit more work. 277 if (!Fn->hasPersonalityFn()) 278 return; 279 EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn()); 280 if (!isMSVCEHPersonality(Personality)) 281 return; 282 283 if (Personality == EHPersonality::MSVC_Win64SEH || 284 Personality == EHPersonality::MSVC_X86SEH) { 285 addSEHHandlersForLPads(LPads); 286 } 287 288 // Calculate state numbers if we haven't already. 289 WinEHFuncInfo &EHInfo = MMI.getWinEHFuncInfo(&fn); 290 const Function *WinEHParentFn = MMI.getWinEHParent(&fn); 291 if (Personality == EHPersonality::MSVC_CXX) 292 calculateWinCXXEHStateNumbers(WinEHParentFn, EHInfo); 293 else 294 calculateSEHStateNumbers(WinEHParentFn, EHInfo); 295 296 // Map all BB references in the WinEH data to MBBs. 297 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) 298 for (WinEHHandlerType &H : TBME.HandlerArray) 299 if (const auto *BB = 300 dyn_cast<BasicBlock>(H.Handler.get<const Value *>())) 301 H.Handler = MBBMap[BB]; 302 for (WinEHUnwindMapEntry &UME : EHInfo.UnwindMap) 303 if (UME.Cleanup) 304 if (const auto *BB = dyn_cast<BasicBlock>(UME.Cleanup.get<const Value *>())) 305 UME.Cleanup = MBBMap[BB]; 306 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { 307 const BasicBlock *BB = UME.Handler.get<const BasicBlock *>(); 308 UME.Handler = MBBMap[BB]; 309 } 310 311 // If there's an explicit EH registration node on the stack, record its 312 // frame index. 313 if (EHInfo.EHRegNode && EHInfo.EHRegNode->getParent()->getParent() == Fn) { 314 assert(StaticAllocaMap.count(EHInfo.EHRegNode)); 315 EHInfo.EHRegNodeFrameIndex = StaticAllocaMap[EHInfo.EHRegNode]; 316 } 317 318 // Copy the state numbers to LandingPadInfo for the current function, which 319 // could be a handler or the parent. This should happen for 32-bit SEH and 320 // C++ EH. 321 if (Personality == EHPersonality::MSVC_CXX || 322 Personality == EHPersonality::MSVC_X86SEH) { 323 for (const LandingPadInst *LP : LPads) { 324 MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; 325 MMI.addWinEHState(LPadMBB, EHInfo.EHPadStateMap[LP]); 326 } 327 } 328 } 329 330 void FunctionLoweringInfo::addSEHHandlersForLPads( 331 ArrayRef<const LandingPadInst *> LPads) { 332 MachineModuleInfo &MMI = MF->getMMI(); 333 334 // Iterate over all landing pads with llvm.eh.actions calls. 335 for (const LandingPadInst *LP : LPads) { 336 const IntrinsicInst *ActionsCall = 337 dyn_cast<IntrinsicInst>(LP->getNextNode()); 338 if (!ActionsCall || 339 ActionsCall->getIntrinsicID() != Intrinsic::eh_actions) 340 continue; 341 342 // Parse the llvm.eh.actions call we found. 343 MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; 344 SmallVector<std::unique_ptr<ActionHandler>, 4> Actions; 345 parseEHActions(ActionsCall, Actions); 346 347 // Iterate EH actions from most to least precedence, which means 348 // iterating in reverse. 349 for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) { 350 ActionHandler *Action = I->get(); 351 if (auto *CH = dyn_cast<CatchHandler>(Action)) { 352 const auto *Filter = 353 dyn_cast<Function>(CH->getSelector()->stripPointerCasts()); 354 assert((Filter || CH->getSelector()->isNullValue()) && 355 "expected function or catch-all"); 356 const auto *RecoverBA = 357 cast<BlockAddress>(CH->getHandlerBlockOrFunc()); 358 MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA); 359 } else { 360 assert(isa<CleanupHandler>(Action)); 361 const auto *Fini = cast<Function>(Action->getHandlerBlockOrFunc()); 362 MMI.addSEHCleanupHandler(LPadMBB, Fini); 363 } 364 } 365 } 366 } 367 368 /// clear - Clear out all the function-specific state. This returns this 369 /// FunctionLoweringInfo to an empty state, ready to be used for a 370 /// different function. 371 void FunctionLoweringInfo::clear() { 372 assert(CatchInfoFound.size() == CatchInfoLost.size() && 373 "Not all catch info was assigned to a landing pad!"); 374 375 MBBMap.clear(); 376 ValueMap.clear(); 377 StaticAllocaMap.clear(); 378 #ifndef NDEBUG 379 CatchInfoLost.clear(); 380 CatchInfoFound.clear(); 381 #endif 382 LiveOutRegInfo.clear(); 383 VisitedBBs.clear(); 384 ArgDbgValues.clear(); 385 ByValArgFrameIndexMap.clear(); 386 RegFixups.clear(); 387 StatepointStackSlots.clear(); 388 StatepointRelocatedValues.clear(); 389 PreferredExtendType.clear(); 390 } 391 392 /// CreateReg - Allocate a single virtual register for the given type. 393 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 394 return RegInfo->createVirtualRegister( 395 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 396 } 397 398 /// CreateRegs - Allocate the appropriate number of virtual registers of 399 /// the correctly promoted or expanded types. Assign these registers 400 /// consecutive vreg numbers and return the first assigned number. 401 /// 402 /// In the case that the given value has struct or array type, this function 403 /// will assign registers for each member or element. 404 /// 405 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 406 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 407 408 SmallVector<EVT, 4> ValueVTs; 409 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 410 411 unsigned FirstReg = 0; 412 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 413 EVT ValueVT = ValueVTs[Value]; 414 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 415 416 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 417 for (unsigned i = 0; i != NumRegs; ++i) { 418 unsigned R = CreateReg(RegisterVT); 419 if (!FirstReg) FirstReg = R; 420 } 421 } 422 return FirstReg; 423 } 424 425 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 426 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 427 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 428 /// the larger bit width by zero extension. The bit width must be no smaller 429 /// than the LiveOutInfo's existing bit width. 430 const FunctionLoweringInfo::LiveOutInfo * 431 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 432 if (!LiveOutRegInfo.inBounds(Reg)) 433 return nullptr; 434 435 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 436 if (!LOI->IsValid) 437 return nullptr; 438 439 if (BitWidth > LOI->KnownZero.getBitWidth()) { 440 LOI->NumSignBits = 1; 441 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 442 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 443 } 444 445 return LOI; 446 } 447 448 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 449 /// register based on the LiveOutInfo of its operands. 450 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 451 Type *Ty = PN->getType(); 452 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 453 return; 454 455 SmallVector<EVT, 1> ValueVTs; 456 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 457 assert(ValueVTs.size() == 1 && 458 "PHIs with non-vector integer types should have a single VT."); 459 EVT IntVT = ValueVTs[0]; 460 461 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 462 return; 463 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 464 unsigned BitWidth = IntVT.getSizeInBits(); 465 466 unsigned DestReg = ValueMap[PN]; 467 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 468 return; 469 LiveOutRegInfo.grow(DestReg); 470 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 471 472 Value *V = PN->getIncomingValue(0); 473 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 474 DestLOI.NumSignBits = 1; 475 APInt Zero(BitWidth, 0); 476 DestLOI.KnownZero = Zero; 477 DestLOI.KnownOne = Zero; 478 return; 479 } 480 481 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 482 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 483 DestLOI.NumSignBits = Val.getNumSignBits(); 484 DestLOI.KnownZero = ~Val; 485 DestLOI.KnownOne = Val; 486 } else { 487 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 488 "CopyToReg node was created."); 489 unsigned SrcReg = ValueMap[V]; 490 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 491 DestLOI.IsValid = false; 492 return; 493 } 494 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 495 if (!SrcLOI) { 496 DestLOI.IsValid = false; 497 return; 498 } 499 DestLOI = *SrcLOI; 500 } 501 502 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 503 DestLOI.KnownOne.getBitWidth() == BitWidth && 504 "Masks should have the same bit width as the type."); 505 506 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 507 Value *V = PN->getIncomingValue(i); 508 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 509 DestLOI.NumSignBits = 1; 510 APInt Zero(BitWidth, 0); 511 DestLOI.KnownZero = Zero; 512 DestLOI.KnownOne = Zero; 513 return; 514 } 515 516 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 517 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 518 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 519 DestLOI.KnownZero &= ~Val; 520 DestLOI.KnownOne &= Val; 521 continue; 522 } 523 524 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 525 "its CopyToReg node was created."); 526 unsigned SrcReg = ValueMap[V]; 527 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 528 DestLOI.IsValid = false; 529 return; 530 } 531 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 532 if (!SrcLOI) { 533 DestLOI.IsValid = false; 534 return; 535 } 536 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 537 DestLOI.KnownZero &= SrcLOI->KnownZero; 538 DestLOI.KnownOne &= SrcLOI->KnownOne; 539 } 540 } 541 542 /// setArgumentFrameIndex - Record frame index for the byval 543 /// argument. This overrides previous frame index entry for this argument, 544 /// if any. 545 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 546 int FI) { 547 ByValArgFrameIndexMap[A] = FI; 548 } 549 550 /// getArgumentFrameIndex - Get frame index for the byval argument. 551 /// If the argument does not have any assigned frame index then 0 is 552 /// returned. 553 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 554 DenseMap<const Argument *, int>::iterator I = 555 ByValArgFrameIndexMap.find(A); 556 if (I != ByValArgFrameIndexMap.end()) 557 return I->second; 558 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 559 return 0; 560 } 561 562 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 563 /// being passed to this variadic function, and set the MachineModuleInfo's 564 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 565 /// reference to _fltused on Windows, which will link in MSVCRT's 566 /// floating-point support. 567 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 568 MachineModuleInfo *MMI) 569 { 570 FunctionType *FT = cast<FunctionType>( 571 I.getCalledValue()->getType()->getContainedType(0)); 572 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 573 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 574 Type* T = I.getArgOperand(i)->getType(); 575 for (auto i : post_order(T)) { 576 if (i->isFloatingPointTy()) { 577 MMI->setUsesVAFloatArgument(true); 578 return; 579 } 580 } 581 } 582 } 583 } 584 585 /// AddLandingPadInfo - Extract the exception handling information from the 586 /// landingpad instruction and add them to the specified machine module info. 587 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 588 MachineBasicBlock *MBB) { 589 if (const auto *PF = dyn_cast<Function>( 590 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 591 MMI.addPersonality(PF); 592 593 if (I.isCleanup()) 594 MMI.addCleanup(MBB); 595 596 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 597 // but we need to do it this way because of how the DWARF EH emitter 598 // processes the clauses. 599 for (unsigned i = I.getNumClauses(); i != 0; --i) { 600 Value *Val = I.getClause(i - 1); 601 if (I.isCatch(i - 1)) { 602 MMI.addCatchTypeInfo(MBB, 603 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 604 } else { 605 // Add filters in a list. 606 Constant *CVal = cast<Constant>(Val); 607 SmallVector<const GlobalValue*, 4> FilterList; 608 for (User::op_iterator 609 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 610 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 611 612 MMI.addFilterTypeInfo(MBB, FilterList); 613 } 614 } 615 } 616