1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "function-lowering-info" 16 #include "llvm/CodeGen/FunctionLoweringInfo.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Function.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Analysis/DebugInfo.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include "llvm/Target/TargetData.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetLowering.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 42 /// PHI nodes or outside of the basic block that defines it, or used by a 43 /// switch or atomic instruction, which may expand to multiple basic blocks. 44 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 45 if (I->use_empty()) return false; 46 if (isa<PHINode>(I)) return true; 47 const BasicBlock *BB = I->getParent(); 48 for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); 49 UI != E; ++UI) { 50 const User *U = *UI; 51 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 52 return true; 53 } 54 return false; 55 } 56 57 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli) 58 : TLI(tli) { 59 } 60 61 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { 62 Fn = &fn; 63 MF = &mf; 64 RegInfo = &MF->getRegInfo(); 65 66 // Check whether the function can return without sret-demotion. 67 SmallVector<ISD::OutputArg, 4> Outs; 68 GetReturnInfo(Fn->getReturnType(), 69 Fn->getAttributes().getRetAttributes(), Outs, TLI); 70 CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), Fn->isVarArg(), 71 Outs, Fn->getContext()); 72 73 // Initialize the mapping of values to registers. This is only set up for 74 // instruction values that are used outside of the block that defines 75 // them. 76 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 77 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 78 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) 79 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 80 const Type *Ty = AI->getAllocatedType(); 81 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 82 unsigned Align = 83 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 84 AI->getAlignment()); 85 86 TySize *= CUI->getZExtValue(); // Get total allocated size. 87 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 88 89 // The object may need to be placed onto the stack near the stack 90 // protector if one exists. Determine here if this object is a suitable 91 // candidate. I.e., it would trigger the creation of a stack protector. 92 bool MayNeedSP = 93 (AI->isArrayAllocation() || 94 (TySize > 8 && isa<ArrayType>(Ty) && 95 cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8))); 96 StaticAllocaMap[AI] = 97 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP); 98 } 99 100 for (; BB != EB; ++BB) 101 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 102 // Mark values used outside their block as exported, by allocating 103 // a virtual register for them. 104 if (isUsedOutsideOfDefiningBlock(I)) 105 if (!isa<AllocaInst>(I) || 106 !StaticAllocaMap.count(cast<AllocaInst>(I))) 107 InitializeRegForValue(I); 108 109 // Collect llvm.dbg.declare information. This is done now instead of 110 // during the initial isel pass through the IR so that it is done 111 // in a predictable order. 112 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 113 MachineModuleInfo &MMI = MF->getMMI(); 114 if (MMI.hasDebugInfo() && 115 DIVariable(DI->getVariable()).Verify() && 116 !DI->getDebugLoc().isUnknown()) { 117 // Don't handle byval struct arguments or VLAs, for example. 118 // Non-byval arguments are handled here (they refer to the stack 119 // temporary alloca at this point). 120 const Value *Address = DI->getAddress(); 121 if (Address) { 122 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 123 Address = BCI->getOperand(0); 124 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 125 DenseMap<const AllocaInst *, int>::iterator SI = 126 StaticAllocaMap.find(AI); 127 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 128 int FI = SI->second; 129 MMI.setVariableDbgInfo(DI->getVariable(), 130 FI, DI->getDebugLoc()); 131 } 132 } 133 } 134 } 135 } 136 } 137 138 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 139 // also creates the initial PHI MachineInstrs, though none of the input 140 // operands are populated. 141 for (BB = Fn->begin(); BB != EB; ++BB) { 142 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 143 MBBMap[BB] = MBB; 144 MF->push_back(MBB); 145 146 // Transfer the address-taken flag. This is necessary because there could 147 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 148 // the first one should be marked. 149 if (BB->hasAddressTaken()) 150 MBB->setHasAddressTaken(); 151 152 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 153 // appropriate. 154 for (BasicBlock::const_iterator I = BB->begin(); 155 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 156 if (PN->use_empty()) continue; 157 158 // Skip empty types 159 if (PN->getType()->isEmptyTy()) 160 continue; 161 162 DebugLoc DL = PN->getDebugLoc(); 163 unsigned PHIReg = ValueMap[PN]; 164 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 165 166 SmallVector<EVT, 4> ValueVTs; 167 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 168 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 169 EVT VT = ValueVTs[vti]; 170 unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); 171 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 172 for (unsigned i = 0; i != NumRegisters; ++i) 173 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 174 PHIReg += NumRegisters; 175 } 176 } 177 } 178 179 // Mark landing pad blocks. 180 for (BB = Fn->begin(); BB != EB; ++BB) 181 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 182 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 183 } 184 185 /// clear - Clear out all the function-specific state. This returns this 186 /// FunctionLoweringInfo to an empty state, ready to be used for a 187 /// different function. 188 void FunctionLoweringInfo::clear() { 189 assert(CatchInfoFound.size() == CatchInfoLost.size() && 190 "Not all catch info was assigned to a landing pad!"); 191 192 MBBMap.clear(); 193 ValueMap.clear(); 194 StaticAllocaMap.clear(); 195 #ifndef NDEBUG 196 CatchInfoLost.clear(); 197 CatchInfoFound.clear(); 198 #endif 199 LiveOutRegInfo.clear(); 200 VisitedBBs.clear(); 201 ArgDbgValues.clear(); 202 ByValArgFrameIndexMap.clear(); 203 RegFixups.clear(); 204 } 205 206 /// CreateReg - Allocate a single virtual register for the given type. 207 unsigned FunctionLoweringInfo::CreateReg(EVT VT) { 208 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); 209 } 210 211 /// CreateRegs - Allocate the appropriate number of virtual registers of 212 /// the correctly promoted or expanded types. Assign these registers 213 /// consecutive vreg numbers and return the first assigned number. 214 /// 215 /// In the case that the given value has struct or array type, this function 216 /// will assign registers for each member or element. 217 /// 218 unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) { 219 SmallVector<EVT, 4> ValueVTs; 220 ComputeValueVTs(TLI, Ty, ValueVTs); 221 222 unsigned FirstReg = 0; 223 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 224 EVT ValueVT = ValueVTs[Value]; 225 EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT); 226 227 unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT); 228 for (unsigned i = 0; i != NumRegs; ++i) { 229 unsigned R = CreateReg(RegisterVT); 230 if (!FirstReg) FirstReg = R; 231 } 232 } 233 return FirstReg; 234 } 235 236 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 237 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 238 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 239 /// the larger bit width by zero extension. The bit width must be no smaller 240 /// than the LiveOutInfo's existing bit width. 241 const FunctionLoweringInfo::LiveOutInfo * 242 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 243 if (!LiveOutRegInfo.inBounds(Reg)) 244 return NULL; 245 246 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 247 if (!LOI->IsValid) 248 return NULL; 249 250 if (BitWidth > LOI->KnownZero.getBitWidth()) { 251 LOI->NumSignBits = 1; 252 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 253 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 254 } 255 256 return LOI; 257 } 258 259 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 260 /// register based on the LiveOutInfo of its operands. 261 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 262 const Type *Ty = PN->getType(); 263 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 264 return; 265 266 SmallVector<EVT, 1> ValueVTs; 267 ComputeValueVTs(TLI, Ty, ValueVTs); 268 assert(ValueVTs.size() == 1 && 269 "PHIs with non-vector integer types should have a single VT."); 270 EVT IntVT = ValueVTs[0]; 271 272 if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1) 273 return; 274 IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT); 275 unsigned BitWidth = IntVT.getSizeInBits(); 276 277 unsigned DestReg = ValueMap[PN]; 278 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 279 return; 280 LiveOutRegInfo.grow(DestReg); 281 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 282 283 Value *V = PN->getIncomingValue(0); 284 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 285 DestLOI.NumSignBits = 1; 286 APInt Zero(BitWidth, 0); 287 DestLOI.KnownZero = Zero; 288 DestLOI.KnownOne = Zero; 289 return; 290 } 291 292 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 293 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 294 DestLOI.NumSignBits = Val.getNumSignBits(); 295 DestLOI.KnownZero = ~Val; 296 DestLOI.KnownOne = Val; 297 } else { 298 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 299 "CopyToReg node was created."); 300 unsigned SrcReg = ValueMap[V]; 301 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 302 DestLOI.IsValid = false; 303 return; 304 } 305 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 306 if (!SrcLOI) { 307 DestLOI.IsValid = false; 308 return; 309 } 310 DestLOI = *SrcLOI; 311 } 312 313 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 314 DestLOI.KnownOne.getBitWidth() == BitWidth && 315 "Masks should have the same bit width as the type."); 316 317 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 318 Value *V = PN->getIncomingValue(i); 319 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 320 DestLOI.NumSignBits = 1; 321 APInt Zero(BitWidth, 0); 322 DestLOI.KnownZero = Zero; 323 DestLOI.KnownOne = Zero; 324 return; 325 } 326 327 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 328 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 329 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 330 DestLOI.KnownZero &= ~Val; 331 DestLOI.KnownOne &= Val; 332 continue; 333 } 334 335 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 336 "its CopyToReg node was created."); 337 unsigned SrcReg = ValueMap[V]; 338 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 339 DestLOI.IsValid = false; 340 return; 341 } 342 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 343 if (!SrcLOI) { 344 DestLOI.IsValid = false; 345 return; 346 } 347 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 348 DestLOI.KnownZero &= SrcLOI->KnownZero; 349 DestLOI.KnownOne &= SrcLOI->KnownOne; 350 } 351 } 352 353 /// setByValArgumentFrameIndex - Record frame index for the byval 354 /// argument. This overrides previous frame index entry for this argument, 355 /// if any. 356 void FunctionLoweringInfo::setByValArgumentFrameIndex(const Argument *A, 357 int FI) { 358 assert (A->hasByValAttr() && "Argument does not have byval attribute!"); 359 ByValArgFrameIndexMap[A] = FI; 360 } 361 362 /// getByValArgumentFrameIndex - Get frame index for the byval argument. 363 /// If the argument does not have any assigned frame index then 0 is 364 /// returned. 365 int FunctionLoweringInfo::getByValArgumentFrameIndex(const Argument *A) { 366 assert (A->hasByValAttr() && "Argument does not have byval attribute!"); 367 DenseMap<const Argument *, int>::iterator I = 368 ByValArgFrameIndexMap.find(A); 369 if (I != ByValArgFrameIndexMap.end()) 370 return I->second; 371 DEBUG(dbgs() << "Argument does not have assigned frame index!"); 372 return 0; 373 } 374 375 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 376 /// call, and add them to the specified machine basic block. 377 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 378 MachineBasicBlock *MBB) { 379 // Inform the MachineModuleInfo of the personality for this landing pad. 380 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 381 assert(CE->getOpcode() == Instruction::BitCast && 382 isa<Function>(CE->getOperand(0)) && 383 "Personality should be a function"); 384 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 385 386 // Gather all the type infos for this landing pad and pass them along to 387 // MachineModuleInfo. 388 std::vector<const GlobalVariable *> TyInfo; 389 unsigned N = I.getNumArgOperands(); 390 391 for (unsigned i = N - 1; i > 1; --i) { 392 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 393 unsigned FilterLength = CI->getZExtValue(); 394 unsigned FirstCatch = i + FilterLength + !FilterLength; 395 assert(FirstCatch <= N && "Invalid filter length"); 396 397 if (FirstCatch < N) { 398 TyInfo.reserve(N - FirstCatch); 399 for (unsigned j = FirstCatch; j < N; ++j) 400 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 401 MMI->addCatchTypeInfo(MBB, TyInfo); 402 TyInfo.clear(); 403 } 404 405 if (!FilterLength) { 406 // Cleanup. 407 MMI->addCleanup(MBB); 408 } else { 409 // Filter. 410 TyInfo.reserve(FilterLength - 1); 411 for (unsigned j = i + 1; j < FirstCatch; ++j) 412 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 413 MMI->addFilterTypeInfo(MBB, TyInfo); 414 TyInfo.clear(); 415 } 416 417 N = i; 418 } 419 } 420 421 if (N > 2) { 422 TyInfo.reserve(N - 2); 423 for (unsigned j = 2; j < N; ++j) 424 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 425 MMI->addCatchTypeInfo(MBB, TyInfo); 426 } 427 } 428 429 void llvm::CopyCatchInfo(const BasicBlock *SuccBB, const BasicBlock *LPad, 430 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { 431 SmallPtrSet<const BasicBlock*, 4> Visited; 432 433 // The 'eh.selector' call may not be in the direct successor of a basic block, 434 // but could be several successors deeper. If we don't find it, try going one 435 // level further. <rdar://problem/8824861> 436 while (Visited.insert(SuccBB)) { 437 for (BasicBlock::const_iterator I = SuccBB->begin(), E = --SuccBB->end(); 438 I != E; ++I) 439 if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { 440 // Apply the catch info to LPad. 441 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[LPad]); 442 #ifndef NDEBUG 443 if (!FLI.MBBMap[SuccBB]->isLandingPad()) 444 FLI.CatchInfoFound.insert(EHSel); 445 #endif 446 return; 447 } 448 449 const BranchInst *Br = dyn_cast<BranchInst>(SuccBB->getTerminator()); 450 if (Br && Br->isUnconditional()) 451 SuccBB = Br->getSuccessor(0); 452 else 453 break; 454 } 455 } 456