1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/WinEHFuncInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "function-lowering-info" 46 47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 48 /// PHI nodes or outside of the basic block that defines it, or used by a 49 /// switch or atomic instruction, which may expand to multiple basic blocks. 50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 51 if (I->use_empty()) return false; 52 if (isa<PHINode>(I)) return true; 53 const BasicBlock *BB = I->getParent(); 54 for (const User *U : I->users()) 55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 56 return true; 57 58 return false; 59 } 60 61 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 62 // For the users of the source value being used for compare instruction, if 63 // the number of signed predicate is greater than unsigned predicate, we 64 // prefer to use SIGN_EXTEND. 65 // 66 // With this optimization, we would be able to reduce some redundant sign or 67 // zero extension instruction, and eventually more machine CSE opportunities 68 // can be exposed. 69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 70 unsigned NumOfSigned = 0, NumOfUnsigned = 0; 71 for (const User *U : V->users()) { 72 if (const auto *CI = dyn_cast<CmpInst>(U)) { 73 NumOfSigned += CI->isSigned(); 74 NumOfUnsigned += CI->isUnsigned(); 75 } 76 } 77 if (NumOfSigned > NumOfUnsigned) 78 ExtendKind = ISD::SIGN_EXTEND; 79 80 return ExtendKind; 81 } 82 83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 84 SelectionDAG *DAG) { 85 Fn = &fn; 86 MF = &mf; 87 TLI = MF->getSubtarget().getTargetLowering(); 88 RegInfo = &MF->getRegInfo(); 89 MachineModuleInfo &MMI = MF->getMMI(); 90 91 // Check whether the function can return without sret-demotion. 92 SmallVector<ISD::OutputArg, 4> Outs; 93 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, 94 mf.getDataLayout()); 95 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 96 Fn->isVarArg(), Outs, Fn->getContext()); 97 98 // Initialize the mapping of values to registers. This is only set up for 99 // instruction values that are used outside of the block that defines 100 // them. 101 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 102 for (; BB != EB; ++BB) 103 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 104 I != E; ++I) { 105 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 106 // Static allocas can be folded into the initial stack frame adjustment. 107 if (AI->isStaticAlloca()) { 108 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); 109 Type *Ty = AI->getAllocatedType(); 110 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); 111 unsigned Align = 112 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), 113 AI->getAlignment()); 114 115 TySize *= CUI->getZExtValue(); // Get total allocated size. 116 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 117 118 StaticAllocaMap[AI] = 119 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); 120 121 } else { 122 unsigned Align = 123 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment( 124 AI->getAllocatedType()), 125 AI->getAlignment()); 126 unsigned StackAlign = 127 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 128 if (Align <= StackAlign) 129 Align = 0; 130 // Inform the Frame Information that we have variable-sized objects. 131 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 132 } 133 } 134 135 // Look for inline asm that clobbers the SP register. 136 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 137 ImmutableCallSite CS(I); 138 if (isa<InlineAsm>(CS.getCalledValue())) { 139 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 140 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 141 std::vector<TargetLowering::AsmOperandInfo> Ops = 142 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); 143 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 144 TargetLowering::AsmOperandInfo &Op = Ops[I]; 145 if (Op.Type == InlineAsm::isClobber) { 146 // Clobbers don't have SDValue operands, hence SDValue(). 147 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 148 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 149 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, 150 Op.ConstraintVT); 151 if (PhysReg.first == SP) 152 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true); 153 } 154 } 155 } 156 } 157 158 // Look for calls to the @llvm.va_start intrinsic. We can omit some 159 // prologue boilerplate for variadic functions that don't examine their 160 // arguments. 161 if (const auto *II = dyn_cast<IntrinsicInst>(I)) { 162 if (II->getIntrinsicID() == Intrinsic::vastart) 163 MF->getFrameInfo()->setHasVAStart(true); 164 } 165 166 // If we have a musttail call in a variadic funciton, we need to ensure we 167 // forward implicit register parameters. 168 if (const auto *CI = dyn_cast<CallInst>(I)) { 169 if (CI->isMustTailCall() && Fn->isVarArg()) 170 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); 171 } 172 173 // Mark values used outside their block as exported, by allocating 174 // a virtual register for them. 175 if (isUsedOutsideOfDefiningBlock(I)) 176 if (!isa<AllocaInst>(I) || 177 !StaticAllocaMap.count(cast<AllocaInst>(I))) 178 InitializeRegForValue(I); 179 180 // Collect llvm.dbg.declare information. This is done now instead of 181 // during the initial isel pass through the IR so that it is done 182 // in a predictable order. 183 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 184 assert(DI->getVariable() && "Missing variable"); 185 assert(DI->getDebugLoc() && "Missing location"); 186 if (MMI.hasDebugInfo()) { 187 // Don't handle byval struct arguments or VLAs, for example. 188 // Non-byval arguments are handled here (they refer to the stack 189 // temporary alloca at this point). 190 const Value *Address = DI->getAddress(); 191 if (Address) { 192 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 193 Address = BCI->getOperand(0); 194 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 195 DenseMap<const AllocaInst *, int>::iterator SI = 196 StaticAllocaMap.find(AI); 197 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 198 int FI = SI->second; 199 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), 200 FI, DI->getDebugLoc()); 201 } 202 } 203 } 204 } 205 } 206 207 // Decide the preferred extend type for a value. 208 PreferredExtendType[I] = getPreferredExtendForValue(I); 209 } 210 211 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 212 // also creates the initial PHI MachineInstrs, though none of the input 213 // operands are populated. 214 for (BB = Fn->begin(); BB != EB; ++BB) { 215 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 216 MBBMap[BB] = MBB; 217 MF->push_back(MBB); 218 219 // Transfer the address-taken flag. This is necessary because there could 220 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 221 // the first one should be marked. 222 if (BB->hasAddressTaken()) 223 MBB->setHasAddressTaken(); 224 225 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 226 // appropriate. 227 for (BasicBlock::const_iterator I = BB->begin(); 228 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 229 if (PN->use_empty()) continue; 230 231 // Skip empty types 232 if (PN->getType()->isEmptyTy()) 233 continue; 234 235 DebugLoc DL = PN->getDebugLoc(); 236 unsigned PHIReg = ValueMap[PN]; 237 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 238 239 SmallVector<EVT, 4> ValueVTs; 240 ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs); 241 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 242 EVT VT = ValueVTs[vti]; 243 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 244 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 245 for (unsigned i = 0; i != NumRegisters; ++i) 246 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 247 PHIReg += NumRegisters; 248 } 249 } 250 } 251 252 // Mark landing pad blocks. 253 SmallVector<const LandingPadInst *, 4> LPads; 254 for (BB = Fn->begin(); BB != EB; ++BB) { 255 if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 256 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 257 if (BB->isLandingPad()) 258 LPads.push_back(BB->getLandingPadInst()); 259 } 260 261 // If this is an MSVC EH personality, we need to do a bit more work. 262 EHPersonality Personality = EHPersonality::Unknown; 263 if (Fn->hasPersonalityFn()) 264 Personality = classifyEHPersonality(Fn->getPersonalityFn()); 265 if (!isMSVCEHPersonality(Personality)) 266 return; 267 268 if (Personality == EHPersonality::MSVC_Win64SEH || 269 Personality == EHPersonality::MSVC_X86SEH) { 270 addSEHHandlersForLPads(LPads); 271 } 272 273 WinEHFuncInfo &EHInfo = MMI.getWinEHFuncInfo(&fn); 274 if (Personality == EHPersonality::MSVC_CXX) { 275 const Function *WinEHParentFn = MMI.getWinEHParent(&fn); 276 calculateWinCXXEHStateNumbers(WinEHParentFn, EHInfo); 277 } 278 279 // Copy the state numbers to LandingPadInfo for the current function, which 280 // could be a handler or the parent. This should happen for 32-bit SEH and 281 // C++ EH. 282 if (Personality == EHPersonality::MSVC_CXX || 283 Personality == EHPersonality::MSVC_X86SEH) { 284 for (const LandingPadInst *LP : LPads) { 285 MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; 286 MMI.addWinEHState(LPadMBB, EHInfo.LandingPadStateMap[LP]); 287 } 288 } 289 } 290 291 void FunctionLoweringInfo::addSEHHandlersForLPads( 292 ArrayRef<const LandingPadInst *> LPads) { 293 MachineModuleInfo &MMI = MF->getMMI(); 294 295 // Iterate over all landing pads with llvm.eh.actions calls. 296 for (const LandingPadInst *LP : LPads) { 297 const IntrinsicInst *ActionsCall = 298 dyn_cast<IntrinsicInst>(LP->getNextNode()); 299 if (!ActionsCall || 300 ActionsCall->getIntrinsicID() != Intrinsic::eh_actions) 301 continue; 302 303 // Parse the llvm.eh.actions call we found. 304 MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; 305 SmallVector<std::unique_ptr<ActionHandler>, 4> Actions; 306 parseEHActions(ActionsCall, Actions); 307 308 // Iterate EH actions from most to least precedence, which means 309 // iterating in reverse. 310 for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) { 311 ActionHandler *Action = I->get(); 312 if (auto *CH = dyn_cast<CatchHandler>(Action)) { 313 const auto *Filter = 314 dyn_cast<Function>(CH->getSelector()->stripPointerCasts()); 315 assert((Filter || CH->getSelector()->isNullValue()) && 316 "expected function or catch-all"); 317 const auto *RecoverBA = 318 cast<BlockAddress>(CH->getHandlerBlockOrFunc()); 319 MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA); 320 } else { 321 assert(isa<CleanupHandler>(Action)); 322 const auto *Fini = cast<Function>(Action->getHandlerBlockOrFunc()); 323 MMI.addSEHCleanupHandler(LPadMBB, Fini); 324 } 325 } 326 } 327 } 328 329 /// clear - Clear out all the function-specific state. This returns this 330 /// FunctionLoweringInfo to an empty state, ready to be used for a 331 /// different function. 332 void FunctionLoweringInfo::clear() { 333 assert(CatchInfoFound.size() == CatchInfoLost.size() && 334 "Not all catch info was assigned to a landing pad!"); 335 336 MBBMap.clear(); 337 ValueMap.clear(); 338 StaticAllocaMap.clear(); 339 #ifndef NDEBUG 340 CatchInfoLost.clear(); 341 CatchInfoFound.clear(); 342 #endif 343 LiveOutRegInfo.clear(); 344 VisitedBBs.clear(); 345 ArgDbgValues.clear(); 346 ByValArgFrameIndexMap.clear(); 347 RegFixups.clear(); 348 StatepointStackSlots.clear(); 349 StatepointRelocatedValues.clear(); 350 PreferredExtendType.clear(); 351 } 352 353 /// CreateReg - Allocate a single virtual register for the given type. 354 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 355 return RegInfo->createVirtualRegister( 356 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); 357 } 358 359 /// CreateRegs - Allocate the appropriate number of virtual registers of 360 /// the correctly promoted or expanded types. Assign these registers 361 /// consecutive vreg numbers and return the first assigned number. 362 /// 363 /// In the case that the given value has struct or array type, this function 364 /// will assign registers for each member or element. 365 /// 366 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 367 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 368 369 SmallVector<EVT, 4> ValueVTs; 370 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 371 372 unsigned FirstReg = 0; 373 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 374 EVT ValueVT = ValueVTs[Value]; 375 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 376 377 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 378 for (unsigned i = 0; i != NumRegs; ++i) { 379 unsigned R = CreateReg(RegisterVT); 380 if (!FirstReg) FirstReg = R; 381 } 382 } 383 return FirstReg; 384 } 385 386 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 387 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 388 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 389 /// the larger bit width by zero extension. The bit width must be no smaller 390 /// than the LiveOutInfo's existing bit width. 391 const FunctionLoweringInfo::LiveOutInfo * 392 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 393 if (!LiveOutRegInfo.inBounds(Reg)) 394 return nullptr; 395 396 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 397 if (!LOI->IsValid) 398 return nullptr; 399 400 if (BitWidth > LOI->KnownZero.getBitWidth()) { 401 LOI->NumSignBits = 1; 402 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 403 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 404 } 405 406 return LOI; 407 } 408 409 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 410 /// register based on the LiveOutInfo of its operands. 411 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 412 Type *Ty = PN->getType(); 413 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 414 return; 415 416 SmallVector<EVT, 1> ValueVTs; 417 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); 418 assert(ValueVTs.size() == 1 && 419 "PHIs with non-vector integer types should have a single VT."); 420 EVT IntVT = ValueVTs[0]; 421 422 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 423 return; 424 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 425 unsigned BitWidth = IntVT.getSizeInBits(); 426 427 unsigned DestReg = ValueMap[PN]; 428 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 429 return; 430 LiveOutRegInfo.grow(DestReg); 431 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 432 433 Value *V = PN->getIncomingValue(0); 434 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 435 DestLOI.NumSignBits = 1; 436 APInt Zero(BitWidth, 0); 437 DestLOI.KnownZero = Zero; 438 DestLOI.KnownOne = Zero; 439 return; 440 } 441 442 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 443 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 444 DestLOI.NumSignBits = Val.getNumSignBits(); 445 DestLOI.KnownZero = ~Val; 446 DestLOI.KnownOne = Val; 447 } else { 448 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 449 "CopyToReg node was created."); 450 unsigned SrcReg = ValueMap[V]; 451 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 452 DestLOI.IsValid = false; 453 return; 454 } 455 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 456 if (!SrcLOI) { 457 DestLOI.IsValid = false; 458 return; 459 } 460 DestLOI = *SrcLOI; 461 } 462 463 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 464 DestLOI.KnownOne.getBitWidth() == BitWidth && 465 "Masks should have the same bit width as the type."); 466 467 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 468 Value *V = PN->getIncomingValue(i); 469 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 470 DestLOI.NumSignBits = 1; 471 APInt Zero(BitWidth, 0); 472 DestLOI.KnownZero = Zero; 473 DestLOI.KnownOne = Zero; 474 return; 475 } 476 477 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 478 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 479 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 480 DestLOI.KnownZero &= ~Val; 481 DestLOI.KnownOne &= Val; 482 continue; 483 } 484 485 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 486 "its CopyToReg node was created."); 487 unsigned SrcReg = ValueMap[V]; 488 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 489 DestLOI.IsValid = false; 490 return; 491 } 492 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 493 if (!SrcLOI) { 494 DestLOI.IsValid = false; 495 return; 496 } 497 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 498 DestLOI.KnownZero &= SrcLOI->KnownZero; 499 DestLOI.KnownOne &= SrcLOI->KnownOne; 500 } 501 } 502 503 /// setArgumentFrameIndex - Record frame index for the byval 504 /// argument. This overrides previous frame index entry for this argument, 505 /// if any. 506 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 507 int FI) { 508 ByValArgFrameIndexMap[A] = FI; 509 } 510 511 /// getArgumentFrameIndex - Get frame index for the byval argument. 512 /// If the argument does not have any assigned frame index then 0 is 513 /// returned. 514 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 515 DenseMap<const Argument *, int>::iterator I = 516 ByValArgFrameIndexMap.find(A); 517 if (I != ByValArgFrameIndexMap.end()) 518 return I->second; 519 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 520 return 0; 521 } 522 523 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 524 /// being passed to this variadic function, and set the MachineModuleInfo's 525 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 526 /// reference to _fltused on Windows, which will link in MSVCRT's 527 /// floating-point support. 528 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 529 MachineModuleInfo *MMI) 530 { 531 FunctionType *FT = cast<FunctionType>( 532 I.getCalledValue()->getType()->getContainedType(0)); 533 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 534 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 535 Type* T = I.getArgOperand(i)->getType(); 536 for (auto i : post_order(T)) { 537 if (i->isFloatingPointTy()) { 538 MMI->setUsesVAFloatArgument(true); 539 return; 540 } 541 } 542 } 543 } 544 } 545 546 /// AddLandingPadInfo - Extract the exception handling information from the 547 /// landingpad instruction and add them to the specified machine module info. 548 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 549 MachineBasicBlock *MBB) { 550 MMI.addPersonality( 551 MBB, 552 cast<Function>( 553 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())); 554 555 if (I.isCleanup()) 556 MMI.addCleanup(MBB); 557 558 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 559 // but we need to do it this way because of how the DWARF EH emitter 560 // processes the clauses. 561 for (unsigned i = I.getNumClauses(); i != 0; --i) { 562 Value *Val = I.getClause(i - 1); 563 if (I.isCatch(i - 1)) { 564 MMI.addCatchTypeInfo(MBB, 565 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 566 } else { 567 // Add filters in a list. 568 Constant *CVal = cast<Constant>(Val); 569 SmallVector<const GlobalValue*, 4> FilterList; 570 for (User::op_iterator 571 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 572 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 573 574 MMI.addFilterTypeInfo(MBB, FilterList); 575 } 576 } 577 } 578