1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 11 // both before and after the DAG is legalized. 12 // 13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 14 // primarily intended to handle simplification opportunities that are implicit 15 // in the LLVM IR and exposed by the various codegen lowering phases. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "dagcombine" 45 46 STATISTIC(NodesCombined , "Number of dag nodes combined"); 47 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 48 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 49 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 50 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 51 STATISTIC(SlicedLoads, "Number of load sliced"); 52 53 namespace { 54 static cl::opt<bool> 55 CombinerAA("combiner-alias-analysis", cl::Hidden, 56 cl::desc("Enable DAG combiner alias-analysis heuristics")); 57 58 static cl::opt<bool> 59 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 60 cl::desc("Enable DAG combiner's use of IR alias analysis")); 61 62 static cl::opt<bool> 63 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 64 cl::desc("Enable DAG combiner's use of TBAA")); 65 66 #ifndef NDEBUG 67 static cl::opt<std::string> 68 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 69 cl::desc("Only use DAG-combiner alias analysis in this" 70 " function")); 71 #endif 72 73 /// Hidden option to stress test load slicing, i.e., when this option 74 /// is enabled, load slicing bypasses most of its profitability guards. 75 static cl::opt<bool> 76 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 77 cl::desc("Bypass the profitability model of load " 78 "slicing"), 79 cl::init(false)); 80 81 static cl::opt<bool> 82 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 83 cl::desc("DAG combiner may split indexing from loads")); 84 85 //------------------------------ DAGCombiner ---------------------------------// 86 87 class DAGCombiner { 88 SelectionDAG &DAG; 89 const TargetLowering &TLI; 90 CombineLevel Level; 91 CodeGenOpt::Level OptLevel; 92 bool LegalOperations; 93 bool LegalTypes; 94 bool ForCodeSize; 95 96 /// \brief Worklist of all of the nodes that need to be simplified. 97 /// 98 /// This must behave as a stack -- new nodes to process are pushed onto the 99 /// back and when processing we pop off of the back. 100 /// 101 /// The worklist will not contain duplicates but may contain null entries 102 /// due to nodes being deleted from the underlying DAG. 103 SmallVector<SDNode *, 64> Worklist; 104 105 /// \brief Mapping from an SDNode to its position on the worklist. 106 /// 107 /// This is used to find and remove nodes from the worklist (by nulling 108 /// them) when they are deleted from the underlying DAG. It relies on 109 /// stable indices of nodes within the worklist. 110 DenseMap<SDNode *, unsigned> WorklistMap; 111 112 /// \brief Set of nodes which have been combined (at least once). 113 /// 114 /// This is used to allow us to reliably add any operands of a DAG node 115 /// which have not yet been combined to the worklist. 116 SmallPtrSet<SDNode *, 32> CombinedNodes; 117 118 // AA - Used for DAG load/store alias analysis. 119 AliasAnalysis &AA; 120 121 /// When an instruction is simplified, add all users of the instruction to 122 /// the work lists because they might get more simplified now. 123 void AddUsersToWorklist(SDNode *N) { 124 for (SDNode *Node : N->uses()) 125 AddToWorklist(Node); 126 } 127 128 /// Call the node-specific routine that folds each particular type of node. 129 SDValue visit(SDNode *N); 130 131 public: 132 /// Add to the worklist making sure its instance is at the back (next to be 133 /// processed.) 134 void AddToWorklist(SDNode *N) { 135 // Skip handle nodes as they can't usefully be combined and confuse the 136 // zero-use deletion strategy. 137 if (N->getOpcode() == ISD::HANDLENODE) 138 return; 139 140 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 141 Worklist.push_back(N); 142 } 143 144 /// Remove all instances of N from the worklist. 145 void removeFromWorklist(SDNode *N) { 146 CombinedNodes.erase(N); 147 148 auto It = WorklistMap.find(N); 149 if (It == WorklistMap.end()) 150 return; // Not in the worklist. 151 152 // Null out the entry rather than erasing it to avoid a linear operation. 153 Worklist[It->second] = nullptr; 154 WorklistMap.erase(It); 155 } 156 157 void deleteAndRecombine(SDNode *N); 158 bool recursivelyDeleteUnusedNodes(SDNode *N); 159 160 /// Replaces all uses of the results of one DAG node with new values. 161 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 162 bool AddTo = true); 163 164 /// Replaces all uses of the results of one DAG node with new values. 165 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 166 return CombineTo(N, &Res, 1, AddTo); 167 } 168 169 /// Replaces all uses of the results of one DAG node with new values. 170 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 171 bool AddTo = true) { 172 SDValue To[] = { Res0, Res1 }; 173 return CombineTo(N, To, 2, AddTo); 174 } 175 176 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 177 178 private: 179 180 /// Check the specified integer node value to see if it can be simplified or 181 /// if things it uses can be simplified by bit propagation. 182 /// If so, return true. 183 bool SimplifyDemandedBits(SDValue Op) { 184 unsigned BitWidth = Op.getScalarValueSizeInBits(); 185 APInt Demanded = APInt::getAllOnesValue(BitWidth); 186 return SimplifyDemandedBits(Op, Demanded); 187 } 188 189 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 190 191 bool CombineToPreIndexedLoadStore(SDNode *N); 192 bool CombineToPostIndexedLoadStore(SDNode *N); 193 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 194 bool SliceUpLoad(SDNode *N); 195 196 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 197 /// load. 198 /// 199 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 200 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 201 /// \param EltNo index of the vector element to load. 202 /// \param OriginalLoad load that EVE came from to be replaced. 203 /// \returns EVE on success SDValue() on failure. 204 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 205 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 206 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 207 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 208 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 209 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 210 SDValue PromoteIntBinOp(SDValue Op); 211 SDValue PromoteIntShiftOp(SDValue Op); 212 SDValue PromoteExtend(SDValue Op); 213 bool PromoteLoad(SDValue Op); 214 215 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, SDValue Trunc, 216 SDValue ExtLoad, const SDLoc &DL, 217 ISD::NodeType ExtType); 218 219 /// Call the node-specific routine that knows how to fold each 220 /// particular type of node. If that doesn't do anything, try the 221 /// target-specific DAG combines. 222 SDValue combine(SDNode *N); 223 224 // Visitation implementation - Implement dag node combining for different 225 // node types. The semantics are as follows: 226 // Return Value: 227 // SDValue.getNode() == 0 - No change was made 228 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 229 // otherwise - N should be replaced by the returned Operand. 230 // 231 SDValue visitTokenFactor(SDNode *N); 232 SDValue visitMERGE_VALUES(SDNode *N); 233 SDValue visitADD(SDNode *N); 234 SDValue visitSUB(SDNode *N); 235 SDValue visitADDC(SDNode *N); 236 SDValue visitSUBC(SDNode *N); 237 SDValue visitADDE(SDNode *N); 238 SDValue visitSUBE(SDNode *N); 239 SDValue visitMUL(SDNode *N); 240 SDValue useDivRem(SDNode *N); 241 SDValue visitSDIV(SDNode *N); 242 SDValue visitUDIV(SDNode *N); 243 SDValue visitREM(SDNode *N); 244 SDValue visitMULHU(SDNode *N); 245 SDValue visitMULHS(SDNode *N); 246 SDValue visitSMUL_LOHI(SDNode *N); 247 SDValue visitUMUL_LOHI(SDNode *N); 248 SDValue visitSMULO(SDNode *N); 249 SDValue visitUMULO(SDNode *N); 250 SDValue visitIMINMAX(SDNode *N); 251 SDValue visitAND(SDNode *N); 252 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); 253 SDValue visitOR(SDNode *N); 254 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); 255 SDValue visitXOR(SDNode *N); 256 SDValue SimplifyVBinOp(SDNode *N); 257 SDValue visitSHL(SDNode *N); 258 SDValue visitSRA(SDNode *N); 259 SDValue visitSRL(SDNode *N); 260 SDValue visitRotate(SDNode *N); 261 SDValue visitBSWAP(SDNode *N); 262 SDValue visitBITREVERSE(SDNode *N); 263 SDValue visitCTLZ(SDNode *N); 264 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 265 SDValue visitCTTZ(SDNode *N); 266 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 267 SDValue visitCTPOP(SDNode *N); 268 SDValue visitSELECT(SDNode *N); 269 SDValue visitVSELECT(SDNode *N); 270 SDValue visitSELECT_CC(SDNode *N); 271 SDValue visitSETCC(SDNode *N); 272 SDValue visitSETCCE(SDNode *N); 273 SDValue visitSIGN_EXTEND(SDNode *N); 274 SDValue visitZERO_EXTEND(SDNode *N); 275 SDValue visitANY_EXTEND(SDNode *N); 276 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 277 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 278 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 279 SDValue visitTRUNCATE(SDNode *N); 280 SDValue visitBITCAST(SDNode *N); 281 SDValue visitBUILD_PAIR(SDNode *N); 282 SDValue visitFADD(SDNode *N); 283 SDValue visitFSUB(SDNode *N); 284 SDValue visitFMUL(SDNode *N); 285 SDValue visitFMA(SDNode *N); 286 SDValue visitFDIV(SDNode *N); 287 SDValue visitFREM(SDNode *N); 288 SDValue visitFSQRT(SDNode *N); 289 SDValue visitFCOPYSIGN(SDNode *N); 290 SDValue visitSINT_TO_FP(SDNode *N); 291 SDValue visitUINT_TO_FP(SDNode *N); 292 SDValue visitFP_TO_SINT(SDNode *N); 293 SDValue visitFP_TO_UINT(SDNode *N); 294 SDValue visitFP_ROUND(SDNode *N); 295 SDValue visitFP_ROUND_INREG(SDNode *N); 296 SDValue visitFP_EXTEND(SDNode *N); 297 SDValue visitFNEG(SDNode *N); 298 SDValue visitFABS(SDNode *N); 299 SDValue visitFCEIL(SDNode *N); 300 SDValue visitFTRUNC(SDNode *N); 301 SDValue visitFFLOOR(SDNode *N); 302 SDValue visitFMINNUM(SDNode *N); 303 SDValue visitFMAXNUM(SDNode *N); 304 SDValue visitBRCOND(SDNode *N); 305 SDValue visitBR_CC(SDNode *N); 306 SDValue visitLOAD(SDNode *N); 307 308 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 309 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 310 311 SDValue visitSTORE(SDNode *N); 312 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 313 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 314 SDValue visitBUILD_VECTOR(SDNode *N); 315 SDValue visitCONCAT_VECTORS(SDNode *N); 316 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 317 SDValue visitVECTOR_SHUFFLE(SDNode *N); 318 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 319 SDValue visitINSERT_SUBVECTOR(SDNode *N); 320 SDValue visitMLOAD(SDNode *N); 321 SDValue visitMSTORE(SDNode *N); 322 SDValue visitMGATHER(SDNode *N); 323 SDValue visitMSCATTER(SDNode *N); 324 SDValue visitFP_TO_FP16(SDNode *N); 325 SDValue visitFP16_TO_FP(SDNode *N); 326 327 SDValue visitFADDForFMACombine(SDNode *N); 328 SDValue visitFSUBForFMACombine(SDNode *N); 329 SDValue visitFMULForFMACombine(SDNode *N); 330 331 SDValue XformToShuffleWithZero(SDNode *N); 332 SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue LHS, 333 SDValue RHS); 334 335 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 336 337 SDValue foldSelectOfConstants(SDNode *N); 338 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 339 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 340 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 341 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 342 SDValue N2, SDValue N3, ISD::CondCode CC, 343 bool NotExtCompare = false); 344 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 345 const SDLoc &DL, bool foldBooleans = true); 346 347 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 348 SDValue &CC) const; 349 bool isOneUseSetCC(SDValue N) const; 350 351 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 352 unsigned HiOp); 353 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 354 SDValue CombineExtLoad(SDNode *N); 355 SDValue combineRepeatedFPDivisors(SDNode *N); 356 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 357 SDValue BuildSDIV(SDNode *N); 358 SDValue BuildSDIVPow2(SDNode *N); 359 SDValue BuildUDIV(SDNode *N); 360 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); 361 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); 362 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags); 363 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, bool Recip); 364 SDValue buildSqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, 365 SDNodeFlags *Flags, bool Reciprocal); 366 SDValue buildSqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, 367 SDNodeFlags *Flags, bool Reciprocal); 368 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 369 bool DemandHighBits = true); 370 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 371 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 372 SDValue InnerPos, SDValue InnerNeg, 373 unsigned PosOpcode, unsigned NegOpcode, 374 const SDLoc &DL); 375 SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 376 SDValue ReduceLoadWidth(SDNode *N); 377 SDValue ReduceLoadOpStoreWidth(SDNode *N); 378 SDValue splitMergedValStore(StoreSDNode *ST); 379 SDValue TransformFPLoadStorePair(SDNode *N); 380 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 381 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 382 SDValue reduceBuildVecToShuffle(SDNode *N); 383 SDValue createBuildVecShuffle(SDLoc DL, SDNode *N, ArrayRef<int> VectorMask, 384 SDValue VecIn1, SDValue VecIn2, 385 unsigned LeftIdx); 386 387 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 388 389 /// Walk up chain skipping non-aliasing memory nodes, 390 /// looking for aliasing nodes and adding them to the Aliases vector. 391 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 392 SmallVectorImpl<SDValue> &Aliases); 393 394 /// Return true if there is any possibility that the two addresses overlap. 395 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 396 397 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 398 /// chain (aliasing node.) 399 SDValue FindBetterChain(SDNode *N, SDValue Chain); 400 401 /// Try to replace a store and any possibly adjacent stores on 402 /// consecutive chains with better chains. Return true only if St is 403 /// replaced. 404 /// 405 /// Notice that other chains may still be replaced even if the function 406 /// returns false. 407 bool findBetterNeighborChains(StoreSDNode *St); 408 409 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 410 bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask); 411 412 /// Holds a pointer to an LSBaseSDNode as well as information on where it 413 /// is located in a sequence of memory operations connected by a chain. 414 struct MemOpLink { 415 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 416 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 417 // Ptr to the mem node. 418 LSBaseSDNode *MemNode; 419 // Offset from the base ptr. 420 int64_t OffsetFromBase; 421 // What is the sequence number of this mem node. 422 // Lowest mem operand in the DAG starts at zero. 423 unsigned SequenceNum; 424 }; 425 426 /// This is a helper function for visitMUL to check the profitability 427 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 428 /// MulNode is the original multiply, AddNode is (add x, c1), 429 /// and ConstNode is c2. 430 bool isMulAddWithConstProfitable(SDNode *MulNode, 431 SDValue &AddNode, 432 SDValue &ConstNode); 433 434 /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a 435 /// constant build_vector of the stored constant values in Stores. 436 SDValue getMergedConstantVectorStore(SelectionDAG &DAG, const SDLoc &SL, 437 ArrayRef<MemOpLink> Stores, 438 SmallVectorImpl<SDValue> &Chains, 439 EVT Ty) const; 440 441 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 442 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 443 /// the type of the loaded value to be extended. LoadedVT returns the type 444 /// of the original loaded value. NarrowLoad returns whether the load would 445 /// need to be narrowed in order to match. 446 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 447 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 448 bool &NarrowLoad); 449 450 /// This is a helper function for MergeConsecutiveStores. When the source 451 /// elements of the consecutive stores are all constants or all extracted 452 /// vector elements, try to merge them into one larger store. 453 /// \return True if a merged store was created. 454 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 455 EVT MemVT, unsigned NumStores, 456 bool IsConstantSrc, bool UseVector); 457 458 /// This is a helper function for MergeConsecutiveStores. 459 /// Stores that may be merged are placed in StoreNodes. 460 /// Loads that may alias with those stores are placed in AliasLoadNodes. 461 void getStoreMergeAndAliasCandidates( 462 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 463 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); 464 465 /// Helper function for MergeConsecutiveStores. Checks if 466 /// Candidate stores have indirect dependency through their 467 /// operands. \return True if safe to merge 468 bool checkMergeStoreCandidatesForDependencies( 469 SmallVectorImpl<MemOpLink> &StoreNodes); 470 471 /// Merge consecutive store operations into a wide store. 472 /// This optimization uses wide integers or vectors when possible. 473 /// \return True if some memory operations were changed. 474 bool MergeConsecutiveStores(StoreSDNode *N); 475 476 /// \brief Try to transform a truncation where C is a constant: 477 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 478 /// 479 /// \p N needs to be a truncation and its first operand an AND. Other 480 /// requirements are checked by the function (e.g. that trunc is 481 /// single-use) and if missed an empty SDValue is returned. 482 SDValue distributeTruncateThroughAnd(SDNode *N); 483 484 public: 485 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 486 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 487 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 488 ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); 489 } 490 491 /// Runs the dag combiner on all nodes in the work list 492 void Run(CombineLevel AtLevel); 493 494 SelectionDAG &getDAG() const { return DAG; } 495 496 /// Returns a type large enough to hold any valid shift amount - before type 497 /// legalization these can be huge. 498 EVT getShiftAmountTy(EVT LHSTy) { 499 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 500 if (LHSTy.isVector()) 501 return LHSTy; 502 auto &DL = DAG.getDataLayout(); 503 return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) 504 : TLI.getPointerTy(DL); 505 } 506 507 /// This method returns true if we are running before type legalization or 508 /// if the specified VT is legal. 509 bool isTypeLegal(const EVT &VT) { 510 if (!LegalTypes) return true; 511 return TLI.isTypeLegal(VT); 512 } 513 514 /// Convenience wrapper around TargetLowering::getSetCCResultType 515 EVT getSetCCResultType(EVT VT) const { 516 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 517 } 518 }; 519 } 520 521 522 namespace { 523 /// This class is a DAGUpdateListener that removes any deleted 524 /// nodes from the worklist. 525 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 526 DAGCombiner &DC; 527 public: 528 explicit WorklistRemover(DAGCombiner &dc) 529 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 530 531 void NodeDeleted(SDNode *N, SDNode *E) override { 532 DC.removeFromWorklist(N); 533 } 534 }; 535 } 536 537 //===----------------------------------------------------------------------===// 538 // TargetLowering::DAGCombinerInfo implementation 539 //===----------------------------------------------------------------------===// 540 541 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 542 ((DAGCombiner*)DC)->AddToWorklist(N); 543 } 544 545 SDValue TargetLowering::DAGCombinerInfo:: 546 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 547 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 548 } 549 550 SDValue TargetLowering::DAGCombinerInfo:: 551 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 552 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 553 } 554 555 556 SDValue TargetLowering::DAGCombinerInfo:: 557 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 558 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 559 } 560 561 void TargetLowering::DAGCombinerInfo:: 562 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 563 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 564 } 565 566 //===----------------------------------------------------------------------===// 567 // Helper Functions 568 //===----------------------------------------------------------------------===// 569 570 void DAGCombiner::deleteAndRecombine(SDNode *N) { 571 removeFromWorklist(N); 572 573 // If the operands of this node are only used by the node, they will now be 574 // dead. Make sure to re-visit them and recursively delete dead nodes. 575 for (const SDValue &Op : N->ops()) 576 // For an operand generating multiple values, one of the values may 577 // become dead allowing further simplification (e.g. split index 578 // arithmetic from an indexed load). 579 if (Op->hasOneUse() || Op->getNumValues() > 1) 580 AddToWorklist(Op.getNode()); 581 582 DAG.DeleteNode(N); 583 } 584 585 /// Return 1 if we can compute the negated form of the specified expression for 586 /// the same cost as the expression itself, or 2 if we can compute the negated 587 /// form more cheaply than the expression itself. 588 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 589 const TargetLowering &TLI, 590 const TargetOptions *Options, 591 unsigned Depth = 0) { 592 // fneg is removable even if it has multiple uses. 593 if (Op.getOpcode() == ISD::FNEG) return 2; 594 595 // Don't allow anything with multiple uses. 596 if (!Op.hasOneUse()) return 0; 597 598 // Don't recurse exponentially. 599 if (Depth > 6) return 0; 600 601 switch (Op.getOpcode()) { 602 default: return false; 603 case ISD::ConstantFP: 604 // Don't invert constant FP values after legalize. The negated constant 605 // isn't necessarily legal. 606 return LegalOperations ? 0 : 1; 607 case ISD::FADD: 608 // FIXME: determine better conditions for this xform. 609 if (!Options->UnsafeFPMath) return 0; 610 611 // After operation legalization, it might not be legal to create new FSUBs. 612 if (LegalOperations && 613 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 614 return 0; 615 616 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 617 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 618 Options, Depth + 1)) 619 return V; 620 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 621 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 622 Depth + 1); 623 case ISD::FSUB: 624 // We can't turn -(A-B) into B-A when we honor signed zeros. 625 if (!Options->UnsafeFPMath) return 0; 626 627 // fold (fneg (fsub A, B)) -> (fsub B, A) 628 return 1; 629 630 case ISD::FMUL: 631 case ISD::FDIV: 632 if (Options->HonorSignDependentRoundingFPMath()) return 0; 633 634 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 635 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 636 Options, Depth + 1)) 637 return V; 638 639 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 640 Depth + 1); 641 642 case ISD::FP_EXTEND: 643 case ISD::FP_ROUND: 644 case ISD::FSIN: 645 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 646 Depth + 1); 647 } 648 } 649 650 /// If isNegatibleForFree returns true, return the newly negated expression. 651 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 652 bool LegalOperations, unsigned Depth = 0) { 653 const TargetOptions &Options = DAG.getTarget().Options; 654 // fneg is removable even if it has multiple uses. 655 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 656 657 // Don't allow anything with multiple uses. 658 assert(Op.hasOneUse() && "Unknown reuse!"); 659 660 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 661 662 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 663 664 switch (Op.getOpcode()) { 665 default: llvm_unreachable("Unknown code"); 666 case ISD::ConstantFP: { 667 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 668 V.changeSign(); 669 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 670 } 671 case ISD::FADD: 672 // FIXME: determine better conditions for this xform. 673 assert(Options.UnsafeFPMath); 674 675 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 676 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 677 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 678 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 679 GetNegatedExpression(Op.getOperand(0), DAG, 680 LegalOperations, Depth+1), 681 Op.getOperand(1), Flags); 682 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 683 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 684 GetNegatedExpression(Op.getOperand(1), DAG, 685 LegalOperations, Depth+1), 686 Op.getOperand(0), Flags); 687 case ISD::FSUB: 688 // We can't turn -(A-B) into B-A when we honor signed zeros. 689 assert(Options.UnsafeFPMath); 690 691 // fold (fneg (fsub 0, B)) -> B 692 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 693 if (N0CFP->isZero()) 694 return Op.getOperand(1); 695 696 // fold (fneg (fsub A, B)) -> (fsub B, A) 697 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 698 Op.getOperand(1), Op.getOperand(0), Flags); 699 700 case ISD::FMUL: 701 case ISD::FDIV: 702 assert(!Options.HonorSignDependentRoundingFPMath()); 703 704 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 705 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 706 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 707 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 708 GetNegatedExpression(Op.getOperand(0), DAG, 709 LegalOperations, Depth+1), 710 Op.getOperand(1), Flags); 711 712 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 713 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 714 Op.getOperand(0), 715 GetNegatedExpression(Op.getOperand(1), DAG, 716 LegalOperations, Depth+1), Flags); 717 718 case ISD::FP_EXTEND: 719 case ISD::FSIN: 720 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 721 GetNegatedExpression(Op.getOperand(0), DAG, 722 LegalOperations, Depth+1)); 723 case ISD::FP_ROUND: 724 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 725 GetNegatedExpression(Op.getOperand(0), DAG, 726 LegalOperations, Depth+1), 727 Op.getOperand(1)); 728 } 729 } 730 731 // APInts must be the same size for most operations, this helper 732 // function zero extends the shorter of the pair so that they match. 733 // We provide an Offset so that we can create bitwidths that won't overflow. 734 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 735 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 736 LHS = LHS.zextOrSelf(Bits); 737 RHS = RHS.zextOrSelf(Bits); 738 } 739 740 // Return true if this node is a setcc, or is a select_cc 741 // that selects between the target values used for true and false, making it 742 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 743 // the appropriate nodes based on the type of node we are checking. This 744 // simplifies life a bit for the callers. 745 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 746 SDValue &CC) const { 747 if (N.getOpcode() == ISD::SETCC) { 748 LHS = N.getOperand(0); 749 RHS = N.getOperand(1); 750 CC = N.getOperand(2); 751 return true; 752 } 753 754 if (N.getOpcode() != ISD::SELECT_CC || 755 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 756 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 757 return false; 758 759 if (TLI.getBooleanContents(N.getValueType()) == 760 TargetLowering::UndefinedBooleanContent) 761 return false; 762 763 LHS = N.getOperand(0); 764 RHS = N.getOperand(1); 765 CC = N.getOperand(4); 766 return true; 767 } 768 769 /// Return true if this is a SetCC-equivalent operation with only one use. 770 /// If this is true, it allows the users to invert the operation for free when 771 /// it is profitable to do so. 772 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 773 SDValue N0, N1, N2; 774 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 775 return true; 776 return false; 777 } 778 779 // \brief Returns the SDNode if it is a constant float BuildVector 780 // or constant float. 781 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 782 if (isa<ConstantFPSDNode>(N)) 783 return N.getNode(); 784 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 785 return N.getNode(); 786 return nullptr; 787 } 788 789 // Determines if it is a constant integer or a build vector of constant 790 // integers (and undefs). 791 // Do not permit build vector implicit truncation. 792 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 793 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 794 return !(Const->isOpaque() && NoOpaques); 795 if (N.getOpcode() != ISD::BUILD_VECTOR) 796 return false; 797 unsigned BitWidth = N.getScalarValueSizeInBits(); 798 for (const SDValue &Op : N->op_values()) { 799 if (Op.isUndef()) 800 continue; 801 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 802 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 803 (Const->isOpaque() && NoOpaques)) 804 return false; 805 } 806 return true; 807 } 808 809 // Determines if it is a constant null integer or a splatted vector of a 810 // constant null integer (with no undefs). 811 // Build vector implicit truncation is not an issue for null values. 812 static bool isNullConstantOrNullSplatConstant(SDValue N) { 813 if (ConstantSDNode *Splat = isConstOrConstSplat(N)) 814 return Splat->isNullValue(); 815 return false; 816 } 817 818 // Determines if it is a constant integer of one or a splatted vector of a 819 // constant integer of one (with no undefs). 820 // Do not permit build vector implicit truncation. 821 static bool isOneConstantOrOneSplatConstant(SDValue N) { 822 unsigned BitWidth = N.getScalarValueSizeInBits(); 823 if (ConstantSDNode *Splat = isConstOrConstSplat(N)) 824 return Splat->isOne() && Splat->getAPIntValue().getBitWidth() == BitWidth; 825 return false; 826 } 827 828 // Determines if it is a constant integer of all ones or a splatted vector of a 829 // constant integer of all ones (with no undefs). 830 // Do not permit build vector implicit truncation. 831 static bool isAllOnesConstantOrAllOnesSplatConstant(SDValue N) { 832 unsigned BitWidth = N.getScalarValueSizeInBits(); 833 if (ConstantSDNode *Splat = isConstOrConstSplat(N)) 834 return Splat->isAllOnesValue() && 835 Splat->getAPIntValue().getBitWidth() == BitWidth; 836 return false; 837 } 838 839 SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 840 SDValue N1) { 841 EVT VT = N0.getValueType(); 842 if (N0.getOpcode() == Opc) { 843 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 844 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 845 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 846 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) 847 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 848 return SDValue(); 849 } 850 if (N0.hasOneUse()) { 851 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 852 // use 853 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 854 if (!OpNode.getNode()) 855 return SDValue(); 856 AddToWorklist(OpNode.getNode()); 857 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 858 } 859 } 860 } 861 862 if (N1.getOpcode() == Opc) { 863 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { 864 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 865 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 866 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) 867 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 868 return SDValue(); 869 } 870 if (N1.hasOneUse()) { 871 // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one 872 // use 873 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); 874 if (!OpNode.getNode()) 875 return SDValue(); 876 AddToWorklist(OpNode.getNode()); 877 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 878 } 879 } 880 } 881 882 return SDValue(); 883 } 884 885 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 886 bool AddTo) { 887 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 888 ++NodesCombined; 889 DEBUG(dbgs() << "\nReplacing.1 "; 890 N->dump(&DAG); 891 dbgs() << "\nWith: "; 892 To[0].getNode()->dump(&DAG); 893 dbgs() << " and " << NumTo-1 << " other values\n"); 894 for (unsigned i = 0, e = NumTo; i != e; ++i) 895 assert((!To[i].getNode() || 896 N->getValueType(i) == To[i].getValueType()) && 897 "Cannot combine value to value of different type!"); 898 899 WorklistRemover DeadNodes(*this); 900 DAG.ReplaceAllUsesWith(N, To); 901 if (AddTo) { 902 // Push the new nodes and any users onto the worklist 903 for (unsigned i = 0, e = NumTo; i != e; ++i) { 904 if (To[i].getNode()) { 905 AddToWorklist(To[i].getNode()); 906 AddUsersToWorklist(To[i].getNode()); 907 } 908 } 909 } 910 911 // Finally, if the node is now dead, remove it from the graph. The node 912 // may not be dead if the replacement process recursively simplified to 913 // something else needing this node. 914 if (N->use_empty()) 915 deleteAndRecombine(N); 916 return SDValue(N, 0); 917 } 918 919 void DAGCombiner:: 920 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 921 // Replace all uses. If any nodes become isomorphic to other nodes and 922 // are deleted, make sure to remove them from our worklist. 923 WorklistRemover DeadNodes(*this); 924 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 925 926 // Push the new node and any (possibly new) users onto the worklist. 927 AddToWorklist(TLO.New.getNode()); 928 AddUsersToWorklist(TLO.New.getNode()); 929 930 // Finally, if the node is now dead, remove it from the graph. The node 931 // may not be dead if the replacement process recursively simplified to 932 // something else needing this node. 933 if (TLO.Old.getNode()->use_empty()) 934 deleteAndRecombine(TLO.Old.getNode()); 935 } 936 937 /// Check the specified integer node value to see if it can be simplified or if 938 /// things it uses can be simplified by bit propagation. If so, return true. 939 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 940 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 941 APInt KnownZero, KnownOne; 942 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 943 return false; 944 945 // Revisit the node. 946 AddToWorklist(Op.getNode()); 947 948 // Replace the old value with the new one. 949 ++NodesCombined; 950 DEBUG(dbgs() << "\nReplacing.2 "; 951 TLO.Old.getNode()->dump(&DAG); 952 dbgs() << "\nWith: "; 953 TLO.New.getNode()->dump(&DAG); 954 dbgs() << '\n'); 955 956 CommitTargetLoweringOpt(TLO); 957 return true; 958 } 959 960 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 961 SDLoc DL(Load); 962 EVT VT = Load->getValueType(0); 963 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 964 965 DEBUG(dbgs() << "\nReplacing.9 "; 966 Load->dump(&DAG); 967 dbgs() << "\nWith: "; 968 Trunc.getNode()->dump(&DAG); 969 dbgs() << '\n'); 970 WorklistRemover DeadNodes(*this); 971 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 972 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 973 deleteAndRecombine(Load); 974 AddToWorklist(Trunc.getNode()); 975 } 976 977 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 978 Replace = false; 979 SDLoc DL(Op); 980 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 981 LoadSDNode *LD = cast<LoadSDNode>(Op); 982 EVT MemVT = LD->getMemoryVT(); 983 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 984 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 985 : ISD::EXTLOAD) 986 : LD->getExtensionType(); 987 Replace = true; 988 return DAG.getExtLoad(ExtType, DL, PVT, 989 LD->getChain(), LD->getBasePtr(), 990 MemVT, LD->getMemOperand()); 991 } 992 993 unsigned Opc = Op.getOpcode(); 994 switch (Opc) { 995 default: break; 996 case ISD::AssertSext: 997 return DAG.getNode(ISD::AssertSext, DL, PVT, 998 SExtPromoteOperand(Op.getOperand(0), PVT), 999 Op.getOperand(1)); 1000 case ISD::AssertZext: 1001 return DAG.getNode(ISD::AssertZext, DL, PVT, 1002 ZExtPromoteOperand(Op.getOperand(0), PVT), 1003 Op.getOperand(1)); 1004 case ISD::Constant: { 1005 unsigned ExtOpc = 1006 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1007 return DAG.getNode(ExtOpc, DL, PVT, Op); 1008 } 1009 } 1010 1011 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1012 return SDValue(); 1013 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1014 } 1015 1016 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1017 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1018 return SDValue(); 1019 EVT OldVT = Op.getValueType(); 1020 SDLoc DL(Op); 1021 bool Replace = false; 1022 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1023 if (!NewOp.getNode()) 1024 return SDValue(); 1025 AddToWorklist(NewOp.getNode()); 1026 1027 if (Replace) 1028 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1029 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1030 DAG.getValueType(OldVT)); 1031 } 1032 1033 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1034 EVT OldVT = Op.getValueType(); 1035 SDLoc DL(Op); 1036 bool Replace = false; 1037 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1038 if (!NewOp.getNode()) 1039 return SDValue(); 1040 AddToWorklist(NewOp.getNode()); 1041 1042 if (Replace) 1043 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1044 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1045 } 1046 1047 /// Promote the specified integer binary operation if the target indicates it is 1048 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1049 /// i32 since i16 instructions are longer. 1050 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1051 if (!LegalOperations) 1052 return SDValue(); 1053 1054 EVT VT = Op.getValueType(); 1055 if (VT.isVector() || !VT.isInteger()) 1056 return SDValue(); 1057 1058 // If operation type is 'undesirable', e.g. i16 on x86, consider 1059 // promoting it. 1060 unsigned Opc = Op.getOpcode(); 1061 if (TLI.isTypeDesirableForOp(Opc, VT)) 1062 return SDValue(); 1063 1064 EVT PVT = VT; 1065 // Consult target whether it is a good idea to promote this operation and 1066 // what's the right type to promote it to. 1067 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1068 assert(PVT != VT && "Don't know what type to promote to!"); 1069 1070 bool Replace0 = false; 1071 SDValue N0 = Op.getOperand(0); 1072 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1073 if (!NN0.getNode()) 1074 return SDValue(); 1075 1076 bool Replace1 = false; 1077 SDValue N1 = Op.getOperand(1); 1078 SDValue NN1; 1079 if (N0 == N1) 1080 NN1 = NN0; 1081 else { 1082 NN1 = PromoteOperand(N1, PVT, Replace1); 1083 if (!NN1.getNode()) 1084 return SDValue(); 1085 } 1086 1087 AddToWorklist(NN0.getNode()); 1088 if (NN1.getNode()) 1089 AddToWorklist(NN1.getNode()); 1090 1091 if (Replace0) 1092 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1093 if (Replace1) 1094 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1095 1096 DEBUG(dbgs() << "\nPromoting "; 1097 Op.getNode()->dump(&DAG)); 1098 SDLoc DL(Op); 1099 return DAG.getNode(ISD::TRUNCATE, DL, VT, 1100 DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1101 } 1102 return SDValue(); 1103 } 1104 1105 /// Promote the specified integer shift operation if the target indicates it is 1106 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1107 /// i32 since i16 instructions are longer. 1108 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1109 if (!LegalOperations) 1110 return SDValue(); 1111 1112 EVT VT = Op.getValueType(); 1113 if (VT.isVector() || !VT.isInteger()) 1114 return SDValue(); 1115 1116 // If operation type is 'undesirable', e.g. i16 on x86, consider 1117 // promoting it. 1118 unsigned Opc = Op.getOpcode(); 1119 if (TLI.isTypeDesirableForOp(Opc, VT)) 1120 return SDValue(); 1121 1122 EVT PVT = VT; 1123 // Consult target whether it is a good idea to promote this operation and 1124 // what's the right type to promote it to. 1125 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1126 assert(PVT != VT && "Don't know what type to promote to!"); 1127 1128 bool Replace = false; 1129 SDValue N0 = Op.getOperand(0); 1130 if (Opc == ISD::SRA) 1131 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 1132 else if (Opc == ISD::SRL) 1133 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 1134 else 1135 N0 = PromoteOperand(N0, PVT, Replace); 1136 if (!N0.getNode()) 1137 return SDValue(); 1138 1139 AddToWorklist(N0.getNode()); 1140 if (Replace) 1141 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1142 1143 DEBUG(dbgs() << "\nPromoting "; 1144 Op.getNode()->dump(&DAG)); 1145 SDLoc DL(Op); 1146 return DAG.getNode(ISD::TRUNCATE, DL, VT, 1147 DAG.getNode(Opc, DL, PVT, N0, Op.getOperand(1))); 1148 } 1149 return SDValue(); 1150 } 1151 1152 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1153 if (!LegalOperations) 1154 return SDValue(); 1155 1156 EVT VT = Op.getValueType(); 1157 if (VT.isVector() || !VT.isInteger()) 1158 return SDValue(); 1159 1160 // If operation type is 'undesirable', e.g. i16 on x86, consider 1161 // promoting it. 1162 unsigned Opc = Op.getOpcode(); 1163 if (TLI.isTypeDesirableForOp(Opc, VT)) 1164 return SDValue(); 1165 1166 EVT PVT = VT; 1167 // Consult target whether it is a good idea to promote this operation and 1168 // what's the right type to promote it to. 1169 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1170 assert(PVT != VT && "Don't know what type to promote to!"); 1171 // fold (aext (aext x)) -> (aext x) 1172 // fold (aext (zext x)) -> (zext x) 1173 // fold (aext (sext x)) -> (sext x) 1174 DEBUG(dbgs() << "\nPromoting "; 1175 Op.getNode()->dump(&DAG)); 1176 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1177 } 1178 return SDValue(); 1179 } 1180 1181 bool DAGCombiner::PromoteLoad(SDValue Op) { 1182 if (!LegalOperations) 1183 return false; 1184 1185 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1186 return false; 1187 1188 EVT VT = Op.getValueType(); 1189 if (VT.isVector() || !VT.isInteger()) 1190 return false; 1191 1192 // If operation type is 'undesirable', e.g. i16 on x86, consider 1193 // promoting it. 1194 unsigned Opc = Op.getOpcode(); 1195 if (TLI.isTypeDesirableForOp(Opc, VT)) 1196 return false; 1197 1198 EVT PVT = VT; 1199 // Consult target whether it is a good idea to promote this operation and 1200 // what's the right type to promote it to. 1201 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1202 assert(PVT != VT && "Don't know what type to promote to!"); 1203 1204 SDLoc DL(Op); 1205 SDNode *N = Op.getNode(); 1206 LoadSDNode *LD = cast<LoadSDNode>(N); 1207 EVT MemVT = LD->getMemoryVT(); 1208 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1209 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1210 : ISD::EXTLOAD) 1211 : LD->getExtensionType(); 1212 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1213 LD->getChain(), LD->getBasePtr(), 1214 MemVT, LD->getMemOperand()); 1215 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1216 1217 DEBUG(dbgs() << "\nPromoting "; 1218 N->dump(&DAG); 1219 dbgs() << "\nTo: "; 1220 Result.getNode()->dump(&DAG); 1221 dbgs() << '\n'); 1222 WorklistRemover DeadNodes(*this); 1223 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1224 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1225 deleteAndRecombine(N); 1226 AddToWorklist(Result.getNode()); 1227 return true; 1228 } 1229 return false; 1230 } 1231 1232 /// \brief Recursively delete a node which has no uses and any operands for 1233 /// which it is the only use. 1234 /// 1235 /// Note that this both deletes the nodes and removes them from the worklist. 1236 /// It also adds any nodes who have had a user deleted to the worklist as they 1237 /// may now have only one use and subject to other combines. 1238 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1239 if (!N->use_empty()) 1240 return false; 1241 1242 SmallSetVector<SDNode *, 16> Nodes; 1243 Nodes.insert(N); 1244 do { 1245 N = Nodes.pop_back_val(); 1246 if (!N) 1247 continue; 1248 1249 if (N->use_empty()) { 1250 for (const SDValue &ChildN : N->op_values()) 1251 Nodes.insert(ChildN.getNode()); 1252 1253 removeFromWorklist(N); 1254 DAG.DeleteNode(N); 1255 } else { 1256 AddToWorklist(N); 1257 } 1258 } while (!Nodes.empty()); 1259 return true; 1260 } 1261 1262 //===----------------------------------------------------------------------===// 1263 // Main DAG Combiner implementation 1264 //===----------------------------------------------------------------------===// 1265 1266 void DAGCombiner::Run(CombineLevel AtLevel) { 1267 // set the instance variables, so that the various visit routines may use it. 1268 Level = AtLevel; 1269 LegalOperations = Level >= AfterLegalizeVectorOps; 1270 LegalTypes = Level >= AfterLegalizeTypes; 1271 1272 // Add all the dag nodes to the worklist. 1273 for (SDNode &Node : DAG.allnodes()) 1274 AddToWorklist(&Node); 1275 1276 // Create a dummy node (which is not added to allnodes), that adds a reference 1277 // to the root node, preventing it from being deleted, and tracking any 1278 // changes of the root. 1279 HandleSDNode Dummy(DAG.getRoot()); 1280 1281 // While the worklist isn't empty, find a node and try to combine it. 1282 while (!WorklistMap.empty()) { 1283 SDNode *N; 1284 // The Worklist holds the SDNodes in order, but it may contain null entries. 1285 do { 1286 N = Worklist.pop_back_val(); 1287 } while (!N); 1288 1289 bool GoodWorklistEntry = WorklistMap.erase(N); 1290 (void)GoodWorklistEntry; 1291 assert(GoodWorklistEntry && 1292 "Found a worklist entry without a corresponding map entry!"); 1293 1294 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1295 // N is deleted from the DAG, since they too may now be dead or may have a 1296 // reduced number of uses, allowing other xforms. 1297 if (recursivelyDeleteUnusedNodes(N)) 1298 continue; 1299 1300 WorklistRemover DeadNodes(*this); 1301 1302 // If this combine is running after legalizing the DAG, re-legalize any 1303 // nodes pulled off the worklist. 1304 if (Level == AfterLegalizeDAG) { 1305 SmallSetVector<SDNode *, 16> UpdatedNodes; 1306 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1307 1308 for (SDNode *LN : UpdatedNodes) { 1309 AddToWorklist(LN); 1310 AddUsersToWorklist(LN); 1311 } 1312 if (!NIsValid) 1313 continue; 1314 } 1315 1316 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1317 1318 // Add any operands of the new node which have not yet been combined to the 1319 // worklist as well. Because the worklist uniques things already, this 1320 // won't repeatedly process the same operand. 1321 CombinedNodes.insert(N); 1322 for (const SDValue &ChildN : N->op_values()) 1323 if (!CombinedNodes.count(ChildN.getNode())) 1324 AddToWorklist(ChildN.getNode()); 1325 1326 SDValue RV = combine(N); 1327 1328 if (!RV.getNode()) 1329 continue; 1330 1331 ++NodesCombined; 1332 1333 // If we get back the same node we passed in, rather than a new node or 1334 // zero, we know that the node must have defined multiple values and 1335 // CombineTo was used. Since CombineTo takes care of the worklist 1336 // mechanics for us, we have no work to do in this case. 1337 if (RV.getNode() == N) 1338 continue; 1339 1340 assert(N->getOpcode() != ISD::DELETED_NODE && 1341 RV.getOpcode() != ISD::DELETED_NODE && 1342 "Node was deleted but visit returned new node!"); 1343 1344 DEBUG(dbgs() << " ... into: "; 1345 RV.getNode()->dump(&DAG)); 1346 1347 if (N->getNumValues() == RV.getNode()->getNumValues()) 1348 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1349 else { 1350 assert(N->getValueType(0) == RV.getValueType() && 1351 N->getNumValues() == 1 && "Type mismatch"); 1352 SDValue OpV = RV; 1353 DAG.ReplaceAllUsesWith(N, &OpV); 1354 } 1355 1356 // Push the new node and any users onto the worklist 1357 AddToWorklist(RV.getNode()); 1358 AddUsersToWorklist(RV.getNode()); 1359 1360 // Finally, if the node is now dead, remove it from the graph. The node 1361 // may not be dead if the replacement process recursively simplified to 1362 // something else needing this node. This will also take care of adding any 1363 // operands which have lost a user to the worklist. 1364 recursivelyDeleteUnusedNodes(N); 1365 } 1366 1367 // If the root changed (e.g. it was a dead load, update the root). 1368 DAG.setRoot(Dummy.getValue()); 1369 DAG.RemoveDeadNodes(); 1370 } 1371 1372 SDValue DAGCombiner::visit(SDNode *N) { 1373 switch (N->getOpcode()) { 1374 default: break; 1375 case ISD::TokenFactor: return visitTokenFactor(N); 1376 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1377 case ISD::ADD: return visitADD(N); 1378 case ISD::SUB: return visitSUB(N); 1379 case ISD::ADDC: return visitADDC(N); 1380 case ISD::SUBC: return visitSUBC(N); 1381 case ISD::ADDE: return visitADDE(N); 1382 case ISD::SUBE: return visitSUBE(N); 1383 case ISD::MUL: return visitMUL(N); 1384 case ISD::SDIV: return visitSDIV(N); 1385 case ISD::UDIV: return visitUDIV(N); 1386 case ISD::SREM: 1387 case ISD::UREM: return visitREM(N); 1388 case ISD::MULHU: return visitMULHU(N); 1389 case ISD::MULHS: return visitMULHS(N); 1390 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1391 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1392 case ISD::SMULO: return visitSMULO(N); 1393 case ISD::UMULO: return visitUMULO(N); 1394 case ISD::SMIN: 1395 case ISD::SMAX: 1396 case ISD::UMIN: 1397 case ISD::UMAX: return visitIMINMAX(N); 1398 case ISD::AND: return visitAND(N); 1399 case ISD::OR: return visitOR(N); 1400 case ISD::XOR: return visitXOR(N); 1401 case ISD::SHL: return visitSHL(N); 1402 case ISD::SRA: return visitSRA(N); 1403 case ISD::SRL: return visitSRL(N); 1404 case ISD::ROTR: 1405 case ISD::ROTL: return visitRotate(N); 1406 case ISD::BSWAP: return visitBSWAP(N); 1407 case ISD::BITREVERSE: return visitBITREVERSE(N); 1408 case ISD::CTLZ: return visitCTLZ(N); 1409 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1410 case ISD::CTTZ: return visitCTTZ(N); 1411 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1412 case ISD::CTPOP: return visitCTPOP(N); 1413 case ISD::SELECT: return visitSELECT(N); 1414 case ISD::VSELECT: return visitVSELECT(N); 1415 case ISD::SELECT_CC: return visitSELECT_CC(N); 1416 case ISD::SETCC: return visitSETCC(N); 1417 case ISD::SETCCE: return visitSETCCE(N); 1418 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1419 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1420 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1421 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1422 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1423 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1424 case ISD::TRUNCATE: return visitTRUNCATE(N); 1425 case ISD::BITCAST: return visitBITCAST(N); 1426 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1427 case ISD::FADD: return visitFADD(N); 1428 case ISD::FSUB: return visitFSUB(N); 1429 case ISD::FMUL: return visitFMUL(N); 1430 case ISD::FMA: return visitFMA(N); 1431 case ISD::FDIV: return visitFDIV(N); 1432 case ISD::FREM: return visitFREM(N); 1433 case ISD::FSQRT: return visitFSQRT(N); 1434 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1435 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1436 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1437 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1438 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1439 case ISD::FP_ROUND: return visitFP_ROUND(N); 1440 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1441 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1442 case ISD::FNEG: return visitFNEG(N); 1443 case ISD::FABS: return visitFABS(N); 1444 case ISD::FFLOOR: return visitFFLOOR(N); 1445 case ISD::FMINNUM: return visitFMINNUM(N); 1446 case ISD::FMAXNUM: return visitFMAXNUM(N); 1447 case ISD::FCEIL: return visitFCEIL(N); 1448 case ISD::FTRUNC: return visitFTRUNC(N); 1449 case ISD::BRCOND: return visitBRCOND(N); 1450 case ISD::BR_CC: return visitBR_CC(N); 1451 case ISD::LOAD: return visitLOAD(N); 1452 case ISD::STORE: return visitSTORE(N); 1453 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1454 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1455 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1456 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1457 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1458 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1459 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1460 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1461 case ISD::MGATHER: return visitMGATHER(N); 1462 case ISD::MLOAD: return visitMLOAD(N); 1463 case ISD::MSCATTER: return visitMSCATTER(N); 1464 case ISD::MSTORE: return visitMSTORE(N); 1465 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1466 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1467 } 1468 return SDValue(); 1469 } 1470 1471 SDValue DAGCombiner::combine(SDNode *N) { 1472 SDValue RV = visit(N); 1473 1474 // If nothing happened, try a target-specific DAG combine. 1475 if (!RV.getNode()) { 1476 assert(N->getOpcode() != ISD::DELETED_NODE && 1477 "Node was deleted but visit returned NULL!"); 1478 1479 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1480 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1481 1482 // Expose the DAG combiner to the target combiner impls. 1483 TargetLowering::DAGCombinerInfo 1484 DagCombineInfo(DAG, Level, false, this); 1485 1486 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1487 } 1488 } 1489 1490 // If nothing happened still, try promoting the operation. 1491 if (!RV.getNode()) { 1492 switch (N->getOpcode()) { 1493 default: break; 1494 case ISD::ADD: 1495 case ISD::SUB: 1496 case ISD::MUL: 1497 case ISD::AND: 1498 case ISD::OR: 1499 case ISD::XOR: 1500 RV = PromoteIntBinOp(SDValue(N, 0)); 1501 break; 1502 case ISD::SHL: 1503 case ISD::SRA: 1504 case ISD::SRL: 1505 RV = PromoteIntShiftOp(SDValue(N, 0)); 1506 break; 1507 case ISD::SIGN_EXTEND: 1508 case ISD::ZERO_EXTEND: 1509 case ISD::ANY_EXTEND: 1510 RV = PromoteExtend(SDValue(N, 0)); 1511 break; 1512 case ISD::LOAD: 1513 if (PromoteLoad(SDValue(N, 0))) 1514 RV = SDValue(N, 0); 1515 break; 1516 } 1517 } 1518 1519 // If N is a commutative binary node, try commuting it to enable more 1520 // sdisel CSE. 1521 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 1522 N->getNumValues() == 1) { 1523 SDValue N0 = N->getOperand(0); 1524 SDValue N1 = N->getOperand(1); 1525 1526 // Constant operands are canonicalized to RHS. 1527 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 1528 SDValue Ops[] = {N1, N0}; 1529 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1530 N->getFlags()); 1531 if (CSENode) 1532 return SDValue(CSENode, 0); 1533 } 1534 } 1535 1536 return RV; 1537 } 1538 1539 /// Given a node, return its input chain if it has one, otherwise return a null 1540 /// sd operand. 1541 static SDValue getInputChainForNode(SDNode *N) { 1542 if (unsigned NumOps = N->getNumOperands()) { 1543 if (N->getOperand(0).getValueType() == MVT::Other) 1544 return N->getOperand(0); 1545 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1546 return N->getOperand(NumOps-1); 1547 for (unsigned i = 1; i < NumOps-1; ++i) 1548 if (N->getOperand(i).getValueType() == MVT::Other) 1549 return N->getOperand(i); 1550 } 1551 return SDValue(); 1552 } 1553 1554 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1555 // If N has two operands, where one has an input chain equal to the other, 1556 // the 'other' chain is redundant. 1557 if (N->getNumOperands() == 2) { 1558 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1559 return N->getOperand(0); 1560 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1561 return N->getOperand(1); 1562 } 1563 1564 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1565 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1566 SmallPtrSet<SDNode*, 16> SeenOps; 1567 bool Changed = false; // If we should replace this token factor. 1568 1569 // Start out with this token factor. 1570 TFs.push_back(N); 1571 1572 // Iterate through token factors. The TFs grows when new token factors are 1573 // encountered. 1574 for (unsigned i = 0; i < TFs.size(); ++i) { 1575 SDNode *TF = TFs[i]; 1576 1577 // Check each of the operands. 1578 for (const SDValue &Op : TF->op_values()) { 1579 1580 switch (Op.getOpcode()) { 1581 case ISD::EntryToken: 1582 // Entry tokens don't need to be added to the list. They are 1583 // redundant. 1584 Changed = true; 1585 break; 1586 1587 case ISD::TokenFactor: 1588 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1589 // Queue up for processing. 1590 TFs.push_back(Op.getNode()); 1591 // Clean up in case the token factor is removed. 1592 AddToWorklist(Op.getNode()); 1593 Changed = true; 1594 break; 1595 } 1596 LLVM_FALLTHROUGH; 1597 1598 default: 1599 // Only add if it isn't already in the list. 1600 if (SeenOps.insert(Op.getNode()).second) 1601 Ops.push_back(Op); 1602 else 1603 Changed = true; 1604 break; 1605 } 1606 } 1607 } 1608 1609 SDValue Result; 1610 1611 // If we've changed things around then replace token factor. 1612 if (Changed) { 1613 if (Ops.empty()) { 1614 // The entry token is the only possible outcome. 1615 Result = DAG.getEntryNode(); 1616 } else { 1617 // New and improved token factor. 1618 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 1619 } 1620 1621 // Add users to worklist if AA is enabled, since it may introduce 1622 // a lot of new chained token factors while removing memory deps. 1623 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 1624 : DAG.getSubtarget().useAA(); 1625 return CombineTo(N, Result, UseAA /*add to worklist*/); 1626 } 1627 1628 return Result; 1629 } 1630 1631 /// MERGE_VALUES can always be eliminated. 1632 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1633 WorklistRemover DeadNodes(*this); 1634 // Replacing results may cause a different MERGE_VALUES to suddenly 1635 // be CSE'd with N, and carry its uses with it. Iterate until no 1636 // uses remain, to ensure that the node can be safely deleted. 1637 // First add the users of this node to the work list so that they 1638 // can be tried again once they have new operands. 1639 AddUsersToWorklist(N); 1640 do { 1641 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1642 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 1643 } while (!N->use_empty()); 1644 deleteAndRecombine(N); 1645 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1646 } 1647 1648 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 1649 /// ConstantSDNode pointer else nullptr. 1650 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1651 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1652 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1653 } 1654 1655 SDValue DAGCombiner::visitADD(SDNode *N) { 1656 SDValue N0 = N->getOperand(0); 1657 SDValue N1 = N->getOperand(1); 1658 EVT VT = N0.getValueType(); 1659 SDLoc DL(N); 1660 1661 // fold vector ops 1662 if (VT.isVector()) { 1663 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1664 return FoldedVOp; 1665 1666 // fold (add x, 0) -> x, vector edition 1667 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1668 return N0; 1669 if (ISD::isBuildVectorAllZeros(N0.getNode())) 1670 return N1; 1671 } 1672 1673 // fold (add x, undef) -> undef 1674 if (N0.isUndef()) 1675 return N0; 1676 1677 if (N1.isUndef()) 1678 return N1; 1679 1680 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 1681 // canonicalize constant to RHS 1682 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 1683 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 1684 // fold (add c1, c2) -> c1+c2 1685 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), 1686 N1.getNode()); 1687 } 1688 1689 // fold (add x, 0) -> x 1690 if (isNullConstant(N1)) 1691 return N0; 1692 1693 // fold ((c1-A)+c2) -> (c1+c2)-A 1694 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 1695 if (N0.getOpcode() == ISD::SUB) 1696 if (isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 1697 return DAG.getNode(ISD::SUB, DL, VT, 1698 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), 1699 N0.getOperand(1)); 1700 } 1701 } 1702 1703 // reassociate add 1704 if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1)) 1705 return RADD; 1706 1707 // fold ((0-A) + B) -> B-A 1708 if (N0.getOpcode() == ISD::SUB && 1709 isNullConstantOrNullSplatConstant(N0.getOperand(0))) 1710 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 1711 1712 // fold (A + (0-B)) -> A-B 1713 if (N1.getOpcode() == ISD::SUB && 1714 isNullConstantOrNullSplatConstant(N1.getOperand(0))) 1715 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 1716 1717 // fold (A+(B-A)) -> B 1718 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 1719 return N1.getOperand(0); 1720 1721 // fold ((B-A)+A) -> B 1722 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 1723 return N0.getOperand(0); 1724 1725 // fold (A+(B-(A+C))) to (B-C) 1726 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1727 N0 == N1.getOperand(1).getOperand(0)) 1728 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 1729 N1.getOperand(1).getOperand(1)); 1730 1731 // fold (A+(B-(C+A))) to (B-C) 1732 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1733 N0 == N1.getOperand(1).getOperand(1)) 1734 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 1735 N1.getOperand(1).getOperand(0)); 1736 1737 // fold (A+((B-A)+or-C)) to (B+or-C) 1738 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 1739 N1.getOperand(0).getOpcode() == ISD::SUB && 1740 N0 == N1.getOperand(0).getOperand(1)) 1741 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 1742 N1.getOperand(1)); 1743 1744 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 1745 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 1746 SDValue N00 = N0.getOperand(0); 1747 SDValue N01 = N0.getOperand(1); 1748 SDValue N10 = N1.getOperand(0); 1749 SDValue N11 = N1.getOperand(1); 1750 1751 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 1752 return DAG.getNode(ISD::SUB, DL, VT, 1753 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 1754 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 1755 } 1756 1757 if (SimplifyDemandedBits(SDValue(N, 0))) 1758 return SDValue(N, 0); 1759 1760 // fold (a+b) -> (a|b) iff a and b share no bits. 1761 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 1762 VT.isInteger() && DAG.haveNoCommonBitsSet(N0, N1)) 1763 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 1764 1765 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 1766 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 1767 isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0))) 1768 return DAG.getNode(ISD::SUB, DL, VT, N0, 1769 DAG.getNode(ISD::SHL, DL, VT, 1770 N1.getOperand(0).getOperand(1), 1771 N1.getOperand(1))); 1772 if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && 1773 isNullConstantOrNullSplatConstant(N0.getOperand(0).getOperand(0))) 1774 return DAG.getNode(ISD::SUB, DL, VT, N1, 1775 DAG.getNode(ISD::SHL, DL, VT, 1776 N0.getOperand(0).getOperand(1), 1777 N0.getOperand(1))); 1778 1779 if (N1.getOpcode() == ISD::AND) { 1780 SDValue AndOp0 = N1.getOperand(0); 1781 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 1782 unsigned DestBits = VT.getScalarSizeInBits(); 1783 1784 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 1785 // and similar xforms where the inner op is either ~0 or 0. 1786 if (NumSignBits == DestBits && 1787 isOneConstantOrOneSplatConstant(N1->getOperand(1))) 1788 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 1789 } 1790 1791 // add (sext i1), X -> sub X, (zext i1) 1792 if (N0.getOpcode() == ISD::SIGN_EXTEND && 1793 N0.getOperand(0).getValueType() == MVT::i1 && 1794 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 1795 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 1796 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 1797 } 1798 1799 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 1800 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1801 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1802 if (TN->getVT() == MVT::i1) { 1803 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1804 DAG.getConstant(1, DL, VT)); 1805 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 1806 } 1807 } 1808 1809 return SDValue(); 1810 } 1811 1812 SDValue DAGCombiner::visitADDC(SDNode *N) { 1813 SDValue N0 = N->getOperand(0); 1814 SDValue N1 = N->getOperand(1); 1815 EVT VT = N0.getValueType(); 1816 1817 // If the flag result is dead, turn this into an ADD. 1818 if (!N->hasAnyUseOfValue(1)) 1819 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 1820 DAG.getNode(ISD::CARRY_FALSE, 1821 SDLoc(N), MVT::Glue)); 1822 1823 // canonicalize constant to RHS. 1824 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1825 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1826 if (N0C && !N1C) 1827 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 1828 1829 // fold (addc x, 0) -> x + no carry out 1830 if (isNullConstant(N1)) 1831 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 1832 SDLoc(N), MVT::Glue)); 1833 1834 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 1835 APInt LHSZero, LHSOne; 1836 APInt RHSZero, RHSOne; 1837 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1838 1839 if (LHSZero.getBoolValue()) { 1840 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1841 1842 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1843 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1844 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 1845 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 1846 DAG.getNode(ISD::CARRY_FALSE, 1847 SDLoc(N), MVT::Glue)); 1848 } 1849 1850 return SDValue(); 1851 } 1852 1853 SDValue DAGCombiner::visitADDE(SDNode *N) { 1854 SDValue N0 = N->getOperand(0); 1855 SDValue N1 = N->getOperand(1); 1856 SDValue CarryIn = N->getOperand(2); 1857 1858 // canonicalize constant to RHS 1859 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1860 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1861 if (N0C && !N1C) 1862 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 1863 N1, N0, CarryIn); 1864 1865 // fold (adde x, y, false) -> (addc x, y) 1866 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1867 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 1868 1869 return SDValue(); 1870 } 1871 1872 // Since it may not be valid to emit a fold to zero for vector initializers 1873 // check if we can before folding. 1874 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 1875 SelectionDAG &DAG, bool LegalOperations, 1876 bool LegalTypes) { 1877 if (!VT.isVector()) 1878 return DAG.getConstant(0, DL, VT); 1879 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 1880 return DAG.getConstant(0, DL, VT); 1881 return SDValue(); 1882 } 1883 1884 SDValue DAGCombiner::visitSUB(SDNode *N) { 1885 SDValue N0 = N->getOperand(0); 1886 SDValue N1 = N->getOperand(1); 1887 EVT VT = N0.getValueType(); 1888 SDLoc DL(N); 1889 1890 // fold vector ops 1891 if (VT.isVector()) { 1892 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1893 return FoldedVOp; 1894 1895 // fold (sub x, 0) -> x, vector edition 1896 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1897 return N0; 1898 } 1899 1900 // fold (sub x, x) -> 0 1901 // FIXME: Refactor this and xor and other similar operations together. 1902 if (N0 == N1) 1903 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations, LegalTypes); 1904 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 1905 DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1906 // fold (sub c1, c2) -> c1-c2 1907 return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), 1908 N1.getNode()); 1909 } 1910 1911 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1912 1913 // fold (sub x, c) -> (add x, -c) 1914 if (N1C) { 1915 return DAG.getNode(ISD::ADD, DL, VT, N0, 1916 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 1917 } 1918 1919 // Right-shifting everything out but the sign bit followed by negation is the 1920 // same as flipping arithmetic/logical shift type without the negation: 1921 // -(X >>u 31) -> (X >>s 31) 1922 // -(X >>s 31) -> (X >>u 31) 1923 if (isNullConstantOrNullSplatConstant(N0) && 1924 (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL)) { 1925 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 1926 if (ShiftAmt && ShiftAmt->getZExtValue() == VT.getScalarSizeInBits() - 1) { 1927 auto NewOpc = N1->getOpcode() == ISD::SRA ? ISD::SRL :ISD::SRA; 1928 if (!LegalOperations || TLI.isOperationLegal(NewOpc, VT)) 1929 return DAG.getNode(NewOpc, DL, VT, N1.getOperand(0), N1.getOperand(1)); 1930 } 1931 } 1932 1933 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 1934 if (isAllOnesConstantOrAllOnesSplatConstant(N0)) 1935 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 1936 1937 // fold A-(A-B) -> B 1938 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 1939 return N1.getOperand(1); 1940 1941 // fold (A+B)-A -> B 1942 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 1943 return N0.getOperand(1); 1944 1945 // fold (A+B)-B -> A 1946 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 1947 return N0.getOperand(0); 1948 1949 // fold C2-(A+C1) -> (C2-C1)-A 1950 if (N1.getOpcode() == ISD::ADD) { 1951 SDValue N11 = N1.getOperand(1); 1952 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 1953 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 1954 SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11); 1955 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 1956 } 1957 } 1958 1959 // fold ((A+(B+or-C))-B) -> A+or-C 1960 if (N0.getOpcode() == ISD::ADD && 1961 (N0.getOperand(1).getOpcode() == ISD::SUB || 1962 N0.getOperand(1).getOpcode() == ISD::ADD) && 1963 N0.getOperand(1).getOperand(0) == N1) 1964 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 1965 N0.getOperand(1).getOperand(1)); 1966 1967 // fold ((A+(C+B))-B) -> A+C 1968 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 1969 N0.getOperand(1).getOperand(1) == N1) 1970 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 1971 N0.getOperand(1).getOperand(0)); 1972 1973 // fold ((A-(B-C))-C) -> A-B 1974 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 1975 N0.getOperand(1).getOperand(1) == N1) 1976 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 1977 N0.getOperand(1).getOperand(0)); 1978 1979 // If either operand of a sub is undef, the result is undef 1980 if (N0.isUndef()) 1981 return N0; 1982 if (N1.isUndef()) 1983 return N1; 1984 1985 // If the relocation model supports it, consider symbol offsets. 1986 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1987 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 1988 // fold (sub Sym, c) -> Sym-c 1989 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 1990 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1991 GA->getOffset() - 1992 (uint64_t)N1C->getSExtValue()); 1993 // fold (sub Sym+c1, Sym+c2) -> c1-c2 1994 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 1995 if (GA->getGlobal() == GB->getGlobal()) 1996 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 1997 DL, VT); 1998 } 1999 2000 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 2001 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2002 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2003 if (TN->getVT() == MVT::i1) { 2004 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2005 DAG.getConstant(1, DL, VT)); 2006 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 2007 } 2008 } 2009 2010 return SDValue(); 2011 } 2012 2013 SDValue DAGCombiner::visitSUBC(SDNode *N) { 2014 SDValue N0 = N->getOperand(0); 2015 SDValue N1 = N->getOperand(1); 2016 EVT VT = N0.getValueType(); 2017 SDLoc DL(N); 2018 2019 // If the flag result is dead, turn this into an SUB. 2020 if (!N->hasAnyUseOfValue(1)) 2021 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 2022 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2023 2024 // fold (subc x, x) -> 0 + no borrow 2025 if (N0 == N1) 2026 return CombineTo(N, DAG.getConstant(0, DL, VT), 2027 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2028 2029 // fold (subc x, 0) -> x + no borrow 2030 if (isNullConstant(N1)) 2031 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2032 2033 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 2034 if (isAllOnesConstant(N0)) 2035 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 2036 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2037 2038 return SDValue(); 2039 } 2040 2041 SDValue DAGCombiner::visitSUBE(SDNode *N) { 2042 SDValue N0 = N->getOperand(0); 2043 SDValue N1 = N->getOperand(1); 2044 SDValue CarryIn = N->getOperand(2); 2045 2046 // fold (sube x, y, false) -> (subc x, y) 2047 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2048 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 2049 2050 return SDValue(); 2051 } 2052 2053 SDValue DAGCombiner::visitMUL(SDNode *N) { 2054 SDValue N0 = N->getOperand(0); 2055 SDValue N1 = N->getOperand(1); 2056 EVT VT = N0.getValueType(); 2057 2058 // fold (mul x, undef) -> 0 2059 if (N0.isUndef() || N1.isUndef()) 2060 return DAG.getConstant(0, SDLoc(N), VT); 2061 2062 bool N0IsConst = false; 2063 bool N1IsConst = false; 2064 bool N1IsOpaqueConst = false; 2065 bool N0IsOpaqueConst = false; 2066 APInt ConstValue0, ConstValue1; 2067 // fold vector ops 2068 if (VT.isVector()) { 2069 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2070 return FoldedVOp; 2071 2072 N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); 2073 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 2074 } else { 2075 N0IsConst = isa<ConstantSDNode>(N0); 2076 if (N0IsConst) { 2077 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 2078 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 2079 } 2080 N1IsConst = isa<ConstantSDNode>(N1); 2081 if (N1IsConst) { 2082 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 2083 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 2084 } 2085 } 2086 2087 // fold (mul c1, c2) -> c1*c2 2088 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 2089 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 2090 N0.getNode(), N1.getNode()); 2091 2092 // canonicalize constant to RHS (vector doesn't have to splat) 2093 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2094 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2095 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 2096 // fold (mul x, 0) -> 0 2097 if (N1IsConst && ConstValue1 == 0) 2098 return N1; 2099 // We require a splat of the entire scalar bit width for non-contiguous 2100 // bit patterns. 2101 bool IsFullSplat = 2102 ConstValue1.getBitWidth() == VT.getScalarSizeInBits(); 2103 // fold (mul x, 1) -> x 2104 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 2105 return N0; 2106 // fold (mul x, -1) -> 0-x 2107 if (N1IsConst && ConstValue1.isAllOnesValue()) { 2108 SDLoc DL(N); 2109 return DAG.getNode(ISD::SUB, DL, VT, 2110 DAG.getConstant(0, DL, VT), N0); 2111 } 2112 // fold (mul x, (1 << c)) -> x << c 2113 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && 2114 IsFullSplat) { 2115 SDLoc DL(N); 2116 return DAG.getNode(ISD::SHL, DL, VT, N0, 2117 DAG.getConstant(ConstValue1.logBase2(), DL, 2118 getShiftAmountTy(N0.getValueType()))); 2119 } 2120 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 2121 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && 2122 IsFullSplat) { 2123 unsigned Log2Val = (-ConstValue1).logBase2(); 2124 SDLoc DL(N); 2125 // FIXME: If the input is something that is easily negated (e.g. a 2126 // single-use add), we should put the negate there. 2127 return DAG.getNode(ISD::SUB, DL, VT, 2128 DAG.getConstant(0, DL, VT), 2129 DAG.getNode(ISD::SHL, DL, VT, N0, 2130 DAG.getConstant(Log2Val, DL, 2131 getShiftAmountTy(N0.getValueType())))); 2132 } 2133 2134 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 2135 if (N0.getOpcode() == ISD::SHL && 2136 isConstantOrConstantVector(N1) && 2137 isConstantOrConstantVector(N0.getOperand(1))) { 2138 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 2139 AddToWorklist(C3.getNode()); 2140 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 2141 } 2142 2143 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 2144 // use. 2145 { 2146 SDValue Sh(nullptr, 0), Y(nullptr, 0); 2147 2148 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 2149 if (N0.getOpcode() == ISD::SHL && 2150 isConstantOrConstantVector(N0.getOperand(1)) && 2151 N0.getNode()->hasOneUse()) { 2152 Sh = N0; Y = N1; 2153 } else if (N1.getOpcode() == ISD::SHL && 2154 isConstantOrConstantVector(N1.getOperand(1)) && 2155 N1.getNode()->hasOneUse()) { 2156 Sh = N1; Y = N0; 2157 } 2158 2159 if (Sh.getNode()) { 2160 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 2161 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 2162 } 2163 } 2164 2165 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 2166 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 2167 N0.getOpcode() == ISD::ADD && 2168 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 2169 isMulAddWithConstProfitable(N, N0, N1)) 2170 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 2171 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 2172 N0.getOperand(0), N1), 2173 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 2174 N0.getOperand(1), N1)); 2175 2176 // reassociate mul 2177 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) 2178 return RMUL; 2179 2180 return SDValue(); 2181 } 2182 2183 /// Return true if divmod libcall is available. 2184 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2185 const TargetLowering &TLI) { 2186 RTLIB::Libcall LC; 2187 EVT NodeType = Node->getValueType(0); 2188 if (!NodeType.isSimple()) 2189 return false; 2190 switch (NodeType.getSimpleVT().SimpleTy) { 2191 default: return false; // No libcall for vector types. 2192 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2193 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2194 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2195 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2196 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2197 } 2198 2199 return TLI.getLibcallName(LC) != nullptr; 2200 } 2201 2202 /// Issue divrem if both quotient and remainder are needed. 2203 SDValue DAGCombiner::useDivRem(SDNode *Node) { 2204 if (Node->use_empty()) 2205 return SDValue(); // This is a dead node, leave it alone. 2206 2207 unsigned Opcode = Node->getOpcode(); 2208 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 2209 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2210 2211 // DivMod lib calls can still work on non-legal types if using lib-calls. 2212 EVT VT = Node->getValueType(0); 2213 if (VT.isVector() || !VT.isInteger()) 2214 return SDValue(); 2215 2216 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 2217 return SDValue(); 2218 2219 // If DIVREM is going to get expanded into a libcall, 2220 // but there is no libcall available, then don't combine. 2221 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 2222 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 2223 return SDValue(); 2224 2225 // If div is legal, it's better to do the normal expansion 2226 unsigned OtherOpcode = 0; 2227 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 2228 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 2229 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 2230 return SDValue(); 2231 } else { 2232 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2233 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 2234 return SDValue(); 2235 } 2236 2237 SDValue Op0 = Node->getOperand(0); 2238 SDValue Op1 = Node->getOperand(1); 2239 SDValue combined; 2240 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2241 UE = Op0.getNode()->use_end(); UI != UE;) { 2242 SDNode *User = *UI++; 2243 if (User == Node || User->use_empty()) 2244 continue; 2245 // Convert the other matching node(s), too; 2246 // otherwise, the DIVREM may get target-legalized into something 2247 // target-specific that we won't be able to recognize. 2248 unsigned UserOpc = User->getOpcode(); 2249 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 2250 User->getOperand(0) == Op0 && 2251 User->getOperand(1) == Op1) { 2252 if (!combined) { 2253 if (UserOpc == OtherOpcode) { 2254 SDVTList VTs = DAG.getVTList(VT, VT); 2255 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 2256 } else if (UserOpc == DivRemOpc) { 2257 combined = SDValue(User, 0); 2258 } else { 2259 assert(UserOpc == Opcode); 2260 continue; 2261 } 2262 } 2263 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 2264 CombineTo(User, combined); 2265 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 2266 CombineTo(User, combined.getValue(1)); 2267 } 2268 } 2269 return combined; 2270 } 2271 2272 SDValue DAGCombiner::visitSDIV(SDNode *N) { 2273 SDValue N0 = N->getOperand(0); 2274 SDValue N1 = N->getOperand(1); 2275 EVT VT = N->getValueType(0); 2276 2277 // fold vector ops 2278 if (VT.isVector()) 2279 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2280 return FoldedVOp; 2281 2282 SDLoc DL(N); 2283 2284 // fold (sdiv c1, c2) -> c1/c2 2285 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2286 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2287 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 2288 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); 2289 // fold (sdiv X, 1) -> X 2290 if (N1C && N1C->isOne()) 2291 return N0; 2292 // fold (sdiv X, -1) -> 0-X 2293 if (N1C && N1C->isAllOnesValue()) 2294 return DAG.getNode(ISD::SUB, DL, VT, 2295 DAG.getConstant(0, DL, VT), N0); 2296 2297 // If we know the sign bits of both operands are zero, strength reduce to a 2298 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 2299 if (!VT.isVector()) { 2300 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2301 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 2302 } 2303 2304 // fold (sdiv X, pow2) -> simple ops after legalize 2305 // FIXME: We check for the exact bit here because the generic lowering gives 2306 // better results in that case. The target-specific lowering should learn how 2307 // to handle exact sdivs efficiently. 2308 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2309 !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && 2310 (N1C->getAPIntValue().isPowerOf2() || 2311 (-N1C->getAPIntValue()).isPowerOf2())) { 2312 // Target-specific implementation of sdiv x, pow2. 2313 if (SDValue Res = BuildSDIVPow2(N)) 2314 return Res; 2315 2316 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 2317 2318 // Splat the sign bit into the register 2319 SDValue SGN = 2320 DAG.getNode(ISD::SRA, DL, VT, N0, 2321 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, 2322 getShiftAmountTy(N0.getValueType()))); 2323 AddToWorklist(SGN.getNode()); 2324 2325 // Add (N0 < 0) ? abs2 - 1 : 0; 2326 SDValue SRL = 2327 DAG.getNode(ISD::SRL, DL, VT, SGN, 2328 DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, 2329 getShiftAmountTy(SGN.getValueType()))); 2330 SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); 2331 AddToWorklist(SRL.getNode()); 2332 AddToWorklist(ADD.getNode()); // Divide by pow2 2333 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, 2334 DAG.getConstant(lg2, DL, 2335 getShiftAmountTy(ADD.getValueType()))); 2336 2337 // If we're dividing by a positive value, we're done. Otherwise, we must 2338 // negate the result. 2339 if (N1C->getAPIntValue().isNonNegative()) 2340 return SRA; 2341 2342 AddToWorklist(SRA.getNode()); 2343 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 2344 } 2345 2346 // If integer divide is expensive and we satisfy the requirements, emit an 2347 // alternate sequence. Targets may check function attributes for size/speed 2348 // trade-offs. 2349 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2350 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2351 if (SDValue Op = BuildSDIV(N)) 2352 return Op; 2353 2354 // sdiv, srem -> sdivrem 2355 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2356 // Otherwise, we break the simplification logic in visitREM(). 2357 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2358 if (SDValue DivRem = useDivRem(N)) 2359 return DivRem; 2360 2361 // undef / X -> 0 2362 if (N0.isUndef()) 2363 return DAG.getConstant(0, DL, VT); 2364 // X / undef -> undef 2365 if (N1.isUndef()) 2366 return N1; 2367 2368 return SDValue(); 2369 } 2370 2371 SDValue DAGCombiner::visitUDIV(SDNode *N) { 2372 SDValue N0 = N->getOperand(0); 2373 SDValue N1 = N->getOperand(1); 2374 EVT VT = N->getValueType(0); 2375 2376 // fold vector ops 2377 if (VT.isVector()) 2378 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2379 return FoldedVOp; 2380 2381 SDLoc DL(N); 2382 2383 // fold (udiv c1, c2) -> c1/c2 2384 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2385 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2386 if (N0C && N1C) 2387 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, 2388 N0C, N1C)) 2389 return Folded; 2390 2391 // fold (udiv x, (1 << c)) -> x >>u c 2392 if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) 2393 return DAG.getNode(ISD::SRL, DL, VT, N0, 2394 DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, 2395 getShiftAmountTy(N0.getValueType()))); 2396 2397 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 2398 if (N1.getOpcode() == ISD::SHL) { 2399 if (ConstantSDNode *SHC = isConstOrConstSplat(N1.getOperand(0))) { 2400 if (!SHC->isOpaque() && SHC->getAPIntValue().isPowerOf2()) { 2401 EVT ADDVT = N1.getOperand(1).getValueType(); 2402 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, 2403 N1.getOperand(1), 2404 DAG.getConstant(SHC->getAPIntValue() 2405 .logBase2(), 2406 DL, ADDVT)); 2407 AddToWorklist(Add.getNode()); 2408 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 2409 } 2410 } 2411 } 2412 2413 // fold (udiv x, c) -> alternate 2414 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2415 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2416 if (SDValue Op = BuildUDIV(N)) 2417 return Op; 2418 2419 // sdiv, srem -> sdivrem 2420 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2421 // Otherwise, we break the simplification logic in visitREM(). 2422 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2423 if (SDValue DivRem = useDivRem(N)) 2424 return DivRem; 2425 2426 // undef / X -> 0 2427 if (N0.isUndef()) 2428 return DAG.getConstant(0, DL, VT); 2429 // X / undef -> undef 2430 if (N1.isUndef()) 2431 return N1; 2432 2433 return SDValue(); 2434 } 2435 2436 // handles ISD::SREM and ISD::UREM 2437 SDValue DAGCombiner::visitREM(SDNode *N) { 2438 unsigned Opcode = N->getOpcode(); 2439 SDValue N0 = N->getOperand(0); 2440 SDValue N1 = N->getOperand(1); 2441 EVT VT = N->getValueType(0); 2442 bool isSigned = (Opcode == ISD::SREM); 2443 SDLoc DL(N); 2444 2445 // fold (rem c1, c2) -> c1%c2 2446 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2447 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2448 if (N0C && N1C) 2449 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) 2450 return Folded; 2451 2452 if (isSigned) { 2453 // If we know the sign bits of both operands are zero, strength reduce to a 2454 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 2455 if (!VT.isVector()) { 2456 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2457 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 2458 } 2459 } else { 2460 // fold (urem x, pow2) -> (and x, pow2-1) 2461 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2462 N1C->getAPIntValue().isPowerOf2()) { 2463 return DAG.getNode(ISD::AND, DL, VT, N0, 2464 DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); 2465 } 2466 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 2467 if (N1.getOpcode() == ISD::SHL) { 2468 ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0)); 2469 if (SHC && SHC->getAPIntValue().isPowerOf2()) { 2470 APInt NegOne = APInt::getAllOnesValue(VT.getSizeInBits()); 2471 SDValue Add = 2472 DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT)); 2473 AddToWorklist(Add.getNode()); 2474 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 2475 } 2476 } 2477 } 2478 2479 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2480 2481 // If X/C can be simplified by the division-by-constant logic, lower 2482 // X%C to the equivalent of X-X/C*C. 2483 // To avoid mangling nodes, this simplification requires that the combine() 2484 // call for the speculative DIV must not cause a DIVREM conversion. We guard 2485 // against this by skipping the simplification if isIntDivCheap(). When 2486 // div is not cheap, combine will not return a DIVREM. Regardless, 2487 // checking cheapness here makes sense since the simplification results in 2488 // fatter code. 2489 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { 2490 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2491 SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); 2492 AddToWorklist(Div.getNode()); 2493 SDValue OptimizedDiv = combine(Div.getNode()); 2494 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2495 assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && 2496 (OptimizedDiv.getOpcode() != ISD::SDIVREM)); 2497 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 2498 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 2499 AddToWorklist(Mul.getNode()); 2500 return Sub; 2501 } 2502 } 2503 2504 // sdiv, srem -> sdivrem 2505 if (SDValue DivRem = useDivRem(N)) 2506 return DivRem.getValue(1); 2507 2508 // undef % X -> 0 2509 if (N0.isUndef()) 2510 return DAG.getConstant(0, DL, VT); 2511 // X % undef -> undef 2512 if (N1.isUndef()) 2513 return N1; 2514 2515 return SDValue(); 2516 } 2517 2518 SDValue DAGCombiner::visitMULHS(SDNode *N) { 2519 SDValue N0 = N->getOperand(0); 2520 SDValue N1 = N->getOperand(1); 2521 EVT VT = N->getValueType(0); 2522 SDLoc DL(N); 2523 2524 // fold (mulhs x, 0) -> 0 2525 if (isNullConstant(N1)) 2526 return N1; 2527 // fold (mulhs x, 1) -> (sra x, size(x)-1) 2528 if (isOneConstant(N1)) { 2529 SDLoc DL(N); 2530 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 2531 DAG.getConstant(N0.getValueSizeInBits() - 1, DL, 2532 getShiftAmountTy(N0.getValueType()))); 2533 } 2534 // fold (mulhs x, undef) -> 0 2535 if (N0.isUndef() || N1.isUndef()) 2536 return DAG.getConstant(0, SDLoc(N), VT); 2537 2538 // If the type twice as wide is legal, transform the mulhs to a wider multiply 2539 // plus a shift. 2540 if (VT.isSimple() && !VT.isVector()) { 2541 MVT Simple = VT.getSimpleVT(); 2542 unsigned SimpleSize = Simple.getSizeInBits(); 2543 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2544 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2545 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 2546 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 2547 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2548 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2549 DAG.getConstant(SimpleSize, DL, 2550 getShiftAmountTy(N1.getValueType()))); 2551 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2552 } 2553 } 2554 2555 return SDValue(); 2556 } 2557 2558 SDValue DAGCombiner::visitMULHU(SDNode *N) { 2559 SDValue N0 = N->getOperand(0); 2560 SDValue N1 = N->getOperand(1); 2561 EVT VT = N->getValueType(0); 2562 SDLoc DL(N); 2563 2564 // fold (mulhu x, 0) -> 0 2565 if (isNullConstant(N1)) 2566 return N1; 2567 // fold (mulhu x, 1) -> 0 2568 if (isOneConstant(N1)) 2569 return DAG.getConstant(0, DL, N0.getValueType()); 2570 // fold (mulhu x, undef) -> 0 2571 if (N0.isUndef() || N1.isUndef()) 2572 return DAG.getConstant(0, DL, VT); 2573 2574 // If the type twice as wide is legal, transform the mulhu to a wider multiply 2575 // plus a shift. 2576 if (VT.isSimple() && !VT.isVector()) { 2577 MVT Simple = VT.getSimpleVT(); 2578 unsigned SimpleSize = Simple.getSizeInBits(); 2579 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2580 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2581 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 2582 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 2583 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2584 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2585 DAG.getConstant(SimpleSize, DL, 2586 getShiftAmountTy(N1.getValueType()))); 2587 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2588 } 2589 } 2590 2591 return SDValue(); 2592 } 2593 2594 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 2595 /// give the opcodes for the two computations that are being performed. Return 2596 /// true if a simplification was made. 2597 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 2598 unsigned HiOp) { 2599 // If the high half is not needed, just compute the low half. 2600 bool HiExists = N->hasAnyUseOfValue(1); 2601 if (!HiExists && 2602 (!LegalOperations || 2603 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 2604 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2605 return CombineTo(N, Res, Res); 2606 } 2607 2608 // If the low half is not needed, just compute the high half. 2609 bool LoExists = N->hasAnyUseOfValue(0); 2610 if (!LoExists && 2611 (!LegalOperations || 2612 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 2613 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2614 return CombineTo(N, Res, Res); 2615 } 2616 2617 // If both halves are used, return as it is. 2618 if (LoExists && HiExists) 2619 return SDValue(); 2620 2621 // If the two computed results can be simplified separately, separate them. 2622 if (LoExists) { 2623 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2624 AddToWorklist(Lo.getNode()); 2625 SDValue LoOpt = combine(Lo.getNode()); 2626 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 2627 (!LegalOperations || 2628 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 2629 return CombineTo(N, LoOpt, LoOpt); 2630 } 2631 2632 if (HiExists) { 2633 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2634 AddToWorklist(Hi.getNode()); 2635 SDValue HiOpt = combine(Hi.getNode()); 2636 if (HiOpt.getNode() && HiOpt != Hi && 2637 (!LegalOperations || 2638 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 2639 return CombineTo(N, HiOpt, HiOpt); 2640 } 2641 2642 return SDValue(); 2643 } 2644 2645 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 2646 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 2647 return Res; 2648 2649 EVT VT = N->getValueType(0); 2650 SDLoc DL(N); 2651 2652 // If the type is twice as wide is legal, transform the mulhu to a wider 2653 // multiply plus a shift. 2654 if (VT.isSimple() && !VT.isVector()) { 2655 MVT Simple = VT.getSimpleVT(); 2656 unsigned SimpleSize = Simple.getSizeInBits(); 2657 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2658 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2659 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 2660 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 2661 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2662 // Compute the high part as N1. 2663 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2664 DAG.getConstant(SimpleSize, DL, 2665 getShiftAmountTy(Lo.getValueType()))); 2666 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2667 // Compute the low part as N0. 2668 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2669 return CombineTo(N, Lo, Hi); 2670 } 2671 } 2672 2673 return SDValue(); 2674 } 2675 2676 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 2677 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 2678 return Res; 2679 2680 EVT VT = N->getValueType(0); 2681 SDLoc DL(N); 2682 2683 // If the type is twice as wide is legal, transform the mulhu to a wider 2684 // multiply plus a shift. 2685 if (VT.isSimple() && !VT.isVector()) { 2686 MVT Simple = VT.getSimpleVT(); 2687 unsigned SimpleSize = Simple.getSizeInBits(); 2688 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2689 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2690 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 2691 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 2692 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2693 // Compute the high part as N1. 2694 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2695 DAG.getConstant(SimpleSize, DL, 2696 getShiftAmountTy(Lo.getValueType()))); 2697 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2698 // Compute the low part as N0. 2699 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2700 return CombineTo(N, Lo, Hi); 2701 } 2702 } 2703 2704 return SDValue(); 2705 } 2706 2707 SDValue DAGCombiner::visitSMULO(SDNode *N) { 2708 // (smulo x, 2) -> (saddo x, x) 2709 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2710 if (C2->getAPIntValue() == 2) 2711 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 2712 N->getOperand(0), N->getOperand(0)); 2713 2714 return SDValue(); 2715 } 2716 2717 SDValue DAGCombiner::visitUMULO(SDNode *N) { 2718 // (umulo x, 2) -> (uaddo x, x) 2719 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2720 if (C2->getAPIntValue() == 2) 2721 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 2722 N->getOperand(0), N->getOperand(0)); 2723 2724 return SDValue(); 2725 } 2726 2727 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 2728 SDValue N0 = N->getOperand(0); 2729 SDValue N1 = N->getOperand(1); 2730 EVT VT = N0.getValueType(); 2731 2732 // fold vector ops 2733 if (VT.isVector()) 2734 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2735 return FoldedVOp; 2736 2737 // fold (add c1, c2) -> c1+c2 2738 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2739 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2740 if (N0C && N1C) 2741 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 2742 2743 // canonicalize constant to RHS 2744 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2745 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2746 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 2747 2748 return SDValue(); 2749 } 2750 2751 /// If this is a binary operator with two operands of the same opcode, try to 2752 /// simplify it. 2753 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 2754 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 2755 EVT VT = N0.getValueType(); 2756 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 2757 2758 // Bail early if none of these transforms apply. 2759 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 2760 2761 // For each of OP in AND/OR/XOR: 2762 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 2763 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 2764 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 2765 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) 2766 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 2767 // 2768 // do not sink logical op inside of a vector extend, since it may combine 2769 // into a vsetcc. 2770 EVT Op0VT = N0.getOperand(0).getValueType(); 2771 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 2772 N0.getOpcode() == ISD::SIGN_EXTEND || 2773 N0.getOpcode() == ISD::BSWAP || 2774 // Avoid infinite looping with PromoteIntBinOp. 2775 (N0.getOpcode() == ISD::ANY_EXTEND && 2776 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 2777 (N0.getOpcode() == ISD::TRUNCATE && 2778 (!TLI.isZExtFree(VT, Op0VT) || 2779 !TLI.isTruncateFree(Op0VT, VT)) && 2780 TLI.isTypeLegal(Op0VT))) && 2781 !VT.isVector() && 2782 Op0VT == N1.getOperand(0).getValueType() && 2783 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 2784 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2785 N0.getOperand(0).getValueType(), 2786 N0.getOperand(0), N1.getOperand(0)); 2787 AddToWorklist(ORNode.getNode()); 2788 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 2789 } 2790 2791 // For each of OP in SHL/SRL/SRA/AND... 2792 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 2793 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 2794 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 2795 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 2796 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 2797 N0.getOperand(1) == N1.getOperand(1)) { 2798 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2799 N0.getOperand(0).getValueType(), 2800 N0.getOperand(0), N1.getOperand(0)); 2801 AddToWorklist(ORNode.getNode()); 2802 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 2803 ORNode, N0.getOperand(1)); 2804 } 2805 2806 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 2807 // Only perform this optimization up until type legalization, before 2808 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 2809 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 2810 // we don't want to undo this promotion. 2811 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 2812 // on scalars. 2813 if ((N0.getOpcode() == ISD::BITCAST || 2814 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 2815 Level <= AfterLegalizeTypes) { 2816 SDValue In0 = N0.getOperand(0); 2817 SDValue In1 = N1.getOperand(0); 2818 EVT In0Ty = In0.getValueType(); 2819 EVT In1Ty = In1.getValueType(); 2820 SDLoc DL(N); 2821 // If both incoming values are integers, and the original types are the 2822 // same. 2823 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 2824 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 2825 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 2826 AddToWorklist(Op.getNode()); 2827 return BC; 2828 } 2829 } 2830 2831 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 2832 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 2833 // If both shuffles use the same mask, and both shuffle within a single 2834 // vector, then it is worthwhile to move the swizzle after the operation. 2835 // The type-legalizer generates this pattern when loading illegal 2836 // vector types from memory. In many cases this allows additional shuffle 2837 // optimizations. 2838 // There are other cases where moving the shuffle after the xor/and/or 2839 // is profitable even if shuffles don't perform a swizzle. 2840 // If both shuffles use the same mask, and both shuffles have the same first 2841 // or second operand, then it might still be profitable to move the shuffle 2842 // after the xor/and/or operation. 2843 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 2844 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 2845 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 2846 2847 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 2848 "Inputs to shuffles are not the same type"); 2849 2850 // Check that both shuffles use the same mask. The masks are known to be of 2851 // the same length because the result vector type is the same. 2852 // Check also that shuffles have only one use to avoid introducing extra 2853 // instructions. 2854 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 2855 SVN0->getMask().equals(SVN1->getMask())) { 2856 SDValue ShOp = N0->getOperand(1); 2857 2858 // Don't try to fold this node if it requires introducing a 2859 // build vector of all zeros that might be illegal at this stage. 2860 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2861 if (!LegalTypes) 2862 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2863 else 2864 ShOp = SDValue(); 2865 } 2866 2867 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 2868 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 2869 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 2870 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 2871 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2872 N0->getOperand(0), N1->getOperand(0)); 2873 AddToWorklist(NewNode.getNode()); 2874 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 2875 SVN0->getMask()); 2876 } 2877 2878 // Don't try to fold this node if it requires introducing a 2879 // build vector of all zeros that might be illegal at this stage. 2880 ShOp = N0->getOperand(0); 2881 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2882 if (!LegalTypes) 2883 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2884 else 2885 ShOp = SDValue(); 2886 } 2887 2888 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 2889 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 2890 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 2891 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 2892 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2893 N0->getOperand(1), N1->getOperand(1)); 2894 AddToWorklist(NewNode.getNode()); 2895 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 2896 SVN0->getMask()); 2897 } 2898 } 2899 } 2900 2901 return SDValue(); 2902 } 2903 2904 /// This contains all DAGCombine rules which reduce two values combined by 2905 /// an And operation to a single value. This makes them reusable in the context 2906 /// of visitSELECT(). Rules involving constants are not included as 2907 /// visitSELECT() already handles those cases. 2908 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, 2909 SDNode *LocReference) { 2910 EVT VT = N1.getValueType(); 2911 2912 // fold (and x, undef) -> 0 2913 if (N0.isUndef() || N1.isUndef()) 2914 return DAG.getConstant(0, SDLoc(LocReference), VT); 2915 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 2916 SDValue LL, LR, RL, RR, CC0, CC1; 2917 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 2918 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 2919 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 2920 2921 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 2922 LL.getValueType().isInteger()) { 2923 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 2924 if (isNullConstant(LR) && Op1 == ISD::SETEQ) { 2925 EVT CCVT = getSetCCResultType(LR.getValueType()); 2926 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 2927 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2928 LR.getValueType(), LL, RL); 2929 AddToWorklist(ORNode.getNode()); 2930 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2931 } 2932 } 2933 if (isAllOnesConstant(LR)) { 2934 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 2935 if (Op1 == ISD::SETEQ) { 2936 EVT CCVT = getSetCCResultType(LR.getValueType()); 2937 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 2938 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 2939 LR.getValueType(), LL, RL); 2940 AddToWorklist(ANDNode.getNode()); 2941 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 2942 } 2943 } 2944 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 2945 if (Op1 == ISD::SETGT) { 2946 EVT CCVT = getSetCCResultType(LR.getValueType()); 2947 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 2948 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2949 LR.getValueType(), LL, RL); 2950 AddToWorklist(ORNode.getNode()); 2951 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2952 } 2953 } 2954 } 2955 } 2956 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 2957 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 2958 Op0 == Op1 && LL.getValueType().isInteger() && 2959 Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || 2960 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 2961 EVT CCVT = getSetCCResultType(LL.getValueType()); 2962 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 2963 SDLoc DL(N0); 2964 SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), 2965 LL, DAG.getConstant(1, DL, 2966 LL.getValueType())); 2967 AddToWorklist(ADDNode.getNode()); 2968 return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, 2969 DAG.getConstant(2, DL, LL.getValueType()), 2970 ISD::SETUGE); 2971 } 2972 } 2973 // canonicalize equivalent to ll == rl 2974 if (LL == RR && LR == RL) { 2975 Op1 = ISD::getSetCCSwappedOperands(Op1); 2976 std::swap(RL, RR); 2977 } 2978 if (LL == RL && LR == RR) { 2979 bool isInteger = LL.getValueType().isInteger(); 2980 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 2981 if (Result != ISD::SETCC_INVALID && 2982 (!LegalOperations || 2983 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 2984 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 2985 EVT CCVT = getSetCCResultType(LL.getValueType()); 2986 if (N0.getValueType() == CCVT || 2987 (!LegalOperations && N0.getValueType() == MVT::i1)) 2988 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 2989 LL, LR, Result); 2990 } 2991 } 2992 } 2993 2994 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 2995 VT.getSizeInBits() <= 64) { 2996 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2997 APInt ADDC = ADDI->getAPIntValue(); 2998 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2999 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 3000 // immediate for an add, but it is legal if its top c2 bits are set, 3001 // transform the ADD so the immediate doesn't need to be materialized 3002 // in a register. 3003 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 3004 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 3005 SRLI->getZExtValue()); 3006 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 3007 ADDC |= Mask; 3008 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 3009 SDLoc DL(N0); 3010 SDValue NewAdd = 3011 DAG.getNode(ISD::ADD, DL, VT, 3012 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 3013 CombineTo(N0.getNode(), NewAdd); 3014 // Return N so it doesn't get rechecked! 3015 return SDValue(LocReference, 0); 3016 } 3017 } 3018 } 3019 } 3020 } 3021 } 3022 3023 // Reduce bit extract of low half of an integer to the narrower type. 3024 // (and (srl i64:x, K), KMask) -> 3025 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 3026 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 3027 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 3028 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3029 unsigned Size = VT.getSizeInBits(); 3030 const APInt &AndMask = CAnd->getAPIntValue(); 3031 unsigned ShiftBits = CShift->getZExtValue(); 3032 unsigned MaskBits = AndMask.countTrailingOnes(); 3033 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 3034 3035 if (APIntOps::isMask(AndMask) && 3036 // Required bits must not span the two halves of the integer and 3037 // must fit in the half size type. 3038 (ShiftBits + MaskBits <= Size / 2) && 3039 TLI.isNarrowingProfitable(VT, HalfVT) && 3040 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 3041 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 3042 TLI.isTruncateFree(VT, HalfVT) && 3043 TLI.isZExtFree(HalfVT, VT)) { 3044 // The isNarrowingProfitable is to avoid regressions on PPC and 3045 // AArch64 which match a few 64-bit bit insert / bit extract patterns 3046 // on downstream users of this. Those patterns could probably be 3047 // extended to handle extensions mixed in. 3048 3049 SDValue SL(N0); 3050 assert(ShiftBits != 0 && MaskBits <= Size); 3051 3052 // Extracting the highest bit of the low half. 3053 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 3054 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 3055 N0.getOperand(0)); 3056 3057 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 3058 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 3059 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 3060 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 3061 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 3062 } 3063 } 3064 } 3065 } 3066 3067 return SDValue(); 3068 } 3069 3070 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 3071 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 3072 bool &NarrowLoad) { 3073 uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); 3074 3075 if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue())) 3076 return false; 3077 3078 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 3079 LoadedVT = LoadN->getMemoryVT(); 3080 3081 if (ExtVT == LoadedVT && 3082 (!LegalOperations || 3083 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 3084 // ZEXTLOAD will match without needing to change the size of the value being 3085 // loaded. 3086 NarrowLoad = false; 3087 return true; 3088 } 3089 3090 // Do not change the width of a volatile load. 3091 if (LoadN->isVolatile()) 3092 return false; 3093 3094 // Do not generate loads of non-round integer types since these can 3095 // be expensive (and would be wrong if the type is not byte sized). 3096 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 3097 return false; 3098 3099 if (LegalOperations && 3100 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 3101 return false; 3102 3103 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 3104 return false; 3105 3106 NarrowLoad = true; 3107 return true; 3108 } 3109 3110 SDValue DAGCombiner::visitAND(SDNode *N) { 3111 SDValue N0 = N->getOperand(0); 3112 SDValue N1 = N->getOperand(1); 3113 EVT VT = N1.getValueType(); 3114 3115 // fold vector ops 3116 if (VT.isVector()) { 3117 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3118 return FoldedVOp; 3119 3120 // fold (and x, 0) -> 0, vector edition 3121 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3122 // do not return N0, because undef node may exist in N0 3123 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), 3124 SDLoc(N), N0.getValueType()); 3125 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3126 // do not return N1, because undef node may exist in N1 3127 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), 3128 SDLoc(N), N1.getValueType()); 3129 3130 // fold (and x, -1) -> x, vector edition 3131 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3132 return N1; 3133 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3134 return N0; 3135 } 3136 3137 // fold (and c1, c2) -> c1&c2 3138 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3139 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3140 if (N0C && N1C && !N1C->isOpaque()) 3141 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 3142 // canonicalize constant to RHS 3143 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3144 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3145 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 3146 // fold (and x, -1) -> x 3147 if (isAllOnesConstant(N1)) 3148 return N0; 3149 // if (and x, c) is known to be zero, return 0 3150 unsigned BitWidth = VT.getScalarSizeInBits(); 3151 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 3152 APInt::getAllOnesValue(BitWidth))) 3153 return DAG.getConstant(0, SDLoc(N), VT); 3154 // reassociate and 3155 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) 3156 return RAND; 3157 // fold (and (or x, C), D) -> D if (C & D) == D 3158 if (N1C && N0.getOpcode() == ISD::OR) 3159 if (ConstantSDNode *ORI = isConstOrConstSplat(N0.getOperand(1))) 3160 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 3161 return N1; 3162 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 3163 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 3164 SDValue N0Op0 = N0.getOperand(0); 3165 APInt Mask = ~N1C->getAPIntValue(); 3166 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 3167 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 3168 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 3169 N0.getValueType(), N0Op0); 3170 3171 // Replace uses of the AND with uses of the Zero extend node. 3172 CombineTo(N, Zext); 3173 3174 // We actually want to replace all uses of the any_extend with the 3175 // zero_extend, to avoid duplicating things. This will later cause this 3176 // AND to be folded. 3177 CombineTo(N0.getNode(), Zext); 3178 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3179 } 3180 } 3181 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 3182 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 3183 // already be zero by virtue of the width of the base type of the load. 3184 // 3185 // the 'X' node here can either be nothing or an extract_vector_elt to catch 3186 // more cases. 3187 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3188 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 3189 N0.getOperand(0).getOpcode() == ISD::LOAD && 3190 N0.getOperand(0).getResNo() == 0) || 3191 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 3192 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 3193 N0 : N0.getOperand(0) ); 3194 3195 // Get the constant (if applicable) the zero'th operand is being ANDed with. 3196 // This can be a pure constant or a vector splat, in which case we treat the 3197 // vector as a scalar and use the splat value. 3198 APInt Constant = APInt::getNullValue(1); 3199 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 3200 Constant = C->getAPIntValue(); 3201 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 3202 APInt SplatValue, SplatUndef; 3203 unsigned SplatBitSize; 3204 bool HasAnyUndefs; 3205 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 3206 SplatBitSize, HasAnyUndefs); 3207 if (IsSplat) { 3208 // Undef bits can contribute to a possible optimisation if set, so 3209 // set them. 3210 SplatValue |= SplatUndef; 3211 3212 // The splat value may be something like "0x00FFFFFF", which means 0 for 3213 // the first vector value and FF for the rest, repeating. We need a mask 3214 // that will apply equally to all members of the vector, so AND all the 3215 // lanes of the constant together. 3216 EVT VT = Vector->getValueType(0); 3217 unsigned BitWidth = VT.getScalarSizeInBits(); 3218 3219 // If the splat value has been compressed to a bitlength lower 3220 // than the size of the vector lane, we need to re-expand it to 3221 // the lane size. 3222 if (BitWidth > SplatBitSize) 3223 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 3224 SplatBitSize < BitWidth; 3225 SplatBitSize = SplatBitSize * 2) 3226 SplatValue |= SplatValue.shl(SplatBitSize); 3227 3228 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 3229 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 3230 if (SplatBitSize % BitWidth == 0) { 3231 Constant = APInt::getAllOnesValue(BitWidth); 3232 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 3233 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 3234 } 3235 } 3236 } 3237 3238 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 3239 // actually legal and isn't going to get expanded, else this is a false 3240 // optimisation. 3241 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 3242 Load->getValueType(0), 3243 Load->getMemoryVT()); 3244 3245 // Resize the constant to the same size as the original memory access before 3246 // extension. If it is still the AllOnesValue then this AND is completely 3247 // unneeded. 3248 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 3249 3250 bool B; 3251 switch (Load->getExtensionType()) { 3252 default: B = false; break; 3253 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 3254 case ISD::ZEXTLOAD: 3255 case ISD::NON_EXTLOAD: B = true; break; 3256 } 3257 3258 if (B && Constant.isAllOnesValue()) { 3259 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 3260 // preserve semantics once we get rid of the AND. 3261 SDValue NewLoad(Load, 0); 3262 if (Load->getExtensionType() == ISD::EXTLOAD) { 3263 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 3264 Load->getValueType(0), SDLoc(Load), 3265 Load->getChain(), Load->getBasePtr(), 3266 Load->getOffset(), Load->getMemoryVT(), 3267 Load->getMemOperand()); 3268 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 3269 if (Load->getNumValues() == 3) { 3270 // PRE/POST_INC loads have 3 values. 3271 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 3272 NewLoad.getValue(2) }; 3273 CombineTo(Load, To, 3, true); 3274 } else { 3275 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 3276 } 3277 } 3278 3279 // Fold the AND away, taking care not to fold to the old load node if we 3280 // replaced it. 3281 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 3282 3283 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3284 } 3285 } 3286 3287 // fold (and (load x), 255) -> (zextload x, i8) 3288 // fold (and (extload x, i16), 255) -> (zextload x, i8) 3289 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 3290 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 3291 (N0.getOpcode() == ISD::ANY_EXTEND && 3292 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 3293 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 3294 LoadSDNode *LN0 = HasAnyExt 3295 ? cast<LoadSDNode>(N0.getOperand(0)) 3296 : cast<LoadSDNode>(N0); 3297 if (LN0->getExtensionType() != ISD::SEXTLOAD && 3298 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 3299 auto NarrowLoad = false; 3300 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 3301 EVT ExtVT, LoadedVT; 3302 if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, 3303 NarrowLoad)) { 3304 if (!NarrowLoad) { 3305 SDValue NewLoad = 3306 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3307 LN0->getChain(), LN0->getBasePtr(), ExtVT, 3308 LN0->getMemOperand()); 3309 AddToWorklist(N); 3310 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 3311 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3312 } else { 3313 EVT PtrType = LN0->getOperand(1).getValueType(); 3314 3315 unsigned Alignment = LN0->getAlignment(); 3316 SDValue NewPtr = LN0->getBasePtr(); 3317 3318 // For big endian targets, we need to add an offset to the pointer 3319 // to load the correct bytes. For little endian systems, we merely 3320 // need to read fewer bytes from the same pointer. 3321 if (DAG.getDataLayout().isBigEndian()) { 3322 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 3323 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 3324 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 3325 SDLoc DL(LN0); 3326 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, 3327 NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); 3328 Alignment = MinAlign(Alignment, PtrOff); 3329 } 3330 3331 AddToWorklist(NewPtr.getNode()); 3332 3333 SDValue Load = DAG.getExtLoad( 3334 ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, LN0->getChain(), NewPtr, 3335 LN0->getPointerInfo(), ExtVT, Alignment, 3336 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 3337 AddToWorklist(N); 3338 CombineTo(LN0, Load, Load.getValue(1)); 3339 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3340 } 3341 } 3342 } 3343 } 3344 3345 if (SDValue Combined = visitANDLike(N0, N1, N)) 3346 return Combined; 3347 3348 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 3349 if (N0.getOpcode() == N1.getOpcode()) 3350 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3351 return Tmp; 3352 3353 // Masking the negated extension of a boolean is just the zero-extended 3354 // boolean: 3355 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 3356 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 3357 // 3358 // Note: the SimplifyDemandedBits fold below can make an information-losing 3359 // transform, and then we have no way to find this better fold. 3360 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 3361 ConstantSDNode *SubLHS = isConstOrConstSplat(N0.getOperand(0)); 3362 SDValue SubRHS = N0.getOperand(1); 3363 if (SubLHS && SubLHS->isNullValue()) { 3364 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 3365 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 3366 return SubRHS; 3367 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 3368 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 3369 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 3370 } 3371 } 3372 3373 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 3374 // fold (and (sra)) -> (and (srl)) when possible. 3375 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 3376 return SDValue(N, 0); 3377 3378 // fold (zext_inreg (extload x)) -> (zextload x) 3379 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 3380 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3381 EVT MemVT = LN0->getMemoryVT(); 3382 // If we zero all the possible extended bits, then we can turn this into 3383 // a zextload if we are running before legalize or the operation is legal. 3384 unsigned BitWidth = N1.getScalarValueSizeInBits(); 3385 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3386 BitWidth - MemVT.getScalarSizeInBits())) && 3387 ((!LegalOperations && !LN0->isVolatile()) || 3388 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3389 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3390 LN0->getChain(), LN0->getBasePtr(), 3391 MemVT, LN0->getMemOperand()); 3392 AddToWorklist(N); 3393 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3394 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3395 } 3396 } 3397 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 3398 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 3399 N0.hasOneUse()) { 3400 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3401 EVT MemVT = LN0->getMemoryVT(); 3402 // If we zero all the possible extended bits, then we can turn this into 3403 // a zextload if we are running before legalize or the operation is legal. 3404 unsigned BitWidth = N1.getScalarValueSizeInBits(); 3405 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3406 BitWidth - MemVT.getScalarSizeInBits())) && 3407 ((!LegalOperations && !LN0->isVolatile()) || 3408 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3409 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3410 LN0->getChain(), LN0->getBasePtr(), 3411 MemVT, LN0->getMemOperand()); 3412 AddToWorklist(N); 3413 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3414 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3415 } 3416 } 3417 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 3418 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 3419 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 3420 N0.getOperand(1), false)) 3421 return BSwap; 3422 } 3423 3424 return SDValue(); 3425 } 3426 3427 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 3428 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 3429 bool DemandHighBits) { 3430 if (!LegalOperations) 3431 return SDValue(); 3432 3433 EVT VT = N->getValueType(0); 3434 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 3435 return SDValue(); 3436 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3437 return SDValue(); 3438 3439 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 3440 bool LookPassAnd0 = false; 3441 bool LookPassAnd1 = false; 3442 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 3443 std::swap(N0, N1); 3444 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 3445 std::swap(N0, N1); 3446 if (N0.getOpcode() == ISD::AND) { 3447 if (!N0.getNode()->hasOneUse()) 3448 return SDValue(); 3449 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3450 if (!N01C || N01C->getZExtValue() != 0xFF00) 3451 return SDValue(); 3452 N0 = N0.getOperand(0); 3453 LookPassAnd0 = true; 3454 } 3455 3456 if (N1.getOpcode() == ISD::AND) { 3457 if (!N1.getNode()->hasOneUse()) 3458 return SDValue(); 3459 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3460 if (!N11C || N11C->getZExtValue() != 0xFF) 3461 return SDValue(); 3462 N1 = N1.getOperand(0); 3463 LookPassAnd1 = true; 3464 } 3465 3466 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 3467 std::swap(N0, N1); 3468 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 3469 return SDValue(); 3470 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 3471 return SDValue(); 3472 3473 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3474 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3475 if (!N01C || !N11C) 3476 return SDValue(); 3477 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 3478 return SDValue(); 3479 3480 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 3481 SDValue N00 = N0->getOperand(0); 3482 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 3483 if (!N00.getNode()->hasOneUse()) 3484 return SDValue(); 3485 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 3486 if (!N001C || N001C->getZExtValue() != 0xFF) 3487 return SDValue(); 3488 N00 = N00.getOperand(0); 3489 LookPassAnd0 = true; 3490 } 3491 3492 SDValue N10 = N1->getOperand(0); 3493 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 3494 if (!N10.getNode()->hasOneUse()) 3495 return SDValue(); 3496 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 3497 if (!N101C || N101C->getZExtValue() != 0xFF00) 3498 return SDValue(); 3499 N10 = N10.getOperand(0); 3500 LookPassAnd1 = true; 3501 } 3502 3503 if (N00 != N10) 3504 return SDValue(); 3505 3506 // Make sure everything beyond the low halfword gets set to zero since the SRL 3507 // 16 will clear the top bits. 3508 unsigned OpSizeInBits = VT.getSizeInBits(); 3509 if (DemandHighBits && OpSizeInBits > 16) { 3510 // If the left-shift isn't masked out then the only way this is a bswap is 3511 // if all bits beyond the low 8 are 0. In that case the entire pattern 3512 // reduces to a left shift anyway: leave it for other parts of the combiner. 3513 if (!LookPassAnd0) 3514 return SDValue(); 3515 3516 // However, if the right shift isn't masked out then it might be because 3517 // it's not needed. See if we can spot that too. 3518 if (!LookPassAnd1 && 3519 !DAG.MaskedValueIsZero( 3520 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 3521 return SDValue(); 3522 } 3523 3524 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 3525 if (OpSizeInBits > 16) { 3526 SDLoc DL(N); 3527 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 3528 DAG.getConstant(OpSizeInBits - 16, DL, 3529 getShiftAmountTy(VT))); 3530 } 3531 return Res; 3532 } 3533 3534 /// Return true if the specified node is an element that makes up a 32-bit 3535 /// packed halfword byteswap. 3536 /// ((x & 0x000000ff) << 8) | 3537 /// ((x & 0x0000ff00) >> 8) | 3538 /// ((x & 0x00ff0000) << 8) | 3539 /// ((x & 0xff000000) >> 8) 3540 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 3541 if (!N.getNode()->hasOneUse()) 3542 return false; 3543 3544 unsigned Opc = N.getOpcode(); 3545 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 3546 return false; 3547 3548 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3549 if (!N1C) 3550 return false; 3551 3552 unsigned Num; 3553 switch (N1C->getZExtValue()) { 3554 default: 3555 return false; 3556 case 0xFF: Num = 0; break; 3557 case 0xFF00: Num = 1; break; 3558 case 0xFF0000: Num = 2; break; 3559 case 0xFF000000: Num = 3; break; 3560 } 3561 3562 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 3563 SDValue N0 = N.getOperand(0); 3564 if (Opc == ISD::AND) { 3565 if (Num == 0 || Num == 2) { 3566 // (x >> 8) & 0xff 3567 // (x >> 8) & 0xff0000 3568 if (N0.getOpcode() != ISD::SRL) 3569 return false; 3570 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3571 if (!C || C->getZExtValue() != 8) 3572 return false; 3573 } else { 3574 // (x << 8) & 0xff00 3575 // (x << 8) & 0xff000000 3576 if (N0.getOpcode() != ISD::SHL) 3577 return false; 3578 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3579 if (!C || C->getZExtValue() != 8) 3580 return false; 3581 } 3582 } else if (Opc == ISD::SHL) { 3583 // (x & 0xff) << 8 3584 // (x & 0xff0000) << 8 3585 if (Num != 0 && Num != 2) 3586 return false; 3587 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3588 if (!C || C->getZExtValue() != 8) 3589 return false; 3590 } else { // Opc == ISD::SRL 3591 // (x & 0xff00) >> 8 3592 // (x & 0xff000000) >> 8 3593 if (Num != 1 && Num != 3) 3594 return false; 3595 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3596 if (!C || C->getZExtValue() != 8) 3597 return false; 3598 } 3599 3600 if (Parts[Num]) 3601 return false; 3602 3603 Parts[Num] = N0.getOperand(0).getNode(); 3604 return true; 3605 } 3606 3607 /// Match a 32-bit packed halfword bswap. That is 3608 /// ((x & 0x000000ff) << 8) | 3609 /// ((x & 0x0000ff00) >> 8) | 3610 /// ((x & 0x00ff0000) << 8) | 3611 /// ((x & 0xff000000) >> 8) 3612 /// => (rotl (bswap x), 16) 3613 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 3614 if (!LegalOperations) 3615 return SDValue(); 3616 3617 EVT VT = N->getValueType(0); 3618 if (VT != MVT::i32) 3619 return SDValue(); 3620 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3621 return SDValue(); 3622 3623 // Look for either 3624 // (or (or (and), (and)), (or (and), (and))) 3625 // (or (or (or (and), (and)), (and)), (and)) 3626 if (N0.getOpcode() != ISD::OR) 3627 return SDValue(); 3628 SDValue N00 = N0.getOperand(0); 3629 SDValue N01 = N0.getOperand(1); 3630 SDNode *Parts[4] = {}; 3631 3632 if (N1.getOpcode() == ISD::OR && 3633 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 3634 // (or (or (and), (and)), (or (and), (and))) 3635 SDValue N000 = N00.getOperand(0); 3636 if (!isBSwapHWordElement(N000, Parts)) 3637 return SDValue(); 3638 3639 SDValue N001 = N00.getOperand(1); 3640 if (!isBSwapHWordElement(N001, Parts)) 3641 return SDValue(); 3642 SDValue N010 = N01.getOperand(0); 3643 if (!isBSwapHWordElement(N010, Parts)) 3644 return SDValue(); 3645 SDValue N011 = N01.getOperand(1); 3646 if (!isBSwapHWordElement(N011, Parts)) 3647 return SDValue(); 3648 } else { 3649 // (or (or (or (and), (and)), (and)), (and)) 3650 if (!isBSwapHWordElement(N1, Parts)) 3651 return SDValue(); 3652 if (!isBSwapHWordElement(N01, Parts)) 3653 return SDValue(); 3654 if (N00.getOpcode() != ISD::OR) 3655 return SDValue(); 3656 SDValue N000 = N00.getOperand(0); 3657 if (!isBSwapHWordElement(N000, Parts)) 3658 return SDValue(); 3659 SDValue N001 = N00.getOperand(1); 3660 if (!isBSwapHWordElement(N001, Parts)) 3661 return SDValue(); 3662 } 3663 3664 // Make sure the parts are all coming from the same node. 3665 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 3666 return SDValue(); 3667 3668 SDLoc DL(N); 3669 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 3670 SDValue(Parts[0], 0)); 3671 3672 // Result of the bswap should be rotated by 16. If it's not legal, then 3673 // do (x << 16) | (x >> 16). 3674 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 3675 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 3676 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 3677 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 3678 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 3679 return DAG.getNode(ISD::OR, DL, VT, 3680 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 3681 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 3682 } 3683 3684 /// This contains all DAGCombine rules which reduce two values combined by 3685 /// an Or operation to a single value \see visitANDLike(). 3686 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { 3687 EVT VT = N1.getValueType(); 3688 // fold (or x, undef) -> -1 3689 if (!LegalOperations && 3690 (N0.isUndef() || N1.isUndef())) { 3691 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 3692 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), 3693 SDLoc(LocReference), VT); 3694 } 3695 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 3696 SDValue LL, LR, RL, RR, CC0, CC1; 3697 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 3698 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 3699 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 3700 3701 if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { 3702 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 3703 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 3704 if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 3705 EVT CCVT = getSetCCResultType(LR.getValueType()); 3706 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 3707 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 3708 LR.getValueType(), LL, RL); 3709 AddToWorklist(ORNode.getNode()); 3710 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 3711 } 3712 } 3713 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 3714 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 3715 if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 3716 EVT CCVT = getSetCCResultType(LR.getValueType()); 3717 if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) { 3718 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 3719 LR.getValueType(), LL, RL); 3720 AddToWorklist(ANDNode.getNode()); 3721 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 3722 } 3723 } 3724 } 3725 // canonicalize equivalent to ll == rl 3726 if (LL == RR && LR == RL) { 3727 Op1 = ISD::getSetCCSwappedOperands(Op1); 3728 std::swap(RL, RR); 3729 } 3730 if (LL == RL && LR == RR) { 3731 bool isInteger = LL.getValueType().isInteger(); 3732 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 3733 if (Result != ISD::SETCC_INVALID && 3734 (!LegalOperations || 3735 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3736 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3737 EVT CCVT = getSetCCResultType(LL.getValueType()); 3738 if (N0.getValueType() == CCVT || 3739 (!LegalOperations && N0.getValueType() == MVT::i1)) 3740 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3741 LL, LR, Result); 3742 } 3743 } 3744 } 3745 3746 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 3747 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 3748 // Don't increase # computations. 3749 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3750 // We can only do this xform if we know that bits from X that are set in C2 3751 // but not in C1 are already zero. Likewise for Y. 3752 if (const ConstantSDNode *N0O1C = 3753 getAsNonOpaqueConstant(N0.getOperand(1))) { 3754 if (const ConstantSDNode *N1O1C = 3755 getAsNonOpaqueConstant(N1.getOperand(1))) { 3756 // We can only do this xform if we know that bits from X that are set in 3757 // C2 but not in C1 are already zero. Likewise for Y. 3758 const APInt &LHSMask = N0O1C->getAPIntValue(); 3759 const APInt &RHSMask = N1O1C->getAPIntValue(); 3760 3761 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 3762 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 3763 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3764 N0.getOperand(0), N1.getOperand(0)); 3765 SDLoc DL(LocReference); 3766 return DAG.getNode(ISD::AND, DL, VT, X, 3767 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 3768 } 3769 } 3770 } 3771 } 3772 3773 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 3774 if (N0.getOpcode() == ISD::AND && 3775 N1.getOpcode() == ISD::AND && 3776 N0.getOperand(0) == N1.getOperand(0) && 3777 // Don't increase # computations. 3778 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3779 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3780 N0.getOperand(1), N1.getOperand(1)); 3781 return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); 3782 } 3783 3784 return SDValue(); 3785 } 3786 3787 SDValue DAGCombiner::visitOR(SDNode *N) { 3788 SDValue N0 = N->getOperand(0); 3789 SDValue N1 = N->getOperand(1); 3790 EVT VT = N1.getValueType(); 3791 3792 // fold vector ops 3793 if (VT.isVector()) { 3794 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3795 return FoldedVOp; 3796 3797 // fold (or x, 0) -> x, vector edition 3798 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3799 return N1; 3800 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3801 return N0; 3802 3803 // fold (or x, -1) -> -1, vector edition 3804 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3805 // do not return N0, because undef node may exist in N0 3806 return DAG.getConstant( 3807 APInt::getAllOnesValue(N0.getScalarValueSizeInBits()), SDLoc(N), 3808 N0.getValueType()); 3809 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3810 // do not return N1, because undef node may exist in N1 3811 return DAG.getConstant( 3812 APInt::getAllOnesValue(N1.getScalarValueSizeInBits()), SDLoc(N), 3813 N1.getValueType()); 3814 3815 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 3816 // Do this only if the resulting shuffle is legal. 3817 if (isa<ShuffleVectorSDNode>(N0) && 3818 isa<ShuffleVectorSDNode>(N1) && 3819 // Avoid folding a node with illegal type. 3820 TLI.isTypeLegal(VT)) { 3821 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 3822 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 3823 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 3824 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 3825 // Ensure both shuffles have a zero input. 3826 if ((ZeroN00 || ZeroN01) && (ZeroN10 || ZeroN11)) { 3827 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 3828 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 3829 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 3830 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 3831 bool CanFold = true; 3832 int NumElts = VT.getVectorNumElements(); 3833 SmallVector<int, 4> Mask(NumElts); 3834 3835 for (int i = 0; i != NumElts; ++i) { 3836 int M0 = SV0->getMaskElt(i); 3837 int M1 = SV1->getMaskElt(i); 3838 3839 // Determine if either index is pointing to a zero vector. 3840 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 3841 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 3842 3843 // If one element is zero and the otherside is undef, keep undef. 3844 // This also handles the case that both are undef. 3845 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 3846 Mask[i] = -1; 3847 continue; 3848 } 3849 3850 // Make sure only one of the elements is zero. 3851 if (M0Zero == M1Zero) { 3852 CanFold = false; 3853 break; 3854 } 3855 3856 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 3857 3858 // We have a zero and non-zero element. If the non-zero came from 3859 // SV0 make the index a LHS index. If it came from SV1, make it 3860 // a RHS index. We need to mod by NumElts because we don't care 3861 // which operand it came from in the original shuffles. 3862 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 3863 } 3864 3865 if (CanFold) { 3866 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 3867 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 3868 3869 bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT); 3870 if (!LegalMask) { 3871 std::swap(NewLHS, NewRHS); 3872 ShuffleVectorSDNode::commuteMask(Mask); 3873 LegalMask = TLI.isShuffleMaskLegal(Mask, VT); 3874 } 3875 3876 if (LegalMask) 3877 return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask); 3878 } 3879 } 3880 } 3881 } 3882 3883 // fold (or c1, c2) -> c1|c2 3884 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3885 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3886 if (N0C && N1C && !N1C->isOpaque()) 3887 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 3888 // canonicalize constant to RHS 3889 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3890 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3891 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 3892 // fold (or x, 0) -> x 3893 if (isNullConstant(N1)) 3894 return N0; 3895 // fold (or x, -1) -> -1 3896 if (isAllOnesConstant(N1)) 3897 return N1; 3898 // fold (or x, c) -> c iff (x & ~c) == 0 3899 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 3900 return N1; 3901 3902 if (SDValue Combined = visitORLike(N0, N1, N)) 3903 return Combined; 3904 3905 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 3906 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 3907 return BSwap; 3908 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 3909 return BSwap; 3910 3911 // reassociate or 3912 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) 3913 return ROR; 3914 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 3915 // iff (c1 & c2) == 0. 3916 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 3917 isa<ConstantSDNode>(N0.getOperand(1))) { 3918 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 3919 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 3920 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 3921 N1C, C1)) 3922 return DAG.getNode( 3923 ISD::AND, SDLoc(N), VT, 3924 DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); 3925 return SDValue(); 3926 } 3927 } 3928 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 3929 if (N0.getOpcode() == N1.getOpcode()) 3930 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3931 return Tmp; 3932 3933 // See if this is some rotate idiom. 3934 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 3935 return SDValue(Rot, 0); 3936 3937 // Simplify the operands using demanded-bits information. 3938 if (!VT.isVector() && 3939 SimplifyDemandedBits(SDValue(N, 0))) 3940 return SDValue(N, 0); 3941 3942 return SDValue(); 3943 } 3944 3945 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 3946 bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 3947 if (Op.getOpcode() == ISD::AND) { 3948 if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 3949 Mask = Op.getOperand(1); 3950 Op = Op.getOperand(0); 3951 } else { 3952 return false; 3953 } 3954 } 3955 3956 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 3957 Shift = Op; 3958 return true; 3959 } 3960 3961 return false; 3962 } 3963 3964 // Return true if we can prove that, whenever Neg and Pos are both in the 3965 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 3966 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 3967 // 3968 // (or (shift1 X, Neg), (shift2 X, Pos)) 3969 // 3970 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 3971 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 3972 // to consider shift amounts with defined behavior. 3973 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { 3974 // If EltSize is a power of 2 then: 3975 // 3976 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 3977 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 3978 // 3979 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 3980 // for the stronger condition: 3981 // 3982 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 3983 // 3984 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 3985 // we can just replace Neg with Neg' for the rest of the function. 3986 // 3987 // In other cases we check for the even stronger condition: 3988 // 3989 // Neg == EltSize - Pos [B] 3990 // 3991 // for all Neg and Pos. Note that the (or ...) then invokes undefined 3992 // behavior if Pos == 0 (and consequently Neg == EltSize). 3993 // 3994 // We could actually use [A] whenever EltSize is a power of 2, but the 3995 // only extra cases that it would match are those uninteresting ones 3996 // where Neg and Pos are never in range at the same time. E.g. for 3997 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 3998 // as well as (sub 32, Pos), but: 3999 // 4000 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 4001 // 4002 // always invokes undefined behavior for 32-bit X. 4003 // 4004 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 4005 unsigned MaskLoBits = 0; 4006 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 4007 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 4008 if (NegC->getAPIntValue() == EltSize - 1) { 4009 Neg = Neg.getOperand(0); 4010 MaskLoBits = Log2_64(EltSize); 4011 } 4012 } 4013 } 4014 4015 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 4016 if (Neg.getOpcode() != ISD::SUB) 4017 return false; 4018 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 4019 if (!NegC) 4020 return false; 4021 SDValue NegOp1 = Neg.getOperand(1); 4022 4023 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 4024 // Pos'. The truncation is redundant for the purpose of the equality. 4025 if (MaskLoBits && Pos.getOpcode() == ISD::AND) 4026 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 4027 if (PosC->getAPIntValue() == EltSize - 1) 4028 Pos = Pos.getOperand(0); 4029 4030 // The condition we need is now: 4031 // 4032 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 4033 // 4034 // If NegOp1 == Pos then we need: 4035 // 4036 // EltSize & Mask == NegC & Mask 4037 // 4038 // (because "x & Mask" is a truncation and distributes through subtraction). 4039 APInt Width; 4040 if (Pos == NegOp1) 4041 Width = NegC->getAPIntValue(); 4042 4043 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 4044 // Then the condition we want to prove becomes: 4045 // 4046 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 4047 // 4048 // which, again because "x & Mask" is a truncation, becomes: 4049 // 4050 // NegC & Mask == (EltSize - PosC) & Mask 4051 // EltSize & Mask == (NegC + PosC) & Mask 4052 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 4053 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 4054 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 4055 else 4056 return false; 4057 } else 4058 return false; 4059 4060 // Now we just need to check that EltSize & Mask == Width & Mask. 4061 if (MaskLoBits) 4062 // EltSize & Mask is 0 since Mask is EltSize - 1. 4063 return Width.getLoBits(MaskLoBits) == 0; 4064 return Width == EltSize; 4065 } 4066 4067 // A subroutine of MatchRotate used once we have found an OR of two opposite 4068 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 4069 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 4070 // former being preferred if supported. InnerPos and InnerNeg are Pos and 4071 // Neg with outer conversions stripped away. 4072 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 4073 SDValue Neg, SDValue InnerPos, 4074 SDValue InnerNeg, unsigned PosOpcode, 4075 unsigned NegOpcode, const SDLoc &DL) { 4076 // fold (or (shl x, (*ext y)), 4077 // (srl x, (*ext (sub 32, y)))) -> 4078 // (rotl x, y) or (rotr x, (sub 32, y)) 4079 // 4080 // fold (or (shl x, (*ext (sub 32, y))), 4081 // (srl x, (*ext y))) -> 4082 // (rotr x, y) or (rotl x, (sub 32, y)) 4083 EVT VT = Shifted.getValueType(); 4084 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { 4085 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 4086 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 4087 HasPos ? Pos : Neg).getNode(); 4088 } 4089 4090 return nullptr; 4091 } 4092 4093 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 4094 // idioms for rotate, and if the target supports rotation instructions, generate 4095 // a rot[lr]. 4096 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 4097 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 4098 EVT VT = LHS.getValueType(); 4099 if (!TLI.isTypeLegal(VT)) return nullptr; 4100 4101 // The target must have at least one rotate flavor. 4102 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 4103 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 4104 if (!HasROTL && !HasROTR) return nullptr; 4105 4106 // Match "(X shl/srl V1) & V2" where V2 may not be present. 4107 SDValue LHSShift; // The shift. 4108 SDValue LHSMask; // AND value if any. 4109 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 4110 return nullptr; // Not part of a rotate. 4111 4112 SDValue RHSShift; // The shift. 4113 SDValue RHSMask; // AND value if any. 4114 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 4115 return nullptr; // Not part of a rotate. 4116 4117 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 4118 return nullptr; // Not shifting the same value. 4119 4120 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 4121 return nullptr; // Shifts must disagree. 4122 4123 // Canonicalize shl to left side in a shl/srl pair. 4124 if (RHSShift.getOpcode() == ISD::SHL) { 4125 std::swap(LHS, RHS); 4126 std::swap(LHSShift, RHSShift); 4127 std::swap(LHSMask, RHSMask); 4128 } 4129 4130 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4131 SDValue LHSShiftArg = LHSShift.getOperand(0); 4132 SDValue LHSShiftAmt = LHSShift.getOperand(1); 4133 SDValue RHSShiftArg = RHSShift.getOperand(0); 4134 SDValue RHSShiftAmt = RHSShift.getOperand(1); 4135 4136 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 4137 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 4138 if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { 4139 uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); 4140 uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); 4141 if ((LShVal + RShVal) != EltSizeInBits) 4142 return nullptr; 4143 4144 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 4145 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 4146 4147 // If there is an AND of either shifted operand, apply it to the result. 4148 if (LHSMask.getNode() || RHSMask.getNode()) { 4149 APInt AllBits = APInt::getAllOnesValue(EltSizeInBits); 4150 SDValue Mask = DAG.getConstant(AllBits, DL, VT); 4151 4152 if (LHSMask.getNode()) { 4153 APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); 4154 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4155 DAG.getNode(ISD::OR, DL, VT, LHSMask, 4156 DAG.getConstant(RHSBits, DL, VT))); 4157 } 4158 if (RHSMask.getNode()) { 4159 APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); 4160 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4161 DAG.getNode(ISD::OR, DL, VT, RHSMask, 4162 DAG.getConstant(LHSBits, DL, VT))); 4163 } 4164 4165 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); 4166 } 4167 4168 return Rot.getNode(); 4169 } 4170 4171 // If there is a mask here, and we have a variable shift, we can't be sure 4172 // that we're masking out the right stuff. 4173 if (LHSMask.getNode() || RHSMask.getNode()) 4174 return nullptr; 4175 4176 // If the shift amount is sign/zext/any-extended just peel it off. 4177 SDValue LExtOp0 = LHSShiftAmt; 4178 SDValue RExtOp0 = RHSShiftAmt; 4179 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4180 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4181 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4182 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 4183 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4184 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4185 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4186 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 4187 LExtOp0 = LHSShiftAmt.getOperand(0); 4188 RExtOp0 = RHSShiftAmt.getOperand(0); 4189 } 4190 4191 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 4192 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 4193 if (TryL) 4194 return TryL; 4195 4196 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 4197 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 4198 if (TryR) 4199 return TryR; 4200 4201 return nullptr; 4202 } 4203 4204 SDValue DAGCombiner::visitXOR(SDNode *N) { 4205 SDValue N0 = N->getOperand(0); 4206 SDValue N1 = N->getOperand(1); 4207 EVT VT = N0.getValueType(); 4208 4209 // fold vector ops 4210 if (VT.isVector()) { 4211 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4212 return FoldedVOp; 4213 4214 // fold (xor x, 0) -> x, vector edition 4215 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4216 return N1; 4217 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4218 return N0; 4219 } 4220 4221 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 4222 if (N0.isUndef() && N1.isUndef()) 4223 return DAG.getConstant(0, SDLoc(N), VT); 4224 // fold (xor x, undef) -> undef 4225 if (N0.isUndef()) 4226 return N0; 4227 if (N1.isUndef()) 4228 return N1; 4229 // fold (xor c1, c2) -> c1^c2 4230 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4231 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4232 if (N0C && N1C) 4233 return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); 4234 // canonicalize constant to RHS 4235 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4236 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4237 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 4238 // fold (xor x, 0) -> x 4239 if (isNullConstant(N1)) 4240 return N0; 4241 // reassociate xor 4242 if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) 4243 return RXOR; 4244 4245 // fold !(x cc y) -> (x !cc y) 4246 SDValue LHS, RHS, CC; 4247 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 4248 bool isInt = LHS.getValueType().isInteger(); 4249 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 4250 isInt); 4251 4252 if (!LegalOperations || 4253 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 4254 switch (N0.getOpcode()) { 4255 default: 4256 llvm_unreachable("Unhandled SetCC Equivalent!"); 4257 case ISD::SETCC: 4258 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 4259 case ISD::SELECT_CC: 4260 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 4261 N0.getOperand(3), NotCC); 4262 } 4263 } 4264 } 4265 4266 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 4267 if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && 4268 N0.getNode()->hasOneUse() && 4269 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 4270 SDValue V = N0.getOperand(0); 4271 SDLoc DL(N0); 4272 V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, 4273 DAG.getConstant(1, DL, V.getValueType())); 4274 AddToWorklist(V.getNode()); 4275 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 4276 } 4277 4278 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 4279 if (isOneConstant(N1) && VT == MVT::i1 && 4280 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4281 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4282 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 4283 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4284 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4285 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4286 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4287 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4288 } 4289 } 4290 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 4291 if (isAllOnesConstant(N1) && 4292 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4293 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4294 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 4295 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4296 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4297 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4298 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4299 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4300 } 4301 } 4302 // fold (xor (and x, y), y) -> (and (not x), y) 4303 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 4304 N0->getOperand(1) == N1) { 4305 SDValue X = N0->getOperand(0); 4306 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 4307 AddToWorklist(NotX.getNode()); 4308 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 4309 } 4310 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 4311 if (N1C && N0.getOpcode() == ISD::XOR) { 4312 if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { 4313 SDLoc DL(N); 4314 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 4315 DAG.getConstant(N1C->getAPIntValue() ^ 4316 N00C->getAPIntValue(), DL, VT)); 4317 } 4318 if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { 4319 SDLoc DL(N); 4320 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 4321 DAG.getConstant(N1C->getAPIntValue() ^ 4322 N01C->getAPIntValue(), DL, VT)); 4323 } 4324 } 4325 // fold (xor x, x) -> 0 4326 if (N0 == N1) 4327 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 4328 4329 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 4330 // Here is a concrete example of this equivalence: 4331 // i16 x == 14 4332 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 4333 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 4334 // 4335 // => 4336 // 4337 // i16 ~1 == 0b1111111111111110 4338 // i16 rol(~1, 14) == 0b1011111111111111 4339 // 4340 // Some additional tips to help conceptualize this transform: 4341 // - Try to see the operation as placing a single zero in a value of all ones. 4342 // - There exists no value for x which would allow the result to contain zero. 4343 // - Values of x larger than the bitwidth are undefined and do not require a 4344 // consistent result. 4345 // - Pushing the zero left requires shifting one bits in from the right. 4346 // A rotate left of ~1 is a nice way of achieving the desired result. 4347 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL 4348 && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 4349 SDLoc DL(N); 4350 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 4351 N0.getOperand(1)); 4352 } 4353 4354 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 4355 if (N0.getOpcode() == N1.getOpcode()) 4356 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 4357 return Tmp; 4358 4359 // Simplify the expression using non-local knowledge. 4360 if (!VT.isVector() && 4361 SimplifyDemandedBits(SDValue(N, 0))) 4362 return SDValue(N, 0); 4363 4364 return SDValue(); 4365 } 4366 4367 /// Handle transforms common to the three shifts, when the shift amount is a 4368 /// constant. 4369 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 4370 SDNode *LHS = N->getOperand(0).getNode(); 4371 if (!LHS->hasOneUse()) return SDValue(); 4372 4373 // We want to pull some binops through shifts, so that we have (and (shift)) 4374 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 4375 // thing happens with address calculations, so it's important to canonicalize 4376 // it. 4377 bool HighBitSet = false; // Can we transform this if the high bit is set? 4378 4379 switch (LHS->getOpcode()) { 4380 default: return SDValue(); 4381 case ISD::OR: 4382 case ISD::XOR: 4383 HighBitSet = false; // We can only transform sra if the high bit is clear. 4384 break; 4385 case ISD::AND: 4386 HighBitSet = true; // We can only transform sra if the high bit is set. 4387 break; 4388 case ISD::ADD: 4389 if (N->getOpcode() != ISD::SHL) 4390 return SDValue(); // only shl(add) not sr[al](add). 4391 HighBitSet = false; // We can only transform sra if the high bit is clear. 4392 break; 4393 } 4394 4395 // We require the RHS of the binop to be a constant and not opaque as well. 4396 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 4397 if (!BinOpCst) return SDValue(); 4398 4399 // FIXME: disable this unless the input to the binop is a shift by a constant. 4400 // If it is not a shift, it pessimizes some common cases like: 4401 // 4402 // void foo(int *X, int i) { X[i & 1235] = 1; } 4403 // int bar(int *X, int i) { return X[i & 255]; } 4404 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 4405 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 4406 BinOpLHSVal->getOpcode() != ISD::SRA && 4407 BinOpLHSVal->getOpcode() != ISD::SRL) || 4408 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 4409 return SDValue(); 4410 4411 EVT VT = N->getValueType(0); 4412 4413 // If this is a signed shift right, and the high bit is modified by the 4414 // logical operation, do not perform the transformation. The highBitSet 4415 // boolean indicates the value of the high bit of the constant which would 4416 // cause it to be modified for this operation. 4417 if (N->getOpcode() == ISD::SRA) { 4418 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 4419 if (BinOpRHSSignSet != HighBitSet) 4420 return SDValue(); 4421 } 4422 4423 if (!TLI.isDesirableToCommuteWithShift(LHS)) 4424 return SDValue(); 4425 4426 // Fold the constants, shifting the binop RHS by the shift amount. 4427 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 4428 N->getValueType(0), 4429 LHS->getOperand(1), N->getOperand(1)); 4430 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 4431 4432 // Create the new shift. 4433 SDValue NewShift = DAG.getNode(N->getOpcode(), 4434 SDLoc(LHS->getOperand(0)), 4435 VT, LHS->getOperand(0), N->getOperand(1)); 4436 4437 // Create the new binop. 4438 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 4439 } 4440 4441 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 4442 assert(N->getOpcode() == ISD::TRUNCATE); 4443 assert(N->getOperand(0).getOpcode() == ISD::AND); 4444 4445 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 4446 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 4447 SDValue N01 = N->getOperand(0).getOperand(1); 4448 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 4449 SDLoc DL(N); 4450 EVT TruncVT = N->getValueType(0); 4451 SDValue N00 = N->getOperand(0).getOperand(0); 4452 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 4453 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 4454 AddToWorklist(Trunc00.getNode()); 4455 AddToWorklist(Trunc01.getNode()); 4456 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 4457 } 4458 } 4459 4460 return SDValue(); 4461 } 4462 4463 SDValue DAGCombiner::visitRotate(SDNode *N) { 4464 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 4465 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 4466 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 4467 if (SDValue NewOp1 = 4468 distributeTruncateThroughAnd(N->getOperand(1).getNode())) 4469 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 4470 N->getOperand(0), NewOp1); 4471 } 4472 return SDValue(); 4473 } 4474 4475 SDValue DAGCombiner::visitSHL(SDNode *N) { 4476 SDValue N0 = N->getOperand(0); 4477 SDValue N1 = N->getOperand(1); 4478 EVT VT = N0.getValueType(); 4479 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4480 4481 // fold vector ops 4482 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4483 if (VT.isVector()) { 4484 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4485 return FoldedVOp; 4486 4487 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 4488 // If setcc produces all-one true value then: 4489 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 4490 if (N1CV && N1CV->isConstant()) { 4491 if (N0.getOpcode() == ISD::AND) { 4492 SDValue N00 = N0->getOperand(0); 4493 SDValue N01 = N0->getOperand(1); 4494 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 4495 4496 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 4497 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 4498 TargetLowering::ZeroOrNegativeOneBooleanContent) { 4499 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 4500 N01CV, N1CV)) 4501 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 4502 } 4503 } else { 4504 N1C = isConstOrConstSplat(N1); 4505 } 4506 } 4507 } 4508 4509 // fold (shl c1, c2) -> c1<<c2 4510 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4511 if (N0C && N1C && !N1C->isOpaque()) 4512 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 4513 // fold (shl 0, x) -> 0 4514 if (isNullConstant(N0)) 4515 return N0; 4516 // fold (shl x, c >= size(x)) -> undef 4517 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4518 return DAG.getUNDEF(VT); 4519 // fold (shl x, 0) -> x 4520 if (N1C && N1C->isNullValue()) 4521 return N0; 4522 // fold (shl undef, x) -> 0 4523 if (N0.isUndef()) 4524 return DAG.getConstant(0, SDLoc(N), VT); 4525 // if (shl x, c) is known to be zero, return 0 4526 if (DAG.MaskedValueIsZero(SDValue(N, 0), 4527 APInt::getAllOnesValue(OpSizeInBits))) 4528 return DAG.getConstant(0, SDLoc(N), VT); 4529 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 4530 if (N1.getOpcode() == ISD::TRUNCATE && 4531 N1.getOperand(0).getOpcode() == ISD::AND) { 4532 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4533 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 4534 } 4535 4536 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4537 return SDValue(N, 0); 4538 4539 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 4540 if (N1C && N0.getOpcode() == ISD::SHL) { 4541 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4542 SDLoc DL(N); 4543 APInt c1 = N0C1->getAPIntValue(); 4544 APInt c2 = N1C->getAPIntValue(); 4545 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 4546 4547 APInt Sum = c1 + c2; 4548 if (Sum.uge(OpSizeInBits)) 4549 return DAG.getConstant(0, DL, VT); 4550 4551 return DAG.getNode( 4552 ISD::SHL, DL, VT, N0.getOperand(0), 4553 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 4554 } 4555 } 4556 4557 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 4558 // For this to be valid, the second form must not preserve any of the bits 4559 // that are shifted out by the inner shift in the first form. This means 4560 // the outer shift size must be >= the number of bits added by the ext. 4561 // As a corollary, we don't care what kind of ext it is. 4562 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 4563 N0.getOpcode() == ISD::ANY_EXTEND || 4564 N0.getOpcode() == ISD::SIGN_EXTEND) && 4565 N0.getOperand(0).getOpcode() == ISD::SHL) { 4566 SDValue N0Op0 = N0.getOperand(0); 4567 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4568 APInt c1 = N0Op0C1->getAPIntValue(); 4569 APInt c2 = N1C->getAPIntValue(); 4570 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 4571 4572 EVT InnerShiftVT = N0Op0.getValueType(); 4573 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4574 if (c2.uge(OpSizeInBits - InnerShiftSize)) { 4575 SDLoc DL(N0); 4576 APInt Sum = c1 + c2; 4577 if (Sum.uge(OpSizeInBits)) 4578 return DAG.getConstant(0, DL, VT); 4579 4580 return DAG.getNode( 4581 ISD::SHL, DL, VT, 4582 DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)), 4583 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 4584 } 4585 } 4586 } 4587 4588 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 4589 // Only fold this if the inner zext has no other uses to avoid increasing 4590 // the total number of instructions. 4591 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 4592 N0.getOperand(0).getOpcode() == ISD::SRL) { 4593 SDValue N0Op0 = N0.getOperand(0); 4594 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4595 if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) { 4596 uint64_t c1 = N0Op0C1->getZExtValue(); 4597 uint64_t c2 = N1C->getZExtValue(); 4598 if (c1 == c2) { 4599 SDValue NewOp0 = N0.getOperand(0); 4600 EVT CountVT = NewOp0.getOperand(1).getValueType(); 4601 SDLoc DL(N); 4602 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 4603 NewOp0, 4604 DAG.getConstant(c2, DL, CountVT)); 4605 AddToWorklist(NewSHL.getNode()); 4606 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 4607 } 4608 } 4609 } 4610 } 4611 4612 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 4613 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 4614 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 4615 cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { 4616 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4617 uint64_t C1 = N0C1->getZExtValue(); 4618 uint64_t C2 = N1C->getZExtValue(); 4619 SDLoc DL(N); 4620 if (C1 <= C2) 4621 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4622 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 4623 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 4624 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 4625 } 4626 } 4627 4628 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 4629 // (and (srl x, (sub c1, c2), MASK) 4630 // Only fold this if the inner shift has no other uses -- if it does, folding 4631 // this will increase the total number of instructions. 4632 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4633 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4634 uint64_t c1 = N0C1->getZExtValue(); 4635 if (c1 < OpSizeInBits) { 4636 uint64_t c2 = N1C->getZExtValue(); 4637 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 4638 SDValue Shift; 4639 if (c2 > c1) { 4640 Mask = Mask.shl(c2 - c1); 4641 SDLoc DL(N); 4642 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4643 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 4644 } else { 4645 Mask = Mask.lshr(c1 - c2); 4646 SDLoc DL(N); 4647 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4648 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 4649 } 4650 SDLoc DL(N0); 4651 return DAG.getNode(ISD::AND, DL, VT, Shift, 4652 DAG.getConstant(Mask, DL, VT)); 4653 } 4654 } 4655 } 4656 4657 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 4658 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 4659 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 4660 unsigned BitSize = VT.getScalarSizeInBits(); 4661 SDLoc DL(N); 4662 SDValue AllBits = DAG.getConstant(APInt::getAllOnesValue(BitSize), DL, VT); 4663 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 4664 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 4665 } 4666 4667 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4668 // Variant of version done on multiply, except mul by a power of 2 is turned 4669 // into a shift. 4670 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 4671 isConstantOrConstantVector(N1, /* No Opaques */ true) && 4672 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 4673 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 4674 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4675 AddToWorklist(Shl0.getNode()); 4676 AddToWorklist(Shl1.getNode()); 4677 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 4678 } 4679 4680 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 4681 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 4682 isConstantOrConstantVector(N1, /* No Opaques */ true) && 4683 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 4684 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4685 AddToWorklist(Shl.getNode()); 4686 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 4687 } 4688 4689 if (N1C && !N1C->isOpaque()) 4690 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 4691 return NewSHL; 4692 4693 return SDValue(); 4694 } 4695 4696 SDValue DAGCombiner::visitSRA(SDNode *N) { 4697 SDValue N0 = N->getOperand(0); 4698 SDValue N1 = N->getOperand(1); 4699 EVT VT = N0.getValueType(); 4700 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4701 4702 // Arithmetic shifting an all-sign-bit value is a no-op. 4703 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 4704 return N0; 4705 4706 // fold vector ops 4707 if (VT.isVector()) 4708 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4709 return FoldedVOp; 4710 4711 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4712 4713 // fold (sra c1, c2) -> (sra c1, c2) 4714 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4715 if (N0C && N1C && !N1C->isOpaque()) 4716 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 4717 // fold (sra 0, x) -> 0 4718 if (isNullConstant(N0)) 4719 return N0; 4720 // fold (sra -1, x) -> -1 4721 if (isAllOnesConstant(N0)) 4722 return N0; 4723 // fold (sra x, c >= size(x)) -> undef 4724 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4725 return DAG.getUNDEF(VT); 4726 // fold (sra x, 0) -> x 4727 if (N1C && N1C->isNullValue()) 4728 return N0; 4729 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 4730 // sext_inreg. 4731 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 4732 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 4733 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 4734 if (VT.isVector()) 4735 ExtVT = EVT::getVectorVT(*DAG.getContext(), 4736 ExtVT, VT.getVectorNumElements()); 4737 if ((!LegalOperations || 4738 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 4739 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 4740 N0.getOperand(0), DAG.getValueType(ExtVT)); 4741 } 4742 4743 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 4744 if (N1C && N0.getOpcode() == ISD::SRA) { 4745 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4746 SDLoc DL(N); 4747 APInt c1 = N0C1->getAPIntValue(); 4748 APInt c2 = N1C->getAPIntValue(); 4749 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 4750 4751 APInt Sum = c1 + c2; 4752 if (Sum.uge(OpSizeInBits)) 4753 Sum = APInt(OpSizeInBits, OpSizeInBits - 1); 4754 4755 return DAG.getNode( 4756 ISD::SRA, DL, VT, N0.getOperand(0), 4757 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 4758 } 4759 } 4760 4761 // fold (sra (shl X, m), (sub result_size, n)) 4762 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 4763 // result_size - n != m. 4764 // If truncate is free for the target sext(shl) is likely to result in better 4765 // code. 4766 if (N0.getOpcode() == ISD::SHL && N1C) { 4767 // Get the two constanst of the shifts, CN0 = m, CN = n. 4768 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 4769 if (N01C) { 4770 LLVMContext &Ctx = *DAG.getContext(); 4771 // Determine what the truncate's result bitsize and type would be. 4772 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 4773 4774 if (VT.isVector()) 4775 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 4776 4777 // Determine the residual right-shift amount. 4778 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 4779 4780 // If the shift is not a no-op (in which case this should be just a sign 4781 // extend already), the truncated to type is legal, sign_extend is legal 4782 // on that type, and the truncate to that type is both legal and free, 4783 // perform the transform. 4784 if ((ShiftAmt > 0) && 4785 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 4786 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 4787 TLI.isTruncateFree(VT, TruncVT)) { 4788 4789 SDLoc DL(N); 4790 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 4791 getShiftAmountTy(N0.getOperand(0).getValueType())); 4792 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 4793 N0.getOperand(0), Amt); 4794 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 4795 Shift); 4796 return DAG.getNode(ISD::SIGN_EXTEND, DL, 4797 N->getValueType(0), Trunc); 4798 } 4799 } 4800 } 4801 4802 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 4803 if (N1.getOpcode() == ISD::TRUNCATE && 4804 N1.getOperand(0).getOpcode() == ISD::AND) { 4805 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4806 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 4807 } 4808 4809 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 4810 // if c1 is equal to the number of bits the trunc removes 4811 if (N0.getOpcode() == ISD::TRUNCATE && 4812 (N0.getOperand(0).getOpcode() == ISD::SRL || 4813 N0.getOperand(0).getOpcode() == ISD::SRA) && 4814 N0.getOperand(0).hasOneUse() && 4815 N0.getOperand(0).getOperand(1).hasOneUse() && 4816 N1C) { 4817 SDValue N0Op0 = N0.getOperand(0); 4818 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 4819 unsigned LargeShiftVal = LargeShift->getZExtValue(); 4820 EVT LargeVT = N0Op0.getValueType(); 4821 4822 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 4823 SDLoc DL(N); 4824 SDValue Amt = 4825 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 4826 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 4827 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 4828 N0Op0.getOperand(0), Amt); 4829 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 4830 } 4831 } 4832 } 4833 4834 // Simplify, based on bits shifted out of the LHS. 4835 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4836 return SDValue(N, 0); 4837 4838 4839 // If the sign bit is known to be zero, switch this to a SRL. 4840 if (DAG.SignBitIsZero(N0)) 4841 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 4842 4843 if (N1C && !N1C->isOpaque()) 4844 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 4845 return NewSRA; 4846 4847 return SDValue(); 4848 } 4849 4850 SDValue DAGCombiner::visitSRL(SDNode *N) { 4851 SDValue N0 = N->getOperand(0); 4852 SDValue N1 = N->getOperand(1); 4853 EVT VT = N0.getValueType(); 4854 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4855 4856 // fold vector ops 4857 if (VT.isVector()) 4858 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4859 return FoldedVOp; 4860 4861 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4862 4863 // fold (srl c1, c2) -> c1 >>u c2 4864 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4865 if (N0C && N1C && !N1C->isOpaque()) 4866 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 4867 // fold (srl 0, x) -> 0 4868 if (isNullConstant(N0)) 4869 return N0; 4870 // fold (srl x, c >= size(x)) -> undef 4871 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4872 return DAG.getUNDEF(VT); 4873 // fold (srl x, 0) -> x 4874 if (N1C && N1C->isNullValue()) 4875 return N0; 4876 // if (srl x, c) is known to be zero, return 0 4877 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4878 APInt::getAllOnesValue(OpSizeInBits))) 4879 return DAG.getConstant(0, SDLoc(N), VT); 4880 4881 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 4882 if (N1C && N0.getOpcode() == ISD::SRL) { 4883 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4884 SDLoc DL(N); 4885 APInt c1 = N0C1->getAPIntValue(); 4886 APInt c2 = N1C->getAPIntValue(); 4887 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 4888 4889 APInt Sum = c1 + c2; 4890 if (Sum.uge(OpSizeInBits)) 4891 return DAG.getConstant(0, DL, VT); 4892 4893 return DAG.getNode( 4894 ISD::SRL, DL, VT, N0.getOperand(0), 4895 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 4896 } 4897 } 4898 4899 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 4900 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 4901 N0.getOperand(0).getOpcode() == ISD::SRL && 4902 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 4903 uint64_t c1 = 4904 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 4905 uint64_t c2 = N1C->getZExtValue(); 4906 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 4907 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 4908 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4909 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 4910 if (c1 + OpSizeInBits == InnerShiftSize) { 4911 SDLoc DL(N0); 4912 if (c1 + c2 >= InnerShiftSize) 4913 return DAG.getConstant(0, DL, VT); 4914 return DAG.getNode(ISD::TRUNCATE, DL, VT, 4915 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 4916 N0.getOperand(0)->getOperand(0), 4917 DAG.getConstant(c1 + c2, DL, 4918 ShiftCountVT))); 4919 } 4920 } 4921 4922 // fold (srl (shl x, c), c) -> (and x, cst2) 4923 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 4924 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 4925 SDLoc DL(N); 4926 APInt AllBits = APInt::getAllOnesValue(N0.getScalarValueSizeInBits()); 4927 SDValue Mask = 4928 DAG.getNode(ISD::SRL, DL, VT, DAG.getConstant(AllBits, DL, VT), N1); 4929 AddToWorklist(Mask.getNode()); 4930 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 4931 } 4932 4933 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 4934 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4935 // Shifting in all undef bits? 4936 EVT SmallVT = N0.getOperand(0).getValueType(); 4937 unsigned BitSize = SmallVT.getScalarSizeInBits(); 4938 if (N1C->getZExtValue() >= BitSize) 4939 return DAG.getUNDEF(VT); 4940 4941 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 4942 uint64_t ShiftAmt = N1C->getZExtValue(); 4943 SDLoc DL0(N0); 4944 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 4945 N0.getOperand(0), 4946 DAG.getConstant(ShiftAmt, DL0, 4947 getShiftAmountTy(SmallVT))); 4948 AddToWorklist(SmallShift.getNode()); 4949 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 4950 SDLoc DL(N); 4951 return DAG.getNode(ISD::AND, DL, VT, 4952 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 4953 DAG.getConstant(Mask, DL, VT)); 4954 } 4955 } 4956 4957 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 4958 // bit, which is unmodified by sra. 4959 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 4960 if (N0.getOpcode() == ISD::SRA) 4961 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 4962 } 4963 4964 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 4965 if (N1C && N0.getOpcode() == ISD::CTLZ && 4966 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 4967 APInt KnownZero, KnownOne; 4968 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 4969 4970 // If any of the input bits are KnownOne, then the input couldn't be all 4971 // zeros, thus the result of the srl will always be zero. 4972 if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 4973 4974 // If all of the bits input the to ctlz node are known to be zero, then 4975 // the result of the ctlz is "32" and the result of the shift is one. 4976 APInt UnknownBits = ~KnownZero; 4977 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 4978 4979 // Otherwise, check to see if there is exactly one bit input to the ctlz. 4980 if ((UnknownBits & (UnknownBits - 1)) == 0) { 4981 // Okay, we know that only that the single bit specified by UnknownBits 4982 // could be set on input to the CTLZ node. If this bit is set, the SRL 4983 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 4984 // to an SRL/XOR pair, which is likely to simplify more. 4985 unsigned ShAmt = UnknownBits.countTrailingZeros(); 4986 SDValue Op = N0.getOperand(0); 4987 4988 if (ShAmt) { 4989 SDLoc DL(N0); 4990 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4991 DAG.getConstant(ShAmt, DL, 4992 getShiftAmountTy(Op.getValueType()))); 4993 AddToWorklist(Op.getNode()); 4994 } 4995 4996 SDLoc DL(N); 4997 return DAG.getNode(ISD::XOR, DL, VT, 4998 Op, DAG.getConstant(1, DL, VT)); 4999 } 5000 } 5001 5002 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 5003 if (N1.getOpcode() == ISD::TRUNCATE && 5004 N1.getOperand(0).getOpcode() == ISD::AND) { 5005 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 5006 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 5007 } 5008 5009 // fold operands of srl based on knowledge that the low bits are not 5010 // demanded. 5011 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 5012 return SDValue(N, 0); 5013 5014 if (N1C && !N1C->isOpaque()) 5015 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 5016 return NewSRL; 5017 5018 // Attempt to convert a srl of a load into a narrower zero-extending load. 5019 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 5020 return NarrowLoad; 5021 5022 // Here is a common situation. We want to optimize: 5023 // 5024 // %a = ... 5025 // %b = and i32 %a, 2 5026 // %c = srl i32 %b, 1 5027 // brcond i32 %c ... 5028 // 5029 // into 5030 // 5031 // %a = ... 5032 // %b = and %a, 2 5033 // %c = setcc eq %b, 0 5034 // brcond %c ... 5035 // 5036 // However when after the source operand of SRL is optimized into AND, the SRL 5037 // itself may not be optimized further. Look for it and add the BRCOND into 5038 // the worklist. 5039 if (N->hasOneUse()) { 5040 SDNode *Use = *N->use_begin(); 5041 if (Use->getOpcode() == ISD::BRCOND) 5042 AddToWorklist(Use); 5043 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 5044 // Also look pass the truncate. 5045 Use = *Use->use_begin(); 5046 if (Use->getOpcode() == ISD::BRCOND) 5047 AddToWorklist(Use); 5048 } 5049 } 5050 5051 return SDValue(); 5052 } 5053 5054 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 5055 SDValue N0 = N->getOperand(0); 5056 EVT VT = N->getValueType(0); 5057 5058 // fold (bswap c1) -> c2 5059 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5060 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 5061 // fold (bswap (bswap x)) -> x 5062 if (N0.getOpcode() == ISD::BSWAP) 5063 return N0->getOperand(0); 5064 return SDValue(); 5065 } 5066 5067 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 5068 SDValue N0 = N->getOperand(0); 5069 5070 // fold (bitreverse (bitreverse x)) -> x 5071 if (N0.getOpcode() == ISD::BITREVERSE) 5072 return N0.getOperand(0); 5073 return SDValue(); 5074 } 5075 5076 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 5077 SDValue N0 = N->getOperand(0); 5078 EVT VT = N->getValueType(0); 5079 5080 // fold (ctlz c1) -> c2 5081 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5082 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 5083 return SDValue(); 5084 } 5085 5086 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 5087 SDValue N0 = N->getOperand(0); 5088 EVT VT = N->getValueType(0); 5089 5090 // fold (ctlz_zero_undef c1) -> c2 5091 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5092 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5093 return SDValue(); 5094 } 5095 5096 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 5097 SDValue N0 = N->getOperand(0); 5098 EVT VT = N->getValueType(0); 5099 5100 // fold (cttz c1) -> c2 5101 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5102 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 5103 return SDValue(); 5104 } 5105 5106 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 5107 SDValue N0 = N->getOperand(0); 5108 EVT VT = N->getValueType(0); 5109 5110 // fold (cttz_zero_undef c1) -> c2 5111 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5112 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5113 return SDValue(); 5114 } 5115 5116 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 5117 SDValue N0 = N->getOperand(0); 5118 EVT VT = N->getValueType(0); 5119 5120 // fold (ctpop c1) -> c2 5121 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5122 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 5123 return SDValue(); 5124 } 5125 5126 5127 /// \brief Generate Min/Max node 5128 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 5129 SDValue RHS, SDValue True, SDValue False, 5130 ISD::CondCode CC, const TargetLowering &TLI, 5131 SelectionDAG &DAG) { 5132 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 5133 return SDValue(); 5134 5135 switch (CC) { 5136 case ISD::SETOLT: 5137 case ISD::SETOLE: 5138 case ISD::SETLT: 5139 case ISD::SETLE: 5140 case ISD::SETULT: 5141 case ISD::SETULE: { 5142 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 5143 if (TLI.isOperationLegal(Opcode, VT)) 5144 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5145 return SDValue(); 5146 } 5147 case ISD::SETOGT: 5148 case ISD::SETOGE: 5149 case ISD::SETGT: 5150 case ISD::SETGE: 5151 case ISD::SETUGT: 5152 case ISD::SETUGE: { 5153 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 5154 if (TLI.isOperationLegal(Opcode, VT)) 5155 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5156 return SDValue(); 5157 } 5158 default: 5159 return SDValue(); 5160 } 5161 } 5162 5163 // TODO: We should handle other cases of selecting between {-1,0,1} here. 5164 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 5165 SDValue Cond = N->getOperand(0); 5166 SDValue N1 = N->getOperand(1); 5167 SDValue N2 = N->getOperand(2); 5168 EVT VT = N->getValueType(0); 5169 EVT CondVT = Cond.getValueType(); 5170 SDLoc DL(N); 5171 5172 // fold (select Cond, 0, 1) -> (xor Cond, 1) 5173 // We can't do this reliably if integer based booleans have different contents 5174 // to floating point based booleans. This is because we can't tell whether we 5175 // have an integer-based boolean or a floating-point-based boolean unless we 5176 // can find the SETCC that produced it and inspect its operands. This is 5177 // fairly easy if C is the SETCC node, but it can potentially be 5178 // undiscoverable (or not reasonably discoverable). For example, it could be 5179 // in another basic block or it could require searching a complicated 5180 // expression. 5181 if (VT.isInteger() && 5182 (CondVT == MVT::i1 || (CondVT.isInteger() && 5183 TLI.getBooleanContents(false, true) == 5184 TargetLowering::ZeroOrOneBooleanContent && 5185 TLI.getBooleanContents(false, false) == 5186 TargetLowering::ZeroOrOneBooleanContent)) && 5187 isNullConstant(N1) && isOneConstant(N2)) { 5188 SDValue NotCond = DAG.getNode(ISD::XOR, DL, CondVT, Cond, 5189 DAG.getConstant(1, DL, CondVT)); 5190 if (VT.bitsEq(CondVT)) 5191 return NotCond; 5192 return DAG.getZExtOrTrunc(NotCond, DL, VT); 5193 } 5194 5195 return SDValue(); 5196 } 5197 5198 SDValue DAGCombiner::visitSELECT(SDNode *N) { 5199 SDValue N0 = N->getOperand(0); 5200 SDValue N1 = N->getOperand(1); 5201 SDValue N2 = N->getOperand(2); 5202 EVT VT = N->getValueType(0); 5203 EVT VT0 = N0.getValueType(); 5204 5205 // fold (select C, X, X) -> X 5206 if (N1 == N2) 5207 return N1; 5208 if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { 5209 // fold (select true, X, Y) -> X 5210 // fold (select false, X, Y) -> Y 5211 return !N0C->isNullValue() ? N1 : N2; 5212 } 5213 // fold (select C, 1, X) -> (or C, X) 5214 if (VT == MVT::i1 && isOneConstant(N1)) 5215 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5216 5217 if (SDValue V = foldSelectOfConstants(N)) 5218 return V; 5219 5220 // fold (select C, 0, X) -> (and (not C), X) 5221 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 5222 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5223 AddToWorklist(NOTNode.getNode()); 5224 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 5225 } 5226 // fold (select C, X, 1) -> (or (not C), X) 5227 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 5228 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5229 AddToWorklist(NOTNode.getNode()); 5230 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 5231 } 5232 // fold (select C, X, 0) -> (and C, X) 5233 if (VT == MVT::i1 && isNullConstant(N2)) 5234 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5235 // fold (select X, X, Y) -> (or X, Y) 5236 // fold (select X, 1, Y) -> (or X, Y) 5237 if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 5238 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5239 // fold (select X, Y, X) -> (and X, Y) 5240 // fold (select X, Y, 0) -> (and X, Y) 5241 if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 5242 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5243 5244 // If we can fold this based on the true/false value, do so. 5245 if (SimplifySelectOps(N, N1, N2)) 5246 return SDValue(N, 0); // Don't revisit N. 5247 5248 if (VT0 == MVT::i1) { 5249 // The code in this block deals with the following 2 equivalences: 5250 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 5251 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 5252 // The target can specify its prefered form with the 5253 // shouldNormalizeToSelectSequence() callback. However we always transform 5254 // to the right anyway if we find the inner select exists in the DAG anyway 5255 // and we always transform to the left side if we know that we can further 5256 // optimize the combination of the conditions. 5257 bool normalizeToSequence 5258 = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 5259 // select (and Cond0, Cond1), X, Y 5260 // -> select Cond0, (select Cond1, X, Y), Y 5261 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 5262 SDValue Cond0 = N0->getOperand(0); 5263 SDValue Cond1 = N0->getOperand(1); 5264 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5265 N1.getValueType(), Cond1, N1, N2); 5266 if (normalizeToSequence || !InnerSelect.use_empty()) 5267 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, 5268 InnerSelect, N2); 5269 } 5270 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 5271 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 5272 SDValue Cond0 = N0->getOperand(0); 5273 SDValue Cond1 = N0->getOperand(1); 5274 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5275 N1.getValueType(), Cond1, N1, N2); 5276 if (normalizeToSequence || !InnerSelect.use_empty()) 5277 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, 5278 InnerSelect); 5279 } 5280 5281 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 5282 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 5283 SDValue N1_0 = N1->getOperand(0); 5284 SDValue N1_1 = N1->getOperand(1); 5285 SDValue N1_2 = N1->getOperand(2); 5286 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 5287 // Create the actual and node if we can generate good code for it. 5288 if (!normalizeToSequence) { 5289 SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), 5290 N0, N1_0); 5291 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, 5292 N1_1, N2); 5293 } 5294 // Otherwise see if we can optimize the "and" to a better pattern. 5295 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 5296 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5297 N1_1, N2); 5298 } 5299 } 5300 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 5301 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 5302 SDValue N2_0 = N2->getOperand(0); 5303 SDValue N2_1 = N2->getOperand(1); 5304 SDValue N2_2 = N2->getOperand(2); 5305 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 5306 // Create the actual or node if we can generate good code for it. 5307 if (!normalizeToSequence) { 5308 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), 5309 N0, N2_0); 5310 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, 5311 N1, N2_2); 5312 } 5313 // Otherwise see if we can optimize to a better pattern. 5314 if (SDValue Combined = visitORLike(N0, N2_0, N)) 5315 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5316 N1, N2_2); 5317 } 5318 } 5319 } 5320 5321 // select (xor Cond, 1), X, Y -> select Cond, Y, X 5322 // select (xor Cond, 0), X, Y -> selext Cond, X, Y 5323 if (VT0 == MVT::i1) { 5324 if (N0->getOpcode() == ISD::XOR) { 5325 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) { 5326 SDValue Cond0 = N0->getOperand(0); 5327 if (C->isOne()) 5328 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), 5329 Cond0, N2, N1); 5330 else 5331 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), 5332 Cond0, N1, N2); 5333 } 5334 } 5335 } 5336 5337 // fold selects based on a setcc into other things, such as min/max/abs 5338 if (N0.getOpcode() == ISD::SETCC) { 5339 // select x, y (fcmp lt x, y) -> fminnum x, y 5340 // select x, y (fcmp gt x, y) -> fmaxnum x, y 5341 // 5342 // This is OK if we don't care about what happens if either operand is a 5343 // NaN. 5344 // 5345 5346 // FIXME: Instead of testing for UnsafeFPMath, this should be checking for 5347 // no signed zeros as well as no nans. 5348 const TargetOptions &Options = DAG.getTarget().Options; 5349 if (Options.UnsafeFPMath && 5350 VT.isFloatingPoint() && N0.hasOneUse() && 5351 DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { 5352 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5353 5354 if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), 5355 N0.getOperand(1), N1, N2, CC, 5356 TLI, DAG)) 5357 return FMinMax; 5358 } 5359 5360 if ((!LegalOperations && 5361 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 5362 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 5363 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 5364 N0.getOperand(0), N0.getOperand(1), 5365 N1, N2, N0.getOperand(2)); 5366 return SimplifySelect(SDLoc(N), N0, N1, N2); 5367 } 5368 5369 return SDValue(); 5370 } 5371 5372 static 5373 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 5374 SDLoc DL(N); 5375 EVT LoVT, HiVT; 5376 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 5377 5378 // Split the inputs. 5379 SDValue Lo, Hi, LL, LH, RL, RH; 5380 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 5381 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 5382 5383 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 5384 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 5385 5386 return std::make_pair(Lo, Hi); 5387 } 5388 5389 // This function assumes all the vselect's arguments are CONCAT_VECTOR 5390 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 5391 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 5392 SDLoc DL(N); 5393 SDValue Cond = N->getOperand(0); 5394 SDValue LHS = N->getOperand(1); 5395 SDValue RHS = N->getOperand(2); 5396 EVT VT = N->getValueType(0); 5397 int NumElems = VT.getVectorNumElements(); 5398 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 5399 RHS.getOpcode() == ISD::CONCAT_VECTORS && 5400 Cond.getOpcode() == ISD::BUILD_VECTOR); 5401 5402 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 5403 // binary ones here. 5404 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 5405 return SDValue(); 5406 5407 // We're sure we have an even number of elements due to the 5408 // concat_vectors we have as arguments to vselect. 5409 // Skip BV elements until we find one that's not an UNDEF 5410 // After we find an UNDEF element, keep looping until we get to half the 5411 // length of the BV and see if all the non-undef nodes are the same. 5412 ConstantSDNode *BottomHalf = nullptr; 5413 for (int i = 0; i < NumElems / 2; ++i) { 5414 if (Cond->getOperand(i)->isUndef()) 5415 continue; 5416 5417 if (BottomHalf == nullptr) 5418 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5419 else if (Cond->getOperand(i).getNode() != BottomHalf) 5420 return SDValue(); 5421 } 5422 5423 // Do the same for the second half of the BuildVector 5424 ConstantSDNode *TopHalf = nullptr; 5425 for (int i = NumElems / 2; i < NumElems; ++i) { 5426 if (Cond->getOperand(i)->isUndef()) 5427 continue; 5428 5429 if (TopHalf == nullptr) 5430 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5431 else if (Cond->getOperand(i).getNode() != TopHalf) 5432 return SDValue(); 5433 } 5434 5435 assert(TopHalf && BottomHalf && 5436 "One half of the selector was all UNDEFs and the other was all the " 5437 "same value. This should have been addressed before this function."); 5438 return DAG.getNode( 5439 ISD::CONCAT_VECTORS, DL, VT, 5440 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 5441 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 5442 } 5443 5444 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 5445 5446 if (Level >= AfterLegalizeTypes) 5447 return SDValue(); 5448 5449 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 5450 SDValue Mask = MSC->getMask(); 5451 SDValue Data = MSC->getValue(); 5452 SDLoc DL(N); 5453 5454 // If the MSCATTER data type requires splitting and the mask is provided by a 5455 // SETCC, then split both nodes and its operands before legalization. This 5456 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5457 // and enables future optimizations (e.g. min/max pattern matching on X86). 5458 if (Mask.getOpcode() != ISD::SETCC) 5459 return SDValue(); 5460 5461 // Check if any splitting is required. 5462 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5463 TargetLowering::TypeSplitVector) 5464 return SDValue(); 5465 SDValue MaskLo, MaskHi, Lo, Hi; 5466 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5467 5468 EVT LoVT, HiVT; 5469 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 5470 5471 SDValue Chain = MSC->getChain(); 5472 5473 EVT MemoryVT = MSC->getMemoryVT(); 5474 unsigned Alignment = MSC->getOriginalAlignment(); 5475 5476 EVT LoMemVT, HiMemVT; 5477 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5478 5479 SDValue DataLo, DataHi; 5480 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5481 5482 SDValue BasePtr = MSC->getBasePtr(); 5483 SDValue IndexLo, IndexHi; 5484 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 5485 5486 MachineMemOperand *MMO = DAG.getMachineFunction(). 5487 getMachineMemOperand(MSC->getPointerInfo(), 5488 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5489 Alignment, MSC->getAAInfo(), MSC->getRanges()); 5490 5491 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; 5492 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), 5493 DL, OpsLo, MMO); 5494 5495 SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; 5496 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 5497 DL, OpsHi, MMO); 5498 5499 AddToWorklist(Lo.getNode()); 5500 AddToWorklist(Hi.getNode()); 5501 5502 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5503 } 5504 5505 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 5506 5507 if (Level >= AfterLegalizeTypes) 5508 return SDValue(); 5509 5510 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); 5511 SDValue Mask = MST->getMask(); 5512 SDValue Data = MST->getValue(); 5513 SDLoc DL(N); 5514 5515 // If the MSTORE data type requires splitting and the mask is provided by a 5516 // SETCC, then split both nodes and its operands before legalization. This 5517 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5518 // and enables future optimizations (e.g. min/max pattern matching on X86). 5519 if (Mask.getOpcode() == ISD::SETCC) { 5520 5521 // Check if any splitting is required. 5522 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5523 TargetLowering::TypeSplitVector) 5524 return SDValue(); 5525 5526 SDValue MaskLo, MaskHi, Lo, Hi; 5527 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5528 5529 EVT LoVT, HiVT; 5530 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); 5531 5532 SDValue Chain = MST->getChain(); 5533 SDValue Ptr = MST->getBasePtr(); 5534 5535 EVT MemoryVT = MST->getMemoryVT(); 5536 unsigned Alignment = MST->getOriginalAlignment(); 5537 5538 // if Alignment is equal to the vector size, 5539 // take the half of it for the second part 5540 unsigned SecondHalfAlignment = 5541 (Alignment == Data->getValueType(0).getSizeInBits()/8) ? 5542 Alignment/2 : Alignment; 5543 5544 EVT LoMemVT, HiMemVT; 5545 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5546 5547 SDValue DataLo, DataHi; 5548 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5549 5550 MachineMemOperand *MMO = DAG.getMachineFunction(). 5551 getMachineMemOperand(MST->getPointerInfo(), 5552 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5553 Alignment, MST->getAAInfo(), MST->getRanges()); 5554 5555 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 5556 MST->isTruncatingStore()); 5557 5558 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5559 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5560 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5561 5562 MMO = DAG.getMachineFunction(). 5563 getMachineMemOperand(MST->getPointerInfo(), 5564 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), 5565 SecondHalfAlignment, MST->getAAInfo(), 5566 MST->getRanges()); 5567 5568 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 5569 MST->isTruncatingStore()); 5570 5571 AddToWorklist(Lo.getNode()); 5572 AddToWorklist(Hi.getNode()); 5573 5574 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5575 } 5576 return SDValue(); 5577 } 5578 5579 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 5580 5581 if (Level >= AfterLegalizeTypes) 5582 return SDValue(); 5583 5584 MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); 5585 SDValue Mask = MGT->getMask(); 5586 SDLoc DL(N); 5587 5588 // If the MGATHER result requires splitting and the mask is provided by a 5589 // SETCC, then split both nodes and its operands before legalization. This 5590 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5591 // and enables future optimizations (e.g. min/max pattern matching on X86). 5592 5593 if (Mask.getOpcode() != ISD::SETCC) 5594 return SDValue(); 5595 5596 EVT VT = N->getValueType(0); 5597 5598 // Check if any splitting is required. 5599 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5600 TargetLowering::TypeSplitVector) 5601 return SDValue(); 5602 5603 SDValue MaskLo, MaskHi, Lo, Hi; 5604 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5605 5606 SDValue Src0 = MGT->getValue(); 5607 SDValue Src0Lo, Src0Hi; 5608 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5609 5610 EVT LoVT, HiVT; 5611 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 5612 5613 SDValue Chain = MGT->getChain(); 5614 EVT MemoryVT = MGT->getMemoryVT(); 5615 unsigned Alignment = MGT->getOriginalAlignment(); 5616 5617 EVT LoMemVT, HiMemVT; 5618 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5619 5620 SDValue BasePtr = MGT->getBasePtr(); 5621 SDValue Index = MGT->getIndex(); 5622 SDValue IndexLo, IndexHi; 5623 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 5624 5625 MachineMemOperand *MMO = DAG.getMachineFunction(). 5626 getMachineMemOperand(MGT->getPointerInfo(), 5627 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5628 Alignment, MGT->getAAInfo(), MGT->getRanges()); 5629 5630 SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; 5631 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 5632 MMO); 5633 5634 SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; 5635 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 5636 MMO); 5637 5638 AddToWorklist(Lo.getNode()); 5639 AddToWorklist(Hi.getNode()); 5640 5641 // Build a factor node to remember that this load is independent of the 5642 // other one. 5643 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5644 Hi.getValue(1)); 5645 5646 // Legalized the chain result - switch anything that used the old chain to 5647 // use the new one. 5648 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 5649 5650 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5651 5652 SDValue RetOps[] = { GatherRes, Chain }; 5653 return DAG.getMergeValues(RetOps, DL); 5654 } 5655 5656 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 5657 5658 if (Level >= AfterLegalizeTypes) 5659 return SDValue(); 5660 5661 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); 5662 SDValue Mask = MLD->getMask(); 5663 SDLoc DL(N); 5664 5665 // If the MLOAD result requires splitting and the mask is provided by a 5666 // SETCC, then split both nodes and its operands before legalization. This 5667 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5668 // and enables future optimizations (e.g. min/max pattern matching on X86). 5669 5670 if (Mask.getOpcode() == ISD::SETCC) { 5671 EVT VT = N->getValueType(0); 5672 5673 // Check if any splitting is required. 5674 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5675 TargetLowering::TypeSplitVector) 5676 return SDValue(); 5677 5678 SDValue MaskLo, MaskHi, Lo, Hi; 5679 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5680 5681 SDValue Src0 = MLD->getSrc0(); 5682 SDValue Src0Lo, Src0Hi; 5683 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5684 5685 EVT LoVT, HiVT; 5686 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 5687 5688 SDValue Chain = MLD->getChain(); 5689 SDValue Ptr = MLD->getBasePtr(); 5690 EVT MemoryVT = MLD->getMemoryVT(); 5691 unsigned Alignment = MLD->getOriginalAlignment(); 5692 5693 // if Alignment is equal to the vector size, 5694 // take the half of it for the second part 5695 unsigned SecondHalfAlignment = 5696 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 5697 Alignment/2 : Alignment; 5698 5699 EVT LoMemVT, HiMemVT; 5700 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5701 5702 MachineMemOperand *MMO = DAG.getMachineFunction(). 5703 getMachineMemOperand(MLD->getPointerInfo(), 5704 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5705 Alignment, MLD->getAAInfo(), MLD->getRanges()); 5706 5707 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, 5708 ISD::NON_EXTLOAD); 5709 5710 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5711 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5712 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5713 5714 MMO = DAG.getMachineFunction(). 5715 getMachineMemOperand(MLD->getPointerInfo(), 5716 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), 5717 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); 5718 5719 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, 5720 ISD::NON_EXTLOAD); 5721 5722 AddToWorklist(Lo.getNode()); 5723 AddToWorklist(Hi.getNode()); 5724 5725 // Build a factor node to remember that this load is independent of the 5726 // other one. 5727 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5728 Hi.getValue(1)); 5729 5730 // Legalized the chain result - switch anything that used the old chain to 5731 // use the new one. 5732 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 5733 5734 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5735 5736 SDValue RetOps[] = { LoadRes, Chain }; 5737 return DAG.getMergeValues(RetOps, DL); 5738 } 5739 return SDValue(); 5740 } 5741 5742 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 5743 SDValue N0 = N->getOperand(0); 5744 SDValue N1 = N->getOperand(1); 5745 SDValue N2 = N->getOperand(2); 5746 SDLoc DL(N); 5747 5748 // Canonicalize integer abs. 5749 // vselect (setg[te] X, 0), X, -X -> 5750 // vselect (setgt X, -1), X, -X -> 5751 // vselect (setl[te] X, 0), -X, X -> 5752 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 5753 if (N0.getOpcode() == ISD::SETCC) { 5754 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 5755 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5756 bool isAbs = false; 5757 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 5758 5759 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 5760 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 5761 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 5762 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 5763 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 5764 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 5765 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5766 5767 if (isAbs) { 5768 EVT VT = LHS.getValueType(); 5769 SDValue Shift = DAG.getNode( 5770 ISD::SRA, DL, VT, LHS, 5771 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT)); 5772 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 5773 AddToWorklist(Shift.getNode()); 5774 AddToWorklist(Add.getNode()); 5775 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 5776 } 5777 } 5778 5779 if (SimplifySelectOps(N, N1, N2)) 5780 return SDValue(N, 0); // Don't revisit N. 5781 5782 // If the VSELECT result requires splitting and the mask is provided by a 5783 // SETCC, then split both nodes and its operands before legalization. This 5784 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5785 // and enables future optimizations (e.g. min/max pattern matching on X86). 5786 if (N0.getOpcode() == ISD::SETCC) { 5787 EVT VT = N->getValueType(0); 5788 5789 // Check if any splitting is required. 5790 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5791 TargetLowering::TypeSplitVector) 5792 return SDValue(); 5793 5794 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 5795 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 5796 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 5797 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 5798 5799 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 5800 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 5801 5802 // Add the new VSELECT nodes to the work list in case they need to be split 5803 // again. 5804 AddToWorklist(Lo.getNode()); 5805 AddToWorklist(Hi.getNode()); 5806 5807 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5808 } 5809 5810 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 5811 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5812 return N1; 5813 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 5814 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5815 return N2; 5816 5817 // The ConvertSelectToConcatVector function is assuming both the above 5818 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 5819 // and addressed. 5820 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 5821 N2.getOpcode() == ISD::CONCAT_VECTORS && 5822 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 5823 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 5824 return CV; 5825 } 5826 5827 return SDValue(); 5828 } 5829 5830 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 5831 SDValue N0 = N->getOperand(0); 5832 SDValue N1 = N->getOperand(1); 5833 SDValue N2 = N->getOperand(2); 5834 SDValue N3 = N->getOperand(3); 5835 SDValue N4 = N->getOperand(4); 5836 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 5837 5838 // fold select_cc lhs, rhs, x, x, cc -> x 5839 if (N2 == N3) 5840 return N2; 5841 5842 // Determine if the condition we're dealing with is constant 5843 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 5844 CC, SDLoc(N), false)) { 5845 AddToWorklist(SCC.getNode()); 5846 5847 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 5848 if (!SCCC->isNullValue()) 5849 return N2; // cond always true -> true val 5850 else 5851 return N3; // cond always false -> false val 5852 } else if (SCC->isUndef()) { 5853 // When the condition is UNDEF, just return the first operand. This is 5854 // coherent the DAG creation, no setcc node is created in this case 5855 return N2; 5856 } else if (SCC.getOpcode() == ISD::SETCC) { 5857 // Fold to a simpler select_cc 5858 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 5859 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 5860 SCC.getOperand(2)); 5861 } 5862 } 5863 5864 // If we can fold this based on the true/false value, do so. 5865 if (SimplifySelectOps(N, N2, N3)) 5866 return SDValue(N, 0); // Don't revisit N. 5867 5868 // fold select_cc into other things, such as min/max/abs 5869 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 5870 } 5871 5872 SDValue DAGCombiner::visitSETCC(SDNode *N) { 5873 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 5874 cast<CondCodeSDNode>(N->getOperand(2))->get(), 5875 SDLoc(N)); 5876 } 5877 5878 SDValue DAGCombiner::visitSETCCE(SDNode *N) { 5879 SDValue LHS = N->getOperand(0); 5880 SDValue RHS = N->getOperand(1); 5881 SDValue Carry = N->getOperand(2); 5882 SDValue Cond = N->getOperand(3); 5883 5884 // If Carry is false, fold to a regular SETCC. 5885 if (Carry.getOpcode() == ISD::CARRY_FALSE) 5886 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 5887 5888 return SDValue(); 5889 } 5890 5891 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 5892 /// a build_vector of constants. 5893 /// This function is called by the DAGCombiner when visiting sext/zext/aext 5894 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 5895 /// Vector extends are not folded if operations are legal; this is to 5896 /// avoid introducing illegal build_vector dag nodes. 5897 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 5898 SelectionDAG &DAG, bool LegalTypes, 5899 bool LegalOperations) { 5900 unsigned Opcode = N->getOpcode(); 5901 SDValue N0 = N->getOperand(0); 5902 EVT VT = N->getValueType(0); 5903 5904 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 5905 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5906 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 5907 && "Expected EXTEND dag node in input!"); 5908 5909 // fold (sext c1) -> c1 5910 // fold (zext c1) -> c1 5911 // fold (aext c1) -> c1 5912 if (isa<ConstantSDNode>(N0)) 5913 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 5914 5915 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 5916 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 5917 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 5918 EVT SVT = VT.getScalarType(); 5919 if (!(VT.isVector() && 5920 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 5921 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 5922 return nullptr; 5923 5924 // We can fold this node into a build_vector. 5925 unsigned VTBits = SVT.getSizeInBits(); 5926 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 5927 SmallVector<SDValue, 8> Elts; 5928 unsigned NumElts = VT.getVectorNumElements(); 5929 SDLoc DL(N); 5930 5931 for (unsigned i=0; i != NumElts; ++i) { 5932 SDValue Op = N0->getOperand(i); 5933 if (Op->isUndef()) { 5934 Elts.push_back(DAG.getUNDEF(SVT)); 5935 continue; 5936 } 5937 5938 SDLoc DL(Op); 5939 // Get the constant value and if needed trunc it to the size of the type. 5940 // Nodes like build_vector might have constants wider than the scalar type. 5941 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 5942 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5943 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 5944 else 5945 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 5946 } 5947 5948 return DAG.getBuildVector(VT, DL, Elts).getNode(); 5949 } 5950 5951 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 5952 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 5953 // transformation. Returns true if extension are possible and the above 5954 // mentioned transformation is profitable. 5955 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 5956 unsigned ExtOpc, 5957 SmallVectorImpl<SDNode *> &ExtendNodes, 5958 const TargetLowering &TLI) { 5959 bool HasCopyToRegUses = false; 5960 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 5961 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 5962 UE = N0.getNode()->use_end(); 5963 UI != UE; ++UI) { 5964 SDNode *User = *UI; 5965 if (User == N) 5966 continue; 5967 if (UI.getUse().getResNo() != N0.getResNo()) 5968 continue; 5969 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 5970 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 5971 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 5972 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 5973 // Sign bits will be lost after a zext. 5974 return false; 5975 bool Add = false; 5976 for (unsigned i = 0; i != 2; ++i) { 5977 SDValue UseOp = User->getOperand(i); 5978 if (UseOp == N0) 5979 continue; 5980 if (!isa<ConstantSDNode>(UseOp)) 5981 return false; 5982 Add = true; 5983 } 5984 if (Add) 5985 ExtendNodes.push_back(User); 5986 continue; 5987 } 5988 // If truncates aren't free and there are users we can't 5989 // extend, it isn't worthwhile. 5990 if (!isTruncFree) 5991 return false; 5992 // Remember if this value is live-out. 5993 if (User->getOpcode() == ISD::CopyToReg) 5994 HasCopyToRegUses = true; 5995 } 5996 5997 if (HasCopyToRegUses) { 5998 bool BothLiveOut = false; 5999 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6000 UI != UE; ++UI) { 6001 SDUse &Use = UI.getUse(); 6002 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 6003 BothLiveOut = true; 6004 break; 6005 } 6006 } 6007 if (BothLiveOut) 6008 // Both unextended and extended values are live out. There had better be 6009 // a good reason for the transformation. 6010 return ExtendNodes.size(); 6011 } 6012 return true; 6013 } 6014 6015 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 6016 SDValue Trunc, SDValue ExtLoad, 6017 const SDLoc &DL, ISD::NodeType ExtType) { 6018 // Extend SetCC uses if necessary. 6019 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 6020 SDNode *SetCC = SetCCs[i]; 6021 SmallVector<SDValue, 4> Ops; 6022 6023 for (unsigned j = 0; j != 2; ++j) { 6024 SDValue SOp = SetCC->getOperand(j); 6025 if (SOp == Trunc) 6026 Ops.push_back(ExtLoad); 6027 else 6028 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 6029 } 6030 6031 Ops.push_back(SetCC->getOperand(2)); 6032 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6033 } 6034 } 6035 6036 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 6037 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 6038 SDValue N0 = N->getOperand(0); 6039 EVT DstVT = N->getValueType(0); 6040 EVT SrcVT = N0.getValueType(); 6041 6042 assert((N->getOpcode() == ISD::SIGN_EXTEND || 6043 N->getOpcode() == ISD::ZERO_EXTEND) && 6044 "Unexpected node type (not an extend)!"); 6045 6046 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 6047 // For example, on a target with legal v4i32, but illegal v8i32, turn: 6048 // (v8i32 (sext (v8i16 (load x)))) 6049 // into: 6050 // (v8i32 (concat_vectors (v4i32 (sextload x)), 6051 // (v4i32 (sextload (x + 16))))) 6052 // Where uses of the original load, i.e.: 6053 // (v8i16 (load x)) 6054 // are replaced with: 6055 // (v8i16 (truncate 6056 // (v8i32 (concat_vectors (v4i32 (sextload x)), 6057 // (v4i32 (sextload (x + 16))))))) 6058 // 6059 // This combine is only applicable to illegal, but splittable, vectors. 6060 // All legal types, and illegal non-vector types, are handled elsewhere. 6061 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 6062 // 6063 if (N0->getOpcode() != ISD::LOAD) 6064 return SDValue(); 6065 6066 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6067 6068 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 6069 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 6070 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 6071 return SDValue(); 6072 6073 SmallVector<SDNode *, 4> SetCCs; 6074 if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) 6075 return SDValue(); 6076 6077 ISD::LoadExtType ExtType = 6078 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 6079 6080 // Try to split the vector types to get down to legal types. 6081 EVT SplitSrcVT = SrcVT; 6082 EVT SplitDstVT = DstVT; 6083 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 6084 SplitSrcVT.getVectorNumElements() > 1) { 6085 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 6086 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 6087 } 6088 6089 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 6090 return SDValue(); 6091 6092 SDLoc DL(N); 6093 const unsigned NumSplits = 6094 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 6095 const unsigned Stride = SplitSrcVT.getStoreSize(); 6096 SmallVector<SDValue, 4> Loads; 6097 SmallVector<SDValue, 4> Chains; 6098 6099 SDValue BasePtr = LN0->getBasePtr(); 6100 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 6101 const unsigned Offset = Idx * Stride; 6102 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 6103 6104 SDValue SplitLoad = DAG.getExtLoad( 6105 ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, 6106 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 6107 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 6108 6109 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 6110 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 6111 6112 Loads.push_back(SplitLoad.getValue(0)); 6113 Chains.push_back(SplitLoad.getValue(1)); 6114 } 6115 6116 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 6117 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 6118 6119 CombineTo(N, NewValue); 6120 6121 // Replace uses of the original load (before extension) 6122 // with a truncate of the concatenated sextloaded vectors. 6123 SDValue Trunc = 6124 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 6125 CombineTo(N0.getNode(), Trunc, NewChain); 6126 ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, 6127 (ISD::NodeType)N->getOpcode()); 6128 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6129 } 6130 6131 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 6132 SDValue N0 = N->getOperand(0); 6133 EVT VT = N->getValueType(0); 6134 6135 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6136 LegalOperations)) 6137 return SDValue(Res, 0); 6138 6139 // fold (sext (sext x)) -> (sext x) 6140 // fold (sext (aext x)) -> (sext x) 6141 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6142 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 6143 N0.getOperand(0)); 6144 6145 if (N0.getOpcode() == ISD::TRUNCATE) { 6146 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 6147 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 6148 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6149 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6150 if (NarrowLoad.getNode() != N0.getNode()) { 6151 CombineTo(N0.getNode(), NarrowLoad); 6152 // CombineTo deleted the truncate, if needed, but not what's under it. 6153 AddToWorklist(oye); 6154 } 6155 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6156 } 6157 6158 // See if the value being truncated is already sign extended. If so, just 6159 // eliminate the trunc/sext pair. 6160 SDValue Op = N0.getOperand(0); 6161 unsigned OpBits = Op.getScalarValueSizeInBits(); 6162 unsigned MidBits = N0.getScalarValueSizeInBits(); 6163 unsigned DestBits = VT.getScalarSizeInBits(); 6164 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 6165 6166 if (OpBits == DestBits) { 6167 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 6168 // bits, it is already ready. 6169 if (NumSignBits > DestBits-MidBits) 6170 return Op; 6171 } else if (OpBits < DestBits) { 6172 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 6173 // bits, just sext from i32. 6174 if (NumSignBits > OpBits-MidBits) 6175 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 6176 } else { 6177 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 6178 // bits, just truncate to i32. 6179 if (NumSignBits > OpBits-MidBits) 6180 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6181 } 6182 6183 // fold (sext (truncate x)) -> (sextinreg x). 6184 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 6185 N0.getValueType())) { 6186 if (OpBits < DestBits) 6187 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 6188 else if (OpBits > DestBits) 6189 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 6190 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 6191 DAG.getValueType(N0.getValueType())); 6192 } 6193 } 6194 6195 // fold (sext (load x)) -> (sext (truncate (sextload x))) 6196 // Only generate vector extloads when 1) they're legal, and 2) they are 6197 // deemed desirable by the target. 6198 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6199 ((!LegalOperations && !VT.isVector() && 6200 !cast<LoadSDNode>(N0)->isVolatile()) || 6201 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { 6202 bool DoXform = true; 6203 SmallVector<SDNode*, 4> SetCCs; 6204 if (!N0.hasOneUse()) 6205 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 6206 if (VT.isVector()) 6207 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6208 if (DoXform) { 6209 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6210 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6211 LN0->getChain(), 6212 LN0->getBasePtr(), N0.getValueType(), 6213 LN0->getMemOperand()); 6214 CombineTo(N, ExtLoad); 6215 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6216 N0.getValueType(), ExtLoad); 6217 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6218 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6219 ISD::SIGN_EXTEND); 6220 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6221 } 6222 } 6223 6224 // fold (sext (load x)) to multiple smaller sextloads. 6225 // Only on illegal but splittable vectors. 6226 if (SDValue ExtLoad = CombineExtLoad(N)) 6227 return ExtLoad; 6228 6229 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 6230 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 6231 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6232 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6233 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6234 EVT MemVT = LN0->getMemoryVT(); 6235 if ((!LegalOperations && !LN0->isVolatile()) || 6236 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { 6237 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6238 LN0->getChain(), 6239 LN0->getBasePtr(), MemVT, 6240 LN0->getMemOperand()); 6241 CombineTo(N, ExtLoad); 6242 CombineTo(N0.getNode(), 6243 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6244 N0.getValueType(), ExtLoad), 6245 ExtLoad.getValue(1)); 6246 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6247 } 6248 } 6249 6250 // fold (sext (and/or/xor (load x), cst)) -> 6251 // (and/or/xor (sextload x), (sext cst)) 6252 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6253 N0.getOpcode() == ISD::XOR) && 6254 isa<LoadSDNode>(N0.getOperand(0)) && 6255 N0.getOperand(1).getOpcode() == ISD::Constant && 6256 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && 6257 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6258 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6259 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 6260 bool DoXform = true; 6261 SmallVector<SDNode*, 4> SetCCs; 6262 if (!N0.hasOneUse()) 6263 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 6264 SetCCs, TLI); 6265 if (DoXform) { 6266 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 6267 LN0->getChain(), LN0->getBasePtr(), 6268 LN0->getMemoryVT(), 6269 LN0->getMemOperand()); 6270 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6271 Mask = Mask.sext(VT.getSizeInBits()); 6272 SDLoc DL(N); 6273 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6274 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6275 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6276 SDLoc(N0.getOperand(0)), 6277 N0.getOperand(0).getValueType(), ExtLoad); 6278 CombineTo(N, And); 6279 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6280 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6281 ISD::SIGN_EXTEND); 6282 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6283 } 6284 } 6285 } 6286 6287 if (N0.getOpcode() == ISD::SETCC) { 6288 EVT N0VT = N0.getOperand(0).getValueType(); 6289 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 6290 // Only do this before legalize for now. 6291 if (VT.isVector() && !LegalOperations && 6292 TLI.getBooleanContents(N0VT) == 6293 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6294 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 6295 // of the same size as the compared operands. Only optimize sext(setcc()) 6296 // if this is the case. 6297 EVT SVT = getSetCCResultType(N0VT); 6298 6299 // We know that the # elements of the results is the same as the 6300 // # elements of the compare (and the # elements of the compare result 6301 // for that matter). Check to see that they are the same size. If so, 6302 // we know that the element size of the sext'd result matches the 6303 // element size of the compare operands. 6304 if (VT.getSizeInBits() == SVT.getSizeInBits()) 6305 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6306 N0.getOperand(1), 6307 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6308 6309 // If the desired elements are smaller or larger than the source 6310 // elements we can use a matching integer vector type and then 6311 // truncate/sign extend 6312 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6313 if (SVT == MatchingVectorType) { 6314 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 6315 N0.getOperand(0), N0.getOperand(1), 6316 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6317 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 6318 } 6319 } 6320 6321 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 6322 // Here, T can be 1 or -1, depending on the type of the setcc and 6323 // getBooleanContents(). 6324 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 6325 6326 SDLoc DL(N); 6327 // To determine the "true" side of the select, we need to know the high bit 6328 // of the value returned by the setcc if it evaluates to true. 6329 // If the type of the setcc is i1, then the true case of the select is just 6330 // sext(i1 1), that is, -1. 6331 // If the type of the setcc is larger (say, i8) then the value of the high 6332 // bit depends on getBooleanContents(). So, ask TLI for a real "true" value 6333 // of the appropriate width. 6334 SDValue ExtTrueVal = 6335 (SetCCWidth == 1) 6336 ? DAG.getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), 6337 DL, VT) 6338 : TLI.getConstTrueVal(DAG, VT, DL); 6339 6340 if (SDValue SCC = SimplifySelectCC( 6341 DL, N0.getOperand(0), N0.getOperand(1), ExtTrueVal, 6342 DAG.getConstant(0, DL, VT), 6343 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6344 return SCC; 6345 6346 if (!VT.isVector()) { 6347 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 6348 if (!LegalOperations || 6349 TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { 6350 SDLoc DL(N); 6351 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 6352 SDValue SetCC = 6353 DAG.getSetCC(DL, SetCCVT, N0.getOperand(0), N0.getOperand(1), CC); 6354 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, 6355 DAG.getConstant(0, DL, VT)); 6356 } 6357 } 6358 } 6359 6360 // fold (sext x) -> (zext x) if the sign bit is known zero. 6361 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 6362 DAG.SignBitIsZero(N0)) 6363 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 6364 6365 return SDValue(); 6366 } 6367 6368 // isTruncateOf - If N is a truncate of some other value, return true, record 6369 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 6370 // This function computes KnownZero to avoid a duplicated call to 6371 // computeKnownBits in the caller. 6372 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 6373 APInt &KnownZero) { 6374 APInt KnownOne; 6375 if (N->getOpcode() == ISD::TRUNCATE) { 6376 Op = N->getOperand(0); 6377 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6378 return true; 6379 } 6380 6381 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 6382 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 6383 return false; 6384 6385 SDValue Op0 = N->getOperand(0); 6386 SDValue Op1 = N->getOperand(1); 6387 assert(Op0.getValueType() == Op1.getValueType()); 6388 6389 if (isNullConstant(Op0)) 6390 Op = Op1; 6391 else if (isNullConstant(Op1)) 6392 Op = Op0; 6393 else 6394 return false; 6395 6396 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6397 6398 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 6399 return false; 6400 6401 return true; 6402 } 6403 6404 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 6405 SDValue N0 = N->getOperand(0); 6406 EVT VT = N->getValueType(0); 6407 6408 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6409 LegalOperations)) 6410 return SDValue(Res, 0); 6411 6412 // fold (zext (zext x)) -> (zext x) 6413 // fold (zext (aext x)) -> (zext x) 6414 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6415 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 6416 N0.getOperand(0)); 6417 6418 // fold (zext (truncate x)) -> (zext x) or 6419 // (zext (truncate x)) -> (truncate x) 6420 // This is valid when the truncated bits of x are already zero. 6421 // FIXME: We should extend this to work for vectors too. 6422 SDValue Op; 6423 APInt KnownZero; 6424 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 6425 APInt TruncatedBits = 6426 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 6427 APInt(Op.getValueSizeInBits(), 0) : 6428 APInt::getBitsSet(Op.getValueSizeInBits(), 6429 N0.getValueSizeInBits(), 6430 std::min(Op.getValueSizeInBits(), 6431 VT.getSizeInBits())); 6432 if (TruncatedBits == (KnownZero & TruncatedBits)) { 6433 if (VT.bitsGT(Op.getValueType())) 6434 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 6435 if (VT.bitsLT(Op.getValueType())) 6436 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6437 6438 return Op; 6439 } 6440 } 6441 6442 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6443 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 6444 if (N0.getOpcode() == ISD::TRUNCATE) { 6445 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6446 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6447 if (NarrowLoad.getNode() != N0.getNode()) { 6448 CombineTo(N0.getNode(), NarrowLoad); 6449 // CombineTo deleted the truncate, if needed, but not what's under it. 6450 AddToWorklist(oye); 6451 } 6452 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6453 } 6454 } 6455 6456 // fold (zext (truncate x)) -> (and x, mask) 6457 if (N0.getOpcode() == ISD::TRUNCATE) { 6458 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6459 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 6460 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6461 SDNode *oye = N0.getNode()->getOperand(0).getNode(); 6462 if (NarrowLoad.getNode() != N0.getNode()) { 6463 CombineTo(N0.getNode(), NarrowLoad); 6464 // CombineTo deleted the truncate, if needed, but not what's under it. 6465 AddToWorklist(oye); 6466 } 6467 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6468 } 6469 6470 EVT SrcVT = N0.getOperand(0).getValueType(); 6471 EVT MinVT = N0.getValueType(); 6472 6473 // Try to mask before the extension to avoid having to generate a larger mask, 6474 // possibly over several sub-vectors. 6475 if (SrcVT.bitsLT(VT)) { 6476 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 6477 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 6478 SDValue Op = N0.getOperand(0); 6479 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6480 AddToWorklist(Op.getNode()); 6481 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 6482 } 6483 } 6484 6485 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 6486 SDValue Op = N0.getOperand(0); 6487 if (SrcVT.bitsLT(VT)) { 6488 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 6489 AddToWorklist(Op.getNode()); 6490 } else if (SrcVT.bitsGT(VT)) { 6491 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6492 AddToWorklist(Op.getNode()); 6493 } 6494 return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6495 } 6496 } 6497 6498 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 6499 // if either of the casts is not free. 6500 if (N0.getOpcode() == ISD::AND && 6501 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6502 N0.getOperand(1).getOpcode() == ISD::Constant && 6503 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6504 N0.getValueType()) || 6505 !TLI.isZExtFree(N0.getValueType(), VT))) { 6506 SDValue X = N0.getOperand(0).getOperand(0); 6507 if (X.getValueType().bitsLT(VT)) { 6508 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 6509 } else if (X.getValueType().bitsGT(VT)) { 6510 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6511 } 6512 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6513 Mask = Mask.zext(VT.getSizeInBits()); 6514 SDLoc DL(N); 6515 return DAG.getNode(ISD::AND, DL, VT, 6516 X, DAG.getConstant(Mask, DL, VT)); 6517 } 6518 6519 // fold (zext (load x)) -> (zext (truncate (zextload x))) 6520 // Only generate vector extloads when 1) they're legal, and 2) they are 6521 // deemed desirable by the target. 6522 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6523 ((!LegalOperations && !VT.isVector() && 6524 !cast<LoadSDNode>(N0)->isVolatile()) || 6525 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { 6526 bool DoXform = true; 6527 SmallVector<SDNode*, 4> SetCCs; 6528 if (!N0.hasOneUse()) 6529 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 6530 if (VT.isVector()) 6531 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6532 if (DoXform) { 6533 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6534 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6535 LN0->getChain(), 6536 LN0->getBasePtr(), N0.getValueType(), 6537 LN0->getMemOperand()); 6538 CombineTo(N, ExtLoad); 6539 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6540 N0.getValueType(), ExtLoad); 6541 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6542 6543 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6544 ISD::ZERO_EXTEND); 6545 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6546 } 6547 } 6548 6549 // fold (zext (load x)) to multiple smaller zextloads. 6550 // Only on illegal but splittable vectors. 6551 if (SDValue ExtLoad = CombineExtLoad(N)) 6552 return ExtLoad; 6553 6554 // fold (zext (and/or/xor (load x), cst)) -> 6555 // (and/or/xor (zextload x), (zext cst)) 6556 // Unless (and (load x) cst) will match as a zextload already and has 6557 // additional users. 6558 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6559 N0.getOpcode() == ISD::XOR) && 6560 isa<LoadSDNode>(N0.getOperand(0)) && 6561 N0.getOperand(1).getOpcode() == ISD::Constant && 6562 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && 6563 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6564 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6565 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 6566 bool DoXform = true; 6567 SmallVector<SDNode*, 4> SetCCs; 6568 if (!N0.hasOneUse()) { 6569 if (N0.getOpcode() == ISD::AND) { 6570 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 6571 auto NarrowLoad = false; 6572 EVT LoadResultTy = AndC->getValueType(0); 6573 EVT ExtVT, LoadedVT; 6574 if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, 6575 NarrowLoad)) 6576 DoXform = false; 6577 } 6578 if (DoXform) 6579 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), 6580 ISD::ZERO_EXTEND, SetCCs, TLI); 6581 } 6582 if (DoXform) { 6583 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 6584 LN0->getChain(), LN0->getBasePtr(), 6585 LN0->getMemoryVT(), 6586 LN0->getMemOperand()); 6587 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6588 Mask = Mask.zext(VT.getSizeInBits()); 6589 SDLoc DL(N); 6590 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6591 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6592 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6593 SDLoc(N0.getOperand(0)), 6594 N0.getOperand(0).getValueType(), ExtLoad); 6595 CombineTo(N, And); 6596 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6597 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6598 ISD::ZERO_EXTEND); 6599 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6600 } 6601 } 6602 } 6603 6604 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 6605 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 6606 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6607 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6608 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6609 EVT MemVT = LN0->getMemoryVT(); 6610 if ((!LegalOperations && !LN0->isVolatile()) || 6611 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { 6612 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6613 LN0->getChain(), 6614 LN0->getBasePtr(), MemVT, 6615 LN0->getMemOperand()); 6616 CombineTo(N, ExtLoad); 6617 CombineTo(N0.getNode(), 6618 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 6619 ExtLoad), 6620 ExtLoad.getValue(1)); 6621 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6622 } 6623 } 6624 6625 if (N0.getOpcode() == ISD::SETCC) { 6626 // Only do this before legalize for now. 6627 if (!LegalOperations && VT.isVector() && 6628 N0.getValueType().getVectorElementType() == MVT::i1) { 6629 EVT N00VT = N0.getOperand(0).getValueType(); 6630 if (getSetCCResultType(N00VT) == N0.getValueType()) 6631 return SDValue(); 6632 6633 // We know that the # elements of the results is the same as the # 6634 // elements of the compare (and the # elements of the compare result for 6635 // that matter). Check to see that they are the same size. If so, we know 6636 // that the element size of the sext'd result matches the element size of 6637 // the compare operands. 6638 SDLoc DL(N); 6639 SDValue VecOnes = DAG.getConstant(1, DL, VT); 6640 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 6641 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 6642 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 6643 N0.getOperand(1), N0.getOperand(2)); 6644 return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); 6645 } 6646 6647 // If the desired elements are smaller or larger than the source 6648 // elements we can use a matching integer vector type and then 6649 // truncate/sign extend. 6650 EVT MatchingElementType = EVT::getIntegerVT( 6651 *DAG.getContext(), N00VT.getScalarSizeInBits()); 6652 EVT MatchingVectorType = EVT::getVectorVT( 6653 *DAG.getContext(), MatchingElementType, N00VT.getVectorNumElements()); 6654 SDValue VsetCC = 6655 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 6656 N0.getOperand(1), N0.getOperand(2)); 6657 return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), 6658 VecOnes); 6659 } 6660 6661 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6662 SDLoc DL(N); 6663 if (SDValue SCC = SimplifySelectCC( 6664 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6665 DAG.getConstant(0, DL, VT), 6666 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6667 return SCC; 6668 } 6669 6670 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 6671 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 6672 isa<ConstantSDNode>(N0.getOperand(1)) && 6673 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 6674 N0.hasOneUse()) { 6675 SDValue ShAmt = N0.getOperand(1); 6676 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 6677 if (N0.getOpcode() == ISD::SHL) { 6678 SDValue InnerZExt = N0.getOperand(0); 6679 // If the original shl may be shifting out bits, do not perform this 6680 // transformation. 6681 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 6682 InnerZExt.getOperand(0).getValueSizeInBits(); 6683 if (ShAmtVal > KnownZeroBits) 6684 return SDValue(); 6685 } 6686 6687 SDLoc DL(N); 6688 6689 // Ensure that the shift amount is wide enough for the shifted value. 6690 if (VT.getSizeInBits() >= 256) 6691 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 6692 6693 return DAG.getNode(N0.getOpcode(), DL, VT, 6694 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 6695 ShAmt); 6696 } 6697 6698 return SDValue(); 6699 } 6700 6701 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 6702 SDValue N0 = N->getOperand(0); 6703 EVT VT = N->getValueType(0); 6704 6705 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6706 LegalOperations)) 6707 return SDValue(Res, 0); 6708 6709 // fold (aext (aext x)) -> (aext x) 6710 // fold (aext (zext x)) -> (zext x) 6711 // fold (aext (sext x)) -> (sext x) 6712 if (N0.getOpcode() == ISD::ANY_EXTEND || 6713 N0.getOpcode() == ISD::ZERO_EXTEND || 6714 N0.getOpcode() == ISD::SIGN_EXTEND) 6715 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 6716 6717 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 6718 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 6719 if (N0.getOpcode() == ISD::TRUNCATE) { 6720 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6721 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6722 if (NarrowLoad.getNode() != N0.getNode()) { 6723 CombineTo(N0.getNode(), NarrowLoad); 6724 // CombineTo deleted the truncate, if needed, but not what's under it. 6725 AddToWorklist(oye); 6726 } 6727 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6728 } 6729 } 6730 6731 // fold (aext (truncate x)) 6732 if (N0.getOpcode() == ISD::TRUNCATE) { 6733 SDValue TruncOp = N0.getOperand(0); 6734 if (TruncOp.getValueType() == VT) 6735 return TruncOp; // x iff x size == zext size. 6736 if (TruncOp.getValueType().bitsGT(VT)) 6737 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 6738 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 6739 } 6740 6741 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 6742 // if the trunc is not free. 6743 if (N0.getOpcode() == ISD::AND && 6744 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6745 N0.getOperand(1).getOpcode() == ISD::Constant && 6746 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6747 N0.getValueType())) { 6748 SDValue X = N0.getOperand(0).getOperand(0); 6749 if (X.getValueType().bitsLT(VT)) { 6750 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 6751 } else if (X.getValueType().bitsGT(VT)) { 6752 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 6753 } 6754 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6755 Mask = Mask.zext(VT.getSizeInBits()); 6756 SDLoc DL(N); 6757 return DAG.getNode(ISD::AND, DL, VT, 6758 X, DAG.getConstant(Mask, DL, VT)); 6759 } 6760 6761 // fold (aext (load x)) -> (aext (truncate (extload x))) 6762 // None of the supported targets knows how to perform load and any_ext 6763 // on vectors in one instruction. We only perform this transformation on 6764 // scalars. 6765 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 6766 ISD::isUNINDEXEDLoad(N0.getNode()) && 6767 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 6768 bool DoXform = true; 6769 SmallVector<SDNode*, 4> SetCCs; 6770 if (!N0.hasOneUse()) 6771 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 6772 if (DoXform) { 6773 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6774 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 6775 LN0->getChain(), 6776 LN0->getBasePtr(), N0.getValueType(), 6777 LN0->getMemOperand()); 6778 CombineTo(N, ExtLoad); 6779 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6780 N0.getValueType(), ExtLoad); 6781 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6782 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6783 ISD::ANY_EXTEND); 6784 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6785 } 6786 } 6787 6788 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 6789 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 6790 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 6791 if (N0.getOpcode() == ISD::LOAD && 6792 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6793 N0.hasOneUse()) { 6794 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6795 ISD::LoadExtType ExtType = LN0->getExtensionType(); 6796 EVT MemVT = LN0->getMemoryVT(); 6797 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 6798 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 6799 VT, LN0->getChain(), LN0->getBasePtr(), 6800 MemVT, LN0->getMemOperand()); 6801 CombineTo(N, ExtLoad); 6802 CombineTo(N0.getNode(), 6803 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6804 N0.getValueType(), ExtLoad), 6805 ExtLoad.getValue(1)); 6806 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6807 } 6808 } 6809 6810 if (N0.getOpcode() == ISD::SETCC) { 6811 // For vectors: 6812 // aext(setcc) -> vsetcc 6813 // aext(setcc) -> truncate(vsetcc) 6814 // aext(setcc) -> aext(vsetcc) 6815 // Only do this before legalize for now. 6816 if (VT.isVector() && !LegalOperations) { 6817 EVT N0VT = N0.getOperand(0).getValueType(); 6818 // We know that the # elements of the results is the same as the 6819 // # elements of the compare (and the # elements of the compare result 6820 // for that matter). Check to see that they are the same size. If so, 6821 // we know that the element size of the sext'd result matches the 6822 // element size of the compare operands. 6823 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6824 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6825 N0.getOperand(1), 6826 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6827 // If the desired elements are smaller or larger than the source 6828 // elements we can use a matching integer vector type and then 6829 // truncate/any extend 6830 else { 6831 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6832 SDValue VsetCC = 6833 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 6834 N0.getOperand(1), 6835 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6836 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 6837 } 6838 } 6839 6840 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6841 SDLoc DL(N); 6842 if (SDValue SCC = SimplifySelectCC( 6843 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6844 DAG.getConstant(0, DL, VT), 6845 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6846 return SCC; 6847 } 6848 6849 return SDValue(); 6850 } 6851 6852 /// See if the specified operand can be simplified with the knowledge that only 6853 /// the bits specified by Mask are used. If so, return the simpler operand, 6854 /// otherwise return a null SDValue. 6855 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 6856 switch (V.getOpcode()) { 6857 default: break; 6858 case ISD::Constant: { 6859 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 6860 assert(CV && "Const value should be ConstSDNode."); 6861 const APInt &CVal = CV->getAPIntValue(); 6862 APInt NewVal = CVal & Mask; 6863 if (NewVal != CVal) 6864 return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); 6865 break; 6866 } 6867 case ISD::OR: 6868 case ISD::XOR: 6869 // If the LHS or RHS don't contribute bits to the or, drop them. 6870 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 6871 return V.getOperand(1); 6872 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 6873 return V.getOperand(0); 6874 break; 6875 case ISD::SRL: 6876 // Only look at single-use SRLs. 6877 if (!V.getNode()->hasOneUse()) 6878 break; 6879 if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { 6880 // See if we can recursively simplify the LHS. 6881 unsigned Amt = RHSC->getZExtValue(); 6882 6883 // Watch out for shift count overflow though. 6884 if (Amt >= Mask.getBitWidth()) break; 6885 APInt NewMask = Mask << Amt; 6886 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 6887 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 6888 SimplifyLHS, V.getOperand(1)); 6889 } 6890 } 6891 return SDValue(); 6892 } 6893 6894 /// If the result of a wider load is shifted to right of N bits and then 6895 /// truncated to a narrower type and where N is a multiple of number of bits of 6896 /// the narrower type, transform it to a narrower load from address + N / num of 6897 /// bits of new type. If the result is to be extended, also fold the extension 6898 /// to form a extending load. 6899 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 6900 unsigned Opc = N->getOpcode(); 6901 6902 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 6903 SDValue N0 = N->getOperand(0); 6904 EVT VT = N->getValueType(0); 6905 EVT ExtVT = VT; 6906 6907 // This transformation isn't valid for vector loads. 6908 if (VT.isVector()) 6909 return SDValue(); 6910 6911 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 6912 // extended to VT. 6913 if (Opc == ISD::SIGN_EXTEND_INREG) { 6914 ExtType = ISD::SEXTLOAD; 6915 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6916 } else if (Opc == ISD::SRL) { 6917 // Another special-case: SRL is basically zero-extending a narrower value. 6918 ExtType = ISD::ZEXTLOAD; 6919 N0 = SDValue(N, 0); 6920 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6921 if (!N01) return SDValue(); 6922 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 6923 VT.getSizeInBits() - N01->getZExtValue()); 6924 } 6925 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) 6926 return SDValue(); 6927 6928 unsigned EVTBits = ExtVT.getSizeInBits(); 6929 6930 // Do not generate loads of non-round integer types since these can 6931 // be expensive (and would be wrong if the type is not byte sized). 6932 if (!ExtVT.isRound()) 6933 return SDValue(); 6934 6935 unsigned ShAmt = 0; 6936 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 6937 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6938 ShAmt = N01->getZExtValue(); 6939 // Is the shift amount a multiple of size of VT? 6940 if ((ShAmt & (EVTBits-1)) == 0) { 6941 N0 = N0.getOperand(0); 6942 // Is the load width a multiple of size of VT? 6943 if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) 6944 return SDValue(); 6945 } 6946 6947 // At this point, we must have a load or else we can't do the transform. 6948 if (!isa<LoadSDNode>(N0)) return SDValue(); 6949 6950 // Because a SRL must be assumed to *need* to zero-extend the high bits 6951 // (as opposed to anyext the high bits), we can't combine the zextload 6952 // lowering of SRL and an sextload. 6953 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 6954 return SDValue(); 6955 6956 // If the shift amount is larger than the input type then we're not 6957 // accessing any of the loaded bytes. If the load was a zextload/extload 6958 // then the result of the shift+trunc is zero/undef (handled elsewhere). 6959 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 6960 return SDValue(); 6961 } 6962 } 6963 6964 // If the load is shifted left (and the result isn't shifted back right), 6965 // we can fold the truncate through the shift. 6966 unsigned ShLeftAmt = 0; 6967 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 6968 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 6969 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6970 ShLeftAmt = N01->getZExtValue(); 6971 N0 = N0.getOperand(0); 6972 } 6973 } 6974 6975 // If we haven't found a load, we can't narrow it. Don't transform one with 6976 // multiple uses, this would require adding a new load. 6977 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 6978 return SDValue(); 6979 6980 // Don't change the width of a volatile load. 6981 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6982 if (LN0->isVolatile()) 6983 return SDValue(); 6984 6985 // Verify that we are actually reducing a load width here. 6986 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 6987 return SDValue(); 6988 6989 // For the transform to be legal, the load must produce only two values 6990 // (the value loaded and the chain). Don't transform a pre-increment 6991 // load, for example, which produces an extra value. Otherwise the 6992 // transformation is not equivalent, and the downstream logic to replace 6993 // uses gets things wrong. 6994 if (LN0->getNumValues() > 2) 6995 return SDValue(); 6996 6997 // If the load that we're shrinking is an extload and we're not just 6998 // discarding the extension we can't simply shrink the load. Bail. 6999 // TODO: It would be possible to merge the extensions in some cases. 7000 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 7001 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 7002 return SDValue(); 7003 7004 if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) 7005 return SDValue(); 7006 7007 EVT PtrType = N0.getOperand(1).getValueType(); 7008 7009 if (PtrType == MVT::Untyped || PtrType.isExtended()) 7010 // It's not possible to generate a constant of extended or untyped type. 7011 return SDValue(); 7012 7013 // For big endian targets, we need to adjust the offset to the pointer to 7014 // load the correct bytes. 7015 if (DAG.getDataLayout().isBigEndian()) { 7016 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 7017 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 7018 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 7019 } 7020 7021 uint64_t PtrOff = ShAmt / 8; 7022 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 7023 SDLoc DL(LN0); 7024 // The original load itself didn't wrap, so an offset within it doesn't. 7025 SDNodeFlags Flags; 7026 Flags.setNoUnsignedWrap(true); 7027 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 7028 PtrType, LN0->getBasePtr(), 7029 DAG.getConstant(PtrOff, DL, PtrType), 7030 &Flags); 7031 AddToWorklist(NewPtr.getNode()); 7032 7033 SDValue Load; 7034 if (ExtType == ISD::NON_EXTLOAD) 7035 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 7036 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 7037 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 7038 else 7039 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr, 7040 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 7041 NewAlign, LN0->getMemOperand()->getFlags(), 7042 LN0->getAAInfo()); 7043 7044 // Replace the old load's chain with the new load's chain. 7045 WorklistRemover DeadNodes(*this); 7046 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7047 7048 // Shift the result left, if we've swallowed a left shift. 7049 SDValue Result = Load; 7050 if (ShLeftAmt != 0) { 7051 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 7052 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 7053 ShImmTy = VT; 7054 // If the shift amount is as large as the result size (but, presumably, 7055 // no larger than the source) then the useful bits of the result are 7056 // zero; we can't simply return the shortened shift, because the result 7057 // of that operation is undefined. 7058 SDLoc DL(N0); 7059 if (ShLeftAmt >= VT.getSizeInBits()) 7060 Result = DAG.getConstant(0, DL, VT); 7061 else 7062 Result = DAG.getNode(ISD::SHL, DL, VT, 7063 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 7064 } 7065 7066 // Return the new loaded value. 7067 return Result; 7068 } 7069 7070 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 7071 SDValue N0 = N->getOperand(0); 7072 SDValue N1 = N->getOperand(1); 7073 EVT VT = N->getValueType(0); 7074 EVT EVT = cast<VTSDNode>(N1)->getVT(); 7075 unsigned VTBits = VT.getScalarSizeInBits(); 7076 unsigned EVTBits = EVT.getScalarSizeInBits(); 7077 7078 if (N0.isUndef()) 7079 return DAG.getUNDEF(VT); 7080 7081 // fold (sext_in_reg c1) -> c1 7082 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7083 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 7084 7085 // If the input is already sign extended, just drop the extension. 7086 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 7087 return N0; 7088 7089 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 7090 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 7091 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 7092 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7093 N0.getOperand(0), N1); 7094 7095 // fold (sext_in_reg (sext x)) -> (sext x) 7096 // fold (sext_in_reg (aext x)) -> (sext x) 7097 // if x is small enough. 7098 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 7099 SDValue N00 = N0.getOperand(0); 7100 if (N00.getScalarValueSizeInBits() <= EVTBits && 7101 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 7102 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 7103 } 7104 7105 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 7106 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 7107 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); 7108 7109 // fold operands of sext_in_reg based on knowledge that the top bits are not 7110 // demanded. 7111 if (SimplifyDemandedBits(SDValue(N, 0))) 7112 return SDValue(N, 0); 7113 7114 // fold (sext_in_reg (load x)) -> (smaller sextload x) 7115 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 7116 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 7117 return NarrowLoad; 7118 7119 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 7120 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 7121 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 7122 if (N0.getOpcode() == ISD::SRL) { 7123 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 7124 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 7125 // We can turn this into an SRA iff the input to the SRL is already sign 7126 // extended enough. 7127 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 7128 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 7129 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 7130 N0.getOperand(0), N0.getOperand(1)); 7131 } 7132 } 7133 7134 // fold (sext_inreg (extload x)) -> (sextload x) 7135 if (ISD::isEXTLoad(N0.getNode()) && 7136 ISD::isUNINDEXEDLoad(N0.getNode()) && 7137 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7138 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7139 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7140 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7141 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7142 LN0->getChain(), 7143 LN0->getBasePtr(), EVT, 7144 LN0->getMemOperand()); 7145 CombineTo(N, ExtLoad); 7146 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7147 AddToWorklist(ExtLoad.getNode()); 7148 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7149 } 7150 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 7151 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 7152 N0.hasOneUse() && 7153 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7154 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7155 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7156 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7157 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7158 LN0->getChain(), 7159 LN0->getBasePtr(), EVT, 7160 LN0->getMemOperand()); 7161 CombineTo(N, ExtLoad); 7162 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7163 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7164 } 7165 7166 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 7167 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 7168 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 7169 N0.getOperand(1), false)) 7170 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7171 BSwap, N1); 7172 } 7173 7174 return SDValue(); 7175 } 7176 7177 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 7178 SDValue N0 = N->getOperand(0); 7179 EVT VT = N->getValueType(0); 7180 7181 if (N0.isUndef()) 7182 return DAG.getUNDEF(VT); 7183 7184 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7185 LegalOperations)) 7186 return SDValue(Res, 0); 7187 7188 return SDValue(); 7189 } 7190 7191 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 7192 SDValue N0 = N->getOperand(0); 7193 EVT VT = N->getValueType(0); 7194 7195 if (N0.isUndef()) 7196 return DAG.getUNDEF(VT); 7197 7198 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7199 LegalOperations)) 7200 return SDValue(Res, 0); 7201 7202 return SDValue(); 7203 } 7204 7205 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 7206 SDValue N0 = N->getOperand(0); 7207 EVT VT = N->getValueType(0); 7208 bool isLE = DAG.getDataLayout().isLittleEndian(); 7209 7210 // noop truncate 7211 if (N0.getValueType() == N->getValueType(0)) 7212 return N0; 7213 // fold (truncate c1) -> c1 7214 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7215 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 7216 // fold (truncate (truncate x)) -> (truncate x) 7217 if (N0.getOpcode() == ISD::TRUNCATE) 7218 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7219 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 7220 if (N0.getOpcode() == ISD::ZERO_EXTEND || 7221 N0.getOpcode() == ISD::SIGN_EXTEND || 7222 N0.getOpcode() == ISD::ANY_EXTEND) { 7223 // if the source is smaller than the dest, we still need an extend. 7224 if (N0.getOperand(0).getValueType().bitsLT(VT)) 7225 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 7226 // if the source is larger than the dest, than we just need the truncate. 7227 if (N0.getOperand(0).getValueType().bitsGT(VT)) 7228 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7229 // if the source and dest are the same type, we can drop both the extend 7230 // and the truncate. 7231 return N0.getOperand(0); 7232 } 7233 7234 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 7235 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 7236 return SDValue(); 7237 7238 // Fold extract-and-trunc into a narrow extract. For example: 7239 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 7240 // i32 y = TRUNCATE(i64 x) 7241 // -- becomes -- 7242 // v16i8 b = BITCAST (v2i64 val) 7243 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 7244 // 7245 // Note: We only run this optimization after type legalization (which often 7246 // creates this pattern) and before operation legalization after which 7247 // we need to be more careful about the vector instructions that we generate. 7248 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7249 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 7250 7251 EVT VecTy = N0.getOperand(0).getValueType(); 7252 EVT ExTy = N0.getValueType(); 7253 EVT TrTy = N->getValueType(0); 7254 7255 unsigned NumElem = VecTy.getVectorNumElements(); 7256 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 7257 7258 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 7259 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 7260 7261 SDValue EltNo = N0->getOperand(1); 7262 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 7263 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 7264 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7265 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 7266 7267 SDLoc DL(N); 7268 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 7269 DAG.getBitcast(NVT, N0.getOperand(0)), 7270 DAG.getConstant(Index, DL, IndexTy)); 7271 } 7272 } 7273 7274 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 7275 if (N0.getOpcode() == ISD::SELECT) { 7276 EVT SrcVT = N0.getValueType(); 7277 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 7278 TLI.isTruncateFree(SrcVT, VT)) { 7279 SDLoc SL(N0); 7280 SDValue Cond = N0.getOperand(0); 7281 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 7282 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 7283 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 7284 } 7285 } 7286 7287 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 7288 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 7289 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) && 7290 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 7291 if (const ConstantSDNode *CAmt = isConstOrConstSplat(N0.getOperand(1))) { 7292 uint64_t Amt = CAmt->getZExtValue(); 7293 unsigned Size = VT.getScalarSizeInBits(); 7294 7295 if (Amt < Size) { 7296 SDLoc SL(N); 7297 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 7298 7299 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 7300 return DAG.getNode(ISD::SHL, SL, VT, Trunc, 7301 DAG.getConstant(Amt, SL, AmtVT)); 7302 } 7303 } 7304 } 7305 7306 // Fold a series of buildvector, bitcast, and truncate if possible. 7307 // For example fold 7308 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 7309 // (2xi32 (buildvector x, y)). 7310 if (Level == AfterLegalizeVectorOps && VT.isVector() && 7311 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 7312 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 7313 N0.getOperand(0).hasOneUse()) { 7314 7315 SDValue BuildVect = N0.getOperand(0); 7316 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 7317 EVT TruncVecEltTy = VT.getVectorElementType(); 7318 7319 // Check that the element types match. 7320 if (BuildVectEltTy == TruncVecEltTy) { 7321 // Now we only need to compute the offset of the truncated elements. 7322 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 7323 unsigned TruncVecNumElts = VT.getVectorNumElements(); 7324 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 7325 7326 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 7327 "Invalid number of elements"); 7328 7329 SmallVector<SDValue, 8> Opnds; 7330 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 7331 Opnds.push_back(BuildVect.getOperand(i)); 7332 7333 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 7334 } 7335 } 7336 7337 // See if we can simplify the input to this truncate through knowledge that 7338 // only the low bits are being used. 7339 // For example "trunc (or (shl x, 8), y)" // -> trunc y 7340 // Currently we only perform this optimization on scalars because vectors 7341 // may have different active low bits. 7342 if (!VT.isVector()) { 7343 if (SDValue Shorter = 7344 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 7345 VT.getSizeInBits()))) 7346 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 7347 } 7348 // fold (truncate (load x)) -> (smaller load x) 7349 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 7350 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 7351 if (SDValue Reduced = ReduceLoadWidth(N)) 7352 return Reduced; 7353 7354 // Handle the case where the load remains an extending load even 7355 // after truncation. 7356 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 7357 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7358 if (!LN0->isVolatile() && 7359 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 7360 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 7361 VT, LN0->getChain(), LN0->getBasePtr(), 7362 LN0->getMemoryVT(), 7363 LN0->getMemOperand()); 7364 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 7365 return NewLoad; 7366 } 7367 } 7368 } 7369 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 7370 // where ... are all 'undef'. 7371 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 7372 SmallVector<EVT, 8> VTs; 7373 SDValue V; 7374 unsigned Idx = 0; 7375 unsigned NumDefs = 0; 7376 7377 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 7378 SDValue X = N0.getOperand(i); 7379 if (!X.isUndef()) { 7380 V = X; 7381 Idx = i; 7382 NumDefs++; 7383 } 7384 // Stop if more than one members are non-undef. 7385 if (NumDefs > 1) 7386 break; 7387 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 7388 VT.getVectorElementType(), 7389 X.getValueType().getVectorNumElements())); 7390 } 7391 7392 if (NumDefs == 0) 7393 return DAG.getUNDEF(VT); 7394 7395 if (NumDefs == 1) { 7396 assert(V.getNode() && "The single defined operand is empty!"); 7397 SmallVector<SDValue, 8> Opnds; 7398 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 7399 if (i != Idx) { 7400 Opnds.push_back(DAG.getUNDEF(VTs[i])); 7401 continue; 7402 } 7403 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 7404 AddToWorklist(NV.getNode()); 7405 Opnds.push_back(NV); 7406 } 7407 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 7408 } 7409 } 7410 7411 // Fold truncate of a bitcast of a vector to an extract of the low vector 7412 // element. 7413 // 7414 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, 0 7415 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 7416 SDValue VecSrc = N0.getOperand(0); 7417 EVT SrcVT = VecSrc.getValueType(); 7418 if (SrcVT.isVector() && SrcVT.getScalarType() == VT && 7419 (!LegalOperations || 7420 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { 7421 SDLoc SL(N); 7422 7423 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 7424 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, 7425 VecSrc, DAG.getConstant(0, SL, IdxVT)); 7426 } 7427 } 7428 7429 // Simplify the operands using demanded-bits information. 7430 if (!VT.isVector() && 7431 SimplifyDemandedBits(SDValue(N, 0))) 7432 return SDValue(N, 0); 7433 7434 return SDValue(); 7435 } 7436 7437 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 7438 SDValue Elt = N->getOperand(i); 7439 if (Elt.getOpcode() != ISD::MERGE_VALUES) 7440 return Elt.getNode(); 7441 return Elt.getOperand(Elt.getResNo()).getNode(); 7442 } 7443 7444 /// build_pair (load, load) -> load 7445 /// if load locations are consecutive. 7446 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 7447 assert(N->getOpcode() == ISD::BUILD_PAIR); 7448 7449 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 7450 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 7451 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 7452 LD1->getAddressSpace() != LD2->getAddressSpace()) 7453 return SDValue(); 7454 EVT LD1VT = LD1->getValueType(0); 7455 unsigned LD1Bytes = LD1VT.getSizeInBits() / 8; 7456 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 7457 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 7458 unsigned Align = LD1->getAlignment(); 7459 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 7460 VT.getTypeForEVT(*DAG.getContext())); 7461 7462 if (NewAlign <= Align && 7463 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 7464 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 7465 LD1->getPointerInfo(), Align); 7466 } 7467 7468 return SDValue(); 7469 } 7470 7471 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 7472 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 7473 // and Lo parts; on big-endian machines it doesn't. 7474 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 7475 } 7476 7477 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 7478 const TargetLowering &TLI) { 7479 // If this is not a bitcast to an FP type or if the target doesn't have 7480 // IEEE754-compliant FP logic, we're done. 7481 EVT VT = N->getValueType(0); 7482 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 7483 return SDValue(); 7484 7485 // TODO: Use splat values for the constant-checking below and remove this 7486 // restriction. 7487 SDValue N0 = N->getOperand(0); 7488 EVT SourceVT = N0.getValueType(); 7489 if (SourceVT.isVector()) 7490 return SDValue(); 7491 7492 unsigned FPOpcode; 7493 APInt SignMask; 7494 switch (N0.getOpcode()) { 7495 case ISD::AND: 7496 FPOpcode = ISD::FABS; 7497 SignMask = ~APInt::getSignBit(SourceVT.getSizeInBits()); 7498 break; 7499 case ISD::XOR: 7500 FPOpcode = ISD::FNEG; 7501 SignMask = APInt::getSignBit(SourceVT.getSizeInBits()); 7502 break; 7503 // TODO: ISD::OR --> ISD::FNABS? 7504 default: 7505 return SDValue(); 7506 } 7507 7508 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 7509 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 7510 SDValue LogicOp0 = N0.getOperand(0); 7511 ConstantSDNode *LogicOp1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 7512 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 7513 LogicOp0.getOpcode() == ISD::BITCAST && 7514 LogicOp0->getOperand(0).getValueType() == VT) 7515 return DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0->getOperand(0)); 7516 7517 return SDValue(); 7518 } 7519 7520 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 7521 SDValue N0 = N->getOperand(0); 7522 EVT VT = N->getValueType(0); 7523 7524 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 7525 // Only do this before legalize, since afterward the target may be depending 7526 // on the bitconvert. 7527 // First check to see if this is all constant. 7528 if (!LegalTypes && 7529 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 7530 VT.isVector()) { 7531 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 7532 7533 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 7534 assert(!DestEltVT.isVector() && 7535 "Element type of vector ValueType must not be vector!"); 7536 if (isSimple) 7537 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 7538 } 7539 7540 // If the input is a constant, let getNode fold it. 7541 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 7542 // If we can't allow illegal operations, we need to check that this is just 7543 // a fp -> int or int -> conversion and that the resulting operation will 7544 // be legal. 7545 if (!LegalOperations || 7546 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 7547 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 7548 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 7549 TLI.isOperationLegal(ISD::Constant, VT))) 7550 return DAG.getBitcast(VT, N0); 7551 } 7552 7553 // (conv (conv x, t1), t2) -> (conv x, t2) 7554 if (N0.getOpcode() == ISD::BITCAST) 7555 return DAG.getBitcast(VT, N0.getOperand(0)); 7556 7557 // fold (conv (load x)) -> (load (conv*)x) 7558 // If the resultant load doesn't need a higher alignment than the original! 7559 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 7560 // Do not change the width of a volatile load. 7561 !cast<LoadSDNode>(N0)->isVolatile() && 7562 // Do not remove the cast if the types differ in endian layout. 7563 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 7564 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 7565 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 7566 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 7567 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7568 unsigned OrigAlign = LN0->getAlignment(); 7569 7570 bool Fast = false; 7571 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 7572 LN0->getAddressSpace(), OrigAlign, &Fast) && 7573 Fast) { 7574 SDValue Load = 7575 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 7576 LN0->getPointerInfo(), OrigAlign, 7577 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 7578 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7579 return Load; 7580 } 7581 } 7582 7583 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 7584 return V; 7585 7586 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7587 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7588 // 7589 // For ppc_fp128: 7590 // fold (bitcast (fneg x)) -> 7591 // flipbit = signbit 7592 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7593 // 7594 // fold (bitcast (fabs x)) -> 7595 // flipbit = (and (extract_element (bitcast x), 0), signbit) 7596 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7597 // This often reduces constant pool loads. 7598 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 7599 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 7600 N0.getNode()->hasOneUse() && VT.isInteger() && 7601 !VT.isVector() && !N0.getValueType().isVector()) { 7602 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 7603 AddToWorklist(NewConv.getNode()); 7604 7605 SDLoc DL(N); 7606 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7607 assert(VT.getSizeInBits() == 128); 7608 SDValue SignBit = DAG.getConstant( 7609 APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 7610 SDValue FlipBit; 7611 if (N0.getOpcode() == ISD::FNEG) { 7612 FlipBit = SignBit; 7613 AddToWorklist(FlipBit.getNode()); 7614 } else { 7615 assert(N0.getOpcode() == ISD::FABS); 7616 SDValue Hi = 7617 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 7618 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7619 SDLoc(NewConv))); 7620 AddToWorklist(Hi.getNode()); 7621 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 7622 AddToWorklist(FlipBit.getNode()); 7623 } 7624 SDValue FlipBits = 7625 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7626 AddToWorklist(FlipBits.getNode()); 7627 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 7628 } 7629 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7630 if (N0.getOpcode() == ISD::FNEG) 7631 return DAG.getNode(ISD::XOR, DL, VT, 7632 NewConv, DAG.getConstant(SignBit, DL, VT)); 7633 assert(N0.getOpcode() == ISD::FABS); 7634 return DAG.getNode(ISD::AND, DL, VT, 7635 NewConv, DAG.getConstant(~SignBit, DL, VT)); 7636 } 7637 7638 // fold (bitconvert (fcopysign cst, x)) -> 7639 // (or (and (bitconvert x), sign), (and cst, (not sign))) 7640 // Note that we don't handle (copysign x, cst) because this can always be 7641 // folded to an fneg or fabs. 7642 // 7643 // For ppc_fp128: 7644 // fold (bitcast (fcopysign cst, x)) -> 7645 // flipbit = (and (extract_element 7646 // (xor (bitcast cst), (bitcast x)), 0), 7647 // signbit) 7648 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 7649 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 7650 isa<ConstantFPSDNode>(N0.getOperand(0)) && 7651 VT.isInteger() && !VT.isVector()) { 7652 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 7653 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 7654 if (isTypeLegal(IntXVT)) { 7655 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 7656 AddToWorklist(X.getNode()); 7657 7658 // If X has a different width than the result/lhs, sext it or truncate it. 7659 unsigned VTWidth = VT.getSizeInBits(); 7660 if (OrigXWidth < VTWidth) { 7661 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 7662 AddToWorklist(X.getNode()); 7663 } else if (OrigXWidth > VTWidth) { 7664 // To get the sign bit in the right place, we have to shift it right 7665 // before truncating. 7666 SDLoc DL(X); 7667 X = DAG.getNode(ISD::SRL, DL, 7668 X.getValueType(), X, 7669 DAG.getConstant(OrigXWidth-VTWidth, DL, 7670 X.getValueType())); 7671 AddToWorklist(X.getNode()); 7672 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 7673 AddToWorklist(X.getNode()); 7674 } 7675 7676 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7677 APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2); 7678 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7679 AddToWorklist(Cst.getNode()); 7680 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 7681 AddToWorklist(X.getNode()); 7682 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 7683 AddToWorklist(XorResult.getNode()); 7684 SDValue XorResult64 = DAG.getNode( 7685 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 7686 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7687 SDLoc(XorResult))); 7688 AddToWorklist(XorResult64.getNode()); 7689 SDValue FlipBit = 7690 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 7691 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 7692 AddToWorklist(FlipBit.getNode()); 7693 SDValue FlipBits = 7694 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7695 AddToWorklist(FlipBits.getNode()); 7696 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 7697 } 7698 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7699 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 7700 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 7701 AddToWorklist(X.getNode()); 7702 7703 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7704 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 7705 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 7706 AddToWorklist(Cst.getNode()); 7707 7708 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 7709 } 7710 } 7711 7712 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 7713 if (N0.getOpcode() == ISD::BUILD_PAIR) 7714 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 7715 return CombineLD; 7716 7717 // Remove double bitcasts from shuffles - this is often a legacy of 7718 // XformToShuffleWithZero being used to combine bitmaskings (of 7719 // float vectors bitcast to integer vectors) into shuffles. 7720 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 7721 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 7722 N0->getOpcode() == ISD::VECTOR_SHUFFLE && 7723 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 7724 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 7725 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 7726 7727 // If operands are a bitcast, peek through if it casts the original VT. 7728 // If operands are a constant, just bitcast back to original VT. 7729 auto PeekThroughBitcast = [&](SDValue Op) { 7730 if (Op.getOpcode() == ISD::BITCAST && 7731 Op.getOperand(0).getValueType() == VT) 7732 return SDValue(Op.getOperand(0)); 7733 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 7734 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 7735 return DAG.getBitcast(VT, Op); 7736 return SDValue(); 7737 }; 7738 7739 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 7740 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 7741 if (!(SV0 && SV1)) 7742 return SDValue(); 7743 7744 int MaskScale = 7745 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 7746 SmallVector<int, 8> NewMask; 7747 for (int M : SVN->getMask()) 7748 for (int i = 0; i != MaskScale; ++i) 7749 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 7750 7751 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7752 if (!LegalMask) { 7753 std::swap(SV0, SV1); 7754 ShuffleVectorSDNode::commuteMask(NewMask); 7755 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7756 } 7757 7758 if (LegalMask) 7759 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 7760 } 7761 7762 return SDValue(); 7763 } 7764 7765 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 7766 EVT VT = N->getValueType(0); 7767 return CombineConsecutiveLoads(N, VT); 7768 } 7769 7770 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 7771 /// operands. DstEltVT indicates the destination element value type. 7772 SDValue DAGCombiner:: 7773 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 7774 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 7775 7776 // If this is already the right type, we're done. 7777 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 7778 7779 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 7780 unsigned DstBitSize = DstEltVT.getSizeInBits(); 7781 7782 // If this is a conversion of N elements of one type to N elements of another 7783 // type, convert each element. This handles FP<->INT cases. 7784 if (SrcBitSize == DstBitSize) { 7785 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7786 BV->getValueType(0).getVectorNumElements()); 7787 7788 // Due to the FP element handling below calling this routine recursively, 7789 // we can end up with a scalar-to-vector node here. 7790 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 7791 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 7792 DAG.getBitcast(DstEltVT, BV->getOperand(0))); 7793 7794 SmallVector<SDValue, 8> Ops; 7795 for (SDValue Op : BV->op_values()) { 7796 // If the vector element type is not legal, the BUILD_VECTOR operands 7797 // are promoted and implicitly truncated. Make that explicit here. 7798 if (Op.getValueType() != SrcEltVT) 7799 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 7800 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 7801 AddToWorklist(Ops.back().getNode()); 7802 } 7803 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 7804 } 7805 7806 // Otherwise, we're growing or shrinking the elements. To avoid having to 7807 // handle annoying details of growing/shrinking FP values, we convert them to 7808 // int first. 7809 if (SrcEltVT.isFloatingPoint()) { 7810 // Convert the input float vector to a int vector where the elements are the 7811 // same sizes. 7812 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 7813 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 7814 SrcEltVT = IntVT; 7815 } 7816 7817 // Now we know the input is an integer vector. If the output is a FP type, 7818 // convert to integer first, then to FP of the right size. 7819 if (DstEltVT.isFloatingPoint()) { 7820 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 7821 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 7822 7823 // Next, convert to FP elements of the same size. 7824 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 7825 } 7826 7827 SDLoc DL(BV); 7828 7829 // Okay, we know the src/dst types are both integers of differing types. 7830 // Handling growing first. 7831 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 7832 if (SrcBitSize < DstBitSize) { 7833 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 7834 7835 SmallVector<SDValue, 8> Ops; 7836 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 7837 i += NumInputsPerOutput) { 7838 bool isLE = DAG.getDataLayout().isLittleEndian(); 7839 APInt NewBits = APInt(DstBitSize, 0); 7840 bool EltIsUndef = true; 7841 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 7842 // Shift the previously computed bits over. 7843 NewBits <<= SrcBitSize; 7844 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 7845 if (Op.isUndef()) continue; 7846 EltIsUndef = false; 7847 7848 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 7849 zextOrTrunc(SrcBitSize).zext(DstBitSize); 7850 } 7851 7852 if (EltIsUndef) 7853 Ops.push_back(DAG.getUNDEF(DstEltVT)); 7854 else 7855 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 7856 } 7857 7858 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 7859 return DAG.getBuildVector(VT, DL, Ops); 7860 } 7861 7862 // Finally, this must be the case where we are shrinking elements: each input 7863 // turns into multiple outputs. 7864 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 7865 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7866 NumOutputsPerInput*BV->getNumOperands()); 7867 SmallVector<SDValue, 8> Ops; 7868 7869 for (const SDValue &Op : BV->op_values()) { 7870 if (Op.isUndef()) { 7871 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 7872 continue; 7873 } 7874 7875 APInt OpVal = cast<ConstantSDNode>(Op)-> 7876 getAPIntValue().zextOrTrunc(SrcBitSize); 7877 7878 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 7879 APInt ThisVal = OpVal.trunc(DstBitSize); 7880 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 7881 OpVal = OpVal.lshr(DstBitSize); 7882 } 7883 7884 // For big endian targets, swap the order of the pieces of each element. 7885 if (DAG.getDataLayout().isBigEndian()) 7886 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 7887 } 7888 7889 return DAG.getBuildVector(VT, DL, Ops); 7890 } 7891 7892 /// Try to perform FMA combining on a given FADD node. 7893 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 7894 SDValue N0 = N->getOperand(0); 7895 SDValue N1 = N->getOperand(1); 7896 EVT VT = N->getValueType(0); 7897 SDLoc SL(N); 7898 7899 const TargetOptions &Options = DAG.getTarget().Options; 7900 bool AllowFusion = 7901 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7902 7903 // Floating-point multiply-add with intermediate rounding. 7904 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7905 7906 // Floating-point multiply-add without intermediate rounding. 7907 bool HasFMA = 7908 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7909 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7910 7911 // No valid opcode, do not combine. 7912 if (!HasFMAD && !HasFMA) 7913 return SDValue(); 7914 7915 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 7916 ; 7917 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 7918 return SDValue(); 7919 7920 // Always prefer FMAD to FMA for precision. 7921 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7922 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7923 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7924 7925 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 7926 // prefer to fold the multiply with fewer uses. 7927 if (Aggressive && N0.getOpcode() == ISD::FMUL && 7928 N1.getOpcode() == ISD::FMUL) { 7929 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 7930 std::swap(N0, N1); 7931 } 7932 7933 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 7934 if (N0.getOpcode() == ISD::FMUL && 7935 (Aggressive || N0->hasOneUse())) { 7936 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7937 N0.getOperand(0), N0.getOperand(1), N1); 7938 } 7939 7940 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 7941 // Note: Commutes FADD operands. 7942 if (N1.getOpcode() == ISD::FMUL && 7943 (Aggressive || N1->hasOneUse())) { 7944 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7945 N1.getOperand(0), N1.getOperand(1), N0); 7946 } 7947 7948 // Look through FP_EXTEND nodes to do more combining. 7949 if (AllowFusion && LookThroughFPExt) { 7950 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 7951 if (N0.getOpcode() == ISD::FP_EXTEND) { 7952 SDValue N00 = N0.getOperand(0); 7953 if (N00.getOpcode() == ISD::FMUL) 7954 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7955 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7956 N00.getOperand(0)), 7957 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7958 N00.getOperand(1)), N1); 7959 } 7960 7961 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 7962 // Note: Commutes FADD operands. 7963 if (N1.getOpcode() == ISD::FP_EXTEND) { 7964 SDValue N10 = N1.getOperand(0); 7965 if (N10.getOpcode() == ISD::FMUL) 7966 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7967 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7968 N10.getOperand(0)), 7969 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7970 N10.getOperand(1)), N0); 7971 } 7972 } 7973 7974 // More folding opportunities when target permits. 7975 if ((AllowFusion || HasFMAD) && Aggressive) { 7976 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 7977 if (N0.getOpcode() == PreferredFusedOpcode && 7978 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7979 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7980 N0.getOperand(0), N0.getOperand(1), 7981 DAG.getNode(PreferredFusedOpcode, SL, VT, 7982 N0.getOperand(2).getOperand(0), 7983 N0.getOperand(2).getOperand(1), 7984 N1)); 7985 } 7986 7987 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 7988 if (N1->getOpcode() == PreferredFusedOpcode && 7989 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7990 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7991 N1.getOperand(0), N1.getOperand(1), 7992 DAG.getNode(PreferredFusedOpcode, SL, VT, 7993 N1.getOperand(2).getOperand(0), 7994 N1.getOperand(2).getOperand(1), 7995 N0)); 7996 } 7997 7998 if (AllowFusion && LookThroughFPExt) { 7999 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 8000 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 8001 auto FoldFAddFMAFPExtFMul = [&] ( 8002 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 8003 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 8004 DAG.getNode(PreferredFusedOpcode, SL, VT, 8005 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 8006 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 8007 Z)); 8008 }; 8009 if (N0.getOpcode() == PreferredFusedOpcode) { 8010 SDValue N02 = N0.getOperand(2); 8011 if (N02.getOpcode() == ISD::FP_EXTEND) { 8012 SDValue N020 = N02.getOperand(0); 8013 if (N020.getOpcode() == ISD::FMUL) 8014 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 8015 N020.getOperand(0), N020.getOperand(1), 8016 N1); 8017 } 8018 } 8019 8020 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 8021 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 8022 // FIXME: This turns two single-precision and one double-precision 8023 // operation into two double-precision operations, which might not be 8024 // interesting for all targets, especially GPUs. 8025 auto FoldFAddFPExtFMAFMul = [&] ( 8026 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 8027 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8028 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 8029 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 8030 DAG.getNode(PreferredFusedOpcode, SL, VT, 8031 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 8032 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 8033 Z)); 8034 }; 8035 if (N0.getOpcode() == ISD::FP_EXTEND) { 8036 SDValue N00 = N0.getOperand(0); 8037 if (N00.getOpcode() == PreferredFusedOpcode) { 8038 SDValue N002 = N00.getOperand(2); 8039 if (N002.getOpcode() == ISD::FMUL) 8040 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 8041 N002.getOperand(0), N002.getOperand(1), 8042 N1); 8043 } 8044 } 8045 8046 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 8047 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 8048 if (N1.getOpcode() == PreferredFusedOpcode) { 8049 SDValue N12 = N1.getOperand(2); 8050 if (N12.getOpcode() == ISD::FP_EXTEND) { 8051 SDValue N120 = N12.getOperand(0); 8052 if (N120.getOpcode() == ISD::FMUL) 8053 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 8054 N120.getOperand(0), N120.getOperand(1), 8055 N0); 8056 } 8057 } 8058 8059 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 8060 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 8061 // FIXME: This turns two single-precision and one double-precision 8062 // operation into two double-precision operations, which might not be 8063 // interesting for all targets, especially GPUs. 8064 if (N1.getOpcode() == ISD::FP_EXTEND) { 8065 SDValue N10 = N1.getOperand(0); 8066 if (N10.getOpcode() == PreferredFusedOpcode) { 8067 SDValue N102 = N10.getOperand(2); 8068 if (N102.getOpcode() == ISD::FMUL) 8069 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 8070 N102.getOperand(0), N102.getOperand(1), 8071 N0); 8072 } 8073 } 8074 } 8075 } 8076 8077 return SDValue(); 8078 } 8079 8080 /// Try to perform FMA combining on a given FSUB node. 8081 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 8082 SDValue N0 = N->getOperand(0); 8083 SDValue N1 = N->getOperand(1); 8084 EVT VT = N->getValueType(0); 8085 SDLoc SL(N); 8086 8087 const TargetOptions &Options = DAG.getTarget().Options; 8088 bool AllowFusion = 8089 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 8090 8091 // Floating-point multiply-add with intermediate rounding. 8092 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 8093 8094 // Floating-point multiply-add without intermediate rounding. 8095 bool HasFMA = 8096 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 8097 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 8098 8099 // No valid opcode, do not combine. 8100 if (!HasFMAD && !HasFMA) 8101 return SDValue(); 8102 8103 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 8104 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 8105 return SDValue(); 8106 8107 // Always prefer FMAD to FMA for precision. 8108 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 8109 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 8110 bool LookThroughFPExt = TLI.isFPExtFree(VT); 8111 8112 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 8113 if (N0.getOpcode() == ISD::FMUL && 8114 (Aggressive || N0->hasOneUse())) { 8115 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8116 N0.getOperand(0), N0.getOperand(1), 8117 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8118 } 8119 8120 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 8121 // Note: Commutes FSUB operands. 8122 if (N1.getOpcode() == ISD::FMUL && 8123 (Aggressive || N1->hasOneUse())) 8124 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8125 DAG.getNode(ISD::FNEG, SL, VT, 8126 N1.getOperand(0)), 8127 N1.getOperand(1), N0); 8128 8129 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 8130 if (N0.getOpcode() == ISD::FNEG && 8131 N0.getOperand(0).getOpcode() == ISD::FMUL && 8132 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 8133 SDValue N00 = N0.getOperand(0).getOperand(0); 8134 SDValue N01 = N0.getOperand(0).getOperand(1); 8135 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8136 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 8137 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8138 } 8139 8140 // Look through FP_EXTEND nodes to do more combining. 8141 if (AllowFusion && LookThroughFPExt) { 8142 // fold (fsub (fpext (fmul x, y)), z) 8143 // -> (fma (fpext x), (fpext y), (fneg z)) 8144 if (N0.getOpcode() == ISD::FP_EXTEND) { 8145 SDValue N00 = N0.getOperand(0); 8146 if (N00.getOpcode() == ISD::FMUL) 8147 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8148 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8149 N00.getOperand(0)), 8150 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8151 N00.getOperand(1)), 8152 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8153 } 8154 8155 // fold (fsub x, (fpext (fmul y, z))) 8156 // -> (fma (fneg (fpext y)), (fpext z), x) 8157 // Note: Commutes FSUB operands. 8158 if (N1.getOpcode() == ISD::FP_EXTEND) { 8159 SDValue N10 = N1.getOperand(0); 8160 if (N10.getOpcode() == ISD::FMUL) 8161 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8162 DAG.getNode(ISD::FNEG, SL, VT, 8163 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8164 N10.getOperand(0))), 8165 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8166 N10.getOperand(1)), 8167 N0); 8168 } 8169 8170 // fold (fsub (fpext (fneg (fmul, x, y))), z) 8171 // -> (fneg (fma (fpext x), (fpext y), z)) 8172 // Note: This could be removed with appropriate canonicalization of the 8173 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8174 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8175 // from implementing the canonicalization in visitFSUB. 8176 if (N0.getOpcode() == ISD::FP_EXTEND) { 8177 SDValue N00 = N0.getOperand(0); 8178 if (N00.getOpcode() == ISD::FNEG) { 8179 SDValue N000 = N00.getOperand(0); 8180 if (N000.getOpcode() == ISD::FMUL) { 8181 return DAG.getNode(ISD::FNEG, SL, VT, 8182 DAG.getNode(PreferredFusedOpcode, SL, VT, 8183 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8184 N000.getOperand(0)), 8185 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8186 N000.getOperand(1)), 8187 N1)); 8188 } 8189 } 8190 } 8191 8192 // fold (fsub (fneg (fpext (fmul, x, y))), z) 8193 // -> (fneg (fma (fpext x)), (fpext y), z) 8194 // Note: This could be removed with appropriate canonicalization of the 8195 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8196 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8197 // from implementing the canonicalization in visitFSUB. 8198 if (N0.getOpcode() == ISD::FNEG) { 8199 SDValue N00 = N0.getOperand(0); 8200 if (N00.getOpcode() == ISD::FP_EXTEND) { 8201 SDValue N000 = N00.getOperand(0); 8202 if (N000.getOpcode() == ISD::FMUL) { 8203 return DAG.getNode(ISD::FNEG, SL, VT, 8204 DAG.getNode(PreferredFusedOpcode, SL, VT, 8205 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8206 N000.getOperand(0)), 8207 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8208 N000.getOperand(1)), 8209 N1)); 8210 } 8211 } 8212 } 8213 8214 } 8215 8216 // More folding opportunities when target permits. 8217 if ((AllowFusion || HasFMAD) && Aggressive) { 8218 // fold (fsub (fma x, y, (fmul u, v)), z) 8219 // -> (fma x, y (fma u, v, (fneg z))) 8220 if (N0.getOpcode() == PreferredFusedOpcode && 8221 N0.getOperand(2).getOpcode() == ISD::FMUL) { 8222 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8223 N0.getOperand(0), N0.getOperand(1), 8224 DAG.getNode(PreferredFusedOpcode, SL, VT, 8225 N0.getOperand(2).getOperand(0), 8226 N0.getOperand(2).getOperand(1), 8227 DAG.getNode(ISD::FNEG, SL, VT, 8228 N1))); 8229 } 8230 8231 // fold (fsub x, (fma y, z, (fmul u, v))) 8232 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 8233 if (N1.getOpcode() == PreferredFusedOpcode && 8234 N1.getOperand(2).getOpcode() == ISD::FMUL) { 8235 SDValue N20 = N1.getOperand(2).getOperand(0); 8236 SDValue N21 = N1.getOperand(2).getOperand(1); 8237 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8238 DAG.getNode(ISD::FNEG, SL, VT, 8239 N1.getOperand(0)), 8240 N1.getOperand(1), 8241 DAG.getNode(PreferredFusedOpcode, SL, VT, 8242 DAG.getNode(ISD::FNEG, SL, VT, N20), 8243 8244 N21, N0)); 8245 } 8246 8247 if (AllowFusion && LookThroughFPExt) { 8248 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 8249 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 8250 if (N0.getOpcode() == PreferredFusedOpcode) { 8251 SDValue N02 = N0.getOperand(2); 8252 if (N02.getOpcode() == ISD::FP_EXTEND) { 8253 SDValue N020 = N02.getOperand(0); 8254 if (N020.getOpcode() == ISD::FMUL) 8255 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8256 N0.getOperand(0), N0.getOperand(1), 8257 DAG.getNode(PreferredFusedOpcode, SL, VT, 8258 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8259 N020.getOperand(0)), 8260 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8261 N020.getOperand(1)), 8262 DAG.getNode(ISD::FNEG, SL, VT, 8263 N1))); 8264 } 8265 } 8266 8267 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 8268 // -> (fma (fpext x), (fpext y), 8269 // (fma (fpext u), (fpext v), (fneg z))) 8270 // FIXME: This turns two single-precision and one double-precision 8271 // operation into two double-precision operations, which might not be 8272 // interesting for all targets, especially GPUs. 8273 if (N0.getOpcode() == ISD::FP_EXTEND) { 8274 SDValue N00 = N0.getOperand(0); 8275 if (N00.getOpcode() == PreferredFusedOpcode) { 8276 SDValue N002 = N00.getOperand(2); 8277 if (N002.getOpcode() == ISD::FMUL) 8278 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8279 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8280 N00.getOperand(0)), 8281 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8282 N00.getOperand(1)), 8283 DAG.getNode(PreferredFusedOpcode, SL, VT, 8284 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8285 N002.getOperand(0)), 8286 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8287 N002.getOperand(1)), 8288 DAG.getNode(ISD::FNEG, SL, VT, 8289 N1))); 8290 } 8291 } 8292 8293 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 8294 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 8295 if (N1.getOpcode() == PreferredFusedOpcode && 8296 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 8297 SDValue N120 = N1.getOperand(2).getOperand(0); 8298 if (N120.getOpcode() == ISD::FMUL) { 8299 SDValue N1200 = N120.getOperand(0); 8300 SDValue N1201 = N120.getOperand(1); 8301 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8302 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 8303 N1.getOperand(1), 8304 DAG.getNode(PreferredFusedOpcode, SL, VT, 8305 DAG.getNode(ISD::FNEG, SL, VT, 8306 DAG.getNode(ISD::FP_EXTEND, SL, 8307 VT, N1200)), 8308 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8309 N1201), 8310 N0)); 8311 } 8312 } 8313 8314 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 8315 // -> (fma (fneg (fpext y)), (fpext z), 8316 // (fma (fneg (fpext u)), (fpext v), x)) 8317 // FIXME: This turns two single-precision and one double-precision 8318 // operation into two double-precision operations, which might not be 8319 // interesting for all targets, especially GPUs. 8320 if (N1.getOpcode() == ISD::FP_EXTEND && 8321 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 8322 SDValue N100 = N1.getOperand(0).getOperand(0); 8323 SDValue N101 = N1.getOperand(0).getOperand(1); 8324 SDValue N102 = N1.getOperand(0).getOperand(2); 8325 if (N102.getOpcode() == ISD::FMUL) { 8326 SDValue N1020 = N102.getOperand(0); 8327 SDValue N1021 = N102.getOperand(1); 8328 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8329 DAG.getNode(ISD::FNEG, SL, VT, 8330 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8331 N100)), 8332 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 8333 DAG.getNode(PreferredFusedOpcode, SL, VT, 8334 DAG.getNode(ISD::FNEG, SL, VT, 8335 DAG.getNode(ISD::FP_EXTEND, SL, 8336 VT, N1020)), 8337 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8338 N1021), 8339 N0)); 8340 } 8341 } 8342 } 8343 } 8344 8345 return SDValue(); 8346 } 8347 8348 /// Try to perform FMA combining on a given FMUL node. 8349 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { 8350 SDValue N0 = N->getOperand(0); 8351 SDValue N1 = N->getOperand(1); 8352 EVT VT = N->getValueType(0); 8353 SDLoc SL(N); 8354 8355 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 8356 8357 const TargetOptions &Options = DAG.getTarget().Options; 8358 bool AllowFusion = 8359 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 8360 8361 // Floating-point multiply-add with intermediate rounding. 8362 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 8363 8364 // Floating-point multiply-add without intermediate rounding. 8365 bool HasFMA = 8366 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 8367 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 8368 8369 // No valid opcode, do not combine. 8370 if (!HasFMAD && !HasFMA) 8371 return SDValue(); 8372 8373 // Always prefer FMAD to FMA for precision. 8374 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 8375 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 8376 8377 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) 8378 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) 8379 auto FuseFADD = [&](SDValue X, SDValue Y) { 8380 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 8381 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8382 if (XC1 && XC1->isExactlyValue(+1.0)) 8383 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8384 if (XC1 && XC1->isExactlyValue(-1.0)) 8385 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8386 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8387 } 8388 return SDValue(); 8389 }; 8390 8391 if (SDValue FMA = FuseFADD(N0, N1)) 8392 return FMA; 8393 if (SDValue FMA = FuseFADD(N1, N0)) 8394 return FMA; 8395 8396 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) 8397 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) 8398 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) 8399 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) 8400 auto FuseFSUB = [&](SDValue X, SDValue Y) { 8401 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 8402 auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); 8403 if (XC0 && XC0->isExactlyValue(+1.0)) 8404 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8405 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8406 Y); 8407 if (XC0 && XC0->isExactlyValue(-1.0)) 8408 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8409 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8410 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8411 8412 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8413 if (XC1 && XC1->isExactlyValue(+1.0)) 8414 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8415 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8416 if (XC1 && XC1->isExactlyValue(-1.0)) 8417 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8418 } 8419 return SDValue(); 8420 }; 8421 8422 if (SDValue FMA = FuseFSUB(N0, N1)) 8423 return FMA; 8424 if (SDValue FMA = FuseFSUB(N1, N0)) 8425 return FMA; 8426 8427 return SDValue(); 8428 } 8429 8430 SDValue DAGCombiner::visitFADD(SDNode *N) { 8431 SDValue N0 = N->getOperand(0); 8432 SDValue N1 = N->getOperand(1); 8433 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 8434 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 8435 EVT VT = N->getValueType(0); 8436 SDLoc DL(N); 8437 const TargetOptions &Options = DAG.getTarget().Options; 8438 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8439 8440 // fold vector ops 8441 if (VT.isVector()) 8442 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8443 return FoldedVOp; 8444 8445 // fold (fadd c1, c2) -> c1 + c2 8446 if (N0CFP && N1CFP) 8447 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 8448 8449 // canonicalize constant to RHS 8450 if (N0CFP && !N1CFP) 8451 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 8452 8453 // fold (fadd A, (fneg B)) -> (fsub A, B) 8454 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8455 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 8456 return DAG.getNode(ISD::FSUB, DL, VT, N0, 8457 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8458 8459 // fold (fadd (fneg A), B) -> (fsub B, A) 8460 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8461 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 8462 return DAG.getNode(ISD::FSUB, DL, VT, N1, 8463 GetNegatedExpression(N0, DAG, LegalOperations), Flags); 8464 8465 // If 'unsafe math' is enabled, fold lots of things. 8466 if (Options.UnsafeFPMath) { 8467 // No FP constant should be created after legalization as Instruction 8468 // Selection pass has a hard time dealing with FP constants. 8469 bool AllowNewConst = (Level < AfterLegalizeDAG); 8470 8471 // fold (fadd A, 0) -> A 8472 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) 8473 if (N1C->isZero()) 8474 return N0; 8475 8476 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 8477 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 8478 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) 8479 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), 8480 DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, 8481 Flags), 8482 Flags); 8483 8484 // If allowed, fold (fadd (fneg x), x) -> 0.0 8485 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 8486 return DAG.getConstantFP(0.0, DL, VT); 8487 8488 // If allowed, fold (fadd x, (fneg x)) -> 0.0 8489 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 8490 return DAG.getConstantFP(0.0, DL, VT); 8491 8492 // We can fold chains of FADD's of the same value into multiplications. 8493 // This transform is not safe in general because we are reducing the number 8494 // of rounding steps. 8495 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 8496 if (N0.getOpcode() == ISD::FMUL) { 8497 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8498 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 8499 8500 // (fadd (fmul x, c), x) -> (fmul x, c+1) 8501 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 8502 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8503 DAG.getConstantFP(1.0, DL, VT), Flags); 8504 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 8505 } 8506 8507 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 8508 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 8509 N1.getOperand(0) == N1.getOperand(1) && 8510 N0.getOperand(0) == N1.getOperand(0)) { 8511 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8512 DAG.getConstantFP(2.0, DL, VT), Flags); 8513 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 8514 } 8515 } 8516 8517 if (N1.getOpcode() == ISD::FMUL) { 8518 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8519 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 8520 8521 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 8522 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 8523 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8524 DAG.getConstantFP(1.0, DL, VT), Flags); 8525 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 8526 } 8527 8528 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 8529 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 8530 N0.getOperand(0) == N0.getOperand(1) && 8531 N1.getOperand(0) == N0.getOperand(0)) { 8532 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8533 DAG.getConstantFP(2.0, DL, VT), Flags); 8534 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 8535 } 8536 } 8537 8538 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 8539 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8540 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 8541 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 8542 (N0.getOperand(0) == N1)) { 8543 return DAG.getNode(ISD::FMUL, DL, VT, 8544 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 8545 } 8546 } 8547 8548 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 8549 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8550 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 8551 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 8552 N1.getOperand(0) == N0) { 8553 return DAG.getNode(ISD::FMUL, DL, VT, 8554 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 8555 } 8556 } 8557 8558 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 8559 if (AllowNewConst && 8560 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 8561 N0.getOperand(0) == N0.getOperand(1) && 8562 N1.getOperand(0) == N1.getOperand(1) && 8563 N0.getOperand(0) == N1.getOperand(0)) { 8564 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 8565 DAG.getConstantFP(4.0, DL, VT), Flags); 8566 } 8567 } 8568 } // enable-unsafe-fp-math 8569 8570 // FADD -> FMA combines: 8571 if (SDValue Fused = visitFADDForFMACombine(N)) { 8572 AddToWorklist(Fused.getNode()); 8573 return Fused; 8574 } 8575 return SDValue(); 8576 } 8577 8578 SDValue DAGCombiner::visitFSUB(SDNode *N) { 8579 SDValue N0 = N->getOperand(0); 8580 SDValue N1 = N->getOperand(1); 8581 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8582 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8583 EVT VT = N->getValueType(0); 8584 SDLoc DL(N); 8585 const TargetOptions &Options = DAG.getTarget().Options; 8586 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8587 8588 // fold vector ops 8589 if (VT.isVector()) 8590 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8591 return FoldedVOp; 8592 8593 // fold (fsub c1, c2) -> c1-c2 8594 if (N0CFP && N1CFP) 8595 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); 8596 8597 // fold (fsub A, (fneg B)) -> (fadd A, B) 8598 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8599 return DAG.getNode(ISD::FADD, DL, VT, N0, 8600 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8601 8602 // If 'unsafe math' is enabled, fold lots of things. 8603 if (Options.UnsafeFPMath) { 8604 // (fsub A, 0) -> A 8605 if (N1CFP && N1CFP->isZero()) 8606 return N0; 8607 8608 // (fsub 0, B) -> -B 8609 if (N0CFP && N0CFP->isZero()) { 8610 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8611 return GetNegatedExpression(N1, DAG, LegalOperations); 8612 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8613 return DAG.getNode(ISD::FNEG, DL, VT, N1); 8614 } 8615 8616 // (fsub x, x) -> 0.0 8617 if (N0 == N1) 8618 return DAG.getConstantFP(0.0f, DL, VT); 8619 8620 // (fsub x, (fadd x, y)) -> (fneg y) 8621 // (fsub x, (fadd y, x)) -> (fneg y) 8622 if (N1.getOpcode() == ISD::FADD) { 8623 SDValue N10 = N1->getOperand(0); 8624 SDValue N11 = N1->getOperand(1); 8625 8626 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 8627 return GetNegatedExpression(N11, DAG, LegalOperations); 8628 8629 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 8630 return GetNegatedExpression(N10, DAG, LegalOperations); 8631 } 8632 } 8633 8634 // FSUB -> FMA combines: 8635 if (SDValue Fused = visitFSUBForFMACombine(N)) { 8636 AddToWorklist(Fused.getNode()); 8637 return Fused; 8638 } 8639 8640 return SDValue(); 8641 } 8642 8643 SDValue DAGCombiner::visitFMUL(SDNode *N) { 8644 SDValue N0 = N->getOperand(0); 8645 SDValue N1 = N->getOperand(1); 8646 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8647 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8648 EVT VT = N->getValueType(0); 8649 SDLoc DL(N); 8650 const TargetOptions &Options = DAG.getTarget().Options; 8651 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8652 8653 // fold vector ops 8654 if (VT.isVector()) { 8655 // This just handles C1 * C2 for vectors. Other vector folds are below. 8656 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8657 return FoldedVOp; 8658 } 8659 8660 // fold (fmul c1, c2) -> c1*c2 8661 if (N0CFP && N1CFP) 8662 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 8663 8664 // canonicalize constant to RHS 8665 if (isConstantFPBuildVectorOrConstantFP(N0) && 8666 !isConstantFPBuildVectorOrConstantFP(N1)) 8667 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 8668 8669 // fold (fmul A, 1.0) -> A 8670 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8671 return N0; 8672 8673 if (Options.UnsafeFPMath) { 8674 // fold (fmul A, 0) -> 0 8675 if (N1CFP && N1CFP->isZero()) 8676 return N1; 8677 8678 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 8679 if (N0.getOpcode() == ISD::FMUL) { 8680 // Fold scalars or any vector constants (not just splats). 8681 // This fold is done in general by InstCombine, but extra fmul insts 8682 // may have been generated during lowering. 8683 SDValue N00 = N0.getOperand(0); 8684 SDValue N01 = N0.getOperand(1); 8685 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 8686 auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); 8687 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 8688 8689 // Check 1: Make sure that the first operand of the inner multiply is NOT 8690 // a constant. Otherwise, we may induce infinite looping. 8691 if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { 8692 // Check 2: Make sure that the second operand of the inner multiply and 8693 // the second operand of the outer multiply are constants. 8694 if ((N1CFP && isConstOrConstSplatFP(N01)) || 8695 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 8696 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 8697 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 8698 } 8699 } 8700 } 8701 8702 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 8703 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 8704 // during an early run of DAGCombiner can prevent folding with fmuls 8705 // inserted during lowering. 8706 if (N0.getOpcode() == ISD::FADD && 8707 (N0.getOperand(0) == N0.getOperand(1)) && 8708 N0.hasOneUse()) { 8709 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 8710 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 8711 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 8712 } 8713 } 8714 8715 // fold (fmul X, 2.0) -> (fadd X, X) 8716 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 8717 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 8718 8719 // fold (fmul X, -1.0) -> (fneg X) 8720 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 8721 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8722 return DAG.getNode(ISD::FNEG, DL, VT, N0); 8723 8724 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 8725 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8726 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8727 // Both can be negated for free, check to see if at least one is cheaper 8728 // negated. 8729 if (LHSNeg == 2 || RHSNeg == 2) 8730 return DAG.getNode(ISD::FMUL, DL, VT, 8731 GetNegatedExpression(N0, DAG, LegalOperations), 8732 GetNegatedExpression(N1, DAG, LegalOperations), 8733 Flags); 8734 } 8735 } 8736 8737 // FMUL -> FMA combines: 8738 if (SDValue Fused = visitFMULForFMACombine(N)) { 8739 AddToWorklist(Fused.getNode()); 8740 return Fused; 8741 } 8742 8743 return SDValue(); 8744 } 8745 8746 SDValue DAGCombiner::visitFMA(SDNode *N) { 8747 SDValue N0 = N->getOperand(0); 8748 SDValue N1 = N->getOperand(1); 8749 SDValue N2 = N->getOperand(2); 8750 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8751 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8752 EVT VT = N->getValueType(0); 8753 SDLoc DL(N); 8754 const TargetOptions &Options = DAG.getTarget().Options; 8755 8756 // Constant fold FMA. 8757 if (isa<ConstantFPSDNode>(N0) && 8758 isa<ConstantFPSDNode>(N1) && 8759 isa<ConstantFPSDNode>(N2)) { 8760 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 8761 } 8762 8763 if (Options.UnsafeFPMath) { 8764 if (N0CFP && N0CFP->isZero()) 8765 return N2; 8766 if (N1CFP && N1CFP->isZero()) 8767 return N2; 8768 } 8769 // TODO: The FMA node should have flags that propagate to these nodes. 8770 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8771 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 8772 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8773 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 8774 8775 // Canonicalize (fma c, x, y) -> (fma x, c, y) 8776 if (isConstantFPBuildVectorOrConstantFP(N0) && 8777 !isConstantFPBuildVectorOrConstantFP(N1)) 8778 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 8779 8780 // TODO: FMA nodes should have flags that propagate to the created nodes. 8781 // For now, create a Flags object for use with all unsafe math transforms. 8782 SDNodeFlags Flags; 8783 Flags.setUnsafeAlgebra(true); 8784 8785 if (Options.UnsafeFPMath) { 8786 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 8787 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 8788 isConstantFPBuildVectorOrConstantFP(N1) && 8789 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 8790 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8791 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), 8792 &Flags), &Flags); 8793 } 8794 8795 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 8796 if (N0.getOpcode() == ISD::FMUL && 8797 isConstantFPBuildVectorOrConstantFP(N1) && 8798 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 8799 return DAG.getNode(ISD::FMA, DL, VT, 8800 N0.getOperand(0), 8801 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), 8802 &Flags), 8803 N2); 8804 } 8805 } 8806 8807 // (fma x, 1, y) -> (fadd x, y) 8808 // (fma x, -1, y) -> (fadd (fneg x), y) 8809 if (N1CFP) { 8810 if (N1CFP->isExactlyValue(1.0)) 8811 // TODO: The FMA node should have flags that propagate to this node. 8812 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 8813 8814 if (N1CFP->isExactlyValue(-1.0) && 8815 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 8816 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 8817 AddToWorklist(RHSNeg.getNode()); 8818 // TODO: The FMA node should have flags that propagate to this node. 8819 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 8820 } 8821 } 8822 8823 if (Options.UnsafeFPMath) { 8824 // (fma x, c, x) -> (fmul x, (c+1)) 8825 if (N1CFP && N0 == N2) { 8826 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8827 DAG.getNode(ISD::FADD, DL, VT, N1, 8828 DAG.getConstantFP(1.0, DL, VT), &Flags), 8829 &Flags); 8830 } 8831 8832 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 8833 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 8834 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8835 DAG.getNode(ISD::FADD, DL, VT, N1, 8836 DAG.getConstantFP(-1.0, DL, VT), &Flags), 8837 &Flags); 8838 } 8839 } 8840 8841 return SDValue(); 8842 } 8843 8844 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 8845 // reciprocal. 8846 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 8847 // Notice that this is not always beneficial. One reason is different target 8848 // may have different costs for FDIV and FMUL, so sometimes the cost of two 8849 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 8850 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 8851 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 8852 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 8853 const SDNodeFlags *Flags = N->getFlags(); 8854 if (!UnsafeMath && !Flags->hasAllowReciprocal()) 8855 return SDValue(); 8856 8857 // Skip if current node is a reciprocal. 8858 SDValue N0 = N->getOperand(0); 8859 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8860 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8861 return SDValue(); 8862 8863 // Exit early if the target does not want this transform or if there can't 8864 // possibly be enough uses of the divisor to make the transform worthwhile. 8865 SDValue N1 = N->getOperand(1); 8866 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 8867 if (!MinUses || N1->use_size() < MinUses) 8868 return SDValue(); 8869 8870 // Find all FDIV users of the same divisor. 8871 // Use a set because duplicates may be present in the user list. 8872 SetVector<SDNode *> Users; 8873 for (auto *U : N1->uses()) { 8874 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 8875 // This division is eligible for optimization only if global unsafe math 8876 // is enabled or if this division allows reciprocal formation. 8877 if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) 8878 Users.insert(U); 8879 } 8880 } 8881 8882 // Now that we have the actual number of divisor uses, make sure it meets 8883 // the minimum threshold specified by the target. 8884 if (Users.size() < MinUses) 8885 return SDValue(); 8886 8887 EVT VT = N->getValueType(0); 8888 SDLoc DL(N); 8889 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 8890 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 8891 8892 // Dividend / Divisor -> Dividend * Reciprocal 8893 for (auto *U : Users) { 8894 SDValue Dividend = U->getOperand(0); 8895 if (Dividend != FPOne) { 8896 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 8897 Reciprocal, Flags); 8898 CombineTo(U, NewNode); 8899 } else if (U != Reciprocal.getNode()) { 8900 // In the absence of fast-math-flags, this user node is always the 8901 // same node as Reciprocal, but with FMF they may be different nodes. 8902 CombineTo(U, Reciprocal); 8903 } 8904 } 8905 return SDValue(N, 0); // N was replaced. 8906 } 8907 8908 SDValue DAGCombiner::visitFDIV(SDNode *N) { 8909 SDValue N0 = N->getOperand(0); 8910 SDValue N1 = N->getOperand(1); 8911 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8912 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8913 EVT VT = N->getValueType(0); 8914 SDLoc DL(N); 8915 const TargetOptions &Options = DAG.getTarget().Options; 8916 SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8917 8918 // fold vector ops 8919 if (VT.isVector()) 8920 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8921 return FoldedVOp; 8922 8923 // fold (fdiv c1, c2) -> c1/c2 8924 if (N0CFP && N1CFP) 8925 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 8926 8927 if (Options.UnsafeFPMath) { 8928 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 8929 if (N1CFP) { 8930 // Compute the reciprocal 1.0 / c2. 8931 const APFloat &N1APF = N1CFP->getValueAPF(); 8932 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 8933 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 8934 // Only do the transform if the reciprocal is a legal fp immediate that 8935 // isn't too nasty (eg NaN, denormal, ...). 8936 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 8937 (!LegalOperations || 8938 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 8939 // backend)... we should handle this gracefully after Legalize. 8940 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 8941 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 8942 TLI.isFPImmLegal(Recip, VT))) 8943 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8944 DAG.getConstantFP(Recip, DL, VT), Flags); 8945 } 8946 8947 // If this FDIV is part of a reciprocal square root, it may be folded 8948 // into a target-specific square root estimate instruction. 8949 if (N1.getOpcode() == ISD::FSQRT) { 8950 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) { 8951 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8952 } 8953 } else if (N1.getOpcode() == ISD::FP_EXTEND && 8954 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8955 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8956 Flags)) { 8957 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 8958 AddToWorklist(RV.getNode()); 8959 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8960 } 8961 } else if (N1.getOpcode() == ISD::FP_ROUND && 8962 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8963 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8964 Flags)) { 8965 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 8966 AddToWorklist(RV.getNode()); 8967 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8968 } 8969 } else if (N1.getOpcode() == ISD::FMUL) { 8970 // Look through an FMUL. Even though this won't remove the FDIV directly, 8971 // it's still worthwhile to get rid of the FSQRT if possible. 8972 SDValue SqrtOp; 8973 SDValue OtherOp; 8974 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8975 SqrtOp = N1.getOperand(0); 8976 OtherOp = N1.getOperand(1); 8977 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 8978 SqrtOp = N1.getOperand(1); 8979 OtherOp = N1.getOperand(0); 8980 } 8981 if (SqrtOp.getNode()) { 8982 // We found a FSQRT, so try to make this fold: 8983 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 8984 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 8985 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 8986 AddToWorklist(RV.getNode()); 8987 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8988 } 8989 } 8990 } 8991 8992 // Fold into a reciprocal estimate and multiply instead of a real divide. 8993 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 8994 AddToWorklist(RV.getNode()); 8995 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8996 } 8997 } 8998 8999 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 9000 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 9001 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 9002 // Both can be negated for free, check to see if at least one is cheaper 9003 // negated. 9004 if (LHSNeg == 2 || RHSNeg == 2) 9005 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 9006 GetNegatedExpression(N0, DAG, LegalOperations), 9007 GetNegatedExpression(N1, DAG, LegalOperations), 9008 Flags); 9009 } 9010 } 9011 9012 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) 9013 return CombineRepeatedDivisors; 9014 9015 return SDValue(); 9016 } 9017 9018 SDValue DAGCombiner::visitFREM(SDNode *N) { 9019 SDValue N0 = N->getOperand(0); 9020 SDValue N1 = N->getOperand(1); 9021 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9022 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 9023 EVT VT = N->getValueType(0); 9024 9025 // fold (frem c1, c2) -> fmod(c1,c2) 9026 if (N0CFP && N1CFP) 9027 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, 9028 &cast<BinaryWithFlagsSDNode>(N)->Flags); 9029 9030 return SDValue(); 9031 } 9032 9033 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 9034 if (!DAG.getTarget().Options.UnsafeFPMath) 9035 return SDValue(); 9036 9037 SDValue N0 = N->getOperand(0); 9038 if (TLI.isFsqrtCheap(N0, DAG)) 9039 return SDValue(); 9040 9041 // TODO: FSQRT nodes should have flags that propagate to the created nodes. 9042 // For now, create a Flags object for use with all unsafe math transforms. 9043 SDNodeFlags Flags; 9044 Flags.setUnsafeAlgebra(true); 9045 return buildSqrtEstimate(N0, &Flags); 9046 } 9047 9048 /// copysign(x, fp_extend(y)) -> copysign(x, y) 9049 /// copysign(x, fp_round(y)) -> copysign(x, y) 9050 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 9051 SDValue N1 = N->getOperand(1); 9052 if ((N1.getOpcode() == ISD::FP_EXTEND || 9053 N1.getOpcode() == ISD::FP_ROUND)) { 9054 // Do not optimize out type conversion of f128 type yet. 9055 // For some targets like x86_64, configuration is changed to keep one f128 9056 // value in one SSE register, but instruction selection cannot handle 9057 // FCOPYSIGN on SSE registers yet. 9058 EVT N1VT = N1->getValueType(0); 9059 EVT N1Op0VT = N1->getOperand(0)->getValueType(0); 9060 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 9061 } 9062 return false; 9063 } 9064 9065 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 9066 SDValue N0 = N->getOperand(0); 9067 SDValue N1 = N->getOperand(1); 9068 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9069 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 9070 EVT VT = N->getValueType(0); 9071 9072 if (N0CFP && N1CFP) // Constant fold 9073 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 9074 9075 if (N1CFP) { 9076 const APFloat &V = N1CFP->getValueAPF(); 9077 // copysign(x, c1) -> fabs(x) iff ispos(c1) 9078 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 9079 if (!V.isNegative()) { 9080 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 9081 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9082 } else { 9083 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 9084 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9085 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 9086 } 9087 } 9088 9089 // copysign(fabs(x), y) -> copysign(x, y) 9090 // copysign(fneg(x), y) -> copysign(x, y) 9091 // copysign(copysign(x,z), y) -> copysign(x, y) 9092 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 9093 N0.getOpcode() == ISD::FCOPYSIGN) 9094 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 9095 9096 // copysign(x, abs(y)) -> abs(x) 9097 if (N1.getOpcode() == ISD::FABS) 9098 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9099 9100 // copysign(x, copysign(y,z)) -> copysign(x, z) 9101 if (N1.getOpcode() == ISD::FCOPYSIGN) 9102 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 9103 9104 // copysign(x, fp_extend(y)) -> copysign(x, y) 9105 // copysign(x, fp_round(y)) -> copysign(x, y) 9106 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 9107 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 9108 9109 return SDValue(); 9110 } 9111 9112 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 9113 SDValue N0 = N->getOperand(0); 9114 EVT VT = N->getValueType(0); 9115 EVT OpVT = N0.getValueType(); 9116 9117 // fold (sint_to_fp c1) -> c1fp 9118 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 9119 // ...but only if the target supports immediate floating-point values 9120 (!LegalOperations || 9121 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 9122 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 9123 9124 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 9125 // but UINT_TO_FP is legal on this target, try to convert. 9126 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 9127 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 9128 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 9129 if (DAG.SignBitIsZero(N0)) 9130 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 9131 } 9132 9133 // The next optimizations are desirable only if SELECT_CC can be lowered. 9134 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9135 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9136 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 9137 !VT.isVector() && 9138 (!LegalOperations || 9139 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9140 SDLoc DL(N); 9141 SDValue Ops[] = 9142 { N0.getOperand(0), N0.getOperand(1), 9143 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9144 N0.getOperand(2) }; 9145 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9146 } 9147 9148 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 9149 // (select_cc x, y, 1.0, 0.0,, cc) 9150 if (N0.getOpcode() == ISD::ZERO_EXTEND && 9151 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 9152 (!LegalOperations || 9153 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9154 SDLoc DL(N); 9155 SDValue Ops[] = 9156 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 9157 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9158 N0.getOperand(0).getOperand(2) }; 9159 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9160 } 9161 } 9162 9163 return SDValue(); 9164 } 9165 9166 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 9167 SDValue N0 = N->getOperand(0); 9168 EVT VT = N->getValueType(0); 9169 EVT OpVT = N0.getValueType(); 9170 9171 // fold (uint_to_fp c1) -> c1fp 9172 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 9173 // ...but only if the target supports immediate floating-point values 9174 (!LegalOperations || 9175 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 9176 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 9177 9178 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 9179 // but SINT_TO_FP is legal on this target, try to convert. 9180 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 9181 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 9182 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 9183 if (DAG.SignBitIsZero(N0)) 9184 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 9185 } 9186 9187 // The next optimizations are desirable only if SELECT_CC can be lowered. 9188 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9189 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9190 9191 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 9192 (!LegalOperations || 9193 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9194 SDLoc DL(N); 9195 SDValue Ops[] = 9196 { N0.getOperand(0), N0.getOperand(1), 9197 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9198 N0.getOperand(2) }; 9199 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9200 } 9201 } 9202 9203 return SDValue(); 9204 } 9205 9206 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 9207 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 9208 SDValue N0 = N->getOperand(0); 9209 EVT VT = N->getValueType(0); 9210 9211 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 9212 return SDValue(); 9213 9214 SDValue Src = N0.getOperand(0); 9215 EVT SrcVT = Src.getValueType(); 9216 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 9217 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 9218 9219 // We can safely assume the conversion won't overflow the output range, 9220 // because (for example) (uint8_t)18293.f is undefined behavior. 9221 9222 // Since we can assume the conversion won't overflow, our decision as to 9223 // whether the input will fit in the float should depend on the minimum 9224 // of the input range and output range. 9225 9226 // This means this is also safe for a signed input and unsigned output, since 9227 // a negative input would lead to undefined behavior. 9228 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 9229 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 9230 unsigned ActualSize = std::min(InputSize, OutputSize); 9231 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 9232 9233 // We can only fold away the float conversion if the input range can be 9234 // represented exactly in the float range. 9235 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 9236 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 9237 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 9238 : ISD::ZERO_EXTEND; 9239 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 9240 } 9241 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 9242 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 9243 return DAG.getBitcast(VT, Src); 9244 } 9245 return SDValue(); 9246 } 9247 9248 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 9249 SDValue N0 = N->getOperand(0); 9250 EVT VT = N->getValueType(0); 9251 9252 // fold (fp_to_sint c1fp) -> c1 9253 if (isConstantFPBuildVectorOrConstantFP(N0)) 9254 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 9255 9256 return FoldIntToFPToInt(N, DAG); 9257 } 9258 9259 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 9260 SDValue N0 = N->getOperand(0); 9261 EVT VT = N->getValueType(0); 9262 9263 // fold (fp_to_uint c1fp) -> c1 9264 if (isConstantFPBuildVectorOrConstantFP(N0)) 9265 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 9266 9267 return FoldIntToFPToInt(N, DAG); 9268 } 9269 9270 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 9271 SDValue N0 = N->getOperand(0); 9272 SDValue N1 = N->getOperand(1); 9273 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9274 EVT VT = N->getValueType(0); 9275 9276 // fold (fp_round c1fp) -> c1fp 9277 if (N0CFP) 9278 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 9279 9280 // fold (fp_round (fp_extend x)) -> x 9281 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 9282 return N0.getOperand(0); 9283 9284 // fold (fp_round (fp_round x)) -> (fp_round x) 9285 if (N0.getOpcode() == ISD::FP_ROUND) { 9286 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 9287 const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; 9288 9289 // Skip this folding if it results in an fp_round from f80 to f16. 9290 // 9291 // f80 to f16 always generates an expensive (and as yet, unimplemented) 9292 // libcall to __truncxfhf2 instead of selecting native f16 conversion 9293 // instructions from f32 or f64. Moreover, the first (value-preserving) 9294 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 9295 // x86. 9296 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 9297 return SDValue(); 9298 9299 // If the first fp_round isn't a value preserving truncation, it might 9300 // introduce a tie in the second fp_round, that wouldn't occur in the 9301 // single-step fp_round we want to fold to. 9302 // In other words, double rounding isn't the same as rounding. 9303 // Also, this is a value preserving truncation iff both fp_round's are. 9304 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 9305 SDLoc DL(N); 9306 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 9307 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 9308 } 9309 } 9310 9311 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 9312 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 9313 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 9314 N0.getOperand(0), N1); 9315 AddToWorklist(Tmp.getNode()); 9316 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 9317 Tmp, N0.getOperand(1)); 9318 } 9319 9320 return SDValue(); 9321 } 9322 9323 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 9324 SDValue N0 = N->getOperand(0); 9325 EVT VT = N->getValueType(0); 9326 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 9327 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9328 9329 // fold (fp_round_inreg c1fp) -> c1fp 9330 if (N0CFP && isTypeLegal(EVT)) { 9331 SDLoc DL(N); 9332 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 9333 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 9334 } 9335 9336 return SDValue(); 9337 } 9338 9339 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 9340 SDValue N0 = N->getOperand(0); 9341 EVT VT = N->getValueType(0); 9342 9343 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 9344 if (N->hasOneUse() && 9345 N->use_begin()->getOpcode() == ISD::FP_ROUND) 9346 return SDValue(); 9347 9348 // fold (fp_extend c1fp) -> c1fp 9349 if (isConstantFPBuildVectorOrConstantFP(N0)) 9350 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 9351 9352 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 9353 if (N0.getOpcode() == ISD::FP16_TO_FP && 9354 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 9355 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 9356 9357 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 9358 // value of X. 9359 if (N0.getOpcode() == ISD::FP_ROUND 9360 && N0.getNode()->getConstantOperandVal(1) == 1) { 9361 SDValue In = N0.getOperand(0); 9362 if (In.getValueType() == VT) return In; 9363 if (VT.bitsLT(In.getValueType())) 9364 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 9365 In, N0.getOperand(1)); 9366 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 9367 } 9368 9369 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 9370 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 9371 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 9372 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9373 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 9374 LN0->getChain(), 9375 LN0->getBasePtr(), N0.getValueType(), 9376 LN0->getMemOperand()); 9377 CombineTo(N, ExtLoad); 9378 CombineTo(N0.getNode(), 9379 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 9380 N0.getValueType(), ExtLoad, 9381 DAG.getIntPtrConstant(1, SDLoc(N0))), 9382 ExtLoad.getValue(1)); 9383 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9384 } 9385 9386 return SDValue(); 9387 } 9388 9389 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 9390 SDValue N0 = N->getOperand(0); 9391 EVT VT = N->getValueType(0); 9392 9393 // fold (fceil c1) -> fceil(c1) 9394 if (isConstantFPBuildVectorOrConstantFP(N0)) 9395 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 9396 9397 return SDValue(); 9398 } 9399 9400 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 9401 SDValue N0 = N->getOperand(0); 9402 EVT VT = N->getValueType(0); 9403 9404 // fold (ftrunc c1) -> ftrunc(c1) 9405 if (isConstantFPBuildVectorOrConstantFP(N0)) 9406 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 9407 9408 return SDValue(); 9409 } 9410 9411 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 9412 SDValue N0 = N->getOperand(0); 9413 EVT VT = N->getValueType(0); 9414 9415 // fold (ffloor c1) -> ffloor(c1) 9416 if (isConstantFPBuildVectorOrConstantFP(N0)) 9417 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 9418 9419 return SDValue(); 9420 } 9421 9422 // FIXME: FNEG and FABS have a lot in common; refactor. 9423 SDValue DAGCombiner::visitFNEG(SDNode *N) { 9424 SDValue N0 = N->getOperand(0); 9425 EVT VT = N->getValueType(0); 9426 9427 // Constant fold FNEG. 9428 if (isConstantFPBuildVectorOrConstantFP(N0)) 9429 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 9430 9431 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 9432 &DAG.getTarget().Options)) 9433 return GetNegatedExpression(N0, DAG, LegalOperations); 9434 9435 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 9436 // constant pool values. 9437 if (!TLI.isFNegFree(VT) && 9438 N0.getOpcode() == ISD::BITCAST && 9439 N0.getNode()->hasOneUse()) { 9440 SDValue Int = N0.getOperand(0); 9441 EVT IntVT = Int.getValueType(); 9442 if (IntVT.isInteger() && !IntVT.isVector()) { 9443 APInt SignMask; 9444 if (N0.getValueType().isVector()) { 9445 // For a vector, get a mask such as 0x80... per scalar element 9446 // and splat it. 9447 SignMask = APInt::getSignBit(N0.getScalarValueSizeInBits()); 9448 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9449 } else { 9450 // For a scalar, just generate 0x80... 9451 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 9452 } 9453 SDLoc DL0(N0); 9454 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 9455 DAG.getConstant(SignMask, DL0, IntVT)); 9456 AddToWorklist(Int.getNode()); 9457 return DAG.getBitcast(VT, Int); 9458 } 9459 } 9460 9461 // (fneg (fmul c, x)) -> (fmul -c, x) 9462 if (N0.getOpcode() == ISD::FMUL && 9463 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 9464 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9465 if (CFP1) { 9466 APFloat CVal = CFP1->getValueAPF(); 9467 CVal.changeSign(); 9468 if (Level >= AfterLegalizeDAG && 9469 (TLI.isFPImmLegal(CVal, VT) || 9470 TLI.isOperationLegal(ISD::ConstantFP, VT))) 9471 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 9472 DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9473 N0.getOperand(1)), 9474 &cast<BinaryWithFlagsSDNode>(N0)->Flags); 9475 } 9476 } 9477 9478 return SDValue(); 9479 } 9480 9481 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 9482 SDValue N0 = N->getOperand(0); 9483 SDValue N1 = N->getOperand(1); 9484 EVT VT = N->getValueType(0); 9485 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9486 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9487 9488 if (N0CFP && N1CFP) { 9489 const APFloat &C0 = N0CFP->getValueAPF(); 9490 const APFloat &C1 = N1CFP->getValueAPF(); 9491 return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); 9492 } 9493 9494 // Canonicalize to constant on RHS. 9495 if (isConstantFPBuildVectorOrConstantFP(N0) && 9496 !isConstantFPBuildVectorOrConstantFP(N1)) 9497 return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); 9498 9499 return SDValue(); 9500 } 9501 9502 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 9503 SDValue N0 = N->getOperand(0); 9504 SDValue N1 = N->getOperand(1); 9505 EVT VT = N->getValueType(0); 9506 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9507 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9508 9509 if (N0CFP && N1CFP) { 9510 const APFloat &C0 = N0CFP->getValueAPF(); 9511 const APFloat &C1 = N1CFP->getValueAPF(); 9512 return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); 9513 } 9514 9515 // Canonicalize to constant on RHS. 9516 if (isConstantFPBuildVectorOrConstantFP(N0) && 9517 !isConstantFPBuildVectorOrConstantFP(N1)) 9518 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); 9519 9520 return SDValue(); 9521 } 9522 9523 SDValue DAGCombiner::visitFABS(SDNode *N) { 9524 SDValue N0 = N->getOperand(0); 9525 EVT VT = N->getValueType(0); 9526 9527 // fold (fabs c1) -> fabs(c1) 9528 if (isConstantFPBuildVectorOrConstantFP(N0)) 9529 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9530 9531 // fold (fabs (fabs x)) -> (fabs x) 9532 if (N0.getOpcode() == ISD::FABS) 9533 return N->getOperand(0); 9534 9535 // fold (fabs (fneg x)) -> (fabs x) 9536 // fold (fabs (fcopysign x, y)) -> (fabs x) 9537 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 9538 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 9539 9540 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 9541 // constant pool values. 9542 if (!TLI.isFAbsFree(VT) && 9543 N0.getOpcode() == ISD::BITCAST && 9544 N0.getNode()->hasOneUse()) { 9545 SDValue Int = N0.getOperand(0); 9546 EVT IntVT = Int.getValueType(); 9547 if (IntVT.isInteger() && !IntVT.isVector()) { 9548 APInt SignMask; 9549 if (N0.getValueType().isVector()) { 9550 // For a vector, get a mask such as 0x7f... per scalar element 9551 // and splat it. 9552 SignMask = ~APInt::getSignBit(N0.getScalarValueSizeInBits()); 9553 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9554 } else { 9555 // For a scalar, just generate 0x7f... 9556 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 9557 } 9558 SDLoc DL(N0); 9559 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 9560 DAG.getConstant(SignMask, DL, IntVT)); 9561 AddToWorklist(Int.getNode()); 9562 return DAG.getBitcast(N->getValueType(0), Int); 9563 } 9564 } 9565 9566 return SDValue(); 9567 } 9568 9569 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 9570 SDValue Chain = N->getOperand(0); 9571 SDValue N1 = N->getOperand(1); 9572 SDValue N2 = N->getOperand(2); 9573 9574 // If N is a constant we could fold this into a fallthrough or unconditional 9575 // branch. However that doesn't happen very often in normal code, because 9576 // Instcombine/SimplifyCFG should have handled the available opportunities. 9577 // If we did this folding here, it would be necessary to update the 9578 // MachineBasicBlock CFG, which is awkward. 9579 9580 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 9581 // on the target. 9582 if (N1.getOpcode() == ISD::SETCC && 9583 TLI.isOperationLegalOrCustom(ISD::BR_CC, 9584 N1.getOperand(0).getValueType())) { 9585 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9586 Chain, N1.getOperand(2), 9587 N1.getOperand(0), N1.getOperand(1), N2); 9588 } 9589 9590 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 9591 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 9592 (N1.getOperand(0).hasOneUse() && 9593 N1.getOperand(0).getOpcode() == ISD::SRL))) { 9594 SDNode *Trunc = nullptr; 9595 if (N1.getOpcode() == ISD::TRUNCATE) { 9596 // Look pass the truncate. 9597 Trunc = N1.getNode(); 9598 N1 = N1.getOperand(0); 9599 } 9600 9601 // Match this pattern so that we can generate simpler code: 9602 // 9603 // %a = ... 9604 // %b = and i32 %a, 2 9605 // %c = srl i32 %b, 1 9606 // brcond i32 %c ... 9607 // 9608 // into 9609 // 9610 // %a = ... 9611 // %b = and i32 %a, 2 9612 // %c = setcc eq %b, 0 9613 // brcond %c ... 9614 // 9615 // This applies only when the AND constant value has one bit set and the 9616 // SRL constant is equal to the log2 of the AND constant. The back-end is 9617 // smart enough to convert the result into a TEST/JMP sequence. 9618 SDValue Op0 = N1.getOperand(0); 9619 SDValue Op1 = N1.getOperand(1); 9620 9621 if (Op0.getOpcode() == ISD::AND && 9622 Op1.getOpcode() == ISD::Constant) { 9623 SDValue AndOp1 = Op0.getOperand(1); 9624 9625 if (AndOp1.getOpcode() == ISD::Constant) { 9626 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 9627 9628 if (AndConst.isPowerOf2() && 9629 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 9630 SDLoc DL(N); 9631 SDValue SetCC = 9632 DAG.getSetCC(DL, 9633 getSetCCResultType(Op0.getValueType()), 9634 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 9635 ISD::SETNE); 9636 9637 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, 9638 MVT::Other, Chain, SetCC, N2); 9639 // Don't add the new BRCond into the worklist or else SimplifySelectCC 9640 // will convert it back to (X & C1) >> C2. 9641 CombineTo(N, NewBRCond, false); 9642 // Truncate is dead. 9643 if (Trunc) 9644 deleteAndRecombine(Trunc); 9645 // Replace the uses of SRL with SETCC 9646 WorklistRemover DeadNodes(*this); 9647 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9648 deleteAndRecombine(N1.getNode()); 9649 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9650 } 9651 } 9652 } 9653 9654 if (Trunc) 9655 // Restore N1 if the above transformation doesn't match. 9656 N1 = N->getOperand(1); 9657 } 9658 9659 // Transform br(xor(x, y)) -> br(x != y) 9660 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 9661 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 9662 SDNode *TheXor = N1.getNode(); 9663 SDValue Op0 = TheXor->getOperand(0); 9664 SDValue Op1 = TheXor->getOperand(1); 9665 if (Op0.getOpcode() == Op1.getOpcode()) { 9666 // Avoid missing important xor optimizations. 9667 if (SDValue Tmp = visitXOR(TheXor)) { 9668 if (Tmp.getNode() != TheXor) { 9669 DEBUG(dbgs() << "\nReplacing.8 "; 9670 TheXor->dump(&DAG); 9671 dbgs() << "\nWith: "; 9672 Tmp.getNode()->dump(&DAG); 9673 dbgs() << '\n'); 9674 WorklistRemover DeadNodes(*this); 9675 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 9676 deleteAndRecombine(TheXor); 9677 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9678 MVT::Other, Chain, Tmp, N2); 9679 } 9680 9681 // visitXOR has changed XOR's operands or replaced the XOR completely, 9682 // bail out. 9683 return SDValue(N, 0); 9684 } 9685 } 9686 9687 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 9688 bool Equal = false; 9689 if (isOneConstant(Op0) && Op0.hasOneUse() && 9690 Op0.getOpcode() == ISD::XOR) { 9691 TheXor = Op0.getNode(); 9692 Equal = true; 9693 } 9694 9695 EVT SetCCVT = N1.getValueType(); 9696 if (LegalTypes) 9697 SetCCVT = getSetCCResultType(SetCCVT); 9698 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 9699 SetCCVT, 9700 Op0, Op1, 9701 Equal ? ISD::SETEQ : ISD::SETNE); 9702 // Replace the uses of XOR with SETCC 9703 WorklistRemover DeadNodes(*this); 9704 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9705 deleteAndRecombine(N1.getNode()); 9706 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9707 MVT::Other, Chain, SetCC, N2); 9708 } 9709 } 9710 9711 return SDValue(); 9712 } 9713 9714 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 9715 // 9716 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 9717 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 9718 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 9719 9720 // If N is a constant we could fold this into a fallthrough or unconditional 9721 // branch. However that doesn't happen very often in normal code, because 9722 // Instcombine/SimplifyCFG should have handled the available opportunities. 9723 // If we did this folding here, it would be necessary to update the 9724 // MachineBasicBlock CFG, which is awkward. 9725 9726 // Use SimplifySetCC to simplify SETCC's. 9727 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 9728 CondLHS, CondRHS, CC->get(), SDLoc(N), 9729 false); 9730 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 9731 9732 // fold to a simpler setcc 9733 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 9734 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9735 N->getOperand(0), Simp.getOperand(2), 9736 Simp.getOperand(0), Simp.getOperand(1), 9737 N->getOperand(4)); 9738 9739 return SDValue(); 9740 } 9741 9742 /// Return true if 'Use' is a load or a store that uses N as its base pointer 9743 /// and that N may be folded in the load / store addressing mode. 9744 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 9745 SelectionDAG &DAG, 9746 const TargetLowering &TLI) { 9747 EVT VT; 9748 unsigned AS; 9749 9750 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 9751 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 9752 return false; 9753 VT = LD->getMemoryVT(); 9754 AS = LD->getAddressSpace(); 9755 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 9756 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 9757 return false; 9758 VT = ST->getMemoryVT(); 9759 AS = ST->getAddressSpace(); 9760 } else 9761 return false; 9762 9763 TargetLowering::AddrMode AM; 9764 if (N->getOpcode() == ISD::ADD) { 9765 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9766 if (Offset) 9767 // [reg +/- imm] 9768 AM.BaseOffs = Offset->getSExtValue(); 9769 else 9770 // [reg +/- reg] 9771 AM.Scale = 1; 9772 } else if (N->getOpcode() == ISD::SUB) { 9773 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9774 if (Offset) 9775 // [reg +/- imm] 9776 AM.BaseOffs = -Offset->getSExtValue(); 9777 else 9778 // [reg +/- reg] 9779 AM.Scale = 1; 9780 } else 9781 return false; 9782 9783 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 9784 VT.getTypeForEVT(*DAG.getContext()), AS); 9785 } 9786 9787 /// Try turning a load/store into a pre-indexed load/store when the base 9788 /// pointer is an add or subtract and it has other uses besides the load/store. 9789 /// After the transformation, the new indexed load/store has effectively folded 9790 /// the add/subtract in and all of its other uses are redirected to the 9791 /// new load/store. 9792 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 9793 if (Level < AfterLegalizeDAG) 9794 return false; 9795 9796 bool isLoad = true; 9797 SDValue Ptr; 9798 EVT VT; 9799 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9800 if (LD->isIndexed()) 9801 return false; 9802 VT = LD->getMemoryVT(); 9803 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 9804 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 9805 return false; 9806 Ptr = LD->getBasePtr(); 9807 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9808 if (ST->isIndexed()) 9809 return false; 9810 VT = ST->getMemoryVT(); 9811 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 9812 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 9813 return false; 9814 Ptr = ST->getBasePtr(); 9815 isLoad = false; 9816 } else { 9817 return false; 9818 } 9819 9820 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 9821 // out. There is no reason to make this a preinc/predec. 9822 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 9823 Ptr.getNode()->hasOneUse()) 9824 return false; 9825 9826 // Ask the target to do addressing mode selection. 9827 SDValue BasePtr; 9828 SDValue Offset; 9829 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9830 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 9831 return false; 9832 9833 // Backends without true r+i pre-indexed forms may need to pass a 9834 // constant base with a variable offset so that constant coercion 9835 // will work with the patterns in canonical form. 9836 bool Swapped = false; 9837 if (isa<ConstantSDNode>(BasePtr)) { 9838 std::swap(BasePtr, Offset); 9839 Swapped = true; 9840 } 9841 9842 // Don't create a indexed load / store with zero offset. 9843 if (isNullConstant(Offset)) 9844 return false; 9845 9846 // Try turning it into a pre-indexed load / store except when: 9847 // 1) The new base ptr is a frame index. 9848 // 2) If N is a store and the new base ptr is either the same as or is a 9849 // predecessor of the value being stored. 9850 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 9851 // that would create a cycle. 9852 // 4) All uses are load / store ops that use it as old base ptr. 9853 9854 // Check #1. Preinc'ing a frame index would require copying the stack pointer 9855 // (plus the implicit offset) to a register to preinc anyway. 9856 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9857 return false; 9858 9859 // Check #2. 9860 if (!isLoad) { 9861 SDValue Val = cast<StoreSDNode>(N)->getValue(); 9862 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 9863 return false; 9864 } 9865 9866 // Caches for hasPredecessorHelper. 9867 SmallPtrSet<const SDNode *, 32> Visited; 9868 SmallVector<const SDNode *, 16> Worklist; 9869 Worklist.push_back(N); 9870 9871 // If the offset is a constant, there may be other adds of constants that 9872 // can be folded with this one. We should do this to avoid having to keep 9873 // a copy of the original base pointer. 9874 SmallVector<SDNode *, 16> OtherUses; 9875 if (isa<ConstantSDNode>(Offset)) 9876 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 9877 UE = BasePtr.getNode()->use_end(); 9878 UI != UE; ++UI) { 9879 SDUse &Use = UI.getUse(); 9880 // Skip the use that is Ptr and uses of other results from BasePtr's 9881 // node (important for nodes that return multiple results). 9882 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 9883 continue; 9884 9885 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 9886 continue; 9887 9888 if (Use.getUser()->getOpcode() != ISD::ADD && 9889 Use.getUser()->getOpcode() != ISD::SUB) { 9890 OtherUses.clear(); 9891 break; 9892 } 9893 9894 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 9895 if (!isa<ConstantSDNode>(Op1)) { 9896 OtherUses.clear(); 9897 break; 9898 } 9899 9900 // FIXME: In some cases, we can be smarter about this. 9901 if (Op1.getValueType() != Offset.getValueType()) { 9902 OtherUses.clear(); 9903 break; 9904 } 9905 9906 OtherUses.push_back(Use.getUser()); 9907 } 9908 9909 if (Swapped) 9910 std::swap(BasePtr, Offset); 9911 9912 // Now check for #3 and #4. 9913 bool RealUse = false; 9914 9915 for (SDNode *Use : Ptr.getNode()->uses()) { 9916 if (Use == N) 9917 continue; 9918 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 9919 return false; 9920 9921 // If Ptr may be folded in addressing mode of other use, then it's 9922 // not profitable to do this transformation. 9923 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 9924 RealUse = true; 9925 } 9926 9927 if (!RealUse) 9928 return false; 9929 9930 SDValue Result; 9931 if (isLoad) 9932 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9933 BasePtr, Offset, AM); 9934 else 9935 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9936 BasePtr, Offset, AM); 9937 ++PreIndexedNodes; 9938 ++NodesCombined; 9939 DEBUG(dbgs() << "\nReplacing.4 "; 9940 N->dump(&DAG); 9941 dbgs() << "\nWith: "; 9942 Result.getNode()->dump(&DAG); 9943 dbgs() << '\n'); 9944 WorklistRemover DeadNodes(*this); 9945 if (isLoad) { 9946 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9947 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9948 } else { 9949 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9950 } 9951 9952 // Finally, since the node is now dead, remove it from the graph. 9953 deleteAndRecombine(N); 9954 9955 if (Swapped) 9956 std::swap(BasePtr, Offset); 9957 9958 // Replace other uses of BasePtr that can be updated to use Ptr 9959 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 9960 unsigned OffsetIdx = 1; 9961 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 9962 OffsetIdx = 0; 9963 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 9964 BasePtr.getNode() && "Expected BasePtr operand"); 9965 9966 // We need to replace ptr0 in the following expression: 9967 // x0 * offset0 + y0 * ptr0 = t0 9968 // knowing that 9969 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 9970 // 9971 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 9972 // indexed load/store and the expresion that needs to be re-written. 9973 // 9974 // Therefore, we have: 9975 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 9976 9977 ConstantSDNode *CN = 9978 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 9979 int X0, X1, Y0, Y1; 9980 const APInt &Offset0 = CN->getAPIntValue(); 9981 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 9982 9983 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 9984 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 9985 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 9986 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 9987 9988 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 9989 9990 APInt CNV = Offset0; 9991 if (X0 < 0) CNV = -CNV; 9992 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 9993 else CNV = CNV - Offset1; 9994 9995 SDLoc DL(OtherUses[i]); 9996 9997 // We can now generate the new expression. 9998 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 9999 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 10000 10001 SDValue NewUse = DAG.getNode(Opcode, 10002 DL, 10003 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 10004 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 10005 deleteAndRecombine(OtherUses[i]); 10006 } 10007 10008 // Replace the uses of Ptr with uses of the updated base value. 10009 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 10010 deleteAndRecombine(Ptr.getNode()); 10011 10012 return true; 10013 } 10014 10015 /// Try to combine a load/store with a add/sub of the base pointer node into a 10016 /// post-indexed load/store. The transformation folded the add/subtract into the 10017 /// new indexed load/store effectively and all of its uses are redirected to the 10018 /// new load/store. 10019 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 10020 if (Level < AfterLegalizeDAG) 10021 return false; 10022 10023 bool isLoad = true; 10024 SDValue Ptr; 10025 EVT VT; 10026 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 10027 if (LD->isIndexed()) 10028 return false; 10029 VT = LD->getMemoryVT(); 10030 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 10031 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 10032 return false; 10033 Ptr = LD->getBasePtr(); 10034 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 10035 if (ST->isIndexed()) 10036 return false; 10037 VT = ST->getMemoryVT(); 10038 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 10039 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 10040 return false; 10041 Ptr = ST->getBasePtr(); 10042 isLoad = false; 10043 } else { 10044 return false; 10045 } 10046 10047 if (Ptr.getNode()->hasOneUse()) 10048 return false; 10049 10050 for (SDNode *Op : Ptr.getNode()->uses()) { 10051 if (Op == N || 10052 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 10053 continue; 10054 10055 SDValue BasePtr; 10056 SDValue Offset; 10057 ISD::MemIndexedMode AM = ISD::UNINDEXED; 10058 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 10059 // Don't create a indexed load / store with zero offset. 10060 if (isNullConstant(Offset)) 10061 continue; 10062 10063 // Try turning it into a post-indexed load / store except when 10064 // 1) All uses are load / store ops that use it as base ptr (and 10065 // it may be folded as addressing mmode). 10066 // 2) Op must be independent of N, i.e. Op is neither a predecessor 10067 // nor a successor of N. Otherwise, if Op is folded that would 10068 // create a cycle. 10069 10070 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 10071 continue; 10072 10073 // Check for #1. 10074 bool TryNext = false; 10075 for (SDNode *Use : BasePtr.getNode()->uses()) { 10076 if (Use == Ptr.getNode()) 10077 continue; 10078 10079 // If all the uses are load / store addresses, then don't do the 10080 // transformation. 10081 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 10082 bool RealUse = false; 10083 for (SDNode *UseUse : Use->uses()) { 10084 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 10085 RealUse = true; 10086 } 10087 10088 if (!RealUse) { 10089 TryNext = true; 10090 break; 10091 } 10092 } 10093 } 10094 10095 if (TryNext) 10096 continue; 10097 10098 // Check for #2 10099 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 10100 SDValue Result = isLoad 10101 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 10102 BasePtr, Offset, AM) 10103 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 10104 BasePtr, Offset, AM); 10105 ++PostIndexedNodes; 10106 ++NodesCombined; 10107 DEBUG(dbgs() << "\nReplacing.5 "; 10108 N->dump(&DAG); 10109 dbgs() << "\nWith: "; 10110 Result.getNode()->dump(&DAG); 10111 dbgs() << '\n'); 10112 WorklistRemover DeadNodes(*this); 10113 if (isLoad) { 10114 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 10115 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 10116 } else { 10117 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 10118 } 10119 10120 // Finally, since the node is now dead, remove it from the graph. 10121 deleteAndRecombine(N); 10122 10123 // Replace the uses of Use with uses of the updated base value. 10124 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 10125 Result.getValue(isLoad ? 1 : 0)); 10126 deleteAndRecombine(Op); 10127 return true; 10128 } 10129 } 10130 } 10131 10132 return false; 10133 } 10134 10135 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 10136 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 10137 ISD::MemIndexedMode AM = LD->getAddressingMode(); 10138 assert(AM != ISD::UNINDEXED); 10139 SDValue BP = LD->getOperand(1); 10140 SDValue Inc = LD->getOperand(2); 10141 10142 // Some backends use TargetConstants for load offsets, but don't expect 10143 // TargetConstants in general ADD nodes. We can convert these constants into 10144 // regular Constants (if the constant is not opaque). 10145 assert((Inc.getOpcode() != ISD::TargetConstant || 10146 !cast<ConstantSDNode>(Inc)->isOpaque()) && 10147 "Cannot split out indexing using opaque target constants"); 10148 if (Inc.getOpcode() == ISD::TargetConstant) { 10149 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 10150 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 10151 ConstInc->getValueType(0)); 10152 } 10153 10154 unsigned Opc = 10155 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 10156 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 10157 } 10158 10159 SDValue DAGCombiner::visitLOAD(SDNode *N) { 10160 LoadSDNode *LD = cast<LoadSDNode>(N); 10161 SDValue Chain = LD->getChain(); 10162 SDValue Ptr = LD->getBasePtr(); 10163 10164 // If load is not volatile and there are no uses of the loaded value (and 10165 // the updated indexed value in case of indexed loads), change uses of the 10166 // chain value into uses of the chain input (i.e. delete the dead load). 10167 if (!LD->isVolatile()) { 10168 if (N->getValueType(1) == MVT::Other) { 10169 // Unindexed loads. 10170 if (!N->hasAnyUseOfValue(0)) { 10171 // It's not safe to use the two value CombineTo variant here. e.g. 10172 // v1, chain2 = load chain1, loc 10173 // v2, chain3 = load chain2, loc 10174 // v3 = add v2, c 10175 // Now we replace use of chain2 with chain1. This makes the second load 10176 // isomorphic to the one we are deleting, and thus makes this load live. 10177 DEBUG(dbgs() << "\nReplacing.6 "; 10178 N->dump(&DAG); 10179 dbgs() << "\nWith chain: "; 10180 Chain.getNode()->dump(&DAG); 10181 dbgs() << "\n"); 10182 WorklistRemover DeadNodes(*this); 10183 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10184 10185 if (N->use_empty()) 10186 deleteAndRecombine(N); 10187 10188 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10189 } 10190 } else { 10191 // Indexed loads. 10192 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 10193 10194 // If this load has an opaque TargetConstant offset, then we cannot split 10195 // the indexing into an add/sub directly (that TargetConstant may not be 10196 // valid for a different type of node, and we cannot convert an opaque 10197 // target constant into a regular constant). 10198 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 10199 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 10200 10201 if (!N->hasAnyUseOfValue(0) && 10202 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 10203 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 10204 SDValue Index; 10205 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 10206 Index = SplitIndexingFromLoad(LD); 10207 // Try to fold the base pointer arithmetic into subsequent loads and 10208 // stores. 10209 AddUsersToWorklist(N); 10210 } else 10211 Index = DAG.getUNDEF(N->getValueType(1)); 10212 DEBUG(dbgs() << "\nReplacing.7 "; 10213 N->dump(&DAG); 10214 dbgs() << "\nWith: "; 10215 Undef.getNode()->dump(&DAG); 10216 dbgs() << " and 2 other values\n"); 10217 WorklistRemover DeadNodes(*this); 10218 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 10219 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 10220 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 10221 deleteAndRecombine(N); 10222 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10223 } 10224 } 10225 } 10226 10227 // If this load is directly stored, replace the load value with the stored 10228 // value. 10229 // TODO: Handle store large -> read small portion. 10230 // TODO: Handle TRUNCSTORE/LOADEXT 10231 if (OptLevel != CodeGenOpt::None && 10232 ISD::isNormalLoad(N) && !LD->isVolatile()) { 10233 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 10234 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 10235 if (PrevST->getBasePtr() == Ptr && 10236 PrevST->getValue().getValueType() == N->getValueType(0)) 10237 return CombineTo(N, Chain.getOperand(1), Chain); 10238 } 10239 } 10240 10241 // Try to infer better alignment information than the load already has. 10242 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 10243 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 10244 if (Align > LD->getMemOperand()->getBaseAlignment()) { 10245 SDValue NewLoad = DAG.getExtLoad( 10246 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 10247 LD->getPointerInfo(), LD->getMemoryVT(), Align, 10248 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 10249 if (NewLoad.getNode() != N) 10250 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 10251 } 10252 } 10253 } 10254 10255 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 10256 : DAG.getSubtarget().useAA(); 10257 #ifndef NDEBUG 10258 if (CombinerAAOnlyFunc.getNumOccurrences() && 10259 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 10260 UseAA = false; 10261 #endif 10262 if (UseAA && LD->isUnindexed()) { 10263 // Walk up chain skipping non-aliasing memory nodes. 10264 SDValue BetterChain = FindBetterChain(N, Chain); 10265 10266 // If there is a better chain. 10267 if (Chain != BetterChain) { 10268 SDValue ReplLoad; 10269 10270 // Replace the chain to void dependency. 10271 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 10272 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 10273 BetterChain, Ptr, LD->getMemOperand()); 10274 } else { 10275 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 10276 LD->getValueType(0), 10277 BetterChain, Ptr, LD->getMemoryVT(), 10278 LD->getMemOperand()); 10279 } 10280 10281 // Create token factor to keep old chain connected. 10282 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 10283 MVT::Other, Chain, ReplLoad.getValue(1)); 10284 10285 // Make sure the new and old chains are cleaned up. 10286 AddToWorklist(Token.getNode()); 10287 10288 // Replace uses with load result and token factor. Don't add users 10289 // to work list. 10290 return CombineTo(N, ReplLoad.getValue(0), Token, false); 10291 } 10292 } 10293 10294 // Try transforming N to an indexed load. 10295 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10296 return SDValue(N, 0); 10297 10298 // Try to slice up N to more direct loads if the slices are mapped to 10299 // different register banks or pairing can take place. 10300 if (SliceUpLoad(N)) 10301 return SDValue(N, 0); 10302 10303 return SDValue(); 10304 } 10305 10306 namespace { 10307 /// \brief Helper structure used to slice a load in smaller loads. 10308 /// Basically a slice is obtained from the following sequence: 10309 /// Origin = load Ty1, Base 10310 /// Shift = srl Ty1 Origin, CstTy Amount 10311 /// Inst = trunc Shift to Ty2 10312 /// 10313 /// Then, it will be rewriten into: 10314 /// Slice = load SliceTy, Base + SliceOffset 10315 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 10316 /// 10317 /// SliceTy is deduced from the number of bits that are actually used to 10318 /// build Inst. 10319 struct LoadedSlice { 10320 /// \brief Helper structure used to compute the cost of a slice. 10321 struct Cost { 10322 /// Are we optimizing for code size. 10323 bool ForCodeSize; 10324 /// Various cost. 10325 unsigned Loads; 10326 unsigned Truncates; 10327 unsigned CrossRegisterBanksCopies; 10328 unsigned ZExts; 10329 unsigned Shift; 10330 10331 Cost(bool ForCodeSize = false) 10332 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 10333 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 10334 10335 /// \brief Get the cost of one isolated slice. 10336 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 10337 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 10338 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 10339 EVT TruncType = LS.Inst->getValueType(0); 10340 EVT LoadedType = LS.getLoadedType(); 10341 if (TruncType != LoadedType && 10342 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 10343 ZExts = 1; 10344 } 10345 10346 /// \brief Account for slicing gain in the current cost. 10347 /// Slicing provide a few gains like removing a shift or a 10348 /// truncate. This method allows to grow the cost of the original 10349 /// load with the gain from this slice. 10350 void addSliceGain(const LoadedSlice &LS) { 10351 // Each slice saves a truncate. 10352 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 10353 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 10354 LS.Inst->getValueType(0))) 10355 ++Truncates; 10356 // If there is a shift amount, this slice gets rid of it. 10357 if (LS.Shift) 10358 ++Shift; 10359 // If this slice can merge a cross register bank copy, account for it. 10360 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 10361 ++CrossRegisterBanksCopies; 10362 } 10363 10364 Cost &operator+=(const Cost &RHS) { 10365 Loads += RHS.Loads; 10366 Truncates += RHS.Truncates; 10367 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 10368 ZExts += RHS.ZExts; 10369 Shift += RHS.Shift; 10370 return *this; 10371 } 10372 10373 bool operator==(const Cost &RHS) const { 10374 return Loads == RHS.Loads && Truncates == RHS.Truncates && 10375 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 10376 ZExts == RHS.ZExts && Shift == RHS.Shift; 10377 } 10378 10379 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 10380 10381 bool operator<(const Cost &RHS) const { 10382 // Assume cross register banks copies are as expensive as loads. 10383 // FIXME: Do we want some more target hooks? 10384 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 10385 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 10386 // Unless we are optimizing for code size, consider the 10387 // expensive operation first. 10388 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 10389 return ExpensiveOpsLHS < ExpensiveOpsRHS; 10390 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 10391 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 10392 } 10393 10394 bool operator>(const Cost &RHS) const { return RHS < *this; } 10395 10396 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 10397 10398 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 10399 }; 10400 // The last instruction that represent the slice. This should be a 10401 // truncate instruction. 10402 SDNode *Inst; 10403 // The original load instruction. 10404 LoadSDNode *Origin; 10405 // The right shift amount in bits from the original load. 10406 unsigned Shift; 10407 // The DAG from which Origin came from. 10408 // This is used to get some contextual information about legal types, etc. 10409 SelectionDAG *DAG; 10410 10411 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 10412 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 10413 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 10414 10415 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 10416 /// \return Result is \p BitWidth and has used bits set to 1 and 10417 /// not used bits set to 0. 10418 APInt getUsedBits() const { 10419 // Reproduce the trunc(lshr) sequence: 10420 // - Start from the truncated value. 10421 // - Zero extend to the desired bit width. 10422 // - Shift left. 10423 assert(Origin && "No original load to compare against."); 10424 unsigned BitWidth = Origin->getValueSizeInBits(0); 10425 assert(Inst && "This slice is not bound to an instruction"); 10426 assert(Inst->getValueSizeInBits(0) <= BitWidth && 10427 "Extracted slice is bigger than the whole type!"); 10428 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 10429 UsedBits.setAllBits(); 10430 UsedBits = UsedBits.zext(BitWidth); 10431 UsedBits <<= Shift; 10432 return UsedBits; 10433 } 10434 10435 /// \brief Get the size of the slice to be loaded in bytes. 10436 unsigned getLoadedSize() const { 10437 unsigned SliceSize = getUsedBits().countPopulation(); 10438 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 10439 return SliceSize / 8; 10440 } 10441 10442 /// \brief Get the type that will be loaded for this slice. 10443 /// Note: This may not be the final type for the slice. 10444 EVT getLoadedType() const { 10445 assert(DAG && "Missing context"); 10446 LLVMContext &Ctxt = *DAG->getContext(); 10447 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 10448 } 10449 10450 /// \brief Get the alignment of the load used for this slice. 10451 unsigned getAlignment() const { 10452 unsigned Alignment = Origin->getAlignment(); 10453 unsigned Offset = getOffsetFromBase(); 10454 if (Offset != 0) 10455 Alignment = MinAlign(Alignment, Alignment + Offset); 10456 return Alignment; 10457 } 10458 10459 /// \brief Check if this slice can be rewritten with legal operations. 10460 bool isLegal() const { 10461 // An invalid slice is not legal. 10462 if (!Origin || !Inst || !DAG) 10463 return false; 10464 10465 // Offsets are for indexed load only, we do not handle that. 10466 if (!Origin->getOffset().isUndef()) 10467 return false; 10468 10469 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10470 10471 // Check that the type is legal. 10472 EVT SliceType = getLoadedType(); 10473 if (!TLI.isTypeLegal(SliceType)) 10474 return false; 10475 10476 // Check that the load is legal for this type. 10477 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 10478 return false; 10479 10480 // Check that the offset can be computed. 10481 // 1. Check its type. 10482 EVT PtrType = Origin->getBasePtr().getValueType(); 10483 if (PtrType == MVT::Untyped || PtrType.isExtended()) 10484 return false; 10485 10486 // 2. Check that it fits in the immediate. 10487 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 10488 return false; 10489 10490 // 3. Check that the computation is legal. 10491 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 10492 return false; 10493 10494 // Check that the zext is legal if it needs one. 10495 EVT TruncateType = Inst->getValueType(0); 10496 if (TruncateType != SliceType && 10497 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 10498 return false; 10499 10500 return true; 10501 } 10502 10503 /// \brief Get the offset in bytes of this slice in the original chunk of 10504 /// bits. 10505 /// \pre DAG != nullptr. 10506 uint64_t getOffsetFromBase() const { 10507 assert(DAG && "Missing context."); 10508 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 10509 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 10510 uint64_t Offset = Shift / 8; 10511 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 10512 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 10513 "The size of the original loaded type is not a multiple of a" 10514 " byte."); 10515 // If Offset is bigger than TySizeInBytes, it means we are loading all 10516 // zeros. This should have been optimized before in the process. 10517 assert(TySizeInBytes > Offset && 10518 "Invalid shift amount for given loaded size"); 10519 if (IsBigEndian) 10520 Offset = TySizeInBytes - Offset - getLoadedSize(); 10521 return Offset; 10522 } 10523 10524 /// \brief Generate the sequence of instructions to load the slice 10525 /// represented by this object and redirect the uses of this slice to 10526 /// this new sequence of instructions. 10527 /// \pre this->Inst && this->Origin are valid Instructions and this 10528 /// object passed the legal check: LoadedSlice::isLegal returned true. 10529 /// \return The last instruction of the sequence used to load the slice. 10530 SDValue loadSlice() const { 10531 assert(Inst && Origin && "Unable to replace a non-existing slice."); 10532 const SDValue &OldBaseAddr = Origin->getBasePtr(); 10533 SDValue BaseAddr = OldBaseAddr; 10534 // Get the offset in that chunk of bytes w.r.t. the endianess. 10535 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 10536 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 10537 if (Offset) { 10538 // BaseAddr = BaseAddr + Offset. 10539 EVT ArithType = BaseAddr.getValueType(); 10540 SDLoc DL(Origin); 10541 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 10542 DAG->getConstant(Offset, DL, ArithType)); 10543 } 10544 10545 // Create the type of the loaded slice according to its size. 10546 EVT SliceType = getLoadedType(); 10547 10548 // Create the load for the slice. 10549 SDValue LastInst = 10550 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 10551 Origin->getPointerInfo().getWithOffset(Offset), 10552 getAlignment(), Origin->getMemOperand()->getFlags()); 10553 // If the final type is not the same as the loaded type, this means that 10554 // we have to pad with zero. Create a zero extend for that. 10555 EVT FinalType = Inst->getValueType(0); 10556 if (SliceType != FinalType) 10557 LastInst = 10558 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 10559 return LastInst; 10560 } 10561 10562 /// \brief Check if this slice can be merged with an expensive cross register 10563 /// bank copy. E.g., 10564 /// i = load i32 10565 /// f = bitcast i32 i to float 10566 bool canMergeExpensiveCrossRegisterBankCopy() const { 10567 if (!Inst || !Inst->hasOneUse()) 10568 return false; 10569 SDNode *Use = *Inst->use_begin(); 10570 if (Use->getOpcode() != ISD::BITCAST) 10571 return false; 10572 assert(DAG && "Missing context"); 10573 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10574 EVT ResVT = Use->getValueType(0); 10575 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 10576 const TargetRegisterClass *ArgRC = 10577 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 10578 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 10579 return false; 10580 10581 // At this point, we know that we perform a cross-register-bank copy. 10582 // Check if it is expensive. 10583 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 10584 // Assume bitcasts are cheap, unless both register classes do not 10585 // explicitly share a common sub class. 10586 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 10587 return false; 10588 10589 // Check if it will be merged with the load. 10590 // 1. Check the alignment constraint. 10591 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 10592 ResVT.getTypeForEVT(*DAG->getContext())); 10593 10594 if (RequiredAlignment > getAlignment()) 10595 return false; 10596 10597 // 2. Check that the load is a legal operation for that type. 10598 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 10599 return false; 10600 10601 // 3. Check that we do not have a zext in the way. 10602 if (Inst->getValueType(0) != getLoadedType()) 10603 return false; 10604 10605 return true; 10606 } 10607 }; 10608 } 10609 10610 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 10611 /// \p UsedBits looks like 0..0 1..1 0..0. 10612 static bool areUsedBitsDense(const APInt &UsedBits) { 10613 // If all the bits are one, this is dense! 10614 if (UsedBits.isAllOnesValue()) 10615 return true; 10616 10617 // Get rid of the unused bits on the right. 10618 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 10619 // Get rid of the unused bits on the left. 10620 if (NarrowedUsedBits.countLeadingZeros()) 10621 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 10622 // Check that the chunk of bits is completely used. 10623 return NarrowedUsedBits.isAllOnesValue(); 10624 } 10625 10626 /// \brief Check whether or not \p First and \p Second are next to each other 10627 /// in memory. This means that there is no hole between the bits loaded 10628 /// by \p First and the bits loaded by \p Second. 10629 static bool areSlicesNextToEachOther(const LoadedSlice &First, 10630 const LoadedSlice &Second) { 10631 assert(First.Origin == Second.Origin && First.Origin && 10632 "Unable to match different memory origins."); 10633 APInt UsedBits = First.getUsedBits(); 10634 assert((UsedBits & Second.getUsedBits()) == 0 && 10635 "Slices are not supposed to overlap."); 10636 UsedBits |= Second.getUsedBits(); 10637 return areUsedBitsDense(UsedBits); 10638 } 10639 10640 /// \brief Adjust the \p GlobalLSCost according to the target 10641 /// paring capabilities and the layout of the slices. 10642 /// \pre \p GlobalLSCost should account for at least as many loads as 10643 /// there is in the slices in \p LoadedSlices. 10644 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10645 LoadedSlice::Cost &GlobalLSCost) { 10646 unsigned NumberOfSlices = LoadedSlices.size(); 10647 // If there is less than 2 elements, no pairing is possible. 10648 if (NumberOfSlices < 2) 10649 return; 10650 10651 // Sort the slices so that elements that are likely to be next to each 10652 // other in memory are next to each other in the list. 10653 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 10654 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 10655 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 10656 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 10657 }); 10658 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 10659 // First (resp. Second) is the first (resp. Second) potentially candidate 10660 // to be placed in a paired load. 10661 const LoadedSlice *First = nullptr; 10662 const LoadedSlice *Second = nullptr; 10663 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 10664 // Set the beginning of the pair. 10665 First = Second) { 10666 10667 Second = &LoadedSlices[CurrSlice]; 10668 10669 // If First is NULL, it means we start a new pair. 10670 // Get to the next slice. 10671 if (!First) 10672 continue; 10673 10674 EVT LoadedType = First->getLoadedType(); 10675 10676 // If the types of the slices are different, we cannot pair them. 10677 if (LoadedType != Second->getLoadedType()) 10678 continue; 10679 10680 // Check if the target supplies paired loads for this type. 10681 unsigned RequiredAlignment = 0; 10682 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 10683 // move to the next pair, this type is hopeless. 10684 Second = nullptr; 10685 continue; 10686 } 10687 // Check if we meet the alignment requirement. 10688 if (RequiredAlignment > First->getAlignment()) 10689 continue; 10690 10691 // Check that both loads are next to each other in memory. 10692 if (!areSlicesNextToEachOther(*First, *Second)) 10693 continue; 10694 10695 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 10696 --GlobalLSCost.Loads; 10697 // Move to the next pair. 10698 Second = nullptr; 10699 } 10700 } 10701 10702 /// \brief Check the profitability of all involved LoadedSlice. 10703 /// Currently, it is considered profitable if there is exactly two 10704 /// involved slices (1) which are (2) next to each other in memory, and 10705 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 10706 /// 10707 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 10708 /// the elements themselves. 10709 /// 10710 /// FIXME: When the cost model will be mature enough, we can relax 10711 /// constraints (1) and (2). 10712 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10713 const APInt &UsedBits, bool ForCodeSize) { 10714 unsigned NumberOfSlices = LoadedSlices.size(); 10715 if (StressLoadSlicing) 10716 return NumberOfSlices > 1; 10717 10718 // Check (1). 10719 if (NumberOfSlices != 2) 10720 return false; 10721 10722 // Check (2). 10723 if (!areUsedBitsDense(UsedBits)) 10724 return false; 10725 10726 // Check (3). 10727 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 10728 // The original code has one big load. 10729 OrigCost.Loads = 1; 10730 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 10731 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 10732 // Accumulate the cost of all the slices. 10733 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 10734 GlobalSlicingCost += SliceCost; 10735 10736 // Account as cost in the original configuration the gain obtained 10737 // with the current slices. 10738 OrigCost.addSliceGain(LS); 10739 } 10740 10741 // If the target supports paired load, adjust the cost accordingly. 10742 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 10743 return OrigCost > GlobalSlicingCost; 10744 } 10745 10746 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 10747 /// operations, split it in the various pieces being extracted. 10748 /// 10749 /// This sort of thing is introduced by SROA. 10750 /// This slicing takes care not to insert overlapping loads. 10751 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 10752 bool DAGCombiner::SliceUpLoad(SDNode *N) { 10753 if (Level < AfterLegalizeDAG) 10754 return false; 10755 10756 LoadSDNode *LD = cast<LoadSDNode>(N); 10757 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 10758 !LD->getValueType(0).isInteger()) 10759 return false; 10760 10761 // Keep track of already used bits to detect overlapping values. 10762 // In that case, we will just abort the transformation. 10763 APInt UsedBits(LD->getValueSizeInBits(0), 0); 10764 10765 SmallVector<LoadedSlice, 4> LoadedSlices; 10766 10767 // Check if this load is used as several smaller chunks of bits. 10768 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 10769 // of computation for each trunc. 10770 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 10771 UI != UIEnd; ++UI) { 10772 // Skip the uses of the chain. 10773 if (UI.getUse().getResNo() != 0) 10774 continue; 10775 10776 SDNode *User = *UI; 10777 unsigned Shift = 0; 10778 10779 // Check if this is a trunc(lshr). 10780 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 10781 isa<ConstantSDNode>(User->getOperand(1))) { 10782 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 10783 User = *User->use_begin(); 10784 } 10785 10786 // At this point, User is a Truncate, iff we encountered, trunc or 10787 // trunc(lshr). 10788 if (User->getOpcode() != ISD::TRUNCATE) 10789 return false; 10790 10791 // The width of the type must be a power of 2 and greater than 8-bits. 10792 // Otherwise the load cannot be represented in LLVM IR. 10793 // Moreover, if we shifted with a non-8-bits multiple, the slice 10794 // will be across several bytes. We do not support that. 10795 unsigned Width = User->getValueSizeInBits(0); 10796 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 10797 return 0; 10798 10799 // Build the slice for this chain of computations. 10800 LoadedSlice LS(User, LD, Shift, &DAG); 10801 APInt CurrentUsedBits = LS.getUsedBits(); 10802 10803 // Check if this slice overlaps with another. 10804 if ((CurrentUsedBits & UsedBits) != 0) 10805 return false; 10806 // Update the bits used globally. 10807 UsedBits |= CurrentUsedBits; 10808 10809 // Check if the new slice would be legal. 10810 if (!LS.isLegal()) 10811 return false; 10812 10813 // Record the slice. 10814 LoadedSlices.push_back(LS); 10815 } 10816 10817 // Abort slicing if it does not seem to be profitable. 10818 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 10819 return false; 10820 10821 ++SlicedLoads; 10822 10823 // Rewrite each chain to use an independent load. 10824 // By construction, each chain can be represented by a unique load. 10825 10826 // Prepare the argument for the new token factor for all the slices. 10827 SmallVector<SDValue, 8> ArgChains; 10828 for (SmallVectorImpl<LoadedSlice>::const_iterator 10829 LSIt = LoadedSlices.begin(), 10830 LSItEnd = LoadedSlices.end(); 10831 LSIt != LSItEnd; ++LSIt) { 10832 SDValue SliceInst = LSIt->loadSlice(); 10833 CombineTo(LSIt->Inst, SliceInst, true); 10834 if (SliceInst.getOpcode() != ISD::LOAD) 10835 SliceInst = SliceInst.getOperand(0); 10836 assert(SliceInst->getOpcode() == ISD::LOAD && 10837 "It takes more than a zext to get to the loaded slice!!"); 10838 ArgChains.push_back(SliceInst.getValue(1)); 10839 } 10840 10841 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 10842 ArgChains); 10843 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10844 return true; 10845 } 10846 10847 /// Check to see if V is (and load (ptr), imm), where the load is having 10848 /// specific bytes cleared out. If so, return the byte size being masked out 10849 /// and the shift amount. 10850 static std::pair<unsigned, unsigned> 10851 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 10852 std::pair<unsigned, unsigned> Result(0, 0); 10853 10854 // Check for the structure we're looking for. 10855 if (V->getOpcode() != ISD::AND || 10856 !isa<ConstantSDNode>(V->getOperand(1)) || 10857 !ISD::isNormalLoad(V->getOperand(0).getNode())) 10858 return Result; 10859 10860 // Check the chain and pointer. 10861 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 10862 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 10863 10864 // The store should be chained directly to the load or be an operand of a 10865 // tokenfactor. 10866 if (LD == Chain.getNode()) 10867 ; // ok. 10868 else if (Chain->getOpcode() != ISD::TokenFactor) 10869 return Result; // Fail. 10870 else { 10871 bool isOk = false; 10872 for (const SDValue &ChainOp : Chain->op_values()) 10873 if (ChainOp.getNode() == LD) { 10874 isOk = true; 10875 break; 10876 } 10877 if (!isOk) return Result; 10878 } 10879 10880 // This only handles simple types. 10881 if (V.getValueType() != MVT::i16 && 10882 V.getValueType() != MVT::i32 && 10883 V.getValueType() != MVT::i64) 10884 return Result; 10885 10886 // Check the constant mask. Invert it so that the bits being masked out are 10887 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 10888 // follow the sign bit for uniformity. 10889 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 10890 unsigned NotMaskLZ = countLeadingZeros(NotMask); 10891 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 10892 unsigned NotMaskTZ = countTrailingZeros(NotMask); 10893 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 10894 if (NotMaskLZ == 64) return Result; // All zero mask. 10895 10896 // See if we have a continuous run of bits. If so, we have 0*1+0* 10897 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 10898 return Result; 10899 10900 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 10901 if (V.getValueType() != MVT::i64 && NotMaskLZ) 10902 NotMaskLZ -= 64-V.getValueSizeInBits(); 10903 10904 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 10905 switch (MaskedBytes) { 10906 case 1: 10907 case 2: 10908 case 4: break; 10909 default: return Result; // All one mask, or 5-byte mask. 10910 } 10911 10912 // Verify that the first bit starts at a multiple of mask so that the access 10913 // is aligned the same as the access width. 10914 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 10915 10916 Result.first = MaskedBytes; 10917 Result.second = NotMaskTZ/8; 10918 return Result; 10919 } 10920 10921 10922 /// Check to see if IVal is something that provides a value as specified by 10923 /// MaskInfo. If so, replace the specified store with a narrower store of 10924 /// truncated IVal. 10925 static SDNode * 10926 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 10927 SDValue IVal, StoreSDNode *St, 10928 DAGCombiner *DC) { 10929 unsigned NumBytes = MaskInfo.first; 10930 unsigned ByteShift = MaskInfo.second; 10931 SelectionDAG &DAG = DC->getDAG(); 10932 10933 // Check to see if IVal is all zeros in the part being masked in by the 'or' 10934 // that uses this. If not, this is not a replacement. 10935 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 10936 ByteShift*8, (ByteShift+NumBytes)*8); 10937 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 10938 10939 // Check that it is legal on the target to do this. It is legal if the new 10940 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 10941 // legalization. 10942 MVT VT = MVT::getIntegerVT(NumBytes*8); 10943 if (!DC->isTypeLegal(VT)) 10944 return nullptr; 10945 10946 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 10947 // shifted by ByteShift and truncated down to NumBytes. 10948 if (ByteShift) { 10949 SDLoc DL(IVal); 10950 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 10951 DAG.getConstant(ByteShift*8, DL, 10952 DC->getShiftAmountTy(IVal.getValueType()))); 10953 } 10954 10955 // Figure out the offset for the store and the alignment of the access. 10956 unsigned StOffset; 10957 unsigned NewAlign = St->getAlignment(); 10958 10959 if (DAG.getDataLayout().isLittleEndian()) 10960 StOffset = ByteShift; 10961 else 10962 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 10963 10964 SDValue Ptr = St->getBasePtr(); 10965 if (StOffset) { 10966 SDLoc DL(IVal); 10967 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 10968 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 10969 NewAlign = MinAlign(NewAlign, StOffset); 10970 } 10971 10972 // Truncate down to the new size. 10973 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 10974 10975 ++OpsNarrowed; 10976 return DAG 10977 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 10978 St->getPointerInfo().getWithOffset(StOffset), NewAlign) 10979 .getNode(); 10980 } 10981 10982 10983 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 10984 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 10985 /// narrowing the load and store if it would end up being a win for performance 10986 /// or code size. 10987 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 10988 StoreSDNode *ST = cast<StoreSDNode>(N); 10989 if (ST->isVolatile()) 10990 return SDValue(); 10991 10992 SDValue Chain = ST->getChain(); 10993 SDValue Value = ST->getValue(); 10994 SDValue Ptr = ST->getBasePtr(); 10995 EVT VT = Value.getValueType(); 10996 10997 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 10998 return SDValue(); 10999 11000 unsigned Opc = Value.getOpcode(); 11001 11002 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 11003 // is a byte mask indicating a consecutive number of bytes, check to see if 11004 // Y is known to provide just those bytes. If so, we try to replace the 11005 // load + replace + store sequence with a single (narrower) store, which makes 11006 // the load dead. 11007 if (Opc == ISD::OR) { 11008 std::pair<unsigned, unsigned> MaskedLoad; 11009 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 11010 if (MaskedLoad.first) 11011 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 11012 Value.getOperand(1), ST,this)) 11013 return SDValue(NewST, 0); 11014 11015 // Or is commutative, so try swapping X and Y. 11016 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 11017 if (MaskedLoad.first) 11018 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 11019 Value.getOperand(0), ST,this)) 11020 return SDValue(NewST, 0); 11021 } 11022 11023 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 11024 Value.getOperand(1).getOpcode() != ISD::Constant) 11025 return SDValue(); 11026 11027 SDValue N0 = Value.getOperand(0); 11028 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 11029 Chain == SDValue(N0.getNode(), 1)) { 11030 LoadSDNode *LD = cast<LoadSDNode>(N0); 11031 if (LD->getBasePtr() != Ptr || 11032 LD->getPointerInfo().getAddrSpace() != 11033 ST->getPointerInfo().getAddrSpace()) 11034 return SDValue(); 11035 11036 // Find the type to narrow it the load / op / store to. 11037 SDValue N1 = Value.getOperand(1); 11038 unsigned BitWidth = N1.getValueSizeInBits(); 11039 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 11040 if (Opc == ISD::AND) 11041 Imm ^= APInt::getAllOnesValue(BitWidth); 11042 if (Imm == 0 || Imm.isAllOnesValue()) 11043 return SDValue(); 11044 unsigned ShAmt = Imm.countTrailingZeros(); 11045 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 11046 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 11047 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 11048 // The narrowing should be profitable, the load/store operation should be 11049 // legal (or custom) and the store size should be equal to the NewVT width. 11050 while (NewBW < BitWidth && 11051 (NewVT.getStoreSizeInBits() != NewBW || 11052 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 11053 !TLI.isNarrowingProfitable(VT, NewVT))) { 11054 NewBW = NextPowerOf2(NewBW); 11055 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 11056 } 11057 if (NewBW >= BitWidth) 11058 return SDValue(); 11059 11060 // If the lsb changed does not start at the type bitwidth boundary, 11061 // start at the previous one. 11062 if (ShAmt % NewBW) 11063 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 11064 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 11065 std::min(BitWidth, ShAmt + NewBW)); 11066 if ((Imm & Mask) == Imm) { 11067 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 11068 if (Opc == ISD::AND) 11069 NewImm ^= APInt::getAllOnesValue(NewBW); 11070 uint64_t PtrOff = ShAmt / 8; 11071 // For big endian targets, we need to adjust the offset to the pointer to 11072 // load the correct bytes. 11073 if (DAG.getDataLayout().isBigEndian()) 11074 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 11075 11076 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 11077 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 11078 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 11079 return SDValue(); 11080 11081 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 11082 Ptr.getValueType(), Ptr, 11083 DAG.getConstant(PtrOff, SDLoc(LD), 11084 Ptr.getValueType())); 11085 SDValue NewLD = 11086 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 11087 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 11088 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 11089 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 11090 DAG.getConstant(NewImm, SDLoc(Value), 11091 NewVT)); 11092 SDValue NewST = 11093 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 11094 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 11095 11096 AddToWorklist(NewPtr.getNode()); 11097 AddToWorklist(NewLD.getNode()); 11098 AddToWorklist(NewVal.getNode()); 11099 WorklistRemover DeadNodes(*this); 11100 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 11101 ++OpsNarrowed; 11102 return NewST; 11103 } 11104 } 11105 11106 return SDValue(); 11107 } 11108 11109 /// For a given floating point load / store pair, if the load value isn't used 11110 /// by any other operations, then consider transforming the pair to integer 11111 /// load / store operations if the target deems the transformation profitable. 11112 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 11113 StoreSDNode *ST = cast<StoreSDNode>(N); 11114 SDValue Chain = ST->getChain(); 11115 SDValue Value = ST->getValue(); 11116 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 11117 Value.hasOneUse() && 11118 Chain == SDValue(Value.getNode(), 1)) { 11119 LoadSDNode *LD = cast<LoadSDNode>(Value); 11120 EVT VT = LD->getMemoryVT(); 11121 if (!VT.isFloatingPoint() || 11122 VT != ST->getMemoryVT() || 11123 LD->isNonTemporal() || 11124 ST->isNonTemporal() || 11125 LD->getPointerInfo().getAddrSpace() != 0 || 11126 ST->getPointerInfo().getAddrSpace() != 0) 11127 return SDValue(); 11128 11129 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 11130 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 11131 !TLI.isOperationLegal(ISD::STORE, IntVT) || 11132 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 11133 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 11134 return SDValue(); 11135 11136 unsigned LDAlign = LD->getAlignment(); 11137 unsigned STAlign = ST->getAlignment(); 11138 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 11139 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 11140 if (LDAlign < ABIAlign || STAlign < ABIAlign) 11141 return SDValue(); 11142 11143 SDValue NewLD = 11144 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 11145 LD->getPointerInfo(), LDAlign); 11146 11147 SDValue NewST = 11148 DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(), 11149 ST->getPointerInfo(), STAlign); 11150 11151 AddToWorklist(NewLD.getNode()); 11152 AddToWorklist(NewST.getNode()); 11153 WorklistRemover DeadNodes(*this); 11154 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 11155 ++LdStFP2Int; 11156 return NewST; 11157 } 11158 11159 return SDValue(); 11160 } 11161 11162 namespace { 11163 /// Helper struct to parse and store a memory address as base + index + offset. 11164 /// We ignore sign extensions when it is safe to do so. 11165 /// The following two expressions are not equivalent. To differentiate we need 11166 /// to store whether there was a sign extension involved in the index 11167 /// computation. 11168 /// (load (i64 add (i64 copyfromreg %c) 11169 /// (i64 signextend (add (i8 load %index) 11170 /// (i8 1)))) 11171 /// vs 11172 /// 11173 /// (load (i64 add (i64 copyfromreg %c) 11174 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 11175 /// (i32 1))))) 11176 struct BaseIndexOffset { 11177 SDValue Base; 11178 SDValue Index; 11179 int64_t Offset; 11180 bool IsIndexSignExt; 11181 11182 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 11183 11184 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 11185 bool IsIndexSignExt) : 11186 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 11187 11188 bool equalBaseIndex(const BaseIndexOffset &Other) { 11189 return Other.Base == Base && Other.Index == Index && 11190 Other.IsIndexSignExt == IsIndexSignExt; 11191 } 11192 11193 /// Parses tree in Ptr for base, index, offset addresses. 11194 static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG) { 11195 bool IsIndexSignExt = false; 11196 11197 // Split up a folded GlobalAddress+Offset into its component parts. 11198 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr)) 11199 if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) { 11200 return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(), 11201 SDLoc(GA), 11202 GA->getValueType(0), 11203 /*Offset=*/0, 11204 /*isTargetGA=*/false, 11205 GA->getTargetFlags()), 11206 SDValue(), 11207 GA->getOffset(), 11208 IsIndexSignExt); 11209 } 11210 11211 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 11212 // instruction, then it could be just the BASE or everything else we don't 11213 // know how to handle. Just use Ptr as BASE and give up. 11214 if (Ptr->getOpcode() != ISD::ADD) 11215 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11216 11217 // We know that we have at least an ADD instruction. Try to pattern match 11218 // the simple case of BASE + OFFSET. 11219 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 11220 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 11221 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 11222 IsIndexSignExt); 11223 } 11224 11225 // Inside a loop the current BASE pointer is calculated using an ADD and a 11226 // MUL instruction. In this case Ptr is the actual BASE pointer. 11227 // (i64 add (i64 %array_ptr) 11228 // (i64 mul (i64 %induction_var) 11229 // (i64 %element_size))) 11230 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 11231 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11232 11233 // Look at Base + Index + Offset cases. 11234 SDValue Base = Ptr->getOperand(0); 11235 SDValue IndexOffset = Ptr->getOperand(1); 11236 11237 // Skip signextends. 11238 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 11239 IndexOffset = IndexOffset->getOperand(0); 11240 IsIndexSignExt = true; 11241 } 11242 11243 // Either the case of Base + Index (no offset) or something else. 11244 if (IndexOffset->getOpcode() != ISD::ADD) 11245 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 11246 11247 // Now we have the case of Base + Index + offset. 11248 SDValue Index = IndexOffset->getOperand(0); 11249 SDValue Offset = IndexOffset->getOperand(1); 11250 11251 if (!isa<ConstantSDNode>(Offset)) 11252 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11253 11254 // Ignore signextends. 11255 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 11256 Index = Index->getOperand(0); 11257 IsIndexSignExt = true; 11258 } else IsIndexSignExt = false; 11259 11260 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 11261 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 11262 } 11263 }; 11264 } // namespace 11265 11266 // This is a helper function for visitMUL to check the profitability 11267 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 11268 // MulNode is the original multiply, AddNode is (add x, c1), 11269 // and ConstNode is c2. 11270 // 11271 // If the (add x, c1) has multiple uses, we could increase 11272 // the number of adds if we make this transformation. 11273 // It would only be worth doing this if we can remove a 11274 // multiply in the process. Check for that here. 11275 // To illustrate: 11276 // (A + c1) * c3 11277 // (A + c2) * c3 11278 // We're checking for cases where we have common "c3 * A" expressions. 11279 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 11280 SDValue &AddNode, 11281 SDValue &ConstNode) { 11282 APInt Val; 11283 11284 // If the add only has one use, this would be OK to do. 11285 if (AddNode.getNode()->hasOneUse()) 11286 return true; 11287 11288 // Walk all the users of the constant with which we're multiplying. 11289 for (SDNode *Use : ConstNode->uses()) { 11290 11291 if (Use == MulNode) // This use is the one we're on right now. Skip it. 11292 continue; 11293 11294 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 11295 SDNode *OtherOp; 11296 SDNode *MulVar = AddNode.getOperand(0).getNode(); 11297 11298 // OtherOp is what we're multiplying against the constant. 11299 if (Use->getOperand(0) == ConstNode) 11300 OtherOp = Use->getOperand(1).getNode(); 11301 else 11302 OtherOp = Use->getOperand(0).getNode(); 11303 11304 // Check to see if multiply is with the same operand of our "add". 11305 // 11306 // ConstNode = CONST 11307 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 11308 // ... 11309 // AddNode = (A + c1) <-- MulVar is A. 11310 // = AddNode * ConstNode <-- current visiting instruction. 11311 // 11312 // If we make this transformation, we will have a common 11313 // multiply (ConstNode * A) that we can save. 11314 if (OtherOp == MulVar) 11315 return true; 11316 11317 // Now check to see if a future expansion will give us a common 11318 // multiply. 11319 // 11320 // ConstNode = CONST 11321 // AddNode = (A + c1) 11322 // ... = AddNode * ConstNode <-- current visiting instruction. 11323 // ... 11324 // OtherOp = (A + c2) 11325 // Use = OtherOp * ConstNode <-- visiting Use. 11326 // 11327 // If we make this transformation, we will have a common 11328 // multiply (CONST * A) after we also do the same transformation 11329 // to the "t2" instruction. 11330 if (OtherOp->getOpcode() == ISD::ADD && 11331 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 11332 OtherOp->getOperand(0).getNode() == MulVar) 11333 return true; 11334 } 11335 } 11336 11337 // Didn't find a case where this would be profitable. 11338 return false; 11339 } 11340 11341 SDValue DAGCombiner::getMergedConstantVectorStore( 11342 SelectionDAG &DAG, const SDLoc &SL, ArrayRef<MemOpLink> Stores, 11343 SmallVectorImpl<SDValue> &Chains, EVT Ty) const { 11344 SmallVector<SDValue, 8> BuildVector; 11345 11346 for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { 11347 StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); 11348 Chains.push_back(St->getChain()); 11349 BuildVector.push_back(St->getValue()); 11350 } 11351 11352 return DAG.getBuildVector(Ty, SL, BuildVector); 11353 } 11354 11355 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 11356 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, 11357 unsigned NumStores, bool IsConstantSrc, bool UseVector) { 11358 // Make sure we have something to merge. 11359 if (NumStores < 2) 11360 return false; 11361 11362 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11363 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11364 unsigned LatestNodeUsed = 0; 11365 11366 for (unsigned i=0; i < NumStores; ++i) { 11367 // Find a chain for the new wide-store operand. Notice that some 11368 // of the store nodes that we found may not be selected for inclusion 11369 // in the wide store. The chain we use needs to be the chain of the 11370 // latest store node which is *used* and replaced by the wide store. 11371 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11372 LatestNodeUsed = i; 11373 } 11374 11375 SmallVector<SDValue, 8> Chains; 11376 11377 // The latest Node in the DAG. 11378 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11379 SDLoc DL(StoreNodes[0].MemNode); 11380 11381 SDValue StoredVal; 11382 if (UseVector) { 11383 bool IsVec = MemVT.isVector(); 11384 unsigned Elts = NumStores; 11385 if (IsVec) { 11386 // When merging vector stores, get the total number of elements. 11387 Elts *= MemVT.getVectorNumElements(); 11388 } 11389 // Get the type for the merged vector store. 11390 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11391 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 11392 11393 if (IsConstantSrc) { 11394 StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); 11395 } else { 11396 SmallVector<SDValue, 8> Ops; 11397 for (unsigned i = 0; i < NumStores; ++i) { 11398 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11399 SDValue Val = St->getValue(); 11400 // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. 11401 if (Val.getValueType() != MemVT) 11402 return false; 11403 Ops.push_back(Val); 11404 Chains.push_back(St->getChain()); 11405 } 11406 11407 // Build the extracted vector elements back into a vector. 11408 StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 11409 DL, Ty, Ops); } 11410 } else { 11411 // We should always use a vector store when merging extracted vector 11412 // elements, so this path implies a store of constants. 11413 assert(IsConstantSrc && "Merged vector elements should use vector store"); 11414 11415 unsigned SizeInBits = NumStores * ElementSizeBytes * 8; 11416 APInt StoreInt(SizeInBits, 0); 11417 11418 // Construct a single integer constant which is made of the smaller 11419 // constant inputs. 11420 bool IsLE = DAG.getDataLayout().isLittleEndian(); 11421 for (unsigned i = 0; i < NumStores; ++i) { 11422 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 11423 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 11424 Chains.push_back(St->getChain()); 11425 11426 SDValue Val = St->getValue(); 11427 StoreInt <<= ElementSizeBytes * 8; 11428 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 11429 StoreInt |= C->getAPIntValue().zext(SizeInBits); 11430 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 11431 StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); 11432 } else { 11433 llvm_unreachable("Invalid constant element type"); 11434 } 11435 } 11436 11437 // Create the new Load and Store operations. 11438 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 11439 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 11440 } 11441 11442 assert(!Chains.empty()); 11443 11444 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11445 SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, 11446 FirstInChain->getBasePtr(), 11447 FirstInChain->getPointerInfo(), 11448 FirstInChain->getAlignment()); 11449 11450 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11451 : DAG.getSubtarget().useAA(); 11452 if (UseAA) { 11453 // Replace all merged stores with the new store. 11454 for (unsigned i = 0; i < NumStores; ++i) 11455 CombineTo(StoreNodes[i].MemNode, NewStore); 11456 } else { 11457 // Replace the last store with the new store. 11458 CombineTo(LatestOp, NewStore); 11459 // Erase all other stores. 11460 for (unsigned i = 0; i < NumStores; ++i) { 11461 if (StoreNodes[i].MemNode == LatestOp) 11462 continue; 11463 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11464 // ReplaceAllUsesWith will replace all uses that existed when it was 11465 // called, but graph optimizations may cause new ones to appear. For 11466 // example, the case in pr14333 looks like 11467 // 11468 // St's chain -> St -> another store -> X 11469 // 11470 // And the only difference from St to the other store is the chain. 11471 // When we change it's chain to be St's chain they become identical, 11472 // get CSEed and the net result is that X is now a use of St. 11473 // Since we know that St is redundant, just iterate. 11474 while (!St->use_empty()) 11475 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 11476 deleteAndRecombine(St); 11477 } 11478 } 11479 11480 return true; 11481 } 11482 11483 void DAGCombiner::getStoreMergeAndAliasCandidates( 11484 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 11485 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { 11486 // This holds the base pointer, index, and the offset in bytes from the base 11487 // pointer. 11488 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 11489 11490 // We must have a base and an offset. 11491 if (!BasePtr.Base.getNode()) 11492 return; 11493 11494 // Do not handle stores to undef base pointers. 11495 if (BasePtr.Base.isUndef()) 11496 return; 11497 11498 // Walk up the chain and look for nodes with offsets from the same 11499 // base pointer. Stop when reaching an instruction with a different kind 11500 // or instruction which has a different base pointer. 11501 EVT MemVT = St->getMemoryVT(); 11502 unsigned Seq = 0; 11503 StoreSDNode *Index = St; 11504 11505 11506 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11507 : DAG.getSubtarget().useAA(); 11508 11509 if (UseAA) { 11510 // Look at other users of the same chain. Stores on the same chain do not 11511 // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized 11512 // to be on the same chain, so don't bother looking at adjacent chains. 11513 11514 SDValue Chain = St->getChain(); 11515 for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { 11516 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 11517 if (I.getOperandNo() != 0) 11518 continue; 11519 11520 if (OtherST->isVolatile() || OtherST->isIndexed()) 11521 continue; 11522 11523 if (OtherST->getMemoryVT() != MemVT) 11524 continue; 11525 11526 BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr(), DAG); 11527 11528 if (Ptr.equalBaseIndex(BasePtr)) 11529 StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); 11530 } 11531 } 11532 11533 return; 11534 } 11535 11536 while (Index) { 11537 // If the chain has more than one use, then we can't reorder the mem ops. 11538 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 11539 break; 11540 11541 // Find the base pointer and offset for this memory node. 11542 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 11543 11544 // Check that the base pointer is the same as the original one. 11545 if (!Ptr.equalBaseIndex(BasePtr)) 11546 break; 11547 11548 // The memory operands must not be volatile. 11549 if (Index->isVolatile() || Index->isIndexed()) 11550 break; 11551 11552 // No truncation. 11553 if (Index->isTruncatingStore()) 11554 break; 11555 11556 // The stored memory type must be the same. 11557 if (Index->getMemoryVT() != MemVT) 11558 break; 11559 11560 // We do not allow under-aligned stores in order to prevent 11561 // overriding stores. NOTE: this is a bad hack. Alignment SHOULD 11562 // be irrelevant here; what MATTERS is that we not move memory 11563 // operations that potentially overlap past each-other. 11564 if (Index->getAlignment() < MemVT.getStoreSize()) 11565 break; 11566 11567 // We found a potential memory operand to merge. 11568 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 11569 11570 // Find the next memory operand in the chain. If the next operand in the 11571 // chain is a store then move up and continue the scan with the next 11572 // memory operand. If the next operand is a load save it and use alias 11573 // information to check if it interferes with anything. 11574 SDNode *NextInChain = Index->getChain().getNode(); 11575 while (1) { 11576 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 11577 // We found a store node. Use it for the next iteration. 11578 Index = STn; 11579 break; 11580 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 11581 if (Ldn->isVolatile()) { 11582 Index = nullptr; 11583 break; 11584 } 11585 11586 // Save the load node for later. Continue the scan. 11587 AliasLoadNodes.push_back(Ldn); 11588 NextInChain = Ldn->getChain().getNode(); 11589 continue; 11590 } else { 11591 Index = nullptr; 11592 break; 11593 } 11594 } 11595 } 11596 } 11597 11598 // We need to check that merging these stores does not cause a loop 11599 // in the DAG. Any store candidate may depend on another candidate 11600 // indirectly through its operand (we already consider dependencies 11601 // through the chain). Check in parallel by searching up from 11602 // non-chain operands of candidates. 11603 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 11604 SmallVectorImpl<MemOpLink> &StoreNodes) { 11605 SmallPtrSet<const SDNode *, 16> Visited; 11606 SmallVector<const SDNode *, 8> Worklist; 11607 // search ops of store candidates 11608 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11609 SDNode *n = StoreNodes[i].MemNode; 11610 // Potential loops may happen only through non-chain operands 11611 for (unsigned j = 1; j < n->getNumOperands(); ++j) 11612 Worklist.push_back(n->getOperand(j).getNode()); 11613 } 11614 // search through DAG. We can stop early if we find a storenode 11615 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11616 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist)) 11617 return false; 11618 } 11619 return true; 11620 } 11621 11622 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 11623 if (OptLevel == CodeGenOpt::None) 11624 return false; 11625 11626 EVT MemVT = St->getMemoryVT(); 11627 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11628 bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( 11629 Attribute::NoImplicitFloat); 11630 11631 // This function cannot currently deal with non-byte-sized memory sizes. 11632 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 11633 return false; 11634 11635 if (!MemVT.isSimple()) 11636 return false; 11637 11638 // Perform an early exit check. Do not bother looking at stored values that 11639 // are not constants, loads, or extracted vector elements. 11640 SDValue StoredVal = St->getValue(); 11641 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 11642 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 11643 isa<ConstantFPSDNode>(StoredVal); 11644 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 11645 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 11646 11647 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 11648 return false; 11649 11650 // Don't merge vectors into wider vectors if the source data comes from loads. 11651 // TODO: This restriction can be lifted by using logic similar to the 11652 // ExtractVecSrc case. 11653 if (MemVT.isVector() && IsLoadSrc) 11654 return false; 11655 11656 // Only look at ends of store sequences. 11657 SDValue Chain = SDValue(St, 0); 11658 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 11659 return false; 11660 11661 // Save the LoadSDNodes that we find in the chain. 11662 // We need to make sure that these nodes do not interfere with 11663 // any of the store nodes. 11664 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 11665 11666 // Save the StoreSDNodes that we find in the chain. 11667 SmallVector<MemOpLink, 8> StoreNodes; 11668 11669 getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); 11670 11671 // Check if there is anything to merge. 11672 if (StoreNodes.size() < 2) 11673 return false; 11674 11675 // only do dependence check in AA case 11676 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11677 : DAG.getSubtarget().useAA(); 11678 if (UseAA && !checkMergeStoreCandidatesForDependencies(StoreNodes)) 11679 return false; 11680 11681 // Sort the memory operands according to their distance from the 11682 // base pointer. As a secondary criteria: make sure stores coming 11683 // later in the code come first in the list. This is important for 11684 // the non-UseAA case, because we're merging stores into the FINAL 11685 // store along a chain which potentially contains aliasing stores. 11686 // Thus, if there are multiple stores to the same address, the last 11687 // one can be considered for merging but not the others. 11688 std::sort(StoreNodes.begin(), StoreNodes.end(), 11689 [](MemOpLink LHS, MemOpLink RHS) { 11690 return LHS.OffsetFromBase < RHS.OffsetFromBase || 11691 (LHS.OffsetFromBase == RHS.OffsetFromBase && 11692 LHS.SequenceNum < RHS.SequenceNum); 11693 }); 11694 11695 // Scan the memory operations on the chain and find the first non-consecutive 11696 // store memory address. 11697 unsigned LastConsecutiveStore = 0; 11698 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 11699 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 11700 11701 // Check that the addresses are consecutive starting from the second 11702 // element in the list of stores. 11703 if (i > 0) { 11704 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 11705 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11706 break; 11707 } 11708 11709 // Check if this store interferes with any of the loads that we found. 11710 // If we find a load that alias with this store. Stop the sequence. 11711 if (any_of(AliasLoadNodes, [&](LSBaseSDNode *Ldn) { 11712 return isAlias(Ldn, StoreNodes[i].MemNode); 11713 })) 11714 break; 11715 11716 // Mark this node as useful. 11717 LastConsecutiveStore = i; 11718 } 11719 11720 // The node with the lowest store address. 11721 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11722 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 11723 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 11724 LLVMContext &Context = *DAG.getContext(); 11725 const DataLayout &DL = DAG.getDataLayout(); 11726 11727 // Store the constants into memory as one consecutive store. 11728 if (IsConstantSrc) { 11729 unsigned LastLegalType = 0; 11730 unsigned LastLegalVectorType = 0; 11731 bool NonZero = false; 11732 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11733 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11734 SDValue StoredVal = St->getValue(); 11735 11736 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 11737 NonZero |= !C->isNullValue(); 11738 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 11739 NonZero |= !C->getConstantFPValue()->isNullValue(); 11740 } else { 11741 // Non-constant. 11742 break; 11743 } 11744 11745 // Find a legal type for the constant store. 11746 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11747 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11748 bool IsFast; 11749 if (TLI.isTypeLegal(StoreTy) && 11750 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11751 FirstStoreAlign, &IsFast) && IsFast) { 11752 LastLegalType = i+1; 11753 // Or check whether a truncstore is legal. 11754 } else if (TLI.getTypeAction(Context, StoreTy) == 11755 TargetLowering::TypePromoteInteger) { 11756 EVT LegalizedStoredValueTy = 11757 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 11758 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11759 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11760 FirstStoreAS, FirstStoreAlign, &IsFast) && 11761 IsFast) { 11762 LastLegalType = i + 1; 11763 } 11764 } 11765 11766 // We only use vectors if the constant is known to be zero or the target 11767 // allows it and the function is not marked with the noimplicitfloat 11768 // attribute. 11769 if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, 11770 FirstStoreAS)) && 11771 !NoVectors) { 11772 // Find a legal type for the vector store. 11773 EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); 11774 if (TLI.isTypeLegal(Ty) && 11775 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11776 FirstStoreAlign, &IsFast) && IsFast) 11777 LastLegalVectorType = i + 1; 11778 } 11779 } 11780 11781 // Check if we found a legal integer type to store. 11782 if (LastLegalType == 0 && LastLegalVectorType == 0) 11783 return false; 11784 11785 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 11786 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 11787 11788 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 11789 true, UseVector); 11790 } 11791 11792 // When extracting multiple vector elements, try to store them 11793 // in one vector store rather than a sequence of scalar stores. 11794 if (IsExtractVecSrc) { 11795 unsigned NumStoresToMerge = 0; 11796 bool IsVec = MemVT.isVector(); 11797 for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { 11798 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11799 unsigned StoreValOpcode = St->getValue().getOpcode(); 11800 // This restriction could be loosened. 11801 // Bail out if any stored values are not elements extracted from a vector. 11802 // It should be possible to handle mixed sources, but load sources need 11803 // more careful handling (see the block of code below that handles 11804 // consecutive loads). 11805 if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && 11806 StoreValOpcode != ISD::EXTRACT_SUBVECTOR) 11807 return false; 11808 11809 // Find a legal type for the vector store. 11810 unsigned Elts = i + 1; 11811 if (IsVec) { 11812 // When merging vector stores, get the total number of elements. 11813 Elts *= MemVT.getVectorNumElements(); 11814 } 11815 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11816 bool IsFast; 11817 if (TLI.isTypeLegal(Ty) && 11818 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11819 FirstStoreAlign, &IsFast) && IsFast) 11820 NumStoresToMerge = i + 1; 11821 } 11822 11823 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, 11824 false, true); 11825 } 11826 11827 // Below we handle the case of multiple consecutive stores that 11828 // come from multiple consecutive loads. We merge them into a single 11829 // wide load and a single wide store. 11830 11831 // Look for load nodes which are used by the stored values. 11832 SmallVector<MemOpLink, 8> LoadNodes; 11833 11834 // Find acceptable loads. Loads need to have the same chain (token factor), 11835 // must not be zext, volatile, indexed, and they must be consecutive. 11836 BaseIndexOffset LdBasePtr; 11837 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11838 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11839 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 11840 if (!Ld) break; 11841 11842 // Loads must only have one use. 11843 if (!Ld->hasNUsesOfValue(1, 0)) 11844 break; 11845 11846 // The memory operands must not be volatile. 11847 if (Ld->isVolatile() || Ld->isIndexed()) 11848 break; 11849 11850 // We do not accept ext loads. 11851 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 11852 break; 11853 11854 // The stored memory type must be the same. 11855 if (Ld->getMemoryVT() != MemVT) 11856 break; 11857 11858 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG); 11859 // If this is not the first ptr that we check. 11860 if (LdBasePtr.Base.getNode()) { 11861 // The base ptr must be the same. 11862 if (!LdPtr.equalBaseIndex(LdBasePtr)) 11863 break; 11864 } else { 11865 // Check that all other base pointers are the same as this one. 11866 LdBasePtr = LdPtr; 11867 } 11868 11869 // We found a potential memory operand to merge. 11870 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 11871 } 11872 11873 if (LoadNodes.size() < 2) 11874 return false; 11875 11876 // If we have load/store pair instructions and we only have two values, 11877 // don't bother. 11878 unsigned RequiredAlignment; 11879 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 11880 St->getAlignment() >= RequiredAlignment) 11881 return false; 11882 11883 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 11884 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 11885 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 11886 11887 // Scan the memory operations on the chain and find the first non-consecutive 11888 // load memory address. These variables hold the index in the store node 11889 // array. 11890 unsigned LastConsecutiveLoad = 0; 11891 // This variable refers to the size and not index in the array. 11892 unsigned LastLegalVectorType = 0; 11893 unsigned LastLegalIntegerType = 0; 11894 StartAddress = LoadNodes[0].OffsetFromBase; 11895 SDValue FirstChain = FirstLoad->getChain(); 11896 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 11897 // All loads must share the same chain. 11898 if (LoadNodes[i].MemNode->getChain() != FirstChain) 11899 break; 11900 11901 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 11902 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11903 break; 11904 LastConsecutiveLoad = i; 11905 // Find a legal type for the vector store. 11906 EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); 11907 bool IsFastSt, IsFastLd; 11908 if (TLI.isTypeLegal(StoreTy) && 11909 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11910 FirstStoreAlign, &IsFastSt) && IsFastSt && 11911 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11912 FirstLoadAlign, &IsFastLd) && IsFastLd) { 11913 LastLegalVectorType = i + 1; 11914 } 11915 11916 // Find a legal type for the integer store. 11917 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11918 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11919 if (TLI.isTypeLegal(StoreTy) && 11920 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11921 FirstStoreAlign, &IsFastSt) && IsFastSt && 11922 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11923 FirstLoadAlign, &IsFastLd) && IsFastLd) 11924 LastLegalIntegerType = i + 1; 11925 // Or check whether a truncstore and extload is legal. 11926 else if (TLI.getTypeAction(Context, StoreTy) == 11927 TargetLowering::TypePromoteInteger) { 11928 EVT LegalizedStoredValueTy = 11929 TLI.getTypeToTransformTo(Context, StoreTy); 11930 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11931 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11932 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11933 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && 11934 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11935 FirstStoreAS, FirstStoreAlign, &IsFastSt) && 11936 IsFastSt && 11937 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11938 FirstLoadAS, FirstLoadAlign, &IsFastLd) && 11939 IsFastLd) 11940 LastLegalIntegerType = i+1; 11941 } 11942 } 11943 11944 // Only use vector types if the vector type is larger than the integer type. 11945 // If they are the same, use integers. 11946 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 11947 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 11948 11949 // We add +1 here because the LastXXX variables refer to location while 11950 // the NumElem refers to array/index size. 11951 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 11952 NumElem = std::min(LastLegalType, NumElem); 11953 11954 if (NumElem < 2) 11955 return false; 11956 11957 // Collect the chains from all merged stores. 11958 SmallVector<SDValue, 8> MergeStoreChains; 11959 MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); 11960 11961 // The latest Node in the DAG. 11962 unsigned LatestNodeUsed = 0; 11963 for (unsigned i=1; i<NumElem; ++i) { 11964 // Find a chain for the new wide-store operand. Notice that some 11965 // of the store nodes that we found may not be selected for inclusion 11966 // in the wide store. The chain we use needs to be the chain of the 11967 // latest store node which is *used* and replaced by the wide store. 11968 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11969 LatestNodeUsed = i; 11970 11971 MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); 11972 } 11973 11974 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11975 11976 // Find if it is better to use vectors or integers to load and store 11977 // to memory. 11978 EVT JointMemOpVT; 11979 if (UseVectorTy) { 11980 JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); 11981 } else { 11982 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 11983 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 11984 } 11985 11986 SDLoc LoadDL(LoadNodes[0].MemNode); 11987 SDLoc StoreDL(StoreNodes[0].MemNode); 11988 11989 // The merged loads are required to have the same incoming chain, so 11990 // using the first's chain is acceptable. 11991 SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), 11992 FirstLoad->getBasePtr(), 11993 FirstLoad->getPointerInfo(), FirstLoadAlign); 11994 11995 SDValue NewStoreChain = 11996 DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); 11997 11998 SDValue NewStore = 11999 DAG.getStore(NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 12000 FirstInChain->getPointerInfo(), FirstStoreAlign); 12001 12002 // Transfer chain users from old loads to the new load. 12003 for (unsigned i = 0; i < NumElem; ++i) { 12004 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 12005 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 12006 SDValue(NewLoad.getNode(), 1)); 12007 } 12008 12009 if (UseAA) { 12010 // Replace the all stores with the new store. 12011 for (unsigned i = 0; i < NumElem; ++i) 12012 CombineTo(StoreNodes[i].MemNode, NewStore); 12013 } else { 12014 // Replace the last store with the new store. 12015 CombineTo(LatestOp, NewStore); 12016 // Erase all other stores. 12017 for (unsigned i = 0; i < NumElem; ++i) { 12018 // Remove all Store nodes. 12019 if (StoreNodes[i].MemNode == LatestOp) 12020 continue; 12021 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 12022 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 12023 deleteAndRecombine(St); 12024 } 12025 } 12026 12027 return true; 12028 } 12029 12030 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 12031 SDLoc SL(ST); 12032 SDValue ReplStore; 12033 12034 // Replace the chain to avoid dependency. 12035 if (ST->isTruncatingStore()) { 12036 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 12037 ST->getBasePtr(), ST->getMemoryVT(), 12038 ST->getMemOperand()); 12039 } else { 12040 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 12041 ST->getMemOperand()); 12042 } 12043 12044 // Create token to keep both nodes around. 12045 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 12046 MVT::Other, ST->getChain(), ReplStore); 12047 12048 // Make sure the new and old chains are cleaned up. 12049 AddToWorklist(Token.getNode()); 12050 12051 // Don't add users to work list. 12052 return CombineTo(ST, Token, false); 12053 } 12054 12055 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 12056 SDValue Value = ST->getValue(); 12057 if (Value.getOpcode() == ISD::TargetConstantFP) 12058 return SDValue(); 12059 12060 SDLoc DL(ST); 12061 12062 SDValue Chain = ST->getChain(); 12063 SDValue Ptr = ST->getBasePtr(); 12064 12065 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 12066 12067 // NOTE: If the original store is volatile, this transform must not increase 12068 // the number of stores. For example, on x86-32 an f64 can be stored in one 12069 // processor operation but an i64 (which is not legal) requires two. So the 12070 // transform should not be done in this case. 12071 12072 SDValue Tmp; 12073 switch (CFP->getSimpleValueType(0).SimpleTy) { 12074 default: 12075 llvm_unreachable("Unknown FP type"); 12076 case MVT::f16: // We don't do this for these yet. 12077 case MVT::f80: 12078 case MVT::f128: 12079 case MVT::ppcf128: 12080 return SDValue(); 12081 case MVT::f32: 12082 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 12083 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 12084 ; 12085 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 12086 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 12087 MVT::i32); 12088 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 12089 } 12090 12091 return SDValue(); 12092 case MVT::f64: 12093 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 12094 !ST->isVolatile()) || 12095 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 12096 ; 12097 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 12098 getZExtValue(), SDLoc(CFP), MVT::i64); 12099 return DAG.getStore(Chain, DL, Tmp, 12100 Ptr, ST->getMemOperand()); 12101 } 12102 12103 if (!ST->isVolatile() && 12104 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 12105 // Many FP stores are not made apparent until after legalize, e.g. for 12106 // argument passing. Since this is so common, custom legalize the 12107 // 64-bit integer store into two 32-bit stores. 12108 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 12109 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 12110 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 12111 if (DAG.getDataLayout().isBigEndian()) 12112 std::swap(Lo, Hi); 12113 12114 unsigned Alignment = ST->getAlignment(); 12115 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 12116 AAMDNodes AAInfo = ST->getAAInfo(); 12117 12118 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 12119 ST->getAlignment(), MMOFlags, AAInfo); 12120 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 12121 DAG.getConstant(4, DL, Ptr.getValueType())); 12122 Alignment = MinAlign(Alignment, 4U); 12123 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 12124 ST->getPointerInfo().getWithOffset(4), 12125 Alignment, MMOFlags, AAInfo); 12126 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 12127 St0, St1); 12128 } 12129 12130 return SDValue(); 12131 } 12132 } 12133 12134 SDValue DAGCombiner::visitSTORE(SDNode *N) { 12135 StoreSDNode *ST = cast<StoreSDNode>(N); 12136 SDValue Chain = ST->getChain(); 12137 SDValue Value = ST->getValue(); 12138 SDValue Ptr = ST->getBasePtr(); 12139 12140 // If this is a store of a bit convert, store the input value if the 12141 // resultant store does not need a higher alignment than the original. 12142 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 12143 ST->isUnindexed()) { 12144 EVT SVT = Value.getOperand(0).getValueType(); 12145 if (((!LegalOperations && !ST->isVolatile()) || 12146 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)) && 12147 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { 12148 unsigned OrigAlign = ST->getAlignment(); 12149 bool Fast = false; 12150 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, 12151 ST->getAddressSpace(), OrigAlign, &Fast) && 12152 Fast) { 12153 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 12154 ST->getPointerInfo(), OrigAlign, 12155 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 12156 } 12157 } 12158 } 12159 12160 // Turn 'store undef, Ptr' -> nothing. 12161 if (Value.isUndef() && ST->isUnindexed()) 12162 return Chain; 12163 12164 // Try to infer better alignment information than the store already has. 12165 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 12166 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 12167 if (Align > ST->getAlignment()) { 12168 SDValue NewStore = 12169 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 12170 ST->getMemoryVT(), Align, 12171 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 12172 if (NewStore.getNode() != N) 12173 return CombineTo(ST, NewStore, true); 12174 } 12175 } 12176 } 12177 12178 // Try transforming a pair floating point load / store ops to integer 12179 // load / store ops. 12180 if (SDValue NewST = TransformFPLoadStorePair(N)) 12181 return NewST; 12182 12183 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 12184 : DAG.getSubtarget().useAA(); 12185 #ifndef NDEBUG 12186 if (CombinerAAOnlyFunc.getNumOccurrences() && 12187 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 12188 UseAA = false; 12189 #endif 12190 if (UseAA && ST->isUnindexed()) { 12191 // FIXME: We should do this even without AA enabled. AA will just allow 12192 // FindBetterChain to work in more situations. The problem with this is that 12193 // any combine that expects memory operations to be on consecutive chains 12194 // first needs to be updated to look for users of the same chain. 12195 12196 // Walk up chain skipping non-aliasing memory nodes, on this store and any 12197 // adjacent stores. 12198 if (findBetterNeighborChains(ST)) { 12199 // replaceStoreChain uses CombineTo, which handled all of the worklist 12200 // manipulation. Return the original node to not do anything else. 12201 return SDValue(ST, 0); 12202 } 12203 Chain = ST->getChain(); 12204 } 12205 12206 // Try transforming N to an indexed store. 12207 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 12208 return SDValue(N, 0); 12209 12210 // FIXME: is there such a thing as a truncating indexed store? 12211 if (ST->isTruncatingStore() && ST->isUnindexed() && 12212 Value.getValueType().isInteger()) { 12213 // See if we can simplify the input to this truncstore with knowledge that 12214 // only the low bits are being used. For example: 12215 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 12216 SDValue Shorter = GetDemandedBits( 12217 Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 12218 ST->getMemoryVT().getScalarSizeInBits())); 12219 AddToWorklist(Value.getNode()); 12220 if (Shorter.getNode()) 12221 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 12222 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12223 12224 // Otherwise, see if we can simplify the operation with 12225 // SimplifyDemandedBits, which only works if the value has a single use. 12226 if (SimplifyDemandedBits( 12227 Value, 12228 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 12229 ST->getMemoryVT().getScalarSizeInBits()))) 12230 return SDValue(N, 0); 12231 } 12232 12233 // If this is a load followed by a store to the same location, then the store 12234 // is dead/noop. 12235 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 12236 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 12237 ST->isUnindexed() && !ST->isVolatile() && 12238 // There can't be any side effects between the load and store, such as 12239 // a call or store. 12240 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 12241 // The store is dead, remove it. 12242 return Chain; 12243 } 12244 } 12245 12246 // If this is a store followed by a store with the same value to the same 12247 // location, then the store is dead/noop. 12248 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 12249 if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && 12250 ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && 12251 ST1->isUnindexed() && !ST1->isVolatile()) { 12252 // The store is dead, remove it. 12253 return Chain; 12254 } 12255 } 12256 12257 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 12258 // truncating store. We can do this even if this is already a truncstore. 12259 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 12260 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 12261 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 12262 ST->getMemoryVT())) { 12263 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 12264 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12265 } 12266 12267 // Only perform this optimization before the types are legal, because we 12268 // don't want to perform this optimization on every DAGCombine invocation. 12269 if (!LegalTypes) { 12270 bool EverChanged = false; 12271 12272 do { 12273 // There can be multiple store sequences on the same chain. 12274 // Keep trying to merge store sequences until we are unable to do so 12275 // or until we merge the last store on the chain. 12276 bool Changed = MergeConsecutiveStores(ST); 12277 EverChanged |= Changed; 12278 if (!Changed) break; 12279 } while (ST->getOpcode() != ISD::DELETED_NODE); 12280 12281 if (EverChanged) 12282 return SDValue(N, 0); 12283 } 12284 12285 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 12286 // 12287 // Make sure to do this only after attempting to merge stores in order to 12288 // avoid changing the types of some subset of stores due to visit order, 12289 // preventing their merging. 12290 if (isa<ConstantFPSDNode>(Value)) { 12291 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 12292 return NewSt; 12293 } 12294 12295 if (SDValue NewSt = splitMergedValStore(ST)) 12296 return NewSt; 12297 12298 return ReduceLoadOpStoreWidth(N); 12299 } 12300 12301 /// For the instruction sequence of store below, F and I values 12302 /// are bundled together as an i64 value before being stored into memory. 12303 /// Sometimes it is more efficent to generate separate stores for F and I, 12304 /// which can remove the bitwise instructions or sink them to colder places. 12305 /// 12306 /// (store (or (zext (bitcast F to i32) to i64), 12307 /// (shl (zext I to i64), 32)), addr) --> 12308 /// (store F, addr) and (store I, addr+4) 12309 /// 12310 /// Similarly, splitting for other merged store can also be beneficial, like: 12311 /// For pair of {i32, i32}, i64 store --> two i32 stores. 12312 /// For pair of {i32, i16}, i64 store --> two i32 stores. 12313 /// For pair of {i16, i16}, i32 store --> two i16 stores. 12314 /// For pair of {i16, i8}, i32 store --> two i16 stores. 12315 /// For pair of {i8, i8}, i16 store --> two i8 stores. 12316 /// 12317 /// We allow each target to determine specifically which kind of splitting is 12318 /// supported. 12319 /// 12320 /// The store patterns are commonly seen from the simple code snippet below 12321 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 12322 /// void goo(const std::pair<int, float> &); 12323 /// hoo() { 12324 /// ... 12325 /// goo(std::make_pair(tmp, ftmp)); 12326 /// ... 12327 /// } 12328 /// 12329 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 12330 if (OptLevel == CodeGenOpt::None) 12331 return SDValue(); 12332 12333 SDValue Val = ST->getValue(); 12334 SDLoc DL(ST); 12335 12336 // Match OR operand. 12337 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 12338 return SDValue(); 12339 12340 // Match SHL operand and get Lower and Higher parts of Val. 12341 SDValue Op1 = Val.getOperand(0); 12342 SDValue Op2 = Val.getOperand(1); 12343 SDValue Lo, Hi; 12344 if (Op1.getOpcode() != ISD::SHL) { 12345 std::swap(Op1, Op2); 12346 if (Op1.getOpcode() != ISD::SHL) 12347 return SDValue(); 12348 } 12349 Lo = Op2; 12350 Hi = Op1.getOperand(0); 12351 if (!Op1.hasOneUse()) 12352 return SDValue(); 12353 12354 // Match shift amount to HalfValBitSize. 12355 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 12356 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 12357 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 12358 return SDValue(); 12359 12360 // Lo and Hi are zero-extended from int with size less equal than 32 12361 // to i64. 12362 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 12363 !Lo.getOperand(0).getValueType().isScalarInteger() || 12364 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 12365 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 12366 !Hi.getOperand(0).getValueType().isScalarInteger() || 12367 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 12368 return SDValue(); 12369 12370 if (!TLI.isMultiStoresCheaperThanBitsMerge(Lo.getOperand(0), 12371 Hi.getOperand(0))) 12372 return SDValue(); 12373 12374 // Start to split store. 12375 unsigned Alignment = ST->getAlignment(); 12376 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 12377 AAMDNodes AAInfo = ST->getAAInfo(); 12378 12379 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 12380 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 12381 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 12382 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 12383 12384 SDValue Chain = ST->getChain(); 12385 SDValue Ptr = ST->getBasePtr(); 12386 // Lower value store. 12387 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 12388 ST->getAlignment(), MMOFlags, AAInfo); 12389 Ptr = 12390 DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 12391 DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType())); 12392 // Higher value store. 12393 SDValue St1 = 12394 DAG.getStore(St0, DL, Hi, Ptr, 12395 ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 12396 Alignment / 2, MMOFlags, AAInfo); 12397 return St1; 12398 } 12399 12400 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 12401 SDValue InVec = N->getOperand(0); 12402 SDValue InVal = N->getOperand(1); 12403 SDValue EltNo = N->getOperand(2); 12404 SDLoc DL(N); 12405 12406 // If the inserted element is an UNDEF, just use the input vector. 12407 if (InVal.isUndef()) 12408 return InVec; 12409 12410 EVT VT = InVec.getValueType(); 12411 12412 // If we can't generate a legal BUILD_VECTOR, exit 12413 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 12414 return SDValue(); 12415 12416 // Check that we know which element is being inserted 12417 if (!isa<ConstantSDNode>(EltNo)) 12418 return SDValue(); 12419 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12420 12421 // Canonicalize insert_vector_elt dag nodes. 12422 // Example: 12423 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 12424 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 12425 // 12426 // Do this only if the child insert_vector node has one use; also 12427 // do this only if indices are both constants and Idx1 < Idx0. 12428 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 12429 && isa<ConstantSDNode>(InVec.getOperand(2))) { 12430 unsigned OtherElt = 12431 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 12432 if (Elt < OtherElt) { 12433 // Swap nodes. 12434 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 12435 InVec.getOperand(0), InVal, EltNo); 12436 AddToWorklist(NewOp.getNode()); 12437 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 12438 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 12439 } 12440 } 12441 12442 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 12443 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 12444 // vector elements. 12445 SmallVector<SDValue, 8> Ops; 12446 // Do not combine these two vectors if the output vector will not replace 12447 // the input vector. 12448 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 12449 Ops.append(InVec.getNode()->op_begin(), 12450 InVec.getNode()->op_end()); 12451 } else if (InVec.isUndef()) { 12452 unsigned NElts = VT.getVectorNumElements(); 12453 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 12454 } else { 12455 return SDValue(); 12456 } 12457 12458 // Insert the element 12459 if (Elt < Ops.size()) { 12460 // All the operands of BUILD_VECTOR must have the same type; 12461 // we enforce that here. 12462 EVT OpVT = Ops[0].getValueType(); 12463 if (InVal.getValueType() != OpVT) 12464 InVal = OpVT.bitsGT(InVal.getValueType()) ? 12465 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) : 12466 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal); 12467 Ops[Elt] = InVal; 12468 } 12469 12470 // Return the new vector 12471 return DAG.getBuildVector(VT, DL, Ops); 12472 } 12473 12474 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 12475 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 12476 assert(!OriginalLoad->isVolatile()); 12477 12478 EVT ResultVT = EVE->getValueType(0); 12479 EVT VecEltVT = InVecVT.getVectorElementType(); 12480 unsigned Align = OriginalLoad->getAlignment(); 12481 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 12482 VecEltVT.getTypeForEVT(*DAG.getContext())); 12483 12484 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 12485 return SDValue(); 12486 12487 Align = NewAlign; 12488 12489 SDValue NewPtr = OriginalLoad->getBasePtr(); 12490 SDValue Offset; 12491 EVT PtrType = NewPtr.getValueType(); 12492 MachinePointerInfo MPI; 12493 SDLoc DL(EVE); 12494 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 12495 int Elt = ConstEltNo->getZExtValue(); 12496 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 12497 Offset = DAG.getConstant(PtrOff, DL, PtrType); 12498 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 12499 } else { 12500 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 12501 Offset = DAG.getNode( 12502 ISD::MUL, DL, PtrType, Offset, 12503 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 12504 MPI = OriginalLoad->getPointerInfo(); 12505 } 12506 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 12507 12508 // The replacement we need to do here is a little tricky: we need to 12509 // replace an extractelement of a load with a load. 12510 // Use ReplaceAllUsesOfValuesWith to do the replacement. 12511 // Note that this replacement assumes that the extractvalue is the only 12512 // use of the load; that's okay because we don't want to perform this 12513 // transformation in other cases anyway. 12514 SDValue Load; 12515 SDValue Chain; 12516 if (ResultVT.bitsGT(VecEltVT)) { 12517 // If the result type of vextract is wider than the load, then issue an 12518 // extending load instead. 12519 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 12520 VecEltVT) 12521 ? ISD::ZEXTLOAD 12522 : ISD::EXTLOAD; 12523 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 12524 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 12525 Align, OriginalLoad->getMemOperand()->getFlags(), 12526 OriginalLoad->getAAInfo()); 12527 Chain = Load.getValue(1); 12528 } else { 12529 Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, 12530 MPI, Align, OriginalLoad->getMemOperand()->getFlags(), 12531 OriginalLoad->getAAInfo()); 12532 Chain = Load.getValue(1); 12533 if (ResultVT.bitsLT(VecEltVT)) 12534 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 12535 else 12536 Load = DAG.getBitcast(ResultVT, Load); 12537 } 12538 WorklistRemover DeadNodes(*this); 12539 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 12540 SDValue To[] = { Load, Chain }; 12541 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 12542 // Since we're explicitly calling ReplaceAllUses, add the new node to the 12543 // worklist explicitly as well. 12544 AddToWorklist(Load.getNode()); 12545 AddUsersToWorklist(Load.getNode()); // Add users too 12546 // Make sure to revisit this node to clean it up; it will usually be dead. 12547 AddToWorklist(EVE); 12548 ++OpsNarrowed; 12549 return SDValue(EVE, 0); 12550 } 12551 12552 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 12553 // (vextract (scalar_to_vector val, 0) -> val 12554 SDValue InVec = N->getOperand(0); 12555 EVT VT = InVec.getValueType(); 12556 EVT NVT = N->getValueType(0); 12557 12558 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 12559 // Check if the result type doesn't match the inserted element type. A 12560 // SCALAR_TO_VECTOR may truncate the inserted element and the 12561 // EXTRACT_VECTOR_ELT may widen the extracted vector. 12562 SDValue InOp = InVec.getOperand(0); 12563 if (InOp.getValueType() != NVT) { 12564 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12565 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 12566 } 12567 return InOp; 12568 } 12569 12570 SDValue EltNo = N->getOperand(1); 12571 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 12572 12573 // extract_vector_elt (build_vector x, y), 1 -> y 12574 if (ConstEltNo && 12575 InVec.getOpcode() == ISD::BUILD_VECTOR && 12576 TLI.isTypeLegal(VT) && 12577 (InVec.hasOneUse() || 12578 TLI.aggressivelyPreferBuildVectorSources(VT))) { 12579 SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); 12580 EVT InEltVT = Elt.getValueType(); 12581 12582 // Sometimes build_vector's scalar input types do not match result type. 12583 if (NVT == InEltVT) 12584 return Elt; 12585 12586 // TODO: It may be useful to truncate if free if the build_vector implicitly 12587 // converts. 12588 } 12589 12590 // extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x) 12591 if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() && 12592 ConstEltNo->isNullValue() && VT.isInteger()) { 12593 SDValue BCSrc = InVec.getOperand(0); 12594 if (BCSrc.getValueType().isScalarInteger()) 12595 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc); 12596 } 12597 12598 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 12599 // 12600 // This only really matters if the index is non-constant since other combines 12601 // on the constant elements already work. 12602 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && 12603 EltNo == InVec.getOperand(2)) { 12604 SDValue Elt = InVec.getOperand(1); 12605 return VT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, SDLoc(N), NVT) : Elt; 12606 } 12607 12608 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 12609 // We only perform this optimization before the op legalization phase because 12610 // we may introduce new vector instructions which are not backed by TD 12611 // patterns. For example on AVX, extracting elements from a wide vector 12612 // without using extract_subvector. However, if we can find an underlying 12613 // scalar value, then we can always use that. 12614 if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { 12615 int NumElem = VT.getVectorNumElements(); 12616 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 12617 // Find the new index to extract from. 12618 int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); 12619 12620 // Extracting an undef index is undef. 12621 if (OrigElt == -1) 12622 return DAG.getUNDEF(NVT); 12623 12624 // Select the right vector half to extract from. 12625 SDValue SVInVec; 12626 if (OrigElt < NumElem) { 12627 SVInVec = InVec->getOperand(0); 12628 } else { 12629 SVInVec = InVec->getOperand(1); 12630 OrigElt -= NumElem; 12631 } 12632 12633 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 12634 SDValue InOp = SVInVec.getOperand(OrigElt); 12635 if (InOp.getValueType() != NVT) { 12636 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12637 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 12638 } 12639 12640 return InOp; 12641 } 12642 12643 // FIXME: We should handle recursing on other vector shuffles and 12644 // scalar_to_vector here as well. 12645 12646 if (!LegalOperations) { 12647 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12648 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, 12649 DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); 12650 } 12651 } 12652 12653 bool BCNumEltsChanged = false; 12654 EVT ExtVT = VT.getVectorElementType(); 12655 EVT LVT = ExtVT; 12656 12657 // If the result of load has to be truncated, then it's not necessarily 12658 // profitable. 12659 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 12660 return SDValue(); 12661 12662 if (InVec.getOpcode() == ISD::BITCAST) { 12663 // Don't duplicate a load with other uses. 12664 if (!InVec.hasOneUse()) 12665 return SDValue(); 12666 12667 EVT BCVT = InVec.getOperand(0).getValueType(); 12668 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 12669 return SDValue(); 12670 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 12671 BCNumEltsChanged = true; 12672 InVec = InVec.getOperand(0); 12673 ExtVT = BCVT.getVectorElementType(); 12674 } 12675 12676 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 12677 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 12678 ISD::isNormalLoad(InVec.getNode()) && 12679 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 12680 SDValue Index = N->getOperand(1); 12681 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) { 12682 if (!OrigLoad->isVolatile()) { 12683 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 12684 OrigLoad); 12685 } 12686 } 12687 } 12688 12689 // Perform only after legalization to ensure build_vector / vector_shuffle 12690 // optimizations have already been done. 12691 if (!LegalOperations) return SDValue(); 12692 12693 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 12694 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 12695 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 12696 12697 if (ConstEltNo) { 12698 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12699 12700 LoadSDNode *LN0 = nullptr; 12701 const ShuffleVectorSDNode *SVN = nullptr; 12702 if (ISD::isNormalLoad(InVec.getNode())) { 12703 LN0 = cast<LoadSDNode>(InVec); 12704 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 12705 InVec.getOperand(0).getValueType() == ExtVT && 12706 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 12707 // Don't duplicate a load with other uses. 12708 if (!InVec.hasOneUse()) 12709 return SDValue(); 12710 12711 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 12712 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 12713 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 12714 // => 12715 // (load $addr+1*size) 12716 12717 // Don't duplicate a load with other uses. 12718 if (!InVec.hasOneUse()) 12719 return SDValue(); 12720 12721 // If the bit convert changed the number of elements, it is unsafe 12722 // to examine the mask. 12723 if (BCNumEltsChanged) 12724 return SDValue(); 12725 12726 // Select the input vector, guarding against out of range extract vector. 12727 unsigned NumElems = VT.getVectorNumElements(); 12728 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 12729 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 12730 12731 if (InVec.getOpcode() == ISD::BITCAST) { 12732 // Don't duplicate a load with other uses. 12733 if (!InVec.hasOneUse()) 12734 return SDValue(); 12735 12736 InVec = InVec.getOperand(0); 12737 } 12738 if (ISD::isNormalLoad(InVec.getNode())) { 12739 LN0 = cast<LoadSDNode>(InVec); 12740 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 12741 EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); 12742 } 12743 } 12744 12745 // Make sure we found a non-volatile load and the extractelement is 12746 // the only use. 12747 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 12748 return SDValue(); 12749 12750 // If Idx was -1 above, Elt is going to be -1, so just return undef. 12751 if (Elt == -1) 12752 return DAG.getUNDEF(LVT); 12753 12754 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 12755 } 12756 12757 return SDValue(); 12758 } 12759 12760 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 12761 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 12762 // We perform this optimization post type-legalization because 12763 // the type-legalizer often scalarizes integer-promoted vectors. 12764 // Performing this optimization before may create bit-casts which 12765 // will be type-legalized to complex code sequences. 12766 // We perform this optimization only before the operation legalizer because we 12767 // may introduce illegal operations. 12768 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 12769 return SDValue(); 12770 12771 unsigned NumInScalars = N->getNumOperands(); 12772 SDLoc DL(N); 12773 EVT VT = N->getValueType(0); 12774 12775 // Check to see if this is a BUILD_VECTOR of a bunch of values 12776 // which come from any_extend or zero_extend nodes. If so, we can create 12777 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 12778 // optimizations. We do not handle sign-extend because we can't fill the sign 12779 // using shuffles. 12780 EVT SourceType = MVT::Other; 12781 bool AllAnyExt = true; 12782 12783 for (unsigned i = 0; i != NumInScalars; ++i) { 12784 SDValue In = N->getOperand(i); 12785 // Ignore undef inputs. 12786 if (In.isUndef()) continue; 12787 12788 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 12789 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 12790 12791 // Abort if the element is not an extension. 12792 if (!ZeroExt && !AnyExt) { 12793 SourceType = MVT::Other; 12794 break; 12795 } 12796 12797 // The input is a ZeroExt or AnyExt. Check the original type. 12798 EVT InTy = In.getOperand(0).getValueType(); 12799 12800 // Check that all of the widened source types are the same. 12801 if (SourceType == MVT::Other) 12802 // First time. 12803 SourceType = InTy; 12804 else if (InTy != SourceType) { 12805 // Multiple income types. Abort. 12806 SourceType = MVT::Other; 12807 break; 12808 } 12809 12810 // Check if all of the extends are ANY_EXTENDs. 12811 AllAnyExt &= AnyExt; 12812 } 12813 12814 // In order to have valid types, all of the inputs must be extended from the 12815 // same source type and all of the inputs must be any or zero extend. 12816 // Scalar sizes must be a power of two. 12817 EVT OutScalarTy = VT.getScalarType(); 12818 bool ValidTypes = SourceType != MVT::Other && 12819 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 12820 isPowerOf2_32(SourceType.getSizeInBits()); 12821 12822 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 12823 // turn into a single shuffle instruction. 12824 if (!ValidTypes) 12825 return SDValue(); 12826 12827 bool isLE = DAG.getDataLayout().isLittleEndian(); 12828 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 12829 assert(ElemRatio > 1 && "Invalid element size ratio"); 12830 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 12831 DAG.getConstant(0, DL, SourceType); 12832 12833 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 12834 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 12835 12836 // Populate the new build_vector 12837 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12838 SDValue Cast = N->getOperand(i); 12839 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 12840 Cast.getOpcode() == ISD::ZERO_EXTEND || 12841 Cast.isUndef()) && "Invalid cast opcode"); 12842 SDValue In; 12843 if (Cast.isUndef()) 12844 In = DAG.getUNDEF(SourceType); 12845 else 12846 In = Cast->getOperand(0); 12847 unsigned Index = isLE ? (i * ElemRatio) : 12848 (i * ElemRatio + (ElemRatio - 1)); 12849 12850 assert(Index < Ops.size() && "Invalid index"); 12851 Ops[Index] = In; 12852 } 12853 12854 // The type of the new BUILD_VECTOR node. 12855 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 12856 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 12857 "Invalid vector size"); 12858 // Check if the new vector type is legal. 12859 if (!isTypeLegal(VecVT)) return SDValue(); 12860 12861 // Make the new BUILD_VECTOR. 12862 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 12863 12864 // The new BUILD_VECTOR node has the potential to be further optimized. 12865 AddToWorklist(BV.getNode()); 12866 // Bitcast to the desired type. 12867 return DAG.getBitcast(VT, BV); 12868 } 12869 12870 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 12871 EVT VT = N->getValueType(0); 12872 12873 unsigned NumInScalars = N->getNumOperands(); 12874 SDLoc DL(N); 12875 12876 EVT SrcVT = MVT::Other; 12877 unsigned Opcode = ISD::DELETED_NODE; 12878 unsigned NumDefs = 0; 12879 12880 for (unsigned i = 0; i != NumInScalars; ++i) { 12881 SDValue In = N->getOperand(i); 12882 unsigned Opc = In.getOpcode(); 12883 12884 if (Opc == ISD::UNDEF) 12885 continue; 12886 12887 // If all scalar values are floats and converted from integers. 12888 if (Opcode == ISD::DELETED_NODE && 12889 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 12890 Opcode = Opc; 12891 } 12892 12893 if (Opc != Opcode) 12894 return SDValue(); 12895 12896 EVT InVT = In.getOperand(0).getValueType(); 12897 12898 // If all scalar values are typed differently, bail out. It's chosen to 12899 // simplify BUILD_VECTOR of integer types. 12900 if (SrcVT == MVT::Other) 12901 SrcVT = InVT; 12902 if (SrcVT != InVT) 12903 return SDValue(); 12904 NumDefs++; 12905 } 12906 12907 // If the vector has just one element defined, it's not worth to fold it into 12908 // a vectorized one. 12909 if (NumDefs < 2) 12910 return SDValue(); 12911 12912 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 12913 && "Should only handle conversion from integer to float."); 12914 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 12915 12916 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 12917 12918 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 12919 return SDValue(); 12920 12921 // Just because the floating-point vector type is legal does not necessarily 12922 // mean that the corresponding integer vector type is. 12923 if (!isTypeLegal(NVT)) 12924 return SDValue(); 12925 12926 SmallVector<SDValue, 8> Opnds; 12927 for (unsigned i = 0; i != NumInScalars; ++i) { 12928 SDValue In = N->getOperand(i); 12929 12930 if (In.isUndef()) 12931 Opnds.push_back(DAG.getUNDEF(SrcVT)); 12932 else 12933 Opnds.push_back(In.getOperand(0)); 12934 } 12935 SDValue BV = DAG.getBuildVector(NVT, DL, Opnds); 12936 AddToWorklist(BV.getNode()); 12937 12938 return DAG.getNode(Opcode, DL, VT, BV); 12939 } 12940 12941 SDValue DAGCombiner::createBuildVecShuffle(SDLoc DL, SDNode *N, 12942 ArrayRef<int> VectorMask, 12943 SDValue VecIn1, SDValue VecIn2, 12944 unsigned LeftIdx) { 12945 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12946 SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy); 12947 12948 EVT VT = N->getValueType(0); 12949 EVT InVT1 = VecIn1.getValueType(); 12950 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 12951 12952 unsigned Vec2Offset = InVT1.getVectorNumElements(); 12953 unsigned NumElems = VT.getVectorNumElements(); 12954 unsigned ShuffleNumElems = NumElems; 12955 12956 // We can't generate a shuffle node with mismatched input and output types. 12957 // Try to make the types match the type of the output. 12958 if (InVT1 != VT || InVT2 != VT) { 12959 if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { 12960 // If the output vector length is a multiple of both input lengths, 12961 // we can concatenate them and pad the rest with undefs. 12962 unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); 12963 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 12964 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 12965 ConcatOps[0] = VecIn1; 12966 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 12967 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 12968 VecIn2 = SDValue(); 12969 } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { 12970 if (!TLI.isExtractSubvectorCheap(VT, NumElems)) 12971 return SDValue(); 12972 12973 if (!VecIn2.getNode()) { 12974 // If we only have one input vector, and it's twice the size of the 12975 // output, split it in two. 12976 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 12977 DAG.getConstant(NumElems, DL, IdxTy)); 12978 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 12979 // Since we now have shorter input vectors, adjust the offset of the 12980 // second vector's start. 12981 Vec2Offset = NumElems; 12982 } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { 12983 // VecIn1 is wider than the output, and we have another, possibly 12984 // smaller input. Pad the smaller input with undefs, shuffle at the 12985 // input vector width, and extract the output. 12986 // The shuffle type is different than VT, so check legality again. 12987 if (LegalOperations && 12988 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 12989 return SDValue(); 12990 12991 if (InVT1 != InVT2) 12992 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 12993 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 12994 ShuffleNumElems = NumElems * 2; 12995 } else { 12996 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider 12997 // than VecIn1. We can't handle this for now - this case will disappear 12998 // when we start sorting the vectors by type. 12999 return SDValue(); 13000 } 13001 } else { 13002 // TODO: Support cases where the length mismatch isn't exactly by a 13003 // factor of 2. 13004 // TODO: Move this check upwards, so that if we have bad type 13005 // mismatches, we don't create any DAG nodes. 13006 return SDValue(); 13007 } 13008 } 13009 13010 // Initialize mask to undef. 13011 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 13012 13013 // Only need to run up to the number of elements actually used, not the 13014 // total number of elements in the shuffle - if we are shuffling a wider 13015 // vector, the high lanes should be set to undef. 13016 for (unsigned i = 0; i != NumElems; ++i) { 13017 if (VectorMask[i] <= 0) 13018 continue; 13019 13020 SDValue Extract = N->getOperand(i); 13021 unsigned ExtIndex = 13022 cast<ConstantSDNode>(Extract.getOperand(1))->getZExtValue(); 13023 13024 if (VectorMask[i] == (int)LeftIdx) { 13025 Mask[i] = ExtIndex; 13026 } else if (VectorMask[i] == (int)LeftIdx + 1) { 13027 Mask[i] = Vec2Offset + ExtIndex; 13028 } 13029 } 13030 13031 // The type the input vectors may have changed above. 13032 InVT1 = VecIn1.getValueType(); 13033 13034 // If we already have a VecIn2, it should have the same type as VecIn1. 13035 // If we don't, get an undef/zero vector of the appropriate type. 13036 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 13037 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 13038 13039 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 13040 if (ShuffleNumElems > NumElems) 13041 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 13042 13043 return Shuffle; 13044 } 13045 13046 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 13047 // operations. If the types of the vectors we're extracting from allow it, 13048 // turn this into a vector_shuffle node. 13049 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 13050 SDLoc DL(N); 13051 EVT VT = N->getValueType(0); 13052 13053 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 13054 if (!isTypeLegal(VT)) 13055 return SDValue(); 13056 13057 // May only combine to shuffle after legalize if shuffle is legal. 13058 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 13059 return SDValue(); 13060 13061 bool UsesZeroVector = false; 13062 unsigned NumElems = N->getNumOperands(); 13063 13064 // Record, for each element of the newly built vector, which input vector 13065 // that element comes from. -1 stands for undef, 0 for the zero vector, 13066 // and positive values for the input vectors. 13067 // VectorMask maps each element to its vector number, and VecIn maps vector 13068 // numbers to their initial SDValues. 13069 13070 SmallVector<int, 8> VectorMask(NumElems, -1); 13071 SmallVector<SDValue, 8> VecIn; 13072 VecIn.push_back(SDValue()); 13073 13074 for (unsigned i = 0; i != NumElems; ++i) { 13075 SDValue Op = N->getOperand(i); 13076 13077 if (Op.isUndef()) 13078 continue; 13079 13080 // See if we can use a blend with a zero vector. 13081 // TODO: Should we generalize this to a blend with an arbitrary constant 13082 // vector? 13083 if (isNullConstant(Op) || isNullFPConstant(Op)) { 13084 UsesZeroVector = true; 13085 VectorMask[i] = 0; 13086 continue; 13087 } 13088 13089 // Not an undef or zero. If the input is something other than an 13090 // EXTRACT_VECTOR_ELT with a constant index, bail out. 13091 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13092 !isa<ConstantSDNode>(Op.getOperand(1))) 13093 return SDValue(); 13094 13095 SDValue ExtractedFromVec = Op.getOperand(0); 13096 13097 // All inputs must have the same element type as the output. 13098 if (VT.getVectorElementType() != 13099 ExtractedFromVec.getValueType().getVectorElementType()) 13100 return SDValue(); 13101 13102 // Have we seen this input vector before? 13103 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 13104 // a map back from SDValues to numbers isn't worth it. 13105 unsigned Idx = std::distance( 13106 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); 13107 if (Idx == VecIn.size()) 13108 VecIn.push_back(ExtractedFromVec); 13109 13110 VectorMask[i] = Idx; 13111 } 13112 13113 // If we didn't find at least one input vector, bail out. 13114 if (VecIn.size() < 2) 13115 return SDValue(); 13116 13117 // TODO: We want to sort the vectors by descending length, so that adjacent 13118 // pairs have similar length, and the longer vector is always first in the 13119 // pair. 13120 13121 // TODO: Should this fire if some of the input vectors has illegal type (like 13122 // it does now), or should we let legalization run its course first? 13123 13124 // Shuffle phase: 13125 // Take pairs of vectors, and shuffle them so that the result has elements 13126 // from these vectors in the correct places. 13127 // For example, given: 13128 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 13129 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 13130 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 13131 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 13132 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 13133 // We will generate: 13134 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 13135 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 13136 SmallVector<SDValue, 4> Shuffles; 13137 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 13138 unsigned LeftIdx = 2 * In + 1; 13139 SDValue VecLeft = VecIn[LeftIdx]; 13140 SDValue VecRight = 13141 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 13142 13143 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 13144 VecRight, LeftIdx)) 13145 Shuffles.push_back(Shuffle); 13146 else 13147 return SDValue(); 13148 } 13149 13150 // If we need the zero vector as an "ingredient" in the blend tree, add it 13151 // to the list of shuffles. 13152 if (UsesZeroVector) 13153 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 13154 : DAG.getConstantFP(0.0, DL, VT)); 13155 13156 // If we only have one shuffle, we're done. 13157 if (Shuffles.size() == 1) 13158 return Shuffles[0]; 13159 13160 // Update the vector mask to point to the post-shuffle vectors. 13161 for (int &Vec : VectorMask) 13162 if (Vec == 0) 13163 Vec = Shuffles.size() - 1; 13164 else 13165 Vec = (Vec - 1) / 2; 13166 13167 // More than one shuffle. Generate a binary tree of blends, e.g. if from 13168 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 13169 // generate: 13170 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 13171 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 13172 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 13173 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 13174 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 13175 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 13176 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 13177 13178 // Make sure the initial size of the shuffle list is even. 13179 if (Shuffles.size() % 2) 13180 Shuffles.push_back(DAG.getUNDEF(VT)); 13181 13182 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 13183 if (CurSize % 2) { 13184 Shuffles[CurSize] = DAG.getUNDEF(VT); 13185 CurSize++; 13186 } 13187 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 13188 int Left = 2 * In; 13189 int Right = 2 * In + 1; 13190 SmallVector<int, 8> Mask(NumElems, -1); 13191 for (unsigned i = 0; i != NumElems; ++i) { 13192 if (VectorMask[i] == Left) { 13193 Mask[i] = i; 13194 VectorMask[i] = In; 13195 } else if (VectorMask[i] == Right) { 13196 Mask[i] = i + NumElems; 13197 VectorMask[i] = In; 13198 } 13199 } 13200 13201 Shuffles[In] = 13202 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 13203 } 13204 } 13205 13206 return Shuffles[0]; 13207 } 13208 13209 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 13210 EVT VT = N->getValueType(0); 13211 13212 // A vector built entirely of undefs is undef. 13213 if (ISD::allOperandsUndef(N)) 13214 return DAG.getUNDEF(VT); 13215 13216 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 13217 return V; 13218 13219 if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) 13220 return V; 13221 13222 if (SDValue V = reduceBuildVecToShuffle(N)) 13223 return V; 13224 13225 return SDValue(); 13226 } 13227 13228 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 13229 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13230 EVT OpVT = N->getOperand(0).getValueType(); 13231 13232 // If the operands are legal vectors, leave them alone. 13233 if (TLI.isTypeLegal(OpVT)) 13234 return SDValue(); 13235 13236 SDLoc DL(N); 13237 EVT VT = N->getValueType(0); 13238 SmallVector<SDValue, 8> Ops; 13239 13240 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 13241 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 13242 13243 // Keep track of what we encounter. 13244 bool AnyInteger = false; 13245 bool AnyFP = false; 13246 for (const SDValue &Op : N->ops()) { 13247 if (ISD::BITCAST == Op.getOpcode() && 13248 !Op.getOperand(0).getValueType().isVector()) 13249 Ops.push_back(Op.getOperand(0)); 13250 else if (ISD::UNDEF == Op.getOpcode()) 13251 Ops.push_back(ScalarUndef); 13252 else 13253 return SDValue(); 13254 13255 // Note whether we encounter an integer or floating point scalar. 13256 // If it's neither, bail out, it could be something weird like x86mmx. 13257 EVT LastOpVT = Ops.back().getValueType(); 13258 if (LastOpVT.isFloatingPoint()) 13259 AnyFP = true; 13260 else if (LastOpVT.isInteger()) 13261 AnyInteger = true; 13262 else 13263 return SDValue(); 13264 } 13265 13266 // If any of the operands is a floating point scalar bitcast to a vector, 13267 // use floating point types throughout, and bitcast everything. 13268 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 13269 if (AnyFP) { 13270 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 13271 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 13272 if (AnyInteger) { 13273 for (SDValue &Op : Ops) { 13274 if (Op.getValueType() == SVT) 13275 continue; 13276 if (Op.isUndef()) 13277 Op = ScalarUndef; 13278 else 13279 Op = DAG.getBitcast(SVT, Op); 13280 } 13281 } 13282 } 13283 13284 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 13285 VT.getSizeInBits() / SVT.getSizeInBits()); 13286 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 13287 } 13288 13289 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 13290 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 13291 // most two distinct vectors the same size as the result, attempt to turn this 13292 // into a legal shuffle. 13293 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 13294 EVT VT = N->getValueType(0); 13295 EVT OpVT = N->getOperand(0).getValueType(); 13296 int NumElts = VT.getVectorNumElements(); 13297 int NumOpElts = OpVT.getVectorNumElements(); 13298 13299 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 13300 SmallVector<int, 8> Mask; 13301 13302 for (SDValue Op : N->ops()) { 13303 // Peek through any bitcast. 13304 while (Op.getOpcode() == ISD::BITCAST) 13305 Op = Op.getOperand(0); 13306 13307 // UNDEF nodes convert to UNDEF shuffle mask values. 13308 if (Op.isUndef()) { 13309 Mask.append((unsigned)NumOpElts, -1); 13310 continue; 13311 } 13312 13313 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 13314 return SDValue(); 13315 13316 // What vector are we extracting the subvector from and at what index? 13317 SDValue ExtVec = Op.getOperand(0); 13318 13319 // We want the EVT of the original extraction to correctly scale the 13320 // extraction index. 13321 EVT ExtVT = ExtVec.getValueType(); 13322 13323 // Peek through any bitcast. 13324 while (ExtVec.getOpcode() == ISD::BITCAST) 13325 ExtVec = ExtVec.getOperand(0); 13326 13327 // UNDEF nodes convert to UNDEF shuffle mask values. 13328 if (ExtVec.isUndef()) { 13329 Mask.append((unsigned)NumOpElts, -1); 13330 continue; 13331 } 13332 13333 if (!isa<ConstantSDNode>(Op.getOperand(1))) 13334 return SDValue(); 13335 int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 13336 13337 // Ensure that we are extracting a subvector from a vector the same 13338 // size as the result. 13339 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 13340 return SDValue(); 13341 13342 // Scale the subvector index to account for any bitcast. 13343 int NumExtElts = ExtVT.getVectorNumElements(); 13344 if (0 == (NumExtElts % NumElts)) 13345 ExtIdx /= (NumExtElts / NumElts); 13346 else if (0 == (NumElts % NumExtElts)) 13347 ExtIdx *= (NumElts / NumExtElts); 13348 else 13349 return SDValue(); 13350 13351 // At most we can reference 2 inputs in the final shuffle. 13352 if (SV0.isUndef() || SV0 == ExtVec) { 13353 SV0 = ExtVec; 13354 for (int i = 0; i != NumOpElts; ++i) 13355 Mask.push_back(i + ExtIdx); 13356 } else if (SV1.isUndef() || SV1 == ExtVec) { 13357 SV1 = ExtVec; 13358 for (int i = 0; i != NumOpElts; ++i) 13359 Mask.push_back(i + ExtIdx + NumElts); 13360 } else { 13361 return SDValue(); 13362 } 13363 } 13364 13365 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 13366 return SDValue(); 13367 13368 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 13369 DAG.getBitcast(VT, SV1), Mask); 13370 } 13371 13372 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 13373 // If we only have one input vector, we don't need to do any concatenation. 13374 if (N->getNumOperands() == 1) 13375 return N->getOperand(0); 13376 13377 // Check if all of the operands are undefs. 13378 EVT VT = N->getValueType(0); 13379 if (ISD::allOperandsUndef(N)) 13380 return DAG.getUNDEF(VT); 13381 13382 // Optimize concat_vectors where all but the first of the vectors are undef. 13383 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 13384 return Op.isUndef(); 13385 })) { 13386 SDValue In = N->getOperand(0); 13387 assert(In.getValueType().isVector() && "Must concat vectors"); 13388 13389 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 13390 if (In->getOpcode() == ISD::BITCAST && 13391 !In->getOperand(0)->getValueType(0).isVector()) { 13392 SDValue Scalar = In->getOperand(0); 13393 13394 // If the bitcast type isn't legal, it might be a trunc of a legal type; 13395 // look through the trunc so we can still do the transform: 13396 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 13397 if (Scalar->getOpcode() == ISD::TRUNCATE && 13398 !TLI.isTypeLegal(Scalar.getValueType()) && 13399 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 13400 Scalar = Scalar->getOperand(0); 13401 13402 EVT SclTy = Scalar->getValueType(0); 13403 13404 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 13405 return SDValue(); 13406 13407 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 13408 VT.getSizeInBits() / SclTy.getSizeInBits()); 13409 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 13410 return SDValue(); 13411 13412 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 13413 return DAG.getBitcast(VT, Res); 13414 } 13415 } 13416 13417 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 13418 // We have already tested above for an UNDEF only concatenation. 13419 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 13420 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 13421 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 13422 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 13423 }; 13424 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 13425 SmallVector<SDValue, 8> Opnds; 13426 EVT SVT = VT.getScalarType(); 13427 13428 EVT MinVT = SVT; 13429 if (!SVT.isFloatingPoint()) { 13430 // If BUILD_VECTOR are from built from integer, they may have different 13431 // operand types. Get the smallest type and truncate all operands to it. 13432 bool FoundMinVT = false; 13433 for (const SDValue &Op : N->ops()) 13434 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13435 EVT OpSVT = Op.getOperand(0)->getValueType(0); 13436 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 13437 FoundMinVT = true; 13438 } 13439 assert(FoundMinVT && "Concat vector type mismatch"); 13440 } 13441 13442 for (const SDValue &Op : N->ops()) { 13443 EVT OpVT = Op.getValueType(); 13444 unsigned NumElts = OpVT.getVectorNumElements(); 13445 13446 if (ISD::UNDEF == Op.getOpcode()) 13447 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 13448 13449 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13450 if (SVT.isFloatingPoint()) { 13451 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 13452 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 13453 } else { 13454 for (unsigned i = 0; i != NumElts; ++i) 13455 Opnds.push_back( 13456 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 13457 } 13458 } 13459 } 13460 13461 assert(VT.getVectorNumElements() == Opnds.size() && 13462 "Concat vector type mismatch"); 13463 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 13464 } 13465 13466 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 13467 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 13468 return V; 13469 13470 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 13471 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 13472 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 13473 return V; 13474 13475 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 13476 // nodes often generate nop CONCAT_VECTOR nodes. 13477 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 13478 // place the incoming vectors at the exact same location. 13479 SDValue SingleSource = SDValue(); 13480 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 13481 13482 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 13483 SDValue Op = N->getOperand(i); 13484 13485 if (Op.isUndef()) 13486 continue; 13487 13488 // Check if this is the identity extract: 13489 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 13490 return SDValue(); 13491 13492 // Find the single incoming vector for the extract_subvector. 13493 if (SingleSource.getNode()) { 13494 if (Op.getOperand(0) != SingleSource) 13495 return SDValue(); 13496 } else { 13497 SingleSource = Op.getOperand(0); 13498 13499 // Check the source type is the same as the type of the result. 13500 // If not, this concat may extend the vector, so we can not 13501 // optimize it away. 13502 if (SingleSource.getValueType() != N->getValueType(0)) 13503 return SDValue(); 13504 } 13505 13506 unsigned IdentityIndex = i * PartNumElem; 13507 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 13508 // The extract index must be constant. 13509 if (!CS) 13510 return SDValue(); 13511 13512 // Check that we are reading from the identity index. 13513 if (CS->getZExtValue() != IdentityIndex) 13514 return SDValue(); 13515 } 13516 13517 if (SingleSource.getNode()) 13518 return SingleSource; 13519 13520 return SDValue(); 13521 } 13522 13523 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 13524 EVT NVT = N->getValueType(0); 13525 SDValue V = N->getOperand(0); 13526 13527 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 13528 // Combine: 13529 // (extract_subvec (concat V1, V2, ...), i) 13530 // Into: 13531 // Vi if possible 13532 // Only operand 0 is checked as 'concat' assumes all inputs of the same 13533 // type. 13534 if (V->getOperand(0).getValueType() != NVT) 13535 return SDValue(); 13536 unsigned Idx = N->getConstantOperandVal(1); 13537 unsigned NumElems = NVT.getVectorNumElements(); 13538 assert((Idx % NumElems) == 0 && 13539 "IDX in concat is not a multiple of the result vector length."); 13540 return V->getOperand(Idx / NumElems); 13541 } 13542 13543 // Skip bitcasting 13544 if (V->getOpcode() == ISD::BITCAST) 13545 V = V.getOperand(0); 13546 13547 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 13548 // Handle only simple case where vector being inserted and vector 13549 // being extracted are of same type, and are half size of larger vectors. 13550 EVT BigVT = V->getOperand(0).getValueType(); 13551 EVT SmallVT = V->getOperand(1).getValueType(); 13552 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 13553 return SDValue(); 13554 13555 // Only handle cases where both indexes are constants with the same type. 13556 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13557 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13558 13559 if (InsIdx && ExtIdx && 13560 InsIdx->getValueType(0).getSizeInBits() <= 64 && 13561 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 13562 // Combine: 13563 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 13564 // Into: 13565 // indices are equal or bit offsets are equal => V1 13566 // otherwise => (extract_subvec V1, ExtIdx) 13567 if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() == 13568 ExtIdx->getZExtValue() * NVT.getScalarSizeInBits()) 13569 return DAG.getBitcast(NVT, V->getOperand(1)); 13570 return DAG.getNode( 13571 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 13572 DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)), 13573 N->getOperand(1)); 13574 } 13575 } 13576 13577 return SDValue(); 13578 } 13579 13580 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, 13581 SDValue V, SelectionDAG &DAG) { 13582 SDLoc DL(V); 13583 EVT VT = V.getValueType(); 13584 13585 switch (V.getOpcode()) { 13586 default: 13587 return V; 13588 13589 case ISD::CONCAT_VECTORS: { 13590 EVT OpVT = V->getOperand(0).getValueType(); 13591 int OpSize = OpVT.getVectorNumElements(); 13592 SmallBitVector OpUsedElements(OpSize, false); 13593 bool FoundSimplification = false; 13594 SmallVector<SDValue, 4> NewOps; 13595 NewOps.reserve(V->getNumOperands()); 13596 for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { 13597 SDValue Op = V->getOperand(i); 13598 bool OpUsed = false; 13599 for (int j = 0; j < OpSize; ++j) 13600 if (UsedElements[i * OpSize + j]) { 13601 OpUsedElements[j] = true; 13602 OpUsed = true; 13603 } 13604 NewOps.push_back( 13605 OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) 13606 : DAG.getUNDEF(OpVT)); 13607 FoundSimplification |= Op == NewOps.back(); 13608 OpUsedElements.reset(); 13609 } 13610 if (FoundSimplification) 13611 V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); 13612 return V; 13613 } 13614 13615 case ISD::INSERT_SUBVECTOR: { 13616 SDValue BaseV = V->getOperand(0); 13617 SDValue SubV = V->getOperand(1); 13618 auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13619 if (!IdxN) 13620 return V; 13621 13622 int SubSize = SubV.getValueType().getVectorNumElements(); 13623 int Idx = IdxN->getZExtValue(); 13624 bool SubVectorUsed = false; 13625 SmallBitVector SubUsedElements(SubSize, false); 13626 for (int i = 0; i < SubSize; ++i) 13627 if (UsedElements[i + Idx]) { 13628 SubVectorUsed = true; 13629 SubUsedElements[i] = true; 13630 UsedElements[i + Idx] = false; 13631 } 13632 13633 // Now recurse on both the base and sub vectors. 13634 SDValue SimplifiedSubV = 13635 SubVectorUsed 13636 ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) 13637 : DAG.getUNDEF(SubV.getValueType()); 13638 SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); 13639 if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) 13640 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 13641 SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); 13642 return V; 13643 } 13644 } 13645 } 13646 13647 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, 13648 SDValue N1, SelectionDAG &DAG) { 13649 EVT VT = SVN->getValueType(0); 13650 int NumElts = VT.getVectorNumElements(); 13651 SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); 13652 for (int M : SVN->getMask()) 13653 if (M >= 0 && M < NumElts) 13654 N0UsedElements[M] = true; 13655 else if (M >= NumElts) 13656 N1UsedElements[M - NumElts] = true; 13657 13658 SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); 13659 SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); 13660 if (S0 == N0 && S1 == N1) 13661 return SDValue(); 13662 13663 return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); 13664 } 13665 13666 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 13667 // or turn a shuffle of a single concat into simpler shuffle then concat. 13668 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 13669 EVT VT = N->getValueType(0); 13670 unsigned NumElts = VT.getVectorNumElements(); 13671 13672 SDValue N0 = N->getOperand(0); 13673 SDValue N1 = N->getOperand(1); 13674 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13675 13676 SmallVector<SDValue, 4> Ops; 13677 EVT ConcatVT = N0.getOperand(0).getValueType(); 13678 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 13679 unsigned NumConcats = NumElts / NumElemsPerConcat; 13680 13681 // Special case: shuffle(concat(A,B)) can be more efficiently represented 13682 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 13683 // half vector elements. 13684 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 13685 std::all_of(SVN->getMask().begin() + NumElemsPerConcat, 13686 SVN->getMask().end(), [](int i) { return i == -1; })) { 13687 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), 13688 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); 13689 N1 = DAG.getUNDEF(ConcatVT); 13690 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 13691 } 13692 13693 // Look at every vector that's inserted. We're looking for exact 13694 // subvector-sized copies from a concatenated vector 13695 for (unsigned I = 0; I != NumConcats; ++I) { 13696 // Make sure we're dealing with a copy. 13697 unsigned Begin = I * NumElemsPerConcat; 13698 bool AllUndef = true, NoUndef = true; 13699 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 13700 if (SVN->getMaskElt(J) >= 0) 13701 AllUndef = false; 13702 else 13703 NoUndef = false; 13704 } 13705 13706 if (NoUndef) { 13707 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 13708 return SDValue(); 13709 13710 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 13711 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 13712 return SDValue(); 13713 13714 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 13715 if (FirstElt < N0.getNumOperands()) 13716 Ops.push_back(N0.getOperand(FirstElt)); 13717 else 13718 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 13719 13720 } else if (AllUndef) { 13721 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 13722 } else { // Mixed with general masks and undefs, can't do optimization. 13723 return SDValue(); 13724 } 13725 } 13726 13727 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 13728 } 13729 13730 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 13731 EVT VT = N->getValueType(0); 13732 unsigned NumElts = VT.getVectorNumElements(); 13733 13734 SDValue N0 = N->getOperand(0); 13735 SDValue N1 = N->getOperand(1); 13736 13737 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 13738 13739 // Canonicalize shuffle undef, undef -> undef 13740 if (N0.isUndef() && N1.isUndef()) 13741 return DAG.getUNDEF(VT); 13742 13743 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13744 13745 // Canonicalize shuffle v, v -> v, undef 13746 if (N0 == N1) { 13747 SmallVector<int, 8> NewMask; 13748 for (unsigned i = 0; i != NumElts; ++i) { 13749 int Idx = SVN->getMaskElt(i); 13750 if (Idx >= (int)NumElts) Idx -= NumElts; 13751 NewMask.push_back(Idx); 13752 } 13753 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 13754 } 13755 13756 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 13757 if (N0.isUndef()) 13758 return DAG.getCommutedVectorShuffle(*SVN); 13759 13760 // Remove references to rhs if it is undef 13761 if (N1.isUndef()) { 13762 bool Changed = false; 13763 SmallVector<int, 8> NewMask; 13764 for (unsigned i = 0; i != NumElts; ++i) { 13765 int Idx = SVN->getMaskElt(i); 13766 if (Idx >= (int)NumElts) { 13767 Idx = -1; 13768 Changed = true; 13769 } 13770 NewMask.push_back(Idx); 13771 } 13772 if (Changed) 13773 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 13774 } 13775 13776 // If it is a splat, check if the argument vector is another splat or a 13777 // build_vector. 13778 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 13779 SDNode *V = N0.getNode(); 13780 13781 // If this is a bit convert that changes the element type of the vector but 13782 // not the number of vector elements, look through it. Be careful not to 13783 // look though conversions that change things like v4f32 to v2f64. 13784 if (V->getOpcode() == ISD::BITCAST) { 13785 SDValue ConvInput = V->getOperand(0); 13786 if (ConvInput.getValueType().isVector() && 13787 ConvInput.getValueType().getVectorNumElements() == NumElts) 13788 V = ConvInput.getNode(); 13789 } 13790 13791 if (V->getOpcode() == ISD::BUILD_VECTOR) { 13792 assert(V->getNumOperands() == NumElts && 13793 "BUILD_VECTOR has wrong number of operands"); 13794 SDValue Base; 13795 bool AllSame = true; 13796 for (unsigned i = 0; i != NumElts; ++i) { 13797 if (!V->getOperand(i).isUndef()) { 13798 Base = V->getOperand(i); 13799 break; 13800 } 13801 } 13802 // Splat of <u, u, u, u>, return <u, u, u, u> 13803 if (!Base.getNode()) 13804 return N0; 13805 for (unsigned i = 0; i != NumElts; ++i) { 13806 if (V->getOperand(i) != Base) { 13807 AllSame = false; 13808 break; 13809 } 13810 } 13811 // Splat of <x, x, x, x>, return <x, x, x, x> 13812 if (AllSame) 13813 return N0; 13814 13815 // Canonicalize any other splat as a build_vector. 13816 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); 13817 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 13818 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 13819 13820 // We may have jumped through bitcasts, so the type of the 13821 // BUILD_VECTOR may not match the type of the shuffle. 13822 if (V->getValueType(0) != VT) 13823 NewBV = DAG.getBitcast(VT, NewBV); 13824 return NewBV; 13825 } 13826 } 13827 13828 // There are various patterns used to build up a vector from smaller vectors, 13829 // subvectors, or elements. Scan chains of these and replace unused insertions 13830 // or components with undef. 13831 if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) 13832 return S; 13833 13834 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13835 Level < AfterLegalizeVectorOps && 13836 (N1.isUndef() || 13837 (N1.getOpcode() == ISD::CONCAT_VECTORS && 13838 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 13839 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 13840 return V; 13841 } 13842 13843 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 13844 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 13845 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 13846 SmallVector<SDValue, 8> Ops; 13847 for (int M : SVN->getMask()) { 13848 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 13849 if (M >= 0) { 13850 int Idx = M % NumElts; 13851 SDValue &S = (M < (int)NumElts ? N0 : N1); 13852 if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { 13853 Op = S.getOperand(Idx); 13854 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { 13855 if (Idx == 0) 13856 Op = S.getOperand(0); 13857 } else { 13858 // Operand can't be combined - bail out. 13859 break; 13860 } 13861 } 13862 Ops.push_back(Op); 13863 } 13864 if (Ops.size() == VT.getVectorNumElements()) { 13865 // BUILD_VECTOR requires all inputs to be of the same type, find the 13866 // maximum type and extend them all. 13867 EVT SVT = VT.getScalarType(); 13868 if (SVT.isInteger()) 13869 for (SDValue &Op : Ops) 13870 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 13871 if (SVT != VT.getScalarType()) 13872 for (SDValue &Op : Ops) 13873 Op = TLI.isZExtFree(Op.getValueType(), SVT) 13874 ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) 13875 : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); 13876 return DAG.getBuildVector(VT, SDLoc(N), Ops); 13877 } 13878 } 13879 13880 // If this shuffle only has a single input that is a bitcasted shuffle, 13881 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 13882 // back to their original types. 13883 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13884 N1.isUndef() && Level < AfterLegalizeVectorOps && 13885 TLI.isTypeLegal(VT)) { 13886 13887 // Peek through the bitcast only if there is one user. 13888 SDValue BC0 = N0; 13889 while (BC0.getOpcode() == ISD::BITCAST) { 13890 if (!BC0.hasOneUse()) 13891 break; 13892 BC0 = BC0.getOperand(0); 13893 } 13894 13895 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 13896 if (Scale == 1) 13897 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 13898 13899 SmallVector<int, 8> NewMask; 13900 for (int M : Mask) 13901 for (int s = 0; s != Scale; ++s) 13902 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 13903 return NewMask; 13904 }; 13905 13906 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 13907 EVT SVT = VT.getScalarType(); 13908 EVT InnerVT = BC0->getValueType(0); 13909 EVT InnerSVT = InnerVT.getScalarType(); 13910 13911 // Determine which shuffle works with the smaller scalar type. 13912 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 13913 EVT ScaleSVT = ScaleVT.getScalarType(); 13914 13915 if (TLI.isTypeLegal(ScaleVT) && 13916 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 13917 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 13918 13919 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13920 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13921 13922 // Scale the shuffle masks to the smaller scalar type. 13923 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 13924 SmallVector<int, 8> InnerMask = 13925 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 13926 SmallVector<int, 8> OuterMask = 13927 ScaleShuffleMask(SVN->getMask(), OuterScale); 13928 13929 // Merge the shuffle masks. 13930 SmallVector<int, 8> NewMask; 13931 for (int M : OuterMask) 13932 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 13933 13934 // Test for shuffle mask legality over both commutations. 13935 SDValue SV0 = BC0->getOperand(0); 13936 SDValue SV1 = BC0->getOperand(1); 13937 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13938 if (!LegalMask) { 13939 std::swap(SV0, SV1); 13940 ShuffleVectorSDNode::commuteMask(NewMask); 13941 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13942 } 13943 13944 if (LegalMask) { 13945 SV0 = DAG.getBitcast(ScaleVT, SV0); 13946 SV1 = DAG.getBitcast(ScaleVT, SV1); 13947 return DAG.getBitcast( 13948 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 13949 } 13950 } 13951 } 13952 } 13953 13954 // Canonicalize shuffles according to rules: 13955 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 13956 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 13957 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 13958 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 13959 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 13960 TLI.isTypeLegal(VT)) { 13961 // The incoming shuffle must be of the same type as the result of the 13962 // current shuffle. 13963 assert(N1->getOperand(0).getValueType() == VT && 13964 "Shuffle types don't match"); 13965 13966 SDValue SV0 = N1->getOperand(0); 13967 SDValue SV1 = N1->getOperand(1); 13968 bool HasSameOp0 = N0 == SV0; 13969 bool IsSV1Undef = SV1.isUndef(); 13970 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 13971 // Commute the operands of this shuffle so that next rule 13972 // will trigger. 13973 return DAG.getCommutedVectorShuffle(*SVN); 13974 } 13975 13976 // Try to fold according to rules: 13977 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13978 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13979 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13980 // Don't try to fold shuffles with illegal type. 13981 // Only fold if this shuffle is the only user of the other shuffle. 13982 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 13983 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 13984 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 13985 13986 // The incoming shuffle must be of the same type as the result of the 13987 // current shuffle. 13988 assert(OtherSV->getOperand(0).getValueType() == VT && 13989 "Shuffle types don't match"); 13990 13991 SDValue SV0, SV1; 13992 SmallVector<int, 4> Mask; 13993 // Compute the combined shuffle mask for a shuffle with SV0 as the first 13994 // operand, and SV1 as the second operand. 13995 for (unsigned i = 0; i != NumElts; ++i) { 13996 int Idx = SVN->getMaskElt(i); 13997 if (Idx < 0) { 13998 // Propagate Undef. 13999 Mask.push_back(Idx); 14000 continue; 14001 } 14002 14003 SDValue CurrentVec; 14004 if (Idx < (int)NumElts) { 14005 // This shuffle index refers to the inner shuffle N0. Lookup the inner 14006 // shuffle mask to identify which vector is actually referenced. 14007 Idx = OtherSV->getMaskElt(Idx); 14008 if (Idx < 0) { 14009 // Propagate Undef. 14010 Mask.push_back(Idx); 14011 continue; 14012 } 14013 14014 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 14015 : OtherSV->getOperand(1); 14016 } else { 14017 // This shuffle index references an element within N1. 14018 CurrentVec = N1; 14019 } 14020 14021 // Simple case where 'CurrentVec' is UNDEF. 14022 if (CurrentVec.isUndef()) { 14023 Mask.push_back(-1); 14024 continue; 14025 } 14026 14027 // Canonicalize the shuffle index. We don't know yet if CurrentVec 14028 // will be the first or second operand of the combined shuffle. 14029 Idx = Idx % NumElts; 14030 if (!SV0.getNode() || SV0 == CurrentVec) { 14031 // Ok. CurrentVec is the left hand side. 14032 // Update the mask accordingly. 14033 SV0 = CurrentVec; 14034 Mask.push_back(Idx); 14035 continue; 14036 } 14037 14038 // Bail out if we cannot convert the shuffle pair into a single shuffle. 14039 if (SV1.getNode() && SV1 != CurrentVec) 14040 return SDValue(); 14041 14042 // Ok. CurrentVec is the right hand side. 14043 // Update the mask accordingly. 14044 SV1 = CurrentVec; 14045 Mask.push_back(Idx + NumElts); 14046 } 14047 14048 // Check if all indices in Mask are Undef. In case, propagate Undef. 14049 bool isUndefMask = true; 14050 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 14051 isUndefMask &= Mask[i] < 0; 14052 14053 if (isUndefMask) 14054 return DAG.getUNDEF(VT); 14055 14056 if (!SV0.getNode()) 14057 SV0 = DAG.getUNDEF(VT); 14058 if (!SV1.getNode()) 14059 SV1 = DAG.getUNDEF(VT); 14060 14061 // Avoid introducing shuffles with illegal mask. 14062 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 14063 ShuffleVectorSDNode::commuteMask(Mask); 14064 14065 if (!TLI.isShuffleMaskLegal(Mask, VT)) 14066 return SDValue(); 14067 14068 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 14069 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 14070 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 14071 std::swap(SV0, SV1); 14072 } 14073 14074 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 14075 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 14076 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 14077 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask); 14078 } 14079 14080 return SDValue(); 14081 } 14082 14083 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 14084 SDValue InVal = N->getOperand(0); 14085 EVT VT = N->getValueType(0); 14086 14087 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 14088 // with a VECTOR_SHUFFLE. 14089 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14090 SDValue InVec = InVal->getOperand(0); 14091 SDValue EltNo = InVal->getOperand(1); 14092 14093 // FIXME: We could support implicit truncation if the shuffle can be 14094 // scaled to a smaller vector scalar type. 14095 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); 14096 if (C0 && VT == InVec.getValueType() && 14097 VT.getScalarType() == InVal.getValueType()) { 14098 SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); 14099 int Elt = C0->getZExtValue(); 14100 NewMask[0] = Elt; 14101 14102 if (TLI.isShuffleMaskLegal(NewMask, VT)) 14103 return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), 14104 NewMask); 14105 } 14106 } 14107 14108 return SDValue(); 14109 } 14110 14111 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 14112 EVT VT = N->getValueType(0); 14113 SDValue N0 = N->getOperand(0); 14114 SDValue N1 = N->getOperand(1); 14115 SDValue N2 = N->getOperand(2); 14116 14117 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 14118 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 14119 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 14120 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 14121 N0.getOperand(1).getValueType() == N1.getValueType() && 14122 N0.getOperand(2) == N2) 14123 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 14124 N1, N2); 14125 14126 if (N0.getValueType() != N1.getValueType()) 14127 return SDValue(); 14128 14129 // If the input vector is a concatenation, and the insert replaces 14130 // one of the halves, we can optimize into a single concat_vectors. 14131 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0->getNumOperands() == 2 && 14132 N2.getOpcode() == ISD::Constant) { 14133 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 14134 14135 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 14136 // (concat_vectors Z, Y) 14137 if (InsIdx == 0) 14138 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N1, 14139 N0.getOperand(1)); 14140 14141 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 14142 // (concat_vectors X, Z) 14143 if (InsIdx == VT.getVectorNumElements() / 2) 14144 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0.getOperand(0), 14145 N1); 14146 } 14147 14148 return SDValue(); 14149 } 14150 14151 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 14152 SDValue N0 = N->getOperand(0); 14153 14154 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 14155 if (N0->getOpcode() == ISD::FP16_TO_FP) 14156 return N0->getOperand(0); 14157 14158 return SDValue(); 14159 } 14160 14161 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 14162 SDValue N0 = N->getOperand(0); 14163 14164 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 14165 if (N0->getOpcode() == ISD::AND) { 14166 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 14167 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 14168 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 14169 N0.getOperand(0)); 14170 } 14171 } 14172 14173 return SDValue(); 14174 } 14175 14176 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 14177 /// with the destination vector and a zero vector. 14178 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 14179 /// vector_shuffle V, Zero, <0, 4, 2, 4> 14180 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 14181 EVT VT = N->getValueType(0); 14182 SDValue LHS = N->getOperand(0); 14183 SDValue RHS = N->getOperand(1); 14184 SDLoc DL(N); 14185 14186 // Make sure we're not running after operation legalization where it 14187 // may have custom lowered the vector shuffles. 14188 if (LegalOperations) 14189 return SDValue(); 14190 14191 if (N->getOpcode() != ISD::AND) 14192 return SDValue(); 14193 14194 if (RHS.getOpcode() == ISD::BITCAST) 14195 RHS = RHS.getOperand(0); 14196 14197 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 14198 return SDValue(); 14199 14200 EVT RVT = RHS.getValueType(); 14201 unsigned NumElts = RHS.getNumOperands(); 14202 14203 // Attempt to create a valid clear mask, splitting the mask into 14204 // sub elements and checking to see if each is 14205 // all zeros or all ones - suitable for shuffle masking. 14206 auto BuildClearMask = [&](int Split) { 14207 int NumSubElts = NumElts * Split; 14208 int NumSubBits = RVT.getScalarSizeInBits() / Split; 14209 14210 SmallVector<int, 8> Indices; 14211 for (int i = 0; i != NumSubElts; ++i) { 14212 int EltIdx = i / Split; 14213 int SubIdx = i % Split; 14214 SDValue Elt = RHS.getOperand(EltIdx); 14215 if (Elt.isUndef()) { 14216 Indices.push_back(-1); 14217 continue; 14218 } 14219 14220 APInt Bits; 14221 if (isa<ConstantSDNode>(Elt)) 14222 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 14223 else if (isa<ConstantFPSDNode>(Elt)) 14224 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 14225 else 14226 return SDValue(); 14227 14228 // Extract the sub element from the constant bit mask. 14229 if (DAG.getDataLayout().isBigEndian()) { 14230 Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); 14231 } else { 14232 Bits = Bits.lshr(SubIdx * NumSubBits); 14233 } 14234 14235 if (Split > 1) 14236 Bits = Bits.trunc(NumSubBits); 14237 14238 if (Bits.isAllOnesValue()) 14239 Indices.push_back(i); 14240 else if (Bits == 0) 14241 Indices.push_back(i + NumSubElts); 14242 else 14243 return SDValue(); 14244 } 14245 14246 // Let's see if the target supports this vector_shuffle. 14247 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 14248 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 14249 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 14250 return SDValue(); 14251 14252 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 14253 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 14254 DAG.getBitcast(ClearVT, LHS), 14255 Zero, Indices)); 14256 }; 14257 14258 // Determine maximum split level (byte level masking). 14259 int MaxSplit = 1; 14260 if (RVT.getScalarSizeInBits() % 8 == 0) 14261 MaxSplit = RVT.getScalarSizeInBits() / 8; 14262 14263 for (int Split = 1; Split <= MaxSplit; ++Split) 14264 if (RVT.getScalarSizeInBits() % Split == 0) 14265 if (SDValue S = BuildClearMask(Split)) 14266 return S; 14267 14268 return SDValue(); 14269 } 14270 14271 /// Visit a binary vector operation, like ADD. 14272 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 14273 assert(N->getValueType(0).isVector() && 14274 "SimplifyVBinOp only works on vectors!"); 14275 14276 SDValue LHS = N->getOperand(0); 14277 SDValue RHS = N->getOperand(1); 14278 SDValue Ops[] = {LHS, RHS}; 14279 14280 // See if we can constant fold the vector operation. 14281 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 14282 N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 14283 return Fold; 14284 14285 // Try to convert a constant mask AND into a shuffle clear mask. 14286 if (SDValue Shuffle = XformToShuffleWithZero(N)) 14287 return Shuffle; 14288 14289 // Type legalization might introduce new shuffles in the DAG. 14290 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 14291 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 14292 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 14293 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 14294 LHS.getOperand(1).isUndef() && 14295 RHS.getOperand(1).isUndef()) { 14296 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 14297 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 14298 14299 if (SVN0->getMask().equals(SVN1->getMask())) { 14300 EVT VT = N->getValueType(0); 14301 SDValue UndefVector = LHS.getOperand(1); 14302 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 14303 LHS.getOperand(0), RHS.getOperand(0), 14304 N->getFlags()); 14305 AddUsersToWorklist(N); 14306 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 14307 SVN0->getMask()); 14308 } 14309 } 14310 14311 return SDValue(); 14312 } 14313 14314 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 14315 SDValue N2) { 14316 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 14317 14318 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 14319 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 14320 14321 // If we got a simplified select_cc node back from SimplifySelectCC, then 14322 // break it down into a new SETCC node, and a new SELECT node, and then return 14323 // the SELECT node, since we were called with a SELECT node. 14324 if (SCC.getNode()) { 14325 // Check to see if we got a select_cc back (to turn into setcc/select). 14326 // Otherwise, just return whatever node we got back, like fabs. 14327 if (SCC.getOpcode() == ISD::SELECT_CC) { 14328 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 14329 N0.getValueType(), 14330 SCC.getOperand(0), SCC.getOperand(1), 14331 SCC.getOperand(4)); 14332 AddToWorklist(SETCC.getNode()); 14333 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 14334 SCC.getOperand(2), SCC.getOperand(3)); 14335 } 14336 14337 return SCC; 14338 } 14339 return SDValue(); 14340 } 14341 14342 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 14343 /// being selected between, see if we can simplify the select. Callers of this 14344 /// should assume that TheSelect is deleted if this returns true. As such, they 14345 /// should return the appropriate thing (e.g. the node) back to the top-level of 14346 /// the DAG combiner loop to avoid it being looked at. 14347 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 14348 SDValue RHS) { 14349 14350 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14351 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 14352 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 14353 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 14354 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 14355 SDValue Sqrt = RHS; 14356 ISD::CondCode CC; 14357 SDValue CmpLHS; 14358 const ConstantFPSDNode *Zero = nullptr; 14359 14360 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 14361 CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 14362 CmpLHS = TheSelect->getOperand(0); 14363 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 14364 } else { 14365 // SELECT or VSELECT 14366 SDValue Cmp = TheSelect->getOperand(0); 14367 if (Cmp.getOpcode() == ISD::SETCC) { 14368 CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 14369 CmpLHS = Cmp.getOperand(0); 14370 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 14371 } 14372 } 14373 if (Zero && Zero->isZero() && 14374 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 14375 CC == ISD::SETULT || CC == ISD::SETLT)) { 14376 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14377 CombineTo(TheSelect, Sqrt); 14378 return true; 14379 } 14380 } 14381 } 14382 // Cannot simplify select with vector condition 14383 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 14384 14385 // If this is a select from two identical things, try to pull the operation 14386 // through the select. 14387 if (LHS.getOpcode() != RHS.getOpcode() || 14388 !LHS.hasOneUse() || !RHS.hasOneUse()) 14389 return false; 14390 14391 // If this is a load and the token chain is identical, replace the select 14392 // of two loads with a load through a select of the address to load from. 14393 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 14394 // constants have been dropped into the constant pool. 14395 if (LHS.getOpcode() == ISD::LOAD) { 14396 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 14397 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 14398 14399 // Token chains must be identical. 14400 if (LHS.getOperand(0) != RHS.getOperand(0) || 14401 // Do not let this transformation reduce the number of volatile loads. 14402 LLD->isVolatile() || RLD->isVolatile() || 14403 // FIXME: If either is a pre/post inc/dec load, 14404 // we'd need to split out the address adjustment. 14405 LLD->isIndexed() || RLD->isIndexed() || 14406 // If this is an EXTLOAD, the VT's must match. 14407 LLD->getMemoryVT() != RLD->getMemoryVT() || 14408 // If this is an EXTLOAD, the kind of extension must match. 14409 (LLD->getExtensionType() != RLD->getExtensionType() && 14410 // The only exception is if one of the extensions is anyext. 14411 LLD->getExtensionType() != ISD::EXTLOAD && 14412 RLD->getExtensionType() != ISD::EXTLOAD) || 14413 // FIXME: this discards src value information. This is 14414 // over-conservative. It would be beneficial to be able to remember 14415 // both potential memory locations. Since we are discarding 14416 // src value info, don't do the transformation if the memory 14417 // locations are not in the default address space. 14418 LLD->getPointerInfo().getAddrSpace() != 0 || 14419 RLD->getPointerInfo().getAddrSpace() != 0 || 14420 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 14421 LLD->getBasePtr().getValueType())) 14422 return false; 14423 14424 // Check that the select condition doesn't reach either load. If so, 14425 // folding this will induce a cycle into the DAG. If not, this is safe to 14426 // xform, so create a select of the addresses. 14427 SDValue Addr; 14428 if (TheSelect->getOpcode() == ISD::SELECT) { 14429 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 14430 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 14431 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 14432 return false; 14433 // The loads must not depend on one another. 14434 if (LLD->isPredecessorOf(RLD) || 14435 RLD->isPredecessorOf(LLD)) 14436 return false; 14437 Addr = DAG.getSelect(SDLoc(TheSelect), 14438 LLD->getBasePtr().getValueType(), 14439 TheSelect->getOperand(0), LLD->getBasePtr(), 14440 RLD->getBasePtr()); 14441 } else { // Otherwise SELECT_CC 14442 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 14443 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 14444 14445 if ((LLD->hasAnyUseOfValue(1) && 14446 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 14447 (RLD->hasAnyUseOfValue(1) && 14448 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 14449 return false; 14450 14451 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 14452 LLD->getBasePtr().getValueType(), 14453 TheSelect->getOperand(0), 14454 TheSelect->getOperand(1), 14455 LLD->getBasePtr(), RLD->getBasePtr(), 14456 TheSelect->getOperand(4)); 14457 } 14458 14459 SDValue Load; 14460 // It is safe to replace the two loads if they have different alignments, 14461 // but the new load must be the minimum (most restrictive) alignment of the 14462 // inputs. 14463 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 14464 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 14465 if (!RLD->isInvariant()) 14466 MMOFlags &= ~MachineMemOperand::MOInvariant; 14467 if (!RLD->isDereferenceable()) 14468 MMOFlags &= ~MachineMemOperand::MODereferenceable; 14469 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 14470 // FIXME: Discards pointer and AA info. 14471 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 14472 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 14473 MMOFlags); 14474 } else { 14475 // FIXME: Discards pointer and AA info. 14476 Load = DAG.getExtLoad( 14477 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 14478 : LLD->getExtensionType(), 14479 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 14480 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 14481 } 14482 14483 // Users of the select now use the result of the load. 14484 CombineTo(TheSelect, Load); 14485 14486 // Users of the old loads now use the new load's chain. We know the 14487 // old-load value is dead now. 14488 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 14489 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 14490 return true; 14491 } 14492 14493 return false; 14494 } 14495 14496 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 14497 /// where 'cond' is the comparison specified by CC. 14498 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 14499 SDValue N2, SDValue N3, ISD::CondCode CC, 14500 bool NotExtCompare) { 14501 // (x ? y : y) -> y. 14502 if (N2 == N3) return N2; 14503 14504 EVT VT = N2.getValueType(); 14505 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 14506 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 14507 14508 // Determine if the condition we're dealing with is constant 14509 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 14510 N0, N1, CC, DL, false); 14511 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 14512 14513 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { 14514 // fold select_cc true, x, y -> x 14515 // fold select_cc false, x, y -> y 14516 return !SCCC->isNullValue() ? N2 : N3; 14517 } 14518 14519 // Check to see if we can simplify the select into an fabs node 14520 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 14521 // Allow either -0.0 or 0.0 14522 if (CFP->isZero()) { 14523 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 14524 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 14525 N0 == N2 && N3.getOpcode() == ISD::FNEG && 14526 N2 == N3.getOperand(0)) 14527 return DAG.getNode(ISD::FABS, DL, VT, N0); 14528 14529 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 14530 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 14531 N0 == N3 && N2.getOpcode() == ISD::FNEG && 14532 N2.getOperand(0) == N3) 14533 return DAG.getNode(ISD::FABS, DL, VT, N3); 14534 } 14535 } 14536 14537 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 14538 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 14539 // in it. This is a win when the constant is not otherwise available because 14540 // it replaces two constant pool loads with one. We only do this if the FP 14541 // type is known to be legal, because if it isn't, then we are before legalize 14542 // types an we want the other legalization to happen first (e.g. to avoid 14543 // messing with soft float) and if the ConstantFP is not legal, because if 14544 // it is legal, we may not need to store the FP constant in a constant pool. 14545 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 14546 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 14547 if (TLI.isTypeLegal(N2.getValueType()) && 14548 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 14549 TargetLowering::Legal && 14550 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 14551 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 14552 // If both constants have multiple uses, then we won't need to do an 14553 // extra load, they are likely around in registers for other users. 14554 (TV->hasOneUse() || FV->hasOneUse())) { 14555 Constant *Elts[] = { 14556 const_cast<ConstantFP*>(FV->getConstantFPValue()), 14557 const_cast<ConstantFP*>(TV->getConstantFPValue()) 14558 }; 14559 Type *FPTy = Elts[0]->getType(); 14560 const DataLayout &TD = DAG.getDataLayout(); 14561 14562 // Create a ConstantArray of the two constants. 14563 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 14564 SDValue CPIdx = 14565 DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 14566 TD.getPrefTypeAlignment(FPTy)); 14567 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 14568 14569 // Get the offsets to the 0 and 1 element of the array so that we can 14570 // select between them. 14571 SDValue Zero = DAG.getIntPtrConstant(0, DL); 14572 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 14573 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 14574 14575 SDValue Cond = DAG.getSetCC(DL, 14576 getSetCCResultType(N0.getValueType()), 14577 N0, N1, CC); 14578 AddToWorklist(Cond.getNode()); 14579 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 14580 Cond, One, Zero); 14581 AddToWorklist(CstOffset.getNode()); 14582 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 14583 CstOffset); 14584 AddToWorklist(CPIdx.getNode()); 14585 return DAG.getLoad( 14586 TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 14587 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 14588 Alignment); 14589 } 14590 } 14591 14592 // Check to see if we can perform the "gzip trick", transforming 14593 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 14594 if (isNullConstant(N3) && CC == ISD::SETLT && 14595 (isNullConstant(N1) || // (a < 0) ? b : 0 14596 (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0 14597 EVT XType = N0.getValueType(); 14598 EVT AType = N2.getValueType(); 14599 if (XType.bitsGE(AType)) { 14600 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 14601 // single-bit constant. 14602 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 14603 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 14604 ShCtV = XType.getSizeInBits() - ShCtV - 1; 14605 SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), 14606 getShiftAmountTy(N0.getValueType())); 14607 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 14608 XType, N0, ShCt); 14609 AddToWorklist(Shift.getNode()); 14610 14611 if (XType.bitsGT(AType)) { 14612 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14613 AddToWorklist(Shift.getNode()); 14614 } 14615 14616 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14617 } 14618 14619 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 14620 XType, N0, 14621 DAG.getConstant(XType.getSizeInBits() - 1, 14622 SDLoc(N0), 14623 getShiftAmountTy(N0.getValueType()))); 14624 AddToWorklist(Shift.getNode()); 14625 14626 if (XType.bitsGT(AType)) { 14627 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14628 AddToWorklist(Shift.getNode()); 14629 } 14630 14631 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14632 } 14633 } 14634 14635 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 14636 // where y is has a single bit set. 14637 // A plaintext description would be, we can turn the SELECT_CC into an AND 14638 // when the condition can be materialized as an all-ones register. Any 14639 // single bit-test can be materialized as an all-ones register with 14640 // shift-left and shift-right-arith. 14641 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 14642 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 14643 SDValue AndLHS = N0->getOperand(0); 14644 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 14645 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 14646 // Shift the tested bit over the sign bit. 14647 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 14648 SDValue ShlAmt = 14649 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 14650 getShiftAmountTy(AndLHS.getValueType())); 14651 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 14652 14653 // Now arithmetic right shift it all the way over, so the result is either 14654 // all-ones, or zero. 14655 SDValue ShrAmt = 14656 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 14657 getShiftAmountTy(Shl.getValueType())); 14658 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 14659 14660 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 14661 } 14662 } 14663 14664 // fold select C, 16, 0 -> shl C, 4 14665 if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && 14666 TLI.getBooleanContents(N0.getValueType()) == 14667 TargetLowering::ZeroOrOneBooleanContent) { 14668 14669 // If the caller doesn't want us to simplify this into a zext of a compare, 14670 // don't do it. 14671 if (NotExtCompare && N2C->isOne()) 14672 return SDValue(); 14673 14674 // Get a SetCC of the condition 14675 // NOTE: Don't create a SETCC if it's not legal on this target. 14676 if (!LegalOperations || 14677 TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { 14678 SDValue Temp, SCC; 14679 // cast from setcc result type to select result type 14680 if (LegalTypes) { 14681 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 14682 N0, N1, CC); 14683 if (N2.getValueType().bitsLT(SCC.getValueType())) 14684 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 14685 N2.getValueType()); 14686 else 14687 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14688 N2.getValueType(), SCC); 14689 } else { 14690 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 14691 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14692 N2.getValueType(), SCC); 14693 } 14694 14695 AddToWorklist(SCC.getNode()); 14696 AddToWorklist(Temp.getNode()); 14697 14698 if (N2C->isOne()) 14699 return Temp; 14700 14701 // shl setcc result by log2 n2c 14702 return DAG.getNode( 14703 ISD::SHL, DL, N2.getValueType(), Temp, 14704 DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), 14705 getShiftAmountTy(Temp.getValueType()))); 14706 } 14707 } 14708 14709 // Check to see if this is an integer abs. 14710 // select_cc setg[te] X, 0, X, -X -> 14711 // select_cc setgt X, -1, X, -X -> 14712 // select_cc setl[te] X, 0, -X, X -> 14713 // select_cc setlt X, 1, -X, X -> 14714 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 14715 if (N1C) { 14716 ConstantSDNode *SubC = nullptr; 14717 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 14718 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 14719 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 14720 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 14721 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 14722 (N1C->isOne() && CC == ISD::SETLT)) && 14723 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 14724 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 14725 14726 EVT XType = N0.getValueType(); 14727 if (SubC && SubC->isNullValue() && XType.isInteger()) { 14728 SDLoc DL(N0); 14729 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, 14730 N0, 14731 DAG.getConstant(XType.getSizeInBits() - 1, DL, 14732 getShiftAmountTy(N0.getValueType()))); 14733 SDValue Add = DAG.getNode(ISD::ADD, DL, 14734 XType, N0, Shift); 14735 AddToWorklist(Shift.getNode()); 14736 AddToWorklist(Add.getNode()); 14737 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 14738 } 14739 } 14740 14741 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 14742 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 14743 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 14744 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 14745 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 14746 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 14747 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 14748 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 14749 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 14750 SDValue ValueOnZero = N2; 14751 SDValue Count = N3; 14752 // If the condition is NE instead of E, swap the operands. 14753 if (CC == ISD::SETNE) 14754 std::swap(ValueOnZero, Count); 14755 // Check if the value on zero is a constant equal to the bits in the type. 14756 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 14757 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 14758 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 14759 // legal, combine to just cttz. 14760 if ((Count.getOpcode() == ISD::CTTZ || 14761 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 14762 N0 == Count.getOperand(0) && 14763 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 14764 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 14765 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 14766 // legal, combine to just ctlz. 14767 if ((Count.getOpcode() == ISD::CTLZ || 14768 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 14769 N0 == Count.getOperand(0) && 14770 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 14771 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 14772 } 14773 } 14774 } 14775 14776 return SDValue(); 14777 } 14778 14779 /// This is a stub for TargetLowering::SimplifySetCC. 14780 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 14781 ISD::CondCode Cond, const SDLoc &DL, 14782 bool foldBooleans) { 14783 TargetLowering::DAGCombinerInfo 14784 DagCombineInfo(DAG, Level, false, this); 14785 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 14786 } 14787 14788 /// Given an ISD::SDIV node expressing a divide by constant, return 14789 /// a DAG expression to select that will generate the same value by multiplying 14790 /// by a magic number. 14791 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14792 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 14793 // when optimising for minimum size, we don't want to expand a div to a mul 14794 // and a shift. 14795 if (DAG.getMachineFunction().getFunction()->optForMinSize()) 14796 return SDValue(); 14797 14798 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14799 if (!C) 14800 return SDValue(); 14801 14802 // Avoid division by zero. 14803 if (C->isNullValue()) 14804 return SDValue(); 14805 14806 std::vector<SDNode*> Built; 14807 SDValue S = 14808 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14809 14810 for (SDNode *N : Built) 14811 AddToWorklist(N); 14812 return S; 14813 } 14814 14815 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 14816 /// DAG expression that will generate the same value by right shifting. 14817 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 14818 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14819 if (!C) 14820 return SDValue(); 14821 14822 // Avoid division by zero. 14823 if (C->isNullValue()) 14824 return SDValue(); 14825 14826 std::vector<SDNode *> Built; 14827 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 14828 14829 for (SDNode *N : Built) 14830 AddToWorklist(N); 14831 return S; 14832 } 14833 14834 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 14835 /// expression that will generate the same value by multiplying by a magic 14836 /// number. 14837 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14838 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 14839 // when optimising for minimum size, we don't want to expand a div to a mul 14840 // and a shift. 14841 if (DAG.getMachineFunction().getFunction()->optForMinSize()) 14842 return SDValue(); 14843 14844 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14845 if (!C) 14846 return SDValue(); 14847 14848 // Avoid division by zero. 14849 if (C->isNullValue()) 14850 return SDValue(); 14851 14852 std::vector<SDNode*> Built; 14853 SDValue S = 14854 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14855 14856 for (SDNode *N : Built) 14857 AddToWorklist(N); 14858 return S; 14859 } 14860 14861 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { 14862 if (Level >= AfterLegalizeDAG) 14863 return SDValue(); 14864 14865 // TODO: Handle half and/or extended types? 14866 EVT VT = Op.getValueType(); 14867 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 14868 return SDValue(); 14869 14870 // If estimates are explicitly disabled for this function, we're done. 14871 MachineFunction &MF = DAG.getMachineFunction(); 14872 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 14873 if (Enabled == TLI.ReciprocalEstimate::Disabled) 14874 return SDValue(); 14875 14876 // Estimates may be explicitly enabled for this type with a custom number of 14877 // refinement steps. 14878 int Iterations = TLI.getDivRefinementSteps(VT, MF); 14879 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 14880 if (Iterations) { 14881 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14882 // For the reciprocal, we need to find the zero of the function: 14883 // F(X) = A X - 1 [which has a zero at X = 1/A] 14884 // => 14885 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 14886 // does not require additional intermediate precision] 14887 EVT VT = Op.getValueType(); 14888 SDLoc DL(Op); 14889 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14890 14891 AddToWorklist(Est.getNode()); 14892 14893 // Newton iterations: Est = Est + Est (1 - Arg * Est) 14894 for (int i = 0; i < Iterations; ++i) { 14895 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 14896 AddToWorklist(NewEst.getNode()); 14897 14898 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 14899 AddToWorklist(NewEst.getNode()); 14900 14901 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14902 AddToWorklist(NewEst.getNode()); 14903 14904 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 14905 AddToWorklist(Est.getNode()); 14906 } 14907 } 14908 return Est; 14909 } 14910 14911 return SDValue(); 14912 } 14913 14914 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14915 /// For the reciprocal sqrt, we need to find the zero of the function: 14916 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14917 /// => 14918 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 14919 /// As a result, we precompute A/2 prior to the iteration loop. 14920 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 14921 unsigned Iterations, 14922 SDNodeFlags *Flags, bool Reciprocal) { 14923 EVT VT = Arg.getValueType(); 14924 SDLoc DL(Arg); 14925 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 14926 14927 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 14928 // this entire sequence requires only one FP constant. 14929 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 14930 AddToWorklist(HalfArg.getNode()); 14931 14932 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 14933 AddToWorklist(HalfArg.getNode()); 14934 14935 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 14936 for (unsigned i = 0; i < Iterations; ++i) { 14937 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14938 AddToWorklist(NewEst.getNode()); 14939 14940 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 14941 AddToWorklist(NewEst.getNode()); 14942 14943 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 14944 AddToWorklist(NewEst.getNode()); 14945 14946 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14947 AddToWorklist(Est.getNode()); 14948 } 14949 14950 // If non-reciprocal square root is requested, multiply the result by Arg. 14951 if (!Reciprocal) { 14952 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 14953 AddToWorklist(Est.getNode()); 14954 } 14955 14956 return Est; 14957 } 14958 14959 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14960 /// For the reciprocal sqrt, we need to find the zero of the function: 14961 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14962 /// => 14963 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 14964 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 14965 unsigned Iterations, 14966 SDNodeFlags *Flags, bool Reciprocal) { 14967 EVT VT = Arg.getValueType(); 14968 SDLoc DL(Arg); 14969 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 14970 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 14971 14972 // This routine must enter the loop below to work correctly 14973 // when (Reciprocal == false). 14974 assert(Iterations > 0); 14975 14976 // Newton iterations for reciprocal square root: 14977 // E = (E * -0.5) * ((A * E) * E + -3.0) 14978 for (unsigned i = 0; i < Iterations; ++i) { 14979 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 14980 AddToWorklist(AE.getNode()); 14981 14982 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 14983 AddToWorklist(AEE.getNode()); 14984 14985 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 14986 AddToWorklist(RHS.getNode()); 14987 14988 // When calculating a square root at the last iteration build: 14989 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 14990 // (notice a common subexpression) 14991 SDValue LHS; 14992 if (Reciprocal || (i + 1) < Iterations) { 14993 // RSQRT: LHS = (E * -0.5) 14994 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 14995 } else { 14996 // SQRT: LHS = (A * E) * -0.5 14997 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 14998 } 14999 AddToWorklist(LHS.getNode()); 15000 15001 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 15002 AddToWorklist(Est.getNode()); 15003 } 15004 15005 return Est; 15006 } 15007 15008 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 15009 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 15010 /// Op can be zero. 15011 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, 15012 bool Reciprocal) { 15013 if (Level >= AfterLegalizeDAG) 15014 return SDValue(); 15015 15016 // TODO: Handle half and/or extended types? 15017 EVT VT = Op.getValueType(); 15018 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 15019 return SDValue(); 15020 15021 // If estimates are explicitly disabled for this function, we're done. 15022 MachineFunction &MF = DAG.getMachineFunction(); 15023 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 15024 if (Enabled == TLI.ReciprocalEstimate::Disabled) 15025 return SDValue(); 15026 15027 // Estimates may be explicitly enabled for this type with a custom number of 15028 // refinement steps. 15029 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 15030 15031 bool UseOneConstNR = false; 15032 if (SDValue Est = 15033 TLI.getRsqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR)) { 15034 AddToWorklist(Est.getNode()); 15035 if (Iterations) { 15036 Est = UseOneConstNR 15037 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 15038 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 15039 } 15040 return Est; 15041 } 15042 15043 return SDValue(); 15044 } 15045 15046 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 15047 return buildSqrtEstimateImpl(Op, Flags, true); 15048 } 15049 15050 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 15051 SDValue Est = buildSqrtEstimateImpl(Op, Flags, false); 15052 if (!Est) 15053 return SDValue(); 15054 15055 // Unfortunately, Est is now NaN if the input was exactly 0. 15056 // Select out this case and force the answer to 0. 15057 EVT VT = Est.getValueType(); 15058 SDLoc DL(Op); 15059 SDValue Zero = DAG.getConstantFP(0.0, DL, VT); 15060 EVT CCVT = getSetCCResultType(VT); 15061 SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, Op, Zero, ISD::SETEQ); 15062 AddToWorklist(ZeroCmp.getNode()); 15063 15064 Est = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, ZeroCmp, 15065 Zero, Est); 15066 AddToWorklist(Est.getNode()); 15067 return Est; 15068 } 15069 15070 /// Return true if base is a frame index, which is known not to alias with 15071 /// anything but itself. Provides base object and offset as results. 15072 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 15073 const GlobalValue *&GV, const void *&CV) { 15074 // Assume it is a primitive operation. 15075 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 15076 15077 // If it's an adding a simple constant then integrate the offset. 15078 if (Base.getOpcode() == ISD::ADD) { 15079 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 15080 Base = Base.getOperand(0); 15081 Offset += C->getZExtValue(); 15082 } 15083 } 15084 15085 // Return the underlying GlobalValue, and update the Offset. Return false 15086 // for GlobalAddressSDNode since the same GlobalAddress may be represented 15087 // by multiple nodes with different offsets. 15088 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 15089 GV = G->getGlobal(); 15090 Offset += G->getOffset(); 15091 return false; 15092 } 15093 15094 // Return the underlying Constant value, and update the Offset. Return false 15095 // for ConstantSDNodes since the same constant pool entry may be represented 15096 // by multiple nodes with different offsets. 15097 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 15098 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 15099 : (const void *)C->getConstVal(); 15100 Offset += C->getOffset(); 15101 return false; 15102 } 15103 // If it's any of the following then it can't alias with anything but itself. 15104 return isa<FrameIndexSDNode>(Base); 15105 } 15106 15107 /// Return true if there is any possibility that the two addresses overlap. 15108 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 15109 // If they are the same then they must be aliases. 15110 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 15111 15112 // If they are both volatile then they cannot be reordered. 15113 if (Op0->isVolatile() && Op1->isVolatile()) return true; 15114 15115 // If one operation reads from invariant memory, and the other may store, they 15116 // cannot alias. These should really be checking the equivalent of mayWrite, 15117 // but it only matters for memory nodes other than load /store. 15118 if (Op0->isInvariant() && Op1->writeMem()) 15119 return false; 15120 15121 if (Op1->isInvariant() && Op0->writeMem()) 15122 return false; 15123 15124 // Gather base node and offset information. 15125 SDValue Base1, Base2; 15126 int64_t Offset1, Offset2; 15127 const GlobalValue *GV1, *GV2; 15128 const void *CV1, *CV2; 15129 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 15130 Base1, Offset1, GV1, CV1); 15131 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 15132 Base2, Offset2, GV2, CV2); 15133 15134 // If they have a same base address then check to see if they overlap. 15135 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 15136 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 15137 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 15138 15139 // It is possible for different frame indices to alias each other, mostly 15140 // when tail call optimization reuses return address slots for arguments. 15141 // To catch this case, look up the actual index of frame indices to compute 15142 // the real alias relationship. 15143 if (isFrameIndex1 && isFrameIndex2) { 15144 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 15145 Offset1 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 15146 Offset2 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 15147 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 15148 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 15149 } 15150 15151 // Otherwise, if we know what the bases are, and they aren't identical, then 15152 // we know they cannot alias. 15153 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 15154 return false; 15155 15156 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 15157 // compared to the size and offset of the access, we may be able to prove they 15158 // do not alias. This check is conservative for now to catch cases created by 15159 // splitting vector types. 15160 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 15161 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 15162 (Op0->getMemoryVT().getSizeInBits() >> 3 == 15163 Op1->getMemoryVT().getSizeInBits() >> 3) && 15164 (Op0->getOriginalAlignment() > (Op0->getMemoryVT().getSizeInBits() >> 3))) { 15165 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 15166 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 15167 15168 // There is no overlap between these relatively aligned accesses of similar 15169 // size, return no alias. 15170 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 15171 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 15172 return false; 15173 } 15174 15175 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 15176 ? CombinerGlobalAA 15177 : DAG.getSubtarget().useAA(); 15178 #ifndef NDEBUG 15179 if (CombinerAAOnlyFunc.getNumOccurrences() && 15180 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 15181 UseAA = false; 15182 #endif 15183 if (UseAA && 15184 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 15185 // Use alias analysis information. 15186 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 15187 Op1->getSrcValueOffset()); 15188 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 15189 Op0->getSrcValueOffset() - MinOffset; 15190 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 15191 Op1->getSrcValueOffset() - MinOffset; 15192 AliasResult AAResult = 15193 AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, 15194 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 15195 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, 15196 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 15197 if (AAResult == NoAlias) 15198 return false; 15199 } 15200 15201 // Otherwise we have to assume they alias. 15202 return true; 15203 } 15204 15205 /// Walk up chain skipping non-aliasing memory nodes, 15206 /// looking for aliasing nodes and adding them to the Aliases vector. 15207 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 15208 SmallVectorImpl<SDValue> &Aliases) { 15209 SmallVector<SDValue, 8> Chains; // List of chains to visit. 15210 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 15211 15212 // Get alias information for node. 15213 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 15214 15215 // Starting off. 15216 Chains.push_back(OriginalChain); 15217 unsigned Depth = 0; 15218 15219 // Look at each chain and determine if it is an alias. If so, add it to the 15220 // aliases list. If not, then continue up the chain looking for the next 15221 // candidate. 15222 while (!Chains.empty()) { 15223 SDValue Chain = Chains.pop_back_val(); 15224 15225 // For TokenFactor nodes, look at each operand and only continue up the 15226 // chain until we reach the depth limit. 15227 // 15228 // FIXME: The depth check could be made to return the last non-aliasing 15229 // chain we found before we hit a tokenfactor rather than the original 15230 // chain. 15231 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 15232 Aliases.clear(); 15233 Aliases.push_back(OriginalChain); 15234 return; 15235 } 15236 15237 // Don't bother if we've been before. 15238 if (!Visited.insert(Chain.getNode()).second) 15239 continue; 15240 15241 switch (Chain.getOpcode()) { 15242 case ISD::EntryToken: 15243 // Entry token is ideal chain operand, but handled in FindBetterChain. 15244 break; 15245 15246 case ISD::LOAD: 15247 case ISD::STORE: { 15248 // Get alias information for Chain. 15249 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 15250 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 15251 15252 // If chain is alias then stop here. 15253 if (!(IsLoad && IsOpLoad) && 15254 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 15255 Aliases.push_back(Chain); 15256 } else { 15257 // Look further up the chain. 15258 Chains.push_back(Chain.getOperand(0)); 15259 ++Depth; 15260 } 15261 break; 15262 } 15263 15264 case ISD::TokenFactor: 15265 // We have to check each of the operands of the token factor for "small" 15266 // token factors, so we queue them up. Adding the operands to the queue 15267 // (stack) in reverse order maintains the original order and increases the 15268 // likelihood that getNode will find a matching token factor (CSE.) 15269 if (Chain.getNumOperands() > 16) { 15270 Aliases.push_back(Chain); 15271 break; 15272 } 15273 for (unsigned n = Chain.getNumOperands(); n;) 15274 Chains.push_back(Chain.getOperand(--n)); 15275 ++Depth; 15276 break; 15277 15278 default: 15279 // For all other instructions we will just have to take what we can get. 15280 Aliases.push_back(Chain); 15281 break; 15282 } 15283 } 15284 } 15285 15286 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 15287 /// (aliasing node.) 15288 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 15289 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 15290 15291 // Accumulate all the aliases to this node. 15292 GatherAllAliases(N, OldChain, Aliases); 15293 15294 // If no operands then chain to entry token. 15295 if (Aliases.size() == 0) 15296 return DAG.getEntryNode(); 15297 15298 // If a single operand then chain to it. We don't need to revisit it. 15299 if (Aliases.size() == 1) 15300 return Aliases[0]; 15301 15302 // Construct a custom tailored token factor. 15303 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 15304 } 15305 15306 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 15307 // This holds the base pointer, index, and the offset in bytes from the base 15308 // pointer. 15309 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 15310 15311 // We must have a base and an offset. 15312 if (!BasePtr.Base.getNode()) 15313 return false; 15314 15315 // Do not handle stores to undef base pointers. 15316 if (BasePtr.Base.isUndef()) 15317 return false; 15318 15319 SmallVector<StoreSDNode *, 8> ChainedStores; 15320 ChainedStores.push_back(St); 15321 15322 // Walk up the chain and look for nodes with offsets from the same 15323 // base pointer. Stop when reaching an instruction with a different kind 15324 // or instruction which has a different base pointer. 15325 StoreSDNode *Index = St; 15326 while (Index) { 15327 // If the chain has more than one use, then we can't reorder the mem ops. 15328 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 15329 break; 15330 15331 if (Index->isVolatile() || Index->isIndexed()) 15332 break; 15333 15334 // Find the base pointer and offset for this memory node. 15335 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 15336 15337 // Check that the base pointer is the same as the original one. 15338 if (!Ptr.equalBaseIndex(BasePtr)) 15339 break; 15340 15341 // Find the next memory operand in the chain. If the next operand in the 15342 // chain is a store then move up and continue the scan with the next 15343 // memory operand. If the next operand is a load save it and use alias 15344 // information to check if it interferes with anything. 15345 SDNode *NextInChain = Index->getChain().getNode(); 15346 while (true) { 15347 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 15348 // We found a store node. Use it for the next iteration. 15349 if (STn->isVolatile() || STn->isIndexed()) { 15350 Index = nullptr; 15351 break; 15352 } 15353 ChainedStores.push_back(STn); 15354 Index = STn; 15355 break; 15356 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 15357 NextInChain = Ldn->getChain().getNode(); 15358 continue; 15359 } else { 15360 Index = nullptr; 15361 break; 15362 } 15363 } 15364 } 15365 15366 bool MadeChangeToSt = false; 15367 SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; 15368 15369 for (StoreSDNode *ChainedStore : ChainedStores) { 15370 SDValue Chain = ChainedStore->getChain(); 15371 SDValue BetterChain = FindBetterChain(ChainedStore, Chain); 15372 15373 if (Chain != BetterChain) { 15374 if (ChainedStore == St) 15375 MadeChangeToSt = true; 15376 BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); 15377 } 15378 } 15379 15380 // Do all replacements after finding the replacements to make to avoid making 15381 // the chains more complicated by introducing new TokenFactors. 15382 for (auto Replacement : BetterChains) 15383 replaceStoreChain(Replacement.first, Replacement.second); 15384 15385 return MadeChangeToSt; 15386 } 15387 15388 /// This is the entry point for the file. 15389 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 15390 CodeGenOpt::Level OptLevel) { 15391 /// This is the main entry point to this class. 15392 DAGCombiner(*this, AA, OptLevel).Run(Level); 15393 } 15394