1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/CodeGen/DAGCombine.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAG.h" 41 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 42 #include "llvm/CodeGen/SelectionDAGNodes.h" 43 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <functional> 71 #include <iterator> 72 #include <string> 73 #include <tuple> 74 #include <utility> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "dagcombine" 79 80 STATISTIC(NodesCombined , "Number of dag nodes combined"); 81 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 82 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 83 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 84 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 85 STATISTIC(SlicedLoads, "Number of load sliced"); 86 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 87 88 static cl::opt<bool> 89 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 90 cl::desc("Enable DAG combiner's use of IR alias analysis")); 91 92 static cl::opt<bool> 93 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 94 cl::desc("Enable DAG combiner's use of TBAA")); 95 96 #ifndef NDEBUG 97 static cl::opt<std::string> 98 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 99 cl::desc("Only use DAG-combiner alias analysis in this" 100 " function")); 101 #endif 102 103 /// Hidden option to stress test load slicing, i.e., when this option 104 /// is enabled, load slicing bypasses most of its profitability guards. 105 static cl::opt<bool> 106 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 107 cl::desc("Bypass the profitability model of load slicing"), 108 cl::init(false)); 109 110 static cl::opt<bool> 111 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 112 cl::desc("DAG combiner may split indexing from loads")); 113 114 namespace { 115 116 class DAGCombiner { 117 SelectionDAG &DAG; 118 const TargetLowering &TLI; 119 CombineLevel Level; 120 CodeGenOpt::Level OptLevel; 121 bool LegalOperations = false; 122 bool LegalTypes = false; 123 bool ForCodeSize; 124 125 /// Worklist of all of the nodes that need to be simplified. 126 /// 127 /// This must behave as a stack -- new nodes to process are pushed onto the 128 /// back and when processing we pop off of the back. 129 /// 130 /// The worklist will not contain duplicates but may contain null entries 131 /// due to nodes being deleted from the underlying DAG. 132 SmallVector<SDNode *, 64> Worklist; 133 134 /// Mapping from an SDNode to its position on the worklist. 135 /// 136 /// This is used to find and remove nodes from the worklist (by nulling 137 /// them) when they are deleted from the underlying DAG. It relies on 138 /// stable indices of nodes within the worklist. 139 DenseMap<SDNode *, unsigned> WorklistMap; 140 /// This records all nodes attempted to add to the worklist since we 141 /// considered a new worklist entry. As we keep do not add duplicate nodes 142 /// in the worklist, this is different from the tail of the worklist. 143 SmallSetVector<SDNode *, 32> PruningList; 144 145 /// Set of nodes which have been combined (at least once). 146 /// 147 /// This is used to allow us to reliably add any operands of a DAG node 148 /// which have not yet been combined to the worklist. 149 SmallPtrSet<SDNode *, 32> CombinedNodes; 150 151 // AA - Used for DAG load/store alias analysis. 152 AliasAnalysis *AA; 153 154 /// When an instruction is simplified, add all users of the instruction to 155 /// the work lists because they might get more simplified now. 156 void AddUsersToWorklist(SDNode *N) { 157 for (SDNode *Node : N->uses()) 158 AddToWorklist(Node); 159 } 160 161 // Prune potentially dangling nodes. This is called after 162 // any visit to a node, but should also be called during a visit after any 163 // failed combine which may have created a DAG node. 164 void clearAddedDanglingWorklistEntries() { 165 // Check any nodes added to the worklist to see if they are prunable. 166 while (!PruningList.empty()) { 167 auto *N = PruningList.pop_back_val(); 168 if (N->use_empty()) 169 recursivelyDeleteUnusedNodes(N); 170 } 171 } 172 173 SDNode *getNextWorklistEntry() { 174 // Before we do any work, remove nodes that are not in use. 175 clearAddedDanglingWorklistEntries(); 176 SDNode *N = nullptr; 177 // The Worklist holds the SDNodes in order, but it may contain null 178 // entries. 179 while (!N && !Worklist.empty()) { 180 N = Worklist.pop_back_val(); 181 } 182 183 if (N) { 184 bool GoodWorklistEntry = WorklistMap.erase(N); 185 (void)GoodWorklistEntry; 186 assert(GoodWorklistEntry && 187 "Found a worklist entry without a corresponding map entry!"); 188 } 189 return N; 190 } 191 192 /// Call the node-specific routine that folds each particular type of node. 193 SDValue visit(SDNode *N); 194 195 public: 196 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 197 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 198 OptLevel(OL), AA(AA) { 199 ForCodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 200 201 MaximumLegalStoreInBits = 0; 202 for (MVT VT : MVT::all_valuetypes()) 203 if (EVT(VT).isSimple() && VT != MVT::Other && 204 TLI.isTypeLegal(EVT(VT)) && 205 VT.getSizeInBits() >= MaximumLegalStoreInBits) 206 MaximumLegalStoreInBits = VT.getSizeInBits(); 207 } 208 209 void ConsiderForPruning(SDNode *N) { 210 // Mark this for potential pruning. 211 PruningList.insert(N); 212 } 213 214 /// Add to the worklist making sure its instance is at the back (next to be 215 /// processed.) 216 void AddToWorklist(SDNode *N) { 217 assert(N->getOpcode() != ISD::DELETED_NODE && 218 "Deleted Node added to Worklist"); 219 220 // Skip handle nodes as they can't usefully be combined and confuse the 221 // zero-use deletion strategy. 222 if (N->getOpcode() == ISD::HANDLENODE) 223 return; 224 225 ConsiderForPruning(N); 226 227 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 228 Worklist.push_back(N); 229 } 230 231 /// Remove all instances of N from the worklist. 232 void removeFromWorklist(SDNode *N) { 233 CombinedNodes.erase(N); 234 PruningList.remove(N); 235 236 auto It = WorklistMap.find(N); 237 if (It == WorklistMap.end()) 238 return; // Not in the worklist. 239 240 // Null out the entry rather than erasing it to avoid a linear operation. 241 Worklist[It->second] = nullptr; 242 WorklistMap.erase(It); 243 } 244 245 void deleteAndRecombine(SDNode *N); 246 bool recursivelyDeleteUnusedNodes(SDNode *N); 247 248 /// Replaces all uses of the results of one DAG node with new values. 249 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 250 bool AddTo = true); 251 252 /// Replaces all uses of the results of one DAG node with new values. 253 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 254 return CombineTo(N, &Res, 1, AddTo); 255 } 256 257 /// Replaces all uses of the results of one DAG node with new values. 258 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 259 bool AddTo = true) { 260 SDValue To[] = { Res0, Res1 }; 261 return CombineTo(N, To, 2, AddTo); 262 } 263 264 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 265 266 private: 267 unsigned MaximumLegalStoreInBits; 268 269 /// Check the specified integer node value to see if it can be simplified or 270 /// if things it uses can be simplified by bit propagation. 271 /// If so, return true. 272 bool SimplifyDemandedBits(SDValue Op) { 273 unsigned BitWidth = Op.getScalarValueSizeInBits(); 274 APInt DemandedBits = APInt::getAllOnesValue(BitWidth); 275 return SimplifyDemandedBits(Op, DemandedBits); 276 } 277 278 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 279 EVT VT = Op.getValueType(); 280 unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1; 281 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 282 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts); 283 } 284 285 /// Check the specified vector node value to see if it can be simplified or 286 /// if things it uses can be simplified as it only uses some of the 287 /// elements. If so, return true. 288 bool SimplifyDemandedVectorElts(SDValue Op) { 289 unsigned NumElts = Op.getValueType().getVectorNumElements(); 290 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 291 return SimplifyDemandedVectorElts(Op, DemandedElts); 292 } 293 294 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 295 const APInt &DemandedElts); 296 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 297 bool AssumeSingleUse = false); 298 299 bool CombineToPreIndexedLoadStore(SDNode *N); 300 bool CombineToPostIndexedLoadStore(SDNode *N); 301 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 302 bool SliceUpLoad(SDNode *N); 303 304 // Scalars have size 0 to distinguish from singleton vectors. 305 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 306 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 307 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 308 309 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 310 /// load. 311 /// 312 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 313 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 314 /// \param EltNo index of the vector element to load. 315 /// \param OriginalLoad load that EVE came from to be replaced. 316 /// \returns EVE on success SDValue() on failure. 317 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 318 SDValue EltNo, 319 LoadSDNode *OriginalLoad); 320 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 321 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 322 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 323 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 324 SDValue PromoteIntBinOp(SDValue Op); 325 SDValue PromoteIntShiftOp(SDValue Op); 326 SDValue PromoteExtend(SDValue Op); 327 bool PromoteLoad(SDValue Op); 328 329 /// Call the node-specific routine that knows how to fold each 330 /// particular type of node. If that doesn't do anything, try the 331 /// target-specific DAG combines. 332 SDValue combine(SDNode *N); 333 334 // Visitation implementation - Implement dag node combining for different 335 // node types. The semantics are as follows: 336 // Return Value: 337 // SDValue.getNode() == 0 - No change was made 338 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 339 // otherwise - N should be replaced by the returned Operand. 340 // 341 SDValue visitTokenFactor(SDNode *N); 342 SDValue visitMERGE_VALUES(SDNode *N); 343 SDValue visitADD(SDNode *N); 344 SDValue visitADDLike(SDNode *N); 345 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 346 SDValue visitSUB(SDNode *N); 347 SDValue visitADDSAT(SDNode *N); 348 SDValue visitSUBSAT(SDNode *N); 349 SDValue visitADDC(SDNode *N); 350 SDValue visitADDO(SDNode *N); 351 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 352 SDValue visitSUBC(SDNode *N); 353 SDValue visitSUBO(SDNode *N); 354 SDValue visitADDE(SDNode *N); 355 SDValue visitADDCARRY(SDNode *N); 356 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 357 SDValue visitSUBE(SDNode *N); 358 SDValue visitSUBCARRY(SDNode *N); 359 SDValue visitMUL(SDNode *N); 360 SDValue useDivRem(SDNode *N); 361 SDValue visitSDIV(SDNode *N); 362 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 363 SDValue visitUDIV(SDNode *N); 364 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 365 SDValue visitREM(SDNode *N); 366 SDValue visitMULHU(SDNode *N); 367 SDValue visitMULHS(SDNode *N); 368 SDValue visitSMUL_LOHI(SDNode *N); 369 SDValue visitUMUL_LOHI(SDNode *N); 370 SDValue visitMULO(SDNode *N); 371 SDValue visitIMINMAX(SDNode *N); 372 SDValue visitAND(SDNode *N); 373 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 374 SDValue visitOR(SDNode *N); 375 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 376 SDValue visitXOR(SDNode *N); 377 SDValue SimplifyVBinOp(SDNode *N); 378 SDValue visitSHL(SDNode *N); 379 SDValue visitSRA(SDNode *N); 380 SDValue visitSRL(SDNode *N); 381 SDValue visitFunnelShift(SDNode *N); 382 SDValue visitRotate(SDNode *N); 383 SDValue visitABS(SDNode *N); 384 SDValue visitBSWAP(SDNode *N); 385 SDValue visitBITREVERSE(SDNode *N); 386 SDValue visitCTLZ(SDNode *N); 387 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 388 SDValue visitCTTZ(SDNode *N); 389 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 390 SDValue visitCTPOP(SDNode *N); 391 SDValue visitSELECT(SDNode *N); 392 SDValue visitVSELECT(SDNode *N); 393 SDValue visitSELECT_CC(SDNode *N); 394 SDValue visitSETCC(SDNode *N); 395 SDValue visitSETCCCARRY(SDNode *N); 396 SDValue visitSIGN_EXTEND(SDNode *N); 397 SDValue visitZERO_EXTEND(SDNode *N); 398 SDValue visitANY_EXTEND(SDNode *N); 399 SDValue visitAssertExt(SDNode *N); 400 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 401 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 402 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 403 SDValue visitTRUNCATE(SDNode *N); 404 SDValue visitBITCAST(SDNode *N); 405 SDValue visitBUILD_PAIR(SDNode *N); 406 SDValue visitFADD(SDNode *N); 407 SDValue visitFSUB(SDNode *N); 408 SDValue visitFMUL(SDNode *N); 409 SDValue visitFMA(SDNode *N); 410 SDValue visitFDIV(SDNode *N); 411 SDValue visitFREM(SDNode *N); 412 SDValue visitFSQRT(SDNode *N); 413 SDValue visitFCOPYSIGN(SDNode *N); 414 SDValue visitFPOW(SDNode *N); 415 SDValue visitSINT_TO_FP(SDNode *N); 416 SDValue visitUINT_TO_FP(SDNode *N); 417 SDValue visitFP_TO_SINT(SDNode *N); 418 SDValue visitFP_TO_UINT(SDNode *N); 419 SDValue visitFP_ROUND(SDNode *N); 420 SDValue visitFP_ROUND_INREG(SDNode *N); 421 SDValue visitFP_EXTEND(SDNode *N); 422 SDValue visitFNEG(SDNode *N); 423 SDValue visitFABS(SDNode *N); 424 SDValue visitFCEIL(SDNode *N); 425 SDValue visitFTRUNC(SDNode *N); 426 SDValue visitFFLOOR(SDNode *N); 427 SDValue visitFMINNUM(SDNode *N); 428 SDValue visitFMAXNUM(SDNode *N); 429 SDValue visitFMINIMUM(SDNode *N); 430 SDValue visitFMAXIMUM(SDNode *N); 431 SDValue visitBRCOND(SDNode *N); 432 SDValue visitBR_CC(SDNode *N); 433 SDValue visitLOAD(SDNode *N); 434 435 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 436 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 437 438 SDValue visitSTORE(SDNode *N); 439 SDValue visitLIFETIME_END(SDNode *N); 440 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 441 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 442 SDValue visitBUILD_VECTOR(SDNode *N); 443 SDValue visitCONCAT_VECTORS(SDNode *N); 444 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 445 SDValue visitVECTOR_SHUFFLE(SDNode *N); 446 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 447 SDValue visitINSERT_SUBVECTOR(SDNode *N); 448 SDValue visitMLOAD(SDNode *N); 449 SDValue visitMSTORE(SDNode *N); 450 SDValue visitMGATHER(SDNode *N); 451 SDValue visitMSCATTER(SDNode *N); 452 SDValue visitFP_TO_FP16(SDNode *N); 453 SDValue visitFP16_TO_FP(SDNode *N); 454 SDValue visitVECREDUCE(SDNode *N); 455 456 SDValue visitFADDForFMACombine(SDNode *N); 457 SDValue visitFSUBForFMACombine(SDNode *N); 458 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 459 460 SDValue XformToShuffleWithZero(SDNode *N); 461 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 462 SDValue N1); 463 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 464 SDValue N1, SDNodeFlags Flags); 465 466 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 467 468 SDValue foldSelectOfConstants(SDNode *N); 469 SDValue foldVSelectOfConstants(SDNode *N); 470 SDValue foldBinOpIntoSelect(SDNode *BO); 471 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 472 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 473 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 474 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 475 SDValue N2, SDValue N3, ISD::CondCode CC, 476 bool NotExtCompare = false); 477 SDValue convertSelectOfFPConstantsToLoadOffset( 478 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 479 ISD::CondCode CC); 480 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 481 SDValue N2, SDValue N3, ISD::CondCode CC); 482 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 483 const SDLoc &DL); 484 SDValue unfoldMaskedMerge(SDNode *N); 485 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 486 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 487 const SDLoc &DL, bool foldBooleans); 488 SDValue rebuildSetCC(SDValue N); 489 490 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 491 SDValue &CC) const; 492 bool isOneUseSetCC(SDValue N) const; 493 494 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 495 unsigned HiOp); 496 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 497 SDValue CombineExtLoad(SDNode *N); 498 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 499 SDValue combineRepeatedFPDivisors(SDNode *N); 500 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 501 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 502 SDValue BuildSDIV(SDNode *N); 503 SDValue BuildSDIVPow2(SDNode *N); 504 SDValue BuildUDIV(SDNode *N); 505 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 506 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags); 507 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 508 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 509 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 510 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 511 SDNodeFlags Flags, bool Reciprocal); 512 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 513 SDNodeFlags Flags, bool Reciprocal); 514 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 515 bool DemandHighBits = true); 516 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 517 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 518 SDValue InnerPos, SDValue InnerNeg, 519 unsigned PosOpcode, unsigned NegOpcode, 520 const SDLoc &DL); 521 SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 522 SDValue MatchLoadCombine(SDNode *N); 523 SDValue ReduceLoadWidth(SDNode *N); 524 SDValue ReduceLoadOpStoreWidth(SDNode *N); 525 SDValue splitMergedValStore(StoreSDNode *ST); 526 SDValue TransformFPLoadStorePair(SDNode *N); 527 SDValue convertBuildVecZextToZext(SDNode *N); 528 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 529 SDValue reduceBuildVecToShuffle(SDNode *N); 530 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 531 ArrayRef<int> VectorMask, SDValue VecIn1, 532 SDValue VecIn2, unsigned LeftIdx, 533 bool DidSplitVec); 534 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 535 536 /// Walk up chain skipping non-aliasing memory nodes, 537 /// looking for aliasing nodes and adding them to the Aliases vector. 538 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 539 SmallVectorImpl<SDValue> &Aliases); 540 541 /// Return true if there is any possibility that the two addresses overlap. 542 bool isAlias(SDNode *Op0, SDNode *Op1) const; 543 544 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 545 /// chain (aliasing node.) 546 SDValue FindBetterChain(SDNode *N, SDValue Chain); 547 548 /// Try to replace a store and any possibly adjacent stores on 549 /// consecutive chains with better chains. Return true only if St is 550 /// replaced. 551 /// 552 /// Notice that other chains may still be replaced even if the function 553 /// returns false. 554 bool findBetterNeighborChains(StoreSDNode *St); 555 556 // Helper for findBetterNeighborChains. Walk up store chain add additional 557 // chained stores that do not overlap and can be parallelized. 558 bool parallelizeChainedStores(StoreSDNode *St); 559 560 /// Holds a pointer to an LSBaseSDNode as well as information on where it 561 /// is located in a sequence of memory operations connected by a chain. 562 struct MemOpLink { 563 // Ptr to the mem node. 564 LSBaseSDNode *MemNode; 565 566 // Offset from the base ptr. 567 int64_t OffsetFromBase; 568 569 MemOpLink(LSBaseSDNode *N, int64_t Offset) 570 : MemNode(N), OffsetFromBase(Offset) {} 571 }; 572 573 /// This is a helper function for visitMUL to check the profitability 574 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 575 /// MulNode is the original multiply, AddNode is (add x, c1), 576 /// and ConstNode is c2. 577 bool isMulAddWithConstProfitable(SDNode *MulNode, 578 SDValue &AddNode, 579 SDValue &ConstNode); 580 581 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 582 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 583 /// the type of the loaded value to be extended. 584 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 585 EVT LoadResultTy, EVT &ExtVT); 586 587 /// Helper function to calculate whether the given Load/Store can have its 588 /// width reduced to ExtVT. 589 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 590 EVT &MemVT, unsigned ShAmt = 0); 591 592 /// Used by BackwardsPropagateMask to find suitable loads. 593 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 594 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 595 ConstantSDNode *Mask, SDNode *&NodeToMask); 596 /// Attempt to propagate a given AND node back to load leaves so that they 597 /// can be combined into narrow loads. 598 bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG); 599 600 /// Helper function for MergeConsecutiveStores which merges the 601 /// component store chains. 602 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 603 unsigned NumStores); 604 605 /// This is a helper function for MergeConsecutiveStores. When the 606 /// source elements of the consecutive stores are all constants or 607 /// all extracted vector elements, try to merge them into one 608 /// larger store introducing bitcasts if necessary. \return True 609 /// if a merged store was created. 610 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 611 EVT MemVT, unsigned NumStores, 612 bool IsConstantSrc, bool UseVector, 613 bool UseTrunc); 614 615 /// This is a helper function for MergeConsecutiveStores. Stores 616 /// that potentially may be merged with St are placed in 617 /// StoreNodes. RootNode is a chain predecessor to all store 618 /// candidates. 619 void getStoreMergeCandidates(StoreSDNode *St, 620 SmallVectorImpl<MemOpLink> &StoreNodes, 621 SDNode *&Root); 622 623 /// Helper function for MergeConsecutiveStores. Checks if 624 /// candidate stores have indirect dependency through their 625 /// operands. RootNode is the predecessor to all stores calculated 626 /// by getStoreMergeCandidates and is used to prune the dependency check. 627 /// \return True if safe to merge. 628 bool checkMergeStoreCandidatesForDependencies( 629 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 630 SDNode *RootNode); 631 632 /// Merge consecutive store operations into a wide store. 633 /// This optimization uses wide integers or vectors when possible. 634 /// \return number of stores that were merged into a merged store (the 635 /// affected nodes are stored as a prefix in \p StoreNodes). 636 bool MergeConsecutiveStores(StoreSDNode *St); 637 638 /// Try to transform a truncation where C is a constant: 639 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 640 /// 641 /// \p N needs to be a truncation and its first operand an AND. Other 642 /// requirements are checked by the function (e.g. that trunc is 643 /// single-use) and if missed an empty SDValue is returned. 644 SDValue distributeTruncateThroughAnd(SDNode *N); 645 646 /// Helper function to determine whether the target supports operation 647 /// given by \p Opcode for type \p VT, that is, whether the operation 648 /// is legal or custom before legalizing operations, and whether is 649 /// legal (but not custom) after legalization. 650 bool hasOperation(unsigned Opcode, EVT VT) { 651 if (LegalOperations) 652 return TLI.isOperationLegal(Opcode, VT); 653 return TLI.isOperationLegalOrCustom(Opcode, VT); 654 } 655 656 public: 657 /// Runs the dag combiner on all nodes in the work list 658 void Run(CombineLevel AtLevel); 659 660 SelectionDAG &getDAG() const { return DAG; } 661 662 /// Returns a type large enough to hold any valid shift amount - before type 663 /// legalization these can be huge. 664 EVT getShiftAmountTy(EVT LHSTy) { 665 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 666 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 667 } 668 669 /// This method returns true if we are running before type legalization or 670 /// if the specified VT is legal. 671 bool isTypeLegal(const EVT &VT) { 672 if (!LegalTypes) return true; 673 return TLI.isTypeLegal(VT); 674 } 675 676 /// Convenience wrapper around TargetLowering::getSetCCResultType 677 EVT getSetCCResultType(EVT VT) const { 678 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 679 } 680 681 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 682 SDValue OrigLoad, SDValue ExtLoad, 683 ISD::NodeType ExtType); 684 }; 685 686 /// This class is a DAGUpdateListener that removes any deleted 687 /// nodes from the worklist. 688 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 689 DAGCombiner &DC; 690 691 public: 692 explicit WorklistRemover(DAGCombiner &dc) 693 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 694 695 void NodeDeleted(SDNode *N, SDNode *E) override { 696 DC.removeFromWorklist(N); 697 } 698 }; 699 700 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 701 DAGCombiner &DC; 702 703 public: 704 explicit WorklistInserter(DAGCombiner &dc) 705 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 706 707 // FIXME: Ideally we could add N to the worklist, but this causes exponential 708 // compile time costs in large DAGs, e.g. Halide. 709 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 710 }; 711 712 } // end anonymous namespace 713 714 //===----------------------------------------------------------------------===// 715 // TargetLowering::DAGCombinerInfo implementation 716 //===----------------------------------------------------------------------===// 717 718 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 719 ((DAGCombiner*)DC)->AddToWorklist(N); 720 } 721 722 SDValue TargetLowering::DAGCombinerInfo:: 723 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 724 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 725 } 726 727 SDValue TargetLowering::DAGCombinerInfo:: 728 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 729 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 730 } 731 732 SDValue TargetLowering::DAGCombinerInfo:: 733 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 734 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 735 } 736 737 void TargetLowering::DAGCombinerInfo:: 738 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 739 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 740 } 741 742 //===----------------------------------------------------------------------===// 743 // Helper Functions 744 //===----------------------------------------------------------------------===// 745 746 void DAGCombiner::deleteAndRecombine(SDNode *N) { 747 removeFromWorklist(N); 748 749 // If the operands of this node are only used by the node, they will now be 750 // dead. Make sure to re-visit them and recursively delete dead nodes. 751 for (const SDValue &Op : N->ops()) 752 // For an operand generating multiple values, one of the values may 753 // become dead allowing further simplification (e.g. split index 754 // arithmetic from an indexed load). 755 if (Op->hasOneUse() || Op->getNumValues() > 1) 756 AddToWorklist(Op.getNode()); 757 758 DAG.DeleteNode(N); 759 } 760 761 /// Return 1 if we can compute the negated form of the specified expression for 762 /// the same cost as the expression itself, or 2 if we can compute the negated 763 /// form more cheaply than the expression itself. 764 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 765 const TargetLowering &TLI, 766 const TargetOptions *Options, 767 bool ForCodeSize, 768 unsigned Depth = 0) { 769 // fneg is removable even if it has multiple uses. 770 if (Op.getOpcode() == ISD::FNEG) return 2; 771 772 // Don't allow anything with multiple uses unless we know it is free. 773 EVT VT = Op.getValueType(); 774 const SDNodeFlags Flags = Op->getFlags(); 775 if (!Op.hasOneUse()) 776 if (!(Op.getOpcode() == ISD::FP_EXTEND && 777 TLI.isFPExtFree(VT, Op.getOperand(0).getValueType()))) 778 return 0; 779 780 // Don't recurse exponentially. 781 if (Depth > 6) return 0; 782 783 switch (Op.getOpcode()) { 784 default: return false; 785 case ISD::ConstantFP: { 786 if (!LegalOperations) 787 return 1; 788 789 // Don't invert constant FP values after legalization unless the target says 790 // the negated constant is legal. 791 return TLI.isOperationLegal(ISD::ConstantFP, VT) || 792 TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 793 ForCodeSize); 794 } 795 case ISD::FADD: 796 if (!Options->UnsafeFPMath && !Flags.hasNoSignedZeros()) 797 return 0; 798 799 // After operation legalization, it might not be legal to create new FSUBs. 800 if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 801 return 0; 802 803 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 804 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 805 Options, ForCodeSize, Depth + 1)) 806 return V; 807 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 808 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 809 ForCodeSize, Depth + 1); 810 case ISD::FSUB: 811 // We can't turn -(A-B) into B-A when we honor signed zeros. 812 if (!Options->NoSignedZerosFPMath && 813 !Flags.hasNoSignedZeros()) 814 return 0; 815 816 // fold (fneg (fsub A, B)) -> (fsub B, A) 817 return 1; 818 819 case ISD::FMUL: 820 case ISD::FDIV: 821 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 822 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 823 Options, ForCodeSize, Depth + 1)) 824 return V; 825 826 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 827 ForCodeSize, Depth + 1); 828 829 case ISD::FP_EXTEND: 830 case ISD::FP_ROUND: 831 case ISD::FSIN: 832 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 833 ForCodeSize, Depth + 1); 834 } 835 } 836 837 /// If isNegatibleForFree returns true, return the newly negated expression. 838 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 839 bool LegalOperations, bool ForCodeSize, 840 unsigned Depth = 0) { 841 const TargetOptions &Options = DAG.getTarget().Options; 842 // fneg is removable even if it has multiple uses. 843 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 844 845 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 846 847 const SDNodeFlags Flags = Op.getNode()->getFlags(); 848 849 switch (Op.getOpcode()) { 850 default: llvm_unreachable("Unknown code"); 851 case ISD::ConstantFP: { 852 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 853 V.changeSign(); 854 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 855 } 856 case ISD::FADD: 857 assert(Options.UnsafeFPMath || Flags.hasNoSignedZeros()); 858 859 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 860 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 861 DAG.getTargetLoweringInfo(), &Options, ForCodeSize, 862 Depth+1)) 863 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 864 GetNegatedExpression(Op.getOperand(0), DAG, 865 LegalOperations, ForCodeSize, 866 Depth+1), 867 Op.getOperand(1), Flags); 868 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 869 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 870 GetNegatedExpression(Op.getOperand(1), DAG, 871 LegalOperations, ForCodeSize, 872 Depth+1), 873 Op.getOperand(0), Flags); 874 case ISD::FSUB: 875 // fold (fneg (fsub 0, B)) -> B 876 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 877 if (N0CFP->isZero()) 878 return Op.getOperand(1); 879 880 // fold (fneg (fsub A, B)) -> (fsub B, A) 881 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 882 Op.getOperand(1), Op.getOperand(0), Flags); 883 884 case ISD::FMUL: 885 case ISD::FDIV: 886 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 887 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 888 DAG.getTargetLoweringInfo(), &Options, ForCodeSize, 889 Depth+1)) 890 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 891 GetNegatedExpression(Op.getOperand(0), DAG, 892 LegalOperations, ForCodeSize, 893 Depth+1), 894 Op.getOperand(1), Flags); 895 896 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 897 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 898 Op.getOperand(0), 899 GetNegatedExpression(Op.getOperand(1), DAG, 900 LegalOperations, ForCodeSize, 901 Depth+1), Flags); 902 903 case ISD::FP_EXTEND: 904 case ISD::FSIN: 905 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 906 GetNegatedExpression(Op.getOperand(0), DAG, 907 LegalOperations, ForCodeSize, 908 Depth+1)); 909 case ISD::FP_ROUND: 910 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 911 GetNegatedExpression(Op.getOperand(0), DAG, 912 LegalOperations, ForCodeSize, 913 Depth+1), 914 Op.getOperand(1)); 915 } 916 } 917 918 // APInts must be the same size for most operations, this helper 919 // function zero extends the shorter of the pair so that they match. 920 // We provide an Offset so that we can create bitwidths that won't overflow. 921 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 922 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 923 LHS = LHS.zextOrSelf(Bits); 924 RHS = RHS.zextOrSelf(Bits); 925 } 926 927 // Return true if this node is a setcc, or is a select_cc 928 // that selects between the target values used for true and false, making it 929 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 930 // the appropriate nodes based on the type of node we are checking. This 931 // simplifies life a bit for the callers. 932 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 933 SDValue &CC) const { 934 if (N.getOpcode() == ISD::SETCC) { 935 LHS = N.getOperand(0); 936 RHS = N.getOperand(1); 937 CC = N.getOperand(2); 938 return true; 939 } 940 941 if (N.getOpcode() != ISD::SELECT_CC || 942 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 943 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 944 return false; 945 946 if (TLI.getBooleanContents(N.getValueType()) == 947 TargetLowering::UndefinedBooleanContent) 948 return false; 949 950 LHS = N.getOperand(0); 951 RHS = N.getOperand(1); 952 CC = N.getOperand(4); 953 return true; 954 } 955 956 /// Return true if this is a SetCC-equivalent operation with only one use. 957 /// If this is true, it allows the users to invert the operation for free when 958 /// it is profitable to do so. 959 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 960 SDValue N0, N1, N2; 961 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 962 return true; 963 return false; 964 } 965 966 // Returns the SDNode if it is a constant float BuildVector 967 // or constant float. 968 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 969 if (isa<ConstantFPSDNode>(N)) 970 return N.getNode(); 971 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 972 return N.getNode(); 973 return nullptr; 974 } 975 976 // Determines if it is a constant integer or a build vector of constant 977 // integers (and undefs). 978 // Do not permit build vector implicit truncation. 979 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 980 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 981 return !(Const->isOpaque() && NoOpaques); 982 if (N.getOpcode() != ISD::BUILD_VECTOR) 983 return false; 984 unsigned BitWidth = N.getScalarValueSizeInBits(); 985 for (const SDValue &Op : N->op_values()) { 986 if (Op.isUndef()) 987 continue; 988 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 989 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 990 (Const->isOpaque() && NoOpaques)) 991 return false; 992 } 993 return true; 994 } 995 996 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 997 // undef's. 998 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 999 if (V.getOpcode() != ISD::BUILD_VECTOR) 1000 return false; 1001 return isConstantOrConstantVector(V, NoOpaques) || 1002 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 1003 } 1004 1005 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 1006 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 1007 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 1008 SDValue N0, SDValue N1) { 1009 EVT VT = N0.getValueType(); 1010 1011 if (N0.getOpcode() != Opc) 1012 return SDValue(); 1013 1014 // Don't reassociate reductions. 1015 if (N0->getFlags().hasVectorReduction()) 1016 return SDValue(); 1017 1018 if (SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 1019 if (SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1020 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 1021 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, C1, C2)) 1022 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 1023 return SDValue(); 1024 } 1025 if (N0.hasOneUse()) { 1026 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 1027 // iff (op x, c1) has one use 1028 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 1029 if (!OpNode.getNode()) 1030 return SDValue(); 1031 AddToWorklist(OpNode.getNode()); 1032 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 1033 } 1034 } 1035 return SDValue(); 1036 } 1037 1038 // Try to reassociate commutative binops. 1039 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 1040 SDValue N1, SDNodeFlags Flags) { 1041 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1042 // Don't reassociate reductions. 1043 if (Flags.hasVectorReduction()) 1044 return SDValue(); 1045 1046 // Floating-point reassociation is not allowed without loose FP math. 1047 if (N0.getValueType().isFloatingPoint() || 1048 N1.getValueType().isFloatingPoint()) 1049 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1050 return SDValue(); 1051 1052 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1053 return Combined; 1054 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1055 return Combined; 1056 return SDValue(); 1057 } 1058 1059 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1060 bool AddTo) { 1061 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1062 ++NodesCombined; 1063 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1064 To[0].getNode()->dump(&DAG); 1065 dbgs() << " and " << NumTo - 1 << " other values\n"); 1066 for (unsigned i = 0, e = NumTo; i != e; ++i) 1067 assert((!To[i].getNode() || 1068 N->getValueType(i) == To[i].getValueType()) && 1069 "Cannot combine value to value of different type!"); 1070 1071 WorklistRemover DeadNodes(*this); 1072 DAG.ReplaceAllUsesWith(N, To); 1073 if (AddTo) { 1074 // Push the new nodes and any users onto the worklist 1075 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1076 if (To[i].getNode()) { 1077 AddToWorklist(To[i].getNode()); 1078 AddUsersToWorklist(To[i].getNode()); 1079 } 1080 } 1081 } 1082 1083 // Finally, if the node is now dead, remove it from the graph. The node 1084 // may not be dead if the replacement process recursively simplified to 1085 // something else needing this node. 1086 if (N->use_empty()) 1087 deleteAndRecombine(N); 1088 return SDValue(N, 0); 1089 } 1090 1091 void DAGCombiner:: 1092 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1093 // Replace all uses. If any nodes become isomorphic to other nodes and 1094 // are deleted, make sure to remove them from our worklist. 1095 WorklistRemover DeadNodes(*this); 1096 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1097 1098 // Push the new node and any (possibly new) users onto the worklist. 1099 AddToWorklist(TLO.New.getNode()); 1100 AddUsersToWorklist(TLO.New.getNode()); 1101 1102 // Finally, if the node is now dead, remove it from the graph. The node 1103 // may not be dead if the replacement process recursively simplified to 1104 // something else needing this node. 1105 if (TLO.Old.getNode()->use_empty()) 1106 deleteAndRecombine(TLO.Old.getNode()); 1107 } 1108 1109 /// Check the specified integer node value to see if it can be simplified or if 1110 /// things it uses can be simplified by bit propagation. If so, return true. 1111 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1112 const APInt &DemandedElts) { 1113 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1114 KnownBits Known; 1115 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO)) 1116 return false; 1117 1118 // Revisit the node. 1119 AddToWorklist(Op.getNode()); 1120 1121 // Replace the old value with the new one. 1122 ++NodesCombined; 1123 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1124 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1125 dbgs() << '\n'); 1126 1127 CommitTargetLoweringOpt(TLO); 1128 return true; 1129 } 1130 1131 /// Check the specified vector node value to see if it can be simplified or 1132 /// if things it uses can be simplified as it only uses some of the elements. 1133 /// If so, return true. 1134 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1135 const APInt &DemandedElts, 1136 bool AssumeSingleUse) { 1137 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1138 APInt KnownUndef, KnownZero; 1139 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1140 TLO, 0, AssumeSingleUse)) 1141 return false; 1142 1143 // Revisit the node. 1144 AddToWorklist(Op.getNode()); 1145 1146 // Replace the old value with the new one. 1147 ++NodesCombined; 1148 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1149 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1150 dbgs() << '\n'); 1151 1152 CommitTargetLoweringOpt(TLO); 1153 return true; 1154 } 1155 1156 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1157 SDLoc DL(Load); 1158 EVT VT = Load->getValueType(0); 1159 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1160 1161 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1162 Trunc.getNode()->dump(&DAG); dbgs() << '\n'); 1163 WorklistRemover DeadNodes(*this); 1164 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1165 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1166 deleteAndRecombine(Load); 1167 AddToWorklist(Trunc.getNode()); 1168 } 1169 1170 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1171 Replace = false; 1172 SDLoc DL(Op); 1173 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1174 LoadSDNode *LD = cast<LoadSDNode>(Op); 1175 EVT MemVT = LD->getMemoryVT(); 1176 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1177 : LD->getExtensionType(); 1178 Replace = true; 1179 return DAG.getExtLoad(ExtType, DL, PVT, 1180 LD->getChain(), LD->getBasePtr(), 1181 MemVT, LD->getMemOperand()); 1182 } 1183 1184 unsigned Opc = Op.getOpcode(); 1185 switch (Opc) { 1186 default: break; 1187 case ISD::AssertSext: 1188 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1189 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1190 break; 1191 case ISD::AssertZext: 1192 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1193 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1194 break; 1195 case ISD::Constant: { 1196 unsigned ExtOpc = 1197 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1198 return DAG.getNode(ExtOpc, DL, PVT, Op); 1199 } 1200 } 1201 1202 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1203 return SDValue(); 1204 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1205 } 1206 1207 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1208 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1209 return SDValue(); 1210 EVT OldVT = Op.getValueType(); 1211 SDLoc DL(Op); 1212 bool Replace = false; 1213 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1214 if (!NewOp.getNode()) 1215 return SDValue(); 1216 AddToWorklist(NewOp.getNode()); 1217 1218 if (Replace) 1219 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1220 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1221 DAG.getValueType(OldVT)); 1222 } 1223 1224 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1225 EVT OldVT = Op.getValueType(); 1226 SDLoc DL(Op); 1227 bool Replace = false; 1228 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1229 if (!NewOp.getNode()) 1230 return SDValue(); 1231 AddToWorklist(NewOp.getNode()); 1232 1233 if (Replace) 1234 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1235 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1236 } 1237 1238 /// Promote the specified integer binary operation if the target indicates it is 1239 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1240 /// i32 since i16 instructions are longer. 1241 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1242 if (!LegalOperations) 1243 return SDValue(); 1244 1245 EVT VT = Op.getValueType(); 1246 if (VT.isVector() || !VT.isInteger()) 1247 return SDValue(); 1248 1249 // If operation type is 'undesirable', e.g. i16 on x86, consider 1250 // promoting it. 1251 unsigned Opc = Op.getOpcode(); 1252 if (TLI.isTypeDesirableForOp(Opc, VT)) 1253 return SDValue(); 1254 1255 EVT PVT = VT; 1256 // Consult target whether it is a good idea to promote this operation and 1257 // what's the right type to promote it to. 1258 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1259 assert(PVT != VT && "Don't know what type to promote to!"); 1260 1261 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1262 1263 bool Replace0 = false; 1264 SDValue N0 = Op.getOperand(0); 1265 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1266 1267 bool Replace1 = false; 1268 SDValue N1 = Op.getOperand(1); 1269 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1270 SDLoc DL(Op); 1271 1272 SDValue RV = 1273 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1274 1275 // We are always replacing N0/N1's use in N and only need 1276 // additional replacements if there are additional uses. 1277 Replace0 &= !N0->hasOneUse(); 1278 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1279 1280 // Combine Op here so it is preserved past replacements. 1281 CombineTo(Op.getNode(), RV); 1282 1283 // If operands have a use ordering, make sure we deal with 1284 // predecessor first. 1285 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { 1286 std::swap(N0, N1); 1287 std::swap(NN0, NN1); 1288 } 1289 1290 if (Replace0) { 1291 AddToWorklist(NN0.getNode()); 1292 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1293 } 1294 if (Replace1) { 1295 AddToWorklist(NN1.getNode()); 1296 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1297 } 1298 return Op; 1299 } 1300 return SDValue(); 1301 } 1302 1303 /// Promote the specified integer shift operation if the target indicates it is 1304 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1305 /// i32 since i16 instructions are longer. 1306 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1307 if (!LegalOperations) 1308 return SDValue(); 1309 1310 EVT VT = Op.getValueType(); 1311 if (VT.isVector() || !VT.isInteger()) 1312 return SDValue(); 1313 1314 // If operation type is 'undesirable', e.g. i16 on x86, consider 1315 // promoting it. 1316 unsigned Opc = Op.getOpcode(); 1317 if (TLI.isTypeDesirableForOp(Opc, VT)) 1318 return SDValue(); 1319 1320 EVT PVT = VT; 1321 // Consult target whether it is a good idea to promote this operation and 1322 // what's the right type to promote it to. 1323 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1324 assert(PVT != VT && "Don't know what type to promote to!"); 1325 1326 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1327 1328 bool Replace = false; 1329 SDValue N0 = Op.getOperand(0); 1330 SDValue N1 = Op.getOperand(1); 1331 if (Opc == ISD::SRA) 1332 N0 = SExtPromoteOperand(N0, PVT); 1333 else if (Opc == ISD::SRL) 1334 N0 = ZExtPromoteOperand(N0, PVT); 1335 else 1336 N0 = PromoteOperand(N0, PVT, Replace); 1337 1338 if (!N0.getNode()) 1339 return SDValue(); 1340 1341 SDLoc DL(Op); 1342 SDValue RV = 1343 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1344 1345 AddToWorklist(N0.getNode()); 1346 if (Replace) 1347 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1348 1349 // Deal with Op being deleted. 1350 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1351 return RV; 1352 } 1353 return SDValue(); 1354 } 1355 1356 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1357 if (!LegalOperations) 1358 return SDValue(); 1359 1360 EVT VT = Op.getValueType(); 1361 if (VT.isVector() || !VT.isInteger()) 1362 return SDValue(); 1363 1364 // If operation type is 'undesirable', e.g. i16 on x86, consider 1365 // promoting it. 1366 unsigned Opc = Op.getOpcode(); 1367 if (TLI.isTypeDesirableForOp(Opc, VT)) 1368 return SDValue(); 1369 1370 EVT PVT = VT; 1371 // Consult target whether it is a good idea to promote this operation and 1372 // what's the right type to promote it to. 1373 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1374 assert(PVT != VT && "Don't know what type to promote to!"); 1375 // fold (aext (aext x)) -> (aext x) 1376 // fold (aext (zext x)) -> (zext x) 1377 // fold (aext (sext x)) -> (sext x) 1378 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1379 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1380 } 1381 return SDValue(); 1382 } 1383 1384 bool DAGCombiner::PromoteLoad(SDValue Op) { 1385 if (!LegalOperations) 1386 return false; 1387 1388 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1389 return false; 1390 1391 EVT VT = Op.getValueType(); 1392 if (VT.isVector() || !VT.isInteger()) 1393 return false; 1394 1395 // If operation type is 'undesirable', e.g. i16 on x86, consider 1396 // promoting it. 1397 unsigned Opc = Op.getOpcode(); 1398 if (TLI.isTypeDesirableForOp(Opc, VT)) 1399 return false; 1400 1401 EVT PVT = VT; 1402 // Consult target whether it is a good idea to promote this operation and 1403 // what's the right type to promote it to. 1404 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1405 assert(PVT != VT && "Don't know what type to promote to!"); 1406 1407 SDLoc DL(Op); 1408 SDNode *N = Op.getNode(); 1409 LoadSDNode *LD = cast<LoadSDNode>(N); 1410 EVT MemVT = LD->getMemoryVT(); 1411 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1412 : LD->getExtensionType(); 1413 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1414 LD->getChain(), LD->getBasePtr(), 1415 MemVT, LD->getMemOperand()); 1416 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1417 1418 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1419 Result.getNode()->dump(&DAG); dbgs() << '\n'); 1420 WorklistRemover DeadNodes(*this); 1421 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1422 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1423 deleteAndRecombine(N); 1424 AddToWorklist(Result.getNode()); 1425 return true; 1426 } 1427 return false; 1428 } 1429 1430 /// Recursively delete a node which has no uses and any operands for 1431 /// which it is the only use. 1432 /// 1433 /// Note that this both deletes the nodes and removes them from the worklist. 1434 /// It also adds any nodes who have had a user deleted to the worklist as they 1435 /// may now have only one use and subject to other combines. 1436 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1437 if (!N->use_empty()) 1438 return false; 1439 1440 SmallSetVector<SDNode *, 16> Nodes; 1441 Nodes.insert(N); 1442 do { 1443 N = Nodes.pop_back_val(); 1444 if (!N) 1445 continue; 1446 1447 if (N->use_empty()) { 1448 for (const SDValue &ChildN : N->op_values()) 1449 Nodes.insert(ChildN.getNode()); 1450 1451 removeFromWorklist(N); 1452 DAG.DeleteNode(N); 1453 } else { 1454 AddToWorklist(N); 1455 } 1456 } while (!Nodes.empty()); 1457 return true; 1458 } 1459 1460 //===----------------------------------------------------------------------===// 1461 // Main DAG Combiner implementation 1462 //===----------------------------------------------------------------------===// 1463 1464 void DAGCombiner::Run(CombineLevel AtLevel) { 1465 // set the instance variables, so that the various visit routines may use it. 1466 Level = AtLevel; 1467 LegalOperations = Level >= AfterLegalizeVectorOps; 1468 LegalTypes = Level >= AfterLegalizeTypes; 1469 1470 WorklistInserter AddNodes(*this); 1471 1472 // Add all the dag nodes to the worklist. 1473 for (SDNode &Node : DAG.allnodes()) 1474 AddToWorklist(&Node); 1475 1476 // Create a dummy node (which is not added to allnodes), that adds a reference 1477 // to the root node, preventing it from being deleted, and tracking any 1478 // changes of the root. 1479 HandleSDNode Dummy(DAG.getRoot()); 1480 1481 // While we have a valid worklist entry node, try to combine it. 1482 while (SDNode *N = getNextWorklistEntry()) { 1483 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1484 // N is deleted from the DAG, since they too may now be dead or may have a 1485 // reduced number of uses, allowing other xforms. 1486 if (recursivelyDeleteUnusedNodes(N)) 1487 continue; 1488 1489 WorklistRemover DeadNodes(*this); 1490 1491 // If this combine is running after legalizing the DAG, re-legalize any 1492 // nodes pulled off the worklist. 1493 if (Level == AfterLegalizeDAG) { 1494 SmallSetVector<SDNode *, 16> UpdatedNodes; 1495 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1496 1497 for (SDNode *LN : UpdatedNodes) { 1498 AddToWorklist(LN); 1499 AddUsersToWorklist(LN); 1500 } 1501 if (!NIsValid) 1502 continue; 1503 } 1504 1505 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1506 1507 // Add any operands of the new node which have not yet been combined to the 1508 // worklist as well. Because the worklist uniques things already, this 1509 // won't repeatedly process the same operand. 1510 CombinedNodes.insert(N); 1511 for (const SDValue &ChildN : N->op_values()) 1512 if (!CombinedNodes.count(ChildN.getNode())) 1513 AddToWorklist(ChildN.getNode()); 1514 1515 SDValue RV = combine(N); 1516 1517 if (!RV.getNode()) 1518 continue; 1519 1520 ++NodesCombined; 1521 1522 // If we get back the same node we passed in, rather than a new node or 1523 // zero, we know that the node must have defined multiple values and 1524 // CombineTo was used. Since CombineTo takes care of the worklist 1525 // mechanics for us, we have no work to do in this case. 1526 if (RV.getNode() == N) 1527 continue; 1528 1529 assert(N->getOpcode() != ISD::DELETED_NODE && 1530 RV.getOpcode() != ISD::DELETED_NODE && 1531 "Node was deleted but visit returned new node!"); 1532 1533 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); 1534 1535 if (N->getNumValues() == RV.getNode()->getNumValues()) 1536 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1537 else { 1538 assert(N->getValueType(0) == RV.getValueType() && 1539 N->getNumValues() == 1 && "Type mismatch"); 1540 DAG.ReplaceAllUsesWith(N, &RV); 1541 } 1542 1543 // Push the new node and any users onto the worklist 1544 AddToWorklist(RV.getNode()); 1545 AddUsersToWorklist(RV.getNode()); 1546 1547 // Finally, if the node is now dead, remove it from the graph. The node 1548 // may not be dead if the replacement process recursively simplified to 1549 // something else needing this node. This will also take care of adding any 1550 // operands which have lost a user to the worklist. 1551 recursivelyDeleteUnusedNodes(N); 1552 } 1553 1554 // If the root changed (e.g. it was a dead load, update the root). 1555 DAG.setRoot(Dummy.getValue()); 1556 DAG.RemoveDeadNodes(); 1557 } 1558 1559 SDValue DAGCombiner::visit(SDNode *N) { 1560 switch (N->getOpcode()) { 1561 default: break; 1562 case ISD::TokenFactor: return visitTokenFactor(N); 1563 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1564 case ISD::ADD: return visitADD(N); 1565 case ISD::SUB: return visitSUB(N); 1566 case ISD::SADDSAT: 1567 case ISD::UADDSAT: return visitADDSAT(N); 1568 case ISD::SSUBSAT: 1569 case ISD::USUBSAT: return visitSUBSAT(N); 1570 case ISD::ADDC: return visitADDC(N); 1571 case ISD::SADDO: 1572 case ISD::UADDO: return visitADDO(N); 1573 case ISD::SUBC: return visitSUBC(N); 1574 case ISD::SSUBO: 1575 case ISD::USUBO: return visitSUBO(N); 1576 case ISD::ADDE: return visitADDE(N); 1577 case ISD::ADDCARRY: return visitADDCARRY(N); 1578 case ISD::SUBE: return visitSUBE(N); 1579 case ISD::SUBCARRY: return visitSUBCARRY(N); 1580 case ISD::MUL: return visitMUL(N); 1581 case ISD::SDIV: return visitSDIV(N); 1582 case ISD::UDIV: return visitUDIV(N); 1583 case ISD::SREM: 1584 case ISD::UREM: return visitREM(N); 1585 case ISD::MULHU: return visitMULHU(N); 1586 case ISD::MULHS: return visitMULHS(N); 1587 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1588 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1589 case ISD::SMULO: 1590 case ISD::UMULO: return visitMULO(N); 1591 case ISD::SMIN: 1592 case ISD::SMAX: 1593 case ISD::UMIN: 1594 case ISD::UMAX: return visitIMINMAX(N); 1595 case ISD::AND: return visitAND(N); 1596 case ISD::OR: return visitOR(N); 1597 case ISD::XOR: return visitXOR(N); 1598 case ISD::SHL: return visitSHL(N); 1599 case ISD::SRA: return visitSRA(N); 1600 case ISD::SRL: return visitSRL(N); 1601 case ISD::ROTR: 1602 case ISD::ROTL: return visitRotate(N); 1603 case ISD::FSHL: 1604 case ISD::FSHR: return visitFunnelShift(N); 1605 case ISD::ABS: return visitABS(N); 1606 case ISD::BSWAP: return visitBSWAP(N); 1607 case ISD::BITREVERSE: return visitBITREVERSE(N); 1608 case ISD::CTLZ: return visitCTLZ(N); 1609 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1610 case ISD::CTTZ: return visitCTTZ(N); 1611 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1612 case ISD::CTPOP: return visitCTPOP(N); 1613 case ISD::SELECT: return visitSELECT(N); 1614 case ISD::VSELECT: return visitVSELECT(N); 1615 case ISD::SELECT_CC: return visitSELECT_CC(N); 1616 case ISD::SETCC: return visitSETCC(N); 1617 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1618 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1619 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1620 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1621 case ISD::AssertSext: 1622 case ISD::AssertZext: return visitAssertExt(N); 1623 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1624 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1625 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1626 case ISD::TRUNCATE: return visitTRUNCATE(N); 1627 case ISD::BITCAST: return visitBITCAST(N); 1628 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1629 case ISD::FADD: return visitFADD(N); 1630 case ISD::FSUB: return visitFSUB(N); 1631 case ISD::FMUL: return visitFMUL(N); 1632 case ISD::FMA: return visitFMA(N); 1633 case ISD::FDIV: return visitFDIV(N); 1634 case ISD::FREM: return visitFREM(N); 1635 case ISD::FSQRT: return visitFSQRT(N); 1636 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1637 case ISD::FPOW: return visitFPOW(N); 1638 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1639 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1640 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1641 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1642 case ISD::FP_ROUND: return visitFP_ROUND(N); 1643 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1644 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1645 case ISD::FNEG: return visitFNEG(N); 1646 case ISD::FABS: return visitFABS(N); 1647 case ISD::FFLOOR: return visitFFLOOR(N); 1648 case ISD::FMINNUM: return visitFMINNUM(N); 1649 case ISD::FMAXNUM: return visitFMAXNUM(N); 1650 case ISD::FMINIMUM: return visitFMINIMUM(N); 1651 case ISD::FMAXIMUM: return visitFMAXIMUM(N); 1652 case ISD::FCEIL: return visitFCEIL(N); 1653 case ISD::FTRUNC: return visitFTRUNC(N); 1654 case ISD::BRCOND: return visitBRCOND(N); 1655 case ISD::BR_CC: return visitBR_CC(N); 1656 case ISD::LOAD: return visitLOAD(N); 1657 case ISD::STORE: return visitSTORE(N); 1658 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1659 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1660 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1661 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1662 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1663 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1664 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1665 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1666 case ISD::MGATHER: return visitMGATHER(N); 1667 case ISD::MLOAD: return visitMLOAD(N); 1668 case ISD::MSCATTER: return visitMSCATTER(N); 1669 case ISD::MSTORE: return visitMSTORE(N); 1670 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1671 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1672 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1673 case ISD::VECREDUCE_FADD: 1674 case ISD::VECREDUCE_FMUL: 1675 case ISD::VECREDUCE_ADD: 1676 case ISD::VECREDUCE_MUL: 1677 case ISD::VECREDUCE_AND: 1678 case ISD::VECREDUCE_OR: 1679 case ISD::VECREDUCE_XOR: 1680 case ISD::VECREDUCE_SMAX: 1681 case ISD::VECREDUCE_SMIN: 1682 case ISD::VECREDUCE_UMAX: 1683 case ISD::VECREDUCE_UMIN: 1684 case ISD::VECREDUCE_FMAX: 1685 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1686 } 1687 return SDValue(); 1688 } 1689 1690 SDValue DAGCombiner::combine(SDNode *N) { 1691 SDValue RV = visit(N); 1692 1693 // If nothing happened, try a target-specific DAG combine. 1694 if (!RV.getNode()) { 1695 assert(N->getOpcode() != ISD::DELETED_NODE && 1696 "Node was deleted but visit returned NULL!"); 1697 1698 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1699 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1700 1701 // Expose the DAG combiner to the target combiner impls. 1702 TargetLowering::DAGCombinerInfo 1703 DagCombineInfo(DAG, Level, false, this); 1704 1705 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1706 } 1707 } 1708 1709 // If nothing happened still, try promoting the operation. 1710 if (!RV.getNode()) { 1711 switch (N->getOpcode()) { 1712 default: break; 1713 case ISD::ADD: 1714 case ISD::SUB: 1715 case ISD::MUL: 1716 case ISD::AND: 1717 case ISD::OR: 1718 case ISD::XOR: 1719 RV = PromoteIntBinOp(SDValue(N, 0)); 1720 break; 1721 case ISD::SHL: 1722 case ISD::SRA: 1723 case ISD::SRL: 1724 RV = PromoteIntShiftOp(SDValue(N, 0)); 1725 break; 1726 case ISD::SIGN_EXTEND: 1727 case ISD::ZERO_EXTEND: 1728 case ISD::ANY_EXTEND: 1729 RV = PromoteExtend(SDValue(N, 0)); 1730 break; 1731 case ISD::LOAD: 1732 if (PromoteLoad(SDValue(N, 0))) 1733 RV = SDValue(N, 0); 1734 break; 1735 } 1736 } 1737 1738 // If N is a commutative binary node, try to eliminate it if the commuted 1739 // version is already present in the DAG. 1740 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1741 N->getNumValues() == 1) { 1742 SDValue N0 = N->getOperand(0); 1743 SDValue N1 = N->getOperand(1); 1744 1745 // Constant operands are canonicalized to RHS. 1746 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1747 SDValue Ops[] = {N1, N0}; 1748 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1749 N->getFlags()); 1750 if (CSENode) 1751 return SDValue(CSENode, 0); 1752 } 1753 } 1754 1755 return RV; 1756 } 1757 1758 /// Given a node, return its input chain if it has one, otherwise return a null 1759 /// sd operand. 1760 static SDValue getInputChainForNode(SDNode *N) { 1761 if (unsigned NumOps = N->getNumOperands()) { 1762 if (N->getOperand(0).getValueType() == MVT::Other) 1763 return N->getOperand(0); 1764 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1765 return N->getOperand(NumOps-1); 1766 for (unsigned i = 1; i < NumOps-1; ++i) 1767 if (N->getOperand(i).getValueType() == MVT::Other) 1768 return N->getOperand(i); 1769 } 1770 return SDValue(); 1771 } 1772 1773 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1774 // If N has two operands, where one has an input chain equal to the other, 1775 // the 'other' chain is redundant. 1776 if (N->getNumOperands() == 2) { 1777 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1778 return N->getOperand(0); 1779 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1780 return N->getOperand(1); 1781 } 1782 1783 // Don't simplify token factors if optnone. 1784 if (OptLevel == CodeGenOpt::None) 1785 return SDValue(); 1786 1787 // If the sole user is a token factor, we should make sure we have a 1788 // chance to merge them together. This prevents TF chains from inhibiting 1789 // optimizations. 1790 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1791 AddToWorklist(*(N->use_begin())); 1792 1793 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1794 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1795 SmallPtrSet<SDNode*, 16> SeenOps; 1796 bool Changed = false; // If we should replace this token factor. 1797 1798 // Start out with this token factor. 1799 TFs.push_back(N); 1800 1801 // Iterate through token factors. The TFs grows when new token factors are 1802 // encountered. 1803 for (unsigned i = 0; i < TFs.size(); ++i) { 1804 SDNode *TF = TFs[i]; 1805 1806 // Check each of the operands. 1807 for (const SDValue &Op : TF->op_values()) { 1808 switch (Op.getOpcode()) { 1809 case ISD::EntryToken: 1810 // Entry tokens don't need to be added to the list. They are 1811 // redundant. 1812 Changed = true; 1813 break; 1814 1815 case ISD::TokenFactor: 1816 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1817 // Queue up for processing. 1818 TFs.push_back(Op.getNode()); 1819 // Clean up in case the token factor is removed. 1820 AddToWorklist(Op.getNode()); 1821 Changed = true; 1822 break; 1823 } 1824 LLVM_FALLTHROUGH; 1825 1826 default: 1827 // Only add if it isn't already in the list. 1828 if (SeenOps.insert(Op.getNode()).second) 1829 Ops.push_back(Op); 1830 else 1831 Changed = true; 1832 break; 1833 } 1834 } 1835 } 1836 1837 // Remove Nodes that are chained to another node in the list. Do so 1838 // by walking up chains breath-first stopping when we've seen 1839 // another operand. In general we must climb to the EntryNode, but we can exit 1840 // early if we find all remaining work is associated with just one operand as 1841 // no further pruning is possible. 1842 1843 // List of nodes to search through and original Ops from which they originate. 1844 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1845 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1846 SmallPtrSet<SDNode *, 16> SeenChains; 1847 bool DidPruneOps = false; 1848 1849 unsigned NumLeftToConsider = 0; 1850 for (const SDValue &Op : Ops) { 1851 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1852 OpWorkCount.push_back(1); 1853 } 1854 1855 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1856 // If this is an Op, we can remove the op from the list. Remark any 1857 // search associated with it as from the current OpNumber. 1858 if (SeenOps.count(Op) != 0) { 1859 Changed = true; 1860 DidPruneOps = true; 1861 unsigned OrigOpNumber = 0; 1862 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1863 OrigOpNumber++; 1864 assert((OrigOpNumber != Ops.size()) && 1865 "expected to find TokenFactor Operand"); 1866 // Re-mark worklist from OrigOpNumber to OpNumber 1867 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1868 if (Worklist[i].second == OrigOpNumber) { 1869 Worklist[i].second = OpNumber; 1870 } 1871 } 1872 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1873 OpWorkCount[OrigOpNumber] = 0; 1874 NumLeftToConsider--; 1875 } 1876 // Add if it's a new chain 1877 if (SeenChains.insert(Op).second) { 1878 OpWorkCount[OpNumber]++; 1879 Worklist.push_back(std::make_pair(Op, OpNumber)); 1880 } 1881 }; 1882 1883 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1884 // We need at least be consider at least 2 Ops to prune. 1885 if (NumLeftToConsider <= 1) 1886 break; 1887 auto CurNode = Worklist[i].first; 1888 auto CurOpNumber = Worklist[i].second; 1889 assert((OpWorkCount[CurOpNumber] > 0) && 1890 "Node should not appear in worklist"); 1891 switch (CurNode->getOpcode()) { 1892 case ISD::EntryToken: 1893 // Hitting EntryToken is the only way for the search to terminate without 1894 // hitting 1895 // another operand's search. Prevent us from marking this operand 1896 // considered. 1897 NumLeftToConsider++; 1898 break; 1899 case ISD::TokenFactor: 1900 for (const SDValue &Op : CurNode->op_values()) 1901 AddToWorklist(i, Op.getNode(), CurOpNumber); 1902 break; 1903 case ISD::LIFETIME_START: 1904 case ISD::LIFETIME_END: 1905 case ISD::CopyFromReg: 1906 case ISD::CopyToReg: 1907 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 1908 break; 1909 default: 1910 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 1911 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 1912 break; 1913 } 1914 OpWorkCount[CurOpNumber]--; 1915 if (OpWorkCount[CurOpNumber] == 0) 1916 NumLeftToConsider--; 1917 } 1918 1919 // If we've changed things around then replace token factor. 1920 if (Changed) { 1921 SDValue Result; 1922 if (Ops.empty()) { 1923 // The entry token is the only possible outcome. 1924 Result = DAG.getEntryNode(); 1925 } else { 1926 if (DidPruneOps) { 1927 SmallVector<SDValue, 8> PrunedOps; 1928 // 1929 for (const SDValue &Op : Ops) { 1930 if (SeenChains.count(Op.getNode()) == 0) 1931 PrunedOps.push_back(Op); 1932 } 1933 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 1934 } else { 1935 Result = DAG.getTokenFactor(SDLoc(N), Ops); 1936 } 1937 } 1938 return Result; 1939 } 1940 return SDValue(); 1941 } 1942 1943 /// MERGE_VALUES can always be eliminated. 1944 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1945 WorklistRemover DeadNodes(*this); 1946 // Replacing results may cause a different MERGE_VALUES to suddenly 1947 // be CSE'd with N, and carry its uses with it. Iterate until no 1948 // uses remain, to ensure that the node can be safely deleted. 1949 // First add the users of this node to the work list so that they 1950 // can be tried again once they have new operands. 1951 AddUsersToWorklist(N); 1952 do { 1953 // Do as a single replacement to avoid rewalking use lists. 1954 SmallVector<SDValue, 8> Ops; 1955 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1956 Ops.push_back(N->getOperand(i)); 1957 DAG.ReplaceAllUsesWith(N, Ops.data()); 1958 } while (!N->use_empty()); 1959 deleteAndRecombine(N); 1960 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1961 } 1962 1963 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 1964 /// ConstantSDNode pointer else nullptr. 1965 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1966 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1967 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1968 } 1969 1970 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 1971 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 1972 "Unexpected binary operator"); 1973 1974 // Don't do this unless the old select is going away. We want to eliminate the 1975 // binary operator, not replace a binop with a select. 1976 // TODO: Handle ISD::SELECT_CC. 1977 unsigned SelOpNo = 0; 1978 SDValue Sel = BO->getOperand(0); 1979 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 1980 SelOpNo = 1; 1981 Sel = BO->getOperand(1); 1982 } 1983 1984 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 1985 return SDValue(); 1986 1987 SDValue CT = Sel.getOperand(1); 1988 if (!isConstantOrConstantVector(CT, true) && 1989 !isConstantFPBuildVectorOrConstantFP(CT)) 1990 return SDValue(); 1991 1992 SDValue CF = Sel.getOperand(2); 1993 if (!isConstantOrConstantVector(CF, true) && 1994 !isConstantFPBuildVectorOrConstantFP(CF)) 1995 return SDValue(); 1996 1997 // Bail out if any constants are opaque because we can't constant fold those. 1998 // The exception is "and" and "or" with either 0 or -1 in which case we can 1999 // propagate non constant operands into select. I.e.: 2000 // and (select Cond, 0, -1), X --> select Cond, 0, X 2001 // or X, (select Cond, -1, 0) --> select Cond, -1, X 2002 auto BinOpcode = BO->getOpcode(); 2003 bool CanFoldNonConst = 2004 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 2005 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 2006 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 2007 2008 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 2009 if (!CanFoldNonConst && 2010 !isConstantOrConstantVector(CBO, true) && 2011 !isConstantFPBuildVectorOrConstantFP(CBO)) 2012 return SDValue(); 2013 2014 EVT VT = Sel.getValueType(); 2015 2016 // In case of shift value and shift amount may have different VT. For instance 2017 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have 2018 // swapped operands and value types do not match. NB: x86 is fine if operands 2019 // are not swapped with shift amount VT being not bigger than shifted value. 2020 // TODO: that is possible to check for a shift operation, correct VTs and 2021 // still perform optimization on x86 if needed. 2022 if (SelOpNo && VT != CBO.getValueType()) 2023 return SDValue(); 2024 2025 // We have a select-of-constants followed by a binary operator with a 2026 // constant. Eliminate the binop by pulling the constant math into the select. 2027 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2028 SDLoc DL(Sel); 2029 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2030 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2031 if (!CanFoldNonConst && !NewCT.isUndef() && 2032 !isConstantOrConstantVector(NewCT, true) && 2033 !isConstantFPBuildVectorOrConstantFP(NewCT)) 2034 return SDValue(); 2035 2036 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2037 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2038 if (!CanFoldNonConst && !NewCF.isUndef() && 2039 !isConstantOrConstantVector(NewCF, true) && 2040 !isConstantFPBuildVectorOrConstantFP(NewCF)) 2041 return SDValue(); 2042 2043 return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2044 } 2045 2046 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2047 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2048 "Expecting add or sub"); 2049 2050 // Match a constant operand and a zext operand for the math instruction: 2051 // add Z, C 2052 // sub C, Z 2053 bool IsAdd = N->getOpcode() == ISD::ADD; 2054 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2055 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2056 auto *CN = dyn_cast<ConstantSDNode>(C); 2057 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2058 return SDValue(); 2059 2060 // Match the zext operand as a setcc of a boolean. 2061 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2062 Z.getOperand(0).getValueType() != MVT::i1) 2063 return SDValue(); 2064 2065 // Match the compare as: setcc (X & 1), 0, eq. 2066 SDValue SetCC = Z.getOperand(0); 2067 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2068 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2069 SetCC.getOperand(0).getOpcode() != ISD::AND || 2070 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2071 return SDValue(); 2072 2073 // We are adding/subtracting a constant and an inverted low bit. Turn that 2074 // into a subtract/add of the low bit with incremented/decremented constant: 2075 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2076 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2077 EVT VT = C.getValueType(); 2078 SDLoc DL(N); 2079 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2080 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2081 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2082 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2083 } 2084 2085 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2086 /// a shift and add with a different constant. 2087 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2088 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2089 "Expecting add or sub"); 2090 2091 // We need a constant operand for the add/sub, and the other operand is a 2092 // logical shift right: add (srl), C or sub C, (srl). 2093 bool IsAdd = N->getOpcode() == ISD::ADD; 2094 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2095 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2096 ConstantSDNode *C = isConstOrConstSplat(ConstantOp); 2097 if (!C || ShiftOp.getOpcode() != ISD::SRL) 2098 return SDValue(); 2099 2100 // The shift must be of a 'not' value. 2101 SDValue Not = ShiftOp.getOperand(0); 2102 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2103 return SDValue(); 2104 2105 // The shift must be moving the sign bit to the least-significant-bit. 2106 EVT VT = ShiftOp.getValueType(); 2107 SDValue ShAmt = ShiftOp.getOperand(1); 2108 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2109 if (!ShAmtC || ShAmtC->getZExtValue() != VT.getScalarSizeInBits() - 1) 2110 return SDValue(); 2111 2112 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2113 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2114 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2115 SDLoc DL(N); 2116 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2117 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2118 APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1; 2119 return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT)); 2120 } 2121 2122 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2123 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2124 /// are no common bits set in the operands). 2125 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2126 SDValue N0 = N->getOperand(0); 2127 SDValue N1 = N->getOperand(1); 2128 EVT VT = N0.getValueType(); 2129 SDLoc DL(N); 2130 2131 // fold vector ops 2132 if (VT.isVector()) { 2133 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2134 return FoldedVOp; 2135 2136 // fold (add x, 0) -> x, vector edition 2137 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2138 return N0; 2139 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2140 return N1; 2141 } 2142 2143 // fold (add x, undef) -> undef 2144 if (N0.isUndef()) 2145 return N0; 2146 2147 if (N1.isUndef()) 2148 return N1; 2149 2150 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2151 // canonicalize constant to RHS 2152 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2153 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2154 // fold (add c1, c2) -> c1+c2 2155 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), 2156 N1.getNode()); 2157 } 2158 2159 // fold (add x, 0) -> x 2160 if (isNullConstant(N1)) 2161 return N0; 2162 2163 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2164 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2165 if (N0.getOpcode() == ISD::SUB && 2166 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2167 SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N1.getNode(), 2168 N0.getOperand(1).getNode()); 2169 assert(Sub && "Constant folding failed"); 2170 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2171 } 2172 2173 // fold ((c1-A)+c2) -> (c1+c2)-A 2174 if (N0.getOpcode() == ISD::SUB && 2175 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2176 SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N1.getNode(), 2177 N0.getOperand(0).getNode()); 2178 assert(Add && "Constant folding failed"); 2179 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2180 } 2181 2182 // add (sext i1 X), 1 -> zext (not i1 X) 2183 // We don't transform this pattern: 2184 // add (zext i1 X), -1 -> sext (not i1 X) 2185 // because most (?) targets generate better code for the zext form. 2186 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2187 isOneOrOneSplat(N1)) { 2188 SDValue X = N0.getOperand(0); 2189 if ((!LegalOperations || 2190 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2191 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2192 X.getScalarValueSizeInBits() == 1) { 2193 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2194 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2195 } 2196 } 2197 2198 // Undo the add -> or combine to merge constant offsets from a frame index. 2199 if (N0.getOpcode() == ISD::OR && 2200 isa<FrameIndexSDNode>(N0.getOperand(0)) && 2201 isa<ConstantSDNode>(N0.getOperand(1)) && 2202 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2203 SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1)); 2204 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2205 } 2206 } 2207 2208 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2209 return NewSel; 2210 2211 // reassociate add 2212 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2213 return RADD; 2214 2215 // fold ((0-A) + B) -> B-A 2216 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2217 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2218 2219 // fold (A + (0-B)) -> A-B 2220 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2221 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2222 2223 // fold (A+(B-A)) -> B 2224 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2225 return N1.getOperand(0); 2226 2227 // fold ((B-A)+A) -> B 2228 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2229 return N0.getOperand(0); 2230 2231 // fold ((A-B)+(C-A)) -> (C-B) 2232 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2233 N0.getOperand(0) == N1.getOperand(1)) 2234 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2235 N0.getOperand(1)); 2236 2237 // fold ((A-B)+(B-C)) -> (A-C) 2238 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2239 N0.getOperand(1) == N1.getOperand(0)) 2240 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2241 N1.getOperand(1)); 2242 2243 // fold (A+(B-(A+C))) to (B-C) 2244 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2245 N0 == N1.getOperand(1).getOperand(0)) 2246 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2247 N1.getOperand(1).getOperand(1)); 2248 2249 // fold (A+(B-(C+A))) to (B-C) 2250 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2251 N0 == N1.getOperand(1).getOperand(1)) 2252 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2253 N1.getOperand(1).getOperand(0)); 2254 2255 // fold (A+((B-A)+or-C)) to (B+or-C) 2256 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2257 N1.getOperand(0).getOpcode() == ISD::SUB && 2258 N0 == N1.getOperand(0).getOperand(1)) 2259 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2260 N1.getOperand(1)); 2261 2262 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2263 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2264 SDValue N00 = N0.getOperand(0); 2265 SDValue N01 = N0.getOperand(1); 2266 SDValue N10 = N1.getOperand(0); 2267 SDValue N11 = N1.getOperand(1); 2268 2269 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2270 return DAG.getNode(ISD::SUB, DL, VT, 2271 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2272 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2273 } 2274 2275 // fold (add (umax X, C), -C) --> (usubsat X, C) 2276 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2277 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2278 return (!Max && !Op) || 2279 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2280 }; 2281 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2282 /*AllowUndefs*/ true)) 2283 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2284 N0.getOperand(1)); 2285 } 2286 2287 if (SimplifyDemandedBits(SDValue(N, 0))) 2288 return SDValue(N, 0); 2289 2290 if (isOneOrOneSplat(N1)) { 2291 // fold (add (xor a, -1), 1) -> (sub 0, a) 2292 if (isBitwiseNot(N0)) 2293 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2294 N0.getOperand(0)); 2295 2296 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2297 if (N0.getOpcode() == ISD::ADD || 2298 N0.getOpcode() == ISD::UADDO || 2299 N0.getOpcode() == ISD::SADDO) { 2300 SDValue A, Xor; 2301 2302 if (isBitwiseNot(N0.getOperand(0))) { 2303 A = N0.getOperand(1); 2304 Xor = N0.getOperand(0); 2305 } else if (isBitwiseNot(N0.getOperand(1))) { 2306 A = N0.getOperand(0); 2307 Xor = N0.getOperand(1); 2308 } 2309 2310 if (Xor) 2311 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2312 } 2313 } 2314 2315 // (x - y) + -1 -> add (xor y, -1), x 2316 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2317 isAllOnesOrAllOnesSplat(N1)) { 2318 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2319 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2320 } 2321 2322 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2323 return Combined; 2324 2325 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2326 return Combined; 2327 2328 return SDValue(); 2329 } 2330 2331 SDValue DAGCombiner::visitADD(SDNode *N) { 2332 SDValue N0 = N->getOperand(0); 2333 SDValue N1 = N->getOperand(1); 2334 EVT VT = N0.getValueType(); 2335 SDLoc DL(N); 2336 2337 if (SDValue Combined = visitADDLike(N)) 2338 return Combined; 2339 2340 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2341 return V; 2342 2343 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2344 return V; 2345 2346 // fold (a+b) -> (a|b) iff a and b share no bits. 2347 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2348 DAG.haveNoCommonBitsSet(N0, N1)) 2349 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2350 2351 return SDValue(); 2352 } 2353 2354 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2355 unsigned Opcode = N->getOpcode(); 2356 SDValue N0 = N->getOperand(0); 2357 SDValue N1 = N->getOperand(1); 2358 EVT VT = N0.getValueType(); 2359 SDLoc DL(N); 2360 2361 // fold vector ops 2362 if (VT.isVector()) { 2363 // TODO SimplifyVBinOp 2364 2365 // fold (add_sat x, 0) -> x, vector edition 2366 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2367 return N0; 2368 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2369 return N1; 2370 } 2371 2372 // fold (add_sat x, undef) -> -1 2373 if (N0.isUndef() || N1.isUndef()) 2374 return DAG.getAllOnesConstant(DL, VT); 2375 2376 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2377 // canonicalize constant to RHS 2378 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2379 return DAG.getNode(Opcode, DL, VT, N1, N0); 2380 // fold (add_sat c1, c2) -> c3 2381 return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(), 2382 N1.getNode()); 2383 } 2384 2385 // fold (add_sat x, 0) -> x 2386 if (isNullConstant(N1)) 2387 return N0; 2388 2389 // If it cannot overflow, transform into an add. 2390 if (Opcode == ISD::UADDSAT) 2391 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2392 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2393 2394 return SDValue(); 2395 } 2396 2397 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2398 bool Masked = false; 2399 2400 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2401 while (true) { 2402 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2403 V = V.getOperand(0); 2404 continue; 2405 } 2406 2407 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2408 Masked = true; 2409 V = V.getOperand(0); 2410 continue; 2411 } 2412 2413 break; 2414 } 2415 2416 // If this is not a carry, return. 2417 if (V.getResNo() != 1) 2418 return SDValue(); 2419 2420 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2421 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2422 return SDValue(); 2423 2424 EVT VT = V.getNode()->getValueType(0); 2425 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2426 return SDValue(); 2427 2428 // If the result is masked, then no matter what kind of bool it is we can 2429 // return. If it isn't, then we need to make sure the bool type is either 0 or 2430 // 1 and not other values. 2431 if (Masked || 2432 TLI.getBooleanContents(V.getValueType()) == 2433 TargetLoweringBase::ZeroOrOneBooleanContent) 2434 return V; 2435 2436 return SDValue(); 2437 } 2438 2439 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2440 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2441 /// the opcode and bypass the mask operation. 2442 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2443 SelectionDAG &DAG, const SDLoc &DL) { 2444 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2445 return SDValue(); 2446 2447 EVT VT = N0.getValueType(); 2448 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2449 return SDValue(); 2450 2451 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2452 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2453 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2454 } 2455 2456 /// Helper for doing combines based on N0 and N1 being added to each other. 2457 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2458 SDNode *LocReference) { 2459 EVT VT = N0.getValueType(); 2460 SDLoc DL(LocReference); 2461 2462 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2463 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2464 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2465 return DAG.getNode(ISD::SUB, DL, VT, N0, 2466 DAG.getNode(ISD::SHL, DL, VT, 2467 N1.getOperand(0).getOperand(1), 2468 N1.getOperand(1))); 2469 2470 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2471 return V; 2472 2473 // Hoist one-use subtraction by non-opaque constant: 2474 // (x - C) + y -> (x + y) - C 2475 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2476 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2477 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2478 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2479 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2480 } 2481 2482 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2483 // rather than 'add 0/-1' (the zext should get folded). 2484 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2485 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2486 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2487 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2488 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2489 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2490 } 2491 2492 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2493 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2494 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2495 if (TN->getVT() == MVT::i1) { 2496 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2497 DAG.getConstant(1, DL, VT)); 2498 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2499 } 2500 } 2501 2502 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2503 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2504 N1.getResNo() == 0) 2505 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2506 N0, N1.getOperand(0), N1.getOperand(2)); 2507 2508 // (add X, Carry) -> (addcarry X, 0, Carry) 2509 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2510 if (SDValue Carry = getAsCarry(TLI, N1)) 2511 return DAG.getNode(ISD::ADDCARRY, DL, 2512 DAG.getVTList(VT, Carry.getValueType()), N0, 2513 DAG.getConstant(0, DL, VT), Carry); 2514 2515 return SDValue(); 2516 } 2517 2518 SDValue DAGCombiner::visitADDC(SDNode *N) { 2519 SDValue N0 = N->getOperand(0); 2520 SDValue N1 = N->getOperand(1); 2521 EVT VT = N0.getValueType(); 2522 SDLoc DL(N); 2523 2524 // If the flag result is dead, turn this into an ADD. 2525 if (!N->hasAnyUseOfValue(1)) 2526 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2527 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2528 2529 // canonicalize constant to RHS. 2530 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2531 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2532 if (N0C && !N1C) 2533 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2534 2535 // fold (addc x, 0) -> x + no carry out 2536 if (isNullConstant(N1)) 2537 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2538 DL, MVT::Glue)); 2539 2540 // If it cannot overflow, transform into an add. 2541 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2542 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2543 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2544 2545 return SDValue(); 2546 } 2547 2548 static SDValue flipBoolean(SDValue V, const SDLoc &DL, 2549 SelectionDAG &DAG, const TargetLowering &TLI) { 2550 EVT VT = V.getValueType(); 2551 2552 SDValue Cst; 2553 switch (TLI.getBooleanContents(VT)) { 2554 case TargetLowering::ZeroOrOneBooleanContent: 2555 case TargetLowering::UndefinedBooleanContent: 2556 Cst = DAG.getConstant(1, DL, VT); 2557 break; 2558 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2559 Cst = DAG.getConstant(-1, DL, VT); 2560 break; 2561 } 2562 2563 return DAG.getNode(ISD::XOR, DL, VT, V, Cst); 2564 } 2565 2566 static SDValue extractBooleanFlip(SDValue V, const TargetLowering &TLI) { 2567 if (V.getOpcode() != ISD::XOR) 2568 return SDValue(); 2569 2570 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2571 if (!Const) 2572 return SDValue(); 2573 2574 EVT VT = V.getValueType(); 2575 2576 bool IsFlip = false; 2577 switch(TLI.getBooleanContents(VT)) { 2578 case TargetLowering::ZeroOrOneBooleanContent: 2579 IsFlip = Const->isOne(); 2580 break; 2581 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2582 IsFlip = Const->isAllOnesValue(); 2583 break; 2584 case TargetLowering::UndefinedBooleanContent: 2585 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2586 break; 2587 } 2588 2589 if (IsFlip) 2590 return V.getOperand(0); 2591 return SDValue(); 2592 } 2593 2594 SDValue DAGCombiner::visitADDO(SDNode *N) { 2595 SDValue N0 = N->getOperand(0); 2596 SDValue N1 = N->getOperand(1); 2597 EVT VT = N0.getValueType(); 2598 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2599 2600 EVT CarryVT = N->getValueType(1); 2601 SDLoc DL(N); 2602 2603 // If the flag result is dead, turn this into an ADD. 2604 if (!N->hasAnyUseOfValue(1)) 2605 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2606 DAG.getUNDEF(CarryVT)); 2607 2608 // canonicalize constant to RHS. 2609 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2610 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2611 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2612 2613 // fold (addo x, 0) -> x + no carry out 2614 if (isNullOrNullSplat(N1)) 2615 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2616 2617 if (!IsSigned) { 2618 // If it cannot overflow, transform into an add. 2619 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2620 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2621 DAG.getConstant(0, DL, CarryVT)); 2622 2623 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2624 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2625 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2626 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2627 return CombineTo(N, Sub, 2628 flipBoolean(Sub.getValue(1), DL, DAG, TLI)); 2629 } 2630 2631 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2632 return Combined; 2633 2634 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2635 return Combined; 2636 } 2637 2638 return SDValue(); 2639 } 2640 2641 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2642 EVT VT = N0.getValueType(); 2643 if (VT.isVector()) 2644 return SDValue(); 2645 2646 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2647 // If Y + 1 cannot overflow. 2648 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2649 SDValue Y = N1.getOperand(0); 2650 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2651 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2652 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2653 N1.getOperand(2)); 2654 } 2655 2656 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2657 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2658 if (SDValue Carry = getAsCarry(TLI, N1)) 2659 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2660 DAG.getConstant(0, SDLoc(N), VT), Carry); 2661 2662 return SDValue(); 2663 } 2664 2665 SDValue DAGCombiner::visitADDE(SDNode *N) { 2666 SDValue N0 = N->getOperand(0); 2667 SDValue N1 = N->getOperand(1); 2668 SDValue CarryIn = N->getOperand(2); 2669 2670 // canonicalize constant to RHS 2671 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2672 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2673 if (N0C && !N1C) 2674 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2675 N1, N0, CarryIn); 2676 2677 // fold (adde x, y, false) -> (addc x, y) 2678 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2679 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2680 2681 return SDValue(); 2682 } 2683 2684 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2685 SDValue N0 = N->getOperand(0); 2686 SDValue N1 = N->getOperand(1); 2687 SDValue CarryIn = N->getOperand(2); 2688 SDLoc DL(N); 2689 2690 // canonicalize constant to RHS 2691 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2692 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2693 if (N0C && !N1C) 2694 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2695 2696 // fold (addcarry x, y, false) -> (uaddo x, y) 2697 if (isNullConstant(CarryIn)) { 2698 if (!LegalOperations || 2699 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2700 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2701 } 2702 2703 EVT CarryVT = CarryIn.getValueType(); 2704 2705 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 2706 if (isNullConstant(N0) && isNullConstant(N1)) { 2707 EVT VT = N0.getValueType(); 2708 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 2709 AddToWorklist(CarryExt.getNode()); 2710 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 2711 DAG.getConstant(1, DL, VT)), 2712 DAG.getConstant(0, DL, CarryVT)); 2713 } 2714 2715 // fold (addcarry (xor a, -1), 0, !b) -> (subcarry 0, a, b) and flip carry. 2716 if (isBitwiseNot(N0) && isNullConstant(N1)) { 2717 if (SDValue B = extractBooleanFlip(CarryIn, TLI)) { 2718 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), 2719 DAG.getConstant(0, DL, N0.getValueType()), 2720 N0.getOperand(0), B); 2721 return CombineTo(N, Sub, 2722 flipBoolean(Sub.getValue(1), DL, DAG, TLI)); 2723 } 2724 } 2725 2726 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 2727 return Combined; 2728 2729 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 2730 return Combined; 2731 2732 return SDValue(); 2733 } 2734 2735 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 2736 SDNode *N) { 2737 // Iff the flag result is dead: 2738 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 2739 if ((N0.getOpcode() == ISD::ADD || 2740 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0)) && 2741 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 2742 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 2743 N0.getOperand(0), N0.getOperand(1), CarryIn); 2744 2745 /** 2746 * When one of the addcarry argument is itself a carry, we may be facing 2747 * a diamond carry propagation. In which case we try to transform the DAG 2748 * to ensure linear carry propagation if that is possible. 2749 * 2750 * We are trying to get: 2751 * (addcarry X, 0, (addcarry A, B, Z):Carry) 2752 */ 2753 if (auto Y = getAsCarry(TLI, N1)) { 2754 /** 2755 * (uaddo A, B) 2756 * / \ 2757 * Carry Sum 2758 * | \ 2759 * | (addcarry *, 0, Z) 2760 * | / 2761 * \ Carry 2762 * | / 2763 * (addcarry X, *, *) 2764 */ 2765 if (Y.getOpcode() == ISD::UADDO && 2766 CarryIn.getResNo() == 1 && 2767 CarryIn.getOpcode() == ISD::ADDCARRY && 2768 isNullConstant(CarryIn.getOperand(1)) && 2769 CarryIn.getOperand(0) == Y.getValue(0)) { 2770 auto NewY = DAG.getNode(ISD::ADDCARRY, SDLoc(N), Y->getVTList(), 2771 Y.getOperand(0), Y.getOperand(1), 2772 CarryIn.getOperand(2)); 2773 AddToWorklist(NewY.getNode()); 2774 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2775 DAG.getConstant(0, SDLoc(N), N0.getValueType()), 2776 NewY.getValue(1)); 2777 } 2778 } 2779 2780 return SDValue(); 2781 } 2782 2783 // Since it may not be valid to emit a fold to zero for vector initializers 2784 // check if we can before folding. 2785 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 2786 SelectionDAG &DAG, bool LegalOperations) { 2787 if (!VT.isVector()) 2788 return DAG.getConstant(0, DL, VT); 2789 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 2790 return DAG.getConstant(0, DL, VT); 2791 return SDValue(); 2792 } 2793 2794 SDValue DAGCombiner::visitSUB(SDNode *N) { 2795 SDValue N0 = N->getOperand(0); 2796 SDValue N1 = N->getOperand(1); 2797 EVT VT = N0.getValueType(); 2798 SDLoc DL(N); 2799 2800 // fold vector ops 2801 if (VT.isVector()) { 2802 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2803 return FoldedVOp; 2804 2805 // fold (sub x, 0) -> x, vector edition 2806 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2807 return N0; 2808 } 2809 2810 // fold (sub x, x) -> 0 2811 // FIXME: Refactor this and xor and other similar operations together. 2812 if (N0 == N1) 2813 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 2814 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2815 DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 2816 // fold (sub c1, c2) -> c1-c2 2817 return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), 2818 N1.getNode()); 2819 } 2820 2821 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2822 return NewSel; 2823 2824 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2825 2826 // fold (sub x, c) -> (add x, -c) 2827 if (N1C) { 2828 return DAG.getNode(ISD::ADD, DL, VT, N0, 2829 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 2830 } 2831 2832 if (isNullOrNullSplat(N0)) { 2833 unsigned BitWidth = VT.getScalarSizeInBits(); 2834 // Right-shifting everything out but the sign bit followed by negation is 2835 // the same as flipping arithmetic/logical shift type without the negation: 2836 // -(X >>u 31) -> (X >>s 31) 2837 // -(X >>s 31) -> (X >>u 31) 2838 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 2839 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 2840 if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) { 2841 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 2842 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 2843 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 2844 } 2845 } 2846 2847 // 0 - X --> 0 if the sub is NUW. 2848 if (N->getFlags().hasNoUnsignedWrap()) 2849 return N0; 2850 2851 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 2852 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 2853 // N1 must be 0 because negating the minimum signed value is undefined. 2854 if (N->getFlags().hasNoSignedWrap()) 2855 return N0; 2856 2857 // 0 - X --> X if X is 0 or the minimum signed value. 2858 return N1; 2859 } 2860 } 2861 2862 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 2863 if (isAllOnesOrAllOnesSplat(N0)) 2864 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 2865 2866 // fold (A - (0-B)) -> A+B 2867 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2868 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 2869 2870 // fold A-(A-B) -> B 2871 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 2872 return N1.getOperand(1); 2873 2874 // fold (A+B)-A -> B 2875 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 2876 return N0.getOperand(1); 2877 2878 // fold (A+B)-B -> A 2879 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 2880 return N0.getOperand(0); 2881 2882 // fold (A+C1)-C2 -> A+(C1-C2) 2883 if (N0.getOpcode() == ISD::ADD && 2884 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 2885 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 2886 SDValue NewC = DAG.FoldConstantArithmetic( 2887 ISD::SUB, DL, VT, N0.getOperand(1).getNode(), N1.getNode()); 2888 assert(NewC && "Constant folding failed"); 2889 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 2890 } 2891 2892 // fold C2-(A+C1) -> (C2-C1)-A 2893 if (N1.getOpcode() == ISD::ADD) { 2894 SDValue N11 = N1.getOperand(1); 2895 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 2896 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 2897 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), 2898 N11.getNode()); 2899 assert(NewC && "Constant folding failed"); 2900 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 2901 } 2902 } 2903 2904 // fold (A-C1)-C2 -> A-(C1+C2) 2905 if (N0.getOpcode() == ISD::SUB && 2906 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 2907 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 2908 SDValue NewC = DAG.FoldConstantArithmetic( 2909 ISD::ADD, DL, VT, N0.getOperand(1).getNode(), N1.getNode()); 2910 assert(NewC && "Constant folding failed"); 2911 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 2912 } 2913 2914 // fold (c1-A)-c2 -> (c1-c2)-A 2915 if (N0.getOpcode() == ISD::SUB && 2916 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 2917 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 2918 SDValue NewC = DAG.FoldConstantArithmetic( 2919 ISD::SUB, DL, VT, N0.getOperand(0).getNode(), N1.getNode()); 2920 assert(NewC && "Constant folding failed"); 2921 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 2922 } 2923 2924 // fold ((A+(B+or-C))-B) -> A+or-C 2925 if (N0.getOpcode() == ISD::ADD && 2926 (N0.getOperand(1).getOpcode() == ISD::SUB || 2927 N0.getOperand(1).getOpcode() == ISD::ADD) && 2928 N0.getOperand(1).getOperand(0) == N1) 2929 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 2930 N0.getOperand(1).getOperand(1)); 2931 2932 // fold ((A+(C+B))-B) -> A+C 2933 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 2934 N0.getOperand(1).getOperand(1) == N1) 2935 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 2936 N0.getOperand(1).getOperand(0)); 2937 2938 // fold ((A-(B-C))-C) -> A-B 2939 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 2940 N0.getOperand(1).getOperand(1) == N1) 2941 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2942 N0.getOperand(1).getOperand(0)); 2943 2944 // fold (A-(B-C)) -> A+(C-B) 2945 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 2946 return DAG.getNode(ISD::ADD, DL, VT, N0, 2947 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 2948 N1.getOperand(0))); 2949 2950 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 2951 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 2952 if (N1.getOperand(0).getOpcode() == ISD::SUB && 2953 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 2954 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 2955 N1.getOperand(0).getOperand(1), 2956 N1.getOperand(1)); 2957 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 2958 } 2959 if (N1.getOperand(1).getOpcode() == ISD::SUB && 2960 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 2961 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 2962 N1.getOperand(0), 2963 N1.getOperand(1).getOperand(1)); 2964 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 2965 } 2966 } 2967 2968 // If either operand of a sub is undef, the result is undef 2969 if (N0.isUndef()) 2970 return N0; 2971 if (N1.isUndef()) 2972 return N1; 2973 2974 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2975 return V; 2976 2977 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2978 return V; 2979 2980 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 2981 return V; 2982 2983 // (x - y) - 1 -> add (xor y, -1), x 2984 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 2985 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 2986 DAG.getAllOnesConstant(DL, VT)); 2987 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2988 } 2989 2990 // Hoist one-use addition by non-opaque constant: 2991 // (x + C) - y -> (x - y) + C 2992 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 2993 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2994 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 2995 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 2996 } 2997 // y - (x + C) -> (y - x) - C 2998 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 2999 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3000 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3001 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3002 } 3003 // (x - C) - y -> (x - y) - C 3004 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3005 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3006 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3007 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3008 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3009 } 3010 3011 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3012 // rather than 'sub 0/1' (the sext should get folded). 3013 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3014 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3015 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3016 TLI.getBooleanContents(VT) == 3017 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3018 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3019 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3020 } 3021 3022 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3023 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3024 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3025 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3026 SDValue S0 = N1.getOperand(0); 3027 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) { 3028 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 3029 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3030 if (C->getAPIntValue() == (OpSizeInBits - 1)) 3031 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3032 } 3033 } 3034 } 3035 3036 // If the relocation model supports it, consider symbol offsets. 3037 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3038 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3039 // fold (sub Sym, c) -> Sym-c 3040 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3041 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3042 GA->getOffset() - 3043 (uint64_t)N1C->getSExtValue()); 3044 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3045 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3046 if (GA->getGlobal() == GB->getGlobal()) 3047 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3048 DL, VT); 3049 } 3050 3051 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3052 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3053 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3054 if (TN->getVT() == MVT::i1) { 3055 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3056 DAG.getConstant(1, DL, VT)); 3057 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3058 } 3059 } 3060 3061 // Prefer an add for more folding potential and possibly better codegen: 3062 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3063 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3064 SDValue ShAmt = N1.getOperand(1); 3065 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3066 if (ShAmtC && ShAmtC->getZExtValue() == N1.getScalarValueSizeInBits() - 1) { 3067 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3068 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3069 } 3070 } 3071 3072 return SDValue(); 3073 } 3074 3075 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3076 SDValue N0 = N->getOperand(0); 3077 SDValue N1 = N->getOperand(1); 3078 EVT VT = N0.getValueType(); 3079 SDLoc DL(N); 3080 3081 // fold vector ops 3082 if (VT.isVector()) { 3083 // TODO SimplifyVBinOp 3084 3085 // fold (sub_sat x, 0) -> x, vector edition 3086 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3087 return N0; 3088 } 3089 3090 // fold (sub_sat x, undef) -> 0 3091 if (N0.isUndef() || N1.isUndef()) 3092 return DAG.getConstant(0, DL, VT); 3093 3094 // fold (sub_sat x, x) -> 0 3095 if (N0 == N1) 3096 return DAG.getConstant(0, DL, VT); 3097 3098 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3099 DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 3100 // fold (sub_sat c1, c2) -> c3 3101 return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(), 3102 N1.getNode()); 3103 } 3104 3105 // fold (sub_sat x, 0) -> x 3106 if (isNullConstant(N1)) 3107 return N0; 3108 3109 return SDValue(); 3110 } 3111 3112 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3113 SDValue N0 = N->getOperand(0); 3114 SDValue N1 = N->getOperand(1); 3115 EVT VT = N0.getValueType(); 3116 SDLoc DL(N); 3117 3118 // If the flag result is dead, turn this into an SUB. 3119 if (!N->hasAnyUseOfValue(1)) 3120 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3121 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3122 3123 // fold (subc x, x) -> 0 + no borrow 3124 if (N0 == N1) 3125 return CombineTo(N, DAG.getConstant(0, DL, VT), 3126 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3127 3128 // fold (subc x, 0) -> x + no borrow 3129 if (isNullConstant(N1)) 3130 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3131 3132 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3133 if (isAllOnesConstant(N0)) 3134 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3135 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3136 3137 return SDValue(); 3138 } 3139 3140 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3141 SDValue N0 = N->getOperand(0); 3142 SDValue N1 = N->getOperand(1); 3143 EVT VT = N0.getValueType(); 3144 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3145 3146 EVT CarryVT = N->getValueType(1); 3147 SDLoc DL(N); 3148 3149 // If the flag result is dead, turn this into an SUB. 3150 if (!N->hasAnyUseOfValue(1)) 3151 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3152 DAG.getUNDEF(CarryVT)); 3153 3154 // fold (subo x, x) -> 0 + no borrow 3155 if (N0 == N1) 3156 return CombineTo(N, DAG.getConstant(0, DL, VT), 3157 DAG.getConstant(0, DL, CarryVT)); 3158 3159 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3160 3161 // fold (subox, c) -> (addo x, -c) 3162 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3163 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3164 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3165 } 3166 3167 // fold (subo x, 0) -> x + no borrow 3168 if (isNullOrNullSplat(N1)) 3169 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3170 3171 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3172 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3173 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3174 DAG.getConstant(0, DL, CarryVT)); 3175 3176 return SDValue(); 3177 } 3178 3179 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3180 SDValue N0 = N->getOperand(0); 3181 SDValue N1 = N->getOperand(1); 3182 SDValue CarryIn = N->getOperand(2); 3183 3184 // fold (sube x, y, false) -> (subc x, y) 3185 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3186 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3187 3188 return SDValue(); 3189 } 3190 3191 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3192 SDValue N0 = N->getOperand(0); 3193 SDValue N1 = N->getOperand(1); 3194 SDValue CarryIn = N->getOperand(2); 3195 3196 // fold (subcarry x, y, false) -> (usubo x, y) 3197 if (isNullConstant(CarryIn)) { 3198 if (!LegalOperations || 3199 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3200 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3201 } 3202 3203 return SDValue(); 3204 } 3205 3206 SDValue DAGCombiner::visitMUL(SDNode *N) { 3207 SDValue N0 = N->getOperand(0); 3208 SDValue N1 = N->getOperand(1); 3209 EVT VT = N0.getValueType(); 3210 3211 // fold (mul x, undef) -> 0 3212 if (N0.isUndef() || N1.isUndef()) 3213 return DAG.getConstant(0, SDLoc(N), VT); 3214 3215 bool N0IsConst = false; 3216 bool N1IsConst = false; 3217 bool N1IsOpaqueConst = false; 3218 bool N0IsOpaqueConst = false; 3219 APInt ConstValue0, ConstValue1; 3220 // fold vector ops 3221 if (VT.isVector()) { 3222 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3223 return FoldedVOp; 3224 3225 N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); 3226 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3227 assert((!N0IsConst || 3228 ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) && 3229 "Splat APInt should be element width"); 3230 assert((!N1IsConst || 3231 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3232 "Splat APInt should be element width"); 3233 } else { 3234 N0IsConst = isa<ConstantSDNode>(N0); 3235 if (N0IsConst) { 3236 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 3237 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 3238 } 3239 N1IsConst = isa<ConstantSDNode>(N1); 3240 if (N1IsConst) { 3241 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3242 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3243 } 3244 } 3245 3246 // fold (mul c1, c2) -> c1*c2 3247 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 3248 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 3249 N0.getNode(), N1.getNode()); 3250 3251 // canonicalize constant to RHS (vector doesn't have to splat) 3252 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3253 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3254 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3255 // fold (mul x, 0) -> 0 3256 if (N1IsConst && ConstValue1.isNullValue()) 3257 return N1; 3258 // fold (mul x, 1) -> x 3259 if (N1IsConst && ConstValue1.isOneValue()) 3260 return N0; 3261 3262 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3263 return NewSel; 3264 3265 // fold (mul x, -1) -> 0-x 3266 if (N1IsConst && ConstValue1.isAllOnesValue()) { 3267 SDLoc DL(N); 3268 return DAG.getNode(ISD::SUB, DL, VT, 3269 DAG.getConstant(0, DL, VT), N0); 3270 } 3271 // fold (mul x, (1 << c)) -> x << c 3272 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3273 DAG.isKnownToBeAPowerOfTwo(N1) && 3274 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3275 SDLoc DL(N); 3276 SDValue LogBase2 = BuildLogBase2(N1, DL); 3277 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3278 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3279 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3280 } 3281 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3282 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { 3283 unsigned Log2Val = (-ConstValue1).logBase2(); 3284 SDLoc DL(N); 3285 // FIXME: If the input is something that is easily negated (e.g. a 3286 // single-use add), we should put the negate there. 3287 return DAG.getNode(ISD::SUB, DL, VT, 3288 DAG.getConstant(0, DL, VT), 3289 DAG.getNode(ISD::SHL, DL, VT, N0, 3290 DAG.getConstant(Log2Val, DL, 3291 getShiftAmountTy(N0.getValueType())))); 3292 } 3293 3294 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3295 // mul x, (2^N + 1) --> add (shl x, N), x 3296 // mul x, (2^N - 1) --> sub (shl x, N), x 3297 // Examples: x * 33 --> (x << 5) + x 3298 // x * 15 --> (x << 4) - x 3299 // x * -33 --> -((x << 5) + x) 3300 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3301 if (N1IsConst && TLI.decomposeMulByConstant(VT, N1)) { 3302 // TODO: We could handle more general decomposition of any constant by 3303 // having the target set a limit on number of ops and making a 3304 // callback to determine that sequence (similar to sqrt expansion). 3305 unsigned MathOp = ISD::DELETED_NODE; 3306 APInt MulC = ConstValue1.abs(); 3307 if ((MulC - 1).isPowerOf2()) 3308 MathOp = ISD::ADD; 3309 else if ((MulC + 1).isPowerOf2()) 3310 MathOp = ISD::SUB; 3311 3312 if (MathOp != ISD::DELETED_NODE) { 3313 unsigned ShAmt = MathOp == ISD::ADD ? (MulC - 1).logBase2() 3314 : (MulC + 1).logBase2(); 3315 assert(ShAmt > 0 && ShAmt < VT.getScalarSizeInBits() && 3316 "Not expecting multiply-by-constant that could have simplified"); 3317 SDLoc DL(N); 3318 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, N0, 3319 DAG.getConstant(ShAmt, DL, VT)); 3320 SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0); 3321 if (ConstValue1.isNegative()) 3322 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 3323 return R; 3324 } 3325 } 3326 3327 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 3328 if (N0.getOpcode() == ISD::SHL && 3329 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3330 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3331 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 3332 if (isConstantOrConstantVector(C3)) 3333 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 3334 } 3335 3336 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 3337 // use. 3338 { 3339 SDValue Sh(nullptr, 0), Y(nullptr, 0); 3340 3341 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 3342 if (N0.getOpcode() == ISD::SHL && 3343 isConstantOrConstantVector(N0.getOperand(1)) && 3344 N0.getNode()->hasOneUse()) { 3345 Sh = N0; Y = N1; 3346 } else if (N1.getOpcode() == ISD::SHL && 3347 isConstantOrConstantVector(N1.getOperand(1)) && 3348 N1.getNode()->hasOneUse()) { 3349 Sh = N1; Y = N0; 3350 } 3351 3352 if (Sh.getNode()) { 3353 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 3354 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 3355 } 3356 } 3357 3358 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 3359 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 3360 N0.getOpcode() == ISD::ADD && 3361 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 3362 isMulAddWithConstProfitable(N, N0, N1)) 3363 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 3364 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 3365 N0.getOperand(0), N1), 3366 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 3367 N0.getOperand(1), N1)); 3368 3369 // reassociate mul 3370 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 3371 return RMUL; 3372 3373 return SDValue(); 3374 } 3375 3376 /// Return true if divmod libcall is available. 3377 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 3378 const TargetLowering &TLI) { 3379 RTLIB::Libcall LC; 3380 EVT NodeType = Node->getValueType(0); 3381 if (!NodeType.isSimple()) 3382 return false; 3383 switch (NodeType.getSimpleVT().SimpleTy) { 3384 default: return false; // No libcall for vector types. 3385 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 3386 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 3387 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 3388 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 3389 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 3390 } 3391 3392 return TLI.getLibcallName(LC) != nullptr; 3393 } 3394 3395 /// Issue divrem if both quotient and remainder are needed. 3396 SDValue DAGCombiner::useDivRem(SDNode *Node) { 3397 if (Node->use_empty()) 3398 return SDValue(); // This is a dead node, leave it alone. 3399 3400 unsigned Opcode = Node->getOpcode(); 3401 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 3402 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3403 3404 // DivMod lib calls can still work on non-legal types if using lib-calls. 3405 EVT VT = Node->getValueType(0); 3406 if (VT.isVector() || !VT.isInteger()) 3407 return SDValue(); 3408 3409 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 3410 return SDValue(); 3411 3412 // If DIVREM is going to get expanded into a libcall, 3413 // but there is no libcall available, then don't combine. 3414 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 3415 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 3416 return SDValue(); 3417 3418 // If div is legal, it's better to do the normal expansion 3419 unsigned OtherOpcode = 0; 3420 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 3421 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 3422 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 3423 return SDValue(); 3424 } else { 3425 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 3426 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 3427 return SDValue(); 3428 } 3429 3430 SDValue Op0 = Node->getOperand(0); 3431 SDValue Op1 = Node->getOperand(1); 3432 SDValue combined; 3433 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 3434 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 3435 SDNode *User = *UI; 3436 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 3437 User->use_empty()) 3438 continue; 3439 // Convert the other matching node(s), too; 3440 // otherwise, the DIVREM may get target-legalized into something 3441 // target-specific that we won't be able to recognize. 3442 unsigned UserOpc = User->getOpcode(); 3443 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 3444 User->getOperand(0) == Op0 && 3445 User->getOperand(1) == Op1) { 3446 if (!combined) { 3447 if (UserOpc == OtherOpcode) { 3448 SDVTList VTs = DAG.getVTList(VT, VT); 3449 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 3450 } else if (UserOpc == DivRemOpc) { 3451 combined = SDValue(User, 0); 3452 } else { 3453 assert(UserOpc == Opcode); 3454 continue; 3455 } 3456 } 3457 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 3458 CombineTo(User, combined); 3459 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 3460 CombineTo(User, combined.getValue(1)); 3461 } 3462 } 3463 return combined; 3464 } 3465 3466 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 3467 SDValue N0 = N->getOperand(0); 3468 SDValue N1 = N->getOperand(1); 3469 EVT VT = N->getValueType(0); 3470 SDLoc DL(N); 3471 3472 unsigned Opc = N->getOpcode(); 3473 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 3474 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3475 3476 // X / undef -> undef 3477 // X % undef -> undef 3478 // X / 0 -> undef 3479 // X % 0 -> undef 3480 // NOTE: This includes vectors where any divisor element is zero/undef. 3481 if (DAG.isUndef(Opc, {N0, N1})) 3482 return DAG.getUNDEF(VT); 3483 3484 // undef / X -> 0 3485 // undef % X -> 0 3486 if (N0.isUndef()) 3487 return DAG.getConstant(0, DL, VT); 3488 3489 // 0 / X -> 0 3490 // 0 % X -> 0 3491 ConstantSDNode *N0C = isConstOrConstSplat(N0); 3492 if (N0C && N0C->isNullValue()) 3493 return N0; 3494 3495 // X / X -> 1 3496 // X % X -> 0 3497 if (N0 == N1) 3498 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 3499 3500 // X / 1 -> X 3501 // X % 1 -> 0 3502 // If this is a boolean op (single-bit element type), we can't have 3503 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 3504 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 3505 // it's a 1. 3506 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 3507 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 3508 3509 return SDValue(); 3510 } 3511 3512 SDValue DAGCombiner::visitSDIV(SDNode *N) { 3513 SDValue N0 = N->getOperand(0); 3514 SDValue N1 = N->getOperand(1); 3515 EVT VT = N->getValueType(0); 3516 EVT CCVT = getSetCCResultType(VT); 3517 3518 // fold vector ops 3519 if (VT.isVector()) 3520 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3521 return FoldedVOp; 3522 3523 SDLoc DL(N); 3524 3525 // fold (sdiv c1, c2) -> c1/c2 3526 ConstantSDNode *N0C = isConstOrConstSplat(N0); 3527 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3528 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 3529 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); 3530 // fold (sdiv X, -1) -> 0-X 3531 if (N1C && N1C->isAllOnesValue()) 3532 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 3533 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 3534 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 3535 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 3536 DAG.getConstant(1, DL, VT), 3537 DAG.getConstant(0, DL, VT)); 3538 3539 if (SDValue V = simplifyDivRem(N, DAG)) 3540 return V; 3541 3542 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3543 return NewSel; 3544 3545 // If we know the sign bits of both operands are zero, strength reduce to a 3546 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 3547 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 3548 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 3549 3550 if (SDValue V = visitSDIVLike(N0, N1, N)) { 3551 // If the corresponding remainder node exists, update its users with 3552 // (Dividend - (Quotient * Divisor). 3553 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 3554 { N0, N1 })) { 3555 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 3556 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 3557 AddToWorklist(Mul.getNode()); 3558 AddToWorklist(Sub.getNode()); 3559 CombineTo(RemNode, Sub); 3560 } 3561 return V; 3562 } 3563 3564 // sdiv, srem -> sdivrem 3565 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 3566 // true. Otherwise, we break the simplification logic in visitREM(). 3567 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3568 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 3569 if (SDValue DivRem = useDivRem(N)) 3570 return DivRem; 3571 3572 return SDValue(); 3573 } 3574 3575 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 3576 SDLoc DL(N); 3577 EVT VT = N->getValueType(0); 3578 EVT CCVT = getSetCCResultType(VT); 3579 unsigned BitWidth = VT.getScalarSizeInBits(); 3580 3581 // Helper for determining whether a value is a power-2 constant scalar or a 3582 // vector of such elements. 3583 auto IsPowerOfTwo = [](ConstantSDNode *C) { 3584 if (C->isNullValue() || C->isOpaque()) 3585 return false; 3586 if (C->getAPIntValue().isPowerOf2()) 3587 return true; 3588 if ((-C->getAPIntValue()).isPowerOf2()) 3589 return true; 3590 return false; 3591 }; 3592 3593 // fold (sdiv X, pow2) -> simple ops after legalize 3594 // FIXME: We check for the exact bit here because the generic lowering gives 3595 // better results in that case. The target-specific lowering should learn how 3596 // to handle exact sdivs efficiently. 3597 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 3598 // Target-specific implementation of sdiv x, pow2. 3599 if (SDValue Res = BuildSDIVPow2(N)) 3600 return Res; 3601 3602 // Create constants that are functions of the shift amount value. 3603 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 3604 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 3605 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 3606 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 3607 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 3608 if (!isConstantOrConstantVector(Inexact)) 3609 return SDValue(); 3610 3611 // Splat the sign bit into the register 3612 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 3613 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 3614 AddToWorklist(Sign.getNode()); 3615 3616 // Add (N0 < 0) ? abs2 - 1 : 0; 3617 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 3618 AddToWorklist(Srl.getNode()); 3619 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 3620 AddToWorklist(Add.getNode()); 3621 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 3622 AddToWorklist(Sra.getNode()); 3623 3624 // Special case: (sdiv X, 1) -> X 3625 // Special Case: (sdiv X, -1) -> 0-X 3626 SDValue One = DAG.getConstant(1, DL, VT); 3627 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 3628 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 3629 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 3630 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 3631 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 3632 3633 // If dividing by a positive value, we're done. Otherwise, the result must 3634 // be negated. 3635 SDValue Zero = DAG.getConstant(0, DL, VT); 3636 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 3637 3638 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 3639 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 3640 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 3641 return Res; 3642 } 3643 3644 // If integer divide is expensive and we satisfy the requirements, emit an 3645 // alternate sequence. Targets may check function attributes for size/speed 3646 // trade-offs. 3647 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3648 if (isConstantOrConstantVector(N1) && 3649 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 3650 if (SDValue Op = BuildSDIV(N)) 3651 return Op; 3652 3653 return SDValue(); 3654 } 3655 3656 SDValue DAGCombiner::visitUDIV(SDNode *N) { 3657 SDValue N0 = N->getOperand(0); 3658 SDValue N1 = N->getOperand(1); 3659 EVT VT = N->getValueType(0); 3660 EVT CCVT = getSetCCResultType(VT); 3661 3662 // fold vector ops 3663 if (VT.isVector()) 3664 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3665 return FoldedVOp; 3666 3667 SDLoc DL(N); 3668 3669 // fold (udiv c1, c2) -> c1/c2 3670 ConstantSDNode *N0C = isConstOrConstSplat(N0); 3671 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3672 if (N0C && N1C) 3673 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, 3674 N0C, N1C)) 3675 return Folded; 3676 // fold (udiv X, -1) -> select(X == -1, 1, 0) 3677 if (N1C && N1C->getAPIntValue().isAllOnesValue()) 3678 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 3679 DAG.getConstant(1, DL, VT), 3680 DAG.getConstant(0, DL, VT)); 3681 3682 if (SDValue V = simplifyDivRem(N, DAG)) 3683 return V; 3684 3685 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3686 return NewSel; 3687 3688 if (SDValue V = visitUDIVLike(N0, N1, N)) { 3689 // If the corresponding remainder node exists, update its users with 3690 // (Dividend - (Quotient * Divisor). 3691 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 3692 { N0, N1 })) { 3693 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 3694 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 3695 AddToWorklist(Mul.getNode()); 3696 AddToWorklist(Sub.getNode()); 3697 CombineTo(RemNode, Sub); 3698 } 3699 return V; 3700 } 3701 3702 // sdiv, srem -> sdivrem 3703 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 3704 // true. Otherwise, we break the simplification logic in visitREM(). 3705 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3706 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 3707 if (SDValue DivRem = useDivRem(N)) 3708 return DivRem; 3709 3710 return SDValue(); 3711 } 3712 3713 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 3714 SDLoc DL(N); 3715 EVT VT = N->getValueType(0); 3716 3717 // fold (udiv x, (1 << c)) -> x >>u c 3718 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3719 DAG.isKnownToBeAPowerOfTwo(N1)) { 3720 SDValue LogBase2 = BuildLogBase2(N1, DL); 3721 AddToWorklist(LogBase2.getNode()); 3722 3723 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3724 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3725 AddToWorklist(Trunc.getNode()); 3726 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 3727 } 3728 3729 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 3730 if (N1.getOpcode() == ISD::SHL) { 3731 SDValue N10 = N1.getOperand(0); 3732 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 3733 DAG.isKnownToBeAPowerOfTwo(N10)) { 3734 SDValue LogBase2 = BuildLogBase2(N10, DL); 3735 AddToWorklist(LogBase2.getNode()); 3736 3737 EVT ADDVT = N1.getOperand(1).getValueType(); 3738 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 3739 AddToWorklist(Trunc.getNode()); 3740 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 3741 AddToWorklist(Add.getNode()); 3742 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 3743 } 3744 } 3745 3746 // fold (udiv x, c) -> alternate 3747 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3748 if (isConstantOrConstantVector(N1) && 3749 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 3750 if (SDValue Op = BuildUDIV(N)) 3751 return Op; 3752 3753 return SDValue(); 3754 } 3755 3756 // handles ISD::SREM and ISD::UREM 3757 SDValue DAGCombiner::visitREM(SDNode *N) { 3758 unsigned Opcode = N->getOpcode(); 3759 SDValue N0 = N->getOperand(0); 3760 SDValue N1 = N->getOperand(1); 3761 EVT VT = N->getValueType(0); 3762 EVT CCVT = getSetCCResultType(VT); 3763 3764 bool isSigned = (Opcode == ISD::SREM); 3765 SDLoc DL(N); 3766 3767 // fold (rem c1, c2) -> c1%c2 3768 ConstantSDNode *N0C = isConstOrConstSplat(N0); 3769 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3770 if (N0C && N1C) 3771 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) 3772 return Folded; 3773 // fold (urem X, -1) -> select(X == -1, 0, x) 3774 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) 3775 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 3776 DAG.getConstant(0, DL, VT), N0); 3777 3778 if (SDValue V = simplifyDivRem(N, DAG)) 3779 return V; 3780 3781 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3782 return NewSel; 3783 3784 if (isSigned) { 3785 // If we know the sign bits of both operands are zero, strength reduce to a 3786 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 3787 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 3788 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 3789 } else { 3790 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 3791 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 3792 // fold (urem x, pow2) -> (and x, pow2-1) 3793 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 3794 AddToWorklist(Add.getNode()); 3795 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 3796 } 3797 if (N1.getOpcode() == ISD::SHL && 3798 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 3799 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 3800 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 3801 AddToWorklist(Add.getNode()); 3802 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 3803 } 3804 } 3805 3806 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3807 3808 // If X/C can be simplified by the division-by-constant logic, lower 3809 // X%C to the equivalent of X-X/C*C. 3810 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 3811 // speculative DIV must not cause a DIVREM conversion. We guard against this 3812 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 3813 // combine will not return a DIVREM. Regardless, checking cheapness here 3814 // makes sense since the simplification results in fatter code. 3815 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 3816 SDValue OptimizedDiv = 3817 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 3818 if (OptimizedDiv.getNode()) { 3819 // If the equivalent Div node also exists, update its users. 3820 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 3821 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 3822 { N0, N1 })) 3823 CombineTo(DivNode, OptimizedDiv); 3824 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 3825 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 3826 AddToWorklist(OptimizedDiv.getNode()); 3827 AddToWorklist(Mul.getNode()); 3828 return Sub; 3829 } 3830 } 3831 3832 // sdiv, srem -> sdivrem 3833 if (SDValue DivRem = useDivRem(N)) 3834 return DivRem.getValue(1); 3835 3836 return SDValue(); 3837 } 3838 3839 SDValue DAGCombiner::visitMULHS(SDNode *N) { 3840 SDValue N0 = N->getOperand(0); 3841 SDValue N1 = N->getOperand(1); 3842 EVT VT = N->getValueType(0); 3843 SDLoc DL(N); 3844 3845 if (VT.isVector()) { 3846 // fold (mulhs x, 0) -> 0 3847 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3848 return N1; 3849 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3850 return N0; 3851 } 3852 3853 // fold (mulhs x, 0) -> 0 3854 if (isNullConstant(N1)) 3855 return N1; 3856 // fold (mulhs x, 1) -> (sra x, size(x)-1) 3857 if (isOneConstant(N1)) 3858 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 3859 DAG.getConstant(N0.getValueSizeInBits() - 1, DL, 3860 getShiftAmountTy(N0.getValueType()))); 3861 3862 // fold (mulhs x, undef) -> 0 3863 if (N0.isUndef() || N1.isUndef()) 3864 return DAG.getConstant(0, DL, VT); 3865 3866 // If the type twice as wide is legal, transform the mulhs to a wider multiply 3867 // plus a shift. 3868 if (VT.isSimple() && !VT.isVector()) { 3869 MVT Simple = VT.getSimpleVT(); 3870 unsigned SimpleSize = Simple.getSizeInBits(); 3871 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 3872 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 3873 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 3874 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 3875 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 3876 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 3877 DAG.getConstant(SimpleSize, DL, 3878 getShiftAmountTy(N1.getValueType()))); 3879 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 3880 } 3881 } 3882 3883 return SDValue(); 3884 } 3885 3886 SDValue DAGCombiner::visitMULHU(SDNode *N) { 3887 SDValue N0 = N->getOperand(0); 3888 SDValue N1 = N->getOperand(1); 3889 EVT VT = N->getValueType(0); 3890 SDLoc DL(N); 3891 3892 if (VT.isVector()) { 3893 // fold (mulhu x, 0) -> 0 3894 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3895 return N1; 3896 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3897 return N0; 3898 } 3899 3900 // fold (mulhu x, 0) -> 0 3901 if (isNullConstant(N1)) 3902 return N1; 3903 // fold (mulhu x, 1) -> 0 3904 if (isOneConstant(N1)) 3905 return DAG.getConstant(0, DL, N0.getValueType()); 3906 // fold (mulhu x, undef) -> 0 3907 if (N0.isUndef() || N1.isUndef()) 3908 return DAG.getConstant(0, DL, VT); 3909 3910 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 3911 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3912 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 3913 unsigned NumEltBits = VT.getScalarSizeInBits(); 3914 SDValue LogBase2 = BuildLogBase2(N1, DL); 3915 SDValue SRLAmt = DAG.getNode( 3916 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 3917 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3918 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 3919 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 3920 } 3921 3922 // If the type twice as wide is legal, transform the mulhu to a wider multiply 3923 // plus a shift. 3924 if (VT.isSimple() && !VT.isVector()) { 3925 MVT Simple = VT.getSimpleVT(); 3926 unsigned SimpleSize = Simple.getSizeInBits(); 3927 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 3928 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 3929 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 3930 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 3931 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 3932 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 3933 DAG.getConstant(SimpleSize, DL, 3934 getShiftAmountTy(N1.getValueType()))); 3935 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 3936 } 3937 } 3938 3939 return SDValue(); 3940 } 3941 3942 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 3943 /// give the opcodes for the two computations that are being performed. Return 3944 /// true if a simplification was made. 3945 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 3946 unsigned HiOp) { 3947 // If the high half is not needed, just compute the low half. 3948 bool HiExists = N->hasAnyUseOfValue(1); 3949 if (!HiExists && (!LegalOperations || 3950 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 3951 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 3952 return CombineTo(N, Res, Res); 3953 } 3954 3955 // If the low half is not needed, just compute the high half. 3956 bool LoExists = N->hasAnyUseOfValue(0); 3957 if (!LoExists && (!LegalOperations || 3958 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 3959 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 3960 return CombineTo(N, Res, Res); 3961 } 3962 3963 // If both halves are used, return as it is. 3964 if (LoExists && HiExists) 3965 return SDValue(); 3966 3967 // If the two computed results can be simplified separately, separate them. 3968 if (LoExists) { 3969 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 3970 AddToWorklist(Lo.getNode()); 3971 SDValue LoOpt = combine(Lo.getNode()); 3972 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 3973 (!LegalOperations || 3974 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 3975 return CombineTo(N, LoOpt, LoOpt); 3976 } 3977 3978 if (HiExists) { 3979 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 3980 AddToWorklist(Hi.getNode()); 3981 SDValue HiOpt = combine(Hi.getNode()); 3982 if (HiOpt.getNode() && HiOpt != Hi && 3983 (!LegalOperations || 3984 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 3985 return CombineTo(N, HiOpt, HiOpt); 3986 } 3987 3988 return SDValue(); 3989 } 3990 3991 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 3992 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 3993 return Res; 3994 3995 EVT VT = N->getValueType(0); 3996 SDLoc DL(N); 3997 3998 // If the type is twice as wide is legal, transform the mulhu to a wider 3999 // multiply plus a shift. 4000 if (VT.isSimple() && !VT.isVector()) { 4001 MVT Simple = VT.getSimpleVT(); 4002 unsigned SimpleSize = Simple.getSizeInBits(); 4003 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4004 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4005 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4006 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4007 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4008 // Compute the high part as N1. 4009 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4010 DAG.getConstant(SimpleSize, DL, 4011 getShiftAmountTy(Lo.getValueType()))); 4012 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4013 // Compute the low part as N0. 4014 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4015 return CombineTo(N, Lo, Hi); 4016 } 4017 } 4018 4019 return SDValue(); 4020 } 4021 4022 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4023 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4024 return Res; 4025 4026 EVT VT = N->getValueType(0); 4027 SDLoc DL(N); 4028 4029 // If the type is twice as wide is legal, transform the mulhu to a wider 4030 // multiply plus a shift. 4031 if (VT.isSimple() && !VT.isVector()) { 4032 MVT Simple = VT.getSimpleVT(); 4033 unsigned SimpleSize = Simple.getSizeInBits(); 4034 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4035 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4036 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4037 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4038 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4039 // Compute the high part as N1. 4040 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4041 DAG.getConstant(SimpleSize, DL, 4042 getShiftAmountTy(Lo.getValueType()))); 4043 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4044 // Compute the low part as N0. 4045 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4046 return CombineTo(N, Lo, Hi); 4047 } 4048 } 4049 4050 return SDValue(); 4051 } 4052 4053 SDValue DAGCombiner::visitMULO(SDNode *N) { 4054 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4055 4056 // (mulo x, 2) -> (addo x, x) 4057 if (ConstantSDNode *C2 = isConstOrConstSplat(N->getOperand(1))) 4058 if (C2->getAPIntValue() == 2) 4059 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, SDLoc(N), 4060 N->getVTList(), N->getOperand(0), N->getOperand(0)); 4061 4062 return SDValue(); 4063 } 4064 4065 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 4066 SDValue N0 = N->getOperand(0); 4067 SDValue N1 = N->getOperand(1); 4068 EVT VT = N0.getValueType(); 4069 4070 // fold vector ops 4071 if (VT.isVector()) 4072 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4073 return FoldedVOp; 4074 4075 // fold operation with constant operands. 4076 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4077 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4078 if (N0C && N1C) 4079 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 4080 4081 // canonicalize constant to RHS 4082 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4083 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4084 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 4085 4086 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 4087 // Only do this if the current op isn't legal and the flipped is. 4088 unsigned Opcode = N->getOpcode(); 4089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4090 if (!TLI.isOperationLegal(Opcode, VT) && 4091 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 4092 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 4093 unsigned AltOpcode; 4094 switch (Opcode) { 4095 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 4096 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 4097 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 4098 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 4099 default: llvm_unreachable("Unknown MINMAX opcode"); 4100 } 4101 if (TLI.isOperationLegal(AltOpcode, VT)) 4102 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); 4103 } 4104 4105 return SDValue(); 4106 } 4107 4108 /// If this is a bitwise logic instruction and both operands have the same 4109 /// opcode, try to sink the other opcode after the logic instruction. 4110 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 4111 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 4112 EVT VT = N0.getValueType(); 4113 unsigned LogicOpcode = N->getOpcode(); 4114 unsigned HandOpcode = N0.getOpcode(); 4115 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 4116 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 4117 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 4118 4119 // Bail early if none of these transforms apply. 4120 if (N0.getNumOperands() == 0) 4121 return SDValue(); 4122 4123 // FIXME: We should check number of uses of the operands to not increase 4124 // the instruction count for all transforms. 4125 4126 // Handle size-changing casts. 4127 SDValue X = N0.getOperand(0); 4128 SDValue Y = N1.getOperand(0); 4129 EVT XVT = X.getValueType(); 4130 SDLoc DL(N); 4131 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 4132 HandOpcode == ISD::SIGN_EXTEND) { 4133 // If both operands have other uses, this transform would create extra 4134 // instructions without eliminating anything. 4135 if (!N0.hasOneUse() && !N1.hasOneUse()) 4136 return SDValue(); 4137 // We need matching integer source types. 4138 if (XVT != Y.getValueType()) 4139 return SDValue(); 4140 // Don't create an illegal op during or after legalization. Don't ever 4141 // create an unsupported vector op. 4142 if ((VT.isVector() || LegalOperations) && 4143 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 4144 return SDValue(); 4145 // Avoid infinite looping with PromoteIntBinOp. 4146 // TODO: Should we apply desirable/legal constraints to all opcodes? 4147 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 4148 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 4149 return SDValue(); 4150 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 4151 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4152 return DAG.getNode(HandOpcode, DL, VT, Logic); 4153 } 4154 4155 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 4156 if (HandOpcode == ISD::TRUNCATE) { 4157 // If both operands have other uses, this transform would create extra 4158 // instructions without eliminating anything. 4159 if (!N0.hasOneUse() && !N1.hasOneUse()) 4160 return SDValue(); 4161 // We need matching source types. 4162 if (XVT != Y.getValueType()) 4163 return SDValue(); 4164 // Don't create an illegal op during or after legalization. 4165 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 4166 return SDValue(); 4167 // Be extra careful sinking truncate. If it's free, there's no benefit in 4168 // widening a binop. Also, don't create a logic op on an illegal type. 4169 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 4170 return SDValue(); 4171 if (!TLI.isTypeLegal(XVT)) 4172 return SDValue(); 4173 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4174 return DAG.getNode(HandOpcode, DL, VT, Logic); 4175 } 4176 4177 // For binops SHL/SRL/SRA/AND: 4178 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 4179 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 4180 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 4181 N0.getOperand(1) == N1.getOperand(1)) { 4182 // If either operand has other uses, this transform is not an improvement. 4183 if (!N0.hasOneUse() || !N1.hasOneUse()) 4184 return SDValue(); 4185 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4186 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 4187 } 4188 4189 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 4190 if (HandOpcode == ISD::BSWAP) { 4191 // If either operand has other uses, this transform is not an improvement. 4192 if (!N0.hasOneUse() || !N1.hasOneUse()) 4193 return SDValue(); 4194 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4195 return DAG.getNode(HandOpcode, DL, VT, Logic); 4196 } 4197 4198 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 4199 // Only perform this optimization up until type legalization, before 4200 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 4201 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 4202 // we don't want to undo this promotion. 4203 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 4204 // on scalars. 4205 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 4206 Level <= AfterLegalizeTypes) { 4207 // Input types must be integer and the same. 4208 if (XVT.isInteger() && XVT == Y.getValueType()) { 4209 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4210 return DAG.getNode(HandOpcode, DL, VT, Logic); 4211 } 4212 } 4213 4214 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 4215 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 4216 // If both shuffles use the same mask, and both shuffle within a single 4217 // vector, then it is worthwhile to move the swizzle after the operation. 4218 // The type-legalizer generates this pattern when loading illegal 4219 // vector types from memory. In many cases this allows additional shuffle 4220 // optimizations. 4221 // There are other cases where moving the shuffle after the xor/and/or 4222 // is profitable even if shuffles don't perform a swizzle. 4223 // If both shuffles use the same mask, and both shuffles have the same first 4224 // or second operand, then it might still be profitable to move the shuffle 4225 // after the xor/and/or operation. 4226 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 4227 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 4228 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 4229 assert(X.getValueType() == Y.getValueType() && 4230 "Inputs to shuffles are not the same type"); 4231 4232 // Check that both shuffles use the same mask. The masks are known to be of 4233 // the same length because the result vector type is the same. 4234 // Check also that shuffles have only one use to avoid introducing extra 4235 // instructions. 4236 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 4237 !SVN0->getMask().equals(SVN1->getMask())) 4238 return SDValue(); 4239 4240 // Don't try to fold this node if it requires introducing a 4241 // build vector of all zeros that might be illegal at this stage. 4242 SDValue ShOp = N0.getOperand(1); 4243 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4244 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4245 4246 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 4247 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 4248 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 4249 N0.getOperand(0), N1.getOperand(0)); 4250 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 4251 } 4252 4253 // Don't try to fold this node if it requires introducing a 4254 // build vector of all zeros that might be illegal at this stage. 4255 ShOp = N0.getOperand(0); 4256 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4257 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4258 4259 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 4260 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 4261 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 4262 N1.getOperand(1)); 4263 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 4264 } 4265 } 4266 4267 return SDValue(); 4268 } 4269 4270 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 4271 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 4272 const SDLoc &DL) { 4273 SDValue LL, LR, RL, RR, N0CC, N1CC; 4274 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 4275 !isSetCCEquivalent(N1, RL, RR, N1CC)) 4276 return SDValue(); 4277 4278 assert(N0.getValueType() == N1.getValueType() && 4279 "Unexpected operand types for bitwise logic op"); 4280 assert(LL.getValueType() == LR.getValueType() && 4281 RL.getValueType() == RR.getValueType() && 4282 "Unexpected operand types for setcc"); 4283 4284 // If we're here post-legalization or the logic op type is not i1, the logic 4285 // op type must match a setcc result type. Also, all folds require new 4286 // operations on the left and right operands, so those types must match. 4287 EVT VT = N0.getValueType(); 4288 EVT OpVT = LL.getValueType(); 4289 if (LegalOperations || VT.getScalarType() != MVT::i1) 4290 if (VT != getSetCCResultType(OpVT)) 4291 return SDValue(); 4292 if (OpVT != RL.getValueType()) 4293 return SDValue(); 4294 4295 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 4296 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 4297 bool IsInteger = OpVT.isInteger(); 4298 if (LR == RR && CC0 == CC1 && IsInteger) { 4299 bool IsZero = isNullOrNullSplat(LR); 4300 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 4301 4302 // All bits clear? 4303 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 4304 // All sign bits clear? 4305 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 4306 // Any bits set? 4307 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 4308 // Any sign bits set? 4309 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 4310 4311 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 4312 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 4313 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 4314 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 4315 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 4316 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 4317 AddToWorklist(Or.getNode()); 4318 return DAG.getSetCC(DL, VT, Or, LR, CC1); 4319 } 4320 4321 // All bits set? 4322 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 4323 // All sign bits set? 4324 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 4325 // Any bits clear? 4326 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 4327 // Any sign bits clear? 4328 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 4329 4330 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 4331 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 4332 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 4333 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 4334 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 4335 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 4336 AddToWorklist(And.getNode()); 4337 return DAG.getSetCC(DL, VT, And, LR, CC1); 4338 } 4339 } 4340 4341 // TODO: What is the 'or' equivalent of this fold? 4342 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 4343 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 4344 IsInteger && CC0 == ISD::SETNE && 4345 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 4346 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 4347 SDValue One = DAG.getConstant(1, DL, OpVT); 4348 SDValue Two = DAG.getConstant(2, DL, OpVT); 4349 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 4350 AddToWorklist(Add.getNode()); 4351 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 4352 } 4353 4354 // Try more general transforms if the predicates match and the only user of 4355 // the compares is the 'and' or 'or'. 4356 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 4357 N0.hasOneUse() && N1.hasOneUse()) { 4358 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 4359 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 4360 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 4361 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 4362 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 4363 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 4364 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4365 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 4366 } 4367 4368 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 4369 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 4370 // Match a shared variable operand and 2 non-opaque constant operands. 4371 ConstantSDNode *C0 = isConstOrConstSplat(LR); 4372 ConstantSDNode *C1 = isConstOrConstSplat(RR); 4373 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 4374 // Canonicalize larger constant as C0. 4375 if (C1->getAPIntValue().ugt(C0->getAPIntValue())) 4376 std::swap(C0, C1); 4377 4378 // The difference of the constants must be a single bit. 4379 const APInt &C0Val = C0->getAPIntValue(); 4380 const APInt &C1Val = C1->getAPIntValue(); 4381 if ((C0Val - C1Val).isPowerOf2()) { 4382 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> 4383 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq 4384 SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); 4385 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); 4386 SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); 4387 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); 4388 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4389 return DAG.getSetCC(DL, VT, And, Zero, CC0); 4390 } 4391 } 4392 } 4393 } 4394 4395 // Canonicalize equivalent operands to LL == RL. 4396 if (LL == RR && LR == RL) { 4397 CC1 = ISD::getSetCCSwappedOperands(CC1); 4398 std::swap(RL, RR); 4399 } 4400 4401 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 4402 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 4403 if (LL == RL && LR == RR) { 4404 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger) 4405 : ISD::getSetCCOrOperation(CC0, CC1, IsInteger); 4406 if (NewCC != ISD::SETCC_INVALID && 4407 (!LegalOperations || 4408 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 4409 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 4410 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 4411 } 4412 4413 return SDValue(); 4414 } 4415 4416 /// This contains all DAGCombine rules which reduce two values combined by 4417 /// an And operation to a single value. This makes them reusable in the context 4418 /// of visitSELECT(). Rules involving constants are not included as 4419 /// visitSELECT() already handles those cases. 4420 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 4421 EVT VT = N1.getValueType(); 4422 SDLoc DL(N); 4423 4424 // fold (and x, undef) -> 0 4425 if (N0.isUndef() || N1.isUndef()) 4426 return DAG.getConstant(0, DL, VT); 4427 4428 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 4429 return V; 4430 4431 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 4432 VT.getSizeInBits() <= 64) { 4433 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4434 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 4435 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 4436 // immediate for an add, but it is legal if its top c2 bits are set, 4437 // transform the ADD so the immediate doesn't need to be materialized 4438 // in a register. 4439 APInt ADDC = ADDI->getAPIntValue(); 4440 APInt SRLC = SRLI->getAPIntValue(); 4441 if (ADDC.getMinSignedBits() <= 64 && 4442 SRLC.ult(VT.getSizeInBits()) && 4443 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 4444 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 4445 SRLC.getZExtValue()); 4446 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 4447 ADDC |= Mask; 4448 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 4449 SDLoc DL0(N0); 4450 SDValue NewAdd = 4451 DAG.getNode(ISD::ADD, DL0, VT, 4452 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 4453 CombineTo(N0.getNode(), NewAdd); 4454 // Return N so it doesn't get rechecked! 4455 return SDValue(N, 0); 4456 } 4457 } 4458 } 4459 } 4460 } 4461 } 4462 4463 // Reduce bit extract of low half of an integer to the narrower type. 4464 // (and (srl i64:x, K), KMask) -> 4465 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 4466 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4467 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 4468 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4469 unsigned Size = VT.getSizeInBits(); 4470 const APInt &AndMask = CAnd->getAPIntValue(); 4471 unsigned ShiftBits = CShift->getZExtValue(); 4472 4473 // Bail out, this node will probably disappear anyway. 4474 if (ShiftBits == 0) 4475 return SDValue(); 4476 4477 unsigned MaskBits = AndMask.countTrailingOnes(); 4478 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 4479 4480 if (AndMask.isMask() && 4481 // Required bits must not span the two halves of the integer and 4482 // must fit in the half size type. 4483 (ShiftBits + MaskBits <= Size / 2) && 4484 TLI.isNarrowingProfitable(VT, HalfVT) && 4485 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 4486 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 4487 TLI.isTruncateFree(VT, HalfVT) && 4488 TLI.isZExtFree(HalfVT, VT)) { 4489 // The isNarrowingProfitable is to avoid regressions on PPC and 4490 // AArch64 which match a few 64-bit bit insert / bit extract patterns 4491 // on downstream users of this. Those patterns could probably be 4492 // extended to handle extensions mixed in. 4493 4494 SDValue SL(N0); 4495 assert(MaskBits <= Size); 4496 4497 // Extracting the highest bit of the low half. 4498 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 4499 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 4500 N0.getOperand(0)); 4501 4502 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 4503 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 4504 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 4505 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 4506 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 4507 } 4508 } 4509 } 4510 } 4511 4512 return SDValue(); 4513 } 4514 4515 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 4516 EVT LoadResultTy, EVT &ExtVT) { 4517 if (!AndC->getAPIntValue().isMask()) 4518 return false; 4519 4520 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 4521 4522 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 4523 EVT LoadedVT = LoadN->getMemoryVT(); 4524 4525 if (ExtVT == LoadedVT && 4526 (!LegalOperations || 4527 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 4528 // ZEXTLOAD will match without needing to change the size of the value being 4529 // loaded. 4530 return true; 4531 } 4532 4533 // Do not change the width of a volatile load. 4534 if (LoadN->isVolatile()) 4535 return false; 4536 4537 // Do not generate loads of non-round integer types since these can 4538 // be expensive (and would be wrong if the type is not byte sized). 4539 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 4540 return false; 4541 4542 if (LegalOperations && 4543 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 4544 return false; 4545 4546 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 4547 return false; 4548 4549 return true; 4550 } 4551 4552 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 4553 ISD::LoadExtType ExtType, EVT &MemVT, 4554 unsigned ShAmt) { 4555 if (!LDST) 4556 return false; 4557 // Only allow byte offsets. 4558 if (ShAmt % 8) 4559 return false; 4560 4561 // Do not generate loads of non-round integer types since these can 4562 // be expensive (and would be wrong if the type is not byte sized). 4563 if (!MemVT.isRound()) 4564 return false; 4565 4566 // Don't change the width of a volatile load. 4567 if (LDST->isVolatile()) 4568 return false; 4569 4570 // Verify that we are actually reducing a load width here. 4571 if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits()) 4572 return false; 4573 4574 // Ensure that this isn't going to produce an unsupported unaligned access. 4575 if (ShAmt && 4576 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 4577 LDST->getAddressSpace(), ShAmt / 8)) 4578 return false; 4579 4580 // It's not possible to generate a constant of extended or untyped type. 4581 EVT PtrType = LDST->getBasePtr().getValueType(); 4582 if (PtrType == MVT::Untyped || PtrType.isExtended()) 4583 return false; 4584 4585 if (isa<LoadSDNode>(LDST)) { 4586 LoadSDNode *Load = cast<LoadSDNode>(LDST); 4587 // Don't transform one with multiple uses, this would require adding a new 4588 // load. 4589 if (!SDValue(Load, 0).hasOneUse()) 4590 return false; 4591 4592 if (LegalOperations && 4593 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 4594 return false; 4595 4596 // For the transform to be legal, the load must produce only two values 4597 // (the value loaded and the chain). Don't transform a pre-increment 4598 // load, for example, which produces an extra value. Otherwise the 4599 // transformation is not equivalent, and the downstream logic to replace 4600 // uses gets things wrong. 4601 if (Load->getNumValues() > 2) 4602 return false; 4603 4604 // If the load that we're shrinking is an extload and we're not just 4605 // discarding the extension we can't simply shrink the load. Bail. 4606 // TODO: It would be possible to merge the extensions in some cases. 4607 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 4608 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 4609 return false; 4610 4611 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 4612 return false; 4613 } else { 4614 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 4615 StoreSDNode *Store = cast<StoreSDNode>(LDST); 4616 // Can't write outside the original store 4617 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 4618 return false; 4619 4620 if (LegalOperations && 4621 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 4622 return false; 4623 } 4624 return true; 4625 } 4626 4627 bool DAGCombiner::SearchForAndLoads(SDNode *N, 4628 SmallVectorImpl<LoadSDNode*> &Loads, 4629 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 4630 ConstantSDNode *Mask, 4631 SDNode *&NodeToMask) { 4632 // Recursively search for the operands, looking for loads which can be 4633 // narrowed. 4634 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) { 4635 SDValue Op = N->getOperand(i); 4636 4637 if (Op.getValueType().isVector()) 4638 return false; 4639 4640 // Some constants may need fixing up later if they are too large. 4641 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4642 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 4643 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 4644 NodesWithConsts.insert(N); 4645 continue; 4646 } 4647 4648 if (!Op.hasOneUse()) 4649 return false; 4650 4651 switch(Op.getOpcode()) { 4652 case ISD::LOAD: { 4653 auto *Load = cast<LoadSDNode>(Op); 4654 EVT ExtVT; 4655 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 4656 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 4657 4658 // ZEXTLOAD is already small enough. 4659 if (Load->getExtensionType() == ISD::ZEXTLOAD && 4660 ExtVT.bitsGE(Load->getMemoryVT())) 4661 continue; 4662 4663 // Use LE to convert equal sized loads to zext. 4664 if (ExtVT.bitsLE(Load->getMemoryVT())) 4665 Loads.push_back(Load); 4666 4667 continue; 4668 } 4669 return false; 4670 } 4671 case ISD::ZERO_EXTEND: 4672 case ISD::AssertZext: { 4673 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 4674 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 4675 EVT VT = Op.getOpcode() == ISD::AssertZext ? 4676 cast<VTSDNode>(Op.getOperand(1))->getVT() : 4677 Op.getOperand(0).getValueType(); 4678 4679 // We can accept extending nodes if the mask is wider or an equal 4680 // width to the original type. 4681 if (ExtVT.bitsGE(VT)) 4682 continue; 4683 break; 4684 } 4685 case ISD::OR: 4686 case ISD::XOR: 4687 case ISD::AND: 4688 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 4689 NodeToMask)) 4690 return false; 4691 continue; 4692 } 4693 4694 // Allow one node which will masked along with any loads found. 4695 if (NodeToMask) 4696 return false; 4697 4698 // Also ensure that the node to be masked only produces one data result. 4699 NodeToMask = Op.getNode(); 4700 if (NodeToMask->getNumValues() > 1) { 4701 bool HasValue = false; 4702 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 4703 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 4704 if (VT != MVT::Glue && VT != MVT::Other) { 4705 if (HasValue) { 4706 NodeToMask = nullptr; 4707 return false; 4708 } 4709 HasValue = true; 4710 } 4711 } 4712 assert(HasValue && "Node to be masked has no data result?"); 4713 } 4714 } 4715 return true; 4716 } 4717 4718 bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) { 4719 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4720 if (!Mask) 4721 return false; 4722 4723 if (!Mask->getAPIntValue().isMask()) 4724 return false; 4725 4726 // No need to do anything if the and directly uses a load. 4727 if (isa<LoadSDNode>(N->getOperand(0))) 4728 return false; 4729 4730 SmallVector<LoadSDNode*, 8> Loads; 4731 SmallPtrSet<SDNode*, 2> NodesWithConsts; 4732 SDNode *FixupNode = nullptr; 4733 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 4734 if (Loads.size() == 0) 4735 return false; 4736 4737 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 4738 SDValue MaskOp = N->getOperand(1); 4739 4740 // If it exists, fixup the single node we allow in the tree that needs 4741 // masking. 4742 if (FixupNode) { 4743 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 4744 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), 4745 FixupNode->getValueType(0), 4746 SDValue(FixupNode, 0), MaskOp); 4747 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 4748 if (And.getOpcode() == ISD ::AND) 4749 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); 4750 } 4751 4752 // Narrow any constants that need it. 4753 for (auto *LogicN : NodesWithConsts) { 4754 SDValue Op0 = LogicN->getOperand(0); 4755 SDValue Op1 = LogicN->getOperand(1); 4756 4757 if (isa<ConstantSDNode>(Op0)) 4758 std::swap(Op0, Op1); 4759 4760 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), 4761 Op1, MaskOp); 4762 4763 DAG.UpdateNodeOperands(LogicN, Op0, And); 4764 } 4765 4766 // Create narrow loads. 4767 for (auto *Load : Loads) { 4768 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 4769 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 4770 SDValue(Load, 0), MaskOp); 4771 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 4772 if (And.getOpcode() == ISD ::AND) 4773 And = SDValue( 4774 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); 4775 SDValue NewLoad = ReduceLoadWidth(And.getNode()); 4776 assert(NewLoad && 4777 "Shouldn't be masking the load if it can't be narrowed"); 4778 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 4779 } 4780 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 4781 return true; 4782 } 4783 return false; 4784 } 4785 4786 // Unfold 4787 // x & (-1 'logical shift' y) 4788 // To 4789 // (x 'opposite logical shift' y) 'logical shift' y 4790 // if it is better for performance. 4791 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 4792 assert(N->getOpcode() == ISD::AND); 4793 4794 SDValue N0 = N->getOperand(0); 4795 SDValue N1 = N->getOperand(1); 4796 4797 // Do we actually prefer shifts over mask? 4798 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 4799 return SDValue(); 4800 4801 // Try to match (-1 '[outer] logical shift' y) 4802 unsigned OuterShift; 4803 unsigned InnerShift; // The opposite direction to the OuterShift. 4804 SDValue Y; // Shift amount. 4805 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 4806 if (!M.hasOneUse()) 4807 return false; 4808 OuterShift = M->getOpcode(); 4809 if (OuterShift == ISD::SHL) 4810 InnerShift = ISD::SRL; 4811 else if (OuterShift == ISD::SRL) 4812 InnerShift = ISD::SHL; 4813 else 4814 return false; 4815 if (!isAllOnesConstant(M->getOperand(0))) 4816 return false; 4817 Y = M->getOperand(1); 4818 return true; 4819 }; 4820 4821 SDValue X; 4822 if (matchMask(N1)) 4823 X = N0; 4824 else if (matchMask(N0)) 4825 X = N1; 4826 else 4827 return SDValue(); 4828 4829 SDLoc DL(N); 4830 EVT VT = N->getValueType(0); 4831 4832 // tmp = x 'opposite logical shift' y 4833 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 4834 // ret = tmp 'logical shift' y 4835 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 4836 4837 return T1; 4838 } 4839 4840 SDValue DAGCombiner::visitAND(SDNode *N) { 4841 SDValue N0 = N->getOperand(0); 4842 SDValue N1 = N->getOperand(1); 4843 EVT VT = N1.getValueType(); 4844 4845 // x & x --> x 4846 if (N0 == N1) 4847 return N0; 4848 4849 // fold vector ops 4850 if (VT.isVector()) { 4851 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4852 return FoldedVOp; 4853 4854 // fold (and x, 0) -> 0, vector edition 4855 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4856 // do not return N0, because undef node may exist in N0 4857 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), 4858 SDLoc(N), N0.getValueType()); 4859 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4860 // do not return N1, because undef node may exist in N1 4861 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), 4862 SDLoc(N), N1.getValueType()); 4863 4864 // fold (and x, -1) -> x, vector edition 4865 if (ISD::isBuildVectorAllOnes(N0.getNode())) 4866 return N1; 4867 if (ISD::isBuildVectorAllOnes(N1.getNode())) 4868 return N0; 4869 } 4870 4871 // fold (and c1, c2) -> c1&c2 4872 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4873 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4874 if (N0C && N1C && !N1C->isOpaque()) 4875 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 4876 // canonicalize constant to RHS 4877 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4878 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4879 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 4880 // fold (and x, -1) -> x 4881 if (isAllOnesConstant(N1)) 4882 return N0; 4883 // if (and x, c) is known to be zero, return 0 4884 unsigned BitWidth = VT.getScalarSizeInBits(); 4885 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4886 APInt::getAllOnesValue(BitWidth))) 4887 return DAG.getConstant(0, SDLoc(N), VT); 4888 4889 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4890 return NewSel; 4891 4892 // reassociate and 4893 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 4894 return RAND; 4895 4896 // Try to convert a constant mask AND into a shuffle clear mask. 4897 if (VT.isVector()) 4898 if (SDValue Shuffle = XformToShuffleWithZero(N)) 4899 return Shuffle; 4900 4901 // fold (and (or x, C), D) -> D if (C & D) == D 4902 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 4903 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 4904 }; 4905 if (N0.getOpcode() == ISD::OR && 4906 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 4907 return N1; 4908 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 4909 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4910 SDValue N0Op0 = N0.getOperand(0); 4911 APInt Mask = ~N1C->getAPIntValue(); 4912 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 4913 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 4914 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 4915 N0.getValueType(), N0Op0); 4916 4917 // Replace uses of the AND with uses of the Zero extend node. 4918 CombineTo(N, Zext); 4919 4920 // We actually want to replace all uses of the any_extend with the 4921 // zero_extend, to avoid duplicating things. This will later cause this 4922 // AND to be folded. 4923 CombineTo(N0.getNode(), Zext); 4924 return SDValue(N, 0); // Return N so it doesn't get rechecked! 4925 } 4926 } 4927 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 4928 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 4929 // already be zero by virtue of the width of the base type of the load. 4930 // 4931 // the 'X' node here can either be nothing or an extract_vector_elt to catch 4932 // more cases. 4933 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4934 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 4935 N0.getOperand(0).getOpcode() == ISD::LOAD && 4936 N0.getOperand(0).getResNo() == 0) || 4937 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 4938 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 4939 N0 : N0.getOperand(0) ); 4940 4941 // Get the constant (if applicable) the zero'th operand is being ANDed with. 4942 // This can be a pure constant or a vector splat, in which case we treat the 4943 // vector as a scalar and use the splat value. 4944 APInt Constant = APInt::getNullValue(1); 4945 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 4946 Constant = C->getAPIntValue(); 4947 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 4948 APInt SplatValue, SplatUndef; 4949 unsigned SplatBitSize; 4950 bool HasAnyUndefs; 4951 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 4952 SplatBitSize, HasAnyUndefs); 4953 if (IsSplat) { 4954 // Undef bits can contribute to a possible optimisation if set, so 4955 // set them. 4956 SplatValue |= SplatUndef; 4957 4958 // The splat value may be something like "0x00FFFFFF", which means 0 for 4959 // the first vector value and FF for the rest, repeating. We need a mask 4960 // that will apply equally to all members of the vector, so AND all the 4961 // lanes of the constant together. 4962 EVT VT = Vector->getValueType(0); 4963 unsigned BitWidth = VT.getScalarSizeInBits(); 4964 4965 // If the splat value has been compressed to a bitlength lower 4966 // than the size of the vector lane, we need to re-expand it to 4967 // the lane size. 4968 if (BitWidth > SplatBitSize) 4969 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 4970 SplatBitSize < BitWidth; 4971 SplatBitSize = SplatBitSize * 2) 4972 SplatValue |= SplatValue.shl(SplatBitSize); 4973 4974 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 4975 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 4976 if (SplatBitSize % BitWidth == 0) { 4977 Constant = APInt::getAllOnesValue(BitWidth); 4978 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 4979 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 4980 } 4981 } 4982 } 4983 4984 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 4985 // actually legal and isn't going to get expanded, else this is a false 4986 // optimisation. 4987 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 4988 Load->getValueType(0), 4989 Load->getMemoryVT()); 4990 4991 // Resize the constant to the same size as the original memory access before 4992 // extension. If it is still the AllOnesValue then this AND is completely 4993 // unneeded. 4994 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 4995 4996 bool B; 4997 switch (Load->getExtensionType()) { 4998 default: B = false; break; 4999 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 5000 case ISD::ZEXTLOAD: 5001 case ISD::NON_EXTLOAD: B = true; break; 5002 } 5003 5004 if (B && Constant.isAllOnesValue()) { 5005 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 5006 // preserve semantics once we get rid of the AND. 5007 SDValue NewLoad(Load, 0); 5008 5009 // Fold the AND away. NewLoad may get replaced immediately. 5010 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 5011 5012 if (Load->getExtensionType() == ISD::EXTLOAD) { 5013 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 5014 Load->getValueType(0), SDLoc(Load), 5015 Load->getChain(), Load->getBasePtr(), 5016 Load->getOffset(), Load->getMemoryVT(), 5017 Load->getMemOperand()); 5018 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 5019 if (Load->getNumValues() == 3) { 5020 // PRE/POST_INC loads have 3 values. 5021 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 5022 NewLoad.getValue(2) }; 5023 CombineTo(Load, To, 3, true); 5024 } else { 5025 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 5026 } 5027 } 5028 5029 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5030 } 5031 } 5032 5033 // fold (and (load x), 255) -> (zextload x, i8) 5034 // fold (and (extload x, i16), 255) -> (zextload x, i8) 5035 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 5036 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 5037 (N0.getOpcode() == ISD::ANY_EXTEND && 5038 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 5039 if (SDValue Res = ReduceLoadWidth(N)) { 5040 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 5041 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 5042 AddToWorklist(N); 5043 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 5044 return SDValue(N, 0); 5045 } 5046 } 5047 5048 if (Level >= AfterLegalizeTypes) { 5049 // Attempt to propagate the AND back up to the leaves which, if they're 5050 // loads, can be combined to narrow loads and the AND node can be removed. 5051 // Perform after legalization so that extend nodes will already be 5052 // combined into the loads. 5053 if (BackwardsPropagateMask(N, DAG)) { 5054 return SDValue(N, 0); 5055 } 5056 } 5057 5058 if (SDValue Combined = visitANDLike(N0, N1, N)) 5059 return Combined; 5060 5061 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 5062 if (N0.getOpcode() == N1.getOpcode()) 5063 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 5064 return V; 5065 5066 // Masking the negated extension of a boolean is just the zero-extended 5067 // boolean: 5068 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 5069 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 5070 // 5071 // Note: the SimplifyDemandedBits fold below can make an information-losing 5072 // transform, and then we have no way to find this better fold. 5073 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 5074 if (isNullOrNullSplat(N0.getOperand(0))) { 5075 SDValue SubRHS = N0.getOperand(1); 5076 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 5077 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5078 return SubRHS; 5079 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 5080 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5081 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 5082 } 5083 } 5084 5085 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 5086 // fold (and (sra)) -> (and (srl)) when possible. 5087 if (SimplifyDemandedBits(SDValue(N, 0))) 5088 return SDValue(N, 0); 5089 5090 // fold (zext_inreg (extload x)) -> (zextload x) 5091 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 5092 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5093 EVT MemVT = LN0->getMemoryVT(); 5094 // If we zero all the possible extended bits, then we can turn this into 5095 // a zextload if we are running before legalize or the operation is legal. 5096 unsigned BitWidth = N1.getScalarValueSizeInBits(); 5097 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 5098 BitWidth - MemVT.getScalarSizeInBits())) && 5099 ((!LegalOperations && !LN0->isVolatile()) || 5100 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 5101 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 5102 LN0->getChain(), LN0->getBasePtr(), 5103 MemVT, LN0->getMemOperand()); 5104 AddToWorklist(N); 5105 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 5106 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5107 } 5108 } 5109 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 5110 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 5111 N0.hasOneUse()) { 5112 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5113 EVT MemVT = LN0->getMemoryVT(); 5114 // If we zero all the possible extended bits, then we can turn this into 5115 // a zextload if we are running before legalize or the operation is legal. 5116 unsigned BitWidth = N1.getScalarValueSizeInBits(); 5117 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 5118 BitWidth - MemVT.getScalarSizeInBits())) && 5119 ((!LegalOperations && !LN0->isVolatile()) || 5120 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 5121 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 5122 LN0->getChain(), LN0->getBasePtr(), 5123 MemVT, LN0->getMemOperand()); 5124 AddToWorklist(N); 5125 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 5126 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5127 } 5128 } 5129 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 5130 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 5131 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 5132 N0.getOperand(1), false)) 5133 return BSwap; 5134 } 5135 5136 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 5137 return Shifts; 5138 5139 return SDValue(); 5140 } 5141 5142 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 5143 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 5144 bool DemandHighBits) { 5145 if (!LegalOperations) 5146 return SDValue(); 5147 5148 EVT VT = N->getValueType(0); 5149 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 5150 return SDValue(); 5151 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 5152 return SDValue(); 5153 5154 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 5155 bool LookPassAnd0 = false; 5156 bool LookPassAnd1 = false; 5157 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 5158 std::swap(N0, N1); 5159 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 5160 std::swap(N0, N1); 5161 if (N0.getOpcode() == ISD::AND) { 5162 if (!N0.getNode()->hasOneUse()) 5163 return SDValue(); 5164 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5165 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 5166 // This is needed for X86. 5167 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 5168 N01C->getZExtValue() != 0xFFFF)) 5169 return SDValue(); 5170 N0 = N0.getOperand(0); 5171 LookPassAnd0 = true; 5172 } 5173 5174 if (N1.getOpcode() == ISD::AND) { 5175 if (!N1.getNode()->hasOneUse()) 5176 return SDValue(); 5177 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5178 if (!N11C || N11C->getZExtValue() != 0xFF) 5179 return SDValue(); 5180 N1 = N1.getOperand(0); 5181 LookPassAnd1 = true; 5182 } 5183 5184 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 5185 std::swap(N0, N1); 5186 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 5187 return SDValue(); 5188 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 5189 return SDValue(); 5190 5191 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5192 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5193 if (!N01C || !N11C) 5194 return SDValue(); 5195 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 5196 return SDValue(); 5197 5198 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 5199 SDValue N00 = N0->getOperand(0); 5200 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 5201 if (!N00.getNode()->hasOneUse()) 5202 return SDValue(); 5203 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 5204 if (!N001C || N001C->getZExtValue() != 0xFF) 5205 return SDValue(); 5206 N00 = N00.getOperand(0); 5207 LookPassAnd0 = true; 5208 } 5209 5210 SDValue N10 = N1->getOperand(0); 5211 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 5212 if (!N10.getNode()->hasOneUse()) 5213 return SDValue(); 5214 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 5215 // Also allow 0xFFFF since the bits will be shifted out. This is needed 5216 // for X86. 5217 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 5218 N101C->getZExtValue() != 0xFFFF)) 5219 return SDValue(); 5220 N10 = N10.getOperand(0); 5221 LookPassAnd1 = true; 5222 } 5223 5224 if (N00 != N10) 5225 return SDValue(); 5226 5227 // Make sure everything beyond the low halfword gets set to zero since the SRL 5228 // 16 will clear the top bits. 5229 unsigned OpSizeInBits = VT.getSizeInBits(); 5230 if (DemandHighBits && OpSizeInBits > 16) { 5231 // If the left-shift isn't masked out then the only way this is a bswap is 5232 // if all bits beyond the low 8 are 0. In that case the entire pattern 5233 // reduces to a left shift anyway: leave it for other parts of the combiner. 5234 if (!LookPassAnd0) 5235 return SDValue(); 5236 5237 // However, if the right shift isn't masked out then it might be because 5238 // it's not needed. See if we can spot that too. 5239 if (!LookPassAnd1 && 5240 !DAG.MaskedValueIsZero( 5241 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 5242 return SDValue(); 5243 } 5244 5245 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 5246 if (OpSizeInBits > 16) { 5247 SDLoc DL(N); 5248 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 5249 DAG.getConstant(OpSizeInBits - 16, DL, 5250 getShiftAmountTy(VT))); 5251 } 5252 return Res; 5253 } 5254 5255 /// Return true if the specified node is an element that makes up a 32-bit 5256 /// packed halfword byteswap. 5257 /// ((x & 0x000000ff) << 8) | 5258 /// ((x & 0x0000ff00) >> 8) | 5259 /// ((x & 0x00ff0000) << 8) | 5260 /// ((x & 0xff000000) >> 8) 5261 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 5262 if (!N.getNode()->hasOneUse()) 5263 return false; 5264 5265 unsigned Opc = N.getOpcode(); 5266 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 5267 return false; 5268 5269 SDValue N0 = N.getOperand(0); 5270 unsigned Opc0 = N0.getOpcode(); 5271 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 5272 return false; 5273 5274 ConstantSDNode *N1C = nullptr; 5275 // SHL or SRL: look upstream for AND mask operand 5276 if (Opc == ISD::AND) 5277 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5278 else if (Opc0 == ISD::AND) 5279 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5280 if (!N1C) 5281 return false; 5282 5283 unsigned MaskByteOffset; 5284 switch (N1C->getZExtValue()) { 5285 default: 5286 return false; 5287 case 0xFF: MaskByteOffset = 0; break; 5288 case 0xFF00: MaskByteOffset = 1; break; 5289 case 0xFFFF: 5290 // In case demanded bits didn't clear the bits that will be shifted out. 5291 // This is needed for X86. 5292 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 5293 MaskByteOffset = 1; 5294 break; 5295 } 5296 return false; 5297 case 0xFF0000: MaskByteOffset = 2; break; 5298 case 0xFF000000: MaskByteOffset = 3; break; 5299 } 5300 5301 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 5302 if (Opc == ISD::AND) { 5303 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 5304 // (x >> 8) & 0xff 5305 // (x >> 8) & 0xff0000 5306 if (Opc0 != ISD::SRL) 5307 return false; 5308 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5309 if (!C || C->getZExtValue() != 8) 5310 return false; 5311 } else { 5312 // (x << 8) & 0xff00 5313 // (x << 8) & 0xff000000 5314 if (Opc0 != ISD::SHL) 5315 return false; 5316 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5317 if (!C || C->getZExtValue() != 8) 5318 return false; 5319 } 5320 } else if (Opc == ISD::SHL) { 5321 // (x & 0xff) << 8 5322 // (x & 0xff0000) << 8 5323 if (MaskByteOffset != 0 && MaskByteOffset != 2) 5324 return false; 5325 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5326 if (!C || C->getZExtValue() != 8) 5327 return false; 5328 } else { // Opc == ISD::SRL 5329 // (x & 0xff00) >> 8 5330 // (x & 0xff000000) >> 8 5331 if (MaskByteOffset != 1 && MaskByteOffset != 3) 5332 return false; 5333 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5334 if (!C || C->getZExtValue() != 8) 5335 return false; 5336 } 5337 5338 if (Parts[MaskByteOffset]) 5339 return false; 5340 5341 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 5342 return true; 5343 } 5344 5345 /// Match a 32-bit packed halfword bswap. That is 5346 /// ((x & 0x000000ff) << 8) | 5347 /// ((x & 0x0000ff00) >> 8) | 5348 /// ((x & 0x00ff0000) << 8) | 5349 /// ((x & 0xff000000) >> 8) 5350 /// => (rotl (bswap x), 16) 5351 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 5352 if (!LegalOperations) 5353 return SDValue(); 5354 5355 EVT VT = N->getValueType(0); 5356 if (VT != MVT::i32) 5357 return SDValue(); 5358 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 5359 return SDValue(); 5360 5361 // Look for either 5362 // (or (or (and), (and)), (or (and), (and))) 5363 // (or (or (or (and), (and)), (and)), (and)) 5364 if (N0.getOpcode() != ISD::OR) 5365 return SDValue(); 5366 SDValue N00 = N0.getOperand(0); 5367 SDValue N01 = N0.getOperand(1); 5368 SDNode *Parts[4] = {}; 5369 5370 if (N1.getOpcode() == ISD::OR && 5371 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 5372 // (or (or (and), (and)), (or (and), (and))) 5373 if (!isBSwapHWordElement(N00, Parts)) 5374 return SDValue(); 5375 5376 if (!isBSwapHWordElement(N01, Parts)) 5377 return SDValue(); 5378 SDValue N10 = N1.getOperand(0); 5379 if (!isBSwapHWordElement(N10, Parts)) 5380 return SDValue(); 5381 SDValue N11 = N1.getOperand(1); 5382 if (!isBSwapHWordElement(N11, Parts)) 5383 return SDValue(); 5384 } else { 5385 // (or (or (or (and), (and)), (and)), (and)) 5386 if (!isBSwapHWordElement(N1, Parts)) 5387 return SDValue(); 5388 if (!isBSwapHWordElement(N01, Parts)) 5389 return SDValue(); 5390 if (N00.getOpcode() != ISD::OR) 5391 return SDValue(); 5392 SDValue N000 = N00.getOperand(0); 5393 if (!isBSwapHWordElement(N000, Parts)) 5394 return SDValue(); 5395 SDValue N001 = N00.getOperand(1); 5396 if (!isBSwapHWordElement(N001, Parts)) 5397 return SDValue(); 5398 } 5399 5400 // Make sure the parts are all coming from the same node. 5401 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 5402 return SDValue(); 5403 5404 SDLoc DL(N); 5405 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 5406 SDValue(Parts[0], 0)); 5407 5408 // Result of the bswap should be rotated by 16. If it's not legal, then 5409 // do (x << 16) | (x >> 16). 5410 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 5411 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 5412 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 5413 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 5414 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 5415 return DAG.getNode(ISD::OR, DL, VT, 5416 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 5417 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 5418 } 5419 5420 /// This contains all DAGCombine rules which reduce two values combined by 5421 /// an Or operation to a single value \see visitANDLike(). 5422 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 5423 EVT VT = N1.getValueType(); 5424 SDLoc DL(N); 5425 5426 // fold (or x, undef) -> -1 5427 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 5428 return DAG.getAllOnesConstant(DL, VT); 5429 5430 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 5431 return V; 5432 5433 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 5434 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 5435 // Don't increase # computations. 5436 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 5437 // We can only do this xform if we know that bits from X that are set in C2 5438 // but not in C1 are already zero. Likewise for Y. 5439 if (const ConstantSDNode *N0O1C = 5440 getAsNonOpaqueConstant(N0.getOperand(1))) { 5441 if (const ConstantSDNode *N1O1C = 5442 getAsNonOpaqueConstant(N1.getOperand(1))) { 5443 // We can only do this xform if we know that bits from X that are set in 5444 // C2 but not in C1 are already zero. Likewise for Y. 5445 const APInt &LHSMask = N0O1C->getAPIntValue(); 5446 const APInt &RHSMask = N1O1C->getAPIntValue(); 5447 5448 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 5449 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 5450 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 5451 N0.getOperand(0), N1.getOperand(0)); 5452 return DAG.getNode(ISD::AND, DL, VT, X, 5453 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 5454 } 5455 } 5456 } 5457 } 5458 5459 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 5460 if (N0.getOpcode() == ISD::AND && 5461 N1.getOpcode() == ISD::AND && 5462 N0.getOperand(0) == N1.getOperand(0) && 5463 // Don't increase # computations. 5464 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 5465 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 5466 N0.getOperand(1), N1.getOperand(1)); 5467 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 5468 } 5469 5470 return SDValue(); 5471 } 5472 5473 /// OR combines for which the commuted variant will be tried as well. 5474 static SDValue visitORCommutative( 5475 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 5476 EVT VT = N0.getValueType(); 5477 if (N0.getOpcode() == ISD::AND) { 5478 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 5479 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 5480 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 5481 5482 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 5483 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 5484 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 5485 } 5486 5487 return SDValue(); 5488 } 5489 5490 SDValue DAGCombiner::visitOR(SDNode *N) { 5491 SDValue N0 = N->getOperand(0); 5492 SDValue N1 = N->getOperand(1); 5493 EVT VT = N1.getValueType(); 5494 5495 // x | x --> x 5496 if (N0 == N1) 5497 return N0; 5498 5499 // fold vector ops 5500 if (VT.isVector()) { 5501 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 5502 return FoldedVOp; 5503 5504 // fold (or x, 0) -> x, vector edition 5505 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5506 return N1; 5507 if (ISD::isBuildVectorAllZeros(N1.getNode())) 5508 return N0; 5509 5510 // fold (or x, -1) -> -1, vector edition 5511 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5512 // do not return N0, because undef node may exist in N0 5513 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); 5514 if (ISD::isBuildVectorAllOnes(N1.getNode())) 5515 // do not return N1, because undef node may exist in N1 5516 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 5517 5518 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 5519 // Do this only if the resulting shuffle is legal. 5520 if (isa<ShuffleVectorSDNode>(N0) && 5521 isa<ShuffleVectorSDNode>(N1) && 5522 // Avoid folding a node with illegal type. 5523 TLI.isTypeLegal(VT)) { 5524 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 5525 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 5526 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5527 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 5528 // Ensure both shuffles have a zero input. 5529 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 5530 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 5531 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 5532 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 5533 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 5534 bool CanFold = true; 5535 int NumElts = VT.getVectorNumElements(); 5536 SmallVector<int, 4> Mask(NumElts); 5537 5538 for (int i = 0; i != NumElts; ++i) { 5539 int M0 = SV0->getMaskElt(i); 5540 int M1 = SV1->getMaskElt(i); 5541 5542 // Determine if either index is pointing to a zero vector. 5543 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 5544 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 5545 5546 // If one element is zero and the otherside is undef, keep undef. 5547 // This also handles the case that both are undef. 5548 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 5549 Mask[i] = -1; 5550 continue; 5551 } 5552 5553 // Make sure only one of the elements is zero. 5554 if (M0Zero == M1Zero) { 5555 CanFold = false; 5556 break; 5557 } 5558 5559 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 5560 5561 // We have a zero and non-zero element. If the non-zero came from 5562 // SV0 make the index a LHS index. If it came from SV1, make it 5563 // a RHS index. We need to mod by NumElts because we don't care 5564 // which operand it came from in the original shuffles. 5565 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 5566 } 5567 5568 if (CanFold) { 5569 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 5570 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 5571 5572 bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT); 5573 if (!LegalMask) { 5574 std::swap(NewLHS, NewRHS); 5575 ShuffleVectorSDNode::commuteMask(Mask); 5576 LegalMask = TLI.isShuffleMaskLegal(Mask, VT); 5577 } 5578 5579 if (LegalMask) 5580 return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask); 5581 } 5582 } 5583 } 5584 } 5585 5586 // fold (or c1, c2) -> c1|c2 5587 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 5588 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5589 if (N0C && N1C && !N1C->isOpaque()) 5590 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 5591 // canonicalize constant to RHS 5592 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5593 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5594 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 5595 // fold (or x, 0) -> x 5596 if (isNullConstant(N1)) 5597 return N0; 5598 // fold (or x, -1) -> -1 5599 if (isAllOnesConstant(N1)) 5600 return N1; 5601 5602 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5603 return NewSel; 5604 5605 // fold (or x, c) -> c iff (x & ~c) == 0 5606 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 5607 return N1; 5608 5609 if (SDValue Combined = visitORLike(N0, N1, N)) 5610 return Combined; 5611 5612 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 5613 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 5614 return BSwap; 5615 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 5616 return BSwap; 5617 5618 // reassociate or 5619 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 5620 return ROR; 5621 5622 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 5623 // iff (c1 & c2) != 0 or c1/c2 are undef. 5624 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 5625 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 5626 }; 5627 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 5628 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 5629 if (SDValue COR = DAG.FoldConstantArithmetic( 5630 ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) { 5631 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 5632 AddToWorklist(IOR.getNode()); 5633 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 5634 } 5635 } 5636 5637 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 5638 return Combined; 5639 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 5640 return Combined; 5641 5642 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 5643 if (N0.getOpcode() == N1.getOpcode()) 5644 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 5645 return V; 5646 5647 // See if this is some rotate idiom. 5648 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 5649 return SDValue(Rot, 0); 5650 5651 if (SDValue Load = MatchLoadCombine(N)) 5652 return Load; 5653 5654 // Simplify the operands using demanded-bits information. 5655 if (SimplifyDemandedBits(SDValue(N, 0))) 5656 return SDValue(N, 0); 5657 5658 // If OR can be rewritten into ADD, try combines based on ADD. 5659 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 5660 DAG.haveNoCommonBitsSet(N0, N1)) 5661 if (SDValue Combined = visitADDLike(N)) 5662 return Combined; 5663 5664 return SDValue(); 5665 } 5666 5667 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 5668 if (Op.getOpcode() == ISD::AND && 5669 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 5670 Mask = Op.getOperand(1); 5671 return Op.getOperand(0); 5672 } 5673 return Op; 5674 } 5675 5676 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 5677 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 5678 SDValue &Mask) { 5679 Op = stripConstantMask(DAG, Op, Mask); 5680 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 5681 Shift = Op; 5682 return true; 5683 } 5684 return false; 5685 } 5686 5687 /// Helper function for visitOR to extract the needed side of a rotate idiom 5688 /// from a shl/srl/mul/udiv. This is meant to handle cases where 5689 /// InstCombine merged some outside op with one of the shifts from 5690 /// the rotate pattern. 5691 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 5692 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 5693 /// patterns: 5694 /// 5695 /// (or (mul v c0) (shrl (mul v c1) c2)): 5696 /// expands (mul v c0) -> (shl (mul v c1) c3) 5697 /// 5698 /// (or (udiv v c0) (shl (udiv v c1) c2)): 5699 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 5700 /// 5701 /// (or (shl v c0) (shrl (shl v c1) c2)): 5702 /// expands (shl v c0) -> (shl (shl v c1) c3) 5703 /// 5704 /// (or (shrl v c0) (shl (shrl v c1) c2)): 5705 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 5706 /// 5707 /// Such that in all cases, c3+c2==bitwidth(op v c1). 5708 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 5709 SDValue ExtractFrom, SDValue &Mask, 5710 const SDLoc &DL) { 5711 assert(OppShift && ExtractFrom && "Empty SDValue"); 5712 assert( 5713 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 5714 "Existing shift must be valid as a rotate half"); 5715 5716 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 5717 // Preconditions: 5718 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 5719 // 5720 // Find opcode of the needed shift to be extracted from (op0 v c0). 5721 unsigned Opcode = ISD::DELETED_NODE; 5722 bool IsMulOrDiv = false; 5723 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 5724 // opcode or its arithmetic (mul or udiv) variant. 5725 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 5726 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 5727 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 5728 return false; 5729 Opcode = NeededShift; 5730 return true; 5731 }; 5732 // op0 must be either the needed shift opcode or the mul/udiv equivalent 5733 // that the needed shift can be extracted from. 5734 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 5735 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 5736 return SDValue(); 5737 5738 // op0 must be the same opcode on both sides, have the same LHS argument, 5739 // and produce the same value type. 5740 SDValue OppShiftLHS = OppShift.getOperand(0); 5741 EVT ShiftedVT = OppShiftLHS.getValueType(); 5742 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 5743 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 5744 ShiftedVT != ExtractFrom.getValueType()) 5745 return SDValue(); 5746 5747 // Amount of the existing shift. 5748 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 5749 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 5750 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 5751 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 5752 ConstantSDNode *ExtractFromCst = 5753 isConstOrConstSplat(ExtractFrom.getOperand(1)); 5754 // TODO: We should be able to handle non-uniform constant vectors for these values 5755 // Check that we have constant values. 5756 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 5757 !OppLHSCst || !OppLHSCst->getAPIntValue() || 5758 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 5759 return SDValue(); 5760 5761 // Compute the shift amount we need to extract to complete the rotate. 5762 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 5763 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 5764 return SDValue(); 5765 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 5766 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 5767 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 5768 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 5769 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 5770 5771 // Now try extract the needed shift from the ExtractFrom op and see if the 5772 // result matches up with the existing shift's LHS op. 5773 if (IsMulOrDiv) { 5774 // Op to extract from is a mul or udiv by a constant. 5775 // Check: 5776 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 5777 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 5778 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 5779 NeededShiftAmt.getZExtValue()); 5780 APInt ResultAmt; 5781 APInt Rem; 5782 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 5783 if (Rem != 0 || ResultAmt != OppLHSAmt) 5784 return SDValue(); 5785 } else { 5786 // Op to extract from is a shift by a constant. 5787 // Check: 5788 // c2 - (bitwidth(op0 v c0) - c1) == c0 5789 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 5790 ExtractFromAmt.getBitWidth())) 5791 return SDValue(); 5792 } 5793 5794 // Return the expanded shift op that should allow a rotate to be formed. 5795 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 5796 EVT ResVT = ExtractFrom.getValueType(); 5797 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 5798 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 5799 } 5800 5801 // Return true if we can prove that, whenever Neg and Pos are both in the 5802 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 5803 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 5804 // 5805 // (or (shift1 X, Neg), (shift2 X, Pos)) 5806 // 5807 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 5808 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 5809 // to consider shift amounts with defined behavior. 5810 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 5811 SelectionDAG &DAG) { 5812 // If EltSize is a power of 2 then: 5813 // 5814 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 5815 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 5816 // 5817 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 5818 // for the stronger condition: 5819 // 5820 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 5821 // 5822 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 5823 // we can just replace Neg with Neg' for the rest of the function. 5824 // 5825 // In other cases we check for the even stronger condition: 5826 // 5827 // Neg == EltSize - Pos [B] 5828 // 5829 // for all Neg and Pos. Note that the (or ...) then invokes undefined 5830 // behavior if Pos == 0 (and consequently Neg == EltSize). 5831 // 5832 // We could actually use [A] whenever EltSize is a power of 2, but the 5833 // only extra cases that it would match are those uninteresting ones 5834 // where Neg and Pos are never in range at the same time. E.g. for 5835 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 5836 // as well as (sub 32, Pos), but: 5837 // 5838 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 5839 // 5840 // always invokes undefined behavior for 32-bit X. 5841 // 5842 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 5843 unsigned MaskLoBits = 0; 5844 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 5845 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 5846 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 5847 unsigned Bits = Log2_64(EltSize); 5848 if (NegC->getAPIntValue().getActiveBits() <= Bits && 5849 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 5850 Neg = Neg.getOperand(0); 5851 MaskLoBits = Bits; 5852 } 5853 } 5854 } 5855 5856 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 5857 if (Neg.getOpcode() != ISD::SUB) 5858 return false; 5859 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 5860 if (!NegC) 5861 return false; 5862 SDValue NegOp1 = Neg.getOperand(1); 5863 5864 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 5865 // Pos'. The truncation is redundant for the purpose of the equality. 5866 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 5867 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 5868 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 5869 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 5870 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 5871 MaskLoBits)) 5872 Pos = Pos.getOperand(0); 5873 } 5874 } 5875 5876 // The condition we need is now: 5877 // 5878 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 5879 // 5880 // If NegOp1 == Pos then we need: 5881 // 5882 // EltSize & Mask == NegC & Mask 5883 // 5884 // (because "x & Mask" is a truncation and distributes through subtraction). 5885 APInt Width; 5886 if (Pos == NegOp1) 5887 Width = NegC->getAPIntValue(); 5888 5889 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 5890 // Then the condition we want to prove becomes: 5891 // 5892 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 5893 // 5894 // which, again because "x & Mask" is a truncation, becomes: 5895 // 5896 // NegC & Mask == (EltSize - PosC) & Mask 5897 // EltSize & Mask == (NegC + PosC) & Mask 5898 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 5899 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 5900 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 5901 else 5902 return false; 5903 } else 5904 return false; 5905 5906 // Now we just need to check that EltSize & Mask == Width & Mask. 5907 if (MaskLoBits) 5908 // EltSize & Mask is 0 since Mask is EltSize - 1. 5909 return Width.getLoBits(MaskLoBits) == 0; 5910 return Width == EltSize; 5911 } 5912 5913 // A subroutine of MatchRotate used once we have found an OR of two opposite 5914 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 5915 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 5916 // former being preferred if supported. InnerPos and InnerNeg are Pos and 5917 // Neg with outer conversions stripped away. 5918 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 5919 SDValue Neg, SDValue InnerPos, 5920 SDValue InnerNeg, unsigned PosOpcode, 5921 unsigned NegOpcode, const SDLoc &DL) { 5922 // fold (or (shl x, (*ext y)), 5923 // (srl x, (*ext (sub 32, y)))) -> 5924 // (rotl x, y) or (rotr x, (sub 32, y)) 5925 // 5926 // fold (or (shl x, (*ext (sub 32, y))), 5927 // (srl x, (*ext y))) -> 5928 // (rotr x, y) or (rotl x, (sub 32, y)) 5929 EVT VT = Shifted.getValueType(); 5930 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) { 5931 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 5932 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 5933 HasPos ? Pos : Neg).getNode(); 5934 } 5935 5936 return nullptr; 5937 } 5938 5939 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 5940 // idioms for rotate, and if the target supports rotation instructions, generate 5941 // a rot[lr]. 5942 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 5943 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 5944 EVT VT = LHS.getValueType(); 5945 if (!TLI.isTypeLegal(VT)) return nullptr; 5946 5947 // The target must have at least one rotate flavor. 5948 bool HasROTL = hasOperation(ISD::ROTL, VT); 5949 bool HasROTR = hasOperation(ISD::ROTR, VT); 5950 if (!HasROTL && !HasROTR) return nullptr; 5951 5952 // Check for truncated rotate. 5953 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 5954 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 5955 assert(LHS.getValueType() == RHS.getValueType()); 5956 if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 5957 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), 5958 SDValue(Rot, 0)).getNode(); 5959 } 5960 } 5961 5962 // Match "(X shl/srl V1) & V2" where V2 may not be present. 5963 SDValue LHSShift; // The shift. 5964 SDValue LHSMask; // AND value if any. 5965 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 5966 5967 SDValue RHSShift; // The shift. 5968 SDValue RHSMask; // AND value if any. 5969 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 5970 5971 // If neither side matched a rotate half, bail 5972 if (!LHSShift && !RHSShift) 5973 return nullptr; 5974 5975 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 5976 // side of the rotate, so try to handle that here. In all cases we need to 5977 // pass the matched shift from the opposite side to compute the opcode and 5978 // needed shift amount to extract. We still want to do this if both sides 5979 // matched a rotate half because one half may be a potential overshift that 5980 // can be broken down (ie if InstCombine merged two shl or srl ops into a 5981 // single one). 5982 5983 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 5984 if (LHSShift) 5985 if (SDValue NewRHSShift = 5986 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 5987 RHSShift = NewRHSShift; 5988 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 5989 if (RHSShift) 5990 if (SDValue NewLHSShift = 5991 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 5992 LHSShift = NewLHSShift; 5993 5994 // If a side is still missing, nothing else we can do. 5995 if (!RHSShift || !LHSShift) 5996 return nullptr; 5997 5998 // At this point we've matched or extracted a shift op on each side. 5999 6000 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 6001 return nullptr; // Not shifting the same value. 6002 6003 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 6004 return nullptr; // Shifts must disagree. 6005 6006 // Canonicalize shl to left side in a shl/srl pair. 6007 if (RHSShift.getOpcode() == ISD::SHL) { 6008 std::swap(LHS, RHS); 6009 std::swap(LHSShift, RHSShift); 6010 std::swap(LHSMask, RHSMask); 6011 } 6012 6013 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6014 SDValue LHSShiftArg = LHSShift.getOperand(0); 6015 SDValue LHSShiftAmt = LHSShift.getOperand(1); 6016 SDValue RHSShiftArg = RHSShift.getOperand(0); 6017 SDValue RHSShiftAmt = RHSShift.getOperand(1); 6018 6019 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 6020 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 6021 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 6022 ConstantSDNode *RHS) { 6023 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 6024 }; 6025 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 6026 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 6027 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 6028 6029 // If there is an AND of either shifted operand, apply it to the result. 6030 if (LHSMask.getNode() || RHSMask.getNode()) { 6031 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 6032 SDValue Mask = AllOnes; 6033 6034 if (LHSMask.getNode()) { 6035 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 6036 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 6037 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 6038 } 6039 if (RHSMask.getNode()) { 6040 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 6041 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 6042 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 6043 } 6044 6045 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); 6046 } 6047 6048 return Rot.getNode(); 6049 } 6050 6051 // If there is a mask here, and we have a variable shift, we can't be sure 6052 // that we're masking out the right stuff. 6053 if (LHSMask.getNode() || RHSMask.getNode()) 6054 return nullptr; 6055 6056 // If the shift amount is sign/zext/any-extended just peel it off. 6057 SDValue LExtOp0 = LHSShiftAmt; 6058 SDValue RExtOp0 = RHSShiftAmt; 6059 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 6060 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 6061 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 6062 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 6063 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 6064 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 6065 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 6066 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 6067 LExtOp0 = LHSShiftAmt.getOperand(0); 6068 RExtOp0 = RHSShiftAmt.getOperand(0); 6069 } 6070 6071 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 6072 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 6073 if (TryL) 6074 return TryL; 6075 6076 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 6077 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 6078 if (TryR) 6079 return TryR; 6080 6081 return nullptr; 6082 } 6083 6084 namespace { 6085 6086 /// Represents known origin of an individual byte in load combine pattern. The 6087 /// value of the byte is either constant zero or comes from memory. 6088 struct ByteProvider { 6089 // For constant zero providers Load is set to nullptr. For memory providers 6090 // Load represents the node which loads the byte from memory. 6091 // ByteOffset is the offset of the byte in the value produced by the load. 6092 LoadSDNode *Load = nullptr; 6093 unsigned ByteOffset = 0; 6094 6095 ByteProvider() = default; 6096 6097 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 6098 return ByteProvider(Load, ByteOffset); 6099 } 6100 6101 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 6102 6103 bool isConstantZero() const { return !Load; } 6104 bool isMemory() const { return Load; } 6105 6106 bool operator==(const ByteProvider &Other) const { 6107 return Other.Load == Load && Other.ByteOffset == ByteOffset; 6108 } 6109 6110 private: 6111 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 6112 : Load(Load), ByteOffset(ByteOffset) {} 6113 }; 6114 6115 } // end anonymous namespace 6116 6117 /// Recursively traverses the expression calculating the origin of the requested 6118 /// byte of the given value. Returns None if the provider can't be calculated. 6119 /// 6120 /// For all the values except the root of the expression verifies that the value 6121 /// has exactly one use and if it's not true return None. This way if the origin 6122 /// of the byte is returned it's guaranteed that the values which contribute to 6123 /// the byte are not used outside of this expression. 6124 /// 6125 /// Because the parts of the expression are not allowed to have more than one 6126 /// use this function iterates over trees, not DAGs. So it never visits the same 6127 /// node more than once. 6128 static const Optional<ByteProvider> 6129 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 6130 bool Root = false) { 6131 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 6132 if (Depth == 10) 6133 return None; 6134 6135 if (!Root && !Op.hasOneUse()) 6136 return None; 6137 6138 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 6139 unsigned BitWidth = Op.getValueSizeInBits(); 6140 if (BitWidth % 8 != 0) 6141 return None; 6142 unsigned ByteWidth = BitWidth / 8; 6143 assert(Index < ByteWidth && "invalid index requested"); 6144 (void) ByteWidth; 6145 6146 switch (Op.getOpcode()) { 6147 case ISD::OR: { 6148 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 6149 if (!LHS) 6150 return None; 6151 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 6152 if (!RHS) 6153 return None; 6154 6155 if (LHS->isConstantZero()) 6156 return RHS; 6157 if (RHS->isConstantZero()) 6158 return LHS; 6159 return None; 6160 } 6161 case ISD::SHL: { 6162 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 6163 if (!ShiftOp) 6164 return None; 6165 6166 uint64_t BitShift = ShiftOp->getZExtValue(); 6167 if (BitShift % 8 != 0) 6168 return None; 6169 uint64_t ByteShift = BitShift / 8; 6170 6171 return Index < ByteShift 6172 ? ByteProvider::getConstantZero() 6173 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 6174 Depth + 1); 6175 } 6176 case ISD::ANY_EXTEND: 6177 case ISD::SIGN_EXTEND: 6178 case ISD::ZERO_EXTEND: { 6179 SDValue NarrowOp = Op->getOperand(0); 6180 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 6181 if (NarrowBitWidth % 8 != 0) 6182 return None; 6183 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 6184 6185 if (Index >= NarrowByteWidth) 6186 return Op.getOpcode() == ISD::ZERO_EXTEND 6187 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 6188 : None; 6189 return calculateByteProvider(NarrowOp, Index, Depth + 1); 6190 } 6191 case ISD::BSWAP: 6192 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 6193 Depth + 1); 6194 case ISD::LOAD: { 6195 auto L = cast<LoadSDNode>(Op.getNode()); 6196 if (L->isVolatile() || L->isIndexed()) 6197 return None; 6198 6199 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 6200 if (NarrowBitWidth % 8 != 0) 6201 return None; 6202 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 6203 6204 if (Index >= NarrowByteWidth) 6205 return L->getExtensionType() == ISD::ZEXTLOAD 6206 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 6207 : None; 6208 return ByteProvider::getMemory(L, Index); 6209 } 6210 } 6211 6212 return None; 6213 } 6214 6215 static unsigned LittleEndianByteAt(unsigned BW, unsigned i) { 6216 return i; 6217 } 6218 6219 static unsigned BigEndianByteAt(unsigned BW, unsigned i) { 6220 return BW - i - 1; 6221 } 6222 6223 // Check if the bytes offsets we are looking at match with either big or 6224 // little endian value loaded. Return true for big endian, false for little 6225 // endian, and None if match failed. 6226 static Optional<bool> isBigEndian(const SmallVector<int64_t, 4> &ByteOffsets, 6227 int64_t FirstOffset) { 6228 // The endian can be decided only when it is 2 bytes at least. 6229 unsigned Width = ByteOffsets.size(); 6230 if (Width < 2) 6231 return None; 6232 6233 bool BigEndian = true, LittleEndian = true; 6234 for (unsigned i = 0; i < Width; i++) { 6235 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 6236 LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i); 6237 BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i); 6238 if (!BigEndian && !LittleEndian) 6239 return None; 6240 } 6241 6242 assert((BigEndian != LittleEndian) && "It should be either big endian or" 6243 "little endian"); 6244 return BigEndian; 6245 } 6246 6247 /// Match a pattern where a wide type scalar value is loaded by several narrow 6248 /// loads and combined by shifts and ors. Fold it into a single load or a load 6249 /// and a BSWAP if the targets supports it. 6250 /// 6251 /// Assuming little endian target: 6252 /// i8 *a = ... 6253 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 6254 /// => 6255 /// i32 val = *((i32)a) 6256 /// 6257 /// i8 *a = ... 6258 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 6259 /// => 6260 /// i32 val = BSWAP(*((i32)a)) 6261 /// 6262 /// TODO: This rule matches complex patterns with OR node roots and doesn't 6263 /// interact well with the worklist mechanism. When a part of the pattern is 6264 /// updated (e.g. one of the loads) its direct users are put into the worklist, 6265 /// but the root node of the pattern which triggers the load combine is not 6266 /// necessarily a direct user of the changed node. For example, once the address 6267 /// of t28 load is reassociated load combine won't be triggered: 6268 /// t25: i32 = add t4, Constant:i32<2> 6269 /// t26: i64 = sign_extend t25 6270 /// t27: i64 = add t2, t26 6271 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 6272 /// t29: i32 = zero_extend t28 6273 /// t32: i32 = shl t29, Constant:i8<8> 6274 /// t33: i32 = or t23, t32 6275 /// As a possible fix visitLoad can check if the load can be a part of a load 6276 /// combine pattern and add corresponding OR roots to the worklist. 6277 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 6278 assert(N->getOpcode() == ISD::OR && 6279 "Can only match load combining against OR nodes"); 6280 6281 // Handles simple types only 6282 EVT VT = N->getValueType(0); 6283 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 6284 return SDValue(); 6285 unsigned ByteWidth = VT.getSizeInBits() / 8; 6286 6287 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6288 // Before legalize we can introduce too wide illegal loads which will be later 6289 // split into legal sized loads. This enables us to combine i64 load by i8 6290 // patterns to a couple of i32 loads on 32 bit targets. 6291 if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT)) 6292 return SDValue(); 6293 6294 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 6295 auto MemoryByteOffset = [&] (ByteProvider P) { 6296 assert(P.isMemory() && "Must be a memory byte provider"); 6297 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 6298 assert(LoadBitWidth % 8 == 0 && 6299 "can only analyze providers for individual bytes not bit"); 6300 unsigned LoadByteWidth = LoadBitWidth / 8; 6301 return IsBigEndianTarget 6302 ? BigEndianByteAt(LoadByteWidth, P.ByteOffset) 6303 : LittleEndianByteAt(LoadByteWidth, P.ByteOffset); 6304 }; 6305 6306 Optional<BaseIndexOffset> Base; 6307 SDValue Chain; 6308 6309 SmallPtrSet<LoadSDNode *, 8> Loads; 6310 Optional<ByteProvider> FirstByteProvider; 6311 int64_t FirstOffset = INT64_MAX; 6312 6313 // Check if all the bytes of the OR we are looking at are loaded from the same 6314 // base address. Collect bytes offsets from Base address in ByteOffsets. 6315 SmallVector<int64_t, 4> ByteOffsets(ByteWidth); 6316 for (unsigned i = 0; i < ByteWidth; i++) { 6317 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 6318 if (!P || !P->isMemory()) // All the bytes must be loaded from memory 6319 return SDValue(); 6320 6321 LoadSDNode *L = P->Load; 6322 assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() && 6323 "Must be enforced by calculateByteProvider"); 6324 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 6325 6326 // All loads must share the same chain 6327 SDValue LChain = L->getChain(); 6328 if (!Chain) 6329 Chain = LChain; 6330 else if (Chain != LChain) 6331 return SDValue(); 6332 6333 // Loads must share the same base address 6334 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 6335 int64_t ByteOffsetFromBase = 0; 6336 if (!Base) 6337 Base = Ptr; 6338 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 6339 return SDValue(); 6340 6341 // Calculate the offset of the current byte from the base address 6342 ByteOffsetFromBase += MemoryByteOffset(*P); 6343 ByteOffsets[i] = ByteOffsetFromBase; 6344 6345 // Remember the first byte load 6346 if (ByteOffsetFromBase < FirstOffset) { 6347 FirstByteProvider = P; 6348 FirstOffset = ByteOffsetFromBase; 6349 } 6350 6351 Loads.insert(L); 6352 } 6353 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 6354 "memory, so there must be at least one load which produces the value"); 6355 assert(Base && "Base address of the accessed memory location must be set"); 6356 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 6357 6358 // Check if the bytes of the OR we are looking at match with either big or 6359 // little endian value load 6360 Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset); 6361 if (!IsBigEndian.hasValue()) 6362 return SDValue(); 6363 6364 assert(FirstByteProvider && "must be set"); 6365 6366 // Ensure that the first byte is loaded from zero offset of the first load. 6367 // So the combined value can be loaded from the first load address. 6368 if (MemoryByteOffset(*FirstByteProvider) != 0) 6369 return SDValue(); 6370 LoadSDNode *FirstLoad = FirstByteProvider->Load; 6371 6372 // The node we are looking at matches with the pattern, check if we can 6373 // replace it with a single load and bswap if needed. 6374 6375 // If the load needs byte swap check if the target supports it 6376 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 6377 6378 // Before legalize we can introduce illegal bswaps which will be later 6379 // converted to an explicit bswap sequence. This way we end up with a single 6380 // load and byte shuffling instead of several loads and byte shuffling. 6381 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) 6382 return SDValue(); 6383 6384 // Check that a load of the wide type is both allowed and fast on the target 6385 bool Fast = false; 6386 bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), 6387 VT, FirstLoad->getAddressSpace(), 6388 FirstLoad->getAlignment(), &Fast); 6389 if (!Allowed || !Fast) 6390 return SDValue(); 6391 6392 SDValue NewLoad = 6393 DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(), 6394 FirstLoad->getPointerInfo(), FirstLoad->getAlignment()); 6395 6396 // Transfer chain users from old loads to the new load. 6397 for (LoadSDNode *L : Loads) 6398 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 6399 6400 return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad; 6401 } 6402 6403 // If the target has andn, bsl, or a similar bit-select instruction, 6404 // we want to unfold masked merge, with canonical pattern of: 6405 // | A | |B| 6406 // ((x ^ y) & m) ^ y 6407 // | D | 6408 // Into: 6409 // (x & m) | (y & ~m) 6410 // If y is a constant, and the 'andn' does not work with immediates, 6411 // we unfold into a different pattern: 6412 // ~(~x & m) & (m | y) 6413 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 6414 // the very least that breaks andnpd / andnps patterns, and because those 6415 // patterns are simplified in IR and shouldn't be created in the DAG 6416 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 6417 assert(N->getOpcode() == ISD::XOR); 6418 6419 // Don't touch 'not' (i.e. where y = -1). 6420 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 6421 return SDValue(); 6422 6423 EVT VT = N->getValueType(0); 6424 6425 // There are 3 commutable operators in the pattern, 6426 // so we have to deal with 8 possible variants of the basic pattern. 6427 SDValue X, Y, M; 6428 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 6429 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 6430 return false; 6431 SDValue Xor = And.getOperand(XorIdx); 6432 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 6433 return false; 6434 SDValue Xor0 = Xor.getOperand(0); 6435 SDValue Xor1 = Xor.getOperand(1); 6436 // Don't touch 'not' (i.e. where y = -1). 6437 if (isAllOnesOrAllOnesSplat(Xor1)) 6438 return false; 6439 if (Other == Xor0) 6440 std::swap(Xor0, Xor1); 6441 if (Other != Xor1) 6442 return false; 6443 X = Xor0; 6444 Y = Xor1; 6445 M = And.getOperand(XorIdx ? 0 : 1); 6446 return true; 6447 }; 6448 6449 SDValue N0 = N->getOperand(0); 6450 SDValue N1 = N->getOperand(1); 6451 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 6452 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 6453 return SDValue(); 6454 6455 // Don't do anything if the mask is constant. This should not be reachable. 6456 // InstCombine should have already unfolded this pattern, and DAGCombiner 6457 // probably shouldn't produce it, too. 6458 if (isa<ConstantSDNode>(M.getNode())) 6459 return SDValue(); 6460 6461 // We can transform if the target has AndNot 6462 if (!TLI.hasAndNot(M)) 6463 return SDValue(); 6464 6465 SDLoc DL(N); 6466 6467 // If Y is a constant, check that 'andn' works with immediates. 6468 if (!TLI.hasAndNot(Y)) { 6469 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 6470 // If not, we need to do a bit more work to make sure andn is still used. 6471 SDValue NotX = DAG.getNOT(DL, X, VT); 6472 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 6473 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 6474 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 6475 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 6476 } 6477 6478 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 6479 SDValue NotM = DAG.getNOT(DL, M, VT); 6480 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 6481 6482 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 6483 } 6484 6485 SDValue DAGCombiner::visitXOR(SDNode *N) { 6486 SDValue N0 = N->getOperand(0); 6487 SDValue N1 = N->getOperand(1); 6488 EVT VT = N0.getValueType(); 6489 6490 // fold vector ops 6491 if (VT.isVector()) { 6492 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 6493 return FoldedVOp; 6494 6495 // fold (xor x, 0) -> x, vector edition 6496 if (ISD::isBuildVectorAllZeros(N0.getNode())) 6497 return N1; 6498 if (ISD::isBuildVectorAllZeros(N1.getNode())) 6499 return N0; 6500 } 6501 6502 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 6503 SDLoc DL(N); 6504 if (N0.isUndef() && N1.isUndef()) 6505 return DAG.getConstant(0, DL, VT); 6506 // fold (xor x, undef) -> undef 6507 if (N0.isUndef()) 6508 return N0; 6509 if (N1.isUndef()) 6510 return N1; 6511 // fold (xor c1, c2) -> c1^c2 6512 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 6513 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 6514 if (N0C && N1C) 6515 return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C); 6516 // canonicalize constant to RHS 6517 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6518 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6519 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 6520 // fold (xor x, 0) -> x 6521 if (isNullConstant(N1)) 6522 return N0; 6523 6524 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6525 return NewSel; 6526 6527 // reassociate xor 6528 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 6529 return RXOR; 6530 6531 // fold !(x cc y) -> (x !cc y) 6532 unsigned N0Opcode = N0.getOpcode(); 6533 SDValue LHS, RHS, CC; 6534 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 6535 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 6536 LHS.getValueType().isInteger()); 6537 if (!LegalOperations || 6538 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 6539 switch (N0Opcode) { 6540 default: 6541 llvm_unreachable("Unhandled SetCC Equivalent!"); 6542 case ISD::SETCC: 6543 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 6544 case ISD::SELECT_CC: 6545 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 6546 N0.getOperand(3), NotCC); 6547 } 6548 } 6549 } 6550 6551 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 6552 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 6553 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 6554 SDValue V = N0.getOperand(0); 6555 SDLoc DL0(N0); 6556 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 6557 DAG.getConstant(1, DL0, V.getValueType())); 6558 AddToWorklist(V.getNode()); 6559 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 6560 } 6561 6562 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 6563 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 6564 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 6565 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 6566 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 6567 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 6568 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 6569 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 6570 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 6571 return DAG.getNode(NewOpcode, DL, VT, LHS, RHS); 6572 } 6573 } 6574 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 6575 if (isAllOnesConstant(N1) && N0.hasOneUse() && 6576 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 6577 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 6578 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 6579 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 6580 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 6581 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 6582 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 6583 return DAG.getNode(NewOpcode, DL, VT, LHS, RHS); 6584 } 6585 } 6586 // fold (xor (and x, y), y) -> (and (not x), y) 6587 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 6588 SDValue X = N0.getOperand(0); 6589 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 6590 AddToWorklist(NotX.getNode()); 6591 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 6592 } 6593 6594 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 6595 ConstantSDNode *XorC = isConstOrConstSplat(N1); 6596 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 6597 unsigned BitWidth = VT.getScalarSizeInBits(); 6598 if (XorC && ShiftC) { 6599 // Don't crash on an oversized shift. We can not guarantee that a bogus 6600 // shift has been simplified to undef. 6601 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 6602 if (ShiftAmt < BitWidth) { 6603 APInt Ones = APInt::getAllOnesValue(BitWidth); 6604 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 6605 if (XorC->getAPIntValue() == Ones) { 6606 // If the xor constant is a shifted -1, do a 'not' before the shift: 6607 // xor (X << ShiftC), XorC --> (not X) << ShiftC 6608 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 6609 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 6610 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 6611 } 6612 } 6613 } 6614 } 6615 6616 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 6617 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 6618 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 6619 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 6620 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 6621 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 6622 SDValue S0 = S.getOperand(0); 6623 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) { 6624 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 6625 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 6626 if (C->getAPIntValue() == (OpSizeInBits - 1)) 6627 return DAG.getNode(ISD::ABS, DL, VT, S0); 6628 } 6629 } 6630 } 6631 6632 // fold (xor x, x) -> 0 6633 if (N0 == N1) 6634 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 6635 6636 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 6637 // Here is a concrete example of this equivalence: 6638 // i16 x == 14 6639 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 6640 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 6641 // 6642 // => 6643 // 6644 // i16 ~1 == 0b1111111111111110 6645 // i16 rol(~1, 14) == 0b1011111111111111 6646 // 6647 // Some additional tips to help conceptualize this transform: 6648 // - Try to see the operation as placing a single zero in a value of all ones. 6649 // - There exists no value for x which would allow the result to contain zero. 6650 // - Values of x larger than the bitwidth are undefined and do not require a 6651 // consistent result. 6652 // - Pushing the zero left requires shifting one bits in from the right. 6653 // A rotate left of ~1 is a nice way of achieving the desired result. 6654 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 6655 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 6656 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 6657 N0.getOperand(1)); 6658 } 6659 6660 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 6661 if (N0Opcode == N1.getOpcode()) 6662 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6663 return V; 6664 6665 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 6666 if (SDValue MM = unfoldMaskedMerge(N)) 6667 return MM; 6668 6669 // Simplify the expression using non-local knowledge. 6670 if (SimplifyDemandedBits(SDValue(N, 0))) 6671 return SDValue(N, 0); 6672 6673 return SDValue(); 6674 } 6675 6676 /// Handle transforms common to the three shifts, when the shift amount is a 6677 /// constant. 6678 /// We are looking for: (shift being one of shl/sra/srl) 6679 /// shift (binop X, C0), C1 6680 /// And want to transform into: 6681 /// binop (shift X, C1), (shift C0, C1) 6682 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 6683 // Do not turn a 'not' into a regular xor. 6684 if (isBitwiseNot(N->getOperand(0))) 6685 return SDValue(); 6686 6687 // The inner binop must be one-use, since we want to replace it. 6688 SDNode *LHS = N->getOperand(0).getNode(); 6689 if (!LHS->hasOneUse()) return SDValue(); 6690 6691 // We want to pull some binops through shifts, so that we have (and (shift)) 6692 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 6693 // thing happens with address calculations, so it's important to canonicalize 6694 // it. 6695 switch (LHS->getOpcode()) { 6696 default: 6697 return SDValue(); 6698 case ISD::OR: 6699 case ISD::XOR: 6700 case ISD::AND: 6701 break; 6702 case ISD::ADD: 6703 if (N->getOpcode() != ISD::SHL) 6704 return SDValue(); // only shl(add) not sr[al](add). 6705 break; 6706 } 6707 6708 // We require the RHS of the binop to be a constant and not opaque as well. 6709 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 6710 if (!BinOpCst) 6711 return SDValue(); 6712 6713 // FIXME: disable this unless the input to the binop is a shift by a constant 6714 // or is copy/select. Enable this in other cases when figure out it's exactly 6715 // profitable. 6716 SDValue BinOpLHSVal = LHS->getOperand(0); 6717 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 6718 BinOpLHSVal.getOpcode() == ISD::SRA || 6719 BinOpLHSVal.getOpcode() == ISD::SRL) && 6720 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 6721 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 6722 BinOpLHSVal.getOpcode() == ISD::SELECT; 6723 6724 if (!IsShiftByConstant && !IsCopyOrSelect) 6725 return SDValue(); 6726 6727 if (IsCopyOrSelect && N->hasOneUse()) 6728 return SDValue(); 6729 6730 EVT VT = N->getValueType(0); 6731 6732 if (!TLI.isDesirableToCommuteWithShift(N, Level)) 6733 return SDValue(); 6734 6735 // Fold the constants, shifting the binop RHS by the shift amount. 6736 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 6737 N->getValueType(0), 6738 LHS->getOperand(1), N->getOperand(1)); 6739 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 6740 6741 // Create the new shift. 6742 SDValue NewShift = DAG.getNode(N->getOpcode(), 6743 SDLoc(LHS->getOperand(0)), 6744 VT, LHS->getOperand(0), N->getOperand(1)); 6745 6746 // Create the new binop. 6747 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 6748 } 6749 6750 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 6751 assert(N->getOpcode() == ISD::TRUNCATE); 6752 assert(N->getOperand(0).getOpcode() == ISD::AND); 6753 6754 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 6755 EVT TruncVT = N->getValueType(0); 6756 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 6757 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 6758 SDValue N01 = N->getOperand(0).getOperand(1); 6759 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 6760 SDLoc DL(N); 6761 SDValue N00 = N->getOperand(0).getOperand(0); 6762 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 6763 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 6764 AddToWorklist(Trunc00.getNode()); 6765 AddToWorklist(Trunc01.getNode()); 6766 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 6767 } 6768 } 6769 6770 return SDValue(); 6771 } 6772 6773 SDValue DAGCombiner::visitRotate(SDNode *N) { 6774 SDLoc dl(N); 6775 SDValue N0 = N->getOperand(0); 6776 SDValue N1 = N->getOperand(1); 6777 EVT VT = N->getValueType(0); 6778 unsigned Bitsize = VT.getScalarSizeInBits(); 6779 6780 // fold (rot x, 0) -> x 6781 if (isNullOrNullSplat(N1)) 6782 return N0; 6783 6784 // fold (rot x, c) -> x iff (c % BitSize) == 0 6785 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 6786 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 6787 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 6788 return N0; 6789 } 6790 6791 // fold (rot x, c) -> (rot x, c % BitSize) 6792 if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) { 6793 if (Cst->getAPIntValue().uge(Bitsize)) { 6794 uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize); 6795 return DAG.getNode(N->getOpcode(), dl, VT, N0, 6796 DAG.getConstant(RotAmt, dl, N1.getValueType())); 6797 } 6798 } 6799 6800 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 6801 if (N1.getOpcode() == ISD::TRUNCATE && 6802 N1.getOperand(0).getOpcode() == ISD::AND) { 6803 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 6804 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 6805 } 6806 6807 unsigned NextOp = N0.getOpcode(); 6808 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 6809 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 6810 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 6811 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 6812 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 6813 EVT ShiftVT = C1->getValueType(0); 6814 bool SameSide = (N->getOpcode() == NextOp); 6815 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 6816 if (SDValue CombinedShift = 6817 DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) { 6818 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 6819 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 6820 ISD::SREM, dl, ShiftVT, CombinedShift.getNode(), 6821 BitsizeC.getNode()); 6822 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 6823 CombinedShiftNorm); 6824 } 6825 } 6826 } 6827 return SDValue(); 6828 } 6829 6830 SDValue DAGCombiner::visitSHL(SDNode *N) { 6831 SDValue N0 = N->getOperand(0); 6832 SDValue N1 = N->getOperand(1); 6833 if (SDValue V = DAG.simplifyShift(N0, N1)) 6834 return V; 6835 6836 EVT VT = N0.getValueType(); 6837 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 6838 6839 // fold vector ops 6840 if (VT.isVector()) { 6841 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 6842 return FoldedVOp; 6843 6844 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 6845 // If setcc produces all-one true value then: 6846 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 6847 if (N1CV && N1CV->isConstant()) { 6848 if (N0.getOpcode() == ISD::AND) { 6849 SDValue N00 = N0->getOperand(0); 6850 SDValue N01 = N0->getOperand(1); 6851 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 6852 6853 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 6854 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 6855 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6856 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 6857 N01CV, N1CV)) 6858 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 6859 } 6860 } 6861 } 6862 } 6863 6864 ConstantSDNode *N1C = isConstOrConstSplat(N1); 6865 6866 // fold (shl c1, c2) -> c1<<c2 6867 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 6868 if (N0C && N1C && !N1C->isOpaque()) 6869 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 6870 6871 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6872 return NewSel; 6873 6874 // if (shl x, c) is known to be zero, return 0 6875 if (DAG.MaskedValueIsZero(SDValue(N, 0), 6876 APInt::getAllOnesValue(OpSizeInBits))) 6877 return DAG.getConstant(0, SDLoc(N), VT); 6878 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 6879 if (N1.getOpcode() == ISD::TRUNCATE && 6880 N1.getOperand(0).getOpcode() == ISD::AND) { 6881 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 6882 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 6883 } 6884 6885 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 6886 return SDValue(N, 0); 6887 6888 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 6889 if (N0.getOpcode() == ISD::SHL) { 6890 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 6891 ConstantSDNode *RHS) { 6892 APInt c1 = LHS->getAPIntValue(); 6893 APInt c2 = RHS->getAPIntValue(); 6894 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 6895 return (c1 + c2).uge(OpSizeInBits); 6896 }; 6897 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 6898 return DAG.getConstant(0, SDLoc(N), VT); 6899 6900 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 6901 ConstantSDNode *RHS) { 6902 APInt c1 = LHS->getAPIntValue(); 6903 APInt c2 = RHS->getAPIntValue(); 6904 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 6905 return (c1 + c2).ult(OpSizeInBits); 6906 }; 6907 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 6908 SDLoc DL(N); 6909 EVT ShiftVT = N1.getValueType(); 6910 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 6911 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 6912 } 6913 } 6914 6915 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 6916 // For this to be valid, the second form must not preserve any of the bits 6917 // that are shifted out by the inner shift in the first form. This means 6918 // the outer shift size must be >= the number of bits added by the ext. 6919 // As a corollary, we don't care what kind of ext it is. 6920 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 6921 N0.getOpcode() == ISD::ANY_EXTEND || 6922 N0.getOpcode() == ISD::SIGN_EXTEND) && 6923 N0.getOperand(0).getOpcode() == ISD::SHL) { 6924 SDValue N0Op0 = N0.getOperand(0); 6925 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 6926 APInt c1 = N0Op0C1->getAPIntValue(); 6927 APInt c2 = N1C->getAPIntValue(); 6928 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 6929 6930 EVT InnerShiftVT = N0Op0.getValueType(); 6931 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 6932 if (c2.uge(OpSizeInBits - InnerShiftSize)) { 6933 SDLoc DL(N0); 6934 APInt Sum = c1 + c2; 6935 if (Sum.uge(OpSizeInBits)) 6936 return DAG.getConstant(0, DL, VT); 6937 6938 return DAG.getNode( 6939 ISD::SHL, DL, VT, 6940 DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)), 6941 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); 6942 } 6943 } 6944 } 6945 6946 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 6947 // Only fold this if the inner zext has no other uses to avoid increasing 6948 // the total number of instructions. 6949 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 6950 N0.getOperand(0).getOpcode() == ISD::SRL) { 6951 SDValue N0Op0 = N0.getOperand(0); 6952 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 6953 if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) { 6954 uint64_t c1 = N0Op0C1->getZExtValue(); 6955 uint64_t c2 = N1C->getZExtValue(); 6956 if (c1 == c2) { 6957 SDValue NewOp0 = N0.getOperand(0); 6958 EVT CountVT = NewOp0.getOperand(1).getValueType(); 6959 SDLoc DL(N); 6960 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 6961 NewOp0, 6962 DAG.getConstant(c2, DL, CountVT)); 6963 AddToWorklist(NewSHL.getNode()); 6964 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 6965 } 6966 } 6967 } 6968 } 6969 6970 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 6971 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 6972 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 6973 N0->getFlags().hasExact()) { 6974 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 6975 uint64_t C1 = N0C1->getZExtValue(); 6976 uint64_t C2 = N1C->getZExtValue(); 6977 SDLoc DL(N); 6978 if (C1 <= C2) 6979 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 6980 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 6981 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 6982 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 6983 } 6984 } 6985 6986 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 6987 // (and (srl x, (sub c1, c2), MASK) 6988 // Only fold this if the inner shift has no other uses -- if it does, folding 6989 // this will increase the total number of instructions. 6990 // TODO - drop hasOneUse requirement if c1 == c2? 6991 // TODO - support non-uniform vector shift amounts. 6992 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 6993 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 6994 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 6995 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 6996 uint64_t c1 = N0C1->getZExtValue(); 6997 uint64_t c2 = N1C->getZExtValue(); 6998 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 6999 SDValue Shift; 7000 if (c2 > c1) { 7001 Mask <<= c2 - c1; 7002 SDLoc DL(N); 7003 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 7004 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 7005 } else { 7006 Mask.lshrInPlace(c1 - c2); 7007 SDLoc DL(N); 7008 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 7009 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 7010 } 7011 SDLoc DL(N0); 7012 return DAG.getNode(ISD::AND, DL, VT, Shift, 7013 DAG.getConstant(Mask, DL, VT)); 7014 } 7015 } 7016 } 7017 7018 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 7019 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 7020 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 7021 SDLoc DL(N); 7022 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 7023 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 7024 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 7025 } 7026 7027 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7028 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7029 // Variant of version done on multiply, except mul by a power of 2 is turned 7030 // into a shift. 7031 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 7032 N0.getNode()->hasOneUse() && 7033 isConstantOrConstantVector(N1, /* No Opaques */ true) && 7034 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 7035 TLI.isDesirableToCommuteWithShift(N, Level)) { 7036 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 7037 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 7038 AddToWorklist(Shl0.getNode()); 7039 AddToWorklist(Shl1.getNode()); 7040 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 7041 } 7042 7043 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 7044 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 7045 isConstantOrConstantVector(N1, /* No Opaques */ true) && 7046 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 7047 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 7048 if (isConstantOrConstantVector(Shl)) 7049 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 7050 } 7051 7052 if (N1C && !N1C->isOpaque()) 7053 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 7054 return NewSHL; 7055 7056 return SDValue(); 7057 } 7058 7059 SDValue DAGCombiner::visitSRA(SDNode *N) { 7060 SDValue N0 = N->getOperand(0); 7061 SDValue N1 = N->getOperand(1); 7062 if (SDValue V = DAG.simplifyShift(N0, N1)) 7063 return V; 7064 7065 EVT VT = N0.getValueType(); 7066 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 7067 7068 // Arithmetic shifting an all-sign-bit value is a no-op. 7069 // fold (sra 0, x) -> 0 7070 // fold (sra -1, x) -> -1 7071 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 7072 return N0; 7073 7074 // fold vector ops 7075 if (VT.isVector()) 7076 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7077 return FoldedVOp; 7078 7079 ConstantSDNode *N1C = isConstOrConstSplat(N1); 7080 7081 // fold (sra c1, c2) -> (sra c1, c2) 7082 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 7083 if (N0C && N1C && !N1C->isOpaque()) 7084 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 7085 7086 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7087 return NewSel; 7088 7089 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 7090 // sext_inreg. 7091 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 7092 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 7093 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 7094 if (VT.isVector()) 7095 ExtVT = EVT::getVectorVT(*DAG.getContext(), 7096 ExtVT, VT.getVectorNumElements()); 7097 if ((!LegalOperations || 7098 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 7099 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7100 N0.getOperand(0), DAG.getValueType(ExtVT)); 7101 } 7102 7103 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 7104 // clamp (add c1, c2) to max shift. 7105 if (N0.getOpcode() == ISD::SRA) { 7106 SDLoc DL(N); 7107 EVT ShiftVT = N1.getValueType(); 7108 EVT ShiftSVT = ShiftVT.getScalarType(); 7109 SmallVector<SDValue, 16> ShiftValues; 7110 7111 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 7112 APInt c1 = LHS->getAPIntValue(); 7113 APInt c2 = RHS->getAPIntValue(); 7114 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 7115 APInt Sum = c1 + c2; 7116 unsigned ShiftSum = 7117 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 7118 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 7119 return true; 7120 }; 7121 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 7122 SDValue ShiftValue; 7123 if (VT.isVector()) 7124 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 7125 else 7126 ShiftValue = ShiftValues[0]; 7127 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 7128 } 7129 } 7130 7131 // fold (sra (shl X, m), (sub result_size, n)) 7132 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 7133 // result_size - n != m. 7134 // If truncate is free for the target sext(shl) is likely to result in better 7135 // code. 7136 if (N0.getOpcode() == ISD::SHL && N1C) { 7137 // Get the two constanst of the shifts, CN0 = m, CN = n. 7138 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 7139 if (N01C) { 7140 LLVMContext &Ctx = *DAG.getContext(); 7141 // Determine what the truncate's result bitsize and type would be. 7142 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 7143 7144 if (VT.isVector()) 7145 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 7146 7147 // Determine the residual right-shift amount. 7148 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 7149 7150 // If the shift is not a no-op (in which case this should be just a sign 7151 // extend already), the truncated to type is legal, sign_extend is legal 7152 // on that type, and the truncate to that type is both legal and free, 7153 // perform the transform. 7154 if ((ShiftAmt > 0) && 7155 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 7156 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 7157 TLI.isTruncateFree(VT, TruncVT)) { 7158 SDLoc DL(N); 7159 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 7160 getShiftAmountTy(N0.getOperand(0).getValueType())); 7161 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 7162 N0.getOperand(0), Amt); 7163 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 7164 Shift); 7165 return DAG.getNode(ISD::SIGN_EXTEND, DL, 7166 N->getValueType(0), Trunc); 7167 } 7168 } 7169 } 7170 7171 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 7172 if (N1.getOpcode() == ISD::TRUNCATE && 7173 N1.getOperand(0).getOpcode() == ISD::AND) { 7174 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 7175 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 7176 } 7177 7178 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 7179 // if c1 is equal to the number of bits the trunc removes 7180 if (N0.getOpcode() == ISD::TRUNCATE && 7181 (N0.getOperand(0).getOpcode() == ISD::SRL || 7182 N0.getOperand(0).getOpcode() == ISD::SRA) && 7183 N0.getOperand(0).hasOneUse() && 7184 N0.getOperand(0).getOperand(1).hasOneUse() && 7185 N1C) { 7186 SDValue N0Op0 = N0.getOperand(0); 7187 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 7188 unsigned LargeShiftVal = LargeShift->getZExtValue(); 7189 EVT LargeVT = N0Op0.getValueType(); 7190 7191 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 7192 SDLoc DL(N); 7193 SDValue Amt = 7194 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 7195 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 7196 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 7197 N0Op0.getOperand(0), Amt); 7198 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 7199 } 7200 } 7201 } 7202 7203 // Simplify, based on bits shifted out of the LHS. 7204 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 7205 return SDValue(N, 0); 7206 7207 // If the sign bit is known to be zero, switch this to a SRL. 7208 if (DAG.SignBitIsZero(N0)) 7209 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 7210 7211 if (N1C && !N1C->isOpaque()) 7212 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 7213 return NewSRA; 7214 7215 return SDValue(); 7216 } 7217 7218 SDValue DAGCombiner::visitSRL(SDNode *N) { 7219 SDValue N0 = N->getOperand(0); 7220 SDValue N1 = N->getOperand(1); 7221 if (SDValue V = DAG.simplifyShift(N0, N1)) 7222 return V; 7223 7224 EVT VT = N0.getValueType(); 7225 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 7226 7227 // fold vector ops 7228 if (VT.isVector()) 7229 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7230 return FoldedVOp; 7231 7232 ConstantSDNode *N1C = isConstOrConstSplat(N1); 7233 7234 // fold (srl c1, c2) -> c1 >>u c2 7235 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 7236 if (N0C && N1C && !N1C->isOpaque()) 7237 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 7238 7239 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7240 return NewSel; 7241 7242 // if (srl x, c) is known to be zero, return 0 7243 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 7244 APInt::getAllOnesValue(OpSizeInBits))) 7245 return DAG.getConstant(0, SDLoc(N), VT); 7246 7247 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 7248 if (N0.getOpcode() == ISD::SRL) { 7249 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 7250 ConstantSDNode *RHS) { 7251 APInt c1 = LHS->getAPIntValue(); 7252 APInt c2 = RHS->getAPIntValue(); 7253 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 7254 return (c1 + c2).uge(OpSizeInBits); 7255 }; 7256 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 7257 return DAG.getConstant(0, SDLoc(N), VT); 7258 7259 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 7260 ConstantSDNode *RHS) { 7261 APInt c1 = LHS->getAPIntValue(); 7262 APInt c2 = RHS->getAPIntValue(); 7263 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 7264 return (c1 + c2).ult(OpSizeInBits); 7265 }; 7266 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 7267 SDLoc DL(N); 7268 EVT ShiftVT = N1.getValueType(); 7269 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 7270 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 7271 } 7272 } 7273 7274 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 7275 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 7276 N0.getOperand(0).getOpcode() == ISD::SRL) { 7277 if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) { 7278 uint64_t c1 = N001C->getZExtValue(); 7279 uint64_t c2 = N1C->getZExtValue(); 7280 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 7281 EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType(); 7282 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 7283 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 7284 if (c1 + OpSizeInBits == InnerShiftSize) { 7285 SDLoc DL(N0); 7286 if (c1 + c2 >= InnerShiftSize) 7287 return DAG.getConstant(0, DL, VT); 7288 return DAG.getNode(ISD::TRUNCATE, DL, VT, 7289 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 7290 N0.getOperand(0).getOperand(0), 7291 DAG.getConstant(c1 + c2, DL, 7292 ShiftCountVT))); 7293 } 7294 } 7295 } 7296 7297 // fold (srl (shl x, c), c) -> (and x, cst2) 7298 // TODO - (srl (shl x, c1), c2). 7299 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 7300 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 7301 SDLoc DL(N); 7302 SDValue Mask = 7303 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 7304 AddToWorklist(Mask.getNode()); 7305 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 7306 } 7307 7308 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 7309 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 7310 // Shifting in all undef bits? 7311 EVT SmallVT = N0.getOperand(0).getValueType(); 7312 unsigned BitSize = SmallVT.getScalarSizeInBits(); 7313 if (N1C->getZExtValue() >= BitSize) 7314 return DAG.getUNDEF(VT); 7315 7316 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 7317 uint64_t ShiftAmt = N1C->getZExtValue(); 7318 SDLoc DL0(N0); 7319 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 7320 N0.getOperand(0), 7321 DAG.getConstant(ShiftAmt, DL0, 7322 getShiftAmountTy(SmallVT))); 7323 AddToWorklist(SmallShift.getNode()); 7324 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 7325 SDLoc DL(N); 7326 return DAG.getNode(ISD::AND, DL, VT, 7327 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 7328 DAG.getConstant(Mask, DL, VT)); 7329 } 7330 } 7331 7332 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 7333 // bit, which is unmodified by sra. 7334 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 7335 if (N0.getOpcode() == ISD::SRA) 7336 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 7337 } 7338 7339 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 7340 if (N1C && N0.getOpcode() == ISD::CTLZ && 7341 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 7342 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 7343 7344 // If any of the input bits are KnownOne, then the input couldn't be all 7345 // zeros, thus the result of the srl will always be zero. 7346 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 7347 7348 // If all of the bits input the to ctlz node are known to be zero, then 7349 // the result of the ctlz is "32" and the result of the shift is one. 7350 APInt UnknownBits = ~Known.Zero; 7351 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 7352 7353 // Otherwise, check to see if there is exactly one bit input to the ctlz. 7354 if (UnknownBits.isPowerOf2()) { 7355 // Okay, we know that only that the single bit specified by UnknownBits 7356 // could be set on input to the CTLZ node. If this bit is set, the SRL 7357 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 7358 // to an SRL/XOR pair, which is likely to simplify more. 7359 unsigned ShAmt = UnknownBits.countTrailingZeros(); 7360 SDValue Op = N0.getOperand(0); 7361 7362 if (ShAmt) { 7363 SDLoc DL(N0); 7364 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 7365 DAG.getConstant(ShAmt, DL, 7366 getShiftAmountTy(Op.getValueType()))); 7367 AddToWorklist(Op.getNode()); 7368 } 7369 7370 SDLoc DL(N); 7371 return DAG.getNode(ISD::XOR, DL, VT, 7372 Op, DAG.getConstant(1, DL, VT)); 7373 } 7374 } 7375 7376 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 7377 if (N1.getOpcode() == ISD::TRUNCATE && 7378 N1.getOperand(0).getOpcode() == ISD::AND) { 7379 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 7380 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 7381 } 7382 7383 // fold operands of srl based on knowledge that the low bits are not 7384 // demanded. 7385 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 7386 return SDValue(N, 0); 7387 7388 if (N1C && !N1C->isOpaque()) 7389 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 7390 return NewSRL; 7391 7392 // Attempt to convert a srl of a load into a narrower zero-extending load. 7393 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 7394 return NarrowLoad; 7395 7396 // Here is a common situation. We want to optimize: 7397 // 7398 // %a = ... 7399 // %b = and i32 %a, 2 7400 // %c = srl i32 %b, 1 7401 // brcond i32 %c ... 7402 // 7403 // into 7404 // 7405 // %a = ... 7406 // %b = and %a, 2 7407 // %c = setcc eq %b, 0 7408 // brcond %c ... 7409 // 7410 // However when after the source operand of SRL is optimized into AND, the SRL 7411 // itself may not be optimized further. Look for it and add the BRCOND into 7412 // the worklist. 7413 if (N->hasOneUse()) { 7414 SDNode *Use = *N->use_begin(); 7415 if (Use->getOpcode() == ISD::BRCOND) 7416 AddToWorklist(Use); 7417 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 7418 // Also look pass the truncate. 7419 Use = *Use->use_begin(); 7420 if (Use->getOpcode() == ISD::BRCOND) 7421 AddToWorklist(Use); 7422 } 7423 } 7424 7425 return SDValue(); 7426 } 7427 7428 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 7429 EVT VT = N->getValueType(0); 7430 SDValue N0 = N->getOperand(0); 7431 SDValue N1 = N->getOperand(1); 7432 SDValue N2 = N->getOperand(2); 7433 bool IsFSHL = N->getOpcode() == ISD::FSHL; 7434 unsigned BitWidth = VT.getScalarSizeInBits(); 7435 7436 // fold (fshl N0, N1, 0) -> N0 7437 // fold (fshr N0, N1, 0) -> N1 7438 if (isPowerOf2_32(BitWidth)) 7439 if (DAG.MaskedValueIsZero( 7440 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 7441 return IsFSHL ? N0 : N1; 7442 7443 auto IsUndefOrZero = [](SDValue V) { 7444 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 7445 }; 7446 7447 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 7448 EVT ShAmtTy = N2.getValueType(); 7449 7450 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 7451 if (Cst->getAPIntValue().uge(BitWidth)) { 7452 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 7453 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 7454 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 7455 } 7456 7457 unsigned ShAmt = Cst->getZExtValue(); 7458 if (ShAmt == 0) 7459 return IsFSHL ? N0 : N1; 7460 7461 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 7462 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 7463 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 7464 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 7465 if (IsUndefOrZero(N0)) 7466 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 7467 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 7468 SDLoc(N), ShAmtTy)); 7469 if (IsUndefOrZero(N1)) 7470 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 7471 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 7472 SDLoc(N), ShAmtTy)); 7473 } 7474 7475 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 7476 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 7477 // iff We know the shift amount is in range. 7478 // TODO: when is it worth doing SUB(BW, N2) as well? 7479 if (isPowerOf2_32(BitWidth)) { 7480 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 7481 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 7482 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 7483 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 7484 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 7485 } 7486 7487 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 7488 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 7489 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 7490 // is legal as well we might be better off avoiding non-constant (BW - N2). 7491 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 7492 if (N0 == N1 && hasOperation(RotOpc, VT)) 7493 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 7494 7495 // Simplify, based on bits shifted out of N0/N1. 7496 if (SimplifyDemandedBits(SDValue(N, 0))) 7497 return SDValue(N, 0); 7498 7499 return SDValue(); 7500 } 7501 7502 SDValue DAGCombiner::visitABS(SDNode *N) { 7503 SDValue N0 = N->getOperand(0); 7504 EVT VT = N->getValueType(0); 7505 7506 // fold (abs c1) -> c2 7507 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7508 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 7509 // fold (abs (abs x)) -> (abs x) 7510 if (N0.getOpcode() == ISD::ABS) 7511 return N0; 7512 // fold (abs x) -> x iff not-negative 7513 if (DAG.SignBitIsZero(N0)) 7514 return N0; 7515 return SDValue(); 7516 } 7517 7518 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 7519 SDValue N0 = N->getOperand(0); 7520 EVT VT = N->getValueType(0); 7521 7522 // fold (bswap c1) -> c2 7523 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7524 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 7525 // fold (bswap (bswap x)) -> x 7526 if (N0.getOpcode() == ISD::BSWAP) 7527 return N0->getOperand(0); 7528 return SDValue(); 7529 } 7530 7531 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 7532 SDValue N0 = N->getOperand(0); 7533 EVT VT = N->getValueType(0); 7534 7535 // fold (bitreverse c1) -> c2 7536 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7537 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 7538 // fold (bitreverse (bitreverse x)) -> x 7539 if (N0.getOpcode() == ISD::BITREVERSE) 7540 return N0.getOperand(0); 7541 return SDValue(); 7542 } 7543 7544 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 7545 SDValue N0 = N->getOperand(0); 7546 EVT VT = N->getValueType(0); 7547 7548 // fold (ctlz c1) -> c2 7549 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7550 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 7551 7552 // If the value is known never to be zero, switch to the undef version. 7553 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 7554 if (DAG.isKnownNeverZero(N0)) 7555 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 7556 } 7557 7558 return SDValue(); 7559 } 7560 7561 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 7562 SDValue N0 = N->getOperand(0); 7563 EVT VT = N->getValueType(0); 7564 7565 // fold (ctlz_zero_undef c1) -> c2 7566 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7567 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 7568 return SDValue(); 7569 } 7570 7571 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 7572 SDValue N0 = N->getOperand(0); 7573 EVT VT = N->getValueType(0); 7574 7575 // fold (cttz c1) -> c2 7576 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7577 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 7578 7579 // If the value is known never to be zero, switch to the undef version. 7580 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 7581 if (DAG.isKnownNeverZero(N0)) 7582 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 7583 } 7584 7585 return SDValue(); 7586 } 7587 7588 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 7589 SDValue N0 = N->getOperand(0); 7590 EVT VT = N->getValueType(0); 7591 7592 // fold (cttz_zero_undef c1) -> c2 7593 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7594 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 7595 return SDValue(); 7596 } 7597 7598 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 7599 SDValue N0 = N->getOperand(0); 7600 EVT VT = N->getValueType(0); 7601 7602 // fold (ctpop c1) -> c2 7603 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7604 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 7605 return SDValue(); 7606 } 7607 7608 // FIXME: This should be checking for no signed zeros on individual operands, as 7609 // well as no nans. 7610 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 7611 SDValue RHS, 7612 const TargetLowering &TLI) { 7613 const TargetOptions &Options = DAG.getTarget().Options; 7614 EVT VT = LHS.getValueType(); 7615 7616 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 7617 TLI.isProfitableToCombineMinNumMaxNum(VT) && 7618 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 7619 } 7620 7621 /// Generate Min/Max node 7622 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 7623 SDValue RHS, SDValue True, SDValue False, 7624 ISD::CondCode CC, const TargetLowering &TLI, 7625 SelectionDAG &DAG) { 7626 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 7627 return SDValue(); 7628 7629 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 7630 switch (CC) { 7631 case ISD::SETOLT: 7632 case ISD::SETOLE: 7633 case ISD::SETLT: 7634 case ISD::SETLE: 7635 case ISD::SETULT: 7636 case ISD::SETULE: { 7637 // Since it's known never nan to get here already, either fminnum or 7638 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 7639 // expanded in terms of it. 7640 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7641 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 7642 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 7643 7644 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 7645 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 7646 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 7647 return SDValue(); 7648 } 7649 case ISD::SETOGT: 7650 case ISD::SETOGE: 7651 case ISD::SETGT: 7652 case ISD::SETGE: 7653 case ISD::SETUGT: 7654 case ISD::SETUGE: { 7655 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 7656 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 7657 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 7658 7659 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 7660 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 7661 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 7662 return SDValue(); 7663 } 7664 default: 7665 return SDValue(); 7666 } 7667 } 7668 7669 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 7670 SDValue Cond = N->getOperand(0); 7671 SDValue N1 = N->getOperand(1); 7672 SDValue N2 = N->getOperand(2); 7673 EVT VT = N->getValueType(0); 7674 EVT CondVT = Cond.getValueType(); 7675 SDLoc DL(N); 7676 7677 if (!VT.isInteger()) 7678 return SDValue(); 7679 7680 auto *C1 = dyn_cast<ConstantSDNode>(N1); 7681 auto *C2 = dyn_cast<ConstantSDNode>(N2); 7682 if (!C1 || !C2) 7683 return SDValue(); 7684 7685 // Only do this before legalization to avoid conflicting with target-specific 7686 // transforms in the other direction (create a select from a zext/sext). There 7687 // is also a target-independent combine here in DAGCombiner in the other 7688 // direction for (select Cond, -1, 0) when the condition is not i1. 7689 if (CondVT == MVT::i1 && !LegalOperations) { 7690 if (C1->isNullValue() && C2->isOne()) { 7691 // select Cond, 0, 1 --> zext (!Cond) 7692 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 7693 if (VT != MVT::i1) 7694 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 7695 return NotCond; 7696 } 7697 if (C1->isNullValue() && C2->isAllOnesValue()) { 7698 // select Cond, 0, -1 --> sext (!Cond) 7699 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 7700 if (VT != MVT::i1) 7701 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 7702 return NotCond; 7703 } 7704 if (C1->isOne() && C2->isNullValue()) { 7705 // select Cond, 1, 0 --> zext (Cond) 7706 if (VT != MVT::i1) 7707 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 7708 return Cond; 7709 } 7710 if (C1->isAllOnesValue() && C2->isNullValue()) { 7711 // select Cond, -1, 0 --> sext (Cond) 7712 if (VT != MVT::i1) 7713 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 7714 return Cond; 7715 } 7716 7717 // For any constants that differ by 1, we can transform the select into an 7718 // extend and add. Use a target hook because some targets may prefer to 7719 // transform in the other direction. 7720 if (TLI.convertSelectOfConstantsToMath(VT)) { 7721 if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) { 7722 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 7723 if (VT != MVT::i1) 7724 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 7725 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 7726 } 7727 if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) { 7728 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 7729 if (VT != MVT::i1) 7730 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 7731 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 7732 } 7733 } 7734 7735 return SDValue(); 7736 } 7737 7738 // fold (select Cond, 0, 1) -> (xor Cond, 1) 7739 // We can't do this reliably if integer based booleans have different contents 7740 // to floating point based booleans. This is because we can't tell whether we 7741 // have an integer-based boolean or a floating-point-based boolean unless we 7742 // can find the SETCC that produced it and inspect its operands. This is 7743 // fairly easy if C is the SETCC node, but it can potentially be 7744 // undiscoverable (or not reasonably discoverable). For example, it could be 7745 // in another basic block or it could require searching a complicated 7746 // expression. 7747 if (CondVT.isInteger() && 7748 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 7749 TargetLowering::ZeroOrOneBooleanContent && 7750 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 7751 TargetLowering::ZeroOrOneBooleanContent && 7752 C1->isNullValue() && C2->isOne()) { 7753 SDValue NotCond = 7754 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 7755 if (VT.bitsEq(CondVT)) 7756 return NotCond; 7757 return DAG.getZExtOrTrunc(NotCond, DL, VT); 7758 } 7759 7760 return SDValue(); 7761 } 7762 7763 SDValue DAGCombiner::visitSELECT(SDNode *N) { 7764 SDValue N0 = N->getOperand(0); 7765 SDValue N1 = N->getOperand(1); 7766 SDValue N2 = N->getOperand(2); 7767 EVT VT = N->getValueType(0); 7768 EVT VT0 = N0.getValueType(); 7769 SDLoc DL(N); 7770 7771 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 7772 return V; 7773 7774 // fold (select X, X, Y) -> (or X, Y) 7775 // fold (select X, 1, Y) -> (or C, Y) 7776 if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 7777 return DAG.getNode(ISD::OR, DL, VT, N0, N2); 7778 7779 if (SDValue V = foldSelectOfConstants(N)) 7780 return V; 7781 7782 // fold (select C, 0, X) -> (and (not C), X) 7783 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 7784 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 7785 AddToWorklist(NOTNode.getNode()); 7786 return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); 7787 } 7788 // fold (select C, X, 1) -> (or (not C), X) 7789 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 7790 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 7791 AddToWorklist(NOTNode.getNode()); 7792 return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); 7793 } 7794 // fold (select X, Y, X) -> (and X, Y) 7795 // fold (select X, Y, 0) -> (and X, Y) 7796 if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 7797 return DAG.getNode(ISD::AND, DL, VT, N0, N1); 7798 7799 // If we can fold this based on the true/false value, do so. 7800 if (SimplifySelectOps(N, N1, N2)) 7801 return SDValue(N, 0); // Don't revisit N. 7802 7803 if (VT0 == MVT::i1) { 7804 // The code in this block deals with the following 2 equivalences: 7805 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 7806 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 7807 // The target can specify its preferred form with the 7808 // shouldNormalizeToSelectSequence() callback. However we always transform 7809 // to the right anyway if we find the inner select exists in the DAG anyway 7810 // and we always transform to the left side if we know that we can further 7811 // optimize the combination of the conditions. 7812 bool normalizeToSequence = 7813 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 7814 // select (and Cond0, Cond1), X, Y 7815 // -> select Cond0, (select Cond1, X, Y), Y 7816 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 7817 SDValue Cond0 = N0->getOperand(0); 7818 SDValue Cond1 = N0->getOperand(1); 7819 SDValue InnerSelect = 7820 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2); 7821 if (normalizeToSequence || !InnerSelect.use_empty()) 7822 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 7823 InnerSelect, N2); 7824 // Cleanup on failure. 7825 if (InnerSelect.use_empty()) 7826 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 7827 } 7828 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 7829 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 7830 SDValue Cond0 = N0->getOperand(0); 7831 SDValue Cond1 = N0->getOperand(1); 7832 SDValue InnerSelect = 7833 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2); 7834 if (normalizeToSequence || !InnerSelect.use_empty()) 7835 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 7836 InnerSelect); 7837 // Cleanup on failure. 7838 if (InnerSelect.use_empty()) 7839 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 7840 } 7841 7842 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 7843 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 7844 SDValue N1_0 = N1->getOperand(0); 7845 SDValue N1_1 = N1->getOperand(1); 7846 SDValue N1_2 = N1->getOperand(2); 7847 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 7848 // Create the actual and node if we can generate good code for it. 7849 if (!normalizeToSequence) { 7850 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 7851 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, N2); 7852 } 7853 // Otherwise see if we can optimize the "and" to a better pattern. 7854 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 7855 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 7856 N2); 7857 } 7858 } 7859 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 7860 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 7861 SDValue N2_0 = N2->getOperand(0); 7862 SDValue N2_1 = N2->getOperand(1); 7863 SDValue N2_2 = N2->getOperand(2); 7864 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 7865 // Create the actual or node if we can generate good code for it. 7866 if (!normalizeToSequence) { 7867 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 7868 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, N2_2); 7869 } 7870 // Otherwise see if we can optimize to a better pattern. 7871 if (SDValue Combined = visitORLike(N0, N2_0, N)) 7872 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 7873 N2_2); 7874 } 7875 } 7876 } 7877 7878 // select (not Cond), N1, N2 -> select Cond, N2, N1 7879 if (SDValue F = extractBooleanFlip(N0, TLI)) 7880 return DAG.getSelect(DL, VT, F, N2, N1); 7881 7882 // Fold selects based on a setcc into other things, such as min/max/abs. 7883 if (N0.getOpcode() == ISD::SETCC) { 7884 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 7885 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 7886 7887 // select (fcmp lt x, y), x, y -> fminnum x, y 7888 // select (fcmp gt x, y), x, y -> fmaxnum x, y 7889 // 7890 // This is OK if we don't care what happens if either operand is a NaN. 7891 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 7892 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 7893 CC, TLI, DAG)) 7894 return FMinMax; 7895 7896 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 7897 // This is conservatively limited to pre-legal-operations to give targets 7898 // a chance to reverse the transform if they want to do that. Also, it is 7899 // unlikely that the pattern would be formed late, so it's probably not 7900 // worth going through the other checks. 7901 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 7902 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 7903 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 7904 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 7905 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 7906 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 7907 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 7908 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 7909 // 7910 // The IR equivalent of this transform would have this form: 7911 // %a = add %x, C 7912 // %c = icmp ugt %x, ~C 7913 // %r = select %c, -1, %a 7914 // => 7915 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 7916 // %u0 = extractvalue %u, 0 7917 // %u1 = extractvalue %u, 1 7918 // %r = select %u1, -1, %u0 7919 SDVTList VTs = DAG.getVTList(VT, VT0); 7920 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 7921 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 7922 } 7923 } 7924 7925 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 7926 (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) 7927 return DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, N2, 7928 N0.getOperand(2)); 7929 7930 return SimplifySelect(DL, N0, N1, N2); 7931 } 7932 7933 return SDValue(); 7934 } 7935 7936 static 7937 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 7938 SDLoc DL(N); 7939 EVT LoVT, HiVT; 7940 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 7941 7942 // Split the inputs. 7943 SDValue Lo, Hi, LL, LH, RL, RH; 7944 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 7945 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 7946 7947 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 7948 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 7949 7950 return std::make_pair(Lo, Hi); 7951 } 7952 7953 // This function assumes all the vselect's arguments are CONCAT_VECTOR 7954 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 7955 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 7956 SDLoc DL(N); 7957 SDValue Cond = N->getOperand(0); 7958 SDValue LHS = N->getOperand(1); 7959 SDValue RHS = N->getOperand(2); 7960 EVT VT = N->getValueType(0); 7961 int NumElems = VT.getVectorNumElements(); 7962 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 7963 RHS.getOpcode() == ISD::CONCAT_VECTORS && 7964 Cond.getOpcode() == ISD::BUILD_VECTOR); 7965 7966 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 7967 // binary ones here. 7968 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 7969 return SDValue(); 7970 7971 // We're sure we have an even number of elements due to the 7972 // concat_vectors we have as arguments to vselect. 7973 // Skip BV elements until we find one that's not an UNDEF 7974 // After we find an UNDEF element, keep looping until we get to half the 7975 // length of the BV and see if all the non-undef nodes are the same. 7976 ConstantSDNode *BottomHalf = nullptr; 7977 for (int i = 0; i < NumElems / 2; ++i) { 7978 if (Cond->getOperand(i)->isUndef()) 7979 continue; 7980 7981 if (BottomHalf == nullptr) 7982 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 7983 else if (Cond->getOperand(i).getNode() != BottomHalf) 7984 return SDValue(); 7985 } 7986 7987 // Do the same for the second half of the BuildVector 7988 ConstantSDNode *TopHalf = nullptr; 7989 for (int i = NumElems / 2; i < NumElems; ++i) { 7990 if (Cond->getOperand(i)->isUndef()) 7991 continue; 7992 7993 if (TopHalf == nullptr) 7994 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 7995 else if (Cond->getOperand(i).getNode() != TopHalf) 7996 return SDValue(); 7997 } 7998 7999 assert(TopHalf && BottomHalf && 8000 "One half of the selector was all UNDEFs and the other was all the " 8001 "same value. This should have been addressed before this function."); 8002 return DAG.getNode( 8003 ISD::CONCAT_VECTORS, DL, VT, 8004 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 8005 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 8006 } 8007 8008 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 8009 if (Level >= AfterLegalizeTypes) 8010 return SDValue(); 8011 8012 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 8013 SDValue Mask = MSC->getMask(); 8014 SDValue Data = MSC->getValue(); 8015 SDLoc DL(N); 8016 8017 // If the MSCATTER data type requires splitting and the mask is provided by a 8018 // SETCC, then split both nodes and its operands before legalization. This 8019 // prevents the type legalizer from unrolling SETCC into scalar comparisons 8020 // and enables future optimizations (e.g. min/max pattern matching on X86). 8021 if (Mask.getOpcode() != ISD::SETCC) 8022 return SDValue(); 8023 8024 // Check if any splitting is required. 8025 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 8026 TargetLowering::TypeSplitVector) 8027 return SDValue(); 8028 SDValue MaskLo, MaskHi; 8029 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 8030 8031 EVT LoVT, HiVT; 8032 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 8033 8034 SDValue Chain = MSC->getChain(); 8035 8036 EVT MemoryVT = MSC->getMemoryVT(); 8037 unsigned Alignment = MSC->getOriginalAlignment(); 8038 8039 EVT LoMemVT, HiMemVT; 8040 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 8041 8042 SDValue DataLo, DataHi; 8043 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 8044 8045 SDValue Scale = MSC->getScale(); 8046 SDValue BasePtr = MSC->getBasePtr(); 8047 SDValue IndexLo, IndexHi; 8048 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 8049 8050 MachineMemOperand *MMO = DAG.getMachineFunction(). 8051 getMachineMemOperand(MSC->getPointerInfo(), 8052 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 8053 Alignment, MSC->getAAInfo(), MSC->getRanges()); 8054 8055 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo, Scale }; 8056 SDValue Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), 8057 DataLo.getValueType(), DL, OpsLo, MMO); 8058 8059 // The order of the Scatter operation after split is well defined. The "Hi" 8060 // part comes after the "Lo". So these two operations should be chained one 8061 // after another. 8062 SDValue OpsHi[] = { Lo, DataHi, MaskHi, BasePtr, IndexHi, Scale }; 8063 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 8064 DL, OpsHi, MMO); 8065 } 8066 8067 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 8068 if (Level >= AfterLegalizeTypes) 8069 return SDValue(); 8070 8071 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 8072 SDValue Mask = MST->getMask(); 8073 SDValue Data = MST->getValue(); 8074 EVT VT = Data.getValueType(); 8075 SDLoc DL(N); 8076 8077 // If the MSTORE data type requires splitting and the mask is provided by a 8078 // SETCC, then split both nodes and its operands before legalization. This 8079 // prevents the type legalizer from unrolling SETCC into scalar comparisons 8080 // and enables future optimizations (e.g. min/max pattern matching on X86). 8081 if (Mask.getOpcode() == ISD::SETCC) { 8082 // Check if any splitting is required. 8083 if (TLI.getTypeAction(*DAG.getContext(), VT) != 8084 TargetLowering::TypeSplitVector) 8085 return SDValue(); 8086 8087 SDValue MaskLo, MaskHi, Lo, Hi; 8088 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 8089 8090 SDValue Chain = MST->getChain(); 8091 SDValue Ptr = MST->getBasePtr(); 8092 8093 EVT MemoryVT = MST->getMemoryVT(); 8094 unsigned Alignment = MST->getOriginalAlignment(); 8095 8096 // if Alignment is equal to the vector size, 8097 // take the half of it for the second part 8098 unsigned SecondHalfAlignment = 8099 (Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment; 8100 8101 EVT LoMemVT, HiMemVT; 8102 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 8103 8104 SDValue DataLo, DataHi; 8105 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 8106 8107 MachineMemOperand *MMO = DAG.getMachineFunction(). 8108 getMachineMemOperand(MST->getPointerInfo(), 8109 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 8110 Alignment, MST->getAAInfo(), MST->getRanges()); 8111 8112 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 8113 MST->isTruncatingStore(), 8114 MST->isCompressingStore()); 8115 8116 Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, 8117 MST->isCompressingStore()); 8118 unsigned HiOffset = LoMemVT.getStoreSize(); 8119 8120 MMO = DAG.getMachineFunction().getMachineMemOperand( 8121 MST->getPointerInfo().getWithOffset(HiOffset), 8122 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), SecondHalfAlignment, 8123 MST->getAAInfo(), MST->getRanges()); 8124 8125 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 8126 MST->isTruncatingStore(), 8127 MST->isCompressingStore()); 8128 8129 AddToWorklist(Lo.getNode()); 8130 AddToWorklist(Hi.getNode()); 8131 8132 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 8133 } 8134 return SDValue(); 8135 } 8136 8137 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 8138 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 8139 SDValue Mask = MGT->getMask(); 8140 SDLoc DL(N); 8141 8142 // Zap gathers with a zero mask. 8143 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 8144 return CombineTo(N, MGT->getPassThru(), MGT->getChain()); 8145 8146 if (Level >= AfterLegalizeTypes) 8147 return SDValue(); 8148 8149 // If the MGATHER result requires splitting and the mask is provided by a 8150 // SETCC, then split both nodes and its operands before legalization. This 8151 // prevents the type legalizer from unrolling SETCC into scalar comparisons 8152 // and enables future optimizations (e.g. min/max pattern matching on X86). 8153 8154 if (Mask.getOpcode() != ISD::SETCC) 8155 return SDValue(); 8156 8157 EVT VT = N->getValueType(0); 8158 8159 // Check if any splitting is required. 8160 if (TLI.getTypeAction(*DAG.getContext(), VT) != 8161 TargetLowering::TypeSplitVector) 8162 return SDValue(); 8163 8164 SDValue MaskLo, MaskHi, Lo, Hi; 8165 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 8166 8167 SDValue PassThru = MGT->getPassThru(); 8168 SDValue PassThruLo, PassThruHi; 8169 std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL); 8170 8171 EVT LoVT, HiVT; 8172 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 8173 8174 SDValue Chain = MGT->getChain(); 8175 EVT MemoryVT = MGT->getMemoryVT(); 8176 unsigned Alignment = MGT->getOriginalAlignment(); 8177 8178 EVT LoMemVT, HiMemVT; 8179 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 8180 8181 SDValue Scale = MGT->getScale(); 8182 SDValue BasePtr = MGT->getBasePtr(); 8183 SDValue Index = MGT->getIndex(); 8184 SDValue IndexLo, IndexHi; 8185 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 8186 8187 MachineMemOperand *MMO = DAG.getMachineFunction(). 8188 getMachineMemOperand(MGT->getPointerInfo(), 8189 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 8190 Alignment, MGT->getAAInfo(), MGT->getRanges()); 8191 8192 SDValue OpsLo[] = { Chain, PassThruLo, MaskLo, BasePtr, IndexLo, Scale }; 8193 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 8194 MMO); 8195 8196 SDValue OpsHi[] = { Chain, PassThruHi, MaskHi, BasePtr, IndexHi, Scale }; 8197 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 8198 MMO); 8199 8200 AddToWorklist(Lo.getNode()); 8201 AddToWorklist(Hi.getNode()); 8202 8203 // Build a factor node to remember that this load is independent of the 8204 // other one. 8205 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 8206 Hi.getValue(1)); 8207 8208 // Legalized the chain result - switch anything that used the old chain to 8209 // use the new one. 8210 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 8211 8212 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 8213 8214 SDValue RetOps[] = { GatherRes, Chain }; 8215 return DAG.getMergeValues(RetOps, DL); 8216 } 8217 8218 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 8219 if (Level >= AfterLegalizeTypes) 8220 return SDValue(); 8221 8222 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 8223 SDValue Mask = MLD->getMask(); 8224 SDLoc DL(N); 8225 8226 // If the MLOAD result requires splitting and the mask is provided by a 8227 // SETCC, then split both nodes and its operands before legalization. This 8228 // prevents the type legalizer from unrolling SETCC into scalar comparisons 8229 // and enables future optimizations (e.g. min/max pattern matching on X86). 8230 if (Mask.getOpcode() == ISD::SETCC) { 8231 EVT VT = N->getValueType(0); 8232 8233 // Check if any splitting is required. 8234 if (TLI.getTypeAction(*DAG.getContext(), VT) != 8235 TargetLowering::TypeSplitVector) 8236 return SDValue(); 8237 8238 SDValue MaskLo, MaskHi, Lo, Hi; 8239 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 8240 8241 SDValue PassThru = MLD->getPassThru(); 8242 SDValue PassThruLo, PassThruHi; 8243 std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL); 8244 8245 EVT LoVT, HiVT; 8246 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 8247 8248 SDValue Chain = MLD->getChain(); 8249 SDValue Ptr = MLD->getBasePtr(); 8250 EVT MemoryVT = MLD->getMemoryVT(); 8251 unsigned Alignment = MLD->getOriginalAlignment(); 8252 8253 // if Alignment is equal to the vector size, 8254 // take the half of it for the second part 8255 unsigned SecondHalfAlignment = 8256 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 8257 Alignment/2 : Alignment; 8258 8259 EVT LoMemVT, HiMemVT; 8260 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 8261 8262 MachineMemOperand *MMO = DAG.getMachineFunction(). 8263 getMachineMemOperand(MLD->getPointerInfo(), 8264 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 8265 Alignment, MLD->getAAInfo(), MLD->getRanges()); 8266 8267 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, PassThruLo, LoMemVT, 8268 MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad()); 8269 8270 Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, 8271 MLD->isExpandingLoad()); 8272 unsigned HiOffset = LoMemVT.getStoreSize(); 8273 8274 MMO = DAG.getMachineFunction().getMachineMemOperand( 8275 MLD->getPointerInfo().getWithOffset(HiOffset), 8276 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), SecondHalfAlignment, 8277 MLD->getAAInfo(), MLD->getRanges()); 8278 8279 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, PassThruHi, HiMemVT, 8280 MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad()); 8281 8282 AddToWorklist(Lo.getNode()); 8283 AddToWorklist(Hi.getNode()); 8284 8285 // Build a factor node to remember that this load is independent of the 8286 // other one. 8287 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 8288 Hi.getValue(1)); 8289 8290 // Legalized the chain result - switch anything that used the old chain to 8291 // use the new one. 8292 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 8293 8294 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 8295 8296 SDValue RetOps[] = { LoadRes, Chain }; 8297 return DAG.getMergeValues(RetOps, DL); 8298 } 8299 return SDValue(); 8300 } 8301 8302 /// A vector select of 2 constant vectors can be simplified to math/logic to 8303 /// avoid a variable select instruction and possibly avoid constant loads. 8304 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 8305 SDValue Cond = N->getOperand(0); 8306 SDValue N1 = N->getOperand(1); 8307 SDValue N2 = N->getOperand(2); 8308 EVT VT = N->getValueType(0); 8309 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 8310 !TLI.convertSelectOfConstantsToMath(VT) || 8311 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 8312 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 8313 return SDValue(); 8314 8315 // Check if we can use the condition value to increment/decrement a single 8316 // constant value. This simplifies a select to an add and removes a constant 8317 // load/materialization from the general case. 8318 bool AllAddOne = true; 8319 bool AllSubOne = true; 8320 unsigned Elts = VT.getVectorNumElements(); 8321 for (unsigned i = 0; i != Elts; ++i) { 8322 SDValue N1Elt = N1.getOperand(i); 8323 SDValue N2Elt = N2.getOperand(i); 8324 if (N1Elt.isUndef() || N2Elt.isUndef()) 8325 continue; 8326 8327 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 8328 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 8329 if (C1 != C2 + 1) 8330 AllAddOne = false; 8331 if (C1 != C2 - 1) 8332 AllSubOne = false; 8333 } 8334 8335 // Further simplifications for the extra-special cases where the constants are 8336 // all 0 or all -1 should be implemented as folds of these patterns. 8337 SDLoc DL(N); 8338 if (AllAddOne || AllSubOne) { 8339 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 8340 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 8341 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 8342 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 8343 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 8344 } 8345 8346 // The general case for select-of-constants: 8347 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 8348 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 8349 // leave that to a machine-specific pass. 8350 return SDValue(); 8351 } 8352 8353 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 8354 SDValue N0 = N->getOperand(0); 8355 SDValue N1 = N->getOperand(1); 8356 SDValue N2 = N->getOperand(2); 8357 EVT VT = N->getValueType(0); 8358 SDLoc DL(N); 8359 8360 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 8361 return V; 8362 8363 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 8364 if (SDValue F = extractBooleanFlip(N0, TLI)) 8365 return DAG.getSelect(DL, VT, F, N2, N1); 8366 8367 // Canonicalize integer abs. 8368 // vselect (setg[te] X, 0), X, -X -> 8369 // vselect (setgt X, -1), X, -X -> 8370 // vselect (setl[te] X, 0), -X, X -> 8371 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 8372 if (N0.getOpcode() == ISD::SETCC) { 8373 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 8374 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 8375 bool isAbs = false; 8376 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 8377 8378 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 8379 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 8380 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 8381 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 8382 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 8383 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 8384 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 8385 8386 if (isAbs) { 8387 EVT VT = LHS.getValueType(); 8388 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 8389 return DAG.getNode(ISD::ABS, DL, VT, LHS); 8390 8391 SDValue Shift = DAG.getNode( 8392 ISD::SRA, DL, VT, LHS, 8393 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT)); 8394 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 8395 AddToWorklist(Shift.getNode()); 8396 AddToWorklist(Add.getNode()); 8397 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 8398 } 8399 8400 // vselect x, y (fcmp lt x, y) -> fminnum x, y 8401 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 8402 // 8403 // This is OK if we don't care about what happens if either operand is a 8404 // NaN. 8405 // 8406 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N0.getOperand(0), 8407 N0.getOperand(1), TLI)) { 8408 if (SDValue FMinMax = combineMinNumMaxNum( 8409 DL, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG)) 8410 return FMinMax; 8411 } 8412 8413 // If this select has a condition (setcc) with narrower operands than the 8414 // select, try to widen the compare to match the select width. 8415 // TODO: This should be extended to handle any constant. 8416 // TODO: This could be extended to handle non-loading patterns, but that 8417 // requires thorough testing to avoid regressions. 8418 if (isNullOrNullSplat(RHS)) { 8419 EVT NarrowVT = LHS.getValueType(); 8420 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 8421 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 8422 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 8423 unsigned WideWidth = WideVT.getScalarSizeInBits(); 8424 bool IsSigned = isSignedIntSetCC(CC); 8425 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 8426 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 8427 SetCCWidth != 1 && SetCCWidth < WideWidth && 8428 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 8429 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 8430 // Both compare operands can be widened for free. The LHS can use an 8431 // extended load, and the RHS is a constant: 8432 // vselect (ext (setcc load(X), C)), N1, N2 --> 8433 // vselect (setcc extload(X), C'), N1, N2 8434 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 8435 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 8436 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 8437 EVT WideSetCCVT = getSetCCResultType(WideVT); 8438 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 8439 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 8440 } 8441 } 8442 } 8443 8444 if (SimplifySelectOps(N, N1, N2)) 8445 return SDValue(N, 0); // Don't revisit N. 8446 8447 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 8448 if (ISD::isBuildVectorAllOnes(N0.getNode())) 8449 return N1; 8450 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 8451 if (ISD::isBuildVectorAllZeros(N0.getNode())) 8452 return N2; 8453 8454 // The ConvertSelectToConcatVector function is assuming both the above 8455 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 8456 // and addressed. 8457 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 8458 N2.getOpcode() == ISD::CONCAT_VECTORS && 8459 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 8460 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 8461 return CV; 8462 } 8463 8464 if (SDValue V = foldVSelectOfConstants(N)) 8465 return V; 8466 8467 return SDValue(); 8468 } 8469 8470 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 8471 SDValue N0 = N->getOperand(0); 8472 SDValue N1 = N->getOperand(1); 8473 SDValue N2 = N->getOperand(2); 8474 SDValue N3 = N->getOperand(3); 8475 SDValue N4 = N->getOperand(4); 8476 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 8477 8478 // fold select_cc lhs, rhs, x, x, cc -> x 8479 if (N2 == N3) 8480 return N2; 8481 8482 // Determine if the condition we're dealing with is constant 8483 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 8484 CC, SDLoc(N), false)) { 8485 AddToWorklist(SCC.getNode()); 8486 8487 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 8488 if (!SCCC->isNullValue()) 8489 return N2; // cond always true -> true val 8490 else 8491 return N3; // cond always false -> false val 8492 } else if (SCC->isUndef()) { 8493 // When the condition is UNDEF, just return the first operand. This is 8494 // coherent the DAG creation, no setcc node is created in this case 8495 return N2; 8496 } else if (SCC.getOpcode() == ISD::SETCC) { 8497 // Fold to a simpler select_cc 8498 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 8499 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 8500 SCC.getOperand(2)); 8501 } 8502 } 8503 8504 // If we can fold this based on the true/false value, do so. 8505 if (SimplifySelectOps(N, N2, N3)) 8506 return SDValue(N, 0); // Don't revisit N. 8507 8508 // fold select_cc into other things, such as min/max/abs 8509 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 8510 } 8511 8512 SDValue DAGCombiner::visitSETCC(SDNode *N) { 8513 // setcc is very commonly used as an argument to brcond. This pattern 8514 // also lend itself to numerous combines and, as a result, it is desired 8515 // we keep the argument to a brcond as a setcc as much as possible. 8516 bool PreferSetCC = 8517 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 8518 8519 SDValue Combined = SimplifySetCC( 8520 N->getValueType(0), N->getOperand(0), N->getOperand(1), 8521 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); 8522 8523 if (!Combined) 8524 return SDValue(); 8525 8526 // If we prefer to have a setcc, and we don't, we'll try our best to 8527 // recreate one using rebuildSetCC. 8528 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 8529 SDValue NewSetCC = rebuildSetCC(Combined); 8530 8531 // We don't have anything interesting to combine to. 8532 if (NewSetCC.getNode() == N) 8533 return SDValue(); 8534 8535 if (NewSetCC) 8536 return NewSetCC; 8537 } 8538 8539 return Combined; 8540 } 8541 8542 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 8543 SDValue LHS = N->getOperand(0); 8544 SDValue RHS = N->getOperand(1); 8545 SDValue Carry = N->getOperand(2); 8546 SDValue Cond = N->getOperand(3); 8547 8548 // If Carry is false, fold to a regular SETCC. 8549 if (isNullConstant(Carry)) 8550 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 8551 8552 return SDValue(); 8553 } 8554 8555 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 8556 /// a build_vector of constants. 8557 /// This function is called by the DAGCombiner when visiting sext/zext/aext 8558 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 8559 /// Vector extends are not folded if operations are legal; this is to 8560 /// avoid introducing illegal build_vector dag nodes. 8561 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 8562 SelectionDAG &DAG, bool LegalTypes) { 8563 unsigned Opcode = N->getOpcode(); 8564 SDValue N0 = N->getOperand(0); 8565 EVT VT = N->getValueType(0); 8566 8567 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 8568 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 8569 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 8570 && "Expected EXTEND dag node in input!"); 8571 8572 // fold (sext c1) -> c1 8573 // fold (zext c1) -> c1 8574 // fold (aext c1) -> c1 8575 if (isa<ConstantSDNode>(N0)) 8576 return DAG.getNode(Opcode, SDLoc(N), VT, N0); 8577 8578 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 8579 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 8580 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 8581 EVT SVT = VT.getScalarType(); 8582 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 8583 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 8584 return SDValue(); 8585 8586 // We can fold this node into a build_vector. 8587 unsigned VTBits = SVT.getSizeInBits(); 8588 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 8589 SmallVector<SDValue, 8> Elts; 8590 unsigned NumElts = VT.getVectorNumElements(); 8591 SDLoc DL(N); 8592 8593 // For zero-extensions, UNDEF elements still guarantee to have the upper 8594 // bits set to zero. 8595 bool IsZext = 8596 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 8597 8598 for (unsigned i = 0; i != NumElts; ++i) { 8599 SDValue Op = N0.getOperand(i); 8600 if (Op.isUndef()) { 8601 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 8602 continue; 8603 } 8604 8605 SDLoc DL(Op); 8606 // Get the constant value and if needed trunc it to the size of the type. 8607 // Nodes like build_vector might have constants wider than the scalar type. 8608 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 8609 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 8610 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 8611 else 8612 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 8613 } 8614 8615 return DAG.getBuildVector(VT, DL, Elts); 8616 } 8617 8618 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 8619 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 8620 // transformation. Returns true if extension are possible and the above 8621 // mentioned transformation is profitable. 8622 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 8623 unsigned ExtOpc, 8624 SmallVectorImpl<SDNode *> &ExtendNodes, 8625 const TargetLowering &TLI) { 8626 bool HasCopyToRegUses = false; 8627 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 8628 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 8629 UE = N0.getNode()->use_end(); 8630 UI != UE; ++UI) { 8631 SDNode *User = *UI; 8632 if (User == N) 8633 continue; 8634 if (UI.getUse().getResNo() != N0.getResNo()) 8635 continue; 8636 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 8637 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 8638 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 8639 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 8640 // Sign bits will be lost after a zext. 8641 return false; 8642 bool Add = false; 8643 for (unsigned i = 0; i != 2; ++i) { 8644 SDValue UseOp = User->getOperand(i); 8645 if (UseOp == N0) 8646 continue; 8647 if (!isa<ConstantSDNode>(UseOp)) 8648 return false; 8649 Add = true; 8650 } 8651 if (Add) 8652 ExtendNodes.push_back(User); 8653 continue; 8654 } 8655 // If truncates aren't free and there are users we can't 8656 // extend, it isn't worthwhile. 8657 if (!isTruncFree) 8658 return false; 8659 // Remember if this value is live-out. 8660 if (User->getOpcode() == ISD::CopyToReg) 8661 HasCopyToRegUses = true; 8662 } 8663 8664 if (HasCopyToRegUses) { 8665 bool BothLiveOut = false; 8666 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8667 UI != UE; ++UI) { 8668 SDUse &Use = UI.getUse(); 8669 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 8670 BothLiveOut = true; 8671 break; 8672 } 8673 } 8674 if (BothLiveOut) 8675 // Both unextended and extended values are live out. There had better be 8676 // a good reason for the transformation. 8677 return ExtendNodes.size(); 8678 } 8679 return true; 8680 } 8681 8682 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 8683 SDValue OrigLoad, SDValue ExtLoad, 8684 ISD::NodeType ExtType) { 8685 // Extend SetCC uses if necessary. 8686 SDLoc DL(ExtLoad); 8687 for (SDNode *SetCC : SetCCs) { 8688 SmallVector<SDValue, 4> Ops; 8689 8690 for (unsigned j = 0; j != 2; ++j) { 8691 SDValue SOp = SetCC->getOperand(j); 8692 if (SOp == OrigLoad) 8693 Ops.push_back(ExtLoad); 8694 else 8695 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 8696 } 8697 8698 Ops.push_back(SetCC->getOperand(2)); 8699 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 8700 } 8701 } 8702 8703 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 8704 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 8705 SDValue N0 = N->getOperand(0); 8706 EVT DstVT = N->getValueType(0); 8707 EVT SrcVT = N0.getValueType(); 8708 8709 assert((N->getOpcode() == ISD::SIGN_EXTEND || 8710 N->getOpcode() == ISD::ZERO_EXTEND) && 8711 "Unexpected node type (not an extend)!"); 8712 8713 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 8714 // For example, on a target with legal v4i32, but illegal v8i32, turn: 8715 // (v8i32 (sext (v8i16 (load x)))) 8716 // into: 8717 // (v8i32 (concat_vectors (v4i32 (sextload x)), 8718 // (v4i32 (sextload (x + 16))))) 8719 // Where uses of the original load, i.e.: 8720 // (v8i16 (load x)) 8721 // are replaced with: 8722 // (v8i16 (truncate 8723 // (v8i32 (concat_vectors (v4i32 (sextload x)), 8724 // (v4i32 (sextload (x + 16))))))) 8725 // 8726 // This combine is only applicable to illegal, but splittable, vectors. 8727 // All legal types, and illegal non-vector types, are handled elsewhere. 8728 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 8729 // 8730 if (N0->getOpcode() != ISD::LOAD) 8731 return SDValue(); 8732 8733 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 8734 8735 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 8736 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 8737 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 8738 return SDValue(); 8739 8740 SmallVector<SDNode *, 4> SetCCs; 8741 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 8742 return SDValue(); 8743 8744 ISD::LoadExtType ExtType = 8745 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 8746 8747 // Try to split the vector types to get down to legal types. 8748 EVT SplitSrcVT = SrcVT; 8749 EVT SplitDstVT = DstVT; 8750 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 8751 SplitSrcVT.getVectorNumElements() > 1) { 8752 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 8753 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 8754 } 8755 8756 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 8757 return SDValue(); 8758 8759 SDLoc DL(N); 8760 const unsigned NumSplits = 8761 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 8762 const unsigned Stride = SplitSrcVT.getStoreSize(); 8763 SmallVector<SDValue, 4> Loads; 8764 SmallVector<SDValue, 4> Chains; 8765 8766 SDValue BasePtr = LN0->getBasePtr(); 8767 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 8768 const unsigned Offset = Idx * Stride; 8769 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 8770 8771 SDValue SplitLoad = DAG.getExtLoad( 8772 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 8773 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 8774 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 8775 8776 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 8777 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 8778 8779 Loads.push_back(SplitLoad.getValue(0)); 8780 Chains.push_back(SplitLoad.getValue(1)); 8781 } 8782 8783 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 8784 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 8785 8786 // Simplify TF. 8787 AddToWorklist(NewChain.getNode()); 8788 8789 CombineTo(N, NewValue); 8790 8791 // Replace uses of the original load (before extension) 8792 // with a truncate of the concatenated sextloaded vectors. 8793 SDValue Trunc = 8794 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 8795 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 8796 CombineTo(N0.getNode(), Trunc, NewChain); 8797 return SDValue(N, 0); // Return N so it doesn't get rechecked! 8798 } 8799 8800 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 8801 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 8802 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 8803 assert(N->getOpcode() == ISD::ZERO_EXTEND); 8804 EVT VT = N->getValueType(0); 8805 EVT OrigVT = N->getOperand(0).getValueType(); 8806 if (TLI.isZExtFree(OrigVT, VT)) 8807 return SDValue(); 8808 8809 // and/or/xor 8810 SDValue N0 = N->getOperand(0); 8811 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 8812 N0.getOpcode() == ISD::XOR) || 8813 N0.getOperand(1).getOpcode() != ISD::Constant || 8814 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 8815 return SDValue(); 8816 8817 // shl/shr 8818 SDValue N1 = N0->getOperand(0); 8819 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 8820 N1.getOperand(1).getOpcode() != ISD::Constant || 8821 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 8822 return SDValue(); 8823 8824 // load 8825 if (!isa<LoadSDNode>(N1.getOperand(0))) 8826 return SDValue(); 8827 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 8828 EVT MemVT = Load->getMemoryVT(); 8829 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 8830 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 8831 return SDValue(); 8832 8833 8834 // If the shift op is SHL, the logic op must be AND, otherwise the result 8835 // will be wrong. 8836 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 8837 return SDValue(); 8838 8839 if (!N0.hasOneUse() || !N1.hasOneUse()) 8840 return SDValue(); 8841 8842 SmallVector<SDNode*, 4> SetCCs; 8843 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 8844 ISD::ZERO_EXTEND, SetCCs, TLI)) 8845 return SDValue(); 8846 8847 // Actually do the transformation. 8848 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 8849 Load->getChain(), Load->getBasePtr(), 8850 Load->getMemoryVT(), Load->getMemOperand()); 8851 8852 SDLoc DL1(N1); 8853 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 8854 N1.getOperand(1)); 8855 8856 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 8857 Mask = Mask.zext(VT.getSizeInBits()); 8858 SDLoc DL0(N0); 8859 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 8860 DAG.getConstant(Mask, DL0, VT)); 8861 8862 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 8863 CombineTo(N, And); 8864 if (SDValue(Load, 0).hasOneUse()) { 8865 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 8866 } else { 8867 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 8868 Load->getValueType(0), ExtLoad); 8869 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 8870 } 8871 8872 // N0 is dead at this point. 8873 recursivelyDeleteUnusedNodes(N0.getNode()); 8874 8875 return SDValue(N,0); // Return N so it doesn't get rechecked! 8876 } 8877 8878 /// If we're narrowing or widening the result of a vector select and the final 8879 /// size is the same size as a setcc (compare) feeding the select, then try to 8880 /// apply the cast operation to the select's operands because matching vector 8881 /// sizes for a select condition and other operands should be more efficient. 8882 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 8883 unsigned CastOpcode = Cast->getOpcode(); 8884 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 8885 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 8886 CastOpcode == ISD::FP_ROUND) && 8887 "Unexpected opcode for vector select narrowing/widening"); 8888 8889 // We only do this transform before legal ops because the pattern may be 8890 // obfuscated by target-specific operations after legalization. Do not create 8891 // an illegal select op, however, because that may be difficult to lower. 8892 EVT VT = Cast->getValueType(0); 8893 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 8894 return SDValue(); 8895 8896 SDValue VSel = Cast->getOperand(0); 8897 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 8898 VSel.getOperand(0).getOpcode() != ISD::SETCC) 8899 return SDValue(); 8900 8901 // Does the setcc have the same vector size as the casted select? 8902 SDValue SetCC = VSel.getOperand(0); 8903 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 8904 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 8905 return SDValue(); 8906 8907 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 8908 SDValue A = VSel.getOperand(1); 8909 SDValue B = VSel.getOperand(2); 8910 SDValue CastA, CastB; 8911 SDLoc DL(Cast); 8912 if (CastOpcode == ISD::FP_ROUND) { 8913 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 8914 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 8915 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 8916 } else { 8917 CastA = DAG.getNode(CastOpcode, DL, VT, A); 8918 CastB = DAG.getNode(CastOpcode, DL, VT, B); 8919 } 8920 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 8921 } 8922 8923 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 8924 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 8925 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 8926 const TargetLowering &TLI, EVT VT, 8927 bool LegalOperations, SDNode *N, 8928 SDValue N0, ISD::LoadExtType ExtLoadType) { 8929 SDNode *N0Node = N0.getNode(); 8930 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 8931 : ISD::isZEXTLoad(N0Node); 8932 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 8933 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 8934 return SDValue(); 8935 8936 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 8937 EVT MemVT = LN0->getMemoryVT(); 8938 if ((LegalOperations || LN0->isVolatile() || VT.isVector()) && 8939 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 8940 return SDValue(); 8941 8942 SDValue ExtLoad = 8943 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 8944 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 8945 Combiner.CombineTo(N, ExtLoad); 8946 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 8947 if (LN0->use_empty()) 8948 Combiner.recursivelyDeleteUnusedNodes(LN0); 8949 return SDValue(N, 0); // Return N so it doesn't get rechecked! 8950 } 8951 8952 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 8953 // Only generate vector extloads when 1) they're legal, and 2) they are 8954 // deemed desirable by the target. 8955 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 8956 const TargetLowering &TLI, EVT VT, 8957 bool LegalOperations, SDNode *N, SDValue N0, 8958 ISD::LoadExtType ExtLoadType, 8959 ISD::NodeType ExtOpc) { 8960 if (!ISD::isNON_EXTLoad(N0.getNode()) || 8961 !ISD::isUNINDEXEDLoad(N0.getNode()) || 8962 ((LegalOperations || VT.isVector() || 8963 cast<LoadSDNode>(N0)->isVolatile()) && 8964 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 8965 return {}; 8966 8967 bool DoXform = true; 8968 SmallVector<SDNode *, 4> SetCCs; 8969 if (!N0.hasOneUse()) 8970 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 8971 if (VT.isVector()) 8972 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 8973 if (!DoXform) 8974 return {}; 8975 8976 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 8977 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 8978 LN0->getBasePtr(), N0.getValueType(), 8979 LN0->getMemOperand()); 8980 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 8981 // If the load value is used only by N, replace it via CombineTo N. 8982 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 8983 Combiner.CombineTo(N, ExtLoad); 8984 if (NoReplaceTrunc) { 8985 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 8986 Combiner.recursivelyDeleteUnusedNodes(LN0); 8987 } else { 8988 SDValue Trunc = 8989 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 8990 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 8991 } 8992 return SDValue(N, 0); // Return N so it doesn't get rechecked! 8993 } 8994 8995 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 8996 bool LegalOperations) { 8997 assert((N->getOpcode() == ISD::SIGN_EXTEND || 8998 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 8999 9000 SDValue SetCC = N->getOperand(0); 9001 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 9002 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 9003 return SDValue(); 9004 9005 SDValue X = SetCC.getOperand(0); 9006 SDValue Ones = SetCC.getOperand(1); 9007 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 9008 EVT VT = N->getValueType(0); 9009 EVT XVT = X.getValueType(); 9010 // setge X, C is canonicalized to setgt, so we do not need to match that 9011 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 9012 // not require the 'not' op. 9013 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 9014 // Invert and smear/shift the sign bit: 9015 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 9016 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 9017 SDLoc DL(N); 9018 SDValue NotX = DAG.getNOT(DL, X, VT); 9019 SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); 9020 auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 9021 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 9022 } 9023 return SDValue(); 9024 } 9025 9026 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 9027 SDValue N0 = N->getOperand(0); 9028 EVT VT = N->getValueType(0); 9029 SDLoc DL(N); 9030 9031 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 9032 return Res; 9033 9034 // fold (sext (sext x)) -> (sext x) 9035 // fold (sext (aext x)) -> (sext x) 9036 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 9037 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 9038 9039 if (N0.getOpcode() == ISD::TRUNCATE) { 9040 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 9041 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 9042 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 9043 SDNode *oye = N0.getOperand(0).getNode(); 9044 if (NarrowLoad.getNode() != N0.getNode()) { 9045 CombineTo(N0.getNode(), NarrowLoad); 9046 // CombineTo deleted the truncate, if needed, but not what's under it. 9047 AddToWorklist(oye); 9048 } 9049 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9050 } 9051 9052 // See if the value being truncated is already sign extended. If so, just 9053 // eliminate the trunc/sext pair. 9054 SDValue Op = N0.getOperand(0); 9055 unsigned OpBits = Op.getScalarValueSizeInBits(); 9056 unsigned MidBits = N0.getScalarValueSizeInBits(); 9057 unsigned DestBits = VT.getScalarSizeInBits(); 9058 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 9059 9060 if (OpBits == DestBits) { 9061 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 9062 // bits, it is already ready. 9063 if (NumSignBits > DestBits-MidBits) 9064 return Op; 9065 } else if (OpBits < DestBits) { 9066 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 9067 // bits, just sext from i32. 9068 if (NumSignBits > OpBits-MidBits) 9069 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 9070 } else { 9071 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 9072 // bits, just truncate to i32. 9073 if (NumSignBits > OpBits-MidBits) 9074 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 9075 } 9076 9077 // fold (sext (truncate x)) -> (sextinreg x). 9078 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 9079 N0.getValueType())) { 9080 if (OpBits < DestBits) 9081 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 9082 else if (OpBits > DestBits) 9083 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 9084 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 9085 DAG.getValueType(N0.getValueType())); 9086 } 9087 } 9088 9089 // Try to simplify (sext (load x)). 9090 if (SDValue foldedExt = 9091 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 9092 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 9093 return foldedExt; 9094 9095 // fold (sext (load x)) to multiple smaller sextloads. 9096 // Only on illegal but splittable vectors. 9097 if (SDValue ExtLoad = CombineExtLoad(N)) 9098 return ExtLoad; 9099 9100 // Try to simplify (sext (sextload x)). 9101 if (SDValue foldedExt = tryToFoldExtOfExtload( 9102 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 9103 return foldedExt; 9104 9105 // fold (sext (and/or/xor (load x), cst)) -> 9106 // (and/or/xor (sextload x), (sext cst)) 9107 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 9108 N0.getOpcode() == ISD::XOR) && 9109 isa<LoadSDNode>(N0.getOperand(0)) && 9110 N0.getOperand(1).getOpcode() == ISD::Constant && 9111 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 9112 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 9113 EVT MemVT = LN00->getMemoryVT(); 9114 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 9115 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 9116 SmallVector<SDNode*, 4> SetCCs; 9117 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 9118 ISD::SIGN_EXTEND, SetCCs, TLI); 9119 if (DoXform) { 9120 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 9121 LN00->getChain(), LN00->getBasePtr(), 9122 LN00->getMemoryVT(), 9123 LN00->getMemOperand()); 9124 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 9125 Mask = Mask.sext(VT.getSizeInBits()); 9126 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 9127 ExtLoad, DAG.getConstant(Mask, DL, VT)); 9128 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 9129 bool NoReplaceTruncAnd = !N0.hasOneUse(); 9130 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 9131 CombineTo(N, And); 9132 // If N0 has multiple uses, change other uses as well. 9133 if (NoReplaceTruncAnd) { 9134 SDValue TruncAnd = 9135 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 9136 CombineTo(N0.getNode(), TruncAnd); 9137 } 9138 if (NoReplaceTrunc) { 9139 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 9140 } else { 9141 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 9142 LN00->getValueType(0), ExtLoad); 9143 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 9144 } 9145 return SDValue(N,0); // Return N so it doesn't get rechecked! 9146 } 9147 } 9148 } 9149 9150 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 9151 return V; 9152 9153 if (N0.getOpcode() == ISD::SETCC) { 9154 SDValue N00 = N0.getOperand(0); 9155 SDValue N01 = N0.getOperand(1); 9156 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9157 EVT N00VT = N0.getOperand(0).getValueType(); 9158 9159 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 9160 // Only do this before legalize for now. 9161 if (VT.isVector() && !LegalOperations && 9162 TLI.getBooleanContents(N00VT) == 9163 TargetLowering::ZeroOrNegativeOneBooleanContent) { 9164 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 9165 // of the same size as the compared operands. Only optimize sext(setcc()) 9166 // if this is the case. 9167 EVT SVT = getSetCCResultType(N00VT); 9168 9169 // If we already have the desired type, don't change it. 9170 if (SVT != N0.getValueType()) { 9171 // We know that the # elements of the results is the same as the 9172 // # elements of the compare (and the # elements of the compare result 9173 // for that matter). Check to see that they are the same size. If so, 9174 // we know that the element size of the sext'd result matches the 9175 // element size of the compare operands. 9176 if (VT.getSizeInBits() == SVT.getSizeInBits()) 9177 return DAG.getSetCC(DL, VT, N00, N01, CC); 9178 9179 // If the desired elements are smaller or larger than the source 9180 // elements, we can use a matching integer vector type and then 9181 // truncate/sign extend. 9182 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 9183 if (SVT == MatchingVecType) { 9184 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 9185 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 9186 } 9187 } 9188 } 9189 9190 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 9191 // Here, T can be 1 or -1, depending on the type of the setcc and 9192 // getBooleanContents(). 9193 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 9194 9195 // To determine the "true" side of the select, we need to know the high bit 9196 // of the value returned by the setcc if it evaluates to true. 9197 // If the type of the setcc is i1, then the true case of the select is just 9198 // sext(i1 1), that is, -1. 9199 // If the type of the setcc is larger (say, i8) then the value of the high 9200 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 9201 // of the appropriate width. 9202 SDValue ExtTrueVal = (SetCCWidth == 1) 9203 ? DAG.getAllOnesConstant(DL, VT) 9204 : DAG.getBoolConstant(true, DL, VT, N00VT); 9205 SDValue Zero = DAG.getConstant(0, DL, VT); 9206 if (SDValue SCC = 9207 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 9208 return SCC; 9209 9210 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 9211 EVT SetCCVT = getSetCCResultType(N00VT); 9212 // Don't do this transform for i1 because there's a select transform 9213 // that would reverse it. 9214 // TODO: We should not do this transform at all without a target hook 9215 // because a sext is likely cheaper than a select? 9216 if (SetCCVT.getScalarSizeInBits() != 1 && 9217 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 9218 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 9219 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 9220 } 9221 } 9222 } 9223 9224 // fold (sext x) -> (zext x) if the sign bit is known zero. 9225 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 9226 DAG.SignBitIsZero(N0)) 9227 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 9228 9229 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 9230 return NewVSel; 9231 9232 // Eliminate this sign extend by doing a negation in the destination type: 9233 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 9234 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 9235 isNullOrNullSplat(N0.getOperand(0)) && 9236 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 9237 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 9238 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 9239 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 9240 } 9241 // Eliminate this sign extend by doing a decrement in the destination type: 9242 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 9243 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 9244 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 9245 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 9246 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 9247 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 9248 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 9249 } 9250 9251 return SDValue(); 9252 } 9253 9254 // isTruncateOf - If N is a truncate of some other value, return true, record 9255 // the value being truncated in Op and which of Op's bits are zero/one in Known. 9256 // This function computes KnownBits to avoid a duplicated call to 9257 // computeKnownBits in the caller. 9258 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 9259 KnownBits &Known) { 9260 if (N->getOpcode() == ISD::TRUNCATE) { 9261 Op = N->getOperand(0); 9262 Known = DAG.computeKnownBits(Op); 9263 return true; 9264 } 9265 9266 if (N.getOpcode() != ISD::SETCC || 9267 N.getValueType().getScalarType() != MVT::i1 || 9268 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 9269 return false; 9270 9271 SDValue Op0 = N->getOperand(0); 9272 SDValue Op1 = N->getOperand(1); 9273 assert(Op0.getValueType() == Op1.getValueType()); 9274 9275 if (isNullOrNullSplat(Op0)) 9276 Op = Op1; 9277 else if (isNullOrNullSplat(Op1)) 9278 Op = Op0; 9279 else 9280 return false; 9281 9282 Known = DAG.computeKnownBits(Op); 9283 9284 return (Known.Zero | 1).isAllOnesValue(); 9285 } 9286 9287 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 9288 SDValue N0 = N->getOperand(0); 9289 EVT VT = N->getValueType(0); 9290 9291 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 9292 return Res; 9293 9294 // fold (zext (zext x)) -> (zext x) 9295 // fold (zext (aext x)) -> (zext x) 9296 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 9297 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 9298 N0.getOperand(0)); 9299 9300 // fold (zext (truncate x)) -> (zext x) or 9301 // (zext (truncate x)) -> (truncate x) 9302 // This is valid when the truncated bits of x are already zero. 9303 SDValue Op; 9304 KnownBits Known; 9305 if (isTruncateOf(DAG, N0, Op, Known)) { 9306 APInt TruncatedBits = 9307 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 9308 APInt(Op.getScalarValueSizeInBits(), 0) : 9309 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 9310 N0.getScalarValueSizeInBits(), 9311 std::min(Op.getScalarValueSizeInBits(), 9312 VT.getScalarSizeInBits())); 9313 if (TruncatedBits.isSubsetOf(Known.Zero)) 9314 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 9315 } 9316 9317 // fold (zext (truncate x)) -> (and x, mask) 9318 if (N0.getOpcode() == ISD::TRUNCATE) { 9319 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 9320 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 9321 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 9322 SDNode *oye = N0.getOperand(0).getNode(); 9323 if (NarrowLoad.getNode() != N0.getNode()) { 9324 CombineTo(N0.getNode(), NarrowLoad); 9325 // CombineTo deleted the truncate, if needed, but not what's under it. 9326 AddToWorklist(oye); 9327 } 9328 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9329 } 9330 9331 EVT SrcVT = N0.getOperand(0).getValueType(); 9332 EVT MinVT = N0.getValueType(); 9333 9334 // Try to mask before the extension to avoid having to generate a larger mask, 9335 // possibly over several sub-vectors. 9336 if (SrcVT.bitsLT(VT) && VT.isVector()) { 9337 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 9338 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 9339 SDValue Op = N0.getOperand(0); 9340 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 9341 AddToWorklist(Op.getNode()); 9342 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 9343 // Transfer the debug info; the new node is equivalent to N0. 9344 DAG.transferDbgValues(N0, ZExtOrTrunc); 9345 return ZExtOrTrunc; 9346 } 9347 } 9348 9349 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 9350 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 9351 AddToWorklist(Op.getNode()); 9352 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 9353 // We may safely transfer the debug info describing the truncate node over 9354 // to the equivalent and operation. 9355 DAG.transferDbgValues(N0, And); 9356 return And; 9357 } 9358 } 9359 9360 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 9361 // if either of the casts is not free. 9362 if (N0.getOpcode() == ISD::AND && 9363 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 9364 N0.getOperand(1).getOpcode() == ISD::Constant && 9365 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 9366 N0.getValueType()) || 9367 !TLI.isZExtFree(N0.getValueType(), VT))) { 9368 SDValue X = N0.getOperand(0).getOperand(0); 9369 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 9370 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 9371 Mask = Mask.zext(VT.getSizeInBits()); 9372 SDLoc DL(N); 9373 return DAG.getNode(ISD::AND, DL, VT, 9374 X, DAG.getConstant(Mask, DL, VT)); 9375 } 9376 9377 // Try to simplify (zext (load x)). 9378 if (SDValue foldedExt = 9379 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 9380 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 9381 return foldedExt; 9382 9383 // fold (zext (load x)) to multiple smaller zextloads. 9384 // Only on illegal but splittable vectors. 9385 if (SDValue ExtLoad = CombineExtLoad(N)) 9386 return ExtLoad; 9387 9388 // fold (zext (and/or/xor (load x), cst)) -> 9389 // (and/or/xor (zextload x), (zext cst)) 9390 // Unless (and (load x) cst) will match as a zextload already and has 9391 // additional users. 9392 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 9393 N0.getOpcode() == ISD::XOR) && 9394 isa<LoadSDNode>(N0.getOperand(0)) && 9395 N0.getOperand(1).getOpcode() == ISD::Constant && 9396 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 9397 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 9398 EVT MemVT = LN00->getMemoryVT(); 9399 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 9400 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 9401 bool DoXform = true; 9402 SmallVector<SDNode*, 4> SetCCs; 9403 if (!N0.hasOneUse()) { 9404 if (N0.getOpcode() == ISD::AND) { 9405 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 9406 EVT LoadResultTy = AndC->getValueType(0); 9407 EVT ExtVT; 9408 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 9409 DoXform = false; 9410 } 9411 } 9412 if (DoXform) 9413 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 9414 ISD::ZERO_EXTEND, SetCCs, TLI); 9415 if (DoXform) { 9416 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 9417 LN00->getChain(), LN00->getBasePtr(), 9418 LN00->getMemoryVT(), 9419 LN00->getMemOperand()); 9420 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 9421 Mask = Mask.zext(VT.getSizeInBits()); 9422 SDLoc DL(N); 9423 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 9424 ExtLoad, DAG.getConstant(Mask, DL, VT)); 9425 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 9426 bool NoReplaceTruncAnd = !N0.hasOneUse(); 9427 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 9428 CombineTo(N, And); 9429 // If N0 has multiple uses, change other uses as well. 9430 if (NoReplaceTruncAnd) { 9431 SDValue TruncAnd = 9432 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 9433 CombineTo(N0.getNode(), TruncAnd); 9434 } 9435 if (NoReplaceTrunc) { 9436 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 9437 } else { 9438 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 9439 LN00->getValueType(0), ExtLoad); 9440 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 9441 } 9442 return SDValue(N,0); // Return N so it doesn't get rechecked! 9443 } 9444 } 9445 } 9446 9447 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 9448 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 9449 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 9450 return ZExtLoad; 9451 9452 // Try to simplify (zext (zextload x)). 9453 if (SDValue foldedExt = tryToFoldExtOfExtload( 9454 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 9455 return foldedExt; 9456 9457 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 9458 return V; 9459 9460 if (N0.getOpcode() == ISD::SETCC) { 9461 // Only do this before legalize for now. 9462 if (!LegalOperations && VT.isVector() && 9463 N0.getValueType().getVectorElementType() == MVT::i1) { 9464 EVT N00VT = N0.getOperand(0).getValueType(); 9465 if (getSetCCResultType(N00VT) == N0.getValueType()) 9466 return SDValue(); 9467 9468 // We know that the # elements of the results is the same as the # 9469 // elements of the compare (and the # elements of the compare result for 9470 // that matter). Check to see that they are the same size. If so, we know 9471 // that the element size of the sext'd result matches the element size of 9472 // the compare operands. 9473 SDLoc DL(N); 9474 SDValue VecOnes = DAG.getConstant(1, DL, VT); 9475 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 9476 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 9477 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 9478 N0.getOperand(1), N0.getOperand(2)); 9479 return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); 9480 } 9481 9482 // If the desired elements are smaller or larger than the source 9483 // elements we can use a matching integer vector type and then 9484 // truncate/sign extend. 9485 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 9486 SDValue VsetCC = 9487 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 9488 N0.getOperand(1), N0.getOperand(2)); 9489 return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), 9490 VecOnes); 9491 } 9492 9493 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 9494 SDLoc DL(N); 9495 if (SDValue SCC = SimplifySelectCC( 9496 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 9497 DAG.getConstant(0, DL, VT), 9498 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 9499 return SCC; 9500 } 9501 9502 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 9503 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 9504 isa<ConstantSDNode>(N0.getOperand(1)) && 9505 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 9506 N0.hasOneUse()) { 9507 SDValue ShAmt = N0.getOperand(1); 9508 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 9509 if (N0.getOpcode() == ISD::SHL) { 9510 SDValue InnerZExt = N0.getOperand(0); 9511 // If the original shl may be shifting out bits, do not perform this 9512 // transformation. 9513 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 9514 InnerZExt.getOperand(0).getValueSizeInBits(); 9515 if (ShAmtVal > KnownZeroBits) 9516 return SDValue(); 9517 } 9518 9519 SDLoc DL(N); 9520 9521 // Ensure that the shift amount is wide enough for the shifted value. 9522 if (VT.getSizeInBits() >= 256) 9523 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 9524 9525 return DAG.getNode(N0.getOpcode(), DL, VT, 9526 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 9527 ShAmt); 9528 } 9529 9530 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 9531 return NewVSel; 9532 9533 return SDValue(); 9534 } 9535 9536 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 9537 SDValue N0 = N->getOperand(0); 9538 EVT VT = N->getValueType(0); 9539 9540 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 9541 return Res; 9542 9543 // fold (aext (aext x)) -> (aext x) 9544 // fold (aext (zext x)) -> (zext x) 9545 // fold (aext (sext x)) -> (sext x) 9546 if (N0.getOpcode() == ISD::ANY_EXTEND || 9547 N0.getOpcode() == ISD::ZERO_EXTEND || 9548 N0.getOpcode() == ISD::SIGN_EXTEND) 9549 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 9550 9551 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 9552 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 9553 if (N0.getOpcode() == ISD::TRUNCATE) { 9554 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 9555 SDNode *oye = N0.getOperand(0).getNode(); 9556 if (NarrowLoad.getNode() != N0.getNode()) { 9557 CombineTo(N0.getNode(), NarrowLoad); 9558 // CombineTo deleted the truncate, if needed, but not what's under it. 9559 AddToWorklist(oye); 9560 } 9561 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9562 } 9563 } 9564 9565 // fold (aext (truncate x)) 9566 if (N0.getOpcode() == ISD::TRUNCATE) 9567 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 9568 9569 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 9570 // if the trunc is not free. 9571 if (N0.getOpcode() == ISD::AND && 9572 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 9573 N0.getOperand(1).getOpcode() == ISD::Constant && 9574 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 9575 N0.getValueType())) { 9576 SDLoc DL(N); 9577 SDValue X = N0.getOperand(0).getOperand(0); 9578 X = DAG.getAnyExtOrTrunc(X, DL, VT); 9579 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 9580 Mask = Mask.zext(VT.getSizeInBits()); 9581 return DAG.getNode(ISD::AND, DL, VT, 9582 X, DAG.getConstant(Mask, DL, VT)); 9583 } 9584 9585 // fold (aext (load x)) -> (aext (truncate (extload x))) 9586 // None of the supported targets knows how to perform load and any_ext 9587 // on vectors in one instruction. We only perform this transformation on 9588 // scalars. 9589 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 9590 ISD::isUNINDEXEDLoad(N0.getNode()) && 9591 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 9592 bool DoXform = true; 9593 SmallVector<SDNode*, 4> SetCCs; 9594 if (!N0.hasOneUse()) 9595 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, 9596 TLI); 9597 if (DoXform) { 9598 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9599 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 9600 LN0->getChain(), 9601 LN0->getBasePtr(), N0.getValueType(), 9602 LN0->getMemOperand()); 9603 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 9604 // If the load value is used only by N, replace it via CombineTo N. 9605 bool NoReplaceTrunc = N0.hasOneUse(); 9606 CombineTo(N, ExtLoad); 9607 if (NoReplaceTrunc) { 9608 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 9609 recursivelyDeleteUnusedNodes(LN0); 9610 } else { 9611 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 9612 N0.getValueType(), ExtLoad); 9613 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 9614 } 9615 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9616 } 9617 } 9618 9619 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 9620 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 9621 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 9622 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 9623 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 9624 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9625 ISD::LoadExtType ExtType = LN0->getExtensionType(); 9626 EVT MemVT = LN0->getMemoryVT(); 9627 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 9628 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 9629 VT, LN0->getChain(), LN0->getBasePtr(), 9630 MemVT, LN0->getMemOperand()); 9631 CombineTo(N, ExtLoad); 9632 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 9633 recursivelyDeleteUnusedNodes(LN0); 9634 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9635 } 9636 } 9637 9638 if (N0.getOpcode() == ISD::SETCC) { 9639 // For vectors: 9640 // aext(setcc) -> vsetcc 9641 // aext(setcc) -> truncate(vsetcc) 9642 // aext(setcc) -> aext(vsetcc) 9643 // Only do this before legalize for now. 9644 if (VT.isVector() && !LegalOperations) { 9645 EVT N00VT = N0.getOperand(0).getValueType(); 9646 if (getSetCCResultType(N00VT) == N0.getValueType()) 9647 return SDValue(); 9648 9649 // We know that the # elements of the results is the same as the 9650 // # elements of the compare (and the # elements of the compare result 9651 // for that matter). Check to see that they are the same size. If so, 9652 // we know that the element size of the sext'd result matches the 9653 // element size of the compare operands. 9654 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 9655 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 9656 N0.getOperand(1), 9657 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 9658 9659 // If the desired elements are smaller or larger than the source 9660 // elements we can use a matching integer vector type and then 9661 // truncate/any extend 9662 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 9663 SDValue VsetCC = 9664 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 9665 N0.getOperand(1), 9666 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 9667 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 9668 } 9669 9670 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 9671 SDLoc DL(N); 9672 if (SDValue SCC = SimplifySelectCC( 9673 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 9674 DAG.getConstant(0, DL, VT), 9675 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 9676 return SCC; 9677 } 9678 9679 return SDValue(); 9680 } 9681 9682 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 9683 unsigned Opcode = N->getOpcode(); 9684 SDValue N0 = N->getOperand(0); 9685 SDValue N1 = N->getOperand(1); 9686 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 9687 9688 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 9689 if (N0.getOpcode() == Opcode && 9690 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 9691 return N0; 9692 9693 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 9694 N0.getOperand(0).getOpcode() == Opcode) { 9695 // We have an assert, truncate, assert sandwich. Make one stronger assert 9696 // by asserting on the smallest asserted type to the larger source type. 9697 // This eliminates the later assert: 9698 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 9699 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 9700 SDValue BigA = N0.getOperand(0); 9701 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 9702 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 9703 "Asserting zero/sign-extended bits to a type larger than the " 9704 "truncated destination does not provide information"); 9705 9706 SDLoc DL(N); 9707 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 9708 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 9709 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 9710 BigA.getOperand(0), MinAssertVTVal); 9711 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 9712 } 9713 9714 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 9715 // than X. Just move the AssertZext in front of the truncate and drop the 9716 // AssertSExt. 9717 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 9718 N0.getOperand(0).getOpcode() == ISD::AssertSext && 9719 Opcode == ISD::AssertZext) { 9720 SDValue BigA = N0.getOperand(0); 9721 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 9722 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 9723 "Asserting zero/sign-extended bits to a type larger than the " 9724 "truncated destination does not provide information"); 9725 9726 if (AssertVT.bitsLT(BigA_AssertVT)) { 9727 SDLoc DL(N); 9728 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 9729 BigA.getOperand(0), N1); 9730 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 9731 } 9732 } 9733 9734 return SDValue(); 9735 } 9736 9737 /// If the result of a wider load is shifted to right of N bits and then 9738 /// truncated to a narrower type and where N is a multiple of number of bits of 9739 /// the narrower type, transform it to a narrower load from address + N / num of 9740 /// bits of new type. Also narrow the load if the result is masked with an AND 9741 /// to effectively produce a smaller type. If the result is to be extended, also 9742 /// fold the extension to form a extending load. 9743 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 9744 unsigned Opc = N->getOpcode(); 9745 9746 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 9747 SDValue N0 = N->getOperand(0); 9748 EVT VT = N->getValueType(0); 9749 EVT ExtVT = VT; 9750 9751 // This transformation isn't valid for vector loads. 9752 if (VT.isVector()) 9753 return SDValue(); 9754 9755 unsigned ShAmt = 0; 9756 bool HasShiftedOffset = false; 9757 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 9758 // extended to VT. 9759 if (Opc == ISD::SIGN_EXTEND_INREG) { 9760 ExtType = ISD::SEXTLOAD; 9761 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 9762 } else if (Opc == ISD::SRL) { 9763 // Another special-case: SRL is basically zero-extending a narrower value, 9764 // or it maybe shifting a higher subword, half or byte into the lowest 9765 // bits. 9766 ExtType = ISD::ZEXTLOAD; 9767 N0 = SDValue(N, 0); 9768 9769 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); 9770 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 9771 if (!N01 || !LN0) 9772 return SDValue(); 9773 9774 uint64_t ShiftAmt = N01->getZExtValue(); 9775 uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits(); 9776 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) 9777 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); 9778 else 9779 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 9780 VT.getSizeInBits() - ShiftAmt); 9781 } else if (Opc == ISD::AND) { 9782 // An AND with a constant mask is the same as a truncate + zero-extend. 9783 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9784 if (!AndC) 9785 return SDValue(); 9786 9787 const APInt &Mask = AndC->getAPIntValue(); 9788 unsigned ActiveBits = 0; 9789 if (Mask.isMask()) { 9790 ActiveBits = Mask.countTrailingOnes(); 9791 } else if (Mask.isShiftedMask()) { 9792 ShAmt = Mask.countTrailingZeros(); 9793 APInt ShiftedMask = Mask.lshr(ShAmt); 9794 ActiveBits = ShiftedMask.countTrailingOnes(); 9795 HasShiftedOffset = true; 9796 } else 9797 return SDValue(); 9798 9799 ExtType = ISD::ZEXTLOAD; 9800 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 9801 } 9802 9803 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 9804 SDValue SRL = N0; 9805 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { 9806 ShAmt = ConstShift->getZExtValue(); 9807 unsigned EVTBits = ExtVT.getSizeInBits(); 9808 // Is the shift amount a multiple of size of VT? 9809 if ((ShAmt & (EVTBits-1)) == 0) { 9810 N0 = N0.getOperand(0); 9811 // Is the load width a multiple of size of VT? 9812 if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) 9813 return SDValue(); 9814 } 9815 9816 // At this point, we must have a load or else we can't do the transform. 9817 if (!isa<LoadSDNode>(N0)) return SDValue(); 9818 9819 auto *LN0 = cast<LoadSDNode>(N0); 9820 9821 // Because a SRL must be assumed to *need* to zero-extend the high bits 9822 // (as opposed to anyext the high bits), we can't combine the zextload 9823 // lowering of SRL and an sextload. 9824 if (LN0->getExtensionType() == ISD::SEXTLOAD) 9825 return SDValue(); 9826 9827 // If the shift amount is larger than the input type then we're not 9828 // accessing any of the loaded bytes. If the load was a zextload/extload 9829 // then the result of the shift+trunc is zero/undef (handled elsewhere). 9830 if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) 9831 return SDValue(); 9832 9833 // If the SRL is only used by a masking AND, we may be able to adjust 9834 // the ExtVT to make the AND redundant. 9835 SDNode *Mask = *(SRL->use_begin()); 9836 if (Mask->getOpcode() == ISD::AND && 9837 isa<ConstantSDNode>(Mask->getOperand(1))) { 9838 const APInt &ShiftMask = 9839 cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue(); 9840 if (ShiftMask.isMask()) { 9841 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 9842 ShiftMask.countTrailingOnes()); 9843 // If the mask is smaller, recompute the type. 9844 if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) && 9845 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) 9846 ExtVT = MaskedVT; 9847 } 9848 } 9849 } 9850 } 9851 9852 // If the load is shifted left (and the result isn't shifted back right), 9853 // we can fold the truncate through the shift. 9854 unsigned ShLeftAmt = 0; 9855 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 9856 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 9857 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 9858 ShLeftAmt = N01->getZExtValue(); 9859 N0 = N0.getOperand(0); 9860 } 9861 } 9862 9863 // If we haven't found a load, we can't narrow it. 9864 if (!isa<LoadSDNode>(N0)) 9865 return SDValue(); 9866 9867 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9868 if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 9869 return SDValue(); 9870 9871 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 9872 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 9873 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 9874 return LVTStoreBits - EVTStoreBits - ShAmt; 9875 }; 9876 9877 // For big endian targets, we need to adjust the offset to the pointer to 9878 // load the correct bytes. 9879 if (DAG.getDataLayout().isBigEndian()) 9880 ShAmt = AdjustBigEndianShift(ShAmt); 9881 9882 EVT PtrType = N0.getOperand(1).getValueType(); 9883 uint64_t PtrOff = ShAmt / 8; 9884 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 9885 SDLoc DL(LN0); 9886 // The original load itself didn't wrap, so an offset within it doesn't. 9887 SDNodeFlags Flags; 9888 Flags.setNoUnsignedWrap(true); 9889 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 9890 PtrType, LN0->getBasePtr(), 9891 DAG.getConstant(PtrOff, DL, PtrType), 9892 Flags); 9893 AddToWorklist(NewPtr.getNode()); 9894 9895 SDValue Load; 9896 if (ExtType == ISD::NON_EXTLOAD) 9897 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 9898 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 9899 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 9900 else 9901 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr, 9902 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 9903 NewAlign, LN0->getMemOperand()->getFlags(), 9904 LN0->getAAInfo()); 9905 9906 // Replace the old load's chain with the new load's chain. 9907 WorklistRemover DeadNodes(*this); 9908 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 9909 9910 // Shift the result left, if we've swallowed a left shift. 9911 SDValue Result = Load; 9912 if (ShLeftAmt != 0) { 9913 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 9914 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 9915 ShImmTy = VT; 9916 // If the shift amount is as large as the result size (but, presumably, 9917 // no larger than the source) then the useful bits of the result are 9918 // zero; we can't simply return the shortened shift, because the result 9919 // of that operation is undefined. 9920 SDLoc DL(N0); 9921 if (ShLeftAmt >= VT.getSizeInBits()) 9922 Result = DAG.getConstant(0, DL, VT); 9923 else 9924 Result = DAG.getNode(ISD::SHL, DL, VT, 9925 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 9926 } 9927 9928 if (HasShiftedOffset) { 9929 // Recalculate the shift amount after it has been altered to calculate 9930 // the offset. 9931 if (DAG.getDataLayout().isBigEndian()) 9932 ShAmt = AdjustBigEndianShift(ShAmt); 9933 9934 // We're using a shifted mask, so the load now has an offset. This means 9935 // that data has been loaded into the lower bytes than it would have been 9936 // before, so we need to shl the loaded data into the correct position in the 9937 // register. 9938 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 9939 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 9940 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 9941 } 9942 9943 // Return the new loaded value. 9944 return Result; 9945 } 9946 9947 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 9948 SDValue N0 = N->getOperand(0); 9949 SDValue N1 = N->getOperand(1); 9950 EVT VT = N->getValueType(0); 9951 EVT EVT = cast<VTSDNode>(N1)->getVT(); 9952 unsigned VTBits = VT.getScalarSizeInBits(); 9953 unsigned EVTBits = EVT.getScalarSizeInBits(); 9954 9955 if (N0.isUndef()) 9956 return DAG.getUNDEF(VT); 9957 9958 // fold (sext_in_reg c1) -> c1 9959 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9960 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 9961 9962 // If the input is already sign extended, just drop the extension. 9963 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 9964 return N0; 9965 9966 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 9967 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 9968 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 9969 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 9970 N0.getOperand(0), N1); 9971 9972 // fold (sext_in_reg (sext x)) -> (sext x) 9973 // fold (sext_in_reg (aext x)) -> (sext x) 9974 // if x is small enough or if we know that x has more than 1 sign bit and the 9975 // sign_extend_inreg is extending from one of them. 9976 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 9977 SDValue N00 = N0.getOperand(0); 9978 unsigned N00Bits = N00.getScalarValueSizeInBits(); 9979 if ((N00Bits <= EVTBits || 9980 (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) && 9981 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 9982 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 9983 } 9984 9985 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 9986 if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 9987 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 9988 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && 9989 N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) { 9990 if (!LegalOperations || 9991 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) 9992 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, 9993 N0.getOperand(0)); 9994 } 9995 9996 // fold (sext_in_reg (zext x)) -> (sext x) 9997 // iff we are extending the source sign bit. 9998 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 9999 SDValue N00 = N0.getOperand(0); 10000 if (N00.getScalarValueSizeInBits() == EVTBits && 10001 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 10002 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 10003 } 10004 10005 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 10006 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1))) 10007 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); 10008 10009 // fold operands of sext_in_reg based on knowledge that the top bits are not 10010 // demanded. 10011 if (SimplifyDemandedBits(SDValue(N, 0))) 10012 return SDValue(N, 0); 10013 10014 // fold (sext_in_reg (load x)) -> (smaller sextload x) 10015 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 10016 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 10017 return NarrowLoad; 10018 10019 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 10020 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 10021 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 10022 if (N0.getOpcode() == ISD::SRL) { 10023 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 10024 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 10025 // We can turn this into an SRA iff the input to the SRL is already sign 10026 // extended enough. 10027 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 10028 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 10029 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 10030 N0.getOperand(0), N0.getOperand(1)); 10031 } 10032 } 10033 10034 // fold (sext_inreg (extload x)) -> (sextload x) 10035 // If sextload is not supported by target, we can only do the combine when 10036 // load has one use. Doing otherwise can block folding the extload with other 10037 // extends that the target does support. 10038 if (ISD::isEXTLoad(N0.getNode()) && 10039 ISD::isUNINDEXEDLoad(N0.getNode()) && 10040 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 10041 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile() && 10042 N0.hasOneUse()) || 10043 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 10044 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10045 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 10046 LN0->getChain(), 10047 LN0->getBasePtr(), EVT, 10048 LN0->getMemOperand()); 10049 CombineTo(N, ExtLoad); 10050 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 10051 AddToWorklist(ExtLoad.getNode()); 10052 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10053 } 10054 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 10055 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 10056 N0.hasOneUse() && 10057 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 10058 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 10059 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 10060 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10061 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 10062 LN0->getChain(), 10063 LN0->getBasePtr(), EVT, 10064 LN0->getMemOperand()); 10065 CombineTo(N, ExtLoad); 10066 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 10067 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10068 } 10069 10070 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 10071 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 10072 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 10073 N0.getOperand(1), false)) 10074 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 10075 BSwap, N1); 10076 } 10077 10078 return SDValue(); 10079 } 10080 10081 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 10082 SDValue N0 = N->getOperand(0); 10083 EVT VT = N->getValueType(0); 10084 10085 if (N0.isUndef()) 10086 return DAG.getUNDEF(VT); 10087 10088 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10089 return Res; 10090 10091 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 10092 return SDValue(N, 0); 10093 10094 return SDValue(); 10095 } 10096 10097 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 10098 SDValue N0 = N->getOperand(0); 10099 EVT VT = N->getValueType(0); 10100 10101 if (N0.isUndef()) 10102 return DAG.getUNDEF(VT); 10103 10104 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10105 return Res; 10106 10107 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 10108 return SDValue(N, 0); 10109 10110 return SDValue(); 10111 } 10112 10113 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 10114 SDValue N0 = N->getOperand(0); 10115 EVT VT = N->getValueType(0); 10116 EVT SrcVT = N0.getValueType(); 10117 bool isLE = DAG.getDataLayout().isLittleEndian(); 10118 10119 // noop truncate 10120 if (SrcVT == VT) 10121 return N0; 10122 10123 // fold (truncate (truncate x)) -> (truncate x) 10124 if (N0.getOpcode() == ISD::TRUNCATE) 10125 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 10126 10127 // fold (truncate c1) -> c1 10128 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 10129 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 10130 if (C.getNode() != N) 10131 return C; 10132 } 10133 10134 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 10135 if (N0.getOpcode() == ISD::ZERO_EXTEND || 10136 N0.getOpcode() == ISD::SIGN_EXTEND || 10137 N0.getOpcode() == ISD::ANY_EXTEND) { 10138 // if the source is smaller than the dest, we still need an extend. 10139 if (N0.getOperand(0).getValueType().bitsLT(VT)) 10140 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 10141 // if the source is larger than the dest, than we just need the truncate. 10142 if (N0.getOperand(0).getValueType().bitsGT(VT)) 10143 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 10144 // if the source and dest are the same type, we can drop both the extend 10145 // and the truncate. 10146 return N0.getOperand(0); 10147 } 10148 10149 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 10150 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 10151 return SDValue(); 10152 10153 // Fold extract-and-trunc into a narrow extract. For example: 10154 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 10155 // i32 y = TRUNCATE(i64 x) 10156 // -- becomes -- 10157 // v16i8 b = BITCAST (v2i64 val) 10158 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 10159 // 10160 // Note: We only run this optimization after type legalization (which often 10161 // creates this pattern) and before operation legalization after which 10162 // we need to be more careful about the vector instructions that we generate. 10163 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 10164 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 10165 EVT VecTy = N0.getOperand(0).getValueType(); 10166 EVT ExTy = N0.getValueType(); 10167 EVT TrTy = N->getValueType(0); 10168 10169 unsigned NumElem = VecTy.getVectorNumElements(); 10170 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 10171 10172 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 10173 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 10174 10175 SDValue EltNo = N0->getOperand(1); 10176 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 10177 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 10178 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 10179 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 10180 10181 SDLoc DL(N); 10182 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 10183 DAG.getBitcast(NVT, N0.getOperand(0)), 10184 DAG.getConstant(Index, DL, IndexTy)); 10185 } 10186 } 10187 10188 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 10189 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 10190 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 10191 TLI.isTruncateFree(SrcVT, VT)) { 10192 SDLoc SL(N0); 10193 SDValue Cond = N0.getOperand(0); 10194 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 10195 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 10196 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 10197 } 10198 } 10199 10200 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 10201 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 10202 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 10203 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 10204 SDValue Amt = N0.getOperand(1); 10205 KnownBits Known = DAG.computeKnownBits(Amt); 10206 unsigned Size = VT.getScalarSizeInBits(); 10207 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 10208 SDLoc SL(N); 10209 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 10210 10211 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 10212 if (AmtVT != Amt.getValueType()) { 10213 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 10214 AddToWorklist(Amt.getNode()); 10215 } 10216 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 10217 } 10218 } 10219 10220 // Attempt to pre-truncate BUILD_VECTOR sources. 10221 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 10222 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType())) { 10223 SDLoc DL(N); 10224 EVT SVT = VT.getScalarType(); 10225 SmallVector<SDValue, 8> TruncOps; 10226 for (const SDValue &Op : N0->op_values()) { 10227 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 10228 TruncOps.push_back(TruncOp); 10229 } 10230 return DAG.getBuildVector(VT, DL, TruncOps); 10231 } 10232 10233 // Fold a series of buildvector, bitcast, and truncate if possible. 10234 // For example fold 10235 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 10236 // (2xi32 (buildvector x, y)). 10237 if (Level == AfterLegalizeVectorOps && VT.isVector() && 10238 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 10239 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 10240 N0.getOperand(0).hasOneUse()) { 10241 SDValue BuildVect = N0.getOperand(0); 10242 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 10243 EVT TruncVecEltTy = VT.getVectorElementType(); 10244 10245 // Check that the element types match. 10246 if (BuildVectEltTy == TruncVecEltTy) { 10247 // Now we only need to compute the offset of the truncated elements. 10248 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 10249 unsigned TruncVecNumElts = VT.getVectorNumElements(); 10250 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 10251 10252 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 10253 "Invalid number of elements"); 10254 10255 SmallVector<SDValue, 8> Opnds; 10256 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 10257 Opnds.push_back(BuildVect.getOperand(i)); 10258 10259 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 10260 } 10261 } 10262 10263 // See if we can simplify the input to this truncate through knowledge that 10264 // only the low bits are being used. 10265 // For example "trunc (or (shl x, 8), y)" // -> trunc y 10266 // Currently we only perform this optimization on scalars because vectors 10267 // may have different active low bits. 10268 if (!VT.isVector()) { 10269 APInt Mask = 10270 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 10271 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 10272 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 10273 } 10274 10275 // fold (truncate (load x)) -> (smaller load x) 10276 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 10277 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 10278 if (SDValue Reduced = ReduceLoadWidth(N)) 10279 return Reduced; 10280 10281 // Handle the case where the load remains an extending load even 10282 // after truncation. 10283 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 10284 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10285 if (!LN0->isVolatile() && 10286 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 10287 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 10288 VT, LN0->getChain(), LN0->getBasePtr(), 10289 LN0->getMemoryVT(), 10290 LN0->getMemOperand()); 10291 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 10292 return NewLoad; 10293 } 10294 } 10295 } 10296 10297 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 10298 // where ... are all 'undef'. 10299 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 10300 SmallVector<EVT, 8> VTs; 10301 SDValue V; 10302 unsigned Idx = 0; 10303 unsigned NumDefs = 0; 10304 10305 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 10306 SDValue X = N0.getOperand(i); 10307 if (!X.isUndef()) { 10308 V = X; 10309 Idx = i; 10310 NumDefs++; 10311 } 10312 // Stop if more than one members are non-undef. 10313 if (NumDefs > 1) 10314 break; 10315 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 10316 VT.getVectorElementType(), 10317 X.getValueType().getVectorNumElements())); 10318 } 10319 10320 if (NumDefs == 0) 10321 return DAG.getUNDEF(VT); 10322 10323 if (NumDefs == 1) { 10324 assert(V.getNode() && "The single defined operand is empty!"); 10325 SmallVector<SDValue, 8> Opnds; 10326 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 10327 if (i != Idx) { 10328 Opnds.push_back(DAG.getUNDEF(VTs[i])); 10329 continue; 10330 } 10331 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 10332 AddToWorklist(NV.getNode()); 10333 Opnds.push_back(NV); 10334 } 10335 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 10336 } 10337 } 10338 10339 // Fold truncate of a bitcast of a vector to an extract of the low vector 10340 // element. 10341 // 10342 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 10343 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 10344 SDValue VecSrc = N0.getOperand(0); 10345 EVT SrcVT = VecSrc.getValueType(); 10346 if (SrcVT.isVector() && SrcVT.getScalarType() == VT && 10347 (!LegalOperations || 10348 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { 10349 SDLoc SL(N); 10350 10351 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 10352 unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1; 10353 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, 10354 VecSrc, DAG.getConstant(Idx, SL, IdxVT)); 10355 } 10356 } 10357 10358 // Simplify the operands using demanded-bits information. 10359 if (!VT.isVector() && 10360 SimplifyDemandedBits(SDValue(N, 0))) 10361 return SDValue(N, 0); 10362 10363 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 10364 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 10365 // When the adde's carry is not used. 10366 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 10367 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && 10368 // We only do for addcarry before legalize operation 10369 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 10370 TLI.isOperationLegal(N0.getOpcode(), VT))) { 10371 SDLoc SL(N); 10372 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 10373 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 10374 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 10375 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 10376 } 10377 10378 // fold (truncate (extract_subvector(ext x))) -> 10379 // (extract_subvector x) 10380 // TODO: This can be generalized to cover cases where the truncate and extract 10381 // do not fully cancel each other out. 10382 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 10383 SDValue N00 = N0.getOperand(0); 10384 if (N00.getOpcode() == ISD::SIGN_EXTEND || 10385 N00.getOpcode() == ISD::ZERO_EXTEND || 10386 N00.getOpcode() == ISD::ANY_EXTEND) { 10387 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 10388 VT.getVectorElementType()) 10389 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 10390 N00.getOperand(0), N0.getOperand(1)); 10391 } 10392 } 10393 10394 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 10395 return NewVSel; 10396 10397 // Narrow a suitable binary operation with a non-opaque constant operand by 10398 // moving it ahead of the truncate. This is limited to pre-legalization 10399 // because targets may prefer a wider type during later combines and invert 10400 // this transform. 10401 switch (N0.getOpcode()) { 10402 case ISD::ADD: 10403 case ISD::SUB: 10404 case ISD::MUL: 10405 case ISD::AND: 10406 case ISD::OR: 10407 case ISD::XOR: 10408 if (!LegalOperations && N0.hasOneUse() && 10409 (isConstantOrConstantVector(N0.getOperand(0), true) || 10410 isConstantOrConstantVector(N0.getOperand(1), true))) { 10411 // TODO: We already restricted this to pre-legalization, but for vectors 10412 // we are extra cautious to not create an unsupported operation. 10413 // Target-specific changes are likely needed to avoid regressions here. 10414 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 10415 SDLoc DL(N); 10416 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 10417 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 10418 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 10419 } 10420 } 10421 } 10422 10423 return SDValue(); 10424 } 10425 10426 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 10427 SDValue Elt = N->getOperand(i); 10428 if (Elt.getOpcode() != ISD::MERGE_VALUES) 10429 return Elt.getNode(); 10430 return Elt.getOperand(Elt.getResNo()).getNode(); 10431 } 10432 10433 /// build_pair (load, load) -> load 10434 /// if load locations are consecutive. 10435 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 10436 assert(N->getOpcode() == ISD::BUILD_PAIR); 10437 10438 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 10439 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 10440 10441 // A BUILD_PAIR is always having the least significant part in elt 0 and the 10442 // most significant part in elt 1. So when combining into one large load, we 10443 // need to consider the endianness. 10444 if (DAG.getDataLayout().isBigEndian()) 10445 std::swap(LD1, LD2); 10446 10447 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 10448 LD1->getAddressSpace() != LD2->getAddressSpace()) 10449 return SDValue(); 10450 EVT LD1VT = LD1->getValueType(0); 10451 unsigned LD1Bytes = LD1VT.getStoreSize(); 10452 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 10453 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 10454 unsigned Align = LD1->getAlignment(); 10455 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 10456 VT.getTypeForEVT(*DAG.getContext())); 10457 10458 if (NewAlign <= Align && 10459 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 10460 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 10461 LD1->getPointerInfo(), Align); 10462 } 10463 10464 return SDValue(); 10465 } 10466 10467 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 10468 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 10469 // and Lo parts; on big-endian machines it doesn't. 10470 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 10471 } 10472 10473 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 10474 const TargetLowering &TLI) { 10475 // If this is not a bitcast to an FP type or if the target doesn't have 10476 // IEEE754-compliant FP logic, we're done. 10477 EVT VT = N->getValueType(0); 10478 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 10479 return SDValue(); 10480 10481 // TODO: Handle cases where the integer constant is a different scalar 10482 // bitwidth to the FP. 10483 SDValue N0 = N->getOperand(0); 10484 EVT SourceVT = N0.getValueType(); 10485 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 10486 return SDValue(); 10487 10488 unsigned FPOpcode; 10489 APInt SignMask; 10490 switch (N0.getOpcode()) { 10491 case ISD::AND: 10492 FPOpcode = ISD::FABS; 10493 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 10494 break; 10495 case ISD::XOR: 10496 FPOpcode = ISD::FNEG; 10497 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 10498 break; 10499 case ISD::OR: 10500 FPOpcode = ISD::FABS; 10501 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 10502 break; 10503 default: 10504 return SDValue(); 10505 } 10506 10507 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 10508 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 10509 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 10510 // fneg (fabs X) 10511 SDValue LogicOp0 = N0.getOperand(0); 10512 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 10513 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 10514 LogicOp0.getOpcode() == ISD::BITCAST && 10515 LogicOp0.getOperand(0).getValueType() == VT) { 10516 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 10517 NumFPLogicOpsConv++; 10518 if (N0.getOpcode() == ISD::OR) 10519 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 10520 return FPOp; 10521 } 10522 10523 return SDValue(); 10524 } 10525 10526 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 10527 SDValue N0 = N->getOperand(0); 10528 EVT VT = N->getValueType(0); 10529 10530 if (N0.isUndef()) 10531 return DAG.getUNDEF(VT); 10532 10533 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 10534 // Only do this before legalize types, unless both types are integer and the 10535 // scalar type is legal. Only do this before legalize ops, since the target 10536 // maybe depending on the bitcast. 10537 // First check to see if this is all constant. 10538 // TODO: Support FP bitcasts after legalize types. 10539 if (VT.isVector() && 10540 (!LegalTypes || 10541 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 10542 TLI.isTypeLegal(VT.getVectorElementType()))) && 10543 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 10544 cast<BuildVectorSDNode>(N0)->isConstant()) 10545 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 10546 VT.getVectorElementType()); 10547 10548 // If the input is a constant, let getNode fold it. 10549 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 10550 // If we can't allow illegal operations, we need to check that this is just 10551 // a fp -> int or int -> conversion and that the resulting operation will 10552 // be legal. 10553 if (!LegalOperations || 10554 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 10555 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 10556 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 10557 TLI.isOperationLegal(ISD::Constant, VT))) { 10558 SDValue C = DAG.getBitcast(VT, N0); 10559 if (C.getNode() != N) 10560 return C; 10561 } 10562 } 10563 10564 // (conv (conv x, t1), t2) -> (conv x, t2) 10565 if (N0.getOpcode() == ISD::BITCAST) 10566 return DAG.getBitcast(VT, N0.getOperand(0)); 10567 10568 // fold (conv (load x)) -> (load (conv*)x) 10569 // If the resultant load doesn't need a higher alignment than the original! 10570 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 10571 // Do not remove the cast if the types differ in endian layout. 10572 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 10573 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 10574 // If the load is volatile, we only want to change the load type if the 10575 // resulting load is legal. Otherwise we might increase the number of 10576 // memory accesses. We don't care if the original type was legal or not 10577 // as we assume software couldn't rely on the number of accesses of an 10578 // illegal type. 10579 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 10580 TLI.isOperationLegal(ISD::LOAD, VT)) && 10581 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 10582 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10583 unsigned OrigAlign = LN0->getAlignment(); 10584 10585 bool Fast = false; 10586 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 10587 LN0->getAddressSpace(), OrigAlign, &Fast) && 10588 Fast) { 10589 SDValue Load = 10590 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 10591 LN0->getPointerInfo(), OrigAlign, 10592 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 10593 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 10594 return Load; 10595 } 10596 } 10597 10598 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 10599 return V; 10600 10601 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 10602 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 10603 // 10604 // For ppc_fp128: 10605 // fold (bitcast (fneg x)) -> 10606 // flipbit = signbit 10607 // (xor (bitcast x) (build_pair flipbit, flipbit)) 10608 // 10609 // fold (bitcast (fabs x)) -> 10610 // flipbit = (and (extract_element (bitcast x), 0), signbit) 10611 // (xor (bitcast x) (build_pair flipbit, flipbit)) 10612 // This often reduces constant pool loads. 10613 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 10614 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 10615 N0.getNode()->hasOneUse() && VT.isInteger() && 10616 !VT.isVector() && !N0.getValueType().isVector()) { 10617 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 10618 AddToWorklist(NewConv.getNode()); 10619 10620 SDLoc DL(N); 10621 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 10622 assert(VT.getSizeInBits() == 128); 10623 SDValue SignBit = DAG.getConstant( 10624 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 10625 SDValue FlipBit; 10626 if (N0.getOpcode() == ISD::FNEG) { 10627 FlipBit = SignBit; 10628 AddToWorklist(FlipBit.getNode()); 10629 } else { 10630 assert(N0.getOpcode() == ISD::FABS); 10631 SDValue Hi = 10632 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 10633 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 10634 SDLoc(NewConv))); 10635 AddToWorklist(Hi.getNode()); 10636 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 10637 AddToWorklist(FlipBit.getNode()); 10638 } 10639 SDValue FlipBits = 10640 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 10641 AddToWorklist(FlipBits.getNode()); 10642 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 10643 } 10644 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 10645 if (N0.getOpcode() == ISD::FNEG) 10646 return DAG.getNode(ISD::XOR, DL, VT, 10647 NewConv, DAG.getConstant(SignBit, DL, VT)); 10648 assert(N0.getOpcode() == ISD::FABS); 10649 return DAG.getNode(ISD::AND, DL, VT, 10650 NewConv, DAG.getConstant(~SignBit, DL, VT)); 10651 } 10652 10653 // fold (bitconvert (fcopysign cst, x)) -> 10654 // (or (and (bitconvert x), sign), (and cst, (not sign))) 10655 // Note that we don't handle (copysign x, cst) because this can always be 10656 // folded to an fneg or fabs. 10657 // 10658 // For ppc_fp128: 10659 // fold (bitcast (fcopysign cst, x)) -> 10660 // flipbit = (and (extract_element 10661 // (xor (bitcast cst), (bitcast x)), 0), 10662 // signbit) 10663 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 10664 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 10665 isa<ConstantFPSDNode>(N0.getOperand(0)) && 10666 VT.isInteger() && !VT.isVector()) { 10667 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 10668 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 10669 if (isTypeLegal(IntXVT)) { 10670 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 10671 AddToWorklist(X.getNode()); 10672 10673 // If X has a different width than the result/lhs, sext it or truncate it. 10674 unsigned VTWidth = VT.getSizeInBits(); 10675 if (OrigXWidth < VTWidth) { 10676 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 10677 AddToWorklist(X.getNode()); 10678 } else if (OrigXWidth > VTWidth) { 10679 // To get the sign bit in the right place, we have to shift it right 10680 // before truncating. 10681 SDLoc DL(X); 10682 X = DAG.getNode(ISD::SRL, DL, 10683 X.getValueType(), X, 10684 DAG.getConstant(OrigXWidth-VTWidth, DL, 10685 X.getValueType())); 10686 AddToWorklist(X.getNode()); 10687 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 10688 AddToWorklist(X.getNode()); 10689 } 10690 10691 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 10692 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 10693 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 10694 AddToWorklist(Cst.getNode()); 10695 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 10696 AddToWorklist(X.getNode()); 10697 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 10698 AddToWorklist(XorResult.getNode()); 10699 SDValue XorResult64 = DAG.getNode( 10700 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 10701 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 10702 SDLoc(XorResult))); 10703 AddToWorklist(XorResult64.getNode()); 10704 SDValue FlipBit = 10705 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 10706 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 10707 AddToWorklist(FlipBit.getNode()); 10708 SDValue FlipBits = 10709 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 10710 AddToWorklist(FlipBits.getNode()); 10711 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 10712 } 10713 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 10714 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 10715 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 10716 AddToWorklist(X.getNode()); 10717 10718 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 10719 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 10720 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 10721 AddToWorklist(Cst.getNode()); 10722 10723 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 10724 } 10725 } 10726 10727 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 10728 if (N0.getOpcode() == ISD::BUILD_PAIR) 10729 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 10730 return CombineLD; 10731 10732 // Remove double bitcasts from shuffles - this is often a legacy of 10733 // XformToShuffleWithZero being used to combine bitmaskings (of 10734 // float vectors bitcast to integer vectors) into shuffles. 10735 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 10736 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 10737 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 10738 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 10739 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 10740 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 10741 10742 // If operands are a bitcast, peek through if it casts the original VT. 10743 // If operands are a constant, just bitcast back to original VT. 10744 auto PeekThroughBitcast = [&](SDValue Op) { 10745 if (Op.getOpcode() == ISD::BITCAST && 10746 Op.getOperand(0).getValueType() == VT) 10747 return SDValue(Op.getOperand(0)); 10748 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 10749 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 10750 return DAG.getBitcast(VT, Op); 10751 return SDValue(); 10752 }; 10753 10754 // FIXME: If either input vector is bitcast, try to convert the shuffle to 10755 // the result type of this bitcast. This would eliminate at least one 10756 // bitcast. See the transform in InstCombine. 10757 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 10758 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 10759 if (!(SV0 && SV1)) 10760 return SDValue(); 10761 10762 int MaskScale = 10763 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 10764 SmallVector<int, 8> NewMask; 10765 for (int M : SVN->getMask()) 10766 for (int i = 0; i != MaskScale; ++i) 10767 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 10768 10769 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 10770 if (!LegalMask) { 10771 std::swap(SV0, SV1); 10772 ShuffleVectorSDNode::commuteMask(NewMask); 10773 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 10774 } 10775 10776 if (LegalMask) 10777 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 10778 } 10779 10780 return SDValue(); 10781 } 10782 10783 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 10784 EVT VT = N->getValueType(0); 10785 return CombineConsecutiveLoads(N, VT); 10786 } 10787 10788 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 10789 /// operands. DstEltVT indicates the destination element value type. 10790 SDValue DAGCombiner:: 10791 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 10792 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 10793 10794 // If this is already the right type, we're done. 10795 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 10796 10797 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 10798 unsigned DstBitSize = DstEltVT.getSizeInBits(); 10799 10800 // If this is a conversion of N elements of one type to N elements of another 10801 // type, convert each element. This handles FP<->INT cases. 10802 if (SrcBitSize == DstBitSize) { 10803 SmallVector<SDValue, 8> Ops; 10804 for (SDValue Op : BV->op_values()) { 10805 // If the vector element type is not legal, the BUILD_VECTOR operands 10806 // are promoted and implicitly truncated. Make that explicit here. 10807 if (Op.getValueType() != SrcEltVT) 10808 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 10809 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 10810 AddToWorklist(Ops.back().getNode()); 10811 } 10812 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 10813 BV->getValueType(0).getVectorNumElements()); 10814 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 10815 } 10816 10817 // Otherwise, we're growing or shrinking the elements. To avoid having to 10818 // handle annoying details of growing/shrinking FP values, we convert them to 10819 // int first. 10820 if (SrcEltVT.isFloatingPoint()) { 10821 // Convert the input float vector to a int vector where the elements are the 10822 // same sizes. 10823 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 10824 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 10825 SrcEltVT = IntVT; 10826 } 10827 10828 // Now we know the input is an integer vector. If the output is a FP type, 10829 // convert to integer first, then to FP of the right size. 10830 if (DstEltVT.isFloatingPoint()) { 10831 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 10832 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 10833 10834 // Next, convert to FP elements of the same size. 10835 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 10836 } 10837 10838 SDLoc DL(BV); 10839 10840 // Okay, we know the src/dst types are both integers of differing types. 10841 // Handling growing first. 10842 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 10843 if (SrcBitSize < DstBitSize) { 10844 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 10845 10846 SmallVector<SDValue, 8> Ops; 10847 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 10848 i += NumInputsPerOutput) { 10849 bool isLE = DAG.getDataLayout().isLittleEndian(); 10850 APInt NewBits = APInt(DstBitSize, 0); 10851 bool EltIsUndef = true; 10852 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 10853 // Shift the previously computed bits over. 10854 NewBits <<= SrcBitSize; 10855 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 10856 if (Op.isUndef()) continue; 10857 EltIsUndef = false; 10858 10859 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 10860 zextOrTrunc(SrcBitSize).zext(DstBitSize); 10861 } 10862 10863 if (EltIsUndef) 10864 Ops.push_back(DAG.getUNDEF(DstEltVT)); 10865 else 10866 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 10867 } 10868 10869 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 10870 return DAG.getBuildVector(VT, DL, Ops); 10871 } 10872 10873 // Finally, this must be the case where we are shrinking elements: each input 10874 // turns into multiple outputs. 10875 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 10876 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 10877 NumOutputsPerInput*BV->getNumOperands()); 10878 SmallVector<SDValue, 8> Ops; 10879 10880 for (const SDValue &Op : BV->op_values()) { 10881 if (Op.isUndef()) { 10882 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 10883 continue; 10884 } 10885 10886 APInt OpVal = cast<ConstantSDNode>(Op)-> 10887 getAPIntValue().zextOrTrunc(SrcBitSize); 10888 10889 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 10890 APInt ThisVal = OpVal.trunc(DstBitSize); 10891 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 10892 OpVal.lshrInPlace(DstBitSize); 10893 } 10894 10895 // For big endian targets, swap the order of the pieces of each element. 10896 if (DAG.getDataLayout().isBigEndian()) 10897 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 10898 } 10899 10900 return DAG.getBuildVector(VT, DL, Ops); 10901 } 10902 10903 static bool isContractable(SDNode *N) { 10904 SDNodeFlags F = N->getFlags(); 10905 return F.hasAllowContract() || F.hasAllowReassociation(); 10906 } 10907 10908 /// Try to perform FMA combining on a given FADD node. 10909 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 10910 SDValue N0 = N->getOperand(0); 10911 SDValue N1 = N->getOperand(1); 10912 EVT VT = N->getValueType(0); 10913 SDLoc SL(N); 10914 10915 const TargetOptions &Options = DAG.getTarget().Options; 10916 10917 // Floating-point multiply-add with intermediate rounding. 10918 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 10919 10920 // Floating-point multiply-add without intermediate rounding. 10921 bool HasFMA = 10922 TLI.isFMAFasterThanFMulAndFAdd(VT) && 10923 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 10924 10925 // No valid opcode, do not combine. 10926 if (!HasFMAD && !HasFMA) 10927 return SDValue(); 10928 10929 SDNodeFlags Flags = N->getFlags(); 10930 bool CanFuse = Options.UnsafeFPMath || isContractable(N); 10931 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 10932 CanFuse || HasFMAD); 10933 // If the addition is not contractable, do not combine. 10934 if (!AllowFusionGlobally && !isContractable(N)) 10935 return SDValue(); 10936 10937 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 10938 if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) 10939 return SDValue(); 10940 10941 // Always prefer FMAD to FMA for precision. 10942 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 10943 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 10944 10945 // Is the node an FMUL and contractable either due to global flags or 10946 // SDNodeFlags. 10947 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 10948 if (N.getOpcode() != ISD::FMUL) 10949 return false; 10950 return AllowFusionGlobally || isContractable(N.getNode()); 10951 }; 10952 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 10953 // prefer to fold the multiply with fewer uses. 10954 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 10955 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 10956 std::swap(N0, N1); 10957 } 10958 10959 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 10960 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 10961 return DAG.getNode(PreferredFusedOpcode, SL, VT, 10962 N0.getOperand(0), N0.getOperand(1), N1, Flags); 10963 } 10964 10965 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 10966 // Note: Commutes FADD operands. 10967 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 10968 return DAG.getNode(PreferredFusedOpcode, SL, VT, 10969 N1.getOperand(0), N1.getOperand(1), N0, Flags); 10970 } 10971 10972 // Look through FP_EXTEND nodes to do more combining. 10973 10974 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 10975 if (N0.getOpcode() == ISD::FP_EXTEND) { 10976 SDValue N00 = N0.getOperand(0); 10977 if (isContractableFMUL(N00) && 10978 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { 10979 return DAG.getNode(PreferredFusedOpcode, SL, VT, 10980 DAG.getNode(ISD::FP_EXTEND, SL, VT, 10981 N00.getOperand(0)), 10982 DAG.getNode(ISD::FP_EXTEND, SL, VT, 10983 N00.getOperand(1)), N1, Flags); 10984 } 10985 } 10986 10987 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 10988 // Note: Commutes FADD operands. 10989 if (N1.getOpcode() == ISD::FP_EXTEND) { 10990 SDValue N10 = N1.getOperand(0); 10991 if (isContractableFMUL(N10) && 10992 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { 10993 return DAG.getNode(PreferredFusedOpcode, SL, VT, 10994 DAG.getNode(ISD::FP_EXTEND, SL, VT, 10995 N10.getOperand(0)), 10996 DAG.getNode(ISD::FP_EXTEND, SL, VT, 10997 N10.getOperand(1)), N0, Flags); 10998 } 10999 } 11000 11001 // More folding opportunities when target permits. 11002 if (Aggressive) { 11003 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 11004 if (CanFuse && 11005 N0.getOpcode() == PreferredFusedOpcode && 11006 N0.getOperand(2).getOpcode() == ISD::FMUL && 11007 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { 11008 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11009 N0.getOperand(0), N0.getOperand(1), 11010 DAG.getNode(PreferredFusedOpcode, SL, VT, 11011 N0.getOperand(2).getOperand(0), 11012 N0.getOperand(2).getOperand(1), 11013 N1, Flags), Flags); 11014 } 11015 11016 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 11017 if (CanFuse && 11018 N1->getOpcode() == PreferredFusedOpcode && 11019 N1.getOperand(2).getOpcode() == ISD::FMUL && 11020 N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) { 11021 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11022 N1.getOperand(0), N1.getOperand(1), 11023 DAG.getNode(PreferredFusedOpcode, SL, VT, 11024 N1.getOperand(2).getOperand(0), 11025 N1.getOperand(2).getOperand(1), 11026 N0, Flags), Flags); 11027 } 11028 11029 11030 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 11031 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 11032 auto FoldFAddFMAFPExtFMul = [&] ( 11033 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, 11034 SDNodeFlags Flags) { 11035 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 11036 DAG.getNode(PreferredFusedOpcode, SL, VT, 11037 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 11038 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 11039 Z, Flags), Flags); 11040 }; 11041 if (N0.getOpcode() == PreferredFusedOpcode) { 11042 SDValue N02 = N0.getOperand(2); 11043 if (N02.getOpcode() == ISD::FP_EXTEND) { 11044 SDValue N020 = N02.getOperand(0); 11045 if (isContractableFMUL(N020) && 11046 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { 11047 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 11048 N020.getOperand(0), N020.getOperand(1), 11049 N1, Flags); 11050 } 11051 } 11052 } 11053 11054 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 11055 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 11056 // FIXME: This turns two single-precision and one double-precision 11057 // operation into two double-precision operations, which might not be 11058 // interesting for all targets, especially GPUs. 11059 auto FoldFAddFPExtFMAFMul = [&] ( 11060 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, 11061 SDNodeFlags Flags) { 11062 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11063 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 11064 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 11065 DAG.getNode(PreferredFusedOpcode, SL, VT, 11066 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 11067 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 11068 Z, Flags), Flags); 11069 }; 11070 if (N0.getOpcode() == ISD::FP_EXTEND) { 11071 SDValue N00 = N0.getOperand(0); 11072 if (N00.getOpcode() == PreferredFusedOpcode) { 11073 SDValue N002 = N00.getOperand(2); 11074 if (isContractableFMUL(N002) && 11075 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { 11076 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 11077 N002.getOperand(0), N002.getOperand(1), 11078 N1, Flags); 11079 } 11080 } 11081 } 11082 11083 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 11084 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 11085 if (N1.getOpcode() == PreferredFusedOpcode) { 11086 SDValue N12 = N1.getOperand(2); 11087 if (N12.getOpcode() == ISD::FP_EXTEND) { 11088 SDValue N120 = N12.getOperand(0); 11089 if (isContractableFMUL(N120) && 11090 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { 11091 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 11092 N120.getOperand(0), N120.getOperand(1), 11093 N0, Flags); 11094 } 11095 } 11096 } 11097 11098 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 11099 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 11100 // FIXME: This turns two single-precision and one double-precision 11101 // operation into two double-precision operations, which might not be 11102 // interesting for all targets, especially GPUs. 11103 if (N1.getOpcode() == ISD::FP_EXTEND) { 11104 SDValue N10 = N1.getOperand(0); 11105 if (N10.getOpcode() == PreferredFusedOpcode) { 11106 SDValue N102 = N10.getOperand(2); 11107 if (isContractableFMUL(N102) && 11108 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { 11109 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 11110 N102.getOperand(0), N102.getOperand(1), 11111 N0, Flags); 11112 } 11113 } 11114 } 11115 } 11116 11117 return SDValue(); 11118 } 11119 11120 /// Try to perform FMA combining on a given FSUB node. 11121 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 11122 SDValue N0 = N->getOperand(0); 11123 SDValue N1 = N->getOperand(1); 11124 EVT VT = N->getValueType(0); 11125 SDLoc SL(N); 11126 11127 const TargetOptions &Options = DAG.getTarget().Options; 11128 // Floating-point multiply-add with intermediate rounding. 11129 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 11130 11131 // Floating-point multiply-add without intermediate rounding. 11132 bool HasFMA = 11133 TLI.isFMAFasterThanFMulAndFAdd(VT) && 11134 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 11135 11136 // No valid opcode, do not combine. 11137 if (!HasFMAD && !HasFMA) 11138 return SDValue(); 11139 11140 const SDNodeFlags Flags = N->getFlags(); 11141 bool CanFuse = Options.UnsafeFPMath || isContractable(N); 11142 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 11143 CanFuse || HasFMAD); 11144 11145 // If the subtraction is not contractable, do not combine. 11146 if (!AllowFusionGlobally && !isContractable(N)) 11147 return SDValue(); 11148 11149 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 11150 if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) 11151 return SDValue(); 11152 11153 // Always prefer FMAD to FMA for precision. 11154 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 11155 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 11156 11157 // Is the node an FMUL and contractable either due to global flags or 11158 // SDNodeFlags. 11159 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 11160 if (N.getOpcode() != ISD::FMUL) 11161 return false; 11162 return AllowFusionGlobally || isContractable(N.getNode()); 11163 }; 11164 11165 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 11166 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 11167 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11168 N0.getOperand(0), N0.getOperand(1), 11169 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); 11170 } 11171 11172 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 11173 // Note: Commutes FSUB operands. 11174 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 11175 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11176 DAG.getNode(ISD::FNEG, SL, VT, 11177 N1.getOperand(0)), 11178 N1.getOperand(1), N0, Flags); 11179 } 11180 11181 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 11182 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 11183 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 11184 SDValue N00 = N0.getOperand(0).getOperand(0); 11185 SDValue N01 = N0.getOperand(0).getOperand(1); 11186 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11187 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 11188 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); 11189 } 11190 11191 // Look through FP_EXTEND nodes to do more combining. 11192 11193 // fold (fsub (fpext (fmul x, y)), z) 11194 // -> (fma (fpext x), (fpext y), (fneg z)) 11195 if (N0.getOpcode() == ISD::FP_EXTEND) { 11196 SDValue N00 = N0.getOperand(0); 11197 if (isContractableFMUL(N00) && 11198 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { 11199 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11200 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11201 N00.getOperand(0)), 11202 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11203 N00.getOperand(1)), 11204 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); 11205 } 11206 } 11207 11208 // fold (fsub x, (fpext (fmul y, z))) 11209 // -> (fma (fneg (fpext y)), (fpext z), x) 11210 // Note: Commutes FSUB operands. 11211 if (N1.getOpcode() == ISD::FP_EXTEND) { 11212 SDValue N10 = N1.getOperand(0); 11213 if (isContractableFMUL(N10) && 11214 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { 11215 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11216 DAG.getNode(ISD::FNEG, SL, VT, 11217 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11218 N10.getOperand(0))), 11219 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11220 N10.getOperand(1)), 11221 N0, Flags); 11222 } 11223 } 11224 11225 // fold (fsub (fpext (fneg (fmul, x, y))), z) 11226 // -> (fneg (fma (fpext x), (fpext y), z)) 11227 // Note: This could be removed with appropriate canonicalization of the 11228 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 11229 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 11230 // from implementing the canonicalization in visitFSUB. 11231 if (N0.getOpcode() == ISD::FP_EXTEND) { 11232 SDValue N00 = N0.getOperand(0); 11233 if (N00.getOpcode() == ISD::FNEG) { 11234 SDValue N000 = N00.getOperand(0); 11235 if (isContractableFMUL(N000) && 11236 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { 11237 return DAG.getNode(ISD::FNEG, SL, VT, 11238 DAG.getNode(PreferredFusedOpcode, SL, VT, 11239 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11240 N000.getOperand(0)), 11241 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11242 N000.getOperand(1)), 11243 N1, Flags)); 11244 } 11245 } 11246 } 11247 11248 // fold (fsub (fneg (fpext (fmul, x, y))), z) 11249 // -> (fneg (fma (fpext x)), (fpext y), z) 11250 // Note: This could be removed with appropriate canonicalization of the 11251 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 11252 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 11253 // from implementing the canonicalization in visitFSUB. 11254 if (N0.getOpcode() == ISD::FNEG) { 11255 SDValue N00 = N0.getOperand(0); 11256 if (N00.getOpcode() == ISD::FP_EXTEND) { 11257 SDValue N000 = N00.getOperand(0); 11258 if (isContractableFMUL(N000) && 11259 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) { 11260 return DAG.getNode(ISD::FNEG, SL, VT, 11261 DAG.getNode(PreferredFusedOpcode, SL, VT, 11262 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11263 N000.getOperand(0)), 11264 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11265 N000.getOperand(1)), 11266 N1, Flags)); 11267 } 11268 } 11269 } 11270 11271 // More folding opportunities when target permits. 11272 if (Aggressive) { 11273 // fold (fsub (fma x, y, (fmul u, v)), z) 11274 // -> (fma x, y (fma u, v, (fneg z))) 11275 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && 11276 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && 11277 N0.getOperand(2)->hasOneUse()) { 11278 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11279 N0.getOperand(0), N0.getOperand(1), 11280 DAG.getNode(PreferredFusedOpcode, SL, VT, 11281 N0.getOperand(2).getOperand(0), 11282 N0.getOperand(2).getOperand(1), 11283 DAG.getNode(ISD::FNEG, SL, VT, 11284 N1), Flags), Flags); 11285 } 11286 11287 // fold (fsub x, (fma y, z, (fmul u, v))) 11288 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 11289 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && 11290 isContractableFMUL(N1.getOperand(2))) { 11291 SDValue N20 = N1.getOperand(2).getOperand(0); 11292 SDValue N21 = N1.getOperand(2).getOperand(1); 11293 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11294 DAG.getNode(ISD::FNEG, SL, VT, 11295 N1.getOperand(0)), 11296 N1.getOperand(1), 11297 DAG.getNode(PreferredFusedOpcode, SL, VT, 11298 DAG.getNode(ISD::FNEG, SL, VT, N20), 11299 N21, N0, Flags), Flags); 11300 } 11301 11302 11303 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 11304 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 11305 if (N0.getOpcode() == PreferredFusedOpcode) { 11306 SDValue N02 = N0.getOperand(2); 11307 if (N02.getOpcode() == ISD::FP_EXTEND) { 11308 SDValue N020 = N02.getOperand(0); 11309 if (isContractableFMUL(N020) && 11310 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { 11311 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11312 N0.getOperand(0), N0.getOperand(1), 11313 DAG.getNode(PreferredFusedOpcode, SL, VT, 11314 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11315 N020.getOperand(0)), 11316 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11317 N020.getOperand(1)), 11318 DAG.getNode(ISD::FNEG, SL, VT, 11319 N1), Flags), Flags); 11320 } 11321 } 11322 } 11323 11324 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 11325 // -> (fma (fpext x), (fpext y), 11326 // (fma (fpext u), (fpext v), (fneg z))) 11327 // FIXME: This turns two single-precision and one double-precision 11328 // operation into two double-precision operations, which might not be 11329 // interesting for all targets, especially GPUs. 11330 if (N0.getOpcode() == ISD::FP_EXTEND) { 11331 SDValue N00 = N0.getOperand(0); 11332 if (N00.getOpcode() == PreferredFusedOpcode) { 11333 SDValue N002 = N00.getOperand(2); 11334 if (isContractableFMUL(N002) && 11335 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { 11336 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11337 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11338 N00.getOperand(0)), 11339 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11340 N00.getOperand(1)), 11341 DAG.getNode(PreferredFusedOpcode, SL, VT, 11342 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11343 N002.getOperand(0)), 11344 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11345 N002.getOperand(1)), 11346 DAG.getNode(ISD::FNEG, SL, VT, 11347 N1), Flags), Flags); 11348 } 11349 } 11350 } 11351 11352 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 11353 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 11354 if (N1.getOpcode() == PreferredFusedOpcode && 11355 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 11356 SDValue N120 = N1.getOperand(2).getOperand(0); 11357 if (isContractableFMUL(N120) && 11358 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { 11359 SDValue N1200 = N120.getOperand(0); 11360 SDValue N1201 = N120.getOperand(1); 11361 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11362 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 11363 N1.getOperand(1), 11364 DAG.getNode(PreferredFusedOpcode, SL, VT, 11365 DAG.getNode(ISD::FNEG, SL, VT, 11366 DAG.getNode(ISD::FP_EXTEND, SL, 11367 VT, N1200)), 11368 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11369 N1201), 11370 N0, Flags), Flags); 11371 } 11372 } 11373 11374 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 11375 // -> (fma (fneg (fpext y)), (fpext z), 11376 // (fma (fneg (fpext u)), (fpext v), x)) 11377 // FIXME: This turns two single-precision and one double-precision 11378 // operation into two double-precision operations, which might not be 11379 // interesting for all targets, especially GPUs. 11380 if (N1.getOpcode() == ISD::FP_EXTEND && 11381 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 11382 SDValue CvtSrc = N1.getOperand(0); 11383 SDValue N100 = CvtSrc.getOperand(0); 11384 SDValue N101 = CvtSrc.getOperand(1); 11385 SDValue N102 = CvtSrc.getOperand(2); 11386 if (isContractableFMUL(N102) && 11387 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) { 11388 SDValue N1020 = N102.getOperand(0); 11389 SDValue N1021 = N102.getOperand(1); 11390 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11391 DAG.getNode(ISD::FNEG, SL, VT, 11392 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11393 N100)), 11394 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 11395 DAG.getNode(PreferredFusedOpcode, SL, VT, 11396 DAG.getNode(ISD::FNEG, SL, VT, 11397 DAG.getNode(ISD::FP_EXTEND, SL, 11398 VT, N1020)), 11399 DAG.getNode(ISD::FP_EXTEND, SL, VT, 11400 N1021), 11401 N0, Flags), Flags); 11402 } 11403 } 11404 } 11405 11406 return SDValue(); 11407 } 11408 11409 /// Try to perform FMA combining on a given FMUL node based on the distributive 11410 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 11411 /// subtraction instead of addition). 11412 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 11413 SDValue N0 = N->getOperand(0); 11414 SDValue N1 = N->getOperand(1); 11415 EVT VT = N->getValueType(0); 11416 SDLoc SL(N); 11417 const SDNodeFlags Flags = N->getFlags(); 11418 11419 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 11420 11421 const TargetOptions &Options = DAG.getTarget().Options; 11422 11423 // The transforms below are incorrect when x == 0 and y == inf, because the 11424 // intermediate multiplication produces a nan. 11425 if (!Options.NoInfsFPMath) 11426 return SDValue(); 11427 11428 // Floating-point multiply-add without intermediate rounding. 11429 bool HasFMA = 11430 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && 11431 TLI.isFMAFasterThanFMulAndFAdd(VT) && 11432 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 11433 11434 // Floating-point multiply-add with intermediate rounding. This can result 11435 // in a less precise result due to the changed rounding order. 11436 bool HasFMAD = Options.UnsafeFPMath && 11437 (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 11438 11439 // No valid opcode, do not combine. 11440 if (!HasFMAD && !HasFMA) 11441 return SDValue(); 11442 11443 // Always prefer FMAD to FMA for precision. 11444 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 11445 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 11446 11447 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 11448 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 11449 auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { 11450 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 11451 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 11452 if (C->isExactlyValue(+1.0)) 11453 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 11454 Y, Flags); 11455 if (C->isExactlyValue(-1.0)) 11456 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 11457 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); 11458 } 11459 } 11460 return SDValue(); 11461 }; 11462 11463 if (SDValue FMA = FuseFADD(N0, N1, Flags)) 11464 return FMA; 11465 if (SDValue FMA = FuseFADD(N1, N0, Flags)) 11466 return FMA; 11467 11468 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 11469 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 11470 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 11471 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 11472 auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { 11473 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 11474 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 11475 if (C0->isExactlyValue(+1.0)) 11476 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11477 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 11478 Y, Flags); 11479 if (C0->isExactlyValue(-1.0)) 11480 return DAG.getNode(PreferredFusedOpcode, SL, VT, 11481 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 11482 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); 11483 } 11484 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 11485 if (C1->isExactlyValue(+1.0)) 11486 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 11487 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); 11488 if (C1->isExactlyValue(-1.0)) 11489 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 11490 Y, Flags); 11491 } 11492 } 11493 return SDValue(); 11494 }; 11495 11496 if (SDValue FMA = FuseFSUB(N0, N1, Flags)) 11497 return FMA; 11498 if (SDValue FMA = FuseFSUB(N1, N0, Flags)) 11499 return FMA; 11500 11501 return SDValue(); 11502 } 11503 11504 SDValue DAGCombiner::visitFADD(SDNode *N) { 11505 SDValue N0 = N->getOperand(0); 11506 SDValue N1 = N->getOperand(1); 11507 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 11508 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 11509 EVT VT = N->getValueType(0); 11510 SDLoc DL(N); 11511 const TargetOptions &Options = DAG.getTarget().Options; 11512 const SDNodeFlags Flags = N->getFlags(); 11513 11514 // fold vector ops 11515 if (VT.isVector()) 11516 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 11517 return FoldedVOp; 11518 11519 // fold (fadd c1, c2) -> c1 + c2 11520 if (N0CFP && N1CFP) 11521 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 11522 11523 // canonicalize constant to RHS 11524 if (N0CFP && !N1CFP) 11525 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 11526 11527 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 11528 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 11529 if (N1C && N1C->isZero()) 11530 if (N1C->isNegative() || Options.UnsafeFPMath || Flags.hasNoSignedZeros()) 11531 return N0; 11532 11533 if (SDValue NewSel = foldBinOpIntoSelect(N)) 11534 return NewSel; 11535 11536 // fold (fadd A, (fneg B)) -> (fsub A, B) 11537 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 11538 isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize) == 2) 11539 return DAG.getNode(ISD::FSUB, DL, VT, N0, 11540 GetNegatedExpression(N1, DAG, LegalOperations, 11541 ForCodeSize), Flags); 11542 11543 // fold (fadd (fneg A), B) -> (fsub B, A) 11544 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 11545 isNegatibleForFree(N0, LegalOperations, TLI, &Options, ForCodeSize) == 2) 11546 return DAG.getNode(ISD::FSUB, DL, VT, N1, 11547 GetNegatedExpression(N0, DAG, LegalOperations, 11548 ForCodeSize), Flags); 11549 11550 auto isFMulNegTwo = [](SDValue FMul) { 11551 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 11552 return false; 11553 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 11554 return C && C->isExactlyValue(-2.0); 11555 }; 11556 11557 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 11558 if (isFMulNegTwo(N0)) { 11559 SDValue B = N0.getOperand(0); 11560 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); 11561 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags); 11562 } 11563 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 11564 if (isFMulNegTwo(N1)) { 11565 SDValue B = N1.getOperand(0); 11566 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); 11567 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags); 11568 } 11569 11570 // No FP constant should be created after legalization as Instruction 11571 // Selection pass has a hard time dealing with FP constants. 11572 bool AllowNewConst = (Level < AfterLegalizeDAG); 11573 11574 // If 'unsafe math' or nnan is enabled, fold lots of things. 11575 if ((Options.UnsafeFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 11576 // If allowed, fold (fadd (fneg x), x) -> 0.0 11577 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 11578 return DAG.getConstantFP(0.0, DL, VT); 11579 11580 // If allowed, fold (fadd x, (fneg x)) -> 0.0 11581 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 11582 return DAG.getConstantFP(0.0, DL, VT); 11583 } 11584 11585 // If 'unsafe math' or reassoc and nsz, fold lots of things. 11586 // TODO: break out portions of the transformations below for which Unsafe is 11587 // considered and which do not require both nsz and reassoc 11588 if ((Options.UnsafeFPMath || 11589 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 11590 AllowNewConst) { 11591 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 11592 if (N1CFP && N0.getOpcode() == ISD::FADD && 11593 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 11594 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags); 11595 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags); 11596 } 11597 11598 // We can fold chains of FADD's of the same value into multiplications. 11599 // This transform is not safe in general because we are reducing the number 11600 // of rounding steps. 11601 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 11602 if (N0.getOpcode() == ISD::FMUL) { 11603 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 11604 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 11605 11606 // (fadd (fmul x, c), x) -> (fmul x, c+1) 11607 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 11608 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 11609 DAG.getConstantFP(1.0, DL, VT), Flags); 11610 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 11611 } 11612 11613 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 11614 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 11615 N1.getOperand(0) == N1.getOperand(1) && 11616 N0.getOperand(0) == N1.getOperand(0)) { 11617 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 11618 DAG.getConstantFP(2.0, DL, VT), Flags); 11619 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 11620 } 11621 } 11622 11623 if (N1.getOpcode() == ISD::FMUL) { 11624 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 11625 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 11626 11627 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 11628 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 11629 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 11630 DAG.getConstantFP(1.0, DL, VT), Flags); 11631 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 11632 } 11633 11634 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 11635 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 11636 N0.getOperand(0) == N0.getOperand(1) && 11637 N1.getOperand(0) == N0.getOperand(0)) { 11638 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 11639 DAG.getConstantFP(2.0, DL, VT), Flags); 11640 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 11641 } 11642 } 11643 11644 if (N0.getOpcode() == ISD::FADD) { 11645 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 11646 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 11647 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 11648 (N0.getOperand(0) == N1)) { 11649 return DAG.getNode(ISD::FMUL, DL, VT, 11650 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 11651 } 11652 } 11653 11654 if (N1.getOpcode() == ISD::FADD) { 11655 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 11656 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 11657 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 11658 N1.getOperand(0) == N0) { 11659 return DAG.getNode(ISD::FMUL, DL, VT, 11660 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 11661 } 11662 } 11663 11664 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 11665 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 11666 N0.getOperand(0) == N0.getOperand(1) && 11667 N1.getOperand(0) == N1.getOperand(1) && 11668 N0.getOperand(0) == N1.getOperand(0)) { 11669 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 11670 DAG.getConstantFP(4.0, DL, VT), Flags); 11671 } 11672 } 11673 } // enable-unsafe-fp-math 11674 11675 // FADD -> FMA combines: 11676 if (SDValue Fused = visitFADDForFMACombine(N)) { 11677 AddToWorklist(Fused.getNode()); 11678 return Fused; 11679 } 11680 return SDValue(); 11681 } 11682 11683 SDValue DAGCombiner::visitFSUB(SDNode *N) { 11684 SDValue N0 = N->getOperand(0); 11685 SDValue N1 = N->getOperand(1); 11686 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 11687 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 11688 EVT VT = N->getValueType(0); 11689 SDLoc DL(N); 11690 const TargetOptions &Options = DAG.getTarget().Options; 11691 const SDNodeFlags Flags = N->getFlags(); 11692 11693 // fold vector ops 11694 if (VT.isVector()) 11695 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 11696 return FoldedVOp; 11697 11698 // fold (fsub c1, c2) -> c1-c2 11699 if (N0CFP && N1CFP) 11700 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); 11701 11702 if (SDValue NewSel = foldBinOpIntoSelect(N)) 11703 return NewSel; 11704 11705 // (fsub A, 0) -> A 11706 if (N1CFP && N1CFP->isZero()) { 11707 if (!N1CFP->isNegative() || Options.UnsafeFPMath || 11708 Flags.hasNoSignedZeros()) { 11709 return N0; 11710 } 11711 } 11712 11713 if (N0 == N1) { 11714 // (fsub x, x) -> 0.0 11715 if (Options.UnsafeFPMath || Flags.hasNoNaNs()) 11716 return DAG.getConstantFP(0.0f, DL, VT); 11717 } 11718 11719 // (fsub -0.0, N1) -> -N1 11720 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the 11721 // FSUB does not specify the sign bit of a NaN. Also note that for 11722 // the same reason, the inverse transform is not safe, unless fast math 11723 // flags are in play. 11724 if (N0CFP && N0CFP->isZero()) { 11725 if (N0CFP->isNegative() || 11726 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 11727 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize)) 11728 return GetNegatedExpression(N1, DAG, LegalOperations, ForCodeSize); 11729 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 11730 return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags); 11731 } 11732 } 11733 11734 if ((Options.UnsafeFPMath || 11735 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) 11736 && N1.getOpcode() == ISD::FADD) { 11737 // X - (X + Y) -> -Y 11738 if (N0 == N1->getOperand(0)) 11739 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags); 11740 // X - (Y + X) -> -Y 11741 if (N0 == N1->getOperand(1)) 11742 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags); 11743 } 11744 11745 // fold (fsub A, (fneg B)) -> (fadd A, B) 11746 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize)) 11747 return DAG.getNode(ISD::FADD, DL, VT, N0, 11748 GetNegatedExpression(N1, DAG, LegalOperations, 11749 ForCodeSize), Flags); 11750 11751 // FSUB -> FMA combines: 11752 if (SDValue Fused = visitFSUBForFMACombine(N)) { 11753 AddToWorklist(Fused.getNode()); 11754 return Fused; 11755 } 11756 11757 return SDValue(); 11758 } 11759 11760 SDValue DAGCombiner::visitFMUL(SDNode *N) { 11761 SDValue N0 = N->getOperand(0); 11762 SDValue N1 = N->getOperand(1); 11763 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 11764 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 11765 EVT VT = N->getValueType(0); 11766 SDLoc DL(N); 11767 const TargetOptions &Options = DAG.getTarget().Options; 11768 const SDNodeFlags Flags = N->getFlags(); 11769 11770 // fold vector ops 11771 if (VT.isVector()) { 11772 // This just handles C1 * C2 for vectors. Other vector folds are below. 11773 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 11774 return FoldedVOp; 11775 } 11776 11777 // fold (fmul c1, c2) -> c1*c2 11778 if (N0CFP && N1CFP) 11779 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 11780 11781 // canonicalize constant to RHS 11782 if (isConstantFPBuildVectorOrConstantFP(N0) && 11783 !isConstantFPBuildVectorOrConstantFP(N1)) 11784 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 11785 11786 // fold (fmul A, 1.0) -> A 11787 if (N1CFP && N1CFP->isExactlyValue(1.0)) 11788 return N0; 11789 11790 if (SDValue NewSel = foldBinOpIntoSelect(N)) 11791 return NewSel; 11792 11793 if (Options.UnsafeFPMath || 11794 (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) { 11795 // fold (fmul A, 0) -> 0 11796 if (N1CFP && N1CFP->isZero()) 11797 return N1; 11798 } 11799 11800 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 11801 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 11802 if (isConstantFPBuildVectorOrConstantFP(N1) && 11803 N0.getOpcode() == ISD::FMUL) { 11804 SDValue N00 = N0.getOperand(0); 11805 SDValue N01 = N0.getOperand(1); 11806 // Avoid an infinite loop by making sure that N00 is not a constant 11807 // (the inner multiply has not been constant folded yet). 11808 if (isConstantFPBuildVectorOrConstantFP(N01) && 11809 !isConstantFPBuildVectorOrConstantFP(N00)) { 11810 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 11811 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 11812 } 11813 } 11814 11815 // Match a special-case: we convert X * 2.0 into fadd. 11816 // fmul (fadd X, X), C -> fmul X, 2.0 * C 11817 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 11818 N0.getOperand(0) == N0.getOperand(1)) { 11819 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 11820 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 11821 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 11822 } 11823 } 11824 11825 // fold (fmul X, 2.0) -> (fadd X, X) 11826 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 11827 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 11828 11829 // fold (fmul X, -1.0) -> (fneg X) 11830 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 11831 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 11832 return DAG.getNode(ISD::FNEG, DL, VT, N0); 11833 11834 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 11835 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options, 11836 ForCodeSize)) { 11837 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options, 11838 ForCodeSize)) { 11839 // Both can be negated for free, check to see if at least one is cheaper 11840 // negated. 11841 if (LHSNeg == 2 || RHSNeg == 2) 11842 return DAG.getNode(ISD::FMUL, DL, VT, 11843 GetNegatedExpression(N0, DAG, LegalOperations, 11844 ForCodeSize), 11845 GetNegatedExpression(N1, DAG, LegalOperations, 11846 ForCodeSize), 11847 Flags); 11848 } 11849 } 11850 11851 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 11852 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 11853 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 11854 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 11855 TLI.isOperationLegal(ISD::FABS, VT)) { 11856 SDValue Select = N0, X = N1; 11857 if (Select.getOpcode() != ISD::SELECT) 11858 std::swap(Select, X); 11859 11860 SDValue Cond = Select.getOperand(0); 11861 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 11862 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 11863 11864 if (TrueOpnd && FalseOpnd && 11865 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 11866 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 11867 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 11868 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 11869 switch (CC) { 11870 default: break; 11871 case ISD::SETOLT: 11872 case ISD::SETULT: 11873 case ISD::SETOLE: 11874 case ISD::SETULE: 11875 case ISD::SETLT: 11876 case ISD::SETLE: 11877 std::swap(TrueOpnd, FalseOpnd); 11878 LLVM_FALLTHROUGH; 11879 case ISD::SETOGT: 11880 case ISD::SETUGT: 11881 case ISD::SETOGE: 11882 case ISD::SETUGE: 11883 case ISD::SETGT: 11884 case ISD::SETGE: 11885 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 11886 TLI.isOperationLegal(ISD::FNEG, VT)) 11887 return DAG.getNode(ISD::FNEG, DL, VT, 11888 DAG.getNode(ISD::FABS, DL, VT, X)); 11889 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 11890 return DAG.getNode(ISD::FABS, DL, VT, X); 11891 11892 break; 11893 } 11894 } 11895 } 11896 11897 // FMUL -> FMA combines: 11898 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 11899 AddToWorklist(Fused.getNode()); 11900 return Fused; 11901 } 11902 11903 return SDValue(); 11904 } 11905 11906 SDValue DAGCombiner::visitFMA(SDNode *N) { 11907 SDValue N0 = N->getOperand(0); 11908 SDValue N1 = N->getOperand(1); 11909 SDValue N2 = N->getOperand(2); 11910 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 11911 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 11912 EVT VT = N->getValueType(0); 11913 SDLoc DL(N); 11914 const TargetOptions &Options = DAG.getTarget().Options; 11915 11916 // FMA nodes have flags that propagate to the created nodes. 11917 const SDNodeFlags Flags = N->getFlags(); 11918 bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N); 11919 11920 // Constant fold FMA. 11921 if (isa<ConstantFPSDNode>(N0) && 11922 isa<ConstantFPSDNode>(N1) && 11923 isa<ConstantFPSDNode>(N2)) { 11924 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 11925 } 11926 11927 if (UnsafeFPMath) { 11928 if (N0CFP && N0CFP->isZero()) 11929 return N2; 11930 if (N1CFP && N1CFP->isZero()) 11931 return N2; 11932 } 11933 // TODO: The FMA node should have flags that propagate to these nodes. 11934 if (N0CFP && N0CFP->isExactlyValue(1.0)) 11935 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 11936 if (N1CFP && N1CFP->isExactlyValue(1.0)) 11937 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 11938 11939 // Canonicalize (fma c, x, y) -> (fma x, c, y) 11940 if (isConstantFPBuildVectorOrConstantFP(N0) && 11941 !isConstantFPBuildVectorOrConstantFP(N1)) 11942 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 11943 11944 if (UnsafeFPMath) { 11945 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 11946 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 11947 isConstantFPBuildVectorOrConstantFP(N1) && 11948 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 11949 return DAG.getNode(ISD::FMUL, DL, VT, N0, 11950 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), 11951 Flags), Flags); 11952 } 11953 11954 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 11955 if (N0.getOpcode() == ISD::FMUL && 11956 isConstantFPBuildVectorOrConstantFP(N1) && 11957 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 11958 return DAG.getNode(ISD::FMA, DL, VT, 11959 N0.getOperand(0), 11960 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), 11961 Flags), 11962 N2); 11963 } 11964 } 11965 11966 // (fma x, 1, y) -> (fadd x, y) 11967 // (fma x, -1, y) -> (fadd (fneg x), y) 11968 if (N1CFP) { 11969 if (N1CFP->isExactlyValue(1.0)) 11970 // TODO: The FMA node should have flags that propagate to this node. 11971 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 11972 11973 if (N1CFP->isExactlyValue(-1.0) && 11974 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 11975 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 11976 AddToWorklist(RHSNeg.getNode()); 11977 // TODO: The FMA node should have flags that propagate to this node. 11978 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 11979 } 11980 11981 // fma (fneg x), K, y -> fma x -K, y 11982 if (N0.getOpcode() == ISD::FNEG && 11983 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 11984 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 11985 ForCodeSize)))) { 11986 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 11987 DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2); 11988 } 11989 } 11990 11991 if (UnsafeFPMath) { 11992 // (fma x, c, x) -> (fmul x, (c+1)) 11993 if (N1CFP && N0 == N2) { 11994 return DAG.getNode(ISD::FMUL, DL, VT, N0, 11995 DAG.getNode(ISD::FADD, DL, VT, N1, 11996 DAG.getConstantFP(1.0, DL, VT), Flags), 11997 Flags); 11998 } 11999 12000 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 12001 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 12002 return DAG.getNode(ISD::FMUL, DL, VT, N0, 12003 DAG.getNode(ISD::FADD, DL, VT, N1, 12004 DAG.getConstantFP(-1.0, DL, VT), Flags), 12005 Flags); 12006 } 12007 } 12008 12009 return SDValue(); 12010 } 12011 12012 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12013 // reciprocal. 12014 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 12015 // Notice that this is not always beneficial. One reason is different targets 12016 // may have different costs for FDIV and FMUL, so sometimes the cost of two 12017 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 12018 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 12019 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 12020 // TODO: Limit this transform based on optsize/minsize - it always creates at 12021 // least 1 extra instruction. But the perf win may be substantial enough 12022 // that only minsize should restrict this. 12023 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 12024 const SDNodeFlags Flags = N->getFlags(); 12025 if (!UnsafeMath && !Flags.hasAllowReciprocal()) 12026 return SDValue(); 12027 12028 // Skip if current node is a reciprocal. 12029 SDValue N0 = N->getOperand(0); 12030 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 12031 if (N0CFP && N0CFP->isExactlyValue(1.0)) 12032 return SDValue(); 12033 12034 // Exit early if the target does not want this transform or if there can't 12035 // possibly be enough uses of the divisor to make the transform worthwhile. 12036 SDValue N1 = N->getOperand(1); 12037 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 12038 12039 // For splat vectors, scale the number of uses by the splat factor. If we can 12040 // convert the division into a scalar op, that will likely be much faster. 12041 unsigned NumElts = 1; 12042 EVT VT = N->getValueType(0); 12043 if (VT.isVector() && DAG.isSplatValue(N1)) 12044 NumElts = VT.getVectorNumElements(); 12045 12046 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 12047 return SDValue(); 12048 12049 // Find all FDIV users of the same divisor. 12050 // Use a set because duplicates may be present in the user list. 12051 SetVector<SDNode *> Users; 12052 for (auto *U : N1->uses()) { 12053 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 12054 // This division is eligible for optimization only if global unsafe math 12055 // is enabled or if this division allows reciprocal formation. 12056 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 12057 Users.insert(U); 12058 } 12059 } 12060 12061 // Now that we have the actual number of divisor uses, make sure it meets 12062 // the minimum threshold specified by the target. 12063 if ((Users.size() * NumElts) < MinUses) 12064 return SDValue(); 12065 12066 SDLoc DL(N); 12067 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 12068 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 12069 12070 // Dividend / Divisor -> Dividend * Reciprocal 12071 for (auto *U : Users) { 12072 SDValue Dividend = U->getOperand(0); 12073 if (Dividend != FPOne) { 12074 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 12075 Reciprocal, Flags); 12076 CombineTo(U, NewNode); 12077 } else if (U != Reciprocal.getNode()) { 12078 // In the absence of fast-math-flags, this user node is always the 12079 // same node as Reciprocal, but with FMF they may be different nodes. 12080 CombineTo(U, Reciprocal); 12081 } 12082 } 12083 return SDValue(N, 0); // N was replaced. 12084 } 12085 12086 SDValue DAGCombiner::visitFDIV(SDNode *N) { 12087 SDValue N0 = N->getOperand(0); 12088 SDValue N1 = N->getOperand(1); 12089 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 12090 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 12091 EVT VT = N->getValueType(0); 12092 SDLoc DL(N); 12093 const TargetOptions &Options = DAG.getTarget().Options; 12094 SDNodeFlags Flags = N->getFlags(); 12095 12096 // fold vector ops 12097 if (VT.isVector()) 12098 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 12099 return FoldedVOp; 12100 12101 // fold (fdiv c1, c2) -> c1/c2 12102 if (N0CFP && N1CFP) 12103 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 12104 12105 if (SDValue NewSel = foldBinOpIntoSelect(N)) 12106 return NewSel; 12107 12108 if (SDValue V = combineRepeatedFPDivisors(N)) 12109 return V; 12110 12111 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 12112 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 12113 if (N1CFP) { 12114 // Compute the reciprocal 1.0 / c2. 12115 const APFloat &N1APF = N1CFP->getValueAPF(); 12116 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 12117 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 12118 // Only do the transform if the reciprocal is a legal fp immediate that 12119 // isn't too nasty (eg NaN, denormal, ...). 12120 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 12121 (!LegalOperations || 12122 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 12123 // backend)... we should handle this gracefully after Legalize. 12124 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 12125 TLI.isOperationLegal(ISD::ConstantFP, VT) || 12126 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 12127 return DAG.getNode(ISD::FMUL, DL, VT, N0, 12128 DAG.getConstantFP(Recip, DL, VT), Flags); 12129 } 12130 12131 // If this FDIV is part of a reciprocal square root, it may be folded 12132 // into a target-specific square root estimate instruction. 12133 if (N1.getOpcode() == ISD::FSQRT) { 12134 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) { 12135 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 12136 } 12137 } else if (N1.getOpcode() == ISD::FP_EXTEND && 12138 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 12139 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 12140 Flags)) { 12141 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 12142 AddToWorklist(RV.getNode()); 12143 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 12144 } 12145 } else if (N1.getOpcode() == ISD::FP_ROUND && 12146 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 12147 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 12148 Flags)) { 12149 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 12150 AddToWorklist(RV.getNode()); 12151 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 12152 } 12153 } else if (N1.getOpcode() == ISD::FMUL) { 12154 // Look through an FMUL. Even though this won't remove the FDIV directly, 12155 // it's still worthwhile to get rid of the FSQRT if possible. 12156 SDValue SqrtOp; 12157 SDValue OtherOp; 12158 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 12159 SqrtOp = N1.getOperand(0); 12160 OtherOp = N1.getOperand(1); 12161 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 12162 SqrtOp = N1.getOperand(1); 12163 OtherOp = N1.getOperand(0); 12164 } 12165 if (SqrtOp.getNode()) { 12166 // We found a FSQRT, so try to make this fold: 12167 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 12168 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 12169 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 12170 AddToWorklist(RV.getNode()); 12171 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 12172 } 12173 } 12174 } 12175 12176 // Fold into a reciprocal estimate and multiply instead of a real divide. 12177 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 12178 AddToWorklist(RV.getNode()); 12179 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 12180 } 12181 } 12182 12183 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 12184 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options, 12185 ForCodeSize)) { 12186 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options, 12187 ForCodeSize)) { 12188 // Both can be negated for free, check to see if at least one is cheaper 12189 // negated. 12190 if (LHSNeg == 2 || RHSNeg == 2) 12191 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 12192 GetNegatedExpression(N0, DAG, LegalOperations, 12193 ForCodeSize), 12194 GetNegatedExpression(N1, DAG, LegalOperations, 12195 ForCodeSize), 12196 Flags); 12197 } 12198 } 12199 12200 return SDValue(); 12201 } 12202 12203 SDValue DAGCombiner::visitFREM(SDNode *N) { 12204 SDValue N0 = N->getOperand(0); 12205 SDValue N1 = N->getOperand(1); 12206 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 12207 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 12208 EVT VT = N->getValueType(0); 12209 12210 // fold (frem c1, c2) -> fmod(c1,c2) 12211 if (N0CFP && N1CFP) 12212 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags()); 12213 12214 if (SDValue NewSel = foldBinOpIntoSelect(N)) 12215 return NewSel; 12216 12217 return SDValue(); 12218 } 12219 12220 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 12221 SDNodeFlags Flags = N->getFlags(); 12222 if (!DAG.getTarget().Options.UnsafeFPMath && 12223 !Flags.hasApproximateFuncs()) 12224 return SDValue(); 12225 12226 SDValue N0 = N->getOperand(0); 12227 if (TLI.isFsqrtCheap(N0, DAG)) 12228 return SDValue(); 12229 12230 // FSQRT nodes have flags that propagate to the created nodes. 12231 return buildSqrtEstimate(N0, Flags); 12232 } 12233 12234 /// copysign(x, fp_extend(y)) -> copysign(x, y) 12235 /// copysign(x, fp_round(y)) -> copysign(x, y) 12236 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 12237 SDValue N1 = N->getOperand(1); 12238 if ((N1.getOpcode() == ISD::FP_EXTEND || 12239 N1.getOpcode() == ISD::FP_ROUND)) { 12240 // Do not optimize out type conversion of f128 type yet. 12241 // For some targets like x86_64, configuration is changed to keep one f128 12242 // value in one SSE register, but instruction selection cannot handle 12243 // FCOPYSIGN on SSE registers yet. 12244 EVT N1VT = N1->getValueType(0); 12245 EVT N1Op0VT = N1->getOperand(0).getValueType(); 12246 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 12247 } 12248 return false; 12249 } 12250 12251 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 12252 SDValue N0 = N->getOperand(0); 12253 SDValue N1 = N->getOperand(1); 12254 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 12255 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 12256 EVT VT = N->getValueType(0); 12257 12258 if (N0CFP && N1CFP) // Constant fold 12259 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 12260 12261 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 12262 const APFloat &V = N1C->getValueAPF(); 12263 // copysign(x, c1) -> fabs(x) iff ispos(c1) 12264 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 12265 if (!V.isNegative()) { 12266 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 12267 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 12268 } else { 12269 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 12270 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 12271 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 12272 } 12273 } 12274 12275 // copysign(fabs(x), y) -> copysign(x, y) 12276 // copysign(fneg(x), y) -> copysign(x, y) 12277 // copysign(copysign(x,z), y) -> copysign(x, y) 12278 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 12279 N0.getOpcode() == ISD::FCOPYSIGN) 12280 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 12281 12282 // copysign(x, abs(y)) -> abs(x) 12283 if (N1.getOpcode() == ISD::FABS) 12284 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 12285 12286 // copysign(x, copysign(y,z)) -> copysign(x, z) 12287 if (N1.getOpcode() == ISD::FCOPYSIGN) 12288 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 12289 12290 // copysign(x, fp_extend(y)) -> copysign(x, y) 12291 // copysign(x, fp_round(y)) -> copysign(x, y) 12292 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 12293 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 12294 12295 return SDValue(); 12296 } 12297 12298 SDValue DAGCombiner::visitFPOW(SDNode *N) { 12299 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 12300 if (!ExponentC) 12301 return SDValue(); 12302 12303 // Try to convert x ** (1/3) into cube root. 12304 // TODO: Handle the various flavors of long double. 12305 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 12306 // Some range near 1/3 should be fine. 12307 EVT VT = N->getValueType(0); 12308 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 12309 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 12310 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 12311 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 12312 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 12313 // For regular numbers, rounding may cause the results to differ. 12314 // Therefore, we require { nsz ninf nnan afn } for this transform. 12315 // TODO: We could select out the special cases if we don't have nsz/ninf. 12316 SDNodeFlags Flags = N->getFlags(); 12317 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 12318 !Flags.hasApproximateFuncs()) 12319 return SDValue(); 12320 12321 // Do not create a cbrt() libcall if the target does not have it, and do not 12322 // turn a pow that has lowering support into a cbrt() libcall. 12323 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 12324 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 12325 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 12326 return SDValue(); 12327 12328 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags); 12329 } 12330 12331 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 12332 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 12333 // TODO: This could be extended (using a target hook) to handle smaller 12334 // power-of-2 fractional exponents. 12335 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 12336 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 12337 if (ExponentIs025 || ExponentIs075) { 12338 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 12339 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 12340 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 12341 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 12342 // For regular numbers, rounding may cause the results to differ. 12343 // Therefore, we require { nsz ninf afn } for this transform. 12344 // TODO: We could select out the special cases if we don't have nsz/ninf. 12345 SDNodeFlags Flags = N->getFlags(); 12346 12347 // We only need no signed zeros for the 0.25 case. 12348 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 12349 !Flags.hasApproximateFuncs()) 12350 return SDValue(); 12351 12352 // Don't double the number of libcalls. We are trying to inline fast code. 12353 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 12354 return SDValue(); 12355 12356 // Assume that libcalls are the smallest code. 12357 // TODO: This restriction should probably be lifted for vectors. 12358 if (DAG.getMachineFunction().getFunction().hasOptSize()) 12359 return SDValue(); 12360 12361 // pow(X, 0.25) --> sqrt(sqrt(X)) 12362 SDLoc DL(N); 12363 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags); 12364 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags); 12365 if (ExponentIs025) 12366 return SqrtSqrt; 12367 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 12368 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags); 12369 } 12370 12371 return SDValue(); 12372 } 12373 12374 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 12375 const TargetLowering &TLI) { 12376 // This optimization is guarded by a function attribute because it may produce 12377 // unexpected results. Ie, programs may be relying on the platform-specific 12378 // undefined behavior when the float-to-int conversion overflows. 12379 const Function &F = DAG.getMachineFunction().getFunction(); 12380 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); 12381 if (StrictOverflow.getValueAsString().equals("false")) 12382 return SDValue(); 12383 12384 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 12385 // replacing casts with a libcall. We also must be allowed to ignore -0.0 12386 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 12387 // conversions would return +0.0. 12388 // FIXME: We should be able to use node-level FMF here. 12389 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 12390 EVT VT = N->getValueType(0); 12391 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 12392 !DAG.getTarget().Options.NoSignedZerosFPMath) 12393 return SDValue(); 12394 12395 // fptosi/fptoui round towards zero, so converting from FP to integer and 12396 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 12397 SDValue N0 = N->getOperand(0); 12398 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 12399 N0.getOperand(0).getValueType() == VT) 12400 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 12401 12402 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 12403 N0.getOperand(0).getValueType() == VT) 12404 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 12405 12406 return SDValue(); 12407 } 12408 12409 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 12410 SDValue N0 = N->getOperand(0); 12411 EVT VT = N->getValueType(0); 12412 EVT OpVT = N0.getValueType(); 12413 12414 // fold (sint_to_fp c1) -> c1fp 12415 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 12416 // ...but only if the target supports immediate floating-point values 12417 (!LegalOperations || 12418 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 12419 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 12420 12421 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 12422 // but UINT_TO_FP is legal on this target, try to convert. 12423 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 12424 hasOperation(ISD::UINT_TO_FP, OpVT)) { 12425 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 12426 if (DAG.SignBitIsZero(N0)) 12427 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 12428 } 12429 12430 // The next optimizations are desirable only if SELECT_CC can be lowered. 12431 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 12432 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 12433 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 12434 !VT.isVector() && 12435 (!LegalOperations || 12436 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 12437 SDLoc DL(N); 12438 SDValue Ops[] = 12439 { N0.getOperand(0), N0.getOperand(1), 12440 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 12441 N0.getOperand(2) }; 12442 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 12443 } 12444 12445 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 12446 // (select_cc x, y, 1.0, 0.0,, cc) 12447 if (N0.getOpcode() == ISD::ZERO_EXTEND && 12448 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 12449 (!LegalOperations || 12450 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 12451 SDLoc DL(N); 12452 SDValue Ops[] = 12453 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 12454 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 12455 N0.getOperand(0).getOperand(2) }; 12456 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 12457 } 12458 } 12459 12460 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 12461 return FTrunc; 12462 12463 return SDValue(); 12464 } 12465 12466 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 12467 SDValue N0 = N->getOperand(0); 12468 EVT VT = N->getValueType(0); 12469 EVT OpVT = N0.getValueType(); 12470 12471 // fold (uint_to_fp c1) -> c1fp 12472 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 12473 // ...but only if the target supports immediate floating-point values 12474 (!LegalOperations || 12475 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 12476 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 12477 12478 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 12479 // but SINT_TO_FP is legal on this target, try to convert. 12480 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 12481 hasOperation(ISD::SINT_TO_FP, OpVT)) { 12482 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 12483 if (DAG.SignBitIsZero(N0)) 12484 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 12485 } 12486 12487 // The next optimizations are desirable only if SELECT_CC can be lowered. 12488 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 12489 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 12490 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 12491 (!LegalOperations || 12492 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 12493 SDLoc DL(N); 12494 SDValue Ops[] = 12495 { N0.getOperand(0), N0.getOperand(1), 12496 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 12497 N0.getOperand(2) }; 12498 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 12499 } 12500 } 12501 12502 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 12503 return FTrunc; 12504 12505 return SDValue(); 12506 } 12507 12508 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 12509 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 12510 SDValue N0 = N->getOperand(0); 12511 EVT VT = N->getValueType(0); 12512 12513 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 12514 return SDValue(); 12515 12516 SDValue Src = N0.getOperand(0); 12517 EVT SrcVT = Src.getValueType(); 12518 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 12519 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 12520 12521 // We can safely assume the conversion won't overflow the output range, 12522 // because (for example) (uint8_t)18293.f is undefined behavior. 12523 12524 // Since we can assume the conversion won't overflow, our decision as to 12525 // whether the input will fit in the float should depend on the minimum 12526 // of the input range and output range. 12527 12528 // This means this is also safe for a signed input and unsigned output, since 12529 // a negative input would lead to undefined behavior. 12530 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 12531 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 12532 unsigned ActualSize = std::min(InputSize, OutputSize); 12533 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 12534 12535 // We can only fold away the float conversion if the input range can be 12536 // represented exactly in the float range. 12537 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 12538 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 12539 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 12540 : ISD::ZERO_EXTEND; 12541 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 12542 } 12543 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 12544 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 12545 return DAG.getBitcast(VT, Src); 12546 } 12547 return SDValue(); 12548 } 12549 12550 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 12551 SDValue N0 = N->getOperand(0); 12552 EVT VT = N->getValueType(0); 12553 12554 // fold (fp_to_sint c1fp) -> c1 12555 if (isConstantFPBuildVectorOrConstantFP(N0)) 12556 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 12557 12558 return FoldIntToFPToInt(N, DAG); 12559 } 12560 12561 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 12562 SDValue N0 = N->getOperand(0); 12563 EVT VT = N->getValueType(0); 12564 12565 // fold (fp_to_uint c1fp) -> c1 12566 if (isConstantFPBuildVectorOrConstantFP(N0)) 12567 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 12568 12569 return FoldIntToFPToInt(N, DAG); 12570 } 12571 12572 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 12573 SDValue N0 = N->getOperand(0); 12574 SDValue N1 = N->getOperand(1); 12575 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 12576 EVT VT = N->getValueType(0); 12577 12578 // fold (fp_round c1fp) -> c1fp 12579 if (N0CFP) 12580 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 12581 12582 // fold (fp_round (fp_extend x)) -> x 12583 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 12584 return N0.getOperand(0); 12585 12586 // fold (fp_round (fp_round x)) -> (fp_round x) 12587 if (N0.getOpcode() == ISD::FP_ROUND) { 12588 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 12589 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 12590 12591 // Skip this folding if it results in an fp_round from f80 to f16. 12592 // 12593 // f80 to f16 always generates an expensive (and as yet, unimplemented) 12594 // libcall to __truncxfhf2 instead of selecting native f16 conversion 12595 // instructions from f32 or f64. Moreover, the first (value-preserving) 12596 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 12597 // x86. 12598 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 12599 return SDValue(); 12600 12601 // If the first fp_round isn't a value preserving truncation, it might 12602 // introduce a tie in the second fp_round, that wouldn't occur in the 12603 // single-step fp_round we want to fold to. 12604 // In other words, double rounding isn't the same as rounding. 12605 // Also, this is a value preserving truncation iff both fp_round's are. 12606 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 12607 SDLoc DL(N); 12608 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 12609 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 12610 } 12611 } 12612 12613 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 12614 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 12615 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 12616 N0.getOperand(0), N1); 12617 AddToWorklist(Tmp.getNode()); 12618 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 12619 Tmp, N0.getOperand(1)); 12620 } 12621 12622 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 12623 return NewVSel; 12624 12625 return SDValue(); 12626 } 12627 12628 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 12629 SDValue N0 = N->getOperand(0); 12630 EVT VT = N->getValueType(0); 12631 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 12632 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 12633 12634 // fold (fp_round_inreg c1fp) -> c1fp 12635 if (N0CFP && isTypeLegal(EVT)) { 12636 SDLoc DL(N); 12637 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 12638 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 12639 } 12640 12641 return SDValue(); 12642 } 12643 12644 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 12645 SDValue N0 = N->getOperand(0); 12646 EVT VT = N->getValueType(0); 12647 12648 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 12649 if (N->hasOneUse() && 12650 N->use_begin()->getOpcode() == ISD::FP_ROUND) 12651 return SDValue(); 12652 12653 // fold (fp_extend c1fp) -> c1fp 12654 if (isConstantFPBuildVectorOrConstantFP(N0)) 12655 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 12656 12657 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 12658 if (N0.getOpcode() == ISD::FP16_TO_FP && 12659 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 12660 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 12661 12662 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 12663 // value of X. 12664 if (N0.getOpcode() == ISD::FP_ROUND 12665 && N0.getConstantOperandVal(1) == 1) { 12666 SDValue In = N0.getOperand(0); 12667 if (In.getValueType() == VT) return In; 12668 if (VT.bitsLT(In.getValueType())) 12669 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 12670 In, N0.getOperand(1)); 12671 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 12672 } 12673 12674 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 12675 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 12676 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 12677 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12678 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 12679 LN0->getChain(), 12680 LN0->getBasePtr(), N0.getValueType(), 12681 LN0->getMemOperand()); 12682 CombineTo(N, ExtLoad); 12683 CombineTo(N0.getNode(), 12684 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 12685 N0.getValueType(), ExtLoad, 12686 DAG.getIntPtrConstant(1, SDLoc(N0))), 12687 ExtLoad.getValue(1)); 12688 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12689 } 12690 12691 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 12692 return NewVSel; 12693 12694 return SDValue(); 12695 } 12696 12697 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 12698 SDValue N0 = N->getOperand(0); 12699 EVT VT = N->getValueType(0); 12700 12701 // fold (fceil c1) -> fceil(c1) 12702 if (isConstantFPBuildVectorOrConstantFP(N0)) 12703 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 12704 12705 return SDValue(); 12706 } 12707 12708 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 12709 SDValue N0 = N->getOperand(0); 12710 EVT VT = N->getValueType(0); 12711 12712 // fold (ftrunc c1) -> ftrunc(c1) 12713 if (isConstantFPBuildVectorOrConstantFP(N0)) 12714 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 12715 12716 // fold ftrunc (known rounded int x) -> x 12717 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 12718 // likely to be generated to extract integer from a rounded floating value. 12719 switch (N0.getOpcode()) { 12720 default: break; 12721 case ISD::FRINT: 12722 case ISD::FTRUNC: 12723 case ISD::FNEARBYINT: 12724 case ISD::FFLOOR: 12725 case ISD::FCEIL: 12726 return N0; 12727 } 12728 12729 return SDValue(); 12730 } 12731 12732 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 12733 SDValue N0 = N->getOperand(0); 12734 EVT VT = N->getValueType(0); 12735 12736 // fold (ffloor c1) -> ffloor(c1) 12737 if (isConstantFPBuildVectorOrConstantFP(N0)) 12738 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 12739 12740 return SDValue(); 12741 } 12742 12743 // FIXME: FNEG and FABS have a lot in common; refactor. 12744 SDValue DAGCombiner::visitFNEG(SDNode *N) { 12745 SDValue N0 = N->getOperand(0); 12746 EVT VT = N->getValueType(0); 12747 12748 // Constant fold FNEG. 12749 if (isConstantFPBuildVectorOrConstantFP(N0)) 12750 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 12751 12752 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 12753 &DAG.getTarget().Options, ForCodeSize)) 12754 return GetNegatedExpression(N0, DAG, LegalOperations, ForCodeSize); 12755 12756 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 12757 // constant pool values. 12758 if (!TLI.isFNegFree(VT) && 12759 N0.getOpcode() == ISD::BITCAST && 12760 N0.getNode()->hasOneUse()) { 12761 SDValue Int = N0.getOperand(0); 12762 EVT IntVT = Int.getValueType(); 12763 if (IntVT.isInteger() && !IntVT.isVector()) { 12764 APInt SignMask; 12765 if (N0.getValueType().isVector()) { 12766 // For a vector, get a mask such as 0x80... per scalar element 12767 // and splat it. 12768 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 12769 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 12770 } else { 12771 // For a scalar, just generate 0x80... 12772 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 12773 } 12774 SDLoc DL0(N0); 12775 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 12776 DAG.getConstant(SignMask, DL0, IntVT)); 12777 AddToWorklist(Int.getNode()); 12778 return DAG.getBitcast(VT, Int); 12779 } 12780 } 12781 12782 // (fneg (fmul c, x)) -> (fmul -c, x) 12783 if (N0.getOpcode() == ISD::FMUL && 12784 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 12785 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 12786 if (CFP1) { 12787 APFloat CVal = CFP1->getValueAPF(); 12788 CVal.changeSign(); 12789 if (Level >= AfterLegalizeDAG && 12790 (TLI.isFPImmLegal(CVal, VT, ForCodeSize) || 12791 TLI.isOperationLegal(ISD::ConstantFP, VT))) 12792 return DAG.getNode( 12793 ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 12794 DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)), 12795 N0->getFlags()); 12796 } 12797 } 12798 12799 return SDValue(); 12800 } 12801 12802 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, 12803 APFloat (*Op)(const APFloat &, const APFloat &)) { 12804 SDValue N0 = N->getOperand(0); 12805 SDValue N1 = N->getOperand(1); 12806 EVT VT = N->getValueType(0); 12807 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 12808 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 12809 12810 if (N0CFP && N1CFP) { 12811 const APFloat &C0 = N0CFP->getValueAPF(); 12812 const APFloat &C1 = N1CFP->getValueAPF(); 12813 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); 12814 } 12815 12816 // Canonicalize to constant on RHS. 12817 if (isConstantFPBuildVectorOrConstantFP(N0) && 12818 !isConstantFPBuildVectorOrConstantFP(N1)) 12819 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 12820 12821 return SDValue(); 12822 } 12823 12824 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 12825 return visitFMinMax(DAG, N, minnum); 12826 } 12827 12828 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 12829 return visitFMinMax(DAG, N, maxnum); 12830 } 12831 12832 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { 12833 return visitFMinMax(DAG, N, minimum); 12834 } 12835 12836 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { 12837 return visitFMinMax(DAG, N, maximum); 12838 } 12839 12840 SDValue DAGCombiner::visitFABS(SDNode *N) { 12841 SDValue N0 = N->getOperand(0); 12842 EVT VT = N->getValueType(0); 12843 12844 // fold (fabs c1) -> fabs(c1) 12845 if (isConstantFPBuildVectorOrConstantFP(N0)) 12846 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 12847 12848 // fold (fabs (fabs x)) -> (fabs x) 12849 if (N0.getOpcode() == ISD::FABS) 12850 return N->getOperand(0); 12851 12852 // fold (fabs (fneg x)) -> (fabs x) 12853 // fold (fabs (fcopysign x, y)) -> (fabs x) 12854 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 12855 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 12856 12857 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads. 12858 if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) { 12859 SDValue Int = N0.getOperand(0); 12860 EVT IntVT = Int.getValueType(); 12861 if (IntVT.isInteger() && !IntVT.isVector()) { 12862 APInt SignMask; 12863 if (N0.getValueType().isVector()) { 12864 // For a vector, get a mask such as 0x7f... per scalar element 12865 // and splat it. 12866 SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits()); 12867 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 12868 } else { 12869 // For a scalar, just generate 0x7f... 12870 SignMask = ~APInt::getSignMask(IntVT.getSizeInBits()); 12871 } 12872 SDLoc DL(N0); 12873 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 12874 DAG.getConstant(SignMask, DL, IntVT)); 12875 AddToWorklist(Int.getNode()); 12876 return DAG.getBitcast(N->getValueType(0), Int); 12877 } 12878 } 12879 12880 return SDValue(); 12881 } 12882 12883 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 12884 SDValue Chain = N->getOperand(0); 12885 SDValue N1 = N->getOperand(1); 12886 SDValue N2 = N->getOperand(2); 12887 12888 // If N is a constant we could fold this into a fallthrough or unconditional 12889 // branch. However that doesn't happen very often in normal code, because 12890 // Instcombine/SimplifyCFG should have handled the available opportunities. 12891 // If we did this folding here, it would be necessary to update the 12892 // MachineBasicBlock CFG, which is awkward. 12893 12894 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 12895 // on the target. 12896 if (N1.getOpcode() == ISD::SETCC && 12897 TLI.isOperationLegalOrCustom(ISD::BR_CC, 12898 N1.getOperand(0).getValueType())) { 12899 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 12900 Chain, N1.getOperand(2), 12901 N1.getOperand(0), N1.getOperand(1), N2); 12902 } 12903 12904 if (N1.hasOneUse()) { 12905 if (SDValue NewN1 = rebuildSetCC(N1)) 12906 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2); 12907 } 12908 12909 return SDValue(); 12910 } 12911 12912 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 12913 if (N.getOpcode() == ISD::SRL || 12914 (N.getOpcode() == ISD::TRUNCATE && 12915 (N.getOperand(0).hasOneUse() && 12916 N.getOperand(0).getOpcode() == ISD::SRL))) { 12917 // Look pass the truncate. 12918 if (N.getOpcode() == ISD::TRUNCATE) 12919 N = N.getOperand(0); 12920 12921 // Match this pattern so that we can generate simpler code: 12922 // 12923 // %a = ... 12924 // %b = and i32 %a, 2 12925 // %c = srl i32 %b, 1 12926 // brcond i32 %c ... 12927 // 12928 // into 12929 // 12930 // %a = ... 12931 // %b = and i32 %a, 2 12932 // %c = setcc eq %b, 0 12933 // brcond %c ... 12934 // 12935 // This applies only when the AND constant value has one bit set and the 12936 // SRL constant is equal to the log2 of the AND constant. The back-end is 12937 // smart enough to convert the result into a TEST/JMP sequence. 12938 SDValue Op0 = N.getOperand(0); 12939 SDValue Op1 = N.getOperand(1); 12940 12941 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 12942 SDValue AndOp1 = Op0.getOperand(1); 12943 12944 if (AndOp1.getOpcode() == ISD::Constant) { 12945 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 12946 12947 if (AndConst.isPowerOf2() && 12948 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 12949 SDLoc DL(N); 12950 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 12951 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 12952 ISD::SETNE); 12953 } 12954 } 12955 } 12956 } 12957 12958 // Transform br(xor(x, y)) -> br(x != y) 12959 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 12960 if (N.getOpcode() == ISD::XOR) { 12961 // Because we may call this on a speculatively constructed 12962 // SimplifiedSetCC Node, we need to simplify this node first. 12963 // Ideally this should be folded into SimplifySetCC and not 12964 // here. For now, grab a handle to N so we don't lose it from 12965 // replacements interal to the visit. 12966 HandleSDNode XORHandle(N); 12967 while (N.getOpcode() == ISD::XOR) { 12968 SDValue Tmp = visitXOR(N.getNode()); 12969 // No simplification done. 12970 if (!Tmp.getNode()) 12971 break; 12972 // Returning N is form in-visit replacement that may invalidated 12973 // N. Grab value from Handle. 12974 if (Tmp.getNode() == N.getNode()) 12975 N = XORHandle.getValue(); 12976 else // Node simplified. Try simplifying again. 12977 N = Tmp; 12978 } 12979 12980 if (N.getOpcode() != ISD::XOR) 12981 return N; 12982 12983 SDNode *TheXor = N.getNode(); 12984 12985 SDValue Op0 = TheXor->getOperand(0); 12986 SDValue Op1 = TheXor->getOperand(1); 12987 12988 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 12989 bool Equal = false; 12990 if (isOneConstant(Op0) && Op0.hasOneUse() && 12991 Op0.getOpcode() == ISD::XOR) { 12992 TheXor = Op0.getNode(); 12993 Equal = true; 12994 } 12995 12996 EVT SetCCVT = N.getValueType(); 12997 if (LegalTypes) 12998 SetCCVT = getSetCCResultType(SetCCVT); 12999 // Replace the uses of XOR with SETCC 13000 return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1, 13001 Equal ? ISD::SETEQ : ISD::SETNE); 13002 } 13003 } 13004 13005 return SDValue(); 13006 } 13007 13008 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 13009 // 13010 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 13011 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 13012 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 13013 13014 // If N is a constant we could fold this into a fallthrough or unconditional 13015 // branch. However that doesn't happen very often in normal code, because 13016 // Instcombine/SimplifyCFG should have handled the available opportunities. 13017 // If we did this folding here, it would be necessary to update the 13018 // MachineBasicBlock CFG, which is awkward. 13019 13020 // Use SimplifySetCC to simplify SETCC's. 13021 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 13022 CondLHS, CondRHS, CC->get(), SDLoc(N), 13023 false); 13024 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 13025 13026 // fold to a simpler setcc 13027 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 13028 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 13029 N->getOperand(0), Simp.getOperand(2), 13030 Simp.getOperand(0), Simp.getOperand(1), 13031 N->getOperand(4)); 13032 13033 return SDValue(); 13034 } 13035 13036 /// Return true if 'Use' is a load or a store that uses N as its base pointer 13037 /// and that N may be folded in the load / store addressing mode. 13038 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 13039 SelectionDAG &DAG, 13040 const TargetLowering &TLI) { 13041 EVT VT; 13042 unsigned AS; 13043 13044 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 13045 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 13046 return false; 13047 VT = LD->getMemoryVT(); 13048 AS = LD->getAddressSpace(); 13049 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 13050 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 13051 return false; 13052 VT = ST->getMemoryVT(); 13053 AS = ST->getAddressSpace(); 13054 } else 13055 return false; 13056 13057 TargetLowering::AddrMode AM; 13058 if (N->getOpcode() == ISD::ADD) { 13059 AM.HasBaseReg = true; 13060 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13061 if (Offset) 13062 // [reg +/- imm] 13063 AM.BaseOffs = Offset->getSExtValue(); 13064 else 13065 // [reg +/- reg] 13066 AM.Scale = 1; 13067 } else if (N->getOpcode() == ISD::SUB) { 13068 AM.HasBaseReg = true; 13069 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13070 if (Offset) 13071 // [reg +/- imm] 13072 AM.BaseOffs = -Offset->getSExtValue(); 13073 else 13074 // [reg +/- reg] 13075 AM.Scale = 1; 13076 } else 13077 return false; 13078 13079 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 13080 VT.getTypeForEVT(*DAG.getContext()), AS); 13081 } 13082 13083 /// Try turning a load/store into a pre-indexed load/store when the base 13084 /// pointer is an add or subtract and it has other uses besides the load/store. 13085 /// After the transformation, the new indexed load/store has effectively folded 13086 /// the add/subtract in and all of its other uses are redirected to the 13087 /// new load/store. 13088 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 13089 if (Level < AfterLegalizeDAG) 13090 return false; 13091 13092 bool isLoad = true; 13093 SDValue Ptr; 13094 EVT VT; 13095 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 13096 if (LD->isIndexed()) 13097 return false; 13098 VT = LD->getMemoryVT(); 13099 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 13100 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 13101 return false; 13102 Ptr = LD->getBasePtr(); 13103 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 13104 if (ST->isIndexed()) 13105 return false; 13106 VT = ST->getMemoryVT(); 13107 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 13108 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 13109 return false; 13110 Ptr = ST->getBasePtr(); 13111 isLoad = false; 13112 } else { 13113 return false; 13114 } 13115 13116 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 13117 // out. There is no reason to make this a preinc/predec. 13118 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 13119 Ptr.getNode()->hasOneUse()) 13120 return false; 13121 13122 // Ask the target to do addressing mode selection. 13123 SDValue BasePtr; 13124 SDValue Offset; 13125 ISD::MemIndexedMode AM = ISD::UNINDEXED; 13126 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 13127 return false; 13128 13129 // Backends without true r+i pre-indexed forms may need to pass a 13130 // constant base with a variable offset so that constant coercion 13131 // will work with the patterns in canonical form. 13132 bool Swapped = false; 13133 if (isa<ConstantSDNode>(BasePtr)) { 13134 std::swap(BasePtr, Offset); 13135 Swapped = true; 13136 } 13137 13138 // Don't create a indexed load / store with zero offset. 13139 if (isNullConstant(Offset)) 13140 return false; 13141 13142 // Try turning it into a pre-indexed load / store except when: 13143 // 1) The new base ptr is a frame index. 13144 // 2) If N is a store and the new base ptr is either the same as or is a 13145 // predecessor of the value being stored. 13146 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 13147 // that would create a cycle. 13148 // 4) All uses are load / store ops that use it as old base ptr. 13149 13150 // Check #1. Preinc'ing a frame index would require copying the stack pointer 13151 // (plus the implicit offset) to a register to preinc anyway. 13152 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 13153 return false; 13154 13155 // Check #2. 13156 if (!isLoad) { 13157 SDValue Val = cast<StoreSDNode>(N)->getValue(); 13158 13159 // Would require a copy. 13160 if (Val == BasePtr) 13161 return false; 13162 13163 // Would create a cycle. 13164 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 13165 return false; 13166 } 13167 13168 // Caches for hasPredecessorHelper. 13169 SmallPtrSet<const SDNode *, 32> Visited; 13170 SmallVector<const SDNode *, 16> Worklist; 13171 Worklist.push_back(N); 13172 13173 // If the offset is a constant, there may be other adds of constants that 13174 // can be folded with this one. We should do this to avoid having to keep 13175 // a copy of the original base pointer. 13176 SmallVector<SDNode *, 16> OtherUses; 13177 if (isa<ConstantSDNode>(Offset)) 13178 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 13179 UE = BasePtr.getNode()->use_end(); 13180 UI != UE; ++UI) { 13181 SDUse &Use = UI.getUse(); 13182 // Skip the use that is Ptr and uses of other results from BasePtr's 13183 // node (important for nodes that return multiple results). 13184 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 13185 continue; 13186 13187 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 13188 continue; 13189 13190 if (Use.getUser()->getOpcode() != ISD::ADD && 13191 Use.getUser()->getOpcode() != ISD::SUB) { 13192 OtherUses.clear(); 13193 break; 13194 } 13195 13196 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 13197 if (!isa<ConstantSDNode>(Op1)) { 13198 OtherUses.clear(); 13199 break; 13200 } 13201 13202 // FIXME: In some cases, we can be smarter about this. 13203 if (Op1.getValueType() != Offset.getValueType()) { 13204 OtherUses.clear(); 13205 break; 13206 } 13207 13208 OtherUses.push_back(Use.getUser()); 13209 } 13210 13211 if (Swapped) 13212 std::swap(BasePtr, Offset); 13213 13214 // Now check for #3 and #4. 13215 bool RealUse = false; 13216 13217 for (SDNode *Use : Ptr.getNode()->uses()) { 13218 if (Use == N) 13219 continue; 13220 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 13221 return false; 13222 13223 // If Ptr may be folded in addressing mode of other use, then it's 13224 // not profitable to do this transformation. 13225 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 13226 RealUse = true; 13227 } 13228 13229 if (!RealUse) 13230 return false; 13231 13232 SDValue Result; 13233 if (isLoad) 13234 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 13235 BasePtr, Offset, AM); 13236 else 13237 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 13238 BasePtr, Offset, AM); 13239 ++PreIndexedNodes; 13240 ++NodesCombined; 13241 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 13242 Result.getNode()->dump(&DAG); dbgs() << '\n'); 13243 WorklistRemover DeadNodes(*this); 13244 if (isLoad) { 13245 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 13246 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 13247 } else { 13248 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 13249 } 13250 13251 // Finally, since the node is now dead, remove it from the graph. 13252 deleteAndRecombine(N); 13253 13254 if (Swapped) 13255 std::swap(BasePtr, Offset); 13256 13257 // Replace other uses of BasePtr that can be updated to use Ptr 13258 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 13259 unsigned OffsetIdx = 1; 13260 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 13261 OffsetIdx = 0; 13262 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 13263 BasePtr.getNode() && "Expected BasePtr operand"); 13264 13265 // We need to replace ptr0 in the following expression: 13266 // x0 * offset0 + y0 * ptr0 = t0 13267 // knowing that 13268 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 13269 // 13270 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 13271 // indexed load/store and the expression that needs to be re-written. 13272 // 13273 // Therefore, we have: 13274 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 13275 13276 ConstantSDNode *CN = 13277 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 13278 int X0, X1, Y0, Y1; 13279 const APInt &Offset0 = CN->getAPIntValue(); 13280 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 13281 13282 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 13283 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 13284 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 13285 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 13286 13287 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 13288 13289 APInt CNV = Offset0; 13290 if (X0 < 0) CNV = -CNV; 13291 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 13292 else CNV = CNV - Offset1; 13293 13294 SDLoc DL(OtherUses[i]); 13295 13296 // We can now generate the new expression. 13297 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 13298 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 13299 13300 SDValue NewUse = DAG.getNode(Opcode, 13301 DL, 13302 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 13303 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 13304 deleteAndRecombine(OtherUses[i]); 13305 } 13306 13307 // Replace the uses of Ptr with uses of the updated base value. 13308 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 13309 deleteAndRecombine(Ptr.getNode()); 13310 AddToWorklist(Result.getNode()); 13311 13312 return true; 13313 } 13314 13315 /// Try to combine a load/store with a add/sub of the base pointer node into a 13316 /// post-indexed load/store. The transformation folded the add/subtract into the 13317 /// new indexed load/store effectively and all of its uses are redirected to the 13318 /// new load/store. 13319 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 13320 if (Level < AfterLegalizeDAG) 13321 return false; 13322 13323 bool isLoad = true; 13324 SDValue Ptr; 13325 EVT VT; 13326 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 13327 if (LD->isIndexed()) 13328 return false; 13329 VT = LD->getMemoryVT(); 13330 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 13331 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 13332 return false; 13333 Ptr = LD->getBasePtr(); 13334 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 13335 if (ST->isIndexed()) 13336 return false; 13337 VT = ST->getMemoryVT(); 13338 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 13339 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 13340 return false; 13341 Ptr = ST->getBasePtr(); 13342 isLoad = false; 13343 } else { 13344 return false; 13345 } 13346 13347 if (Ptr.getNode()->hasOneUse()) 13348 return false; 13349 13350 for (SDNode *Op : Ptr.getNode()->uses()) { 13351 if (Op == N || 13352 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 13353 continue; 13354 13355 SDValue BasePtr; 13356 SDValue Offset; 13357 ISD::MemIndexedMode AM = ISD::UNINDEXED; 13358 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 13359 // Don't create a indexed load / store with zero offset. 13360 if (isNullConstant(Offset)) 13361 continue; 13362 13363 // Try turning it into a post-indexed load / store except when 13364 // 1) All uses are load / store ops that use it as base ptr (and 13365 // it may be folded as addressing mmode). 13366 // 2) Op must be independent of N, i.e. Op is neither a predecessor 13367 // nor a successor of N. Otherwise, if Op is folded that would 13368 // create a cycle. 13369 13370 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 13371 continue; 13372 13373 // Check for #1. 13374 bool TryNext = false; 13375 for (SDNode *Use : BasePtr.getNode()->uses()) { 13376 if (Use == Ptr.getNode()) 13377 continue; 13378 13379 // If all the uses are load / store addresses, then don't do the 13380 // transformation. 13381 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 13382 bool RealUse = false; 13383 for (SDNode *UseUse : Use->uses()) { 13384 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 13385 RealUse = true; 13386 } 13387 13388 if (!RealUse) { 13389 TryNext = true; 13390 break; 13391 } 13392 } 13393 } 13394 13395 if (TryNext) 13396 continue; 13397 13398 // Check for #2. 13399 SmallPtrSet<const SDNode *, 32> Visited; 13400 SmallVector<const SDNode *, 8> Worklist; 13401 // Ptr is predecessor to both N and Op. 13402 Visited.insert(Ptr.getNode()); 13403 Worklist.push_back(N); 13404 Worklist.push_back(Op); 13405 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 13406 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) { 13407 SDValue Result = isLoad 13408 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 13409 BasePtr, Offset, AM) 13410 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 13411 BasePtr, Offset, AM); 13412 ++PostIndexedNodes; 13413 ++NodesCombined; 13414 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); 13415 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); 13416 dbgs() << '\n'); 13417 WorklistRemover DeadNodes(*this); 13418 if (isLoad) { 13419 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 13420 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 13421 } else { 13422 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 13423 } 13424 13425 // Finally, since the node is now dead, remove it from the graph. 13426 deleteAndRecombine(N); 13427 13428 // Replace the uses of Use with uses of the updated base value. 13429 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 13430 Result.getValue(isLoad ? 1 : 0)); 13431 deleteAndRecombine(Op); 13432 return true; 13433 } 13434 } 13435 } 13436 13437 return false; 13438 } 13439 13440 /// Return the base-pointer arithmetic from an indexed \p LD. 13441 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 13442 ISD::MemIndexedMode AM = LD->getAddressingMode(); 13443 assert(AM != ISD::UNINDEXED); 13444 SDValue BP = LD->getOperand(1); 13445 SDValue Inc = LD->getOperand(2); 13446 13447 // Some backends use TargetConstants for load offsets, but don't expect 13448 // TargetConstants in general ADD nodes. We can convert these constants into 13449 // regular Constants (if the constant is not opaque). 13450 assert((Inc.getOpcode() != ISD::TargetConstant || 13451 !cast<ConstantSDNode>(Inc)->isOpaque()) && 13452 "Cannot split out indexing using opaque target constants"); 13453 if (Inc.getOpcode() == ISD::TargetConstant) { 13454 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 13455 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 13456 ConstInc->getValueType(0)); 13457 } 13458 13459 unsigned Opc = 13460 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 13461 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 13462 } 13463 13464 static inline int numVectorEltsOrZero(EVT T) { 13465 return T.isVector() ? T.getVectorNumElements() : 0; 13466 } 13467 13468 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 13469 Val = ST->getValue(); 13470 EVT STType = Val.getValueType(); 13471 EVT STMemType = ST->getMemoryVT(); 13472 if (STType == STMemType) 13473 return true; 13474 if (isTypeLegal(STMemType)) 13475 return false; // fail. 13476 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 13477 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 13478 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 13479 return true; 13480 } 13481 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 13482 STType.isInteger() && STMemType.isInteger()) { 13483 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 13484 return true; 13485 } 13486 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 13487 Val = DAG.getBitcast(STMemType, Val); 13488 return true; 13489 } 13490 return false; // fail. 13491 } 13492 13493 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 13494 EVT LDMemType = LD->getMemoryVT(); 13495 EVT LDType = LD->getValueType(0); 13496 assert(Val.getValueType() == LDMemType && 13497 "Attempting to extend value of non-matching type"); 13498 if (LDType == LDMemType) 13499 return true; 13500 if (LDMemType.isInteger() && LDType.isInteger()) { 13501 switch (LD->getExtensionType()) { 13502 case ISD::NON_EXTLOAD: 13503 Val = DAG.getBitcast(LDType, Val); 13504 return true; 13505 case ISD::EXTLOAD: 13506 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 13507 return true; 13508 case ISD::SEXTLOAD: 13509 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 13510 return true; 13511 case ISD::ZEXTLOAD: 13512 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 13513 return true; 13514 } 13515 } 13516 return false; 13517 } 13518 13519 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 13520 if (OptLevel == CodeGenOpt::None || LD->isVolatile()) 13521 return SDValue(); 13522 SDValue Chain = LD->getOperand(0); 13523 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 13524 if (!ST || ST->isVolatile()) 13525 return SDValue(); 13526 13527 EVT LDType = LD->getValueType(0); 13528 EVT LDMemType = LD->getMemoryVT(); 13529 EVT STMemType = ST->getMemoryVT(); 13530 EVT STType = ST->getValue().getValueType(); 13531 13532 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 13533 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 13534 int64_t Offset; 13535 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 13536 return SDValue(); 13537 13538 // Normalize for Endianness. After this Offset=0 will denote that the least 13539 // significant bit in the loaded value maps to the least significant bit in 13540 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 13541 // n:th least significant byte of the stored value. 13542 if (DAG.getDataLayout().isBigEndian()) 13543 Offset = (STMemType.getStoreSizeInBits() - 13544 LDMemType.getStoreSizeInBits()) / 8 - Offset; 13545 13546 // Check that the stored value cover all bits that are loaded. 13547 bool STCoversLD = 13548 (Offset >= 0) && 13549 (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits()); 13550 13551 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 13552 if (LD->isIndexed()) { 13553 bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC || 13554 LD->getAddressingMode() == ISD::POST_DEC); 13555 unsigned Opc = IsSub ? ISD::SUB : ISD::ADD; 13556 SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(), 13557 LD->getOperand(1), LD->getOperand(2)); 13558 SDValue Ops[] = {Val, Idx, Chain}; 13559 return CombineTo(LD, Ops, 3); 13560 } 13561 return CombineTo(LD, Val, Chain); 13562 }; 13563 13564 if (!STCoversLD) 13565 return SDValue(); 13566 13567 // Memory as copy space (potentially masked). 13568 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 13569 // Simple case: Direct non-truncating forwarding 13570 if (LDType.getSizeInBits() == LDMemType.getSizeInBits()) 13571 return ReplaceLd(LD, ST->getValue(), Chain); 13572 // Can we model the truncate and extension with an and mask? 13573 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 13574 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 13575 // Mask to size of LDMemType 13576 auto Mask = 13577 DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(), 13578 STMemType.getSizeInBits()), 13579 SDLoc(ST), STType); 13580 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 13581 return ReplaceLd(LD, Val, Chain); 13582 } 13583 } 13584 13585 // TODO: Deal with nonzero offset. 13586 if (LD->getBasePtr().isUndef() || Offset != 0) 13587 return SDValue(); 13588 // Model necessary truncations / extenstions. 13589 SDValue Val; 13590 // Truncate Value To Stored Memory Size. 13591 do { 13592 if (!getTruncatedStoreValue(ST, Val)) 13593 continue; 13594 if (!isTypeLegal(LDMemType)) 13595 continue; 13596 if (STMemType != LDMemType) { 13597 // TODO: Support vectors? This requires extract_subvector/bitcast. 13598 if (!STMemType.isVector() && !LDMemType.isVector() && 13599 STMemType.isInteger() && LDMemType.isInteger()) 13600 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 13601 else 13602 continue; 13603 } 13604 if (!extendLoadedValueToExtension(LD, Val)) 13605 continue; 13606 return ReplaceLd(LD, Val, Chain); 13607 } while (false); 13608 13609 // On failure, cleanup dead nodes we may have created. 13610 if (Val->use_empty()) 13611 deleteAndRecombine(Val.getNode()); 13612 return SDValue(); 13613 } 13614 13615 SDValue DAGCombiner::visitLOAD(SDNode *N) { 13616 LoadSDNode *LD = cast<LoadSDNode>(N); 13617 SDValue Chain = LD->getChain(); 13618 SDValue Ptr = LD->getBasePtr(); 13619 13620 // If load is not volatile and there are no uses of the loaded value (and 13621 // the updated indexed value in case of indexed loads), change uses of the 13622 // chain value into uses of the chain input (i.e. delete the dead load). 13623 if (!LD->isVolatile()) { 13624 if (N->getValueType(1) == MVT::Other) { 13625 // Unindexed loads. 13626 if (!N->hasAnyUseOfValue(0)) { 13627 // It's not safe to use the two value CombineTo variant here. e.g. 13628 // v1, chain2 = load chain1, loc 13629 // v2, chain3 = load chain2, loc 13630 // v3 = add v2, c 13631 // Now we replace use of chain2 with chain1. This makes the second load 13632 // isomorphic to the one we are deleting, and thus makes this load live. 13633 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 13634 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); 13635 dbgs() << "\n"); 13636 WorklistRemover DeadNodes(*this); 13637 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 13638 AddUsersToWorklist(Chain.getNode()); 13639 if (N->use_empty()) 13640 deleteAndRecombine(N); 13641 13642 return SDValue(N, 0); // Return N so it doesn't get rechecked! 13643 } 13644 } else { 13645 // Indexed loads. 13646 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 13647 13648 // If this load has an opaque TargetConstant offset, then we cannot split 13649 // the indexing into an add/sub directly (that TargetConstant may not be 13650 // valid for a different type of node, and we cannot convert an opaque 13651 // target constant into a regular constant). 13652 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 13653 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 13654 13655 if (!N->hasAnyUseOfValue(0) && 13656 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 13657 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 13658 SDValue Index; 13659 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 13660 Index = SplitIndexingFromLoad(LD); 13661 // Try to fold the base pointer arithmetic into subsequent loads and 13662 // stores. 13663 AddUsersToWorklist(N); 13664 } else 13665 Index = DAG.getUNDEF(N->getValueType(1)); 13666 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 13667 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); 13668 dbgs() << " and 2 other values\n"); 13669 WorklistRemover DeadNodes(*this); 13670 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 13671 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 13672 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 13673 deleteAndRecombine(N); 13674 return SDValue(N, 0); // Return N so it doesn't get rechecked! 13675 } 13676 } 13677 } 13678 13679 // If this load is directly stored, replace the load value with the stored 13680 // value. 13681 if (auto V = ForwardStoreValueToDirectLoad(LD)) 13682 return V; 13683 13684 // Try to infer better alignment information than the load already has. 13685 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 13686 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 13687 if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) { 13688 SDValue NewLoad = DAG.getExtLoad( 13689 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 13690 LD->getPointerInfo(), LD->getMemoryVT(), Align, 13691 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 13692 // NewLoad will always be N as we are only refining the alignment 13693 assert(NewLoad.getNode() == N); 13694 (void)NewLoad; 13695 } 13696 } 13697 } 13698 13699 if (LD->isUnindexed()) { 13700 // Walk up chain skipping non-aliasing memory nodes. 13701 SDValue BetterChain = FindBetterChain(LD, Chain); 13702 13703 // If there is a better chain. 13704 if (Chain != BetterChain) { 13705 SDValue ReplLoad; 13706 13707 // Replace the chain to void dependency. 13708 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 13709 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 13710 BetterChain, Ptr, LD->getMemOperand()); 13711 } else { 13712 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 13713 LD->getValueType(0), 13714 BetterChain, Ptr, LD->getMemoryVT(), 13715 LD->getMemOperand()); 13716 } 13717 13718 // Create token factor to keep old chain connected. 13719 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 13720 MVT::Other, Chain, ReplLoad.getValue(1)); 13721 13722 // Replace uses with load result and token factor 13723 return CombineTo(N, ReplLoad.getValue(0), Token); 13724 } 13725 } 13726 13727 // Try transforming N to an indexed load. 13728 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 13729 return SDValue(N, 0); 13730 13731 // Try to slice up N to more direct loads if the slices are mapped to 13732 // different register banks or pairing can take place. 13733 if (SliceUpLoad(N)) 13734 return SDValue(N, 0); 13735 13736 return SDValue(); 13737 } 13738 13739 namespace { 13740 13741 /// Helper structure used to slice a load in smaller loads. 13742 /// Basically a slice is obtained from the following sequence: 13743 /// Origin = load Ty1, Base 13744 /// Shift = srl Ty1 Origin, CstTy Amount 13745 /// Inst = trunc Shift to Ty2 13746 /// 13747 /// Then, it will be rewritten into: 13748 /// Slice = load SliceTy, Base + SliceOffset 13749 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 13750 /// 13751 /// SliceTy is deduced from the number of bits that are actually used to 13752 /// build Inst. 13753 struct LoadedSlice { 13754 /// Helper structure used to compute the cost of a slice. 13755 struct Cost { 13756 /// Are we optimizing for code size. 13757 bool ForCodeSize; 13758 13759 /// Various cost. 13760 unsigned Loads = 0; 13761 unsigned Truncates = 0; 13762 unsigned CrossRegisterBanksCopies = 0; 13763 unsigned ZExts = 0; 13764 unsigned Shift = 0; 13765 13766 Cost(bool ForCodeSize = false) : ForCodeSize(ForCodeSize) {} 13767 13768 /// Get the cost of one isolated slice. 13769 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 13770 : ForCodeSize(ForCodeSize), Loads(1) { 13771 EVT TruncType = LS.Inst->getValueType(0); 13772 EVT LoadedType = LS.getLoadedType(); 13773 if (TruncType != LoadedType && 13774 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 13775 ZExts = 1; 13776 } 13777 13778 /// Account for slicing gain in the current cost. 13779 /// Slicing provide a few gains like removing a shift or a 13780 /// truncate. This method allows to grow the cost of the original 13781 /// load with the gain from this slice. 13782 void addSliceGain(const LoadedSlice &LS) { 13783 // Each slice saves a truncate. 13784 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 13785 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 13786 LS.Inst->getValueType(0))) 13787 ++Truncates; 13788 // If there is a shift amount, this slice gets rid of it. 13789 if (LS.Shift) 13790 ++Shift; 13791 // If this slice can merge a cross register bank copy, account for it. 13792 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 13793 ++CrossRegisterBanksCopies; 13794 } 13795 13796 Cost &operator+=(const Cost &RHS) { 13797 Loads += RHS.Loads; 13798 Truncates += RHS.Truncates; 13799 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 13800 ZExts += RHS.ZExts; 13801 Shift += RHS.Shift; 13802 return *this; 13803 } 13804 13805 bool operator==(const Cost &RHS) const { 13806 return Loads == RHS.Loads && Truncates == RHS.Truncates && 13807 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 13808 ZExts == RHS.ZExts && Shift == RHS.Shift; 13809 } 13810 13811 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 13812 13813 bool operator<(const Cost &RHS) const { 13814 // Assume cross register banks copies are as expensive as loads. 13815 // FIXME: Do we want some more target hooks? 13816 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 13817 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 13818 // Unless we are optimizing for code size, consider the 13819 // expensive operation first. 13820 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 13821 return ExpensiveOpsLHS < ExpensiveOpsRHS; 13822 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 13823 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 13824 } 13825 13826 bool operator>(const Cost &RHS) const { return RHS < *this; } 13827 13828 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 13829 13830 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 13831 }; 13832 13833 // The last instruction that represent the slice. This should be a 13834 // truncate instruction. 13835 SDNode *Inst; 13836 13837 // The original load instruction. 13838 LoadSDNode *Origin; 13839 13840 // The right shift amount in bits from the original load. 13841 unsigned Shift; 13842 13843 // The DAG from which Origin came from. 13844 // This is used to get some contextual information about legal types, etc. 13845 SelectionDAG *DAG; 13846 13847 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 13848 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 13849 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 13850 13851 /// Get the bits used in a chunk of bits \p BitWidth large. 13852 /// \return Result is \p BitWidth and has used bits set to 1 and 13853 /// not used bits set to 0. 13854 APInt getUsedBits() const { 13855 // Reproduce the trunc(lshr) sequence: 13856 // - Start from the truncated value. 13857 // - Zero extend to the desired bit width. 13858 // - Shift left. 13859 assert(Origin && "No original load to compare against."); 13860 unsigned BitWidth = Origin->getValueSizeInBits(0); 13861 assert(Inst && "This slice is not bound to an instruction"); 13862 assert(Inst->getValueSizeInBits(0) <= BitWidth && 13863 "Extracted slice is bigger than the whole type!"); 13864 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 13865 UsedBits.setAllBits(); 13866 UsedBits = UsedBits.zext(BitWidth); 13867 UsedBits <<= Shift; 13868 return UsedBits; 13869 } 13870 13871 /// Get the size of the slice to be loaded in bytes. 13872 unsigned getLoadedSize() const { 13873 unsigned SliceSize = getUsedBits().countPopulation(); 13874 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 13875 return SliceSize / 8; 13876 } 13877 13878 /// Get the type that will be loaded for this slice. 13879 /// Note: This may not be the final type for the slice. 13880 EVT getLoadedType() const { 13881 assert(DAG && "Missing context"); 13882 LLVMContext &Ctxt = *DAG->getContext(); 13883 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 13884 } 13885 13886 /// Get the alignment of the load used for this slice. 13887 unsigned getAlignment() const { 13888 unsigned Alignment = Origin->getAlignment(); 13889 unsigned Offset = getOffsetFromBase(); 13890 if (Offset != 0) 13891 Alignment = MinAlign(Alignment, Alignment + Offset); 13892 return Alignment; 13893 } 13894 13895 /// Check if this slice can be rewritten with legal operations. 13896 bool isLegal() const { 13897 // An invalid slice is not legal. 13898 if (!Origin || !Inst || !DAG) 13899 return false; 13900 13901 // Offsets are for indexed load only, we do not handle that. 13902 if (!Origin->getOffset().isUndef()) 13903 return false; 13904 13905 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 13906 13907 // Check that the type is legal. 13908 EVT SliceType = getLoadedType(); 13909 if (!TLI.isTypeLegal(SliceType)) 13910 return false; 13911 13912 // Check that the load is legal for this type. 13913 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 13914 return false; 13915 13916 // Check that the offset can be computed. 13917 // 1. Check its type. 13918 EVT PtrType = Origin->getBasePtr().getValueType(); 13919 if (PtrType == MVT::Untyped || PtrType.isExtended()) 13920 return false; 13921 13922 // 2. Check that it fits in the immediate. 13923 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 13924 return false; 13925 13926 // 3. Check that the computation is legal. 13927 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 13928 return false; 13929 13930 // Check that the zext is legal if it needs one. 13931 EVT TruncateType = Inst->getValueType(0); 13932 if (TruncateType != SliceType && 13933 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 13934 return false; 13935 13936 return true; 13937 } 13938 13939 /// Get the offset in bytes of this slice in the original chunk of 13940 /// bits. 13941 /// \pre DAG != nullptr. 13942 uint64_t getOffsetFromBase() const { 13943 assert(DAG && "Missing context."); 13944 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 13945 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 13946 uint64_t Offset = Shift / 8; 13947 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 13948 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 13949 "The size of the original loaded type is not a multiple of a" 13950 " byte."); 13951 // If Offset is bigger than TySizeInBytes, it means we are loading all 13952 // zeros. This should have been optimized before in the process. 13953 assert(TySizeInBytes > Offset && 13954 "Invalid shift amount for given loaded size"); 13955 if (IsBigEndian) 13956 Offset = TySizeInBytes - Offset - getLoadedSize(); 13957 return Offset; 13958 } 13959 13960 /// Generate the sequence of instructions to load the slice 13961 /// represented by this object and redirect the uses of this slice to 13962 /// this new sequence of instructions. 13963 /// \pre this->Inst && this->Origin are valid Instructions and this 13964 /// object passed the legal check: LoadedSlice::isLegal returned true. 13965 /// \return The last instruction of the sequence used to load the slice. 13966 SDValue loadSlice() const { 13967 assert(Inst && Origin && "Unable to replace a non-existing slice."); 13968 const SDValue &OldBaseAddr = Origin->getBasePtr(); 13969 SDValue BaseAddr = OldBaseAddr; 13970 // Get the offset in that chunk of bytes w.r.t. the endianness. 13971 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 13972 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 13973 if (Offset) { 13974 // BaseAddr = BaseAddr + Offset. 13975 EVT ArithType = BaseAddr.getValueType(); 13976 SDLoc DL(Origin); 13977 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 13978 DAG->getConstant(Offset, DL, ArithType)); 13979 } 13980 13981 // Create the type of the loaded slice according to its size. 13982 EVT SliceType = getLoadedType(); 13983 13984 // Create the load for the slice. 13985 SDValue LastInst = 13986 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 13987 Origin->getPointerInfo().getWithOffset(Offset), 13988 getAlignment(), Origin->getMemOperand()->getFlags()); 13989 // If the final type is not the same as the loaded type, this means that 13990 // we have to pad with zero. Create a zero extend for that. 13991 EVT FinalType = Inst->getValueType(0); 13992 if (SliceType != FinalType) 13993 LastInst = 13994 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 13995 return LastInst; 13996 } 13997 13998 /// Check if this slice can be merged with an expensive cross register 13999 /// bank copy. E.g., 14000 /// i = load i32 14001 /// f = bitcast i32 i to float 14002 bool canMergeExpensiveCrossRegisterBankCopy() const { 14003 if (!Inst || !Inst->hasOneUse()) 14004 return false; 14005 SDNode *Use = *Inst->use_begin(); 14006 if (Use->getOpcode() != ISD::BITCAST) 14007 return false; 14008 assert(DAG && "Missing context"); 14009 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 14010 EVT ResVT = Use->getValueType(0); 14011 const TargetRegisterClass *ResRC = 14012 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 14013 const TargetRegisterClass *ArgRC = 14014 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 14015 Use->getOperand(0)->isDivergent()); 14016 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 14017 return false; 14018 14019 // At this point, we know that we perform a cross-register-bank copy. 14020 // Check if it is expensive. 14021 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 14022 // Assume bitcasts are cheap, unless both register classes do not 14023 // explicitly share a common sub class. 14024 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 14025 return false; 14026 14027 // Check if it will be merged with the load. 14028 // 1. Check the alignment constraint. 14029 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 14030 ResVT.getTypeForEVT(*DAG->getContext())); 14031 14032 if (RequiredAlignment > getAlignment()) 14033 return false; 14034 14035 // 2. Check that the load is a legal operation for that type. 14036 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 14037 return false; 14038 14039 // 3. Check that we do not have a zext in the way. 14040 if (Inst->getValueType(0) != getLoadedType()) 14041 return false; 14042 14043 return true; 14044 } 14045 }; 14046 14047 } // end anonymous namespace 14048 14049 /// Check that all bits set in \p UsedBits form a dense region, i.e., 14050 /// \p UsedBits looks like 0..0 1..1 0..0. 14051 static bool areUsedBitsDense(const APInt &UsedBits) { 14052 // If all the bits are one, this is dense! 14053 if (UsedBits.isAllOnesValue()) 14054 return true; 14055 14056 // Get rid of the unused bits on the right. 14057 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 14058 // Get rid of the unused bits on the left. 14059 if (NarrowedUsedBits.countLeadingZeros()) 14060 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 14061 // Check that the chunk of bits is completely used. 14062 return NarrowedUsedBits.isAllOnesValue(); 14063 } 14064 14065 /// Check whether or not \p First and \p Second are next to each other 14066 /// in memory. This means that there is no hole between the bits loaded 14067 /// by \p First and the bits loaded by \p Second. 14068 static bool areSlicesNextToEachOther(const LoadedSlice &First, 14069 const LoadedSlice &Second) { 14070 assert(First.Origin == Second.Origin && First.Origin && 14071 "Unable to match different memory origins."); 14072 APInt UsedBits = First.getUsedBits(); 14073 assert((UsedBits & Second.getUsedBits()) == 0 && 14074 "Slices are not supposed to overlap."); 14075 UsedBits |= Second.getUsedBits(); 14076 return areUsedBitsDense(UsedBits); 14077 } 14078 14079 /// Adjust the \p GlobalLSCost according to the target 14080 /// paring capabilities and the layout of the slices. 14081 /// \pre \p GlobalLSCost should account for at least as many loads as 14082 /// there is in the slices in \p LoadedSlices. 14083 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 14084 LoadedSlice::Cost &GlobalLSCost) { 14085 unsigned NumberOfSlices = LoadedSlices.size(); 14086 // If there is less than 2 elements, no pairing is possible. 14087 if (NumberOfSlices < 2) 14088 return; 14089 14090 // Sort the slices so that elements that are likely to be next to each 14091 // other in memory are next to each other in the list. 14092 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 14093 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 14094 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 14095 }); 14096 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 14097 // First (resp. Second) is the first (resp. Second) potentially candidate 14098 // to be placed in a paired load. 14099 const LoadedSlice *First = nullptr; 14100 const LoadedSlice *Second = nullptr; 14101 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 14102 // Set the beginning of the pair. 14103 First = Second) { 14104 Second = &LoadedSlices[CurrSlice]; 14105 14106 // If First is NULL, it means we start a new pair. 14107 // Get to the next slice. 14108 if (!First) 14109 continue; 14110 14111 EVT LoadedType = First->getLoadedType(); 14112 14113 // If the types of the slices are different, we cannot pair them. 14114 if (LoadedType != Second->getLoadedType()) 14115 continue; 14116 14117 // Check if the target supplies paired loads for this type. 14118 unsigned RequiredAlignment = 0; 14119 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 14120 // move to the next pair, this type is hopeless. 14121 Second = nullptr; 14122 continue; 14123 } 14124 // Check if we meet the alignment requirement. 14125 if (RequiredAlignment > First->getAlignment()) 14126 continue; 14127 14128 // Check that both loads are next to each other in memory. 14129 if (!areSlicesNextToEachOther(*First, *Second)) 14130 continue; 14131 14132 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 14133 --GlobalLSCost.Loads; 14134 // Move to the next pair. 14135 Second = nullptr; 14136 } 14137 } 14138 14139 /// Check the profitability of all involved LoadedSlice. 14140 /// Currently, it is considered profitable if there is exactly two 14141 /// involved slices (1) which are (2) next to each other in memory, and 14142 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 14143 /// 14144 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 14145 /// the elements themselves. 14146 /// 14147 /// FIXME: When the cost model will be mature enough, we can relax 14148 /// constraints (1) and (2). 14149 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 14150 const APInt &UsedBits, bool ForCodeSize) { 14151 unsigned NumberOfSlices = LoadedSlices.size(); 14152 if (StressLoadSlicing) 14153 return NumberOfSlices > 1; 14154 14155 // Check (1). 14156 if (NumberOfSlices != 2) 14157 return false; 14158 14159 // Check (2). 14160 if (!areUsedBitsDense(UsedBits)) 14161 return false; 14162 14163 // Check (3). 14164 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 14165 // The original code has one big load. 14166 OrigCost.Loads = 1; 14167 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 14168 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 14169 // Accumulate the cost of all the slices. 14170 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 14171 GlobalSlicingCost += SliceCost; 14172 14173 // Account as cost in the original configuration the gain obtained 14174 // with the current slices. 14175 OrigCost.addSliceGain(LS); 14176 } 14177 14178 // If the target supports paired load, adjust the cost accordingly. 14179 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 14180 return OrigCost > GlobalSlicingCost; 14181 } 14182 14183 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 14184 /// operations, split it in the various pieces being extracted. 14185 /// 14186 /// This sort of thing is introduced by SROA. 14187 /// This slicing takes care not to insert overlapping loads. 14188 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 14189 bool DAGCombiner::SliceUpLoad(SDNode *N) { 14190 if (Level < AfterLegalizeDAG) 14191 return false; 14192 14193 LoadSDNode *LD = cast<LoadSDNode>(N); 14194 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 14195 !LD->getValueType(0).isInteger()) 14196 return false; 14197 14198 // Keep track of already used bits to detect overlapping values. 14199 // In that case, we will just abort the transformation. 14200 APInt UsedBits(LD->getValueSizeInBits(0), 0); 14201 14202 SmallVector<LoadedSlice, 4> LoadedSlices; 14203 14204 // Check if this load is used as several smaller chunks of bits. 14205 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 14206 // of computation for each trunc. 14207 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 14208 UI != UIEnd; ++UI) { 14209 // Skip the uses of the chain. 14210 if (UI.getUse().getResNo() != 0) 14211 continue; 14212 14213 SDNode *User = *UI; 14214 unsigned Shift = 0; 14215 14216 // Check if this is a trunc(lshr). 14217 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 14218 isa<ConstantSDNode>(User->getOperand(1))) { 14219 Shift = User->getConstantOperandVal(1); 14220 User = *User->use_begin(); 14221 } 14222 14223 // At this point, User is a Truncate, iff we encountered, trunc or 14224 // trunc(lshr). 14225 if (User->getOpcode() != ISD::TRUNCATE) 14226 return false; 14227 14228 // The width of the type must be a power of 2 and greater than 8-bits. 14229 // Otherwise the load cannot be represented in LLVM IR. 14230 // Moreover, if we shifted with a non-8-bits multiple, the slice 14231 // will be across several bytes. We do not support that. 14232 unsigned Width = User->getValueSizeInBits(0); 14233 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 14234 return false; 14235 14236 // Build the slice for this chain of computations. 14237 LoadedSlice LS(User, LD, Shift, &DAG); 14238 APInt CurrentUsedBits = LS.getUsedBits(); 14239 14240 // Check if this slice overlaps with another. 14241 if ((CurrentUsedBits & UsedBits) != 0) 14242 return false; 14243 // Update the bits used globally. 14244 UsedBits |= CurrentUsedBits; 14245 14246 // Check if the new slice would be legal. 14247 if (!LS.isLegal()) 14248 return false; 14249 14250 // Record the slice. 14251 LoadedSlices.push_back(LS); 14252 } 14253 14254 // Abort slicing if it does not seem to be profitable. 14255 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 14256 return false; 14257 14258 ++SlicedLoads; 14259 14260 // Rewrite each chain to use an independent load. 14261 // By construction, each chain can be represented by a unique load. 14262 14263 // Prepare the argument for the new token factor for all the slices. 14264 SmallVector<SDValue, 8> ArgChains; 14265 for (SmallVectorImpl<LoadedSlice>::const_iterator 14266 LSIt = LoadedSlices.begin(), 14267 LSItEnd = LoadedSlices.end(); 14268 LSIt != LSItEnd; ++LSIt) { 14269 SDValue SliceInst = LSIt->loadSlice(); 14270 CombineTo(LSIt->Inst, SliceInst, true); 14271 if (SliceInst.getOpcode() != ISD::LOAD) 14272 SliceInst = SliceInst.getOperand(0); 14273 assert(SliceInst->getOpcode() == ISD::LOAD && 14274 "It takes more than a zext to get to the loaded slice!!"); 14275 ArgChains.push_back(SliceInst.getValue(1)); 14276 } 14277 14278 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 14279 ArgChains); 14280 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 14281 AddToWorklist(Chain.getNode()); 14282 return true; 14283 } 14284 14285 /// Check to see if V is (and load (ptr), imm), where the load is having 14286 /// specific bytes cleared out. If so, return the byte size being masked out 14287 /// and the shift amount. 14288 static std::pair<unsigned, unsigned> 14289 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 14290 std::pair<unsigned, unsigned> Result(0, 0); 14291 14292 // Check for the structure we're looking for. 14293 if (V->getOpcode() != ISD::AND || 14294 !isa<ConstantSDNode>(V->getOperand(1)) || 14295 !ISD::isNormalLoad(V->getOperand(0).getNode())) 14296 return Result; 14297 14298 // Check the chain and pointer. 14299 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 14300 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 14301 14302 // This only handles simple types. 14303 if (V.getValueType() != MVT::i16 && 14304 V.getValueType() != MVT::i32 && 14305 V.getValueType() != MVT::i64) 14306 return Result; 14307 14308 // Check the constant mask. Invert it so that the bits being masked out are 14309 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 14310 // follow the sign bit for uniformity. 14311 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 14312 unsigned NotMaskLZ = countLeadingZeros(NotMask); 14313 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 14314 unsigned NotMaskTZ = countTrailingZeros(NotMask); 14315 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 14316 if (NotMaskLZ == 64) return Result; // All zero mask. 14317 14318 // See if we have a continuous run of bits. If so, we have 0*1+0* 14319 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 14320 return Result; 14321 14322 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 14323 if (V.getValueType() != MVT::i64 && NotMaskLZ) 14324 NotMaskLZ -= 64-V.getValueSizeInBits(); 14325 14326 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 14327 switch (MaskedBytes) { 14328 case 1: 14329 case 2: 14330 case 4: break; 14331 default: return Result; // All one mask, or 5-byte mask. 14332 } 14333 14334 // Verify that the first bit starts at a multiple of mask so that the access 14335 // is aligned the same as the access width. 14336 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 14337 14338 // For narrowing to be valid, it must be the case that the load the 14339 // immediately preceding memory operation before the store. 14340 if (LD == Chain.getNode()) 14341 ; // ok. 14342 else if (Chain->getOpcode() == ISD::TokenFactor && 14343 SDValue(LD, 1).hasOneUse()) { 14344 // LD has only 1 chain use so they are no indirect dependencies. 14345 bool isOk = false; 14346 for (const SDValue &ChainOp : Chain->op_values()) 14347 if (ChainOp.getNode() == LD) { 14348 isOk = true; 14349 break; 14350 } 14351 if (!isOk) 14352 return Result; 14353 } else 14354 return Result; // Fail. 14355 14356 Result.first = MaskedBytes; 14357 Result.second = NotMaskTZ/8; 14358 return Result; 14359 } 14360 14361 /// Check to see if IVal is something that provides a value as specified by 14362 /// MaskInfo. If so, replace the specified store with a narrower store of 14363 /// truncated IVal. 14364 static SDNode * 14365 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 14366 SDValue IVal, StoreSDNode *St, 14367 DAGCombiner *DC) { 14368 unsigned NumBytes = MaskInfo.first; 14369 unsigned ByteShift = MaskInfo.second; 14370 SelectionDAG &DAG = DC->getDAG(); 14371 14372 // Check to see if IVal is all zeros in the part being masked in by the 'or' 14373 // that uses this. If not, this is not a replacement. 14374 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 14375 ByteShift*8, (ByteShift+NumBytes)*8); 14376 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 14377 14378 // Check that it is legal on the target to do this. It is legal if the new 14379 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 14380 // legalization. 14381 MVT VT = MVT::getIntegerVT(NumBytes*8); 14382 if (!DC->isTypeLegal(VT)) 14383 return nullptr; 14384 14385 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 14386 // shifted by ByteShift and truncated down to NumBytes. 14387 if (ByteShift) { 14388 SDLoc DL(IVal); 14389 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 14390 DAG.getConstant(ByteShift*8, DL, 14391 DC->getShiftAmountTy(IVal.getValueType()))); 14392 } 14393 14394 // Figure out the offset for the store and the alignment of the access. 14395 unsigned StOffset; 14396 unsigned NewAlign = St->getAlignment(); 14397 14398 if (DAG.getDataLayout().isLittleEndian()) 14399 StOffset = ByteShift; 14400 else 14401 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 14402 14403 SDValue Ptr = St->getBasePtr(); 14404 if (StOffset) { 14405 SDLoc DL(IVal); 14406 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 14407 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 14408 NewAlign = MinAlign(NewAlign, StOffset); 14409 } 14410 14411 // Truncate down to the new size. 14412 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 14413 14414 ++OpsNarrowed; 14415 return DAG 14416 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 14417 St->getPointerInfo().getWithOffset(StOffset), NewAlign) 14418 .getNode(); 14419 } 14420 14421 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 14422 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 14423 /// narrowing the load and store if it would end up being a win for performance 14424 /// or code size. 14425 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 14426 StoreSDNode *ST = cast<StoreSDNode>(N); 14427 if (ST->isVolatile()) 14428 return SDValue(); 14429 14430 SDValue Chain = ST->getChain(); 14431 SDValue Value = ST->getValue(); 14432 SDValue Ptr = ST->getBasePtr(); 14433 EVT VT = Value.getValueType(); 14434 14435 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 14436 return SDValue(); 14437 14438 unsigned Opc = Value.getOpcode(); 14439 14440 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 14441 // is a byte mask indicating a consecutive number of bytes, check to see if 14442 // Y is known to provide just those bytes. If so, we try to replace the 14443 // load + replace + store sequence with a single (narrower) store, which makes 14444 // the load dead. 14445 if (Opc == ISD::OR) { 14446 std::pair<unsigned, unsigned> MaskedLoad; 14447 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 14448 if (MaskedLoad.first) 14449 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 14450 Value.getOperand(1), ST,this)) 14451 return SDValue(NewST, 0); 14452 14453 // Or is commutative, so try swapping X and Y. 14454 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 14455 if (MaskedLoad.first) 14456 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 14457 Value.getOperand(0), ST,this)) 14458 return SDValue(NewST, 0); 14459 } 14460 14461 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 14462 Value.getOperand(1).getOpcode() != ISD::Constant) 14463 return SDValue(); 14464 14465 SDValue N0 = Value.getOperand(0); 14466 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 14467 Chain == SDValue(N0.getNode(), 1)) { 14468 LoadSDNode *LD = cast<LoadSDNode>(N0); 14469 if (LD->getBasePtr() != Ptr || 14470 LD->getPointerInfo().getAddrSpace() != 14471 ST->getPointerInfo().getAddrSpace()) 14472 return SDValue(); 14473 14474 // Find the type to narrow it the load / op / store to. 14475 SDValue N1 = Value.getOperand(1); 14476 unsigned BitWidth = N1.getValueSizeInBits(); 14477 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 14478 if (Opc == ISD::AND) 14479 Imm ^= APInt::getAllOnesValue(BitWidth); 14480 if (Imm == 0 || Imm.isAllOnesValue()) 14481 return SDValue(); 14482 unsigned ShAmt = Imm.countTrailingZeros(); 14483 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 14484 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 14485 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 14486 // The narrowing should be profitable, the load/store operation should be 14487 // legal (or custom) and the store size should be equal to the NewVT width. 14488 while (NewBW < BitWidth && 14489 (NewVT.getStoreSizeInBits() != NewBW || 14490 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 14491 !TLI.isNarrowingProfitable(VT, NewVT))) { 14492 NewBW = NextPowerOf2(NewBW); 14493 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 14494 } 14495 if (NewBW >= BitWidth) 14496 return SDValue(); 14497 14498 // If the lsb changed does not start at the type bitwidth boundary, 14499 // start at the previous one. 14500 if (ShAmt % NewBW) 14501 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 14502 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 14503 std::min(BitWidth, ShAmt + NewBW)); 14504 if ((Imm & Mask) == Imm) { 14505 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 14506 if (Opc == ISD::AND) 14507 NewImm ^= APInt::getAllOnesValue(NewBW); 14508 uint64_t PtrOff = ShAmt / 8; 14509 // For big endian targets, we need to adjust the offset to the pointer to 14510 // load the correct bytes. 14511 if (DAG.getDataLayout().isBigEndian()) 14512 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 14513 14514 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 14515 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 14516 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 14517 return SDValue(); 14518 14519 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 14520 Ptr.getValueType(), Ptr, 14521 DAG.getConstant(PtrOff, SDLoc(LD), 14522 Ptr.getValueType())); 14523 SDValue NewLD = 14524 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 14525 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 14526 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 14527 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 14528 DAG.getConstant(NewImm, SDLoc(Value), 14529 NewVT)); 14530 SDValue NewST = 14531 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 14532 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 14533 14534 AddToWorklist(NewPtr.getNode()); 14535 AddToWorklist(NewLD.getNode()); 14536 AddToWorklist(NewVal.getNode()); 14537 WorklistRemover DeadNodes(*this); 14538 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 14539 ++OpsNarrowed; 14540 return NewST; 14541 } 14542 } 14543 14544 return SDValue(); 14545 } 14546 14547 /// For a given floating point load / store pair, if the load value isn't used 14548 /// by any other operations, then consider transforming the pair to integer 14549 /// load / store operations if the target deems the transformation profitable. 14550 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 14551 StoreSDNode *ST = cast<StoreSDNode>(N); 14552 SDValue Chain = ST->getChain(); 14553 SDValue Value = ST->getValue(); 14554 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 14555 Value.hasOneUse() && 14556 Chain == SDValue(Value.getNode(), 1)) { 14557 LoadSDNode *LD = cast<LoadSDNode>(Value); 14558 EVT VT = LD->getMemoryVT(); 14559 if (!VT.isFloatingPoint() || 14560 VT != ST->getMemoryVT() || 14561 LD->isNonTemporal() || 14562 ST->isNonTemporal() || 14563 LD->getPointerInfo().getAddrSpace() != 0 || 14564 ST->getPointerInfo().getAddrSpace() != 0) 14565 return SDValue(); 14566 14567 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 14568 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 14569 !TLI.isOperationLegal(ISD::STORE, IntVT) || 14570 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 14571 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 14572 return SDValue(); 14573 14574 unsigned LDAlign = LD->getAlignment(); 14575 unsigned STAlign = ST->getAlignment(); 14576 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 14577 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 14578 if (LDAlign < ABIAlign || STAlign < ABIAlign) 14579 return SDValue(); 14580 14581 SDValue NewLD = 14582 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 14583 LD->getPointerInfo(), LDAlign); 14584 14585 SDValue NewST = 14586 DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(), 14587 ST->getPointerInfo(), STAlign); 14588 14589 AddToWorklist(NewLD.getNode()); 14590 AddToWorklist(NewST.getNode()); 14591 WorklistRemover DeadNodes(*this); 14592 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 14593 ++LdStFP2Int; 14594 return NewST; 14595 } 14596 14597 return SDValue(); 14598 } 14599 14600 // This is a helper function for visitMUL to check the profitability 14601 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 14602 // MulNode is the original multiply, AddNode is (add x, c1), 14603 // and ConstNode is c2. 14604 // 14605 // If the (add x, c1) has multiple uses, we could increase 14606 // the number of adds if we make this transformation. 14607 // It would only be worth doing this if we can remove a 14608 // multiply in the process. Check for that here. 14609 // To illustrate: 14610 // (A + c1) * c3 14611 // (A + c2) * c3 14612 // We're checking for cases where we have common "c3 * A" expressions. 14613 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 14614 SDValue &AddNode, 14615 SDValue &ConstNode) { 14616 APInt Val; 14617 14618 // If the add only has one use, this would be OK to do. 14619 if (AddNode.getNode()->hasOneUse()) 14620 return true; 14621 14622 // Walk all the users of the constant with which we're multiplying. 14623 for (SDNode *Use : ConstNode->uses()) { 14624 if (Use == MulNode) // This use is the one we're on right now. Skip it. 14625 continue; 14626 14627 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 14628 SDNode *OtherOp; 14629 SDNode *MulVar = AddNode.getOperand(0).getNode(); 14630 14631 // OtherOp is what we're multiplying against the constant. 14632 if (Use->getOperand(0) == ConstNode) 14633 OtherOp = Use->getOperand(1).getNode(); 14634 else 14635 OtherOp = Use->getOperand(0).getNode(); 14636 14637 // Check to see if multiply is with the same operand of our "add". 14638 // 14639 // ConstNode = CONST 14640 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 14641 // ... 14642 // AddNode = (A + c1) <-- MulVar is A. 14643 // = AddNode * ConstNode <-- current visiting instruction. 14644 // 14645 // If we make this transformation, we will have a common 14646 // multiply (ConstNode * A) that we can save. 14647 if (OtherOp == MulVar) 14648 return true; 14649 14650 // Now check to see if a future expansion will give us a common 14651 // multiply. 14652 // 14653 // ConstNode = CONST 14654 // AddNode = (A + c1) 14655 // ... = AddNode * ConstNode <-- current visiting instruction. 14656 // ... 14657 // OtherOp = (A + c2) 14658 // Use = OtherOp * ConstNode <-- visiting Use. 14659 // 14660 // If we make this transformation, we will have a common 14661 // multiply (CONST * A) after we also do the same transformation 14662 // to the "t2" instruction. 14663 if (OtherOp->getOpcode() == ISD::ADD && 14664 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 14665 OtherOp->getOperand(0).getNode() == MulVar) 14666 return true; 14667 } 14668 } 14669 14670 // Didn't find a case where this would be profitable. 14671 return false; 14672 } 14673 14674 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 14675 unsigned NumStores) { 14676 SmallVector<SDValue, 8> Chains; 14677 SmallPtrSet<const SDNode *, 8> Visited; 14678 SDLoc StoreDL(StoreNodes[0].MemNode); 14679 14680 for (unsigned i = 0; i < NumStores; ++i) { 14681 Visited.insert(StoreNodes[i].MemNode); 14682 } 14683 14684 // don't include nodes that are children or repeated nodes. 14685 for (unsigned i = 0; i < NumStores; ++i) { 14686 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 14687 Chains.push_back(StoreNodes[i].MemNode->getChain()); 14688 } 14689 14690 assert(Chains.size() > 0 && "Chain should have generated a chain"); 14691 return DAG.getTokenFactor(StoreDL, Chains); 14692 } 14693 14694 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 14695 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 14696 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 14697 // Make sure we have something to merge. 14698 if (NumStores < 2) 14699 return false; 14700 14701 // The latest Node in the DAG. 14702 SDLoc DL(StoreNodes[0].MemNode); 14703 14704 int64_t ElementSizeBits = MemVT.getStoreSizeInBits(); 14705 unsigned SizeInBits = NumStores * ElementSizeBits; 14706 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 14707 14708 EVT StoreTy; 14709 if (UseVector) { 14710 unsigned Elts = NumStores * NumMemElts; 14711 // Get the type for the merged vector store. 14712 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 14713 } else 14714 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 14715 14716 SDValue StoredVal; 14717 if (UseVector) { 14718 if (IsConstantSrc) { 14719 SmallVector<SDValue, 8> BuildVector; 14720 for (unsigned I = 0; I != NumStores; ++I) { 14721 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 14722 SDValue Val = St->getValue(); 14723 // If constant is of the wrong type, convert it now. 14724 if (MemVT != Val.getValueType()) { 14725 Val = peekThroughBitcasts(Val); 14726 // Deal with constants of wrong size. 14727 if (ElementSizeBits != Val.getValueSizeInBits()) { 14728 EVT IntMemVT = 14729 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 14730 if (isa<ConstantFPSDNode>(Val)) { 14731 // Not clear how to truncate FP values. 14732 return false; 14733 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 14734 Val = DAG.getConstant(C->getAPIntValue() 14735 .zextOrTrunc(Val.getValueSizeInBits()) 14736 .zextOrTrunc(ElementSizeBits), 14737 SDLoc(C), IntMemVT); 14738 } 14739 // Make sure correctly size type is the correct type. 14740 Val = DAG.getBitcast(MemVT, Val); 14741 } 14742 BuildVector.push_back(Val); 14743 } 14744 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 14745 : ISD::BUILD_VECTOR, 14746 DL, StoreTy, BuildVector); 14747 } else { 14748 SmallVector<SDValue, 8> Ops; 14749 for (unsigned i = 0; i < NumStores; ++i) { 14750 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 14751 SDValue Val = peekThroughBitcasts(St->getValue()); 14752 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 14753 // type MemVT. If the underlying value is not the correct 14754 // type, but it is an extraction of an appropriate vector we 14755 // can recast Val to be of the correct type. This may require 14756 // converting between EXTRACT_VECTOR_ELT and 14757 // EXTRACT_SUBVECTOR. 14758 if ((MemVT != Val.getValueType()) && 14759 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 14760 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 14761 EVT MemVTScalarTy = MemVT.getScalarType(); 14762 // We may need to add a bitcast here to get types to line up. 14763 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 14764 Val = DAG.getBitcast(MemVT, Val); 14765 } else { 14766 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 14767 : ISD::EXTRACT_VECTOR_ELT; 14768 SDValue Vec = Val.getOperand(0); 14769 SDValue Idx = Val.getOperand(1); 14770 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 14771 } 14772 } 14773 Ops.push_back(Val); 14774 } 14775 14776 // Build the extracted vector elements back into a vector. 14777 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 14778 : ISD::BUILD_VECTOR, 14779 DL, StoreTy, Ops); 14780 } 14781 } else { 14782 // We should always use a vector store when merging extracted vector 14783 // elements, so this path implies a store of constants. 14784 assert(IsConstantSrc && "Merged vector elements should use vector store"); 14785 14786 APInt StoreInt(SizeInBits, 0); 14787 14788 // Construct a single integer constant which is made of the smaller 14789 // constant inputs. 14790 bool IsLE = DAG.getDataLayout().isLittleEndian(); 14791 for (unsigned i = 0; i < NumStores; ++i) { 14792 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 14793 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 14794 14795 SDValue Val = St->getValue(); 14796 Val = peekThroughBitcasts(Val); 14797 StoreInt <<= ElementSizeBits; 14798 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 14799 StoreInt |= C->getAPIntValue() 14800 .zextOrTrunc(ElementSizeBits) 14801 .zextOrTrunc(SizeInBits); 14802 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 14803 StoreInt |= C->getValueAPF() 14804 .bitcastToAPInt() 14805 .zextOrTrunc(ElementSizeBits) 14806 .zextOrTrunc(SizeInBits); 14807 // If fp truncation is necessary give up for now. 14808 if (MemVT.getSizeInBits() != ElementSizeBits) 14809 return false; 14810 } else { 14811 llvm_unreachable("Invalid constant element type"); 14812 } 14813 } 14814 14815 // Create the new Load and Store operations. 14816 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 14817 } 14818 14819 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 14820 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 14821 14822 // make sure we use trunc store if it's necessary to be legal. 14823 SDValue NewStore; 14824 if (!UseTrunc) { 14825 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 14826 FirstInChain->getPointerInfo(), 14827 FirstInChain->getAlignment()); 14828 } else { // Must be realized as a trunc store 14829 EVT LegalizedStoredValTy = 14830 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 14831 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 14832 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 14833 SDValue ExtendedStoreVal = 14834 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 14835 LegalizedStoredValTy); 14836 NewStore = DAG.getTruncStore( 14837 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 14838 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 14839 FirstInChain->getAlignment(), 14840 FirstInChain->getMemOperand()->getFlags()); 14841 } 14842 14843 // Replace all merged stores with the new store. 14844 for (unsigned i = 0; i < NumStores; ++i) 14845 CombineTo(StoreNodes[i].MemNode, NewStore); 14846 14847 AddToWorklist(NewChain.getNode()); 14848 return true; 14849 } 14850 14851 void DAGCombiner::getStoreMergeCandidates( 14852 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 14853 SDNode *&RootNode) { 14854 // This holds the base pointer, index, and the offset in bytes from the base 14855 // pointer. 14856 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 14857 EVT MemVT = St->getMemoryVT(); 14858 14859 SDValue Val = peekThroughBitcasts(St->getValue()); 14860 // We must have a base and an offset. 14861 if (!BasePtr.getBase().getNode()) 14862 return; 14863 14864 // Do not handle stores to undef base pointers. 14865 if (BasePtr.getBase().isUndef()) 14866 return; 14867 14868 bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val); 14869 bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 14870 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR); 14871 bool IsLoadSrc = isa<LoadSDNode>(Val); 14872 BaseIndexOffset LBasePtr; 14873 // Match on loadbaseptr if relevant. 14874 EVT LoadVT; 14875 if (IsLoadSrc) { 14876 auto *Ld = cast<LoadSDNode>(Val); 14877 LBasePtr = BaseIndexOffset::match(Ld, DAG); 14878 LoadVT = Ld->getMemoryVT(); 14879 // Load and store should be the same type. 14880 if (MemVT != LoadVT) 14881 return; 14882 // Loads must only have one use. 14883 if (!Ld->hasNUsesOfValue(1, 0)) 14884 return; 14885 // The memory operands must not be volatile. 14886 if (Ld->isVolatile() || Ld->isIndexed()) 14887 return; 14888 } 14889 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 14890 int64_t &Offset) -> bool { 14891 if (Other->isVolatile() || Other->isIndexed()) 14892 return false; 14893 SDValue Val = peekThroughBitcasts(Other->getValue()); 14894 // Allow merging constants of different types as integers. 14895 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 14896 : Other->getMemoryVT() != MemVT; 14897 if (IsLoadSrc) { 14898 if (NoTypeMatch) 14899 return false; 14900 // The Load's Base Ptr must also match 14901 if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(Val)) { 14902 auto LPtr = BaseIndexOffset::match(OtherLd, DAG); 14903 if (LoadVT != OtherLd->getMemoryVT()) 14904 return false; 14905 // Loads must only have one use. 14906 if (!OtherLd->hasNUsesOfValue(1, 0)) 14907 return false; 14908 // The memory operands must not be volatile. 14909 if (OtherLd->isVolatile() || OtherLd->isIndexed()) 14910 return false; 14911 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 14912 return false; 14913 } else 14914 return false; 14915 } 14916 if (IsConstantSrc) { 14917 if (NoTypeMatch) 14918 return false; 14919 if (!(isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val))) 14920 return false; 14921 } 14922 if (IsExtractVecSrc) { 14923 // Do not merge truncated stores here. 14924 if (Other->isTruncatingStore()) 14925 return false; 14926 if (!MemVT.bitsEq(Val.getValueType())) 14927 return false; 14928 if (Val.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 14929 Val.getOpcode() != ISD::EXTRACT_SUBVECTOR) 14930 return false; 14931 } 14932 Ptr = BaseIndexOffset::match(Other, DAG); 14933 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 14934 }; 14935 14936 // We looking for a root node which is an ancestor to all mergable 14937 // stores. We search up through a load, to our root and then down 14938 // through all children. For instance we will find Store{1,2,3} if 14939 // St is Store1, Store2. or Store3 where the root is not a load 14940 // which always true for nonvolatile ops. TODO: Expand 14941 // the search to find all valid candidates through multiple layers of loads. 14942 // 14943 // Root 14944 // |-------|-------| 14945 // Load Load Store3 14946 // | | 14947 // Store1 Store2 14948 // 14949 // FIXME: We should be able to climb and 14950 // descend TokenFactors to find candidates as well. 14951 14952 RootNode = St->getChain().getNode(); 14953 14954 unsigned NumNodesExplored = 0; 14955 if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 14956 RootNode = Ldn->getChain().getNode(); 14957 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 14958 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored) 14959 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain 14960 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 14961 if (I2.getOperandNo() == 0) 14962 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) { 14963 BaseIndexOffset Ptr; 14964 int64_t PtrDiff; 14965 if (CandidateMatch(OtherST, Ptr, PtrDiff)) 14966 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); 14967 } 14968 } else 14969 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 14970 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored) 14971 if (I.getOperandNo() == 0) 14972 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 14973 BaseIndexOffset Ptr; 14974 int64_t PtrDiff; 14975 if (CandidateMatch(OtherST, Ptr, PtrDiff)) 14976 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); 14977 } 14978 } 14979 14980 // We need to check that merging these stores does not cause a loop in 14981 // the DAG. Any store candidate may depend on another candidate 14982 // indirectly through its operand (we already consider dependencies 14983 // through the chain). Check in parallel by searching up from 14984 // non-chain operands of candidates. 14985 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 14986 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 14987 SDNode *RootNode) { 14988 // FIXME: We should be able to truncate a full search of 14989 // predecessors by doing a BFS and keeping tabs the originating 14990 // stores from which worklist nodes come from in a similar way to 14991 // TokenFactor simplfication. 14992 14993 SmallPtrSet<const SDNode *, 32> Visited; 14994 SmallVector<const SDNode *, 8> Worklist; 14995 14996 // RootNode is a predecessor to all candidates so we need not search 14997 // past it. Add RootNode (peeking through TokenFactors). Do not count 14998 // these towards size check. 14999 15000 Worklist.push_back(RootNode); 15001 while (!Worklist.empty()) { 15002 auto N = Worklist.pop_back_val(); 15003 if (!Visited.insert(N).second) 15004 continue; // Already present in Visited. 15005 if (N->getOpcode() == ISD::TokenFactor) { 15006 for (SDValue Op : N->ops()) 15007 Worklist.push_back(Op.getNode()); 15008 } 15009 } 15010 15011 // Don't count pruning nodes towards max. 15012 unsigned int Max = 1024 + Visited.size(); 15013 // Search Ops of store candidates. 15014 for (unsigned i = 0; i < NumStores; ++i) { 15015 SDNode *N = StoreNodes[i].MemNode; 15016 // Of the 4 Store Operands: 15017 // * Chain (Op 0) -> We have already considered these 15018 // in candidate selection and can be 15019 // safely ignored 15020 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 15021 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 15022 // but aren't necessarily fromt the same base node, so 15023 // cycles possible (e.g. via indexed store). 15024 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 15025 // non-indexed stores). Not constant on all targets (e.g. ARM) 15026 // and so can participate in a cycle. 15027 for (unsigned j = 1; j < N->getNumOperands(); ++j) 15028 Worklist.push_back(N->getOperand(j).getNode()); 15029 } 15030 // Search through DAG. We can stop early if we find a store node. 15031 for (unsigned i = 0; i < NumStores; ++i) 15032 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 15033 Max)) 15034 return false; 15035 return true; 15036 } 15037 15038 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) { 15039 if (OptLevel == CodeGenOpt::None) 15040 return false; 15041 15042 EVT MemVT = St->getMemoryVT(); 15043 int64_t ElementSizeBytes = MemVT.getStoreSize(); 15044 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 15045 15046 if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 15047 return false; 15048 15049 bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute( 15050 Attribute::NoImplicitFloat); 15051 15052 // This function cannot currently deal with non-byte-sized memory sizes. 15053 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 15054 return false; 15055 15056 if (!MemVT.isSimple()) 15057 return false; 15058 15059 // Perform an early exit check. Do not bother looking at stored values that 15060 // are not constants, loads, or extracted vector elements. 15061 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 15062 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 15063 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 15064 isa<ConstantFPSDNode>(StoredVal); 15065 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 15066 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 15067 15068 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 15069 return false; 15070 15071 SmallVector<MemOpLink, 8> StoreNodes; 15072 SDNode *RootNode; 15073 // Find potential store merge candidates by searching through chain sub-DAG 15074 getStoreMergeCandidates(St, StoreNodes, RootNode); 15075 15076 // Check if there is anything to merge. 15077 if (StoreNodes.size() < 2) 15078 return false; 15079 15080 // Sort the memory operands according to their distance from the 15081 // base pointer. 15082 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 15083 return LHS.OffsetFromBase < RHS.OffsetFromBase; 15084 }); 15085 15086 // Store Merge attempts to merge the lowest stores. This generally 15087 // works out as if successful, as the remaining stores are checked 15088 // after the first collection of stores is merged. However, in the 15089 // case that a non-mergeable store is found first, e.g., {p[-2], 15090 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 15091 // mergeable cases. To prevent this, we prune such stores from the 15092 // front of StoreNodes here. 15093 15094 bool RV = false; 15095 while (StoreNodes.size() > 1) { 15096 unsigned StartIdx = 0; 15097 while ((StartIdx + 1 < StoreNodes.size()) && 15098 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 15099 StoreNodes[StartIdx + 1].OffsetFromBase) 15100 ++StartIdx; 15101 15102 // Bail if we don't have enough candidates to merge. 15103 if (StartIdx + 1 >= StoreNodes.size()) 15104 return RV; 15105 15106 if (StartIdx) 15107 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 15108 15109 // Scan the memory operations on the chain and find the first 15110 // non-consecutive store memory address. 15111 unsigned NumConsecutiveStores = 1; 15112 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 15113 // Check that the addresses are consecutive starting from the second 15114 // element in the list of stores. 15115 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 15116 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 15117 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 15118 break; 15119 NumConsecutiveStores = i + 1; 15120 } 15121 15122 if (NumConsecutiveStores < 2) { 15123 StoreNodes.erase(StoreNodes.begin(), 15124 StoreNodes.begin() + NumConsecutiveStores); 15125 continue; 15126 } 15127 15128 // The node with the lowest store address. 15129 LLVMContext &Context = *DAG.getContext(); 15130 const DataLayout &DL = DAG.getDataLayout(); 15131 15132 // Store the constants into memory as one consecutive store. 15133 if (IsConstantSrc) { 15134 while (NumConsecutiveStores >= 2) { 15135 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 15136 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 15137 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 15138 unsigned LastLegalType = 1; 15139 unsigned LastLegalVectorType = 1; 15140 bool LastIntegerTrunc = false; 15141 bool NonZero = false; 15142 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 15143 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 15144 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 15145 SDValue StoredVal = ST->getValue(); 15146 bool IsElementZero = false; 15147 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 15148 IsElementZero = C->isNullValue(); 15149 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 15150 IsElementZero = C->getConstantFPValue()->isNullValue(); 15151 if (IsElementZero) { 15152 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 15153 FirstZeroAfterNonZero = i; 15154 } 15155 NonZero |= !IsElementZero; 15156 15157 // Find a legal type for the constant store. 15158 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 15159 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 15160 bool IsFast = false; 15161 15162 // Break early when size is too large to be legal. 15163 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 15164 break; 15165 15166 if (TLI.isTypeLegal(StoreTy) && 15167 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 15168 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 15169 FirstStoreAlign, &IsFast) && 15170 IsFast) { 15171 LastIntegerTrunc = false; 15172 LastLegalType = i + 1; 15173 // Or check whether a truncstore is legal. 15174 } else if (TLI.getTypeAction(Context, StoreTy) == 15175 TargetLowering::TypePromoteInteger) { 15176 EVT LegalizedStoredValTy = 15177 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 15178 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 15179 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && 15180 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 15181 FirstStoreAlign, &IsFast) && 15182 IsFast) { 15183 LastIntegerTrunc = true; 15184 LastLegalType = i + 1; 15185 } 15186 } 15187 15188 // We only use vectors if the constant is known to be zero or the 15189 // target allows it and the function is not marked with the 15190 // noimplicitfloat attribute. 15191 if ((!NonZero || 15192 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 15193 !NoVectors) { 15194 // Find a legal type for the vector store. 15195 unsigned Elts = (i + 1) * NumMemElts; 15196 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 15197 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 15198 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && 15199 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 15200 FirstStoreAlign, &IsFast) && 15201 IsFast) 15202 LastLegalVectorType = i + 1; 15203 } 15204 } 15205 15206 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 15207 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 15208 15209 // Check if we found a legal integer type that creates a meaningful 15210 // merge. 15211 if (NumElem < 2) { 15212 // We know that candidate stores are in order and of correct 15213 // shape. While there is no mergeable sequence from the 15214 // beginning one may start later in the sequence. The only 15215 // reason a merge of size N could have failed where another of 15216 // the same size would not have, is if the alignment has 15217 // improved or we've dropped a non-zero value. Drop as many 15218 // candidates as we can here. 15219 unsigned NumSkip = 1; 15220 while ( 15221 (NumSkip < NumConsecutiveStores) && 15222 (NumSkip < FirstZeroAfterNonZero) && 15223 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 15224 NumSkip++; 15225 15226 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 15227 NumConsecutiveStores -= NumSkip; 15228 continue; 15229 } 15230 15231 // Check that we can merge these candidates without causing a cycle. 15232 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 15233 RootNode)) { 15234 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 15235 NumConsecutiveStores -= NumElem; 15236 continue; 15237 } 15238 15239 RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true, 15240 UseVector, LastIntegerTrunc); 15241 15242 // Remove merged stores for next iteration. 15243 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 15244 NumConsecutiveStores -= NumElem; 15245 } 15246 continue; 15247 } 15248 15249 // When extracting multiple vector elements, try to store them 15250 // in one vector store rather than a sequence of scalar stores. 15251 if (IsExtractVecSrc) { 15252 // Loop on Consecutive Stores on success. 15253 while (NumConsecutiveStores >= 2) { 15254 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 15255 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 15256 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 15257 unsigned NumStoresToMerge = 1; 15258 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 15259 // Find a legal type for the vector store. 15260 unsigned Elts = (i + 1) * NumMemElts; 15261 EVT Ty = 15262 EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 15263 bool IsFast; 15264 15265 // Break early when size is too large to be legal. 15266 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 15267 break; 15268 15269 if (TLI.isTypeLegal(Ty) && 15270 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && 15271 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 15272 FirstStoreAlign, &IsFast) && 15273 IsFast) 15274 NumStoresToMerge = i + 1; 15275 } 15276 15277 // Check if we found a legal integer type creating a meaningful 15278 // merge. 15279 if (NumStoresToMerge < 2) { 15280 // We know that candidate stores are in order and of correct 15281 // shape. While there is no mergeable sequence from the 15282 // beginning one may start later in the sequence. The only 15283 // reason a merge of size N could have failed where another of 15284 // the same size would not have, is if the alignment has 15285 // improved. Drop as many candidates as we can here. 15286 unsigned NumSkip = 1; 15287 while ( 15288 (NumSkip < NumConsecutiveStores) && 15289 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 15290 NumSkip++; 15291 15292 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 15293 NumConsecutiveStores -= NumSkip; 15294 continue; 15295 } 15296 15297 // Check that we can merge these candidates without causing a cycle. 15298 if (!checkMergeStoreCandidatesForDependencies( 15299 StoreNodes, NumStoresToMerge, RootNode)) { 15300 StoreNodes.erase(StoreNodes.begin(), 15301 StoreNodes.begin() + NumStoresToMerge); 15302 NumConsecutiveStores -= NumStoresToMerge; 15303 continue; 15304 } 15305 15306 RV |= MergeStoresOfConstantsOrVecElts( 15307 StoreNodes, MemVT, NumStoresToMerge, false, true, false); 15308 15309 StoreNodes.erase(StoreNodes.begin(), 15310 StoreNodes.begin() + NumStoresToMerge); 15311 NumConsecutiveStores -= NumStoresToMerge; 15312 } 15313 continue; 15314 } 15315 15316 // Below we handle the case of multiple consecutive stores that 15317 // come from multiple consecutive loads. We merge them into a single 15318 // wide load and a single wide store. 15319 15320 // Look for load nodes which are used by the stored values. 15321 SmallVector<MemOpLink, 8> LoadNodes; 15322 15323 // Find acceptable loads. Loads need to have the same chain (token factor), 15324 // must not be zext, volatile, indexed, and they must be consecutive. 15325 BaseIndexOffset LdBasePtr; 15326 15327 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 15328 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 15329 SDValue Val = peekThroughBitcasts(St->getValue()); 15330 LoadSDNode *Ld = cast<LoadSDNode>(Val); 15331 15332 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 15333 // If this is not the first ptr that we check. 15334 int64_t LdOffset = 0; 15335 if (LdBasePtr.getBase().getNode()) { 15336 // The base ptr must be the same. 15337 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 15338 break; 15339 } else { 15340 // Check that all other base pointers are the same as this one. 15341 LdBasePtr = LdPtr; 15342 } 15343 15344 // We found a potential memory operand to merge. 15345 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 15346 } 15347 15348 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 15349 // If we have load/store pair instructions and we only have two values, 15350 // don't bother merging. 15351 unsigned RequiredAlignment; 15352 if (LoadNodes.size() == 2 && 15353 TLI.hasPairedLoad(MemVT, RequiredAlignment) && 15354 StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) { 15355 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 15356 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 15357 break; 15358 } 15359 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 15360 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 15361 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 15362 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 15363 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 15364 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 15365 15366 // Scan the memory operations on the chain and find the first 15367 // non-consecutive load memory address. These variables hold the index in 15368 // the store node array. 15369 15370 unsigned LastConsecutiveLoad = 1; 15371 15372 // This variable refers to the size and not index in the array. 15373 unsigned LastLegalVectorType = 1; 15374 unsigned LastLegalIntegerType = 1; 15375 bool isDereferenceable = true; 15376 bool DoIntegerTruncate = false; 15377 StartAddress = LoadNodes[0].OffsetFromBase; 15378 SDValue FirstChain = FirstLoad->getChain(); 15379 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 15380 // All loads must share the same chain. 15381 if (LoadNodes[i].MemNode->getChain() != FirstChain) 15382 break; 15383 15384 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 15385 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 15386 break; 15387 LastConsecutiveLoad = i; 15388 15389 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 15390 isDereferenceable = false; 15391 15392 // Find a legal type for the vector store. 15393 unsigned Elts = (i + 1) * NumMemElts; 15394 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 15395 15396 // Break early when size is too large to be legal. 15397 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 15398 break; 15399 15400 bool IsFastSt, IsFastLd; 15401 if (TLI.isTypeLegal(StoreTy) && 15402 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 15403 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 15404 FirstStoreAlign, &IsFastSt) && 15405 IsFastSt && 15406 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 15407 FirstLoadAlign, &IsFastLd) && 15408 IsFastLd) { 15409 LastLegalVectorType = i + 1; 15410 } 15411 15412 // Find a legal type for the integer store. 15413 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 15414 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 15415 if (TLI.isTypeLegal(StoreTy) && 15416 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 15417 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 15418 FirstStoreAlign, &IsFastSt) && 15419 IsFastSt && 15420 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 15421 FirstLoadAlign, &IsFastLd) && 15422 IsFastLd) { 15423 LastLegalIntegerType = i + 1; 15424 DoIntegerTruncate = false; 15425 // Or check whether a truncstore and extload is legal. 15426 } else if (TLI.getTypeAction(Context, StoreTy) == 15427 TargetLowering::TypePromoteInteger) { 15428 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 15429 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 15430 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && 15431 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, 15432 StoreTy) && 15433 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, 15434 StoreTy) && 15435 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 15436 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 15437 FirstStoreAlign, &IsFastSt) && 15438 IsFastSt && 15439 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 15440 FirstLoadAlign, &IsFastLd) && 15441 IsFastLd) { 15442 LastLegalIntegerType = i + 1; 15443 DoIntegerTruncate = true; 15444 } 15445 } 15446 } 15447 15448 // Only use vector types if the vector type is larger than the integer 15449 // type. If they are the same, use integers. 15450 bool UseVectorTy = 15451 LastLegalVectorType > LastLegalIntegerType && !NoVectors; 15452 unsigned LastLegalType = 15453 std::max(LastLegalVectorType, LastLegalIntegerType); 15454 15455 // We add +1 here because the LastXXX variables refer to location while 15456 // the NumElem refers to array/index size. 15457 unsigned NumElem = 15458 std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 15459 NumElem = std::min(LastLegalType, NumElem); 15460 15461 if (NumElem < 2) { 15462 // We know that candidate stores are in order and of correct 15463 // shape. While there is no mergeable sequence from the 15464 // beginning one may start later in the sequence. The only 15465 // reason a merge of size N could have failed where another of 15466 // the same size would not have is if the alignment or either 15467 // the load or store has improved. Drop as many candidates as we 15468 // can here. 15469 unsigned NumSkip = 1; 15470 while ((NumSkip < LoadNodes.size()) && 15471 (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) && 15472 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 15473 NumSkip++; 15474 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 15475 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 15476 NumConsecutiveStores -= NumSkip; 15477 continue; 15478 } 15479 15480 // Check that we can merge these candidates without causing a cycle. 15481 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 15482 RootNode)) { 15483 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 15484 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 15485 NumConsecutiveStores -= NumElem; 15486 continue; 15487 } 15488 15489 // Find if it is better to use vectors or integers to load and store 15490 // to memory. 15491 EVT JointMemOpVT; 15492 if (UseVectorTy) { 15493 // Find a legal type for the vector store. 15494 unsigned Elts = NumElem * NumMemElts; 15495 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 15496 } else { 15497 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 15498 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 15499 } 15500 15501 SDLoc LoadDL(LoadNodes[0].MemNode); 15502 SDLoc StoreDL(StoreNodes[0].MemNode); 15503 15504 // The merged loads are required to have the same incoming chain, so 15505 // using the first's chain is acceptable. 15506 15507 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 15508 AddToWorklist(NewStoreChain.getNode()); 15509 15510 MachineMemOperand::Flags MMOFlags = 15511 isDereferenceable ? MachineMemOperand::MODereferenceable 15512 : MachineMemOperand::MONone; 15513 15514 SDValue NewLoad, NewStore; 15515 if (UseVectorTy || !DoIntegerTruncate) { 15516 NewLoad = 15517 DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), 15518 FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), 15519 FirstLoadAlign, MMOFlags); 15520 NewStore = DAG.getStore( 15521 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 15522 FirstInChain->getPointerInfo(), FirstStoreAlign); 15523 } else { // This must be the truncstore/extload case 15524 EVT ExtendedTy = 15525 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 15526 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 15527 FirstLoad->getChain(), FirstLoad->getBasePtr(), 15528 FirstLoad->getPointerInfo(), JointMemOpVT, 15529 FirstLoadAlign, MMOFlags); 15530 NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad, 15531 FirstInChain->getBasePtr(), 15532 FirstInChain->getPointerInfo(), 15533 JointMemOpVT, FirstInChain->getAlignment(), 15534 FirstInChain->getMemOperand()->getFlags()); 15535 } 15536 15537 // Transfer chain users from old loads to the new load. 15538 for (unsigned i = 0; i < NumElem; ++i) { 15539 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 15540 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 15541 SDValue(NewLoad.getNode(), 1)); 15542 } 15543 15544 // Replace the all stores with the new store. Recursively remove 15545 // corresponding value if its no longer used. 15546 for (unsigned i = 0; i < NumElem; ++i) { 15547 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 15548 CombineTo(StoreNodes[i].MemNode, NewStore); 15549 if (Val.getNode()->use_empty()) 15550 recursivelyDeleteUnusedNodes(Val.getNode()); 15551 } 15552 15553 RV = true; 15554 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 15555 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 15556 NumConsecutiveStores -= NumElem; 15557 } 15558 } 15559 return RV; 15560 } 15561 15562 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 15563 SDLoc SL(ST); 15564 SDValue ReplStore; 15565 15566 // Replace the chain to avoid dependency. 15567 if (ST->isTruncatingStore()) { 15568 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 15569 ST->getBasePtr(), ST->getMemoryVT(), 15570 ST->getMemOperand()); 15571 } else { 15572 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 15573 ST->getMemOperand()); 15574 } 15575 15576 // Create token to keep both nodes around. 15577 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 15578 MVT::Other, ST->getChain(), ReplStore); 15579 15580 // Make sure the new and old chains are cleaned up. 15581 AddToWorklist(Token.getNode()); 15582 15583 // Don't add users to work list. 15584 return CombineTo(ST, Token, false); 15585 } 15586 15587 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 15588 SDValue Value = ST->getValue(); 15589 if (Value.getOpcode() == ISD::TargetConstantFP) 15590 return SDValue(); 15591 15592 SDLoc DL(ST); 15593 15594 SDValue Chain = ST->getChain(); 15595 SDValue Ptr = ST->getBasePtr(); 15596 15597 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 15598 15599 // NOTE: If the original store is volatile, this transform must not increase 15600 // the number of stores. For example, on x86-32 an f64 can be stored in one 15601 // processor operation but an i64 (which is not legal) requires two. So the 15602 // transform should not be done in this case. 15603 15604 SDValue Tmp; 15605 switch (CFP->getSimpleValueType(0).SimpleTy) { 15606 default: 15607 llvm_unreachable("Unknown FP type"); 15608 case MVT::f16: // We don't do this for these yet. 15609 case MVT::f80: 15610 case MVT::f128: 15611 case MVT::ppcf128: 15612 return SDValue(); 15613 case MVT::f32: 15614 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 15615 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 15616 ; 15617 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 15618 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 15619 MVT::i32); 15620 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 15621 } 15622 15623 return SDValue(); 15624 case MVT::f64: 15625 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 15626 !ST->isVolatile()) || 15627 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 15628 ; 15629 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 15630 getZExtValue(), SDLoc(CFP), MVT::i64); 15631 return DAG.getStore(Chain, DL, Tmp, 15632 Ptr, ST->getMemOperand()); 15633 } 15634 15635 if (!ST->isVolatile() && 15636 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 15637 // Many FP stores are not made apparent until after legalize, e.g. for 15638 // argument passing. Since this is so common, custom legalize the 15639 // 64-bit integer store into two 32-bit stores. 15640 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 15641 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 15642 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 15643 if (DAG.getDataLayout().isBigEndian()) 15644 std::swap(Lo, Hi); 15645 15646 unsigned Alignment = ST->getAlignment(); 15647 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 15648 AAMDNodes AAInfo = ST->getAAInfo(); 15649 15650 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 15651 ST->getAlignment(), MMOFlags, AAInfo); 15652 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 15653 DAG.getConstant(4, DL, Ptr.getValueType())); 15654 Alignment = MinAlign(Alignment, 4U); 15655 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 15656 ST->getPointerInfo().getWithOffset(4), 15657 Alignment, MMOFlags, AAInfo); 15658 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 15659 St0, St1); 15660 } 15661 15662 return SDValue(); 15663 } 15664 } 15665 15666 SDValue DAGCombiner::visitSTORE(SDNode *N) { 15667 StoreSDNode *ST = cast<StoreSDNode>(N); 15668 SDValue Chain = ST->getChain(); 15669 SDValue Value = ST->getValue(); 15670 SDValue Ptr = ST->getBasePtr(); 15671 15672 // If this is a store of a bit convert, store the input value if the 15673 // resultant store does not need a higher alignment than the original. 15674 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 15675 ST->isUnindexed()) { 15676 EVT SVT = Value.getOperand(0).getValueType(); 15677 // If the store is volatile, we only want to change the store type if the 15678 // resulting store is legal. Otherwise we might increase the number of 15679 // memory accesses. We don't care if the original type was legal or not 15680 // as we assume software couldn't rely on the number of accesses of an 15681 // illegal type. 15682 if (((!LegalOperations && !ST->isVolatile()) || 15683 TLI.isOperationLegal(ISD::STORE, SVT)) && 15684 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { 15685 unsigned OrigAlign = ST->getAlignment(); 15686 bool Fast = false; 15687 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, 15688 ST->getAddressSpace(), OrigAlign, &Fast) && 15689 Fast) { 15690 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 15691 ST->getPointerInfo(), OrigAlign, 15692 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 15693 } 15694 } 15695 } 15696 15697 // Turn 'store undef, Ptr' -> nothing. 15698 if (Value.isUndef() && ST->isUnindexed()) 15699 return Chain; 15700 15701 // Try to infer better alignment information than the store already has. 15702 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 15703 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 15704 if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) { 15705 SDValue NewStore = 15706 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 15707 ST->getMemoryVT(), Align, 15708 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 15709 // NewStore will always be N as we are only refining the alignment 15710 assert(NewStore.getNode() == N); 15711 (void)NewStore; 15712 } 15713 } 15714 } 15715 15716 // Try transforming a pair floating point load / store ops to integer 15717 // load / store ops. 15718 if (SDValue NewST = TransformFPLoadStorePair(N)) 15719 return NewST; 15720 15721 if (ST->isUnindexed()) { 15722 // Walk up chain skipping non-aliasing memory nodes, on this store and any 15723 // adjacent stores. 15724 if (findBetterNeighborChains(ST)) { 15725 // replaceStoreChain uses CombineTo, which handled all of the worklist 15726 // manipulation. Return the original node to not do anything else. 15727 return SDValue(ST, 0); 15728 } 15729 Chain = ST->getChain(); 15730 } 15731 15732 // FIXME: is there such a thing as a truncating indexed store? 15733 if (ST->isTruncatingStore() && ST->isUnindexed() && 15734 Value.getValueType().isInteger() && 15735 (!isa<ConstantSDNode>(Value) || 15736 !cast<ConstantSDNode>(Value)->isOpaque())) { 15737 APInt TruncDemandedBits = 15738 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 15739 ST->getMemoryVT().getScalarSizeInBits()); 15740 15741 // See if we can simplify the input to this truncstore with knowledge that 15742 // only the low bits are being used. For example: 15743 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 15744 SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits); 15745 AddToWorklist(Value.getNode()); 15746 if (Shorter) 15747 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 15748 ST->getMemOperand()); 15749 15750 // Otherwise, see if we can simplify the operation with 15751 // SimplifyDemandedBits, which only works if the value has a single use. 15752 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 15753 // Re-visit the store if anything changed and the store hasn't been merged 15754 // with another node (N is deleted) SimplifyDemandedBits will add Value's 15755 // node back to the worklist if necessary, but we also need to re-visit 15756 // the Store node itself. 15757 if (N->getOpcode() != ISD::DELETED_NODE) 15758 AddToWorklist(N); 15759 return SDValue(N, 0); 15760 } 15761 } 15762 15763 // If this is a load followed by a store to the same location, then the store 15764 // is dead/noop. 15765 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 15766 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 15767 ST->isUnindexed() && !ST->isVolatile() && 15768 // There can't be any side effects between the load and store, such as 15769 // a call or store. 15770 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 15771 // The store is dead, remove it. 15772 return Chain; 15773 } 15774 } 15775 15776 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 15777 if (ST->isUnindexed() && !ST->isVolatile() && ST1->isUnindexed() && 15778 !ST1->isVolatile()) { 15779 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && 15780 ST->getMemoryVT() == ST1->getMemoryVT()) { 15781 // If this is a store followed by a store with the same value to the 15782 // same location, then the store is dead/noop. 15783 return Chain; 15784 } 15785 15786 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 15787 !ST1->getBasePtr().isUndef()) { 15788 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 15789 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 15790 unsigned STBitSize = ST->getMemoryVT().getSizeInBits(); 15791 unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits(); 15792 // If this is a store who's preceding store to a subset of the current 15793 // location and no one other node is chained to that store we can 15794 // effectively drop the store. Do not remove stores to undef as they may 15795 // be used as data sinks. 15796 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 15797 CombineTo(ST1, ST1->getChain()); 15798 return SDValue(); 15799 } 15800 15801 // If ST stores to a subset of preceding store's write set, we may be 15802 // able to fold ST's value into the preceding stored value. As we know 15803 // the other uses of ST1's chain are unconcerned with ST, this folding 15804 // will not affect those nodes. 15805 int64_t BitOffset; 15806 if (ChainBase.contains(DAG, ChainBitSize, STBase, STBitSize, 15807 BitOffset)) { 15808 SDValue ChainValue = ST1->getValue(); 15809 if (auto *C1 = dyn_cast<ConstantSDNode>(ChainValue)) { 15810 if (auto *C = dyn_cast<ConstantSDNode>(Value)) { 15811 APInt Val = C1->getAPIntValue(); 15812 APInt InsertVal = C->getAPIntValue().zextOrTrunc(STBitSize); 15813 // FIXME: Handle Big-endian mode. 15814 if (!DAG.getDataLayout().isBigEndian()) { 15815 Val.insertBits(InsertVal, BitOffset); 15816 SDValue NewSDVal = 15817 DAG.getConstant(Val, SDLoc(C), ChainValue.getValueType(), 15818 C1->isTargetOpcode(), C1->isOpaque()); 15819 SDNode *NewST1 = DAG.UpdateNodeOperands( 15820 ST1, ST1->getChain(), NewSDVal, ST1->getOperand(2), 15821 ST1->getOperand(3)); 15822 return CombineTo(ST, SDValue(NewST1, 0)); 15823 } 15824 } 15825 } 15826 } // End ST subset of ST1 case. 15827 } 15828 } 15829 } 15830 15831 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 15832 // truncating store. We can do this even if this is already a truncstore. 15833 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 15834 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 15835 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 15836 ST->getMemoryVT())) { 15837 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 15838 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 15839 } 15840 15841 // Always perform this optimization before types are legal. If the target 15842 // prefers, also try this after legalization to catch stores that were created 15843 // by intrinsics or other nodes. 15844 if (!LegalTypes || (TLI.mergeStoresAfterLegalization())) { 15845 while (true) { 15846 // There can be multiple store sequences on the same chain. 15847 // Keep trying to merge store sequences until we are unable to do so 15848 // or until we merge the last store on the chain. 15849 bool Changed = MergeConsecutiveStores(ST); 15850 if (!Changed) break; 15851 // Return N as merge only uses CombineTo and no worklist clean 15852 // up is necessary. 15853 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 15854 return SDValue(N, 0); 15855 } 15856 } 15857 15858 // Try transforming N to an indexed store. 15859 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 15860 return SDValue(N, 0); 15861 15862 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 15863 // 15864 // Make sure to do this only after attempting to merge stores in order to 15865 // avoid changing the types of some subset of stores due to visit order, 15866 // preventing their merging. 15867 if (isa<ConstantFPSDNode>(ST->getValue())) { 15868 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 15869 return NewSt; 15870 } 15871 15872 if (SDValue NewSt = splitMergedValStore(ST)) 15873 return NewSt; 15874 15875 return ReduceLoadOpStoreWidth(N); 15876 } 15877 15878 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 15879 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 15880 if (!LifetimeEnd->hasOffset()) 15881 return SDValue(); 15882 15883 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 15884 LifetimeEnd->getOffset(), false); 15885 15886 // We walk up the chains to find stores. 15887 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 15888 while (!Chains.empty()) { 15889 SDValue Chain = Chains.back(); 15890 Chains.pop_back(); 15891 if (!Chain.hasOneUse()) 15892 continue; 15893 switch (Chain.getOpcode()) { 15894 case ISD::TokenFactor: 15895 for (unsigned Nops = Chain.getNumOperands(); Nops;) 15896 Chains.push_back(Chain.getOperand(--Nops)); 15897 break; 15898 case ISD::LIFETIME_START: 15899 case ISD::LIFETIME_END: 15900 // We can forward past any lifetime start/end that can be proven not to 15901 // alias the node. 15902 if (!isAlias(Chain.getNode(), N)) 15903 Chains.push_back(Chain.getOperand(0)); 15904 break; 15905 case ISD::STORE: { 15906 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 15907 if (ST->isVolatile() || ST->isIndexed()) 15908 continue; 15909 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 15910 // If we store purely within object bounds just before its lifetime ends, 15911 // we can remove the store. 15912 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 15913 ST->getMemoryVT().getStoreSizeInBits())) { 15914 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 15915 dbgs() << "\nwithin LIFETIME_END of : "; 15916 LifetimeEndBase.dump(); dbgs() << "\n"); 15917 CombineTo(ST, ST->getChain()); 15918 return SDValue(N, 0); 15919 } 15920 } 15921 } 15922 } 15923 return SDValue(); 15924 } 15925 15926 /// For the instruction sequence of store below, F and I values 15927 /// are bundled together as an i64 value before being stored into memory. 15928 /// Sometimes it is more efficent to generate separate stores for F and I, 15929 /// which can remove the bitwise instructions or sink them to colder places. 15930 /// 15931 /// (store (or (zext (bitcast F to i32) to i64), 15932 /// (shl (zext I to i64), 32)), addr) --> 15933 /// (store F, addr) and (store I, addr+4) 15934 /// 15935 /// Similarly, splitting for other merged store can also be beneficial, like: 15936 /// For pair of {i32, i32}, i64 store --> two i32 stores. 15937 /// For pair of {i32, i16}, i64 store --> two i32 stores. 15938 /// For pair of {i16, i16}, i32 store --> two i16 stores. 15939 /// For pair of {i16, i8}, i32 store --> two i16 stores. 15940 /// For pair of {i8, i8}, i16 store --> two i8 stores. 15941 /// 15942 /// We allow each target to determine specifically which kind of splitting is 15943 /// supported. 15944 /// 15945 /// The store patterns are commonly seen from the simple code snippet below 15946 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 15947 /// void goo(const std::pair<int, float> &); 15948 /// hoo() { 15949 /// ... 15950 /// goo(std::make_pair(tmp, ftmp)); 15951 /// ... 15952 /// } 15953 /// 15954 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 15955 if (OptLevel == CodeGenOpt::None) 15956 return SDValue(); 15957 15958 SDValue Val = ST->getValue(); 15959 SDLoc DL(ST); 15960 15961 // Match OR operand. 15962 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 15963 return SDValue(); 15964 15965 // Match SHL operand and get Lower and Higher parts of Val. 15966 SDValue Op1 = Val.getOperand(0); 15967 SDValue Op2 = Val.getOperand(1); 15968 SDValue Lo, Hi; 15969 if (Op1.getOpcode() != ISD::SHL) { 15970 std::swap(Op1, Op2); 15971 if (Op1.getOpcode() != ISD::SHL) 15972 return SDValue(); 15973 } 15974 Lo = Op2; 15975 Hi = Op1.getOperand(0); 15976 if (!Op1.hasOneUse()) 15977 return SDValue(); 15978 15979 // Match shift amount to HalfValBitSize. 15980 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 15981 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 15982 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 15983 return SDValue(); 15984 15985 // Lo and Hi are zero-extended from int with size less equal than 32 15986 // to i64. 15987 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 15988 !Lo.getOperand(0).getValueType().isScalarInteger() || 15989 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 15990 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 15991 !Hi.getOperand(0).getValueType().isScalarInteger() || 15992 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 15993 return SDValue(); 15994 15995 // Use the EVT of low and high parts before bitcast as the input 15996 // of target query. 15997 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 15998 ? Lo.getOperand(0).getValueType() 15999 : Lo.getValueType(); 16000 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 16001 ? Hi.getOperand(0).getValueType() 16002 : Hi.getValueType(); 16003 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 16004 return SDValue(); 16005 16006 // Start to split store. 16007 unsigned Alignment = ST->getAlignment(); 16008 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 16009 AAMDNodes AAInfo = ST->getAAInfo(); 16010 16011 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 16012 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 16013 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 16014 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 16015 16016 SDValue Chain = ST->getChain(); 16017 SDValue Ptr = ST->getBasePtr(); 16018 // Lower value store. 16019 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 16020 ST->getAlignment(), MMOFlags, AAInfo); 16021 Ptr = 16022 DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 16023 DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType())); 16024 // Higher value store. 16025 SDValue St1 = 16026 DAG.getStore(St0, DL, Hi, Ptr, 16027 ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 16028 Alignment / 2, MMOFlags, AAInfo); 16029 return St1; 16030 } 16031 16032 /// Convert a disguised subvector insertion into a shuffle: 16033 /// insert_vector_elt V, (bitcast X from vector type), IdxC --> 16034 /// bitcast(shuffle (bitcast V), (extended X), Mask) 16035 /// Note: We do not use an insert_subvector node because that requires a legal 16036 /// subvector type. 16037 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 16038 SDValue InsertVal = N->getOperand(1); 16039 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 16040 !InsertVal.getOperand(0).getValueType().isVector()) 16041 return SDValue(); 16042 16043 SDValue SubVec = InsertVal.getOperand(0); 16044 SDValue DestVec = N->getOperand(0); 16045 EVT SubVecVT = SubVec.getValueType(); 16046 EVT VT = DestVec.getValueType(); 16047 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 16048 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 16049 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 16050 16051 // Step 1: Create a shuffle mask that implements this insert operation. The 16052 // vector that we are inserting into will be operand 0 of the shuffle, so 16053 // those elements are just 'i'. The inserted subvector is in the first 16054 // positions of operand 1 of the shuffle. Example: 16055 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 16056 SmallVector<int, 16> Mask(NumMaskVals); 16057 for (unsigned i = 0; i != NumMaskVals; ++i) { 16058 if (i / NumSrcElts == InsIndex) 16059 Mask[i] = (i % NumSrcElts) + NumMaskVals; 16060 else 16061 Mask[i] = i; 16062 } 16063 16064 // Bail out if the target can not handle the shuffle we want to create. 16065 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 16066 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 16067 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 16068 return SDValue(); 16069 16070 // Step 2: Create a wide vector from the inserted source vector by appending 16071 // undefined elements. This is the same size as our destination vector. 16072 SDLoc DL(N); 16073 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 16074 ConcatOps[0] = SubVec; 16075 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 16076 16077 // Step 3: Shuffle in the padded subvector. 16078 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 16079 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 16080 AddToWorklist(PaddedSubV.getNode()); 16081 AddToWorklist(DestVecBC.getNode()); 16082 AddToWorklist(Shuf.getNode()); 16083 return DAG.getBitcast(VT, Shuf); 16084 } 16085 16086 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 16087 SDValue InVec = N->getOperand(0); 16088 SDValue InVal = N->getOperand(1); 16089 SDValue EltNo = N->getOperand(2); 16090 SDLoc DL(N); 16091 16092 // If the inserted element is an UNDEF, just use the input vector. 16093 if (InVal.isUndef()) 16094 return InVec; 16095 16096 EVT VT = InVec.getValueType(); 16097 unsigned NumElts = VT.getVectorNumElements(); 16098 16099 // Remove redundant insertions: 16100 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 16101 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 16102 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 16103 return InVec; 16104 16105 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 16106 if (!IndexC) { 16107 // If this is variable insert to undef vector, it might be better to splat: 16108 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 16109 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 16110 SmallVector<SDValue, 8> Ops(NumElts, InVal); 16111 return DAG.getBuildVector(VT, DL, Ops); 16112 } 16113 return SDValue(); 16114 } 16115 16116 // We must know which element is being inserted for folds below here. 16117 unsigned Elt = IndexC->getZExtValue(); 16118 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 16119 return Shuf; 16120 16121 // Canonicalize insert_vector_elt dag nodes. 16122 // Example: 16123 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 16124 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 16125 // 16126 // Do this only if the child insert_vector node has one use; also 16127 // do this only if indices are both constants and Idx1 < Idx0. 16128 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 16129 && isa<ConstantSDNode>(InVec.getOperand(2))) { 16130 unsigned OtherElt = InVec.getConstantOperandVal(2); 16131 if (Elt < OtherElt) { 16132 // Swap nodes. 16133 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 16134 InVec.getOperand(0), InVal, EltNo); 16135 AddToWorklist(NewOp.getNode()); 16136 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 16137 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 16138 } 16139 } 16140 16141 // If we can't generate a legal BUILD_VECTOR, exit 16142 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 16143 return SDValue(); 16144 16145 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 16146 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 16147 // vector elements. 16148 SmallVector<SDValue, 8> Ops; 16149 // Do not combine these two vectors if the output vector will not replace 16150 // the input vector. 16151 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 16152 Ops.append(InVec.getNode()->op_begin(), 16153 InVec.getNode()->op_end()); 16154 } else if (InVec.isUndef()) { 16155 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 16156 } else { 16157 return SDValue(); 16158 } 16159 assert(Ops.size() == NumElts && "Unexpected vector size"); 16160 16161 // Insert the element 16162 if (Elt < Ops.size()) { 16163 // All the operands of BUILD_VECTOR must have the same type; 16164 // we enforce that here. 16165 EVT OpVT = Ops[0].getValueType(); 16166 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 16167 } 16168 16169 // Return the new vector 16170 return DAG.getBuildVector(VT, DL, Ops); 16171 } 16172 16173 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 16174 SDValue EltNo, 16175 LoadSDNode *OriginalLoad) { 16176 assert(!OriginalLoad->isVolatile()); 16177 16178 EVT ResultVT = EVE->getValueType(0); 16179 EVT VecEltVT = InVecVT.getVectorElementType(); 16180 unsigned Align = OriginalLoad->getAlignment(); 16181 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 16182 VecEltVT.getTypeForEVT(*DAG.getContext())); 16183 16184 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 16185 return SDValue(); 16186 16187 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? 16188 ISD::NON_EXTLOAD : ISD::EXTLOAD; 16189 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 16190 return SDValue(); 16191 16192 Align = NewAlign; 16193 16194 SDValue NewPtr = OriginalLoad->getBasePtr(); 16195 SDValue Offset; 16196 EVT PtrType = NewPtr.getValueType(); 16197 MachinePointerInfo MPI; 16198 SDLoc DL(EVE); 16199 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 16200 int Elt = ConstEltNo->getZExtValue(); 16201 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 16202 Offset = DAG.getConstant(PtrOff, DL, PtrType); 16203 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 16204 } else { 16205 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 16206 Offset = DAG.getNode( 16207 ISD::MUL, DL, PtrType, Offset, 16208 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 16209 // Discard the pointer info except the address space because the memory 16210 // operand can't represent this new access since the offset is variable. 16211 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 16212 } 16213 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 16214 16215 // The replacement we need to do here is a little tricky: we need to 16216 // replace an extractelement of a load with a load. 16217 // Use ReplaceAllUsesOfValuesWith to do the replacement. 16218 // Note that this replacement assumes that the extractvalue is the only 16219 // use of the load; that's okay because we don't want to perform this 16220 // transformation in other cases anyway. 16221 SDValue Load; 16222 SDValue Chain; 16223 if (ResultVT.bitsGT(VecEltVT)) { 16224 // If the result type of vextract is wider than the load, then issue an 16225 // extending load instead. 16226 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 16227 VecEltVT) 16228 ? ISD::ZEXTLOAD 16229 : ISD::EXTLOAD; 16230 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 16231 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 16232 Align, OriginalLoad->getMemOperand()->getFlags(), 16233 OriginalLoad->getAAInfo()); 16234 Chain = Load.getValue(1); 16235 } else { 16236 Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, 16237 MPI, Align, OriginalLoad->getMemOperand()->getFlags(), 16238 OriginalLoad->getAAInfo()); 16239 Chain = Load.getValue(1); 16240 if (ResultVT.bitsLT(VecEltVT)) 16241 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 16242 else 16243 Load = DAG.getBitcast(ResultVT, Load); 16244 } 16245 WorklistRemover DeadNodes(*this); 16246 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 16247 SDValue To[] = { Load, Chain }; 16248 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 16249 // Since we're explicitly calling ReplaceAllUses, add the new node to the 16250 // worklist explicitly as well. 16251 AddToWorklist(Load.getNode()); 16252 AddUsersToWorklist(Load.getNode()); // Add users too 16253 // Make sure to revisit this node to clean it up; it will usually be dead. 16254 AddToWorklist(EVE); 16255 ++OpsNarrowed; 16256 return SDValue(EVE, 0); 16257 } 16258 16259 /// Transform a vector binary operation into a scalar binary operation by moving 16260 /// the math/logic after an extract element of a vector. 16261 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 16262 bool LegalOperations) { 16263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 16264 SDValue Vec = ExtElt->getOperand(0); 16265 SDValue Index = ExtElt->getOperand(1); 16266 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 16267 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 16268 Vec.getNode()->getNumValues() != 1) 16269 return SDValue(); 16270 16271 // Targets may want to avoid this to prevent an expensive register transfer. 16272 if (!TLI.shouldScalarizeBinop(Vec)) 16273 return SDValue(); 16274 16275 // Extracting an element of a vector constant is constant-folded, so this 16276 // transform is just replacing a vector op with a scalar op while moving the 16277 // extract. 16278 SDValue Op0 = Vec.getOperand(0); 16279 SDValue Op1 = Vec.getOperand(1); 16280 if (isAnyConstantBuildVector(Op0, true) || 16281 isAnyConstantBuildVector(Op1, true)) { 16282 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 16283 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 16284 SDLoc DL(ExtElt); 16285 EVT VT = ExtElt->getValueType(0); 16286 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 16287 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 16288 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 16289 } 16290 16291 return SDValue(); 16292 } 16293 16294 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 16295 SDValue VecOp = N->getOperand(0); 16296 SDValue Index = N->getOperand(1); 16297 EVT ScalarVT = N->getValueType(0); 16298 EVT VecVT = VecOp.getValueType(); 16299 if (VecOp.isUndef()) 16300 return DAG.getUNDEF(ScalarVT); 16301 16302 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 16303 // 16304 // This only really matters if the index is non-constant since other combines 16305 // on the constant elements already work. 16306 SDLoc DL(N); 16307 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 16308 Index == VecOp.getOperand(2)) { 16309 SDValue Elt = VecOp.getOperand(1); 16310 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 16311 } 16312 16313 // (vextract (scalar_to_vector val, 0) -> val 16314 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 16315 // Check if the result type doesn't match the inserted element type. A 16316 // SCALAR_TO_VECTOR may truncate the inserted element and the 16317 // EXTRACT_VECTOR_ELT may widen the extracted vector. 16318 SDValue InOp = VecOp.getOperand(0); 16319 if (InOp.getValueType() != ScalarVT) { 16320 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 16321 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 16322 } 16323 return InOp; 16324 } 16325 16326 // extract_vector_elt of out-of-bounds element -> UNDEF 16327 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 16328 unsigned NumElts = VecVT.getVectorNumElements(); 16329 if (IndexC && IndexC->getAPIntValue().uge(NumElts)) 16330 return DAG.getUNDEF(ScalarVT); 16331 16332 // extract_vector_elt (build_vector x, y), 1 -> y 16333 if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR && 16334 TLI.isTypeLegal(VecVT) && 16335 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 16336 SDValue Elt = VecOp.getOperand(IndexC->getZExtValue()); 16337 EVT InEltVT = Elt.getValueType(); 16338 16339 // Sometimes build_vector's scalar input types do not match result type. 16340 if (ScalarVT == InEltVT) 16341 return Elt; 16342 16343 // TODO: It may be useful to truncate if free if the build_vector implicitly 16344 // converts. 16345 } 16346 16347 // TODO: These transforms should not require the 'hasOneUse' restriction, but 16348 // there are regressions on multiple targets without it. We can end up with a 16349 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 16350 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 16351 VecOp.hasOneUse()) { 16352 // The vector index of the LSBs of the source depend on the endian-ness. 16353 bool IsLE = DAG.getDataLayout().isLittleEndian(); 16354 unsigned ExtractIndex = IndexC->getZExtValue(); 16355 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 16356 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 16357 SDValue BCSrc = VecOp.getOperand(0); 16358 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 16359 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 16360 16361 if (LegalTypes && BCSrc.getValueType().isInteger() && 16362 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 16363 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 16364 // trunc i64 X to i32 16365 SDValue X = BCSrc.getOperand(0); 16366 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 16367 "Extract element and scalar to vector can't change element type " 16368 "from FP to integer."); 16369 unsigned XBitWidth = X.getValueSizeInBits(); 16370 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 16371 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 16372 16373 // An extract element return value type can be wider than its vector 16374 // operand element type. In that case, the high bits are undefined, so 16375 // it's possible that we may need to extend rather than truncate. 16376 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 16377 assert(XBitWidth % VecEltBitWidth == 0 && 16378 "Scalar bitwidth must be a multiple of vector element bitwidth"); 16379 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 16380 } 16381 } 16382 } 16383 16384 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 16385 return BO; 16386 16387 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 16388 // We only perform this optimization before the op legalization phase because 16389 // we may introduce new vector instructions which are not backed by TD 16390 // patterns. For example on AVX, extracting elements from a wide vector 16391 // without using extract_subvector. However, if we can find an underlying 16392 // scalar value, then we can always use that. 16393 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 16394 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 16395 // Find the new index to extract from. 16396 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 16397 16398 // Extracting an undef index is undef. 16399 if (OrigElt == -1) 16400 return DAG.getUNDEF(ScalarVT); 16401 16402 // Select the right vector half to extract from. 16403 SDValue SVInVec; 16404 if (OrigElt < (int)NumElts) { 16405 SVInVec = VecOp.getOperand(0); 16406 } else { 16407 SVInVec = VecOp.getOperand(1); 16408 OrigElt -= NumElts; 16409 } 16410 16411 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 16412 SDValue InOp = SVInVec.getOperand(OrigElt); 16413 if (InOp.getValueType() != ScalarVT) { 16414 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 16415 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 16416 } 16417 16418 return InOp; 16419 } 16420 16421 // FIXME: We should handle recursing on other vector shuffles and 16422 // scalar_to_vector here as well. 16423 16424 if (!LegalOperations || 16425 // FIXME: Should really be just isOperationLegalOrCustom. 16426 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 16427 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 16428 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 16429 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 16430 DAG.getConstant(OrigElt, DL, IndexTy)); 16431 } 16432 } 16433 16434 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 16435 // simplify it based on the (valid) extraction indices. 16436 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 16437 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 16438 Use->getOperand(0) == VecOp && 16439 isa<ConstantSDNode>(Use->getOperand(1)); 16440 })) { 16441 APInt DemandedElts = APInt::getNullValue(NumElts); 16442 for (SDNode *Use : VecOp->uses()) { 16443 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 16444 if (CstElt->getAPIntValue().ult(NumElts)) 16445 DemandedElts.setBit(CstElt->getZExtValue()); 16446 } 16447 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 16448 // We simplified the vector operand of this extract element. If this 16449 // extract is not dead, visit it again so it is folded properly. 16450 if (N->getOpcode() != ISD::DELETED_NODE) 16451 AddToWorklist(N); 16452 return SDValue(N, 0); 16453 } 16454 } 16455 16456 // Everything under here is trying to match an extract of a loaded value. 16457 // If the result of load has to be truncated, then it's not necessarily 16458 // profitable. 16459 bool BCNumEltsChanged = false; 16460 EVT ExtVT = VecVT.getVectorElementType(); 16461 EVT LVT = ExtVT; 16462 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 16463 return SDValue(); 16464 16465 if (VecOp.getOpcode() == ISD::BITCAST) { 16466 // Don't duplicate a load with other uses. 16467 if (!VecOp.hasOneUse()) 16468 return SDValue(); 16469 16470 EVT BCVT = VecOp.getOperand(0).getValueType(); 16471 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 16472 return SDValue(); 16473 if (NumElts != BCVT.getVectorNumElements()) 16474 BCNumEltsChanged = true; 16475 VecOp = VecOp.getOperand(0); 16476 ExtVT = BCVT.getVectorElementType(); 16477 } 16478 16479 // extract (vector load $addr), i --> load $addr + i * size 16480 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 16481 ISD::isNormalLoad(VecOp.getNode()) && 16482 !Index->hasPredecessor(VecOp.getNode())) { 16483 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 16484 if (VecLoad && !VecLoad->isVolatile()) 16485 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 16486 } 16487 16488 // Perform only after legalization to ensure build_vector / vector_shuffle 16489 // optimizations have already been done. 16490 if (!LegalOperations || !IndexC) 16491 return SDValue(); 16492 16493 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 16494 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 16495 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 16496 int Elt = IndexC->getZExtValue(); 16497 LoadSDNode *LN0 = nullptr; 16498 if (ISD::isNormalLoad(VecOp.getNode())) { 16499 LN0 = cast<LoadSDNode>(VecOp); 16500 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 16501 VecOp.getOperand(0).getValueType() == ExtVT && 16502 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 16503 // Don't duplicate a load with other uses. 16504 if (!VecOp.hasOneUse()) 16505 return SDValue(); 16506 16507 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 16508 } 16509 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 16510 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 16511 // => 16512 // (load $addr+1*size) 16513 16514 // Don't duplicate a load with other uses. 16515 if (!VecOp.hasOneUse()) 16516 return SDValue(); 16517 16518 // If the bit convert changed the number of elements, it is unsafe 16519 // to examine the mask. 16520 if (BCNumEltsChanged) 16521 return SDValue(); 16522 16523 // Select the input vector, guarding against out of range extract vector. 16524 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 16525 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 16526 16527 if (VecOp.getOpcode() == ISD::BITCAST) { 16528 // Don't duplicate a load with other uses. 16529 if (!VecOp.hasOneUse()) 16530 return SDValue(); 16531 16532 VecOp = VecOp.getOperand(0); 16533 } 16534 if (ISD::isNormalLoad(VecOp.getNode())) { 16535 LN0 = cast<LoadSDNode>(VecOp); 16536 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 16537 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 16538 } 16539 } 16540 16541 // Make sure we found a non-volatile load and the extractelement is 16542 // the only use. 16543 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 16544 return SDValue(); 16545 16546 // If Idx was -1 above, Elt is going to be -1, so just return undef. 16547 if (Elt == -1) 16548 return DAG.getUNDEF(LVT); 16549 16550 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 16551 } 16552 16553 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 16554 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 16555 // We perform this optimization post type-legalization because 16556 // the type-legalizer often scalarizes integer-promoted vectors. 16557 // Performing this optimization before may create bit-casts which 16558 // will be type-legalized to complex code sequences. 16559 // We perform this optimization only before the operation legalizer because we 16560 // may introduce illegal operations. 16561 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 16562 return SDValue(); 16563 16564 unsigned NumInScalars = N->getNumOperands(); 16565 SDLoc DL(N); 16566 EVT VT = N->getValueType(0); 16567 16568 // Check to see if this is a BUILD_VECTOR of a bunch of values 16569 // which come from any_extend or zero_extend nodes. If so, we can create 16570 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 16571 // optimizations. We do not handle sign-extend because we can't fill the sign 16572 // using shuffles. 16573 EVT SourceType = MVT::Other; 16574 bool AllAnyExt = true; 16575 16576 for (unsigned i = 0; i != NumInScalars; ++i) { 16577 SDValue In = N->getOperand(i); 16578 // Ignore undef inputs. 16579 if (In.isUndef()) continue; 16580 16581 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 16582 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 16583 16584 // Abort if the element is not an extension. 16585 if (!ZeroExt && !AnyExt) { 16586 SourceType = MVT::Other; 16587 break; 16588 } 16589 16590 // The input is a ZeroExt or AnyExt. Check the original type. 16591 EVT InTy = In.getOperand(0).getValueType(); 16592 16593 // Check that all of the widened source types are the same. 16594 if (SourceType == MVT::Other) 16595 // First time. 16596 SourceType = InTy; 16597 else if (InTy != SourceType) { 16598 // Multiple income types. Abort. 16599 SourceType = MVT::Other; 16600 break; 16601 } 16602 16603 // Check if all of the extends are ANY_EXTENDs. 16604 AllAnyExt &= AnyExt; 16605 } 16606 16607 // In order to have valid types, all of the inputs must be extended from the 16608 // same source type and all of the inputs must be any or zero extend. 16609 // Scalar sizes must be a power of two. 16610 EVT OutScalarTy = VT.getScalarType(); 16611 bool ValidTypes = SourceType != MVT::Other && 16612 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 16613 isPowerOf2_32(SourceType.getSizeInBits()); 16614 16615 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 16616 // turn into a single shuffle instruction. 16617 if (!ValidTypes) 16618 return SDValue(); 16619 16620 bool isLE = DAG.getDataLayout().isLittleEndian(); 16621 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 16622 assert(ElemRatio > 1 && "Invalid element size ratio"); 16623 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 16624 DAG.getConstant(0, DL, SourceType); 16625 16626 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 16627 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 16628 16629 // Populate the new build_vector 16630 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 16631 SDValue Cast = N->getOperand(i); 16632 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 16633 Cast.getOpcode() == ISD::ZERO_EXTEND || 16634 Cast.isUndef()) && "Invalid cast opcode"); 16635 SDValue In; 16636 if (Cast.isUndef()) 16637 In = DAG.getUNDEF(SourceType); 16638 else 16639 In = Cast->getOperand(0); 16640 unsigned Index = isLE ? (i * ElemRatio) : 16641 (i * ElemRatio + (ElemRatio - 1)); 16642 16643 assert(Index < Ops.size() && "Invalid index"); 16644 Ops[Index] = In; 16645 } 16646 16647 // The type of the new BUILD_VECTOR node. 16648 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 16649 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 16650 "Invalid vector size"); 16651 // Check if the new vector type is legal. 16652 if (!isTypeLegal(VecVT) || 16653 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 16654 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 16655 return SDValue(); 16656 16657 // Make the new BUILD_VECTOR. 16658 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 16659 16660 // The new BUILD_VECTOR node has the potential to be further optimized. 16661 AddToWorklist(BV.getNode()); 16662 // Bitcast to the desired type. 16663 return DAG.getBitcast(VT, BV); 16664 } 16665 16666 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 16667 ArrayRef<int> VectorMask, 16668 SDValue VecIn1, SDValue VecIn2, 16669 unsigned LeftIdx, bool DidSplitVec) { 16670 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 16671 SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy); 16672 16673 EVT VT = N->getValueType(0); 16674 EVT InVT1 = VecIn1.getValueType(); 16675 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 16676 16677 unsigned NumElems = VT.getVectorNumElements(); 16678 unsigned ShuffleNumElems = NumElems; 16679 16680 // If we artificially split a vector in two already, then the offsets in the 16681 // operands will all be based off of VecIn1, even those in VecIn2. 16682 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 16683 16684 // We can't generate a shuffle node with mismatched input and output types. 16685 // Try to make the types match the type of the output. 16686 if (InVT1 != VT || InVT2 != VT) { 16687 if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { 16688 // If the output vector length is a multiple of both input lengths, 16689 // we can concatenate them and pad the rest with undefs. 16690 unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); 16691 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 16692 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 16693 ConcatOps[0] = VecIn1; 16694 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 16695 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 16696 VecIn2 = SDValue(); 16697 } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { 16698 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 16699 return SDValue(); 16700 16701 if (!VecIn2.getNode()) { 16702 // If we only have one input vector, and it's twice the size of the 16703 // output, split it in two. 16704 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 16705 DAG.getConstant(NumElems, DL, IdxTy)); 16706 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 16707 // Since we now have shorter input vectors, adjust the offset of the 16708 // second vector's start. 16709 Vec2Offset = NumElems; 16710 } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { 16711 // VecIn1 is wider than the output, and we have another, possibly 16712 // smaller input. Pad the smaller input with undefs, shuffle at the 16713 // input vector width, and extract the output. 16714 // The shuffle type is different than VT, so check legality again. 16715 if (LegalOperations && 16716 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 16717 return SDValue(); 16718 16719 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 16720 // lower it back into a BUILD_VECTOR. So if the inserted type is 16721 // illegal, don't even try. 16722 if (InVT1 != InVT2) { 16723 if (!TLI.isTypeLegal(InVT2)) 16724 return SDValue(); 16725 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 16726 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 16727 } 16728 ShuffleNumElems = NumElems * 2; 16729 } else { 16730 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider 16731 // than VecIn1. We can't handle this for now - this case will disappear 16732 // when we start sorting the vectors by type. 16733 return SDValue(); 16734 } 16735 } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() && 16736 InVT1.getSizeInBits() == VT.getSizeInBits()) { 16737 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 16738 ConcatOps[0] = VecIn2; 16739 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 16740 } else { 16741 // TODO: Support cases where the length mismatch isn't exactly by a 16742 // factor of 2. 16743 // TODO: Move this check upwards, so that if we have bad type 16744 // mismatches, we don't create any DAG nodes. 16745 return SDValue(); 16746 } 16747 } 16748 16749 // Initialize mask to undef. 16750 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 16751 16752 // Only need to run up to the number of elements actually used, not the 16753 // total number of elements in the shuffle - if we are shuffling a wider 16754 // vector, the high lanes should be set to undef. 16755 for (unsigned i = 0; i != NumElems; ++i) { 16756 if (VectorMask[i] <= 0) 16757 continue; 16758 16759 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 16760 if (VectorMask[i] == (int)LeftIdx) { 16761 Mask[i] = ExtIndex; 16762 } else if (VectorMask[i] == (int)LeftIdx + 1) { 16763 Mask[i] = Vec2Offset + ExtIndex; 16764 } 16765 } 16766 16767 // The type the input vectors may have changed above. 16768 InVT1 = VecIn1.getValueType(); 16769 16770 // If we already have a VecIn2, it should have the same type as VecIn1. 16771 // If we don't, get an undef/zero vector of the appropriate type. 16772 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 16773 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 16774 16775 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 16776 if (ShuffleNumElems > NumElems) 16777 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 16778 16779 return Shuffle; 16780 } 16781 16782 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 16783 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 16784 16785 // First, determine where the build vector is not undef. 16786 // TODO: We could extend this to handle zero elements as well as undefs. 16787 int NumBVOps = BV->getNumOperands(); 16788 int ZextElt = -1; 16789 for (int i = 0; i != NumBVOps; ++i) { 16790 SDValue Op = BV->getOperand(i); 16791 if (Op.isUndef()) 16792 continue; 16793 if (ZextElt == -1) 16794 ZextElt = i; 16795 else 16796 return SDValue(); 16797 } 16798 // Bail out if there's no non-undef element. 16799 if (ZextElt == -1) 16800 return SDValue(); 16801 16802 // The build vector contains some number of undef elements and exactly 16803 // one other element. That other element must be a zero-extended scalar 16804 // extracted from a vector at a constant index to turn this into a shuffle. 16805 // Also, require that the build vector does not implicitly truncate/extend 16806 // its elements. 16807 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 16808 EVT VT = BV->getValueType(0); 16809 SDValue Zext = BV->getOperand(ZextElt); 16810 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 16811 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 16812 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 16813 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 16814 return SDValue(); 16815 16816 // The zero-extend must be a multiple of the source size, and we must be 16817 // building a vector of the same size as the source of the extract element. 16818 SDValue Extract = Zext.getOperand(0); 16819 unsigned DestSize = Zext.getValueSizeInBits(); 16820 unsigned SrcSize = Extract.getValueSizeInBits(); 16821 if (DestSize % SrcSize != 0 || 16822 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 16823 return SDValue(); 16824 16825 // Create a shuffle mask that will combine the extracted element with zeros 16826 // and undefs. 16827 int ZextRatio = DestSize / SrcSize; 16828 int NumMaskElts = NumBVOps * ZextRatio; 16829 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 16830 for (int i = 0; i != NumMaskElts; ++i) { 16831 if (i / ZextRatio == ZextElt) { 16832 // The low bits of the (potentially translated) extracted element map to 16833 // the source vector. The high bits map to zero. We will use a zero vector 16834 // as the 2nd source operand of the shuffle, so use the 1st element of 16835 // that vector (mask value is number-of-elements) for the high bits. 16836 if (i % ZextRatio == 0) 16837 ShufMask[i] = Extract.getConstantOperandVal(1); 16838 else 16839 ShufMask[i] = NumMaskElts; 16840 } 16841 16842 // Undef elements of the build vector remain undef because we initialize 16843 // the shuffle mask with -1. 16844 } 16845 16846 // Turn this into a shuffle with zero if that's legal. 16847 EVT VecVT = Extract.getOperand(0).getValueType(); 16848 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(ShufMask, VecVT)) 16849 return SDValue(); 16850 16851 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 16852 // bitcast (shuffle V, ZeroVec, VectorMask) 16853 SDLoc DL(BV); 16854 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 16855 SDValue Shuf = DAG.getVectorShuffle(VecVT, DL, Extract.getOperand(0), ZeroVec, 16856 ShufMask); 16857 return DAG.getBitcast(VT, Shuf); 16858 } 16859 16860 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 16861 // operations. If the types of the vectors we're extracting from allow it, 16862 // turn this into a vector_shuffle node. 16863 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 16864 SDLoc DL(N); 16865 EVT VT = N->getValueType(0); 16866 16867 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 16868 if (!isTypeLegal(VT)) 16869 return SDValue(); 16870 16871 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 16872 return V; 16873 16874 // May only combine to shuffle after legalize if shuffle is legal. 16875 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 16876 return SDValue(); 16877 16878 bool UsesZeroVector = false; 16879 unsigned NumElems = N->getNumOperands(); 16880 16881 // Record, for each element of the newly built vector, which input vector 16882 // that element comes from. -1 stands for undef, 0 for the zero vector, 16883 // and positive values for the input vectors. 16884 // VectorMask maps each element to its vector number, and VecIn maps vector 16885 // numbers to their initial SDValues. 16886 16887 SmallVector<int, 8> VectorMask(NumElems, -1); 16888 SmallVector<SDValue, 8> VecIn; 16889 VecIn.push_back(SDValue()); 16890 16891 for (unsigned i = 0; i != NumElems; ++i) { 16892 SDValue Op = N->getOperand(i); 16893 16894 if (Op.isUndef()) 16895 continue; 16896 16897 // See if we can use a blend with a zero vector. 16898 // TODO: Should we generalize this to a blend with an arbitrary constant 16899 // vector? 16900 if (isNullConstant(Op) || isNullFPConstant(Op)) { 16901 UsesZeroVector = true; 16902 VectorMask[i] = 0; 16903 continue; 16904 } 16905 16906 // Not an undef or zero. If the input is something other than an 16907 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 16908 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 16909 !isa<ConstantSDNode>(Op.getOperand(1))) 16910 return SDValue(); 16911 SDValue ExtractedFromVec = Op.getOperand(0); 16912 16913 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 16914 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 16915 return SDValue(); 16916 16917 // All inputs must have the same element type as the output. 16918 if (VT.getVectorElementType() != 16919 ExtractedFromVec.getValueType().getVectorElementType()) 16920 return SDValue(); 16921 16922 // Have we seen this input vector before? 16923 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 16924 // a map back from SDValues to numbers isn't worth it. 16925 unsigned Idx = std::distance( 16926 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); 16927 if (Idx == VecIn.size()) 16928 VecIn.push_back(ExtractedFromVec); 16929 16930 VectorMask[i] = Idx; 16931 } 16932 16933 // If we didn't find at least one input vector, bail out. 16934 if (VecIn.size() < 2) 16935 return SDValue(); 16936 16937 // If all the Operands of BUILD_VECTOR extract from same 16938 // vector, then split the vector efficiently based on the maximum 16939 // vector access index and adjust the VectorMask and 16940 // VecIn accordingly. 16941 bool DidSplitVec = false; 16942 if (VecIn.size() == 2) { 16943 unsigned MaxIndex = 0; 16944 unsigned NearestPow2 = 0; 16945 SDValue Vec = VecIn.back(); 16946 EVT InVT = Vec.getValueType(); 16947 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 16948 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 16949 16950 for (unsigned i = 0; i < NumElems; i++) { 16951 if (VectorMask[i] <= 0) 16952 continue; 16953 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 16954 IndexVec[i] = Index; 16955 MaxIndex = std::max(MaxIndex, Index); 16956 } 16957 16958 NearestPow2 = PowerOf2Ceil(MaxIndex); 16959 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 16960 NumElems * 2 < NearestPow2) { 16961 unsigned SplitSize = NearestPow2 / 2; 16962 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 16963 InVT.getVectorElementType(), SplitSize); 16964 if (TLI.isTypeLegal(SplitVT)) { 16965 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 16966 DAG.getConstant(SplitSize, DL, IdxTy)); 16967 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 16968 DAG.getConstant(0, DL, IdxTy)); 16969 VecIn.pop_back(); 16970 VecIn.push_back(VecIn1); 16971 VecIn.push_back(VecIn2); 16972 DidSplitVec = true; 16973 16974 for (unsigned i = 0; i < NumElems; i++) { 16975 if (VectorMask[i] <= 0) 16976 continue; 16977 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 16978 } 16979 } 16980 } 16981 } 16982 16983 // TODO: We want to sort the vectors by descending length, so that adjacent 16984 // pairs have similar length, and the longer vector is always first in the 16985 // pair. 16986 16987 // TODO: Should this fire if some of the input vectors has illegal type (like 16988 // it does now), or should we let legalization run its course first? 16989 16990 // Shuffle phase: 16991 // Take pairs of vectors, and shuffle them so that the result has elements 16992 // from these vectors in the correct places. 16993 // For example, given: 16994 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 16995 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 16996 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 16997 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 16998 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 16999 // We will generate: 17000 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 17001 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 17002 SmallVector<SDValue, 4> Shuffles; 17003 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 17004 unsigned LeftIdx = 2 * In + 1; 17005 SDValue VecLeft = VecIn[LeftIdx]; 17006 SDValue VecRight = 17007 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 17008 17009 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 17010 VecRight, LeftIdx, DidSplitVec)) 17011 Shuffles.push_back(Shuffle); 17012 else 17013 return SDValue(); 17014 } 17015 17016 // If we need the zero vector as an "ingredient" in the blend tree, add it 17017 // to the list of shuffles. 17018 if (UsesZeroVector) 17019 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 17020 : DAG.getConstantFP(0.0, DL, VT)); 17021 17022 // If we only have one shuffle, we're done. 17023 if (Shuffles.size() == 1) 17024 return Shuffles[0]; 17025 17026 // Update the vector mask to point to the post-shuffle vectors. 17027 for (int &Vec : VectorMask) 17028 if (Vec == 0) 17029 Vec = Shuffles.size() - 1; 17030 else 17031 Vec = (Vec - 1) / 2; 17032 17033 // More than one shuffle. Generate a binary tree of blends, e.g. if from 17034 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 17035 // generate: 17036 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 17037 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 17038 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 17039 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 17040 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 17041 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 17042 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 17043 17044 // Make sure the initial size of the shuffle list is even. 17045 if (Shuffles.size() % 2) 17046 Shuffles.push_back(DAG.getUNDEF(VT)); 17047 17048 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 17049 if (CurSize % 2) { 17050 Shuffles[CurSize] = DAG.getUNDEF(VT); 17051 CurSize++; 17052 } 17053 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 17054 int Left = 2 * In; 17055 int Right = 2 * In + 1; 17056 SmallVector<int, 8> Mask(NumElems, -1); 17057 for (unsigned i = 0; i != NumElems; ++i) { 17058 if (VectorMask[i] == Left) { 17059 Mask[i] = i; 17060 VectorMask[i] = In; 17061 } else if (VectorMask[i] == Right) { 17062 Mask[i] = i + NumElems; 17063 VectorMask[i] = In; 17064 } 17065 } 17066 17067 Shuffles[In] = 17068 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 17069 } 17070 } 17071 return Shuffles[0]; 17072 } 17073 17074 // Try to turn a build vector of zero extends of extract vector elts into a 17075 // a vector zero extend and possibly an extract subvector. 17076 // TODO: Support sign extend? 17077 // TODO: Allow undef elements? 17078 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 17079 if (LegalOperations) 17080 return SDValue(); 17081 17082 EVT VT = N->getValueType(0); 17083 17084 bool FoundZeroExtend = false; 17085 SDValue Op0 = N->getOperand(0); 17086 auto checkElem = [&](SDValue Op) -> int64_t { 17087 unsigned Opc = Op.getOpcode(); 17088 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 17089 if ((Op.getOpcode() == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 17090 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17091 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 17092 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 17093 return C->getZExtValue(); 17094 return -1; 17095 }; 17096 17097 // Make sure the first element matches 17098 // (zext (extract_vector_elt X, C)) 17099 int64_t Offset = checkElem(Op0); 17100 if (Offset < 0) 17101 return SDValue(); 17102 17103 unsigned NumElems = N->getNumOperands(); 17104 SDValue In = Op0.getOperand(0).getOperand(0); 17105 EVT InSVT = In.getValueType().getScalarType(); 17106 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 17107 17108 // Don't create an illegal input type after type legalization. 17109 if (LegalTypes && !TLI.isTypeLegal(InVT)) 17110 return SDValue(); 17111 17112 // Ensure all the elements come from the same vector and are adjacent. 17113 for (unsigned i = 1; i != NumElems; ++i) { 17114 if ((Offset + i) != checkElem(N->getOperand(i))) 17115 return SDValue(); 17116 } 17117 17118 SDLoc DL(N); 17119 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 17120 Op0.getOperand(0).getOperand(1)); 17121 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 17122 VT, In); 17123 } 17124 17125 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 17126 EVT VT = N->getValueType(0); 17127 17128 // A vector built entirely of undefs is undef. 17129 if (ISD::allOperandsUndef(N)) 17130 return DAG.getUNDEF(VT); 17131 17132 // If this is a splat of a bitcast from another vector, change to a 17133 // concat_vector. 17134 // For example: 17135 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 17136 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 17137 // 17138 // If X is a build_vector itself, the concat can become a larger build_vector. 17139 // TODO: Maybe this is useful for non-splat too? 17140 if (!LegalOperations) { 17141 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 17142 Splat = peekThroughBitcasts(Splat); 17143 EVT SrcVT = Splat.getValueType(); 17144 if (SrcVT.isVector()) { 17145 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 17146 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 17147 SrcVT.getVectorElementType(), NumElts); 17148 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 17149 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 17150 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 17151 NewVT, Ops); 17152 return DAG.getBitcast(VT, Concat); 17153 } 17154 } 17155 } 17156 } 17157 17158 // Check if we can express BUILD VECTOR via subvector extract. 17159 if (!LegalTypes && (N->getNumOperands() > 1)) { 17160 SDValue Op0 = N->getOperand(0); 17161 auto checkElem = [&](SDValue Op) -> uint64_t { 17162 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 17163 (Op0.getOperand(0) == Op.getOperand(0))) 17164 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 17165 return CNode->getZExtValue(); 17166 return -1; 17167 }; 17168 17169 int Offset = checkElem(Op0); 17170 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 17171 if (Offset + i != checkElem(N->getOperand(i))) { 17172 Offset = -1; 17173 break; 17174 } 17175 } 17176 17177 if ((Offset == 0) && 17178 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 17179 return Op0.getOperand(0); 17180 if ((Offset != -1) && 17181 ((Offset % N->getValueType(0).getVectorNumElements()) == 17182 0)) // IDX must be multiple of output size. 17183 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 17184 Op0.getOperand(0), Op0.getOperand(1)); 17185 } 17186 17187 if (SDValue V = convertBuildVecZextToZext(N)) 17188 return V; 17189 17190 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 17191 return V; 17192 17193 if (SDValue V = reduceBuildVecToShuffle(N)) 17194 return V; 17195 17196 return SDValue(); 17197 } 17198 17199 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 17200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17201 EVT OpVT = N->getOperand(0).getValueType(); 17202 17203 // If the operands are legal vectors, leave them alone. 17204 if (TLI.isTypeLegal(OpVT)) 17205 return SDValue(); 17206 17207 SDLoc DL(N); 17208 EVT VT = N->getValueType(0); 17209 SmallVector<SDValue, 8> Ops; 17210 17211 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 17212 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 17213 17214 // Keep track of what we encounter. 17215 bool AnyInteger = false; 17216 bool AnyFP = false; 17217 for (const SDValue &Op : N->ops()) { 17218 if (ISD::BITCAST == Op.getOpcode() && 17219 !Op.getOperand(0).getValueType().isVector()) 17220 Ops.push_back(Op.getOperand(0)); 17221 else if (ISD::UNDEF == Op.getOpcode()) 17222 Ops.push_back(ScalarUndef); 17223 else 17224 return SDValue(); 17225 17226 // Note whether we encounter an integer or floating point scalar. 17227 // If it's neither, bail out, it could be something weird like x86mmx. 17228 EVT LastOpVT = Ops.back().getValueType(); 17229 if (LastOpVT.isFloatingPoint()) 17230 AnyFP = true; 17231 else if (LastOpVT.isInteger()) 17232 AnyInteger = true; 17233 else 17234 return SDValue(); 17235 } 17236 17237 // If any of the operands is a floating point scalar bitcast to a vector, 17238 // use floating point types throughout, and bitcast everything. 17239 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 17240 if (AnyFP) { 17241 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 17242 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 17243 if (AnyInteger) { 17244 for (SDValue &Op : Ops) { 17245 if (Op.getValueType() == SVT) 17246 continue; 17247 if (Op.isUndef()) 17248 Op = ScalarUndef; 17249 else 17250 Op = DAG.getBitcast(SVT, Op); 17251 } 17252 } 17253 } 17254 17255 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 17256 VT.getSizeInBits() / SVT.getSizeInBits()); 17257 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 17258 } 17259 17260 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 17261 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 17262 // most two distinct vectors the same size as the result, attempt to turn this 17263 // into a legal shuffle. 17264 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 17265 EVT VT = N->getValueType(0); 17266 EVT OpVT = N->getOperand(0).getValueType(); 17267 int NumElts = VT.getVectorNumElements(); 17268 int NumOpElts = OpVT.getVectorNumElements(); 17269 17270 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 17271 SmallVector<int, 8> Mask; 17272 17273 for (SDValue Op : N->ops()) { 17274 Op = peekThroughBitcasts(Op); 17275 17276 // UNDEF nodes convert to UNDEF shuffle mask values. 17277 if (Op.isUndef()) { 17278 Mask.append((unsigned)NumOpElts, -1); 17279 continue; 17280 } 17281 17282 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 17283 return SDValue(); 17284 17285 // What vector are we extracting the subvector from and at what index? 17286 SDValue ExtVec = Op.getOperand(0); 17287 17288 // We want the EVT of the original extraction to correctly scale the 17289 // extraction index. 17290 EVT ExtVT = ExtVec.getValueType(); 17291 ExtVec = peekThroughBitcasts(ExtVec); 17292 17293 // UNDEF nodes convert to UNDEF shuffle mask values. 17294 if (ExtVec.isUndef()) { 17295 Mask.append((unsigned)NumOpElts, -1); 17296 continue; 17297 } 17298 17299 if (!isa<ConstantSDNode>(Op.getOperand(1))) 17300 return SDValue(); 17301 int ExtIdx = Op.getConstantOperandVal(1); 17302 17303 // Ensure that we are extracting a subvector from a vector the same 17304 // size as the result. 17305 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 17306 return SDValue(); 17307 17308 // Scale the subvector index to account for any bitcast. 17309 int NumExtElts = ExtVT.getVectorNumElements(); 17310 if (0 == (NumExtElts % NumElts)) 17311 ExtIdx /= (NumExtElts / NumElts); 17312 else if (0 == (NumElts % NumExtElts)) 17313 ExtIdx *= (NumElts / NumExtElts); 17314 else 17315 return SDValue(); 17316 17317 // At most we can reference 2 inputs in the final shuffle. 17318 if (SV0.isUndef() || SV0 == ExtVec) { 17319 SV0 = ExtVec; 17320 for (int i = 0; i != NumOpElts; ++i) 17321 Mask.push_back(i + ExtIdx); 17322 } else if (SV1.isUndef() || SV1 == ExtVec) { 17323 SV1 = ExtVec; 17324 for (int i = 0; i != NumOpElts; ++i) 17325 Mask.push_back(i + ExtIdx + NumElts); 17326 } else { 17327 return SDValue(); 17328 } 17329 } 17330 17331 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 17332 return SDValue(); 17333 17334 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 17335 DAG.getBitcast(VT, SV1), Mask); 17336 } 17337 17338 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 17339 // If we only have one input vector, we don't need to do any concatenation. 17340 if (N->getNumOperands() == 1) 17341 return N->getOperand(0); 17342 17343 // Check if all of the operands are undefs. 17344 EVT VT = N->getValueType(0); 17345 if (ISD::allOperandsUndef(N)) 17346 return DAG.getUNDEF(VT); 17347 17348 // Optimize concat_vectors where all but the first of the vectors are undef. 17349 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 17350 return Op.isUndef(); 17351 })) { 17352 SDValue In = N->getOperand(0); 17353 assert(In.getValueType().isVector() && "Must concat vectors"); 17354 17355 SDValue Scalar = peekThroughOneUseBitcasts(In); 17356 17357 // concat_vectors(scalar_to_vector(scalar), undef) -> 17358 // scalar_to_vector(scalar) 17359 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 17360 Scalar.hasOneUse()) { 17361 EVT SVT = Scalar.getValueType().getVectorElementType(); 17362 if (SVT == Scalar.getOperand(0).getValueType()) 17363 Scalar = Scalar.getOperand(0); 17364 } 17365 17366 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 17367 if (!Scalar.getValueType().isVector()) { 17368 // If the bitcast type isn't legal, it might be a trunc of a legal type; 17369 // look through the trunc so we can still do the transform: 17370 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 17371 if (Scalar->getOpcode() == ISD::TRUNCATE && 17372 !TLI.isTypeLegal(Scalar.getValueType()) && 17373 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 17374 Scalar = Scalar->getOperand(0); 17375 17376 EVT SclTy = Scalar.getValueType(); 17377 17378 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 17379 return SDValue(); 17380 17381 // Bail out if the vector size is not a multiple of the scalar size. 17382 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 17383 return SDValue(); 17384 17385 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 17386 if (VNTNumElms < 2) 17387 return SDValue(); 17388 17389 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 17390 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 17391 return SDValue(); 17392 17393 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 17394 return DAG.getBitcast(VT, Res); 17395 } 17396 } 17397 17398 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 17399 // We have already tested above for an UNDEF only concatenation. 17400 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 17401 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 17402 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 17403 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 17404 }; 17405 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 17406 SmallVector<SDValue, 8> Opnds; 17407 EVT SVT = VT.getScalarType(); 17408 17409 EVT MinVT = SVT; 17410 if (!SVT.isFloatingPoint()) { 17411 // If BUILD_VECTOR are from built from integer, they may have different 17412 // operand types. Get the smallest type and truncate all operands to it. 17413 bool FoundMinVT = false; 17414 for (const SDValue &Op : N->ops()) 17415 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 17416 EVT OpSVT = Op.getOperand(0).getValueType(); 17417 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 17418 FoundMinVT = true; 17419 } 17420 assert(FoundMinVT && "Concat vector type mismatch"); 17421 } 17422 17423 for (const SDValue &Op : N->ops()) { 17424 EVT OpVT = Op.getValueType(); 17425 unsigned NumElts = OpVT.getVectorNumElements(); 17426 17427 if (ISD::UNDEF == Op.getOpcode()) 17428 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 17429 17430 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 17431 if (SVT.isFloatingPoint()) { 17432 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 17433 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 17434 } else { 17435 for (unsigned i = 0; i != NumElts; ++i) 17436 Opnds.push_back( 17437 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 17438 } 17439 } 17440 } 17441 17442 assert(VT.getVectorNumElements() == Opnds.size() && 17443 "Concat vector type mismatch"); 17444 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 17445 } 17446 17447 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 17448 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 17449 return V; 17450 17451 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 17452 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 17453 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 17454 return V; 17455 17456 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 17457 // nodes often generate nop CONCAT_VECTOR nodes. 17458 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 17459 // place the incoming vectors at the exact same location. 17460 SDValue SingleSource = SDValue(); 17461 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 17462 17463 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 17464 SDValue Op = N->getOperand(i); 17465 17466 if (Op.isUndef()) 17467 continue; 17468 17469 // Check if this is the identity extract: 17470 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 17471 return SDValue(); 17472 17473 // Find the single incoming vector for the extract_subvector. 17474 if (SingleSource.getNode()) { 17475 if (Op.getOperand(0) != SingleSource) 17476 return SDValue(); 17477 } else { 17478 SingleSource = Op.getOperand(0); 17479 17480 // Check the source type is the same as the type of the result. 17481 // If not, this concat may extend the vector, so we can not 17482 // optimize it away. 17483 if (SingleSource.getValueType() != N->getValueType(0)) 17484 return SDValue(); 17485 } 17486 17487 unsigned IdentityIndex = i * PartNumElem; 17488 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 17489 // The extract index must be constant. 17490 if (!CS) 17491 return SDValue(); 17492 17493 // Check that we are reading from the identity index. 17494 if (CS->getZExtValue() != IdentityIndex) 17495 return SDValue(); 17496 } 17497 17498 if (SingleSource.getNode()) 17499 return SingleSource; 17500 17501 return SDValue(); 17502 } 17503 17504 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 17505 SelectionDAG &DAG) { 17506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17507 SDValue BinOp = Extract->getOperand(0); 17508 if (!TLI.isBinOp(BinOp.getOpcode()) || BinOp.getNode()->getNumValues() != 1) 17509 return SDValue(); 17510 17511 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 17512 SDValue Index = Extract->getOperand(1); 17513 EVT VT = Extract->getValueType(0); 17514 bool IsInsert0 = Bop0.getOpcode() == ISD::INSERT_SUBVECTOR && 17515 Bop0.getOperand(1).getValueType() == VT && 17516 Bop0.getOperand(2) == Index; 17517 bool IsInsert1 = Bop1.getOpcode() == ISD::INSERT_SUBVECTOR && 17518 Bop1.getOperand(1).getValueType() == VT && 17519 Bop1.getOperand(2) == Index; 17520 // TODO: We could handle the case where only 1 operand is being inserted by 17521 // creating an extract of the other operand, but that requires checking 17522 // number of uses and/or costs. 17523 if (!IsInsert0 || !IsInsert1 || 17524 !TLI.isOperationLegalOrCustom(BinOp.getOpcode(), VT)) 17525 return SDValue(); 17526 17527 // We are inserting both operands of the wide binop only to extract back 17528 // to the narrow vector size. Eliminate all of the insert/extract: 17529 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 17530 return DAG.getNode(BinOp.getOpcode(), SDLoc(Extract), VT, Bop0.getOperand(1), 17531 Bop1.getOperand(1), BinOp->getFlags()); 17532 } 17533 17534 /// If we are extracting a subvector produced by a wide binary operator try 17535 /// to use a narrow binary operator and/or avoid concatenation and extraction. 17536 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) { 17537 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 17538 // some of these bailouts with other transforms. 17539 17540 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG)) 17541 return V; 17542 17543 // The extract index must be a constant, so we can map it to a concat operand. 17544 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 17545 if (!ExtractIndexC) 17546 return SDValue(); 17547 17548 // We are looking for an optionally bitcasted wide vector binary operator 17549 // feeding an extract subvector. 17550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17551 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 17552 if (!TLI.isBinOp(BinOp.getOpcode()) || BinOp.getNode()->getNumValues() != 1) 17553 return SDValue(); 17554 17555 // The binop must be a vector type, so we can extract some fraction of it. 17556 EVT WideBVT = BinOp.getValueType(); 17557 if (!WideBVT.isVector()) 17558 return SDValue(); 17559 17560 EVT VT = Extract->getValueType(0); 17561 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 17562 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 17563 "Extract index is not a multiple of the vector length."); 17564 17565 // Bail out if this is not a proper multiple width extraction. 17566 unsigned WideWidth = WideBVT.getSizeInBits(); 17567 unsigned NarrowWidth = VT.getSizeInBits(); 17568 if (WideWidth % NarrowWidth != 0) 17569 return SDValue(); 17570 17571 // Bail out if we are extracting a fraction of a single operation. This can 17572 // occur because we potentially looked through a bitcast of the binop. 17573 unsigned NarrowingRatio = WideWidth / NarrowWidth; 17574 unsigned WideNumElts = WideBVT.getVectorNumElements(); 17575 if (WideNumElts % NarrowingRatio != 0) 17576 return SDValue(); 17577 17578 // Bail out if the target does not support a narrower version of the binop. 17579 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 17580 WideNumElts / NarrowingRatio); 17581 unsigned BOpcode = BinOp.getOpcode(); 17582 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 17583 return SDValue(); 17584 17585 // If extraction is cheap, we don't need to look at the binop operands 17586 // for concat ops. The narrow binop alone makes this transform profitable. 17587 // We can't just reuse the original extract index operand because we may have 17588 // bitcasted. 17589 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 17590 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 17591 EVT ExtBOIdxVT = Extract->getOperand(1).getValueType(); 17592 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 17593 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 17594 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 17595 SDLoc DL(Extract); 17596 SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT); 17597 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 17598 BinOp.getOperand(0), NewExtIndex); 17599 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 17600 BinOp.getOperand(1), NewExtIndex); 17601 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, 17602 BinOp.getNode()->getFlags()); 17603 return DAG.getBitcast(VT, NarrowBinOp); 17604 } 17605 17606 // Only handle the case where we are doubling and then halving. A larger ratio 17607 // may require more than two narrow binops to replace the wide binop. 17608 if (NarrowingRatio != 2) 17609 return SDValue(); 17610 17611 // TODO: The motivating case for this transform is an x86 AVX1 target. That 17612 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 17613 // flavors, but no other 256-bit integer support. This could be extended to 17614 // handle any binop, but that may require fixing/adding other folds to avoid 17615 // codegen regressions. 17616 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 17617 return SDValue(); 17618 17619 // We need at least one concatenation operation of a binop operand to make 17620 // this transform worthwhile. The concat must double the input vector sizes. 17621 SDValue LHS = peekThroughBitcasts(BinOp.getOperand(0)); 17622 SDValue RHS = peekThroughBitcasts(BinOp.getOperand(1)); 17623 bool ConcatL = 17624 LHS.getOpcode() == ISD::CONCAT_VECTORS && LHS.getNumOperands() == 2; 17625 bool ConcatR = 17626 RHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getNumOperands() == 2; 17627 if (ConcatL || ConcatR) { 17628 // If a binop operand was not the result of a concat, we must extract a 17629 // half-sized operand for our new narrow binop: 17630 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 17631 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 17632 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 17633 SDLoc DL(Extract); 17634 SDValue IndexC = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT); 17635 SDValue X = ConcatL ? DAG.getBitcast(NarrowBVT, LHS.getOperand(ConcatOpNum)) 17636 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 17637 BinOp.getOperand(0), IndexC); 17638 17639 SDValue Y = ConcatR ? DAG.getBitcast(NarrowBVT, RHS.getOperand(ConcatOpNum)) 17640 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 17641 BinOp.getOperand(1), IndexC); 17642 17643 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 17644 return DAG.getBitcast(VT, NarrowBinOp); 17645 } 17646 17647 return SDValue(); 17648 } 17649 17650 /// If we are extracting a subvector from a wide vector load, convert to a 17651 /// narrow load to eliminate the extraction: 17652 /// (extract_subvector (load wide vector)) --> (load narrow vector) 17653 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 17654 // TODO: Add support for big-endian. The offset calculation must be adjusted. 17655 if (DAG.getDataLayout().isBigEndian()) 17656 return SDValue(); 17657 17658 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 17659 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 17660 if (!Ld || Ld->getExtensionType() || Ld->isVolatile() || !ExtIdx) 17661 return SDValue(); 17662 17663 // Allow targets to opt-out. 17664 EVT VT = Extract->getValueType(0); 17665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17666 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 17667 return SDValue(); 17668 17669 // The narrow load will be offset from the base address of the old load if 17670 // we are extracting from something besides index 0 (little-endian). 17671 SDLoc DL(Extract); 17672 SDValue BaseAddr = Ld->getOperand(1); 17673 unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize(); 17674 17675 // TODO: Use "BaseIndexOffset" to make this more effective. 17676 SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL); 17677 MachineFunction &MF = DAG.getMachineFunction(); 17678 MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset, 17679 VT.getStoreSize()); 17680 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 17681 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 17682 return NewLd; 17683 } 17684 17685 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 17686 EVT NVT = N->getValueType(0); 17687 SDValue V = N->getOperand(0); 17688 17689 // Extract from UNDEF is UNDEF. 17690 if (V.isUndef()) 17691 return DAG.getUNDEF(NVT); 17692 17693 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 17694 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 17695 return NarrowLoad; 17696 17697 // Combine an extract of an extract into a single extract_subvector. 17698 // ext (ext X, C), 0 --> ext X, C 17699 SDValue Index = N->getOperand(1); 17700 if (isNullConstant(Index) && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && 17701 V.hasOneUse() && isa<ConstantSDNode>(V.getOperand(1))) { 17702 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 17703 V.getConstantOperandVal(1)) && 17704 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 17705 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 17706 V.getOperand(1)); 17707 } 17708 } 17709 17710 // Try to move vector bitcast after extract_subv by scaling extraction index: 17711 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 17712 if (isa<ConstantSDNode>(Index) && V.getOpcode() == ISD::BITCAST && 17713 V.getOperand(0).getValueType().isVector()) { 17714 SDValue SrcOp = V.getOperand(0); 17715 EVT SrcVT = SrcOp.getValueType(); 17716 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 17717 unsigned DestNumElts = V.getValueType().getVectorNumElements(); 17718 if ((SrcNumElts % DestNumElts) == 0) { 17719 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 17720 unsigned NewExtNumElts = NVT.getVectorNumElements() * SrcDestRatio; 17721 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 17722 NewExtNumElts); 17723 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 17724 unsigned IndexValScaled = N->getConstantOperandVal(1) * SrcDestRatio; 17725 SDLoc DL(N); 17726 SDValue NewIndex = DAG.getIntPtrConstant(IndexValScaled, DL); 17727 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 17728 V.getOperand(0), NewIndex); 17729 return DAG.getBitcast(NVT, NewExtract); 17730 } 17731 } 17732 } 17733 17734 // Combine: 17735 // (extract_subvec (concat V1, V2, ...), i) 17736 // Into: 17737 // Vi if possible 17738 // Only operand 0 is checked as 'concat' assumes all inputs of the same 17739 // type. 17740 if (V.getOpcode() == ISD::CONCAT_VECTORS && isa<ConstantSDNode>(Index) && 17741 V.getOperand(0).getValueType() == NVT) { 17742 unsigned Idx = N->getConstantOperandVal(1); 17743 unsigned NumElems = NVT.getVectorNumElements(); 17744 assert((Idx % NumElems) == 0 && 17745 "IDX in concat is not a multiple of the result vector length."); 17746 return V->getOperand(Idx / NumElems); 17747 } 17748 17749 V = peekThroughBitcasts(V); 17750 17751 // If the input is a build vector. Try to make a smaller build vector. 17752 if (V.getOpcode() == ISD::BUILD_VECTOR) { 17753 if (auto *IdxC = dyn_cast<ConstantSDNode>(Index)) { 17754 EVT InVT = V.getValueType(); 17755 unsigned ExtractSize = NVT.getSizeInBits(); 17756 unsigned EltSize = InVT.getScalarSizeInBits(); 17757 // Only do this if we won't split any elements. 17758 if (ExtractSize % EltSize == 0) { 17759 unsigned NumElems = ExtractSize / EltSize; 17760 EVT EltVT = InVT.getVectorElementType(); 17761 EVT ExtractVT = NumElems == 1 ? EltVT 17762 : EVT::getVectorVT(*DAG.getContext(), 17763 EltVT, NumElems); 17764 if ((Level < AfterLegalizeDAG || 17765 (NumElems == 1 || 17766 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 17767 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 17768 unsigned IdxVal = IdxC->getZExtValue(); 17769 IdxVal *= NVT.getScalarSizeInBits(); 17770 IdxVal /= EltSize; 17771 17772 if (NumElems == 1) { 17773 SDValue Src = V->getOperand(IdxVal); 17774 if (EltVT != Src.getValueType()) 17775 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 17776 return DAG.getBitcast(NVT, Src); 17777 } 17778 17779 // Extract the pieces from the original build_vector. 17780 SDValue BuildVec = DAG.getBuildVector( 17781 ExtractVT, SDLoc(N), V->ops().slice(IdxVal, NumElems)); 17782 return DAG.getBitcast(NVT, BuildVec); 17783 } 17784 } 17785 } 17786 } 17787 17788 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 17789 // Handle only simple case where vector being inserted and vector 17790 // being extracted are of same size. 17791 EVT SmallVT = V.getOperand(1).getValueType(); 17792 if (!NVT.bitsEq(SmallVT)) 17793 return SDValue(); 17794 17795 // Only handle cases where both indexes are constants. 17796 auto *ExtIdx = dyn_cast<ConstantSDNode>(Index); 17797 auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); 17798 if (InsIdx && ExtIdx) { 17799 // Combine: 17800 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 17801 // Into: 17802 // indices are equal or bit offsets are equal => V1 17803 // otherwise => (extract_subvec V1, ExtIdx) 17804 if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() == 17805 ExtIdx->getZExtValue() * NVT.getScalarSizeInBits()) 17806 return DAG.getBitcast(NVT, V.getOperand(1)); 17807 return DAG.getNode( 17808 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 17809 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 17810 Index); 17811 } 17812 } 17813 17814 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG)) 17815 return NarrowBOp; 17816 17817 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 17818 return SDValue(N, 0); 17819 17820 return SDValue(); 17821 } 17822 17823 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 17824 /// followed by concatenation. Narrow vector ops may have better performance 17825 /// than wide ops, and this can unlock further narrowing of other vector ops. 17826 /// Targets can invert this transform later if it is not profitable. 17827 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 17828 SelectionDAG &DAG) { 17829 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 17830 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 17831 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 17832 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 17833 return SDValue(); 17834 17835 // Split the wide shuffle mask into halves. Any mask element that is accessing 17836 // operand 1 is offset down to account for narrowing of the vectors. 17837 ArrayRef<int> Mask = Shuf->getMask(); 17838 EVT VT = Shuf->getValueType(0); 17839 unsigned NumElts = VT.getVectorNumElements(); 17840 unsigned HalfNumElts = NumElts / 2; 17841 SmallVector<int, 16> Mask0(HalfNumElts, -1); 17842 SmallVector<int, 16> Mask1(HalfNumElts, -1); 17843 for (unsigned i = 0; i != NumElts; ++i) { 17844 if (Mask[i] == -1) 17845 continue; 17846 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 17847 if (i < HalfNumElts) 17848 Mask0[i] = M; 17849 else 17850 Mask1[i - HalfNumElts] = M; 17851 } 17852 17853 // Ask the target if this is a valid transform. 17854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17855 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 17856 HalfNumElts); 17857 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 17858 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 17859 return SDValue(); 17860 17861 // shuffle (concat X, undef), (concat Y, undef), Mask --> 17862 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 17863 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 17864 SDLoc DL(Shuf); 17865 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 17866 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 17867 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 17868 } 17869 17870 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 17871 // or turn a shuffle of a single concat into simpler shuffle then concat. 17872 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 17873 EVT VT = N->getValueType(0); 17874 unsigned NumElts = VT.getVectorNumElements(); 17875 17876 SDValue N0 = N->getOperand(0); 17877 SDValue N1 = N->getOperand(1); 17878 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 17879 ArrayRef<int> Mask = SVN->getMask(); 17880 17881 SmallVector<SDValue, 4> Ops; 17882 EVT ConcatVT = N0.getOperand(0).getValueType(); 17883 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 17884 unsigned NumConcats = NumElts / NumElemsPerConcat; 17885 17886 auto IsUndefMaskElt = [](int i) { return i == -1; }; 17887 17888 // Special case: shuffle(concat(A,B)) can be more efficiently represented 17889 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 17890 // half vector elements. 17891 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 17892 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 17893 IsUndefMaskElt)) { 17894 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 17895 N0.getOperand(1), 17896 Mask.slice(0, NumElemsPerConcat)); 17897 N1 = DAG.getUNDEF(ConcatVT); 17898 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 17899 } 17900 17901 // Look at every vector that's inserted. We're looking for exact 17902 // subvector-sized copies from a concatenated vector 17903 for (unsigned I = 0; I != NumConcats; ++I) { 17904 unsigned Begin = I * NumElemsPerConcat; 17905 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 17906 17907 // Make sure we're dealing with a copy. 17908 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 17909 Ops.push_back(DAG.getUNDEF(ConcatVT)); 17910 continue; 17911 } 17912 17913 int OpIdx = -1; 17914 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 17915 if (IsUndefMaskElt(SubMask[i])) 17916 continue; 17917 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 17918 return SDValue(); 17919 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 17920 if (0 <= OpIdx && EltOpIdx != OpIdx) 17921 return SDValue(); 17922 OpIdx = EltOpIdx; 17923 } 17924 assert(0 <= OpIdx && "Unknown concat_vectors op"); 17925 17926 if (OpIdx < (int)N0.getNumOperands()) 17927 Ops.push_back(N0.getOperand(OpIdx)); 17928 else 17929 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 17930 } 17931 17932 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 17933 } 17934 17935 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 17936 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 17937 // 17938 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 17939 // a simplification in some sense, but it isn't appropriate in general: some 17940 // BUILD_VECTORs are substantially cheaper than others. The general case 17941 // of a BUILD_VECTOR requires inserting each element individually (or 17942 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 17943 // all constants is a single constant pool load. A BUILD_VECTOR where each 17944 // element is identical is a splat. A BUILD_VECTOR where most of the operands 17945 // are undef lowers to a small number of element insertions. 17946 // 17947 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 17948 // We don't fold shuffles where one side is a non-zero constant, and we don't 17949 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 17950 // non-constant operands. This seems to work out reasonably well in practice. 17951 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 17952 SelectionDAG &DAG, 17953 const TargetLowering &TLI) { 17954 EVT VT = SVN->getValueType(0); 17955 unsigned NumElts = VT.getVectorNumElements(); 17956 SDValue N0 = SVN->getOperand(0); 17957 SDValue N1 = SVN->getOperand(1); 17958 17959 if (!N0->hasOneUse()) 17960 return SDValue(); 17961 17962 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 17963 // discussed above. 17964 if (!N1.isUndef()) { 17965 if (!N1->hasOneUse()) 17966 return SDValue(); 17967 17968 bool N0AnyConst = isAnyConstantBuildVector(N0); 17969 bool N1AnyConst = isAnyConstantBuildVector(N1); 17970 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 17971 return SDValue(); 17972 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 17973 return SDValue(); 17974 } 17975 17976 // If both inputs are splats of the same value then we can safely merge this 17977 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 17978 bool IsSplat = false; 17979 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 17980 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 17981 if (BV0 && BV1) 17982 if (SDValue Splat0 = BV0->getSplatValue()) 17983 IsSplat = (Splat0 == BV1->getSplatValue()); 17984 17985 SmallVector<SDValue, 8> Ops; 17986 SmallSet<SDValue, 16> DuplicateOps; 17987 for (int M : SVN->getMask()) { 17988 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 17989 if (M >= 0) { 17990 int Idx = M < (int)NumElts ? M : M - NumElts; 17991 SDValue &S = (M < (int)NumElts ? N0 : N1); 17992 if (S.getOpcode() == ISD::BUILD_VECTOR) { 17993 Op = S.getOperand(Idx); 17994 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 17995 SDValue Op0 = S.getOperand(0); 17996 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 17997 } else { 17998 // Operand can't be combined - bail out. 17999 return SDValue(); 18000 } 18001 } 18002 18003 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 18004 // generating a splat; semantically, this is fine, but it's likely to 18005 // generate low-quality code if the target can't reconstruct an appropriate 18006 // shuffle. 18007 if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) 18008 if (!IsSplat && !DuplicateOps.insert(Op).second) 18009 return SDValue(); 18010 18011 Ops.push_back(Op); 18012 } 18013 18014 // BUILD_VECTOR requires all inputs to be of the same type, find the 18015 // maximum type and extend them all. 18016 EVT SVT = VT.getScalarType(); 18017 if (SVT.isInteger()) 18018 for (SDValue &Op : Ops) 18019 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 18020 if (SVT != VT.getScalarType()) 18021 for (SDValue &Op : Ops) 18022 Op = TLI.isZExtFree(Op.getValueType(), SVT) 18023 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 18024 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); 18025 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 18026 } 18027 18028 // Match shuffles that can be converted to any_vector_extend_in_reg. 18029 // This is often generated during legalization. 18030 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 18031 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 18032 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 18033 SelectionDAG &DAG, 18034 const TargetLowering &TLI, 18035 bool LegalOperations) { 18036 EVT VT = SVN->getValueType(0); 18037 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 18038 18039 // TODO Add support for big-endian when we have a test case. 18040 if (!VT.isInteger() || IsBigEndian) 18041 return SDValue(); 18042 18043 unsigned NumElts = VT.getVectorNumElements(); 18044 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 18045 ArrayRef<int> Mask = SVN->getMask(); 18046 SDValue N0 = SVN->getOperand(0); 18047 18048 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 18049 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 18050 for (unsigned i = 0; i != NumElts; ++i) { 18051 if (Mask[i] < 0) 18052 continue; 18053 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 18054 continue; 18055 return false; 18056 } 18057 return true; 18058 }; 18059 18060 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 18061 // power-of-2 extensions as they are the most likely. 18062 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 18063 // Check for non power of 2 vector sizes 18064 if (NumElts % Scale != 0) 18065 continue; 18066 if (!isAnyExtend(Scale)) 18067 continue; 18068 18069 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 18070 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 18071 // Never create an illegal type. Only create unsupported operations if we 18072 // are pre-legalization. 18073 if (TLI.isTypeLegal(OutVT)) 18074 if (!LegalOperations || 18075 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 18076 return DAG.getBitcast(VT, 18077 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 18078 SDLoc(SVN), OutVT, N0)); 18079 } 18080 18081 return SDValue(); 18082 } 18083 18084 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 18085 // each source element of a large type into the lowest elements of a smaller 18086 // destination type. This is often generated during legalization. 18087 // If the source node itself was a '*_extend_vector_inreg' node then we should 18088 // then be able to remove it. 18089 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 18090 SelectionDAG &DAG) { 18091 EVT VT = SVN->getValueType(0); 18092 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 18093 18094 // TODO Add support for big-endian when we have a test case. 18095 if (!VT.isInteger() || IsBigEndian) 18096 return SDValue(); 18097 18098 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 18099 18100 unsigned Opcode = N0.getOpcode(); 18101 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 18102 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 18103 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 18104 return SDValue(); 18105 18106 SDValue N00 = N0.getOperand(0); 18107 ArrayRef<int> Mask = SVN->getMask(); 18108 unsigned NumElts = VT.getVectorNumElements(); 18109 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 18110 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 18111 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 18112 18113 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 18114 return SDValue(); 18115 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 18116 18117 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 18118 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 18119 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 18120 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 18121 for (unsigned i = 0; i != NumElts; ++i) { 18122 if (Mask[i] < 0) 18123 continue; 18124 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 18125 continue; 18126 return false; 18127 } 18128 return true; 18129 }; 18130 18131 // At the moment we just handle the case where we've truncated back to the 18132 // same size as before the extension. 18133 // TODO: handle more extension/truncation cases as cases arise. 18134 if (EltSizeInBits != ExtSrcSizeInBits) 18135 return SDValue(); 18136 18137 // We can remove *extend_vector_inreg only if the truncation happens at 18138 // the same scale as the extension. 18139 if (isTruncate(ExtScale)) 18140 return DAG.getBitcast(VT, N00); 18141 18142 return SDValue(); 18143 } 18144 18145 // Combine shuffles of splat-shuffles of the form: 18146 // shuffle (shuffle V, undef, splat-mask), undef, M 18147 // If splat-mask contains undef elements, we need to be careful about 18148 // introducing undef's in the folded mask which are not the result of composing 18149 // the masks of the shuffles. 18150 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 18151 SelectionDAG &DAG) { 18152 if (!Shuf->getOperand(1).isUndef()) 18153 return SDValue(); 18154 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 18155 if (!Splat || !Splat->isSplat()) 18156 return SDValue(); 18157 18158 ArrayRef<int> ShufMask = Shuf->getMask(); 18159 ArrayRef<int> SplatMask = Splat->getMask(); 18160 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 18161 18162 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 18163 // every undef mask element in the splat-shuffle has a corresponding undef 18164 // element in the user-shuffle's mask or if the composition of mask elements 18165 // would result in undef. 18166 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 18167 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 18168 // In this case it is not legal to simplify to the splat-shuffle because we 18169 // may be exposing the users of the shuffle an undef element at index 1 18170 // which was not there before the combine. 18171 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 18172 // In this case the composition of masks yields SplatMask, so it's ok to 18173 // simplify to the splat-shuffle. 18174 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 18175 // In this case the composed mask includes all undef elements of SplatMask 18176 // and in addition sets element zero to undef. It is safe to simplify to 18177 // the splat-shuffle. 18178 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 18179 ArrayRef<int> SplatMask) { 18180 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 18181 if (UserMask[i] != -1 && SplatMask[i] == -1 && 18182 SplatMask[UserMask[i]] != -1) 18183 return false; 18184 return true; 18185 }; 18186 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 18187 return Shuf->getOperand(0); 18188 18189 // Create a new shuffle with a mask that is composed of the two shuffles' 18190 // masks. 18191 SmallVector<int, 32> NewMask; 18192 for (int Idx : ShufMask) 18193 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 18194 18195 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 18196 Splat->getOperand(0), Splat->getOperand(1), 18197 NewMask); 18198 } 18199 18200 /// If the shuffle mask is taking exactly one element from the first vector 18201 /// operand and passing through all other elements from the second vector 18202 /// operand, return the index of the mask element that is choosing an element 18203 /// from the first operand. Otherwise, return -1. 18204 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 18205 int MaskSize = Mask.size(); 18206 int EltFromOp0 = -1; 18207 // TODO: This does not match if there are undef elements in the shuffle mask. 18208 // Should we ignore undefs in the shuffle mask instead? The trade-off is 18209 // removing an instruction (a shuffle), but losing the knowledge that some 18210 // vector lanes are not needed. 18211 for (int i = 0; i != MaskSize; ++i) { 18212 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 18213 // We're looking for a shuffle of exactly one element from operand 0. 18214 if (EltFromOp0 != -1) 18215 return -1; 18216 EltFromOp0 = i; 18217 } else if (Mask[i] != i + MaskSize) { 18218 // Nothing from operand 1 can change lanes. 18219 return -1; 18220 } 18221 } 18222 return EltFromOp0; 18223 } 18224 18225 /// If a shuffle inserts exactly one element from a source vector operand into 18226 /// another vector operand and we can access the specified element as a scalar, 18227 /// then we can eliminate the shuffle. 18228 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 18229 SelectionDAG &DAG) { 18230 // First, check if we are taking one element of a vector and shuffling that 18231 // element into another vector. 18232 ArrayRef<int> Mask = Shuf->getMask(); 18233 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 18234 SDValue Op0 = Shuf->getOperand(0); 18235 SDValue Op1 = Shuf->getOperand(1); 18236 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 18237 if (ShufOp0Index == -1) { 18238 // Commute mask and check again. 18239 ShuffleVectorSDNode::commuteMask(CommutedMask); 18240 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 18241 if (ShufOp0Index == -1) 18242 return SDValue(); 18243 // Commute operands to match the commuted shuffle mask. 18244 std::swap(Op0, Op1); 18245 Mask = CommutedMask; 18246 } 18247 18248 // The shuffle inserts exactly one element from operand 0 into operand 1. 18249 // Now see if we can access that element as a scalar via a real insert element 18250 // instruction. 18251 // TODO: We can try harder to locate the element as a scalar. Examples: it 18252 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 18253 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 18254 "Shuffle mask value must be from operand 0"); 18255 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 18256 return SDValue(); 18257 18258 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 18259 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 18260 return SDValue(); 18261 18262 // There's an existing insertelement with constant insertion index, so we 18263 // don't need to check the legality/profitability of a replacement operation 18264 // that differs at most in the constant value. The target should be able to 18265 // lower any of those in a similar way. If not, legalization will expand this 18266 // to a scalar-to-vector plus shuffle. 18267 // 18268 // Note that the shuffle may move the scalar from the position that the insert 18269 // element used. Therefore, our new insert element occurs at the shuffle's 18270 // mask index value, not the insert's index value. 18271 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 18272 SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf), 18273 Op0.getOperand(2).getValueType()); 18274 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 18275 Op1, Op0.getOperand(1), NewInsIndex); 18276 } 18277 18278 /// If we have a unary shuffle of a shuffle, see if it can be folded away 18279 /// completely. This has the potential to lose undef knowledge because the first 18280 /// shuffle may not have an undef mask element where the second one does. So 18281 /// only call this after doing simplifications based on demanded elements. 18282 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 18283 // shuf (shuf0 X, Y, Mask0), undef, Mask 18284 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 18285 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 18286 return SDValue(); 18287 18288 ArrayRef<int> Mask = Shuf->getMask(); 18289 ArrayRef<int> Mask0 = Shuf0->getMask(); 18290 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 18291 // Ignore undef elements. 18292 if (Mask[i] == -1) 18293 continue; 18294 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 18295 18296 // Is the element of the shuffle operand chosen by this shuffle the same as 18297 // the element chosen by the shuffle operand itself? 18298 if (Mask0[Mask[i]] != Mask0[i]) 18299 return SDValue(); 18300 } 18301 // Every element of this shuffle is identical to the result of the previous 18302 // shuffle, so we can replace this value. 18303 return Shuf->getOperand(0); 18304 } 18305 18306 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 18307 EVT VT = N->getValueType(0); 18308 unsigned NumElts = VT.getVectorNumElements(); 18309 18310 SDValue N0 = N->getOperand(0); 18311 SDValue N1 = N->getOperand(1); 18312 18313 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 18314 18315 // Canonicalize shuffle undef, undef -> undef 18316 if (N0.isUndef() && N1.isUndef()) 18317 return DAG.getUNDEF(VT); 18318 18319 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 18320 18321 // Canonicalize shuffle v, v -> v, undef 18322 if (N0 == N1) { 18323 SmallVector<int, 8> NewMask; 18324 for (unsigned i = 0; i != NumElts; ++i) { 18325 int Idx = SVN->getMaskElt(i); 18326 if (Idx >= (int)NumElts) Idx -= NumElts; 18327 NewMask.push_back(Idx); 18328 } 18329 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 18330 } 18331 18332 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 18333 if (N0.isUndef()) 18334 return DAG.getCommutedVectorShuffle(*SVN); 18335 18336 // Remove references to rhs if it is undef 18337 if (N1.isUndef()) { 18338 bool Changed = false; 18339 SmallVector<int, 8> NewMask; 18340 for (unsigned i = 0; i != NumElts; ++i) { 18341 int Idx = SVN->getMaskElt(i); 18342 if (Idx >= (int)NumElts) { 18343 Idx = -1; 18344 Changed = true; 18345 } 18346 NewMask.push_back(Idx); 18347 } 18348 if (Changed) 18349 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 18350 } 18351 18352 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 18353 return InsElt; 18354 18355 // A shuffle of a single vector that is a splatted value can always be folded. 18356 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 18357 return V; 18358 18359 // If it is a splat, check if the argument vector is another splat or a 18360 // build_vector. 18361 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 18362 int SplatIndex = SVN->getSplatIndex(); 18363 if (TLI.isExtractVecEltCheap(VT, SplatIndex) && 18364 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { 18365 // splat (vector_bo L, R), Index --> 18366 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 18367 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 18368 SDLoc DL(N); 18369 EVT EltVT = VT.getScalarType(); 18370 SDValue Index = DAG.getIntPtrConstant(SplatIndex, DL); 18371 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 18372 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 18373 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, 18374 N0.getNode()->getFlags()); 18375 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 18376 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 18377 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 18378 } 18379 18380 // If this is a bit convert that changes the element type of the vector but 18381 // not the number of vector elements, look through it. Be careful not to 18382 // look though conversions that change things like v4f32 to v2f64. 18383 SDNode *V = N0.getNode(); 18384 if (V->getOpcode() == ISD::BITCAST) { 18385 SDValue ConvInput = V->getOperand(0); 18386 if (ConvInput.getValueType().isVector() && 18387 ConvInput.getValueType().getVectorNumElements() == NumElts) 18388 V = ConvInput.getNode(); 18389 } 18390 18391 if (V->getOpcode() == ISD::BUILD_VECTOR) { 18392 assert(V->getNumOperands() == NumElts && 18393 "BUILD_VECTOR has wrong number of operands"); 18394 SDValue Base; 18395 bool AllSame = true; 18396 for (unsigned i = 0; i != NumElts; ++i) { 18397 if (!V->getOperand(i).isUndef()) { 18398 Base = V->getOperand(i); 18399 break; 18400 } 18401 } 18402 // Splat of <u, u, u, u>, return <u, u, u, u> 18403 if (!Base.getNode()) 18404 return N0; 18405 for (unsigned i = 0; i != NumElts; ++i) { 18406 if (V->getOperand(i) != Base) { 18407 AllSame = false; 18408 break; 18409 } 18410 } 18411 // Splat of <x, x, x, x>, return <x, x, x, x> 18412 if (AllSame) 18413 return N0; 18414 18415 // Canonicalize any other splat as a build_vector. 18416 SDValue Splatted = V->getOperand(SplatIndex); 18417 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 18418 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 18419 18420 // We may have jumped through bitcasts, so the type of the 18421 // BUILD_VECTOR may not match the type of the shuffle. 18422 if (V->getValueType(0) != VT) 18423 NewBV = DAG.getBitcast(VT, NewBV); 18424 return NewBV; 18425 } 18426 } 18427 18428 // Simplify source operands based on shuffle mask. 18429 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 18430 return SDValue(N, 0); 18431 18432 // This is intentionally placed after demanded elements simplification because 18433 // it could eliminate knowledge of undef elements created by this shuffle. 18434 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 18435 return ShufOp; 18436 18437 // Match shuffles that can be converted to any_vector_extend_in_reg. 18438 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 18439 return V; 18440 18441 // Combine "truncate_vector_in_reg" style shuffles. 18442 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 18443 return V; 18444 18445 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 18446 Level < AfterLegalizeVectorOps && 18447 (N1.isUndef() || 18448 (N1.getOpcode() == ISD::CONCAT_VECTORS && 18449 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 18450 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 18451 return V; 18452 } 18453 18454 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 18455 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 18456 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 18457 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 18458 return Res; 18459 18460 // If this shuffle only has a single input that is a bitcasted shuffle, 18461 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 18462 // back to their original types. 18463 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 18464 N1.isUndef() && Level < AfterLegalizeVectorOps && 18465 TLI.isTypeLegal(VT)) { 18466 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 18467 if (Scale == 1) 18468 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 18469 18470 SmallVector<int, 8> NewMask; 18471 for (int M : Mask) 18472 for (int s = 0; s != Scale; ++s) 18473 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 18474 return NewMask; 18475 }; 18476 18477 SDValue BC0 = peekThroughOneUseBitcasts(N0); 18478 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 18479 EVT SVT = VT.getScalarType(); 18480 EVT InnerVT = BC0->getValueType(0); 18481 EVT InnerSVT = InnerVT.getScalarType(); 18482 18483 // Determine which shuffle works with the smaller scalar type. 18484 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 18485 EVT ScaleSVT = ScaleVT.getScalarType(); 18486 18487 if (TLI.isTypeLegal(ScaleVT) && 18488 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 18489 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 18490 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 18491 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 18492 18493 // Scale the shuffle masks to the smaller scalar type. 18494 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 18495 SmallVector<int, 8> InnerMask = 18496 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 18497 SmallVector<int, 8> OuterMask = 18498 ScaleShuffleMask(SVN->getMask(), OuterScale); 18499 18500 // Merge the shuffle masks. 18501 SmallVector<int, 8> NewMask; 18502 for (int M : OuterMask) 18503 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 18504 18505 // Test for shuffle mask legality over both commutations. 18506 SDValue SV0 = BC0->getOperand(0); 18507 SDValue SV1 = BC0->getOperand(1); 18508 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 18509 if (!LegalMask) { 18510 std::swap(SV0, SV1); 18511 ShuffleVectorSDNode::commuteMask(NewMask); 18512 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 18513 } 18514 18515 if (LegalMask) { 18516 SV0 = DAG.getBitcast(ScaleVT, SV0); 18517 SV1 = DAG.getBitcast(ScaleVT, SV1); 18518 return DAG.getBitcast( 18519 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 18520 } 18521 } 18522 } 18523 } 18524 18525 // Canonicalize shuffles according to rules: 18526 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 18527 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 18528 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 18529 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 18530 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 18531 TLI.isTypeLegal(VT)) { 18532 // The incoming shuffle must be of the same type as the result of the 18533 // current shuffle. 18534 assert(N1->getOperand(0).getValueType() == VT && 18535 "Shuffle types don't match"); 18536 18537 SDValue SV0 = N1->getOperand(0); 18538 SDValue SV1 = N1->getOperand(1); 18539 bool HasSameOp0 = N0 == SV0; 18540 bool IsSV1Undef = SV1.isUndef(); 18541 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 18542 // Commute the operands of this shuffle so that next rule 18543 // will trigger. 18544 return DAG.getCommutedVectorShuffle(*SVN); 18545 } 18546 18547 // Try to fold according to rules: 18548 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 18549 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 18550 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 18551 // Don't try to fold shuffles with illegal type. 18552 // Only fold if this shuffle is the only user of the other shuffle. 18553 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 18554 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 18555 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 18556 18557 // Don't try to fold splats; they're likely to simplify somehow, or they 18558 // might be free. 18559 if (OtherSV->isSplat()) 18560 return SDValue(); 18561 18562 // The incoming shuffle must be of the same type as the result of the 18563 // current shuffle. 18564 assert(OtherSV->getOperand(0).getValueType() == VT && 18565 "Shuffle types don't match"); 18566 18567 SDValue SV0, SV1; 18568 SmallVector<int, 4> Mask; 18569 // Compute the combined shuffle mask for a shuffle with SV0 as the first 18570 // operand, and SV1 as the second operand. 18571 for (unsigned i = 0; i != NumElts; ++i) { 18572 int Idx = SVN->getMaskElt(i); 18573 if (Idx < 0) { 18574 // Propagate Undef. 18575 Mask.push_back(Idx); 18576 continue; 18577 } 18578 18579 SDValue CurrentVec; 18580 if (Idx < (int)NumElts) { 18581 // This shuffle index refers to the inner shuffle N0. Lookup the inner 18582 // shuffle mask to identify which vector is actually referenced. 18583 Idx = OtherSV->getMaskElt(Idx); 18584 if (Idx < 0) { 18585 // Propagate Undef. 18586 Mask.push_back(Idx); 18587 continue; 18588 } 18589 18590 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 18591 : OtherSV->getOperand(1); 18592 } else { 18593 // This shuffle index references an element within N1. 18594 CurrentVec = N1; 18595 } 18596 18597 // Simple case where 'CurrentVec' is UNDEF. 18598 if (CurrentVec.isUndef()) { 18599 Mask.push_back(-1); 18600 continue; 18601 } 18602 18603 // Canonicalize the shuffle index. We don't know yet if CurrentVec 18604 // will be the first or second operand of the combined shuffle. 18605 Idx = Idx % NumElts; 18606 if (!SV0.getNode() || SV0 == CurrentVec) { 18607 // Ok. CurrentVec is the left hand side. 18608 // Update the mask accordingly. 18609 SV0 = CurrentVec; 18610 Mask.push_back(Idx); 18611 continue; 18612 } 18613 18614 // Bail out if we cannot convert the shuffle pair into a single shuffle. 18615 if (SV1.getNode() && SV1 != CurrentVec) 18616 return SDValue(); 18617 18618 // Ok. CurrentVec is the right hand side. 18619 // Update the mask accordingly. 18620 SV1 = CurrentVec; 18621 Mask.push_back(Idx + NumElts); 18622 } 18623 18624 // Check if all indices in Mask are Undef. In case, propagate Undef. 18625 bool isUndefMask = true; 18626 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 18627 isUndefMask &= Mask[i] < 0; 18628 18629 if (isUndefMask) 18630 return DAG.getUNDEF(VT); 18631 18632 if (!SV0.getNode()) 18633 SV0 = DAG.getUNDEF(VT); 18634 if (!SV1.getNode()) 18635 SV1 = DAG.getUNDEF(VT); 18636 18637 // Avoid introducing shuffles with illegal mask. 18638 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 18639 ShuffleVectorSDNode::commuteMask(Mask); 18640 18641 if (!TLI.isShuffleMaskLegal(Mask, VT)) 18642 return SDValue(); 18643 18644 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 18645 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 18646 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 18647 std::swap(SV0, SV1); 18648 } 18649 18650 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 18651 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 18652 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 18653 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask); 18654 } 18655 18656 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 18657 return V; 18658 18659 return SDValue(); 18660 } 18661 18662 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 18663 SDValue InVal = N->getOperand(0); 18664 EVT VT = N->getValueType(0); 18665 18666 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 18667 // with a VECTOR_SHUFFLE and possible truncate. 18668 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 18669 SDValue InVec = InVal->getOperand(0); 18670 SDValue EltNo = InVal->getOperand(1); 18671 auto InVecT = InVec.getValueType(); 18672 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 18673 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 18674 int Elt = C0->getZExtValue(); 18675 NewMask[0] = Elt; 18676 SDValue Val; 18677 // If we have an implict truncate do truncate here as long as it's legal. 18678 // if it's not legal, this should 18679 if (VT.getScalarType() != InVal.getValueType() && 18680 InVal.getValueType().isScalarInteger() && 18681 isTypeLegal(VT.getScalarType())) { 18682 Val = 18683 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 18684 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 18685 } 18686 if (VT.getScalarType() == InVecT.getScalarType() && 18687 VT.getVectorNumElements() <= InVecT.getVectorNumElements() && 18688 TLI.isShuffleMaskLegal(NewMask, VT)) { 18689 Val = DAG.getVectorShuffle(InVecT, SDLoc(N), InVec, 18690 DAG.getUNDEF(InVecT), NewMask); 18691 // If the initial vector is the correct size this shuffle is a 18692 // valid result. 18693 if (VT == InVecT) 18694 return Val; 18695 // If not we must truncate the vector. 18696 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 18697 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 18698 SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy); 18699 EVT SubVT = 18700 EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(), 18701 VT.getVectorNumElements()); 18702 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, Val, 18703 ZeroIdx); 18704 return Val; 18705 } 18706 } 18707 } 18708 } 18709 18710 return SDValue(); 18711 } 18712 18713 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 18714 EVT VT = N->getValueType(0); 18715 SDValue N0 = N->getOperand(0); 18716 SDValue N1 = N->getOperand(1); 18717 SDValue N2 = N->getOperand(2); 18718 18719 // If inserting an UNDEF, just return the original vector. 18720 if (N1.isUndef()) 18721 return N0; 18722 18723 // If this is an insert of an extracted vector into an undef vector, we can 18724 // just use the input to the extract. 18725 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 18726 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 18727 return N1.getOperand(0); 18728 18729 // If we are inserting a bitcast value into an undef, with the same 18730 // number of elements, just use the bitcast input of the extract. 18731 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 18732 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 18733 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 18734 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 18735 N1.getOperand(0).getOperand(1) == N2 && 18736 N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() == 18737 VT.getVectorNumElements() && 18738 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 18739 VT.getSizeInBits()) { 18740 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 18741 } 18742 18743 // If both N1 and N2 are bitcast values on which insert_subvector 18744 // would makes sense, pull the bitcast through. 18745 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 18746 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 18747 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 18748 SDValue CN0 = N0.getOperand(0); 18749 SDValue CN1 = N1.getOperand(0); 18750 EVT CN0VT = CN0.getValueType(); 18751 EVT CN1VT = CN1.getValueType(); 18752 if (CN0VT.isVector() && CN1VT.isVector() && 18753 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 18754 CN0VT.getVectorNumElements() == VT.getVectorNumElements()) { 18755 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 18756 CN0.getValueType(), CN0, CN1, N2); 18757 return DAG.getBitcast(VT, NewINSERT); 18758 } 18759 } 18760 18761 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 18762 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 18763 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 18764 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 18765 N0.getOperand(1).getValueType() == N1.getValueType() && 18766 N0.getOperand(2) == N2) 18767 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 18768 N1, N2); 18769 18770 // Eliminate an intermediate insert into an undef vector: 18771 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 18772 // insert_subvector undef, X, N2 18773 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 18774 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 18775 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 18776 N1.getOperand(1), N2); 18777 18778 if (!isa<ConstantSDNode>(N2)) 18779 return SDValue(); 18780 18781 unsigned InsIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 18782 18783 // Push subvector bitcasts to the output, adjusting the index as we go. 18784 // insert_subvector(bitcast(v), bitcast(s), c1) 18785 // -> bitcast(insert_subvector(v, s, c2)) 18786 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 18787 N1.getOpcode() == ISD::BITCAST) { 18788 SDValue N0Src = peekThroughBitcasts(N0); 18789 SDValue N1Src = peekThroughBitcasts(N1); 18790 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 18791 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 18792 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 18793 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 18794 EVT NewVT; 18795 SDLoc DL(N); 18796 SDValue NewIdx; 18797 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 18798 LLVMContext &Ctx = *DAG.getContext(); 18799 unsigned NumElts = VT.getVectorNumElements(); 18800 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 18801 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 18802 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 18803 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 18804 NewIdx = DAG.getConstant(InsIdx * Scale, DL, IdxVT); 18805 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 18806 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 18807 if ((NumElts % Scale) == 0 && (InsIdx % Scale) == 0) { 18808 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts / Scale); 18809 NewIdx = DAG.getConstant(InsIdx / Scale, DL, IdxVT); 18810 } 18811 } 18812 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 18813 SDValue Res = DAG.getBitcast(NewVT, N0Src); 18814 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 18815 return DAG.getBitcast(VT, Res); 18816 } 18817 } 18818 } 18819 18820 // Canonicalize insert_subvector dag nodes. 18821 // Example: 18822 // (insert_subvector (insert_subvector A, Idx0), Idx1) 18823 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 18824 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 18825 N1.getValueType() == N0.getOperand(1).getValueType() && 18826 isa<ConstantSDNode>(N0.getOperand(2))) { 18827 unsigned OtherIdx = N0.getConstantOperandVal(2); 18828 if (InsIdx < OtherIdx) { 18829 // Swap nodes. 18830 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 18831 N0.getOperand(0), N1, N2); 18832 AddToWorklist(NewOp.getNode()); 18833 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 18834 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 18835 } 18836 } 18837 18838 // If the input vector is a concatenation, and the insert replaces 18839 // one of the pieces, we can optimize into a single concat_vectors. 18840 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 18841 N0.getOperand(0).getValueType() == N1.getValueType()) { 18842 unsigned Factor = N1.getValueType().getVectorNumElements(); 18843 18844 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 18845 Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1; 18846 18847 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 18848 } 18849 18850 // Simplify source operands based on insertion. 18851 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 18852 return SDValue(N, 0); 18853 18854 return SDValue(); 18855 } 18856 18857 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 18858 SDValue N0 = N->getOperand(0); 18859 18860 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 18861 if (N0->getOpcode() == ISD::FP16_TO_FP) 18862 return N0->getOperand(0); 18863 18864 return SDValue(); 18865 } 18866 18867 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 18868 SDValue N0 = N->getOperand(0); 18869 18870 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 18871 if (N0->getOpcode() == ISD::AND) { 18872 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 18873 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 18874 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 18875 N0.getOperand(0)); 18876 } 18877 } 18878 18879 return SDValue(); 18880 } 18881 18882 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 18883 SDValue N0 = N->getOperand(0); 18884 EVT VT = N0.getValueType(); 18885 unsigned Opcode = N->getOpcode(); 18886 18887 // VECREDUCE over 1-element vector is just an extract. 18888 if (VT.getVectorNumElements() == 1) { 18889 SDLoc dl(N); 18890 SDValue Res = DAG.getNode( 18891 ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 18892 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 18893 if (Res.getValueType() != N->getValueType(0)) 18894 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 18895 return Res; 18896 } 18897 18898 // On an boolean vector an and/or reduction is the same as a umin/umax 18899 // reduction. Convert them if the latter is legal while the former isn't. 18900 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 18901 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 18902 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 18903 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 18904 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 18905 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 18906 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 18907 } 18908 18909 return SDValue(); 18910 } 18911 18912 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 18913 /// with the destination vector and a zero vector. 18914 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 18915 /// vector_shuffle V, Zero, <0, 4, 2, 4> 18916 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 18917 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 18918 18919 EVT VT = N->getValueType(0); 18920 SDValue LHS = N->getOperand(0); 18921 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 18922 SDLoc DL(N); 18923 18924 // Make sure we're not running after operation legalization where it 18925 // may have custom lowered the vector shuffles. 18926 if (LegalOperations) 18927 return SDValue(); 18928 18929 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 18930 return SDValue(); 18931 18932 EVT RVT = RHS.getValueType(); 18933 unsigned NumElts = RHS.getNumOperands(); 18934 18935 // Attempt to create a valid clear mask, splitting the mask into 18936 // sub elements and checking to see if each is 18937 // all zeros or all ones - suitable for shuffle masking. 18938 auto BuildClearMask = [&](int Split) { 18939 int NumSubElts = NumElts * Split; 18940 int NumSubBits = RVT.getScalarSizeInBits() / Split; 18941 18942 SmallVector<int, 8> Indices; 18943 for (int i = 0; i != NumSubElts; ++i) { 18944 int EltIdx = i / Split; 18945 int SubIdx = i % Split; 18946 SDValue Elt = RHS.getOperand(EltIdx); 18947 if (Elt.isUndef()) { 18948 Indices.push_back(-1); 18949 continue; 18950 } 18951 18952 APInt Bits; 18953 if (isa<ConstantSDNode>(Elt)) 18954 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 18955 else if (isa<ConstantFPSDNode>(Elt)) 18956 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 18957 else 18958 return SDValue(); 18959 18960 // Extract the sub element from the constant bit mask. 18961 if (DAG.getDataLayout().isBigEndian()) { 18962 Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits); 18963 } else { 18964 Bits.lshrInPlace(SubIdx * NumSubBits); 18965 } 18966 18967 if (Split > 1) 18968 Bits = Bits.trunc(NumSubBits); 18969 18970 if (Bits.isAllOnesValue()) 18971 Indices.push_back(i); 18972 else if (Bits == 0) 18973 Indices.push_back(i + NumSubElts); 18974 else 18975 return SDValue(); 18976 } 18977 18978 // Let's see if the target supports this vector_shuffle. 18979 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 18980 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 18981 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 18982 return SDValue(); 18983 18984 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 18985 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 18986 DAG.getBitcast(ClearVT, LHS), 18987 Zero, Indices)); 18988 }; 18989 18990 // Determine maximum split level (byte level masking). 18991 int MaxSplit = 1; 18992 if (RVT.getScalarSizeInBits() % 8 == 0) 18993 MaxSplit = RVT.getScalarSizeInBits() / 8; 18994 18995 for (int Split = 1; Split <= MaxSplit; ++Split) 18996 if (RVT.getScalarSizeInBits() % Split == 0) 18997 if (SDValue S = BuildClearMask(Split)) 18998 return S; 18999 19000 return SDValue(); 19001 } 19002 19003 /// If a vector binop is performed on splat values, it may be profitable to 19004 /// extract, scalarize, and insert/splat. 19005 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { 19006 SDValue N0 = N->getOperand(0); 19007 SDValue N1 = N->getOperand(1); 19008 unsigned Opcode = N->getOpcode(); 19009 EVT VT = N->getValueType(0); 19010 EVT EltVT = VT.getVectorElementType(); 19011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19012 19013 // TODO: Remove/replace the extract cost check? If the elements are available 19014 // as scalars, then there may be no extract cost. Should we ask if 19015 // inserting a scalar back into a vector is cheap instead? 19016 int Index0, Index1; 19017 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 19018 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 19019 if (!Src0 || !Src1 || Index0 != Index1 || 19020 Src0.getValueType().getVectorElementType() != EltVT || 19021 Src1.getValueType().getVectorElementType() != EltVT || 19022 !TLI.isExtractVecEltCheap(VT, Index0) || 19023 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 19024 return SDValue(); 19025 19026 SDLoc DL(N); 19027 SDValue IndexC = 19028 DAG.getConstant(Index0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())); 19029 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N0, IndexC); 19030 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N1, IndexC); 19031 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 19032 19033 // If all lanes but 1 are undefined, no need to splat the scalar result. 19034 // TODO: Keep track of undefs and use that info in the general case. 19035 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 19036 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 19037 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 19038 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 19039 // build_vec ..undef, (bo X, Y), undef... 19040 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 19041 Ops[Index0] = ScalarBO; 19042 return DAG.getBuildVector(VT, DL, Ops); 19043 } 19044 19045 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 19046 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 19047 return DAG.getBuildVector(VT, DL, Ops); 19048 } 19049 19050 /// Visit a binary vector operation, like ADD. 19051 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 19052 assert(N->getValueType(0).isVector() && 19053 "SimplifyVBinOp only works on vectors!"); 19054 19055 SDValue LHS = N->getOperand(0); 19056 SDValue RHS = N->getOperand(1); 19057 SDValue Ops[] = {LHS, RHS}; 19058 EVT VT = N->getValueType(0); 19059 unsigned Opcode = N->getOpcode(); 19060 19061 // See if we can constant fold the vector operation. 19062 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 19063 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 19064 return Fold; 19065 19066 // Move unary shuffles with identical masks after a vector binop: 19067 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 19068 // --> shuffle (VBinOp A, B), Undef, Mask 19069 // This does not require type legality checks because we are creating the 19070 // same types of operations that are in the original sequence. We do have to 19071 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 19072 // though. This code is adapted from the identical transform in instcombine. 19073 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 19074 Opcode != ISD::UREM && Opcode != ISD::SREM && 19075 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 19076 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 19077 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 19078 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 19079 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 19080 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 19081 SDLoc DL(N); 19082 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 19083 RHS.getOperand(0), N->getFlags()); 19084 SDValue UndefV = LHS.getOperand(1); 19085 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 19086 } 19087 } 19088 19089 // The following pattern is likely to emerge with vector reduction ops. Moving 19090 // the binary operation ahead of insertion may allow using a narrower vector 19091 // instruction that has better performance than the wide version of the op: 19092 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 19093 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 19094 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 19095 LHS.getOperand(2) == RHS.getOperand(2) && 19096 (LHS.hasOneUse() || RHS.hasOneUse())) { 19097 SDValue X = LHS.getOperand(1); 19098 SDValue Y = RHS.getOperand(1); 19099 SDValue Z = LHS.getOperand(2); 19100 EVT NarrowVT = X.getValueType(); 19101 if (NarrowVT == Y.getValueType() && 19102 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 19103 // (binop undef, undef) may not return undef, so compute that result. 19104 SDLoc DL(N); 19105 SDValue VecC = 19106 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 19107 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 19108 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 19109 } 19110 } 19111 19112 if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) 19113 return V; 19114 19115 return SDValue(); 19116 } 19117 19118 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 19119 SDValue N2) { 19120 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 19121 19122 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 19123 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 19124 19125 // If we got a simplified select_cc node back from SimplifySelectCC, then 19126 // break it down into a new SETCC node, and a new SELECT node, and then return 19127 // the SELECT node, since we were called with a SELECT node. 19128 if (SCC.getNode()) { 19129 // Check to see if we got a select_cc back (to turn into setcc/select). 19130 // Otherwise, just return whatever node we got back, like fabs. 19131 if (SCC.getOpcode() == ISD::SELECT_CC) { 19132 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 19133 N0.getValueType(), 19134 SCC.getOperand(0), SCC.getOperand(1), 19135 SCC.getOperand(4)); 19136 AddToWorklist(SETCC.getNode()); 19137 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 19138 SCC.getOperand(2), SCC.getOperand(3)); 19139 } 19140 19141 return SCC; 19142 } 19143 return SDValue(); 19144 } 19145 19146 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 19147 /// being selected between, see if we can simplify the select. Callers of this 19148 /// should assume that TheSelect is deleted if this returns true. As such, they 19149 /// should return the appropriate thing (e.g. the node) back to the top-level of 19150 /// the DAG combiner loop to avoid it being looked at. 19151 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 19152 SDValue RHS) { 19153 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 19154 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 19155 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 19156 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 19157 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 19158 SDValue Sqrt = RHS; 19159 ISD::CondCode CC; 19160 SDValue CmpLHS; 19161 const ConstantFPSDNode *Zero = nullptr; 19162 19163 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 19164 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 19165 CmpLHS = TheSelect->getOperand(0); 19166 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 19167 } else { 19168 // SELECT or VSELECT 19169 SDValue Cmp = TheSelect->getOperand(0); 19170 if (Cmp.getOpcode() == ISD::SETCC) { 19171 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 19172 CmpLHS = Cmp.getOperand(0); 19173 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 19174 } 19175 } 19176 if (Zero && Zero->isZero() && 19177 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 19178 CC == ISD::SETULT || CC == ISD::SETLT)) { 19179 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 19180 CombineTo(TheSelect, Sqrt); 19181 return true; 19182 } 19183 } 19184 } 19185 // Cannot simplify select with vector condition 19186 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 19187 19188 // If this is a select from two identical things, try to pull the operation 19189 // through the select. 19190 if (LHS.getOpcode() != RHS.getOpcode() || 19191 !LHS.hasOneUse() || !RHS.hasOneUse()) 19192 return false; 19193 19194 // If this is a load and the token chain is identical, replace the select 19195 // of two loads with a load through a select of the address to load from. 19196 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 19197 // constants have been dropped into the constant pool. 19198 if (LHS.getOpcode() == ISD::LOAD) { 19199 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 19200 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 19201 19202 // Token chains must be identical. 19203 if (LHS.getOperand(0) != RHS.getOperand(0) || 19204 // Do not let this transformation reduce the number of volatile loads. 19205 LLD->isVolatile() || RLD->isVolatile() || 19206 // FIXME: If either is a pre/post inc/dec load, 19207 // we'd need to split out the address adjustment. 19208 LLD->isIndexed() || RLD->isIndexed() || 19209 // If this is an EXTLOAD, the VT's must match. 19210 LLD->getMemoryVT() != RLD->getMemoryVT() || 19211 // If this is an EXTLOAD, the kind of extension must match. 19212 (LLD->getExtensionType() != RLD->getExtensionType() && 19213 // The only exception is if one of the extensions is anyext. 19214 LLD->getExtensionType() != ISD::EXTLOAD && 19215 RLD->getExtensionType() != ISD::EXTLOAD) || 19216 // FIXME: this discards src value information. This is 19217 // over-conservative. It would be beneficial to be able to remember 19218 // both potential memory locations. Since we are discarding 19219 // src value info, don't do the transformation if the memory 19220 // locations are not in the default address space. 19221 LLD->getPointerInfo().getAddrSpace() != 0 || 19222 RLD->getPointerInfo().getAddrSpace() != 0 || 19223 // We can't produce a CMOV of a TargetFrameIndex since we won't 19224 // generate the address generation required. 19225 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 19226 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 19227 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 19228 LLD->getBasePtr().getValueType())) 19229 return false; 19230 19231 // The loads must not depend on one another. 19232 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 19233 return false; 19234 19235 // Check that the select condition doesn't reach either load. If so, 19236 // folding this will induce a cycle into the DAG. If not, this is safe to 19237 // xform, so create a select of the addresses. 19238 19239 SmallPtrSet<const SDNode *, 32> Visited; 19240 SmallVector<const SDNode *, 16> Worklist; 19241 19242 // Always fail if LLD and RLD are not independent. TheSelect is a 19243 // predecessor to all Nodes in question so we need not search past it. 19244 19245 Visited.insert(TheSelect); 19246 Worklist.push_back(LLD); 19247 Worklist.push_back(RLD); 19248 19249 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 19250 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 19251 return false; 19252 19253 SDValue Addr; 19254 if (TheSelect->getOpcode() == ISD::SELECT) { 19255 // We cannot do this optimization if any pair of {RLD, LLD} is a 19256 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 19257 // Loads, we only need to check if CondNode is a successor to one of the 19258 // loads. We can further avoid this if there's no use of their chain 19259 // value. 19260 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 19261 Worklist.push_back(CondNode); 19262 19263 if ((LLD->hasAnyUseOfValue(1) && 19264 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 19265 (RLD->hasAnyUseOfValue(1) && 19266 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 19267 return false; 19268 19269 Addr = DAG.getSelect(SDLoc(TheSelect), 19270 LLD->getBasePtr().getValueType(), 19271 TheSelect->getOperand(0), LLD->getBasePtr(), 19272 RLD->getBasePtr()); 19273 } else { // Otherwise SELECT_CC 19274 // We cannot do this optimization if any pair of {RLD, LLD} is a 19275 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 19276 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 19277 // one of the loads. We can further avoid this if there's no use of their 19278 // chain value. 19279 19280 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 19281 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 19282 Worklist.push_back(CondLHS); 19283 Worklist.push_back(CondRHS); 19284 19285 if ((LLD->hasAnyUseOfValue(1) && 19286 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 19287 (RLD->hasAnyUseOfValue(1) && 19288 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 19289 return false; 19290 19291 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 19292 LLD->getBasePtr().getValueType(), 19293 TheSelect->getOperand(0), 19294 TheSelect->getOperand(1), 19295 LLD->getBasePtr(), RLD->getBasePtr(), 19296 TheSelect->getOperand(4)); 19297 } 19298 19299 SDValue Load; 19300 // It is safe to replace the two loads if they have different alignments, 19301 // but the new load must be the minimum (most restrictive) alignment of the 19302 // inputs. 19303 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 19304 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 19305 if (!RLD->isInvariant()) 19306 MMOFlags &= ~MachineMemOperand::MOInvariant; 19307 if (!RLD->isDereferenceable()) 19308 MMOFlags &= ~MachineMemOperand::MODereferenceable; 19309 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 19310 // FIXME: Discards pointer and AA info. 19311 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 19312 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 19313 MMOFlags); 19314 } else { 19315 // FIXME: Discards pointer and AA info. 19316 Load = DAG.getExtLoad( 19317 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 19318 : LLD->getExtensionType(), 19319 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 19320 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 19321 } 19322 19323 // Users of the select now use the result of the load. 19324 CombineTo(TheSelect, Load); 19325 19326 // Users of the old loads now use the new load's chain. We know the 19327 // old-load value is dead now. 19328 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 19329 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 19330 return true; 19331 } 19332 19333 return false; 19334 } 19335 19336 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 19337 /// bitwise 'and'. 19338 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 19339 SDValue N1, SDValue N2, SDValue N3, 19340 ISD::CondCode CC) { 19341 // If this is a select where the false operand is zero and the compare is a 19342 // check of the sign bit, see if we can perform the "gzip trick": 19343 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 19344 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 19345 EVT XType = N0.getValueType(); 19346 EVT AType = N2.getValueType(); 19347 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 19348 return SDValue(); 19349 19350 // If the comparison is testing for a positive value, we have to invert 19351 // the sign bit mask, so only do that transform if the target has a bitwise 19352 // 'and not' instruction (the invert is free). 19353 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 19354 // (X > -1) ? A : 0 19355 // (X > 0) ? X : 0 <-- This is canonical signed max. 19356 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 19357 return SDValue(); 19358 } else if (CC == ISD::SETLT) { 19359 // (X < 0) ? A : 0 19360 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 19361 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 19362 return SDValue(); 19363 } else { 19364 return SDValue(); 19365 } 19366 19367 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 19368 // constant. 19369 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 19370 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 19371 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 19372 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 19373 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 19374 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 19375 AddToWorklist(Shift.getNode()); 19376 19377 if (XType.bitsGT(AType)) { 19378 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 19379 AddToWorklist(Shift.getNode()); 19380 } 19381 19382 if (CC == ISD::SETGT) 19383 Shift = DAG.getNOT(DL, Shift, AType); 19384 19385 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 19386 } 19387 19388 SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy); 19389 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 19390 AddToWorklist(Shift.getNode()); 19391 19392 if (XType.bitsGT(AType)) { 19393 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 19394 AddToWorklist(Shift.getNode()); 19395 } 19396 19397 if (CC == ISD::SETGT) 19398 Shift = DAG.getNOT(DL, Shift, AType); 19399 19400 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 19401 } 19402 19403 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 19404 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 19405 /// in it. This may be a win when the constant is not otherwise available 19406 /// because it replaces two constant pool loads with one. 19407 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 19408 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 19409 ISD::CondCode CC) { 19410 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType().isFloatingPoint())) 19411 return SDValue(); 19412 19413 // If we are before legalize types, we want the other legalization to happen 19414 // first (for example, to avoid messing with soft float). 19415 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 19416 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 19417 EVT VT = N2.getValueType(); 19418 if (!TV || !FV || !TLI.isTypeLegal(VT)) 19419 return SDValue(); 19420 19421 // If a constant can be materialized without loads, this does not make sense. 19422 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 19423 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 19424 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 19425 return SDValue(); 19426 19427 // If both constants have multiple uses, then we won't need to do an extra 19428 // load. The values are likely around in registers for other users. 19429 if (!TV->hasOneUse() && !FV->hasOneUse()) 19430 return SDValue(); 19431 19432 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 19433 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 19434 Type *FPTy = Elts[0]->getType(); 19435 const DataLayout &TD = DAG.getDataLayout(); 19436 19437 // Create a ConstantArray of the two constants. 19438 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 19439 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 19440 TD.getPrefTypeAlignment(FPTy)); 19441 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 19442 19443 // Get offsets to the 0 and 1 elements of the array, so we can select between 19444 // them. 19445 SDValue Zero = DAG.getIntPtrConstant(0, DL); 19446 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 19447 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 19448 SDValue Cond = 19449 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 19450 AddToWorklist(Cond.getNode()); 19451 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 19452 AddToWorklist(CstOffset.getNode()); 19453 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 19454 AddToWorklist(CPIdx.getNode()); 19455 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 19456 MachinePointerInfo::getConstantPool( 19457 DAG.getMachineFunction()), Alignment); 19458 } 19459 19460 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 19461 /// where 'cond' is the comparison specified by CC. 19462 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 19463 SDValue N2, SDValue N3, ISD::CondCode CC, 19464 bool NotExtCompare) { 19465 // (x ? y : y) -> y. 19466 if (N2 == N3) return N2; 19467 19468 EVT CmpOpVT = N0.getValueType(); 19469 EVT CmpResVT = getSetCCResultType(CmpOpVT); 19470 EVT VT = N2.getValueType(); 19471 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 19472 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 19473 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 19474 19475 // Determine if the condition we're dealing with is constant. 19476 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 19477 AddToWorklist(SCC.getNode()); 19478 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 19479 // fold select_cc true, x, y -> x 19480 // fold select_cc false, x, y -> y 19481 return !(SCCC->isNullValue()) ? N2 : N3; 19482 } 19483 } 19484 19485 if (SDValue V = 19486 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 19487 return V; 19488 19489 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 19490 return V; 19491 19492 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 19493 // where y is has a single bit set. 19494 // A plaintext description would be, we can turn the SELECT_CC into an AND 19495 // when the condition can be materialized as an all-ones register. Any 19496 // single bit-test can be materialized as an all-ones register with 19497 // shift-left and shift-right-arith. 19498 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 19499 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 19500 SDValue AndLHS = N0->getOperand(0); 19501 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 19502 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 19503 // Shift the tested bit over the sign bit. 19504 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 19505 SDValue ShlAmt = 19506 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 19507 getShiftAmountTy(AndLHS.getValueType())); 19508 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 19509 19510 // Now arithmetic right shift it all the way over, so the result is either 19511 // all-ones, or zero. 19512 SDValue ShrAmt = 19513 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 19514 getShiftAmountTy(Shl.getValueType())); 19515 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 19516 19517 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 19518 } 19519 } 19520 19521 // fold select C, 16, 0 -> shl C, 4 19522 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 19523 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 19524 19525 if ((Fold || Swap) && 19526 TLI.getBooleanContents(CmpOpVT) == 19527 TargetLowering::ZeroOrOneBooleanContent && 19528 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 19529 19530 if (Swap) { 19531 CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger()); 19532 std::swap(N2C, N3C); 19533 } 19534 19535 // If the caller doesn't want us to simplify this into a zext of a compare, 19536 // don't do it. 19537 if (NotExtCompare && N2C->isOne()) 19538 return SDValue(); 19539 19540 SDValue Temp, SCC; 19541 // zext (setcc n0, n1) 19542 if (LegalTypes) { 19543 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 19544 if (VT.bitsLT(SCC.getValueType())) 19545 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 19546 else 19547 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 19548 } else { 19549 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 19550 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 19551 } 19552 19553 AddToWorklist(SCC.getNode()); 19554 AddToWorklist(Temp.getNode()); 19555 19556 if (N2C->isOne()) 19557 return Temp; 19558 19559 // shl setcc result by log2 n2c 19560 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 19561 DAG.getConstant(N2C->getAPIntValue().logBase2(), 19562 SDLoc(Temp), 19563 getShiftAmountTy(Temp.getValueType()))); 19564 } 19565 19566 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 19567 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 19568 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 19569 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 19570 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 19571 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 19572 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 19573 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 19574 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 19575 SDValue ValueOnZero = N2; 19576 SDValue Count = N3; 19577 // If the condition is NE instead of E, swap the operands. 19578 if (CC == ISD::SETNE) 19579 std::swap(ValueOnZero, Count); 19580 // Check if the value on zero is a constant equal to the bits in the type. 19581 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 19582 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 19583 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 19584 // legal, combine to just cttz. 19585 if ((Count.getOpcode() == ISD::CTTZ || 19586 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 19587 N0 == Count.getOperand(0) && 19588 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 19589 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 19590 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 19591 // legal, combine to just ctlz. 19592 if ((Count.getOpcode() == ISD::CTLZ || 19593 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 19594 N0 == Count.getOperand(0) && 19595 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 19596 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 19597 } 19598 } 19599 } 19600 19601 return SDValue(); 19602 } 19603 19604 /// This is a stub for TargetLowering::SimplifySetCC. 19605 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 19606 ISD::CondCode Cond, const SDLoc &DL, 19607 bool foldBooleans) { 19608 TargetLowering::DAGCombinerInfo 19609 DagCombineInfo(DAG, Level, false, this); 19610 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 19611 } 19612 19613 /// Given an ISD::SDIV node expressing a divide by constant, return 19614 /// a DAG expression to select that will generate the same value by multiplying 19615 /// by a magic number. 19616 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 19617 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 19618 // when optimising for minimum size, we don't want to expand a div to a mul 19619 // and a shift. 19620 if (DAG.getMachineFunction().getFunction().hasMinSize()) 19621 return SDValue(); 19622 19623 SmallVector<SDNode *, 8> Built; 19624 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 19625 for (SDNode *N : Built) 19626 AddToWorklist(N); 19627 return S; 19628 } 19629 19630 return SDValue(); 19631 } 19632 19633 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 19634 /// DAG expression that will generate the same value by right shifting. 19635 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 19636 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 19637 if (!C) 19638 return SDValue(); 19639 19640 // Avoid division by zero. 19641 if (C->isNullValue()) 19642 return SDValue(); 19643 19644 SmallVector<SDNode *, 8> Built; 19645 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 19646 for (SDNode *N : Built) 19647 AddToWorklist(N); 19648 return S; 19649 } 19650 19651 return SDValue(); 19652 } 19653 19654 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 19655 /// expression that will generate the same value by multiplying by a magic 19656 /// number. 19657 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 19658 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 19659 // when optimising for minimum size, we don't want to expand a div to a mul 19660 // and a shift. 19661 if (DAG.getMachineFunction().getFunction().hasMinSize()) 19662 return SDValue(); 19663 19664 SmallVector<SDNode *, 8> Built; 19665 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 19666 for (SDNode *N : Built) 19667 AddToWorklist(N); 19668 return S; 19669 } 19670 19671 return SDValue(); 19672 } 19673 19674 /// Determines the LogBase2 value for a non-null input value using the 19675 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 19676 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 19677 EVT VT = V.getValueType(); 19678 unsigned EltBits = VT.getScalarSizeInBits(); 19679 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 19680 SDValue Base = DAG.getConstant(EltBits - 1, DL, VT); 19681 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 19682 return LogBase2; 19683 } 19684 19685 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 19686 /// For the reciprocal, we need to find the zero of the function: 19687 /// F(X) = A X - 1 [which has a zero at X = 1/A] 19688 /// => 19689 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 19690 /// does not require additional intermediate precision] 19691 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags) { 19692 if (Level >= AfterLegalizeDAG) 19693 return SDValue(); 19694 19695 // TODO: Handle half and/or extended types? 19696 EVT VT = Op.getValueType(); 19697 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 19698 return SDValue(); 19699 19700 // If estimates are explicitly disabled for this function, we're done. 19701 MachineFunction &MF = DAG.getMachineFunction(); 19702 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 19703 if (Enabled == TLI.ReciprocalEstimate::Disabled) 19704 return SDValue(); 19705 19706 // Estimates may be explicitly enabled for this type with a custom number of 19707 // refinement steps. 19708 int Iterations = TLI.getDivRefinementSteps(VT, MF); 19709 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 19710 AddToWorklist(Est.getNode()); 19711 19712 if (Iterations) { 19713 SDLoc DL(Op); 19714 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 19715 19716 // Newton iterations: Est = Est + Est (1 - Arg * Est) 19717 for (int i = 0; i < Iterations; ++i) { 19718 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 19719 AddToWorklist(NewEst.getNode()); 19720 19721 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 19722 AddToWorklist(NewEst.getNode()); 19723 19724 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 19725 AddToWorklist(NewEst.getNode()); 19726 19727 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 19728 AddToWorklist(Est.getNode()); 19729 } 19730 } 19731 return Est; 19732 } 19733 19734 return SDValue(); 19735 } 19736 19737 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 19738 /// For the reciprocal sqrt, we need to find the zero of the function: 19739 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 19740 /// => 19741 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 19742 /// As a result, we precompute A/2 prior to the iteration loop. 19743 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 19744 unsigned Iterations, 19745 SDNodeFlags Flags, bool Reciprocal) { 19746 EVT VT = Arg.getValueType(); 19747 SDLoc DL(Arg); 19748 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 19749 19750 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 19751 // this entire sequence requires only one FP constant. 19752 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 19753 AddToWorklist(HalfArg.getNode()); 19754 19755 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 19756 AddToWorklist(HalfArg.getNode()); 19757 19758 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 19759 for (unsigned i = 0; i < Iterations; ++i) { 19760 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 19761 AddToWorklist(NewEst.getNode()); 19762 19763 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 19764 AddToWorklist(NewEst.getNode()); 19765 19766 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 19767 AddToWorklist(NewEst.getNode()); 19768 19769 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 19770 AddToWorklist(Est.getNode()); 19771 } 19772 19773 // If non-reciprocal square root is requested, multiply the result by Arg. 19774 if (!Reciprocal) { 19775 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 19776 AddToWorklist(Est.getNode()); 19777 } 19778 19779 return Est; 19780 } 19781 19782 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 19783 /// For the reciprocal sqrt, we need to find the zero of the function: 19784 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 19785 /// => 19786 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 19787 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 19788 unsigned Iterations, 19789 SDNodeFlags Flags, bool Reciprocal) { 19790 EVT VT = Arg.getValueType(); 19791 SDLoc DL(Arg); 19792 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 19793 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 19794 19795 // This routine must enter the loop below to work correctly 19796 // when (Reciprocal == false). 19797 assert(Iterations > 0); 19798 19799 // Newton iterations for reciprocal square root: 19800 // E = (E * -0.5) * ((A * E) * E + -3.0) 19801 for (unsigned i = 0; i < Iterations; ++i) { 19802 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 19803 AddToWorklist(AE.getNode()); 19804 19805 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 19806 AddToWorklist(AEE.getNode()); 19807 19808 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 19809 AddToWorklist(RHS.getNode()); 19810 19811 // When calculating a square root at the last iteration build: 19812 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 19813 // (notice a common subexpression) 19814 SDValue LHS; 19815 if (Reciprocal || (i + 1) < Iterations) { 19816 // RSQRT: LHS = (E * -0.5) 19817 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 19818 } else { 19819 // SQRT: LHS = (A * E) * -0.5 19820 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 19821 } 19822 AddToWorklist(LHS.getNode()); 19823 19824 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 19825 AddToWorklist(Est.getNode()); 19826 } 19827 19828 return Est; 19829 } 19830 19831 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 19832 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 19833 /// Op can be zero. 19834 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 19835 bool Reciprocal) { 19836 if (Level >= AfterLegalizeDAG) 19837 return SDValue(); 19838 19839 // TODO: Handle half and/or extended types? 19840 EVT VT = Op.getValueType(); 19841 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 19842 return SDValue(); 19843 19844 // If estimates are explicitly disabled for this function, we're done. 19845 MachineFunction &MF = DAG.getMachineFunction(); 19846 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 19847 if (Enabled == TLI.ReciprocalEstimate::Disabled) 19848 return SDValue(); 19849 19850 // Estimates may be explicitly enabled for this type with a custom number of 19851 // refinement steps. 19852 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 19853 19854 bool UseOneConstNR = false; 19855 if (SDValue Est = 19856 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 19857 Reciprocal)) { 19858 AddToWorklist(Est.getNode()); 19859 19860 if (Iterations) { 19861 Est = UseOneConstNR 19862 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 19863 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 19864 19865 if (!Reciprocal) { 19866 // The estimate is now completely wrong if the input was exactly 0.0 or 19867 // possibly a denormal. Force the answer to 0.0 for those cases. 19868 SDLoc DL(Op); 19869 EVT CCVT = getSetCCResultType(VT); 19870 ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT; 19871 const Function &F = DAG.getMachineFunction().getFunction(); 19872 Attribute Denorms = F.getFnAttribute("denormal-fp-math"); 19873 if (Denorms.getValueAsString().equals("ieee")) { 19874 // fabs(X) < SmallestNormal ? 0.0 : Est 19875 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 19876 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 19877 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 19878 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 19879 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 19880 SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 19881 Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est); 19882 AddToWorklist(Fabs.getNode()); 19883 AddToWorklist(IsDenorm.getNode()); 19884 AddToWorklist(Est.getNode()); 19885 } else { 19886 // X == 0.0 ? 0.0 : Est 19887 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 19888 SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 19889 Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est); 19890 AddToWorklist(IsZero.getNode()); 19891 AddToWorklist(Est.getNode()); 19892 } 19893 } 19894 } 19895 return Est; 19896 } 19897 19898 return SDValue(); 19899 } 19900 19901 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 19902 return buildSqrtEstimateImpl(Op, Flags, true); 19903 } 19904 19905 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 19906 return buildSqrtEstimateImpl(Op, Flags, false); 19907 } 19908 19909 /// Return true if there is any possibility that the two addresses overlap. 19910 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { 19911 19912 struct MemUseCharacteristics { 19913 bool IsVolatile; 19914 SDValue BasePtr; 19915 int64_t Offset; 19916 Optional<int64_t> NumBytes; 19917 MachineMemOperand *MMO; 19918 }; 19919 19920 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 19921 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 19922 int64_t Offset = 0; 19923 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 19924 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 19925 ? C->getSExtValue() 19926 : (LSN->getAddressingMode() == ISD::PRE_DEC) 19927 ? -1 * C->getSExtValue() 19928 : 0; 19929 return {LSN->isVolatile(), LSN->getBasePtr(), Offset /*base offset*/, 19930 Optional<int64_t>(LSN->getMemoryVT().getStoreSize()), 19931 LSN->getMemOperand()}; 19932 } 19933 if (const auto *LN = cast<LifetimeSDNode>(N)) 19934 return {false /*isVolatile*/, LN->getOperand(1), 19935 (LN->hasOffset()) ? LN->getOffset() : 0, 19936 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 19937 : Optional<int64_t>(), 19938 (MachineMemOperand *)nullptr}; 19939 // Default. 19940 return {false /*isvolatile*/, SDValue(), (int64_t)0 /*offset*/, 19941 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 19942 }; 19943 19944 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 19945 MUC1 = getCharacteristics(Op1); 19946 19947 // If they are to the same address, then they must be aliases. 19948 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 19949 MUC0.Offset == MUC1.Offset) 19950 return true; 19951 19952 // If they are both volatile then they cannot be reordered. 19953 if (MUC0.IsVolatile && MUC1.IsVolatile) 19954 return true; 19955 19956 if (MUC0.MMO && MUC1.MMO) { 19957 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 19958 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 19959 return false; 19960 } 19961 19962 // Try to prove that there is aliasing, or that there is no aliasing. Either 19963 // way, we can return now. If nothing can be proved, proceed with more tests. 19964 bool IsAlias; 19965 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 19966 DAG, IsAlias)) 19967 return IsAlias; 19968 19969 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 19970 // either are not known. 19971 if (!MUC0.MMO || !MUC1.MMO) 19972 return true; 19973 19974 // If one operation reads from invariant memory, and the other may store, they 19975 // cannot alias. These should really be checking the equivalent of mayWrite, 19976 // but it only matters for memory nodes other than load /store. 19977 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 19978 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 19979 return false; 19980 19981 // If we know required SrcValue1 and SrcValue2 have relatively large 19982 // alignment compared to the size and offset of the access, we may be able 19983 // to prove they do not alias. This check is conservative for now to catch 19984 // cases created by splitting vector types. 19985 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 19986 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 19987 unsigned OrigAlignment0 = MUC0.MMO->getBaseAlignment(); 19988 unsigned OrigAlignment1 = MUC1.MMO->getBaseAlignment(); 19989 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 19990 MUC0.NumBytes.hasValue() && MUC1.NumBytes.hasValue() && 19991 *MUC0.NumBytes == *MUC1.NumBytes && OrigAlignment0 > *MUC0.NumBytes) { 19992 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0; 19993 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1; 19994 19995 // There is no overlap between these relatively aligned accesses of 19996 // similar size. Return no alias. 19997 if ((OffAlign0 + *MUC0.NumBytes) <= OffAlign1 || 19998 (OffAlign1 + *MUC1.NumBytes) <= OffAlign0) 19999 return false; 20000 } 20001 20002 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 20003 ? CombinerGlobalAA 20004 : DAG.getSubtarget().useAA(); 20005 #ifndef NDEBUG 20006 if (CombinerAAOnlyFunc.getNumOccurrences() && 20007 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 20008 UseAA = false; 20009 #endif 20010 20011 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue()) { 20012 // Use alias analysis information. 20013 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 20014 int64_t Overlap0 = *MUC0.NumBytes + SrcValOffset0 - MinOffset; 20015 int64_t Overlap1 = *MUC1.NumBytes + SrcValOffset1 - MinOffset; 20016 AliasResult AAResult = AA->alias( 20017 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 20018 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 20019 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 20020 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())); 20021 if (AAResult == NoAlias) 20022 return false; 20023 } 20024 20025 // Otherwise we have to assume they alias. 20026 return true; 20027 } 20028 20029 /// Walk up chain skipping non-aliasing memory nodes, 20030 /// looking for aliasing nodes and adding them to the Aliases vector. 20031 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 20032 SmallVectorImpl<SDValue> &Aliases) { 20033 SmallVector<SDValue, 8> Chains; // List of chains to visit. 20034 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 20035 20036 // Get alias information for node. 20037 const bool IsLoad = isa<LoadSDNode>(N) && !cast<LoadSDNode>(N)->isVolatile(); 20038 20039 // Starting off. 20040 Chains.push_back(OriginalChain); 20041 unsigned Depth = 0; 20042 20043 // Attempt to improve chain by a single step 20044 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { 20045 switch (C.getOpcode()) { 20046 case ISD::EntryToken: 20047 // No need to mark EntryToken. 20048 C = SDValue(); 20049 return true; 20050 case ISD::LOAD: 20051 case ISD::STORE: { 20052 // Get alias information for C. 20053 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 20054 !cast<LSBaseSDNode>(C.getNode())->isVolatile(); 20055 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { 20056 // Look further up the chain. 20057 C = C.getOperand(0); 20058 return true; 20059 } 20060 // Alias, so stop here. 20061 return false; 20062 } 20063 20064 case ISD::CopyFromReg: 20065 // Always forward past past CopyFromReg. 20066 C = C.getOperand(0); 20067 return true; 20068 20069 case ISD::LIFETIME_START: 20070 case ISD::LIFETIME_END: { 20071 // We can forward past any lifetime start/end that can be proven not to 20072 // alias the memory access. 20073 if (!isAlias(N, C.getNode())) { 20074 // Look further up the chain. 20075 C = C.getOperand(0); 20076 return true; 20077 } 20078 return false; 20079 } 20080 default: 20081 return false; 20082 } 20083 }; 20084 20085 // Look at each chain and determine if it is an alias. If so, add it to the 20086 // aliases list. If not, then continue up the chain looking for the next 20087 // candidate. 20088 while (!Chains.empty()) { 20089 SDValue Chain = Chains.pop_back_val(); 20090 20091 // Don't bother if we've seen Chain before. 20092 if (!Visited.insert(Chain.getNode()).second) 20093 continue; 20094 20095 // For TokenFactor nodes, look at each operand and only continue up the 20096 // chain until we reach the depth limit. 20097 // 20098 // FIXME: The depth check could be made to return the last non-aliasing 20099 // chain we found before we hit a tokenfactor rather than the original 20100 // chain. 20101 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 20102 Aliases.clear(); 20103 Aliases.push_back(OriginalChain); 20104 return; 20105 } 20106 20107 if (Chain.getOpcode() == ISD::TokenFactor) { 20108 // We have to check each of the operands of the token factor for "small" 20109 // token factors, so we queue them up. Adding the operands to the queue 20110 // (stack) in reverse order maintains the original order and increases the 20111 // likelihood that getNode will find a matching token factor (CSE.) 20112 if (Chain.getNumOperands() > 16) { 20113 Aliases.push_back(Chain); 20114 continue; 20115 } 20116 for (unsigned n = Chain.getNumOperands(); n;) 20117 Chains.push_back(Chain.getOperand(--n)); 20118 ++Depth; 20119 continue; 20120 } 20121 // Everything else 20122 if (ImproveChain(Chain)) { 20123 // Updated Chain Found, Consider new chain if one exists. 20124 if (Chain.getNode()) 20125 Chains.push_back(Chain); 20126 ++Depth; 20127 continue; 20128 } 20129 // No Improved Chain Possible, treat as Alias. 20130 Aliases.push_back(Chain); 20131 } 20132 } 20133 20134 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 20135 /// (aliasing node.) 20136 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 20137 if (OptLevel == CodeGenOpt::None) 20138 return OldChain; 20139 20140 // Ops for replacing token factor. 20141 SmallVector<SDValue, 8> Aliases; 20142 20143 // Accumulate all the aliases to this node. 20144 GatherAllAliases(N, OldChain, Aliases); 20145 20146 // If no operands then chain to entry token. 20147 if (Aliases.size() == 0) 20148 return DAG.getEntryNode(); 20149 20150 // If a single operand then chain to it. We don't need to revisit it. 20151 if (Aliases.size() == 1) 20152 return Aliases[0]; 20153 20154 // Construct a custom tailored token factor. 20155 return DAG.getTokenFactor(SDLoc(N), Aliases); 20156 } 20157 20158 namespace { 20159 // TODO: Replace with with std::monostate when we move to C++17. 20160 struct UnitT { } Unit; 20161 bool operator==(const UnitT &, const UnitT &) { return true; } 20162 bool operator!=(const UnitT &, const UnitT &) { return false; } 20163 } // namespace 20164 20165 // This function tries to collect a bunch of potentially interesting 20166 // nodes to improve the chains of, all at once. This might seem 20167 // redundant, as this function gets called when visiting every store 20168 // node, so why not let the work be done on each store as it's visited? 20169 // 20170 // I believe this is mainly important because MergeConsecutiveStores 20171 // is unable to deal with merging stores of different sizes, so unless 20172 // we improve the chains of all the potential candidates up-front 20173 // before running MergeConsecutiveStores, it might only see some of 20174 // the nodes that will eventually be candidates, and then not be able 20175 // to go from a partially-merged state to the desired final 20176 // fully-merged state. 20177 20178 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 20179 SmallVector<StoreSDNode *, 8> ChainedStores; 20180 StoreSDNode *STChain = St; 20181 // Intervals records which offsets from BaseIndex have been covered. In 20182 // the common case, every store writes to the immediately previous address 20183 // space and thus merged with the previous interval at insertion time. 20184 20185 using IMap = 20186 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 20187 IMap::Allocator A; 20188 IMap Intervals(A); 20189 20190 // This holds the base pointer, index, and the offset in bytes from the base 20191 // pointer. 20192 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 20193 20194 // We must have a base and an offset. 20195 if (!BasePtr.getBase().getNode()) 20196 return false; 20197 20198 // Do not handle stores to undef base pointers. 20199 if (BasePtr.getBase().isUndef()) 20200 return false; 20201 20202 // Add ST's interval. 20203 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 20204 20205 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 20206 // If the chain has more than one use, then we can't reorder the mem ops. 20207 if (!SDValue(Chain, 0)->hasOneUse()) 20208 break; 20209 if (Chain->isVolatile() || Chain->isIndexed()) 20210 break; 20211 20212 // Find the base pointer and offset for this memory node. 20213 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 20214 // Check that the base pointer is the same as the original one. 20215 int64_t Offset; 20216 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 20217 break; 20218 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 20219 // Make sure we don't overlap with other intervals by checking the ones to 20220 // the left or right before inserting. 20221 auto I = Intervals.find(Offset); 20222 // If there's a next interval, we should end before it. 20223 if (I != Intervals.end() && I.start() < (Offset + Length)) 20224 break; 20225 // If there's a previous interval, we should start after it. 20226 if (I != Intervals.begin() && (--I).stop() <= Offset) 20227 break; 20228 Intervals.insert(Offset, Offset + Length, Unit); 20229 20230 ChainedStores.push_back(Chain); 20231 STChain = Chain; 20232 } 20233 20234 // If we didn't find a chained store, exit. 20235 if (ChainedStores.size() == 0) 20236 return false; 20237 20238 // Improve all chained stores (St and ChainedStores members) starting from 20239 // where the store chain ended and return single TokenFactor. 20240 SDValue NewChain = STChain->getChain(); 20241 SmallVector<SDValue, 8> TFOps; 20242 for (unsigned I = ChainedStores.size(); I;) { 20243 StoreSDNode *S = ChainedStores[--I]; 20244 SDValue BetterChain = FindBetterChain(S, NewChain); 20245 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 20246 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 20247 TFOps.push_back(SDValue(S, 0)); 20248 ChainedStores[I] = S; 20249 } 20250 20251 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 20252 SDValue BetterChain = FindBetterChain(St, NewChain); 20253 SDValue NewST; 20254 if (St->isTruncatingStore()) 20255 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 20256 St->getBasePtr(), St->getMemoryVT(), 20257 St->getMemOperand()); 20258 else 20259 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 20260 St->getBasePtr(), St->getMemOperand()); 20261 20262 TFOps.push_back(NewST); 20263 20264 // If we improved every element of TFOps, then we've lost the dependence on 20265 // NewChain to successors of St and we need to add it back to TFOps. Do so at 20266 // the beginning to keep relative order consistent with FindBetterChains. 20267 auto hasImprovedChain = [&](SDValue ST) -> bool { 20268 return ST->getOperand(0) != NewChain; 20269 }; 20270 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 20271 if (AddNewChain) 20272 TFOps.insert(TFOps.begin(), NewChain); 20273 20274 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 20275 CombineTo(St, TF); 20276 20277 AddToWorklist(STChain); 20278 // Add TF operands worklist in reverse order. 20279 for (auto I = TF->getNumOperands(); I;) 20280 AddToWorklist(TF->getOperand(--I).getNode()); 20281 AddToWorklist(TF.getNode()); 20282 return true; 20283 } 20284 20285 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 20286 if (OptLevel == CodeGenOpt::None) 20287 return false; 20288 20289 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 20290 20291 // We must have a base and an offset. 20292 if (!BasePtr.getBase().getNode()) 20293 return false; 20294 20295 // Do not handle stores to undef base pointers. 20296 if (BasePtr.getBase().isUndef()) 20297 return false; 20298 20299 // Directly improve a chain of disjoint stores starting at St. 20300 if (parallelizeChainedStores(St)) 20301 return true; 20302 20303 // Improve St's Chain.. 20304 SDValue BetterChain = FindBetterChain(St, St->getChain()); 20305 if (St->getChain() != BetterChain) { 20306 replaceStoreChain(St, BetterChain); 20307 return true; 20308 } 20309 return false; 20310 } 20311 20312 /// This is the entry point for the file. 20313 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 20314 CodeGenOpt::Level OptLevel) { 20315 /// This is the main entry point to this class. 20316 DAGCombiner(*this, AA, OptLevel).Run(Level); 20317 } 20318