1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11 // both before and after the DAG is legalized.
12 //
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetLowering.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <algorithm>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "dagcombine"
44 
45 STATISTIC(NodesCombined   , "Number of dag nodes combined");
46 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
47 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
48 STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
49 STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
50 STATISTIC(SlicedLoads, "Number of load sliced");
51 
52 namespace {
53   static cl::opt<bool>
54     CombinerAA("combiner-alias-analysis", cl::Hidden,
55                cl::desc("Enable DAG combiner alias-analysis heuristics"));
56 
57   static cl::opt<bool>
58     CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59                cl::desc("Enable DAG combiner's use of IR alias analysis"));
60 
61   static cl::opt<bool>
62     UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
63                cl::desc("Enable DAG combiner's use of TBAA"));
64 
65 #ifndef NDEBUG
66   static cl::opt<std::string>
67     CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
68                cl::desc("Only use DAG-combiner alias analysis in this"
69                         " function"));
70 #endif
71 
72   /// Hidden option to stress test load slicing, i.e., when this option
73   /// is enabled, load slicing bypasses most of its profitability guards.
74   static cl::opt<bool>
75   StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
76                     cl::desc("Bypass the profitability model of load "
77                              "slicing"),
78                     cl::init(false));
79 
80   static cl::opt<bool>
81     MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
82                       cl::desc("DAG combiner may split indexing from loads"));
83 
84 //------------------------------ DAGCombiner ---------------------------------//
85 
86   class DAGCombiner {
87     SelectionDAG &DAG;
88     const TargetLowering &TLI;
89     CombineLevel Level;
90     CodeGenOpt::Level OptLevel;
91     bool LegalOperations;
92     bool LegalTypes;
93     bool ForCodeSize;
94 
95     /// \brief Worklist of all of the nodes that need to be simplified.
96     ///
97     /// This must behave as a stack -- new nodes to process are pushed onto the
98     /// back and when processing we pop off of the back.
99     ///
100     /// The worklist will not contain duplicates but may contain null entries
101     /// due to nodes being deleted from the underlying DAG.
102     SmallVector<SDNode *, 64> Worklist;
103 
104     /// \brief Mapping from an SDNode to its position on the worklist.
105     ///
106     /// This is used to find and remove nodes from the worklist (by nulling
107     /// them) when they are deleted from the underlying DAG. It relies on
108     /// stable indices of nodes within the worklist.
109     DenseMap<SDNode *, unsigned> WorklistMap;
110 
111     /// \brief Set of nodes which have been combined (at least once).
112     ///
113     /// This is used to allow us to reliably add any operands of a DAG node
114     /// which have not yet been combined to the worklist.
115     SmallPtrSet<SDNode *, 32> CombinedNodes;
116 
117     // AA - Used for DAG load/store alias analysis.
118     AliasAnalysis &AA;
119 
120     /// When an instruction is simplified, add all users of the instruction to
121     /// the work lists because they might get more simplified now.
122     void AddUsersToWorklist(SDNode *N) {
123       for (SDNode *Node : N->uses())
124         AddToWorklist(Node);
125     }
126 
127     /// Call the node-specific routine that folds each particular type of node.
128     SDValue visit(SDNode *N);
129 
130   public:
131     /// Add to the worklist making sure its instance is at the back (next to be
132     /// processed.)
133     void AddToWorklist(SDNode *N) {
134       // Skip handle nodes as they can't usefully be combined and confuse the
135       // zero-use deletion strategy.
136       if (N->getOpcode() == ISD::HANDLENODE)
137         return;
138 
139       if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
140         Worklist.push_back(N);
141     }
142 
143     /// Remove all instances of N from the worklist.
144     void removeFromWorklist(SDNode *N) {
145       CombinedNodes.erase(N);
146 
147       auto It = WorklistMap.find(N);
148       if (It == WorklistMap.end())
149         return; // Not in the worklist.
150 
151       // Null out the entry rather than erasing it to avoid a linear operation.
152       Worklist[It->second] = nullptr;
153       WorklistMap.erase(It);
154     }
155 
156     void deleteAndRecombine(SDNode *N);
157     bool recursivelyDeleteUnusedNodes(SDNode *N);
158 
159     /// Replaces all uses of the results of one DAG node with new values.
160     SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
161                       bool AddTo = true);
162 
163     /// Replaces all uses of the results of one DAG node with new values.
164     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
165       return CombineTo(N, &Res, 1, AddTo);
166     }
167 
168     /// Replaces all uses of the results of one DAG node with new values.
169     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
170                       bool AddTo = true) {
171       SDValue To[] = { Res0, Res1 };
172       return CombineTo(N, To, 2, AddTo);
173     }
174 
175     void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
176 
177   private:
178 
179     /// Check the specified integer node value to see if it can be simplified or
180     /// if things it uses can be simplified by bit propagation.
181     /// If so, return true.
182     bool SimplifyDemandedBits(SDValue Op) {
183       unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
184       APInt Demanded = APInt::getAllOnesValue(BitWidth);
185       return SimplifyDemandedBits(Op, Demanded);
186     }
187 
188     bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
189 
190     bool CombineToPreIndexedLoadStore(SDNode *N);
191     bool CombineToPostIndexedLoadStore(SDNode *N);
192     SDValue SplitIndexingFromLoad(LoadSDNode *LD);
193     bool SliceUpLoad(SDNode *N);
194 
195     /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
196     ///   load.
197     ///
198     /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
199     /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
200     /// \param EltNo index of the vector element to load.
201     /// \param OriginalLoad load that EVE came from to be replaced.
202     /// \returns EVE on success SDValue() on failure.
203     SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
204         SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad);
205     void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
206     SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
207     SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
208     SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
209     SDValue PromoteIntBinOp(SDValue Op);
210     SDValue PromoteIntShiftOp(SDValue Op);
211     SDValue PromoteExtend(SDValue Op);
212     bool PromoteLoad(SDValue Op);
213 
214     void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
215                          SDValue Trunc, SDValue ExtLoad, SDLoc DL,
216                          ISD::NodeType ExtType);
217 
218     /// Call the node-specific routine that knows how to fold each
219     /// particular type of node. If that doesn't do anything, try the
220     /// target-specific DAG combines.
221     SDValue combine(SDNode *N);
222 
223     // Visitation implementation - Implement dag node combining for different
224     // node types.  The semantics are as follows:
225     // Return Value:
226     //   SDValue.getNode() == 0 - No change was made
227     //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
228     //   otherwise              - N should be replaced by the returned Operand.
229     //
230     SDValue visitTokenFactor(SDNode *N);
231     SDValue visitMERGE_VALUES(SDNode *N);
232     SDValue visitADD(SDNode *N);
233     SDValue visitSUB(SDNode *N);
234     SDValue visitADDC(SDNode *N);
235     SDValue visitSUBC(SDNode *N);
236     SDValue visitADDE(SDNode *N);
237     SDValue visitSUBE(SDNode *N);
238     SDValue visitMUL(SDNode *N);
239     SDValue useDivRem(SDNode *N);
240     SDValue visitSDIV(SDNode *N);
241     SDValue visitUDIV(SDNode *N);
242     SDValue visitREM(SDNode *N);
243     SDValue visitMULHU(SDNode *N);
244     SDValue visitMULHS(SDNode *N);
245     SDValue visitSMUL_LOHI(SDNode *N);
246     SDValue visitUMUL_LOHI(SDNode *N);
247     SDValue visitSMULO(SDNode *N);
248     SDValue visitUMULO(SDNode *N);
249     SDValue visitIMINMAX(SDNode *N);
250     SDValue visitAND(SDNode *N);
251     SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference);
252     SDValue visitOR(SDNode *N);
253     SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference);
254     SDValue visitXOR(SDNode *N);
255     SDValue SimplifyVBinOp(SDNode *N);
256     SDValue visitSHL(SDNode *N);
257     SDValue visitSRA(SDNode *N);
258     SDValue visitSRL(SDNode *N);
259     SDValue visitRotate(SDNode *N);
260     SDValue visitBSWAP(SDNode *N);
261     SDValue visitCTLZ(SDNode *N);
262     SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
263     SDValue visitCTTZ(SDNode *N);
264     SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
265     SDValue visitCTPOP(SDNode *N);
266     SDValue visitSELECT(SDNode *N);
267     SDValue visitVSELECT(SDNode *N);
268     SDValue visitSELECT_CC(SDNode *N);
269     SDValue visitSETCC(SDNode *N);
270     SDValue visitSETCCE(SDNode *N);
271     SDValue visitSIGN_EXTEND(SDNode *N);
272     SDValue visitZERO_EXTEND(SDNode *N);
273     SDValue visitANY_EXTEND(SDNode *N);
274     SDValue visitSIGN_EXTEND_INREG(SDNode *N);
275     SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
276     SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
277     SDValue visitTRUNCATE(SDNode *N);
278     SDValue visitBITCAST(SDNode *N);
279     SDValue visitBUILD_PAIR(SDNode *N);
280     SDValue visitFADD(SDNode *N);
281     SDValue visitFSUB(SDNode *N);
282     SDValue visitFMUL(SDNode *N);
283     SDValue visitFMA(SDNode *N);
284     SDValue visitFDIV(SDNode *N);
285     SDValue visitFREM(SDNode *N);
286     SDValue visitFSQRT(SDNode *N);
287     SDValue visitFCOPYSIGN(SDNode *N);
288     SDValue visitSINT_TO_FP(SDNode *N);
289     SDValue visitUINT_TO_FP(SDNode *N);
290     SDValue visitFP_TO_SINT(SDNode *N);
291     SDValue visitFP_TO_UINT(SDNode *N);
292     SDValue visitFP_ROUND(SDNode *N);
293     SDValue visitFP_ROUND_INREG(SDNode *N);
294     SDValue visitFP_EXTEND(SDNode *N);
295     SDValue visitFNEG(SDNode *N);
296     SDValue visitFABS(SDNode *N);
297     SDValue visitFCEIL(SDNode *N);
298     SDValue visitFTRUNC(SDNode *N);
299     SDValue visitFFLOOR(SDNode *N);
300     SDValue visitFMINNUM(SDNode *N);
301     SDValue visitFMAXNUM(SDNode *N);
302     SDValue visitBRCOND(SDNode *N);
303     SDValue visitBR_CC(SDNode *N);
304     SDValue visitLOAD(SDNode *N);
305 
306     SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
307     SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
308 
309     SDValue visitSTORE(SDNode *N);
310     SDValue visitINSERT_VECTOR_ELT(SDNode *N);
311     SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
312     SDValue visitBUILD_VECTOR(SDNode *N);
313     SDValue visitCONCAT_VECTORS(SDNode *N);
314     SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
315     SDValue visitVECTOR_SHUFFLE(SDNode *N);
316     SDValue visitSCALAR_TO_VECTOR(SDNode *N);
317     SDValue visitINSERT_SUBVECTOR(SDNode *N);
318     SDValue visitMLOAD(SDNode *N);
319     SDValue visitMSTORE(SDNode *N);
320     SDValue visitMGATHER(SDNode *N);
321     SDValue visitMSCATTER(SDNode *N);
322     SDValue visitFP_TO_FP16(SDNode *N);
323     SDValue visitFP16_TO_FP(SDNode *N);
324 
325     SDValue visitFADDForFMACombine(SDNode *N);
326     SDValue visitFSUBForFMACombine(SDNode *N);
327     SDValue visitFMULForFMACombine(SDNode *N);
328 
329     SDValue XformToShuffleWithZero(SDNode *N);
330     SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
331 
332     SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
333 
334     bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
335     SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
336     SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
337     SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
338                              SDValue N3, ISD::CondCode CC,
339                              bool NotExtCompare = false);
340     SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
341                           SDLoc DL, bool foldBooleans = true);
342 
343     bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
344                            SDValue &CC) const;
345     bool isOneUseSetCC(SDValue N) const;
346 
347     SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
348                                          unsigned HiOp);
349     SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
350     SDValue CombineExtLoad(SDNode *N);
351     SDValue combineRepeatedFPDivisors(SDNode *N);
352     SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
353     SDValue BuildSDIV(SDNode *N);
354     SDValue BuildSDIVPow2(SDNode *N);
355     SDValue BuildUDIV(SDNode *N);
356     SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags);
357     SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags);
358     SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations,
359                                  SDNodeFlags *Flags);
360     SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations,
361                                  SDNodeFlags *Flags);
362     SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
363                                bool DemandHighBits = true);
364     SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
365     SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
366                               SDValue InnerPos, SDValue InnerNeg,
367                               unsigned PosOpcode, unsigned NegOpcode,
368                               SDLoc DL);
369     SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
370     SDValue ReduceLoadWidth(SDNode *N);
371     SDValue ReduceLoadOpStoreWidth(SDNode *N);
372     SDValue TransformFPLoadStorePair(SDNode *N);
373     SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
374     SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
375 
376     SDValue GetDemandedBits(SDValue V, const APInt &Mask);
377 
378     /// Walk up chain skipping non-aliasing memory nodes,
379     /// looking for aliasing nodes and adding them to the Aliases vector.
380     void GatherAllAliases(SDNode *N, SDValue OriginalChain,
381                           SmallVectorImpl<SDValue> &Aliases);
382 
383     /// Return true if there is any possibility that the two addresses overlap.
384     bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
385 
386     /// Walk up chain skipping non-aliasing memory nodes, looking for a better
387     /// chain (aliasing node.)
388     SDValue FindBetterChain(SDNode *N, SDValue Chain);
389 
390     /// Do FindBetterChain for a store and any possibly adjacent stores on
391     /// consecutive chains.
392     bool findBetterNeighborChains(StoreSDNode *St);
393 
394     /// Match "(X shl/srl V1) & V2" where V2 may not be present.
395     bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask);
396 
397     /// Holds a pointer to an LSBaseSDNode as well as information on where it
398     /// is located in a sequence of memory operations connected by a chain.
399     struct MemOpLink {
400       MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
401       MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
402       // Ptr to the mem node.
403       LSBaseSDNode *MemNode;
404       // Offset from the base ptr.
405       int64_t OffsetFromBase;
406       // What is the sequence number of this mem node.
407       // Lowest mem operand in the DAG starts at zero.
408       unsigned SequenceNum;
409     };
410 
411     /// This is a helper function for visitMUL to check the profitability
412     /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
413     /// MulNode is the original multiply, AddNode is (add x, c1),
414     /// and ConstNode is c2.
415     bool isMulAddWithConstProfitable(SDNode *MulNode,
416                                      SDValue &AddNode,
417                                      SDValue &ConstNode);
418 
419     /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a
420     /// constant build_vector of the stored constant values in Stores.
421     SDValue getMergedConstantVectorStore(SelectionDAG &DAG,
422                                          SDLoc SL,
423                                          ArrayRef<MemOpLink> Stores,
424                                          SmallVectorImpl<SDValue> &Chains,
425                                          EVT Ty) const;
426 
427     /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns
428     /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns
429     /// the type of the loaded value to be extended.  LoadedVT returns the type
430     /// of the original loaded value.  NarrowLoad returns whether the load would
431     /// need to be narrowed in order to match.
432     bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
433                           EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT,
434                           bool &NarrowLoad);
435 
436     /// This is a helper function for MergeConsecutiveStores. When the source
437     /// elements of the consecutive stores are all constants or all extracted
438     /// vector elements, try to merge them into one larger store.
439     /// \return True if a merged store was created.
440     bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
441                                          EVT MemVT, unsigned NumStores,
442                                          bool IsConstantSrc, bool UseVector);
443 
444     /// This is a helper function for MergeConsecutiveStores.
445     /// Stores that may be merged are placed in StoreNodes.
446     /// Loads that may alias with those stores are placed in AliasLoadNodes.
447     void getStoreMergeAndAliasCandidates(
448         StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
449         SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes);
450 
451     /// Helper function for MergeConsecutiveStores. Checks if
452     /// Candidate stores have indirect dependency through their
453     /// operands. \return True if safe to merge
454     bool checkMergeStoreCandidatesForDependencies(
455         SmallVectorImpl<MemOpLink> &StoreNodes);
456 
457     /// Merge consecutive store operations into a wide store.
458     /// This optimization uses wide integers or vectors when possible.
459     /// \return True if some memory operations were changed.
460     bool MergeConsecutiveStores(StoreSDNode *N);
461 
462     /// \brief Try to transform a truncation where C is a constant:
463     ///     (trunc (and X, C)) -> (and (trunc X), (trunc C))
464     ///
465     /// \p N needs to be a truncation and its first operand an AND. Other
466     /// requirements are checked by the function (e.g. that trunc is
467     /// single-use) and if missed an empty SDValue is returned.
468     SDValue distributeTruncateThroughAnd(SDNode *N);
469 
470   public:
471     DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
472         : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
473           OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
474       ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize();
475     }
476 
477     /// Runs the dag combiner on all nodes in the work list
478     void Run(CombineLevel AtLevel);
479 
480     SelectionDAG &getDAG() const { return DAG; }
481 
482     /// Returns a type large enough to hold any valid shift amount - before type
483     /// legalization these can be huge.
484     EVT getShiftAmountTy(EVT LHSTy) {
485       assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
486       if (LHSTy.isVector())
487         return LHSTy;
488       auto &DL = DAG.getDataLayout();
489       return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy)
490                         : TLI.getPointerTy(DL);
491     }
492 
493     /// This method returns true if we are running before type legalization or
494     /// if the specified VT is legal.
495     bool isTypeLegal(const EVT &VT) {
496       if (!LegalTypes) return true;
497       return TLI.isTypeLegal(VT);
498     }
499 
500     /// Convenience wrapper around TargetLowering::getSetCCResultType
501     EVT getSetCCResultType(EVT VT) const {
502       return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
503     }
504   };
505 }
506 
507 
508 namespace {
509 /// This class is a DAGUpdateListener that removes any deleted
510 /// nodes from the worklist.
511 class WorklistRemover : public SelectionDAG::DAGUpdateListener {
512   DAGCombiner &DC;
513 public:
514   explicit WorklistRemover(DAGCombiner &dc)
515     : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
516 
517   void NodeDeleted(SDNode *N, SDNode *E) override {
518     DC.removeFromWorklist(N);
519   }
520 };
521 }
522 
523 //===----------------------------------------------------------------------===//
524 //  TargetLowering::DAGCombinerInfo implementation
525 //===----------------------------------------------------------------------===//
526 
527 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
528   ((DAGCombiner*)DC)->AddToWorklist(N);
529 }
530 
531 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
532   ((DAGCombiner*)DC)->removeFromWorklist(N);
533 }
534 
535 SDValue TargetLowering::DAGCombinerInfo::
536 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
537   return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
538 }
539 
540 SDValue TargetLowering::DAGCombinerInfo::
541 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
542   return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
543 }
544 
545 
546 SDValue TargetLowering::DAGCombinerInfo::
547 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
548   return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
549 }
550 
551 void TargetLowering::DAGCombinerInfo::
552 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
553   return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
554 }
555 
556 //===----------------------------------------------------------------------===//
557 // Helper Functions
558 //===----------------------------------------------------------------------===//
559 
560 void DAGCombiner::deleteAndRecombine(SDNode *N) {
561   removeFromWorklist(N);
562 
563   // If the operands of this node are only used by the node, they will now be
564   // dead. Make sure to re-visit them and recursively delete dead nodes.
565   for (const SDValue &Op : N->ops())
566     // For an operand generating multiple values, one of the values may
567     // become dead allowing further simplification (e.g. split index
568     // arithmetic from an indexed load).
569     if (Op->hasOneUse() || Op->getNumValues() > 1)
570       AddToWorklist(Op.getNode());
571 
572   DAG.DeleteNode(N);
573 }
574 
575 /// Return 1 if we can compute the negated form of the specified expression for
576 /// the same cost as the expression itself, or 2 if we can compute the negated
577 /// form more cheaply than the expression itself.
578 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
579                                const TargetLowering &TLI,
580                                const TargetOptions *Options,
581                                unsigned Depth = 0) {
582   // fneg is removable even if it has multiple uses.
583   if (Op.getOpcode() == ISD::FNEG) return 2;
584 
585   // Don't allow anything with multiple uses.
586   if (!Op.hasOneUse()) return 0;
587 
588   // Don't recurse exponentially.
589   if (Depth > 6) return 0;
590 
591   switch (Op.getOpcode()) {
592   default: return false;
593   case ISD::ConstantFP:
594     // Don't invert constant FP values after legalize.  The negated constant
595     // isn't necessarily legal.
596     return LegalOperations ? 0 : 1;
597   case ISD::FADD:
598     // FIXME: determine better conditions for this xform.
599     if (!Options->UnsafeFPMath) return 0;
600 
601     // After operation legalization, it might not be legal to create new FSUBs.
602     if (LegalOperations &&
603         !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
604       return 0;
605 
606     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
607     if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
608                                     Options, Depth + 1))
609       return V;
610     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
611     return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
612                               Depth + 1);
613   case ISD::FSUB:
614     // We can't turn -(A-B) into B-A when we honor signed zeros.
615     if (!Options->UnsafeFPMath) return 0;
616 
617     // fold (fneg (fsub A, B)) -> (fsub B, A)
618     return 1;
619 
620   case ISD::FMUL:
621   case ISD::FDIV:
622     if (Options->HonorSignDependentRoundingFPMath()) return 0;
623 
624     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
625     if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
626                                     Options, Depth + 1))
627       return V;
628 
629     return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
630                               Depth + 1);
631 
632   case ISD::FP_EXTEND:
633   case ISD::FP_ROUND:
634   case ISD::FSIN:
635     return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
636                               Depth + 1);
637   }
638 }
639 
640 /// If isNegatibleForFree returns true, return the newly negated expression.
641 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
642                                     bool LegalOperations, unsigned Depth = 0) {
643   const TargetOptions &Options = DAG.getTarget().Options;
644   // fneg is removable even if it has multiple uses.
645   if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
646 
647   // Don't allow anything with multiple uses.
648   assert(Op.hasOneUse() && "Unknown reuse!");
649 
650   assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
651 
652   const SDNodeFlags *Flags = Op.getNode()->getFlags();
653 
654   switch (Op.getOpcode()) {
655   default: llvm_unreachable("Unknown code");
656   case ISD::ConstantFP: {
657     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
658     V.changeSign();
659     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
660   }
661   case ISD::FADD:
662     // FIXME: determine better conditions for this xform.
663     assert(Options.UnsafeFPMath);
664 
665     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
666     if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
667                            DAG.getTargetLoweringInfo(), &Options, Depth+1))
668       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
669                          GetNegatedExpression(Op.getOperand(0), DAG,
670                                               LegalOperations, Depth+1),
671                          Op.getOperand(1), Flags);
672     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
673     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
674                        GetNegatedExpression(Op.getOperand(1), DAG,
675                                             LegalOperations, Depth+1),
676                        Op.getOperand(0), Flags);
677   case ISD::FSUB:
678     // We can't turn -(A-B) into B-A when we honor signed zeros.
679     assert(Options.UnsafeFPMath);
680 
681     // fold (fneg (fsub 0, B)) -> B
682     if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
683       if (N0CFP->isZero())
684         return Op.getOperand(1);
685 
686     // fold (fneg (fsub A, B)) -> (fsub B, A)
687     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
688                        Op.getOperand(1), Op.getOperand(0), Flags);
689 
690   case ISD::FMUL:
691   case ISD::FDIV:
692     assert(!Options.HonorSignDependentRoundingFPMath());
693 
694     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
695     if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
696                            DAG.getTargetLoweringInfo(), &Options, Depth+1))
697       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
698                          GetNegatedExpression(Op.getOperand(0), DAG,
699                                               LegalOperations, Depth+1),
700                          Op.getOperand(1), Flags);
701 
702     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
703     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
704                        Op.getOperand(0),
705                        GetNegatedExpression(Op.getOperand(1), DAG,
706                                             LegalOperations, Depth+1), Flags);
707 
708   case ISD::FP_EXTEND:
709   case ISD::FSIN:
710     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
711                        GetNegatedExpression(Op.getOperand(0), DAG,
712                                             LegalOperations, Depth+1));
713   case ISD::FP_ROUND:
714       return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
715                          GetNegatedExpression(Op.getOperand(0), DAG,
716                                               LegalOperations, Depth+1),
717                          Op.getOperand(1));
718   }
719 }
720 
721 // Return true if this node is a setcc, or is a select_cc
722 // that selects between the target values used for true and false, making it
723 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
724 // the appropriate nodes based on the type of node we are checking. This
725 // simplifies life a bit for the callers.
726 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
727                                     SDValue &CC) const {
728   if (N.getOpcode() == ISD::SETCC) {
729     LHS = N.getOperand(0);
730     RHS = N.getOperand(1);
731     CC  = N.getOperand(2);
732     return true;
733   }
734 
735   if (N.getOpcode() != ISD::SELECT_CC ||
736       !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
737       !TLI.isConstFalseVal(N.getOperand(3).getNode()))
738     return false;
739 
740   if (TLI.getBooleanContents(N.getValueType()) ==
741       TargetLowering::UndefinedBooleanContent)
742     return false;
743 
744   LHS = N.getOperand(0);
745   RHS = N.getOperand(1);
746   CC  = N.getOperand(4);
747   return true;
748 }
749 
750 /// Return true if this is a SetCC-equivalent operation with only one use.
751 /// If this is true, it allows the users to invert the operation for free when
752 /// it is profitable to do so.
753 bool DAGCombiner::isOneUseSetCC(SDValue N) const {
754   SDValue N0, N1, N2;
755   if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
756     return true;
757   return false;
758 }
759 
760 /// Returns true if N is a BUILD_VECTOR node whose
761 /// elements are all the same constant or undefined.
762 static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
763   BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
764   if (!C)
765     return false;
766 
767   APInt SplatUndef;
768   unsigned SplatBitSize;
769   bool HasAnyUndefs;
770   EVT EltVT = N->getValueType(0).getVectorElementType();
771   return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
772                              HasAnyUndefs) &&
773           EltVT.getSizeInBits() >= SplatBitSize);
774 }
775 
776 // \brief Returns the SDNode if it is a constant float BuildVector
777 // or constant float.
778 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
779   if (isa<ConstantFPSDNode>(N))
780     return N.getNode();
781   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
782     return N.getNode();
783   return nullptr;
784 }
785 
786 // \brief Returns the SDNode if it is a constant splat BuildVector or constant
787 // int.
788 static ConstantSDNode *isConstOrConstSplat(SDValue N) {
789   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
790     return CN;
791 
792   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
793     BitVector UndefElements;
794     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
795 
796     // BuildVectors can truncate their operands. Ignore that case here.
797     // FIXME: We blindly ignore splats which include undef which is overly
798     // pessimistic.
799     if (CN && UndefElements.none() &&
800         CN->getValueType(0) == N.getValueType().getScalarType())
801       return CN;
802   }
803 
804   return nullptr;
805 }
806 
807 // \brief Returns the SDNode if it is a constant splat BuildVector or constant
808 // float.
809 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) {
810   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
811     return CN;
812 
813   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
814     BitVector UndefElements;
815     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
816 
817     if (CN && UndefElements.none())
818       return CN;
819   }
820 
821   return nullptr;
822 }
823 
824 SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
825                                     SDValue N0, SDValue N1) {
826   EVT VT = N0.getValueType();
827   if (N0.getOpcode() == Opc) {
828     if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
829       if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
830         // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
831         if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R))
832           return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
833         return SDValue();
834       }
835       if (N0.hasOneUse()) {
836         // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
837         // use
838         SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
839         if (!OpNode.getNode())
840           return SDValue();
841         AddToWorklist(OpNode.getNode());
842         return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
843       }
844     }
845   }
846 
847   if (N1.getOpcode() == Opc) {
848     if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) {
849       if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
850         // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
851         if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L))
852           return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
853         return SDValue();
854       }
855       if (N1.hasOneUse()) {
856         // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one
857         // use
858         SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0));
859         if (!OpNode.getNode())
860           return SDValue();
861         AddToWorklist(OpNode.getNode());
862         return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
863       }
864     }
865   }
866 
867   return SDValue();
868 }
869 
870 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
871                                bool AddTo) {
872   assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
873   ++NodesCombined;
874   DEBUG(dbgs() << "\nReplacing.1 ";
875         N->dump(&DAG);
876         dbgs() << "\nWith: ";
877         To[0].getNode()->dump(&DAG);
878         dbgs() << " and " << NumTo-1 << " other values\n");
879   for (unsigned i = 0, e = NumTo; i != e; ++i)
880     assert((!To[i].getNode() ||
881             N->getValueType(i) == To[i].getValueType()) &&
882            "Cannot combine value to value of different type!");
883 
884   WorklistRemover DeadNodes(*this);
885   DAG.ReplaceAllUsesWith(N, To);
886   if (AddTo) {
887     // Push the new nodes and any users onto the worklist
888     for (unsigned i = 0, e = NumTo; i != e; ++i) {
889       if (To[i].getNode()) {
890         AddToWorklist(To[i].getNode());
891         AddUsersToWorklist(To[i].getNode());
892       }
893     }
894   }
895 
896   // Finally, if the node is now dead, remove it from the graph.  The node
897   // may not be dead if the replacement process recursively simplified to
898   // something else needing this node.
899   if (N->use_empty())
900     deleteAndRecombine(N);
901   return SDValue(N, 0);
902 }
903 
904 void DAGCombiner::
905 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
906   // Replace all uses.  If any nodes become isomorphic to other nodes and
907   // are deleted, make sure to remove them from our worklist.
908   WorklistRemover DeadNodes(*this);
909   DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
910 
911   // Push the new node and any (possibly new) users onto the worklist.
912   AddToWorklist(TLO.New.getNode());
913   AddUsersToWorklist(TLO.New.getNode());
914 
915   // Finally, if the node is now dead, remove it from the graph.  The node
916   // may not be dead if the replacement process recursively simplified to
917   // something else needing this node.
918   if (TLO.Old.getNode()->use_empty())
919     deleteAndRecombine(TLO.Old.getNode());
920 }
921 
922 /// Check the specified integer node value to see if it can be simplified or if
923 /// things it uses can be simplified by bit propagation. If so, return true.
924 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
925   TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
926   APInt KnownZero, KnownOne;
927   if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
928     return false;
929 
930   // Revisit the node.
931   AddToWorklist(Op.getNode());
932 
933   // Replace the old value with the new one.
934   ++NodesCombined;
935   DEBUG(dbgs() << "\nReplacing.2 ";
936         TLO.Old.getNode()->dump(&DAG);
937         dbgs() << "\nWith: ";
938         TLO.New.getNode()->dump(&DAG);
939         dbgs() << '\n');
940 
941   CommitTargetLoweringOpt(TLO);
942   return true;
943 }
944 
945 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
946   SDLoc dl(Load);
947   EVT VT = Load->getValueType(0);
948   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
949 
950   DEBUG(dbgs() << "\nReplacing.9 ";
951         Load->dump(&DAG);
952         dbgs() << "\nWith: ";
953         Trunc.getNode()->dump(&DAG);
954         dbgs() << '\n');
955   WorklistRemover DeadNodes(*this);
956   DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
957   DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
958   deleteAndRecombine(Load);
959   AddToWorklist(Trunc.getNode());
960 }
961 
962 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
963   Replace = false;
964   SDLoc dl(Op);
965   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
966     EVT MemVT = LD->getMemoryVT();
967     ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
968       ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
969                                                        : ISD::EXTLOAD)
970       : LD->getExtensionType();
971     Replace = true;
972     return DAG.getExtLoad(ExtType, dl, PVT,
973                           LD->getChain(), LD->getBasePtr(),
974                           MemVT, LD->getMemOperand());
975   }
976 
977   unsigned Opc = Op.getOpcode();
978   switch (Opc) {
979   default: break;
980   case ISD::AssertSext:
981     return DAG.getNode(ISD::AssertSext, dl, PVT,
982                        SExtPromoteOperand(Op.getOperand(0), PVT),
983                        Op.getOperand(1));
984   case ISD::AssertZext:
985     return DAG.getNode(ISD::AssertZext, dl, PVT,
986                        ZExtPromoteOperand(Op.getOperand(0), PVT),
987                        Op.getOperand(1));
988   case ISD::Constant: {
989     unsigned ExtOpc =
990       Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
991     return DAG.getNode(ExtOpc, dl, PVT, Op);
992   }
993   }
994 
995   if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
996     return SDValue();
997   return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
998 }
999 
1000 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1001   if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1002     return SDValue();
1003   EVT OldVT = Op.getValueType();
1004   SDLoc dl(Op);
1005   bool Replace = false;
1006   SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1007   if (!NewOp.getNode())
1008     return SDValue();
1009   AddToWorklist(NewOp.getNode());
1010 
1011   if (Replace)
1012     ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1013   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
1014                      DAG.getValueType(OldVT));
1015 }
1016 
1017 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1018   EVT OldVT = Op.getValueType();
1019   SDLoc dl(Op);
1020   bool Replace = false;
1021   SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1022   if (!NewOp.getNode())
1023     return SDValue();
1024   AddToWorklist(NewOp.getNode());
1025 
1026   if (Replace)
1027     ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1028   return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
1029 }
1030 
1031 /// Promote the specified integer binary operation if the target indicates it is
1032 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1033 /// i32 since i16 instructions are longer.
1034 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1035   if (!LegalOperations)
1036     return SDValue();
1037 
1038   EVT VT = Op.getValueType();
1039   if (VT.isVector() || !VT.isInteger())
1040     return SDValue();
1041 
1042   // If operation type is 'undesirable', e.g. i16 on x86, consider
1043   // promoting it.
1044   unsigned Opc = Op.getOpcode();
1045   if (TLI.isTypeDesirableForOp(Opc, VT))
1046     return SDValue();
1047 
1048   EVT PVT = VT;
1049   // Consult target whether it is a good idea to promote this operation and
1050   // what's the right type to promote it to.
1051   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1052     assert(PVT != VT && "Don't know what type to promote to!");
1053 
1054     bool Replace0 = false;
1055     SDValue N0 = Op.getOperand(0);
1056     SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1057     if (!NN0.getNode())
1058       return SDValue();
1059 
1060     bool Replace1 = false;
1061     SDValue N1 = Op.getOperand(1);
1062     SDValue NN1;
1063     if (N0 == N1)
1064       NN1 = NN0;
1065     else {
1066       NN1 = PromoteOperand(N1, PVT, Replace1);
1067       if (!NN1.getNode())
1068         return SDValue();
1069     }
1070 
1071     AddToWorklist(NN0.getNode());
1072     if (NN1.getNode())
1073       AddToWorklist(NN1.getNode());
1074 
1075     if (Replace0)
1076       ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1077     if (Replace1)
1078       ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1079 
1080     DEBUG(dbgs() << "\nPromoting ";
1081           Op.getNode()->dump(&DAG));
1082     SDLoc dl(Op);
1083     return DAG.getNode(ISD::TRUNCATE, dl, VT,
1084                        DAG.getNode(Opc, dl, PVT, NN0, NN1));
1085   }
1086   return SDValue();
1087 }
1088 
1089 /// Promote the specified integer shift operation if the target indicates it is
1090 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1091 /// i32 since i16 instructions are longer.
1092 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1093   if (!LegalOperations)
1094     return SDValue();
1095 
1096   EVT VT = Op.getValueType();
1097   if (VT.isVector() || !VT.isInteger())
1098     return SDValue();
1099 
1100   // If operation type is 'undesirable', e.g. i16 on x86, consider
1101   // promoting it.
1102   unsigned Opc = Op.getOpcode();
1103   if (TLI.isTypeDesirableForOp(Opc, VT))
1104     return SDValue();
1105 
1106   EVT PVT = VT;
1107   // Consult target whether it is a good idea to promote this operation and
1108   // what's the right type to promote it to.
1109   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1110     assert(PVT != VT && "Don't know what type to promote to!");
1111 
1112     bool Replace = false;
1113     SDValue N0 = Op.getOperand(0);
1114     if (Opc == ISD::SRA)
1115       N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
1116     else if (Opc == ISD::SRL)
1117       N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
1118     else
1119       N0 = PromoteOperand(N0, PVT, Replace);
1120     if (!N0.getNode())
1121       return SDValue();
1122 
1123     AddToWorklist(N0.getNode());
1124     if (Replace)
1125       ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1126 
1127     DEBUG(dbgs() << "\nPromoting ";
1128           Op.getNode()->dump(&DAG));
1129     SDLoc dl(Op);
1130     return DAG.getNode(ISD::TRUNCATE, dl, VT,
1131                        DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
1132   }
1133   return SDValue();
1134 }
1135 
1136 SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1137   if (!LegalOperations)
1138     return SDValue();
1139 
1140   EVT VT = Op.getValueType();
1141   if (VT.isVector() || !VT.isInteger())
1142     return SDValue();
1143 
1144   // If operation type is 'undesirable', e.g. i16 on x86, consider
1145   // promoting it.
1146   unsigned Opc = Op.getOpcode();
1147   if (TLI.isTypeDesirableForOp(Opc, VT))
1148     return SDValue();
1149 
1150   EVT PVT = VT;
1151   // Consult target whether it is a good idea to promote this operation and
1152   // what's the right type to promote it to.
1153   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1154     assert(PVT != VT && "Don't know what type to promote to!");
1155     // fold (aext (aext x)) -> (aext x)
1156     // fold (aext (zext x)) -> (zext x)
1157     // fold (aext (sext x)) -> (sext x)
1158     DEBUG(dbgs() << "\nPromoting ";
1159           Op.getNode()->dump(&DAG));
1160     return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1161   }
1162   return SDValue();
1163 }
1164 
1165 bool DAGCombiner::PromoteLoad(SDValue Op) {
1166   if (!LegalOperations)
1167     return false;
1168 
1169   EVT VT = Op.getValueType();
1170   if (VT.isVector() || !VT.isInteger())
1171     return false;
1172 
1173   // If operation type is 'undesirable', e.g. i16 on x86, consider
1174   // promoting it.
1175   unsigned Opc = Op.getOpcode();
1176   if (TLI.isTypeDesirableForOp(Opc, VT))
1177     return false;
1178 
1179   EVT PVT = VT;
1180   // Consult target whether it is a good idea to promote this operation and
1181   // what's the right type to promote it to.
1182   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1183     assert(PVT != VT && "Don't know what type to promote to!");
1184 
1185     SDLoc dl(Op);
1186     SDNode *N = Op.getNode();
1187     LoadSDNode *LD = cast<LoadSDNode>(N);
1188     EVT MemVT = LD->getMemoryVT();
1189     ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
1190       ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
1191                                                        : ISD::EXTLOAD)
1192       : LD->getExtensionType();
1193     SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
1194                                    LD->getChain(), LD->getBasePtr(),
1195                                    MemVT, LD->getMemOperand());
1196     SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
1197 
1198     DEBUG(dbgs() << "\nPromoting ";
1199           N->dump(&DAG);
1200           dbgs() << "\nTo: ";
1201           Result.getNode()->dump(&DAG);
1202           dbgs() << '\n');
1203     WorklistRemover DeadNodes(*this);
1204     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1205     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1206     deleteAndRecombine(N);
1207     AddToWorklist(Result.getNode());
1208     return true;
1209   }
1210   return false;
1211 }
1212 
1213 /// \brief Recursively delete a node which has no uses and any operands for
1214 /// which it is the only use.
1215 ///
1216 /// Note that this both deletes the nodes and removes them from the worklist.
1217 /// It also adds any nodes who have had a user deleted to the worklist as they
1218 /// may now have only one use and subject to other combines.
1219 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1220   if (!N->use_empty())
1221     return false;
1222 
1223   SmallSetVector<SDNode *, 16> Nodes;
1224   Nodes.insert(N);
1225   do {
1226     N = Nodes.pop_back_val();
1227     if (!N)
1228       continue;
1229 
1230     if (N->use_empty()) {
1231       for (const SDValue &ChildN : N->op_values())
1232         Nodes.insert(ChildN.getNode());
1233 
1234       removeFromWorklist(N);
1235       DAG.DeleteNode(N);
1236     } else {
1237       AddToWorklist(N);
1238     }
1239   } while (!Nodes.empty());
1240   return true;
1241 }
1242 
1243 //===----------------------------------------------------------------------===//
1244 //  Main DAG Combiner implementation
1245 //===----------------------------------------------------------------------===//
1246 
1247 void DAGCombiner::Run(CombineLevel AtLevel) {
1248   // set the instance variables, so that the various visit routines may use it.
1249   Level = AtLevel;
1250   LegalOperations = Level >= AfterLegalizeVectorOps;
1251   LegalTypes = Level >= AfterLegalizeTypes;
1252 
1253   // Add all the dag nodes to the worklist.
1254   for (SDNode &Node : DAG.allnodes())
1255     AddToWorklist(&Node);
1256 
1257   // Create a dummy node (which is not added to allnodes), that adds a reference
1258   // to the root node, preventing it from being deleted, and tracking any
1259   // changes of the root.
1260   HandleSDNode Dummy(DAG.getRoot());
1261 
1262   // While the worklist isn't empty, find a node and try to combine it.
1263   while (!WorklistMap.empty()) {
1264     SDNode *N;
1265     // The Worklist holds the SDNodes in order, but it may contain null entries.
1266     do {
1267       N = Worklist.pop_back_val();
1268     } while (!N);
1269 
1270     bool GoodWorklistEntry = WorklistMap.erase(N);
1271     (void)GoodWorklistEntry;
1272     assert(GoodWorklistEntry &&
1273            "Found a worklist entry without a corresponding map entry!");
1274 
1275     // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1276     // N is deleted from the DAG, since they too may now be dead or may have a
1277     // reduced number of uses, allowing other xforms.
1278     if (recursivelyDeleteUnusedNodes(N))
1279       continue;
1280 
1281     WorklistRemover DeadNodes(*this);
1282 
1283     // If this combine is running after legalizing the DAG, re-legalize any
1284     // nodes pulled off the worklist.
1285     if (Level == AfterLegalizeDAG) {
1286       SmallSetVector<SDNode *, 16> UpdatedNodes;
1287       bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1288 
1289       for (SDNode *LN : UpdatedNodes) {
1290         AddToWorklist(LN);
1291         AddUsersToWorklist(LN);
1292       }
1293       if (!NIsValid)
1294         continue;
1295     }
1296 
1297     DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1298 
1299     // Add any operands of the new node which have not yet been combined to the
1300     // worklist as well. Because the worklist uniques things already, this
1301     // won't repeatedly process the same operand.
1302     CombinedNodes.insert(N);
1303     for (const SDValue &ChildN : N->op_values())
1304       if (!CombinedNodes.count(ChildN.getNode()))
1305         AddToWorklist(ChildN.getNode());
1306 
1307     SDValue RV = combine(N);
1308 
1309     if (!RV.getNode())
1310       continue;
1311 
1312     ++NodesCombined;
1313 
1314     // If we get back the same node we passed in, rather than a new node or
1315     // zero, we know that the node must have defined multiple values and
1316     // CombineTo was used.  Since CombineTo takes care of the worklist
1317     // mechanics for us, we have no work to do in this case.
1318     if (RV.getNode() == N)
1319       continue;
1320 
1321     assert(N->getOpcode() != ISD::DELETED_NODE &&
1322            RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1323            "Node was deleted but visit returned new node!");
1324 
1325     DEBUG(dbgs() << " ... into: ";
1326           RV.getNode()->dump(&DAG));
1327 
1328     // Transfer debug value.
1329     DAG.TransferDbgValues(SDValue(N, 0), RV);
1330     if (N->getNumValues() == RV.getNode()->getNumValues())
1331       DAG.ReplaceAllUsesWith(N, RV.getNode());
1332     else {
1333       assert(N->getValueType(0) == RV.getValueType() &&
1334              N->getNumValues() == 1 && "Type mismatch");
1335       SDValue OpV = RV;
1336       DAG.ReplaceAllUsesWith(N, &OpV);
1337     }
1338 
1339     // Push the new node and any users onto the worklist
1340     AddToWorklist(RV.getNode());
1341     AddUsersToWorklist(RV.getNode());
1342 
1343     // Finally, if the node is now dead, remove it from the graph.  The node
1344     // may not be dead if the replacement process recursively simplified to
1345     // something else needing this node. This will also take care of adding any
1346     // operands which have lost a user to the worklist.
1347     recursivelyDeleteUnusedNodes(N);
1348   }
1349 
1350   // If the root changed (e.g. it was a dead load, update the root).
1351   DAG.setRoot(Dummy.getValue());
1352   DAG.RemoveDeadNodes();
1353 }
1354 
1355 SDValue DAGCombiner::visit(SDNode *N) {
1356   switch (N->getOpcode()) {
1357   default: break;
1358   case ISD::TokenFactor:        return visitTokenFactor(N);
1359   case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1360   case ISD::ADD:                return visitADD(N);
1361   case ISD::SUB:                return visitSUB(N);
1362   case ISD::ADDC:               return visitADDC(N);
1363   case ISD::SUBC:               return visitSUBC(N);
1364   case ISD::ADDE:               return visitADDE(N);
1365   case ISD::SUBE:               return visitSUBE(N);
1366   case ISD::MUL:                return visitMUL(N);
1367   case ISD::SDIV:               return visitSDIV(N);
1368   case ISD::UDIV:               return visitUDIV(N);
1369   case ISD::SREM:
1370   case ISD::UREM:               return visitREM(N);
1371   case ISD::MULHU:              return visitMULHU(N);
1372   case ISD::MULHS:              return visitMULHS(N);
1373   case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1374   case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1375   case ISD::SMULO:              return visitSMULO(N);
1376   case ISD::UMULO:              return visitUMULO(N);
1377   case ISD::SMIN:
1378   case ISD::SMAX:
1379   case ISD::UMIN:
1380   case ISD::UMAX:               return visitIMINMAX(N);
1381   case ISD::AND:                return visitAND(N);
1382   case ISD::OR:                 return visitOR(N);
1383   case ISD::XOR:                return visitXOR(N);
1384   case ISD::SHL:                return visitSHL(N);
1385   case ISD::SRA:                return visitSRA(N);
1386   case ISD::SRL:                return visitSRL(N);
1387   case ISD::ROTR:
1388   case ISD::ROTL:               return visitRotate(N);
1389   case ISD::BSWAP:              return visitBSWAP(N);
1390   case ISD::CTLZ:               return visitCTLZ(N);
1391   case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1392   case ISD::CTTZ:               return visitCTTZ(N);
1393   case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1394   case ISD::CTPOP:              return visitCTPOP(N);
1395   case ISD::SELECT:             return visitSELECT(N);
1396   case ISD::VSELECT:            return visitVSELECT(N);
1397   case ISD::SELECT_CC:          return visitSELECT_CC(N);
1398   case ISD::SETCC:              return visitSETCC(N);
1399   case ISD::SETCCE:             return visitSETCCE(N);
1400   case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1401   case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1402   case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1403   case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1404   case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
1405   case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
1406   case ISD::TRUNCATE:           return visitTRUNCATE(N);
1407   case ISD::BITCAST:            return visitBITCAST(N);
1408   case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1409   case ISD::FADD:               return visitFADD(N);
1410   case ISD::FSUB:               return visitFSUB(N);
1411   case ISD::FMUL:               return visitFMUL(N);
1412   case ISD::FMA:                return visitFMA(N);
1413   case ISD::FDIV:               return visitFDIV(N);
1414   case ISD::FREM:               return visitFREM(N);
1415   case ISD::FSQRT:              return visitFSQRT(N);
1416   case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1417   case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1418   case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1419   case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1420   case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1421   case ISD::FP_ROUND:           return visitFP_ROUND(N);
1422   case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1423   case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1424   case ISD::FNEG:               return visitFNEG(N);
1425   case ISD::FABS:               return visitFABS(N);
1426   case ISD::FFLOOR:             return visitFFLOOR(N);
1427   case ISD::FMINNUM:            return visitFMINNUM(N);
1428   case ISD::FMAXNUM:            return visitFMAXNUM(N);
1429   case ISD::FCEIL:              return visitFCEIL(N);
1430   case ISD::FTRUNC:             return visitFTRUNC(N);
1431   case ISD::BRCOND:             return visitBRCOND(N);
1432   case ISD::BR_CC:              return visitBR_CC(N);
1433   case ISD::LOAD:               return visitLOAD(N);
1434   case ISD::STORE:              return visitSTORE(N);
1435   case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1436   case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1437   case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1438   case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1439   case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1440   case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1441   case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N);
1442   case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N);
1443   case ISD::MGATHER:            return visitMGATHER(N);
1444   case ISD::MLOAD:              return visitMLOAD(N);
1445   case ISD::MSCATTER:           return visitMSCATTER(N);
1446   case ISD::MSTORE:             return visitMSTORE(N);
1447   case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N);
1448   case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N);
1449   }
1450   return SDValue();
1451 }
1452 
1453 SDValue DAGCombiner::combine(SDNode *N) {
1454   SDValue RV = visit(N);
1455 
1456   // If nothing happened, try a target-specific DAG combine.
1457   if (!RV.getNode()) {
1458     assert(N->getOpcode() != ISD::DELETED_NODE &&
1459            "Node was deleted but visit returned NULL!");
1460 
1461     if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1462         TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1463 
1464       // Expose the DAG combiner to the target combiner impls.
1465       TargetLowering::DAGCombinerInfo
1466         DagCombineInfo(DAG, Level, false, this);
1467 
1468       RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1469     }
1470   }
1471 
1472   // If nothing happened still, try promoting the operation.
1473   if (!RV.getNode()) {
1474     switch (N->getOpcode()) {
1475     default: break;
1476     case ISD::ADD:
1477     case ISD::SUB:
1478     case ISD::MUL:
1479     case ISD::AND:
1480     case ISD::OR:
1481     case ISD::XOR:
1482       RV = PromoteIntBinOp(SDValue(N, 0));
1483       break;
1484     case ISD::SHL:
1485     case ISD::SRA:
1486     case ISD::SRL:
1487       RV = PromoteIntShiftOp(SDValue(N, 0));
1488       break;
1489     case ISD::SIGN_EXTEND:
1490     case ISD::ZERO_EXTEND:
1491     case ISD::ANY_EXTEND:
1492       RV = PromoteExtend(SDValue(N, 0));
1493       break;
1494     case ISD::LOAD:
1495       if (PromoteLoad(SDValue(N, 0)))
1496         RV = SDValue(N, 0);
1497       break;
1498     }
1499   }
1500 
1501   // If N is a commutative binary node, try commuting it to enable more
1502   // sdisel CSE.
1503   if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1504       N->getNumValues() == 1) {
1505     SDValue N0 = N->getOperand(0);
1506     SDValue N1 = N->getOperand(1);
1507 
1508     // Constant operands are canonicalized to RHS.
1509     if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1510       SDValue Ops[] = {N1, N0};
1511       SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1512                                             N->getFlags());
1513       if (CSENode)
1514         return SDValue(CSENode, 0);
1515     }
1516   }
1517 
1518   return RV;
1519 }
1520 
1521 /// Given a node, return its input chain if it has one, otherwise return a null
1522 /// sd operand.
1523 static SDValue getInputChainForNode(SDNode *N) {
1524   if (unsigned NumOps = N->getNumOperands()) {
1525     if (N->getOperand(0).getValueType() == MVT::Other)
1526       return N->getOperand(0);
1527     if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1528       return N->getOperand(NumOps-1);
1529     for (unsigned i = 1; i < NumOps-1; ++i)
1530       if (N->getOperand(i).getValueType() == MVT::Other)
1531         return N->getOperand(i);
1532   }
1533   return SDValue();
1534 }
1535 
1536 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1537   // If N has two operands, where one has an input chain equal to the other,
1538   // the 'other' chain is redundant.
1539   if (N->getNumOperands() == 2) {
1540     if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1541       return N->getOperand(0);
1542     if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1543       return N->getOperand(1);
1544   }
1545 
1546   SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1547   SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1548   SmallPtrSet<SDNode*, 16> SeenOps;
1549   bool Changed = false;             // If we should replace this token factor.
1550 
1551   // Start out with this token factor.
1552   TFs.push_back(N);
1553 
1554   // Iterate through token factors.  The TFs grows when new token factors are
1555   // encountered.
1556   for (unsigned i = 0; i < TFs.size(); ++i) {
1557     SDNode *TF = TFs[i];
1558 
1559     // Check each of the operands.
1560     for (const SDValue &Op : TF->op_values()) {
1561 
1562       switch (Op.getOpcode()) {
1563       case ISD::EntryToken:
1564         // Entry tokens don't need to be added to the list. They are
1565         // redundant.
1566         Changed = true;
1567         break;
1568 
1569       case ISD::TokenFactor:
1570         if (Op.hasOneUse() &&
1571             std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1572           // Queue up for processing.
1573           TFs.push_back(Op.getNode());
1574           // Clean up in case the token factor is removed.
1575           AddToWorklist(Op.getNode());
1576           Changed = true;
1577           break;
1578         }
1579         // Fall thru
1580 
1581       default:
1582         // Only add if it isn't already in the list.
1583         if (SeenOps.insert(Op.getNode()).second)
1584           Ops.push_back(Op);
1585         else
1586           Changed = true;
1587         break;
1588       }
1589     }
1590   }
1591 
1592   SDValue Result;
1593 
1594   // If we've changed things around then replace token factor.
1595   if (Changed) {
1596     if (Ops.empty()) {
1597       // The entry token is the only possible outcome.
1598       Result = DAG.getEntryNode();
1599     } else {
1600       // New and improved token factor.
1601       Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
1602     }
1603 
1604     // Add users to worklist if AA is enabled, since it may introduce
1605     // a lot of new chained token factors while removing memory deps.
1606     bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
1607       : DAG.getSubtarget().useAA();
1608     return CombineTo(N, Result, UseAA /*add to worklist*/);
1609   }
1610 
1611   return Result;
1612 }
1613 
1614 /// MERGE_VALUES can always be eliminated.
1615 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1616   WorklistRemover DeadNodes(*this);
1617   // Replacing results may cause a different MERGE_VALUES to suddenly
1618   // be CSE'd with N, and carry its uses with it. Iterate until no
1619   // uses remain, to ensure that the node can be safely deleted.
1620   // First add the users of this node to the work list so that they
1621   // can be tried again once they have new operands.
1622   AddUsersToWorklist(N);
1623   do {
1624     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1625       DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1626   } while (!N->use_empty());
1627   deleteAndRecombine(N);
1628   return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1629 }
1630 
1631 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
1632 /// ConstantSDNode pointer else nullptr.
1633 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
1634   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
1635   return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
1636 }
1637 
1638 SDValue DAGCombiner::visitADD(SDNode *N) {
1639   SDValue N0 = N->getOperand(0);
1640   SDValue N1 = N->getOperand(1);
1641   EVT VT = N0.getValueType();
1642 
1643   // fold vector ops
1644   if (VT.isVector()) {
1645     if (SDValue FoldedVOp = SimplifyVBinOp(N))
1646       return FoldedVOp;
1647 
1648     // fold (add x, 0) -> x, vector edition
1649     if (ISD::isBuildVectorAllZeros(N1.getNode()))
1650       return N0;
1651     if (ISD::isBuildVectorAllZeros(N0.getNode()))
1652       return N1;
1653   }
1654 
1655   // fold (add x, undef) -> undef
1656   if (N0.isUndef())
1657     return N0;
1658   if (N1.isUndef())
1659     return N1;
1660   if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
1661     // canonicalize constant to RHS
1662     if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
1663       return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1664     // fold (add c1, c2) -> c1+c2
1665     return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT,
1666                                       N0.getNode(), N1.getNode());
1667   }
1668   // fold (add x, 0) -> x
1669   if (isNullConstant(N1))
1670     return N0;
1671   // fold ((c1-A)+c2) -> (c1+c2)-A
1672   if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1)) {
1673     if (N0.getOpcode() == ISD::SUB)
1674       if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) {
1675         SDLoc DL(N);
1676         return DAG.getNode(ISD::SUB, DL, VT,
1677                            DAG.getConstant(N1C->getAPIntValue()+
1678                                            N0C->getAPIntValue(), DL, VT),
1679                            N0.getOperand(1));
1680       }
1681   }
1682   // reassociate add
1683   if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1))
1684     return RADD;
1685   // fold ((0-A) + B) -> B-A
1686   if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0)))
1687     return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1688   // fold (A + (0-B)) -> A-B
1689   if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0)))
1690     return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1691   // fold (A+(B-A)) -> B
1692   if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1693     return N1.getOperand(0);
1694   // fold ((B-A)+A) -> B
1695   if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1696     return N0.getOperand(0);
1697   // fold (A+(B-(A+C))) to (B-C)
1698   if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1699       N0 == N1.getOperand(1).getOperand(0))
1700     return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1701                        N1.getOperand(1).getOperand(1));
1702   // fold (A+(B-(C+A))) to (B-C)
1703   if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1704       N0 == N1.getOperand(1).getOperand(1))
1705     return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1706                        N1.getOperand(1).getOperand(0));
1707   // fold (A+((B-A)+or-C)) to (B+or-C)
1708   if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1709       N1.getOperand(0).getOpcode() == ISD::SUB &&
1710       N0 == N1.getOperand(0).getOperand(1))
1711     return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1712                        N1.getOperand(0).getOperand(0), N1.getOperand(1));
1713 
1714   // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1715   if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1716     SDValue N00 = N0.getOperand(0);
1717     SDValue N01 = N0.getOperand(1);
1718     SDValue N10 = N1.getOperand(0);
1719     SDValue N11 = N1.getOperand(1);
1720 
1721     if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1722       return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1723                          DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1724                          DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1725   }
1726 
1727   if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1728     return SDValue(N, 0);
1729 
1730   // fold (a+b) -> (a|b) iff a and b share no bits.
1731   if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::OR, VT)) &&
1732       VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1))
1733     return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1734 
1735   // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1736   if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
1737       isNullConstant(N1.getOperand(0).getOperand(0)))
1738     return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1739                        DAG.getNode(ISD::SHL, SDLoc(N), VT,
1740                                    N1.getOperand(0).getOperand(1),
1741                                    N1.getOperand(1)));
1742   if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB &&
1743       isNullConstant(N0.getOperand(0).getOperand(0)))
1744     return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1745                        DAG.getNode(ISD::SHL, SDLoc(N), VT,
1746                                    N0.getOperand(0).getOperand(1),
1747                                    N0.getOperand(1)));
1748 
1749   if (N1.getOpcode() == ISD::AND) {
1750     SDValue AndOp0 = N1.getOperand(0);
1751     unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1752     unsigned DestBits = VT.getScalarType().getSizeInBits();
1753 
1754     // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1755     // and similar xforms where the inner op is either ~0 or 0.
1756     if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) {
1757       SDLoc DL(N);
1758       return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1759     }
1760   }
1761 
1762   // add (sext i1), X -> sub X, (zext i1)
1763   if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1764       N0.getOperand(0).getValueType() == MVT::i1 &&
1765       !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1766     SDLoc DL(N);
1767     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1768     return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1769   }
1770 
1771   // add X, (sextinreg Y i1) -> sub X, (and Y 1)
1772   if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1773     VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
1774     if (TN->getVT() == MVT::i1) {
1775       SDLoc DL(N);
1776       SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
1777                                  DAG.getConstant(1, DL, VT));
1778       return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
1779     }
1780   }
1781 
1782   return SDValue();
1783 }
1784 
1785 SDValue DAGCombiner::visitADDC(SDNode *N) {
1786   SDValue N0 = N->getOperand(0);
1787   SDValue N1 = N->getOperand(1);
1788   EVT VT = N0.getValueType();
1789 
1790   // If the flag result is dead, turn this into an ADD.
1791   if (!N->hasAnyUseOfValue(1))
1792     return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1793                      DAG.getNode(ISD::CARRY_FALSE,
1794                                  SDLoc(N), MVT::Glue));
1795 
1796   // canonicalize constant to RHS.
1797   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1798   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1799   if (N0C && !N1C)
1800     return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1801 
1802   // fold (addc x, 0) -> x + no carry out
1803   if (isNullConstant(N1))
1804     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1805                                         SDLoc(N), MVT::Glue));
1806 
1807   // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1808   APInt LHSZero, LHSOne;
1809   APInt RHSZero, RHSOne;
1810   DAG.computeKnownBits(N0, LHSZero, LHSOne);
1811 
1812   if (LHSZero.getBoolValue()) {
1813     DAG.computeKnownBits(N1, RHSZero, RHSOne);
1814 
1815     // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1816     // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1817     if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1818       return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1819                        DAG.getNode(ISD::CARRY_FALSE,
1820                                    SDLoc(N), MVT::Glue));
1821   }
1822 
1823   return SDValue();
1824 }
1825 
1826 SDValue DAGCombiner::visitADDE(SDNode *N) {
1827   SDValue N0 = N->getOperand(0);
1828   SDValue N1 = N->getOperand(1);
1829   SDValue CarryIn = N->getOperand(2);
1830 
1831   // canonicalize constant to RHS
1832   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1833   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1834   if (N0C && !N1C)
1835     return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1836                        N1, N0, CarryIn);
1837 
1838   // fold (adde x, y, false) -> (addc x, y)
1839   if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1840     return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1841 
1842   return SDValue();
1843 }
1844 
1845 // Since it may not be valid to emit a fold to zero for vector initializers
1846 // check if we can before folding.
1847 static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1848                              SelectionDAG &DAG,
1849                              bool LegalOperations, bool LegalTypes) {
1850   if (!VT.isVector())
1851     return DAG.getConstant(0, DL, VT);
1852   if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
1853     return DAG.getConstant(0, DL, VT);
1854   return SDValue();
1855 }
1856 
1857 SDValue DAGCombiner::visitSUB(SDNode *N) {
1858   SDValue N0 = N->getOperand(0);
1859   SDValue N1 = N->getOperand(1);
1860   EVT VT = N0.getValueType();
1861 
1862   // fold vector ops
1863   if (VT.isVector()) {
1864     if (SDValue FoldedVOp = SimplifyVBinOp(N))
1865       return FoldedVOp;
1866 
1867     // fold (sub x, 0) -> x, vector edition
1868     if (ISD::isBuildVectorAllZeros(N1.getNode()))
1869       return N0;
1870   }
1871 
1872   // fold (sub x, x) -> 0
1873   // FIXME: Refactor this and xor and other similar operations together.
1874   if (N0 == N1)
1875     return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1876   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
1877       DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
1878     // fold (sub c1, c2) -> c1-c2
1879     return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT,
1880                                       N0.getNode(), N1.getNode());
1881   }
1882   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
1883   ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
1884   // fold (sub x, c) -> (add x, -c)
1885   if (N1C) {
1886     SDLoc DL(N);
1887     return DAG.getNode(ISD::ADD, DL, VT, N0,
1888                        DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
1889   }
1890   // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1891   if (isAllOnesConstant(N0))
1892     return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1893   // fold A-(A-B) -> B
1894   if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1895     return N1.getOperand(1);
1896   // fold (A+B)-A -> B
1897   if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1898     return N0.getOperand(1);
1899   // fold (A+B)-B -> A
1900   if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1901     return N0.getOperand(0);
1902   // fold C2-(A+C1) -> (C2-C1)-A
1903   ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr :
1904     dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1905   if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1906     SDLoc DL(N);
1907     SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1908                                    DL, VT);
1909     return DAG.getNode(ISD::SUB, DL, VT, NewC,
1910                        N1.getOperand(0));
1911   }
1912   // fold ((A+(B+or-C))-B) -> A+or-C
1913   if (N0.getOpcode() == ISD::ADD &&
1914       (N0.getOperand(1).getOpcode() == ISD::SUB ||
1915        N0.getOperand(1).getOpcode() == ISD::ADD) &&
1916       N0.getOperand(1).getOperand(0) == N1)
1917     return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1918                        N0.getOperand(0), N0.getOperand(1).getOperand(1));
1919   // fold ((A+(C+B))-B) -> A+C
1920   if (N0.getOpcode() == ISD::ADD &&
1921       N0.getOperand(1).getOpcode() == ISD::ADD &&
1922       N0.getOperand(1).getOperand(1) == N1)
1923     return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1924                        N0.getOperand(0), N0.getOperand(1).getOperand(0));
1925   // fold ((A-(B-C))-C) -> A-B
1926   if (N0.getOpcode() == ISD::SUB &&
1927       N0.getOperand(1).getOpcode() == ISD::SUB &&
1928       N0.getOperand(1).getOperand(1) == N1)
1929     return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1930                        N0.getOperand(0), N0.getOperand(1).getOperand(0));
1931 
1932   // If either operand of a sub is undef, the result is undef
1933   if (N0.isUndef())
1934     return N0;
1935   if (N1.isUndef())
1936     return N1;
1937 
1938   // If the relocation model supports it, consider symbol offsets.
1939   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1940     if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1941       // fold (sub Sym, c) -> Sym-c
1942       if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1943         return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1944                                     GA->getOffset() -
1945                                       (uint64_t)N1C->getSExtValue());
1946       // fold (sub Sym+c1, Sym+c2) -> c1-c2
1947       if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1948         if (GA->getGlobal() == GB->getGlobal())
1949           return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1950                                  SDLoc(N), VT);
1951     }
1952 
1953   // sub X, (sextinreg Y i1) -> add X, (and Y 1)
1954   if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1955     VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
1956     if (TN->getVT() == MVT::i1) {
1957       SDLoc DL(N);
1958       SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
1959                                  DAG.getConstant(1, DL, VT));
1960       return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
1961     }
1962   }
1963 
1964   return SDValue();
1965 }
1966 
1967 SDValue DAGCombiner::visitSUBC(SDNode *N) {
1968   SDValue N0 = N->getOperand(0);
1969   SDValue N1 = N->getOperand(1);
1970   EVT VT = N0.getValueType();
1971   SDLoc DL(N);
1972 
1973   // If the flag result is dead, turn this into an SUB.
1974   if (!N->hasAnyUseOfValue(1))
1975     return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
1976                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
1977 
1978   // fold (subc x, x) -> 0 + no borrow
1979   if (N0 == N1)
1980     return CombineTo(N, DAG.getConstant(0, DL, VT),
1981                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
1982 
1983   // fold (subc x, 0) -> x + no borrow
1984   if (isNullConstant(N1))
1985     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
1986 
1987   // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1988   if (isAllOnesConstant(N0))
1989     return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
1990                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
1991 
1992   return SDValue();
1993 }
1994 
1995 SDValue DAGCombiner::visitSUBE(SDNode *N) {
1996   SDValue N0 = N->getOperand(0);
1997   SDValue N1 = N->getOperand(1);
1998   SDValue CarryIn = N->getOperand(2);
1999 
2000   // fold (sube x, y, false) -> (subc x, y)
2001   if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2002     return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
2003 
2004   return SDValue();
2005 }
2006 
2007 SDValue DAGCombiner::visitMUL(SDNode *N) {
2008   SDValue N0 = N->getOperand(0);
2009   SDValue N1 = N->getOperand(1);
2010   EVT VT = N0.getValueType();
2011 
2012   // fold (mul x, undef) -> 0
2013   if (N0.isUndef() || N1.isUndef())
2014     return DAG.getConstant(0, SDLoc(N), VT);
2015 
2016   bool N0IsConst = false;
2017   bool N1IsConst = false;
2018   bool N1IsOpaqueConst = false;
2019   bool N0IsOpaqueConst = false;
2020   APInt ConstValue0, ConstValue1;
2021   // fold vector ops
2022   if (VT.isVector()) {
2023     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2024       return FoldedVOp;
2025 
2026     N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
2027     N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
2028   } else {
2029     N0IsConst = isa<ConstantSDNode>(N0);
2030     if (N0IsConst) {
2031       ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
2032       N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
2033     }
2034     N1IsConst = isa<ConstantSDNode>(N1);
2035     if (N1IsConst) {
2036       ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
2037       N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
2038     }
2039   }
2040 
2041   // fold (mul c1, c2) -> c1*c2
2042   if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
2043     return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
2044                                       N0.getNode(), N1.getNode());
2045 
2046   // canonicalize constant to RHS (vector doesn't have to splat)
2047   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2048      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2049     return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
2050   // fold (mul x, 0) -> 0
2051   if (N1IsConst && ConstValue1 == 0)
2052     return N1;
2053   // We require a splat of the entire scalar bit width for non-contiguous
2054   // bit patterns.
2055   bool IsFullSplat =
2056     ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
2057   // fold (mul x, 1) -> x
2058   if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
2059     return N0;
2060   // fold (mul x, -1) -> 0-x
2061   if (N1IsConst && ConstValue1.isAllOnesValue()) {
2062     SDLoc DL(N);
2063     return DAG.getNode(ISD::SUB, DL, VT,
2064                        DAG.getConstant(0, DL, VT), N0);
2065   }
2066   // fold (mul x, (1 << c)) -> x << c
2067   if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() &&
2068       IsFullSplat) {
2069     SDLoc DL(N);
2070     return DAG.getNode(ISD::SHL, DL, VT, N0,
2071                        DAG.getConstant(ConstValue1.logBase2(), DL,
2072                                        getShiftAmountTy(N0.getValueType())));
2073   }
2074   // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
2075   if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() &&
2076       IsFullSplat) {
2077     unsigned Log2Val = (-ConstValue1).logBase2();
2078     SDLoc DL(N);
2079     // FIXME: If the input is something that is easily negated (e.g. a
2080     // single-use add), we should put the negate there.
2081     return DAG.getNode(ISD::SUB, DL, VT,
2082                        DAG.getConstant(0, DL, VT),
2083                        DAG.getNode(ISD::SHL, DL, VT, N0,
2084                             DAG.getConstant(Log2Val, DL,
2085                                       getShiftAmountTy(N0.getValueType()))));
2086   }
2087 
2088   APInt Val;
2089   // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
2090   if (N1IsConst && N0.getOpcode() == ISD::SHL &&
2091       (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
2092                      isa<ConstantSDNode>(N0.getOperand(1)))) {
2093     SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
2094                              N1, N0.getOperand(1));
2095     AddToWorklist(C3.getNode());
2096     return DAG.getNode(ISD::MUL, SDLoc(N), VT,
2097                        N0.getOperand(0), C3);
2098   }
2099 
2100   // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
2101   // use.
2102   {
2103     SDValue Sh(nullptr,0), Y(nullptr,0);
2104     // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
2105     if (N0.getOpcode() == ISD::SHL &&
2106         (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
2107                        isa<ConstantSDNode>(N0.getOperand(1))) &&
2108         N0.getNode()->hasOneUse()) {
2109       Sh = N0; Y = N1;
2110     } else if (N1.getOpcode() == ISD::SHL &&
2111                isa<ConstantSDNode>(N1.getOperand(1)) &&
2112                N1.getNode()->hasOneUse()) {
2113       Sh = N1; Y = N0;
2114     }
2115 
2116     if (Sh.getNode()) {
2117       SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2118                                 Sh.getOperand(0), Y);
2119       return DAG.getNode(ISD::SHL, SDLoc(N), VT,
2120                          Mul, Sh.getOperand(1));
2121     }
2122   }
2123 
2124   // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
2125   if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
2126       N0.getOpcode() == ISD::ADD &&
2127       DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
2128       isMulAddWithConstProfitable(N, N0, N1))
2129       return DAG.getNode(ISD::ADD, SDLoc(N), VT,
2130                          DAG.getNode(ISD::MUL, SDLoc(N0), VT,
2131                                      N0.getOperand(0), N1),
2132                          DAG.getNode(ISD::MUL, SDLoc(N1), VT,
2133                                      N0.getOperand(1), N1));
2134 
2135   // reassociate mul
2136   if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1))
2137     return RMUL;
2138 
2139   return SDValue();
2140 }
2141 
2142 /// Return true if divmod libcall is available.
2143 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2144                                      const TargetLowering &TLI) {
2145   RTLIB::Libcall LC;
2146   EVT NodeType = Node->getValueType(0);
2147   if (!NodeType.isSimple())
2148     return false;
2149   switch (NodeType.getSimpleVT().SimpleTy) {
2150   default: return false; // No libcall for vector types.
2151   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2152   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2153   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2154   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2155   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2156   }
2157 
2158   return TLI.getLibcallName(LC) != nullptr;
2159 }
2160 
2161 /// Issue divrem if both quotient and remainder are needed.
2162 SDValue DAGCombiner::useDivRem(SDNode *Node) {
2163   if (Node->use_empty())
2164     return SDValue(); // This is a dead node, leave it alone.
2165 
2166   unsigned Opcode = Node->getOpcode();
2167   bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
2168   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2169 
2170   // DivMod lib calls can still work on non-legal types if using lib-calls.
2171   EVT VT = Node->getValueType(0);
2172   if (VT.isVector() || !VT.isInteger())
2173     return SDValue();
2174 
2175   if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
2176     return SDValue();
2177 
2178   // If DIVREM is going to get expanded into a libcall,
2179   // but there is no libcall available, then don't combine.
2180   if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
2181       !isDivRemLibcallAvailable(Node, isSigned, TLI))
2182     return SDValue();
2183 
2184   // If div is legal, it's better to do the normal expansion
2185   unsigned OtherOpcode = 0;
2186   if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
2187     OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
2188     if (TLI.isOperationLegalOrCustom(Opcode, VT))
2189       return SDValue();
2190   } else {
2191     OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
2192     if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
2193       return SDValue();
2194   }
2195 
2196   SDValue Op0 = Node->getOperand(0);
2197   SDValue Op1 = Node->getOperand(1);
2198   SDValue combined;
2199   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2200          UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2201     SDNode *User = *UI;
2202     if (User == Node || User->use_empty())
2203       continue;
2204     // Convert the other matching node(s), too;
2205     // otherwise, the DIVREM may get target-legalized into something
2206     // target-specific that we won't be able to recognize.
2207     unsigned UserOpc = User->getOpcode();
2208     if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
2209         User->getOperand(0) == Op0 &&
2210         User->getOperand(1) == Op1) {
2211       if (!combined) {
2212         if (UserOpc == OtherOpcode) {
2213           SDVTList VTs = DAG.getVTList(VT, VT);
2214           combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
2215         } else if (UserOpc == DivRemOpc) {
2216           combined = SDValue(User, 0);
2217         } else {
2218           assert(UserOpc == Opcode);
2219           continue;
2220         }
2221       }
2222       if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
2223         CombineTo(User, combined);
2224       else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
2225         CombineTo(User, combined.getValue(1));
2226     }
2227   }
2228   return combined;
2229 }
2230 
2231 SDValue DAGCombiner::visitSDIV(SDNode *N) {
2232   SDValue N0 = N->getOperand(0);
2233   SDValue N1 = N->getOperand(1);
2234   EVT VT = N->getValueType(0);
2235 
2236   // fold vector ops
2237   if (VT.isVector())
2238     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2239       return FoldedVOp;
2240 
2241   SDLoc DL(N);
2242 
2243   // fold (sdiv c1, c2) -> c1/c2
2244   ConstantSDNode *N0C = isConstOrConstSplat(N0);
2245   ConstantSDNode *N1C = isConstOrConstSplat(N1);
2246   if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
2247     return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
2248   // fold (sdiv X, 1) -> X
2249   if (N1C && N1C->isOne())
2250     return N0;
2251   // fold (sdiv X, -1) -> 0-X
2252   if (N1C && N1C->isAllOnesValue())
2253     return DAG.getNode(ISD::SUB, DL, VT,
2254                        DAG.getConstant(0, DL, VT), N0);
2255 
2256   // If we know the sign bits of both operands are zero, strength reduce to a
2257   // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
2258   if (!VT.isVector()) {
2259     if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2260       return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
2261   }
2262 
2263   // fold (sdiv X, pow2) -> simple ops after legalize
2264   // FIXME: We check for the exact bit here because the generic lowering gives
2265   // better results in that case. The target-specific lowering should learn how
2266   // to handle exact sdivs efficiently.
2267   if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
2268       !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() &&
2269       (N1C->getAPIntValue().isPowerOf2() ||
2270        (-N1C->getAPIntValue()).isPowerOf2())) {
2271     // Target-specific implementation of sdiv x, pow2.
2272     if (SDValue Res = BuildSDIVPow2(N))
2273       return Res;
2274 
2275     unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
2276 
2277     // Splat the sign bit into the register
2278     SDValue SGN =
2279         DAG.getNode(ISD::SRA, DL, VT, N0,
2280                     DAG.getConstant(VT.getScalarSizeInBits() - 1, DL,
2281                                     getShiftAmountTy(N0.getValueType())));
2282     AddToWorklist(SGN.getNode());
2283 
2284     // Add (N0 < 0) ? abs2 - 1 : 0;
2285     SDValue SRL =
2286         DAG.getNode(ISD::SRL, DL, VT, SGN,
2287                     DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL,
2288                                     getShiftAmountTy(SGN.getValueType())));
2289     SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL);
2290     AddToWorklist(SRL.getNode());
2291     AddToWorklist(ADD.getNode());    // Divide by pow2
2292     SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD,
2293                   DAG.getConstant(lg2, DL,
2294                                   getShiftAmountTy(ADD.getValueType())));
2295 
2296     // If we're dividing by a positive value, we're done.  Otherwise, we must
2297     // negate the result.
2298     if (N1C->getAPIntValue().isNonNegative())
2299       return SRA;
2300 
2301     AddToWorklist(SRA.getNode());
2302     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
2303   }
2304 
2305   // If integer divide is expensive and we satisfy the requirements, emit an
2306   // alternate sequence.  Targets may check function attributes for size/speed
2307   // trade-offs.
2308   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2309   if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr))
2310     if (SDValue Op = BuildSDIV(N))
2311       return Op;
2312 
2313   // sdiv, srem -> sdivrem
2314   // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true.
2315   // Otherwise, we break the simplification logic in visitREM().
2316   if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
2317     if (SDValue DivRem = useDivRem(N))
2318         return DivRem;
2319 
2320   // undef / X -> 0
2321   if (N0.isUndef())
2322     return DAG.getConstant(0, DL, VT);
2323   // X / undef -> undef
2324   if (N1.isUndef())
2325     return N1;
2326 
2327   return SDValue();
2328 }
2329 
2330 SDValue DAGCombiner::visitUDIV(SDNode *N) {
2331   SDValue N0 = N->getOperand(0);
2332   SDValue N1 = N->getOperand(1);
2333   EVT VT = N->getValueType(0);
2334 
2335   // fold vector ops
2336   if (VT.isVector())
2337     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2338       return FoldedVOp;
2339 
2340   SDLoc DL(N);
2341 
2342   // fold (udiv c1, c2) -> c1/c2
2343   ConstantSDNode *N0C = isConstOrConstSplat(N0);
2344   ConstantSDNode *N1C = isConstOrConstSplat(N1);
2345   if (N0C && N1C)
2346     if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
2347                                                     N0C, N1C))
2348       return Folded;
2349   // fold (udiv x, (1 << c)) -> x >>u c
2350   if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2())
2351     return DAG.getNode(ISD::SRL, DL, VT, N0,
2352                        DAG.getConstant(N1C->getAPIntValue().logBase2(), DL,
2353                                        getShiftAmountTy(N0.getValueType())));
2354 
2355   // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2356   if (N1.getOpcode() == ISD::SHL) {
2357     if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
2358       if (SHC->getAPIntValue().isPowerOf2()) {
2359         EVT ADDVT = N1.getOperand(1).getValueType();
2360         SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT,
2361                                   N1.getOperand(1),
2362                                   DAG.getConstant(SHC->getAPIntValue()
2363                                                                   .logBase2(),
2364                                                   DL, ADDVT));
2365         AddToWorklist(Add.getNode());
2366         return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
2367       }
2368     }
2369   }
2370 
2371   // fold (udiv x, c) -> alternate
2372   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2373   if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr))
2374     if (SDValue Op = BuildUDIV(N))
2375       return Op;
2376 
2377   // sdiv, srem -> sdivrem
2378   // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true.
2379   // Otherwise, we break the simplification logic in visitREM().
2380   if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
2381     if (SDValue DivRem = useDivRem(N))
2382         return DivRem;
2383 
2384   // undef / X -> 0
2385   if (N0.isUndef())
2386     return DAG.getConstant(0, DL, VT);
2387   // X / undef -> undef
2388   if (N1.isUndef())
2389     return N1;
2390 
2391   return SDValue();
2392 }
2393 
2394 // handles ISD::SREM and ISD::UREM
2395 SDValue DAGCombiner::visitREM(SDNode *N) {
2396   unsigned Opcode = N->getOpcode();
2397   SDValue N0 = N->getOperand(0);
2398   SDValue N1 = N->getOperand(1);
2399   EVT VT = N->getValueType(0);
2400   bool isSigned = (Opcode == ISD::SREM);
2401   SDLoc DL(N);
2402 
2403   // fold (rem c1, c2) -> c1%c2
2404   ConstantSDNode *N0C = isConstOrConstSplat(N0);
2405   ConstantSDNode *N1C = isConstOrConstSplat(N1);
2406   if (N0C && N1C)
2407     if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
2408       return Folded;
2409 
2410   if (isSigned) {
2411     // If we know the sign bits of both operands are zero, strength reduce to a
2412     // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2413     if (!VT.isVector()) {
2414       if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2415         return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
2416     }
2417   } else {
2418     // fold (urem x, pow2) -> (and x, pow2-1)
2419     if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
2420         N1C->getAPIntValue().isPowerOf2()) {
2421       return DAG.getNode(ISD::AND, DL, VT, N0,
2422                          DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT));
2423     }
2424     // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2425     if (N1.getOpcode() == ISD::SHL) {
2426       if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
2427         if (SHC->getAPIntValue().isPowerOf2()) {
2428           SDValue Add =
2429             DAG.getNode(ISD::ADD, DL, VT, N1,
2430                  DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL,
2431                                  VT));
2432           AddToWorklist(Add.getNode());
2433           return DAG.getNode(ISD::AND, DL, VT, N0, Add);
2434         }
2435       }
2436     }
2437   }
2438 
2439   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2440 
2441   // If X/C can be simplified by the division-by-constant logic, lower
2442   // X%C to the equivalent of X-X/C*C.
2443   // To avoid mangling nodes, this simplification requires that the combine()
2444   // call for the speculative DIV must not cause a DIVREM conversion.  We guard
2445   // against this by skipping the simplification if isIntDivCheap().  When
2446   // div is not cheap, combine will not return a DIVREM.  Regardless,
2447   // checking cheapness here makes sense since the simplification results in
2448   // fatter code.
2449   if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) {
2450     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
2451     SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1);
2452     AddToWorklist(Div.getNode());
2453     SDValue OptimizedDiv = combine(Div.getNode());
2454     if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2455       assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) &&
2456              (OptimizedDiv.getOpcode() != ISD::SDIVREM));
2457       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
2458       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
2459       AddToWorklist(Mul.getNode());
2460       return Sub;
2461     }
2462   }
2463 
2464   // sdiv, srem -> sdivrem
2465   if (SDValue DivRem = useDivRem(N))
2466     return DivRem.getValue(1);
2467 
2468   // undef % X -> 0
2469   if (N0.isUndef())
2470     return DAG.getConstant(0, DL, VT);
2471   // X % undef -> undef
2472   if (N1.isUndef())
2473     return N1;
2474 
2475   return SDValue();
2476 }
2477 
2478 SDValue DAGCombiner::visitMULHS(SDNode *N) {
2479   SDValue N0 = N->getOperand(0);
2480   SDValue N1 = N->getOperand(1);
2481   EVT VT = N->getValueType(0);
2482   SDLoc DL(N);
2483 
2484   // fold (mulhs x, 0) -> 0
2485   if (isNullConstant(N1))
2486     return N1;
2487   // fold (mulhs x, 1) -> (sra x, size(x)-1)
2488   if (isOneConstant(N1)) {
2489     SDLoc DL(N);
2490     return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
2491                        DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2492                                        DL,
2493                                        getShiftAmountTy(N0.getValueType())));
2494   }
2495   // fold (mulhs x, undef) -> 0
2496   if (N0.isUndef() || N1.isUndef())
2497     return DAG.getConstant(0, SDLoc(N), VT);
2498 
2499   // If the type twice as wide is legal, transform the mulhs to a wider multiply
2500   // plus a shift.
2501   if (VT.isSimple() && !VT.isVector()) {
2502     MVT Simple = VT.getSimpleVT();
2503     unsigned SimpleSize = Simple.getSizeInBits();
2504     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2505     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2506       N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2507       N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2508       N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2509       N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2510             DAG.getConstant(SimpleSize, DL,
2511                             getShiftAmountTy(N1.getValueType())));
2512       return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2513     }
2514   }
2515 
2516   return SDValue();
2517 }
2518 
2519 SDValue DAGCombiner::visitMULHU(SDNode *N) {
2520   SDValue N0 = N->getOperand(0);
2521   SDValue N1 = N->getOperand(1);
2522   EVT VT = N->getValueType(0);
2523   SDLoc DL(N);
2524 
2525   // fold (mulhu x, 0) -> 0
2526   if (isNullConstant(N1))
2527     return N1;
2528   // fold (mulhu x, 1) -> 0
2529   if (isOneConstant(N1))
2530     return DAG.getConstant(0, DL, N0.getValueType());
2531   // fold (mulhu x, undef) -> 0
2532   if (N0.isUndef() || N1.isUndef())
2533     return DAG.getConstant(0, DL, VT);
2534 
2535   // If the type twice as wide is legal, transform the mulhu to a wider multiply
2536   // plus a shift.
2537   if (VT.isSimple() && !VT.isVector()) {
2538     MVT Simple = VT.getSimpleVT();
2539     unsigned SimpleSize = Simple.getSizeInBits();
2540     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2541     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2542       N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2543       N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2544       N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2545       N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2546             DAG.getConstant(SimpleSize, DL,
2547                             getShiftAmountTy(N1.getValueType())));
2548       return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2549     }
2550   }
2551 
2552   return SDValue();
2553 }
2554 
2555 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
2556 /// give the opcodes for the two computations that are being performed. Return
2557 /// true if a simplification was made.
2558 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2559                                                 unsigned HiOp) {
2560   // If the high half is not needed, just compute the low half.
2561   bool HiExists = N->hasAnyUseOfValue(1);
2562   if (!HiExists &&
2563       (!LegalOperations ||
2564        TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
2565     SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
2566     return CombineTo(N, Res, Res);
2567   }
2568 
2569   // If the low half is not needed, just compute the high half.
2570   bool LoExists = N->hasAnyUseOfValue(0);
2571   if (!LoExists &&
2572       (!LegalOperations ||
2573        TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2574     SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
2575     return CombineTo(N, Res, Res);
2576   }
2577 
2578   // If both halves are used, return as it is.
2579   if (LoExists && HiExists)
2580     return SDValue();
2581 
2582   // If the two computed results can be simplified separately, separate them.
2583   if (LoExists) {
2584     SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
2585     AddToWorklist(Lo.getNode());
2586     SDValue LoOpt = combine(Lo.getNode());
2587     if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2588         (!LegalOperations ||
2589          TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2590       return CombineTo(N, LoOpt, LoOpt);
2591   }
2592 
2593   if (HiExists) {
2594     SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
2595     AddToWorklist(Hi.getNode());
2596     SDValue HiOpt = combine(Hi.getNode());
2597     if (HiOpt.getNode() && HiOpt != Hi &&
2598         (!LegalOperations ||
2599          TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2600       return CombineTo(N, HiOpt, HiOpt);
2601   }
2602 
2603   return SDValue();
2604 }
2605 
2606 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2607   if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
2608     return Res;
2609 
2610   EVT VT = N->getValueType(0);
2611   SDLoc DL(N);
2612 
2613   // If the type is twice as wide is legal, transform the mulhu to a wider
2614   // multiply plus a shift.
2615   if (VT.isSimple() && !VT.isVector()) {
2616     MVT Simple = VT.getSimpleVT();
2617     unsigned SimpleSize = Simple.getSizeInBits();
2618     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2619     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2620       SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2621       SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2622       Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2623       // Compute the high part as N1.
2624       Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2625             DAG.getConstant(SimpleSize, DL,
2626                             getShiftAmountTy(Lo.getValueType())));
2627       Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2628       // Compute the low part as N0.
2629       Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2630       return CombineTo(N, Lo, Hi);
2631     }
2632   }
2633 
2634   return SDValue();
2635 }
2636 
2637 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2638   if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
2639     return Res;
2640 
2641   EVT VT = N->getValueType(0);
2642   SDLoc DL(N);
2643 
2644   // If the type is twice as wide is legal, transform the mulhu to a wider
2645   // multiply plus a shift.
2646   if (VT.isSimple() && !VT.isVector()) {
2647     MVT Simple = VT.getSimpleVT();
2648     unsigned SimpleSize = Simple.getSizeInBits();
2649     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2650     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2651       SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2652       SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2653       Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2654       // Compute the high part as N1.
2655       Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2656             DAG.getConstant(SimpleSize, DL,
2657                             getShiftAmountTy(Lo.getValueType())));
2658       Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2659       // Compute the low part as N0.
2660       Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2661       return CombineTo(N, Lo, Hi);
2662     }
2663   }
2664 
2665   return SDValue();
2666 }
2667 
2668 SDValue DAGCombiner::visitSMULO(SDNode *N) {
2669   // (smulo x, 2) -> (saddo x, x)
2670   if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2671     if (C2->getAPIntValue() == 2)
2672       return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2673                          N->getOperand(0), N->getOperand(0));
2674 
2675   return SDValue();
2676 }
2677 
2678 SDValue DAGCombiner::visitUMULO(SDNode *N) {
2679   // (umulo x, 2) -> (uaddo x, x)
2680   if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2681     if (C2->getAPIntValue() == 2)
2682       return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2683                          N->getOperand(0), N->getOperand(0));
2684 
2685   return SDValue();
2686 }
2687 
2688 SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
2689   SDValue N0 = N->getOperand(0);
2690   SDValue N1 = N->getOperand(1);
2691   EVT VT = N0.getValueType();
2692 
2693   // fold vector ops
2694   if (VT.isVector())
2695     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2696       return FoldedVOp;
2697 
2698   // fold (add c1, c2) -> c1+c2
2699   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
2700   ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
2701   if (N0C && N1C)
2702     return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
2703 
2704   // canonicalize constant to RHS
2705   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2706      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2707     return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
2708 
2709   return SDValue();
2710 }
2711 
2712 /// If this is a binary operator with two operands of the same opcode, try to
2713 /// simplify it.
2714 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2715   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2716   EVT VT = N0.getValueType();
2717   assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2718 
2719   // Bail early if none of these transforms apply.
2720   if (N0.getNode()->getNumOperands() == 0) return SDValue();
2721 
2722   // For each of OP in AND/OR/XOR:
2723   // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2724   // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2725   // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2726   // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
2727   // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2728   //
2729   // do not sink logical op inside of a vector extend, since it may combine
2730   // into a vsetcc.
2731   EVT Op0VT = N0.getOperand(0).getValueType();
2732   if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2733        N0.getOpcode() == ISD::SIGN_EXTEND ||
2734        N0.getOpcode() == ISD::BSWAP ||
2735        // Avoid infinite looping with PromoteIntBinOp.
2736        (N0.getOpcode() == ISD::ANY_EXTEND &&
2737         (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2738        (N0.getOpcode() == ISD::TRUNCATE &&
2739         (!TLI.isZExtFree(VT, Op0VT) ||
2740          !TLI.isTruncateFree(Op0VT, VT)) &&
2741         TLI.isTypeLegal(Op0VT))) &&
2742       !VT.isVector() &&
2743       Op0VT == N1.getOperand(0).getValueType() &&
2744       (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2745     SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2746                                  N0.getOperand(0).getValueType(),
2747                                  N0.getOperand(0), N1.getOperand(0));
2748     AddToWorklist(ORNode.getNode());
2749     return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2750   }
2751 
2752   // For each of OP in SHL/SRL/SRA/AND...
2753   //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2754   //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2755   //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2756   if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2757        N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2758       N0.getOperand(1) == N1.getOperand(1)) {
2759     SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2760                                  N0.getOperand(0).getValueType(),
2761                                  N0.getOperand(0), N1.getOperand(0));
2762     AddToWorklist(ORNode.getNode());
2763     return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2764                        ORNode, N0.getOperand(1));
2765   }
2766 
2767   // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2768   // Only perform this optimization up until type legalization, before
2769   // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2770   // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2771   // we don't want to undo this promotion.
2772   // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2773   // on scalars.
2774   if ((N0.getOpcode() == ISD::BITCAST ||
2775        N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2776        Level <= AfterLegalizeTypes) {
2777     SDValue In0 = N0.getOperand(0);
2778     SDValue In1 = N1.getOperand(0);
2779     EVT In0Ty = In0.getValueType();
2780     EVT In1Ty = In1.getValueType();
2781     SDLoc DL(N);
2782     // If both incoming values are integers, and the original types are the
2783     // same.
2784     if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2785       SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2786       SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2787       AddToWorklist(Op.getNode());
2788       return BC;
2789     }
2790   }
2791 
2792   // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2793   // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2794   // If both shuffles use the same mask, and both shuffle within a single
2795   // vector, then it is worthwhile to move the swizzle after the operation.
2796   // The type-legalizer generates this pattern when loading illegal
2797   // vector types from memory. In many cases this allows additional shuffle
2798   // optimizations.
2799   // There are other cases where moving the shuffle after the xor/and/or
2800   // is profitable even if shuffles don't perform a swizzle.
2801   // If both shuffles use the same mask, and both shuffles have the same first
2802   // or second operand, then it might still be profitable to move the shuffle
2803   // after the xor/and/or operation.
2804   if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
2805     ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2806     ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2807 
2808     assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
2809            "Inputs to shuffles are not the same type");
2810 
2811     // Check that both shuffles use the same mask. The masks are known to be of
2812     // the same length because the result vector type is the same.
2813     // Check also that shuffles have only one use to avoid introducing extra
2814     // instructions.
2815     if (SVN0->hasOneUse() && SVN1->hasOneUse() &&
2816         SVN0->getMask().equals(SVN1->getMask())) {
2817       SDValue ShOp = N0->getOperand(1);
2818 
2819       // Don't try to fold this node if it requires introducing a
2820       // build vector of all zeros that might be illegal at this stage.
2821       if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) {
2822         if (!LegalTypes)
2823           ShOp = DAG.getConstant(0, SDLoc(N), VT);
2824         else
2825           ShOp = SDValue();
2826       }
2827 
2828       // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C)
2829       // (OR  (shuf (A, C), shuf (B, C)) -> shuf (OR  (A, B), C)
2830       // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0)
2831       if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
2832         SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2833                                       N0->getOperand(0), N1->getOperand(0));
2834         AddToWorklist(NewNode.getNode());
2835         return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp,
2836                                     &SVN0->getMask()[0]);
2837       }
2838 
2839       // Don't try to fold this node if it requires introducing a
2840       // build vector of all zeros that might be illegal at this stage.
2841       ShOp = N0->getOperand(0);
2842       if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) {
2843         if (!LegalTypes)
2844           ShOp = DAG.getConstant(0, SDLoc(N), VT);
2845         else
2846           ShOp = SDValue();
2847       }
2848 
2849       // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B))
2850       // (OR  (shuf (C, A), shuf (C, B)) -> shuf (C, OR  (A, B))
2851       // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B))
2852       if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) {
2853         SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2854                                       N0->getOperand(1), N1->getOperand(1));
2855         AddToWorklist(NewNode.getNode());
2856         return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode,
2857                                     &SVN0->getMask()[0]);
2858       }
2859     }
2860   }
2861 
2862   return SDValue();
2863 }
2864 
2865 /// This contains all DAGCombine rules which reduce two values combined by
2866 /// an And operation to a single value. This makes them reusable in the context
2867 /// of visitSELECT(). Rules involving constants are not included as
2868 /// visitSELECT() already handles those cases.
2869 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
2870                                   SDNode *LocReference) {
2871   EVT VT = N1.getValueType();
2872 
2873   // fold (and x, undef) -> 0
2874   if (N0.isUndef() || N1.isUndef())
2875     return DAG.getConstant(0, SDLoc(LocReference), VT);
2876   // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2877   SDValue LL, LR, RL, RR, CC0, CC1;
2878   if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2879     ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2880     ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2881 
2882     if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2883         LL.getValueType().isInteger()) {
2884       // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2885       if (isNullConstant(LR) && Op1 == ISD::SETEQ) {
2886         SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2887                                      LR.getValueType(), LL, RL);
2888         AddToWorklist(ORNode.getNode());
2889         return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
2890       }
2891       if (isAllOnesConstant(LR)) {
2892         // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2893         if (Op1 == ISD::SETEQ) {
2894           SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2895                                         LR.getValueType(), LL, RL);
2896           AddToWorklist(ANDNode.getNode());
2897           return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
2898         }
2899         // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
2900         if (Op1 == ISD::SETGT) {
2901           SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2902                                        LR.getValueType(), LL, RL);
2903           AddToWorklist(ORNode.getNode());
2904           return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
2905         }
2906       }
2907     }
2908     // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2909     if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2910         Op0 == Op1 && LL.getValueType().isInteger() &&
2911       Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
2912                             (isAllOnesConstant(LR) && isNullConstant(RR)))) {
2913       SDLoc DL(N0);
2914       SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(),
2915                                     LL, DAG.getConstant(1, DL,
2916                                                         LL.getValueType()));
2917       AddToWorklist(ADDNode.getNode());
2918       return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode,
2919                           DAG.getConstant(2, DL, LL.getValueType()),
2920                           ISD::SETUGE);
2921     }
2922     // canonicalize equivalent to ll == rl
2923     if (LL == RR && LR == RL) {
2924       Op1 = ISD::getSetCCSwappedOperands(Op1);
2925       std::swap(RL, RR);
2926     }
2927     if (LL == RL && LR == RR) {
2928       bool isInteger = LL.getValueType().isInteger();
2929       ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2930       if (Result != ISD::SETCC_INVALID &&
2931           (!LegalOperations ||
2932            (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2933             TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) {
2934         EVT CCVT = getSetCCResultType(LL.getValueType());
2935         if (N0.getValueType() == CCVT ||
2936             (!LegalOperations && N0.getValueType() == MVT::i1))
2937           return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
2938                               LL, LR, Result);
2939       }
2940     }
2941   }
2942 
2943   if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2944       VT.getSizeInBits() <= 64) {
2945     if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2946       APInt ADDC = ADDI->getAPIntValue();
2947       if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2948         // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2949         // immediate for an add, but it is legal if its top c2 bits are set,
2950         // transform the ADD so the immediate doesn't need to be materialized
2951         // in a register.
2952         if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2953           APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2954                                              SRLI->getZExtValue());
2955           if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2956             ADDC |= Mask;
2957             if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2958               SDLoc DL(N0);
2959               SDValue NewAdd =
2960                 DAG.getNode(ISD::ADD, DL, VT,
2961                             N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
2962               CombineTo(N0.getNode(), NewAdd);
2963               // Return N so it doesn't get rechecked!
2964               return SDValue(LocReference, 0);
2965             }
2966           }
2967         }
2968       }
2969     }
2970   }
2971 
2972   return SDValue();
2973 }
2974 
2975 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
2976                                    EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT,
2977                                    bool &NarrowLoad) {
2978   uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits();
2979 
2980   if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue()))
2981     return false;
2982 
2983   ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2984   LoadedVT = LoadN->getMemoryVT();
2985 
2986   if (ExtVT == LoadedVT &&
2987       (!LegalOperations ||
2988        TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
2989     // ZEXTLOAD will match without needing to change the size of the value being
2990     // loaded.
2991     NarrowLoad = false;
2992     return true;
2993   }
2994 
2995   // Do not change the width of a volatile load.
2996   if (LoadN->isVolatile())
2997     return false;
2998 
2999   // Do not generate loads of non-round integer types since these can
3000   // be expensive (and would be wrong if the type is not byte sized).
3001   if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
3002     return false;
3003 
3004   if (LegalOperations &&
3005       !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
3006     return false;
3007 
3008   if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
3009     return false;
3010 
3011   NarrowLoad = true;
3012   return true;
3013 }
3014 
3015 SDValue DAGCombiner::visitAND(SDNode *N) {
3016   SDValue N0 = N->getOperand(0);
3017   SDValue N1 = N->getOperand(1);
3018   EVT VT = N1.getValueType();
3019 
3020   // fold vector ops
3021   if (VT.isVector()) {
3022     if (SDValue FoldedVOp = SimplifyVBinOp(N))
3023       return FoldedVOp;
3024 
3025     // fold (and x, 0) -> 0, vector edition
3026     if (ISD::isBuildVectorAllZeros(N0.getNode()))
3027       // do not return N0, because undef node may exist in N0
3028       return DAG.getConstant(
3029           APInt::getNullValue(
3030               N0.getValueType().getScalarType().getSizeInBits()),
3031           SDLoc(N), N0.getValueType());
3032     if (ISD::isBuildVectorAllZeros(N1.getNode()))
3033       // do not return N1, because undef node may exist in N1
3034       return DAG.getConstant(
3035           APInt::getNullValue(
3036               N1.getValueType().getScalarType().getSizeInBits()),
3037           SDLoc(N), N1.getValueType());
3038 
3039     // fold (and x, -1) -> x, vector edition
3040     if (ISD::isBuildVectorAllOnes(N0.getNode()))
3041       return N1;
3042     if (ISD::isBuildVectorAllOnes(N1.getNode()))
3043       return N0;
3044   }
3045 
3046   // fold (and c1, c2) -> c1&c2
3047   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
3048   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3049   if (N0C && N1C && !N1C->isOpaque())
3050     return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
3051   // canonicalize constant to RHS
3052   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3053      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3054     return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
3055   // fold (and x, -1) -> x
3056   if (isAllOnesConstant(N1))
3057     return N0;
3058   // if (and x, c) is known to be zero, return 0
3059   unsigned BitWidth = VT.getScalarType().getSizeInBits();
3060   if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3061                                    APInt::getAllOnesValue(BitWidth)))
3062     return DAG.getConstant(0, SDLoc(N), VT);
3063   // reassociate and
3064   if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1))
3065     return RAND;
3066   // fold (and (or x, C), D) -> D if (C & D) == D
3067   if (N1C && N0.getOpcode() == ISD::OR)
3068     if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3069       if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
3070         return N1;
3071   // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
3072   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3073     SDValue N0Op0 = N0.getOperand(0);
3074     APInt Mask = ~N1C->getAPIntValue();
3075     Mask = Mask.trunc(N0Op0.getValueSizeInBits());
3076     if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
3077       SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
3078                                  N0.getValueType(), N0Op0);
3079 
3080       // Replace uses of the AND with uses of the Zero extend node.
3081       CombineTo(N, Zext);
3082 
3083       // We actually want to replace all uses of the any_extend with the
3084       // zero_extend, to avoid duplicating things.  This will later cause this
3085       // AND to be folded.
3086       CombineTo(N0.getNode(), Zext);
3087       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3088     }
3089   }
3090   // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
3091   // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
3092   // already be zero by virtue of the width of the base type of the load.
3093   //
3094   // the 'X' node here can either be nothing or an extract_vector_elt to catch
3095   // more cases.
3096   if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
3097        N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
3098        N0.getOperand(0).getOpcode() == ISD::LOAD) ||
3099       N0.getOpcode() == ISD::LOAD) {
3100     LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
3101                                          N0 : N0.getOperand(0) );
3102 
3103     // Get the constant (if applicable) the zero'th operand is being ANDed with.
3104     // This can be a pure constant or a vector splat, in which case we treat the
3105     // vector as a scalar and use the splat value.
3106     APInt Constant = APInt::getNullValue(1);
3107     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
3108       Constant = C->getAPIntValue();
3109     } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
3110       APInt SplatValue, SplatUndef;
3111       unsigned SplatBitSize;
3112       bool HasAnyUndefs;
3113       bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
3114                                              SplatBitSize, HasAnyUndefs);
3115       if (IsSplat) {
3116         // Undef bits can contribute to a possible optimisation if set, so
3117         // set them.
3118         SplatValue |= SplatUndef;
3119 
3120         // The splat value may be something like "0x00FFFFFF", which means 0 for
3121         // the first vector value and FF for the rest, repeating. We need a mask
3122         // that will apply equally to all members of the vector, so AND all the
3123         // lanes of the constant together.
3124         EVT VT = Vector->getValueType(0);
3125         unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
3126 
3127         // If the splat value has been compressed to a bitlength lower
3128         // than the size of the vector lane, we need to re-expand it to
3129         // the lane size.
3130         if (BitWidth > SplatBitSize)
3131           for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
3132                SplatBitSize < BitWidth;
3133                SplatBitSize = SplatBitSize * 2)
3134             SplatValue |= SplatValue.shl(SplatBitSize);
3135 
3136         // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
3137         // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
3138         if (SplatBitSize % BitWidth == 0) {
3139           Constant = APInt::getAllOnesValue(BitWidth);
3140           for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
3141             Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
3142         }
3143       }
3144     }
3145 
3146     // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
3147     // actually legal and isn't going to get expanded, else this is a false
3148     // optimisation.
3149     bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
3150                                                     Load->getValueType(0),
3151                                                     Load->getMemoryVT());
3152 
3153     // Resize the constant to the same size as the original memory access before
3154     // extension. If it is still the AllOnesValue then this AND is completely
3155     // unneeded.
3156     Constant =
3157       Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
3158 
3159     bool B;
3160     switch (Load->getExtensionType()) {
3161     default: B = false; break;
3162     case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
3163     case ISD::ZEXTLOAD:
3164     case ISD::NON_EXTLOAD: B = true; break;
3165     }
3166 
3167     if (B && Constant.isAllOnesValue()) {
3168       // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
3169       // preserve semantics once we get rid of the AND.
3170       SDValue NewLoad(Load, 0);
3171       if (Load->getExtensionType() == ISD::EXTLOAD) {
3172         NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
3173                               Load->getValueType(0), SDLoc(Load),
3174                               Load->getChain(), Load->getBasePtr(),
3175                               Load->getOffset(), Load->getMemoryVT(),
3176                               Load->getMemOperand());
3177         // Replace uses of the EXTLOAD with the new ZEXTLOAD.
3178         if (Load->getNumValues() == 3) {
3179           // PRE/POST_INC loads have 3 values.
3180           SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
3181                            NewLoad.getValue(2) };
3182           CombineTo(Load, To, 3, true);
3183         } else {
3184           CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
3185         }
3186       }
3187 
3188       // Fold the AND away, taking care not to fold to the old load node if we
3189       // replaced it.
3190       CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
3191 
3192       return SDValue(N, 0); // Return N so it doesn't get rechecked!
3193     }
3194   }
3195 
3196   // fold (and (load x), 255) -> (zextload x, i8)
3197   // fold (and (extload x, i16), 255) -> (zextload x, i8)
3198   // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
3199   if (N1C && (N0.getOpcode() == ISD::LOAD ||
3200               (N0.getOpcode() == ISD::ANY_EXTEND &&
3201                N0.getOperand(0).getOpcode() == ISD::LOAD))) {
3202     bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
3203     LoadSDNode *LN0 = HasAnyExt
3204       ? cast<LoadSDNode>(N0.getOperand(0))
3205       : cast<LoadSDNode>(N0);
3206     if (LN0->getExtensionType() != ISD::SEXTLOAD &&
3207         LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
3208       auto NarrowLoad = false;
3209       EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
3210       EVT ExtVT, LoadedVT;
3211       if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT,
3212                            NarrowLoad)) {
3213         if (!NarrowLoad) {
3214           SDValue NewLoad =
3215             DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
3216                            LN0->getChain(), LN0->getBasePtr(), ExtVT,
3217                            LN0->getMemOperand());
3218           AddToWorklist(N);
3219           CombineTo(LN0, NewLoad, NewLoad.getValue(1));
3220           return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3221         } else {
3222           EVT PtrType = LN0->getOperand(1).getValueType();
3223 
3224           unsigned Alignment = LN0->getAlignment();
3225           SDValue NewPtr = LN0->getBasePtr();
3226 
3227           // For big endian targets, we need to add an offset to the pointer
3228           // to load the correct bytes.  For little endian systems, we merely
3229           // need to read fewer bytes from the same pointer.
3230           if (DAG.getDataLayout().isBigEndian()) {
3231             unsigned LVTStoreBytes = LoadedVT.getStoreSize();
3232             unsigned EVTStoreBytes = ExtVT.getStoreSize();
3233             unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
3234             SDLoc DL(LN0);
3235             NewPtr = DAG.getNode(ISD::ADD, DL, PtrType,
3236                                  NewPtr, DAG.getConstant(PtrOff, DL, PtrType));
3237             Alignment = MinAlign(Alignment, PtrOff);
3238           }
3239 
3240           AddToWorklist(NewPtr.getNode());
3241 
3242           SDValue Load =
3243             DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
3244                            LN0->getChain(), NewPtr,
3245                            LN0->getPointerInfo(),
3246                            ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
3247                            LN0->isInvariant(), Alignment, LN0->getAAInfo());
3248           AddToWorklist(N);
3249           CombineTo(LN0, Load, Load.getValue(1));
3250           return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3251         }
3252       }
3253     }
3254   }
3255 
3256   if (SDValue Combined = visitANDLike(N0, N1, N))
3257     return Combined;
3258 
3259   // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
3260   if (N0.getOpcode() == N1.getOpcode())
3261     if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
3262       return Tmp;
3263 
3264   // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
3265   // fold (and (sra)) -> (and (srl)) when possible.
3266   if (!VT.isVector() &&
3267       SimplifyDemandedBits(SDValue(N, 0)))
3268     return SDValue(N, 0);
3269 
3270   // fold (zext_inreg (extload x)) -> (zextload x)
3271   if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
3272     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3273     EVT MemVT = LN0->getMemoryVT();
3274     // If we zero all the possible extended bits, then we can turn this into
3275     // a zextload if we are running before legalize or the operation is legal.
3276     unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
3277     if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
3278                            BitWidth - MemVT.getScalarType().getSizeInBits())) &&
3279         ((!LegalOperations && !LN0->isVolatile()) ||
3280          TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
3281       SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
3282                                        LN0->getChain(), LN0->getBasePtr(),
3283                                        MemVT, LN0->getMemOperand());
3284       AddToWorklist(N);
3285       CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3286       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3287     }
3288   }
3289   // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
3290   if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3291       N0.hasOneUse()) {
3292     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3293     EVT MemVT = LN0->getMemoryVT();
3294     // If we zero all the possible extended bits, then we can turn this into
3295     // a zextload if we are running before legalize or the operation is legal.
3296     unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
3297     if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
3298                            BitWidth - MemVT.getScalarType().getSizeInBits())) &&
3299         ((!LegalOperations && !LN0->isVolatile()) ||
3300          TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
3301       SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
3302                                        LN0->getChain(), LN0->getBasePtr(),
3303                                        MemVT, LN0->getMemOperand());
3304       AddToWorklist(N);
3305       CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3306       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3307     }
3308   }
3309   // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
3310   if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
3311     if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
3312                                            N0.getOperand(1), false))
3313       return BSwap;
3314   }
3315 
3316   return SDValue();
3317 }
3318 
3319 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
3320 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
3321                                         bool DemandHighBits) {
3322   if (!LegalOperations)
3323     return SDValue();
3324 
3325   EVT VT = N->getValueType(0);
3326   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
3327     return SDValue();
3328   if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3329     return SDValue();
3330 
3331   // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
3332   bool LookPassAnd0 = false;
3333   bool LookPassAnd1 = false;
3334   if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
3335       std::swap(N0, N1);
3336   if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
3337       std::swap(N0, N1);
3338   if (N0.getOpcode() == ISD::AND) {
3339     if (!N0.getNode()->hasOneUse())
3340       return SDValue();
3341     ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3342     if (!N01C || N01C->getZExtValue() != 0xFF00)
3343       return SDValue();
3344     N0 = N0.getOperand(0);
3345     LookPassAnd0 = true;
3346   }
3347 
3348   if (N1.getOpcode() == ISD::AND) {
3349     if (!N1.getNode()->hasOneUse())
3350       return SDValue();
3351     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
3352     if (!N11C || N11C->getZExtValue() != 0xFF)
3353       return SDValue();
3354     N1 = N1.getOperand(0);
3355     LookPassAnd1 = true;
3356   }
3357 
3358   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
3359     std::swap(N0, N1);
3360   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
3361     return SDValue();
3362   if (!N0.getNode()->hasOneUse() ||
3363       !N1.getNode()->hasOneUse())
3364     return SDValue();
3365 
3366   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3367   ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
3368   if (!N01C || !N11C)
3369     return SDValue();
3370   if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
3371     return SDValue();
3372 
3373   // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
3374   SDValue N00 = N0->getOperand(0);
3375   if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
3376     if (!N00.getNode()->hasOneUse())
3377       return SDValue();
3378     ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
3379     if (!N001C || N001C->getZExtValue() != 0xFF)
3380       return SDValue();
3381     N00 = N00.getOperand(0);
3382     LookPassAnd0 = true;
3383   }
3384 
3385   SDValue N10 = N1->getOperand(0);
3386   if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
3387     if (!N10.getNode()->hasOneUse())
3388       return SDValue();
3389     ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
3390     if (!N101C || N101C->getZExtValue() != 0xFF00)
3391       return SDValue();
3392     N10 = N10.getOperand(0);
3393     LookPassAnd1 = true;
3394   }
3395 
3396   if (N00 != N10)
3397     return SDValue();
3398 
3399   // Make sure everything beyond the low halfword gets set to zero since the SRL
3400   // 16 will clear the top bits.
3401   unsigned OpSizeInBits = VT.getSizeInBits();
3402   if (DemandHighBits && OpSizeInBits > 16) {
3403     // If the left-shift isn't masked out then the only way this is a bswap is
3404     // if all bits beyond the low 8 are 0. In that case the entire pattern
3405     // reduces to a left shift anyway: leave it for other parts of the combiner.
3406     if (!LookPassAnd0)
3407       return SDValue();
3408 
3409     // However, if the right shift isn't masked out then it might be because
3410     // it's not needed. See if we can spot that too.
3411     if (!LookPassAnd1 &&
3412         !DAG.MaskedValueIsZero(
3413             N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
3414       return SDValue();
3415   }
3416 
3417   SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
3418   if (OpSizeInBits > 16) {
3419     SDLoc DL(N);
3420     Res = DAG.getNode(ISD::SRL, DL, VT, Res,
3421                       DAG.getConstant(OpSizeInBits - 16, DL,
3422                                       getShiftAmountTy(VT)));
3423   }
3424   return Res;
3425 }
3426 
3427 /// Return true if the specified node is an element that makes up a 32-bit
3428 /// packed halfword byteswap.
3429 /// ((x & 0x000000ff) << 8) |
3430 /// ((x & 0x0000ff00) >> 8) |
3431 /// ((x & 0x00ff0000) << 8) |
3432 /// ((x & 0xff000000) >> 8)
3433 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
3434   if (!N.getNode()->hasOneUse())
3435     return false;
3436 
3437   unsigned Opc = N.getOpcode();
3438   if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
3439     return false;
3440 
3441   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3442   if (!N1C)
3443     return false;
3444 
3445   unsigned Num;
3446   switch (N1C->getZExtValue()) {
3447   default:
3448     return false;
3449   case 0xFF:       Num = 0; break;
3450   case 0xFF00:     Num = 1; break;
3451   case 0xFF0000:   Num = 2; break;
3452   case 0xFF000000: Num = 3; break;
3453   }
3454 
3455   // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3456   SDValue N0 = N.getOperand(0);
3457   if (Opc == ISD::AND) {
3458     if (Num == 0 || Num == 2) {
3459       // (x >> 8) & 0xff
3460       // (x >> 8) & 0xff0000
3461       if (N0.getOpcode() != ISD::SRL)
3462         return false;
3463       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3464       if (!C || C->getZExtValue() != 8)
3465         return false;
3466     } else {
3467       // (x << 8) & 0xff00
3468       // (x << 8) & 0xff000000
3469       if (N0.getOpcode() != ISD::SHL)
3470         return false;
3471       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3472       if (!C || C->getZExtValue() != 8)
3473         return false;
3474     }
3475   } else if (Opc == ISD::SHL) {
3476     // (x & 0xff) << 8
3477     // (x & 0xff0000) << 8
3478     if (Num != 0 && Num != 2)
3479       return false;
3480     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3481     if (!C || C->getZExtValue() != 8)
3482       return false;
3483   } else { // Opc == ISD::SRL
3484     // (x & 0xff00) >> 8
3485     // (x & 0xff000000) >> 8
3486     if (Num != 1 && Num != 3)
3487       return false;
3488     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3489     if (!C || C->getZExtValue() != 8)
3490       return false;
3491   }
3492 
3493   if (Parts[Num])
3494     return false;
3495 
3496   Parts[Num] = N0.getOperand(0).getNode();
3497   return true;
3498 }
3499 
3500 /// Match a 32-bit packed halfword bswap. That is
3501 /// ((x & 0x000000ff) << 8) |
3502 /// ((x & 0x0000ff00) >> 8) |
3503 /// ((x & 0x00ff0000) << 8) |
3504 /// ((x & 0xff000000) >> 8)
3505 /// => (rotl (bswap x), 16)
3506 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3507   if (!LegalOperations)
3508     return SDValue();
3509 
3510   EVT VT = N->getValueType(0);
3511   if (VT != MVT::i32)
3512     return SDValue();
3513   if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3514     return SDValue();
3515 
3516   // Look for either
3517   // (or (or (and), (and)), (or (and), (and)))
3518   // (or (or (or (and), (and)), (and)), (and))
3519   if (N0.getOpcode() != ISD::OR)
3520     return SDValue();
3521   SDValue N00 = N0.getOperand(0);
3522   SDValue N01 = N0.getOperand(1);
3523   SDNode *Parts[4] = {};
3524 
3525   if (N1.getOpcode() == ISD::OR &&
3526       N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3527     // (or (or (and), (and)), (or (and), (and)))
3528     SDValue N000 = N00.getOperand(0);
3529     if (!isBSwapHWordElement(N000, Parts))
3530       return SDValue();
3531 
3532     SDValue N001 = N00.getOperand(1);
3533     if (!isBSwapHWordElement(N001, Parts))
3534       return SDValue();
3535     SDValue N010 = N01.getOperand(0);
3536     if (!isBSwapHWordElement(N010, Parts))
3537       return SDValue();
3538     SDValue N011 = N01.getOperand(1);
3539     if (!isBSwapHWordElement(N011, Parts))
3540       return SDValue();
3541   } else {
3542     // (or (or (or (and), (and)), (and)), (and))
3543     if (!isBSwapHWordElement(N1, Parts))
3544       return SDValue();
3545     if (!isBSwapHWordElement(N01, Parts))
3546       return SDValue();
3547     if (N00.getOpcode() != ISD::OR)
3548       return SDValue();
3549     SDValue N000 = N00.getOperand(0);
3550     if (!isBSwapHWordElement(N000, Parts))
3551       return SDValue();
3552     SDValue N001 = N00.getOperand(1);
3553     if (!isBSwapHWordElement(N001, Parts))
3554       return SDValue();
3555   }
3556 
3557   // Make sure the parts are all coming from the same node.
3558   if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3559     return SDValue();
3560 
3561   SDLoc DL(N);
3562   SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
3563                               SDValue(Parts[0], 0));
3564 
3565   // Result of the bswap should be rotated by 16. If it's not legal, then
3566   // do  (x << 16) | (x >> 16).
3567   SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
3568   if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3569     return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
3570   if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3571     return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
3572   return DAG.getNode(ISD::OR, DL, VT,
3573                      DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
3574                      DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
3575 }
3576 
3577 /// This contains all DAGCombine rules which reduce two values combined by
3578 /// an Or operation to a single value \see visitANDLike().
3579 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) {
3580   EVT VT = N1.getValueType();
3581   // fold (or x, undef) -> -1
3582   if (!LegalOperations &&
3583       (N0.isUndef() || N1.isUndef())) {
3584     EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3585     return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()),
3586                            SDLoc(LocReference), VT);
3587   }
3588   // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3589   SDValue LL, LR, RL, RR, CC0, CC1;
3590   if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3591     ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3592     ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3593 
3594     if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) {
3595       // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3596       // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3597       if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3598         SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3599                                      LR.getValueType(), LL, RL);
3600         AddToWorklist(ORNode.getNode());
3601         return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
3602       }
3603       // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3604       // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3605       if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3606         SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3607                                       LR.getValueType(), LL, RL);
3608         AddToWorklist(ANDNode.getNode());
3609         return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
3610       }
3611     }
3612     // canonicalize equivalent to ll == rl
3613     if (LL == RR && LR == RL) {
3614       Op1 = ISD::getSetCCSwappedOperands(Op1);
3615       std::swap(RL, RR);
3616     }
3617     if (LL == RL && LR == RR) {
3618       bool isInteger = LL.getValueType().isInteger();
3619       ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3620       if (Result != ISD::SETCC_INVALID &&
3621           (!LegalOperations ||
3622            (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3623             TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) {
3624         EVT CCVT = getSetCCResultType(LL.getValueType());
3625         if (N0.getValueType() == CCVT ||
3626             (!LegalOperations && N0.getValueType() == MVT::i1))
3627           return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
3628                               LL, LR, Result);
3629       }
3630     }
3631   }
3632 
3633   // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3634   if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
3635       // Don't increase # computations.
3636       (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3637     // We can only do this xform if we know that bits from X that are set in C2
3638     // but not in C1 are already zero.  Likewise for Y.
3639     if (const ConstantSDNode *N0O1C =
3640         getAsNonOpaqueConstant(N0.getOperand(1))) {
3641       if (const ConstantSDNode *N1O1C =
3642           getAsNonOpaqueConstant(N1.getOperand(1))) {
3643         // We can only do this xform if we know that bits from X that are set in
3644         // C2 but not in C1 are already zero.  Likewise for Y.
3645         const APInt &LHSMask = N0O1C->getAPIntValue();
3646         const APInt &RHSMask = N1O1C->getAPIntValue();
3647 
3648         if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3649             DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3650           SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3651                                   N0.getOperand(0), N1.getOperand(0));
3652           SDLoc DL(LocReference);
3653           return DAG.getNode(ISD::AND, DL, VT, X,
3654                              DAG.getConstant(LHSMask | RHSMask, DL, VT));
3655         }
3656       }
3657     }
3658   }
3659 
3660   // (or (and X, M), (and X, N)) -> (and X, (or M, N))
3661   if (N0.getOpcode() == ISD::AND &&
3662       N1.getOpcode() == ISD::AND &&
3663       N0.getOperand(0) == N1.getOperand(0) &&
3664       // Don't increase # computations.
3665       (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3666     SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3667                             N0.getOperand(1), N1.getOperand(1));
3668     return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X);
3669   }
3670 
3671   return SDValue();
3672 }
3673 
3674 SDValue DAGCombiner::visitOR(SDNode *N) {
3675   SDValue N0 = N->getOperand(0);
3676   SDValue N1 = N->getOperand(1);
3677   EVT VT = N1.getValueType();
3678 
3679   // fold vector ops
3680   if (VT.isVector()) {
3681     if (SDValue FoldedVOp = SimplifyVBinOp(N))
3682       return FoldedVOp;
3683 
3684     // fold (or x, 0) -> x, vector edition
3685     if (ISD::isBuildVectorAllZeros(N0.getNode()))
3686       return N1;
3687     if (ISD::isBuildVectorAllZeros(N1.getNode()))
3688       return N0;
3689 
3690     // fold (or x, -1) -> -1, vector edition
3691     if (ISD::isBuildVectorAllOnes(N0.getNode()))
3692       // do not return N0, because undef node may exist in N0
3693       return DAG.getConstant(
3694           APInt::getAllOnesValue(
3695               N0.getValueType().getScalarType().getSizeInBits()),
3696           SDLoc(N), N0.getValueType());
3697     if (ISD::isBuildVectorAllOnes(N1.getNode()))
3698       // do not return N1, because undef node may exist in N1
3699       return DAG.getConstant(
3700           APInt::getAllOnesValue(
3701               N1.getValueType().getScalarType().getSizeInBits()),
3702           SDLoc(N), N1.getValueType());
3703 
3704     // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
3705     // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
3706     // Do this only if the resulting shuffle is legal.
3707     if (isa<ShuffleVectorSDNode>(N0) &&
3708         isa<ShuffleVectorSDNode>(N1) &&
3709         // Avoid folding a node with illegal type.
3710         TLI.isTypeLegal(VT) &&
3711         N0->getOperand(1) == N1->getOperand(1) &&
3712         ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) {
3713       bool CanFold = true;
3714       unsigned NumElts = VT.getVectorNumElements();
3715       const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
3716       const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
3717       // We construct two shuffle masks:
3718       // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand
3719       // and N1 as the second operand.
3720       // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand
3721       // and N0 as the second operand.
3722       // We do this because OR is commutable and therefore there might be
3723       // two ways to fold this node into a shuffle.
3724       SmallVector<int,4> Mask1;
3725       SmallVector<int,4> Mask2;
3726 
3727       for (unsigned i = 0; i != NumElts && CanFold; ++i) {
3728         int M0 = SV0->getMaskElt(i);
3729         int M1 = SV1->getMaskElt(i);
3730 
3731         // Both shuffle indexes are undef. Propagate Undef.
3732         if (M0 < 0 && M1 < 0) {
3733           Mask1.push_back(M0);
3734           Mask2.push_back(M0);
3735           continue;
3736         }
3737 
3738         if (M0 < 0 || M1 < 0 ||
3739             (M0 < (int)NumElts && M1 < (int)NumElts) ||
3740             (M0 >= (int)NumElts && M1 >= (int)NumElts)) {
3741           CanFold = false;
3742           break;
3743         }
3744 
3745         Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts);
3746         Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts);
3747       }
3748 
3749       if (CanFold) {
3750         // Fold this sequence only if the resulting shuffle is 'legal'.
3751         if (TLI.isShuffleMaskLegal(Mask1, VT))
3752           return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0),
3753                                       N1->getOperand(0), &Mask1[0]);
3754         if (TLI.isShuffleMaskLegal(Mask2, VT))
3755           return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0),
3756                                       N0->getOperand(0), &Mask2[0]);
3757       }
3758     }
3759   }
3760 
3761   // fold (or c1, c2) -> c1|c2
3762   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
3763   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3764   if (N0C && N1C && !N1C->isOpaque())
3765     return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
3766   // canonicalize constant to RHS
3767   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3768      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3769     return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3770   // fold (or x, 0) -> x
3771   if (isNullConstant(N1))
3772     return N0;
3773   // fold (or x, -1) -> -1
3774   if (isAllOnesConstant(N1))
3775     return N1;
3776   // fold (or x, c) -> c iff (x & ~c) == 0
3777   if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3778     return N1;
3779 
3780   if (SDValue Combined = visitORLike(N0, N1, N))
3781     return Combined;
3782 
3783   // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3784   if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
3785     return BSwap;
3786   if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
3787     return BSwap;
3788 
3789   // reassociate or
3790   if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1))
3791     return ROR;
3792   // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3793   // iff (c1 & c2) == 0.
3794   if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3795              isa<ConstantSDNode>(N0.getOperand(1))) {
3796     ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3797     if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) {
3798       if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
3799                                                    N1C, C1))
3800         return DAG.getNode(
3801             ISD::AND, SDLoc(N), VT,
3802             DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR);
3803       return SDValue();
3804     }
3805   }
3806   // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3807   if (N0.getOpcode() == N1.getOpcode())
3808     if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
3809       return Tmp;
3810 
3811   // See if this is some rotate idiom.
3812   if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3813     return SDValue(Rot, 0);
3814 
3815   // Simplify the operands using demanded-bits information.
3816   if (!VT.isVector() &&
3817       SimplifyDemandedBits(SDValue(N, 0)))
3818     return SDValue(N, 0);
3819 
3820   return SDValue();
3821 }
3822 
3823 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
3824 bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3825   if (Op.getOpcode() == ISD::AND) {
3826     if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
3827       Mask = Op.getOperand(1);
3828       Op = Op.getOperand(0);
3829     } else {
3830       return false;
3831     }
3832   }
3833 
3834   if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3835     Shift = Op;
3836     return true;
3837   }
3838 
3839   return false;
3840 }
3841 
3842 // Return true if we can prove that, whenever Neg and Pos are both in the
3843 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that
3844 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
3845 //
3846 //     (or (shift1 X, Neg), (shift2 X, Pos))
3847 //
3848 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
3849 // in direction shift1 by Neg.  The range [0, EltSize) means that we only need
3850 // to consider shift amounts with defined behavior.
3851 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) {
3852   // If EltSize is a power of 2 then:
3853   //
3854   //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
3855   //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
3856   //
3857   // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
3858   // for the stronger condition:
3859   //
3860   //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A]
3861   //
3862   // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
3863   // we can just replace Neg with Neg' for the rest of the function.
3864   //
3865   // In other cases we check for the even stronger condition:
3866   //
3867   //     Neg == EltSize - Pos                                    [B]
3868   //
3869   // for all Neg and Pos.  Note that the (or ...) then invokes undefined
3870   // behavior if Pos == 0 (and consequently Neg == EltSize).
3871   //
3872   // We could actually use [A] whenever EltSize is a power of 2, but the
3873   // only extra cases that it would match are those uninteresting ones
3874   // where Neg and Pos are never in range at the same time.  E.g. for
3875   // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
3876   // as well as (sub 32, Pos), but:
3877   //
3878   //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
3879   //
3880   // always invokes undefined behavior for 32-bit X.
3881   //
3882   // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
3883   unsigned MaskLoBits = 0;
3884   if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
3885     if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
3886       if (NegC->getAPIntValue() == EltSize - 1) {
3887         Neg = Neg.getOperand(0);
3888         MaskLoBits = Log2_64(EltSize);
3889       }
3890     }
3891   }
3892 
3893   // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
3894   if (Neg.getOpcode() != ISD::SUB)
3895     return false;
3896   ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
3897   if (!NegC)
3898     return false;
3899   SDValue NegOp1 = Neg.getOperand(1);
3900 
3901   // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
3902   // Pos'.  The truncation is redundant for the purpose of the equality.
3903   if (MaskLoBits && Pos.getOpcode() == ISD::AND)
3904     if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
3905       if (PosC->getAPIntValue() == EltSize - 1)
3906         Pos = Pos.getOperand(0);
3907 
3908   // The condition we need is now:
3909   //
3910   //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
3911   //
3912   // If NegOp1 == Pos then we need:
3913   //
3914   //              EltSize & Mask == NegC & Mask
3915   //
3916   // (because "x & Mask" is a truncation and distributes through subtraction).
3917   APInt Width;
3918   if (Pos == NegOp1)
3919     Width = NegC->getAPIntValue();
3920 
3921   // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
3922   // Then the condition we want to prove becomes:
3923   //
3924   //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
3925   //
3926   // which, again because "x & Mask" is a truncation, becomes:
3927   //
3928   //                NegC & Mask == (EltSize - PosC) & Mask
3929   //             EltSize & Mask == (NegC + PosC) & Mask
3930   else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
3931     if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
3932       Width = PosC->getAPIntValue() + NegC->getAPIntValue();
3933     else
3934       return false;
3935   } else
3936     return false;
3937 
3938   // Now we just need to check that EltSize & Mask == Width & Mask.
3939   if (MaskLoBits)
3940     // EltSize & Mask is 0 since Mask is EltSize - 1.
3941     return Width.getLoBits(MaskLoBits) == 0;
3942   return Width == EltSize;
3943 }
3944 
3945 // A subroutine of MatchRotate used once we have found an OR of two opposite
3946 // shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces
3947 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
3948 // former being preferred if supported.  InnerPos and InnerNeg are Pos and
3949 // Neg with outer conversions stripped away.
3950 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
3951                                        SDValue Neg, SDValue InnerPos,
3952                                        SDValue InnerNeg, unsigned PosOpcode,
3953                                        unsigned NegOpcode, SDLoc DL) {
3954   // fold (or (shl x, (*ext y)),
3955   //          (srl x, (*ext (sub 32, y)))) ->
3956   //   (rotl x, y) or (rotr x, (sub 32, y))
3957   //
3958   // fold (or (shl x, (*ext (sub 32, y))),
3959   //          (srl x, (*ext y))) ->
3960   //   (rotr x, y) or (rotl x, (sub 32, y))
3961   EVT VT = Shifted.getValueType();
3962   if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) {
3963     bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
3964     return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
3965                        HasPos ? Pos : Neg).getNode();
3966   }
3967 
3968   return nullptr;
3969 }
3970 
3971 // MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3972 // idioms for rotate, and if the target supports rotation instructions, generate
3973 // a rot[lr].
3974 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3975   // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3976   EVT VT = LHS.getValueType();
3977   if (!TLI.isTypeLegal(VT)) return nullptr;
3978 
3979   // The target must have at least one rotate flavor.
3980   bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3981   bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3982   if (!HasROTL && !HasROTR) return nullptr;
3983 
3984   // Match "(X shl/srl V1) & V2" where V2 may not be present.
3985   SDValue LHSShift;   // The shift.
3986   SDValue LHSMask;    // AND value if any.
3987   if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3988     return nullptr; // Not part of a rotate.
3989 
3990   SDValue RHSShift;   // The shift.
3991   SDValue RHSMask;    // AND value if any.
3992   if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3993     return nullptr; // Not part of a rotate.
3994 
3995   if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3996     return nullptr;   // Not shifting the same value.
3997 
3998   if (LHSShift.getOpcode() == RHSShift.getOpcode())
3999     return nullptr;   // Shifts must disagree.
4000 
4001   // Canonicalize shl to left side in a shl/srl pair.
4002   if (RHSShift.getOpcode() == ISD::SHL) {
4003     std::swap(LHS, RHS);
4004     std::swap(LHSShift, RHSShift);
4005     std::swap(LHSMask, RHSMask);
4006   }
4007 
4008   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4009   SDValue LHSShiftArg = LHSShift.getOperand(0);
4010   SDValue LHSShiftAmt = LHSShift.getOperand(1);
4011   SDValue RHSShiftArg = RHSShift.getOperand(0);
4012   SDValue RHSShiftAmt = RHSShift.getOperand(1);
4013 
4014   // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
4015   // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
4016   if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) {
4017     uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue();
4018     uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue();
4019     if ((LShVal + RShVal) != EltSizeInBits)
4020       return nullptr;
4021 
4022     SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
4023                               LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
4024 
4025     // If there is an AND of either shifted operand, apply it to the result.
4026     if (LHSMask.getNode() || RHSMask.getNode()) {
4027       APInt AllBits = APInt::getAllOnesValue(EltSizeInBits);
4028       SDValue Mask = DAG.getConstant(AllBits, DL, VT);
4029 
4030       if (LHSMask.getNode()) {
4031         APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal);
4032         Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
4033                            DAG.getNode(ISD::OR, DL, VT, LHSMask,
4034                                        DAG.getConstant(RHSBits, DL, VT)));
4035       }
4036       if (RHSMask.getNode()) {
4037         APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal);
4038         Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
4039                            DAG.getNode(ISD::OR, DL, VT, RHSMask,
4040                                        DAG.getConstant(LHSBits, DL, VT)));
4041       }
4042 
4043       Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
4044     }
4045 
4046     return Rot.getNode();
4047   }
4048 
4049   // If there is a mask here, and we have a variable shift, we can't be sure
4050   // that we're masking out the right stuff.
4051   if (LHSMask.getNode() || RHSMask.getNode())
4052     return nullptr;
4053 
4054   // If the shift amount is sign/zext/any-extended just peel it off.
4055   SDValue LExtOp0 = LHSShiftAmt;
4056   SDValue RExtOp0 = RHSShiftAmt;
4057   if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
4058        LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
4059        LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
4060        LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
4061       (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
4062        RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
4063        RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
4064        RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
4065     LExtOp0 = LHSShiftAmt.getOperand(0);
4066     RExtOp0 = RHSShiftAmt.getOperand(0);
4067   }
4068 
4069   SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
4070                                    LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
4071   if (TryL)
4072     return TryL;
4073 
4074   SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
4075                                    RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
4076   if (TryR)
4077     return TryR;
4078 
4079   return nullptr;
4080 }
4081 
4082 SDValue DAGCombiner::visitXOR(SDNode *N) {
4083   SDValue N0 = N->getOperand(0);
4084   SDValue N1 = N->getOperand(1);
4085   EVT VT = N0.getValueType();
4086 
4087   // fold vector ops
4088   if (VT.isVector()) {
4089     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4090       return FoldedVOp;
4091 
4092     // fold (xor x, 0) -> x, vector edition
4093     if (ISD::isBuildVectorAllZeros(N0.getNode()))
4094       return N1;
4095     if (ISD::isBuildVectorAllZeros(N1.getNode()))
4096       return N0;
4097   }
4098 
4099   // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
4100   if (N0.isUndef() && N1.isUndef())
4101     return DAG.getConstant(0, SDLoc(N), VT);
4102   // fold (xor x, undef) -> undef
4103   if (N0.isUndef())
4104     return N0;
4105   if (N1.isUndef())
4106     return N1;
4107   // fold (xor c1, c2) -> c1^c2
4108   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4109   ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
4110   if (N0C && N1C)
4111     return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C);
4112   // canonicalize constant to RHS
4113   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4114      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4115     return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
4116   // fold (xor x, 0) -> x
4117   if (isNullConstant(N1))
4118     return N0;
4119   // reassociate xor
4120   if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1))
4121     return RXOR;
4122 
4123   // fold !(x cc y) -> (x !cc y)
4124   SDValue LHS, RHS, CC;
4125   if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
4126     bool isInt = LHS.getValueType().isInteger();
4127     ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
4128                                                isInt);
4129 
4130     if (!LegalOperations ||
4131         TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
4132       switch (N0.getOpcode()) {
4133       default:
4134         llvm_unreachable("Unhandled SetCC Equivalent!");
4135       case ISD::SETCC:
4136         return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
4137       case ISD::SELECT_CC:
4138         return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
4139                                N0.getOperand(3), NotCC);
4140       }
4141     }
4142   }
4143 
4144   // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
4145   if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND &&
4146       N0.getNode()->hasOneUse() &&
4147       isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
4148     SDValue V = N0.getOperand(0);
4149     SDLoc DL(N0);
4150     V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V,
4151                     DAG.getConstant(1, DL, V.getValueType()));
4152     AddToWorklist(V.getNode());
4153     return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
4154   }
4155 
4156   // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
4157   if (isOneConstant(N1) && VT == MVT::i1 &&
4158       (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
4159     SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4160     if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
4161       unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
4162       LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
4163       RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
4164       AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
4165       return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
4166     }
4167   }
4168   // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
4169   if (isAllOnesConstant(N1) &&
4170       (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
4171     SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4172     if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
4173       unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
4174       LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
4175       RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
4176       AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
4177       return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
4178     }
4179   }
4180   // fold (xor (and x, y), y) -> (and (not x), y)
4181   if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
4182       N0->getOperand(1) == N1) {
4183     SDValue X = N0->getOperand(0);
4184     SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
4185     AddToWorklist(NotX.getNode());
4186     return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
4187   }
4188   // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
4189   if (N1C && N0.getOpcode() == ISD::XOR) {
4190     if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) {
4191       SDLoc DL(N);
4192       return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
4193                          DAG.getConstant(N1C->getAPIntValue() ^
4194                                          N00C->getAPIntValue(), DL, VT));
4195     }
4196     if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) {
4197       SDLoc DL(N);
4198       return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
4199                          DAG.getConstant(N1C->getAPIntValue() ^
4200                                          N01C->getAPIntValue(), DL, VT));
4201     }
4202   }
4203   // fold (xor x, x) -> 0
4204   if (N0 == N1)
4205     return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
4206 
4207   // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
4208   // Here is a concrete example of this equivalence:
4209   // i16   x ==  14
4210   // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000
4211   // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
4212   //
4213   // =>
4214   //
4215   // i16     ~1      == 0b1111111111111110
4216   // i16 rol(~1, 14) == 0b1011111111111111
4217   //
4218   // Some additional tips to help conceptualize this transform:
4219   // - Try to see the operation as placing a single zero in a value of all ones.
4220   // - There exists no value for x which would allow the result to contain zero.
4221   // - Values of x larger than the bitwidth are undefined and do not require a
4222   //   consistent result.
4223   // - Pushing the zero left requires shifting one bits in from the right.
4224   // A rotate left of ~1 is a nice way of achieving the desired result.
4225   if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL
4226       && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
4227     SDLoc DL(N);
4228     return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
4229                        N0.getOperand(1));
4230   }
4231 
4232   // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
4233   if (N0.getOpcode() == N1.getOpcode())
4234     if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
4235       return Tmp;
4236 
4237   // Simplify the expression using non-local knowledge.
4238   if (!VT.isVector() &&
4239       SimplifyDemandedBits(SDValue(N, 0)))
4240     return SDValue(N, 0);
4241 
4242   return SDValue();
4243 }
4244 
4245 /// Handle transforms common to the three shifts, when the shift amount is a
4246 /// constant.
4247 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
4248   SDNode *LHS = N->getOperand(0).getNode();
4249   if (!LHS->hasOneUse()) return SDValue();
4250 
4251   // We want to pull some binops through shifts, so that we have (and (shift))
4252   // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
4253   // thing happens with address calculations, so it's important to canonicalize
4254   // it.
4255   bool HighBitSet = false;  // Can we transform this if the high bit is set?
4256 
4257   switch (LHS->getOpcode()) {
4258   default: return SDValue();
4259   case ISD::OR:
4260   case ISD::XOR:
4261     HighBitSet = false; // We can only transform sra if the high bit is clear.
4262     break;
4263   case ISD::AND:
4264     HighBitSet = true;  // We can only transform sra if the high bit is set.
4265     break;
4266   case ISD::ADD:
4267     if (N->getOpcode() != ISD::SHL)
4268       return SDValue(); // only shl(add) not sr[al](add).
4269     HighBitSet = false; // We can only transform sra if the high bit is clear.
4270     break;
4271   }
4272 
4273   // We require the RHS of the binop to be a constant and not opaque as well.
4274   ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
4275   if (!BinOpCst) return SDValue();
4276 
4277   // FIXME: disable this unless the input to the binop is a shift by a constant.
4278   // If it is not a shift, it pessimizes some common cases like:
4279   //
4280   //    void foo(int *X, int i) { X[i & 1235] = 1; }
4281   //    int bar(int *X, int i) { return X[i & 255]; }
4282   SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
4283   if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
4284        BinOpLHSVal->getOpcode() != ISD::SRA &&
4285        BinOpLHSVal->getOpcode() != ISD::SRL) ||
4286       !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
4287     return SDValue();
4288 
4289   EVT VT = N->getValueType(0);
4290 
4291   // If this is a signed shift right, and the high bit is modified by the
4292   // logical operation, do not perform the transformation. The highBitSet
4293   // boolean indicates the value of the high bit of the constant which would
4294   // cause it to be modified for this operation.
4295   if (N->getOpcode() == ISD::SRA) {
4296     bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
4297     if (BinOpRHSSignSet != HighBitSet)
4298       return SDValue();
4299   }
4300 
4301   if (!TLI.isDesirableToCommuteWithShift(LHS))
4302     return SDValue();
4303 
4304   // Fold the constants, shifting the binop RHS by the shift amount.
4305   SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
4306                                N->getValueType(0),
4307                                LHS->getOperand(1), N->getOperand(1));
4308   assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
4309 
4310   // Create the new shift.
4311   SDValue NewShift = DAG.getNode(N->getOpcode(),
4312                                  SDLoc(LHS->getOperand(0)),
4313                                  VT, LHS->getOperand(0), N->getOperand(1));
4314 
4315   // Create the new binop.
4316   return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
4317 }
4318 
4319 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
4320   assert(N->getOpcode() == ISD::TRUNCATE);
4321   assert(N->getOperand(0).getOpcode() == ISD::AND);
4322 
4323   // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
4324   if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
4325     SDValue N01 = N->getOperand(0).getOperand(1);
4326 
4327     if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) {
4328       if (!N01C->isOpaque()) {
4329         EVT TruncVT = N->getValueType(0);
4330         SDValue N00 = N->getOperand(0).getOperand(0);
4331         APInt TruncC = N01C->getAPIntValue();
4332         TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits());
4333         SDLoc DL(N);
4334 
4335         return DAG.getNode(ISD::AND, DL, TruncVT,
4336                            DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00),
4337                            DAG.getConstant(TruncC, DL, TruncVT));
4338       }
4339     }
4340   }
4341 
4342   return SDValue();
4343 }
4344 
4345 SDValue DAGCombiner::visitRotate(SDNode *N) {
4346   // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
4347   if (N->getOperand(1).getOpcode() == ISD::TRUNCATE &&
4348       N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) {
4349     if (SDValue NewOp1 =
4350             distributeTruncateThroughAnd(N->getOperand(1).getNode()))
4351       return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
4352                          N->getOperand(0), NewOp1);
4353   }
4354   return SDValue();
4355 }
4356 
4357 SDValue DAGCombiner::visitSHL(SDNode *N) {
4358   SDValue N0 = N->getOperand(0);
4359   SDValue N1 = N->getOperand(1);
4360   EVT VT = N0.getValueType();
4361   unsigned OpSizeInBits = VT.getScalarSizeInBits();
4362 
4363   // fold vector ops
4364   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4365   if (VT.isVector()) {
4366     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4367       return FoldedVOp;
4368 
4369     BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
4370     // If setcc produces all-one true value then:
4371     // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
4372     if (N1CV && N1CV->isConstant()) {
4373       if (N0.getOpcode() == ISD::AND) {
4374         SDValue N00 = N0->getOperand(0);
4375         SDValue N01 = N0->getOperand(1);
4376         BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
4377 
4378         if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
4379             TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
4380                 TargetLowering::ZeroOrNegativeOneBooleanContent) {
4381           if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
4382                                                      N01CV, N1CV))
4383             return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
4384         }
4385       } else {
4386         N1C = isConstOrConstSplat(N1);
4387       }
4388     }
4389   }
4390 
4391   // fold (shl c1, c2) -> c1<<c2
4392   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4393   if (N0C && N1C && !N1C->isOpaque())
4394     return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
4395   // fold (shl 0, x) -> 0
4396   if (isNullConstant(N0))
4397     return N0;
4398   // fold (shl x, c >= size(x)) -> undef
4399   if (N1C && N1C->getAPIntValue().uge(OpSizeInBits))
4400     return DAG.getUNDEF(VT);
4401   // fold (shl x, 0) -> x
4402   if (N1C && N1C->isNullValue())
4403     return N0;
4404   // fold (shl undef, x) -> 0
4405   if (N0.isUndef())
4406     return DAG.getConstant(0, SDLoc(N), VT);
4407   // if (shl x, c) is known to be zero, return 0
4408   if (DAG.MaskedValueIsZero(SDValue(N, 0),
4409                             APInt::getAllOnesValue(OpSizeInBits)))
4410     return DAG.getConstant(0, SDLoc(N), VT);
4411   // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
4412   if (N1.getOpcode() == ISD::TRUNCATE &&
4413       N1.getOperand(0).getOpcode() == ISD::AND) {
4414     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
4415       return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
4416   }
4417 
4418   if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4419     return SDValue(N, 0);
4420 
4421   // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
4422   if (N1C && N0.getOpcode() == ISD::SHL) {
4423     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4424       uint64_t c1 = N0C1->getZExtValue();
4425       uint64_t c2 = N1C->getZExtValue();
4426       SDLoc DL(N);
4427       if (c1 + c2 >= OpSizeInBits)
4428         return DAG.getConstant(0, DL, VT);
4429       return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
4430                          DAG.getConstant(c1 + c2, DL, N1.getValueType()));
4431     }
4432   }
4433 
4434   // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
4435   // For this to be valid, the second form must not preserve any of the bits
4436   // that are shifted out by the inner shift in the first form.  This means
4437   // the outer shift size must be >= the number of bits added by the ext.
4438   // As a corollary, we don't care what kind of ext it is.
4439   if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
4440               N0.getOpcode() == ISD::ANY_EXTEND ||
4441               N0.getOpcode() == ISD::SIGN_EXTEND) &&
4442       N0.getOperand(0).getOpcode() == ISD::SHL) {
4443     SDValue N0Op0 = N0.getOperand(0);
4444     if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
4445       uint64_t c1 = N0Op0C1->getZExtValue();
4446       uint64_t c2 = N1C->getZExtValue();
4447       EVT InnerShiftVT = N0Op0.getValueType();
4448       uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
4449       if (c2 >= OpSizeInBits - InnerShiftSize) {
4450         SDLoc DL(N0);
4451         if (c1 + c2 >= OpSizeInBits)
4452           return DAG.getConstant(0, DL, VT);
4453         return DAG.getNode(ISD::SHL, DL, VT,
4454                            DAG.getNode(N0.getOpcode(), DL, VT,
4455                                        N0Op0->getOperand(0)),
4456                            DAG.getConstant(c1 + c2, DL, N1.getValueType()));
4457       }
4458     }
4459   }
4460 
4461   // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
4462   // Only fold this if the inner zext has no other uses to avoid increasing
4463   // the total number of instructions.
4464   if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
4465       N0.getOperand(0).getOpcode() == ISD::SRL) {
4466     SDValue N0Op0 = N0.getOperand(0);
4467     if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
4468       uint64_t c1 = N0Op0C1->getZExtValue();
4469       if (c1 < VT.getScalarSizeInBits()) {
4470         uint64_t c2 = N1C->getZExtValue();
4471         if (c1 == c2) {
4472           SDValue NewOp0 = N0.getOperand(0);
4473           EVT CountVT = NewOp0.getOperand(1).getValueType();
4474           SDLoc DL(N);
4475           SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(),
4476                                        NewOp0,
4477                                        DAG.getConstant(c2, DL, CountVT));
4478           AddToWorklist(NewSHL.getNode());
4479           return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
4480         }
4481       }
4482     }
4483   }
4484 
4485   // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2
4486   // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1  > C2
4487   if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
4488       cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) {
4489     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4490       uint64_t C1 = N0C1->getZExtValue();
4491       uint64_t C2 = N1C->getZExtValue();
4492       SDLoc DL(N);
4493       if (C1 <= C2)
4494         return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
4495                            DAG.getConstant(C2 - C1, DL, N1.getValueType()));
4496       return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
4497                          DAG.getConstant(C1 - C2, DL, N1.getValueType()));
4498     }
4499   }
4500 
4501   // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
4502   //                               (and (srl x, (sub c1, c2), MASK)
4503   // Only fold this if the inner shift has no other uses -- if it does, folding
4504   // this will increase the total number of instructions.
4505   if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4506     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4507       uint64_t c1 = N0C1->getZExtValue();
4508       if (c1 < OpSizeInBits) {
4509         uint64_t c2 = N1C->getZExtValue();
4510         APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
4511         SDValue Shift;
4512         if (c2 > c1) {
4513           Mask = Mask.shl(c2 - c1);
4514           SDLoc DL(N);
4515           Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
4516                               DAG.getConstant(c2 - c1, DL, N1.getValueType()));
4517         } else {
4518           Mask = Mask.lshr(c1 - c2);
4519           SDLoc DL(N);
4520           Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4521                               DAG.getConstant(c1 - c2, DL, N1.getValueType()));
4522         }
4523         SDLoc DL(N0);
4524         return DAG.getNode(ISD::AND, DL, VT, Shift,
4525                            DAG.getConstant(Mask, DL, VT));
4526       }
4527     }
4528   }
4529   // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
4530   if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
4531     unsigned BitSize = VT.getScalarSizeInBits();
4532     SDLoc DL(N);
4533     SDValue HiBitsMask =
4534       DAG.getConstant(APInt::getHighBitsSet(BitSize,
4535                                             BitSize - N1C->getZExtValue()),
4536                       DL, VT);
4537     return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
4538                        HiBitsMask);
4539   }
4540 
4541   // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
4542   // Variant of version done on multiply, except mul by a power of 2 is turned
4543   // into a shift.
4544   APInt Val;
4545   if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
4546       (isa<ConstantSDNode>(N0.getOperand(1)) ||
4547        isConstantSplatVector(N0.getOperand(1).getNode(), Val))) {
4548     SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
4549     SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
4550     return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1);
4551   }
4552 
4553   // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
4554   if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) {
4555     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4556       if (SDValue Folded =
4557               DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C))
4558         return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded);
4559     }
4560   }
4561 
4562   if (N1C && !N1C->isOpaque())
4563     if (SDValue NewSHL = visitShiftByConstant(N, N1C))
4564       return NewSHL;
4565 
4566   return SDValue();
4567 }
4568 
4569 SDValue DAGCombiner::visitSRA(SDNode *N) {
4570   SDValue N0 = N->getOperand(0);
4571   SDValue N1 = N->getOperand(1);
4572   EVT VT = N0.getValueType();
4573   unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
4574 
4575   // fold vector ops
4576   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4577   if (VT.isVector()) {
4578     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4579       return FoldedVOp;
4580 
4581     N1C = isConstOrConstSplat(N1);
4582   }
4583 
4584   // fold (sra c1, c2) -> (sra c1, c2)
4585   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4586   if (N0C && N1C && !N1C->isOpaque())
4587     return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
4588   // fold (sra 0, x) -> 0
4589   if (isNullConstant(N0))
4590     return N0;
4591   // fold (sra -1, x) -> -1
4592   if (isAllOnesConstant(N0))
4593     return N0;
4594   // fold (sra x, (setge c, size(x))) -> undef
4595   if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4596     return DAG.getUNDEF(VT);
4597   // fold (sra x, 0) -> x
4598   if (N1C && N1C->isNullValue())
4599     return N0;
4600   // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
4601   // sext_inreg.
4602   if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
4603     unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
4604     EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
4605     if (VT.isVector())
4606       ExtVT = EVT::getVectorVT(*DAG.getContext(),
4607                                ExtVT, VT.getVectorNumElements());
4608     if ((!LegalOperations ||
4609          TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
4610       return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
4611                          N0.getOperand(0), DAG.getValueType(ExtVT));
4612   }
4613 
4614   // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
4615   if (N1C && N0.getOpcode() == ISD::SRA) {
4616     if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) {
4617       unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
4618       if (Sum >= OpSizeInBits)
4619         Sum = OpSizeInBits - 1;
4620       SDLoc DL(N);
4621       return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0),
4622                          DAG.getConstant(Sum, DL, N1.getValueType()));
4623     }
4624   }
4625 
4626   // fold (sra (shl X, m), (sub result_size, n))
4627   // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
4628   // result_size - n != m.
4629   // If truncate is free for the target sext(shl) is likely to result in better
4630   // code.
4631   if (N0.getOpcode() == ISD::SHL && N1C) {
4632     // Get the two constanst of the shifts, CN0 = m, CN = n.
4633     const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
4634     if (N01C) {
4635       LLVMContext &Ctx = *DAG.getContext();
4636       // Determine what the truncate's result bitsize and type would be.
4637       EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
4638 
4639       if (VT.isVector())
4640         TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
4641 
4642       // Determine the residual right-shift amount.
4643       signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
4644 
4645       // If the shift is not a no-op (in which case this should be just a sign
4646       // extend already), the truncated to type is legal, sign_extend is legal
4647       // on that type, and the truncate to that type is both legal and free,
4648       // perform the transform.
4649       if ((ShiftAmt > 0) &&
4650           TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
4651           TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
4652           TLI.isTruncateFree(VT, TruncVT)) {
4653 
4654         SDLoc DL(N);
4655         SDValue Amt = DAG.getConstant(ShiftAmt, DL,
4656             getShiftAmountTy(N0.getOperand(0).getValueType()));
4657         SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
4658                                     N0.getOperand(0), Amt);
4659         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
4660                                     Shift);
4661         return DAG.getNode(ISD::SIGN_EXTEND, DL,
4662                            N->getValueType(0), Trunc);
4663       }
4664     }
4665   }
4666 
4667   // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
4668   if (N1.getOpcode() == ISD::TRUNCATE &&
4669       N1.getOperand(0).getOpcode() == ISD::AND) {
4670     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
4671       return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
4672   }
4673 
4674   // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
4675   //      if c1 is equal to the number of bits the trunc removes
4676   if (N0.getOpcode() == ISD::TRUNCATE &&
4677       (N0.getOperand(0).getOpcode() == ISD::SRL ||
4678        N0.getOperand(0).getOpcode() == ISD::SRA) &&
4679       N0.getOperand(0).hasOneUse() &&
4680       N0.getOperand(0).getOperand(1).hasOneUse() &&
4681       N1C) {
4682     SDValue N0Op0 = N0.getOperand(0);
4683     if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
4684       unsigned LargeShiftVal = LargeShift->getZExtValue();
4685       EVT LargeVT = N0Op0.getValueType();
4686 
4687       if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
4688         SDLoc DL(N);
4689         SDValue Amt =
4690           DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL,
4691                           getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
4692         SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT,
4693                                   N0Op0.getOperand(0), Amt);
4694         return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
4695       }
4696     }
4697   }
4698 
4699   // Simplify, based on bits shifted out of the LHS.
4700   if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4701     return SDValue(N, 0);
4702 
4703 
4704   // If the sign bit is known to be zero, switch this to a SRL.
4705   if (DAG.SignBitIsZero(N0))
4706     return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
4707 
4708   if (N1C && !N1C->isOpaque())
4709     if (SDValue NewSRA = visitShiftByConstant(N, N1C))
4710       return NewSRA;
4711 
4712   return SDValue();
4713 }
4714 
4715 SDValue DAGCombiner::visitSRL(SDNode *N) {
4716   SDValue N0 = N->getOperand(0);
4717   SDValue N1 = N->getOperand(1);
4718   EVT VT = N0.getValueType();
4719   unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
4720 
4721   // fold vector ops
4722   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4723   if (VT.isVector()) {
4724     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4725       return FoldedVOp;
4726 
4727     N1C = isConstOrConstSplat(N1);
4728   }
4729 
4730   // fold (srl c1, c2) -> c1 >>u c2
4731   ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4732   if (N0C && N1C && !N1C->isOpaque())
4733     return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
4734   // fold (srl 0, x) -> 0
4735   if (isNullConstant(N0))
4736     return N0;
4737   // fold (srl x, c >= size(x)) -> undef
4738   if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4739     return DAG.getUNDEF(VT);
4740   // fold (srl x, 0) -> x
4741   if (N1C && N1C->isNullValue())
4742     return N0;
4743   // if (srl x, c) is known to be zero, return 0
4744   if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4745                                    APInt::getAllOnesValue(OpSizeInBits)))
4746     return DAG.getConstant(0, SDLoc(N), VT);
4747 
4748   // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
4749   if (N1C && N0.getOpcode() == ISD::SRL) {
4750     if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) {
4751       uint64_t c1 = N01C->getZExtValue();
4752       uint64_t c2 = N1C->getZExtValue();
4753       SDLoc DL(N);
4754       if (c1 + c2 >= OpSizeInBits)
4755         return DAG.getConstant(0, DL, VT);
4756       return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4757                          DAG.getConstant(c1 + c2, DL, N1.getValueType()));
4758     }
4759   }
4760 
4761   // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
4762   if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
4763       N0.getOperand(0).getOpcode() == ISD::SRL &&
4764       isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4765     uint64_t c1 =
4766       cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4767     uint64_t c2 = N1C->getZExtValue();
4768     EVT InnerShiftVT = N0.getOperand(0).getValueType();
4769     EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4770     uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4771     // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4772     if (c1 + OpSizeInBits == InnerShiftSize) {
4773       SDLoc DL(N0);
4774       if (c1 + c2 >= InnerShiftSize)
4775         return DAG.getConstant(0, DL, VT);
4776       return DAG.getNode(ISD::TRUNCATE, DL, VT,
4777                          DAG.getNode(ISD::SRL, DL, InnerShiftVT,
4778                                      N0.getOperand(0)->getOperand(0),
4779                                      DAG.getConstant(c1 + c2, DL,
4780                                                      ShiftCountVT)));
4781     }
4782   }
4783 
4784   // fold (srl (shl x, c), c) -> (and x, cst2)
4785   if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) {
4786     unsigned BitSize = N0.getScalarValueSizeInBits();
4787     if (BitSize <= 64) {
4788       uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize;
4789       SDLoc DL(N);
4790       return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
4791                          DAG.getConstant(~0ULL >> ShAmt, DL, VT));
4792     }
4793   }
4794 
4795   // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4796   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4797     // Shifting in all undef bits?
4798     EVT SmallVT = N0.getOperand(0).getValueType();
4799     unsigned BitSize = SmallVT.getScalarSizeInBits();
4800     if (N1C->getZExtValue() >= BitSize)
4801       return DAG.getUNDEF(VT);
4802 
4803     if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4804       uint64_t ShiftAmt = N1C->getZExtValue();
4805       SDLoc DL0(N0);
4806       SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
4807                                        N0.getOperand(0),
4808                           DAG.getConstant(ShiftAmt, DL0,
4809                                           getShiftAmountTy(SmallVT)));
4810       AddToWorklist(SmallShift.getNode());
4811       APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt);
4812       SDLoc DL(N);
4813       return DAG.getNode(ISD::AND, DL, VT,
4814                          DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
4815                          DAG.getConstant(Mask, DL, VT));
4816     }
4817   }
4818 
4819   // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4820   // bit, which is unmodified by sra.
4821   if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
4822     if (N0.getOpcode() == ISD::SRA)
4823       return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4824   }
4825 
4826   // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4827   if (N1C && N0.getOpcode() == ISD::CTLZ &&
4828       N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
4829     APInt KnownZero, KnownOne;
4830     DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne);
4831 
4832     // If any of the input bits are KnownOne, then the input couldn't be all
4833     // zeros, thus the result of the srl will always be zero.
4834     if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
4835 
4836     // If all of the bits input the to ctlz node are known to be zero, then
4837     // the result of the ctlz is "32" and the result of the shift is one.
4838     APInt UnknownBits = ~KnownZero;
4839     if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
4840 
4841     // Otherwise, check to see if there is exactly one bit input to the ctlz.
4842     if ((UnknownBits & (UnknownBits - 1)) == 0) {
4843       // Okay, we know that only that the single bit specified by UnknownBits
4844       // could be set on input to the CTLZ node. If this bit is set, the SRL
4845       // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4846       // to an SRL/XOR pair, which is likely to simplify more.
4847       unsigned ShAmt = UnknownBits.countTrailingZeros();
4848       SDValue Op = N0.getOperand(0);
4849 
4850       if (ShAmt) {
4851         SDLoc DL(N0);
4852         Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4853                   DAG.getConstant(ShAmt, DL,
4854                                   getShiftAmountTy(Op.getValueType())));
4855         AddToWorklist(Op.getNode());
4856       }
4857 
4858       SDLoc DL(N);
4859       return DAG.getNode(ISD::XOR, DL, VT,
4860                          Op, DAG.getConstant(1, DL, VT));
4861     }
4862   }
4863 
4864   // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4865   if (N1.getOpcode() == ISD::TRUNCATE &&
4866       N1.getOperand(0).getOpcode() == ISD::AND) {
4867     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
4868       return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
4869   }
4870 
4871   // fold operands of srl based on knowledge that the low bits are not
4872   // demanded.
4873   if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4874     return SDValue(N, 0);
4875 
4876   if (N1C && !N1C->isOpaque())
4877     if (SDValue NewSRL = visitShiftByConstant(N, N1C))
4878       return NewSRL;
4879 
4880   // Attempt to convert a srl of a load into a narrower zero-extending load.
4881   if (SDValue NarrowLoad = ReduceLoadWidth(N))
4882     return NarrowLoad;
4883 
4884   // Here is a common situation. We want to optimize:
4885   //
4886   //   %a = ...
4887   //   %b = and i32 %a, 2
4888   //   %c = srl i32 %b, 1
4889   //   brcond i32 %c ...
4890   //
4891   // into
4892   //
4893   //   %a = ...
4894   //   %b = and %a, 2
4895   //   %c = setcc eq %b, 0
4896   //   brcond %c ...
4897   //
4898   // However when after the source operand of SRL is optimized into AND, the SRL
4899   // itself may not be optimized further. Look for it and add the BRCOND into
4900   // the worklist.
4901   if (N->hasOneUse()) {
4902     SDNode *Use = *N->use_begin();
4903     if (Use->getOpcode() == ISD::BRCOND)
4904       AddToWorklist(Use);
4905     else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4906       // Also look pass the truncate.
4907       Use = *Use->use_begin();
4908       if (Use->getOpcode() == ISD::BRCOND)
4909         AddToWorklist(Use);
4910     }
4911   }
4912 
4913   return SDValue();
4914 }
4915 
4916 SDValue DAGCombiner::visitBSWAP(SDNode *N) {
4917   SDValue N0 = N->getOperand(0);
4918   EVT VT = N->getValueType(0);
4919 
4920   // fold (bswap c1) -> c2
4921   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
4922     return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
4923   // fold (bswap (bswap x)) -> x
4924   if (N0.getOpcode() == ISD::BSWAP)
4925     return N0->getOperand(0);
4926   return SDValue();
4927 }
4928 
4929 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4930   SDValue N0 = N->getOperand(0);
4931   EVT VT = N->getValueType(0);
4932 
4933   // fold (ctlz c1) -> c2
4934   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
4935     return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4936   return SDValue();
4937 }
4938 
4939 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4940   SDValue N0 = N->getOperand(0);
4941   EVT VT = N->getValueType(0);
4942 
4943   // fold (ctlz_zero_undef c1) -> c2
4944   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
4945     return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4946   return SDValue();
4947 }
4948 
4949 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4950   SDValue N0 = N->getOperand(0);
4951   EVT VT = N->getValueType(0);
4952 
4953   // fold (cttz c1) -> c2
4954   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
4955     return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4956   return SDValue();
4957 }
4958 
4959 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4960   SDValue N0 = N->getOperand(0);
4961   EVT VT = N->getValueType(0);
4962 
4963   // fold (cttz_zero_undef c1) -> c2
4964   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
4965     return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4966   return SDValue();
4967 }
4968 
4969 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4970   SDValue N0 = N->getOperand(0);
4971   EVT VT = N->getValueType(0);
4972 
4973   // fold (ctpop c1) -> c2
4974   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
4975     return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4976   return SDValue();
4977 }
4978 
4979 
4980 /// \brief Generate Min/Max node
4981 static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS,
4982                                    SDValue True, SDValue False,
4983                                    ISD::CondCode CC, const TargetLowering &TLI,
4984                                    SelectionDAG &DAG) {
4985   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
4986     return SDValue();
4987 
4988   switch (CC) {
4989   case ISD::SETOLT:
4990   case ISD::SETOLE:
4991   case ISD::SETLT:
4992   case ISD::SETLE:
4993   case ISD::SETULT:
4994   case ISD::SETULE: {
4995     unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
4996     if (TLI.isOperationLegal(Opcode, VT))
4997       return DAG.getNode(Opcode, DL, VT, LHS, RHS);
4998     return SDValue();
4999   }
5000   case ISD::SETOGT:
5001   case ISD::SETOGE:
5002   case ISD::SETGT:
5003   case ISD::SETGE:
5004   case ISD::SETUGT:
5005   case ISD::SETUGE: {
5006     unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
5007     if (TLI.isOperationLegal(Opcode, VT))
5008       return DAG.getNode(Opcode, DL, VT, LHS, RHS);
5009     return SDValue();
5010   }
5011   default:
5012     return SDValue();
5013   }
5014 }
5015 
5016 SDValue DAGCombiner::visitSELECT(SDNode *N) {
5017   SDValue N0 = N->getOperand(0);
5018   SDValue N1 = N->getOperand(1);
5019   SDValue N2 = N->getOperand(2);
5020   EVT VT = N->getValueType(0);
5021   EVT VT0 = N0.getValueType();
5022 
5023   // fold (select C, X, X) -> X
5024   if (N1 == N2)
5025     return N1;
5026   if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) {
5027     // fold (select true, X, Y) -> X
5028     // fold (select false, X, Y) -> Y
5029     return !N0C->isNullValue() ? N1 : N2;
5030   }
5031   // fold (select C, 1, X) -> (or C, X)
5032   if (VT == MVT::i1 && isOneConstant(N1))
5033     return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
5034   // fold (select C, 0, 1) -> (xor C, 1)
5035   // We can't do this reliably if integer based booleans have different contents
5036   // to floating point based booleans. This is because we can't tell whether we
5037   // have an integer-based boolean or a floating-point-based boolean unless we
5038   // can find the SETCC that produced it and inspect its operands. This is
5039   // fairly easy if C is the SETCC node, but it can potentially be
5040   // undiscoverable (or not reasonably discoverable). For example, it could be
5041   // in another basic block or it could require searching a complicated
5042   // expression.
5043   if (VT.isInteger() &&
5044       (VT0 == MVT::i1 || (VT0.isInteger() &&
5045                           TLI.getBooleanContents(false, false) ==
5046                               TLI.getBooleanContents(false, true) &&
5047                           TLI.getBooleanContents(false, false) ==
5048                               TargetLowering::ZeroOrOneBooleanContent)) &&
5049       isNullConstant(N1) && isOneConstant(N2)) {
5050     SDValue XORNode;
5051     if (VT == VT0) {
5052       SDLoc DL(N);
5053       return DAG.getNode(ISD::XOR, DL, VT0,
5054                          N0, DAG.getConstant(1, DL, VT0));
5055     }
5056     SDLoc DL0(N0);
5057     XORNode = DAG.getNode(ISD::XOR, DL0, VT0,
5058                           N0, DAG.getConstant(1, DL0, VT0));
5059     AddToWorklist(XORNode.getNode());
5060     if (VT.bitsGT(VT0))
5061       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
5062     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
5063   }
5064   // fold (select C, 0, X) -> (and (not C), X)
5065   if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
5066     SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
5067     AddToWorklist(NOTNode.getNode());
5068     return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
5069   }
5070   // fold (select C, X, 1) -> (or (not C), X)
5071   if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
5072     SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
5073     AddToWorklist(NOTNode.getNode());
5074     return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
5075   }
5076   // fold (select C, X, 0) -> (and C, X)
5077   if (VT == MVT::i1 && isNullConstant(N2))
5078     return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
5079   // fold (select X, X, Y) -> (or X, Y)
5080   // fold (select X, 1, Y) -> (or X, Y)
5081   if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
5082     return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
5083   // fold (select X, Y, X) -> (and X, Y)
5084   // fold (select X, Y, 0) -> (and X, Y)
5085   if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
5086     return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
5087 
5088   // If we can fold this based on the true/false value, do so.
5089   if (SimplifySelectOps(N, N1, N2))
5090     return SDValue(N, 0);  // Don't revisit N.
5091 
5092   if (VT0 == MVT::i1) {
5093     // The code in this block deals with the following 2 equivalences:
5094     //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
5095     //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
5096     // The target can specify its prefered form with the
5097     // shouldNormalizeToSelectSequence() callback. However we always transform
5098     // to the right anyway if we find the inner select exists in the DAG anyway
5099     // and we always transform to the left side if we know that we can further
5100     // optimize the combination of the conditions.
5101     bool normalizeToSequence
5102       = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
5103     // select (and Cond0, Cond1), X, Y
5104     //   -> select Cond0, (select Cond1, X, Y), Y
5105     if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
5106       SDValue Cond0 = N0->getOperand(0);
5107       SDValue Cond1 = N0->getOperand(1);
5108       SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
5109                                         N1.getValueType(), Cond1, N1, N2);
5110       if (normalizeToSequence || !InnerSelect.use_empty())
5111         return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0,
5112                            InnerSelect, N2);
5113     }
5114     // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
5115     if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
5116       SDValue Cond0 = N0->getOperand(0);
5117       SDValue Cond1 = N0->getOperand(1);
5118       SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
5119                                         N1.getValueType(), Cond1, N1, N2);
5120       if (normalizeToSequence || !InnerSelect.use_empty())
5121         return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1,
5122                            InnerSelect);
5123     }
5124 
5125     // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
5126     if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
5127       SDValue N1_0 = N1->getOperand(0);
5128       SDValue N1_1 = N1->getOperand(1);
5129       SDValue N1_2 = N1->getOperand(2);
5130       if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
5131         // Create the actual and node if we can generate good code for it.
5132         if (!normalizeToSequence) {
5133           SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(),
5134                                     N0, N1_0);
5135           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And,
5136                              N1_1, N2);
5137         }
5138         // Otherwise see if we can optimize the "and" to a better pattern.
5139         if (SDValue Combined = visitANDLike(N0, N1_0, N))
5140           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
5141                              N1_1, N2);
5142       }
5143     }
5144     // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
5145     if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
5146       SDValue N2_0 = N2->getOperand(0);
5147       SDValue N2_1 = N2->getOperand(1);
5148       SDValue N2_2 = N2->getOperand(2);
5149       if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
5150         // Create the actual or node if we can generate good code for it.
5151         if (!normalizeToSequence) {
5152           SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(),
5153                                    N0, N2_0);
5154           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or,
5155                              N1, N2_2);
5156         }
5157         // Otherwise see if we can optimize to a better pattern.
5158         if (SDValue Combined = visitORLike(N0, N2_0, N))
5159           return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
5160                              N1, N2_2);
5161       }
5162     }
5163   }
5164 
5165   // fold selects based on a setcc into other things, such as min/max/abs
5166   if (N0.getOpcode() == ISD::SETCC) {
5167     // select x, y (fcmp lt x, y) -> fminnum x, y
5168     // select x, y (fcmp gt x, y) -> fmaxnum x, y
5169     //
5170     // This is OK if we don't care about what happens if either operand is a
5171     // NaN.
5172     //
5173 
5174     // FIXME: Instead of testing for UnsafeFPMath, this should be checking for
5175     // no signed zeros as well as no nans.
5176     const TargetOptions &Options = DAG.getTarget().Options;
5177     if (Options.UnsafeFPMath &&
5178         VT.isFloatingPoint() && N0.hasOneUse() &&
5179         DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) {
5180       ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
5181 
5182       if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0),
5183                                                 N0.getOperand(1), N1, N2, CC,
5184                                                 TLI, DAG))
5185         return FMinMax;
5186     }
5187 
5188     if ((!LegalOperations &&
5189          TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) ||
5190         TLI.isOperationLegal(ISD::SELECT_CC, VT))
5191       return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
5192                          N0.getOperand(0), N0.getOperand(1),
5193                          N1, N2, N0.getOperand(2));
5194     return SimplifySelect(SDLoc(N), N0, N1, N2);
5195   }
5196 
5197   return SDValue();
5198 }
5199 
5200 static
5201 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
5202   SDLoc DL(N);
5203   EVT LoVT, HiVT;
5204   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
5205 
5206   // Split the inputs.
5207   SDValue Lo, Hi, LL, LH, RL, RH;
5208   std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
5209   std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
5210 
5211   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
5212   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
5213 
5214   return std::make_pair(Lo, Hi);
5215 }
5216 
5217 // This function assumes all the vselect's arguments are CONCAT_VECTOR
5218 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
5219 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
5220   SDLoc dl(N);
5221   SDValue Cond = N->getOperand(0);
5222   SDValue LHS = N->getOperand(1);
5223   SDValue RHS = N->getOperand(2);
5224   EVT VT = N->getValueType(0);
5225   int NumElems = VT.getVectorNumElements();
5226   assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
5227          RHS.getOpcode() == ISD::CONCAT_VECTORS &&
5228          Cond.getOpcode() == ISD::BUILD_VECTOR);
5229 
5230   // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
5231   // binary ones here.
5232   if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
5233     return SDValue();
5234 
5235   // We're sure we have an even number of elements due to the
5236   // concat_vectors we have as arguments to vselect.
5237   // Skip BV elements until we find one that's not an UNDEF
5238   // After we find an UNDEF element, keep looping until we get to half the
5239   // length of the BV and see if all the non-undef nodes are the same.
5240   ConstantSDNode *BottomHalf = nullptr;
5241   for (int i = 0; i < NumElems / 2; ++i) {
5242     if (Cond->getOperand(i)->isUndef())
5243       continue;
5244 
5245     if (BottomHalf == nullptr)
5246       BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
5247     else if (Cond->getOperand(i).getNode() != BottomHalf)
5248       return SDValue();
5249   }
5250 
5251   // Do the same for the second half of the BuildVector
5252   ConstantSDNode *TopHalf = nullptr;
5253   for (int i = NumElems / 2; i < NumElems; ++i) {
5254     if (Cond->getOperand(i)->isUndef())
5255       continue;
5256 
5257     if (TopHalf == nullptr)
5258       TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
5259     else if (Cond->getOperand(i).getNode() != TopHalf)
5260       return SDValue();
5261   }
5262 
5263   assert(TopHalf && BottomHalf &&
5264          "One half of the selector was all UNDEFs and the other was all the "
5265          "same value. This should have been addressed before this function.");
5266   return DAG.getNode(
5267       ISD::CONCAT_VECTORS, dl, VT,
5268       BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
5269       TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
5270 }
5271 
5272 SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
5273 
5274   if (Level >= AfterLegalizeTypes)
5275     return SDValue();
5276 
5277   MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
5278   SDValue Mask = MSC->getMask();
5279   SDValue Data  = MSC->getValue();
5280   SDLoc DL(N);
5281 
5282   // If the MSCATTER data type requires splitting and the mask is provided by a
5283   // SETCC, then split both nodes and its operands before legalization. This
5284   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5285   // and enables future optimizations (e.g. min/max pattern matching on X86).
5286   if (Mask.getOpcode() != ISD::SETCC)
5287     return SDValue();
5288 
5289   // Check if any splitting is required.
5290   if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
5291       TargetLowering::TypeSplitVector)
5292     return SDValue();
5293   SDValue MaskLo, MaskHi, Lo, Hi;
5294   std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5295 
5296   EVT LoVT, HiVT;
5297   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0));
5298 
5299   SDValue Chain = MSC->getChain();
5300 
5301   EVT MemoryVT = MSC->getMemoryVT();
5302   unsigned Alignment = MSC->getOriginalAlignment();
5303 
5304   EVT LoMemVT, HiMemVT;
5305   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5306 
5307   SDValue DataLo, DataHi;
5308   std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
5309 
5310   SDValue BasePtr = MSC->getBasePtr();
5311   SDValue IndexLo, IndexHi;
5312   std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL);
5313 
5314   MachineMemOperand *MMO = DAG.getMachineFunction().
5315     getMachineMemOperand(MSC->getPointerInfo(),
5316                           MachineMemOperand::MOStore,  LoMemVT.getStoreSize(),
5317                           Alignment, MSC->getAAInfo(), MSC->getRanges());
5318 
5319   SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo };
5320   Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
5321                             DL, OpsLo, MMO);
5322 
5323   SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi};
5324   Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
5325                             DL, OpsHi, MMO);
5326 
5327   AddToWorklist(Lo.getNode());
5328   AddToWorklist(Hi.getNode());
5329 
5330   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
5331 }
5332 
5333 SDValue DAGCombiner::visitMSTORE(SDNode *N) {
5334 
5335   if (Level >= AfterLegalizeTypes)
5336     return SDValue();
5337 
5338   MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
5339   SDValue Mask = MST->getMask();
5340   SDValue Data  = MST->getValue();
5341   SDLoc DL(N);
5342 
5343   // If the MSTORE data type requires splitting and the mask is provided by a
5344   // SETCC, then split both nodes and its operands before legalization. This
5345   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5346   // and enables future optimizations (e.g. min/max pattern matching on X86).
5347   if (Mask.getOpcode() == ISD::SETCC) {
5348 
5349     // Check if any splitting is required.
5350     if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
5351         TargetLowering::TypeSplitVector)
5352       return SDValue();
5353 
5354     SDValue MaskLo, MaskHi, Lo, Hi;
5355     std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5356 
5357     EVT LoVT, HiVT;
5358     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0));
5359 
5360     SDValue Chain = MST->getChain();
5361     SDValue Ptr   = MST->getBasePtr();
5362 
5363     EVT MemoryVT = MST->getMemoryVT();
5364     unsigned Alignment = MST->getOriginalAlignment();
5365 
5366     // if Alignment is equal to the vector size,
5367     // take the half of it for the second part
5368     unsigned SecondHalfAlignment =
5369       (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
5370          Alignment/2 : Alignment;
5371 
5372     EVT LoMemVT, HiMemVT;
5373     std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5374 
5375     SDValue DataLo, DataHi;
5376     std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
5377 
5378     MachineMemOperand *MMO = DAG.getMachineFunction().
5379       getMachineMemOperand(MST->getPointerInfo(),
5380                            MachineMemOperand::MOStore,  LoMemVT.getStoreSize(),
5381                            Alignment, MST->getAAInfo(), MST->getRanges());
5382 
5383     Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
5384                             MST->isTruncatingStore());
5385 
5386     unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
5387     Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
5388                       DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
5389 
5390     MMO = DAG.getMachineFunction().
5391       getMachineMemOperand(MST->getPointerInfo(),
5392                            MachineMemOperand::MOStore,  HiMemVT.getStoreSize(),
5393                            SecondHalfAlignment, MST->getAAInfo(),
5394                            MST->getRanges());
5395 
5396     Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
5397                             MST->isTruncatingStore());
5398 
5399     AddToWorklist(Lo.getNode());
5400     AddToWorklist(Hi.getNode());
5401 
5402     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
5403   }
5404   return SDValue();
5405 }
5406 
5407 SDValue DAGCombiner::visitMGATHER(SDNode *N) {
5408 
5409   if (Level >= AfterLegalizeTypes)
5410     return SDValue();
5411 
5412   MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N);
5413   SDValue Mask = MGT->getMask();
5414   SDLoc DL(N);
5415 
5416   // If the MGATHER result requires splitting and the mask is provided by a
5417   // SETCC, then split both nodes and its operands before legalization. This
5418   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5419   // and enables future optimizations (e.g. min/max pattern matching on X86).
5420 
5421   if (Mask.getOpcode() != ISD::SETCC)
5422     return SDValue();
5423 
5424   EVT VT = N->getValueType(0);
5425 
5426   // Check if any splitting is required.
5427   if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5428       TargetLowering::TypeSplitVector)
5429     return SDValue();
5430 
5431   SDValue MaskLo, MaskHi, Lo, Hi;
5432   std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5433 
5434   SDValue Src0 = MGT->getValue();
5435   SDValue Src0Lo, Src0Hi;
5436   std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
5437 
5438   EVT LoVT, HiVT;
5439   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
5440 
5441   SDValue Chain = MGT->getChain();
5442   EVT MemoryVT = MGT->getMemoryVT();
5443   unsigned Alignment = MGT->getOriginalAlignment();
5444 
5445   EVT LoMemVT, HiMemVT;
5446   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5447 
5448   SDValue BasePtr = MGT->getBasePtr();
5449   SDValue Index = MGT->getIndex();
5450   SDValue IndexLo, IndexHi;
5451   std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
5452 
5453   MachineMemOperand *MMO = DAG.getMachineFunction().
5454     getMachineMemOperand(MGT->getPointerInfo(),
5455                           MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
5456                           Alignment, MGT->getAAInfo(), MGT->getRanges());
5457 
5458   SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo };
5459   Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo,
5460                             MMO);
5461 
5462   SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi};
5463   Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi,
5464                             MMO);
5465 
5466   AddToWorklist(Lo.getNode());
5467   AddToWorklist(Hi.getNode());
5468 
5469   // Build a factor node to remember that this load is independent of the
5470   // other one.
5471   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
5472                       Hi.getValue(1));
5473 
5474   // Legalized the chain result - switch anything that used the old chain to
5475   // use the new one.
5476   DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain);
5477 
5478   SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5479 
5480   SDValue RetOps[] = { GatherRes, Chain };
5481   return DAG.getMergeValues(RetOps, DL);
5482 }
5483 
5484 SDValue DAGCombiner::visitMLOAD(SDNode *N) {
5485 
5486   if (Level >= AfterLegalizeTypes)
5487     return SDValue();
5488 
5489   MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
5490   SDValue Mask = MLD->getMask();
5491   SDLoc DL(N);
5492 
5493   // If the MLOAD result requires splitting and the mask is provided by a
5494   // SETCC, then split both nodes and its operands before legalization. This
5495   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5496   // and enables future optimizations (e.g. min/max pattern matching on X86).
5497 
5498   if (Mask.getOpcode() == ISD::SETCC) {
5499     EVT VT = N->getValueType(0);
5500 
5501     // Check if any splitting is required.
5502     if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5503         TargetLowering::TypeSplitVector)
5504       return SDValue();
5505 
5506     SDValue MaskLo, MaskHi, Lo, Hi;
5507     std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5508 
5509     SDValue Src0 = MLD->getSrc0();
5510     SDValue Src0Lo, Src0Hi;
5511     std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
5512 
5513     EVT LoVT, HiVT;
5514     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
5515 
5516     SDValue Chain = MLD->getChain();
5517     SDValue Ptr   = MLD->getBasePtr();
5518     EVT MemoryVT = MLD->getMemoryVT();
5519     unsigned Alignment = MLD->getOriginalAlignment();
5520 
5521     // if Alignment is equal to the vector size,
5522     // take the half of it for the second part
5523     unsigned SecondHalfAlignment =
5524       (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
5525          Alignment/2 : Alignment;
5526 
5527     EVT LoMemVT, HiMemVT;
5528     std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5529 
5530     MachineMemOperand *MMO = DAG.getMachineFunction().
5531     getMachineMemOperand(MLD->getPointerInfo(),
5532                          MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
5533                          Alignment, MLD->getAAInfo(), MLD->getRanges());
5534 
5535     Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
5536                            ISD::NON_EXTLOAD);
5537 
5538     unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
5539     Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
5540                       DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
5541 
5542     MMO = DAG.getMachineFunction().
5543     getMachineMemOperand(MLD->getPointerInfo(),
5544                          MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(),
5545                          SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
5546 
5547     Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
5548                            ISD::NON_EXTLOAD);
5549 
5550     AddToWorklist(Lo.getNode());
5551     AddToWorklist(Hi.getNode());
5552 
5553     // Build a factor node to remember that this load is independent of the
5554     // other one.
5555     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
5556                         Hi.getValue(1));
5557 
5558     // Legalized the chain result - switch anything that used the old chain to
5559     // use the new one.
5560     DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
5561 
5562     SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5563 
5564     SDValue RetOps[] = { LoadRes, Chain };
5565     return DAG.getMergeValues(RetOps, DL);
5566   }
5567   return SDValue();
5568 }
5569 
5570 SDValue DAGCombiner::visitVSELECT(SDNode *N) {
5571   SDValue N0 = N->getOperand(0);
5572   SDValue N1 = N->getOperand(1);
5573   SDValue N2 = N->getOperand(2);
5574   SDLoc DL(N);
5575 
5576   // Canonicalize integer abs.
5577   // vselect (setg[te] X,  0),  X, -X ->
5578   // vselect (setgt    X, -1),  X, -X ->
5579   // vselect (setl[te] X,  0), -X,  X ->
5580   // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5581   if (N0.getOpcode() == ISD::SETCC) {
5582     SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
5583     ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
5584     bool isAbs = false;
5585     bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
5586 
5587     if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
5588          (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
5589         N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
5590       isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
5591     else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
5592              N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
5593       isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
5594 
5595     if (isAbs) {
5596       EVT VT = LHS.getValueType();
5597       SDValue Shift = DAG.getNode(
5598           ISD::SRA, DL, VT, LHS,
5599           DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT));
5600       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
5601       AddToWorklist(Shift.getNode());
5602       AddToWorklist(Add.getNode());
5603       return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
5604     }
5605   }
5606 
5607   if (SimplifySelectOps(N, N1, N2))
5608     return SDValue(N, 0);  // Don't revisit N.
5609 
5610   // If the VSELECT result requires splitting and the mask is provided by a
5611   // SETCC, then split both nodes and its operands before legalization. This
5612   // prevents the type legalizer from unrolling SETCC into scalar comparisons
5613   // and enables future optimizations (e.g. min/max pattern matching on X86).
5614   if (N0.getOpcode() == ISD::SETCC) {
5615     EVT VT = N->getValueType(0);
5616 
5617     // Check if any splitting is required.
5618     if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5619         TargetLowering::TypeSplitVector)
5620       return SDValue();
5621 
5622     SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
5623     std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
5624     std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
5625     std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
5626 
5627     Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
5628     Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
5629 
5630     // Add the new VSELECT nodes to the work list in case they need to be split
5631     // again.
5632     AddToWorklist(Lo.getNode());
5633     AddToWorklist(Hi.getNode());
5634 
5635     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5636   }
5637 
5638   // Fold (vselect (build_vector all_ones), N1, N2) -> N1
5639   if (ISD::isBuildVectorAllOnes(N0.getNode()))
5640     return N1;
5641   // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
5642   if (ISD::isBuildVectorAllZeros(N0.getNode()))
5643     return N2;
5644 
5645   // The ConvertSelectToConcatVector function is assuming both the above
5646   // checks for (vselect (build_vector all{ones,zeros) ...) have been made
5647   // and addressed.
5648   if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
5649       N2.getOpcode() == ISD::CONCAT_VECTORS &&
5650       ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
5651     if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
5652       return CV;
5653   }
5654 
5655   return SDValue();
5656 }
5657 
5658 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
5659   SDValue N0 = N->getOperand(0);
5660   SDValue N1 = N->getOperand(1);
5661   SDValue N2 = N->getOperand(2);
5662   SDValue N3 = N->getOperand(3);
5663   SDValue N4 = N->getOperand(4);
5664   ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
5665 
5666   // fold select_cc lhs, rhs, x, x, cc -> x
5667   if (N2 == N3)
5668     return N2;
5669 
5670   // Determine if the condition we're dealing with is constant
5671   if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
5672                                   CC, SDLoc(N), false)) {
5673     AddToWorklist(SCC.getNode());
5674 
5675     if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
5676       if (!SCCC->isNullValue())
5677         return N2;    // cond always true -> true val
5678       else
5679         return N3;    // cond always false -> false val
5680     } else if (SCC->isUndef()) {
5681       // When the condition is UNDEF, just return the first operand. This is
5682       // coherent the DAG creation, no setcc node is created in this case
5683       return N2;
5684     } else if (SCC.getOpcode() == ISD::SETCC) {
5685       // Fold to a simpler select_cc
5686       return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
5687                          SCC.getOperand(0), SCC.getOperand(1), N2, N3,
5688                          SCC.getOperand(2));
5689     }
5690   }
5691 
5692   // If we can fold this based on the true/false value, do so.
5693   if (SimplifySelectOps(N, N2, N3))
5694     return SDValue(N, 0);  // Don't revisit N.
5695 
5696   // fold select_cc into other things, such as min/max/abs
5697   return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
5698 }
5699 
5700 SDValue DAGCombiner::visitSETCC(SDNode *N) {
5701   return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
5702                        cast<CondCodeSDNode>(N->getOperand(2))->get(),
5703                        SDLoc(N));
5704 }
5705 
5706 SDValue DAGCombiner::visitSETCCE(SDNode *N) {
5707   SDValue LHS = N->getOperand(0);
5708   SDValue RHS = N->getOperand(1);
5709   SDValue Carry = N->getOperand(2);
5710   SDValue Cond = N->getOperand(3);
5711 
5712   // If Carry is false, fold to a regular SETCC.
5713   if (Carry.getOpcode() == ISD::CARRY_FALSE)
5714     return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
5715 
5716   return SDValue();
5717 }
5718 
5719 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
5720 /// a build_vector of constants.
5721 /// This function is called by the DAGCombiner when visiting sext/zext/aext
5722 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
5723 /// Vector extends are not folded if operations are legal; this is to
5724 /// avoid introducing illegal build_vector dag nodes.
5725 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
5726                                          SelectionDAG &DAG, bool LegalTypes,
5727                                          bool LegalOperations) {
5728   unsigned Opcode = N->getOpcode();
5729   SDValue N0 = N->getOperand(0);
5730   EVT VT = N->getValueType(0);
5731 
5732   assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
5733          Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5734          Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
5735          && "Expected EXTEND dag node in input!");
5736 
5737   // fold (sext c1) -> c1
5738   // fold (zext c1) -> c1
5739   // fold (aext c1) -> c1
5740   if (isa<ConstantSDNode>(N0))
5741     return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode();
5742 
5743   // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
5744   // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
5745   // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
5746   EVT SVT = VT.getScalarType();
5747   if (!(VT.isVector() &&
5748       (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) &&
5749       ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
5750     return nullptr;
5751 
5752   // We can fold this node into a build_vector.
5753   unsigned VTBits = SVT.getSizeInBits();
5754   unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits();
5755   SmallVector<SDValue, 8> Elts;
5756   unsigned NumElts = VT.getVectorNumElements();
5757   SDLoc DL(N);
5758 
5759   for (unsigned i=0; i != NumElts; ++i) {
5760     SDValue Op = N0->getOperand(i);
5761     if (Op->isUndef()) {
5762       Elts.push_back(DAG.getUNDEF(SVT));
5763       continue;
5764     }
5765 
5766     SDLoc DL(Op);
5767     // Get the constant value and if needed trunc it to the size of the type.
5768     // Nodes like build_vector might have constants wider than the scalar type.
5769     APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
5770     if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
5771       Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
5772     else
5773       Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
5774   }
5775 
5776   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode();
5777 }
5778 
5779 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
5780 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
5781 // transformation. Returns true if extension are possible and the above
5782 // mentioned transformation is profitable.
5783 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
5784                                     unsigned ExtOpc,
5785                                     SmallVectorImpl<SDNode *> &ExtendNodes,
5786                                     const TargetLowering &TLI) {
5787   bool HasCopyToRegUses = false;
5788   bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
5789   for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
5790                             UE = N0.getNode()->use_end();
5791        UI != UE; ++UI) {
5792     SDNode *User = *UI;
5793     if (User == N)
5794       continue;
5795     if (UI.getUse().getResNo() != N0.getResNo())
5796       continue;
5797     // FIXME: Only extend SETCC N, N and SETCC N, c for now.
5798     if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
5799       ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
5800       if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
5801         // Sign bits will be lost after a zext.
5802         return false;
5803       bool Add = false;
5804       for (unsigned i = 0; i != 2; ++i) {
5805         SDValue UseOp = User->getOperand(i);
5806         if (UseOp == N0)
5807           continue;
5808         if (!isa<ConstantSDNode>(UseOp))
5809           return false;
5810         Add = true;
5811       }
5812       if (Add)
5813         ExtendNodes.push_back(User);
5814       continue;
5815     }
5816     // If truncates aren't free and there are users we can't
5817     // extend, it isn't worthwhile.
5818     if (!isTruncFree)
5819       return false;
5820     // Remember if this value is live-out.
5821     if (User->getOpcode() == ISD::CopyToReg)
5822       HasCopyToRegUses = true;
5823   }
5824 
5825   if (HasCopyToRegUses) {
5826     bool BothLiveOut = false;
5827     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5828          UI != UE; ++UI) {
5829       SDUse &Use = UI.getUse();
5830       if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
5831         BothLiveOut = true;
5832         break;
5833       }
5834     }
5835     if (BothLiveOut)
5836       // Both unextended and extended values are live out. There had better be
5837       // a good reason for the transformation.
5838       return ExtendNodes.size();
5839   }
5840   return true;
5841 }
5842 
5843 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
5844                                   SDValue Trunc, SDValue ExtLoad, SDLoc DL,
5845                                   ISD::NodeType ExtType) {
5846   // Extend SetCC uses if necessary.
5847   for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
5848     SDNode *SetCC = SetCCs[i];
5849     SmallVector<SDValue, 4> Ops;
5850 
5851     for (unsigned j = 0; j != 2; ++j) {
5852       SDValue SOp = SetCC->getOperand(j);
5853       if (SOp == Trunc)
5854         Ops.push_back(ExtLoad);
5855       else
5856         Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
5857     }
5858 
5859     Ops.push_back(SetCC->getOperand(2));
5860     CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
5861   }
5862 }
5863 
5864 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
5865 SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
5866   SDValue N0 = N->getOperand(0);
5867   EVT DstVT = N->getValueType(0);
5868   EVT SrcVT = N0.getValueType();
5869 
5870   assert((N->getOpcode() == ISD::SIGN_EXTEND ||
5871           N->getOpcode() == ISD::ZERO_EXTEND) &&
5872          "Unexpected node type (not an extend)!");
5873 
5874   // fold (sext (load x)) to multiple smaller sextloads; same for zext.
5875   // For example, on a target with legal v4i32, but illegal v8i32, turn:
5876   //   (v8i32 (sext (v8i16 (load x))))
5877   // into:
5878   //   (v8i32 (concat_vectors (v4i32 (sextload x)),
5879   //                          (v4i32 (sextload (x + 16)))))
5880   // Where uses of the original load, i.e.:
5881   //   (v8i16 (load x))
5882   // are replaced with:
5883   //   (v8i16 (truncate
5884   //     (v8i32 (concat_vectors (v4i32 (sextload x)),
5885   //                            (v4i32 (sextload (x + 16)))))))
5886   //
5887   // This combine is only applicable to illegal, but splittable, vectors.
5888   // All legal types, and illegal non-vector types, are handled elsewhere.
5889   // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
5890   //
5891   if (N0->getOpcode() != ISD::LOAD)
5892     return SDValue();
5893 
5894   LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5895 
5896   if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
5897       !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
5898       !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
5899     return SDValue();
5900 
5901   SmallVector<SDNode *, 4> SetCCs;
5902   if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI))
5903     return SDValue();
5904 
5905   ISD::LoadExtType ExtType =
5906       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
5907 
5908   // Try to split the vector types to get down to legal types.
5909   EVT SplitSrcVT = SrcVT;
5910   EVT SplitDstVT = DstVT;
5911   while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
5912          SplitSrcVT.getVectorNumElements() > 1) {
5913     SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
5914     SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
5915   }
5916 
5917   if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
5918     return SDValue();
5919 
5920   SDLoc DL(N);
5921   const unsigned NumSplits =
5922       DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
5923   const unsigned Stride = SplitSrcVT.getStoreSize();
5924   SmallVector<SDValue, 4> Loads;
5925   SmallVector<SDValue, 4> Chains;
5926 
5927   SDValue BasePtr = LN0->getBasePtr();
5928   for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
5929     const unsigned Offset = Idx * Stride;
5930     const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
5931 
5932     SDValue SplitLoad = DAG.getExtLoad(
5933         ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr,
5934         LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT,
5935         LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(),
5936         Align, LN0->getAAInfo());
5937 
5938     BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
5939                           DAG.getConstant(Stride, DL, BasePtr.getValueType()));
5940 
5941     Loads.push_back(SplitLoad.getValue(0));
5942     Chains.push_back(SplitLoad.getValue(1));
5943   }
5944 
5945   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
5946   SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
5947 
5948   CombineTo(N, NewValue);
5949 
5950   // Replace uses of the original load (before extension)
5951   // with a truncate of the concatenated sextloaded vectors.
5952   SDValue Trunc =
5953       DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
5954   CombineTo(N0.getNode(), Trunc, NewChain);
5955   ExtendSetCCUses(SetCCs, Trunc, NewValue, DL,
5956                   (ISD::NodeType)N->getOpcode());
5957   return SDValue(N, 0); // Return N so it doesn't get rechecked!
5958 }
5959 
5960 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
5961   SDValue N0 = N->getOperand(0);
5962   EVT VT = N->getValueType(0);
5963 
5964   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
5965                                               LegalOperations))
5966     return SDValue(Res, 0);
5967 
5968   // fold (sext (sext x)) -> (sext x)
5969   // fold (sext (aext x)) -> (sext x)
5970   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
5971     return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
5972                        N0.getOperand(0));
5973 
5974   if (N0.getOpcode() == ISD::TRUNCATE) {
5975     // fold (sext (truncate (load x))) -> (sext (smaller load x))
5976     // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
5977     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
5978       SDNode* oye = N0.getNode()->getOperand(0).getNode();
5979       if (NarrowLoad.getNode() != N0.getNode()) {
5980         CombineTo(N0.getNode(), NarrowLoad);
5981         // CombineTo deleted the truncate, if needed, but not what's under it.
5982         AddToWorklist(oye);
5983       }
5984       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5985     }
5986 
5987     // See if the value being truncated is already sign extended.  If so, just
5988     // eliminate the trunc/sext pair.
5989     SDValue Op = N0.getOperand(0);
5990     unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
5991     unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
5992     unsigned DestBits = VT.getScalarType().getSizeInBits();
5993     unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
5994 
5995     if (OpBits == DestBits) {
5996       // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
5997       // bits, it is already ready.
5998       if (NumSignBits > DestBits-MidBits)
5999         return Op;
6000     } else if (OpBits < DestBits) {
6001       // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
6002       // bits, just sext from i32.
6003       if (NumSignBits > OpBits-MidBits)
6004         return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
6005     } else {
6006       // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
6007       // bits, just truncate to i32.
6008       if (NumSignBits > OpBits-MidBits)
6009         return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6010     }
6011 
6012     // fold (sext (truncate x)) -> (sextinreg x).
6013     if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
6014                                                  N0.getValueType())) {
6015       if (OpBits < DestBits)
6016         Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
6017       else if (OpBits > DestBits)
6018         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
6019       return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
6020                          DAG.getValueType(N0.getValueType()));
6021     }
6022   }
6023 
6024   // fold (sext (load x)) -> (sext (truncate (sextload x)))
6025   // Only generate vector extloads when 1) they're legal, and 2) they are
6026   // deemed desirable by the target.
6027   if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6028       ((!LegalOperations && !VT.isVector() &&
6029         !cast<LoadSDNode>(N0)->isVolatile()) ||
6030        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) {
6031     bool DoXform = true;
6032     SmallVector<SDNode*, 4> SetCCs;
6033     if (!N0.hasOneUse())
6034       DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
6035     if (VT.isVector())
6036       DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
6037     if (DoXform) {
6038       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6039       SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6040                                        LN0->getChain(),
6041                                        LN0->getBasePtr(), N0.getValueType(),
6042                                        LN0->getMemOperand());
6043       CombineTo(N, ExtLoad);
6044       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6045                                   N0.getValueType(), ExtLoad);
6046       CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6047       ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6048                       ISD::SIGN_EXTEND);
6049       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6050     }
6051   }
6052 
6053   // fold (sext (load x)) to multiple smaller sextloads.
6054   // Only on illegal but splittable vectors.
6055   if (SDValue ExtLoad = CombineExtLoad(N))
6056     return ExtLoad;
6057 
6058   // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
6059   // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
6060   if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
6061       ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
6062     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6063     EVT MemVT = LN0->getMemoryVT();
6064     if ((!LegalOperations && !LN0->isVolatile()) ||
6065         TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) {
6066       SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6067                                        LN0->getChain(),
6068                                        LN0->getBasePtr(), MemVT,
6069                                        LN0->getMemOperand());
6070       CombineTo(N, ExtLoad);
6071       CombineTo(N0.getNode(),
6072                 DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6073                             N0.getValueType(), ExtLoad),
6074                 ExtLoad.getValue(1));
6075       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6076     }
6077   }
6078 
6079   // fold (sext (and/or/xor (load x), cst)) ->
6080   //      (and/or/xor (sextload x), (sext cst))
6081   if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
6082        N0.getOpcode() == ISD::XOR) &&
6083       isa<LoadSDNode>(N0.getOperand(0)) &&
6084       N0.getOperand(1).getOpcode() == ISD::Constant &&
6085       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) &&
6086       (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
6087     LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
6088     if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) {
6089       bool DoXform = true;
6090       SmallVector<SDNode*, 4> SetCCs;
6091       if (!N0.hasOneUse())
6092         DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
6093                                           SetCCs, TLI);
6094       if (DoXform) {
6095         SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
6096                                          LN0->getChain(), LN0->getBasePtr(),
6097                                          LN0->getMemoryVT(),
6098                                          LN0->getMemOperand());
6099         APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6100         Mask = Mask.sext(VT.getSizeInBits());
6101         SDLoc DL(N);
6102         SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
6103                                   ExtLoad, DAG.getConstant(Mask, DL, VT));
6104         SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
6105                                     SDLoc(N0.getOperand(0)),
6106                                     N0.getOperand(0).getValueType(), ExtLoad);
6107         CombineTo(N, And);
6108         CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
6109         ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
6110                         ISD::SIGN_EXTEND);
6111         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6112       }
6113     }
6114   }
6115 
6116   if (N0.getOpcode() == ISD::SETCC) {
6117     EVT N0VT = N0.getOperand(0).getValueType();
6118     // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
6119     // Only do this before legalize for now.
6120     if (VT.isVector() && !LegalOperations &&
6121         TLI.getBooleanContents(N0VT) ==
6122             TargetLowering::ZeroOrNegativeOneBooleanContent) {
6123       // On some architectures (such as SSE/NEON/etc) the SETCC result type is
6124       // of the same size as the compared operands. Only optimize sext(setcc())
6125       // if this is the case.
6126       EVT SVT = getSetCCResultType(N0VT);
6127 
6128       // We know that the # elements of the results is the same as the
6129       // # elements of the compare (and the # elements of the compare result
6130       // for that matter).  Check to see that they are the same size.  If so,
6131       // we know that the element size of the sext'd result matches the
6132       // element size of the compare operands.
6133       if (VT.getSizeInBits() == SVT.getSizeInBits())
6134         return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
6135                              N0.getOperand(1),
6136                              cast<CondCodeSDNode>(N0.getOperand(2))->get());
6137 
6138       // If the desired elements are smaller or larger than the source
6139       // elements we can use a matching integer vector type and then
6140       // truncate/sign extend
6141       EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
6142       if (SVT == MatchingVectorType) {
6143         SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
6144                                N0.getOperand(0), N0.getOperand(1),
6145                                cast<CondCodeSDNode>(N0.getOperand(2))->get());
6146         return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
6147       }
6148     }
6149 
6150     // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0)
6151     unsigned ElementWidth = VT.getScalarType().getSizeInBits();
6152     SDLoc DL(N);
6153     SDValue NegOne =
6154       DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT);
6155     if (SDValue SCC = SimplifySelectCC(
6156             DL, N0.getOperand(0), N0.getOperand(1), NegOne,
6157             DAG.getConstant(0, DL, VT),
6158             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
6159       return SCC;
6160 
6161     if (!VT.isVector()) {
6162       EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType());
6163       if (!LegalOperations ||
6164           TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) {
6165         SDLoc DL(N);
6166         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
6167         SDValue SetCC = DAG.getSetCC(DL, SetCCVT,
6168                                      N0.getOperand(0), N0.getOperand(1), CC);
6169         return DAG.getSelect(DL, VT, SetCC,
6170                              NegOne, DAG.getConstant(0, DL, VT));
6171       }
6172     }
6173   }
6174 
6175   // fold (sext x) -> (zext x) if the sign bit is known zero.
6176   if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
6177       DAG.SignBitIsZero(N0))
6178     return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
6179 
6180   return SDValue();
6181 }
6182 
6183 // isTruncateOf - If N is a truncate of some other value, return true, record
6184 // the value being truncated in Op and which of Op's bits are zero in KnownZero.
6185 // This function computes KnownZero to avoid a duplicated call to
6186 // computeKnownBits in the caller.
6187 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
6188                          APInt &KnownZero) {
6189   APInt KnownOne;
6190   if (N->getOpcode() == ISD::TRUNCATE) {
6191     Op = N->getOperand(0);
6192     DAG.computeKnownBits(Op, KnownZero, KnownOne);
6193     return true;
6194   }
6195 
6196   if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
6197       cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
6198     return false;
6199 
6200   SDValue Op0 = N->getOperand(0);
6201   SDValue Op1 = N->getOperand(1);
6202   assert(Op0.getValueType() == Op1.getValueType());
6203 
6204   if (isNullConstant(Op0))
6205     Op = Op1;
6206   else if (isNullConstant(Op1))
6207     Op = Op0;
6208   else
6209     return false;
6210 
6211   DAG.computeKnownBits(Op, KnownZero, KnownOne);
6212 
6213   if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
6214     return false;
6215 
6216   return true;
6217 }
6218 
6219 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
6220   SDValue N0 = N->getOperand(0);
6221   EVT VT = N->getValueType(0);
6222 
6223   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
6224                                               LegalOperations))
6225     return SDValue(Res, 0);
6226 
6227   // fold (zext (zext x)) -> (zext x)
6228   // fold (zext (aext x)) -> (zext x)
6229   if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
6230     return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
6231                        N0.getOperand(0));
6232 
6233   // fold (zext (truncate x)) -> (zext x) or
6234   //      (zext (truncate x)) -> (truncate x)
6235   // This is valid when the truncated bits of x are already zero.
6236   // FIXME: We should extend this to work for vectors too.
6237   SDValue Op;
6238   APInt KnownZero;
6239   if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
6240     APInt TruncatedBits =
6241       (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
6242       APInt(Op.getValueSizeInBits(), 0) :
6243       APInt::getBitsSet(Op.getValueSizeInBits(),
6244                         N0.getValueSizeInBits(),
6245                         std::min(Op.getValueSizeInBits(),
6246                                  VT.getSizeInBits()));
6247     if (TruncatedBits == (KnownZero & TruncatedBits)) {
6248       if (VT.bitsGT(Op.getValueType()))
6249         return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
6250       if (VT.bitsLT(Op.getValueType()))
6251         return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6252 
6253       return Op;
6254     }
6255   }
6256 
6257   // fold (zext (truncate (load x))) -> (zext (smaller load x))
6258   // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
6259   if (N0.getOpcode() == ISD::TRUNCATE) {
6260     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6261       SDNode* oye = N0.getNode()->getOperand(0).getNode();
6262       if (NarrowLoad.getNode() != N0.getNode()) {
6263         CombineTo(N0.getNode(), NarrowLoad);
6264         // CombineTo deleted the truncate, if needed, but not what's under it.
6265         AddToWorklist(oye);
6266       }
6267       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6268     }
6269   }
6270 
6271   // fold (zext (truncate x)) -> (and x, mask)
6272   if (N0.getOpcode() == ISD::TRUNCATE) {
6273     // fold (zext (truncate (load x))) -> (zext (smaller load x))
6274     // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
6275     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6276       SDNode *oye = N0.getNode()->getOperand(0).getNode();
6277       if (NarrowLoad.getNode() != N0.getNode()) {
6278         CombineTo(N0.getNode(), NarrowLoad);
6279         // CombineTo deleted the truncate, if needed, but not what's under it.
6280         AddToWorklist(oye);
6281       }
6282       return SDValue(N, 0); // Return N so it doesn't get rechecked!
6283     }
6284 
6285     EVT SrcVT = N0.getOperand(0).getValueType();
6286     EVT MinVT = N0.getValueType();
6287 
6288     // Try to mask before the extension to avoid having to generate a larger mask,
6289     // possibly over several sub-vectors.
6290     if (SrcVT.bitsLT(VT)) {
6291       if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
6292                                TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
6293         SDValue Op = N0.getOperand(0);
6294         Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
6295         AddToWorklist(Op.getNode());
6296         return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
6297       }
6298     }
6299 
6300     if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
6301       SDValue Op = N0.getOperand(0);
6302       if (SrcVT.bitsLT(VT)) {
6303         Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
6304         AddToWorklist(Op.getNode());
6305       } else if (SrcVT.bitsGT(VT)) {
6306         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6307         AddToWorklist(Op.getNode());
6308       }
6309       return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
6310     }
6311   }
6312 
6313   // Fold (zext (and (trunc x), cst)) -> (and x, cst),
6314   // if either of the casts is not free.
6315   if (N0.getOpcode() == ISD::AND &&
6316       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6317       N0.getOperand(1).getOpcode() == ISD::Constant &&
6318       (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
6319                            N0.getValueType()) ||
6320        !TLI.isZExtFree(N0.getValueType(), VT))) {
6321     SDValue X = N0.getOperand(0).getOperand(0);
6322     if (X.getValueType().bitsLT(VT)) {
6323       X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
6324     } else if (X.getValueType().bitsGT(VT)) {
6325       X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6326     }
6327     APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6328     Mask = Mask.zext(VT.getSizeInBits());
6329     SDLoc DL(N);
6330     return DAG.getNode(ISD::AND, DL, VT,
6331                        X, DAG.getConstant(Mask, DL, VT));
6332   }
6333 
6334   // fold (zext (load x)) -> (zext (truncate (zextload x)))
6335   // Only generate vector extloads when 1) they're legal, and 2) they are
6336   // deemed desirable by the target.
6337   if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6338       ((!LegalOperations && !VT.isVector() &&
6339         !cast<LoadSDNode>(N0)->isVolatile()) ||
6340        TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) {
6341     bool DoXform = true;
6342     SmallVector<SDNode*, 4> SetCCs;
6343     if (!N0.hasOneUse())
6344       DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
6345     if (VT.isVector())
6346       DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
6347     if (DoXform) {
6348       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6349       SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
6350                                        LN0->getChain(),
6351                                        LN0->getBasePtr(), N0.getValueType(),
6352                                        LN0->getMemOperand());
6353       CombineTo(N, ExtLoad);
6354       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6355                                   N0.getValueType(), ExtLoad);
6356       CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6357 
6358       ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6359                       ISD::ZERO_EXTEND);
6360       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6361     }
6362   }
6363 
6364   // fold (zext (load x)) to multiple smaller zextloads.
6365   // Only on illegal but splittable vectors.
6366   if (SDValue ExtLoad = CombineExtLoad(N))
6367     return ExtLoad;
6368 
6369   // fold (zext (and/or/xor (load x), cst)) ->
6370   //      (and/or/xor (zextload x), (zext cst))
6371   // Unless (and (load x) cst) will match as a zextload already and has
6372   // additional users.
6373   if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
6374        N0.getOpcode() == ISD::XOR) &&
6375       isa<LoadSDNode>(N0.getOperand(0)) &&
6376       N0.getOperand(1).getOpcode() == ISD::Constant &&
6377       TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) &&
6378       (!LegalOperations && TLI.isOperationLegalOrCustom(N0.getOpcode(), VT))) {
6379     LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
6380     if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) {
6381       bool DoXform = true;
6382       SmallVector<SDNode*, 4> SetCCs;
6383       if (!N0.hasOneUse()) {
6384         if (N0.getOpcode() == ISD::AND) {
6385           auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
6386           auto NarrowLoad = false;
6387           EVT LoadResultTy = AndC->getValueType(0);
6388           EVT ExtVT, LoadedVT;
6389           if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT,
6390                                NarrowLoad))
6391             DoXform = false;
6392         }
6393         if (DoXform)
6394           DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0),
6395                                             ISD::ZERO_EXTEND, SetCCs, TLI);
6396       }
6397       if (DoXform) {
6398         SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
6399                                          LN0->getChain(), LN0->getBasePtr(),
6400                                          LN0->getMemoryVT(),
6401                                          LN0->getMemOperand());
6402         APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6403         Mask = Mask.zext(VT.getSizeInBits());
6404         SDLoc DL(N);
6405         SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
6406                                   ExtLoad, DAG.getConstant(Mask, DL, VT));
6407         SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
6408                                     SDLoc(N0.getOperand(0)),
6409                                     N0.getOperand(0).getValueType(), ExtLoad);
6410         CombineTo(N, And);
6411         CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
6412         ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
6413                         ISD::ZERO_EXTEND);
6414         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6415       }
6416     }
6417   }
6418 
6419   // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
6420   // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
6421   if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
6422       ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
6423     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6424     EVT MemVT = LN0->getMemoryVT();
6425     if ((!LegalOperations && !LN0->isVolatile()) ||
6426         TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) {
6427       SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
6428                                        LN0->getChain(),
6429                                        LN0->getBasePtr(), MemVT,
6430                                        LN0->getMemOperand());
6431       CombineTo(N, ExtLoad);
6432       CombineTo(N0.getNode(),
6433                 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
6434                             ExtLoad),
6435                 ExtLoad.getValue(1));
6436       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6437     }
6438   }
6439 
6440   if (N0.getOpcode() == ISD::SETCC) {
6441     if (!LegalOperations && VT.isVector() &&
6442         N0.getValueType().getVectorElementType() == MVT::i1) {
6443       EVT N0VT = N0.getOperand(0).getValueType();
6444       if (getSetCCResultType(N0VT) == N0.getValueType())
6445         return SDValue();
6446 
6447       // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
6448       // Only do this before legalize for now.
6449       SDLoc DL(N);
6450       SDValue VecOnes = DAG.getConstant(1, DL, VT);
6451       if (VT.getSizeInBits() == N0VT.getSizeInBits())
6452         // We know that the # elements of the results is the same as the
6453         // # elements of the compare (and the # elements of the compare result
6454         // for that matter).  Check to see that they are the same size.  If so,
6455         // we know that the element size of the sext'd result matches the
6456         // element size of the compare operands.
6457         return DAG.getNode(ISD::AND, DL, VT,
6458                            DAG.getSetCC(DL, VT, N0.getOperand(0),
6459                                          N0.getOperand(1),
6460                                  cast<CondCodeSDNode>(N0.getOperand(2))->get()),
6461                            VecOnes);
6462 
6463       // If the desired elements are smaller or larger than the source
6464       // elements we can use a matching integer vector type and then
6465       // truncate/sign extend
6466       EVT MatchingElementType =
6467         EVT::getIntegerVT(*DAG.getContext(),
6468                           N0VT.getScalarType().getSizeInBits());
6469       EVT MatchingVectorType =
6470         EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
6471                          N0VT.getVectorNumElements());
6472       SDValue VsetCC =
6473         DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0),
6474                       N0.getOperand(1),
6475                       cast<CondCodeSDNode>(N0.getOperand(2))->get());
6476       return DAG.getNode(ISD::AND, DL, VT,
6477                          DAG.getSExtOrTrunc(VsetCC, DL, VT),
6478                          VecOnes);
6479     }
6480 
6481     // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
6482     SDLoc DL(N);
6483     if (SDValue SCC = SimplifySelectCC(
6484             DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
6485             DAG.getConstant(0, DL, VT),
6486             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
6487       return SCC;
6488   }
6489 
6490   // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
6491   if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
6492       isa<ConstantSDNode>(N0.getOperand(1)) &&
6493       N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
6494       N0.hasOneUse()) {
6495     SDValue ShAmt = N0.getOperand(1);
6496     unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
6497     if (N0.getOpcode() == ISD::SHL) {
6498       SDValue InnerZExt = N0.getOperand(0);
6499       // If the original shl may be shifting out bits, do not perform this
6500       // transformation.
6501       unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
6502         InnerZExt.getOperand(0).getValueType().getSizeInBits();
6503       if (ShAmtVal > KnownZeroBits)
6504         return SDValue();
6505     }
6506 
6507     SDLoc DL(N);
6508 
6509     // Ensure that the shift amount is wide enough for the shifted value.
6510     if (VT.getSizeInBits() >= 256)
6511       ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
6512 
6513     return DAG.getNode(N0.getOpcode(), DL, VT,
6514                        DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
6515                        ShAmt);
6516   }
6517 
6518   return SDValue();
6519 }
6520 
6521 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
6522   SDValue N0 = N->getOperand(0);
6523   EVT VT = N->getValueType(0);
6524 
6525   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
6526                                               LegalOperations))
6527     return SDValue(Res, 0);
6528 
6529   // fold (aext (aext x)) -> (aext x)
6530   // fold (aext (zext x)) -> (zext x)
6531   // fold (aext (sext x)) -> (sext x)
6532   if (N0.getOpcode() == ISD::ANY_EXTEND  ||
6533       N0.getOpcode() == ISD::ZERO_EXTEND ||
6534       N0.getOpcode() == ISD::SIGN_EXTEND)
6535     return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
6536 
6537   // fold (aext (truncate (load x))) -> (aext (smaller load x))
6538   // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
6539   if (N0.getOpcode() == ISD::TRUNCATE) {
6540     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6541       SDNode* oye = N0.getNode()->getOperand(0).getNode();
6542       if (NarrowLoad.getNode() != N0.getNode()) {
6543         CombineTo(N0.getNode(), NarrowLoad);
6544         // CombineTo deleted the truncate, if needed, but not what's under it.
6545         AddToWorklist(oye);
6546       }
6547       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6548     }
6549   }
6550 
6551   // fold (aext (truncate x))
6552   if (N0.getOpcode() == ISD::TRUNCATE) {
6553     SDValue TruncOp = N0.getOperand(0);
6554     if (TruncOp.getValueType() == VT)
6555       return TruncOp; // x iff x size == zext size.
6556     if (TruncOp.getValueType().bitsGT(VT))
6557       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
6558     return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
6559   }
6560 
6561   // Fold (aext (and (trunc x), cst)) -> (and x, cst)
6562   // if the trunc is not free.
6563   if (N0.getOpcode() == ISD::AND &&
6564       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6565       N0.getOperand(1).getOpcode() == ISD::Constant &&
6566       !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
6567                           N0.getValueType())) {
6568     SDValue X = N0.getOperand(0).getOperand(0);
6569     if (X.getValueType().bitsLT(VT)) {
6570       X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
6571     } else if (X.getValueType().bitsGT(VT)) {
6572       X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
6573     }
6574     APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6575     Mask = Mask.zext(VT.getSizeInBits());
6576     SDLoc DL(N);
6577     return DAG.getNode(ISD::AND, DL, VT,
6578                        X, DAG.getConstant(Mask, DL, VT));
6579   }
6580 
6581   // fold (aext (load x)) -> (aext (truncate (extload x)))
6582   // None of the supported targets knows how to perform load and any_ext
6583   // on vectors in one instruction.  We only perform this transformation on
6584   // scalars.
6585   if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
6586       ISD::isUNINDEXEDLoad(N0.getNode()) &&
6587       TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
6588     bool DoXform = true;
6589     SmallVector<SDNode*, 4> SetCCs;
6590     if (!N0.hasOneUse())
6591       DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
6592     if (DoXform) {
6593       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6594       SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6595                                        LN0->getChain(),
6596                                        LN0->getBasePtr(), N0.getValueType(),
6597                                        LN0->getMemOperand());
6598       CombineTo(N, ExtLoad);
6599       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6600                                   N0.getValueType(), ExtLoad);
6601       CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6602       ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6603                       ISD::ANY_EXTEND);
6604       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6605     }
6606   }
6607 
6608   // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
6609   // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
6610   // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
6611   if (N0.getOpcode() == ISD::LOAD &&
6612       !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6613       N0.hasOneUse()) {
6614     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6615     ISD::LoadExtType ExtType = LN0->getExtensionType();
6616     EVT MemVT = LN0->getMemoryVT();
6617     if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
6618       SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
6619                                        VT, LN0->getChain(), LN0->getBasePtr(),
6620                                        MemVT, LN0->getMemOperand());
6621       CombineTo(N, ExtLoad);
6622       CombineTo(N0.getNode(),
6623                 DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6624                             N0.getValueType(), ExtLoad),
6625                 ExtLoad.getValue(1));
6626       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6627     }
6628   }
6629 
6630   if (N0.getOpcode() == ISD::SETCC) {
6631     // For vectors:
6632     // aext(setcc) -> vsetcc
6633     // aext(setcc) -> truncate(vsetcc)
6634     // aext(setcc) -> aext(vsetcc)
6635     // Only do this before legalize for now.
6636     if (VT.isVector() && !LegalOperations) {
6637       EVT N0VT = N0.getOperand(0).getValueType();
6638         // We know that the # elements of the results is the same as the
6639         // # elements of the compare (and the # elements of the compare result
6640         // for that matter).  Check to see that they are the same size.  If so,
6641         // we know that the element size of the sext'd result matches the
6642         // element size of the compare operands.
6643       if (VT.getSizeInBits() == N0VT.getSizeInBits())
6644         return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
6645                              N0.getOperand(1),
6646                              cast<CondCodeSDNode>(N0.getOperand(2))->get());
6647       // If the desired elements are smaller or larger than the source
6648       // elements we can use a matching integer vector type and then
6649       // truncate/any extend
6650       else {
6651         EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
6652         SDValue VsetCC =
6653           DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
6654                         N0.getOperand(1),
6655                         cast<CondCodeSDNode>(N0.getOperand(2))->get());
6656         return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
6657       }
6658     }
6659 
6660     // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
6661     SDLoc DL(N);
6662     if (SDValue SCC = SimplifySelectCC(
6663             DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
6664             DAG.getConstant(0, DL, VT),
6665             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
6666       return SCC;
6667   }
6668 
6669   return SDValue();
6670 }
6671 
6672 /// See if the specified operand can be simplified with the knowledge that only
6673 /// the bits specified by Mask are used.  If so, return the simpler operand,
6674 /// otherwise return a null SDValue.
6675 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
6676   switch (V.getOpcode()) {
6677   default: break;
6678   case ISD::Constant: {
6679     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
6680     assert(CV && "Const value should be ConstSDNode.");
6681     const APInt &CVal = CV->getAPIntValue();
6682     APInt NewVal = CVal & Mask;
6683     if (NewVal != CVal)
6684       return DAG.getConstant(NewVal, SDLoc(V), V.getValueType());
6685     break;
6686   }
6687   case ISD::OR:
6688   case ISD::XOR:
6689     // If the LHS or RHS don't contribute bits to the or, drop them.
6690     if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
6691       return V.getOperand(1);
6692     if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
6693       return V.getOperand(0);
6694     break;
6695   case ISD::SRL:
6696     // Only look at single-use SRLs.
6697     if (!V.getNode()->hasOneUse())
6698       break;
6699     if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) {
6700       // See if we can recursively simplify the LHS.
6701       unsigned Amt = RHSC->getZExtValue();
6702 
6703       // Watch out for shift count overflow though.
6704       if (Amt >= Mask.getBitWidth()) break;
6705       APInt NewMask = Mask << Amt;
6706       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
6707         return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
6708                            SimplifyLHS, V.getOperand(1));
6709     }
6710   }
6711   return SDValue();
6712 }
6713 
6714 /// If the result of a wider load is shifted to right of N  bits and then
6715 /// truncated to a narrower type and where N is a multiple of number of bits of
6716 /// the narrower type, transform it to a narrower load from address + N / num of
6717 /// bits of new type. If the result is to be extended, also fold the extension
6718 /// to form a extending load.
6719 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
6720   unsigned Opc = N->getOpcode();
6721 
6722   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
6723   SDValue N0 = N->getOperand(0);
6724   EVT VT = N->getValueType(0);
6725   EVT ExtVT = VT;
6726 
6727   // This transformation isn't valid for vector loads.
6728   if (VT.isVector())
6729     return SDValue();
6730 
6731   // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
6732   // extended to VT.
6733   if (Opc == ISD::SIGN_EXTEND_INREG) {
6734     ExtType = ISD::SEXTLOAD;
6735     ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6736   } else if (Opc == ISD::SRL) {
6737     // Another special-case: SRL is basically zero-extending a narrower value.
6738     ExtType = ISD::ZEXTLOAD;
6739     N0 = SDValue(N, 0);
6740     ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6741     if (!N01) return SDValue();
6742     ExtVT = EVT::getIntegerVT(*DAG.getContext(),
6743                               VT.getSizeInBits() - N01->getZExtValue());
6744   }
6745   if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT))
6746     return SDValue();
6747 
6748   unsigned EVTBits = ExtVT.getSizeInBits();
6749 
6750   // Do not generate loads of non-round integer types since these can
6751   // be expensive (and would be wrong if the type is not byte sized).
6752   if (!ExtVT.isRound())
6753     return SDValue();
6754 
6755   unsigned ShAmt = 0;
6756   if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
6757     if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
6758       ShAmt = N01->getZExtValue();
6759       // Is the shift amount a multiple of size of VT?
6760       if ((ShAmt & (EVTBits-1)) == 0) {
6761         N0 = N0.getOperand(0);
6762         // Is the load width a multiple of size of VT?
6763         if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
6764           return SDValue();
6765       }
6766 
6767       // At this point, we must have a load or else we can't do the transform.
6768       if (!isa<LoadSDNode>(N0)) return SDValue();
6769 
6770       // Because a SRL must be assumed to *need* to zero-extend the high bits
6771       // (as opposed to anyext the high bits), we can't combine the zextload
6772       // lowering of SRL and an sextload.
6773       if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
6774         return SDValue();
6775 
6776       // If the shift amount is larger than the input type then we're not
6777       // accessing any of the loaded bytes.  If the load was a zextload/extload
6778       // then the result of the shift+trunc is zero/undef (handled elsewhere).
6779       if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
6780         return SDValue();
6781     }
6782   }
6783 
6784   // If the load is shifted left (and the result isn't shifted back right),
6785   // we can fold the truncate through the shift.
6786   unsigned ShLeftAmt = 0;
6787   if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
6788       ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
6789     if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
6790       ShLeftAmt = N01->getZExtValue();
6791       N0 = N0.getOperand(0);
6792     }
6793   }
6794 
6795   // If we haven't found a load, we can't narrow it.  Don't transform one with
6796   // multiple uses, this would require adding a new load.
6797   if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
6798     return SDValue();
6799 
6800   // Don't change the width of a volatile load.
6801   LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6802   if (LN0->isVolatile())
6803     return SDValue();
6804 
6805   // Verify that we are actually reducing a load width here.
6806   if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
6807     return SDValue();
6808 
6809   // For the transform to be legal, the load must produce only two values
6810   // (the value loaded and the chain).  Don't transform a pre-increment
6811   // load, for example, which produces an extra value.  Otherwise the
6812   // transformation is not equivalent, and the downstream logic to replace
6813   // uses gets things wrong.
6814   if (LN0->getNumValues() > 2)
6815     return SDValue();
6816 
6817   // If the load that we're shrinking is an extload and we're not just
6818   // discarding the extension we can't simply shrink the load. Bail.
6819   // TODO: It would be possible to merge the extensions in some cases.
6820   if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
6821       LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
6822     return SDValue();
6823 
6824   if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT))
6825     return SDValue();
6826 
6827   EVT PtrType = N0.getOperand(1).getValueType();
6828 
6829   if (PtrType == MVT::Untyped || PtrType.isExtended())
6830     // It's not possible to generate a constant of extended or untyped type.
6831     return SDValue();
6832 
6833   // For big endian targets, we need to adjust the offset to the pointer to
6834   // load the correct bytes.
6835   if (DAG.getDataLayout().isBigEndian()) {
6836     unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
6837     unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
6838     ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
6839   }
6840 
6841   uint64_t PtrOff = ShAmt / 8;
6842   unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
6843   SDLoc DL(LN0);
6844   // The original load itself didn't wrap, so an offset within it doesn't.
6845   SDNodeFlags Flags;
6846   Flags.setNoUnsignedWrap(true);
6847   SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
6848                                PtrType, LN0->getBasePtr(),
6849                                DAG.getConstant(PtrOff, DL, PtrType),
6850                                &Flags);
6851   AddToWorklist(NewPtr.getNode());
6852 
6853   SDValue Load;
6854   if (ExtType == ISD::NON_EXTLOAD)
6855     Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
6856                         LN0->getPointerInfo().getWithOffset(PtrOff),
6857                         LN0->isVolatile(), LN0->isNonTemporal(),
6858                         LN0->isInvariant(), NewAlign, LN0->getAAInfo());
6859   else
6860     Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
6861                           LN0->getPointerInfo().getWithOffset(PtrOff),
6862                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
6863                           LN0->isInvariant(), NewAlign, LN0->getAAInfo());
6864 
6865   // Replace the old load's chain with the new load's chain.
6866   WorklistRemover DeadNodes(*this);
6867   DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
6868 
6869   // Shift the result left, if we've swallowed a left shift.
6870   SDValue Result = Load;
6871   if (ShLeftAmt != 0) {
6872     EVT ShImmTy = getShiftAmountTy(Result.getValueType());
6873     if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
6874       ShImmTy = VT;
6875     // If the shift amount is as large as the result size (but, presumably,
6876     // no larger than the source) then the useful bits of the result are
6877     // zero; we can't simply return the shortened shift, because the result
6878     // of that operation is undefined.
6879     SDLoc DL(N0);
6880     if (ShLeftAmt >= VT.getSizeInBits())
6881       Result = DAG.getConstant(0, DL, VT);
6882     else
6883       Result = DAG.getNode(ISD::SHL, DL, VT,
6884                           Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
6885   }
6886 
6887   // Return the new loaded value.
6888   return Result;
6889 }
6890 
6891 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
6892   SDValue N0 = N->getOperand(0);
6893   SDValue N1 = N->getOperand(1);
6894   EVT VT = N->getValueType(0);
6895   EVT EVT = cast<VTSDNode>(N1)->getVT();
6896   unsigned VTBits = VT.getScalarType().getSizeInBits();
6897   unsigned EVTBits = EVT.getScalarType().getSizeInBits();
6898 
6899   if (N0.isUndef())
6900     return DAG.getUNDEF(VT);
6901 
6902   // fold (sext_in_reg c1) -> c1
6903   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
6904     return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
6905 
6906   // If the input is already sign extended, just drop the extension.
6907   if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
6908     return N0;
6909 
6910   // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
6911   if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6912       EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
6913     return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
6914                        N0.getOperand(0), N1);
6915 
6916   // fold (sext_in_reg (sext x)) -> (sext x)
6917   // fold (sext_in_reg (aext x)) -> (sext x)
6918   // if x is small enough.
6919   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
6920     SDValue N00 = N0.getOperand(0);
6921     if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
6922         (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
6923       return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
6924   }
6925 
6926   // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
6927   if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
6928     return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
6929 
6930   // fold operands of sext_in_reg based on knowledge that the top bits are not
6931   // demanded.
6932   if (SimplifyDemandedBits(SDValue(N, 0)))
6933     return SDValue(N, 0);
6934 
6935   // fold (sext_in_reg (load x)) -> (smaller sextload x)
6936   // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
6937   if (SDValue NarrowLoad = ReduceLoadWidth(N))
6938     return NarrowLoad;
6939 
6940   // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
6941   // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
6942   // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
6943   if (N0.getOpcode() == ISD::SRL) {
6944     if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
6945       if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
6946         // We can turn this into an SRA iff the input to the SRL is already sign
6947         // extended enough.
6948         unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
6949         if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
6950           return DAG.getNode(ISD::SRA, SDLoc(N), VT,
6951                              N0.getOperand(0), N0.getOperand(1));
6952       }
6953   }
6954 
6955   // fold (sext_inreg (extload x)) -> (sextload x)
6956   if (ISD::isEXTLoad(N0.getNode()) &&
6957       ISD::isUNINDEXEDLoad(N0.getNode()) &&
6958       EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
6959       ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6960        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
6961     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6962     SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6963                                      LN0->getChain(),
6964                                      LN0->getBasePtr(), EVT,
6965                                      LN0->getMemOperand());
6966     CombineTo(N, ExtLoad);
6967     CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
6968     AddToWorklist(ExtLoad.getNode());
6969     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6970   }
6971   // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
6972   if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6973       N0.hasOneUse() &&
6974       EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
6975       ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6976        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
6977     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6978     SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6979                                      LN0->getChain(),
6980                                      LN0->getBasePtr(), EVT,
6981                                      LN0->getMemOperand());
6982     CombineTo(N, ExtLoad);
6983     CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
6984     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6985   }
6986 
6987   // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
6988   if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
6989     if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
6990                                            N0.getOperand(1), false))
6991       return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
6992                          BSwap, N1);
6993   }
6994 
6995   return SDValue();
6996 }
6997 
6998 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
6999   SDValue N0 = N->getOperand(0);
7000   EVT VT = N->getValueType(0);
7001 
7002   if (N0.isUndef())
7003     return DAG.getUNDEF(VT);
7004 
7005   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
7006                                               LegalOperations))
7007     return SDValue(Res, 0);
7008 
7009   return SDValue();
7010 }
7011 
7012 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
7013   SDValue N0 = N->getOperand(0);
7014   EVT VT = N->getValueType(0);
7015 
7016   if (N0.isUndef())
7017     return DAG.getUNDEF(VT);
7018 
7019   if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
7020                                               LegalOperations))
7021     return SDValue(Res, 0);
7022 
7023   return SDValue();
7024 }
7025 
7026 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
7027   SDValue N0 = N->getOperand(0);
7028   EVT VT = N->getValueType(0);
7029   bool isLE = DAG.getDataLayout().isLittleEndian();
7030 
7031   // noop truncate
7032   if (N0.getValueType() == N->getValueType(0))
7033     return N0;
7034   // fold (truncate c1) -> c1
7035   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7036     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
7037   // fold (truncate (truncate x)) -> (truncate x)
7038   if (N0.getOpcode() == ISD::TRUNCATE)
7039     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
7040   // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
7041   if (N0.getOpcode() == ISD::ZERO_EXTEND ||
7042       N0.getOpcode() == ISD::SIGN_EXTEND ||
7043       N0.getOpcode() == ISD::ANY_EXTEND) {
7044     // if the source is smaller than the dest, we still need an extend.
7045     if (N0.getOperand(0).getValueType().bitsLT(VT))
7046       return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
7047     // if the source is larger than the dest, than we just need the truncate.
7048     if (N0.getOperand(0).getValueType().bitsGT(VT))
7049       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
7050     // if the source and dest are the same type, we can drop both the extend
7051     // and the truncate.
7052     return N0.getOperand(0);
7053   }
7054 
7055   // Fold extract-and-trunc into a narrow extract. For example:
7056   //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
7057   //   i32 y = TRUNCATE(i64 x)
7058   //        -- becomes --
7059   //   v16i8 b = BITCAST (v2i64 val)
7060   //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
7061   //
7062   // Note: We only run this optimization after type legalization (which often
7063   // creates this pattern) and before operation legalization after which
7064   // we need to be more careful about the vector instructions that we generate.
7065   if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7066       LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
7067 
7068     EVT VecTy = N0.getOperand(0).getValueType();
7069     EVT ExTy = N0.getValueType();
7070     EVT TrTy = N->getValueType(0);
7071 
7072     unsigned NumElem = VecTy.getVectorNumElements();
7073     unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
7074 
7075     EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
7076     assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
7077 
7078     SDValue EltNo = N0->getOperand(1);
7079     if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
7080       int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
7081       EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7082       int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
7083 
7084       SDLoc DL(N);
7085       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
7086                          DAG.getBitcast(NVT, N0.getOperand(0)),
7087                          DAG.getConstant(Index, DL, IndexTy));
7088     }
7089   }
7090 
7091   // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
7092   if (N0.getOpcode() == ISD::SELECT) {
7093     EVT SrcVT = N0.getValueType();
7094     if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
7095         TLI.isTruncateFree(SrcVT, VT)) {
7096       SDLoc SL(N0);
7097       SDValue Cond = N0.getOperand(0);
7098       SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
7099       SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
7100       return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
7101     }
7102   }
7103 
7104   // Fold a series of buildvector, bitcast, and truncate if possible.
7105   // For example fold
7106   //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
7107   //   (2xi32 (buildvector x, y)).
7108   if (Level == AfterLegalizeVectorOps && VT.isVector() &&
7109       N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
7110       N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
7111       N0.getOperand(0).hasOneUse()) {
7112 
7113     SDValue BuildVect = N0.getOperand(0);
7114     EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
7115     EVT TruncVecEltTy = VT.getVectorElementType();
7116 
7117     // Check that the element types match.
7118     if (BuildVectEltTy == TruncVecEltTy) {
7119       // Now we only need to compute the offset of the truncated elements.
7120       unsigned BuildVecNumElts =  BuildVect.getNumOperands();
7121       unsigned TruncVecNumElts = VT.getVectorNumElements();
7122       unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
7123 
7124       assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
7125              "Invalid number of elements");
7126 
7127       SmallVector<SDValue, 8> Opnds;
7128       for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
7129         Opnds.push_back(BuildVect.getOperand(i));
7130 
7131       return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
7132     }
7133   }
7134 
7135   // See if we can simplify the input to this truncate through knowledge that
7136   // only the low bits are being used.
7137   // For example "trunc (or (shl x, 8), y)" // -> trunc y
7138   // Currently we only perform this optimization on scalars because vectors
7139   // may have different active low bits.
7140   if (!VT.isVector()) {
7141     if (SDValue Shorter =
7142             GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
7143                                                      VT.getSizeInBits())))
7144       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
7145   }
7146   // fold (truncate (load x)) -> (smaller load x)
7147   // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
7148   if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
7149     if (SDValue Reduced = ReduceLoadWidth(N))
7150       return Reduced;
7151 
7152     // Handle the case where the load remains an extending load even
7153     // after truncation.
7154     if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
7155       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7156       if (!LN0->isVolatile() &&
7157           LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
7158         SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
7159                                          VT, LN0->getChain(), LN0->getBasePtr(),
7160                                          LN0->getMemoryVT(),
7161                                          LN0->getMemOperand());
7162         DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
7163         return NewLoad;
7164       }
7165     }
7166   }
7167   // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
7168   // where ... are all 'undef'.
7169   if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
7170     SmallVector<EVT, 8> VTs;
7171     SDValue V;
7172     unsigned Idx = 0;
7173     unsigned NumDefs = 0;
7174 
7175     for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
7176       SDValue X = N0.getOperand(i);
7177       if (!X.isUndef()) {
7178         V = X;
7179         Idx = i;
7180         NumDefs++;
7181       }
7182       // Stop if more than one members are non-undef.
7183       if (NumDefs > 1)
7184         break;
7185       VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
7186                                      VT.getVectorElementType(),
7187                                      X.getValueType().getVectorNumElements()));
7188     }
7189 
7190     if (NumDefs == 0)
7191       return DAG.getUNDEF(VT);
7192 
7193     if (NumDefs == 1) {
7194       assert(V.getNode() && "The single defined operand is empty!");
7195       SmallVector<SDValue, 8> Opnds;
7196       for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
7197         if (i != Idx) {
7198           Opnds.push_back(DAG.getUNDEF(VTs[i]));
7199           continue;
7200         }
7201         SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
7202         AddToWorklist(NV.getNode());
7203         Opnds.push_back(NV);
7204       }
7205       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
7206     }
7207   }
7208 
7209   // Fold truncate of a bitcast of a vector to an extract of the low vector
7210   // element.
7211   //
7212   // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, 0
7213   if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
7214     SDValue VecSrc = N0.getOperand(0);
7215     EVT SrcVT = VecSrc.getValueType();
7216     if (SrcVT.isVector() && SrcVT.getScalarType() == VT &&
7217         (!LegalOperations ||
7218          TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) {
7219       SDLoc SL(N);
7220 
7221       EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
7222       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT,
7223                          VecSrc, DAG.getConstant(0, SL, IdxVT));
7224     }
7225   }
7226 
7227   // Simplify the operands using demanded-bits information.
7228   if (!VT.isVector() &&
7229       SimplifyDemandedBits(SDValue(N, 0)))
7230     return SDValue(N, 0);
7231 
7232   return SDValue();
7233 }
7234 
7235 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
7236   SDValue Elt = N->getOperand(i);
7237   if (Elt.getOpcode() != ISD::MERGE_VALUES)
7238     return Elt.getNode();
7239   return Elt.getOperand(Elt.getResNo()).getNode();
7240 }
7241 
7242 /// build_pair (load, load) -> load
7243 /// if load locations are consecutive.
7244 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
7245   assert(N->getOpcode() == ISD::BUILD_PAIR);
7246 
7247   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
7248   LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
7249   if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
7250       LD1->getAddressSpace() != LD2->getAddressSpace())
7251     return SDValue();
7252   EVT LD1VT = LD1->getValueType(0);
7253   unsigned LD1Bytes = LD1VT.getSizeInBits() / 8;
7254   if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
7255       DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
7256     unsigned Align = LD1->getAlignment();
7257     unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
7258         VT.getTypeForEVT(*DAG.getContext()));
7259 
7260     if (NewAlign <= Align &&
7261         (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
7262       return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
7263                          LD1->getBasePtr(), LD1->getPointerInfo(),
7264                          false, false, false, Align);
7265   }
7266 
7267   return SDValue();
7268 }
7269 
7270 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
7271   // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
7272   // and Lo parts; on big-endian machines it doesn't.
7273   return DAG.getDataLayout().isBigEndian() ? 1 : 0;
7274 }
7275 
7276 SDValue DAGCombiner::visitBITCAST(SDNode *N) {
7277   SDValue N0 = N->getOperand(0);
7278   EVT VT = N->getValueType(0);
7279 
7280   // If the input is a BUILD_VECTOR with all constant elements, fold this now.
7281   // Only do this before legalize, since afterward the target may be depending
7282   // on the bitconvert.
7283   // First check to see if this is all constant.
7284   if (!LegalTypes &&
7285       N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
7286       VT.isVector()) {
7287     bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant();
7288 
7289     EVT DestEltVT = N->getValueType(0).getVectorElementType();
7290     assert(!DestEltVT.isVector() &&
7291            "Element type of vector ValueType must not be vector!");
7292     if (isSimple)
7293       return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
7294   }
7295 
7296   // If the input is a constant, let getNode fold it.
7297   if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
7298     // If we can't allow illegal operations, we need to check that this is just
7299     // a fp -> int or int -> conversion and that the resulting operation will
7300     // be legal.
7301     if (!LegalOperations ||
7302         (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
7303          TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
7304         (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
7305          TLI.isOperationLegal(ISD::Constant, VT)))
7306       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
7307   }
7308 
7309   // (conv (conv x, t1), t2) -> (conv x, t2)
7310   if (N0.getOpcode() == ISD::BITCAST)
7311     return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
7312                        N0.getOperand(0));
7313 
7314   // fold (conv (load x)) -> (load (conv*)x)
7315   // If the resultant load doesn't need a higher alignment than the original!
7316   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7317       // Do not change the width of a volatile load.
7318       !cast<LoadSDNode>(N0)->isVolatile() &&
7319       // Do not remove the cast if the types differ in endian layout.
7320       TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
7321           TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
7322       (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
7323       TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
7324     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7325     unsigned Align = DAG.getDataLayout().getABITypeAlignment(
7326         VT.getTypeForEVT(*DAG.getContext()));
7327     unsigned OrigAlign = LN0->getAlignment();
7328 
7329     if (Align <= OrigAlign) {
7330       SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
7331                                  LN0->getBasePtr(), LN0->getPointerInfo(),
7332                                  LN0->isVolatile(), LN0->isNonTemporal(),
7333                                  LN0->isInvariant(), OrigAlign,
7334                                  LN0->getAAInfo());
7335       DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
7336       return Load;
7337     }
7338   }
7339 
7340   // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7341   // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7342   //
7343   // For ppc_fp128:
7344   // fold (bitcast (fneg x)) ->
7345   //     flipbit = signbit
7346   //     (xor (bitcast x) (build_pair flipbit, flipbit))
7347   //
7348   // fold (bitcast (fabs x)) ->
7349   //     flipbit = (and (extract_element (bitcast x), 0), signbit)
7350   //     (xor (bitcast x) (build_pair flipbit, flipbit))
7351   // This often reduces constant pool loads.
7352   if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
7353        (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
7354       N0.getNode()->hasOneUse() && VT.isInteger() &&
7355       !VT.isVector() && !N0.getValueType().isVector()) {
7356     SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
7357                                   N0.getOperand(0));
7358     AddToWorklist(NewConv.getNode());
7359 
7360     SDLoc DL(N);
7361     if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
7362       assert(VT.getSizeInBits() == 128);
7363       SDValue SignBit = DAG.getConstant(
7364           APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
7365       SDValue FlipBit;
7366       if (N0.getOpcode() == ISD::FNEG) {
7367         FlipBit = SignBit;
7368         AddToWorklist(FlipBit.getNode());
7369       } else {
7370         assert(N0.getOpcode() == ISD::FABS);
7371         SDValue Hi =
7372             DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
7373                         DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
7374                                               SDLoc(NewConv)));
7375         AddToWorklist(Hi.getNode());
7376         FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
7377         AddToWorklist(FlipBit.getNode());
7378       }
7379       SDValue FlipBits =
7380           DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
7381       AddToWorklist(FlipBits.getNode());
7382       return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
7383     }
7384     APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
7385     if (N0.getOpcode() == ISD::FNEG)
7386       return DAG.getNode(ISD::XOR, DL, VT,
7387                          NewConv, DAG.getConstant(SignBit, DL, VT));
7388     assert(N0.getOpcode() == ISD::FABS);
7389     return DAG.getNode(ISD::AND, DL, VT,
7390                        NewConv, DAG.getConstant(~SignBit, DL, VT));
7391   }
7392 
7393   // fold (bitconvert (fcopysign cst, x)) ->
7394   //         (or (and (bitconvert x), sign), (and cst, (not sign)))
7395   // Note that we don't handle (copysign x, cst) because this can always be
7396   // folded to an fneg or fabs.
7397   //
7398   // For ppc_fp128:
7399   // fold (bitcast (fcopysign cst, x)) ->
7400   //     flipbit = (and (extract_element
7401   //                     (xor (bitcast cst), (bitcast x)), 0),
7402   //                    signbit)
7403   //     (xor (bitcast cst) (build_pair flipbit, flipbit))
7404   if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
7405       isa<ConstantFPSDNode>(N0.getOperand(0)) &&
7406       VT.isInteger() && !VT.isVector()) {
7407     unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
7408     EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
7409     if (isTypeLegal(IntXVT)) {
7410       SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
7411                               IntXVT, N0.getOperand(1));
7412       AddToWorklist(X.getNode());
7413 
7414       // If X has a different width than the result/lhs, sext it or truncate it.
7415       unsigned VTWidth = VT.getSizeInBits();
7416       if (OrigXWidth < VTWidth) {
7417         X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
7418         AddToWorklist(X.getNode());
7419       } else if (OrigXWidth > VTWidth) {
7420         // To get the sign bit in the right place, we have to shift it right
7421         // before truncating.
7422         SDLoc DL(X);
7423         X = DAG.getNode(ISD::SRL, DL,
7424                         X.getValueType(), X,
7425                         DAG.getConstant(OrigXWidth-VTWidth, DL,
7426                                         X.getValueType()));
7427         AddToWorklist(X.getNode());
7428         X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
7429         AddToWorklist(X.getNode());
7430       }
7431 
7432       if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
7433         APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2);
7434         SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
7435         AddToWorklist(Cst.getNode());
7436         SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
7437         AddToWorklist(X.getNode());
7438         SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
7439         AddToWorklist(XorResult.getNode());
7440         SDValue XorResult64 = DAG.getNode(
7441             ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
7442             DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
7443                                   SDLoc(XorResult)));
7444         AddToWorklist(XorResult64.getNode());
7445         SDValue FlipBit =
7446             DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
7447                         DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
7448         AddToWorklist(FlipBit.getNode());
7449         SDValue FlipBits =
7450             DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
7451         AddToWorklist(FlipBits.getNode());
7452         return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
7453       }
7454       APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
7455       X = DAG.getNode(ISD::AND, SDLoc(X), VT,
7456                       X, DAG.getConstant(SignBit, SDLoc(X), VT));
7457       AddToWorklist(X.getNode());
7458 
7459       SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
7460                                 VT, N0.getOperand(0));
7461       Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
7462                         Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
7463       AddToWorklist(Cst.getNode());
7464 
7465       return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
7466     }
7467   }
7468 
7469   // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
7470   if (N0.getOpcode() == ISD::BUILD_PAIR)
7471     if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
7472       return CombineLD;
7473 
7474   // Remove double bitcasts from shuffles - this is often a legacy of
7475   // XformToShuffleWithZero being used to combine bitmaskings (of
7476   // float vectors bitcast to integer vectors) into shuffles.
7477   // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
7478   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
7479       N0->getOpcode() == ISD::VECTOR_SHUFFLE &&
7480       VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
7481       !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
7482     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
7483 
7484     // If operands are a bitcast, peek through if it casts the original VT.
7485     // If operands are a constant, just bitcast back to original VT.
7486     auto PeekThroughBitcast = [&](SDValue Op) {
7487       if (Op.getOpcode() == ISD::BITCAST &&
7488           Op.getOperand(0).getValueType() == VT)
7489         return SDValue(Op.getOperand(0));
7490       if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
7491           ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
7492         return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
7493       return SDValue();
7494     };
7495 
7496     SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
7497     SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
7498     if (!(SV0 && SV1))
7499       return SDValue();
7500 
7501     int MaskScale =
7502         VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
7503     SmallVector<int, 8> NewMask;
7504     for (int M : SVN->getMask())
7505       for (int i = 0; i != MaskScale; ++i)
7506         NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
7507 
7508     bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
7509     if (!LegalMask) {
7510       std::swap(SV0, SV1);
7511       ShuffleVectorSDNode::commuteMask(NewMask);
7512       LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
7513     }
7514 
7515     if (LegalMask)
7516       return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
7517   }
7518 
7519   return SDValue();
7520 }
7521 
7522 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
7523   EVT VT = N->getValueType(0);
7524   return CombineConsecutiveLoads(N, VT);
7525 }
7526 
7527 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
7528 /// operands. DstEltVT indicates the destination element value type.
7529 SDValue DAGCombiner::
7530 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
7531   EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7532 
7533   // If this is already the right type, we're done.
7534   if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
7535 
7536   unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7537   unsigned DstBitSize = DstEltVT.getSizeInBits();
7538 
7539   // If this is a conversion of N elements of one type to N elements of another
7540   // type, convert each element.  This handles FP<->INT cases.
7541   if (SrcBitSize == DstBitSize) {
7542     EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
7543                               BV->getValueType(0).getVectorNumElements());
7544 
7545     // Due to the FP element handling below calling this routine recursively,
7546     // we can end up with a scalar-to-vector node here.
7547     if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
7548       return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
7549                          DAG.getNode(ISD::BITCAST, SDLoc(BV),
7550                                      DstEltVT, BV->getOperand(0)));
7551 
7552     SmallVector<SDValue, 8> Ops;
7553     for (SDValue Op : BV->op_values()) {
7554       // If the vector element type is not legal, the BUILD_VECTOR operands
7555       // are promoted and implicitly truncated.  Make that explicit here.
7556       if (Op.getValueType() != SrcEltVT)
7557         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
7558       Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
7559                                 DstEltVT, Op));
7560       AddToWorklist(Ops.back().getNode());
7561     }
7562     return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops);
7563   }
7564 
7565   // Otherwise, we're growing or shrinking the elements.  To avoid having to
7566   // handle annoying details of growing/shrinking FP values, we convert them to
7567   // int first.
7568   if (SrcEltVT.isFloatingPoint()) {
7569     // Convert the input float vector to a int vector where the elements are the
7570     // same sizes.
7571     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
7572     BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
7573     SrcEltVT = IntVT;
7574   }
7575 
7576   // Now we know the input is an integer vector.  If the output is a FP type,
7577   // convert to integer first, then to FP of the right size.
7578   if (DstEltVT.isFloatingPoint()) {
7579     EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
7580     SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
7581 
7582     // Next, convert to FP elements of the same size.
7583     return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
7584   }
7585 
7586   SDLoc DL(BV);
7587 
7588   // Okay, we know the src/dst types are both integers of differing types.
7589   // Handling growing first.
7590   assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7591   if (SrcBitSize < DstBitSize) {
7592     unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
7593 
7594     SmallVector<SDValue, 8> Ops;
7595     for (unsigned i = 0, e = BV->getNumOperands(); i != e;
7596          i += NumInputsPerOutput) {
7597       bool isLE = DAG.getDataLayout().isLittleEndian();
7598       APInt NewBits = APInt(DstBitSize, 0);
7599       bool EltIsUndef = true;
7600       for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
7601         // Shift the previously computed bits over.
7602         NewBits <<= SrcBitSize;
7603         SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
7604         if (Op.isUndef()) continue;
7605         EltIsUndef = false;
7606 
7607         NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
7608                    zextOrTrunc(SrcBitSize).zext(DstBitSize);
7609       }
7610 
7611       if (EltIsUndef)
7612         Ops.push_back(DAG.getUNDEF(DstEltVT));
7613       else
7614         Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
7615     }
7616 
7617     EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
7618     return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
7619   }
7620 
7621   // Finally, this must be the case where we are shrinking elements: each input
7622   // turns into multiple outputs.
7623   unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
7624   EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
7625                             NumOutputsPerInput*BV->getNumOperands());
7626   SmallVector<SDValue, 8> Ops;
7627 
7628   for (const SDValue &Op : BV->op_values()) {
7629     if (Op.isUndef()) {
7630       Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
7631       continue;
7632     }
7633 
7634     APInt OpVal = cast<ConstantSDNode>(Op)->
7635                   getAPIntValue().zextOrTrunc(SrcBitSize);
7636 
7637     for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
7638       APInt ThisVal = OpVal.trunc(DstBitSize);
7639       Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
7640       OpVal = OpVal.lshr(DstBitSize);
7641     }
7642 
7643     // For big endian targets, swap the order of the pieces of each element.
7644     if (DAG.getDataLayout().isBigEndian())
7645       std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
7646   }
7647 
7648   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
7649 }
7650 
7651 /// Try to perform FMA combining on a given FADD node.
7652 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
7653   SDValue N0 = N->getOperand(0);
7654   SDValue N1 = N->getOperand(1);
7655   EVT VT = N->getValueType(0);
7656   SDLoc SL(N);
7657 
7658   const TargetOptions &Options = DAG.getTarget().Options;
7659   bool AllowFusion =
7660       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
7661 
7662   // Floating-point multiply-add with intermediate rounding.
7663   bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
7664 
7665   // Floating-point multiply-add without intermediate rounding.
7666   bool HasFMA =
7667       AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
7668       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
7669 
7670   // No valid opcode, do not combine.
7671   if (!HasFMAD && !HasFMA)
7672     return SDValue();
7673 
7674   // Always prefer FMAD to FMA for precision.
7675   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
7676   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
7677   bool LookThroughFPExt = TLI.isFPExtFree(VT);
7678 
7679   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
7680   // prefer to fold the multiply with fewer uses.
7681   if (Aggressive && N0.getOpcode() == ISD::FMUL &&
7682       N1.getOpcode() == ISD::FMUL) {
7683     if (N0.getNode()->use_size() > N1.getNode()->use_size())
7684       std::swap(N0, N1);
7685   }
7686 
7687   // fold (fadd (fmul x, y), z) -> (fma x, y, z)
7688   if (N0.getOpcode() == ISD::FMUL &&
7689       (Aggressive || N0->hasOneUse())) {
7690     return DAG.getNode(PreferredFusedOpcode, SL, VT,
7691                        N0.getOperand(0), N0.getOperand(1), N1);
7692   }
7693 
7694   // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
7695   // Note: Commutes FADD operands.
7696   if (N1.getOpcode() == ISD::FMUL &&
7697       (Aggressive || N1->hasOneUse())) {
7698     return DAG.getNode(PreferredFusedOpcode, SL, VT,
7699                        N1.getOperand(0), N1.getOperand(1), N0);
7700   }
7701 
7702   // Look through FP_EXTEND nodes to do more combining.
7703   if (AllowFusion && LookThroughFPExt) {
7704     // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
7705     if (N0.getOpcode() == ISD::FP_EXTEND) {
7706       SDValue N00 = N0.getOperand(0);
7707       if (N00.getOpcode() == ISD::FMUL)
7708         return DAG.getNode(PreferredFusedOpcode, SL, VT,
7709                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
7710                                        N00.getOperand(0)),
7711                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
7712                                        N00.getOperand(1)), N1);
7713     }
7714 
7715     // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
7716     // Note: Commutes FADD operands.
7717     if (N1.getOpcode() == ISD::FP_EXTEND) {
7718       SDValue N10 = N1.getOperand(0);
7719       if (N10.getOpcode() == ISD::FMUL)
7720         return DAG.getNode(PreferredFusedOpcode, SL, VT,
7721                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
7722                                        N10.getOperand(0)),
7723                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
7724                                        N10.getOperand(1)), N0);
7725     }
7726   }
7727 
7728   // More folding opportunities when target permits.
7729   if ((AllowFusion || HasFMAD)  && Aggressive) {
7730     // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
7731     if (N0.getOpcode() == PreferredFusedOpcode &&
7732         N0.getOperand(2).getOpcode() == ISD::FMUL) {
7733       return DAG.getNode(PreferredFusedOpcode, SL, VT,
7734                          N0.getOperand(0), N0.getOperand(1),
7735                          DAG.getNode(PreferredFusedOpcode, SL, VT,
7736                                      N0.getOperand(2).getOperand(0),
7737                                      N0.getOperand(2).getOperand(1),
7738                                      N1));
7739     }
7740 
7741     // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
7742     if (N1->getOpcode() == PreferredFusedOpcode &&
7743         N1.getOperand(2).getOpcode() == ISD::FMUL) {
7744       return DAG.getNode(PreferredFusedOpcode, SL, VT,
7745                          N1.getOperand(0), N1.getOperand(1),
7746                          DAG.getNode(PreferredFusedOpcode, SL, VT,
7747                                      N1.getOperand(2).getOperand(0),
7748                                      N1.getOperand(2).getOperand(1),
7749                                      N0));
7750     }
7751 
7752     if (AllowFusion && LookThroughFPExt) {
7753       // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
7754       //   -> (fma x, y, (fma (fpext u), (fpext v), z))
7755       auto FoldFAddFMAFPExtFMul = [&] (
7756           SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
7757         return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
7758                            DAG.getNode(PreferredFusedOpcode, SL, VT,
7759                                        DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
7760                                        DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
7761                                        Z));
7762       };
7763       if (N0.getOpcode() == PreferredFusedOpcode) {
7764         SDValue N02 = N0.getOperand(2);
7765         if (N02.getOpcode() == ISD::FP_EXTEND) {
7766           SDValue N020 = N02.getOperand(0);
7767           if (N020.getOpcode() == ISD::FMUL)
7768             return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
7769                                         N020.getOperand(0), N020.getOperand(1),
7770                                         N1);
7771         }
7772       }
7773 
7774       // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
7775       //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
7776       // FIXME: This turns two single-precision and one double-precision
7777       // operation into two double-precision operations, which might not be
7778       // interesting for all targets, especially GPUs.
7779       auto FoldFAddFPExtFMAFMul = [&] (
7780           SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
7781         return DAG.getNode(PreferredFusedOpcode, SL, VT,
7782                            DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
7783                            DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
7784                            DAG.getNode(PreferredFusedOpcode, SL, VT,
7785                                        DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
7786                                        DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
7787                                        Z));
7788       };
7789       if (N0.getOpcode() == ISD::FP_EXTEND) {
7790         SDValue N00 = N0.getOperand(0);
7791         if (N00.getOpcode() == PreferredFusedOpcode) {
7792           SDValue N002 = N00.getOperand(2);
7793           if (N002.getOpcode() == ISD::FMUL)
7794             return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
7795                                         N002.getOperand(0), N002.getOperand(1),
7796                                         N1);
7797         }
7798       }
7799 
7800       // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
7801       //   -> (fma y, z, (fma (fpext u), (fpext v), x))
7802       if (N1.getOpcode() == PreferredFusedOpcode) {
7803         SDValue N12 = N1.getOperand(2);
7804         if (N12.getOpcode() == ISD::FP_EXTEND) {
7805           SDValue N120 = N12.getOperand(0);
7806           if (N120.getOpcode() == ISD::FMUL)
7807             return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
7808                                         N120.getOperand(0), N120.getOperand(1),
7809                                         N0);
7810         }
7811       }
7812 
7813       // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
7814       //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
7815       // FIXME: This turns two single-precision and one double-precision
7816       // operation into two double-precision operations, which might not be
7817       // interesting for all targets, especially GPUs.
7818       if (N1.getOpcode() == ISD::FP_EXTEND) {
7819         SDValue N10 = N1.getOperand(0);
7820         if (N10.getOpcode() == PreferredFusedOpcode) {
7821           SDValue N102 = N10.getOperand(2);
7822           if (N102.getOpcode() == ISD::FMUL)
7823             return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
7824                                         N102.getOperand(0), N102.getOperand(1),
7825                                         N0);
7826         }
7827       }
7828     }
7829   }
7830 
7831   return SDValue();
7832 }
7833 
7834 /// Try to perform FMA combining on a given FSUB node.
7835 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
7836   SDValue N0 = N->getOperand(0);
7837   SDValue N1 = N->getOperand(1);
7838   EVT VT = N->getValueType(0);
7839   SDLoc SL(N);
7840 
7841   const TargetOptions &Options = DAG.getTarget().Options;
7842   bool AllowFusion =
7843       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
7844 
7845   // Floating-point multiply-add with intermediate rounding.
7846   bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
7847 
7848   // Floating-point multiply-add without intermediate rounding.
7849   bool HasFMA =
7850       AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
7851       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
7852 
7853   // No valid opcode, do not combine.
7854   if (!HasFMAD && !HasFMA)
7855     return SDValue();
7856 
7857   // Always prefer FMAD to FMA for precision.
7858   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
7859   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
7860   bool LookThroughFPExt = TLI.isFPExtFree(VT);
7861 
7862   // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
7863   if (N0.getOpcode() == ISD::FMUL &&
7864       (Aggressive || N0->hasOneUse())) {
7865     return DAG.getNode(PreferredFusedOpcode, SL, VT,
7866                        N0.getOperand(0), N0.getOperand(1),
7867                        DAG.getNode(ISD::FNEG, SL, VT, N1));
7868   }
7869 
7870   // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
7871   // Note: Commutes FSUB operands.
7872   if (N1.getOpcode() == ISD::FMUL &&
7873       (Aggressive || N1->hasOneUse()))
7874     return DAG.getNode(PreferredFusedOpcode, SL, VT,
7875                        DAG.getNode(ISD::FNEG, SL, VT,
7876                                    N1.getOperand(0)),
7877                        N1.getOperand(1), N0);
7878 
7879   // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
7880   if (N0.getOpcode() == ISD::FNEG &&
7881       N0.getOperand(0).getOpcode() == ISD::FMUL &&
7882       (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
7883     SDValue N00 = N0.getOperand(0).getOperand(0);
7884     SDValue N01 = N0.getOperand(0).getOperand(1);
7885     return DAG.getNode(PreferredFusedOpcode, SL, VT,
7886                        DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
7887                        DAG.getNode(ISD::FNEG, SL, VT, N1));
7888   }
7889 
7890   // Look through FP_EXTEND nodes to do more combining.
7891   if (AllowFusion && LookThroughFPExt) {
7892     // fold (fsub (fpext (fmul x, y)), z)
7893     //   -> (fma (fpext x), (fpext y), (fneg z))
7894     if (N0.getOpcode() == ISD::FP_EXTEND) {
7895       SDValue N00 = N0.getOperand(0);
7896       if (N00.getOpcode() == ISD::FMUL)
7897         return DAG.getNode(PreferredFusedOpcode, SL, VT,
7898                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
7899                                        N00.getOperand(0)),
7900                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
7901                                        N00.getOperand(1)),
7902                            DAG.getNode(ISD::FNEG, SL, VT, N1));
7903     }
7904 
7905     // fold (fsub x, (fpext (fmul y, z)))
7906     //   -> (fma (fneg (fpext y)), (fpext z), x)
7907     // Note: Commutes FSUB operands.
7908     if (N1.getOpcode() == ISD::FP_EXTEND) {
7909       SDValue N10 = N1.getOperand(0);
7910       if (N10.getOpcode() == ISD::FMUL)
7911         return DAG.getNode(PreferredFusedOpcode, SL, VT,
7912                            DAG.getNode(ISD::FNEG, SL, VT,
7913                                        DAG.getNode(ISD::FP_EXTEND, SL, VT,
7914                                                    N10.getOperand(0))),
7915                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
7916                                        N10.getOperand(1)),
7917                            N0);
7918     }
7919 
7920     // fold (fsub (fpext (fneg (fmul, x, y))), z)
7921     //   -> (fneg (fma (fpext x), (fpext y), z))
7922     // Note: This could be removed with appropriate canonicalization of the
7923     // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
7924     // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
7925     // from implementing the canonicalization in visitFSUB.
7926     if (N0.getOpcode() == ISD::FP_EXTEND) {
7927       SDValue N00 = N0.getOperand(0);
7928       if (N00.getOpcode() == ISD::FNEG) {
7929         SDValue N000 = N00.getOperand(0);
7930         if (N000.getOpcode() == ISD::FMUL) {
7931           return DAG.getNode(ISD::FNEG, SL, VT,
7932                              DAG.getNode(PreferredFusedOpcode, SL, VT,
7933                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
7934                                                      N000.getOperand(0)),
7935                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
7936                                                      N000.getOperand(1)),
7937                                          N1));
7938         }
7939       }
7940     }
7941 
7942     // fold (fsub (fneg (fpext (fmul, x, y))), z)
7943     //   -> (fneg (fma (fpext x)), (fpext y), z)
7944     // Note: This could be removed with appropriate canonicalization of the
7945     // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
7946     // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
7947     // from implementing the canonicalization in visitFSUB.
7948     if (N0.getOpcode() == ISD::FNEG) {
7949       SDValue N00 = N0.getOperand(0);
7950       if (N00.getOpcode() == ISD::FP_EXTEND) {
7951         SDValue N000 = N00.getOperand(0);
7952         if (N000.getOpcode() == ISD::FMUL) {
7953           return DAG.getNode(ISD::FNEG, SL, VT,
7954                              DAG.getNode(PreferredFusedOpcode, SL, VT,
7955                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
7956                                                      N000.getOperand(0)),
7957                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
7958                                                      N000.getOperand(1)),
7959                                          N1));
7960         }
7961       }
7962     }
7963 
7964   }
7965 
7966   // More folding opportunities when target permits.
7967   if ((AllowFusion || HasFMAD) && Aggressive) {
7968     // fold (fsub (fma x, y, (fmul u, v)), z)
7969     //   -> (fma x, y (fma u, v, (fneg z)))
7970     if (N0.getOpcode() == PreferredFusedOpcode &&
7971         N0.getOperand(2).getOpcode() == ISD::FMUL) {
7972       return DAG.getNode(PreferredFusedOpcode, SL, VT,
7973                          N0.getOperand(0), N0.getOperand(1),
7974                          DAG.getNode(PreferredFusedOpcode, SL, VT,
7975                                      N0.getOperand(2).getOperand(0),
7976                                      N0.getOperand(2).getOperand(1),
7977                                      DAG.getNode(ISD::FNEG, SL, VT,
7978                                                  N1)));
7979     }
7980 
7981     // fold (fsub x, (fma y, z, (fmul u, v)))
7982     //   -> (fma (fneg y), z, (fma (fneg u), v, x))
7983     if (N1.getOpcode() == PreferredFusedOpcode &&
7984         N1.getOperand(2).getOpcode() == ISD::FMUL) {
7985       SDValue N20 = N1.getOperand(2).getOperand(0);
7986       SDValue N21 = N1.getOperand(2).getOperand(1);
7987       return DAG.getNode(PreferredFusedOpcode, SL, VT,
7988                          DAG.getNode(ISD::FNEG, SL, VT,
7989                                      N1.getOperand(0)),
7990                          N1.getOperand(1),
7991                          DAG.getNode(PreferredFusedOpcode, SL, VT,
7992                                      DAG.getNode(ISD::FNEG, SL, VT, N20),
7993 
7994                                      N21, N0));
7995     }
7996 
7997     if (AllowFusion && LookThroughFPExt) {
7998       // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
7999       //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
8000       if (N0.getOpcode() == PreferredFusedOpcode) {
8001         SDValue N02 = N0.getOperand(2);
8002         if (N02.getOpcode() == ISD::FP_EXTEND) {
8003           SDValue N020 = N02.getOperand(0);
8004           if (N020.getOpcode() == ISD::FMUL)
8005             return DAG.getNode(PreferredFusedOpcode, SL, VT,
8006                                N0.getOperand(0), N0.getOperand(1),
8007                                DAG.getNode(PreferredFusedOpcode, SL, VT,
8008                                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8009                                                        N020.getOperand(0)),
8010                                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8011                                                        N020.getOperand(1)),
8012                                            DAG.getNode(ISD::FNEG, SL, VT,
8013                                                        N1)));
8014         }
8015       }
8016 
8017       // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
8018       //   -> (fma (fpext x), (fpext y),
8019       //           (fma (fpext u), (fpext v), (fneg z)))
8020       // FIXME: This turns two single-precision and one double-precision
8021       // operation into two double-precision operations, which might not be
8022       // interesting for all targets, especially GPUs.
8023       if (N0.getOpcode() == ISD::FP_EXTEND) {
8024         SDValue N00 = N0.getOperand(0);
8025         if (N00.getOpcode() == PreferredFusedOpcode) {
8026           SDValue N002 = N00.getOperand(2);
8027           if (N002.getOpcode() == ISD::FMUL)
8028             return DAG.getNode(PreferredFusedOpcode, SL, VT,
8029                                DAG.getNode(ISD::FP_EXTEND, SL, VT,
8030                                            N00.getOperand(0)),
8031                                DAG.getNode(ISD::FP_EXTEND, SL, VT,
8032                                            N00.getOperand(1)),
8033                                DAG.getNode(PreferredFusedOpcode, SL, VT,
8034                                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8035                                                        N002.getOperand(0)),
8036                                            DAG.getNode(ISD::FP_EXTEND, SL, VT,
8037                                                        N002.getOperand(1)),
8038                                            DAG.getNode(ISD::FNEG, SL, VT,
8039                                                        N1)));
8040         }
8041       }
8042 
8043       // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
8044       //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
8045       if (N1.getOpcode() == PreferredFusedOpcode &&
8046         N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
8047         SDValue N120 = N1.getOperand(2).getOperand(0);
8048         if (N120.getOpcode() == ISD::FMUL) {
8049           SDValue N1200 = N120.getOperand(0);
8050           SDValue N1201 = N120.getOperand(1);
8051           return DAG.getNode(PreferredFusedOpcode, SL, VT,
8052                              DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
8053                              N1.getOperand(1),
8054                              DAG.getNode(PreferredFusedOpcode, SL, VT,
8055                                          DAG.getNode(ISD::FNEG, SL, VT,
8056                                              DAG.getNode(ISD::FP_EXTEND, SL,
8057                                                          VT, N1200)),
8058                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8059                                                      N1201),
8060                                          N0));
8061         }
8062       }
8063 
8064       // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
8065       //   -> (fma (fneg (fpext y)), (fpext z),
8066       //           (fma (fneg (fpext u)), (fpext v), x))
8067       // FIXME: This turns two single-precision and one double-precision
8068       // operation into two double-precision operations, which might not be
8069       // interesting for all targets, especially GPUs.
8070       if (N1.getOpcode() == ISD::FP_EXTEND &&
8071         N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
8072         SDValue N100 = N1.getOperand(0).getOperand(0);
8073         SDValue N101 = N1.getOperand(0).getOperand(1);
8074         SDValue N102 = N1.getOperand(0).getOperand(2);
8075         if (N102.getOpcode() == ISD::FMUL) {
8076           SDValue N1020 = N102.getOperand(0);
8077           SDValue N1021 = N102.getOperand(1);
8078           return DAG.getNode(PreferredFusedOpcode, SL, VT,
8079                              DAG.getNode(ISD::FNEG, SL, VT,
8080                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8081                                                      N100)),
8082                              DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
8083                              DAG.getNode(PreferredFusedOpcode, SL, VT,
8084                                          DAG.getNode(ISD::FNEG, SL, VT,
8085                                              DAG.getNode(ISD::FP_EXTEND, SL,
8086                                                          VT, N1020)),
8087                                          DAG.getNode(ISD::FP_EXTEND, SL, VT,
8088                                                      N1021),
8089                                          N0));
8090         }
8091       }
8092     }
8093   }
8094 
8095   return SDValue();
8096 }
8097 
8098 /// Try to perform FMA combining on a given FMUL node.
8099 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) {
8100   SDValue N0 = N->getOperand(0);
8101   SDValue N1 = N->getOperand(1);
8102   EVT VT = N->getValueType(0);
8103   SDLoc SL(N);
8104 
8105   assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
8106 
8107   const TargetOptions &Options = DAG.getTarget().Options;
8108   bool AllowFusion =
8109       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
8110 
8111   // Floating-point multiply-add with intermediate rounding.
8112   bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
8113 
8114   // Floating-point multiply-add without intermediate rounding.
8115   bool HasFMA =
8116       AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
8117       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
8118 
8119   // No valid opcode, do not combine.
8120   if (!HasFMAD && !HasFMA)
8121     return SDValue();
8122 
8123   // Always prefer FMAD to FMA for precision.
8124   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
8125   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
8126 
8127   // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y)
8128   // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y))
8129   auto FuseFADD = [&](SDValue X, SDValue Y) {
8130     if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
8131       auto XC1 = isConstOrConstSplatFP(X.getOperand(1));
8132       if (XC1 && XC1->isExactlyValue(+1.0))
8133         return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y);
8134       if (XC1 && XC1->isExactlyValue(-1.0))
8135         return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
8136                            DAG.getNode(ISD::FNEG, SL, VT, Y));
8137     }
8138     return SDValue();
8139   };
8140 
8141   if (SDValue FMA = FuseFADD(N0, N1))
8142     return FMA;
8143   if (SDValue FMA = FuseFADD(N1, N0))
8144     return FMA;
8145 
8146   // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y)
8147   // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y))
8148   // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y))
8149   // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y)
8150   auto FuseFSUB = [&](SDValue X, SDValue Y) {
8151     if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
8152       auto XC0 = isConstOrConstSplatFP(X.getOperand(0));
8153       if (XC0 && XC0->isExactlyValue(+1.0))
8154         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8155                            DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
8156                            Y);
8157       if (XC0 && XC0->isExactlyValue(-1.0))
8158         return DAG.getNode(PreferredFusedOpcode, SL, VT,
8159                            DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
8160                            DAG.getNode(ISD::FNEG, SL, VT, Y));
8161 
8162       auto XC1 = isConstOrConstSplatFP(X.getOperand(1));
8163       if (XC1 && XC1->isExactlyValue(+1.0))
8164         return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
8165                            DAG.getNode(ISD::FNEG, SL, VT, Y));
8166       if (XC1 && XC1->isExactlyValue(-1.0))
8167         return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y);
8168     }
8169     return SDValue();
8170   };
8171 
8172   if (SDValue FMA = FuseFSUB(N0, N1))
8173     return FMA;
8174   if (SDValue FMA = FuseFSUB(N1, N0))
8175     return FMA;
8176 
8177   return SDValue();
8178 }
8179 
8180 SDValue DAGCombiner::visitFADD(SDNode *N) {
8181   SDValue N0 = N->getOperand(0);
8182   SDValue N1 = N->getOperand(1);
8183   bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
8184   bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
8185   EVT VT = N->getValueType(0);
8186   SDLoc DL(N);
8187   const TargetOptions &Options = DAG.getTarget().Options;
8188   const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8189 
8190   // fold vector ops
8191   if (VT.isVector())
8192     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8193       return FoldedVOp;
8194 
8195   // fold (fadd c1, c2) -> c1 + c2
8196   if (N0CFP && N1CFP)
8197     return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
8198 
8199   // canonicalize constant to RHS
8200   if (N0CFP && !N1CFP)
8201     return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
8202 
8203   // fold (fadd A, (fneg B)) -> (fsub A, B)
8204   if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
8205       isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
8206     return DAG.getNode(ISD::FSUB, DL, VT, N0,
8207                        GetNegatedExpression(N1, DAG, LegalOperations), Flags);
8208 
8209   // fold (fadd (fneg A), B) -> (fsub B, A)
8210   if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
8211       isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
8212     return DAG.getNode(ISD::FSUB, DL, VT, N1,
8213                        GetNegatedExpression(N0, DAG, LegalOperations), Flags);
8214 
8215   // If 'unsafe math' is enabled, fold lots of things.
8216   if (Options.UnsafeFPMath) {
8217     // No FP constant should be created after legalization as Instruction
8218     // Selection pass has a hard time dealing with FP constants.
8219     bool AllowNewConst = (Level < AfterLegalizeDAG);
8220 
8221     // fold (fadd A, 0) -> A
8222     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1))
8223       if (N1C->isZero())
8224         return N0;
8225 
8226     // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
8227     if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
8228         isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)))
8229       return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0),
8230                          DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1,
8231                                      Flags),
8232                          Flags);
8233 
8234     // If allowed, fold (fadd (fneg x), x) -> 0.0
8235     if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
8236       return DAG.getConstantFP(0.0, DL, VT);
8237 
8238     // If allowed, fold (fadd x, (fneg x)) -> 0.0
8239     if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
8240       return DAG.getConstantFP(0.0, DL, VT);
8241 
8242     // We can fold chains of FADD's of the same value into multiplications.
8243     // This transform is not safe in general because we are reducing the number
8244     // of rounding steps.
8245     if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
8246       if (N0.getOpcode() == ISD::FMUL) {
8247         bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
8248         bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
8249 
8250         // (fadd (fmul x, c), x) -> (fmul x, c+1)
8251         if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
8252           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
8253                                        DAG.getConstantFP(1.0, DL, VT), Flags);
8254           return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
8255         }
8256 
8257         // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
8258         if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
8259             N1.getOperand(0) == N1.getOperand(1) &&
8260             N0.getOperand(0) == N1.getOperand(0)) {
8261           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
8262                                        DAG.getConstantFP(2.0, DL, VT), Flags);
8263           return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
8264         }
8265       }
8266 
8267       if (N1.getOpcode() == ISD::FMUL) {
8268         bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
8269         bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
8270 
8271         // (fadd x, (fmul x, c)) -> (fmul x, c+1)
8272         if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
8273           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
8274                                        DAG.getConstantFP(1.0, DL, VT), Flags);
8275           return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
8276         }
8277 
8278         // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
8279         if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
8280             N0.getOperand(0) == N0.getOperand(1) &&
8281             N1.getOperand(0) == N0.getOperand(0)) {
8282           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
8283                                        DAG.getConstantFP(2.0, DL, VT), Flags);
8284           return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
8285         }
8286       }
8287 
8288       if (N0.getOpcode() == ISD::FADD && AllowNewConst) {
8289         bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
8290         // (fadd (fadd x, x), x) -> (fmul x, 3.0)
8291         if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
8292             (N0.getOperand(0) == N1)) {
8293           return DAG.getNode(ISD::FMUL, DL, VT,
8294                              N1, DAG.getConstantFP(3.0, DL, VT), Flags);
8295         }
8296       }
8297 
8298       if (N1.getOpcode() == ISD::FADD && AllowNewConst) {
8299         bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
8300         // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
8301         if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
8302             N1.getOperand(0) == N0) {
8303           return DAG.getNode(ISD::FMUL, DL, VT,
8304                              N0, DAG.getConstantFP(3.0, DL, VT), Flags);
8305         }
8306       }
8307 
8308       // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
8309       if (AllowNewConst &&
8310           N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
8311           N0.getOperand(0) == N0.getOperand(1) &&
8312           N1.getOperand(0) == N1.getOperand(1) &&
8313           N0.getOperand(0) == N1.getOperand(0)) {
8314         return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
8315                            DAG.getConstantFP(4.0, DL, VT), Flags);
8316       }
8317     }
8318   } // enable-unsafe-fp-math
8319 
8320   // FADD -> FMA combines:
8321   if (SDValue Fused = visitFADDForFMACombine(N)) {
8322     AddToWorklist(Fused.getNode());
8323     return Fused;
8324   }
8325 
8326   return SDValue();
8327 }
8328 
8329 SDValue DAGCombiner::visitFSUB(SDNode *N) {
8330   SDValue N0 = N->getOperand(0);
8331   SDValue N1 = N->getOperand(1);
8332   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
8333   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
8334   EVT VT = N->getValueType(0);
8335   SDLoc dl(N);
8336   const TargetOptions &Options = DAG.getTarget().Options;
8337   const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8338 
8339   // fold vector ops
8340   if (VT.isVector())
8341     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8342       return FoldedVOp;
8343 
8344   // fold (fsub c1, c2) -> c1-c2
8345   if (N0CFP && N1CFP)
8346     return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags);
8347 
8348   // fold (fsub A, (fneg B)) -> (fadd A, B)
8349   if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
8350     return DAG.getNode(ISD::FADD, dl, VT, N0,
8351                        GetNegatedExpression(N1, DAG, LegalOperations), Flags);
8352 
8353   // If 'unsafe math' is enabled, fold lots of things.
8354   if (Options.UnsafeFPMath) {
8355     // (fsub A, 0) -> A
8356     if (N1CFP && N1CFP->isZero())
8357       return N0;
8358 
8359     // (fsub 0, B) -> -B
8360     if (N0CFP && N0CFP->isZero()) {
8361       if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
8362         return GetNegatedExpression(N1, DAG, LegalOperations);
8363       if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
8364         return DAG.getNode(ISD::FNEG, dl, VT, N1);
8365     }
8366 
8367     // (fsub x, x) -> 0.0
8368     if (N0 == N1)
8369       return DAG.getConstantFP(0.0f, dl, VT);
8370 
8371     // (fsub x, (fadd x, y)) -> (fneg y)
8372     // (fsub x, (fadd y, x)) -> (fneg y)
8373     if (N1.getOpcode() == ISD::FADD) {
8374       SDValue N10 = N1->getOperand(0);
8375       SDValue N11 = N1->getOperand(1);
8376 
8377       if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options))
8378         return GetNegatedExpression(N11, DAG, LegalOperations);
8379 
8380       if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options))
8381         return GetNegatedExpression(N10, DAG, LegalOperations);
8382     }
8383   }
8384 
8385   // FSUB -> FMA combines:
8386   if (SDValue Fused = visitFSUBForFMACombine(N)) {
8387     AddToWorklist(Fused.getNode());
8388     return Fused;
8389   }
8390 
8391   return SDValue();
8392 }
8393 
8394 SDValue DAGCombiner::visitFMUL(SDNode *N) {
8395   SDValue N0 = N->getOperand(0);
8396   SDValue N1 = N->getOperand(1);
8397   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
8398   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
8399   EVT VT = N->getValueType(0);
8400   SDLoc DL(N);
8401   const TargetOptions &Options = DAG.getTarget().Options;
8402   const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8403 
8404   // fold vector ops
8405   if (VT.isVector()) {
8406     // This just handles C1 * C2 for vectors. Other vector folds are below.
8407     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8408       return FoldedVOp;
8409   }
8410 
8411   // fold (fmul c1, c2) -> c1*c2
8412   if (N0CFP && N1CFP)
8413     return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
8414 
8415   // canonicalize constant to RHS
8416   if (isConstantFPBuildVectorOrConstantFP(N0) &&
8417      !isConstantFPBuildVectorOrConstantFP(N1))
8418     return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
8419 
8420   // fold (fmul A, 1.0) -> A
8421   if (N1CFP && N1CFP->isExactlyValue(1.0))
8422     return N0;
8423 
8424   if (Options.UnsafeFPMath) {
8425     // fold (fmul A, 0) -> 0
8426     if (N1CFP && N1CFP->isZero())
8427       return N1;
8428 
8429     // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
8430     if (N0.getOpcode() == ISD::FMUL) {
8431       // Fold scalars or any vector constants (not just splats).
8432       // This fold is done in general by InstCombine, but extra fmul insts
8433       // may have been generated during lowering.
8434       SDValue N00 = N0.getOperand(0);
8435       SDValue N01 = N0.getOperand(1);
8436       auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
8437       auto *BV00 = dyn_cast<BuildVectorSDNode>(N00);
8438       auto *BV01 = dyn_cast<BuildVectorSDNode>(N01);
8439 
8440       // Check 1: Make sure that the first operand of the inner multiply is NOT
8441       // a constant. Otherwise, we may induce infinite looping.
8442       if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) {
8443         // Check 2: Make sure that the second operand of the inner multiply and
8444         // the second operand of the outer multiply are constants.
8445         if ((N1CFP && isConstOrConstSplatFP(N01)) ||
8446             (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) {
8447           SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
8448           return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
8449         }
8450       }
8451     }
8452 
8453     // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c))
8454     // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs
8455     // during an early run of DAGCombiner can prevent folding with fmuls
8456     // inserted during lowering.
8457     if (N0.getOpcode() == ISD::FADD &&
8458         (N0.getOperand(0) == N0.getOperand(1)) &&
8459         N0.hasOneUse()) {
8460       const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
8461       SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
8462       return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
8463     }
8464   }
8465 
8466   // fold (fmul X, 2.0) -> (fadd X, X)
8467   if (N1CFP && N1CFP->isExactlyValue(+2.0))
8468     return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
8469 
8470   // fold (fmul X, -1.0) -> (fneg X)
8471   if (N1CFP && N1CFP->isExactlyValue(-1.0))
8472     if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
8473       return DAG.getNode(ISD::FNEG, DL, VT, N0);
8474 
8475   // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
8476   if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
8477     if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
8478       // Both can be negated for free, check to see if at least one is cheaper
8479       // negated.
8480       if (LHSNeg == 2 || RHSNeg == 2)
8481         return DAG.getNode(ISD::FMUL, DL, VT,
8482                            GetNegatedExpression(N0, DAG, LegalOperations),
8483                            GetNegatedExpression(N1, DAG, LegalOperations),
8484                            Flags);
8485     }
8486   }
8487 
8488   // FMUL -> FMA combines:
8489   if (SDValue Fused = visitFMULForFMACombine(N)) {
8490     AddToWorklist(Fused.getNode());
8491     return Fused;
8492   }
8493 
8494   return SDValue();
8495 }
8496 
8497 SDValue DAGCombiner::visitFMA(SDNode *N) {
8498   SDValue N0 = N->getOperand(0);
8499   SDValue N1 = N->getOperand(1);
8500   SDValue N2 = N->getOperand(2);
8501   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8502   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8503   EVT VT = N->getValueType(0);
8504   SDLoc dl(N);
8505   const TargetOptions &Options = DAG.getTarget().Options;
8506 
8507   // Constant fold FMA.
8508   if (isa<ConstantFPSDNode>(N0) &&
8509       isa<ConstantFPSDNode>(N1) &&
8510       isa<ConstantFPSDNode>(N2)) {
8511     return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2);
8512   }
8513 
8514   if (Options.UnsafeFPMath) {
8515     if (N0CFP && N0CFP->isZero())
8516       return N2;
8517     if (N1CFP && N1CFP->isZero())
8518       return N2;
8519   }
8520   // TODO: The FMA node should have flags that propagate to these nodes.
8521   if (N0CFP && N0CFP->isExactlyValue(1.0))
8522     return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
8523   if (N1CFP && N1CFP->isExactlyValue(1.0))
8524     return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
8525 
8526   // Canonicalize (fma c, x, y) -> (fma x, c, y)
8527   if (isConstantFPBuildVectorOrConstantFP(N0) &&
8528      !isConstantFPBuildVectorOrConstantFP(N1))
8529     return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
8530 
8531   // TODO: FMA nodes should have flags that propagate to the created nodes.
8532   // For now, create a Flags object for use with all unsafe math transforms.
8533   SDNodeFlags Flags;
8534   Flags.setUnsafeAlgebra(true);
8535 
8536   if (Options.UnsafeFPMath) {
8537     // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
8538     if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
8539         isConstantFPBuildVectorOrConstantFP(N1) &&
8540         isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
8541       return DAG.getNode(ISD::FMUL, dl, VT, N0,
8542                          DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1),
8543                                      &Flags), &Flags);
8544     }
8545 
8546     // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
8547     if (N0.getOpcode() == ISD::FMUL &&
8548         isConstantFPBuildVectorOrConstantFP(N1) &&
8549         isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
8550       return DAG.getNode(ISD::FMA, dl, VT,
8551                          N0.getOperand(0),
8552                          DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1),
8553                                      &Flags),
8554                          N2);
8555     }
8556   }
8557 
8558   // (fma x, 1, y) -> (fadd x, y)
8559   // (fma x, -1, y) -> (fadd (fneg x), y)
8560   if (N1CFP) {
8561     if (N1CFP->isExactlyValue(1.0))
8562       // TODO: The FMA node should have flags that propagate to this node.
8563       return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
8564 
8565     if (N1CFP->isExactlyValue(-1.0) &&
8566         (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
8567       SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
8568       AddToWorklist(RHSNeg.getNode());
8569       // TODO: The FMA node should have flags that propagate to this node.
8570       return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
8571     }
8572   }
8573 
8574   if (Options.UnsafeFPMath) {
8575     // (fma x, c, x) -> (fmul x, (c+1))
8576     if (N1CFP && N0 == N2) {
8577     return DAG.getNode(ISD::FMUL, dl, VT, N0,
8578                          DAG.getNode(ISD::FADD, dl, VT,
8579                                      N1, DAG.getConstantFP(1.0, dl, VT),
8580                                      &Flags), &Flags);
8581     }
8582 
8583     // (fma x, c, (fneg x)) -> (fmul x, (c-1))
8584     if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
8585       return DAG.getNode(ISD::FMUL, dl, VT, N0,
8586                          DAG.getNode(ISD::FADD, dl, VT,
8587                                      N1, DAG.getConstantFP(-1.0, dl, VT),
8588                                      &Flags), &Flags);
8589     }
8590   }
8591 
8592   return SDValue();
8593 }
8594 
8595 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
8596 // reciprocal.
8597 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
8598 // Notice that this is not always beneficial. One reason is different target
8599 // may have different costs for FDIV and FMUL, so sometimes the cost of two
8600 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
8601 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
8602 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
8603   bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
8604   const SDNodeFlags *Flags = N->getFlags();
8605   if (!UnsafeMath && !Flags->hasAllowReciprocal())
8606     return SDValue();
8607 
8608   // Skip if current node is a reciprocal.
8609   SDValue N0 = N->getOperand(0);
8610   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8611   if (N0CFP && N0CFP->isExactlyValue(1.0))
8612     return SDValue();
8613 
8614   // Exit early if the target does not want this transform or if there can't
8615   // possibly be enough uses of the divisor to make the transform worthwhile.
8616   SDValue N1 = N->getOperand(1);
8617   unsigned MinUses = TLI.combineRepeatedFPDivisors();
8618   if (!MinUses || N1->use_size() < MinUses)
8619     return SDValue();
8620 
8621   // Find all FDIV users of the same divisor.
8622   // Use a set because duplicates may be present in the user list.
8623   SetVector<SDNode *> Users;
8624   for (auto *U : N1->uses()) {
8625     if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
8626       // This division is eligible for optimization only if global unsafe math
8627       // is enabled or if this division allows reciprocal formation.
8628       if (UnsafeMath || U->getFlags()->hasAllowReciprocal())
8629         Users.insert(U);
8630     }
8631   }
8632 
8633   // Now that we have the actual number of divisor uses, make sure it meets
8634   // the minimum threshold specified by the target.
8635   if (Users.size() < MinUses)
8636     return SDValue();
8637 
8638   EVT VT = N->getValueType(0);
8639   SDLoc DL(N);
8640   SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
8641   SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
8642 
8643   // Dividend / Divisor -> Dividend * Reciprocal
8644   for (auto *U : Users) {
8645     SDValue Dividend = U->getOperand(0);
8646     if (Dividend != FPOne) {
8647       SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
8648                                     Reciprocal, Flags);
8649       CombineTo(U, NewNode);
8650     } else if (U != Reciprocal.getNode()) {
8651       // In the absence of fast-math-flags, this user node is always the
8652       // same node as Reciprocal, but with FMF they may be different nodes.
8653       CombineTo(U, Reciprocal);
8654     }
8655   }
8656   return SDValue(N, 0);  // N was replaced.
8657 }
8658 
8659 SDValue DAGCombiner::visitFDIV(SDNode *N) {
8660   SDValue N0 = N->getOperand(0);
8661   SDValue N1 = N->getOperand(1);
8662   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8663   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8664   EVT VT = N->getValueType(0);
8665   SDLoc DL(N);
8666   const TargetOptions &Options = DAG.getTarget().Options;
8667   SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8668 
8669   // fold vector ops
8670   if (VT.isVector())
8671     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8672       return FoldedVOp;
8673 
8674   // fold (fdiv c1, c2) -> c1/c2
8675   if (N0CFP && N1CFP)
8676     return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
8677 
8678   if (Options.UnsafeFPMath) {
8679     // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
8680     if (N1CFP) {
8681       // Compute the reciprocal 1.0 / c2.
8682       APFloat N1APF = N1CFP->getValueAPF();
8683       APFloat Recip(N1APF.getSemantics(), 1); // 1.0
8684       APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
8685       // Only do the transform if the reciprocal is a legal fp immediate that
8686       // isn't too nasty (eg NaN, denormal, ...).
8687       if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
8688           (!LegalOperations ||
8689            // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
8690            // backend)... we should handle this gracefully after Legalize.
8691            // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
8692            TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
8693            TLI.isFPImmLegal(Recip, VT)))
8694         return DAG.getNode(ISD::FMUL, DL, VT, N0,
8695                            DAG.getConstantFP(Recip, DL, VT), Flags);
8696     }
8697 
8698     // If this FDIV is part of a reciprocal square root, it may be folded
8699     // into a target-specific square root estimate instruction.
8700     if (N1.getOpcode() == ISD::FSQRT) {
8701       if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) {
8702         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8703       }
8704     } else if (N1.getOpcode() == ISD::FP_EXTEND &&
8705                N1.getOperand(0).getOpcode() == ISD::FSQRT) {
8706       if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0),
8707                                           Flags)) {
8708         RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
8709         AddToWorklist(RV.getNode());
8710         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8711       }
8712     } else if (N1.getOpcode() == ISD::FP_ROUND &&
8713                N1.getOperand(0).getOpcode() == ISD::FSQRT) {
8714       if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0),
8715                                           Flags)) {
8716         RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
8717         AddToWorklist(RV.getNode());
8718         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8719       }
8720     } else if (N1.getOpcode() == ISD::FMUL) {
8721       // Look through an FMUL. Even though this won't remove the FDIV directly,
8722       // it's still worthwhile to get rid of the FSQRT if possible.
8723       SDValue SqrtOp;
8724       SDValue OtherOp;
8725       if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
8726         SqrtOp = N1.getOperand(0);
8727         OtherOp = N1.getOperand(1);
8728       } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
8729         SqrtOp = N1.getOperand(1);
8730         OtherOp = N1.getOperand(0);
8731       }
8732       if (SqrtOp.getNode()) {
8733         // We found a FSQRT, so try to make this fold:
8734         // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
8735         if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
8736           RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
8737           AddToWorklist(RV.getNode());
8738           return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8739         }
8740       }
8741     }
8742 
8743     // Fold into a reciprocal estimate and multiply instead of a real divide.
8744     if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) {
8745       AddToWorklist(RV.getNode());
8746       return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8747     }
8748   }
8749 
8750   // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
8751   if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
8752     if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
8753       // Both can be negated for free, check to see if at least one is cheaper
8754       // negated.
8755       if (LHSNeg == 2 || RHSNeg == 2)
8756         return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
8757                            GetNegatedExpression(N0, DAG, LegalOperations),
8758                            GetNegatedExpression(N1, DAG, LegalOperations),
8759                            Flags);
8760     }
8761   }
8762 
8763   if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N))
8764     return CombineRepeatedDivisors;
8765 
8766   return SDValue();
8767 }
8768 
8769 SDValue DAGCombiner::visitFREM(SDNode *N) {
8770   SDValue N0 = N->getOperand(0);
8771   SDValue N1 = N->getOperand(1);
8772   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8773   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8774   EVT VT = N->getValueType(0);
8775 
8776   // fold (frem c1, c2) -> fmod(c1,c2)
8777   if (N0CFP && N1CFP)
8778     return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1,
8779                        &cast<BinaryWithFlagsSDNode>(N)->Flags);
8780 
8781   return SDValue();
8782 }
8783 
8784 SDValue DAGCombiner::visitFSQRT(SDNode *N) {
8785   if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap())
8786     return SDValue();
8787 
8788   // TODO: FSQRT nodes should have flags that propagate to the created nodes.
8789   // For now, create a Flags object for use with all unsafe math transforms.
8790   SDNodeFlags Flags;
8791   Flags.setUnsafeAlgebra(true);
8792 
8793   // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5)
8794   SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags);
8795   if (!RV)
8796     return SDValue();
8797 
8798   EVT VT = RV.getValueType();
8799   SDLoc DL(N);
8800   RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags);
8801   AddToWorklist(RV.getNode());
8802 
8803   // Unfortunately, RV is now NaN if the input was exactly 0.
8804   // Select out this case and force the answer to 0.
8805   SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
8806   EVT CCVT = getSetCCResultType(VT);
8807   SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ);
8808   AddToWorklist(ZeroCmp.getNode());
8809   AddToWorklist(RV.getNode());
8810 
8811   return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
8812                      ZeroCmp, Zero, RV);
8813 }
8814 
8815 /// copysign(x, fp_extend(y)) -> copysign(x, y)
8816 /// copysign(x, fp_round(y)) -> copysign(x, y)
8817 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
8818   SDValue N1 = N->getOperand(1);
8819   if ((N1.getOpcode() == ISD::FP_EXTEND ||
8820        N1.getOpcode() == ISD::FP_ROUND)) {
8821     // Do not optimize out type conversion of f128 type yet.
8822     // For some targets like x86_64, configuration is changed to keep one f128
8823     // value in one SSE register, but instruction selection cannot handle
8824     // FCOPYSIGN on SSE registers yet.
8825     EVT N1VT = N1->getValueType(0);
8826     EVT N1Op0VT = N1->getOperand(0)->getValueType(0);
8827     return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
8828   }
8829   return false;
8830 }
8831 
8832 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
8833   SDValue N0 = N->getOperand(0);
8834   SDValue N1 = N->getOperand(1);
8835   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8836   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8837   EVT VT = N->getValueType(0);
8838 
8839   if (N0CFP && N1CFP)  // Constant fold
8840     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
8841 
8842   if (N1CFP) {
8843     const APFloat& V = N1CFP->getValueAPF();
8844     // copysign(x, c1) -> fabs(x)       iff ispos(c1)
8845     // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
8846     if (!V.isNegative()) {
8847       if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
8848         return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
8849     } else {
8850       if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
8851         return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
8852                            DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
8853     }
8854   }
8855 
8856   // copysign(fabs(x), y) -> copysign(x, y)
8857   // copysign(fneg(x), y) -> copysign(x, y)
8858   // copysign(copysign(x,z), y) -> copysign(x, y)
8859   if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
8860       N0.getOpcode() == ISD::FCOPYSIGN)
8861     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
8862                        N0.getOperand(0), N1);
8863 
8864   // copysign(x, abs(y)) -> abs(x)
8865   if (N1.getOpcode() == ISD::FABS)
8866     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
8867 
8868   // copysign(x, copysign(y,z)) -> copysign(x, z)
8869   if (N1.getOpcode() == ISD::FCOPYSIGN)
8870     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
8871                        N0, N1.getOperand(1));
8872 
8873   // copysign(x, fp_extend(y)) -> copysign(x, y)
8874   // copysign(x, fp_round(y)) -> copysign(x, y)
8875   if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
8876     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
8877                        N0, N1.getOperand(0));
8878 
8879   return SDValue();
8880 }
8881 
8882 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
8883   SDValue N0 = N->getOperand(0);
8884   EVT VT = N->getValueType(0);
8885   EVT OpVT = N0.getValueType();
8886 
8887   // fold (sint_to_fp c1) -> c1fp
8888   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
8889       // ...but only if the target supports immediate floating-point values
8890       (!LegalOperations ||
8891        TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
8892     return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
8893 
8894   // If the input is a legal type, and SINT_TO_FP is not legal on this target,
8895   // but UINT_TO_FP is legal on this target, try to convert.
8896   if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
8897       TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
8898     // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
8899     if (DAG.SignBitIsZero(N0))
8900       return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
8901   }
8902 
8903   // The next optimizations are desirable only if SELECT_CC can be lowered.
8904   if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
8905     // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
8906     if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
8907         !VT.isVector() &&
8908         (!LegalOperations ||
8909          TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
8910       SDLoc DL(N);
8911       SDValue Ops[] =
8912         { N0.getOperand(0), N0.getOperand(1),
8913           DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
8914           N0.getOperand(2) };
8915       return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
8916     }
8917 
8918     // fold (sint_to_fp (zext (setcc x, y, cc))) ->
8919     //      (select_cc x, y, 1.0, 0.0,, cc)
8920     if (N0.getOpcode() == ISD::ZERO_EXTEND &&
8921         N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
8922         (!LegalOperations ||
8923          TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
8924       SDLoc DL(N);
8925       SDValue Ops[] =
8926         { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
8927           DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
8928           N0.getOperand(0).getOperand(2) };
8929       return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
8930     }
8931   }
8932 
8933   return SDValue();
8934 }
8935 
8936 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
8937   SDValue N0 = N->getOperand(0);
8938   EVT VT = N->getValueType(0);
8939   EVT OpVT = N0.getValueType();
8940 
8941   // fold (uint_to_fp c1) -> c1fp
8942   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
8943       // ...but only if the target supports immediate floating-point values
8944       (!LegalOperations ||
8945        TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
8946     return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
8947 
8948   // If the input is a legal type, and UINT_TO_FP is not legal on this target,
8949   // but SINT_TO_FP is legal on this target, try to convert.
8950   if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
8951       TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
8952     // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
8953     if (DAG.SignBitIsZero(N0))
8954       return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
8955   }
8956 
8957   // The next optimizations are desirable only if SELECT_CC can be lowered.
8958   if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
8959     // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
8960 
8961     if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
8962         (!LegalOperations ||
8963          TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
8964       SDLoc DL(N);
8965       SDValue Ops[] =
8966         { N0.getOperand(0), N0.getOperand(1),
8967           DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
8968           N0.getOperand(2) };
8969       return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
8970     }
8971   }
8972 
8973   return SDValue();
8974 }
8975 
8976 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
8977 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
8978   SDValue N0 = N->getOperand(0);
8979   EVT VT = N->getValueType(0);
8980 
8981   if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
8982     return SDValue();
8983 
8984   SDValue Src = N0.getOperand(0);
8985   EVT SrcVT = Src.getValueType();
8986   bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
8987   bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
8988 
8989   // We can safely assume the conversion won't overflow the output range,
8990   // because (for example) (uint8_t)18293.f is undefined behavior.
8991 
8992   // Since we can assume the conversion won't overflow, our decision as to
8993   // whether the input will fit in the float should depend on the minimum
8994   // of the input range and output range.
8995 
8996   // This means this is also safe for a signed input and unsigned output, since
8997   // a negative input would lead to undefined behavior.
8998   unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
8999   unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
9000   unsigned ActualSize = std::min(InputSize, OutputSize);
9001   const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
9002 
9003   // We can only fold away the float conversion if the input range can be
9004   // represented exactly in the float range.
9005   if (APFloat::semanticsPrecision(sem) >= ActualSize) {
9006     if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
9007       unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
9008                                                        : ISD::ZERO_EXTEND;
9009       return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
9010     }
9011     if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
9012       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
9013     return DAG.getBitcast(VT, Src);
9014   }
9015   return SDValue();
9016 }
9017 
9018 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
9019   SDValue N0 = N->getOperand(0);
9020   EVT VT = N->getValueType(0);
9021 
9022   // fold (fp_to_sint c1fp) -> c1
9023   if (isConstantFPBuildVectorOrConstantFP(N0))
9024     return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
9025 
9026   return FoldIntToFPToInt(N, DAG);
9027 }
9028 
9029 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
9030   SDValue N0 = N->getOperand(0);
9031   EVT VT = N->getValueType(0);
9032 
9033   // fold (fp_to_uint c1fp) -> c1
9034   if (isConstantFPBuildVectorOrConstantFP(N0))
9035     return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
9036 
9037   return FoldIntToFPToInt(N, DAG);
9038 }
9039 
9040 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
9041   SDValue N0 = N->getOperand(0);
9042   SDValue N1 = N->getOperand(1);
9043   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9044   EVT VT = N->getValueType(0);
9045 
9046   // fold (fp_round c1fp) -> c1fp
9047   if (N0CFP)
9048     return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
9049 
9050   // fold (fp_round (fp_extend x)) -> x
9051   if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
9052     return N0.getOperand(0);
9053 
9054   // fold (fp_round (fp_round x)) -> (fp_round x)
9055   if (N0.getOpcode() == ISD::FP_ROUND) {
9056     const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
9057     const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1;
9058 
9059     // Skip this folding if it results in an fp_round from f80 to f16.
9060     //
9061     // f80 to f16 always generates an expensive (and as yet, unimplemented)
9062     // libcall to __truncxfhf2 instead of selecting native f16 conversion
9063     // instructions from f32 or f64.  Moreover, the first (value-preserving)
9064     // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
9065     // x86.
9066     if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
9067       return SDValue();
9068 
9069     // If the first fp_round isn't a value preserving truncation, it might
9070     // introduce a tie in the second fp_round, that wouldn't occur in the
9071     // single-step fp_round we want to fold to.
9072     // In other words, double rounding isn't the same as rounding.
9073     // Also, this is a value preserving truncation iff both fp_round's are.
9074     if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
9075       SDLoc DL(N);
9076       return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
9077                          DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
9078     }
9079   }
9080 
9081   // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
9082   if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
9083     SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
9084                               N0.getOperand(0), N1);
9085     AddToWorklist(Tmp.getNode());
9086     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
9087                        Tmp, N0.getOperand(1));
9088   }
9089 
9090   return SDValue();
9091 }
9092 
9093 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
9094   SDValue N0 = N->getOperand(0);
9095   EVT VT = N->getValueType(0);
9096   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
9097   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9098 
9099   // fold (fp_round_inreg c1fp) -> c1fp
9100   if (N0CFP && isTypeLegal(EVT)) {
9101     SDLoc DL(N);
9102     SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
9103     return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
9104   }
9105 
9106   return SDValue();
9107 }
9108 
9109 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
9110   SDValue N0 = N->getOperand(0);
9111   EVT VT = N->getValueType(0);
9112 
9113   // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
9114   if (N->hasOneUse() &&
9115       N->use_begin()->getOpcode() == ISD::FP_ROUND)
9116     return SDValue();
9117 
9118   // fold (fp_extend c1fp) -> c1fp
9119   if (isConstantFPBuildVectorOrConstantFP(N0))
9120     return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
9121 
9122   // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
9123   if (N0.getOpcode() == ISD::FP16_TO_FP &&
9124       TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
9125     return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
9126 
9127   // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
9128   // value of X.
9129   if (N0.getOpcode() == ISD::FP_ROUND
9130       && N0.getNode()->getConstantOperandVal(1) == 1) {
9131     SDValue In = N0.getOperand(0);
9132     if (In.getValueType() == VT) return In;
9133     if (VT.bitsLT(In.getValueType()))
9134       return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
9135                          In, N0.getOperand(1));
9136     return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
9137   }
9138 
9139   // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
9140   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
9141        TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
9142     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9143     SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
9144                                      LN0->getChain(),
9145                                      LN0->getBasePtr(), N0.getValueType(),
9146                                      LN0->getMemOperand());
9147     CombineTo(N, ExtLoad);
9148     CombineTo(N0.getNode(),
9149               DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
9150                           N0.getValueType(), ExtLoad,
9151                           DAG.getIntPtrConstant(1, SDLoc(N0))),
9152               ExtLoad.getValue(1));
9153     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9154   }
9155 
9156   return SDValue();
9157 }
9158 
9159 SDValue DAGCombiner::visitFCEIL(SDNode *N) {
9160   SDValue N0 = N->getOperand(0);
9161   EVT VT = N->getValueType(0);
9162 
9163   // fold (fceil c1) -> fceil(c1)
9164   if (isConstantFPBuildVectorOrConstantFP(N0))
9165     return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
9166 
9167   return SDValue();
9168 }
9169 
9170 SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
9171   SDValue N0 = N->getOperand(0);
9172   EVT VT = N->getValueType(0);
9173 
9174   // fold (ftrunc c1) -> ftrunc(c1)
9175   if (isConstantFPBuildVectorOrConstantFP(N0))
9176     return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
9177 
9178   return SDValue();
9179 }
9180 
9181 SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
9182   SDValue N0 = N->getOperand(0);
9183   EVT VT = N->getValueType(0);
9184 
9185   // fold (ffloor c1) -> ffloor(c1)
9186   if (isConstantFPBuildVectorOrConstantFP(N0))
9187     return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
9188 
9189   return SDValue();
9190 }
9191 
9192 // FIXME: FNEG and FABS have a lot in common; refactor.
9193 SDValue DAGCombiner::visitFNEG(SDNode *N) {
9194   SDValue N0 = N->getOperand(0);
9195   EVT VT = N->getValueType(0);
9196 
9197   // Constant fold FNEG.
9198   if (isConstantFPBuildVectorOrConstantFP(N0))
9199     return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
9200 
9201   if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
9202                          &DAG.getTarget().Options))
9203     return GetNegatedExpression(N0, DAG, LegalOperations);
9204 
9205   // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
9206   // constant pool values.
9207   if (!TLI.isFNegFree(VT) &&
9208       N0.getOpcode() == ISD::BITCAST &&
9209       N0.getNode()->hasOneUse()) {
9210     SDValue Int = N0.getOperand(0);
9211     EVT IntVT = Int.getValueType();
9212     if (IntVT.isInteger() && !IntVT.isVector()) {
9213       APInt SignMask;
9214       if (N0.getValueType().isVector()) {
9215         // For a vector, get a mask such as 0x80... per scalar element
9216         // and splat it.
9217         SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
9218         SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
9219       } else {
9220         // For a scalar, just generate 0x80...
9221         SignMask = APInt::getSignBit(IntVT.getSizeInBits());
9222       }
9223       SDLoc DL0(N0);
9224       Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
9225                         DAG.getConstant(SignMask, DL0, IntVT));
9226       AddToWorklist(Int.getNode());
9227       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int);
9228     }
9229   }
9230 
9231   // (fneg (fmul c, x)) -> (fmul -c, x)
9232   if (N0.getOpcode() == ISD::FMUL &&
9233       (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
9234     ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9235     if (CFP1) {
9236       APFloat CVal = CFP1->getValueAPF();
9237       CVal.changeSign();
9238       if (Level >= AfterLegalizeDAG &&
9239           (TLI.isFPImmLegal(CVal, VT) ||
9240            TLI.isOperationLegal(ISD::ConstantFP, VT)))
9241         return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
9242                            DAG.getNode(ISD::FNEG, SDLoc(N), VT,
9243                                        N0.getOperand(1)),
9244                            &cast<BinaryWithFlagsSDNode>(N0)->Flags);
9245     }
9246   }
9247 
9248   return SDValue();
9249 }
9250 
9251 SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
9252   SDValue N0 = N->getOperand(0);
9253   SDValue N1 = N->getOperand(1);
9254   EVT VT = N->getValueType(0);
9255   const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
9256   const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
9257 
9258   if (N0CFP && N1CFP) {
9259     const APFloat &C0 = N0CFP->getValueAPF();
9260     const APFloat &C1 = N1CFP->getValueAPF();
9261     return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT);
9262   }
9263 
9264   // Canonicalize to constant on RHS.
9265   if (isConstantFPBuildVectorOrConstantFP(N0) &&
9266      !isConstantFPBuildVectorOrConstantFP(N1))
9267     return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0);
9268 
9269   return SDValue();
9270 }
9271 
9272 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
9273   SDValue N0 = N->getOperand(0);
9274   SDValue N1 = N->getOperand(1);
9275   EVT VT = N->getValueType(0);
9276   const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
9277   const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
9278 
9279   if (N0CFP && N1CFP) {
9280     const APFloat &C0 = N0CFP->getValueAPF();
9281     const APFloat &C1 = N1CFP->getValueAPF();
9282     return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT);
9283   }
9284 
9285   // Canonicalize to constant on RHS.
9286   if (isConstantFPBuildVectorOrConstantFP(N0) &&
9287      !isConstantFPBuildVectorOrConstantFP(N1))
9288     return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0);
9289 
9290   return SDValue();
9291 }
9292 
9293 SDValue DAGCombiner::visitFABS(SDNode *N) {
9294   SDValue N0 = N->getOperand(0);
9295   EVT VT = N->getValueType(0);
9296 
9297   // fold (fabs c1) -> fabs(c1)
9298   if (isConstantFPBuildVectorOrConstantFP(N0))
9299     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
9300 
9301   // fold (fabs (fabs x)) -> (fabs x)
9302   if (N0.getOpcode() == ISD::FABS)
9303     return N->getOperand(0);
9304 
9305   // fold (fabs (fneg x)) -> (fabs x)
9306   // fold (fabs (fcopysign x, y)) -> (fabs x)
9307   if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
9308     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
9309 
9310   // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading
9311   // constant pool values.
9312   if (!TLI.isFAbsFree(VT) &&
9313       N0.getOpcode() == ISD::BITCAST &&
9314       N0.getNode()->hasOneUse()) {
9315     SDValue Int = N0.getOperand(0);
9316     EVT IntVT = Int.getValueType();
9317     if (IntVT.isInteger() && !IntVT.isVector()) {
9318       APInt SignMask;
9319       if (N0.getValueType().isVector()) {
9320         // For a vector, get a mask such as 0x7f... per scalar element
9321         // and splat it.
9322         SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
9323         SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
9324       } else {
9325         // For a scalar, just generate 0x7f...
9326         SignMask = ~APInt::getSignBit(IntVT.getSizeInBits());
9327       }
9328       SDLoc DL(N0);
9329       Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
9330                         DAG.getConstant(SignMask, DL, IntVT));
9331       AddToWorklist(Int.getNode());
9332       return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int);
9333     }
9334   }
9335 
9336   return SDValue();
9337 }
9338 
9339 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
9340   SDValue Chain = N->getOperand(0);
9341   SDValue N1 = N->getOperand(1);
9342   SDValue N2 = N->getOperand(2);
9343 
9344   // If N is a constant we could fold this into a fallthrough or unconditional
9345   // branch. However that doesn't happen very often in normal code, because
9346   // Instcombine/SimplifyCFG should have handled the available opportunities.
9347   // If we did this folding here, it would be necessary to update the
9348   // MachineBasicBlock CFG, which is awkward.
9349 
9350   // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
9351   // on the target.
9352   if (N1.getOpcode() == ISD::SETCC &&
9353       TLI.isOperationLegalOrCustom(ISD::BR_CC,
9354                                    N1.getOperand(0).getValueType())) {
9355     return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
9356                        Chain, N1.getOperand(2),
9357                        N1.getOperand(0), N1.getOperand(1), N2);
9358   }
9359 
9360   if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
9361       ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
9362        (N1.getOperand(0).hasOneUse() &&
9363         N1.getOperand(0).getOpcode() == ISD::SRL))) {
9364     SDNode *Trunc = nullptr;
9365     if (N1.getOpcode() == ISD::TRUNCATE) {
9366       // Look pass the truncate.
9367       Trunc = N1.getNode();
9368       N1 = N1.getOperand(0);
9369     }
9370 
9371     // Match this pattern so that we can generate simpler code:
9372     //
9373     //   %a = ...
9374     //   %b = and i32 %a, 2
9375     //   %c = srl i32 %b, 1
9376     //   brcond i32 %c ...
9377     //
9378     // into
9379     //
9380     //   %a = ...
9381     //   %b = and i32 %a, 2
9382     //   %c = setcc eq %b, 0
9383     //   brcond %c ...
9384     //
9385     // This applies only when the AND constant value has one bit set and the
9386     // SRL constant is equal to the log2 of the AND constant. The back-end is
9387     // smart enough to convert the result into a TEST/JMP sequence.
9388     SDValue Op0 = N1.getOperand(0);
9389     SDValue Op1 = N1.getOperand(1);
9390 
9391     if (Op0.getOpcode() == ISD::AND &&
9392         Op1.getOpcode() == ISD::Constant) {
9393       SDValue AndOp1 = Op0.getOperand(1);
9394 
9395       if (AndOp1.getOpcode() == ISD::Constant) {
9396         const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
9397 
9398         if (AndConst.isPowerOf2() &&
9399             cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
9400           SDLoc DL(N);
9401           SDValue SetCC =
9402             DAG.getSetCC(DL,
9403                          getSetCCResultType(Op0.getValueType()),
9404                          Op0, DAG.getConstant(0, DL, Op0.getValueType()),
9405                          ISD::SETNE);
9406 
9407           SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL,
9408                                           MVT::Other, Chain, SetCC, N2);
9409           // Don't add the new BRCond into the worklist or else SimplifySelectCC
9410           // will convert it back to (X & C1) >> C2.
9411           CombineTo(N, NewBRCond, false);
9412           // Truncate is dead.
9413           if (Trunc)
9414             deleteAndRecombine(Trunc);
9415           // Replace the uses of SRL with SETCC
9416           WorklistRemover DeadNodes(*this);
9417           DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
9418           deleteAndRecombine(N1.getNode());
9419           return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9420         }
9421       }
9422     }
9423 
9424     if (Trunc)
9425       // Restore N1 if the above transformation doesn't match.
9426       N1 = N->getOperand(1);
9427   }
9428 
9429   // Transform br(xor(x, y)) -> br(x != y)
9430   // Transform br(xor(xor(x,y), 1)) -> br (x == y)
9431   if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
9432     SDNode *TheXor = N1.getNode();
9433     SDValue Op0 = TheXor->getOperand(0);
9434     SDValue Op1 = TheXor->getOperand(1);
9435     if (Op0.getOpcode() == Op1.getOpcode()) {
9436       // Avoid missing important xor optimizations.
9437       if (SDValue Tmp = visitXOR(TheXor)) {
9438         if (Tmp.getNode() != TheXor) {
9439           DEBUG(dbgs() << "\nReplacing.8 ";
9440                 TheXor->dump(&DAG);
9441                 dbgs() << "\nWith: ";
9442                 Tmp.getNode()->dump(&DAG);
9443                 dbgs() << '\n');
9444           WorklistRemover DeadNodes(*this);
9445           DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
9446           deleteAndRecombine(TheXor);
9447           return DAG.getNode(ISD::BRCOND, SDLoc(N),
9448                              MVT::Other, Chain, Tmp, N2);
9449         }
9450 
9451         // visitXOR has changed XOR's operands or replaced the XOR completely,
9452         // bail out.
9453         return SDValue(N, 0);
9454       }
9455     }
9456 
9457     if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
9458       bool Equal = false;
9459       if (isOneConstant(Op0) && Op0.hasOneUse() &&
9460           Op0.getOpcode() == ISD::XOR) {
9461         TheXor = Op0.getNode();
9462         Equal = true;
9463       }
9464 
9465       EVT SetCCVT = N1.getValueType();
9466       if (LegalTypes)
9467         SetCCVT = getSetCCResultType(SetCCVT);
9468       SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
9469                                    SetCCVT,
9470                                    Op0, Op1,
9471                                    Equal ? ISD::SETEQ : ISD::SETNE);
9472       // Replace the uses of XOR with SETCC
9473       WorklistRemover DeadNodes(*this);
9474       DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
9475       deleteAndRecombine(N1.getNode());
9476       return DAG.getNode(ISD::BRCOND, SDLoc(N),
9477                          MVT::Other, Chain, SetCC, N2);
9478     }
9479   }
9480 
9481   return SDValue();
9482 }
9483 
9484 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
9485 //
9486 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
9487   CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
9488   SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
9489 
9490   // If N is a constant we could fold this into a fallthrough or unconditional
9491   // branch. However that doesn't happen very often in normal code, because
9492   // Instcombine/SimplifyCFG should have handled the available opportunities.
9493   // If we did this folding here, it would be necessary to update the
9494   // MachineBasicBlock CFG, which is awkward.
9495 
9496   // Use SimplifySetCC to simplify SETCC's.
9497   SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
9498                                CondLHS, CondRHS, CC->get(), SDLoc(N),
9499                                false);
9500   if (Simp.getNode()) AddToWorklist(Simp.getNode());
9501 
9502   // fold to a simpler setcc
9503   if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
9504     return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
9505                        N->getOperand(0), Simp.getOperand(2),
9506                        Simp.getOperand(0), Simp.getOperand(1),
9507                        N->getOperand(4));
9508 
9509   return SDValue();
9510 }
9511 
9512 /// Return true if 'Use' is a load or a store that uses N as its base pointer
9513 /// and that N may be folded in the load / store addressing mode.
9514 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
9515                                     SelectionDAG &DAG,
9516                                     const TargetLowering &TLI) {
9517   EVT VT;
9518   unsigned AS;
9519 
9520   if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
9521     if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
9522       return false;
9523     VT = LD->getMemoryVT();
9524     AS = LD->getAddressSpace();
9525   } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
9526     if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
9527       return false;
9528     VT = ST->getMemoryVT();
9529     AS = ST->getAddressSpace();
9530   } else
9531     return false;
9532 
9533   TargetLowering::AddrMode AM;
9534   if (N->getOpcode() == ISD::ADD) {
9535     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
9536     if (Offset)
9537       // [reg +/- imm]
9538       AM.BaseOffs = Offset->getSExtValue();
9539     else
9540       // [reg +/- reg]
9541       AM.Scale = 1;
9542   } else if (N->getOpcode() == ISD::SUB) {
9543     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
9544     if (Offset)
9545       // [reg +/- imm]
9546       AM.BaseOffs = -Offset->getSExtValue();
9547     else
9548       // [reg +/- reg]
9549       AM.Scale = 1;
9550   } else
9551     return false;
9552 
9553   return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
9554                                    VT.getTypeForEVT(*DAG.getContext()), AS);
9555 }
9556 
9557 /// Try turning a load/store into a pre-indexed load/store when the base
9558 /// pointer is an add or subtract and it has other uses besides the load/store.
9559 /// After the transformation, the new indexed load/store has effectively folded
9560 /// the add/subtract in and all of its other uses are redirected to the
9561 /// new load/store.
9562 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
9563   if (Level < AfterLegalizeDAG)
9564     return false;
9565 
9566   bool isLoad = true;
9567   SDValue Ptr;
9568   EVT VT;
9569   if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
9570     if (LD->isIndexed())
9571       return false;
9572     VT = LD->getMemoryVT();
9573     if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
9574         !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
9575       return false;
9576     Ptr = LD->getBasePtr();
9577   } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
9578     if (ST->isIndexed())
9579       return false;
9580     VT = ST->getMemoryVT();
9581     if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
9582         !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
9583       return false;
9584     Ptr = ST->getBasePtr();
9585     isLoad = false;
9586   } else {
9587     return false;
9588   }
9589 
9590   // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
9591   // out.  There is no reason to make this a preinc/predec.
9592   if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
9593       Ptr.getNode()->hasOneUse())
9594     return false;
9595 
9596   // Ask the target to do addressing mode selection.
9597   SDValue BasePtr;
9598   SDValue Offset;
9599   ISD::MemIndexedMode AM = ISD::UNINDEXED;
9600   if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
9601     return false;
9602 
9603   // Backends without true r+i pre-indexed forms may need to pass a
9604   // constant base with a variable offset so that constant coercion
9605   // will work with the patterns in canonical form.
9606   bool Swapped = false;
9607   if (isa<ConstantSDNode>(BasePtr)) {
9608     std::swap(BasePtr, Offset);
9609     Swapped = true;
9610   }
9611 
9612   // Don't create a indexed load / store with zero offset.
9613   if (isNullConstant(Offset))
9614     return false;
9615 
9616   // Try turning it into a pre-indexed load / store except when:
9617   // 1) The new base ptr is a frame index.
9618   // 2) If N is a store and the new base ptr is either the same as or is a
9619   //    predecessor of the value being stored.
9620   // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
9621   //    that would create a cycle.
9622   // 4) All uses are load / store ops that use it as old base ptr.
9623 
9624   // Check #1.  Preinc'ing a frame index would require copying the stack pointer
9625   // (plus the implicit offset) to a register to preinc anyway.
9626   if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
9627     return false;
9628 
9629   // Check #2.
9630   if (!isLoad) {
9631     SDValue Val = cast<StoreSDNode>(N)->getValue();
9632     if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
9633       return false;
9634   }
9635 
9636   // Caches for hasPredecessorHelper.
9637   SmallPtrSet<const SDNode *, 32> Visited;
9638   SmallVector<const SDNode *, 16> Worklist;
9639   Worklist.push_back(N);
9640 
9641   // If the offset is a constant, there may be other adds of constants that
9642   // can be folded with this one. We should do this to avoid having to keep
9643   // a copy of the original base pointer.
9644   SmallVector<SDNode *, 16> OtherUses;
9645   if (isa<ConstantSDNode>(Offset))
9646     for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
9647                               UE = BasePtr.getNode()->use_end();
9648          UI != UE; ++UI) {
9649       SDUse &Use = UI.getUse();
9650       // Skip the use that is Ptr and uses of other results from BasePtr's
9651       // node (important for nodes that return multiple results).
9652       if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
9653         continue;
9654 
9655       if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
9656         continue;
9657 
9658       if (Use.getUser()->getOpcode() != ISD::ADD &&
9659           Use.getUser()->getOpcode() != ISD::SUB) {
9660         OtherUses.clear();
9661         break;
9662       }
9663 
9664       SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
9665       if (!isa<ConstantSDNode>(Op1)) {
9666         OtherUses.clear();
9667         break;
9668       }
9669 
9670       // FIXME: In some cases, we can be smarter about this.
9671       if (Op1.getValueType() != Offset.getValueType()) {
9672         OtherUses.clear();
9673         break;
9674       }
9675 
9676       OtherUses.push_back(Use.getUser());
9677     }
9678 
9679   if (Swapped)
9680     std::swap(BasePtr, Offset);
9681 
9682   // Now check for #3 and #4.
9683   bool RealUse = false;
9684 
9685   for (SDNode *Use : Ptr.getNode()->uses()) {
9686     if (Use == N)
9687       continue;
9688     if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
9689       return false;
9690 
9691     // If Ptr may be folded in addressing mode of other use, then it's
9692     // not profitable to do this transformation.
9693     if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
9694       RealUse = true;
9695   }
9696 
9697   if (!RealUse)
9698     return false;
9699 
9700   SDValue Result;
9701   if (isLoad)
9702     Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
9703                                 BasePtr, Offset, AM);
9704   else
9705     Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
9706                                  BasePtr, Offset, AM);
9707   ++PreIndexedNodes;
9708   ++NodesCombined;
9709   DEBUG(dbgs() << "\nReplacing.4 ";
9710         N->dump(&DAG);
9711         dbgs() << "\nWith: ";
9712         Result.getNode()->dump(&DAG);
9713         dbgs() << '\n');
9714   WorklistRemover DeadNodes(*this);
9715   if (isLoad) {
9716     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
9717     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
9718   } else {
9719     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
9720   }
9721 
9722   // Finally, since the node is now dead, remove it from the graph.
9723   deleteAndRecombine(N);
9724 
9725   if (Swapped)
9726     std::swap(BasePtr, Offset);
9727 
9728   // Replace other uses of BasePtr that can be updated to use Ptr
9729   for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
9730     unsigned OffsetIdx = 1;
9731     if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
9732       OffsetIdx = 0;
9733     assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
9734            BasePtr.getNode() && "Expected BasePtr operand");
9735 
9736     // We need to replace ptr0 in the following expression:
9737     //   x0 * offset0 + y0 * ptr0 = t0
9738     // knowing that
9739     //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
9740     //
9741     // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
9742     // indexed load/store and the expresion that needs to be re-written.
9743     //
9744     // Therefore, we have:
9745     //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
9746 
9747     ConstantSDNode *CN =
9748       cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
9749     int X0, X1, Y0, Y1;
9750     APInt Offset0 = CN->getAPIntValue();
9751     APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
9752 
9753     X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
9754     Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
9755     X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
9756     Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
9757 
9758     unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
9759 
9760     APInt CNV = Offset0;
9761     if (X0 < 0) CNV = -CNV;
9762     if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
9763     else CNV = CNV - Offset1;
9764 
9765     SDLoc DL(OtherUses[i]);
9766 
9767     // We can now generate the new expression.
9768     SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
9769     SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
9770 
9771     SDValue NewUse = DAG.getNode(Opcode,
9772                                  DL,
9773                                  OtherUses[i]->getValueType(0), NewOp1, NewOp2);
9774     DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
9775     deleteAndRecombine(OtherUses[i]);
9776   }
9777 
9778   // Replace the uses of Ptr with uses of the updated base value.
9779   DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
9780   deleteAndRecombine(Ptr.getNode());
9781 
9782   return true;
9783 }
9784 
9785 /// Try to combine a load/store with a add/sub of the base pointer node into a
9786 /// post-indexed load/store. The transformation folded the add/subtract into the
9787 /// new indexed load/store effectively and all of its uses are redirected to the
9788 /// new load/store.
9789 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
9790   if (Level < AfterLegalizeDAG)
9791     return false;
9792 
9793   bool isLoad = true;
9794   SDValue Ptr;
9795   EVT VT;
9796   if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
9797     if (LD->isIndexed())
9798       return false;
9799     VT = LD->getMemoryVT();
9800     if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
9801         !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
9802       return false;
9803     Ptr = LD->getBasePtr();
9804   } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
9805     if (ST->isIndexed())
9806       return false;
9807     VT = ST->getMemoryVT();
9808     if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
9809         !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
9810       return false;
9811     Ptr = ST->getBasePtr();
9812     isLoad = false;
9813   } else {
9814     return false;
9815   }
9816 
9817   if (Ptr.getNode()->hasOneUse())
9818     return false;
9819 
9820   for (SDNode *Op : Ptr.getNode()->uses()) {
9821     if (Op == N ||
9822         (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
9823       continue;
9824 
9825     SDValue BasePtr;
9826     SDValue Offset;
9827     ISD::MemIndexedMode AM = ISD::UNINDEXED;
9828     if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
9829       // Don't create a indexed load / store with zero offset.
9830       if (isNullConstant(Offset))
9831         continue;
9832 
9833       // Try turning it into a post-indexed load / store except when
9834       // 1) All uses are load / store ops that use it as base ptr (and
9835       //    it may be folded as addressing mmode).
9836       // 2) Op must be independent of N, i.e. Op is neither a predecessor
9837       //    nor a successor of N. Otherwise, if Op is folded that would
9838       //    create a cycle.
9839 
9840       if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
9841         continue;
9842 
9843       // Check for #1.
9844       bool TryNext = false;
9845       for (SDNode *Use : BasePtr.getNode()->uses()) {
9846         if (Use == Ptr.getNode())
9847           continue;
9848 
9849         // If all the uses are load / store addresses, then don't do the
9850         // transformation.
9851         if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
9852           bool RealUse = false;
9853           for (SDNode *UseUse : Use->uses()) {
9854             if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
9855               RealUse = true;
9856           }
9857 
9858           if (!RealUse) {
9859             TryNext = true;
9860             break;
9861           }
9862         }
9863       }
9864 
9865       if (TryNext)
9866         continue;
9867 
9868       // Check for #2
9869       if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
9870         SDValue Result = isLoad
9871           ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
9872                                BasePtr, Offset, AM)
9873           : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
9874                                 BasePtr, Offset, AM);
9875         ++PostIndexedNodes;
9876         ++NodesCombined;
9877         DEBUG(dbgs() << "\nReplacing.5 ";
9878               N->dump(&DAG);
9879               dbgs() << "\nWith: ";
9880               Result.getNode()->dump(&DAG);
9881               dbgs() << '\n');
9882         WorklistRemover DeadNodes(*this);
9883         if (isLoad) {
9884           DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
9885           DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
9886         } else {
9887           DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
9888         }
9889 
9890         // Finally, since the node is now dead, remove it from the graph.
9891         deleteAndRecombine(N);
9892 
9893         // Replace the uses of Use with uses of the updated base value.
9894         DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
9895                                       Result.getValue(isLoad ? 1 : 0));
9896         deleteAndRecombine(Op);
9897         return true;
9898       }
9899     }
9900   }
9901 
9902   return false;
9903 }
9904 
9905 /// \brief Return the base-pointer arithmetic from an indexed \p LD.
9906 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
9907   ISD::MemIndexedMode AM = LD->getAddressingMode();
9908   assert(AM != ISD::UNINDEXED);
9909   SDValue BP = LD->getOperand(1);
9910   SDValue Inc = LD->getOperand(2);
9911 
9912   // Some backends use TargetConstants for load offsets, but don't expect
9913   // TargetConstants in general ADD nodes. We can convert these constants into
9914   // regular Constants (if the constant is not opaque).
9915   assert((Inc.getOpcode() != ISD::TargetConstant ||
9916           !cast<ConstantSDNode>(Inc)->isOpaque()) &&
9917          "Cannot split out indexing using opaque target constants");
9918   if (Inc.getOpcode() == ISD::TargetConstant) {
9919     ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
9920     Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
9921                           ConstInc->getValueType(0));
9922   }
9923 
9924   unsigned Opc =
9925       (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
9926   return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
9927 }
9928 
9929 SDValue DAGCombiner::visitLOAD(SDNode *N) {
9930   LoadSDNode *LD  = cast<LoadSDNode>(N);
9931   SDValue Chain = LD->getChain();
9932   SDValue Ptr   = LD->getBasePtr();
9933 
9934   // If load is not volatile and there are no uses of the loaded value (and
9935   // the updated indexed value in case of indexed loads), change uses of the
9936   // chain value into uses of the chain input (i.e. delete the dead load).
9937   if (!LD->isVolatile()) {
9938     if (N->getValueType(1) == MVT::Other) {
9939       // Unindexed loads.
9940       if (!N->hasAnyUseOfValue(0)) {
9941         // It's not safe to use the two value CombineTo variant here. e.g.
9942         // v1, chain2 = load chain1, loc
9943         // v2, chain3 = load chain2, loc
9944         // v3         = add v2, c
9945         // Now we replace use of chain2 with chain1.  This makes the second load
9946         // isomorphic to the one we are deleting, and thus makes this load live.
9947         DEBUG(dbgs() << "\nReplacing.6 ";
9948               N->dump(&DAG);
9949               dbgs() << "\nWith chain: ";
9950               Chain.getNode()->dump(&DAG);
9951               dbgs() << "\n");
9952         WorklistRemover DeadNodes(*this);
9953         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
9954 
9955         if (N->use_empty())
9956           deleteAndRecombine(N);
9957 
9958         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9959       }
9960     } else {
9961       // Indexed loads.
9962       assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
9963 
9964       // If this load has an opaque TargetConstant offset, then we cannot split
9965       // the indexing into an add/sub directly (that TargetConstant may not be
9966       // valid for a different type of node, and we cannot convert an opaque
9967       // target constant into a regular constant).
9968       bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
9969                        cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
9970 
9971       if (!N->hasAnyUseOfValue(0) &&
9972           ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
9973         SDValue Undef = DAG.getUNDEF(N->getValueType(0));
9974         SDValue Index;
9975         if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
9976           Index = SplitIndexingFromLoad(LD);
9977           // Try to fold the base pointer arithmetic into subsequent loads and
9978           // stores.
9979           AddUsersToWorklist(N);
9980         } else
9981           Index = DAG.getUNDEF(N->getValueType(1));
9982         DEBUG(dbgs() << "\nReplacing.7 ";
9983               N->dump(&DAG);
9984               dbgs() << "\nWith: ";
9985               Undef.getNode()->dump(&DAG);
9986               dbgs() << " and 2 other values\n");
9987         WorklistRemover DeadNodes(*this);
9988         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
9989         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
9990         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
9991         deleteAndRecombine(N);
9992         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9993       }
9994     }
9995   }
9996 
9997   // If this load is directly stored, replace the load value with the stored
9998   // value.
9999   // TODO: Handle store large -> read small portion.
10000   // TODO: Handle TRUNCSTORE/LOADEXT
10001   if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
10002     if (ISD::isNON_TRUNCStore(Chain.getNode())) {
10003       StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
10004       if (PrevST->getBasePtr() == Ptr &&
10005           PrevST->getValue().getValueType() == N->getValueType(0))
10006       return CombineTo(N, Chain.getOperand(1), Chain);
10007     }
10008   }
10009 
10010   // Try to infer better alignment information than the load already has.
10011   if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
10012     if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
10013       if (Align > LD->getMemOperand()->getBaseAlignment()) {
10014         SDValue NewLoad =
10015                DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
10016                               LD->getValueType(0),
10017                               Chain, Ptr, LD->getPointerInfo(),
10018                               LD->getMemoryVT(),
10019                               LD->isVolatile(), LD->isNonTemporal(),
10020                               LD->isInvariant(), Align, LD->getAAInfo());
10021         if (NewLoad.getNode() != N)
10022           return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
10023       }
10024     }
10025   }
10026 
10027   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
10028                                                   : DAG.getSubtarget().useAA();
10029 #ifndef NDEBUG
10030   if (CombinerAAOnlyFunc.getNumOccurrences() &&
10031       CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
10032     UseAA = false;
10033 #endif
10034   if (UseAA && LD->isUnindexed()) {
10035     // Walk up chain skipping non-aliasing memory nodes.
10036     SDValue BetterChain = FindBetterChain(N, Chain);
10037 
10038     // If there is a better chain.
10039     if (Chain != BetterChain) {
10040       SDValue ReplLoad;
10041 
10042       // Replace the chain to void dependency.
10043       if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
10044         ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
10045                                BetterChain, Ptr, LD->getMemOperand());
10046       } else {
10047         ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
10048                                   LD->getValueType(0),
10049                                   BetterChain, Ptr, LD->getMemoryVT(),
10050                                   LD->getMemOperand());
10051       }
10052 
10053       // Create token factor to keep old chain connected.
10054       SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
10055                                   MVT::Other, Chain, ReplLoad.getValue(1));
10056 
10057       // Make sure the new and old chains are cleaned up.
10058       AddToWorklist(Token.getNode());
10059 
10060       // Replace uses with load result and token factor. Don't add users
10061       // to work list.
10062       return CombineTo(N, ReplLoad.getValue(0), Token, false);
10063     }
10064   }
10065 
10066   // Try transforming N to an indexed load.
10067   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
10068     return SDValue(N, 0);
10069 
10070   // Try to slice up N to more direct loads if the slices are mapped to
10071   // different register banks or pairing can take place.
10072   if (SliceUpLoad(N))
10073     return SDValue(N, 0);
10074 
10075   return SDValue();
10076 }
10077 
10078 namespace {
10079 /// \brief Helper structure used to slice a load in smaller loads.
10080 /// Basically a slice is obtained from the following sequence:
10081 /// Origin = load Ty1, Base
10082 /// Shift = srl Ty1 Origin, CstTy Amount
10083 /// Inst = trunc Shift to Ty2
10084 ///
10085 /// Then, it will be rewriten into:
10086 /// Slice = load SliceTy, Base + SliceOffset
10087 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
10088 ///
10089 /// SliceTy is deduced from the number of bits that are actually used to
10090 /// build Inst.
10091 struct LoadedSlice {
10092   /// \brief Helper structure used to compute the cost of a slice.
10093   struct Cost {
10094     /// Are we optimizing for code size.
10095     bool ForCodeSize;
10096     /// Various cost.
10097     unsigned Loads;
10098     unsigned Truncates;
10099     unsigned CrossRegisterBanksCopies;
10100     unsigned ZExts;
10101     unsigned Shift;
10102 
10103     Cost(bool ForCodeSize = false)
10104         : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
10105           CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
10106 
10107     /// \brief Get the cost of one isolated slice.
10108     Cost(const LoadedSlice &LS, bool ForCodeSize = false)
10109         : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
10110           CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
10111       EVT TruncType = LS.Inst->getValueType(0);
10112       EVT LoadedType = LS.getLoadedType();
10113       if (TruncType != LoadedType &&
10114           !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
10115         ZExts = 1;
10116     }
10117 
10118     /// \brief Account for slicing gain in the current cost.
10119     /// Slicing provide a few gains like removing a shift or a
10120     /// truncate. This method allows to grow the cost of the original
10121     /// load with the gain from this slice.
10122     void addSliceGain(const LoadedSlice &LS) {
10123       // Each slice saves a truncate.
10124       const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
10125       if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
10126                               LS.Inst->getValueType(0)))
10127         ++Truncates;
10128       // If there is a shift amount, this slice gets rid of it.
10129       if (LS.Shift)
10130         ++Shift;
10131       // If this slice can merge a cross register bank copy, account for it.
10132       if (LS.canMergeExpensiveCrossRegisterBankCopy())
10133         ++CrossRegisterBanksCopies;
10134     }
10135 
10136     Cost &operator+=(const Cost &RHS) {
10137       Loads += RHS.Loads;
10138       Truncates += RHS.Truncates;
10139       CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
10140       ZExts += RHS.ZExts;
10141       Shift += RHS.Shift;
10142       return *this;
10143     }
10144 
10145     bool operator==(const Cost &RHS) const {
10146       return Loads == RHS.Loads && Truncates == RHS.Truncates &&
10147              CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
10148              ZExts == RHS.ZExts && Shift == RHS.Shift;
10149     }
10150 
10151     bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
10152 
10153     bool operator<(const Cost &RHS) const {
10154       // Assume cross register banks copies are as expensive as loads.
10155       // FIXME: Do we want some more target hooks?
10156       unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
10157       unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
10158       // Unless we are optimizing for code size, consider the
10159       // expensive operation first.
10160       if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
10161         return ExpensiveOpsLHS < ExpensiveOpsRHS;
10162       return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
10163              (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
10164     }
10165 
10166     bool operator>(const Cost &RHS) const { return RHS < *this; }
10167 
10168     bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
10169 
10170     bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
10171   };
10172   // The last instruction that represent the slice. This should be a
10173   // truncate instruction.
10174   SDNode *Inst;
10175   // The original load instruction.
10176   LoadSDNode *Origin;
10177   // The right shift amount in bits from the original load.
10178   unsigned Shift;
10179   // The DAG from which Origin came from.
10180   // This is used to get some contextual information about legal types, etc.
10181   SelectionDAG *DAG;
10182 
10183   LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
10184               unsigned Shift = 0, SelectionDAG *DAG = nullptr)
10185       : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
10186 
10187   /// \brief Get the bits used in a chunk of bits \p BitWidth large.
10188   /// \return Result is \p BitWidth and has used bits set to 1 and
10189   ///         not used bits set to 0.
10190   APInt getUsedBits() const {
10191     // Reproduce the trunc(lshr) sequence:
10192     // - Start from the truncated value.
10193     // - Zero extend to the desired bit width.
10194     // - Shift left.
10195     assert(Origin && "No original load to compare against.");
10196     unsigned BitWidth = Origin->getValueSizeInBits(0);
10197     assert(Inst && "This slice is not bound to an instruction");
10198     assert(Inst->getValueSizeInBits(0) <= BitWidth &&
10199            "Extracted slice is bigger than the whole type!");
10200     APInt UsedBits(Inst->getValueSizeInBits(0), 0);
10201     UsedBits.setAllBits();
10202     UsedBits = UsedBits.zext(BitWidth);
10203     UsedBits <<= Shift;
10204     return UsedBits;
10205   }
10206 
10207   /// \brief Get the size of the slice to be loaded in bytes.
10208   unsigned getLoadedSize() const {
10209     unsigned SliceSize = getUsedBits().countPopulation();
10210     assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
10211     return SliceSize / 8;
10212   }
10213 
10214   /// \brief Get the type that will be loaded for this slice.
10215   /// Note: This may not be the final type for the slice.
10216   EVT getLoadedType() const {
10217     assert(DAG && "Missing context");
10218     LLVMContext &Ctxt = *DAG->getContext();
10219     return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
10220   }
10221 
10222   /// \brief Get the alignment of the load used for this slice.
10223   unsigned getAlignment() const {
10224     unsigned Alignment = Origin->getAlignment();
10225     unsigned Offset = getOffsetFromBase();
10226     if (Offset != 0)
10227       Alignment = MinAlign(Alignment, Alignment + Offset);
10228     return Alignment;
10229   }
10230 
10231   /// \brief Check if this slice can be rewritten with legal operations.
10232   bool isLegal() const {
10233     // An invalid slice is not legal.
10234     if (!Origin || !Inst || !DAG)
10235       return false;
10236 
10237     // Offsets are for indexed load only, we do not handle that.
10238     if (!Origin->getOffset().isUndef())
10239       return false;
10240 
10241     const TargetLowering &TLI = DAG->getTargetLoweringInfo();
10242 
10243     // Check that the type is legal.
10244     EVT SliceType = getLoadedType();
10245     if (!TLI.isTypeLegal(SliceType))
10246       return false;
10247 
10248     // Check that the load is legal for this type.
10249     if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
10250       return false;
10251 
10252     // Check that the offset can be computed.
10253     // 1. Check its type.
10254     EVT PtrType = Origin->getBasePtr().getValueType();
10255     if (PtrType == MVT::Untyped || PtrType.isExtended())
10256       return false;
10257 
10258     // 2. Check that it fits in the immediate.
10259     if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
10260       return false;
10261 
10262     // 3. Check that the computation is legal.
10263     if (!TLI.isOperationLegal(ISD::ADD, PtrType))
10264       return false;
10265 
10266     // Check that the zext is legal if it needs one.
10267     EVT TruncateType = Inst->getValueType(0);
10268     if (TruncateType != SliceType &&
10269         !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
10270       return false;
10271 
10272     return true;
10273   }
10274 
10275   /// \brief Get the offset in bytes of this slice in the original chunk of
10276   /// bits.
10277   /// \pre DAG != nullptr.
10278   uint64_t getOffsetFromBase() const {
10279     assert(DAG && "Missing context.");
10280     bool IsBigEndian = DAG->getDataLayout().isBigEndian();
10281     assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
10282     uint64_t Offset = Shift / 8;
10283     unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
10284     assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
10285            "The size of the original loaded type is not a multiple of a"
10286            " byte.");
10287     // If Offset is bigger than TySizeInBytes, it means we are loading all
10288     // zeros. This should have been optimized before in the process.
10289     assert(TySizeInBytes > Offset &&
10290            "Invalid shift amount for given loaded size");
10291     if (IsBigEndian)
10292       Offset = TySizeInBytes - Offset - getLoadedSize();
10293     return Offset;
10294   }
10295 
10296   /// \brief Generate the sequence of instructions to load the slice
10297   /// represented by this object and redirect the uses of this slice to
10298   /// this new sequence of instructions.
10299   /// \pre this->Inst && this->Origin are valid Instructions and this
10300   /// object passed the legal check: LoadedSlice::isLegal returned true.
10301   /// \return The last instruction of the sequence used to load the slice.
10302   SDValue loadSlice() const {
10303     assert(Inst && Origin && "Unable to replace a non-existing slice.");
10304     const SDValue &OldBaseAddr = Origin->getBasePtr();
10305     SDValue BaseAddr = OldBaseAddr;
10306     // Get the offset in that chunk of bytes w.r.t. the endianess.
10307     int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
10308     assert(Offset >= 0 && "Offset too big to fit in int64_t!");
10309     if (Offset) {
10310       // BaseAddr = BaseAddr + Offset.
10311       EVT ArithType = BaseAddr.getValueType();
10312       SDLoc DL(Origin);
10313       BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
10314                               DAG->getConstant(Offset, DL, ArithType));
10315     }
10316 
10317     // Create the type of the loaded slice according to its size.
10318     EVT SliceType = getLoadedType();
10319 
10320     // Create the load for the slice.
10321     SDValue LastInst = DAG->getLoad(
10322         SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
10323         Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
10324         Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
10325     // If the final type is not the same as the loaded type, this means that
10326     // we have to pad with zero. Create a zero extend for that.
10327     EVT FinalType = Inst->getValueType(0);
10328     if (SliceType != FinalType)
10329       LastInst =
10330           DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
10331     return LastInst;
10332   }
10333 
10334   /// \brief Check if this slice can be merged with an expensive cross register
10335   /// bank copy. E.g.,
10336   /// i = load i32
10337   /// f = bitcast i32 i to float
10338   bool canMergeExpensiveCrossRegisterBankCopy() const {
10339     if (!Inst || !Inst->hasOneUse())
10340       return false;
10341     SDNode *Use = *Inst->use_begin();
10342     if (Use->getOpcode() != ISD::BITCAST)
10343       return false;
10344     assert(DAG && "Missing context");
10345     const TargetLowering &TLI = DAG->getTargetLoweringInfo();
10346     EVT ResVT = Use->getValueType(0);
10347     const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
10348     const TargetRegisterClass *ArgRC =
10349         TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
10350     if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
10351       return false;
10352 
10353     // At this point, we know that we perform a cross-register-bank copy.
10354     // Check if it is expensive.
10355     const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
10356     // Assume bitcasts are cheap, unless both register classes do not
10357     // explicitly share a common sub class.
10358     if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
10359       return false;
10360 
10361     // Check if it will be merged with the load.
10362     // 1. Check the alignment constraint.
10363     unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
10364         ResVT.getTypeForEVT(*DAG->getContext()));
10365 
10366     if (RequiredAlignment > getAlignment())
10367       return false;
10368 
10369     // 2. Check that the load is a legal operation for that type.
10370     if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
10371       return false;
10372 
10373     // 3. Check that we do not have a zext in the way.
10374     if (Inst->getValueType(0) != getLoadedType())
10375       return false;
10376 
10377     return true;
10378   }
10379 };
10380 }
10381 
10382 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
10383 /// \p UsedBits looks like 0..0 1..1 0..0.
10384 static bool areUsedBitsDense(const APInt &UsedBits) {
10385   // If all the bits are one, this is dense!
10386   if (UsedBits.isAllOnesValue())
10387     return true;
10388 
10389   // Get rid of the unused bits on the right.
10390   APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
10391   // Get rid of the unused bits on the left.
10392   if (NarrowedUsedBits.countLeadingZeros())
10393     NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
10394   // Check that the chunk of bits is completely used.
10395   return NarrowedUsedBits.isAllOnesValue();
10396 }
10397 
10398 /// \brief Check whether or not \p First and \p Second are next to each other
10399 /// in memory. This means that there is no hole between the bits loaded
10400 /// by \p First and the bits loaded by \p Second.
10401 static bool areSlicesNextToEachOther(const LoadedSlice &First,
10402                                      const LoadedSlice &Second) {
10403   assert(First.Origin == Second.Origin && First.Origin &&
10404          "Unable to match different memory origins.");
10405   APInt UsedBits = First.getUsedBits();
10406   assert((UsedBits & Second.getUsedBits()) == 0 &&
10407          "Slices are not supposed to overlap.");
10408   UsedBits |= Second.getUsedBits();
10409   return areUsedBitsDense(UsedBits);
10410 }
10411 
10412 /// \brief Adjust the \p GlobalLSCost according to the target
10413 /// paring capabilities and the layout of the slices.
10414 /// \pre \p GlobalLSCost should account for at least as many loads as
10415 /// there is in the slices in \p LoadedSlices.
10416 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
10417                                  LoadedSlice::Cost &GlobalLSCost) {
10418   unsigned NumberOfSlices = LoadedSlices.size();
10419   // If there is less than 2 elements, no pairing is possible.
10420   if (NumberOfSlices < 2)
10421     return;
10422 
10423   // Sort the slices so that elements that are likely to be next to each
10424   // other in memory are next to each other in the list.
10425   std::sort(LoadedSlices.begin(), LoadedSlices.end(),
10426             [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
10427     assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
10428     return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
10429   });
10430   const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
10431   // First (resp. Second) is the first (resp. Second) potentially candidate
10432   // to be placed in a paired load.
10433   const LoadedSlice *First = nullptr;
10434   const LoadedSlice *Second = nullptr;
10435   for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
10436                 // Set the beginning of the pair.
10437                                                            First = Second) {
10438 
10439     Second = &LoadedSlices[CurrSlice];
10440 
10441     // If First is NULL, it means we start a new pair.
10442     // Get to the next slice.
10443     if (!First)
10444       continue;
10445 
10446     EVT LoadedType = First->getLoadedType();
10447 
10448     // If the types of the slices are different, we cannot pair them.
10449     if (LoadedType != Second->getLoadedType())
10450       continue;
10451 
10452     // Check if the target supplies paired loads for this type.
10453     unsigned RequiredAlignment = 0;
10454     if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
10455       // move to the next pair, this type is hopeless.
10456       Second = nullptr;
10457       continue;
10458     }
10459     // Check if we meet the alignment requirement.
10460     if (RequiredAlignment > First->getAlignment())
10461       continue;
10462 
10463     // Check that both loads are next to each other in memory.
10464     if (!areSlicesNextToEachOther(*First, *Second))
10465       continue;
10466 
10467     assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
10468     --GlobalLSCost.Loads;
10469     // Move to the next pair.
10470     Second = nullptr;
10471   }
10472 }
10473 
10474 /// \brief Check the profitability of all involved LoadedSlice.
10475 /// Currently, it is considered profitable if there is exactly two
10476 /// involved slices (1) which are (2) next to each other in memory, and
10477 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
10478 ///
10479 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
10480 /// the elements themselves.
10481 ///
10482 /// FIXME: When the cost model will be mature enough, we can relax
10483 /// constraints (1) and (2).
10484 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
10485                                 const APInt &UsedBits, bool ForCodeSize) {
10486   unsigned NumberOfSlices = LoadedSlices.size();
10487   if (StressLoadSlicing)
10488     return NumberOfSlices > 1;
10489 
10490   // Check (1).
10491   if (NumberOfSlices != 2)
10492     return false;
10493 
10494   // Check (2).
10495   if (!areUsedBitsDense(UsedBits))
10496     return false;
10497 
10498   // Check (3).
10499   LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
10500   // The original code has one big load.
10501   OrigCost.Loads = 1;
10502   for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
10503     const LoadedSlice &LS = LoadedSlices[CurrSlice];
10504     // Accumulate the cost of all the slices.
10505     LoadedSlice::Cost SliceCost(LS, ForCodeSize);
10506     GlobalSlicingCost += SliceCost;
10507 
10508     // Account as cost in the original configuration the gain obtained
10509     // with the current slices.
10510     OrigCost.addSliceGain(LS);
10511   }
10512 
10513   // If the target supports paired load, adjust the cost accordingly.
10514   adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
10515   return OrigCost > GlobalSlicingCost;
10516 }
10517 
10518 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
10519 /// operations, split it in the various pieces being extracted.
10520 ///
10521 /// This sort of thing is introduced by SROA.
10522 /// This slicing takes care not to insert overlapping loads.
10523 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
10524 bool DAGCombiner::SliceUpLoad(SDNode *N) {
10525   if (Level < AfterLegalizeDAG)
10526     return false;
10527 
10528   LoadSDNode *LD = cast<LoadSDNode>(N);
10529   if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
10530       !LD->getValueType(0).isInteger())
10531     return false;
10532 
10533   // Keep track of already used bits to detect overlapping values.
10534   // In that case, we will just abort the transformation.
10535   APInt UsedBits(LD->getValueSizeInBits(0), 0);
10536 
10537   SmallVector<LoadedSlice, 4> LoadedSlices;
10538 
10539   // Check if this load is used as several smaller chunks of bits.
10540   // Basically, look for uses in trunc or trunc(lshr) and record a new chain
10541   // of computation for each trunc.
10542   for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
10543        UI != UIEnd; ++UI) {
10544     // Skip the uses of the chain.
10545     if (UI.getUse().getResNo() != 0)
10546       continue;
10547 
10548     SDNode *User = *UI;
10549     unsigned Shift = 0;
10550 
10551     // Check if this is a trunc(lshr).
10552     if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
10553         isa<ConstantSDNode>(User->getOperand(1))) {
10554       Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
10555       User = *User->use_begin();
10556     }
10557 
10558     // At this point, User is a Truncate, iff we encountered, trunc or
10559     // trunc(lshr).
10560     if (User->getOpcode() != ISD::TRUNCATE)
10561       return false;
10562 
10563     // The width of the type must be a power of 2 and greater than 8-bits.
10564     // Otherwise the load cannot be represented in LLVM IR.
10565     // Moreover, if we shifted with a non-8-bits multiple, the slice
10566     // will be across several bytes. We do not support that.
10567     unsigned Width = User->getValueSizeInBits(0);
10568     if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
10569       return 0;
10570 
10571     // Build the slice for this chain of computations.
10572     LoadedSlice LS(User, LD, Shift, &DAG);
10573     APInt CurrentUsedBits = LS.getUsedBits();
10574 
10575     // Check if this slice overlaps with another.
10576     if ((CurrentUsedBits & UsedBits) != 0)
10577       return false;
10578     // Update the bits used globally.
10579     UsedBits |= CurrentUsedBits;
10580 
10581     // Check if the new slice would be legal.
10582     if (!LS.isLegal())
10583       return false;
10584 
10585     // Record the slice.
10586     LoadedSlices.push_back(LS);
10587   }
10588 
10589   // Abort slicing if it does not seem to be profitable.
10590   if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
10591     return false;
10592 
10593   ++SlicedLoads;
10594 
10595   // Rewrite each chain to use an independent load.
10596   // By construction, each chain can be represented by a unique load.
10597 
10598   // Prepare the argument for the new token factor for all the slices.
10599   SmallVector<SDValue, 8> ArgChains;
10600   for (SmallVectorImpl<LoadedSlice>::const_iterator
10601            LSIt = LoadedSlices.begin(),
10602            LSItEnd = LoadedSlices.end();
10603        LSIt != LSItEnd; ++LSIt) {
10604     SDValue SliceInst = LSIt->loadSlice();
10605     CombineTo(LSIt->Inst, SliceInst, true);
10606     if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
10607       SliceInst = SliceInst.getOperand(0);
10608     assert(SliceInst->getOpcode() == ISD::LOAD &&
10609            "It takes more than a zext to get to the loaded slice!!");
10610     ArgChains.push_back(SliceInst.getValue(1));
10611   }
10612 
10613   SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
10614                               ArgChains);
10615   DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
10616   return true;
10617 }
10618 
10619 /// Check to see if V is (and load (ptr), imm), where the load is having
10620 /// specific bytes cleared out.  If so, return the byte size being masked out
10621 /// and the shift amount.
10622 static std::pair<unsigned, unsigned>
10623 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
10624   std::pair<unsigned, unsigned> Result(0, 0);
10625 
10626   // Check for the structure we're looking for.
10627   if (V->getOpcode() != ISD::AND ||
10628       !isa<ConstantSDNode>(V->getOperand(1)) ||
10629       !ISD::isNormalLoad(V->getOperand(0).getNode()))
10630     return Result;
10631 
10632   // Check the chain and pointer.
10633   LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
10634   if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
10635 
10636   // The store should be chained directly to the load or be an operand of a
10637   // tokenfactor.
10638   if (LD == Chain.getNode())
10639     ; // ok.
10640   else if (Chain->getOpcode() != ISD::TokenFactor)
10641     return Result; // Fail.
10642   else {
10643     bool isOk = false;
10644     for (const SDValue &ChainOp : Chain->op_values())
10645       if (ChainOp.getNode() == LD) {
10646         isOk = true;
10647         break;
10648       }
10649     if (!isOk) return Result;
10650   }
10651 
10652   // This only handles simple types.
10653   if (V.getValueType() != MVT::i16 &&
10654       V.getValueType() != MVT::i32 &&
10655       V.getValueType() != MVT::i64)
10656     return Result;
10657 
10658   // Check the constant mask.  Invert it so that the bits being masked out are
10659   // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
10660   // follow the sign bit for uniformity.
10661   uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
10662   unsigned NotMaskLZ = countLeadingZeros(NotMask);
10663   if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
10664   unsigned NotMaskTZ = countTrailingZeros(NotMask);
10665   if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
10666   if (NotMaskLZ == 64) return Result;  // All zero mask.
10667 
10668   // See if we have a continuous run of bits.  If so, we have 0*1+0*
10669   if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
10670     return Result;
10671 
10672   // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
10673   if (V.getValueType() != MVT::i64 && NotMaskLZ)
10674     NotMaskLZ -= 64-V.getValueSizeInBits();
10675 
10676   unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
10677   switch (MaskedBytes) {
10678   case 1:
10679   case 2:
10680   case 4: break;
10681   default: return Result; // All one mask, or 5-byte mask.
10682   }
10683 
10684   // Verify that the first bit starts at a multiple of mask so that the access
10685   // is aligned the same as the access width.
10686   if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
10687 
10688   Result.first = MaskedBytes;
10689   Result.second = NotMaskTZ/8;
10690   return Result;
10691 }
10692 
10693 
10694 /// Check to see if IVal is something that provides a value as specified by
10695 /// MaskInfo. If so, replace the specified store with a narrower store of
10696 /// truncated IVal.
10697 static SDNode *
10698 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
10699                                 SDValue IVal, StoreSDNode *St,
10700                                 DAGCombiner *DC) {
10701   unsigned NumBytes = MaskInfo.first;
10702   unsigned ByteShift = MaskInfo.second;
10703   SelectionDAG &DAG = DC->getDAG();
10704 
10705   // Check to see if IVal is all zeros in the part being masked in by the 'or'
10706   // that uses this.  If not, this is not a replacement.
10707   APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
10708                                   ByteShift*8, (ByteShift+NumBytes)*8);
10709   if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
10710 
10711   // Check that it is legal on the target to do this.  It is legal if the new
10712   // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
10713   // legalization.
10714   MVT VT = MVT::getIntegerVT(NumBytes*8);
10715   if (!DC->isTypeLegal(VT))
10716     return nullptr;
10717 
10718   // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
10719   // shifted by ByteShift and truncated down to NumBytes.
10720   if (ByteShift) {
10721     SDLoc DL(IVal);
10722     IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
10723                        DAG.getConstant(ByteShift*8, DL,
10724                                     DC->getShiftAmountTy(IVal.getValueType())));
10725   }
10726 
10727   // Figure out the offset for the store and the alignment of the access.
10728   unsigned StOffset;
10729   unsigned NewAlign = St->getAlignment();
10730 
10731   if (DAG.getDataLayout().isLittleEndian())
10732     StOffset = ByteShift;
10733   else
10734     StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
10735 
10736   SDValue Ptr = St->getBasePtr();
10737   if (StOffset) {
10738     SDLoc DL(IVal);
10739     Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
10740                       Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
10741     NewAlign = MinAlign(NewAlign, StOffset);
10742   }
10743 
10744   // Truncate down to the new size.
10745   IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
10746 
10747   ++OpsNarrowed;
10748   return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
10749                       St->getPointerInfo().getWithOffset(StOffset),
10750                       false, false, NewAlign).getNode();
10751 }
10752 
10753 
10754 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
10755 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
10756 /// narrowing the load and store if it would end up being a win for performance
10757 /// or code size.
10758 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
10759   StoreSDNode *ST  = cast<StoreSDNode>(N);
10760   if (ST->isVolatile())
10761     return SDValue();
10762 
10763   SDValue Chain = ST->getChain();
10764   SDValue Value = ST->getValue();
10765   SDValue Ptr   = ST->getBasePtr();
10766   EVT VT = Value.getValueType();
10767 
10768   if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
10769     return SDValue();
10770 
10771   unsigned Opc = Value.getOpcode();
10772 
10773   // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
10774   // is a byte mask indicating a consecutive number of bytes, check to see if
10775   // Y is known to provide just those bytes.  If so, we try to replace the
10776   // load + replace + store sequence with a single (narrower) store, which makes
10777   // the load dead.
10778   if (Opc == ISD::OR) {
10779     std::pair<unsigned, unsigned> MaskedLoad;
10780     MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
10781     if (MaskedLoad.first)
10782       if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
10783                                                   Value.getOperand(1), ST,this))
10784         return SDValue(NewST, 0);
10785 
10786     // Or is commutative, so try swapping X and Y.
10787     MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
10788     if (MaskedLoad.first)
10789       if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
10790                                                   Value.getOperand(0), ST,this))
10791         return SDValue(NewST, 0);
10792   }
10793 
10794   if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
10795       Value.getOperand(1).getOpcode() != ISD::Constant)
10796     return SDValue();
10797 
10798   SDValue N0 = Value.getOperand(0);
10799   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
10800       Chain == SDValue(N0.getNode(), 1)) {
10801     LoadSDNode *LD = cast<LoadSDNode>(N0);
10802     if (LD->getBasePtr() != Ptr ||
10803         LD->getPointerInfo().getAddrSpace() !=
10804         ST->getPointerInfo().getAddrSpace())
10805       return SDValue();
10806 
10807     // Find the type to narrow it the load / op / store to.
10808     SDValue N1 = Value.getOperand(1);
10809     unsigned BitWidth = N1.getValueSizeInBits();
10810     APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
10811     if (Opc == ISD::AND)
10812       Imm ^= APInt::getAllOnesValue(BitWidth);
10813     if (Imm == 0 || Imm.isAllOnesValue())
10814       return SDValue();
10815     unsigned ShAmt = Imm.countTrailingZeros();
10816     unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
10817     unsigned NewBW = NextPowerOf2(MSB - ShAmt);
10818     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
10819     // The narrowing should be profitable, the load/store operation should be
10820     // legal (or custom) and the store size should be equal to the NewVT width.
10821     while (NewBW < BitWidth &&
10822            (NewVT.getStoreSizeInBits() != NewBW ||
10823             !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
10824             !TLI.isNarrowingProfitable(VT, NewVT))) {
10825       NewBW = NextPowerOf2(NewBW);
10826       NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
10827     }
10828     if (NewBW >= BitWidth)
10829       return SDValue();
10830 
10831     // If the lsb changed does not start at the type bitwidth boundary,
10832     // start at the previous one.
10833     if (ShAmt % NewBW)
10834       ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
10835     APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
10836                                    std::min(BitWidth, ShAmt + NewBW));
10837     if ((Imm & Mask) == Imm) {
10838       APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
10839       if (Opc == ISD::AND)
10840         NewImm ^= APInt::getAllOnesValue(NewBW);
10841       uint64_t PtrOff = ShAmt / 8;
10842       // For big endian targets, we need to adjust the offset to the pointer to
10843       // load the correct bytes.
10844       if (DAG.getDataLayout().isBigEndian())
10845         PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
10846 
10847       unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
10848       Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
10849       if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
10850         return SDValue();
10851 
10852       SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
10853                                    Ptr.getValueType(), Ptr,
10854                                    DAG.getConstant(PtrOff, SDLoc(LD),
10855                                                    Ptr.getValueType()));
10856       SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
10857                                   LD->getChain(), NewPtr,
10858                                   LD->getPointerInfo().getWithOffset(PtrOff),
10859                                   LD->isVolatile(), LD->isNonTemporal(),
10860                                   LD->isInvariant(), NewAlign,
10861                                   LD->getAAInfo());
10862       SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
10863                                    DAG.getConstant(NewImm, SDLoc(Value),
10864                                                    NewVT));
10865       SDValue NewST = DAG.getStore(Chain, SDLoc(N),
10866                                    NewVal, NewPtr,
10867                                    ST->getPointerInfo().getWithOffset(PtrOff),
10868                                    false, false, NewAlign);
10869 
10870       AddToWorklist(NewPtr.getNode());
10871       AddToWorklist(NewLD.getNode());
10872       AddToWorklist(NewVal.getNode());
10873       WorklistRemover DeadNodes(*this);
10874       DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
10875       ++OpsNarrowed;
10876       return NewST;
10877     }
10878   }
10879 
10880   return SDValue();
10881 }
10882 
10883 /// For a given floating point load / store pair, if the load value isn't used
10884 /// by any other operations, then consider transforming the pair to integer
10885 /// load / store operations if the target deems the transformation profitable.
10886 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
10887   StoreSDNode *ST  = cast<StoreSDNode>(N);
10888   SDValue Chain = ST->getChain();
10889   SDValue Value = ST->getValue();
10890   if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
10891       Value.hasOneUse() &&
10892       Chain == SDValue(Value.getNode(), 1)) {
10893     LoadSDNode *LD = cast<LoadSDNode>(Value);
10894     EVT VT = LD->getMemoryVT();
10895     if (!VT.isFloatingPoint() ||
10896         VT != ST->getMemoryVT() ||
10897         LD->isNonTemporal() ||
10898         ST->isNonTemporal() ||
10899         LD->getPointerInfo().getAddrSpace() != 0 ||
10900         ST->getPointerInfo().getAddrSpace() != 0)
10901       return SDValue();
10902 
10903     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10904     if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
10905         !TLI.isOperationLegal(ISD::STORE, IntVT) ||
10906         !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
10907         !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
10908       return SDValue();
10909 
10910     unsigned LDAlign = LD->getAlignment();
10911     unsigned STAlign = ST->getAlignment();
10912     Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
10913     unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
10914     if (LDAlign < ABIAlign || STAlign < ABIAlign)
10915       return SDValue();
10916 
10917     SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
10918                                 LD->getChain(), LD->getBasePtr(),
10919                                 LD->getPointerInfo(),
10920                                 false, false, false, LDAlign);
10921 
10922     SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
10923                                  NewLD, ST->getBasePtr(),
10924                                  ST->getPointerInfo(),
10925                                  false, false, STAlign);
10926 
10927     AddToWorklist(NewLD.getNode());
10928     AddToWorklist(NewST.getNode());
10929     WorklistRemover DeadNodes(*this);
10930     DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
10931     ++LdStFP2Int;
10932     return NewST;
10933   }
10934 
10935   return SDValue();
10936 }
10937 
10938 namespace {
10939 /// Helper struct to parse and store a memory address as base + index + offset.
10940 /// We ignore sign extensions when it is safe to do so.
10941 /// The following two expressions are not equivalent. To differentiate we need
10942 /// to store whether there was a sign extension involved in the index
10943 /// computation.
10944 ///  (load (i64 add (i64 copyfromreg %c)
10945 ///                 (i64 signextend (add (i8 load %index)
10946 ///                                      (i8 1))))
10947 /// vs
10948 ///
10949 /// (load (i64 add (i64 copyfromreg %c)
10950 ///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
10951 ///                                         (i32 1)))))
10952 struct BaseIndexOffset {
10953   SDValue Base;
10954   SDValue Index;
10955   int64_t Offset;
10956   bool IsIndexSignExt;
10957 
10958   BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
10959 
10960   BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
10961                   bool IsIndexSignExt) :
10962     Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
10963 
10964   bool equalBaseIndex(const BaseIndexOffset &Other) {
10965     return Other.Base == Base && Other.Index == Index &&
10966       Other.IsIndexSignExt == IsIndexSignExt;
10967   }
10968 
10969   /// Parses tree in Ptr for base, index, offset addresses.
10970   static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG) {
10971     bool IsIndexSignExt = false;
10972 
10973     // Split up a folded GlobalAddress+Offset into its component parts.
10974     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr))
10975       if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) {
10976         return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(),
10977                                                     SDLoc(GA),
10978                                                     GA->getValueType(0),
10979                                                     /*Offset=*/0,
10980                                                     /*isTargetGA=*/false,
10981                                                     GA->getTargetFlags()),
10982                                SDValue(),
10983                                GA->getOffset(),
10984                                IsIndexSignExt);
10985       }
10986 
10987     // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
10988     // instruction, then it could be just the BASE or everything else we don't
10989     // know how to handle. Just use Ptr as BASE and give up.
10990     if (Ptr->getOpcode() != ISD::ADD)
10991       return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
10992 
10993     // We know that we have at least an ADD instruction. Try to pattern match
10994     // the simple case of BASE + OFFSET.
10995     if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
10996       int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
10997       return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
10998                               IsIndexSignExt);
10999     }
11000 
11001     // Inside a loop the current BASE pointer is calculated using an ADD and a
11002     // MUL instruction. In this case Ptr is the actual BASE pointer.
11003     // (i64 add (i64 %array_ptr)
11004     //          (i64 mul (i64 %induction_var)
11005     //                   (i64 %element_size)))
11006     if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
11007       return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
11008 
11009     // Look at Base + Index + Offset cases.
11010     SDValue Base = Ptr->getOperand(0);
11011     SDValue IndexOffset = Ptr->getOperand(1);
11012 
11013     // Skip signextends.
11014     if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
11015       IndexOffset = IndexOffset->getOperand(0);
11016       IsIndexSignExt = true;
11017     }
11018 
11019     // Either the case of Base + Index (no offset) or something else.
11020     if (IndexOffset->getOpcode() != ISD::ADD)
11021       return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
11022 
11023     // Now we have the case of Base + Index + offset.
11024     SDValue Index = IndexOffset->getOperand(0);
11025     SDValue Offset = IndexOffset->getOperand(1);
11026 
11027     if (!isa<ConstantSDNode>(Offset))
11028       return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
11029 
11030     // Ignore signextends.
11031     if (Index->getOpcode() == ISD::SIGN_EXTEND) {
11032       Index = Index->getOperand(0);
11033       IsIndexSignExt = true;
11034     } else IsIndexSignExt = false;
11035 
11036     int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
11037     return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
11038   }
11039 };
11040 } // namespace
11041 
11042 // This is a helper function for visitMUL to check the profitability
11043 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
11044 // MulNode is the original multiply, AddNode is (add x, c1),
11045 // and ConstNode is c2.
11046 //
11047 // If the (add x, c1) has multiple uses, we could increase
11048 // the number of adds if we make this transformation.
11049 // It would only be worth doing this if we can remove a
11050 // multiply in the process. Check for that here.
11051 // To illustrate:
11052 //     (A + c1) * c3
11053 //     (A + c2) * c3
11054 // We're checking for cases where we have common "c3 * A" expressions.
11055 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
11056                                               SDValue &AddNode,
11057                                               SDValue &ConstNode) {
11058   APInt Val;
11059 
11060   // If the add only has one use, this would be OK to do.
11061   if (AddNode.getNode()->hasOneUse())
11062     return true;
11063 
11064   // Walk all the users of the constant with which we're multiplying.
11065   for (SDNode *Use : ConstNode->uses()) {
11066 
11067     if (Use == MulNode) // This use is the one we're on right now. Skip it.
11068       continue;
11069 
11070     if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
11071       SDNode *OtherOp;
11072       SDNode *MulVar = AddNode.getOperand(0).getNode();
11073 
11074       // OtherOp is what we're multiplying against the constant.
11075       if (Use->getOperand(0) == ConstNode)
11076         OtherOp = Use->getOperand(1).getNode();
11077       else
11078         OtherOp = Use->getOperand(0).getNode();
11079 
11080       // Check to see if multiply is with the same operand of our "add".
11081       //
11082       //     ConstNode  = CONST
11083       //     Use = ConstNode * A  <-- visiting Use. OtherOp is A.
11084       //     ...
11085       //     AddNode  = (A + c1)  <-- MulVar is A.
11086       //         = AddNode * ConstNode   <-- current visiting instruction.
11087       //
11088       // If we make this transformation, we will have a common
11089       // multiply (ConstNode * A) that we can save.
11090       if (OtherOp == MulVar)
11091         return true;
11092 
11093       // Now check to see if a future expansion will give us a common
11094       // multiply.
11095       //
11096       //     ConstNode  = CONST
11097       //     AddNode    = (A + c1)
11098       //     ...   = AddNode * ConstNode <-- current visiting instruction.
11099       //     ...
11100       //     OtherOp = (A + c2)
11101       //     Use     = OtherOp * ConstNode <-- visiting Use.
11102       //
11103       // If we make this transformation, we will have a common
11104       // multiply (CONST * A) after we also do the same transformation
11105       // to the "t2" instruction.
11106       if (OtherOp->getOpcode() == ISD::ADD &&
11107           DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
11108           OtherOp->getOperand(0).getNode() == MulVar)
11109         return true;
11110     }
11111   }
11112 
11113   // Didn't find a case where this would be profitable.
11114   return false;
11115 }
11116 
11117 SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG,
11118                                                   SDLoc SL,
11119                                                   ArrayRef<MemOpLink> Stores,
11120                                                   SmallVectorImpl<SDValue> &Chains,
11121                                                   EVT Ty) const {
11122   SmallVector<SDValue, 8> BuildVector;
11123 
11124   for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) {
11125     StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode);
11126     Chains.push_back(St->getChain());
11127     BuildVector.push_back(St->getValue());
11128   }
11129 
11130   return DAG.getNode(ISD::BUILD_VECTOR, SL, Ty, BuildVector);
11131 }
11132 
11133 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
11134                   SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT,
11135                   unsigned NumStores, bool IsConstantSrc, bool UseVector) {
11136   // Make sure we have something to merge.
11137   if (NumStores < 2)
11138     return false;
11139 
11140   int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
11141   LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
11142   unsigned LatestNodeUsed = 0;
11143 
11144   for (unsigned i=0; i < NumStores; ++i) {
11145     // Find a chain for the new wide-store operand. Notice that some
11146     // of the store nodes that we found may not be selected for inclusion
11147     // in the wide store. The chain we use needs to be the chain of the
11148     // latest store node which is *used* and replaced by the wide store.
11149     if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
11150       LatestNodeUsed = i;
11151   }
11152 
11153   SmallVector<SDValue, 8> Chains;
11154 
11155   // The latest Node in the DAG.
11156   LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
11157   SDLoc DL(StoreNodes[0].MemNode);
11158 
11159   SDValue StoredVal;
11160   if (UseVector) {
11161     bool IsVec = MemVT.isVector();
11162     unsigned Elts = NumStores;
11163     if (IsVec) {
11164       // When merging vector stores, get the total number of elements.
11165       Elts *= MemVT.getVectorNumElements();
11166     }
11167     // Get the type for the merged vector store.
11168     EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
11169     assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
11170 
11171     if (IsConstantSrc) {
11172       StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty);
11173     } else {
11174       SmallVector<SDValue, 8> Ops;
11175       for (unsigned i = 0; i < NumStores; ++i) {
11176         StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
11177         SDValue Val = St->getValue();
11178         // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type.
11179         if (Val.getValueType() != MemVT)
11180           return false;
11181         Ops.push_back(Val);
11182         Chains.push_back(St->getChain());
11183       }
11184 
11185       // Build the extracted vector elements back into a vector.
11186       StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
11187                               DL, Ty, Ops);    }
11188   } else {
11189     // We should always use a vector store when merging extracted vector
11190     // elements, so this path implies a store of constants.
11191     assert(IsConstantSrc && "Merged vector elements should use vector store");
11192 
11193     unsigned SizeInBits = NumStores * ElementSizeBytes * 8;
11194     APInt StoreInt(SizeInBits, 0);
11195 
11196     // Construct a single integer constant which is made of the smaller
11197     // constant inputs.
11198     bool IsLE = DAG.getDataLayout().isLittleEndian();
11199     for (unsigned i = 0; i < NumStores; ++i) {
11200       unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
11201       StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
11202       Chains.push_back(St->getChain());
11203 
11204       SDValue Val = St->getValue();
11205       StoreInt <<= ElementSizeBytes * 8;
11206       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
11207         StoreInt |= C->getAPIntValue().zext(SizeInBits);
11208       } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
11209         StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits);
11210       } else {
11211         llvm_unreachable("Invalid constant element type");
11212       }
11213     }
11214 
11215     // Create the new Load and Store operations.
11216     EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
11217     StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
11218   }
11219 
11220   assert(!Chains.empty());
11221 
11222   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
11223   SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal,
11224                                   FirstInChain->getBasePtr(),
11225                                   FirstInChain->getPointerInfo(),
11226                                   false, false,
11227                                   FirstInChain->getAlignment());
11228 
11229   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11230                                                   : DAG.getSubtarget().useAA();
11231   if (UseAA) {
11232     // Replace all merged stores with the new store.
11233     for (unsigned i = 0; i < NumStores; ++i)
11234       CombineTo(StoreNodes[i].MemNode, NewStore);
11235   } else {
11236     // Replace the last store with the new store.
11237     CombineTo(LatestOp, NewStore);
11238     // Erase all other stores.
11239     for (unsigned i = 0; i < NumStores; ++i) {
11240       if (StoreNodes[i].MemNode == LatestOp)
11241         continue;
11242       StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
11243       // ReplaceAllUsesWith will replace all uses that existed when it was
11244       // called, but graph optimizations may cause new ones to appear. For
11245       // example, the case in pr14333 looks like
11246       //
11247       //  St's chain -> St -> another store -> X
11248       //
11249       // And the only difference from St to the other store is the chain.
11250       // When we change it's chain to be St's chain they become identical,
11251       // get CSEed and the net result is that X is now a use of St.
11252       // Since we know that St is redundant, just iterate.
11253       while (!St->use_empty())
11254         DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
11255       deleteAndRecombine(St);
11256     }
11257   }
11258 
11259   return true;
11260 }
11261 
11262 void DAGCombiner::getStoreMergeAndAliasCandidates(
11263     StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
11264     SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) {
11265   // This holds the base pointer, index, and the offset in bytes from the base
11266   // pointer.
11267   BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG);
11268 
11269   // We must have a base and an offset.
11270   if (!BasePtr.Base.getNode())
11271     return;
11272 
11273   // Do not handle stores to undef base pointers.
11274   if (BasePtr.Base.isUndef())
11275     return;
11276 
11277   // Walk up the chain and look for nodes with offsets from the same
11278   // base pointer. Stop when reaching an instruction with a different kind
11279   // or instruction which has a different base pointer.
11280   EVT MemVT = St->getMemoryVT();
11281   unsigned Seq = 0;
11282   StoreSDNode *Index = St;
11283 
11284 
11285   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11286                                                   : DAG.getSubtarget().useAA();
11287 
11288   if (UseAA) {
11289     // Look at other users of the same chain. Stores on the same chain do not
11290     // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized
11291     // to be on the same chain, so don't bother looking at adjacent chains.
11292 
11293     SDValue Chain = St->getChain();
11294     for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) {
11295       if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
11296         if (I.getOperandNo() != 0)
11297           continue;
11298 
11299         if (OtherST->isVolatile() || OtherST->isIndexed())
11300           continue;
11301 
11302         if (OtherST->getMemoryVT() != MemVT)
11303           continue;
11304 
11305         BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr(), DAG);
11306 
11307         if (Ptr.equalBaseIndex(BasePtr))
11308           StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++));
11309       }
11310     }
11311 
11312     return;
11313   }
11314 
11315   while (Index) {
11316     // If the chain has more than one use, then we can't reorder the mem ops.
11317     if (Index != St && !SDValue(Index, 0)->hasOneUse())
11318       break;
11319 
11320     // Find the base pointer and offset for this memory node.
11321     BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG);
11322 
11323     // Check that the base pointer is the same as the original one.
11324     if (!Ptr.equalBaseIndex(BasePtr))
11325       break;
11326 
11327     // The memory operands must not be volatile.
11328     if (Index->isVolatile() || Index->isIndexed())
11329       break;
11330 
11331     // No truncation.
11332     if (Index->isTruncatingStore())
11333       break;
11334 
11335     // The stored memory type must be the same.
11336     if (Index->getMemoryVT() != MemVT)
11337       break;
11338 
11339     // We do not allow under-aligned stores in order to prevent
11340     // overriding stores. NOTE: this is a bad hack. Alignment SHOULD
11341     // be irrelevant here; what MATTERS is that we not move memory
11342     // operations that potentially overlap past each-other.
11343     if (Index->getAlignment() < MemVT.getStoreSize())
11344       break;
11345 
11346     // We found a potential memory operand to merge.
11347     StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
11348 
11349     // Find the next memory operand in the chain. If the next operand in the
11350     // chain is a store then move up and continue the scan with the next
11351     // memory operand. If the next operand is a load save it and use alias
11352     // information to check if it interferes with anything.
11353     SDNode *NextInChain = Index->getChain().getNode();
11354     while (1) {
11355       if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
11356         // We found a store node. Use it for the next iteration.
11357         Index = STn;
11358         break;
11359       } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
11360         if (Ldn->isVolatile()) {
11361           Index = nullptr;
11362           break;
11363         }
11364 
11365         // Save the load node for later. Continue the scan.
11366         AliasLoadNodes.push_back(Ldn);
11367         NextInChain = Ldn->getChain().getNode();
11368         continue;
11369       } else {
11370         Index = nullptr;
11371         break;
11372       }
11373     }
11374   }
11375 }
11376 
11377 // We need to check that merging these stores does not cause a loop
11378 // in the DAG. Any store candidate may depend on another candidate
11379 // indirectly through its operand (we already consider dependencies
11380 // through the chain). Check in parallel by searching up from
11381 // non-chain operands of candidates.
11382 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
11383     SmallVectorImpl<MemOpLink> &StoreNodes) {
11384   SmallPtrSet<const SDNode *, 16> Visited;
11385   SmallVector<const SDNode *, 8> Worklist;
11386   // search ops of store candidates
11387   for (unsigned i = 0; i < StoreNodes.size(); ++i) {
11388     SDNode *n = StoreNodes[i].MemNode;
11389     // Potential loops may happen only through non-chain operands
11390     for (unsigned j = 1; j < n->getNumOperands(); ++j)
11391       Worklist.push_back(n->getOperand(j).getNode());
11392   }
11393   // search through DAG. We can stop early if we find a storenode
11394   for (unsigned i = 0; i < StoreNodes.size(); ++i) {
11395     if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist))
11396       return false;
11397   }
11398   return true;
11399 }
11400 
11401 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
11402   if (OptLevel == CodeGenOpt::None)
11403     return false;
11404 
11405   EVT MemVT = St->getMemoryVT();
11406   int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
11407   bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute(
11408       Attribute::NoImplicitFloat);
11409 
11410   // This function cannot currently deal with non-byte-sized memory sizes.
11411   if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
11412     return false;
11413 
11414   if (!MemVT.isSimple())
11415     return false;
11416 
11417   // Perform an early exit check. Do not bother looking at stored values that
11418   // are not constants, loads, or extracted vector elements.
11419   SDValue StoredVal = St->getValue();
11420   bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
11421   bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
11422                        isa<ConstantFPSDNode>(StoredVal);
11423   bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
11424                           StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
11425 
11426   if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
11427     return false;
11428 
11429   // Don't merge vectors into wider vectors if the source data comes from loads.
11430   // TODO: This restriction can be lifted by using logic similar to the
11431   // ExtractVecSrc case.
11432   if (MemVT.isVector() && IsLoadSrc)
11433     return false;
11434 
11435   // Only look at ends of store sequences.
11436   SDValue Chain = SDValue(St, 0);
11437   if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
11438     return false;
11439 
11440   // Save the LoadSDNodes that we find in the chain.
11441   // We need to make sure that these nodes do not interfere with
11442   // any of the store nodes.
11443   SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
11444 
11445   // Save the StoreSDNodes that we find in the chain.
11446   SmallVector<MemOpLink, 8> StoreNodes;
11447 
11448   getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes);
11449 
11450   // Check if there is anything to merge.
11451   if (StoreNodes.size() < 2)
11452     return false;
11453 
11454   // only do dep endence check in AA case
11455   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11456                                                   : DAG.getSubtarget().useAA();
11457   if (UseAA && !checkMergeStoreCandidatesForDependencies(StoreNodes))
11458     return false;
11459 
11460   // Sort the memory operands according to their distance from the
11461   // base pointer.  As a secondary criteria: make sure stores coming
11462   // later in the code come first in the list. This is important for
11463   // the non-UseAA case, because we're merging stores into the FINAL
11464   // store along a chain which potentially contains aliasing stores.
11465   // Thus, if there are multiple stores to the same address, the last
11466   // one can be considered for merging but not the others.
11467   std::sort(StoreNodes.begin(), StoreNodes.end(),
11468             [](MemOpLink LHS, MemOpLink RHS) {
11469     return LHS.OffsetFromBase < RHS.OffsetFromBase ||
11470            (LHS.OffsetFromBase == RHS.OffsetFromBase &&
11471             LHS.SequenceNum < RHS.SequenceNum);
11472   });
11473 
11474   // Scan the memory operations on the chain and find the first non-consecutive
11475   // store memory address.
11476   unsigned LastConsecutiveStore = 0;
11477   int64_t StartAddress = StoreNodes[0].OffsetFromBase;
11478   for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
11479 
11480     // Check that the addresses are consecutive starting from the second
11481     // element in the list of stores.
11482     if (i > 0) {
11483       int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
11484       if (CurrAddress - StartAddress != (ElementSizeBytes * i))
11485         break;
11486     }
11487 
11488     // Check if this store interferes with any of the loads that we found.
11489     // If we find a load that alias with this store. Stop the sequence.
11490     if (std::any_of(AliasLoadNodes.begin(), AliasLoadNodes.end(),
11491                     [&](LSBaseSDNode* Ldn) {
11492                       return isAlias(Ldn, StoreNodes[i].MemNode);
11493                     }))
11494       break;
11495 
11496     // Mark this node as useful.
11497     LastConsecutiveStore = i;
11498   }
11499 
11500   // The node with the lowest store address.
11501   LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
11502   unsigned FirstStoreAS = FirstInChain->getAddressSpace();
11503   unsigned FirstStoreAlign = FirstInChain->getAlignment();
11504   LLVMContext &Context = *DAG.getContext();
11505   const DataLayout &DL = DAG.getDataLayout();
11506 
11507   // Store the constants into memory as one consecutive store.
11508   if (IsConstantSrc) {
11509     unsigned LastLegalType = 0;
11510     unsigned LastLegalVectorType = 0;
11511     bool NonZero = false;
11512     for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
11513       StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11514       SDValue StoredVal = St->getValue();
11515 
11516       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
11517         NonZero |= !C->isNullValue();
11518       } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
11519         NonZero |= !C->getConstantFPValue()->isNullValue();
11520       } else {
11521         // Non-constant.
11522         break;
11523       }
11524 
11525       // Find a legal type for the constant store.
11526       unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
11527       EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
11528       bool IsFast;
11529       if (TLI.isTypeLegal(StoreTy) &&
11530           TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11531                                  FirstStoreAlign, &IsFast) && IsFast) {
11532         LastLegalType = i+1;
11533       // Or check whether a truncstore is legal.
11534       } else if (TLI.getTypeAction(Context, StoreTy) ==
11535                  TargetLowering::TypePromoteInteger) {
11536         EVT LegalizedStoredValueTy =
11537           TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
11538         if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
11539             TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
11540                                    FirstStoreAS, FirstStoreAlign, &IsFast) &&
11541             IsFast) {
11542           LastLegalType = i + 1;
11543         }
11544       }
11545 
11546       // We only use vectors if the constant is known to be zero or the target
11547       // allows it and the function is not marked with the noimplicitfloat
11548       // attribute.
11549       if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1,
11550                                                         FirstStoreAS)) &&
11551           !NoVectors) {
11552         // Find a legal type for the vector store.
11553         EVT Ty = EVT::getVectorVT(Context, MemVT, i+1);
11554         if (TLI.isTypeLegal(Ty) &&
11555             TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
11556                                    FirstStoreAlign, &IsFast) && IsFast)
11557           LastLegalVectorType = i + 1;
11558       }
11559     }
11560 
11561     // Check if we found a legal integer type to store.
11562     if (LastLegalType == 0 && LastLegalVectorType == 0)
11563       return false;
11564 
11565     bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
11566     unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
11567 
11568     return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
11569                                            true, UseVector);
11570   }
11571 
11572   // When extracting multiple vector elements, try to store them
11573   // in one vector store rather than a sequence of scalar stores.
11574   if (IsExtractVecSrc) {
11575     unsigned NumStoresToMerge = 0;
11576     bool IsVec = MemVT.isVector();
11577     for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) {
11578       StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11579       unsigned StoreValOpcode = St->getValue().getOpcode();
11580       // This restriction could be loosened.
11581       // Bail out if any stored values are not elements extracted from a vector.
11582       // It should be possible to handle mixed sources, but load sources need
11583       // more careful handling (see the block of code below that handles
11584       // consecutive loads).
11585       if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT &&
11586           StoreValOpcode != ISD::EXTRACT_SUBVECTOR)
11587         return false;
11588 
11589       // Find a legal type for the vector store.
11590       unsigned Elts = i + 1;
11591       if (IsVec) {
11592         // When merging vector stores, get the total number of elements.
11593         Elts *= MemVT.getVectorNumElements();
11594       }
11595       EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
11596       bool IsFast;
11597       if (TLI.isTypeLegal(Ty) &&
11598           TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
11599                                  FirstStoreAlign, &IsFast) && IsFast)
11600         NumStoresToMerge = i + 1;
11601     }
11602 
11603     return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge,
11604                                            false, true);
11605   }
11606 
11607   // Below we handle the case of multiple consecutive stores that
11608   // come from multiple consecutive loads. We merge them into a single
11609   // wide load and a single wide store.
11610 
11611   // Look for load nodes which are used by the stored values.
11612   SmallVector<MemOpLink, 8> LoadNodes;
11613 
11614   // Find acceptable loads. Loads need to have the same chain (token factor),
11615   // must not be zext, volatile, indexed, and they must be consecutive.
11616   BaseIndexOffset LdBasePtr;
11617   for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
11618     StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11619     LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
11620     if (!Ld) break;
11621 
11622     // Loads must only have one use.
11623     if (!Ld->hasNUsesOfValue(1, 0))
11624       break;
11625 
11626     // The memory operands must not be volatile.
11627     if (Ld->isVolatile() || Ld->isIndexed())
11628       break;
11629 
11630     // We do not accept ext loads.
11631     if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
11632       break;
11633 
11634     // The stored memory type must be the same.
11635     if (Ld->getMemoryVT() != MemVT)
11636       break;
11637 
11638     BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG);
11639     // If this is not the first ptr that we check.
11640     if (LdBasePtr.Base.getNode()) {
11641       // The base ptr must be the same.
11642       if (!LdPtr.equalBaseIndex(LdBasePtr))
11643         break;
11644     } else {
11645       // Check that all other base pointers are the same as this one.
11646       LdBasePtr = LdPtr;
11647     }
11648 
11649     // We found a potential memory operand to merge.
11650     LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
11651   }
11652 
11653   if (LoadNodes.size() < 2)
11654     return false;
11655 
11656   // If we have load/store pair instructions and we only have two values,
11657   // don't bother.
11658   unsigned RequiredAlignment;
11659   if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
11660       St->getAlignment() >= RequiredAlignment)
11661     return false;
11662 
11663   LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
11664   unsigned FirstLoadAS = FirstLoad->getAddressSpace();
11665   unsigned FirstLoadAlign = FirstLoad->getAlignment();
11666 
11667   // Scan the memory operations on the chain and find the first non-consecutive
11668   // load memory address. These variables hold the index in the store node
11669   // array.
11670   unsigned LastConsecutiveLoad = 0;
11671   // This variable refers to the size and not index in the array.
11672   unsigned LastLegalVectorType = 0;
11673   unsigned LastLegalIntegerType = 0;
11674   StartAddress = LoadNodes[0].OffsetFromBase;
11675   SDValue FirstChain = FirstLoad->getChain();
11676   for (unsigned i = 1; i < LoadNodes.size(); ++i) {
11677     // All loads must share the same chain.
11678     if (LoadNodes[i].MemNode->getChain() != FirstChain)
11679       break;
11680 
11681     int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
11682     if (CurrAddress - StartAddress != (ElementSizeBytes * i))
11683       break;
11684     LastConsecutiveLoad = i;
11685     // Find a legal type for the vector store.
11686     EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1);
11687     bool IsFastSt, IsFastLd;
11688     if (TLI.isTypeLegal(StoreTy) &&
11689         TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11690                                FirstStoreAlign, &IsFastSt) && IsFastSt &&
11691         TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
11692                                FirstLoadAlign, &IsFastLd) && IsFastLd) {
11693       LastLegalVectorType = i + 1;
11694     }
11695 
11696     // Find a legal type for the integer store.
11697     unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
11698     StoreTy = EVT::getIntegerVT(Context, SizeInBits);
11699     if (TLI.isTypeLegal(StoreTy) &&
11700         TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11701                                FirstStoreAlign, &IsFastSt) && IsFastSt &&
11702         TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
11703                                FirstLoadAlign, &IsFastLd) && IsFastLd)
11704       LastLegalIntegerType = i + 1;
11705     // Or check whether a truncstore and extload is legal.
11706     else if (TLI.getTypeAction(Context, StoreTy) ==
11707              TargetLowering::TypePromoteInteger) {
11708       EVT LegalizedStoredValueTy =
11709         TLI.getTypeToTransformTo(Context, StoreTy);
11710       if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
11711           TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
11712           TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
11713           TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) &&
11714           TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
11715                                  FirstStoreAS, FirstStoreAlign, &IsFastSt) &&
11716           IsFastSt &&
11717           TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
11718                                  FirstLoadAS, FirstLoadAlign, &IsFastLd) &&
11719           IsFastLd)
11720         LastLegalIntegerType = i+1;
11721     }
11722   }
11723 
11724   // Only use vector types if the vector type is larger than the integer type.
11725   // If they are the same, use integers.
11726   bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
11727   unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
11728 
11729   // We add +1 here because the LastXXX variables refer to location while
11730   // the NumElem refers to array/index size.
11731   unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
11732   NumElem = std::min(LastLegalType, NumElem);
11733 
11734   if (NumElem < 2)
11735     return false;
11736 
11737   // Collect the chains from all merged stores.
11738   SmallVector<SDValue, 8> MergeStoreChains;
11739   MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain());
11740 
11741   // The latest Node in the DAG.
11742   unsigned LatestNodeUsed = 0;
11743   for (unsigned i=1; i<NumElem; ++i) {
11744     // Find a chain for the new wide-store operand. Notice that some
11745     // of the store nodes that we found may not be selected for inclusion
11746     // in the wide store. The chain we use needs to be the chain of the
11747     // latest store node which is *used* and replaced by the wide store.
11748     if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
11749       LatestNodeUsed = i;
11750 
11751     MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain());
11752   }
11753 
11754   LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
11755 
11756   // Find if it is better to use vectors or integers to load and store
11757   // to memory.
11758   EVT JointMemOpVT;
11759   if (UseVectorTy) {
11760     JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem);
11761   } else {
11762     unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
11763     JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
11764   }
11765 
11766   SDLoc LoadDL(LoadNodes[0].MemNode);
11767   SDLoc StoreDL(StoreNodes[0].MemNode);
11768 
11769   // The merged loads are required to have the same incoming chain, so
11770   // using the first's chain is acceptable.
11771   SDValue NewLoad = DAG.getLoad(
11772       JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
11773       FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign);
11774 
11775   SDValue NewStoreChain =
11776     DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains);
11777 
11778   SDValue NewStore = DAG.getStore(
11779     NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
11780       FirstInChain->getPointerInfo(), false, false, FirstStoreAlign);
11781 
11782   // Transfer chain users from old loads to the new load.
11783   for (unsigned i = 0; i < NumElem; ++i) {
11784     LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
11785     DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
11786                                   SDValue(NewLoad.getNode(), 1));
11787   }
11788 
11789   if (UseAA) {
11790     // Replace the all stores with the new store.
11791     for (unsigned i = 0; i < NumElem; ++i)
11792       CombineTo(StoreNodes[i].MemNode, NewStore);
11793   } else {
11794     // Replace the last store with the new store.
11795     CombineTo(LatestOp, NewStore);
11796     // Erase all other stores.
11797     for (unsigned i = 0; i < NumElem; ++i) {
11798       // Remove all Store nodes.
11799       if (StoreNodes[i].MemNode == LatestOp)
11800         continue;
11801       StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
11802       DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
11803       deleteAndRecombine(St);
11804     }
11805   }
11806 
11807   return true;
11808 }
11809 
11810 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
11811   SDLoc SL(ST);
11812   SDValue ReplStore;
11813 
11814   // Replace the chain to avoid dependency.
11815   if (ST->isTruncatingStore()) {
11816     ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
11817                                   ST->getBasePtr(), ST->getMemoryVT(),
11818                                   ST->getMemOperand());
11819   } else {
11820     ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
11821                              ST->getMemOperand());
11822   }
11823 
11824   // Create token to keep both nodes around.
11825   SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
11826                               MVT::Other, ST->getChain(), ReplStore);
11827 
11828   // Make sure the new and old chains are cleaned up.
11829   AddToWorklist(Token.getNode());
11830 
11831   // Don't add users to work list.
11832   return CombineTo(ST, Token, false);
11833 }
11834 
11835 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
11836   SDValue Value = ST->getValue();
11837   if (Value.getOpcode() == ISD::TargetConstantFP)
11838     return SDValue();
11839 
11840   SDLoc DL(ST);
11841 
11842   SDValue Chain = ST->getChain();
11843   SDValue Ptr = ST->getBasePtr();
11844 
11845   const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
11846 
11847   // NOTE: If the original store is volatile, this transform must not increase
11848   // the number of stores.  For example, on x86-32 an f64 can be stored in one
11849   // processor operation but an i64 (which is not legal) requires two.  So the
11850   // transform should not be done in this case.
11851 
11852   SDValue Tmp;
11853   switch (CFP->getSimpleValueType(0).SimpleTy) {
11854   default:
11855     llvm_unreachable("Unknown FP type");
11856   case MVT::f16:    // We don't do this for these yet.
11857   case MVT::f80:
11858   case MVT::f128:
11859   case MVT::ppcf128:
11860     return SDValue();
11861   case MVT::f32:
11862     if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
11863         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
11864       ;
11865       Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
11866                             bitcastToAPInt().getZExtValue(), SDLoc(CFP),
11867                             MVT::i32);
11868       return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
11869     }
11870 
11871     return SDValue();
11872   case MVT::f64:
11873     if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
11874          !ST->isVolatile()) ||
11875         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
11876       ;
11877       Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
11878                             getZExtValue(), SDLoc(CFP), MVT::i64);
11879       return DAG.getStore(Chain, DL, Tmp,
11880                           Ptr, ST->getMemOperand());
11881     }
11882 
11883     if (!ST->isVolatile() &&
11884         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
11885       // Many FP stores are not made apparent until after legalize, e.g. for
11886       // argument passing.  Since this is so common, custom legalize the
11887       // 64-bit integer store into two 32-bit stores.
11888       uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
11889       SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
11890       SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
11891       if (DAG.getDataLayout().isBigEndian())
11892         std::swap(Lo, Hi);
11893 
11894       unsigned Alignment = ST->getAlignment();
11895       bool isVolatile = ST->isVolatile();
11896       bool isNonTemporal = ST->isNonTemporal();
11897       AAMDNodes AAInfo = ST->getAAInfo();
11898 
11899       SDValue St0 = DAG.getStore(Chain, DL, Lo,
11900                                  Ptr, ST->getPointerInfo(),
11901                                  isVolatile, isNonTemporal,
11902                                  ST->getAlignment(), AAInfo);
11903       Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
11904                         DAG.getConstant(4, DL, Ptr.getValueType()));
11905       Alignment = MinAlign(Alignment, 4U);
11906       SDValue St1 = DAG.getStore(Chain, DL, Hi,
11907                                  Ptr, ST->getPointerInfo().getWithOffset(4),
11908                                  isVolatile, isNonTemporal,
11909                                  Alignment, AAInfo);
11910       return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
11911                          St0, St1);
11912     }
11913 
11914     return SDValue();
11915   }
11916 }
11917 
11918 SDValue DAGCombiner::visitSTORE(SDNode *N) {
11919   StoreSDNode *ST  = cast<StoreSDNode>(N);
11920   SDValue Chain = ST->getChain();
11921   SDValue Value = ST->getValue();
11922   SDValue Ptr   = ST->getBasePtr();
11923 
11924   // If this is a store of a bit convert, store the input value if the
11925   // resultant store does not need a higher alignment than the original.
11926   if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
11927       ST->isUnindexed()) {
11928     unsigned OrigAlign = ST->getAlignment();
11929     EVT SVT = Value.getOperand(0).getValueType();
11930     unsigned Align = DAG.getDataLayout().getABITypeAlignment(
11931         SVT.getTypeForEVT(*DAG.getContext()));
11932     if (Align <= OrigAlign &&
11933         ((!LegalOperations && !ST->isVolatile()) ||
11934          TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
11935       return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
11936                           Ptr, ST->getPointerInfo(), ST->isVolatile(),
11937                           ST->isNonTemporal(), OrigAlign,
11938                           ST->getAAInfo());
11939   }
11940 
11941   // Turn 'store undef, Ptr' -> nothing.
11942   if (Value.isUndef() && ST->isUnindexed())
11943     return Chain;
11944 
11945   // Try to infer better alignment information than the store already has.
11946   if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
11947     if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
11948       if (Align > ST->getAlignment()) {
11949         SDValue NewStore =
11950                DAG.getTruncStore(Chain, SDLoc(N), Value,
11951                                  Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
11952                                  ST->isVolatile(), ST->isNonTemporal(), Align,
11953                                  ST->getAAInfo());
11954         if (NewStore.getNode() != N)
11955           return CombineTo(ST, NewStore, true);
11956       }
11957     }
11958   }
11959 
11960   // Try transforming a pair floating point load / store ops to integer
11961   // load / store ops.
11962   if (SDValue NewST = TransformFPLoadStorePair(N))
11963     return NewST;
11964 
11965   bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11966                                                   : DAG.getSubtarget().useAA();
11967 #ifndef NDEBUG
11968   if (CombinerAAOnlyFunc.getNumOccurrences() &&
11969       CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
11970     UseAA = false;
11971 #endif
11972   if (UseAA && ST->isUnindexed()) {
11973     // FIXME: We should do this even without AA enabled. AA will just allow
11974     // FindBetterChain to work in more situations. The problem with this is that
11975     // any combine that expects memory operations to be on consecutive chains
11976     // first needs to be updated to look for users of the same chain.
11977 
11978     // Walk up chain skipping non-aliasing memory nodes, on this store and any
11979     // adjacent stores.
11980     if (findBetterNeighborChains(ST)) {
11981       // replaceStoreChain uses CombineTo, which handled all of the worklist
11982       // manipulation. Return the original node to not do anything else.
11983       return SDValue(ST, 0);
11984     }
11985   }
11986 
11987   // Try transforming N to an indexed store.
11988   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
11989     return SDValue(N, 0);
11990 
11991   // FIXME: is there such a thing as a truncating indexed store?
11992   if (ST->isTruncatingStore() && ST->isUnindexed() &&
11993       Value.getValueType().isInteger()) {
11994     // See if we can simplify the input to this truncstore with knowledge that
11995     // only the low bits are being used.  For example:
11996     // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
11997     SDValue Shorter =
11998       GetDemandedBits(Value,
11999                       APInt::getLowBitsSet(
12000                         Value.getValueType().getScalarType().getSizeInBits(),
12001                         ST->getMemoryVT().getScalarType().getSizeInBits()));
12002     AddToWorklist(Value.getNode());
12003     if (Shorter.getNode())
12004       return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
12005                                Ptr, ST->getMemoryVT(), ST->getMemOperand());
12006 
12007     // Otherwise, see if we can simplify the operation with
12008     // SimplifyDemandedBits, which only works if the value has a single use.
12009     if (SimplifyDemandedBits(Value,
12010                         APInt::getLowBitsSet(
12011                           Value.getValueType().getScalarType().getSizeInBits(),
12012                           ST->getMemoryVT().getScalarType().getSizeInBits())))
12013       return SDValue(N, 0);
12014   }
12015 
12016   // If this is a load followed by a store to the same location, then the store
12017   // is dead/noop.
12018   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
12019     if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
12020         ST->isUnindexed() && !ST->isVolatile() &&
12021         // There can't be any side effects between the load and store, such as
12022         // a call or store.
12023         Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
12024       // The store is dead, remove it.
12025       return Chain;
12026     }
12027   }
12028 
12029   // If this is a store followed by a store with the same value to the same
12030   // location, then the store is dead/noop.
12031   if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
12032     if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() &&
12033         ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() &&
12034         ST1->isUnindexed() && !ST1->isVolatile()) {
12035       // The store is dead, remove it.
12036       return Chain;
12037     }
12038   }
12039 
12040   // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
12041   // truncating store.  We can do this even if this is already a truncstore.
12042   if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
12043       && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
12044       TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
12045                             ST->getMemoryVT())) {
12046     return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
12047                              Ptr, ST->getMemoryVT(), ST->getMemOperand());
12048   }
12049 
12050   // Only perform this optimization before the types are legal, because we
12051   // don't want to perform this optimization on every DAGCombine invocation.
12052   if (!LegalTypes) {
12053     bool EverChanged = false;
12054 
12055     do {
12056       // There can be multiple store sequences on the same chain.
12057       // Keep trying to merge store sequences until we are unable to do so
12058       // or until we merge the last store on the chain.
12059       bool Changed = MergeConsecutiveStores(ST);
12060       EverChanged |= Changed;
12061       if (!Changed) break;
12062     } while (ST->getOpcode() != ISD::DELETED_NODE);
12063 
12064     if (EverChanged)
12065       return SDValue(N, 0);
12066   }
12067 
12068   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
12069   //
12070   // Make sure to do this only after attempting to merge stores in order to
12071   //  avoid changing the types of some subset of stores due to visit order,
12072   //  preventing their merging.
12073   if (isa<ConstantFPSDNode>(Value)) {
12074     if (SDValue NewSt = replaceStoreOfFPConstant(ST))
12075       return NewSt;
12076   }
12077 
12078   return ReduceLoadOpStoreWidth(N);
12079 }
12080 
12081 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
12082   SDValue InVec = N->getOperand(0);
12083   SDValue InVal = N->getOperand(1);
12084   SDValue EltNo = N->getOperand(2);
12085   SDLoc dl(N);
12086 
12087   // If the inserted element is an UNDEF, just use the input vector.
12088   if (InVal.isUndef())
12089     return InVec;
12090 
12091   EVT VT = InVec.getValueType();
12092 
12093   // If we can't generate a legal BUILD_VECTOR, exit
12094   if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
12095     return SDValue();
12096 
12097   // Check that we know which element is being inserted
12098   if (!isa<ConstantSDNode>(EltNo))
12099     return SDValue();
12100   unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12101 
12102   // Canonicalize insert_vector_elt dag nodes.
12103   // Example:
12104   // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
12105   // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
12106   //
12107   // Do this only if the child insert_vector node has one use; also
12108   // do this only if indices are both constants and Idx1 < Idx0.
12109   if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
12110       && isa<ConstantSDNode>(InVec.getOperand(2))) {
12111     unsigned OtherElt =
12112       cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue();
12113     if (Elt < OtherElt) {
12114       // Swap nodes.
12115       SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT,
12116                                   InVec.getOperand(0), InVal, EltNo);
12117       AddToWorklist(NewOp.getNode());
12118       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
12119                          VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
12120     }
12121   }
12122 
12123   // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
12124   // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
12125   // vector elements.
12126   SmallVector<SDValue, 8> Ops;
12127   // Do not combine these two vectors if the output vector will not replace
12128   // the input vector.
12129   if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
12130     Ops.append(InVec.getNode()->op_begin(),
12131                InVec.getNode()->op_end());
12132   } else if (InVec.isUndef()) {
12133     unsigned NElts = VT.getVectorNumElements();
12134     Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
12135   } else {
12136     return SDValue();
12137   }
12138 
12139   // Insert the element
12140   if (Elt < Ops.size()) {
12141     // All the operands of BUILD_VECTOR must have the same type;
12142     // we enforce that here.
12143     EVT OpVT = Ops[0].getValueType();
12144     if (InVal.getValueType() != OpVT)
12145       InVal = OpVT.bitsGT(InVal.getValueType()) ?
12146                 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
12147                 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
12148     Ops[Elt] = InVal;
12149   }
12150 
12151   // Return the new vector
12152   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
12153 }
12154 
12155 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
12156     SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) {
12157   EVT ResultVT = EVE->getValueType(0);
12158   EVT VecEltVT = InVecVT.getVectorElementType();
12159   unsigned Align = OriginalLoad->getAlignment();
12160   unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
12161       VecEltVT.getTypeForEVT(*DAG.getContext()));
12162 
12163   if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
12164     return SDValue();
12165 
12166   Align = NewAlign;
12167 
12168   SDValue NewPtr = OriginalLoad->getBasePtr();
12169   SDValue Offset;
12170   EVT PtrType = NewPtr.getValueType();
12171   MachinePointerInfo MPI;
12172   SDLoc DL(EVE);
12173   if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
12174     int Elt = ConstEltNo->getZExtValue();
12175     unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
12176     Offset = DAG.getConstant(PtrOff, DL, PtrType);
12177     MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
12178   } else {
12179     Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
12180     Offset = DAG.getNode(
12181         ISD::MUL, DL, PtrType, Offset,
12182         DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
12183     MPI = OriginalLoad->getPointerInfo();
12184   }
12185   NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
12186 
12187   // The replacement we need to do here is a little tricky: we need to
12188   // replace an extractelement of a load with a load.
12189   // Use ReplaceAllUsesOfValuesWith to do the replacement.
12190   // Note that this replacement assumes that the extractvalue is the only
12191   // use of the load; that's okay because we don't want to perform this
12192   // transformation in other cases anyway.
12193   SDValue Load;
12194   SDValue Chain;
12195   if (ResultVT.bitsGT(VecEltVT)) {
12196     // If the result type of vextract is wider than the load, then issue an
12197     // extending load instead.
12198     ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
12199                                                   VecEltVT)
12200                                    ? ISD::ZEXTLOAD
12201                                    : ISD::EXTLOAD;
12202     Load = DAG.getExtLoad(
12203         ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI,
12204         VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
12205         OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
12206     Chain = Load.getValue(1);
12207   } else {
12208     Load = DAG.getLoad(
12209         VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI,
12210         OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
12211         OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
12212     Chain = Load.getValue(1);
12213     if (ResultVT.bitsLT(VecEltVT))
12214       Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
12215     else
12216       Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load);
12217   }
12218   WorklistRemover DeadNodes(*this);
12219   SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
12220   SDValue To[] = { Load, Chain };
12221   DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
12222   // Since we're explicitly calling ReplaceAllUses, add the new node to the
12223   // worklist explicitly as well.
12224   AddToWorklist(Load.getNode());
12225   AddUsersToWorklist(Load.getNode()); // Add users too
12226   // Make sure to revisit this node to clean it up; it will usually be dead.
12227   AddToWorklist(EVE);
12228   ++OpsNarrowed;
12229   return SDValue(EVE, 0);
12230 }
12231 
12232 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
12233   // (vextract (scalar_to_vector val, 0) -> val
12234   SDValue InVec = N->getOperand(0);
12235   EVT VT = InVec.getValueType();
12236   EVT NVT = N->getValueType(0);
12237 
12238   if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
12239     // Check if the result type doesn't match the inserted element type. A
12240     // SCALAR_TO_VECTOR may truncate the inserted element and the
12241     // EXTRACT_VECTOR_ELT may widen the extracted vector.
12242     SDValue InOp = InVec.getOperand(0);
12243     if (InOp.getValueType() != NVT) {
12244       assert(InOp.getValueType().isInteger() && NVT.isInteger());
12245       return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
12246     }
12247     return InOp;
12248   }
12249 
12250   SDValue EltNo = N->getOperand(1);
12251   ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
12252 
12253   // extract_vector_elt (build_vector x, y), 1 -> y
12254   if (ConstEltNo &&
12255       InVec.getOpcode() == ISD::BUILD_VECTOR &&
12256       TLI.isTypeLegal(VT) &&
12257       (InVec.hasOneUse() ||
12258        TLI.aggressivelyPreferBuildVectorSources(VT))) {
12259     SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue());
12260     EVT InEltVT = Elt.getValueType();
12261 
12262     // Sometimes build_vector's scalar input types do not match result type.
12263     if (NVT == InEltVT)
12264       return Elt;
12265 
12266     // TODO: It may be useful to truncate if free if the build_vector implicitly
12267     // converts.
12268   }
12269 
12270   // extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x)
12271   if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() &&
12272       ConstEltNo->isNullValue() && VT.isInteger()) {
12273     SDValue BCSrc = InVec.getOperand(0);
12274     if (BCSrc.getValueType().isScalarInteger())
12275       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc);
12276   }
12277 
12278   // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
12279   // We only perform this optimization before the op legalization phase because
12280   // we may introduce new vector instructions which are not backed by TD
12281   // patterns. For example on AVX, extracting elements from a wide vector
12282   // without using extract_subvector. However, if we can find an underlying
12283   // scalar value, then we can always use that.
12284   if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) {
12285     int NumElem = VT.getVectorNumElements();
12286     ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
12287     // Find the new index to extract from.
12288     int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue());
12289 
12290     // Extracting an undef index is undef.
12291     if (OrigElt == -1)
12292       return DAG.getUNDEF(NVT);
12293 
12294     // Select the right vector half to extract from.
12295     SDValue SVInVec;
12296     if (OrigElt < NumElem) {
12297       SVInVec = InVec->getOperand(0);
12298     } else {
12299       SVInVec = InVec->getOperand(1);
12300       OrigElt -= NumElem;
12301     }
12302 
12303     if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
12304       SDValue InOp = SVInVec.getOperand(OrigElt);
12305       if (InOp.getValueType() != NVT) {
12306         assert(InOp.getValueType().isInteger() && NVT.isInteger());
12307         InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT);
12308       }
12309 
12310       return InOp;
12311     }
12312 
12313     // FIXME: We should handle recursing on other vector shuffles and
12314     // scalar_to_vector here as well.
12315 
12316     if (!LegalOperations) {
12317       EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
12318       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec,
12319                          DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy));
12320     }
12321   }
12322 
12323   bool BCNumEltsChanged = false;
12324   EVT ExtVT = VT.getVectorElementType();
12325   EVT LVT = ExtVT;
12326 
12327   // If the result of load has to be truncated, then it's not necessarily
12328   // profitable.
12329   if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
12330     return SDValue();
12331 
12332   if (InVec.getOpcode() == ISD::BITCAST) {
12333     // Don't duplicate a load with other uses.
12334     if (!InVec.hasOneUse())
12335       return SDValue();
12336 
12337     EVT BCVT = InVec.getOperand(0).getValueType();
12338     if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
12339       return SDValue();
12340     if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
12341       BCNumEltsChanged = true;
12342     InVec = InVec.getOperand(0);
12343     ExtVT = BCVT.getVectorElementType();
12344   }
12345 
12346   // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
12347   if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() &&
12348       ISD::isNormalLoad(InVec.getNode()) &&
12349       !N->getOperand(1)->hasPredecessor(InVec.getNode())) {
12350     SDValue Index = N->getOperand(1);
12351     if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec))
12352       return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index,
12353                                                            OrigLoad);
12354   }
12355 
12356   // Perform only after legalization to ensure build_vector / vector_shuffle
12357   // optimizations have already been done.
12358   if (!LegalOperations) return SDValue();
12359 
12360   // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
12361   // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
12362   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
12363 
12364   if (ConstEltNo) {
12365     int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12366 
12367     LoadSDNode *LN0 = nullptr;
12368     const ShuffleVectorSDNode *SVN = nullptr;
12369     if (ISD::isNormalLoad(InVec.getNode())) {
12370       LN0 = cast<LoadSDNode>(InVec);
12371     } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
12372                InVec.getOperand(0).getValueType() == ExtVT &&
12373                ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
12374       // Don't duplicate a load with other uses.
12375       if (!InVec.hasOneUse())
12376         return SDValue();
12377 
12378       LN0 = cast<LoadSDNode>(InVec.getOperand(0));
12379     } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
12380       // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
12381       // =>
12382       // (load $addr+1*size)
12383 
12384       // Don't duplicate a load with other uses.
12385       if (!InVec.hasOneUse())
12386         return SDValue();
12387 
12388       // If the bit convert changed the number of elements, it is unsafe
12389       // to examine the mask.
12390       if (BCNumEltsChanged)
12391         return SDValue();
12392 
12393       // Select the input vector, guarding against out of range extract vector.
12394       unsigned NumElems = VT.getVectorNumElements();
12395       int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
12396       InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
12397 
12398       if (InVec.getOpcode() == ISD::BITCAST) {
12399         // Don't duplicate a load with other uses.
12400         if (!InVec.hasOneUse())
12401           return SDValue();
12402 
12403         InVec = InVec.getOperand(0);
12404       }
12405       if (ISD::isNormalLoad(InVec.getNode())) {
12406         LN0 = cast<LoadSDNode>(InVec);
12407         Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
12408         EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType());
12409       }
12410     }
12411 
12412     // Make sure we found a non-volatile load and the extractelement is
12413     // the only use.
12414     if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
12415       return SDValue();
12416 
12417     // If Idx was -1 above, Elt is going to be -1, so just return undef.
12418     if (Elt == -1)
12419       return DAG.getUNDEF(LVT);
12420 
12421     return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0);
12422   }
12423 
12424   return SDValue();
12425 }
12426 
12427 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
12428 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
12429   // We perform this optimization post type-legalization because
12430   // the type-legalizer often scalarizes integer-promoted vectors.
12431   // Performing this optimization before may create bit-casts which
12432   // will be type-legalized to complex code sequences.
12433   // We perform this optimization only before the operation legalizer because we
12434   // may introduce illegal operations.
12435   if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
12436     return SDValue();
12437 
12438   unsigned NumInScalars = N->getNumOperands();
12439   SDLoc dl(N);
12440   EVT VT = N->getValueType(0);
12441 
12442   // Check to see if this is a BUILD_VECTOR of a bunch of values
12443   // which come from any_extend or zero_extend nodes. If so, we can create
12444   // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
12445   // optimizations. We do not handle sign-extend because we can't fill the sign
12446   // using shuffles.
12447   EVT SourceType = MVT::Other;
12448   bool AllAnyExt = true;
12449 
12450   for (unsigned i = 0; i != NumInScalars; ++i) {
12451     SDValue In = N->getOperand(i);
12452     // Ignore undef inputs.
12453     if (In.isUndef()) continue;
12454 
12455     bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
12456     bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
12457 
12458     // Abort if the element is not an extension.
12459     if (!ZeroExt && !AnyExt) {
12460       SourceType = MVT::Other;
12461       break;
12462     }
12463 
12464     // The input is a ZeroExt or AnyExt. Check the original type.
12465     EVT InTy = In.getOperand(0).getValueType();
12466 
12467     // Check that all of the widened source types are the same.
12468     if (SourceType == MVT::Other)
12469       // First time.
12470       SourceType = InTy;
12471     else if (InTy != SourceType) {
12472       // Multiple income types. Abort.
12473       SourceType = MVT::Other;
12474       break;
12475     }
12476 
12477     // Check if all of the extends are ANY_EXTENDs.
12478     AllAnyExt &= AnyExt;
12479   }
12480 
12481   // In order to have valid types, all of the inputs must be extended from the
12482   // same source type and all of the inputs must be any or zero extend.
12483   // Scalar sizes must be a power of two.
12484   EVT OutScalarTy = VT.getScalarType();
12485   bool ValidTypes = SourceType != MVT::Other &&
12486                  isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
12487                  isPowerOf2_32(SourceType.getSizeInBits());
12488 
12489   // Create a new simpler BUILD_VECTOR sequence which other optimizations can
12490   // turn into a single shuffle instruction.
12491   if (!ValidTypes)
12492     return SDValue();
12493 
12494   bool isLE = DAG.getDataLayout().isLittleEndian();
12495   unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
12496   assert(ElemRatio > 1 && "Invalid element size ratio");
12497   SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
12498                                DAG.getConstant(0, SDLoc(N), SourceType);
12499 
12500   unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
12501   SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
12502 
12503   // Populate the new build_vector
12504   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
12505     SDValue Cast = N->getOperand(i);
12506     assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
12507             Cast.getOpcode() == ISD::ZERO_EXTEND ||
12508             Cast.isUndef()) && "Invalid cast opcode");
12509     SDValue In;
12510     if (Cast.isUndef())
12511       In = DAG.getUNDEF(SourceType);
12512     else
12513       In = Cast->getOperand(0);
12514     unsigned Index = isLE ? (i * ElemRatio) :
12515                             (i * ElemRatio + (ElemRatio - 1));
12516 
12517     assert(Index < Ops.size() && "Invalid index");
12518     Ops[Index] = In;
12519   }
12520 
12521   // The type of the new BUILD_VECTOR node.
12522   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
12523   assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
12524          "Invalid vector size");
12525   // Check if the new vector type is legal.
12526   if (!isTypeLegal(VecVT)) return SDValue();
12527 
12528   // Make the new BUILD_VECTOR.
12529   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
12530 
12531   // The new BUILD_VECTOR node has the potential to be further optimized.
12532   AddToWorklist(BV.getNode());
12533   // Bitcast to the desired type.
12534   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
12535 }
12536 
12537 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
12538   EVT VT = N->getValueType(0);
12539 
12540   unsigned NumInScalars = N->getNumOperands();
12541   SDLoc dl(N);
12542 
12543   EVT SrcVT = MVT::Other;
12544   unsigned Opcode = ISD::DELETED_NODE;
12545   unsigned NumDefs = 0;
12546 
12547   for (unsigned i = 0; i != NumInScalars; ++i) {
12548     SDValue In = N->getOperand(i);
12549     unsigned Opc = In.getOpcode();
12550 
12551     if (Opc == ISD::UNDEF)
12552       continue;
12553 
12554     // If all scalar values are floats and converted from integers.
12555     if (Opcode == ISD::DELETED_NODE &&
12556         (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
12557       Opcode = Opc;
12558     }
12559 
12560     if (Opc != Opcode)
12561       return SDValue();
12562 
12563     EVT InVT = In.getOperand(0).getValueType();
12564 
12565     // If all scalar values are typed differently, bail out. It's chosen to
12566     // simplify BUILD_VECTOR of integer types.
12567     if (SrcVT == MVT::Other)
12568       SrcVT = InVT;
12569     if (SrcVT != InVT)
12570       return SDValue();
12571     NumDefs++;
12572   }
12573 
12574   // If the vector has just one element defined, it's not worth to fold it into
12575   // a vectorized one.
12576   if (NumDefs < 2)
12577     return SDValue();
12578 
12579   assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
12580          && "Should only handle conversion from integer to float.");
12581   assert(SrcVT != MVT::Other && "Cannot determine source type!");
12582 
12583   EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
12584 
12585   if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
12586     return SDValue();
12587 
12588   // Just because the floating-point vector type is legal does not necessarily
12589   // mean that the corresponding integer vector type is.
12590   if (!isTypeLegal(NVT))
12591     return SDValue();
12592 
12593   SmallVector<SDValue, 8> Opnds;
12594   for (unsigned i = 0; i != NumInScalars; ++i) {
12595     SDValue In = N->getOperand(i);
12596 
12597     if (In.isUndef())
12598       Opnds.push_back(DAG.getUNDEF(SrcVT));
12599     else
12600       Opnds.push_back(In.getOperand(0));
12601   }
12602   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds);
12603   AddToWorklist(BV.getNode());
12604 
12605   return DAG.getNode(Opcode, dl, VT, BV);
12606 }
12607 
12608 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
12609   unsigned NumInScalars = N->getNumOperands();
12610   SDLoc dl(N);
12611   EVT VT = N->getValueType(0);
12612 
12613   // A vector built entirely of undefs is undef.
12614   if (ISD::allOperandsUndef(N))
12615     return DAG.getUNDEF(VT);
12616 
12617   if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
12618     return V;
12619 
12620   if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N))
12621     return V;
12622 
12623   // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
12624   // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
12625   // at most two distinct vectors, turn this into a shuffle node.
12626 
12627   // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
12628   if (!isTypeLegal(VT))
12629     return SDValue();
12630 
12631   // May only combine to shuffle after legalize if shuffle is legal.
12632   if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
12633     return SDValue();
12634 
12635   SDValue VecIn1, VecIn2;
12636   bool UsesZeroVector = false;
12637   for (unsigned i = 0; i != NumInScalars; ++i) {
12638     SDValue Op = N->getOperand(i);
12639     // Ignore undef inputs.
12640     if (Op.isUndef()) continue;
12641 
12642     // See if we can combine this build_vector into a blend with a zero vector.
12643     if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) {
12644       UsesZeroVector = true;
12645       continue;
12646     }
12647 
12648     // If this input is something other than a EXTRACT_VECTOR_ELT with a
12649     // constant index, bail out.
12650     if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12651         !isa<ConstantSDNode>(Op.getOperand(1))) {
12652       VecIn1 = VecIn2 = SDValue(nullptr, 0);
12653       break;
12654     }
12655 
12656     // We allow up to two distinct input vectors.
12657     SDValue ExtractedFromVec = Op.getOperand(0);
12658     if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
12659       continue;
12660 
12661     if (!VecIn1.getNode()) {
12662       VecIn1 = ExtractedFromVec;
12663     } else if (!VecIn2.getNode() && !UsesZeroVector) {
12664       VecIn2 = ExtractedFromVec;
12665     } else {
12666       // Too many inputs.
12667       VecIn1 = VecIn2 = SDValue(nullptr, 0);
12668       break;
12669     }
12670   }
12671 
12672   // If everything is good, we can make a shuffle operation.
12673   if (VecIn1.getNode()) {
12674     unsigned InNumElements = VecIn1.getValueType().getVectorNumElements();
12675     SmallVector<int, 8> Mask;
12676     for (unsigned i = 0; i != NumInScalars; ++i) {
12677       unsigned Opcode = N->getOperand(i).getOpcode();
12678       if (Opcode == ISD::UNDEF) {
12679         Mask.push_back(-1);
12680         continue;
12681       }
12682 
12683       // Operands can also be zero.
12684       if (Opcode != ISD::EXTRACT_VECTOR_ELT) {
12685         assert(UsesZeroVector &&
12686                (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) &&
12687                "Unexpected node found!");
12688         Mask.push_back(NumInScalars+i);
12689         continue;
12690       }
12691 
12692       // If extracting from the first vector, just use the index directly.
12693       SDValue Extract = N->getOperand(i);
12694       SDValue ExtVal = Extract.getOperand(1);
12695       unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
12696       if (Extract.getOperand(0) == VecIn1) {
12697         Mask.push_back(ExtIndex);
12698         continue;
12699       }
12700 
12701       // Otherwise, use InIdx + InputVecSize
12702       Mask.push_back(InNumElements + ExtIndex);
12703     }
12704 
12705     // Avoid introducing illegal shuffles with zero.
12706     if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT))
12707       return SDValue();
12708 
12709     // We can't generate a shuffle node with mismatched input and output types.
12710     // Attempt to transform a single input vector to the correct type.
12711     if ((VT != VecIn1.getValueType())) {
12712       // If the input vector type has a different base type to the output
12713       // vector type, bail out.
12714       EVT VTElemType = VT.getVectorElementType();
12715       if ((VecIn1.getValueType().getVectorElementType() != VTElemType) ||
12716           (VecIn2.getNode() &&
12717            (VecIn2.getValueType().getVectorElementType() != VTElemType)))
12718         return SDValue();
12719 
12720       // If the input vector is too small, widen it.
12721       // We only support widening of vectors which are half the size of the
12722       // output registers. For example XMM->YMM widening on X86 with AVX.
12723       EVT VecInT = VecIn1.getValueType();
12724       if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) {
12725         // If we only have one small input, widen it by adding undef values.
12726         if (!VecIn2.getNode())
12727           VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1,
12728                                DAG.getUNDEF(VecIn1.getValueType()));
12729         else if (VecIn1.getValueType() == VecIn2.getValueType()) {
12730           // If we have two small inputs of the same type, try to concat them.
12731           VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2);
12732           VecIn2 = SDValue(nullptr, 0);
12733         } else
12734           return SDValue();
12735       } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) {
12736         // If the input vector is too large, try to split it.
12737         // We don't support having two input vectors that are too large.
12738         // If the zero vector was used, we can not split the vector,
12739         // since we'd need 3 inputs.
12740         if (UsesZeroVector || VecIn2.getNode())
12741           return SDValue();
12742 
12743         if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements()))
12744           return SDValue();
12745 
12746         // Try to replace VecIn1 with two extract_subvectors
12747         // No need to update the masks, they should still be correct.
12748         VecIn2 = DAG.getNode(
12749             ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
12750             DAG.getConstant(VT.getVectorNumElements(), dl,
12751                             TLI.getVectorIdxTy(DAG.getDataLayout())));
12752         VecIn1 = DAG.getNode(
12753             ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
12754             DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
12755       } else
12756         return SDValue();
12757     }
12758 
12759     if (UsesZeroVector)
12760       VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) :
12761                                 DAG.getConstantFP(0.0, dl, VT);
12762     else
12763       // If VecIn2 is unused then change it to undef.
12764       VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
12765 
12766     // Check that we were able to transform all incoming values to the same
12767     // type.
12768     if (VecIn2.getValueType() != VecIn1.getValueType() ||
12769         VecIn1.getValueType() != VT)
12770           return SDValue();
12771 
12772     // Return the new VECTOR_SHUFFLE node.
12773     SDValue Ops[2];
12774     Ops[0] = VecIn1;
12775     Ops[1] = VecIn2;
12776     return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
12777   }
12778 
12779   return SDValue();
12780 }
12781 
12782 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
12783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12784   EVT OpVT = N->getOperand(0).getValueType();
12785 
12786   // If the operands are legal vectors, leave them alone.
12787   if (TLI.isTypeLegal(OpVT))
12788     return SDValue();
12789 
12790   SDLoc DL(N);
12791   EVT VT = N->getValueType(0);
12792   SmallVector<SDValue, 8> Ops;
12793 
12794   EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
12795   SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
12796 
12797   // Keep track of what we encounter.
12798   bool AnyInteger = false;
12799   bool AnyFP = false;
12800   for (const SDValue &Op : N->ops()) {
12801     if (ISD::BITCAST == Op.getOpcode() &&
12802         !Op.getOperand(0).getValueType().isVector())
12803       Ops.push_back(Op.getOperand(0));
12804     else if (ISD::UNDEF == Op.getOpcode())
12805       Ops.push_back(ScalarUndef);
12806     else
12807       return SDValue();
12808 
12809     // Note whether we encounter an integer or floating point scalar.
12810     // If it's neither, bail out, it could be something weird like x86mmx.
12811     EVT LastOpVT = Ops.back().getValueType();
12812     if (LastOpVT.isFloatingPoint())
12813       AnyFP = true;
12814     else if (LastOpVT.isInteger())
12815       AnyInteger = true;
12816     else
12817       return SDValue();
12818   }
12819 
12820   // If any of the operands is a floating point scalar bitcast to a vector,
12821   // use floating point types throughout, and bitcast everything.
12822   // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
12823   if (AnyFP) {
12824     SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
12825     ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
12826     if (AnyInteger) {
12827       for (SDValue &Op : Ops) {
12828         if (Op.getValueType() == SVT)
12829           continue;
12830         if (Op.isUndef())
12831           Op = ScalarUndef;
12832         else
12833           Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op);
12834       }
12835     }
12836   }
12837 
12838   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
12839                                VT.getSizeInBits() / SVT.getSizeInBits());
12840   return DAG.getNode(ISD::BITCAST, DL, VT,
12841                      DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, Ops));
12842 }
12843 
12844 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
12845 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
12846 // most two distinct vectors the same size as the result, attempt to turn this
12847 // into a legal shuffle.
12848 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
12849   EVT VT = N->getValueType(0);
12850   EVT OpVT = N->getOperand(0).getValueType();
12851   int NumElts = VT.getVectorNumElements();
12852   int NumOpElts = OpVT.getVectorNumElements();
12853 
12854   SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
12855   SmallVector<int, 8> Mask;
12856 
12857   for (SDValue Op : N->ops()) {
12858     // Peek through any bitcast.
12859     while (Op.getOpcode() == ISD::BITCAST)
12860       Op = Op.getOperand(0);
12861 
12862     // UNDEF nodes convert to UNDEF shuffle mask values.
12863     if (Op.isUndef()) {
12864       Mask.append((unsigned)NumOpElts, -1);
12865       continue;
12866     }
12867 
12868     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
12869       return SDValue();
12870 
12871     // What vector are we extracting the subvector from and at what index?
12872     SDValue ExtVec = Op.getOperand(0);
12873 
12874     // We want the EVT of the original extraction to correctly scale the
12875     // extraction index.
12876     EVT ExtVT = ExtVec.getValueType();
12877 
12878     // Peek through any bitcast.
12879     while (ExtVec.getOpcode() == ISD::BITCAST)
12880       ExtVec = ExtVec.getOperand(0);
12881 
12882     // UNDEF nodes convert to UNDEF shuffle mask values.
12883     if (ExtVec.isUndef()) {
12884       Mask.append((unsigned)NumOpElts, -1);
12885       continue;
12886     }
12887 
12888     if (!isa<ConstantSDNode>(Op.getOperand(1)))
12889       return SDValue();
12890     int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
12891 
12892     // Ensure that we are extracting a subvector from a vector the same
12893     // size as the result.
12894     if (ExtVT.getSizeInBits() != VT.getSizeInBits())
12895       return SDValue();
12896 
12897     // Scale the subvector index to account for any bitcast.
12898     int NumExtElts = ExtVT.getVectorNumElements();
12899     if (0 == (NumExtElts % NumElts))
12900       ExtIdx /= (NumExtElts / NumElts);
12901     else if (0 == (NumElts % NumExtElts))
12902       ExtIdx *= (NumElts / NumExtElts);
12903     else
12904       return SDValue();
12905 
12906     // At most we can reference 2 inputs in the final shuffle.
12907     if (SV0.isUndef() || SV0 == ExtVec) {
12908       SV0 = ExtVec;
12909       for (int i = 0; i != NumOpElts; ++i)
12910         Mask.push_back(i + ExtIdx);
12911     } else if (SV1.isUndef() || SV1 == ExtVec) {
12912       SV1 = ExtVec;
12913       for (int i = 0; i != NumOpElts; ++i)
12914         Mask.push_back(i + ExtIdx + NumElts);
12915     } else {
12916       return SDValue();
12917     }
12918   }
12919 
12920   if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT))
12921     return SDValue();
12922 
12923   return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
12924                               DAG.getBitcast(VT, SV1), Mask);
12925 }
12926 
12927 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
12928   // If we only have one input vector, we don't need to do any concatenation.
12929   if (N->getNumOperands() == 1)
12930     return N->getOperand(0);
12931 
12932   // Check if all of the operands are undefs.
12933   EVT VT = N->getValueType(0);
12934   if (ISD::allOperandsUndef(N))
12935     return DAG.getUNDEF(VT);
12936 
12937   // Optimize concat_vectors where all but the first of the vectors are undef.
12938   if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
12939         return Op.isUndef();
12940       })) {
12941     SDValue In = N->getOperand(0);
12942     assert(In.getValueType().isVector() && "Must concat vectors");
12943 
12944     // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
12945     if (In->getOpcode() == ISD::BITCAST &&
12946         !In->getOperand(0)->getValueType(0).isVector()) {
12947       SDValue Scalar = In->getOperand(0);
12948 
12949       // If the bitcast type isn't legal, it might be a trunc of a legal type;
12950       // look through the trunc so we can still do the transform:
12951       //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
12952       if (Scalar->getOpcode() == ISD::TRUNCATE &&
12953           !TLI.isTypeLegal(Scalar.getValueType()) &&
12954           TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
12955         Scalar = Scalar->getOperand(0);
12956 
12957       EVT SclTy = Scalar->getValueType(0);
12958 
12959       if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
12960         return SDValue();
12961 
12962       EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
12963                                  VT.getSizeInBits() / SclTy.getSizeInBits());
12964       if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
12965         return SDValue();
12966 
12967       SDLoc dl = SDLoc(N);
12968       SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
12969       return DAG.getNode(ISD::BITCAST, dl, VT, Res);
12970     }
12971   }
12972 
12973   // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
12974   // We have already tested above for an UNDEF only concatenation.
12975   // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
12976   // -> (BUILD_VECTOR A, B, ..., C, D, ...)
12977   auto IsBuildVectorOrUndef = [](const SDValue &Op) {
12978     return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
12979   };
12980   bool AllBuildVectorsOrUndefs =
12981       std::all_of(N->op_begin(), N->op_end(), IsBuildVectorOrUndef);
12982   if (AllBuildVectorsOrUndefs) {
12983     SmallVector<SDValue, 8> Opnds;
12984     EVT SVT = VT.getScalarType();
12985 
12986     EVT MinVT = SVT;
12987     if (!SVT.isFloatingPoint()) {
12988       // If BUILD_VECTOR are from built from integer, they may have different
12989       // operand types. Get the smallest type and truncate all operands to it.
12990       bool FoundMinVT = false;
12991       for (const SDValue &Op : N->ops())
12992         if (ISD::BUILD_VECTOR == Op.getOpcode()) {
12993           EVT OpSVT = Op.getOperand(0)->getValueType(0);
12994           MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
12995           FoundMinVT = true;
12996         }
12997       assert(FoundMinVT && "Concat vector type mismatch");
12998     }
12999 
13000     for (const SDValue &Op : N->ops()) {
13001       EVT OpVT = Op.getValueType();
13002       unsigned NumElts = OpVT.getVectorNumElements();
13003 
13004       if (ISD::UNDEF == Op.getOpcode())
13005         Opnds.append(NumElts, DAG.getUNDEF(MinVT));
13006 
13007       if (ISD::BUILD_VECTOR == Op.getOpcode()) {
13008         if (SVT.isFloatingPoint()) {
13009           assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
13010           Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
13011         } else {
13012           for (unsigned i = 0; i != NumElts; ++i)
13013             Opnds.push_back(
13014                 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
13015         }
13016       }
13017     }
13018 
13019     assert(VT.getVectorNumElements() == Opnds.size() &&
13020            "Concat vector type mismatch");
13021     return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
13022   }
13023 
13024   // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
13025   if (SDValue V = combineConcatVectorOfScalars(N, DAG))
13026     return V;
13027 
13028   // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
13029   if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
13030     if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
13031       return V;
13032 
13033   // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
13034   // nodes often generate nop CONCAT_VECTOR nodes.
13035   // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
13036   // place the incoming vectors at the exact same location.
13037   SDValue SingleSource = SDValue();
13038   unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
13039 
13040   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
13041     SDValue Op = N->getOperand(i);
13042 
13043     if (Op.isUndef())
13044       continue;
13045 
13046     // Check if this is the identity extract:
13047     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
13048       return SDValue();
13049 
13050     // Find the single incoming vector for the extract_subvector.
13051     if (SingleSource.getNode()) {
13052       if (Op.getOperand(0) != SingleSource)
13053         return SDValue();
13054     } else {
13055       SingleSource = Op.getOperand(0);
13056 
13057       // Check the source type is the same as the type of the result.
13058       // If not, this concat may extend the vector, so we can not
13059       // optimize it away.
13060       if (SingleSource.getValueType() != N->getValueType(0))
13061         return SDValue();
13062     }
13063 
13064     unsigned IdentityIndex = i * PartNumElem;
13065     ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
13066     // The extract index must be constant.
13067     if (!CS)
13068       return SDValue();
13069 
13070     // Check that we are reading from the identity index.
13071     if (CS->getZExtValue() != IdentityIndex)
13072       return SDValue();
13073   }
13074 
13075   if (SingleSource.getNode())
13076     return SingleSource;
13077 
13078   return SDValue();
13079 }
13080 
13081 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
13082   EVT NVT = N->getValueType(0);
13083   SDValue V = N->getOperand(0);
13084 
13085   if (V->getOpcode() == ISD::CONCAT_VECTORS) {
13086     // Combine:
13087     //    (extract_subvec (concat V1, V2, ...), i)
13088     // Into:
13089     //    Vi if possible
13090     // Only operand 0 is checked as 'concat' assumes all inputs of the same
13091     // type.
13092     if (V->getOperand(0).getValueType() != NVT)
13093       return SDValue();
13094     unsigned Idx = N->getConstantOperandVal(1);
13095     unsigned NumElems = NVT.getVectorNumElements();
13096     assert((Idx % NumElems) == 0 &&
13097            "IDX in concat is not a multiple of the result vector length.");
13098     return V->getOperand(Idx / NumElems);
13099   }
13100 
13101   // Skip bitcasting
13102   if (V->getOpcode() == ISD::BITCAST)
13103     V = V.getOperand(0);
13104 
13105   if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
13106     SDLoc dl(N);
13107     // Handle only simple case where vector being inserted and vector
13108     // being extracted are of same type, and are half size of larger vectors.
13109     EVT BigVT = V->getOperand(0).getValueType();
13110     EVT SmallVT = V->getOperand(1).getValueType();
13111     if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
13112       return SDValue();
13113 
13114     // Only handle cases where both indexes are constants with the same type.
13115     ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
13116     ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
13117 
13118     if (InsIdx && ExtIdx &&
13119         InsIdx->getValueType(0).getSizeInBits() <= 64 &&
13120         ExtIdx->getValueType(0).getSizeInBits() <= 64) {
13121       // Combine:
13122       //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
13123       // Into:
13124       //    indices are equal or bit offsets are equal => V1
13125       //    otherwise => (extract_subvec V1, ExtIdx)
13126       if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
13127           ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
13128         return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
13129       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
13130                          DAG.getNode(ISD::BITCAST, dl,
13131                                      N->getOperand(0).getValueType(),
13132                                      V->getOperand(0)), N->getOperand(1));
13133     }
13134   }
13135 
13136   return SDValue();
13137 }
13138 
13139 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements,
13140                                                  SDValue V, SelectionDAG &DAG) {
13141   SDLoc DL(V);
13142   EVT VT = V.getValueType();
13143 
13144   switch (V.getOpcode()) {
13145   default:
13146     return V;
13147 
13148   case ISD::CONCAT_VECTORS: {
13149     EVT OpVT = V->getOperand(0).getValueType();
13150     int OpSize = OpVT.getVectorNumElements();
13151     SmallBitVector OpUsedElements(OpSize, false);
13152     bool FoundSimplification = false;
13153     SmallVector<SDValue, 4> NewOps;
13154     NewOps.reserve(V->getNumOperands());
13155     for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) {
13156       SDValue Op = V->getOperand(i);
13157       bool OpUsed = false;
13158       for (int j = 0; j < OpSize; ++j)
13159         if (UsedElements[i * OpSize + j]) {
13160           OpUsedElements[j] = true;
13161           OpUsed = true;
13162         }
13163       NewOps.push_back(
13164           OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG)
13165                  : DAG.getUNDEF(OpVT));
13166       FoundSimplification |= Op == NewOps.back();
13167       OpUsedElements.reset();
13168     }
13169     if (FoundSimplification)
13170       V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps);
13171     return V;
13172   }
13173 
13174   case ISD::INSERT_SUBVECTOR: {
13175     SDValue BaseV = V->getOperand(0);
13176     SDValue SubV = V->getOperand(1);
13177     auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2));
13178     if (!IdxN)
13179       return V;
13180 
13181     int SubSize = SubV.getValueType().getVectorNumElements();
13182     int Idx = IdxN->getZExtValue();
13183     bool SubVectorUsed = false;
13184     SmallBitVector SubUsedElements(SubSize, false);
13185     for (int i = 0; i < SubSize; ++i)
13186       if (UsedElements[i + Idx]) {
13187         SubVectorUsed = true;
13188         SubUsedElements[i] = true;
13189         UsedElements[i + Idx] = false;
13190       }
13191 
13192     // Now recurse on both the base and sub vectors.
13193     SDValue SimplifiedSubV =
13194         SubVectorUsed
13195             ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG)
13196             : DAG.getUNDEF(SubV.getValueType());
13197     SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG);
13198     if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV)
13199       V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
13200                       SimplifiedBaseV, SimplifiedSubV, V->getOperand(2));
13201     return V;
13202   }
13203   }
13204 }
13205 
13206 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0,
13207                                        SDValue N1, SelectionDAG &DAG) {
13208   EVT VT = SVN->getValueType(0);
13209   int NumElts = VT.getVectorNumElements();
13210   SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false);
13211   for (int M : SVN->getMask())
13212     if (M >= 0 && M < NumElts)
13213       N0UsedElements[M] = true;
13214     else if (M >= NumElts)
13215       N1UsedElements[M - NumElts] = true;
13216 
13217   SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG);
13218   SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG);
13219   if (S0 == N0 && S1 == N1)
13220     return SDValue();
13221 
13222   return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask());
13223 }
13224 
13225 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
13226 // or turn a shuffle of a single concat into simpler shuffle then concat.
13227 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
13228   EVT VT = N->getValueType(0);
13229   unsigned NumElts = VT.getVectorNumElements();
13230 
13231   SDValue N0 = N->getOperand(0);
13232   SDValue N1 = N->getOperand(1);
13233   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
13234 
13235   SmallVector<SDValue, 4> Ops;
13236   EVT ConcatVT = N0.getOperand(0).getValueType();
13237   unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
13238   unsigned NumConcats = NumElts / NumElemsPerConcat;
13239 
13240   // Special case: shuffle(concat(A,B)) can be more efficiently represented
13241   // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
13242   // half vector elements.
13243   if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
13244       std::all_of(SVN->getMask().begin() + NumElemsPerConcat,
13245                   SVN->getMask().end(), [](int i) { return i == -1; })) {
13246     N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1),
13247                               makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat));
13248     N1 = DAG.getUNDEF(ConcatVT);
13249     return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
13250   }
13251 
13252   // Look at every vector that's inserted. We're looking for exact
13253   // subvector-sized copies from a concatenated vector
13254   for (unsigned I = 0; I != NumConcats; ++I) {
13255     // Make sure we're dealing with a copy.
13256     unsigned Begin = I * NumElemsPerConcat;
13257     bool AllUndef = true, NoUndef = true;
13258     for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
13259       if (SVN->getMaskElt(J) >= 0)
13260         AllUndef = false;
13261       else
13262         NoUndef = false;
13263     }
13264 
13265     if (NoUndef) {
13266       if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
13267         return SDValue();
13268 
13269       for (unsigned J = 1; J != NumElemsPerConcat; ++J)
13270         if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
13271           return SDValue();
13272 
13273       unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
13274       if (FirstElt < N0.getNumOperands())
13275         Ops.push_back(N0.getOperand(FirstElt));
13276       else
13277         Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
13278 
13279     } else if (AllUndef) {
13280       Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
13281     } else { // Mixed with general masks and undefs, can't do optimization.
13282       return SDValue();
13283     }
13284   }
13285 
13286   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
13287 }
13288 
13289 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
13290   EVT VT = N->getValueType(0);
13291   unsigned NumElts = VT.getVectorNumElements();
13292 
13293   SDValue N0 = N->getOperand(0);
13294   SDValue N1 = N->getOperand(1);
13295 
13296   assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
13297 
13298   // Canonicalize shuffle undef, undef -> undef
13299   if (N0.isUndef() && N1.isUndef())
13300     return DAG.getUNDEF(VT);
13301 
13302   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
13303 
13304   // Canonicalize shuffle v, v -> v, undef
13305   if (N0 == N1) {
13306     SmallVector<int, 8> NewMask;
13307     for (unsigned i = 0; i != NumElts; ++i) {
13308       int Idx = SVN->getMaskElt(i);
13309       if (Idx >= (int)NumElts) Idx -= NumElts;
13310       NewMask.push_back(Idx);
13311     }
13312     return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
13313                                 &NewMask[0]);
13314   }
13315 
13316   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
13317   if (N0.isUndef()) {
13318     SmallVector<int, 8> NewMask;
13319     for (unsigned i = 0; i != NumElts; ++i) {
13320       int Idx = SVN->getMaskElt(i);
13321       if (Idx >= 0) {
13322         if (Idx >= (int)NumElts)
13323           Idx -= NumElts;
13324         else
13325           Idx = -1; // remove reference to lhs
13326       }
13327       NewMask.push_back(Idx);
13328     }
13329     return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
13330                                 &NewMask[0]);
13331   }
13332 
13333   // Remove references to rhs if it is undef
13334   if (N1.isUndef()) {
13335     bool Changed = false;
13336     SmallVector<int, 8> NewMask;
13337     for (unsigned i = 0; i != NumElts; ++i) {
13338       int Idx = SVN->getMaskElt(i);
13339       if (Idx >= (int)NumElts) {
13340         Idx = -1;
13341         Changed = true;
13342       }
13343       NewMask.push_back(Idx);
13344     }
13345     if (Changed)
13346       return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
13347   }
13348 
13349   // If it is a splat, check if the argument vector is another splat or a
13350   // build_vector.
13351   if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
13352     SDNode *V = N0.getNode();
13353 
13354     // If this is a bit convert that changes the element type of the vector but
13355     // not the number of vector elements, look through it.  Be careful not to
13356     // look though conversions that change things like v4f32 to v2f64.
13357     if (V->getOpcode() == ISD::BITCAST) {
13358       SDValue ConvInput = V->getOperand(0);
13359       if (ConvInput.getValueType().isVector() &&
13360           ConvInput.getValueType().getVectorNumElements() == NumElts)
13361         V = ConvInput.getNode();
13362     }
13363 
13364     if (V->getOpcode() == ISD::BUILD_VECTOR) {
13365       assert(V->getNumOperands() == NumElts &&
13366              "BUILD_VECTOR has wrong number of operands");
13367       SDValue Base;
13368       bool AllSame = true;
13369       for (unsigned i = 0; i != NumElts; ++i) {
13370         if (!V->getOperand(i).isUndef()) {
13371           Base = V->getOperand(i);
13372           break;
13373         }
13374       }
13375       // Splat of <u, u, u, u>, return <u, u, u, u>
13376       if (!Base.getNode())
13377         return N0;
13378       for (unsigned i = 0; i != NumElts; ++i) {
13379         if (V->getOperand(i) != Base) {
13380           AllSame = false;
13381           break;
13382         }
13383       }
13384       // Splat of <x, x, x, x>, return <x, x, x, x>
13385       if (AllSame)
13386         return N0;
13387 
13388       // Canonicalize any other splat as a build_vector.
13389       const SDValue &Splatted = V->getOperand(SVN->getSplatIndex());
13390       SmallVector<SDValue, 8> Ops(NumElts, Splatted);
13391       SDValue NewBV = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
13392                                   V->getValueType(0), Ops);
13393 
13394       // We may have jumped through bitcasts, so the type of the
13395       // BUILD_VECTOR may not match the type of the shuffle.
13396       if (V->getValueType(0) != VT)
13397         NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV);
13398       return NewBV;
13399     }
13400   }
13401 
13402   // There are various patterns used to build up a vector from smaller vectors,
13403   // subvectors, or elements. Scan chains of these and replace unused insertions
13404   // or components with undef.
13405   if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG))
13406     return S;
13407 
13408   if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
13409       Level < AfterLegalizeVectorOps &&
13410       (N1.isUndef() ||
13411       (N1.getOpcode() == ISD::CONCAT_VECTORS &&
13412        N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
13413     if (SDValue V = partitionShuffleOfConcats(N, DAG))
13414       return V;
13415   }
13416 
13417   // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
13418   // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
13419   if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
13420     SmallVector<SDValue, 8> Ops;
13421     for (int M : SVN->getMask()) {
13422       SDValue Op = DAG.getUNDEF(VT.getScalarType());
13423       if (M >= 0) {
13424         int Idx = M % NumElts;
13425         SDValue &S = (M < (int)NumElts ? N0 : N1);
13426         if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) {
13427           Op = S.getOperand(Idx);
13428         } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) {
13429           if (Idx == 0)
13430             Op = S.getOperand(0);
13431         } else {
13432           // Operand can't be combined - bail out.
13433           break;
13434         }
13435       }
13436       Ops.push_back(Op);
13437     }
13438     if (Ops.size() == VT.getVectorNumElements()) {
13439       // BUILD_VECTOR requires all inputs to be of the same type, find the
13440       // maximum type and extend them all.
13441       EVT SVT = VT.getScalarType();
13442       if (SVT.isInteger())
13443         for (SDValue &Op : Ops)
13444           SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
13445       if (SVT != VT.getScalarType())
13446         for (SDValue &Op : Ops)
13447           Op = TLI.isZExtFree(Op.getValueType(), SVT)
13448                    ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT)
13449                    : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT);
13450       return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Ops);
13451     }
13452   }
13453 
13454   // If this shuffle only has a single input that is a bitcasted shuffle,
13455   // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
13456   // back to their original types.
13457   if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
13458       N1.isUndef() && Level < AfterLegalizeVectorOps &&
13459       TLI.isTypeLegal(VT)) {
13460 
13461     // Peek through the bitcast only if there is one user.
13462     SDValue BC0 = N0;
13463     while (BC0.getOpcode() == ISD::BITCAST) {
13464       if (!BC0.hasOneUse())
13465         break;
13466       BC0 = BC0.getOperand(0);
13467     }
13468 
13469     auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
13470       if (Scale == 1)
13471         return SmallVector<int, 8>(Mask.begin(), Mask.end());
13472 
13473       SmallVector<int, 8> NewMask;
13474       for (int M : Mask)
13475         for (int s = 0; s != Scale; ++s)
13476           NewMask.push_back(M < 0 ? -1 : Scale * M + s);
13477       return NewMask;
13478     };
13479 
13480     if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
13481       EVT SVT = VT.getScalarType();
13482       EVT InnerVT = BC0->getValueType(0);
13483       EVT InnerSVT = InnerVT.getScalarType();
13484 
13485       // Determine which shuffle works with the smaller scalar type.
13486       EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
13487       EVT ScaleSVT = ScaleVT.getScalarType();
13488 
13489       if (TLI.isTypeLegal(ScaleVT) &&
13490           0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
13491           0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
13492 
13493         int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
13494         int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
13495 
13496         // Scale the shuffle masks to the smaller scalar type.
13497         ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
13498         SmallVector<int, 8> InnerMask =
13499             ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
13500         SmallVector<int, 8> OuterMask =
13501             ScaleShuffleMask(SVN->getMask(), OuterScale);
13502 
13503         // Merge the shuffle masks.
13504         SmallVector<int, 8> NewMask;
13505         for (int M : OuterMask)
13506           NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
13507 
13508         // Test for shuffle mask legality over both commutations.
13509         SDValue SV0 = BC0->getOperand(0);
13510         SDValue SV1 = BC0->getOperand(1);
13511         bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
13512         if (!LegalMask) {
13513           std::swap(SV0, SV1);
13514           ShuffleVectorSDNode::commuteMask(NewMask);
13515           LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
13516         }
13517 
13518         if (LegalMask) {
13519           SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0);
13520           SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1);
13521           return DAG.getNode(
13522               ISD::BITCAST, SDLoc(N), VT,
13523               DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
13524         }
13525       }
13526     }
13527   }
13528 
13529   // Canonicalize shuffles according to rules:
13530   //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
13531   //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
13532   //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
13533   if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
13534       N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
13535       TLI.isTypeLegal(VT)) {
13536     // The incoming shuffle must be of the same type as the result of the
13537     // current shuffle.
13538     assert(N1->getOperand(0).getValueType() == VT &&
13539            "Shuffle types don't match");
13540 
13541     SDValue SV0 = N1->getOperand(0);
13542     SDValue SV1 = N1->getOperand(1);
13543     bool HasSameOp0 = N0 == SV0;
13544     bool IsSV1Undef = SV1.isUndef();
13545     if (HasSameOp0 || IsSV1Undef || N0 == SV1)
13546       // Commute the operands of this shuffle so that next rule
13547       // will trigger.
13548       return DAG.getCommutedVectorShuffle(*SVN);
13549   }
13550 
13551   // Try to fold according to rules:
13552   //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
13553   //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
13554   //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
13555   // Don't try to fold shuffles with illegal type.
13556   // Only fold if this shuffle is the only user of the other shuffle.
13557   if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
13558       Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
13559     ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
13560 
13561     // The incoming shuffle must be of the same type as the result of the
13562     // current shuffle.
13563     assert(OtherSV->getOperand(0).getValueType() == VT &&
13564            "Shuffle types don't match");
13565 
13566     SDValue SV0, SV1;
13567     SmallVector<int, 4> Mask;
13568     // Compute the combined shuffle mask for a shuffle with SV0 as the first
13569     // operand, and SV1 as the second operand.
13570     for (unsigned i = 0; i != NumElts; ++i) {
13571       int Idx = SVN->getMaskElt(i);
13572       if (Idx < 0) {
13573         // Propagate Undef.
13574         Mask.push_back(Idx);
13575         continue;
13576       }
13577 
13578       SDValue CurrentVec;
13579       if (Idx < (int)NumElts) {
13580         // This shuffle index refers to the inner shuffle N0. Lookup the inner
13581         // shuffle mask to identify which vector is actually referenced.
13582         Idx = OtherSV->getMaskElt(Idx);
13583         if (Idx < 0) {
13584           // Propagate Undef.
13585           Mask.push_back(Idx);
13586           continue;
13587         }
13588 
13589         CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
13590                                            : OtherSV->getOperand(1);
13591       } else {
13592         // This shuffle index references an element within N1.
13593         CurrentVec = N1;
13594       }
13595 
13596       // Simple case where 'CurrentVec' is UNDEF.
13597       if (CurrentVec.isUndef()) {
13598         Mask.push_back(-1);
13599         continue;
13600       }
13601 
13602       // Canonicalize the shuffle index. We don't know yet if CurrentVec
13603       // will be the first or second operand of the combined shuffle.
13604       Idx = Idx % NumElts;
13605       if (!SV0.getNode() || SV0 == CurrentVec) {
13606         // Ok. CurrentVec is the left hand side.
13607         // Update the mask accordingly.
13608         SV0 = CurrentVec;
13609         Mask.push_back(Idx);
13610         continue;
13611       }
13612 
13613       // Bail out if we cannot convert the shuffle pair into a single shuffle.
13614       if (SV1.getNode() && SV1 != CurrentVec)
13615         return SDValue();
13616 
13617       // Ok. CurrentVec is the right hand side.
13618       // Update the mask accordingly.
13619       SV1 = CurrentVec;
13620       Mask.push_back(Idx + NumElts);
13621     }
13622 
13623     // Check if all indices in Mask are Undef. In case, propagate Undef.
13624     bool isUndefMask = true;
13625     for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
13626       isUndefMask &= Mask[i] < 0;
13627 
13628     if (isUndefMask)
13629       return DAG.getUNDEF(VT);
13630 
13631     if (!SV0.getNode())
13632       SV0 = DAG.getUNDEF(VT);
13633     if (!SV1.getNode())
13634       SV1 = DAG.getUNDEF(VT);
13635 
13636     // Avoid introducing shuffles with illegal mask.
13637     if (!TLI.isShuffleMaskLegal(Mask, VT)) {
13638       ShuffleVectorSDNode::commuteMask(Mask);
13639 
13640       if (!TLI.isShuffleMaskLegal(Mask, VT))
13641         return SDValue();
13642 
13643       //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
13644       //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
13645       //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
13646       std::swap(SV0, SV1);
13647     }
13648 
13649     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
13650     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
13651     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
13652     return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]);
13653   }
13654 
13655   return SDValue();
13656 }
13657 
13658 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
13659   SDValue InVal = N->getOperand(0);
13660   EVT VT = N->getValueType(0);
13661 
13662   // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
13663   // with a VECTOR_SHUFFLE.
13664   if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13665     SDValue InVec = InVal->getOperand(0);
13666     SDValue EltNo = InVal->getOperand(1);
13667 
13668     // FIXME: We could support implicit truncation if the shuffle can be
13669     // scaled to a smaller vector scalar type.
13670     ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo);
13671     if (C0 && VT == InVec.getValueType() &&
13672         VT.getScalarType() == InVal.getValueType()) {
13673       SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1);
13674       int Elt = C0->getZExtValue();
13675       NewMask[0] = Elt;
13676 
13677       if (TLI.isShuffleMaskLegal(NewMask, VT))
13678         return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT),
13679                                     NewMask);
13680     }
13681   }
13682 
13683   return SDValue();
13684 }
13685 
13686 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
13687   SDValue N0 = N->getOperand(0);
13688   SDValue N2 = N->getOperand(2);
13689 
13690   // If the input vector is a concatenation, and the insert replaces
13691   // one of the halves, we can optimize into a single concat_vectors.
13692   if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
13693       N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) {
13694     APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue();
13695     EVT VT = N->getValueType(0);
13696 
13697     // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
13698     // (concat_vectors Z, Y)
13699     if (InsIdx == 0)
13700       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
13701                          N->getOperand(1), N0.getOperand(1));
13702 
13703     // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) ->
13704     // (concat_vectors X, Z)
13705     if (InsIdx == VT.getVectorNumElements()/2)
13706       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
13707                          N0.getOperand(0), N->getOperand(1));
13708   }
13709 
13710   return SDValue();
13711 }
13712 
13713 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
13714   SDValue N0 = N->getOperand(0);
13715 
13716   // fold (fp_to_fp16 (fp16_to_fp op)) -> op
13717   if (N0->getOpcode() == ISD::FP16_TO_FP)
13718     return N0->getOperand(0);
13719 
13720   return SDValue();
13721 }
13722 
13723 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
13724   SDValue N0 = N->getOperand(0);
13725 
13726   // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
13727   if (N0->getOpcode() == ISD::AND) {
13728     ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
13729     if (AndConst && AndConst->getAPIntValue() == 0xffff) {
13730       return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
13731                          N0.getOperand(0));
13732     }
13733   }
13734 
13735   return SDValue();
13736 }
13737 
13738 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
13739 /// with the destination vector and a zero vector.
13740 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
13741 ///      vector_shuffle V, Zero, <0, 4, 2, 4>
13742 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
13743   EVT VT = N->getValueType(0);
13744   SDValue LHS = N->getOperand(0);
13745   SDValue RHS = N->getOperand(1);
13746   SDLoc dl(N);
13747 
13748   // Make sure we're not running after operation legalization where it
13749   // may have custom lowered the vector shuffles.
13750   if (LegalOperations)
13751     return SDValue();
13752 
13753   if (N->getOpcode() != ISD::AND)
13754     return SDValue();
13755 
13756   if (RHS.getOpcode() == ISD::BITCAST)
13757     RHS = RHS.getOperand(0);
13758 
13759   if (RHS.getOpcode() != ISD::BUILD_VECTOR)
13760     return SDValue();
13761 
13762   EVT RVT = RHS.getValueType();
13763   unsigned NumElts = RHS.getNumOperands();
13764 
13765   // Attempt to create a valid clear mask, splitting the mask into
13766   // sub elements and checking to see if each is
13767   // all zeros or all ones - suitable for shuffle masking.
13768   auto BuildClearMask = [&](int Split) {
13769     int NumSubElts = NumElts * Split;
13770     int NumSubBits = RVT.getScalarSizeInBits() / Split;
13771 
13772     SmallVector<int, 8> Indices;
13773     for (int i = 0; i != NumSubElts; ++i) {
13774       int EltIdx = i / Split;
13775       int SubIdx = i % Split;
13776       SDValue Elt = RHS.getOperand(EltIdx);
13777       if (Elt.isUndef()) {
13778         Indices.push_back(-1);
13779         continue;
13780       }
13781 
13782       APInt Bits;
13783       if (isa<ConstantSDNode>(Elt))
13784         Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
13785       else if (isa<ConstantFPSDNode>(Elt))
13786         Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
13787       else
13788         return SDValue();
13789 
13790       // Extract the sub element from the constant bit mask.
13791       if (DAG.getDataLayout().isBigEndian()) {
13792         Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits);
13793       } else {
13794         Bits = Bits.lshr(SubIdx * NumSubBits);
13795       }
13796 
13797       if (Split > 1)
13798         Bits = Bits.trunc(NumSubBits);
13799 
13800       if (Bits.isAllOnesValue())
13801         Indices.push_back(i);
13802       else if (Bits == 0)
13803         Indices.push_back(i + NumSubElts);
13804       else
13805         return SDValue();
13806     }
13807 
13808     // Let's see if the target supports this vector_shuffle.
13809     EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
13810     EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
13811     if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
13812       return SDValue();
13813 
13814     SDValue Zero = DAG.getConstant(0, dl, ClearVT);
13815     return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl,
13816                                                    DAG.getBitcast(ClearVT, LHS),
13817                                                    Zero, &Indices[0]));
13818   };
13819 
13820   // Determine maximum split level (byte level masking).
13821   int MaxSplit = 1;
13822   if (RVT.getScalarSizeInBits() % 8 == 0)
13823     MaxSplit = RVT.getScalarSizeInBits() / 8;
13824 
13825   for (int Split = 1; Split <= MaxSplit; ++Split)
13826     if (RVT.getScalarSizeInBits() % Split == 0)
13827       if (SDValue S = BuildClearMask(Split))
13828         return S;
13829 
13830   return SDValue();
13831 }
13832 
13833 /// Visit a binary vector operation, like ADD.
13834 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
13835   assert(N->getValueType(0).isVector() &&
13836          "SimplifyVBinOp only works on vectors!");
13837 
13838   SDValue LHS = N->getOperand(0);
13839   SDValue RHS = N->getOperand(1);
13840   SDValue Ops[] = {LHS, RHS};
13841 
13842   // See if we can constant fold the vector operation.
13843   if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
13844           N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
13845     return Fold;
13846 
13847   // Try to convert a constant mask AND into a shuffle clear mask.
13848   if (SDValue Shuffle = XformToShuffleWithZero(N))
13849     return Shuffle;
13850 
13851   // Type legalization might introduce new shuffles in the DAG.
13852   // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
13853   //   -> (shuffle (VBinOp (A, B)), Undef, Mask).
13854   if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
13855       isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
13856       LHS.getOperand(1).isUndef() &&
13857       RHS.getOperand(1).isUndef()) {
13858     ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
13859     ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
13860 
13861     if (SVN0->getMask().equals(SVN1->getMask())) {
13862       EVT VT = N->getValueType(0);
13863       SDValue UndefVector = LHS.getOperand(1);
13864       SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
13865                                      LHS.getOperand(0), RHS.getOperand(0),
13866                                      N->getFlags());
13867       AddUsersToWorklist(N);
13868       return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
13869                                   &SVN0->getMask()[0]);
13870     }
13871   }
13872 
13873   return SDValue();
13874 }
13875 
13876 SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
13877                                     SDValue N1, SDValue N2){
13878   assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
13879 
13880   SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
13881                                  cast<CondCodeSDNode>(N0.getOperand(2))->get());
13882 
13883   // If we got a simplified select_cc node back from SimplifySelectCC, then
13884   // break it down into a new SETCC node, and a new SELECT node, and then return
13885   // the SELECT node, since we were called with a SELECT node.
13886   if (SCC.getNode()) {
13887     // Check to see if we got a select_cc back (to turn into setcc/select).
13888     // Otherwise, just return whatever node we got back, like fabs.
13889     if (SCC.getOpcode() == ISD::SELECT_CC) {
13890       SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
13891                                   N0.getValueType(),
13892                                   SCC.getOperand(0), SCC.getOperand(1),
13893                                   SCC.getOperand(4));
13894       AddToWorklist(SETCC.getNode());
13895       return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
13896                            SCC.getOperand(2), SCC.getOperand(3));
13897     }
13898 
13899     return SCC;
13900   }
13901   return SDValue();
13902 }
13903 
13904 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
13905 /// being selected between, see if we can simplify the select.  Callers of this
13906 /// should assume that TheSelect is deleted if this returns true.  As such, they
13907 /// should return the appropriate thing (e.g. the node) back to the top-level of
13908 /// the DAG combiner loop to avoid it being looked at.
13909 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
13910                                     SDValue RHS) {
13911 
13912   // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
13913   // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
13914   if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
13915     if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
13916       // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
13917       SDValue Sqrt = RHS;
13918       ISD::CondCode CC;
13919       SDValue CmpLHS;
13920       const ConstantFPSDNode *Zero = nullptr;
13921 
13922       if (TheSelect->getOpcode() == ISD::SELECT_CC) {
13923         CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
13924         CmpLHS = TheSelect->getOperand(0);
13925         Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
13926       } else {
13927         // SELECT or VSELECT
13928         SDValue Cmp = TheSelect->getOperand(0);
13929         if (Cmp.getOpcode() == ISD::SETCC) {
13930           CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
13931           CmpLHS = Cmp.getOperand(0);
13932           Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
13933         }
13934       }
13935       if (Zero && Zero->isZero() &&
13936           Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
13937           CC == ISD::SETULT || CC == ISD::SETLT)) {
13938         // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
13939         CombineTo(TheSelect, Sqrt);
13940         return true;
13941       }
13942     }
13943   }
13944   // Cannot simplify select with vector condition
13945   if (TheSelect->getOperand(0).getValueType().isVector()) return false;
13946 
13947   // If this is a select from two identical things, try to pull the operation
13948   // through the select.
13949   if (LHS.getOpcode() != RHS.getOpcode() ||
13950       !LHS.hasOneUse() || !RHS.hasOneUse())
13951     return false;
13952 
13953   // If this is a load and the token chain is identical, replace the select
13954   // of two loads with a load through a select of the address to load from.
13955   // This triggers in things like "select bool X, 10.0, 123.0" after the FP
13956   // constants have been dropped into the constant pool.
13957   if (LHS.getOpcode() == ISD::LOAD) {
13958     LoadSDNode *LLD = cast<LoadSDNode>(LHS);
13959     LoadSDNode *RLD = cast<LoadSDNode>(RHS);
13960 
13961     // Token chains must be identical.
13962     if (LHS.getOperand(0) != RHS.getOperand(0) ||
13963         // Do not let this transformation reduce the number of volatile loads.
13964         LLD->isVolatile() || RLD->isVolatile() ||
13965         // FIXME: If either is a pre/post inc/dec load,
13966         // we'd need to split out the address adjustment.
13967         LLD->isIndexed() || RLD->isIndexed() ||
13968         // If this is an EXTLOAD, the VT's must match.
13969         LLD->getMemoryVT() != RLD->getMemoryVT() ||
13970         // If this is an EXTLOAD, the kind of extension must match.
13971         (LLD->getExtensionType() != RLD->getExtensionType() &&
13972          // The only exception is if one of the extensions is anyext.
13973          LLD->getExtensionType() != ISD::EXTLOAD &&
13974          RLD->getExtensionType() != ISD::EXTLOAD) ||
13975         // FIXME: this discards src value information.  This is
13976         // over-conservative. It would be beneficial to be able to remember
13977         // both potential memory locations.  Since we are discarding
13978         // src value info, don't do the transformation if the memory
13979         // locations are not in the default address space.
13980         LLD->getPointerInfo().getAddrSpace() != 0 ||
13981         RLD->getPointerInfo().getAddrSpace() != 0 ||
13982         !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
13983                                       LLD->getBasePtr().getValueType()))
13984       return false;
13985 
13986     // Check that the select condition doesn't reach either load.  If so,
13987     // folding this will induce a cycle into the DAG.  If not, this is safe to
13988     // xform, so create a select of the addresses.
13989     SDValue Addr;
13990     if (TheSelect->getOpcode() == ISD::SELECT) {
13991       SDNode *CondNode = TheSelect->getOperand(0).getNode();
13992       if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
13993           (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
13994         return false;
13995       // The loads must not depend on one another.
13996       if (LLD->isPredecessorOf(RLD) ||
13997           RLD->isPredecessorOf(LLD))
13998         return false;
13999       Addr = DAG.getSelect(SDLoc(TheSelect),
14000                            LLD->getBasePtr().getValueType(),
14001                            TheSelect->getOperand(0), LLD->getBasePtr(),
14002                            RLD->getBasePtr());
14003     } else {  // Otherwise SELECT_CC
14004       SDNode *CondLHS = TheSelect->getOperand(0).getNode();
14005       SDNode *CondRHS = TheSelect->getOperand(1).getNode();
14006 
14007       if ((LLD->hasAnyUseOfValue(1) &&
14008            (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
14009           (RLD->hasAnyUseOfValue(1) &&
14010            (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
14011         return false;
14012 
14013       Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
14014                          LLD->getBasePtr().getValueType(),
14015                          TheSelect->getOperand(0),
14016                          TheSelect->getOperand(1),
14017                          LLD->getBasePtr(), RLD->getBasePtr(),
14018                          TheSelect->getOperand(4));
14019     }
14020 
14021     SDValue Load;
14022     // It is safe to replace the two loads if they have different alignments,
14023     // but the new load must be the minimum (most restrictive) alignment of the
14024     // inputs.
14025     bool isInvariant = LLD->isInvariant() & RLD->isInvariant();
14026     unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
14027     if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
14028       Load = DAG.getLoad(TheSelect->getValueType(0),
14029                          SDLoc(TheSelect),
14030                          // FIXME: Discards pointer and AA info.
14031                          LLD->getChain(), Addr, MachinePointerInfo(),
14032                          LLD->isVolatile(), LLD->isNonTemporal(),
14033                          isInvariant, Alignment);
14034     } else {
14035       Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
14036                             RLD->getExtensionType() : LLD->getExtensionType(),
14037                             SDLoc(TheSelect),
14038                             TheSelect->getValueType(0),
14039                             // FIXME: Discards pointer and AA info.
14040                             LLD->getChain(), Addr, MachinePointerInfo(),
14041                             LLD->getMemoryVT(), LLD->isVolatile(),
14042                             LLD->isNonTemporal(), isInvariant, Alignment);
14043     }
14044 
14045     // Users of the select now use the result of the load.
14046     CombineTo(TheSelect, Load);
14047 
14048     // Users of the old loads now use the new load's chain.  We know the
14049     // old-load value is dead now.
14050     CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
14051     CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
14052     return true;
14053   }
14054 
14055   return false;
14056 }
14057 
14058 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
14059 /// where 'cond' is the comparison specified by CC.
14060 SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
14061                                       SDValue N2, SDValue N3,
14062                                       ISD::CondCode CC, bool NotExtCompare) {
14063   // (x ? y : y) -> y.
14064   if (N2 == N3) return N2;
14065 
14066   EVT VT = N2.getValueType();
14067   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
14068   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
14069 
14070   // Determine if the condition we're dealing with is constant
14071   SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
14072                               N0, N1, CC, DL, false);
14073   if (SCC.getNode()) AddToWorklist(SCC.getNode());
14074 
14075   if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
14076     // fold select_cc true, x, y -> x
14077     // fold select_cc false, x, y -> y
14078     return !SCCC->isNullValue() ? N2 : N3;
14079   }
14080 
14081   // Check to see if we can simplify the select into an fabs node
14082   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
14083     // Allow either -0.0 or 0.0
14084     if (CFP->isZero()) {
14085       // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
14086       if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
14087           N0 == N2 && N3.getOpcode() == ISD::FNEG &&
14088           N2 == N3.getOperand(0))
14089         return DAG.getNode(ISD::FABS, DL, VT, N0);
14090 
14091       // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
14092       if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
14093           N0 == N3 && N2.getOpcode() == ISD::FNEG &&
14094           N2.getOperand(0) == N3)
14095         return DAG.getNode(ISD::FABS, DL, VT, N3);
14096     }
14097   }
14098 
14099   // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
14100   // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
14101   // in it.  This is a win when the constant is not otherwise available because
14102   // it replaces two constant pool loads with one.  We only do this if the FP
14103   // type is known to be legal, because if it isn't, then we are before legalize
14104   // types an we want the other legalization to happen first (e.g. to avoid
14105   // messing with soft float) and if the ConstantFP is not legal, because if
14106   // it is legal, we may not need to store the FP constant in a constant pool.
14107   if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
14108     if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
14109       if (TLI.isTypeLegal(N2.getValueType()) &&
14110           (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
14111                TargetLowering::Legal &&
14112            !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) &&
14113            !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) &&
14114           // If both constants have multiple uses, then we won't need to do an
14115           // extra load, they are likely around in registers for other users.
14116           (TV->hasOneUse() || FV->hasOneUse())) {
14117         Constant *Elts[] = {
14118           const_cast<ConstantFP*>(FV->getConstantFPValue()),
14119           const_cast<ConstantFP*>(TV->getConstantFPValue())
14120         };
14121         Type *FPTy = Elts[0]->getType();
14122         const DataLayout &TD = DAG.getDataLayout();
14123 
14124         // Create a ConstantArray of the two constants.
14125         Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
14126         SDValue CPIdx =
14127             DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
14128                                 TD.getPrefTypeAlignment(FPTy));
14129         unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
14130 
14131         // Get the offsets to the 0 and 1 element of the array so that we can
14132         // select between them.
14133         SDValue Zero = DAG.getIntPtrConstant(0, DL);
14134         unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
14135         SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
14136 
14137         SDValue Cond = DAG.getSetCC(DL,
14138                                     getSetCCResultType(N0.getValueType()),
14139                                     N0, N1, CC);
14140         AddToWorklist(Cond.getNode());
14141         SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
14142                                           Cond, One, Zero);
14143         AddToWorklist(CstOffset.getNode());
14144         CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
14145                             CstOffset);
14146         AddToWorklist(CPIdx.getNode());
14147         return DAG.getLoad(
14148             TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
14149             MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
14150             false, false, false, Alignment);
14151       }
14152     }
14153 
14154   // Check to see if we can perform the "gzip trick", transforming
14155   // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
14156   if (isNullConstant(N3) && CC == ISD::SETLT &&
14157       (isNullConstant(N1) ||                 // (a < 0) ? b : 0
14158        (isOneConstant(N1) && N0 == N2))) {   // (a < 1) ? a : 0
14159     EVT XType = N0.getValueType();
14160     EVT AType = N2.getValueType();
14161     if (XType.bitsGE(AType)) {
14162       // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
14163       // single-bit constant.
14164       if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
14165         unsigned ShCtV = N2C->getAPIntValue().logBase2();
14166         ShCtV = XType.getSizeInBits() - ShCtV - 1;
14167         SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0),
14168                                        getShiftAmountTy(N0.getValueType()));
14169         SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
14170                                     XType, N0, ShCt);
14171         AddToWorklist(Shift.getNode());
14172 
14173         if (XType.bitsGT(AType)) {
14174           Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
14175           AddToWorklist(Shift.getNode());
14176         }
14177 
14178         return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
14179       }
14180 
14181       SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
14182                                   XType, N0,
14183                                   DAG.getConstant(XType.getSizeInBits() - 1,
14184                                                   SDLoc(N0),
14185                                          getShiftAmountTy(N0.getValueType())));
14186       AddToWorklist(Shift.getNode());
14187 
14188       if (XType.bitsGT(AType)) {
14189         Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
14190         AddToWorklist(Shift.getNode());
14191       }
14192 
14193       return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
14194     }
14195   }
14196 
14197   // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
14198   // where y is has a single bit set.
14199   // A plaintext description would be, we can turn the SELECT_CC into an AND
14200   // when the condition can be materialized as an all-ones register.  Any
14201   // single bit-test can be materialized as an all-ones register with
14202   // shift-left and shift-right-arith.
14203   if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
14204       N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
14205     SDValue AndLHS = N0->getOperand(0);
14206     ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
14207     if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
14208       // Shift the tested bit over the sign bit.
14209       APInt AndMask = ConstAndRHS->getAPIntValue();
14210       SDValue ShlAmt =
14211         DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
14212                         getShiftAmountTy(AndLHS.getValueType()));
14213       SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
14214 
14215       // Now arithmetic right shift it all the way over, so the result is either
14216       // all-ones, or zero.
14217       SDValue ShrAmt =
14218         DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
14219                         getShiftAmountTy(Shl.getValueType()));
14220       SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
14221 
14222       return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
14223     }
14224   }
14225 
14226   // fold select C, 16, 0 -> shl C, 4
14227   if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() &&
14228       TLI.getBooleanContents(N0.getValueType()) ==
14229           TargetLowering::ZeroOrOneBooleanContent) {
14230 
14231     // If the caller doesn't want us to simplify this into a zext of a compare,
14232     // don't do it.
14233     if (NotExtCompare && N2C->isOne())
14234       return SDValue();
14235 
14236     // Get a SetCC of the condition
14237     // NOTE: Don't create a SETCC if it's not legal on this target.
14238     if (!LegalOperations ||
14239         TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) {
14240       SDValue Temp, SCC;
14241       // cast from setcc result type to select result type
14242       if (LegalTypes) {
14243         SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
14244                             N0, N1, CC);
14245         if (N2.getValueType().bitsLT(SCC.getValueType()))
14246           Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
14247                                         N2.getValueType());
14248         else
14249           Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
14250                              N2.getValueType(), SCC);
14251       } else {
14252         SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
14253         Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
14254                            N2.getValueType(), SCC);
14255       }
14256 
14257       AddToWorklist(SCC.getNode());
14258       AddToWorklist(Temp.getNode());
14259 
14260       if (N2C->isOne())
14261         return Temp;
14262 
14263       // shl setcc result by log2 n2c
14264       return DAG.getNode(
14265           ISD::SHL, DL, N2.getValueType(), Temp,
14266           DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp),
14267                           getShiftAmountTy(Temp.getValueType())));
14268     }
14269   }
14270 
14271   // Check to see if this is an integer abs.
14272   // select_cc setg[te] X,  0,  X, -X ->
14273   // select_cc setgt    X, -1,  X, -X ->
14274   // select_cc setl[te] X,  0, -X,  X ->
14275   // select_cc setlt    X,  1, -X,  X ->
14276   // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
14277   if (N1C) {
14278     ConstantSDNode *SubC = nullptr;
14279     if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
14280          (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
14281         N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
14282       SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
14283     else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
14284               (N1C->isOne() && CC == ISD::SETLT)) &&
14285              N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
14286       SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
14287 
14288     EVT XType = N0.getValueType();
14289     if (SubC && SubC->isNullValue() && XType.isInteger()) {
14290       SDLoc DL(N0);
14291       SDValue Shift = DAG.getNode(ISD::SRA, DL, XType,
14292                                   N0,
14293                                   DAG.getConstant(XType.getSizeInBits() - 1, DL,
14294                                          getShiftAmountTy(N0.getValueType())));
14295       SDValue Add = DAG.getNode(ISD::ADD, DL,
14296                                 XType, N0, Shift);
14297       AddToWorklist(Shift.getNode());
14298       AddToWorklist(Add.getNode());
14299       return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
14300     }
14301   }
14302 
14303   return SDValue();
14304 }
14305 
14306 /// This is a stub for TargetLowering::SimplifySetCC.
14307 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
14308                                    SDValue N1, ISD::CondCode Cond,
14309                                    SDLoc DL, bool foldBooleans) {
14310   TargetLowering::DAGCombinerInfo
14311     DagCombineInfo(DAG, Level, false, this);
14312   return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
14313 }
14314 
14315 /// Given an ISD::SDIV node expressing a divide by constant, return
14316 /// a DAG expression to select that will generate the same value by multiplying
14317 /// by a magic number.
14318 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
14319 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
14320   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
14321   if (!C)
14322     return SDValue();
14323 
14324   // Avoid division by zero.
14325   if (C->isNullValue())
14326     return SDValue();
14327 
14328   std::vector<SDNode*> Built;
14329   SDValue S =
14330       TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
14331 
14332   for (SDNode *N : Built)
14333     AddToWorklist(N);
14334   return S;
14335 }
14336 
14337 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
14338 /// DAG expression that will generate the same value by right shifting.
14339 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
14340   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
14341   if (!C)
14342     return SDValue();
14343 
14344   // Avoid division by zero.
14345   if (C->isNullValue())
14346     return SDValue();
14347 
14348   std::vector<SDNode *> Built;
14349   SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built);
14350 
14351   for (SDNode *N : Built)
14352     AddToWorklist(N);
14353   return S;
14354 }
14355 
14356 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
14357 /// expression that will generate the same value by multiplying by a magic
14358 /// number.
14359 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
14360 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
14361   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
14362   if (!C)
14363     return SDValue();
14364 
14365   // Avoid division by zero.
14366   if (C->isNullValue())
14367     return SDValue();
14368 
14369   std::vector<SDNode*> Built;
14370   SDValue S =
14371       TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
14372 
14373   for (SDNode *N : Built)
14374     AddToWorklist(N);
14375   return S;
14376 }
14377 
14378 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) {
14379   if (Level >= AfterLegalizeDAG)
14380     return SDValue();
14381 
14382   // Expose the DAG combiner to the target combiner implementations.
14383   TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
14384 
14385   unsigned Iterations = 0;
14386   if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) {
14387     if (Iterations) {
14388       // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
14389       // For the reciprocal, we need to find the zero of the function:
14390       //   F(X) = A X - 1 [which has a zero at X = 1/A]
14391       //     =>
14392       //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
14393       //     does not require additional intermediate precision]
14394       EVT VT = Op.getValueType();
14395       SDLoc DL(Op);
14396       SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
14397 
14398       AddToWorklist(Est.getNode());
14399 
14400       // Newton iterations: Est = Est + Est (1 - Arg * Est)
14401       for (unsigned i = 0; i < Iterations; ++i) {
14402         SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
14403         AddToWorklist(NewEst.getNode());
14404 
14405         NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags);
14406         AddToWorklist(NewEst.getNode());
14407 
14408         NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
14409         AddToWorklist(NewEst.getNode());
14410 
14411         Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags);
14412         AddToWorklist(Est.getNode());
14413       }
14414     }
14415     return Est;
14416   }
14417 
14418   return SDValue();
14419 }
14420 
14421 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
14422 /// For the reciprocal sqrt, we need to find the zero of the function:
14423 ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
14424 ///     =>
14425 ///   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
14426 /// As a result, we precompute A/2 prior to the iteration loop.
14427 SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est,
14428                                           unsigned Iterations,
14429                                           SDNodeFlags *Flags) {
14430   EVT VT = Arg.getValueType();
14431   SDLoc DL(Arg);
14432   SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
14433 
14434   // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
14435   // this entire sequence requires only one FP constant.
14436   SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
14437   AddToWorklist(HalfArg.getNode());
14438 
14439   HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
14440   AddToWorklist(HalfArg.getNode());
14441 
14442   // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
14443   for (unsigned i = 0; i < Iterations; ++i) {
14444     SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
14445     AddToWorklist(NewEst.getNode());
14446 
14447     NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
14448     AddToWorklist(NewEst.getNode());
14449 
14450     NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
14451     AddToWorklist(NewEst.getNode());
14452 
14453     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
14454     AddToWorklist(Est.getNode());
14455   }
14456   return Est;
14457 }
14458 
14459 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
14460 /// For the reciprocal sqrt, we need to find the zero of the function:
14461 ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
14462 ///     =>
14463 ///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
14464 SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est,
14465                                           unsigned Iterations,
14466                                           SDNodeFlags *Flags) {
14467   EVT VT = Arg.getValueType();
14468   SDLoc DL(Arg);
14469   SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
14470   SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
14471 
14472   // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est)
14473   for (unsigned i = 0; i < Iterations; ++i) {
14474     SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
14475     AddToWorklist(HalfEst.getNode());
14476 
14477     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
14478     AddToWorklist(Est.getNode());
14479 
14480     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
14481     AddToWorklist(Est.getNode());
14482 
14483     Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags);
14484     AddToWorklist(Est.getNode());
14485 
14486     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags);
14487     AddToWorklist(Est.getNode());
14488   }
14489   return Est;
14490 }
14491 
14492 SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) {
14493   if (Level >= AfterLegalizeDAG)
14494     return SDValue();
14495 
14496   // Expose the DAG combiner to the target combiner implementations.
14497   TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
14498   unsigned Iterations = 0;
14499   bool UseOneConstNR = false;
14500   if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) {
14501     AddToWorklist(Est.getNode());
14502     if (Iterations) {
14503       Est = UseOneConstNR ?
14504         BuildRsqrtNROneConst(Op, Est, Iterations, Flags) :
14505         BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags);
14506     }
14507     return Est;
14508   }
14509 
14510   return SDValue();
14511 }
14512 
14513 /// Return true if base is a frame index, which is known not to alias with
14514 /// anything but itself.  Provides base object and offset as results.
14515 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
14516                            const GlobalValue *&GV, const void *&CV) {
14517   // Assume it is a primitive operation.
14518   Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr;
14519 
14520   // If it's an adding a simple constant then integrate the offset.
14521   if (Base.getOpcode() == ISD::ADD) {
14522     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
14523       Base = Base.getOperand(0);
14524       Offset += C->getZExtValue();
14525     }
14526   }
14527 
14528   // Return the underlying GlobalValue, and update the Offset.  Return false
14529   // for GlobalAddressSDNode since the same GlobalAddress may be represented
14530   // by multiple nodes with different offsets.
14531   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
14532     GV = G->getGlobal();
14533     Offset += G->getOffset();
14534     return false;
14535   }
14536 
14537   // Return the underlying Constant value, and update the Offset.  Return false
14538   // for ConstantSDNodes since the same constant pool entry may be represented
14539   // by multiple nodes with different offsets.
14540   if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
14541     CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
14542                                          : (const void *)C->getConstVal();
14543     Offset += C->getOffset();
14544     return false;
14545   }
14546   // If it's any of the following then it can't alias with anything but itself.
14547   return isa<FrameIndexSDNode>(Base);
14548 }
14549 
14550 /// Return true if there is any possibility that the two addresses overlap.
14551 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
14552   // If they are the same then they must be aliases.
14553   if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
14554 
14555   // If they are both volatile then they cannot be reordered.
14556   if (Op0->isVolatile() && Op1->isVolatile()) return true;
14557 
14558   // If one operation reads from invariant memory, and the other may store, they
14559   // cannot alias. These should really be checking the equivalent of mayWrite,
14560   // but it only matters for memory nodes other than load /store.
14561   if (Op0->isInvariant() && Op1->writeMem())
14562     return false;
14563 
14564   if (Op1->isInvariant() && Op0->writeMem())
14565     return false;
14566 
14567   // Gather base node and offset information.
14568   SDValue Base1, Base2;
14569   int64_t Offset1, Offset2;
14570   const GlobalValue *GV1, *GV2;
14571   const void *CV1, *CV2;
14572   bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(),
14573                                       Base1, Offset1, GV1, CV1);
14574   bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(),
14575                                       Base2, Offset2, GV2, CV2);
14576 
14577   // If they have a same base address then check to see if they overlap.
14578   if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
14579     return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
14580              (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
14581 
14582   // It is possible for different frame indices to alias each other, mostly
14583   // when tail call optimization reuses return address slots for arguments.
14584   // To catch this case, look up the actual index of frame indices to compute
14585   // the real alias relationship.
14586   if (isFrameIndex1 && isFrameIndex2) {
14587     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
14588     Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
14589     Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
14590     return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
14591              (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
14592   }
14593 
14594   // Otherwise, if we know what the bases are, and they aren't identical, then
14595   // we know they cannot alias.
14596   if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
14597     return false;
14598 
14599   // If we know required SrcValue1 and SrcValue2 have relatively large alignment
14600   // compared to the size and offset of the access, we may be able to prove they
14601   // do not alias.  This check is conservative for now to catch cases created by
14602   // splitting vector types.
14603   if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) &&
14604       (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) &&
14605       (Op0->getMemoryVT().getSizeInBits() >> 3 ==
14606        Op1->getMemoryVT().getSizeInBits() >> 3) &&
14607       (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) {
14608     int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment();
14609     int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment();
14610 
14611     // There is no overlap between these relatively aligned accesses of similar
14612     // size, return no alias.
14613     if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 ||
14614         (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1)
14615       return false;
14616   }
14617 
14618   bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
14619                    ? CombinerGlobalAA
14620                    : DAG.getSubtarget().useAA();
14621 #ifndef NDEBUG
14622   if (CombinerAAOnlyFunc.getNumOccurrences() &&
14623       CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
14624     UseAA = false;
14625 #endif
14626   if (UseAA &&
14627       Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
14628     // Use alias analysis information.
14629     int64_t MinOffset = std::min(Op0->getSrcValueOffset(),
14630                                  Op1->getSrcValueOffset());
14631     int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) +
14632         Op0->getSrcValueOffset() - MinOffset;
14633     int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) +
14634         Op1->getSrcValueOffset() - MinOffset;
14635     AliasResult AAResult =
14636         AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1,
14637                                 UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
14638                  MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2,
14639                                 UseTBAA ? Op1->getAAInfo() : AAMDNodes()));
14640     if (AAResult == NoAlias)
14641       return false;
14642   }
14643 
14644   // Otherwise we have to assume they alias.
14645   return true;
14646 }
14647 
14648 /// Walk up chain skipping non-aliasing memory nodes,
14649 /// looking for aliasing nodes and adding them to the Aliases vector.
14650 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
14651                                    SmallVectorImpl<SDValue> &Aliases) {
14652   SmallVector<SDValue, 8> Chains;     // List of chains to visit.
14653   SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
14654 
14655   // Get alias information for node.
14656   bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile();
14657 
14658   // Starting off.
14659   Chains.push_back(OriginalChain);
14660   unsigned Depth = 0;
14661 
14662   // Look at each chain and determine if it is an alias.  If so, add it to the
14663   // aliases list.  If not, then continue up the chain looking for the next
14664   // candidate.
14665   while (!Chains.empty()) {
14666     SDValue Chain = Chains.pop_back_val();
14667 
14668     // For TokenFactor nodes, look at each operand and only continue up the
14669     // chain until we reach the depth limit.
14670     //
14671     // FIXME: The depth check could be made to return the last non-aliasing
14672     // chain we found before we hit a tokenfactor rather than the original
14673     // chain.
14674     if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
14675       Aliases.clear();
14676       Aliases.push_back(OriginalChain);
14677       return;
14678     }
14679 
14680     // Don't bother if we've been before.
14681     if (!Visited.insert(Chain.getNode()).second)
14682       continue;
14683 
14684     switch (Chain.getOpcode()) {
14685     case ISD::EntryToken:
14686       // Entry token is ideal chain operand, but handled in FindBetterChain.
14687       break;
14688 
14689     case ISD::LOAD:
14690     case ISD::STORE: {
14691       // Get alias information for Chain.
14692       bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
14693           !cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
14694 
14695       // If chain is alias then stop here.
14696       if (!(IsLoad && IsOpLoad) &&
14697           isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) {
14698         Aliases.push_back(Chain);
14699       } else {
14700         // Look further up the chain.
14701         Chains.push_back(Chain.getOperand(0));
14702         ++Depth;
14703       }
14704       break;
14705     }
14706 
14707     case ISD::TokenFactor:
14708       // We have to check each of the operands of the token factor for "small"
14709       // token factors, so we queue them up.  Adding the operands to the queue
14710       // (stack) in reverse order maintains the original order and increases the
14711       // likelihood that getNode will find a matching token factor (CSE.)
14712       if (Chain.getNumOperands() > 16) {
14713         Aliases.push_back(Chain);
14714         break;
14715       }
14716       for (unsigned n = Chain.getNumOperands(); n;)
14717         Chains.push_back(Chain.getOperand(--n));
14718       ++Depth;
14719       break;
14720 
14721     default:
14722       // For all other instructions we will just have to take what we can get.
14723       Aliases.push_back(Chain);
14724       break;
14725     }
14726   }
14727 }
14728 
14729 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
14730 /// (aliasing node.)
14731 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
14732   SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
14733 
14734   // Accumulate all the aliases to this node.
14735   GatherAllAliases(N, OldChain, Aliases);
14736 
14737   // If no operands then chain to entry token.
14738   if (Aliases.size() == 0)
14739     return DAG.getEntryNode();
14740 
14741   // If a single operand then chain to it.  We don't need to revisit it.
14742   if (Aliases.size() == 1)
14743     return Aliases[0];
14744 
14745   // Construct a custom tailored token factor.
14746   return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
14747 }
14748 
14749 bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) {
14750   // This holds the base pointer, index, and the offset in bytes from the base
14751   // pointer.
14752   BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG);
14753 
14754   // We must have a base and an offset.
14755   if (!BasePtr.Base.getNode())
14756     return false;
14757 
14758   // Do not handle stores to undef base pointers.
14759   if (BasePtr.Base.isUndef())
14760     return false;
14761 
14762   SmallVector<StoreSDNode *, 8> ChainedStores;
14763   ChainedStores.push_back(St);
14764 
14765   // Walk up the chain and look for nodes with offsets from the same
14766   // base pointer. Stop when reaching an instruction with a different kind
14767   // or instruction which has a different base pointer.
14768   StoreSDNode *Index = St;
14769   while (Index) {
14770     // If the chain has more than one use, then we can't reorder the mem ops.
14771     if (Index != St && !SDValue(Index, 0)->hasOneUse())
14772       break;
14773 
14774     if (Index->isVolatile() || Index->isIndexed())
14775       break;
14776 
14777     // Find the base pointer and offset for this memory node.
14778     BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG);
14779 
14780     // Check that the base pointer is the same as the original one.
14781     if (!Ptr.equalBaseIndex(BasePtr))
14782       break;
14783 
14784     // Find the next memory operand in the chain. If the next operand in the
14785     // chain is a store then move up and continue the scan with the next
14786     // memory operand. If the next operand is a load save it and use alias
14787     // information to check if it interferes with anything.
14788     SDNode *NextInChain = Index->getChain().getNode();
14789     while (true) {
14790       if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
14791         // We found a store node. Use it for the next iteration.
14792         if (STn->isVolatile() || STn->isIndexed()) {
14793           Index = nullptr;
14794           break;
14795         }
14796         ChainedStores.push_back(STn);
14797         Index = STn;
14798         break;
14799       } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
14800         NextInChain = Ldn->getChain().getNode();
14801         continue;
14802       } else {
14803         Index = nullptr;
14804         break;
14805       }
14806     }
14807   }
14808 
14809   bool MadeChange = false;
14810   SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains;
14811 
14812   for (StoreSDNode *ChainedStore : ChainedStores) {
14813     SDValue Chain = ChainedStore->getChain();
14814     SDValue BetterChain = FindBetterChain(ChainedStore, Chain);
14815 
14816     if (Chain != BetterChain) {
14817       MadeChange = true;
14818       BetterChains.push_back(std::make_pair(ChainedStore, BetterChain));
14819     }
14820   }
14821 
14822   // Do all replacements after finding the replacements to make to avoid making
14823   // the chains more complicated by introducing new TokenFactors.
14824   for (auto Replacement : BetterChains)
14825     replaceStoreChain(Replacement.first, Replacement.second);
14826 
14827   return MadeChange;
14828 }
14829 
14830 /// This is the entry point for the file.
14831 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
14832                            CodeGenOpt::Level OptLevel) {
14833   /// This is the main entry point to this class.
14834   DAGCombiner(*this, AA, OptLevel).Run(Level);
14835 }
14836