1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/RuntimeLibcalls.h" 42 #include "llvm/CodeGen/SelectionDAG.h" 43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/CodeGen/ValueTypes.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <functional> 73 #include <iterator> 74 #include <string> 75 #include <tuple> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "dagcombine" 81 82 STATISTIC(NodesCombined , "Number of dag nodes combined"); 83 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 84 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 85 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 86 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 87 STATISTIC(SlicedLoads, "Number of load sliced"); 88 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 89 90 static cl::opt<bool> 91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 92 cl::desc("Enable DAG combiner's use of IR alias analysis")); 93 94 static cl::opt<bool> 95 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 96 cl::desc("Enable DAG combiner's use of TBAA")); 97 98 #ifndef NDEBUG 99 static cl::opt<std::string> 100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 101 cl::desc("Only use DAG-combiner alias analysis in this" 102 " function")); 103 #endif 104 105 /// Hidden option to stress test load slicing, i.e., when this option 106 /// is enabled, load slicing bypasses most of its profitability guards. 107 static cl::opt<bool> 108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 109 cl::desc("Bypass the profitability model of load slicing"), 110 cl::init(false)); 111 112 static cl::opt<bool> 113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 114 cl::desc("DAG combiner may split indexing from loads")); 115 116 static cl::opt<bool> 117 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), 118 cl::desc("DAG combiner enable merging multiple stores " 119 "into a wider store")); 120 121 static cl::opt<unsigned> TokenFactorInlineLimit( 122 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), 123 cl::desc("Limit the number of operands to inline for Token Factors")); 124 125 static cl::opt<unsigned> StoreMergeDependenceLimit( 126 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), 127 cl::desc("Limit the number of times for the same StoreNode and RootNode " 128 "to bail out in store merging dependence check")); 129 130 static cl::opt<bool> EnableReduceLoadOpStoreWidth( 131 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), 132 cl::desc("DAG cominber enable reducing the width of load/op/store " 133 "sequence")); 134 135 static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( 136 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), 137 cl::desc("DAG cominber enable load/<replace bytes>/store with " 138 "a narrower store")); 139 140 namespace { 141 142 class DAGCombiner { 143 SelectionDAG &DAG; 144 const TargetLowering &TLI; 145 const SelectionDAGTargetInfo *STI; 146 CombineLevel Level; 147 CodeGenOpt::Level OptLevel; 148 bool LegalDAG = false; 149 bool LegalOperations = false; 150 bool LegalTypes = false; 151 bool ForCodeSize; 152 bool DisableGenericCombines; 153 154 /// Worklist of all of the nodes that need to be simplified. 155 /// 156 /// This must behave as a stack -- new nodes to process are pushed onto the 157 /// back and when processing we pop off of the back. 158 /// 159 /// The worklist will not contain duplicates but may contain null entries 160 /// due to nodes being deleted from the underlying DAG. 161 SmallVector<SDNode *, 64> Worklist; 162 163 /// Mapping from an SDNode to its position on the worklist. 164 /// 165 /// This is used to find and remove nodes from the worklist (by nulling 166 /// them) when they are deleted from the underlying DAG. It relies on 167 /// stable indices of nodes within the worklist. 168 DenseMap<SDNode *, unsigned> WorklistMap; 169 /// This records all nodes attempted to add to the worklist since we 170 /// considered a new worklist entry. As we keep do not add duplicate nodes 171 /// in the worklist, this is different from the tail of the worklist. 172 SmallSetVector<SDNode *, 32> PruningList; 173 174 /// Set of nodes which have been combined (at least once). 175 /// 176 /// This is used to allow us to reliably add any operands of a DAG node 177 /// which have not yet been combined to the worklist. 178 SmallPtrSet<SDNode *, 32> CombinedNodes; 179 180 /// Map from candidate StoreNode to the pair of RootNode and count. 181 /// The count is used to track how many times we have seen the StoreNode 182 /// with the same RootNode bail out in dependence check. If we have seen 183 /// the bail out for the same pair many times over a limit, we won't 184 /// consider the StoreNode with the same RootNode as store merging 185 /// candidate again. 186 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; 187 188 // AA - Used for DAG load/store alias analysis. 189 AliasAnalysis *AA; 190 191 /// When an instruction is simplified, add all users of the instruction to 192 /// the work lists because they might get more simplified now. 193 void AddUsersToWorklist(SDNode *N) { 194 for (SDNode *Node : N->uses()) 195 AddToWorklist(Node); 196 } 197 198 /// Convenient shorthand to add a node and all of its user to the worklist. 199 void AddToWorklistWithUsers(SDNode *N) { 200 AddUsersToWorklist(N); 201 AddToWorklist(N); 202 } 203 204 // Prune potentially dangling nodes. This is called after 205 // any visit to a node, but should also be called during a visit after any 206 // failed combine which may have created a DAG node. 207 void clearAddedDanglingWorklistEntries() { 208 // Check any nodes added to the worklist to see if they are prunable. 209 while (!PruningList.empty()) { 210 auto *N = PruningList.pop_back_val(); 211 if (N->use_empty()) 212 recursivelyDeleteUnusedNodes(N); 213 } 214 } 215 216 SDNode *getNextWorklistEntry() { 217 // Before we do any work, remove nodes that are not in use. 218 clearAddedDanglingWorklistEntries(); 219 SDNode *N = nullptr; 220 // The Worklist holds the SDNodes in order, but it may contain null 221 // entries. 222 while (!N && !Worklist.empty()) { 223 N = Worklist.pop_back_val(); 224 } 225 226 if (N) { 227 bool GoodWorklistEntry = WorklistMap.erase(N); 228 (void)GoodWorklistEntry; 229 assert(GoodWorklistEntry && 230 "Found a worklist entry without a corresponding map entry!"); 231 } 232 return N; 233 } 234 235 /// Call the node-specific routine that folds each particular type of node. 236 SDValue visit(SDNode *N); 237 238 public: 239 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 240 : DAG(D), TLI(D.getTargetLoweringInfo()), 241 STI(D.getSubtarget().getSelectionDAGInfo()), 242 Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) { 243 ForCodeSize = DAG.shouldOptForSize(); 244 DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); 245 246 MaximumLegalStoreInBits = 0; 247 // We use the minimum store size here, since that's all we can guarantee 248 // for the scalable vector types. 249 for (MVT VT : MVT::all_valuetypes()) 250 if (EVT(VT).isSimple() && VT != MVT::Other && 251 TLI.isTypeLegal(EVT(VT)) && 252 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) 253 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); 254 } 255 256 void ConsiderForPruning(SDNode *N) { 257 // Mark this for potential pruning. 258 PruningList.insert(N); 259 } 260 261 /// Add to the worklist making sure its instance is at the back (next to be 262 /// processed.) 263 void AddToWorklist(SDNode *N) { 264 assert(N->getOpcode() != ISD::DELETED_NODE && 265 "Deleted Node added to Worklist"); 266 267 // Skip handle nodes as they can't usefully be combined and confuse the 268 // zero-use deletion strategy. 269 if (N->getOpcode() == ISD::HANDLENODE) 270 return; 271 272 ConsiderForPruning(N); 273 274 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 275 Worklist.push_back(N); 276 } 277 278 /// Remove all instances of N from the worklist. 279 void removeFromWorklist(SDNode *N) { 280 CombinedNodes.erase(N); 281 PruningList.remove(N); 282 StoreRootCountMap.erase(N); 283 284 auto It = WorklistMap.find(N); 285 if (It == WorklistMap.end()) 286 return; // Not in the worklist. 287 288 // Null out the entry rather than erasing it to avoid a linear operation. 289 Worklist[It->second] = nullptr; 290 WorklistMap.erase(It); 291 } 292 293 void deleteAndRecombine(SDNode *N); 294 bool recursivelyDeleteUnusedNodes(SDNode *N); 295 296 /// Replaces all uses of the results of one DAG node with new values. 297 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 298 bool AddTo = true); 299 300 /// Replaces all uses of the results of one DAG node with new values. 301 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 302 return CombineTo(N, &Res, 1, AddTo); 303 } 304 305 /// Replaces all uses of the results of one DAG node with new values. 306 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 307 bool AddTo = true) { 308 SDValue To[] = { Res0, Res1 }; 309 return CombineTo(N, To, 2, AddTo); 310 } 311 312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 313 314 private: 315 unsigned MaximumLegalStoreInBits; 316 317 /// Check the specified integer node value to see if it can be simplified or 318 /// if things it uses can be simplified by bit propagation. 319 /// If so, return true. 320 bool SimplifyDemandedBits(SDValue Op) { 321 unsigned BitWidth = Op.getScalarValueSizeInBits(); 322 APInt DemandedBits = APInt::getAllOnes(BitWidth); 323 return SimplifyDemandedBits(Op, DemandedBits); 324 } 325 326 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 327 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 328 KnownBits Known; 329 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) 330 return false; 331 332 // Revisit the node. 333 AddToWorklist(Op.getNode()); 334 335 CommitTargetLoweringOpt(TLO); 336 return true; 337 } 338 339 /// Check the specified vector node value to see if it can be simplified or 340 /// if things it uses can be simplified as it only uses some of the 341 /// elements. If so, return true. 342 bool SimplifyDemandedVectorElts(SDValue Op) { 343 // TODO: For now just pretend it cannot be simplified. 344 if (Op.getValueType().isScalableVector()) 345 return false; 346 347 unsigned NumElts = Op.getValueType().getVectorNumElements(); 348 APInt DemandedElts = APInt::getAllOnes(NumElts); 349 return SimplifyDemandedVectorElts(Op, DemandedElts); 350 } 351 352 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 353 const APInt &DemandedElts, 354 bool AssumeSingleUse = false); 355 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 356 bool AssumeSingleUse = false); 357 358 bool CombineToPreIndexedLoadStore(SDNode *N); 359 bool CombineToPostIndexedLoadStore(SDNode *N); 360 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 361 bool SliceUpLoad(SDNode *N); 362 363 // Scalars have size 0 to distinguish from singleton vectors. 364 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 365 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 366 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 367 368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 369 /// load. 370 /// 371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 373 /// \param EltNo index of the vector element to load. 374 /// \param OriginalLoad load that EVE came from to be replaced. 375 /// \returns EVE on success SDValue() on failure. 376 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 377 SDValue EltNo, 378 LoadSDNode *OriginalLoad); 379 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 380 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 381 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 382 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 383 SDValue PromoteIntBinOp(SDValue Op); 384 SDValue PromoteIntShiftOp(SDValue Op); 385 SDValue PromoteExtend(SDValue Op); 386 bool PromoteLoad(SDValue Op); 387 388 /// Call the node-specific routine that knows how to fold each 389 /// particular type of node. If that doesn't do anything, try the 390 /// target-specific DAG combines. 391 SDValue combine(SDNode *N); 392 393 // Visitation implementation - Implement dag node combining for different 394 // node types. The semantics are as follows: 395 // Return Value: 396 // SDValue.getNode() == 0 - No change was made 397 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 398 // otherwise - N should be replaced by the returned Operand. 399 // 400 SDValue visitTokenFactor(SDNode *N); 401 SDValue visitMERGE_VALUES(SDNode *N); 402 SDValue visitADD(SDNode *N); 403 SDValue visitADDLike(SDNode *N); 404 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 405 SDValue visitSUB(SDNode *N); 406 SDValue visitADDSAT(SDNode *N); 407 SDValue visitSUBSAT(SDNode *N); 408 SDValue visitADDC(SDNode *N); 409 SDValue visitADDO(SDNode *N); 410 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 411 SDValue visitSUBC(SDNode *N); 412 SDValue visitSUBO(SDNode *N); 413 SDValue visitADDE(SDNode *N); 414 SDValue visitADDCARRY(SDNode *N); 415 SDValue visitSADDO_CARRY(SDNode *N); 416 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 417 SDValue visitSUBE(SDNode *N); 418 SDValue visitSUBCARRY(SDNode *N); 419 SDValue visitSSUBO_CARRY(SDNode *N); 420 SDValue visitMUL(SDNode *N); 421 SDValue visitMULFIX(SDNode *N); 422 SDValue useDivRem(SDNode *N); 423 SDValue visitSDIV(SDNode *N); 424 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 425 SDValue visitUDIV(SDNode *N); 426 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 427 SDValue visitREM(SDNode *N); 428 SDValue visitMULHU(SDNode *N); 429 SDValue visitMULHS(SDNode *N); 430 SDValue visitSMUL_LOHI(SDNode *N); 431 SDValue visitUMUL_LOHI(SDNode *N); 432 SDValue visitMULO(SDNode *N); 433 SDValue visitIMINMAX(SDNode *N); 434 SDValue visitAND(SDNode *N); 435 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 436 SDValue visitOR(SDNode *N); 437 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 438 SDValue visitXOR(SDNode *N); 439 SDValue SimplifyVBinOp(SDNode *N); 440 SDValue visitSHL(SDNode *N); 441 SDValue visitSRA(SDNode *N); 442 SDValue visitSRL(SDNode *N); 443 SDValue visitFunnelShift(SDNode *N); 444 SDValue visitRotate(SDNode *N); 445 SDValue visitABS(SDNode *N); 446 SDValue visitBSWAP(SDNode *N); 447 SDValue visitBITREVERSE(SDNode *N); 448 SDValue visitCTLZ(SDNode *N); 449 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 450 SDValue visitCTTZ(SDNode *N); 451 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 452 SDValue visitCTPOP(SDNode *N); 453 SDValue visitSELECT(SDNode *N); 454 SDValue visitVSELECT(SDNode *N); 455 SDValue visitSELECT_CC(SDNode *N); 456 SDValue visitSETCC(SDNode *N); 457 SDValue visitSETCCCARRY(SDNode *N); 458 SDValue visitSIGN_EXTEND(SDNode *N); 459 SDValue visitZERO_EXTEND(SDNode *N); 460 SDValue visitANY_EXTEND(SDNode *N); 461 SDValue visitAssertExt(SDNode *N); 462 SDValue visitAssertAlign(SDNode *N); 463 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 464 SDValue visitEXTEND_VECTOR_INREG(SDNode *N); 465 SDValue visitTRUNCATE(SDNode *N); 466 SDValue visitBITCAST(SDNode *N); 467 SDValue visitFREEZE(SDNode *N); 468 SDValue visitBUILD_PAIR(SDNode *N); 469 SDValue visitFADD(SDNode *N); 470 SDValue visitSTRICT_FADD(SDNode *N); 471 SDValue visitFSUB(SDNode *N); 472 SDValue visitFMUL(SDNode *N); 473 SDValue visitFMA(SDNode *N); 474 SDValue visitFDIV(SDNode *N); 475 SDValue visitFREM(SDNode *N); 476 SDValue visitFSQRT(SDNode *N); 477 SDValue visitFCOPYSIGN(SDNode *N); 478 SDValue visitFPOW(SDNode *N); 479 SDValue visitSINT_TO_FP(SDNode *N); 480 SDValue visitUINT_TO_FP(SDNode *N); 481 SDValue visitFP_TO_SINT(SDNode *N); 482 SDValue visitFP_TO_UINT(SDNode *N); 483 SDValue visitFP_ROUND(SDNode *N); 484 SDValue visitFP_EXTEND(SDNode *N); 485 SDValue visitFNEG(SDNode *N); 486 SDValue visitFABS(SDNode *N); 487 SDValue visitFCEIL(SDNode *N); 488 SDValue visitFTRUNC(SDNode *N); 489 SDValue visitFFLOOR(SDNode *N); 490 SDValue visitFMINNUM(SDNode *N); 491 SDValue visitFMAXNUM(SDNode *N); 492 SDValue visitFMINIMUM(SDNode *N); 493 SDValue visitFMAXIMUM(SDNode *N); 494 SDValue visitBRCOND(SDNode *N); 495 SDValue visitBR_CC(SDNode *N); 496 SDValue visitLOAD(SDNode *N); 497 498 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 499 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 500 501 SDValue visitSTORE(SDNode *N); 502 SDValue visitLIFETIME_END(SDNode *N); 503 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 504 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 505 SDValue visitBUILD_VECTOR(SDNode *N); 506 SDValue visitCONCAT_VECTORS(SDNode *N); 507 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 508 SDValue visitVECTOR_SHUFFLE(SDNode *N); 509 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 510 SDValue visitINSERT_SUBVECTOR(SDNode *N); 511 SDValue visitMLOAD(SDNode *N); 512 SDValue visitMSTORE(SDNode *N); 513 SDValue visitMGATHER(SDNode *N); 514 SDValue visitMSCATTER(SDNode *N); 515 SDValue visitFP_TO_FP16(SDNode *N); 516 SDValue visitFP16_TO_FP(SDNode *N); 517 SDValue visitVECREDUCE(SDNode *N); 518 SDValue visitVPOp(SDNode *N); 519 520 SDValue visitFADDForFMACombine(SDNode *N); 521 SDValue visitFSUBForFMACombine(SDNode *N); 522 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 523 524 SDValue XformToShuffleWithZero(SDNode *N); 525 bool reassociationCanBreakAddressingModePattern(unsigned Opc, 526 const SDLoc &DL, SDValue N0, 527 SDValue N1); 528 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 529 SDValue N1); 530 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 531 SDValue N1, SDNodeFlags Flags); 532 533 SDValue visitShiftByConstant(SDNode *N); 534 535 SDValue foldSelectOfConstants(SDNode *N); 536 SDValue foldVSelectOfConstants(SDNode *N); 537 SDValue foldBinOpIntoSelect(SDNode *BO); 538 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 539 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 540 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 541 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 542 SDValue N2, SDValue N3, ISD::CondCode CC, 543 bool NotExtCompare = false); 544 SDValue convertSelectOfFPConstantsToLoadOffset( 545 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 546 ISD::CondCode CC); 547 SDValue foldSignChangeInBitcast(SDNode *N); 548 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 549 SDValue N2, SDValue N3, ISD::CondCode CC); 550 SDValue foldSelectOfBinops(SDNode *N); 551 SDValue foldSextSetcc(SDNode *N); 552 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 553 const SDLoc &DL); 554 SDValue foldSubToUSubSat(EVT DstVT, SDNode *N); 555 SDValue unfoldMaskedMerge(SDNode *N); 556 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 557 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 558 const SDLoc &DL, bool foldBooleans); 559 SDValue rebuildSetCC(SDValue N); 560 561 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 562 SDValue &CC, bool MatchStrict = false) const; 563 bool isOneUseSetCC(SDValue N) const; 564 565 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 566 unsigned HiOp); 567 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 568 SDValue CombineExtLoad(SDNode *N); 569 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 570 SDValue combineRepeatedFPDivisors(SDNode *N); 571 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 572 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 573 SDValue BuildSDIV(SDNode *N); 574 SDValue BuildSDIVPow2(SDNode *N); 575 SDValue BuildUDIV(SDNode *N); 576 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 577 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); 578 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 579 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 580 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 581 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 582 SDNodeFlags Flags, bool Reciprocal); 583 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 584 SDNodeFlags Flags, bool Reciprocal); 585 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 586 bool DemandHighBits = true); 587 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 588 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 589 SDValue InnerPos, SDValue InnerNeg, 590 unsigned PosOpcode, unsigned NegOpcode, 591 const SDLoc &DL); 592 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, 593 SDValue InnerPos, SDValue InnerNeg, 594 unsigned PosOpcode, unsigned NegOpcode, 595 const SDLoc &DL); 596 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 597 SDValue MatchLoadCombine(SDNode *N); 598 SDValue mergeTruncStores(StoreSDNode *N); 599 SDValue ReduceLoadWidth(SDNode *N); 600 SDValue ReduceLoadOpStoreWidth(SDNode *N); 601 SDValue splitMergedValStore(StoreSDNode *ST); 602 SDValue TransformFPLoadStorePair(SDNode *N); 603 SDValue convertBuildVecZextToZext(SDNode *N); 604 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 605 SDValue reduceBuildVecTruncToBitCast(SDNode *N); 606 SDValue reduceBuildVecToShuffle(SDNode *N); 607 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 608 ArrayRef<int> VectorMask, SDValue VecIn1, 609 SDValue VecIn2, unsigned LeftIdx, 610 bool DidSplitVec); 611 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 612 613 /// Walk up chain skipping non-aliasing memory nodes, 614 /// looking for aliasing nodes and adding them to the Aliases vector. 615 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 616 SmallVectorImpl<SDValue> &Aliases); 617 618 /// Return true if there is any possibility that the two addresses overlap. 619 bool mayAlias(SDNode *Op0, SDNode *Op1) const; 620 621 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 622 /// chain (aliasing node.) 623 SDValue FindBetterChain(SDNode *N, SDValue Chain); 624 625 /// Try to replace a store and any possibly adjacent stores on 626 /// consecutive chains with better chains. Return true only if St is 627 /// replaced. 628 /// 629 /// Notice that other chains may still be replaced even if the function 630 /// returns false. 631 bool findBetterNeighborChains(StoreSDNode *St); 632 633 // Helper for findBetterNeighborChains. Walk up store chain add additional 634 // chained stores that do not overlap and can be parallelized. 635 bool parallelizeChainedStores(StoreSDNode *St); 636 637 /// Holds a pointer to an LSBaseSDNode as well as information on where it 638 /// is located in a sequence of memory operations connected by a chain. 639 struct MemOpLink { 640 // Ptr to the mem node. 641 LSBaseSDNode *MemNode; 642 643 // Offset from the base ptr. 644 int64_t OffsetFromBase; 645 646 MemOpLink(LSBaseSDNode *N, int64_t Offset) 647 : MemNode(N), OffsetFromBase(Offset) {} 648 }; 649 650 // Classify the origin of a stored value. 651 enum class StoreSource { Unknown, Constant, Extract, Load }; 652 StoreSource getStoreSource(SDValue StoreVal) { 653 switch (StoreVal.getOpcode()) { 654 case ISD::Constant: 655 case ISD::ConstantFP: 656 return StoreSource::Constant; 657 case ISD::EXTRACT_VECTOR_ELT: 658 case ISD::EXTRACT_SUBVECTOR: 659 return StoreSource::Extract; 660 case ISD::LOAD: 661 return StoreSource::Load; 662 default: 663 return StoreSource::Unknown; 664 } 665 } 666 667 /// This is a helper function for visitMUL to check the profitability 668 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 669 /// MulNode is the original multiply, AddNode is (add x, c1), 670 /// and ConstNode is c2. 671 bool isMulAddWithConstProfitable(SDNode *MulNode, 672 SDValue &AddNode, 673 SDValue &ConstNode); 674 675 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 676 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 677 /// the type of the loaded value to be extended. 678 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 679 EVT LoadResultTy, EVT &ExtVT); 680 681 /// Helper function to calculate whether the given Load/Store can have its 682 /// width reduced to ExtVT. 683 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 684 EVT &MemVT, unsigned ShAmt = 0); 685 686 /// Used by BackwardsPropagateMask to find suitable loads. 687 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 688 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 689 ConstantSDNode *Mask, SDNode *&NodeToMask); 690 /// Attempt to propagate a given AND node back to load leaves so that they 691 /// can be combined into narrow loads. 692 bool BackwardsPropagateMask(SDNode *N); 693 694 /// Helper function for mergeConsecutiveStores which merges the component 695 /// store chains. 696 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 697 unsigned NumStores); 698 699 /// This is a helper function for mergeConsecutiveStores. When the source 700 /// elements of the consecutive stores are all constants or all extracted 701 /// vector elements, try to merge them into one larger store introducing 702 /// bitcasts if necessary. \return True if a merged store was created. 703 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 704 EVT MemVT, unsigned NumStores, 705 bool IsConstantSrc, bool UseVector, 706 bool UseTrunc); 707 708 /// This is a helper function for mergeConsecutiveStores. Stores that 709 /// potentially may be merged with St are placed in StoreNodes. RootNode is 710 /// a chain predecessor to all store candidates. 711 void getStoreMergeCandidates(StoreSDNode *St, 712 SmallVectorImpl<MemOpLink> &StoreNodes, 713 SDNode *&Root); 714 715 /// Helper function for mergeConsecutiveStores. Checks if candidate stores 716 /// have indirect dependency through their operands. RootNode is the 717 /// predecessor to all stores calculated by getStoreMergeCandidates and is 718 /// used to prune the dependency check. \return True if safe to merge. 719 bool checkMergeStoreCandidatesForDependencies( 720 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 721 SDNode *RootNode); 722 723 /// This is a helper function for mergeConsecutiveStores. Given a list of 724 /// store candidates, find the first N that are consecutive in memory. 725 /// Returns 0 if there are not at least 2 consecutive stores to try merging. 726 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 727 int64_t ElementSizeBytes) const; 728 729 /// This is a helper function for mergeConsecutiveStores. It is used for 730 /// store chains that are composed entirely of constant values. 731 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, 732 unsigned NumConsecutiveStores, 733 EVT MemVT, SDNode *Root, bool AllowVectors); 734 735 /// This is a helper function for mergeConsecutiveStores. It is used for 736 /// store chains that are composed entirely of extracted vector elements. 737 /// When extracting multiple vector elements, try to store them in one 738 /// vector store rather than a sequence of scalar stores. 739 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, 740 unsigned NumConsecutiveStores, EVT MemVT, 741 SDNode *Root); 742 743 /// This is a helper function for mergeConsecutiveStores. It is used for 744 /// store chains that are composed entirely of loaded values. 745 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 746 unsigned NumConsecutiveStores, EVT MemVT, 747 SDNode *Root, bool AllowVectors, 748 bool IsNonTemporalStore, bool IsNonTemporalLoad); 749 750 /// Merge consecutive store operations into a wide store. 751 /// This optimization uses wide integers or vectors when possible. 752 /// \return true if stores were merged. 753 bool mergeConsecutiveStores(StoreSDNode *St); 754 755 /// Try to transform a truncation where C is a constant: 756 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 757 /// 758 /// \p N needs to be a truncation and its first operand an AND. Other 759 /// requirements are checked by the function (e.g. that trunc is 760 /// single-use) and if missed an empty SDValue is returned. 761 SDValue distributeTruncateThroughAnd(SDNode *N); 762 763 /// Helper function to determine whether the target supports operation 764 /// given by \p Opcode for type \p VT, that is, whether the operation 765 /// is legal or custom before legalizing operations, and whether is 766 /// legal (but not custom) after legalization. 767 bool hasOperation(unsigned Opcode, EVT VT) { 768 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); 769 } 770 771 public: 772 /// Runs the dag combiner on all nodes in the work list 773 void Run(CombineLevel AtLevel); 774 775 SelectionDAG &getDAG() const { return DAG; } 776 777 /// Returns a type large enough to hold any valid shift amount - before type 778 /// legalization these can be huge. 779 EVT getShiftAmountTy(EVT LHSTy) { 780 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 781 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 782 } 783 784 /// This method returns true if we are running before type legalization or 785 /// if the specified VT is legal. 786 bool isTypeLegal(const EVT &VT) { 787 if (!LegalTypes) return true; 788 return TLI.isTypeLegal(VT); 789 } 790 791 /// Convenience wrapper around TargetLowering::getSetCCResultType 792 EVT getSetCCResultType(EVT VT) const { 793 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 794 } 795 796 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 797 SDValue OrigLoad, SDValue ExtLoad, 798 ISD::NodeType ExtType); 799 }; 800 801 /// This class is a DAGUpdateListener that removes any deleted 802 /// nodes from the worklist. 803 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 804 DAGCombiner &DC; 805 806 public: 807 explicit WorklistRemover(DAGCombiner &dc) 808 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 809 810 void NodeDeleted(SDNode *N, SDNode *E) override { 811 DC.removeFromWorklist(N); 812 } 813 }; 814 815 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 816 DAGCombiner &DC; 817 818 public: 819 explicit WorklistInserter(DAGCombiner &dc) 820 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 821 822 // FIXME: Ideally we could add N to the worklist, but this causes exponential 823 // compile time costs in large DAGs, e.g. Halide. 824 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 825 }; 826 827 } // end anonymous namespace 828 829 //===----------------------------------------------------------------------===// 830 // TargetLowering::DAGCombinerInfo implementation 831 //===----------------------------------------------------------------------===// 832 833 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 834 ((DAGCombiner*)DC)->AddToWorklist(N); 835 } 836 837 SDValue TargetLowering::DAGCombinerInfo:: 838 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 839 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 840 } 841 842 SDValue TargetLowering::DAGCombinerInfo:: 843 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 844 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 845 } 846 847 SDValue TargetLowering::DAGCombinerInfo:: 848 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 849 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 850 } 851 852 bool TargetLowering::DAGCombinerInfo:: 853 recursivelyDeleteUnusedNodes(SDNode *N) { 854 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); 855 } 856 857 void TargetLowering::DAGCombinerInfo:: 858 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 859 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 860 } 861 862 //===----------------------------------------------------------------------===// 863 // Helper Functions 864 //===----------------------------------------------------------------------===// 865 866 void DAGCombiner::deleteAndRecombine(SDNode *N) { 867 removeFromWorklist(N); 868 869 // If the operands of this node are only used by the node, they will now be 870 // dead. Make sure to re-visit them and recursively delete dead nodes. 871 for (const SDValue &Op : N->ops()) 872 // For an operand generating multiple values, one of the values may 873 // become dead allowing further simplification (e.g. split index 874 // arithmetic from an indexed load). 875 if (Op->hasOneUse() || Op->getNumValues() > 1) 876 AddToWorklist(Op.getNode()); 877 878 DAG.DeleteNode(N); 879 } 880 881 // APInts must be the same size for most operations, this helper 882 // function zero extends the shorter of the pair so that they match. 883 // We provide an Offset so that we can create bitwidths that won't overflow. 884 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 885 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 886 LHS = LHS.zextOrSelf(Bits); 887 RHS = RHS.zextOrSelf(Bits); 888 } 889 890 // Return true if this node is a setcc, or is a select_cc 891 // that selects between the target values used for true and false, making it 892 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 893 // the appropriate nodes based on the type of node we are checking. This 894 // simplifies life a bit for the callers. 895 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 896 SDValue &CC, bool MatchStrict) const { 897 if (N.getOpcode() == ISD::SETCC) { 898 LHS = N.getOperand(0); 899 RHS = N.getOperand(1); 900 CC = N.getOperand(2); 901 return true; 902 } 903 904 if (MatchStrict && 905 (N.getOpcode() == ISD::STRICT_FSETCC || 906 N.getOpcode() == ISD::STRICT_FSETCCS)) { 907 LHS = N.getOperand(1); 908 RHS = N.getOperand(2); 909 CC = N.getOperand(3); 910 return true; 911 } 912 913 if (N.getOpcode() != ISD::SELECT_CC || 914 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 915 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 916 return false; 917 918 if (TLI.getBooleanContents(N.getValueType()) == 919 TargetLowering::UndefinedBooleanContent) 920 return false; 921 922 LHS = N.getOperand(0); 923 RHS = N.getOperand(1); 924 CC = N.getOperand(4); 925 return true; 926 } 927 928 /// Return true if this is a SetCC-equivalent operation with only one use. 929 /// If this is true, it allows the users to invert the operation for free when 930 /// it is profitable to do so. 931 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 932 SDValue N0, N1, N2; 933 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 934 return true; 935 return false; 936 } 937 938 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { 939 if (!ScalarTy.isSimple()) 940 return false; 941 942 uint64_t MaskForTy = 0ULL; 943 switch (ScalarTy.getSimpleVT().SimpleTy) { 944 case MVT::i8: 945 MaskForTy = 0xFFULL; 946 break; 947 case MVT::i16: 948 MaskForTy = 0xFFFFULL; 949 break; 950 case MVT::i32: 951 MaskForTy = 0xFFFFFFFFULL; 952 break; 953 default: 954 return false; 955 break; 956 } 957 958 APInt Val; 959 if (ISD::isConstantSplatVector(N, Val)) 960 return Val.getLimitedValue() == MaskForTy; 961 962 return false; 963 } 964 965 // Determines if it is a constant integer or a splat/build vector of constant 966 // integers (and undefs). 967 // Do not permit build vector implicit truncation. 968 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 969 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 970 return !(Const->isOpaque() && NoOpaques); 971 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) 972 return false; 973 unsigned BitWidth = N.getScalarValueSizeInBits(); 974 for (const SDValue &Op : N->op_values()) { 975 if (Op.isUndef()) 976 continue; 977 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 978 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 979 (Const->isOpaque() && NoOpaques)) 980 return false; 981 } 982 return true; 983 } 984 985 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 986 // undef's. 987 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 988 if (V.getOpcode() != ISD::BUILD_VECTOR) 989 return false; 990 return isConstantOrConstantVector(V, NoOpaques) || 991 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 992 } 993 994 // Determine if this an indexed load with an opaque target constant index. 995 static bool canSplitIdx(LoadSDNode *LD) { 996 return MaySplitLoadIndex && 997 (LD->getOperand(2).getOpcode() != ISD::TargetConstant || 998 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); 999 } 1000 1001 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, 1002 const SDLoc &DL, 1003 SDValue N0, 1004 SDValue N1) { 1005 // Currently this only tries to ensure we don't undo the GEP splits done by 1006 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, 1007 // we check if the following transformation would be problematic: 1008 // (load/store (add, (add, x, offset1), offset2)) -> 1009 // (load/store (add, x, offset1+offset2)). 1010 1011 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) 1012 return false; 1013 1014 if (N0.hasOneUse()) 1015 return false; 1016 1017 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 1018 auto *C2 = dyn_cast<ConstantSDNode>(N1); 1019 if (!C1 || !C2) 1020 return false; 1021 1022 const APInt &C1APIntVal = C1->getAPIntValue(); 1023 const APInt &C2APIntVal = C2->getAPIntValue(); 1024 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) 1025 return false; 1026 1027 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; 1028 if (CombinedValueIntVal.getBitWidth() > 64) 1029 return false; 1030 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); 1031 1032 for (SDNode *Node : N0->uses()) { 1033 auto LoadStore = dyn_cast<MemSDNode>(Node); 1034 if (LoadStore) { 1035 // Is x[offset2] already not a legal addressing mode? If so then 1036 // reassociating the constants breaks nothing (we test offset2 because 1037 // that's the one we hope to fold into the load or store). 1038 TargetLoweringBase::AddrMode AM; 1039 AM.HasBaseReg = true; 1040 AM.BaseOffs = C2APIntVal.getSExtValue(); 1041 EVT VT = LoadStore->getMemoryVT(); 1042 unsigned AS = LoadStore->getAddressSpace(); 1043 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); 1044 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1045 continue; 1046 1047 // Would x[offset1+offset2] still be a legal addressing mode? 1048 AM.BaseOffs = CombinedValue; 1049 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1050 return true; 1051 } 1052 } 1053 1054 return false; 1055 } 1056 1057 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 1058 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 1059 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 1060 SDValue N0, SDValue N1) { 1061 EVT VT = N0.getValueType(); 1062 1063 if (N0.getOpcode() != Opc) 1064 return SDValue(); 1065 1066 if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 1067 if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1068 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 1069 if (SDValue OpNode = 1070 DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1})) 1071 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 1072 return SDValue(); 1073 } 1074 if (N0.hasOneUse()) { 1075 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 1076 // iff (op x, c1) has one use 1077 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 1078 if (!OpNode.getNode()) 1079 return SDValue(); 1080 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 1081 } 1082 } 1083 return SDValue(); 1084 } 1085 1086 // Try to reassociate commutative binops. 1087 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 1088 SDValue N1, SDNodeFlags Flags) { 1089 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1090 1091 // Floating-point reassociation is not allowed without loose FP math. 1092 if (N0.getValueType().isFloatingPoint() || 1093 N1.getValueType().isFloatingPoint()) 1094 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1095 return SDValue(); 1096 1097 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1098 return Combined; 1099 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1100 return Combined; 1101 return SDValue(); 1102 } 1103 1104 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1105 bool AddTo) { 1106 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1107 ++NodesCombined; 1108 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1109 To[0].getNode()->dump(&DAG); 1110 dbgs() << " and " << NumTo - 1 << " other values\n"); 1111 for (unsigned i = 0, e = NumTo; i != e; ++i) 1112 assert((!To[i].getNode() || 1113 N->getValueType(i) == To[i].getValueType()) && 1114 "Cannot combine value to value of different type!"); 1115 1116 WorklistRemover DeadNodes(*this); 1117 DAG.ReplaceAllUsesWith(N, To); 1118 if (AddTo) { 1119 // Push the new nodes and any users onto the worklist 1120 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1121 if (To[i].getNode()) { 1122 AddToWorklist(To[i].getNode()); 1123 AddUsersToWorklist(To[i].getNode()); 1124 } 1125 } 1126 } 1127 1128 // Finally, if the node is now dead, remove it from the graph. The node 1129 // may not be dead if the replacement process recursively simplified to 1130 // something else needing this node. 1131 if (N->use_empty()) 1132 deleteAndRecombine(N); 1133 return SDValue(N, 0); 1134 } 1135 1136 void DAGCombiner:: 1137 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1138 // Replace the old value with the new one. 1139 ++NodesCombined; 1140 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1141 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1142 dbgs() << '\n'); 1143 1144 // Replace all uses. If any nodes become isomorphic to other nodes and 1145 // are deleted, make sure to remove them from our worklist. 1146 WorklistRemover DeadNodes(*this); 1147 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1148 1149 // Push the new node and any (possibly new) users onto the worklist. 1150 AddToWorklistWithUsers(TLO.New.getNode()); 1151 1152 // Finally, if the node is now dead, remove it from the graph. The node 1153 // may not be dead if the replacement process recursively simplified to 1154 // something else needing this node. 1155 if (TLO.Old.getNode()->use_empty()) 1156 deleteAndRecombine(TLO.Old.getNode()); 1157 } 1158 1159 /// Check the specified integer node value to see if it can be simplified or if 1160 /// things it uses can be simplified by bit propagation. If so, return true. 1161 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1162 const APInt &DemandedElts, 1163 bool AssumeSingleUse) { 1164 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1165 KnownBits Known; 1166 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, 1167 AssumeSingleUse)) 1168 return false; 1169 1170 // Revisit the node. 1171 AddToWorklist(Op.getNode()); 1172 1173 CommitTargetLoweringOpt(TLO); 1174 return true; 1175 } 1176 1177 /// Check the specified vector node value to see if it can be simplified or 1178 /// if things it uses can be simplified as it only uses some of the elements. 1179 /// If so, return true. 1180 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1181 const APInt &DemandedElts, 1182 bool AssumeSingleUse) { 1183 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1184 APInt KnownUndef, KnownZero; 1185 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1186 TLO, 0, AssumeSingleUse)) 1187 return false; 1188 1189 // Revisit the node. 1190 AddToWorklist(Op.getNode()); 1191 1192 CommitTargetLoweringOpt(TLO); 1193 return true; 1194 } 1195 1196 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1197 SDLoc DL(Load); 1198 EVT VT = Load->getValueType(0); 1199 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1200 1201 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1202 Trunc.getNode()->dump(&DAG); dbgs() << '\n'); 1203 WorklistRemover DeadNodes(*this); 1204 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1205 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1206 deleteAndRecombine(Load); 1207 AddToWorklist(Trunc.getNode()); 1208 } 1209 1210 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1211 Replace = false; 1212 SDLoc DL(Op); 1213 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1214 LoadSDNode *LD = cast<LoadSDNode>(Op); 1215 EVT MemVT = LD->getMemoryVT(); 1216 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1217 : LD->getExtensionType(); 1218 Replace = true; 1219 return DAG.getExtLoad(ExtType, DL, PVT, 1220 LD->getChain(), LD->getBasePtr(), 1221 MemVT, LD->getMemOperand()); 1222 } 1223 1224 unsigned Opc = Op.getOpcode(); 1225 switch (Opc) { 1226 default: break; 1227 case ISD::AssertSext: 1228 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1229 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1230 break; 1231 case ISD::AssertZext: 1232 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1233 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1234 break; 1235 case ISD::Constant: { 1236 unsigned ExtOpc = 1237 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1238 return DAG.getNode(ExtOpc, DL, PVT, Op); 1239 } 1240 } 1241 1242 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1243 return SDValue(); 1244 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1245 } 1246 1247 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1248 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1249 return SDValue(); 1250 EVT OldVT = Op.getValueType(); 1251 SDLoc DL(Op); 1252 bool Replace = false; 1253 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1254 if (!NewOp.getNode()) 1255 return SDValue(); 1256 AddToWorklist(NewOp.getNode()); 1257 1258 if (Replace) 1259 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1260 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1261 DAG.getValueType(OldVT)); 1262 } 1263 1264 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1265 EVT OldVT = Op.getValueType(); 1266 SDLoc DL(Op); 1267 bool Replace = false; 1268 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1269 if (!NewOp.getNode()) 1270 return SDValue(); 1271 AddToWorklist(NewOp.getNode()); 1272 1273 if (Replace) 1274 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1275 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1276 } 1277 1278 /// Promote the specified integer binary operation if the target indicates it is 1279 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1280 /// i32 since i16 instructions are longer. 1281 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1282 if (!LegalOperations) 1283 return SDValue(); 1284 1285 EVT VT = Op.getValueType(); 1286 if (VT.isVector() || !VT.isInteger()) 1287 return SDValue(); 1288 1289 // If operation type is 'undesirable', e.g. i16 on x86, consider 1290 // promoting it. 1291 unsigned Opc = Op.getOpcode(); 1292 if (TLI.isTypeDesirableForOp(Opc, VT)) 1293 return SDValue(); 1294 1295 EVT PVT = VT; 1296 // Consult target whether it is a good idea to promote this operation and 1297 // what's the right type to promote it to. 1298 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1299 assert(PVT != VT && "Don't know what type to promote to!"); 1300 1301 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1302 1303 bool Replace0 = false; 1304 SDValue N0 = Op.getOperand(0); 1305 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1306 1307 bool Replace1 = false; 1308 SDValue N1 = Op.getOperand(1); 1309 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1310 SDLoc DL(Op); 1311 1312 SDValue RV = 1313 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1314 1315 // We are always replacing N0/N1's use in N and only need additional 1316 // replacements if there are additional uses. 1317 // Note: We are checking uses of the *nodes* (SDNode) rather than values 1318 // (SDValue) here because the node may reference multiple values 1319 // (for example, the chain value of a load node). 1320 Replace0 &= !N0->hasOneUse(); 1321 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1322 1323 // Combine Op here so it is preserved past replacements. 1324 CombineTo(Op.getNode(), RV); 1325 1326 // If operands have a use ordering, make sure we deal with 1327 // predecessor first. 1328 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { 1329 std::swap(N0, N1); 1330 std::swap(NN0, NN1); 1331 } 1332 1333 if (Replace0) { 1334 AddToWorklist(NN0.getNode()); 1335 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1336 } 1337 if (Replace1) { 1338 AddToWorklist(NN1.getNode()); 1339 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1340 } 1341 return Op; 1342 } 1343 return SDValue(); 1344 } 1345 1346 /// Promote the specified integer shift operation if the target indicates it is 1347 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1348 /// i32 since i16 instructions are longer. 1349 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1350 if (!LegalOperations) 1351 return SDValue(); 1352 1353 EVT VT = Op.getValueType(); 1354 if (VT.isVector() || !VT.isInteger()) 1355 return SDValue(); 1356 1357 // If operation type is 'undesirable', e.g. i16 on x86, consider 1358 // promoting it. 1359 unsigned Opc = Op.getOpcode(); 1360 if (TLI.isTypeDesirableForOp(Opc, VT)) 1361 return SDValue(); 1362 1363 EVT PVT = VT; 1364 // Consult target whether it is a good idea to promote this operation and 1365 // what's the right type to promote it to. 1366 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1367 assert(PVT != VT && "Don't know what type to promote to!"); 1368 1369 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1370 1371 bool Replace = false; 1372 SDValue N0 = Op.getOperand(0); 1373 SDValue N1 = Op.getOperand(1); 1374 if (Opc == ISD::SRA) 1375 N0 = SExtPromoteOperand(N0, PVT); 1376 else if (Opc == ISD::SRL) 1377 N0 = ZExtPromoteOperand(N0, PVT); 1378 else 1379 N0 = PromoteOperand(N0, PVT, Replace); 1380 1381 if (!N0.getNode()) 1382 return SDValue(); 1383 1384 SDLoc DL(Op); 1385 SDValue RV = 1386 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1387 1388 if (Replace) 1389 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1390 1391 // Deal with Op being deleted. 1392 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1393 return RV; 1394 } 1395 return SDValue(); 1396 } 1397 1398 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1399 if (!LegalOperations) 1400 return SDValue(); 1401 1402 EVT VT = Op.getValueType(); 1403 if (VT.isVector() || !VT.isInteger()) 1404 return SDValue(); 1405 1406 // If operation type is 'undesirable', e.g. i16 on x86, consider 1407 // promoting it. 1408 unsigned Opc = Op.getOpcode(); 1409 if (TLI.isTypeDesirableForOp(Opc, VT)) 1410 return SDValue(); 1411 1412 EVT PVT = VT; 1413 // Consult target whether it is a good idea to promote this operation and 1414 // what's the right type to promote it to. 1415 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1416 assert(PVT != VT && "Don't know what type to promote to!"); 1417 // fold (aext (aext x)) -> (aext x) 1418 // fold (aext (zext x)) -> (zext x) 1419 // fold (aext (sext x)) -> (sext x) 1420 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1421 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1422 } 1423 return SDValue(); 1424 } 1425 1426 bool DAGCombiner::PromoteLoad(SDValue Op) { 1427 if (!LegalOperations) 1428 return false; 1429 1430 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1431 return false; 1432 1433 EVT VT = Op.getValueType(); 1434 if (VT.isVector() || !VT.isInteger()) 1435 return false; 1436 1437 // If operation type is 'undesirable', e.g. i16 on x86, consider 1438 // promoting it. 1439 unsigned Opc = Op.getOpcode(); 1440 if (TLI.isTypeDesirableForOp(Opc, VT)) 1441 return false; 1442 1443 EVT PVT = VT; 1444 // Consult target whether it is a good idea to promote this operation and 1445 // what's the right type to promote it to. 1446 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1447 assert(PVT != VT && "Don't know what type to promote to!"); 1448 1449 SDLoc DL(Op); 1450 SDNode *N = Op.getNode(); 1451 LoadSDNode *LD = cast<LoadSDNode>(N); 1452 EVT MemVT = LD->getMemoryVT(); 1453 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1454 : LD->getExtensionType(); 1455 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1456 LD->getChain(), LD->getBasePtr(), 1457 MemVT, LD->getMemOperand()); 1458 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1459 1460 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1461 Result.getNode()->dump(&DAG); dbgs() << '\n'); 1462 WorklistRemover DeadNodes(*this); 1463 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1464 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1465 deleteAndRecombine(N); 1466 AddToWorklist(Result.getNode()); 1467 return true; 1468 } 1469 return false; 1470 } 1471 1472 /// Recursively delete a node which has no uses and any operands for 1473 /// which it is the only use. 1474 /// 1475 /// Note that this both deletes the nodes and removes them from the worklist. 1476 /// It also adds any nodes who have had a user deleted to the worklist as they 1477 /// may now have only one use and subject to other combines. 1478 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1479 if (!N->use_empty()) 1480 return false; 1481 1482 SmallSetVector<SDNode *, 16> Nodes; 1483 Nodes.insert(N); 1484 do { 1485 N = Nodes.pop_back_val(); 1486 if (!N) 1487 continue; 1488 1489 if (N->use_empty()) { 1490 for (const SDValue &ChildN : N->op_values()) 1491 Nodes.insert(ChildN.getNode()); 1492 1493 removeFromWorklist(N); 1494 DAG.DeleteNode(N); 1495 } else { 1496 AddToWorklist(N); 1497 } 1498 } while (!Nodes.empty()); 1499 return true; 1500 } 1501 1502 //===----------------------------------------------------------------------===// 1503 // Main DAG Combiner implementation 1504 //===----------------------------------------------------------------------===// 1505 1506 void DAGCombiner::Run(CombineLevel AtLevel) { 1507 // set the instance variables, so that the various visit routines may use it. 1508 Level = AtLevel; 1509 LegalDAG = Level >= AfterLegalizeDAG; 1510 LegalOperations = Level >= AfterLegalizeVectorOps; 1511 LegalTypes = Level >= AfterLegalizeTypes; 1512 1513 WorklistInserter AddNodes(*this); 1514 1515 // Add all the dag nodes to the worklist. 1516 for (SDNode &Node : DAG.allnodes()) 1517 AddToWorklist(&Node); 1518 1519 // Create a dummy node (which is not added to allnodes), that adds a reference 1520 // to the root node, preventing it from being deleted, and tracking any 1521 // changes of the root. 1522 HandleSDNode Dummy(DAG.getRoot()); 1523 1524 // While we have a valid worklist entry node, try to combine it. 1525 while (SDNode *N = getNextWorklistEntry()) { 1526 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1527 // N is deleted from the DAG, since they too may now be dead or may have a 1528 // reduced number of uses, allowing other xforms. 1529 if (recursivelyDeleteUnusedNodes(N)) 1530 continue; 1531 1532 WorklistRemover DeadNodes(*this); 1533 1534 // If this combine is running after legalizing the DAG, re-legalize any 1535 // nodes pulled off the worklist. 1536 if (LegalDAG) { 1537 SmallSetVector<SDNode *, 16> UpdatedNodes; 1538 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1539 1540 for (SDNode *LN : UpdatedNodes) 1541 AddToWorklistWithUsers(LN); 1542 1543 if (!NIsValid) 1544 continue; 1545 } 1546 1547 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1548 1549 // Add any operands of the new node which have not yet been combined to the 1550 // worklist as well. Because the worklist uniques things already, this 1551 // won't repeatedly process the same operand. 1552 CombinedNodes.insert(N); 1553 for (const SDValue &ChildN : N->op_values()) 1554 if (!CombinedNodes.count(ChildN.getNode())) 1555 AddToWorklist(ChildN.getNode()); 1556 1557 SDValue RV = combine(N); 1558 1559 if (!RV.getNode()) 1560 continue; 1561 1562 ++NodesCombined; 1563 1564 // If we get back the same node we passed in, rather than a new node or 1565 // zero, we know that the node must have defined multiple values and 1566 // CombineTo was used. Since CombineTo takes care of the worklist 1567 // mechanics for us, we have no work to do in this case. 1568 if (RV.getNode() == N) 1569 continue; 1570 1571 assert(N->getOpcode() != ISD::DELETED_NODE && 1572 RV.getOpcode() != ISD::DELETED_NODE && 1573 "Node was deleted but visit returned new node!"); 1574 1575 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); 1576 1577 if (N->getNumValues() == RV.getNode()->getNumValues()) 1578 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1579 else { 1580 assert(N->getValueType(0) == RV.getValueType() && 1581 N->getNumValues() == 1 && "Type mismatch"); 1582 DAG.ReplaceAllUsesWith(N, &RV); 1583 } 1584 1585 // Push the new node and any users onto the worklist. Omit this if the 1586 // new node is the EntryToken (e.g. if a store managed to get optimized 1587 // out), because re-visiting the EntryToken and its users will not uncover 1588 // any additional opportunities, but there may be a large number of such 1589 // users, potentially causing compile time explosion. 1590 if (RV.getOpcode() != ISD::EntryToken) { 1591 AddToWorklist(RV.getNode()); 1592 AddUsersToWorklist(RV.getNode()); 1593 } 1594 1595 // Finally, if the node is now dead, remove it from the graph. The node 1596 // may not be dead if the replacement process recursively simplified to 1597 // something else needing this node. This will also take care of adding any 1598 // operands which have lost a user to the worklist. 1599 recursivelyDeleteUnusedNodes(N); 1600 } 1601 1602 // If the root changed (e.g. it was a dead load, update the root). 1603 DAG.setRoot(Dummy.getValue()); 1604 DAG.RemoveDeadNodes(); 1605 } 1606 1607 SDValue DAGCombiner::visit(SDNode *N) { 1608 switch (N->getOpcode()) { 1609 default: break; 1610 case ISD::TokenFactor: return visitTokenFactor(N); 1611 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1612 case ISD::ADD: return visitADD(N); 1613 case ISD::SUB: return visitSUB(N); 1614 case ISD::SADDSAT: 1615 case ISD::UADDSAT: return visitADDSAT(N); 1616 case ISD::SSUBSAT: 1617 case ISD::USUBSAT: return visitSUBSAT(N); 1618 case ISD::ADDC: return visitADDC(N); 1619 case ISD::SADDO: 1620 case ISD::UADDO: return visitADDO(N); 1621 case ISD::SUBC: return visitSUBC(N); 1622 case ISD::SSUBO: 1623 case ISD::USUBO: return visitSUBO(N); 1624 case ISD::ADDE: return visitADDE(N); 1625 case ISD::ADDCARRY: return visitADDCARRY(N); 1626 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); 1627 case ISD::SUBE: return visitSUBE(N); 1628 case ISD::SUBCARRY: return visitSUBCARRY(N); 1629 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); 1630 case ISD::SMULFIX: 1631 case ISD::SMULFIXSAT: 1632 case ISD::UMULFIX: 1633 case ISD::UMULFIXSAT: return visitMULFIX(N); 1634 case ISD::MUL: return visitMUL(N); 1635 case ISD::SDIV: return visitSDIV(N); 1636 case ISD::UDIV: return visitUDIV(N); 1637 case ISD::SREM: 1638 case ISD::UREM: return visitREM(N); 1639 case ISD::MULHU: return visitMULHU(N); 1640 case ISD::MULHS: return visitMULHS(N); 1641 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1642 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1643 case ISD::SMULO: 1644 case ISD::UMULO: return visitMULO(N); 1645 case ISD::SMIN: 1646 case ISD::SMAX: 1647 case ISD::UMIN: 1648 case ISD::UMAX: return visitIMINMAX(N); 1649 case ISD::AND: return visitAND(N); 1650 case ISD::OR: return visitOR(N); 1651 case ISD::XOR: return visitXOR(N); 1652 case ISD::SHL: return visitSHL(N); 1653 case ISD::SRA: return visitSRA(N); 1654 case ISD::SRL: return visitSRL(N); 1655 case ISD::ROTR: 1656 case ISD::ROTL: return visitRotate(N); 1657 case ISD::FSHL: 1658 case ISD::FSHR: return visitFunnelShift(N); 1659 case ISD::ABS: return visitABS(N); 1660 case ISD::BSWAP: return visitBSWAP(N); 1661 case ISD::BITREVERSE: return visitBITREVERSE(N); 1662 case ISD::CTLZ: return visitCTLZ(N); 1663 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1664 case ISD::CTTZ: return visitCTTZ(N); 1665 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1666 case ISD::CTPOP: return visitCTPOP(N); 1667 case ISD::SELECT: return visitSELECT(N); 1668 case ISD::VSELECT: return visitVSELECT(N); 1669 case ISD::SELECT_CC: return visitSELECT_CC(N); 1670 case ISD::SETCC: return visitSETCC(N); 1671 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1672 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1673 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1674 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1675 case ISD::AssertSext: 1676 case ISD::AssertZext: return visitAssertExt(N); 1677 case ISD::AssertAlign: return visitAssertAlign(N); 1678 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1679 case ISD::SIGN_EXTEND_VECTOR_INREG: 1680 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N); 1681 case ISD::TRUNCATE: return visitTRUNCATE(N); 1682 case ISD::BITCAST: return visitBITCAST(N); 1683 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1684 case ISD::FADD: return visitFADD(N); 1685 case ISD::STRICT_FADD: return visitSTRICT_FADD(N); 1686 case ISD::FSUB: return visitFSUB(N); 1687 case ISD::FMUL: return visitFMUL(N); 1688 case ISD::FMA: return visitFMA(N); 1689 case ISD::FDIV: return visitFDIV(N); 1690 case ISD::FREM: return visitFREM(N); 1691 case ISD::FSQRT: return visitFSQRT(N); 1692 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1693 case ISD::FPOW: return visitFPOW(N); 1694 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1695 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1696 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1697 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1698 case ISD::FP_ROUND: return visitFP_ROUND(N); 1699 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1700 case ISD::FNEG: return visitFNEG(N); 1701 case ISD::FABS: return visitFABS(N); 1702 case ISD::FFLOOR: return visitFFLOOR(N); 1703 case ISD::FMINNUM: return visitFMINNUM(N); 1704 case ISD::FMAXNUM: return visitFMAXNUM(N); 1705 case ISD::FMINIMUM: return visitFMINIMUM(N); 1706 case ISD::FMAXIMUM: return visitFMAXIMUM(N); 1707 case ISD::FCEIL: return visitFCEIL(N); 1708 case ISD::FTRUNC: return visitFTRUNC(N); 1709 case ISD::BRCOND: return visitBRCOND(N); 1710 case ISD::BR_CC: return visitBR_CC(N); 1711 case ISD::LOAD: return visitLOAD(N); 1712 case ISD::STORE: return visitSTORE(N); 1713 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1714 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1715 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1716 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1717 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1718 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1719 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1720 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1721 case ISD::MGATHER: return visitMGATHER(N); 1722 case ISD::MLOAD: return visitMLOAD(N); 1723 case ISD::MSCATTER: return visitMSCATTER(N); 1724 case ISD::MSTORE: return visitMSTORE(N); 1725 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1726 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1727 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1728 case ISD::FREEZE: return visitFREEZE(N); 1729 case ISD::VECREDUCE_FADD: 1730 case ISD::VECREDUCE_FMUL: 1731 case ISD::VECREDUCE_ADD: 1732 case ISD::VECREDUCE_MUL: 1733 case ISD::VECREDUCE_AND: 1734 case ISD::VECREDUCE_OR: 1735 case ISD::VECREDUCE_XOR: 1736 case ISD::VECREDUCE_SMAX: 1737 case ISD::VECREDUCE_SMIN: 1738 case ISD::VECREDUCE_UMAX: 1739 case ISD::VECREDUCE_UMIN: 1740 case ISD::VECREDUCE_FMAX: 1741 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1742 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC: 1743 #include "llvm/IR/VPIntrinsics.def" 1744 return visitVPOp(N); 1745 } 1746 return SDValue(); 1747 } 1748 1749 SDValue DAGCombiner::combine(SDNode *N) { 1750 SDValue RV; 1751 if (!DisableGenericCombines) 1752 RV = visit(N); 1753 1754 // If nothing happened, try a target-specific DAG combine. 1755 if (!RV.getNode()) { 1756 assert(N->getOpcode() != ISD::DELETED_NODE && 1757 "Node was deleted but visit returned NULL!"); 1758 1759 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1760 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1761 1762 // Expose the DAG combiner to the target combiner impls. 1763 TargetLowering::DAGCombinerInfo 1764 DagCombineInfo(DAG, Level, false, this); 1765 1766 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1767 } 1768 } 1769 1770 // If nothing happened still, try promoting the operation. 1771 if (!RV.getNode()) { 1772 switch (N->getOpcode()) { 1773 default: break; 1774 case ISD::ADD: 1775 case ISD::SUB: 1776 case ISD::MUL: 1777 case ISD::AND: 1778 case ISD::OR: 1779 case ISD::XOR: 1780 RV = PromoteIntBinOp(SDValue(N, 0)); 1781 break; 1782 case ISD::SHL: 1783 case ISD::SRA: 1784 case ISD::SRL: 1785 RV = PromoteIntShiftOp(SDValue(N, 0)); 1786 break; 1787 case ISD::SIGN_EXTEND: 1788 case ISD::ZERO_EXTEND: 1789 case ISD::ANY_EXTEND: 1790 RV = PromoteExtend(SDValue(N, 0)); 1791 break; 1792 case ISD::LOAD: 1793 if (PromoteLoad(SDValue(N, 0))) 1794 RV = SDValue(N, 0); 1795 break; 1796 } 1797 } 1798 1799 // If N is a commutative binary node, try to eliminate it if the commuted 1800 // version is already present in the DAG. 1801 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1802 N->getNumValues() == 1) { 1803 SDValue N0 = N->getOperand(0); 1804 SDValue N1 = N->getOperand(1); 1805 1806 // Constant operands are canonicalized to RHS. 1807 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1808 SDValue Ops[] = {N1, N0}; 1809 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1810 N->getFlags()); 1811 if (CSENode) 1812 return SDValue(CSENode, 0); 1813 } 1814 } 1815 1816 return RV; 1817 } 1818 1819 /// Given a node, return its input chain if it has one, otherwise return a null 1820 /// sd operand. 1821 static SDValue getInputChainForNode(SDNode *N) { 1822 if (unsigned NumOps = N->getNumOperands()) { 1823 if (N->getOperand(0).getValueType() == MVT::Other) 1824 return N->getOperand(0); 1825 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1826 return N->getOperand(NumOps-1); 1827 for (unsigned i = 1; i < NumOps-1; ++i) 1828 if (N->getOperand(i).getValueType() == MVT::Other) 1829 return N->getOperand(i); 1830 } 1831 return SDValue(); 1832 } 1833 1834 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1835 // If N has two operands, where one has an input chain equal to the other, 1836 // the 'other' chain is redundant. 1837 if (N->getNumOperands() == 2) { 1838 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1839 return N->getOperand(0); 1840 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1841 return N->getOperand(1); 1842 } 1843 1844 // Don't simplify token factors if optnone. 1845 if (OptLevel == CodeGenOpt::None) 1846 return SDValue(); 1847 1848 // Don't simplify the token factor if the node itself has too many operands. 1849 if (N->getNumOperands() > TokenFactorInlineLimit) 1850 return SDValue(); 1851 1852 // If the sole user is a token factor, we should make sure we have a 1853 // chance to merge them together. This prevents TF chains from inhibiting 1854 // optimizations. 1855 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1856 AddToWorklist(*(N->use_begin())); 1857 1858 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1859 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1860 SmallPtrSet<SDNode*, 16> SeenOps; 1861 bool Changed = false; // If we should replace this token factor. 1862 1863 // Start out with this token factor. 1864 TFs.push_back(N); 1865 1866 // Iterate through token factors. The TFs grows when new token factors are 1867 // encountered. 1868 for (unsigned i = 0; i < TFs.size(); ++i) { 1869 // Limit number of nodes to inline, to avoid quadratic compile times. 1870 // We have to add the outstanding Token Factors to Ops, otherwise we might 1871 // drop Ops from the resulting Token Factors. 1872 if (Ops.size() > TokenFactorInlineLimit) { 1873 for (unsigned j = i; j < TFs.size(); j++) 1874 Ops.emplace_back(TFs[j], 0); 1875 // Drop unprocessed Token Factors from TFs, so we do not add them to the 1876 // combiner worklist later. 1877 TFs.resize(i); 1878 break; 1879 } 1880 1881 SDNode *TF = TFs[i]; 1882 // Check each of the operands. 1883 for (const SDValue &Op : TF->op_values()) { 1884 switch (Op.getOpcode()) { 1885 case ISD::EntryToken: 1886 // Entry tokens don't need to be added to the list. They are 1887 // redundant. 1888 Changed = true; 1889 break; 1890 1891 case ISD::TokenFactor: 1892 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1893 // Queue up for processing. 1894 TFs.push_back(Op.getNode()); 1895 Changed = true; 1896 break; 1897 } 1898 LLVM_FALLTHROUGH; 1899 1900 default: 1901 // Only add if it isn't already in the list. 1902 if (SeenOps.insert(Op.getNode()).second) 1903 Ops.push_back(Op); 1904 else 1905 Changed = true; 1906 break; 1907 } 1908 } 1909 } 1910 1911 // Re-visit inlined Token Factors, to clean them up in case they have been 1912 // removed. Skip the first Token Factor, as this is the current node. 1913 for (unsigned i = 1, e = TFs.size(); i < e; i++) 1914 AddToWorklist(TFs[i]); 1915 1916 // Remove Nodes that are chained to another node in the list. Do so 1917 // by walking up chains breath-first stopping when we've seen 1918 // another operand. In general we must climb to the EntryNode, but we can exit 1919 // early if we find all remaining work is associated with just one operand as 1920 // no further pruning is possible. 1921 1922 // List of nodes to search through and original Ops from which they originate. 1923 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1924 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1925 SmallPtrSet<SDNode *, 16> SeenChains; 1926 bool DidPruneOps = false; 1927 1928 unsigned NumLeftToConsider = 0; 1929 for (const SDValue &Op : Ops) { 1930 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1931 OpWorkCount.push_back(1); 1932 } 1933 1934 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1935 // If this is an Op, we can remove the op from the list. Remark any 1936 // search associated with it as from the current OpNumber. 1937 if (SeenOps.contains(Op)) { 1938 Changed = true; 1939 DidPruneOps = true; 1940 unsigned OrigOpNumber = 0; 1941 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1942 OrigOpNumber++; 1943 assert((OrigOpNumber != Ops.size()) && 1944 "expected to find TokenFactor Operand"); 1945 // Re-mark worklist from OrigOpNumber to OpNumber 1946 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1947 if (Worklist[i].second == OrigOpNumber) { 1948 Worklist[i].second = OpNumber; 1949 } 1950 } 1951 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1952 OpWorkCount[OrigOpNumber] = 0; 1953 NumLeftToConsider--; 1954 } 1955 // Add if it's a new chain 1956 if (SeenChains.insert(Op).second) { 1957 OpWorkCount[OpNumber]++; 1958 Worklist.push_back(std::make_pair(Op, OpNumber)); 1959 } 1960 }; 1961 1962 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1963 // We need at least be consider at least 2 Ops to prune. 1964 if (NumLeftToConsider <= 1) 1965 break; 1966 auto CurNode = Worklist[i].first; 1967 auto CurOpNumber = Worklist[i].second; 1968 assert((OpWorkCount[CurOpNumber] > 0) && 1969 "Node should not appear in worklist"); 1970 switch (CurNode->getOpcode()) { 1971 case ISD::EntryToken: 1972 // Hitting EntryToken is the only way for the search to terminate without 1973 // hitting 1974 // another operand's search. Prevent us from marking this operand 1975 // considered. 1976 NumLeftToConsider++; 1977 break; 1978 case ISD::TokenFactor: 1979 for (const SDValue &Op : CurNode->op_values()) 1980 AddToWorklist(i, Op.getNode(), CurOpNumber); 1981 break; 1982 case ISD::LIFETIME_START: 1983 case ISD::LIFETIME_END: 1984 case ISD::CopyFromReg: 1985 case ISD::CopyToReg: 1986 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 1987 break; 1988 default: 1989 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 1990 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 1991 break; 1992 } 1993 OpWorkCount[CurOpNumber]--; 1994 if (OpWorkCount[CurOpNumber] == 0) 1995 NumLeftToConsider--; 1996 } 1997 1998 // If we've changed things around then replace token factor. 1999 if (Changed) { 2000 SDValue Result; 2001 if (Ops.empty()) { 2002 // The entry token is the only possible outcome. 2003 Result = DAG.getEntryNode(); 2004 } else { 2005 if (DidPruneOps) { 2006 SmallVector<SDValue, 8> PrunedOps; 2007 // 2008 for (const SDValue &Op : Ops) { 2009 if (SeenChains.count(Op.getNode()) == 0) 2010 PrunedOps.push_back(Op); 2011 } 2012 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 2013 } else { 2014 Result = DAG.getTokenFactor(SDLoc(N), Ops); 2015 } 2016 } 2017 return Result; 2018 } 2019 return SDValue(); 2020 } 2021 2022 /// MERGE_VALUES can always be eliminated. 2023 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 2024 WorklistRemover DeadNodes(*this); 2025 // Replacing results may cause a different MERGE_VALUES to suddenly 2026 // be CSE'd with N, and carry its uses with it. Iterate until no 2027 // uses remain, to ensure that the node can be safely deleted. 2028 // First add the users of this node to the work list so that they 2029 // can be tried again once they have new operands. 2030 AddUsersToWorklist(N); 2031 do { 2032 // Do as a single replacement to avoid rewalking use lists. 2033 SmallVector<SDValue, 8> Ops; 2034 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 2035 Ops.push_back(N->getOperand(i)); 2036 DAG.ReplaceAllUsesWith(N, Ops.data()); 2037 } while (!N->use_empty()); 2038 deleteAndRecombine(N); 2039 return SDValue(N, 0); // Return N so it doesn't get rechecked! 2040 } 2041 2042 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 2043 /// ConstantSDNode pointer else nullptr. 2044 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 2045 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 2046 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 2047 } 2048 2049 /// Return true if 'Use' is a load or a store that uses N as its base pointer 2050 /// and that N may be folded in the load / store addressing mode. 2051 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, 2052 const TargetLowering &TLI) { 2053 EVT VT; 2054 unsigned AS; 2055 2056 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 2057 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2058 return false; 2059 VT = LD->getMemoryVT(); 2060 AS = LD->getAddressSpace(); 2061 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 2062 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2063 return false; 2064 VT = ST->getMemoryVT(); 2065 AS = ST->getAddressSpace(); 2066 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { 2067 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2068 return false; 2069 VT = LD->getMemoryVT(); 2070 AS = LD->getAddressSpace(); 2071 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { 2072 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2073 return false; 2074 VT = ST->getMemoryVT(); 2075 AS = ST->getAddressSpace(); 2076 } else 2077 return false; 2078 2079 TargetLowering::AddrMode AM; 2080 if (N->getOpcode() == ISD::ADD) { 2081 AM.HasBaseReg = true; 2082 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2083 if (Offset) 2084 // [reg +/- imm] 2085 AM.BaseOffs = Offset->getSExtValue(); 2086 else 2087 // [reg +/- reg] 2088 AM.Scale = 1; 2089 } else if (N->getOpcode() == ISD::SUB) { 2090 AM.HasBaseReg = true; 2091 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2092 if (Offset) 2093 // [reg +/- imm] 2094 AM.BaseOffs = -Offset->getSExtValue(); 2095 else 2096 // [reg +/- reg] 2097 AM.Scale = 1; 2098 } else 2099 return false; 2100 2101 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 2102 VT.getTypeForEVT(*DAG.getContext()), AS); 2103 } 2104 2105 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 2106 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 2107 "Unexpected binary operator"); 2108 2109 // Don't do this unless the old select is going away. We want to eliminate the 2110 // binary operator, not replace a binop with a select. 2111 // TODO: Handle ISD::SELECT_CC. 2112 unsigned SelOpNo = 0; 2113 SDValue Sel = BO->getOperand(0); 2114 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 2115 SelOpNo = 1; 2116 Sel = BO->getOperand(1); 2117 } 2118 2119 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 2120 return SDValue(); 2121 2122 SDValue CT = Sel.getOperand(1); 2123 if (!isConstantOrConstantVector(CT, true) && 2124 !DAG.isConstantFPBuildVectorOrConstantFP(CT)) 2125 return SDValue(); 2126 2127 SDValue CF = Sel.getOperand(2); 2128 if (!isConstantOrConstantVector(CF, true) && 2129 !DAG.isConstantFPBuildVectorOrConstantFP(CF)) 2130 return SDValue(); 2131 2132 // Bail out if any constants are opaque because we can't constant fold those. 2133 // The exception is "and" and "or" with either 0 or -1 in which case we can 2134 // propagate non constant operands into select. I.e.: 2135 // and (select Cond, 0, -1), X --> select Cond, 0, X 2136 // or X, (select Cond, -1, 0) --> select Cond, -1, X 2137 auto BinOpcode = BO->getOpcode(); 2138 bool CanFoldNonConst = 2139 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 2140 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 2141 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 2142 2143 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 2144 if (!CanFoldNonConst && 2145 !isConstantOrConstantVector(CBO, true) && 2146 !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) 2147 return SDValue(); 2148 2149 EVT VT = BO->getValueType(0); 2150 2151 // We have a select-of-constants followed by a binary operator with a 2152 // constant. Eliminate the binop by pulling the constant math into the select. 2153 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2154 SDLoc DL(Sel); 2155 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2156 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2157 if (!CanFoldNonConst && !NewCT.isUndef() && 2158 !isConstantOrConstantVector(NewCT, true) && 2159 !DAG.isConstantFPBuildVectorOrConstantFP(NewCT)) 2160 return SDValue(); 2161 2162 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2163 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2164 if (!CanFoldNonConst && !NewCF.isUndef() && 2165 !isConstantOrConstantVector(NewCF, true) && 2166 !DAG.isConstantFPBuildVectorOrConstantFP(NewCF)) 2167 return SDValue(); 2168 2169 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2170 SelectOp->setFlags(BO->getFlags()); 2171 return SelectOp; 2172 } 2173 2174 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2175 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2176 "Expecting add or sub"); 2177 2178 // Match a constant operand and a zext operand for the math instruction: 2179 // add Z, C 2180 // sub C, Z 2181 bool IsAdd = N->getOpcode() == ISD::ADD; 2182 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2183 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2184 auto *CN = dyn_cast<ConstantSDNode>(C); 2185 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2186 return SDValue(); 2187 2188 // Match the zext operand as a setcc of a boolean. 2189 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2190 Z.getOperand(0).getValueType() != MVT::i1) 2191 return SDValue(); 2192 2193 // Match the compare as: setcc (X & 1), 0, eq. 2194 SDValue SetCC = Z.getOperand(0); 2195 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2196 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2197 SetCC.getOperand(0).getOpcode() != ISD::AND || 2198 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2199 return SDValue(); 2200 2201 // We are adding/subtracting a constant and an inverted low bit. Turn that 2202 // into a subtract/add of the low bit with incremented/decremented constant: 2203 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2204 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2205 EVT VT = C.getValueType(); 2206 SDLoc DL(N); 2207 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2208 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2209 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2210 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2211 } 2212 2213 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2214 /// a shift and add with a different constant. 2215 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2216 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2217 "Expecting add or sub"); 2218 2219 // We need a constant operand for the add/sub, and the other operand is a 2220 // logical shift right: add (srl), C or sub C, (srl). 2221 bool IsAdd = N->getOpcode() == ISD::ADD; 2222 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2223 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2224 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || 2225 ShiftOp.getOpcode() != ISD::SRL) 2226 return SDValue(); 2227 2228 // The shift must be of a 'not' value. 2229 SDValue Not = ShiftOp.getOperand(0); 2230 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2231 return SDValue(); 2232 2233 // The shift must be moving the sign bit to the least-significant-bit. 2234 EVT VT = ShiftOp.getValueType(); 2235 SDValue ShAmt = ShiftOp.getOperand(1); 2236 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2237 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) 2238 return SDValue(); 2239 2240 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2241 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2242 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2243 SDLoc DL(N); 2244 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2245 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2246 if (SDValue NewC = 2247 DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, 2248 {ConstantOp, DAG.getConstant(1, DL, VT)})) 2249 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); 2250 return SDValue(); 2251 } 2252 2253 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2254 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2255 /// are no common bits set in the operands). 2256 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2257 SDValue N0 = N->getOperand(0); 2258 SDValue N1 = N->getOperand(1); 2259 EVT VT = N0.getValueType(); 2260 SDLoc DL(N); 2261 2262 // fold vector ops 2263 if (VT.isVector()) { 2264 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2265 return FoldedVOp; 2266 2267 // fold (add x, 0) -> x, vector edition 2268 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2269 return N0; 2270 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 2271 return N1; 2272 } 2273 2274 // fold (add x, undef) -> undef 2275 if (N0.isUndef()) 2276 return N0; 2277 2278 if (N1.isUndef()) 2279 return N1; 2280 2281 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2282 // canonicalize constant to RHS 2283 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2284 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2285 // fold (add c1, c2) -> c1+c2 2286 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}); 2287 } 2288 2289 // fold (add x, 0) -> x 2290 if (isNullConstant(N1)) 2291 return N0; 2292 2293 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2294 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2295 if (N0.getOpcode() == ISD::SUB && 2296 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2297 SDValue Sub = 2298 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); 2299 assert(Sub && "Constant folding failed"); 2300 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2301 } 2302 2303 // fold ((c1-A)+c2) -> (c1+c2)-A 2304 if (N0.getOpcode() == ISD::SUB && 2305 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2306 SDValue Add = 2307 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); 2308 assert(Add && "Constant folding failed"); 2309 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2310 } 2311 2312 // add (sext i1 X), 1 -> zext (not i1 X) 2313 // We don't transform this pattern: 2314 // add (zext i1 X), -1 -> sext (not i1 X) 2315 // because most (?) targets generate better code for the zext form. 2316 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2317 isOneOrOneSplat(N1)) { 2318 SDValue X = N0.getOperand(0); 2319 if ((!LegalOperations || 2320 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2321 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2322 X.getScalarValueSizeInBits() == 1) { 2323 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2324 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2325 } 2326 } 2327 2328 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is 2329 // equivalent to (add x, c0). 2330 if (N0.getOpcode() == ISD::OR && 2331 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2332 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2333 if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, 2334 {N1, N0.getOperand(1)})) 2335 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2336 } 2337 } 2338 2339 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2340 return NewSel; 2341 2342 // reassociate add 2343 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { 2344 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2345 return RADD; 2346 2347 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is 2348 // equivalent to (add x, c). 2349 auto ReassociateAddOr = [&](SDValue N0, SDValue N1) { 2350 if (N0.getOpcode() == ISD::OR && N0.hasOneUse() && 2351 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2352 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2353 return DAG.getNode(ISD::ADD, DL, VT, 2354 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), 2355 N0.getOperand(1)); 2356 } 2357 return SDValue(); 2358 }; 2359 if (SDValue Add = ReassociateAddOr(N0, N1)) 2360 return Add; 2361 if (SDValue Add = ReassociateAddOr(N1, N0)) 2362 return Add; 2363 } 2364 // fold ((0-A) + B) -> B-A 2365 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2366 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2367 2368 // fold (A + (0-B)) -> A-B 2369 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2370 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2371 2372 // fold (A+(B-A)) -> B 2373 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2374 return N1.getOperand(0); 2375 2376 // fold ((B-A)+A) -> B 2377 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2378 return N0.getOperand(0); 2379 2380 // fold ((A-B)+(C-A)) -> (C-B) 2381 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2382 N0.getOperand(0) == N1.getOperand(1)) 2383 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2384 N0.getOperand(1)); 2385 2386 // fold ((A-B)+(B-C)) -> (A-C) 2387 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2388 N0.getOperand(1) == N1.getOperand(0)) 2389 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2390 N1.getOperand(1)); 2391 2392 // fold (A+(B-(A+C))) to (B-C) 2393 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2394 N0 == N1.getOperand(1).getOperand(0)) 2395 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2396 N1.getOperand(1).getOperand(1)); 2397 2398 // fold (A+(B-(C+A))) to (B-C) 2399 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2400 N0 == N1.getOperand(1).getOperand(1)) 2401 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2402 N1.getOperand(1).getOperand(0)); 2403 2404 // fold (A+((B-A)+or-C)) to (B+or-C) 2405 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2406 N1.getOperand(0).getOpcode() == ISD::SUB && 2407 N0 == N1.getOperand(0).getOperand(1)) 2408 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2409 N1.getOperand(1)); 2410 2411 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2412 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2413 SDValue N00 = N0.getOperand(0); 2414 SDValue N01 = N0.getOperand(1); 2415 SDValue N10 = N1.getOperand(0); 2416 SDValue N11 = N1.getOperand(1); 2417 2418 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2419 return DAG.getNode(ISD::SUB, DL, VT, 2420 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2421 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2422 } 2423 2424 // fold (add (umax X, C), -C) --> (usubsat X, C) 2425 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2426 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2427 return (!Max && !Op) || 2428 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2429 }; 2430 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2431 /*AllowUndefs*/ true)) 2432 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2433 N0.getOperand(1)); 2434 } 2435 2436 if (SimplifyDemandedBits(SDValue(N, 0))) 2437 return SDValue(N, 0); 2438 2439 if (isOneOrOneSplat(N1)) { 2440 // fold (add (xor a, -1), 1) -> (sub 0, a) 2441 if (isBitwiseNot(N0)) 2442 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2443 N0.getOperand(0)); 2444 2445 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2446 if (N0.getOpcode() == ISD::ADD) { 2447 SDValue A, Xor; 2448 2449 if (isBitwiseNot(N0.getOperand(0))) { 2450 A = N0.getOperand(1); 2451 Xor = N0.getOperand(0); 2452 } else if (isBitwiseNot(N0.getOperand(1))) { 2453 A = N0.getOperand(0); 2454 Xor = N0.getOperand(1); 2455 } 2456 2457 if (Xor) 2458 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2459 } 2460 2461 // Look for: 2462 // add (add x, y), 1 2463 // And if the target does not like this form then turn into: 2464 // sub y, (xor x, -1) 2465 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2466 N0.getOpcode() == ISD::ADD) { 2467 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2468 DAG.getAllOnesConstant(DL, VT)); 2469 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); 2470 } 2471 } 2472 2473 // (x - y) + -1 -> add (xor y, -1), x 2474 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2475 isAllOnesOrAllOnesSplat(N1)) { 2476 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2477 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2478 } 2479 2480 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2481 return Combined; 2482 2483 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2484 return Combined; 2485 2486 return SDValue(); 2487 } 2488 2489 SDValue DAGCombiner::visitADD(SDNode *N) { 2490 SDValue N0 = N->getOperand(0); 2491 SDValue N1 = N->getOperand(1); 2492 EVT VT = N0.getValueType(); 2493 SDLoc DL(N); 2494 2495 if (SDValue Combined = visitADDLike(N)) 2496 return Combined; 2497 2498 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2499 return V; 2500 2501 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2502 return V; 2503 2504 // fold (a+b) -> (a|b) iff a and b share no bits. 2505 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2506 DAG.haveNoCommonBitsSet(N0, N1)) 2507 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2508 2509 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). 2510 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { 2511 const APInt &C0 = N0->getConstantOperandAPInt(0); 2512 const APInt &C1 = N1->getConstantOperandAPInt(0); 2513 return DAG.getVScale(DL, VT, C0 + C1); 2514 } 2515 2516 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) 2517 if ((N0.getOpcode() == ISD::ADD) && 2518 (N0.getOperand(1).getOpcode() == ISD::VSCALE) && 2519 (N1.getOpcode() == ISD::VSCALE)) { 2520 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2521 const APInt &VS1 = N1->getConstantOperandAPInt(0); 2522 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); 2523 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); 2524 } 2525 2526 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2)) 2527 if (N0.getOpcode() == ISD::STEP_VECTOR && 2528 N1.getOpcode() == ISD::STEP_VECTOR) { 2529 const APInt &C0 = N0->getConstantOperandAPInt(0); 2530 const APInt &C1 = N1->getConstantOperandAPInt(0); 2531 APInt NewStep = C0 + C1; 2532 return DAG.getStepVector(DL, VT, NewStep); 2533 } 2534 2535 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2) 2536 if ((N0.getOpcode() == ISD::ADD) && 2537 (N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR) && 2538 (N1.getOpcode() == ISD::STEP_VECTOR)) { 2539 const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2540 const APInt &SV1 = N1->getConstantOperandAPInt(0); 2541 APInt NewStep = SV0 + SV1; 2542 SDValue SV = DAG.getStepVector(DL, VT, NewStep); 2543 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV); 2544 } 2545 2546 return SDValue(); 2547 } 2548 2549 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2550 unsigned Opcode = N->getOpcode(); 2551 SDValue N0 = N->getOperand(0); 2552 SDValue N1 = N->getOperand(1); 2553 EVT VT = N0.getValueType(); 2554 SDLoc DL(N); 2555 2556 // fold vector ops 2557 if (VT.isVector()) { 2558 // TODO SimplifyVBinOp 2559 2560 // fold (add_sat x, 0) -> x, vector edition 2561 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2562 return N0; 2563 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 2564 return N1; 2565 } 2566 2567 // fold (add_sat x, undef) -> -1 2568 if (N0.isUndef() || N1.isUndef()) 2569 return DAG.getAllOnesConstant(DL, VT); 2570 2571 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2572 // canonicalize constant to RHS 2573 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2574 return DAG.getNode(Opcode, DL, VT, N1, N0); 2575 // fold (add_sat c1, c2) -> c3 2576 return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}); 2577 } 2578 2579 // fold (add_sat x, 0) -> x 2580 if (isNullConstant(N1)) 2581 return N0; 2582 2583 // If it cannot overflow, transform into an add. 2584 if (Opcode == ISD::UADDSAT) 2585 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2586 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2587 2588 return SDValue(); 2589 } 2590 2591 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2592 bool Masked = false; 2593 2594 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2595 while (true) { 2596 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2597 V = V.getOperand(0); 2598 continue; 2599 } 2600 2601 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2602 Masked = true; 2603 V = V.getOperand(0); 2604 continue; 2605 } 2606 2607 break; 2608 } 2609 2610 // If this is not a carry, return. 2611 if (V.getResNo() != 1) 2612 return SDValue(); 2613 2614 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2615 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2616 return SDValue(); 2617 2618 EVT VT = V.getNode()->getValueType(0); 2619 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2620 return SDValue(); 2621 2622 // If the result is masked, then no matter what kind of bool it is we can 2623 // return. If it isn't, then we need to make sure the bool type is either 0 or 2624 // 1 and not other values. 2625 if (Masked || 2626 TLI.getBooleanContents(V.getValueType()) == 2627 TargetLoweringBase::ZeroOrOneBooleanContent) 2628 return V; 2629 2630 return SDValue(); 2631 } 2632 2633 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2634 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2635 /// the opcode and bypass the mask operation. 2636 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2637 SelectionDAG &DAG, const SDLoc &DL) { 2638 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2639 return SDValue(); 2640 2641 EVT VT = N0.getValueType(); 2642 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2643 return SDValue(); 2644 2645 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2646 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2647 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2648 } 2649 2650 /// Helper for doing combines based on N0 and N1 being added to each other. 2651 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2652 SDNode *LocReference) { 2653 EVT VT = N0.getValueType(); 2654 SDLoc DL(LocReference); 2655 2656 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2657 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2658 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2659 return DAG.getNode(ISD::SUB, DL, VT, N0, 2660 DAG.getNode(ISD::SHL, DL, VT, 2661 N1.getOperand(0).getOperand(1), 2662 N1.getOperand(1))); 2663 2664 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2665 return V; 2666 2667 // Look for: 2668 // add (add x, 1), y 2669 // And if the target does not like this form then turn into: 2670 // sub y, (xor x, -1) 2671 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2672 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { 2673 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2674 DAG.getAllOnesConstant(DL, VT)); 2675 return DAG.getNode(ISD::SUB, DL, VT, N1, Not); 2676 } 2677 2678 // Hoist one-use subtraction by non-opaque constant: 2679 // (x - C) + y -> (x + y) - C 2680 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2681 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2682 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2683 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2684 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2685 } 2686 // Hoist one-use subtraction from non-opaque constant: 2687 // (C - x) + y -> (y - x) + C 2688 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2689 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 2690 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2691 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); 2692 } 2693 2694 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2695 // rather than 'add 0/-1' (the zext should get folded). 2696 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2697 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2698 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2699 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2700 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2701 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2702 } 2703 2704 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2705 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2706 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2707 if (TN->getVT() == MVT::i1) { 2708 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2709 DAG.getConstant(1, DL, VT)); 2710 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2711 } 2712 } 2713 2714 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2715 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2716 N1.getResNo() == 0) 2717 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2718 N0, N1.getOperand(0), N1.getOperand(2)); 2719 2720 // (add X, Carry) -> (addcarry X, 0, Carry) 2721 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2722 if (SDValue Carry = getAsCarry(TLI, N1)) 2723 return DAG.getNode(ISD::ADDCARRY, DL, 2724 DAG.getVTList(VT, Carry.getValueType()), N0, 2725 DAG.getConstant(0, DL, VT), Carry); 2726 2727 return SDValue(); 2728 } 2729 2730 SDValue DAGCombiner::visitADDC(SDNode *N) { 2731 SDValue N0 = N->getOperand(0); 2732 SDValue N1 = N->getOperand(1); 2733 EVT VT = N0.getValueType(); 2734 SDLoc DL(N); 2735 2736 // If the flag result is dead, turn this into an ADD. 2737 if (!N->hasAnyUseOfValue(1)) 2738 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2739 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2740 2741 // canonicalize constant to RHS. 2742 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2743 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2744 if (N0C && !N1C) 2745 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2746 2747 // fold (addc x, 0) -> x + no carry out 2748 if (isNullConstant(N1)) 2749 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2750 DL, MVT::Glue)); 2751 2752 // If it cannot overflow, transform into an add. 2753 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2754 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2755 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2756 2757 return SDValue(); 2758 } 2759 2760 /** 2761 * Flips a boolean if it is cheaper to compute. If the Force parameters is set, 2762 * then the flip also occurs if computing the inverse is the same cost. 2763 * This function returns an empty SDValue in case it cannot flip the boolean 2764 * without increasing the cost of the computation. If you want to flip a boolean 2765 * no matter what, use DAG.getLogicalNOT. 2766 */ 2767 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, 2768 const TargetLowering &TLI, 2769 bool Force) { 2770 if (Force && isa<ConstantSDNode>(V)) 2771 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2772 2773 if (V.getOpcode() != ISD::XOR) 2774 return SDValue(); 2775 2776 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2777 if (!Const) 2778 return SDValue(); 2779 2780 EVT VT = V.getValueType(); 2781 2782 bool IsFlip = false; 2783 switch(TLI.getBooleanContents(VT)) { 2784 case TargetLowering::ZeroOrOneBooleanContent: 2785 IsFlip = Const->isOne(); 2786 break; 2787 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2788 IsFlip = Const->isAllOnes(); 2789 break; 2790 case TargetLowering::UndefinedBooleanContent: 2791 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2792 break; 2793 } 2794 2795 if (IsFlip) 2796 return V.getOperand(0); 2797 if (Force) 2798 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2799 return SDValue(); 2800 } 2801 2802 SDValue DAGCombiner::visitADDO(SDNode *N) { 2803 SDValue N0 = N->getOperand(0); 2804 SDValue N1 = N->getOperand(1); 2805 EVT VT = N0.getValueType(); 2806 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2807 2808 EVT CarryVT = N->getValueType(1); 2809 SDLoc DL(N); 2810 2811 // If the flag result is dead, turn this into an ADD. 2812 if (!N->hasAnyUseOfValue(1)) 2813 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2814 DAG.getUNDEF(CarryVT)); 2815 2816 // canonicalize constant to RHS. 2817 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2818 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2819 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2820 2821 // fold (addo x, 0) -> x + no carry out 2822 if (isNullOrNullSplat(N1)) 2823 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2824 2825 if (!IsSigned) { 2826 // If it cannot overflow, transform into an add. 2827 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2828 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2829 DAG.getConstant(0, DL, CarryVT)); 2830 2831 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2832 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2833 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2834 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2835 return CombineTo( 2836 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 2837 } 2838 2839 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2840 return Combined; 2841 2842 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2843 return Combined; 2844 } 2845 2846 return SDValue(); 2847 } 2848 2849 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2850 EVT VT = N0.getValueType(); 2851 if (VT.isVector()) 2852 return SDValue(); 2853 2854 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2855 // If Y + 1 cannot overflow. 2856 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2857 SDValue Y = N1.getOperand(0); 2858 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2859 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2860 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2861 N1.getOperand(2)); 2862 } 2863 2864 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2865 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2866 if (SDValue Carry = getAsCarry(TLI, N1)) 2867 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2868 DAG.getConstant(0, SDLoc(N), VT), Carry); 2869 2870 return SDValue(); 2871 } 2872 2873 SDValue DAGCombiner::visitADDE(SDNode *N) { 2874 SDValue N0 = N->getOperand(0); 2875 SDValue N1 = N->getOperand(1); 2876 SDValue CarryIn = N->getOperand(2); 2877 2878 // canonicalize constant to RHS 2879 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2880 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2881 if (N0C && !N1C) 2882 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2883 N1, N0, CarryIn); 2884 2885 // fold (adde x, y, false) -> (addc x, y) 2886 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2887 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2888 2889 return SDValue(); 2890 } 2891 2892 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2893 SDValue N0 = N->getOperand(0); 2894 SDValue N1 = N->getOperand(1); 2895 SDValue CarryIn = N->getOperand(2); 2896 SDLoc DL(N); 2897 2898 // canonicalize constant to RHS 2899 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2900 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2901 if (N0C && !N1C) 2902 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2903 2904 // fold (addcarry x, y, false) -> (uaddo x, y) 2905 if (isNullConstant(CarryIn)) { 2906 if (!LegalOperations || 2907 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2908 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2909 } 2910 2911 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 2912 if (isNullConstant(N0) && isNullConstant(N1)) { 2913 EVT VT = N0.getValueType(); 2914 EVT CarryVT = CarryIn.getValueType(); 2915 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 2916 AddToWorklist(CarryExt.getNode()); 2917 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 2918 DAG.getConstant(1, DL, VT)), 2919 DAG.getConstant(0, DL, CarryVT)); 2920 } 2921 2922 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 2923 return Combined; 2924 2925 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 2926 return Combined; 2927 2928 return SDValue(); 2929 } 2930 2931 SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { 2932 SDValue N0 = N->getOperand(0); 2933 SDValue N1 = N->getOperand(1); 2934 SDValue CarryIn = N->getOperand(2); 2935 SDLoc DL(N); 2936 2937 // canonicalize constant to RHS 2938 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2939 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2940 if (N0C && !N1C) 2941 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); 2942 2943 // fold (saddo_carry x, y, false) -> (saddo x, y) 2944 if (isNullConstant(CarryIn)) { 2945 if (!LegalOperations || 2946 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) 2947 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); 2948 } 2949 2950 return SDValue(); 2951 } 2952 2953 /** 2954 * If we are facing some sort of diamond carry propapagtion pattern try to 2955 * break it up to generate something like: 2956 * (addcarry X, 0, (addcarry A, B, Z):Carry) 2957 * 2958 * The end result is usually an increase in operation required, but because the 2959 * carry is now linearized, other tranforms can kick in and optimize the DAG. 2960 * 2961 * Patterns typically look something like 2962 * (uaddo A, B) 2963 * / \ 2964 * Carry Sum 2965 * | \ 2966 * | (addcarry *, 0, Z) 2967 * | / 2968 * \ Carry 2969 * | / 2970 * (addcarry X, *, *) 2971 * 2972 * But numerous variation exist. Our goal is to identify A, B, X and Z and 2973 * produce a combine with a single path for carry propagation. 2974 */ 2975 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 2976 SDValue X, SDValue Carry0, SDValue Carry1, 2977 SDNode *N) { 2978 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) 2979 return SDValue(); 2980 if (Carry1.getOpcode() != ISD::UADDO) 2981 return SDValue(); 2982 2983 SDValue Z; 2984 2985 /** 2986 * First look for a suitable Z. It will present itself in the form of 2987 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true 2988 */ 2989 if (Carry0.getOpcode() == ISD::ADDCARRY && 2990 isNullConstant(Carry0.getOperand(1))) { 2991 Z = Carry0.getOperand(2); 2992 } else if (Carry0.getOpcode() == ISD::UADDO && 2993 isOneConstant(Carry0.getOperand(1))) { 2994 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); 2995 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); 2996 } else { 2997 // We couldn't find a suitable Z. 2998 return SDValue(); 2999 } 3000 3001 3002 auto cancelDiamond = [&](SDValue A,SDValue B) { 3003 SDLoc DL(N); 3004 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); 3005 Combiner.AddToWorklist(NewY.getNode()); 3006 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, 3007 DAG.getConstant(0, DL, X.getValueType()), 3008 NewY.getValue(1)); 3009 }; 3010 3011 /** 3012 * (uaddo A, B) 3013 * | 3014 * Sum 3015 * | 3016 * (addcarry *, 0, Z) 3017 */ 3018 if (Carry0.getOperand(0) == Carry1.getValue(0)) { 3019 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); 3020 } 3021 3022 /** 3023 * (addcarry A, 0, Z) 3024 * | 3025 * Sum 3026 * | 3027 * (uaddo *, B) 3028 */ 3029 if (Carry1.getOperand(0) == Carry0.getValue(0)) { 3030 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); 3031 } 3032 3033 if (Carry1.getOperand(1) == Carry0.getValue(0)) { 3034 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); 3035 } 3036 3037 return SDValue(); 3038 } 3039 3040 // If we are facing some sort of diamond carry/borrow in/out pattern try to 3041 // match patterns like: 3042 // 3043 // (uaddo A, B) CarryIn 3044 // | \ | 3045 // | \ | 3046 // PartialSum PartialCarryOutX / 3047 // | | / 3048 // | ____|____________/ 3049 // | / | 3050 // (uaddo *, *) \________ 3051 // | \ \ 3052 // | \ | 3053 // | PartialCarryOutY | 3054 // | \ | 3055 // | \ / 3056 // AddCarrySum | ______/ 3057 // | / 3058 // CarryOut = (or *, *) 3059 // 3060 // And generate ADDCARRY (or SUBCARRY) with two result values: 3061 // 3062 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) 3063 // 3064 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with 3065 // a single path for carry/borrow out propagation: 3066 static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 3067 const TargetLowering &TLI, SDValue Carry0, 3068 SDValue Carry1, SDNode *N) { 3069 if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) 3070 return SDValue(); 3071 unsigned Opcode = Carry0.getOpcode(); 3072 if (Opcode != Carry1.getOpcode()) 3073 return SDValue(); 3074 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) 3075 return SDValue(); 3076 3077 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the 3078 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in 3079 // the above ASCII art.) 3080 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3081 Carry1.getOperand(1) != Carry0.getValue(0)) 3082 std::swap(Carry0, Carry1); 3083 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3084 Carry1.getOperand(1) != Carry0.getValue(0)) 3085 return SDValue(); 3086 3087 // The carry in value must be on the righthand side for subtraction. 3088 unsigned CarryInOperandNum = 3089 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; 3090 if (Opcode == ISD::USUBO && CarryInOperandNum != 1) 3091 return SDValue(); 3092 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); 3093 3094 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; 3095 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) 3096 return SDValue(); 3097 3098 // Verify that the carry/borrow in is plausibly a carry/borrow bit. 3099 // TODO: make getAsCarry() aware of how partial carries are merged. 3100 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) 3101 return SDValue(); 3102 CarryIn = CarryIn.getOperand(0); 3103 if (CarryIn.getValueType() != MVT::i1) 3104 return SDValue(); 3105 3106 SDLoc DL(N); 3107 SDValue Merged = 3108 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), 3109 Carry0.getOperand(1), CarryIn); 3110 3111 // Please note that because we have proven that the result of the UADDO/USUBO 3112 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can 3113 // therefore prove that if the first UADDO/USUBO overflows, the second 3114 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the 3115 // maximum value. 3116 // 3117 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry 3118 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) 3119 // 3120 // This is important because it means that OR and XOR can be used to merge 3121 // carry flags; and that AND can return a constant zero. 3122 // 3123 // TODO: match other operations that can merge flags (ADD, etc) 3124 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); 3125 if (N->getOpcode() == ISD::AND) 3126 return DAG.getConstant(0, DL, MVT::i1); 3127 return Merged.getValue(1); 3128 } 3129 3130 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 3131 SDNode *N) { 3132 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. 3133 if (isBitwiseNot(N0)) 3134 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { 3135 SDLoc DL(N); 3136 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, 3137 N0.getOperand(0), NotC); 3138 return CombineTo( 3139 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 3140 } 3141 3142 // Iff the flag result is dead: 3143 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 3144 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo 3145 // or the dependency between the instructions. 3146 if ((N0.getOpcode() == ISD::ADD || 3147 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && 3148 N0.getValue(1) != CarryIn)) && 3149 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 3150 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 3151 N0.getOperand(0), N0.getOperand(1), CarryIn); 3152 3153 /** 3154 * When one of the addcarry argument is itself a carry, we may be facing 3155 * a diamond carry propagation. In which case we try to transform the DAG 3156 * to ensure linear carry propagation if that is possible. 3157 */ 3158 if (auto Y = getAsCarry(TLI, N1)) { 3159 // Because both are carries, Y and Z can be swapped. 3160 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) 3161 return R; 3162 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) 3163 return R; 3164 } 3165 3166 return SDValue(); 3167 } 3168 3169 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a 3170 // clamp/truncation if necessary. 3171 static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, 3172 SDValue RHS, SelectionDAG &DAG, 3173 const SDLoc &DL) { 3174 assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && 3175 "Illegal truncation"); 3176 3177 if (DstVT == SrcVT) 3178 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3179 3180 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by 3181 // clamping RHS. 3182 APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(), 3183 DstVT.getScalarSizeInBits()); 3184 if (!DAG.MaskedValueIsZero(LHS, UpperBits)) 3185 return SDValue(); 3186 3187 SDValue SatLimit = 3188 DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(), 3189 DstVT.getScalarSizeInBits()), 3190 DL, SrcVT); 3191 RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit); 3192 RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS); 3193 LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS); 3194 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3195 } 3196 3197 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to 3198 // usubsat(a,b), optionally as a truncated type. 3199 SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) { 3200 if (N->getOpcode() != ISD::SUB || 3201 !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT))) 3202 return SDValue(); 3203 3204 EVT SubVT = N->getValueType(0); 3205 SDValue Op0 = N->getOperand(0); 3206 SDValue Op1 = N->getOperand(1); 3207 3208 // Try to find umax(a,b) - b or a - umin(a,b) patterns 3209 // they may be converted to usubsat(a,b). 3210 if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 3211 SDValue MaxLHS = Op0.getOperand(0); 3212 SDValue MaxRHS = Op0.getOperand(1); 3213 if (MaxLHS == Op1) 3214 return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N)); 3215 if (MaxRHS == Op1) 3216 return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N)); 3217 } 3218 3219 if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) { 3220 SDValue MinLHS = Op1.getOperand(0); 3221 SDValue MinRHS = Op1.getOperand(1); 3222 if (MinLHS == Op0) 3223 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N)); 3224 if (MinRHS == Op0) 3225 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N)); 3226 } 3227 3228 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit))) 3229 if (Op1.getOpcode() == ISD::TRUNCATE && 3230 Op1.getOperand(0).getOpcode() == ISD::UMIN && 3231 Op1.getOperand(0).hasOneUse()) { 3232 SDValue MinLHS = Op1.getOperand(0).getOperand(0); 3233 SDValue MinRHS = Op1.getOperand(0).getOperand(1); 3234 if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0) 3235 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS, 3236 DAG, SDLoc(N)); 3237 if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0) 3238 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS, 3239 DAG, SDLoc(N)); 3240 } 3241 3242 return SDValue(); 3243 } 3244 3245 // Since it may not be valid to emit a fold to zero for vector initializers 3246 // check if we can before folding. 3247 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 3248 SelectionDAG &DAG, bool LegalOperations) { 3249 if (!VT.isVector()) 3250 return DAG.getConstant(0, DL, VT); 3251 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 3252 return DAG.getConstant(0, DL, VT); 3253 return SDValue(); 3254 } 3255 3256 SDValue DAGCombiner::visitSUB(SDNode *N) { 3257 SDValue N0 = N->getOperand(0); 3258 SDValue N1 = N->getOperand(1); 3259 EVT VT = N0.getValueType(); 3260 SDLoc DL(N); 3261 3262 // fold vector ops 3263 if (VT.isVector()) { 3264 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3265 return FoldedVOp; 3266 3267 // fold (sub x, 0) -> x, vector edition 3268 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3269 return N0; 3270 } 3271 3272 // fold (sub x, x) -> 0 3273 // FIXME: Refactor this and xor and other similar operations together. 3274 if (N0 == N1) 3275 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 3276 3277 // fold (sub c1, c2) -> c3 3278 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) 3279 return C; 3280 3281 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3282 return NewSel; 3283 3284 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3285 3286 // fold (sub x, c) -> (add x, -c) 3287 if (N1C) { 3288 return DAG.getNode(ISD::ADD, DL, VT, N0, 3289 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3290 } 3291 3292 if (isNullOrNullSplat(N0)) { 3293 unsigned BitWidth = VT.getScalarSizeInBits(); 3294 // Right-shifting everything out but the sign bit followed by negation is 3295 // the same as flipping arithmetic/logical shift type without the negation: 3296 // -(X >>u 31) -> (X >>s 31) 3297 // -(X >>s 31) -> (X >>u 31) 3298 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 3299 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 3300 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { 3301 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 3302 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 3303 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 3304 } 3305 } 3306 3307 // 0 - X --> 0 if the sub is NUW. 3308 if (N->getFlags().hasNoUnsignedWrap()) 3309 return N0; 3310 3311 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 3312 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 3313 // N1 must be 0 because negating the minimum signed value is undefined. 3314 if (N->getFlags().hasNoSignedWrap()) 3315 return N0; 3316 3317 // 0 - X --> X if X is 0 or the minimum signed value. 3318 return N1; 3319 } 3320 3321 // Convert 0 - abs(x). 3322 SDValue Result; 3323 if (N1->getOpcode() == ISD::ABS && 3324 !TLI.isOperationLegalOrCustom(ISD::ABS, VT) && 3325 TLI.expandABS(N1.getNode(), Result, DAG, true)) 3326 return Result; 3327 3328 // Fold neg(splat(neg(x)) -> splat(x) 3329 if (VT.isVector()) { 3330 SDValue N1S = DAG.getSplatValue(N1, true); 3331 if (N1S && N1S.getOpcode() == ISD::SUB && 3332 isNullConstant(N1S.getOperand(0))) { 3333 if (VT.isScalableVector()) 3334 return DAG.getSplatVector(VT, DL, N1S.getOperand(1)); 3335 return DAG.getSplatBuildVector(VT, DL, N1S.getOperand(1)); 3336 } 3337 } 3338 } 3339 3340 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 3341 if (isAllOnesOrAllOnesSplat(N0)) 3342 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 3343 3344 // fold (A - (0-B)) -> A+B 3345 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 3346 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 3347 3348 // fold A-(A-B) -> B 3349 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 3350 return N1.getOperand(1); 3351 3352 // fold (A+B)-A -> B 3353 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 3354 return N0.getOperand(1); 3355 3356 // fold (A+B)-B -> A 3357 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 3358 return N0.getOperand(0); 3359 3360 // fold (A+C1)-C2 -> A+(C1-C2) 3361 if (N0.getOpcode() == ISD::ADD && 3362 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3363 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3364 SDValue NewC = 3365 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); 3366 assert(NewC && "Constant folding failed"); 3367 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 3368 } 3369 3370 // fold C2-(A+C1) -> (C2-C1)-A 3371 if (N1.getOpcode() == ISD::ADD) { 3372 SDValue N11 = N1.getOperand(1); 3373 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 3374 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 3375 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); 3376 assert(NewC && "Constant folding failed"); 3377 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 3378 } 3379 } 3380 3381 // fold (A-C1)-C2 -> A-(C1+C2) 3382 if (N0.getOpcode() == ISD::SUB && 3383 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3384 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3385 SDValue NewC = 3386 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); 3387 assert(NewC && "Constant folding failed"); 3388 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 3389 } 3390 3391 // fold (c1-A)-c2 -> (c1-c2)-A 3392 if (N0.getOpcode() == ISD::SUB && 3393 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3394 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 3395 SDValue NewC = 3396 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); 3397 assert(NewC && "Constant folding failed"); 3398 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 3399 } 3400 3401 // fold ((A+(B+or-C))-B) -> A+or-C 3402 if (N0.getOpcode() == ISD::ADD && 3403 (N0.getOperand(1).getOpcode() == ISD::SUB || 3404 N0.getOperand(1).getOpcode() == ISD::ADD) && 3405 N0.getOperand(1).getOperand(0) == N1) 3406 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 3407 N0.getOperand(1).getOperand(1)); 3408 3409 // fold ((A+(C+B))-B) -> A+C 3410 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 3411 N0.getOperand(1).getOperand(1) == N1) 3412 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 3413 N0.getOperand(1).getOperand(0)); 3414 3415 // fold ((A-(B-C))-C) -> A-B 3416 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 3417 N0.getOperand(1).getOperand(1) == N1) 3418 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 3419 N0.getOperand(1).getOperand(0)); 3420 3421 // fold (A-(B-C)) -> A+(C-B) 3422 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 3423 return DAG.getNode(ISD::ADD, DL, VT, N0, 3424 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 3425 N1.getOperand(0))); 3426 3427 // A - (A & B) -> A & (~B) 3428 if (N1.getOpcode() == ISD::AND) { 3429 SDValue A = N1.getOperand(0); 3430 SDValue B = N1.getOperand(1); 3431 if (A != N0) 3432 std::swap(A, B); 3433 if (A == N0 && 3434 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { 3435 SDValue InvB = 3436 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); 3437 return DAG.getNode(ISD::AND, DL, VT, A, InvB); 3438 } 3439 } 3440 3441 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 3442 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 3443 if (N1.getOperand(0).getOpcode() == ISD::SUB && 3444 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 3445 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3446 N1.getOperand(0).getOperand(1), 3447 N1.getOperand(1)); 3448 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3449 } 3450 if (N1.getOperand(1).getOpcode() == ISD::SUB && 3451 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 3452 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3453 N1.getOperand(0), 3454 N1.getOperand(1).getOperand(1)); 3455 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3456 } 3457 } 3458 3459 // If either operand of a sub is undef, the result is undef 3460 if (N0.isUndef()) 3461 return N0; 3462 if (N1.isUndef()) 3463 return N1; 3464 3465 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 3466 return V; 3467 3468 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 3469 return V; 3470 3471 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 3472 return V; 3473 3474 if (SDValue V = foldSubToUSubSat(VT, N)) 3475 return V; 3476 3477 // (x - y) - 1 -> add (xor y, -1), x 3478 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 3479 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 3480 DAG.getAllOnesConstant(DL, VT)); 3481 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 3482 } 3483 3484 // Look for: 3485 // sub y, (xor x, -1) 3486 // And if the target does not like this form then turn into: 3487 // add (add x, y), 1 3488 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { 3489 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); 3490 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); 3491 } 3492 3493 // Hoist one-use addition by non-opaque constant: 3494 // (x + C) - y -> (x - y) + C 3495 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 3496 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3497 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3498 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 3499 } 3500 // y - (x + C) -> (y - x) - C 3501 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 3502 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3503 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3504 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3505 } 3506 // (x - C) - y -> (x - y) - C 3507 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3508 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3509 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3510 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3511 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3512 } 3513 // (C - x) - y -> C - (x + y) 3514 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3515 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 3516 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); 3517 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); 3518 } 3519 3520 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3521 // rather than 'sub 0/1' (the sext should get folded). 3522 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3523 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3524 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3525 TLI.getBooleanContents(VT) == 3526 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3527 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3528 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3529 } 3530 3531 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3532 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3533 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3534 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3535 SDValue S0 = N1.getOperand(0); 3536 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) 3537 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3538 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 3539 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3540 } 3541 } 3542 3543 // If the relocation model supports it, consider symbol offsets. 3544 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3545 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3546 // fold (sub Sym, c) -> Sym-c 3547 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3548 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3549 GA->getOffset() - 3550 (uint64_t)N1C->getSExtValue()); 3551 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3552 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3553 if (GA->getGlobal() == GB->getGlobal()) 3554 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3555 DL, VT); 3556 } 3557 3558 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3559 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3560 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3561 if (TN->getVT() == MVT::i1) { 3562 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3563 DAG.getConstant(1, DL, VT)); 3564 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3565 } 3566 } 3567 3568 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) 3569 if (N1.getOpcode() == ISD::VSCALE) { 3570 const APInt &IntVal = N1.getConstantOperandAPInt(0); 3571 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); 3572 } 3573 3574 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C)) 3575 if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) { 3576 APInt NewStep = -N1.getConstantOperandAPInt(0); 3577 return DAG.getNode(ISD::ADD, DL, VT, N0, 3578 DAG.getStepVector(DL, VT, NewStep)); 3579 } 3580 3581 // Prefer an add for more folding potential and possibly better codegen: 3582 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3583 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3584 SDValue ShAmt = N1.getOperand(1); 3585 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3586 if (ShAmtC && 3587 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { 3588 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3589 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3590 } 3591 } 3592 3593 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { 3594 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) 3595 if (SDValue Carry = getAsCarry(TLI, N0)) { 3596 SDValue X = N1; 3597 SDValue Zero = DAG.getConstant(0, DL, VT); 3598 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); 3599 return DAG.getNode(ISD::ADDCARRY, DL, 3600 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, 3601 Carry); 3602 } 3603 } 3604 3605 return SDValue(); 3606 } 3607 3608 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3609 SDValue N0 = N->getOperand(0); 3610 SDValue N1 = N->getOperand(1); 3611 EVT VT = N0.getValueType(); 3612 SDLoc DL(N); 3613 3614 // fold vector ops 3615 if (VT.isVector()) { 3616 // TODO SimplifyVBinOp 3617 3618 // fold (sub_sat x, 0) -> x, vector edition 3619 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3620 return N0; 3621 } 3622 3623 // fold (sub_sat x, undef) -> 0 3624 if (N0.isUndef() || N1.isUndef()) 3625 return DAG.getConstant(0, DL, VT); 3626 3627 // fold (sub_sat x, x) -> 0 3628 if (N0 == N1) 3629 return DAG.getConstant(0, DL, VT); 3630 3631 // fold (sub_sat c1, c2) -> c3 3632 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) 3633 return C; 3634 3635 // fold (sub_sat x, 0) -> x 3636 if (isNullConstant(N1)) 3637 return N0; 3638 3639 return SDValue(); 3640 } 3641 3642 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3643 SDValue N0 = N->getOperand(0); 3644 SDValue N1 = N->getOperand(1); 3645 EVT VT = N0.getValueType(); 3646 SDLoc DL(N); 3647 3648 // If the flag result is dead, turn this into an SUB. 3649 if (!N->hasAnyUseOfValue(1)) 3650 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3651 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3652 3653 // fold (subc x, x) -> 0 + no borrow 3654 if (N0 == N1) 3655 return CombineTo(N, DAG.getConstant(0, DL, VT), 3656 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3657 3658 // fold (subc x, 0) -> x + no borrow 3659 if (isNullConstant(N1)) 3660 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3661 3662 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3663 if (isAllOnesConstant(N0)) 3664 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3665 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3666 3667 return SDValue(); 3668 } 3669 3670 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3671 SDValue N0 = N->getOperand(0); 3672 SDValue N1 = N->getOperand(1); 3673 EVT VT = N0.getValueType(); 3674 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3675 3676 EVT CarryVT = N->getValueType(1); 3677 SDLoc DL(N); 3678 3679 // If the flag result is dead, turn this into an SUB. 3680 if (!N->hasAnyUseOfValue(1)) 3681 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3682 DAG.getUNDEF(CarryVT)); 3683 3684 // fold (subo x, x) -> 0 + no borrow 3685 if (N0 == N1) 3686 return CombineTo(N, DAG.getConstant(0, DL, VT), 3687 DAG.getConstant(0, DL, CarryVT)); 3688 3689 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3690 3691 // fold (subox, c) -> (addo x, -c) 3692 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3693 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3694 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3695 } 3696 3697 // fold (subo x, 0) -> x + no borrow 3698 if (isNullOrNullSplat(N1)) 3699 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3700 3701 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3702 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3703 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3704 DAG.getConstant(0, DL, CarryVT)); 3705 3706 return SDValue(); 3707 } 3708 3709 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3710 SDValue N0 = N->getOperand(0); 3711 SDValue N1 = N->getOperand(1); 3712 SDValue CarryIn = N->getOperand(2); 3713 3714 // fold (sube x, y, false) -> (subc x, y) 3715 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3716 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3717 3718 return SDValue(); 3719 } 3720 3721 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3722 SDValue N0 = N->getOperand(0); 3723 SDValue N1 = N->getOperand(1); 3724 SDValue CarryIn = N->getOperand(2); 3725 3726 // fold (subcarry x, y, false) -> (usubo x, y) 3727 if (isNullConstant(CarryIn)) { 3728 if (!LegalOperations || 3729 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3730 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3731 } 3732 3733 return SDValue(); 3734 } 3735 3736 SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { 3737 SDValue N0 = N->getOperand(0); 3738 SDValue N1 = N->getOperand(1); 3739 SDValue CarryIn = N->getOperand(2); 3740 3741 // fold (ssubo_carry x, y, false) -> (ssubo x, y) 3742 if (isNullConstant(CarryIn)) { 3743 if (!LegalOperations || 3744 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) 3745 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); 3746 } 3747 3748 return SDValue(); 3749 } 3750 3751 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and 3752 // UMULFIXSAT here. 3753 SDValue DAGCombiner::visitMULFIX(SDNode *N) { 3754 SDValue N0 = N->getOperand(0); 3755 SDValue N1 = N->getOperand(1); 3756 SDValue Scale = N->getOperand(2); 3757 EVT VT = N0.getValueType(); 3758 3759 // fold (mulfix x, undef, scale) -> 0 3760 if (N0.isUndef() || N1.isUndef()) 3761 return DAG.getConstant(0, SDLoc(N), VT); 3762 3763 // Canonicalize constant to RHS (vector doesn't have to splat) 3764 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3765 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3766 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); 3767 3768 // fold (mulfix x, 0, scale) -> 0 3769 if (isNullConstant(N1)) 3770 return DAG.getConstant(0, SDLoc(N), VT); 3771 3772 return SDValue(); 3773 } 3774 3775 SDValue DAGCombiner::visitMUL(SDNode *N) { 3776 SDValue N0 = N->getOperand(0); 3777 SDValue N1 = N->getOperand(1); 3778 EVT VT = N0.getValueType(); 3779 3780 // fold (mul x, undef) -> 0 3781 if (N0.isUndef() || N1.isUndef()) 3782 return DAG.getConstant(0, SDLoc(N), VT); 3783 3784 bool N1IsConst = false; 3785 bool N1IsOpaqueConst = false; 3786 APInt ConstValue1; 3787 3788 // fold vector ops 3789 if (VT.isVector()) { 3790 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3791 return FoldedVOp; 3792 3793 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3794 assert((!N1IsConst || 3795 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3796 "Splat APInt should be element width"); 3797 } else { 3798 N1IsConst = isa<ConstantSDNode>(N1); 3799 if (N1IsConst) { 3800 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3801 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3802 } 3803 } 3804 3805 // fold (mul c1, c2) -> c1*c2 3806 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) 3807 return C; 3808 3809 // canonicalize constant to RHS (vector doesn't have to splat) 3810 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3811 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3812 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3813 3814 // fold (mul x, 0) -> 0 3815 if (N1IsConst && ConstValue1.isZero()) 3816 return N1; 3817 3818 // fold (mul x, 1) -> x 3819 if (N1IsConst && ConstValue1.isOne()) 3820 return N0; 3821 3822 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3823 return NewSel; 3824 3825 // fold (mul x, -1) -> 0-x 3826 if (N1IsConst && ConstValue1.isAllOnes()) { 3827 SDLoc DL(N); 3828 return DAG.getNode(ISD::SUB, DL, VT, 3829 DAG.getConstant(0, DL, VT), N0); 3830 } 3831 3832 // fold (mul x, (1 << c)) -> x << c 3833 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3834 DAG.isKnownToBeAPowerOfTwo(N1) && 3835 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3836 SDLoc DL(N); 3837 SDValue LogBase2 = BuildLogBase2(N1, DL); 3838 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3839 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3840 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3841 } 3842 3843 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3844 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { 3845 unsigned Log2Val = (-ConstValue1).logBase2(); 3846 SDLoc DL(N); 3847 // FIXME: If the input is something that is easily negated (e.g. a 3848 // single-use add), we should put the negate there. 3849 return DAG.getNode(ISD::SUB, DL, VT, 3850 DAG.getConstant(0, DL, VT), 3851 DAG.getNode(ISD::SHL, DL, VT, N0, 3852 DAG.getConstant(Log2Val, DL, 3853 getShiftAmountTy(N0.getValueType())))); 3854 } 3855 3856 // Try to transform: 3857 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3858 // mul x, (2^N + 1) --> add (shl x, N), x 3859 // mul x, (2^N - 1) --> sub (shl x, N), x 3860 // Examples: x * 33 --> (x << 5) + x 3861 // x * 15 --> (x << 4) - x 3862 // x * -33 --> -((x << 5) + x) 3863 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3864 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. 3865 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) 3866 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) 3867 // Examples: x * 0x8800 --> (x << 15) + (x << 11) 3868 // x * 0xf800 --> (x << 16) - (x << 11) 3869 // x * -0x8800 --> -((x << 15) + (x << 11)) 3870 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) 3871 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { 3872 // TODO: We could handle more general decomposition of any constant by 3873 // having the target set a limit on number of ops and making a 3874 // callback to determine that sequence (similar to sqrt expansion). 3875 unsigned MathOp = ISD::DELETED_NODE; 3876 APInt MulC = ConstValue1.abs(); 3877 // The constant `2` should be treated as (2^0 + 1). 3878 unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); 3879 MulC.lshrInPlace(TZeros); 3880 if ((MulC - 1).isPowerOf2()) 3881 MathOp = ISD::ADD; 3882 else if ((MulC + 1).isPowerOf2()) 3883 MathOp = ISD::SUB; 3884 3885 if (MathOp != ISD::DELETED_NODE) { 3886 unsigned ShAmt = 3887 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); 3888 ShAmt += TZeros; 3889 assert(ShAmt < VT.getScalarSizeInBits() && 3890 "multiply-by-constant generated out of bounds shift"); 3891 SDLoc DL(N); 3892 SDValue Shl = 3893 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); 3894 SDValue R = 3895 TZeros ? DAG.getNode(MathOp, DL, VT, Shl, 3896 DAG.getNode(ISD::SHL, DL, VT, N0, 3897 DAG.getConstant(TZeros, DL, VT))) 3898 : DAG.getNode(MathOp, DL, VT, Shl, N0); 3899 if (ConstValue1.isNegative()) 3900 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 3901 return R; 3902 } 3903 } 3904 3905 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 3906 if (N0.getOpcode() == ISD::SHL && 3907 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3908 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3909 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 3910 if (isConstantOrConstantVector(C3)) 3911 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 3912 } 3913 3914 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 3915 // use. 3916 { 3917 SDValue Sh(nullptr, 0), Y(nullptr, 0); 3918 3919 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 3920 if (N0.getOpcode() == ISD::SHL && 3921 isConstantOrConstantVector(N0.getOperand(1)) && 3922 N0.getNode()->hasOneUse()) { 3923 Sh = N0; Y = N1; 3924 } else if (N1.getOpcode() == ISD::SHL && 3925 isConstantOrConstantVector(N1.getOperand(1)) && 3926 N1.getNode()->hasOneUse()) { 3927 Sh = N1; Y = N0; 3928 } 3929 3930 if (Sh.getNode()) { 3931 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 3932 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 3933 } 3934 } 3935 3936 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 3937 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 3938 N0.getOpcode() == ISD::ADD && 3939 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 3940 isMulAddWithConstProfitable(N, N0, N1)) 3941 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 3942 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 3943 N0.getOperand(0), N1), 3944 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 3945 N0.getOperand(1), N1)); 3946 3947 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). 3948 if (N0.getOpcode() == ISD::VSCALE) 3949 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { 3950 const APInt &C0 = N0.getConstantOperandAPInt(0); 3951 const APInt &C1 = NC1->getAPIntValue(); 3952 return DAG.getVScale(SDLoc(N), VT, C0 * C1); 3953 } 3954 3955 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 3956 APInt MulVal; 3957 if (N0.getOpcode() == ISD::STEP_VECTOR) 3958 if (ISD::isConstantSplatVector(N1.getNode(), MulVal)) { 3959 const APInt &C0 = N0.getConstantOperandAPInt(0); 3960 APInt NewStep = C0 * MulVal; 3961 return DAG.getStepVector(SDLoc(N), VT, NewStep); 3962 } 3963 3964 // Fold ((mul x, 0/undef) -> 0, 3965 // (mul x, 1) -> x) -> x) 3966 // -> and(x, mask) 3967 // We can replace vectors with '0' and '1' factors with a clearing mask. 3968 if (VT.isFixedLengthVector()) { 3969 unsigned NumElts = VT.getVectorNumElements(); 3970 SmallBitVector ClearMask; 3971 ClearMask.reserve(NumElts); 3972 auto IsClearMask = [&ClearMask](ConstantSDNode *V) { 3973 if (!V || V->isZero()) { 3974 ClearMask.push_back(true); 3975 return true; 3976 } 3977 ClearMask.push_back(false); 3978 return V->isOne(); 3979 }; 3980 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && 3981 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { 3982 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); 3983 SDLoc DL(N); 3984 EVT LegalSVT = N1.getOperand(0).getValueType(); 3985 SDValue Zero = DAG.getConstant(0, DL, LegalSVT); 3986 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); 3987 SmallVector<SDValue, 16> Mask(NumElts, AllOnes); 3988 for (unsigned I = 0; I != NumElts; ++I) 3989 if (ClearMask[I]) 3990 Mask[I] = Zero; 3991 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); 3992 } 3993 } 3994 3995 // reassociate mul 3996 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 3997 return RMUL; 3998 3999 return SDValue(); 4000 } 4001 4002 /// Return true if divmod libcall is available. 4003 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 4004 const TargetLowering &TLI) { 4005 RTLIB::Libcall LC; 4006 EVT NodeType = Node->getValueType(0); 4007 if (!NodeType.isSimple()) 4008 return false; 4009 switch (NodeType.getSimpleVT().SimpleTy) { 4010 default: return false; // No libcall for vector types. 4011 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 4012 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 4013 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 4014 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 4015 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 4016 } 4017 4018 return TLI.getLibcallName(LC) != nullptr; 4019 } 4020 4021 /// Issue divrem if both quotient and remainder are needed. 4022 SDValue DAGCombiner::useDivRem(SDNode *Node) { 4023 if (Node->use_empty()) 4024 return SDValue(); // This is a dead node, leave it alone. 4025 4026 unsigned Opcode = Node->getOpcode(); 4027 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 4028 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 4029 4030 // DivMod lib calls can still work on non-legal types if using lib-calls. 4031 EVT VT = Node->getValueType(0); 4032 if (VT.isVector() || !VT.isInteger()) 4033 return SDValue(); 4034 4035 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 4036 return SDValue(); 4037 4038 // If DIVREM is going to get expanded into a libcall, 4039 // but there is no libcall available, then don't combine. 4040 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 4041 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 4042 return SDValue(); 4043 4044 // If div is legal, it's better to do the normal expansion 4045 unsigned OtherOpcode = 0; 4046 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 4047 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 4048 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 4049 return SDValue(); 4050 } else { 4051 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4052 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 4053 return SDValue(); 4054 } 4055 4056 SDValue Op0 = Node->getOperand(0); 4057 SDValue Op1 = Node->getOperand(1); 4058 SDValue combined; 4059 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 4060 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 4061 SDNode *User = *UI; 4062 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 4063 User->use_empty()) 4064 continue; 4065 // Convert the other matching node(s), too; 4066 // otherwise, the DIVREM may get target-legalized into something 4067 // target-specific that we won't be able to recognize. 4068 unsigned UserOpc = User->getOpcode(); 4069 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 4070 User->getOperand(0) == Op0 && 4071 User->getOperand(1) == Op1) { 4072 if (!combined) { 4073 if (UserOpc == OtherOpcode) { 4074 SDVTList VTs = DAG.getVTList(VT, VT); 4075 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 4076 } else if (UserOpc == DivRemOpc) { 4077 combined = SDValue(User, 0); 4078 } else { 4079 assert(UserOpc == Opcode); 4080 continue; 4081 } 4082 } 4083 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 4084 CombineTo(User, combined); 4085 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 4086 CombineTo(User, combined.getValue(1)); 4087 } 4088 } 4089 return combined; 4090 } 4091 4092 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 4093 SDValue N0 = N->getOperand(0); 4094 SDValue N1 = N->getOperand(1); 4095 EVT VT = N->getValueType(0); 4096 SDLoc DL(N); 4097 4098 unsigned Opc = N->getOpcode(); 4099 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 4100 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4101 4102 // X / undef -> undef 4103 // X % undef -> undef 4104 // X / 0 -> undef 4105 // X % 0 -> undef 4106 // NOTE: This includes vectors where any divisor element is zero/undef. 4107 if (DAG.isUndef(Opc, {N0, N1})) 4108 return DAG.getUNDEF(VT); 4109 4110 // undef / X -> 0 4111 // undef % X -> 0 4112 if (N0.isUndef()) 4113 return DAG.getConstant(0, DL, VT); 4114 4115 // 0 / X -> 0 4116 // 0 % X -> 0 4117 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4118 if (N0C && N0C->isZero()) 4119 return N0; 4120 4121 // X / X -> 1 4122 // X % X -> 0 4123 if (N0 == N1) 4124 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 4125 4126 // X / 1 -> X 4127 // X % 1 -> 0 4128 // If this is a boolean op (single-bit element type), we can't have 4129 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 4130 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 4131 // it's a 1. 4132 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 4133 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 4134 4135 return SDValue(); 4136 } 4137 4138 SDValue DAGCombiner::visitSDIV(SDNode *N) { 4139 SDValue N0 = N->getOperand(0); 4140 SDValue N1 = N->getOperand(1); 4141 EVT VT = N->getValueType(0); 4142 EVT CCVT = getSetCCResultType(VT); 4143 4144 // fold vector ops 4145 if (VT.isVector()) 4146 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4147 return FoldedVOp; 4148 4149 SDLoc DL(N); 4150 4151 // fold (sdiv c1, c2) -> c1/c2 4152 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4153 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) 4154 return C; 4155 4156 // fold (sdiv X, -1) -> 0-X 4157 if (N1C && N1C->isAllOnes()) 4158 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 4159 4160 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 4161 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 4162 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4163 DAG.getConstant(1, DL, VT), 4164 DAG.getConstant(0, DL, VT)); 4165 4166 if (SDValue V = simplifyDivRem(N, DAG)) 4167 return V; 4168 4169 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4170 return NewSel; 4171 4172 // If we know the sign bits of both operands are zero, strength reduce to a 4173 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 4174 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4175 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 4176 4177 if (SDValue V = visitSDIVLike(N0, N1, N)) { 4178 // If the corresponding remainder node exists, update its users with 4179 // (Dividend - (Quotient * Divisor). 4180 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 4181 { N0, N1 })) { 4182 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4183 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4184 AddToWorklist(Mul.getNode()); 4185 AddToWorklist(Sub.getNode()); 4186 CombineTo(RemNode, Sub); 4187 } 4188 return V; 4189 } 4190 4191 // sdiv, srem -> sdivrem 4192 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4193 // true. Otherwise, we break the simplification logic in visitREM(). 4194 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4195 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4196 if (SDValue DivRem = useDivRem(N)) 4197 return DivRem; 4198 4199 return SDValue(); 4200 } 4201 4202 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4203 SDLoc DL(N); 4204 EVT VT = N->getValueType(0); 4205 EVT CCVT = getSetCCResultType(VT); 4206 unsigned BitWidth = VT.getScalarSizeInBits(); 4207 4208 // Helper for determining whether a value is a power-2 constant scalar or a 4209 // vector of such elements. 4210 auto IsPowerOfTwo = [](ConstantSDNode *C) { 4211 if (C->isZero() || C->isOpaque()) 4212 return false; 4213 if (C->getAPIntValue().isPowerOf2()) 4214 return true; 4215 if ((-C->getAPIntValue()).isPowerOf2()) 4216 return true; 4217 return false; 4218 }; 4219 4220 // fold (sdiv X, pow2) -> simple ops after legalize 4221 // FIXME: We check for the exact bit here because the generic lowering gives 4222 // better results in that case. The target-specific lowering should learn how 4223 // to handle exact sdivs efficiently. 4224 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 4225 // Target-specific implementation of sdiv x, pow2. 4226 if (SDValue Res = BuildSDIVPow2(N)) 4227 return Res; 4228 4229 // Create constants that are functions of the shift amount value. 4230 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 4231 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 4232 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 4233 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 4234 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 4235 if (!isConstantOrConstantVector(Inexact)) 4236 return SDValue(); 4237 4238 // Splat the sign bit into the register 4239 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 4240 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 4241 AddToWorklist(Sign.getNode()); 4242 4243 // Add (N0 < 0) ? abs2 - 1 : 0; 4244 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 4245 AddToWorklist(Srl.getNode()); 4246 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 4247 AddToWorklist(Add.getNode()); 4248 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 4249 AddToWorklist(Sra.getNode()); 4250 4251 // Special case: (sdiv X, 1) -> X 4252 // Special Case: (sdiv X, -1) -> 0-X 4253 SDValue One = DAG.getConstant(1, DL, VT); 4254 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 4255 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 4256 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 4257 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 4258 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 4259 4260 // If dividing by a positive value, we're done. Otherwise, the result must 4261 // be negated. 4262 SDValue Zero = DAG.getConstant(0, DL, VT); 4263 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 4264 4265 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 4266 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 4267 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 4268 return Res; 4269 } 4270 4271 // If integer divide is expensive and we satisfy the requirements, emit an 4272 // alternate sequence. Targets may check function attributes for size/speed 4273 // trade-offs. 4274 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4275 if (isConstantOrConstantVector(N1) && 4276 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4277 if (SDValue Op = BuildSDIV(N)) 4278 return Op; 4279 4280 return SDValue(); 4281 } 4282 4283 SDValue DAGCombiner::visitUDIV(SDNode *N) { 4284 SDValue N0 = N->getOperand(0); 4285 SDValue N1 = N->getOperand(1); 4286 EVT VT = N->getValueType(0); 4287 EVT CCVT = getSetCCResultType(VT); 4288 4289 // fold vector ops 4290 if (VT.isVector()) 4291 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4292 return FoldedVOp; 4293 4294 SDLoc DL(N); 4295 4296 // fold (udiv c1, c2) -> c1/c2 4297 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4298 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) 4299 return C; 4300 4301 // fold (udiv X, -1) -> select(X == -1, 1, 0) 4302 if (N1C && N1C->isAllOnes()) 4303 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4304 DAG.getConstant(1, DL, VT), 4305 DAG.getConstant(0, DL, VT)); 4306 4307 if (SDValue V = simplifyDivRem(N, DAG)) 4308 return V; 4309 4310 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4311 return NewSel; 4312 4313 if (SDValue V = visitUDIVLike(N0, N1, N)) { 4314 // If the corresponding remainder node exists, update its users with 4315 // (Dividend - (Quotient * Divisor). 4316 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 4317 { N0, N1 })) { 4318 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4319 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4320 AddToWorklist(Mul.getNode()); 4321 AddToWorklist(Sub.getNode()); 4322 CombineTo(RemNode, Sub); 4323 } 4324 return V; 4325 } 4326 4327 // sdiv, srem -> sdivrem 4328 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4329 // true. Otherwise, we break the simplification logic in visitREM(). 4330 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4331 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4332 if (SDValue DivRem = useDivRem(N)) 4333 return DivRem; 4334 4335 return SDValue(); 4336 } 4337 4338 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4339 SDLoc DL(N); 4340 EVT VT = N->getValueType(0); 4341 4342 // fold (udiv x, (1 << c)) -> x >>u c 4343 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4344 DAG.isKnownToBeAPowerOfTwo(N1)) { 4345 SDValue LogBase2 = BuildLogBase2(N1, DL); 4346 AddToWorklist(LogBase2.getNode()); 4347 4348 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4349 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 4350 AddToWorklist(Trunc.getNode()); 4351 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4352 } 4353 4354 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 4355 if (N1.getOpcode() == ISD::SHL) { 4356 SDValue N10 = N1.getOperand(0); 4357 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 4358 DAG.isKnownToBeAPowerOfTwo(N10)) { 4359 SDValue LogBase2 = BuildLogBase2(N10, DL); 4360 AddToWorklist(LogBase2.getNode()); 4361 4362 EVT ADDVT = N1.getOperand(1).getValueType(); 4363 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 4364 AddToWorklist(Trunc.getNode()); 4365 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 4366 AddToWorklist(Add.getNode()); 4367 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 4368 } 4369 } 4370 4371 // fold (udiv x, c) -> alternate 4372 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4373 if (isConstantOrConstantVector(N1) && 4374 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4375 if (SDValue Op = BuildUDIV(N)) 4376 return Op; 4377 4378 return SDValue(); 4379 } 4380 4381 // handles ISD::SREM and ISD::UREM 4382 SDValue DAGCombiner::visitREM(SDNode *N) { 4383 unsigned Opcode = N->getOpcode(); 4384 SDValue N0 = N->getOperand(0); 4385 SDValue N1 = N->getOperand(1); 4386 EVT VT = N->getValueType(0); 4387 EVT CCVT = getSetCCResultType(VT); 4388 4389 bool isSigned = (Opcode == ISD::SREM); 4390 SDLoc DL(N); 4391 4392 // fold (rem c1, c2) -> c1%c2 4393 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4394 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4395 return C; 4396 4397 // fold (urem X, -1) -> select(X == -1, 0, x) 4398 if (!isSigned && N1C && N1C->isAllOnes()) 4399 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4400 DAG.getConstant(0, DL, VT), N0); 4401 4402 if (SDValue V = simplifyDivRem(N, DAG)) 4403 return V; 4404 4405 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4406 return NewSel; 4407 4408 if (isSigned) { 4409 // If we know the sign bits of both operands are zero, strength reduce to a 4410 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 4411 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4412 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 4413 } else { 4414 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 4415 // fold (urem x, pow2) -> (and x, pow2-1) 4416 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4417 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4418 AddToWorklist(Add.getNode()); 4419 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4420 } 4421 if (N1.getOpcode() == ISD::SHL && 4422 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 4423 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 4424 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4425 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4426 AddToWorklist(Add.getNode()); 4427 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4428 } 4429 } 4430 4431 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4432 4433 // If X/C can be simplified by the division-by-constant logic, lower 4434 // X%C to the equivalent of X-X/C*C. 4435 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 4436 // speculative DIV must not cause a DIVREM conversion. We guard against this 4437 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 4438 // combine will not return a DIVREM. Regardless, checking cheapness here 4439 // makes sense since the simplification results in fatter code. 4440 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 4441 SDValue OptimizedDiv = 4442 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 4443 if (OptimizedDiv.getNode()) { 4444 // If the equivalent Div node also exists, update its users. 4445 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4446 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 4447 { N0, N1 })) 4448 CombineTo(DivNode, OptimizedDiv); 4449 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 4450 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4451 AddToWorklist(OptimizedDiv.getNode()); 4452 AddToWorklist(Mul.getNode()); 4453 return Sub; 4454 } 4455 } 4456 4457 // sdiv, srem -> sdivrem 4458 if (SDValue DivRem = useDivRem(N)) 4459 return DivRem.getValue(1); 4460 4461 return SDValue(); 4462 } 4463 4464 SDValue DAGCombiner::visitMULHS(SDNode *N) { 4465 SDValue N0 = N->getOperand(0); 4466 SDValue N1 = N->getOperand(1); 4467 EVT VT = N->getValueType(0); 4468 SDLoc DL(N); 4469 4470 if (VT.isVector()) { 4471 // fold (mulhs x, 0) -> 0 4472 // do not return N0/N1, because undef node may exist. 4473 if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) || 4474 ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4475 return DAG.getConstant(0, DL, VT); 4476 } 4477 4478 // fold (mulhs c1, c2) 4479 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1})) 4480 return C; 4481 4482 // canonicalize constant to RHS. 4483 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4484 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4485 return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0); 4486 4487 // fold (mulhs x, 0) -> 0 4488 if (isNullConstant(N1)) 4489 return N1; 4490 // fold (mulhs x, 1) -> (sra x, size(x)-1) 4491 if (isOneConstant(N1)) 4492 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 4493 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, 4494 getShiftAmountTy(N0.getValueType()))); 4495 4496 // fold (mulhs x, undef) -> 0 4497 if (N0.isUndef() || N1.isUndef()) 4498 return DAG.getConstant(0, DL, VT); 4499 4500 // If the type twice as wide is legal, transform the mulhs to a wider multiply 4501 // plus a shift. 4502 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && 4503 !VT.isVector()) { 4504 MVT Simple = VT.getSimpleVT(); 4505 unsigned SimpleSize = Simple.getSizeInBits(); 4506 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4507 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4508 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 4509 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 4510 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4511 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4512 DAG.getConstant(SimpleSize, DL, 4513 getShiftAmountTy(N1.getValueType()))); 4514 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4515 } 4516 } 4517 4518 return SDValue(); 4519 } 4520 4521 SDValue DAGCombiner::visitMULHU(SDNode *N) { 4522 SDValue N0 = N->getOperand(0); 4523 SDValue N1 = N->getOperand(1); 4524 EVT VT = N->getValueType(0); 4525 SDLoc DL(N); 4526 4527 if (VT.isVector()) { 4528 // fold (mulhu x, 0) -> 0 4529 // do not return N0/N1, because undef node may exist. 4530 if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) || 4531 ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4532 return DAG.getConstant(0, DL, VT); 4533 } 4534 4535 // fold (mulhu c1, c2) 4536 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1})) 4537 return C; 4538 4539 // canonicalize constant to RHS. 4540 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4541 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4542 return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0); 4543 4544 // fold (mulhu x, 0) -> 0 4545 if (isNullConstant(N1)) 4546 return N1; 4547 // fold (mulhu x, 1) -> 0 4548 if (isOneConstant(N1)) 4549 return DAG.getConstant(0, DL, N0.getValueType()); 4550 // fold (mulhu x, undef) -> 0 4551 if (N0.isUndef() || N1.isUndef()) 4552 return DAG.getConstant(0, DL, VT); 4553 4554 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 4555 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4556 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 4557 unsigned NumEltBits = VT.getScalarSizeInBits(); 4558 SDValue LogBase2 = BuildLogBase2(N1, DL); 4559 SDValue SRLAmt = DAG.getNode( 4560 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 4561 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4562 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 4563 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4564 } 4565 4566 // If the type twice as wide is legal, transform the mulhu to a wider multiply 4567 // plus a shift. 4568 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && 4569 !VT.isVector()) { 4570 MVT Simple = VT.getSimpleVT(); 4571 unsigned SimpleSize = Simple.getSizeInBits(); 4572 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4573 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4574 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 4575 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 4576 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4577 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4578 DAG.getConstant(SimpleSize, DL, 4579 getShiftAmountTy(N1.getValueType()))); 4580 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4581 } 4582 } 4583 4584 // Simplify the operands using demanded-bits information. 4585 // We don't have demanded bits support for MULHU so this just enables constant 4586 // folding based on known bits. 4587 if (SimplifyDemandedBits(SDValue(N, 0))) 4588 return SDValue(N, 0); 4589 4590 return SDValue(); 4591 } 4592 4593 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 4594 /// give the opcodes for the two computations that are being performed. Return 4595 /// true if a simplification was made. 4596 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 4597 unsigned HiOp) { 4598 // If the high half is not needed, just compute the low half. 4599 bool HiExists = N->hasAnyUseOfValue(1); 4600 if (!HiExists && (!LegalOperations || 4601 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 4602 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4603 return CombineTo(N, Res, Res); 4604 } 4605 4606 // If the low half is not needed, just compute the high half. 4607 bool LoExists = N->hasAnyUseOfValue(0); 4608 if (!LoExists && (!LegalOperations || 4609 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 4610 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4611 return CombineTo(N, Res, Res); 4612 } 4613 4614 // If both halves are used, return as it is. 4615 if (LoExists && HiExists) 4616 return SDValue(); 4617 4618 // If the two computed results can be simplified separately, separate them. 4619 if (LoExists) { 4620 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4621 AddToWorklist(Lo.getNode()); 4622 SDValue LoOpt = combine(Lo.getNode()); 4623 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 4624 (!LegalOperations || 4625 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 4626 return CombineTo(N, LoOpt, LoOpt); 4627 } 4628 4629 if (HiExists) { 4630 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4631 AddToWorklist(Hi.getNode()); 4632 SDValue HiOpt = combine(Hi.getNode()); 4633 if (HiOpt.getNode() && HiOpt != Hi && 4634 (!LegalOperations || 4635 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 4636 return CombineTo(N, HiOpt, HiOpt); 4637 } 4638 4639 return SDValue(); 4640 } 4641 4642 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 4643 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 4644 return Res; 4645 4646 EVT VT = N->getValueType(0); 4647 SDLoc DL(N); 4648 4649 // If the type is twice as wide is legal, transform the mulhu to a wider 4650 // multiply plus a shift. 4651 if (VT.isSimple() && !VT.isVector()) { 4652 MVT Simple = VT.getSimpleVT(); 4653 unsigned SimpleSize = Simple.getSizeInBits(); 4654 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4655 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4656 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4657 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4658 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4659 // Compute the high part as N1. 4660 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4661 DAG.getConstant(SimpleSize, DL, 4662 getShiftAmountTy(Lo.getValueType()))); 4663 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4664 // Compute the low part as N0. 4665 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4666 return CombineTo(N, Lo, Hi); 4667 } 4668 } 4669 4670 return SDValue(); 4671 } 4672 4673 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4674 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4675 return Res; 4676 4677 EVT VT = N->getValueType(0); 4678 SDLoc DL(N); 4679 4680 // (umul_lohi N0, 0) -> (0, 0) 4681 if (isNullConstant(N->getOperand(1))) { 4682 SDValue Zero = DAG.getConstant(0, DL, VT); 4683 return CombineTo(N, Zero, Zero); 4684 } 4685 4686 // (umul_lohi N0, 1) -> (N0, 0) 4687 if (isOneConstant(N->getOperand(1))) { 4688 SDValue Zero = DAG.getConstant(0, DL, VT); 4689 return CombineTo(N, N->getOperand(0), Zero); 4690 } 4691 4692 // If the type is twice as wide is legal, transform the mulhu to a wider 4693 // multiply plus a shift. 4694 if (VT.isSimple() && !VT.isVector()) { 4695 MVT Simple = VT.getSimpleVT(); 4696 unsigned SimpleSize = Simple.getSizeInBits(); 4697 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4698 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4699 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4700 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4701 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4702 // Compute the high part as N1. 4703 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4704 DAG.getConstant(SimpleSize, DL, 4705 getShiftAmountTy(Lo.getValueType()))); 4706 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4707 // Compute the low part as N0. 4708 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4709 return CombineTo(N, Lo, Hi); 4710 } 4711 } 4712 4713 return SDValue(); 4714 } 4715 4716 SDValue DAGCombiner::visitMULO(SDNode *N) { 4717 SDValue N0 = N->getOperand(0); 4718 SDValue N1 = N->getOperand(1); 4719 EVT VT = N0.getValueType(); 4720 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4721 4722 EVT CarryVT = N->getValueType(1); 4723 SDLoc DL(N); 4724 4725 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4726 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4727 4728 // fold operation with constant operands. 4729 // TODO: Move this to FoldConstantArithmetic when it supports nodes with 4730 // multiple results. 4731 if (N0C && N1C) { 4732 bool Overflow; 4733 APInt Result = 4734 IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow) 4735 : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow); 4736 return CombineTo(N, DAG.getConstant(Result, DL, VT), 4737 DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT)); 4738 } 4739 4740 // canonicalize constant to RHS. 4741 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4742 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4743 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 4744 4745 // fold (mulo x, 0) -> 0 + no carry out 4746 if (isNullOrNullSplat(N1)) 4747 return CombineTo(N, DAG.getConstant(0, DL, VT), 4748 DAG.getConstant(0, DL, CarryVT)); 4749 4750 // (mulo x, 2) -> (addo x, x) 4751 if (N1C && N1C->getAPIntValue() == 2) 4752 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, 4753 N->getVTList(), N0, N0); 4754 4755 if (IsSigned) { 4756 // A 1 bit SMULO overflows if both inputs are 1. 4757 if (VT.getScalarSizeInBits() == 1) { 4758 SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1); 4759 return CombineTo(N, And, 4760 DAG.getSetCC(DL, CarryVT, And, 4761 DAG.getConstant(0, DL, VT), ISD::SETNE)); 4762 } 4763 4764 // Multiplying n * m significant bits yields a result of n + m significant 4765 // bits. If the total number of significant bits does not exceed the 4766 // result bit width (minus 1), there is no overflow. 4767 unsigned SignBits = DAG.ComputeNumSignBits(N0); 4768 if (SignBits > 1) 4769 SignBits += DAG.ComputeNumSignBits(N1); 4770 if (SignBits > VT.getScalarSizeInBits() + 1) 4771 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4772 DAG.getConstant(0, DL, CarryVT)); 4773 } else { 4774 KnownBits N1Known = DAG.computeKnownBits(N1); 4775 KnownBits N0Known = DAG.computeKnownBits(N0); 4776 bool Overflow; 4777 (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow); 4778 if (!Overflow) 4779 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4780 DAG.getConstant(0, DL, CarryVT)); 4781 } 4782 4783 return SDValue(); 4784 } 4785 4786 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 4787 SDValue N0 = N->getOperand(0); 4788 SDValue N1 = N->getOperand(1); 4789 EVT VT = N0.getValueType(); 4790 unsigned Opcode = N->getOpcode(); 4791 4792 // fold vector ops 4793 if (VT.isVector()) 4794 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4795 return FoldedVOp; 4796 4797 // fold operation with constant operands. 4798 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1})) 4799 return C; 4800 4801 // canonicalize constant to RHS 4802 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4803 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4804 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 4805 4806 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 4807 // Only do this if the current op isn't legal and the flipped is. 4808 if (!TLI.isOperationLegal(Opcode, VT) && 4809 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 4810 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 4811 unsigned AltOpcode; 4812 switch (Opcode) { 4813 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 4814 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 4815 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 4816 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 4817 default: llvm_unreachable("Unknown MINMAX opcode"); 4818 } 4819 if (TLI.isOperationLegal(AltOpcode, VT)) 4820 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); 4821 } 4822 4823 // Simplify the operands using demanded-bits information. 4824 if (SimplifyDemandedBits(SDValue(N, 0))) 4825 return SDValue(N, 0); 4826 4827 return SDValue(); 4828 } 4829 4830 /// If this is a bitwise logic instruction and both operands have the same 4831 /// opcode, try to sink the other opcode after the logic instruction. 4832 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 4833 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 4834 EVT VT = N0.getValueType(); 4835 unsigned LogicOpcode = N->getOpcode(); 4836 unsigned HandOpcode = N0.getOpcode(); 4837 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 4838 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 4839 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 4840 4841 // Bail early if none of these transforms apply. 4842 if (N0.getNumOperands() == 0) 4843 return SDValue(); 4844 4845 // FIXME: We should check number of uses of the operands to not increase 4846 // the instruction count for all transforms. 4847 4848 // Handle size-changing casts. 4849 SDValue X = N0.getOperand(0); 4850 SDValue Y = N1.getOperand(0); 4851 EVT XVT = X.getValueType(); 4852 SDLoc DL(N); 4853 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 4854 HandOpcode == ISD::SIGN_EXTEND) { 4855 // If both operands have other uses, this transform would create extra 4856 // instructions without eliminating anything. 4857 if (!N0.hasOneUse() && !N1.hasOneUse()) 4858 return SDValue(); 4859 // We need matching integer source types. 4860 if (XVT != Y.getValueType()) 4861 return SDValue(); 4862 // Don't create an illegal op during or after legalization. Don't ever 4863 // create an unsupported vector op. 4864 if ((VT.isVector() || LegalOperations) && 4865 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 4866 return SDValue(); 4867 // Avoid infinite looping with PromoteIntBinOp. 4868 // TODO: Should we apply desirable/legal constraints to all opcodes? 4869 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 4870 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 4871 return SDValue(); 4872 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 4873 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4874 return DAG.getNode(HandOpcode, DL, VT, Logic); 4875 } 4876 4877 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 4878 if (HandOpcode == ISD::TRUNCATE) { 4879 // If both operands have other uses, this transform would create extra 4880 // instructions without eliminating anything. 4881 if (!N0.hasOneUse() && !N1.hasOneUse()) 4882 return SDValue(); 4883 // We need matching source types. 4884 if (XVT != Y.getValueType()) 4885 return SDValue(); 4886 // Don't create an illegal op during or after legalization. 4887 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 4888 return SDValue(); 4889 // Be extra careful sinking truncate. If it's free, there's no benefit in 4890 // widening a binop. Also, don't create a logic op on an illegal type. 4891 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 4892 return SDValue(); 4893 if (!TLI.isTypeLegal(XVT)) 4894 return SDValue(); 4895 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4896 return DAG.getNode(HandOpcode, DL, VT, Logic); 4897 } 4898 4899 // For binops SHL/SRL/SRA/AND: 4900 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 4901 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 4902 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 4903 N0.getOperand(1) == N1.getOperand(1)) { 4904 // If either operand has other uses, this transform is not an improvement. 4905 if (!N0.hasOneUse() || !N1.hasOneUse()) 4906 return SDValue(); 4907 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4908 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 4909 } 4910 4911 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 4912 if (HandOpcode == ISD::BSWAP) { 4913 // If either operand has other uses, this transform is not an improvement. 4914 if (!N0.hasOneUse() || !N1.hasOneUse()) 4915 return SDValue(); 4916 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4917 return DAG.getNode(HandOpcode, DL, VT, Logic); 4918 } 4919 4920 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 4921 // Only perform this optimization up until type legalization, before 4922 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 4923 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 4924 // we don't want to undo this promotion. 4925 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 4926 // on scalars. 4927 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 4928 Level <= AfterLegalizeTypes) { 4929 // Input types must be integer and the same. 4930 if (XVT.isInteger() && XVT == Y.getValueType() && 4931 !(VT.isVector() && TLI.isTypeLegal(VT) && 4932 !XVT.isVector() && !TLI.isTypeLegal(XVT))) { 4933 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4934 return DAG.getNode(HandOpcode, DL, VT, Logic); 4935 } 4936 } 4937 4938 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 4939 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 4940 // If both shuffles use the same mask, and both shuffle within a single 4941 // vector, then it is worthwhile to move the swizzle after the operation. 4942 // The type-legalizer generates this pattern when loading illegal 4943 // vector types from memory. In many cases this allows additional shuffle 4944 // optimizations. 4945 // There are other cases where moving the shuffle after the xor/and/or 4946 // is profitable even if shuffles don't perform a swizzle. 4947 // If both shuffles use the same mask, and both shuffles have the same first 4948 // or second operand, then it might still be profitable to move the shuffle 4949 // after the xor/and/or operation. 4950 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 4951 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 4952 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 4953 assert(X.getValueType() == Y.getValueType() && 4954 "Inputs to shuffles are not the same type"); 4955 4956 // Check that both shuffles use the same mask. The masks are known to be of 4957 // the same length because the result vector type is the same. 4958 // Check also that shuffles have only one use to avoid introducing extra 4959 // instructions. 4960 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 4961 !SVN0->getMask().equals(SVN1->getMask())) 4962 return SDValue(); 4963 4964 // Don't try to fold this node if it requires introducing a 4965 // build vector of all zeros that might be illegal at this stage. 4966 SDValue ShOp = N0.getOperand(1); 4967 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4968 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4969 4970 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 4971 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 4972 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 4973 N0.getOperand(0), N1.getOperand(0)); 4974 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 4975 } 4976 4977 // Don't try to fold this node if it requires introducing a 4978 // build vector of all zeros that might be illegal at this stage. 4979 ShOp = N0.getOperand(0); 4980 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4981 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4982 4983 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 4984 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 4985 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 4986 N1.getOperand(1)); 4987 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 4988 } 4989 } 4990 4991 return SDValue(); 4992 } 4993 4994 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 4995 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 4996 const SDLoc &DL) { 4997 SDValue LL, LR, RL, RR, N0CC, N1CC; 4998 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 4999 !isSetCCEquivalent(N1, RL, RR, N1CC)) 5000 return SDValue(); 5001 5002 assert(N0.getValueType() == N1.getValueType() && 5003 "Unexpected operand types for bitwise logic op"); 5004 assert(LL.getValueType() == LR.getValueType() && 5005 RL.getValueType() == RR.getValueType() && 5006 "Unexpected operand types for setcc"); 5007 5008 // If we're here post-legalization or the logic op type is not i1, the logic 5009 // op type must match a setcc result type. Also, all folds require new 5010 // operations on the left and right operands, so those types must match. 5011 EVT VT = N0.getValueType(); 5012 EVT OpVT = LL.getValueType(); 5013 if (LegalOperations || VT.getScalarType() != MVT::i1) 5014 if (VT != getSetCCResultType(OpVT)) 5015 return SDValue(); 5016 if (OpVT != RL.getValueType()) 5017 return SDValue(); 5018 5019 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 5020 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 5021 bool IsInteger = OpVT.isInteger(); 5022 if (LR == RR && CC0 == CC1 && IsInteger) { 5023 bool IsZero = isNullOrNullSplat(LR); 5024 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 5025 5026 // All bits clear? 5027 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 5028 // All sign bits clear? 5029 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 5030 // Any bits set? 5031 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 5032 // Any sign bits set? 5033 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 5034 5035 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 5036 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 5037 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 5038 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 5039 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 5040 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 5041 AddToWorklist(Or.getNode()); 5042 return DAG.getSetCC(DL, VT, Or, LR, CC1); 5043 } 5044 5045 // All bits set? 5046 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 5047 // All sign bits set? 5048 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 5049 // Any bits clear? 5050 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 5051 // Any sign bits clear? 5052 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 5053 5054 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 5055 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 5056 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 5057 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 5058 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 5059 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 5060 AddToWorklist(And.getNode()); 5061 return DAG.getSetCC(DL, VT, And, LR, CC1); 5062 } 5063 } 5064 5065 // TODO: What is the 'or' equivalent of this fold? 5066 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 5067 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 5068 IsInteger && CC0 == ISD::SETNE && 5069 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 5070 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 5071 SDValue One = DAG.getConstant(1, DL, OpVT); 5072 SDValue Two = DAG.getConstant(2, DL, OpVT); 5073 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 5074 AddToWorklist(Add.getNode()); 5075 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 5076 } 5077 5078 // Try more general transforms if the predicates match and the only user of 5079 // the compares is the 'and' or 'or'. 5080 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 5081 N0.hasOneUse() && N1.hasOneUse()) { 5082 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 5083 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 5084 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 5085 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 5086 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 5087 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 5088 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5089 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 5090 } 5091 5092 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 5093 // TODO - support non-uniform vector amounts. 5094 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 5095 // Match a shared variable operand and 2 non-opaque constant operands. 5096 ConstantSDNode *C0 = isConstOrConstSplat(LR); 5097 ConstantSDNode *C1 = isConstOrConstSplat(RR); 5098 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 5099 const APInt &CMax = 5100 APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue()); 5101 const APInt &CMin = 5102 APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue()); 5103 // The difference of the constants must be a single bit. 5104 if ((CMax - CMin).isPowerOf2()) { 5105 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) --> 5106 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq 5107 SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR); 5108 SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR); 5109 SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min); 5110 SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min); 5111 SDValue Mask = DAG.getNOT(DL, Diff, OpVT); 5112 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask); 5113 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5114 return DAG.getSetCC(DL, VT, And, Zero, CC0); 5115 } 5116 } 5117 } 5118 } 5119 5120 // Canonicalize equivalent operands to LL == RL. 5121 if (LL == RR && LR == RL) { 5122 CC1 = ISD::getSetCCSwappedOperands(CC1); 5123 std::swap(RL, RR); 5124 } 5125 5126 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5127 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5128 if (LL == RL && LR == RR) { 5129 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) 5130 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); 5131 if (NewCC != ISD::SETCC_INVALID && 5132 (!LegalOperations || 5133 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 5134 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 5135 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 5136 } 5137 5138 return SDValue(); 5139 } 5140 5141 /// This contains all DAGCombine rules which reduce two values combined by 5142 /// an And operation to a single value. This makes them reusable in the context 5143 /// of visitSELECT(). Rules involving constants are not included as 5144 /// visitSELECT() already handles those cases. 5145 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 5146 EVT VT = N1.getValueType(); 5147 SDLoc DL(N); 5148 5149 // fold (and x, undef) -> 0 5150 if (N0.isUndef() || N1.isUndef()) 5151 return DAG.getConstant(0, DL, VT); 5152 5153 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 5154 return V; 5155 5156 // TODO: Rewrite this to return a new 'AND' instead of using CombineTo. 5157 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 5158 VT.getSizeInBits() <= 64 && N0->hasOneUse()) { 5159 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5160 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 5161 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 5162 // immediate for an add, but it is legal if its top c2 bits are set, 5163 // transform the ADD so the immediate doesn't need to be materialized 5164 // in a register. 5165 APInt ADDC = ADDI->getAPIntValue(); 5166 APInt SRLC = SRLI->getAPIntValue(); 5167 if (ADDC.getMinSignedBits() <= 64 && 5168 SRLC.ult(VT.getSizeInBits()) && 5169 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5170 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 5171 SRLC.getZExtValue()); 5172 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 5173 ADDC |= Mask; 5174 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5175 SDLoc DL0(N0); 5176 SDValue NewAdd = 5177 DAG.getNode(ISD::ADD, DL0, VT, 5178 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 5179 CombineTo(N0.getNode(), NewAdd); 5180 // Return N so it doesn't get rechecked! 5181 return SDValue(N, 0); 5182 } 5183 } 5184 } 5185 } 5186 } 5187 } 5188 5189 // Reduce bit extract of low half of an integer to the narrower type. 5190 // (and (srl i64:x, K), KMask) -> 5191 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 5192 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 5193 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 5194 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5195 unsigned Size = VT.getSizeInBits(); 5196 const APInt &AndMask = CAnd->getAPIntValue(); 5197 unsigned ShiftBits = CShift->getZExtValue(); 5198 5199 // Bail out, this node will probably disappear anyway. 5200 if (ShiftBits == 0) 5201 return SDValue(); 5202 5203 unsigned MaskBits = AndMask.countTrailingOnes(); 5204 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 5205 5206 if (AndMask.isMask() && 5207 // Required bits must not span the two halves of the integer and 5208 // must fit in the half size type. 5209 (ShiftBits + MaskBits <= Size / 2) && 5210 TLI.isNarrowingProfitable(VT, HalfVT) && 5211 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 5212 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 5213 TLI.isTruncateFree(VT, HalfVT) && 5214 TLI.isZExtFree(HalfVT, VT)) { 5215 // The isNarrowingProfitable is to avoid regressions on PPC and 5216 // AArch64 which match a few 64-bit bit insert / bit extract patterns 5217 // on downstream users of this. Those patterns could probably be 5218 // extended to handle extensions mixed in. 5219 5220 SDValue SL(N0); 5221 assert(MaskBits <= Size); 5222 5223 // Extracting the highest bit of the low half. 5224 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 5225 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 5226 N0.getOperand(0)); 5227 5228 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 5229 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 5230 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 5231 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 5232 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 5233 } 5234 } 5235 } 5236 } 5237 5238 return SDValue(); 5239 } 5240 5241 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 5242 EVT LoadResultTy, EVT &ExtVT) { 5243 if (!AndC->getAPIntValue().isMask()) 5244 return false; 5245 5246 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 5247 5248 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5249 EVT LoadedVT = LoadN->getMemoryVT(); 5250 5251 if (ExtVT == LoadedVT && 5252 (!LegalOperations || 5253 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 5254 // ZEXTLOAD will match without needing to change the size of the value being 5255 // loaded. 5256 return true; 5257 } 5258 5259 // Do not change the width of a volatile or atomic loads. 5260 if (!LoadN->isSimple()) 5261 return false; 5262 5263 // Do not generate loads of non-round integer types since these can 5264 // be expensive (and would be wrong if the type is not byte sized). 5265 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 5266 return false; 5267 5268 if (LegalOperations && 5269 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 5270 return false; 5271 5272 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 5273 return false; 5274 5275 return true; 5276 } 5277 5278 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 5279 ISD::LoadExtType ExtType, EVT &MemVT, 5280 unsigned ShAmt) { 5281 if (!LDST) 5282 return false; 5283 // Only allow byte offsets. 5284 if (ShAmt % 8) 5285 return false; 5286 5287 // Do not generate loads of non-round integer types since these can 5288 // be expensive (and would be wrong if the type is not byte sized). 5289 if (!MemVT.isRound()) 5290 return false; 5291 5292 // Don't change the width of a volatile or atomic loads. 5293 if (!LDST->isSimple()) 5294 return false; 5295 5296 EVT LdStMemVT = LDST->getMemoryVT(); 5297 5298 // Bail out when changing the scalable property, since we can't be sure that 5299 // we're actually narrowing here. 5300 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) 5301 return false; 5302 5303 // Verify that we are actually reducing a load width here. 5304 if (LdStMemVT.bitsLT(MemVT)) 5305 return false; 5306 5307 // Ensure that this isn't going to produce an unsupported memory access. 5308 if (ShAmt) { 5309 assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); 5310 const unsigned ByteShAmt = ShAmt / 8; 5311 const Align LDSTAlign = LDST->getAlign(); 5312 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); 5313 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 5314 LDST->getAddressSpace(), NarrowAlign, 5315 LDST->getMemOperand()->getFlags())) 5316 return false; 5317 } 5318 5319 // It's not possible to generate a constant of extended or untyped type. 5320 EVT PtrType = LDST->getBasePtr().getValueType(); 5321 if (PtrType == MVT::Untyped || PtrType.isExtended()) 5322 return false; 5323 5324 if (isa<LoadSDNode>(LDST)) { 5325 LoadSDNode *Load = cast<LoadSDNode>(LDST); 5326 // Don't transform one with multiple uses, this would require adding a new 5327 // load. 5328 if (!SDValue(Load, 0).hasOneUse()) 5329 return false; 5330 5331 if (LegalOperations && 5332 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 5333 return false; 5334 5335 // For the transform to be legal, the load must produce only two values 5336 // (the value loaded and the chain). Don't transform a pre-increment 5337 // load, for example, which produces an extra value. Otherwise the 5338 // transformation is not equivalent, and the downstream logic to replace 5339 // uses gets things wrong. 5340 if (Load->getNumValues() > 2) 5341 return false; 5342 5343 // If the load that we're shrinking is an extload and we're not just 5344 // discarding the extension we can't simply shrink the load. Bail. 5345 // TODO: It would be possible to merge the extensions in some cases. 5346 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 5347 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5348 return false; 5349 5350 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 5351 return false; 5352 } else { 5353 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 5354 StoreSDNode *Store = cast<StoreSDNode>(LDST); 5355 // Can't write outside the original store 5356 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5357 return false; 5358 5359 if (LegalOperations && 5360 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 5361 return false; 5362 } 5363 return true; 5364 } 5365 5366 bool DAGCombiner::SearchForAndLoads(SDNode *N, 5367 SmallVectorImpl<LoadSDNode*> &Loads, 5368 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 5369 ConstantSDNode *Mask, 5370 SDNode *&NodeToMask) { 5371 // Recursively search for the operands, looking for loads which can be 5372 // narrowed. 5373 for (SDValue Op : N->op_values()) { 5374 if (Op.getValueType().isVector()) 5375 return false; 5376 5377 // Some constants may need fixing up later if they are too large. 5378 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5379 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 5380 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 5381 NodesWithConsts.insert(N); 5382 continue; 5383 } 5384 5385 if (!Op.hasOneUse()) 5386 return false; 5387 5388 switch(Op.getOpcode()) { 5389 case ISD::LOAD: { 5390 auto *Load = cast<LoadSDNode>(Op); 5391 EVT ExtVT; 5392 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 5393 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 5394 5395 // ZEXTLOAD is already small enough. 5396 if (Load->getExtensionType() == ISD::ZEXTLOAD && 5397 ExtVT.bitsGE(Load->getMemoryVT())) 5398 continue; 5399 5400 // Use LE to convert equal sized loads to zext. 5401 if (ExtVT.bitsLE(Load->getMemoryVT())) 5402 Loads.push_back(Load); 5403 5404 continue; 5405 } 5406 return false; 5407 } 5408 case ISD::ZERO_EXTEND: 5409 case ISD::AssertZext: { 5410 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 5411 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5412 EVT VT = Op.getOpcode() == ISD::AssertZext ? 5413 cast<VTSDNode>(Op.getOperand(1))->getVT() : 5414 Op.getOperand(0).getValueType(); 5415 5416 // We can accept extending nodes if the mask is wider or an equal 5417 // width to the original type. 5418 if (ExtVT.bitsGE(VT)) 5419 continue; 5420 break; 5421 } 5422 case ISD::OR: 5423 case ISD::XOR: 5424 case ISD::AND: 5425 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 5426 NodeToMask)) 5427 return false; 5428 continue; 5429 } 5430 5431 // Allow one node which will masked along with any loads found. 5432 if (NodeToMask) 5433 return false; 5434 5435 // Also ensure that the node to be masked only produces one data result. 5436 NodeToMask = Op.getNode(); 5437 if (NodeToMask->getNumValues() > 1) { 5438 bool HasValue = false; 5439 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 5440 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 5441 if (VT != MVT::Glue && VT != MVT::Other) { 5442 if (HasValue) { 5443 NodeToMask = nullptr; 5444 return false; 5445 } 5446 HasValue = true; 5447 } 5448 } 5449 assert(HasValue && "Node to be masked has no data result?"); 5450 } 5451 } 5452 return true; 5453 } 5454 5455 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { 5456 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5457 if (!Mask) 5458 return false; 5459 5460 if (!Mask->getAPIntValue().isMask()) 5461 return false; 5462 5463 // No need to do anything if the and directly uses a load. 5464 if (isa<LoadSDNode>(N->getOperand(0))) 5465 return false; 5466 5467 SmallVector<LoadSDNode*, 8> Loads; 5468 SmallPtrSet<SDNode*, 2> NodesWithConsts; 5469 SDNode *FixupNode = nullptr; 5470 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 5471 if (Loads.size() == 0) 5472 return false; 5473 5474 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 5475 SDValue MaskOp = N->getOperand(1); 5476 5477 // If it exists, fixup the single node we allow in the tree that needs 5478 // masking. 5479 if (FixupNode) { 5480 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 5481 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), 5482 FixupNode->getValueType(0), 5483 SDValue(FixupNode, 0), MaskOp); 5484 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 5485 if (And.getOpcode() == ISD ::AND) 5486 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); 5487 } 5488 5489 // Narrow any constants that need it. 5490 for (auto *LogicN : NodesWithConsts) { 5491 SDValue Op0 = LogicN->getOperand(0); 5492 SDValue Op1 = LogicN->getOperand(1); 5493 5494 if (isa<ConstantSDNode>(Op0)) 5495 std::swap(Op0, Op1); 5496 5497 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), 5498 Op1, MaskOp); 5499 5500 DAG.UpdateNodeOperands(LogicN, Op0, And); 5501 } 5502 5503 // Create narrow loads. 5504 for (auto *Load : Loads) { 5505 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 5506 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 5507 SDValue(Load, 0), MaskOp); 5508 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 5509 if (And.getOpcode() == ISD ::AND) 5510 And = SDValue( 5511 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); 5512 SDValue NewLoad = ReduceLoadWidth(And.getNode()); 5513 assert(NewLoad && 5514 "Shouldn't be masking the load if it can't be narrowed"); 5515 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 5516 } 5517 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 5518 return true; 5519 } 5520 return false; 5521 } 5522 5523 // Unfold 5524 // x & (-1 'logical shift' y) 5525 // To 5526 // (x 'opposite logical shift' y) 'logical shift' y 5527 // if it is better for performance. 5528 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 5529 assert(N->getOpcode() == ISD::AND); 5530 5531 SDValue N0 = N->getOperand(0); 5532 SDValue N1 = N->getOperand(1); 5533 5534 // Do we actually prefer shifts over mask? 5535 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 5536 return SDValue(); 5537 5538 // Try to match (-1 '[outer] logical shift' y) 5539 unsigned OuterShift; 5540 unsigned InnerShift; // The opposite direction to the OuterShift. 5541 SDValue Y; // Shift amount. 5542 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 5543 if (!M.hasOneUse()) 5544 return false; 5545 OuterShift = M->getOpcode(); 5546 if (OuterShift == ISD::SHL) 5547 InnerShift = ISD::SRL; 5548 else if (OuterShift == ISD::SRL) 5549 InnerShift = ISD::SHL; 5550 else 5551 return false; 5552 if (!isAllOnesConstant(M->getOperand(0))) 5553 return false; 5554 Y = M->getOperand(1); 5555 return true; 5556 }; 5557 5558 SDValue X; 5559 if (matchMask(N1)) 5560 X = N0; 5561 else if (matchMask(N0)) 5562 X = N1; 5563 else 5564 return SDValue(); 5565 5566 SDLoc DL(N); 5567 EVT VT = N->getValueType(0); 5568 5569 // tmp = x 'opposite logical shift' y 5570 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 5571 // ret = tmp 'logical shift' y 5572 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 5573 5574 return T1; 5575 } 5576 5577 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. 5578 /// For a target with a bit test, this is expected to become test + set and save 5579 /// at least 1 instruction. 5580 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { 5581 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); 5582 5583 // This is probably not worthwhile without a supported type. 5584 EVT VT = And->getValueType(0); 5585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5586 if (!TLI.isTypeLegal(VT)) 5587 return SDValue(); 5588 5589 // Look through an optional extension and find a 'not'. 5590 // TODO: Should we favor test+set even without the 'not' op? 5591 SDValue Not = And->getOperand(0), And1 = And->getOperand(1); 5592 if (Not.getOpcode() == ISD::ANY_EXTEND) 5593 Not = Not.getOperand(0); 5594 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) 5595 return SDValue(); 5596 5597 // Look though an optional truncation. The source operand may not be the same 5598 // type as the original 'and', but that is ok because we are masking off 5599 // everything but the low bit. 5600 SDValue Srl = Not.getOperand(0); 5601 if (Srl.getOpcode() == ISD::TRUNCATE) 5602 Srl = Srl.getOperand(0); 5603 5604 // Match a shift-right by constant. 5605 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || 5606 !isa<ConstantSDNode>(Srl.getOperand(1))) 5607 return SDValue(); 5608 5609 // We might have looked through casts that make this transform invalid. 5610 // TODO: If the source type is wider than the result type, do the mask and 5611 // compare in the source type. 5612 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); 5613 unsigned VTBitWidth = VT.getSizeInBits(); 5614 if (ShiftAmt.uge(VTBitWidth)) 5615 return SDValue(); 5616 5617 // Turn this into a bit-test pattern using mask op + setcc: 5618 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 5619 SDLoc DL(And); 5620 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); 5621 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5622 SDValue Mask = DAG.getConstant( 5623 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); 5624 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); 5625 SDValue Zero = DAG.getConstant(0, DL, VT); 5626 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); 5627 return DAG.getZExtOrTrunc(Setcc, DL, VT); 5628 } 5629 5630 SDValue DAGCombiner::visitAND(SDNode *N) { 5631 SDValue N0 = N->getOperand(0); 5632 SDValue N1 = N->getOperand(1); 5633 EVT VT = N1.getValueType(); 5634 5635 // x & x --> x 5636 if (N0 == N1) 5637 return N0; 5638 5639 // fold vector ops 5640 if (VT.isVector()) { 5641 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 5642 return FoldedVOp; 5643 5644 // fold (and x, 0) -> 0, vector edition 5645 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 5646 // do not return N0, because undef node may exist in N0 5647 return DAG.getConstant(APInt::getZero(N0.getScalarValueSizeInBits()), 5648 SDLoc(N), N0.getValueType()); 5649 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 5650 // do not return N1, because undef node may exist in N1 5651 return DAG.getConstant(APInt::getZero(N1.getScalarValueSizeInBits()), 5652 SDLoc(N), N1.getValueType()); 5653 5654 // fold (and x, -1) -> x, vector edition 5655 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 5656 return N1; 5657 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 5658 return N0; 5659 5660 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load 5661 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); 5662 auto *BVec = dyn_cast<BuildVectorSDNode>(N1); 5663 if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD && 5664 N0.hasOneUse() && N1.hasOneUse()) { 5665 EVT LoadVT = MLoad->getMemoryVT(); 5666 EVT ExtVT = VT; 5667 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { 5668 // For this AND to be a zero extension of the masked load the elements 5669 // of the BuildVec must mask the bottom bits of the extended element 5670 // type 5671 if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) { 5672 uint64_t ElementSize = 5673 LoadVT.getVectorElementType().getScalarSizeInBits(); 5674 if (Splat->getAPIntValue().isMask(ElementSize)) { 5675 return DAG.getMaskedLoad( 5676 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(), 5677 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), 5678 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), 5679 ISD::ZEXTLOAD, MLoad->isExpandingLoad()); 5680 } 5681 } 5682 } 5683 } 5684 } 5685 5686 // fold (and c1, c2) -> c1&c2 5687 ConstantSDNode *N1C = isConstOrConstSplat(N1); 5688 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) 5689 return C; 5690 5691 // canonicalize constant to RHS 5692 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5693 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5694 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 5695 5696 // fold (and x, -1) -> x 5697 if (isAllOnesConstant(N1)) 5698 return N0; 5699 5700 // if (and x, c) is known to be zero, return 0 5701 unsigned BitWidth = VT.getScalarSizeInBits(); 5702 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(BitWidth))) 5703 return DAG.getConstant(0, SDLoc(N), VT); 5704 5705 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5706 return NewSel; 5707 5708 // reassociate and 5709 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 5710 return RAND; 5711 5712 // Try to convert a constant mask AND into a shuffle clear mask. 5713 if (VT.isVector()) 5714 if (SDValue Shuffle = XformToShuffleWithZero(N)) 5715 return Shuffle; 5716 5717 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 5718 return Combined; 5719 5720 // fold (and (or x, C), D) -> D if (C & D) == D 5721 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 5722 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 5723 }; 5724 if (N0.getOpcode() == ISD::OR && 5725 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 5726 return N1; 5727 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 5728 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 5729 SDValue N0Op0 = N0.getOperand(0); 5730 APInt Mask = ~N1C->getAPIntValue(); 5731 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 5732 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 5733 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 5734 N0.getValueType(), N0Op0); 5735 5736 // Replace uses of the AND with uses of the Zero extend node. 5737 CombineTo(N, Zext); 5738 5739 // We actually want to replace all uses of the any_extend with the 5740 // zero_extend, to avoid duplicating things. This will later cause this 5741 // AND to be folded. 5742 CombineTo(N0.getNode(), Zext); 5743 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5744 } 5745 } 5746 5747 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 5748 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 5749 // already be zero by virtue of the width of the base type of the load. 5750 // 5751 // the 'X' node here can either be nothing or an extract_vector_elt to catch 5752 // more cases. 5753 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5754 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 5755 N0.getOperand(0).getOpcode() == ISD::LOAD && 5756 N0.getOperand(0).getResNo() == 0) || 5757 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 5758 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 5759 N0 : N0.getOperand(0) ); 5760 5761 // Get the constant (if applicable) the zero'th operand is being ANDed with. 5762 // This can be a pure constant or a vector splat, in which case we treat the 5763 // vector as a scalar and use the splat value. 5764 APInt Constant = APInt::getZero(1); 5765 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 5766 Constant = C->getAPIntValue(); 5767 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 5768 APInt SplatValue, SplatUndef; 5769 unsigned SplatBitSize; 5770 bool HasAnyUndefs; 5771 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 5772 SplatBitSize, HasAnyUndefs); 5773 if (IsSplat) { 5774 // Undef bits can contribute to a possible optimisation if set, so 5775 // set them. 5776 SplatValue |= SplatUndef; 5777 5778 // The splat value may be something like "0x00FFFFFF", which means 0 for 5779 // the first vector value and FF for the rest, repeating. We need a mask 5780 // that will apply equally to all members of the vector, so AND all the 5781 // lanes of the constant together. 5782 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); 5783 5784 // If the splat value has been compressed to a bitlength lower 5785 // than the size of the vector lane, we need to re-expand it to 5786 // the lane size. 5787 if (EltBitWidth > SplatBitSize) 5788 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); 5789 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) 5790 SplatValue |= SplatValue.shl(SplatBitSize); 5791 5792 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 5793 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 5794 if ((SplatBitSize % EltBitWidth) == 0) { 5795 Constant = APInt::getAllOnes(EltBitWidth); 5796 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) 5797 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); 5798 } 5799 } 5800 } 5801 5802 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 5803 // actually legal and isn't going to get expanded, else this is a false 5804 // optimisation. 5805 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 5806 Load->getValueType(0), 5807 Load->getMemoryVT()); 5808 5809 // Resize the constant to the same size as the original memory access before 5810 // extension. If it is still the AllOnesValue then this AND is completely 5811 // unneeded. 5812 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 5813 5814 bool B; 5815 switch (Load->getExtensionType()) { 5816 default: B = false; break; 5817 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 5818 case ISD::ZEXTLOAD: 5819 case ISD::NON_EXTLOAD: B = true; break; 5820 } 5821 5822 if (B && Constant.isAllOnes()) { 5823 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 5824 // preserve semantics once we get rid of the AND. 5825 SDValue NewLoad(Load, 0); 5826 5827 // Fold the AND away. NewLoad may get replaced immediately. 5828 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 5829 5830 if (Load->getExtensionType() == ISD::EXTLOAD) { 5831 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 5832 Load->getValueType(0), SDLoc(Load), 5833 Load->getChain(), Load->getBasePtr(), 5834 Load->getOffset(), Load->getMemoryVT(), 5835 Load->getMemOperand()); 5836 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 5837 if (Load->getNumValues() == 3) { 5838 // PRE/POST_INC loads have 3 values. 5839 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 5840 NewLoad.getValue(2) }; 5841 CombineTo(Load, To, 3, true); 5842 } else { 5843 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 5844 } 5845 } 5846 5847 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5848 } 5849 } 5850 5851 // fold (and (masked_gather x)) -> (zext_masked_gather x) 5852 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 5853 EVT MemVT = GN0->getMemoryVT(); 5854 EVT ScalarVT = MemVT.getScalarType(); 5855 5856 if (SDValue(GN0, 0).hasOneUse() && 5857 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && 5858 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 5859 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 5860 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 5861 5862 SDValue ZExtLoad = DAG.getMaskedGather( 5863 DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops, 5864 GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD); 5865 5866 CombineTo(N, ZExtLoad); 5867 AddToWorklist(ZExtLoad.getNode()); 5868 // Avoid recheck of N. 5869 return SDValue(N, 0); 5870 } 5871 } 5872 5873 // fold (and (load x), 255) -> (zextload x, i8) 5874 // fold (and (extload x, i16), 255) -> (zextload x, i8) 5875 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 5876 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 5877 (N0.getOpcode() == ISD::ANY_EXTEND && 5878 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 5879 if (SDValue Res = ReduceLoadWidth(N)) { 5880 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 5881 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 5882 AddToWorklist(N); 5883 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 5884 return SDValue(N, 0); 5885 } 5886 } 5887 5888 if (LegalTypes) { 5889 // Attempt to propagate the AND back up to the leaves which, if they're 5890 // loads, can be combined to narrow loads and the AND node can be removed. 5891 // Perform after legalization so that extend nodes will already be 5892 // combined into the loads. 5893 if (BackwardsPropagateMask(N)) 5894 return SDValue(N, 0); 5895 } 5896 5897 if (SDValue Combined = visitANDLike(N0, N1, N)) 5898 return Combined; 5899 5900 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 5901 if (N0.getOpcode() == N1.getOpcode()) 5902 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 5903 return V; 5904 5905 // Masking the negated extension of a boolean is just the zero-extended 5906 // boolean: 5907 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 5908 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 5909 // 5910 // Note: the SimplifyDemandedBits fold below can make an information-losing 5911 // transform, and then we have no way to find this better fold. 5912 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 5913 if (isNullOrNullSplat(N0.getOperand(0))) { 5914 SDValue SubRHS = N0.getOperand(1); 5915 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 5916 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5917 return SubRHS; 5918 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 5919 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5920 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 5921 } 5922 } 5923 5924 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 5925 // fold (and (sra)) -> (and (srl)) when possible. 5926 if (SimplifyDemandedBits(SDValue(N, 0))) 5927 return SDValue(N, 0); 5928 5929 // fold (zext_inreg (extload x)) -> (zextload x) 5930 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 5931 if (ISD::isUNINDEXEDLoad(N0.getNode()) && 5932 (ISD::isEXTLoad(N0.getNode()) || 5933 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { 5934 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5935 EVT MemVT = LN0->getMemoryVT(); 5936 // If we zero all the possible extended bits, then we can turn this into 5937 // a zextload if we are running before legalize or the operation is legal. 5938 unsigned ExtBitSize = N1.getScalarValueSizeInBits(); 5939 unsigned MemBitSize = MemVT.getScalarSizeInBits(); 5940 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); 5941 if (DAG.MaskedValueIsZero(N1, ExtBits) && 5942 ((!LegalOperations && LN0->isSimple()) || 5943 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 5944 SDValue ExtLoad = 5945 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), 5946 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 5947 AddToWorklist(N); 5948 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 5949 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5950 } 5951 } 5952 5953 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 5954 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 5955 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 5956 N0.getOperand(1), false)) 5957 return BSwap; 5958 } 5959 5960 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 5961 return Shifts; 5962 5963 if (TLI.hasBitTest(N0, N1)) 5964 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) 5965 return V; 5966 5967 // Recognize the following pattern: 5968 // 5969 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) 5970 // 5971 // where bitmask is a mask that clears the upper bits of AndVT. The 5972 // number of bits in bitmask must be a power of two. 5973 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { 5974 if (LHS->getOpcode() != ISD::SIGN_EXTEND) 5975 return false; 5976 5977 auto *C = dyn_cast<ConstantSDNode>(RHS); 5978 if (!C) 5979 return false; 5980 5981 if (!C->getAPIntValue().isMask( 5982 LHS.getOperand(0).getValueType().getFixedSizeInBits())) 5983 return false; 5984 5985 return true; 5986 }; 5987 5988 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). 5989 if (IsAndZeroExtMask(N0, N1)) 5990 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); 5991 5992 return SDValue(); 5993 } 5994 5995 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 5996 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 5997 bool DemandHighBits) { 5998 if (!LegalOperations) 5999 return SDValue(); 6000 6001 EVT VT = N->getValueType(0); 6002 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 6003 return SDValue(); 6004 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6005 return SDValue(); 6006 6007 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 6008 bool LookPassAnd0 = false; 6009 bool LookPassAnd1 = false; 6010 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 6011 std::swap(N0, N1); 6012 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 6013 std::swap(N0, N1); 6014 if (N0.getOpcode() == ISD::AND) { 6015 if (!N0.getNode()->hasOneUse()) 6016 return SDValue(); 6017 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6018 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 6019 // This is needed for X86. 6020 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 6021 N01C->getZExtValue() != 0xFFFF)) 6022 return SDValue(); 6023 N0 = N0.getOperand(0); 6024 LookPassAnd0 = true; 6025 } 6026 6027 if (N1.getOpcode() == ISD::AND) { 6028 if (!N1.getNode()->hasOneUse()) 6029 return SDValue(); 6030 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6031 if (!N11C || N11C->getZExtValue() != 0xFF) 6032 return SDValue(); 6033 N1 = N1.getOperand(0); 6034 LookPassAnd1 = true; 6035 } 6036 6037 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 6038 std::swap(N0, N1); 6039 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 6040 return SDValue(); 6041 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 6042 return SDValue(); 6043 6044 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6045 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6046 if (!N01C || !N11C) 6047 return SDValue(); 6048 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 6049 return SDValue(); 6050 6051 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 6052 SDValue N00 = N0->getOperand(0); 6053 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 6054 if (!N00.getNode()->hasOneUse()) 6055 return SDValue(); 6056 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 6057 if (!N001C || N001C->getZExtValue() != 0xFF) 6058 return SDValue(); 6059 N00 = N00.getOperand(0); 6060 LookPassAnd0 = true; 6061 } 6062 6063 SDValue N10 = N1->getOperand(0); 6064 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 6065 if (!N10.getNode()->hasOneUse()) 6066 return SDValue(); 6067 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 6068 // Also allow 0xFFFF since the bits will be shifted out. This is needed 6069 // for X86. 6070 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 6071 N101C->getZExtValue() != 0xFFFF)) 6072 return SDValue(); 6073 N10 = N10.getOperand(0); 6074 LookPassAnd1 = true; 6075 } 6076 6077 if (N00 != N10) 6078 return SDValue(); 6079 6080 // Make sure everything beyond the low halfword gets set to zero since the SRL 6081 // 16 will clear the top bits. 6082 unsigned OpSizeInBits = VT.getSizeInBits(); 6083 if (DemandHighBits && OpSizeInBits > 16) { 6084 // If the left-shift isn't masked out then the only way this is a bswap is 6085 // if all bits beyond the low 8 are 0. In that case the entire pattern 6086 // reduces to a left shift anyway: leave it for other parts of the combiner. 6087 if (!LookPassAnd0) 6088 return SDValue(); 6089 6090 // However, if the right shift isn't masked out then it might be because 6091 // it's not needed. See if we can spot that too. 6092 if (!LookPassAnd1 && 6093 !DAG.MaskedValueIsZero( 6094 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 6095 return SDValue(); 6096 } 6097 6098 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 6099 if (OpSizeInBits > 16) { 6100 SDLoc DL(N); 6101 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 6102 DAG.getConstant(OpSizeInBits - 16, DL, 6103 getShiftAmountTy(VT))); 6104 } 6105 return Res; 6106 } 6107 6108 /// Return true if the specified node is an element that makes up a 32-bit 6109 /// packed halfword byteswap. 6110 /// ((x & 0x000000ff) << 8) | 6111 /// ((x & 0x0000ff00) >> 8) | 6112 /// ((x & 0x00ff0000) << 8) | 6113 /// ((x & 0xff000000) >> 8) 6114 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 6115 if (!N.getNode()->hasOneUse()) 6116 return false; 6117 6118 unsigned Opc = N.getOpcode(); 6119 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 6120 return false; 6121 6122 SDValue N0 = N.getOperand(0); 6123 unsigned Opc0 = N0.getOpcode(); 6124 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 6125 return false; 6126 6127 ConstantSDNode *N1C = nullptr; 6128 // SHL or SRL: look upstream for AND mask operand 6129 if (Opc == ISD::AND) 6130 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6131 else if (Opc0 == ISD::AND) 6132 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6133 if (!N1C) 6134 return false; 6135 6136 unsigned MaskByteOffset; 6137 switch (N1C->getZExtValue()) { 6138 default: 6139 return false; 6140 case 0xFF: MaskByteOffset = 0; break; 6141 case 0xFF00: MaskByteOffset = 1; break; 6142 case 0xFFFF: 6143 // In case demanded bits didn't clear the bits that will be shifted out. 6144 // This is needed for X86. 6145 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 6146 MaskByteOffset = 1; 6147 break; 6148 } 6149 return false; 6150 case 0xFF0000: MaskByteOffset = 2; break; 6151 case 0xFF000000: MaskByteOffset = 3; break; 6152 } 6153 6154 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 6155 if (Opc == ISD::AND) { 6156 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 6157 // (x >> 8) & 0xff 6158 // (x >> 8) & 0xff0000 6159 if (Opc0 != ISD::SRL) 6160 return false; 6161 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6162 if (!C || C->getZExtValue() != 8) 6163 return false; 6164 } else { 6165 // (x << 8) & 0xff00 6166 // (x << 8) & 0xff000000 6167 if (Opc0 != ISD::SHL) 6168 return false; 6169 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6170 if (!C || C->getZExtValue() != 8) 6171 return false; 6172 } 6173 } else if (Opc == ISD::SHL) { 6174 // (x & 0xff) << 8 6175 // (x & 0xff0000) << 8 6176 if (MaskByteOffset != 0 && MaskByteOffset != 2) 6177 return false; 6178 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6179 if (!C || C->getZExtValue() != 8) 6180 return false; 6181 } else { // Opc == ISD::SRL 6182 // (x & 0xff00) >> 8 6183 // (x & 0xff000000) >> 8 6184 if (MaskByteOffset != 1 && MaskByteOffset != 3) 6185 return false; 6186 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6187 if (!C || C->getZExtValue() != 8) 6188 return false; 6189 } 6190 6191 if (Parts[MaskByteOffset]) 6192 return false; 6193 6194 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 6195 return true; 6196 } 6197 6198 // Match 2 elements of a packed halfword bswap. 6199 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { 6200 if (N.getOpcode() == ISD::OR) 6201 return isBSwapHWordElement(N.getOperand(0), Parts) && 6202 isBSwapHWordElement(N.getOperand(1), Parts); 6203 6204 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { 6205 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); 6206 if (!C || C->getAPIntValue() != 16) 6207 return false; 6208 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); 6209 return true; 6210 } 6211 6212 return false; 6213 } 6214 6215 // Match this pattern: 6216 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) 6217 // And rewrite this to: 6218 // (rotr (bswap A), 16) 6219 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, 6220 SelectionDAG &DAG, SDNode *N, SDValue N0, 6221 SDValue N1, EVT VT, EVT ShiftAmountTy) { 6222 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && 6223 "MatchBSwapHWordOrAndAnd: expecting i32"); 6224 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6225 return SDValue(); 6226 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) 6227 return SDValue(); 6228 // TODO: this is too restrictive; lifting this restriction requires more tests 6229 if (!N0->hasOneUse() || !N1->hasOneUse()) 6230 return SDValue(); 6231 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); 6232 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); 6233 if (!Mask0 || !Mask1) 6234 return SDValue(); 6235 if (Mask0->getAPIntValue() != 0xff00ff00 || 6236 Mask1->getAPIntValue() != 0x00ff00ff) 6237 return SDValue(); 6238 SDValue Shift0 = N0.getOperand(0); 6239 SDValue Shift1 = N1.getOperand(0); 6240 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) 6241 return SDValue(); 6242 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); 6243 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); 6244 if (!ShiftAmt0 || !ShiftAmt1) 6245 return SDValue(); 6246 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) 6247 return SDValue(); 6248 if (Shift0.getOperand(0) != Shift1.getOperand(0)) 6249 return SDValue(); 6250 6251 SDLoc DL(N); 6252 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); 6253 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); 6254 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6255 } 6256 6257 /// Match a 32-bit packed halfword bswap. That is 6258 /// ((x & 0x000000ff) << 8) | 6259 /// ((x & 0x0000ff00) >> 8) | 6260 /// ((x & 0x00ff0000) << 8) | 6261 /// ((x & 0xff000000) >> 8) 6262 /// => (rotl (bswap x), 16) 6263 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 6264 if (!LegalOperations) 6265 return SDValue(); 6266 6267 EVT VT = N->getValueType(0); 6268 if (VT != MVT::i32) 6269 return SDValue(); 6270 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6271 return SDValue(); 6272 6273 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, 6274 getShiftAmountTy(VT))) 6275 return BSwap; 6276 6277 // Try again with commuted operands. 6278 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, 6279 getShiftAmountTy(VT))) 6280 return BSwap; 6281 6282 6283 // Look for either 6284 // (or (bswaphpair), (bswaphpair)) 6285 // (or (or (bswaphpair), (and)), (and)) 6286 // (or (or (and), (bswaphpair)), (and)) 6287 SDNode *Parts[4] = {}; 6288 6289 if (isBSwapHWordPair(N0, Parts)) { 6290 // (or (or (and), (and)), (or (and), (and))) 6291 if (!isBSwapHWordPair(N1, Parts)) 6292 return SDValue(); 6293 } else if (N0.getOpcode() == ISD::OR) { 6294 // (or (or (or (and), (and)), (and)), (and)) 6295 if (!isBSwapHWordElement(N1, Parts)) 6296 return SDValue(); 6297 SDValue N00 = N0.getOperand(0); 6298 SDValue N01 = N0.getOperand(1); 6299 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && 6300 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) 6301 return SDValue(); 6302 } else 6303 return SDValue(); 6304 6305 // Make sure the parts are all coming from the same node. 6306 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 6307 return SDValue(); 6308 6309 SDLoc DL(N); 6310 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 6311 SDValue(Parts[0], 0)); 6312 6313 // Result of the bswap should be rotated by 16. If it's not legal, then 6314 // do (x << 16) | (x >> 16). 6315 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 6316 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 6317 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 6318 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6319 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6320 return DAG.getNode(ISD::OR, DL, VT, 6321 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 6322 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 6323 } 6324 6325 /// This contains all DAGCombine rules which reduce two values combined by 6326 /// an Or operation to a single value \see visitANDLike(). 6327 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 6328 EVT VT = N1.getValueType(); 6329 SDLoc DL(N); 6330 6331 // fold (or x, undef) -> -1 6332 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 6333 return DAG.getAllOnesConstant(DL, VT); 6334 6335 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 6336 return V; 6337 6338 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 6339 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 6340 // Don't increase # computations. 6341 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6342 // We can only do this xform if we know that bits from X that are set in C2 6343 // but not in C1 are already zero. Likewise for Y. 6344 if (const ConstantSDNode *N0O1C = 6345 getAsNonOpaqueConstant(N0.getOperand(1))) { 6346 if (const ConstantSDNode *N1O1C = 6347 getAsNonOpaqueConstant(N1.getOperand(1))) { 6348 // We can only do this xform if we know that bits from X that are set in 6349 // C2 but not in C1 are already zero. Likewise for Y. 6350 const APInt &LHSMask = N0O1C->getAPIntValue(); 6351 const APInt &RHSMask = N1O1C->getAPIntValue(); 6352 6353 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 6354 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 6355 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6356 N0.getOperand(0), N1.getOperand(0)); 6357 return DAG.getNode(ISD::AND, DL, VT, X, 6358 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 6359 } 6360 } 6361 } 6362 } 6363 6364 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 6365 if (N0.getOpcode() == ISD::AND && 6366 N1.getOpcode() == ISD::AND && 6367 N0.getOperand(0) == N1.getOperand(0) && 6368 // Don't increase # computations. 6369 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6370 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6371 N0.getOperand(1), N1.getOperand(1)); 6372 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 6373 } 6374 6375 return SDValue(); 6376 } 6377 6378 /// OR combines for which the commuted variant will be tried as well. 6379 static SDValue visitORCommutative( 6380 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 6381 EVT VT = N0.getValueType(); 6382 if (N0.getOpcode() == ISD::AND) { 6383 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 6384 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 6385 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 6386 6387 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 6388 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 6389 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 6390 } 6391 6392 return SDValue(); 6393 } 6394 6395 SDValue DAGCombiner::visitOR(SDNode *N) { 6396 SDValue N0 = N->getOperand(0); 6397 SDValue N1 = N->getOperand(1); 6398 EVT VT = N1.getValueType(); 6399 6400 // x | x --> x 6401 if (N0 == N1) 6402 return N0; 6403 6404 // fold vector ops 6405 if (VT.isVector()) { 6406 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 6407 return FoldedVOp; 6408 6409 // fold (or x, 0) -> x, vector edition 6410 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 6411 return N1; 6412 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 6413 return N0; 6414 6415 // fold (or x, -1) -> -1, vector edition 6416 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 6417 // do not return N0, because undef node may exist in N0 6418 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); 6419 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 6420 // do not return N1, because undef node may exist in N1 6421 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 6422 6423 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 6424 // Do this only if the resulting shuffle is legal. 6425 if (isa<ShuffleVectorSDNode>(N0) && 6426 isa<ShuffleVectorSDNode>(N1) && 6427 // Avoid folding a node with illegal type. 6428 TLI.isTypeLegal(VT)) { 6429 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 6430 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 6431 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 6432 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 6433 // Ensure both shuffles have a zero input. 6434 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 6435 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 6436 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 6437 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 6438 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 6439 bool CanFold = true; 6440 int NumElts = VT.getVectorNumElements(); 6441 SmallVector<int, 4> Mask(NumElts); 6442 6443 for (int i = 0; i != NumElts; ++i) { 6444 int M0 = SV0->getMaskElt(i); 6445 int M1 = SV1->getMaskElt(i); 6446 6447 // Determine if either index is pointing to a zero vector. 6448 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 6449 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 6450 6451 // If one element is zero and the otherside is undef, keep undef. 6452 // This also handles the case that both are undef. 6453 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 6454 Mask[i] = -1; 6455 continue; 6456 } 6457 6458 // Make sure only one of the elements is zero. 6459 if (M0Zero == M1Zero) { 6460 CanFold = false; 6461 break; 6462 } 6463 6464 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 6465 6466 // We have a zero and non-zero element. If the non-zero came from 6467 // SV0 make the index a LHS index. If it came from SV1, make it 6468 // a RHS index. We need to mod by NumElts because we don't care 6469 // which operand it came from in the original shuffles. 6470 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 6471 } 6472 6473 if (CanFold) { 6474 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 6475 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 6476 6477 SDValue LegalShuffle = 6478 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, 6479 Mask, DAG); 6480 if (LegalShuffle) 6481 return LegalShuffle; 6482 } 6483 } 6484 } 6485 } 6486 6487 // fold (or c1, c2) -> c1|c2 6488 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 6489 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) 6490 return C; 6491 6492 // canonicalize constant to RHS 6493 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6494 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6495 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 6496 6497 // fold (or x, 0) -> x 6498 if (isNullConstant(N1)) 6499 return N0; 6500 6501 // fold (or x, -1) -> -1 6502 if (isAllOnesConstant(N1)) 6503 return N1; 6504 6505 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6506 return NewSel; 6507 6508 // fold (or x, c) -> c iff (x & ~c) == 0 6509 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 6510 return N1; 6511 6512 if (SDValue Combined = visitORLike(N0, N1, N)) 6513 return Combined; 6514 6515 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 6516 return Combined; 6517 6518 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 6519 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 6520 return BSwap; 6521 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 6522 return BSwap; 6523 6524 // reassociate or 6525 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 6526 return ROR; 6527 6528 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 6529 // iff (c1 & c2) != 0 or c1/c2 are undef. 6530 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 6531 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 6532 }; 6533 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 6534 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 6535 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 6536 {N1, N0.getOperand(1)})) { 6537 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 6538 AddToWorklist(IOR.getNode()); 6539 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 6540 } 6541 } 6542 6543 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 6544 return Combined; 6545 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 6546 return Combined; 6547 6548 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 6549 if (N0.getOpcode() == N1.getOpcode()) 6550 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6551 return V; 6552 6553 // See if this is some rotate idiom. 6554 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) 6555 return Rot; 6556 6557 if (SDValue Load = MatchLoadCombine(N)) 6558 return Load; 6559 6560 // Simplify the operands using demanded-bits information. 6561 if (SimplifyDemandedBits(SDValue(N, 0))) 6562 return SDValue(N, 0); 6563 6564 // If OR can be rewritten into ADD, try combines based on ADD. 6565 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 6566 DAG.haveNoCommonBitsSet(N0, N1)) 6567 if (SDValue Combined = visitADDLike(N)) 6568 return Combined; 6569 6570 return SDValue(); 6571 } 6572 6573 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 6574 if (Op.getOpcode() == ISD::AND && 6575 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 6576 Mask = Op.getOperand(1); 6577 return Op.getOperand(0); 6578 } 6579 return Op; 6580 } 6581 6582 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 6583 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 6584 SDValue &Mask) { 6585 Op = stripConstantMask(DAG, Op, Mask); 6586 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 6587 Shift = Op; 6588 return true; 6589 } 6590 return false; 6591 } 6592 6593 /// Helper function for visitOR to extract the needed side of a rotate idiom 6594 /// from a shl/srl/mul/udiv. This is meant to handle cases where 6595 /// InstCombine merged some outside op with one of the shifts from 6596 /// the rotate pattern. 6597 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 6598 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 6599 /// patterns: 6600 /// 6601 /// (or (add v v) (shrl v bitwidth-1)): 6602 /// expands (add v v) -> (shl v 1) 6603 /// 6604 /// (or (mul v c0) (shrl (mul v c1) c2)): 6605 /// expands (mul v c0) -> (shl (mul v c1) c3) 6606 /// 6607 /// (or (udiv v c0) (shl (udiv v c1) c2)): 6608 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 6609 /// 6610 /// (or (shl v c0) (shrl (shl v c1) c2)): 6611 /// expands (shl v c0) -> (shl (shl v c1) c3) 6612 /// 6613 /// (or (shrl v c0) (shl (shrl v c1) c2)): 6614 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 6615 /// 6616 /// Such that in all cases, c3+c2==bitwidth(op v c1). 6617 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 6618 SDValue ExtractFrom, SDValue &Mask, 6619 const SDLoc &DL) { 6620 assert(OppShift && ExtractFrom && "Empty SDValue"); 6621 assert( 6622 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 6623 "Existing shift must be valid as a rotate half"); 6624 6625 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 6626 6627 // Value and Type of the shift. 6628 SDValue OppShiftLHS = OppShift.getOperand(0); 6629 EVT ShiftedVT = OppShiftLHS.getValueType(); 6630 6631 // Amount of the existing shift. 6632 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 6633 6634 // (add v v) -> (shl v 1) 6635 // TODO: Should this be a general DAG canonicalization? 6636 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && 6637 ExtractFrom.getOpcode() == ISD::ADD && 6638 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && 6639 ExtractFrom.getOperand(0) == OppShiftLHS && 6640 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) 6641 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, 6642 DAG.getShiftAmountConstant(1, ShiftedVT, DL)); 6643 6644 // Preconditions: 6645 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 6646 // 6647 // Find opcode of the needed shift to be extracted from (op0 v c0). 6648 unsigned Opcode = ISD::DELETED_NODE; 6649 bool IsMulOrDiv = false; 6650 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 6651 // opcode or its arithmetic (mul or udiv) variant. 6652 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 6653 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 6654 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 6655 return false; 6656 Opcode = NeededShift; 6657 return true; 6658 }; 6659 // op0 must be either the needed shift opcode or the mul/udiv equivalent 6660 // that the needed shift can be extracted from. 6661 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 6662 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 6663 return SDValue(); 6664 6665 // op0 must be the same opcode on both sides, have the same LHS argument, 6666 // and produce the same value type. 6667 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 6668 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 6669 ShiftedVT != ExtractFrom.getValueType()) 6670 return SDValue(); 6671 6672 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 6673 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 6674 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 6675 ConstantSDNode *ExtractFromCst = 6676 isConstOrConstSplat(ExtractFrom.getOperand(1)); 6677 // TODO: We should be able to handle non-uniform constant vectors for these values 6678 // Check that we have constant values. 6679 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 6680 !OppLHSCst || !OppLHSCst->getAPIntValue() || 6681 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 6682 return SDValue(); 6683 6684 // Compute the shift amount we need to extract to complete the rotate. 6685 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 6686 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 6687 return SDValue(); 6688 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 6689 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 6690 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 6691 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 6692 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 6693 6694 // Now try extract the needed shift from the ExtractFrom op and see if the 6695 // result matches up with the existing shift's LHS op. 6696 if (IsMulOrDiv) { 6697 // Op to extract from is a mul or udiv by a constant. 6698 // Check: 6699 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 6700 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 6701 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 6702 NeededShiftAmt.getZExtValue()); 6703 APInt ResultAmt; 6704 APInt Rem; 6705 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 6706 if (Rem != 0 || ResultAmt != OppLHSAmt) 6707 return SDValue(); 6708 } else { 6709 // Op to extract from is a shift by a constant. 6710 // Check: 6711 // c2 - (bitwidth(op0 v c0) - c1) == c0 6712 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 6713 ExtractFromAmt.getBitWidth())) 6714 return SDValue(); 6715 } 6716 6717 // Return the expanded shift op that should allow a rotate to be formed. 6718 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 6719 EVT ResVT = ExtractFrom.getValueType(); 6720 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 6721 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 6722 } 6723 6724 // Return true if we can prove that, whenever Neg and Pos are both in the 6725 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 6726 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 6727 // 6728 // (or (shift1 X, Neg), (shift2 X, Pos)) 6729 // 6730 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 6731 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 6732 // to consider shift amounts with defined behavior. 6733 // 6734 // The IsRotate flag should be set when the LHS of both shifts is the same. 6735 // Otherwise if matching a general funnel shift, it should be clear. 6736 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 6737 SelectionDAG &DAG, bool IsRotate) { 6738 // If EltSize is a power of 2 then: 6739 // 6740 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 6741 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 6742 // 6743 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 6744 // for the stronger condition: 6745 // 6746 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 6747 // 6748 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 6749 // we can just replace Neg with Neg' for the rest of the function. 6750 // 6751 // In other cases we check for the even stronger condition: 6752 // 6753 // Neg == EltSize - Pos [B] 6754 // 6755 // for all Neg and Pos. Note that the (or ...) then invokes undefined 6756 // behavior if Pos == 0 (and consequently Neg == EltSize). 6757 // 6758 // We could actually use [A] whenever EltSize is a power of 2, but the 6759 // only extra cases that it would match are those uninteresting ones 6760 // where Neg and Pos are never in range at the same time. E.g. for 6761 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 6762 // as well as (sub 32, Pos), but: 6763 // 6764 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 6765 // 6766 // always invokes undefined behavior for 32-bit X. 6767 // 6768 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 6769 // 6770 // NOTE: We can only do this when matching an AND and not a general 6771 // funnel shift. 6772 unsigned MaskLoBits = 0; 6773 if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 6774 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 6775 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 6776 unsigned Bits = Log2_64(EltSize); 6777 if (NegC->getAPIntValue().getActiveBits() <= Bits && 6778 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 6779 Neg = Neg.getOperand(0); 6780 MaskLoBits = Bits; 6781 } 6782 } 6783 } 6784 6785 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 6786 if (Neg.getOpcode() != ISD::SUB) 6787 return false; 6788 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 6789 if (!NegC) 6790 return false; 6791 SDValue NegOp1 = Neg.getOperand(1); 6792 6793 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 6794 // Pos'. The truncation is redundant for the purpose of the equality. 6795 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 6796 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 6797 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 6798 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 6799 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 6800 MaskLoBits)) 6801 Pos = Pos.getOperand(0); 6802 } 6803 } 6804 6805 // The condition we need is now: 6806 // 6807 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 6808 // 6809 // If NegOp1 == Pos then we need: 6810 // 6811 // EltSize & Mask == NegC & Mask 6812 // 6813 // (because "x & Mask" is a truncation and distributes through subtraction). 6814 // 6815 // We also need to account for a potential truncation of NegOp1 if the amount 6816 // has already been legalized to a shift amount type. 6817 APInt Width; 6818 if ((Pos == NegOp1) || 6819 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) 6820 Width = NegC->getAPIntValue(); 6821 6822 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 6823 // Then the condition we want to prove becomes: 6824 // 6825 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 6826 // 6827 // which, again because "x & Mask" is a truncation, becomes: 6828 // 6829 // NegC & Mask == (EltSize - PosC) & Mask 6830 // EltSize & Mask == (NegC + PosC) & Mask 6831 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 6832 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 6833 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 6834 else 6835 return false; 6836 } else 6837 return false; 6838 6839 // Now we just need to check that EltSize & Mask == Width & Mask. 6840 if (MaskLoBits) 6841 // EltSize & Mask is 0 since Mask is EltSize - 1. 6842 return Width.getLoBits(MaskLoBits) == 0; 6843 return Width == EltSize; 6844 } 6845 6846 // A subroutine of MatchRotate used once we have found an OR of two opposite 6847 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 6848 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 6849 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6850 // Neg with outer conversions stripped away. 6851 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 6852 SDValue Neg, SDValue InnerPos, 6853 SDValue InnerNeg, unsigned PosOpcode, 6854 unsigned NegOpcode, const SDLoc &DL) { 6855 // fold (or (shl x, (*ext y)), 6856 // (srl x, (*ext (sub 32, y)))) -> 6857 // (rotl x, y) or (rotr x, (sub 32, y)) 6858 // 6859 // fold (or (shl x, (*ext (sub 32, y))), 6860 // (srl x, (*ext y))) -> 6861 // (rotr x, y) or (rotl x, (sub 32, y)) 6862 EVT VT = Shifted.getValueType(); 6863 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, 6864 /*IsRotate*/ true)) { 6865 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6866 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 6867 HasPos ? Pos : Neg); 6868 } 6869 6870 return SDValue(); 6871 } 6872 6873 // A subroutine of MatchRotate used once we have found an OR of two opposite 6874 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces 6875 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the 6876 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6877 // Neg with outer conversions stripped away. 6878 // TODO: Merge with MatchRotatePosNeg. 6879 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, 6880 SDValue Neg, SDValue InnerPos, 6881 SDValue InnerNeg, unsigned PosOpcode, 6882 unsigned NegOpcode, const SDLoc &DL) { 6883 EVT VT = N0.getValueType(); 6884 unsigned EltBits = VT.getScalarSizeInBits(); 6885 6886 // fold (or (shl x0, (*ext y)), 6887 // (srl x1, (*ext (sub 32, y)))) -> 6888 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) 6889 // 6890 // fold (or (shl x0, (*ext (sub 32, y))), 6891 // (srl x1, (*ext y))) -> 6892 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) 6893 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) { 6894 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6895 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, 6896 HasPos ? Pos : Neg); 6897 } 6898 6899 // Matching the shift+xor cases, we can't easily use the xor'd shift amount 6900 // so for now just use the PosOpcode case if its legal. 6901 // TODO: When can we use the NegOpcode case? 6902 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { 6903 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { 6904 if (Op.getOpcode() != BinOpc) 6905 return false; 6906 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); 6907 return Cst && (Cst->getAPIntValue() == Imm); 6908 }; 6909 6910 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) 6911 // -> (fshl x0, x1, y) 6912 if (IsBinOpImm(N1, ISD::SRL, 1) && 6913 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && 6914 InnerPos == InnerNeg.getOperand(0) && 6915 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { 6916 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); 6917 } 6918 6919 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) 6920 // -> (fshr x0, x1, y) 6921 if (IsBinOpImm(N0, ISD::SHL, 1) && 6922 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6923 InnerNeg == InnerPos.getOperand(0) && 6924 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6925 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6926 } 6927 6928 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) 6929 // -> (fshr x0, x1, y) 6930 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? 6931 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && 6932 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6933 InnerNeg == InnerPos.getOperand(0) && 6934 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6935 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6936 } 6937 } 6938 6939 return SDValue(); 6940 } 6941 6942 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 6943 // idioms for rotate, and if the target supports rotation instructions, generate 6944 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but 6945 // with different shifted sources. 6946 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 6947 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 6948 EVT VT = LHS.getValueType(); 6949 if (!TLI.isTypeLegal(VT)) 6950 return SDValue(); 6951 6952 // The target must have at least one rotate/funnel flavor. 6953 bool HasROTL = hasOperation(ISD::ROTL, VT); 6954 bool HasROTR = hasOperation(ISD::ROTR, VT); 6955 bool HasFSHL = hasOperation(ISD::FSHL, VT); 6956 bool HasFSHR = hasOperation(ISD::FSHR, VT); 6957 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 6958 return SDValue(); 6959 6960 // Check for truncated rotate. 6961 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 6962 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 6963 assert(LHS.getValueType() == RHS.getValueType()); 6964 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 6965 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); 6966 } 6967 } 6968 6969 // Match "(X shl/srl V1) & V2" where V2 may not be present. 6970 SDValue LHSShift; // The shift. 6971 SDValue LHSMask; // AND value if any. 6972 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 6973 6974 SDValue RHSShift; // The shift. 6975 SDValue RHSMask; // AND value if any. 6976 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 6977 6978 // If neither side matched a rotate half, bail 6979 if (!LHSShift && !RHSShift) 6980 return SDValue(); 6981 6982 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 6983 // side of the rotate, so try to handle that here. In all cases we need to 6984 // pass the matched shift from the opposite side to compute the opcode and 6985 // needed shift amount to extract. We still want to do this if both sides 6986 // matched a rotate half because one half may be a potential overshift that 6987 // can be broken down (ie if InstCombine merged two shl or srl ops into a 6988 // single one). 6989 6990 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 6991 if (LHSShift) 6992 if (SDValue NewRHSShift = 6993 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 6994 RHSShift = NewRHSShift; 6995 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 6996 if (RHSShift) 6997 if (SDValue NewLHSShift = 6998 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 6999 LHSShift = NewLHSShift; 7000 7001 // If a side is still missing, nothing else we can do. 7002 if (!RHSShift || !LHSShift) 7003 return SDValue(); 7004 7005 // At this point we've matched or extracted a shift op on each side. 7006 7007 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 7008 return SDValue(); // Shifts must disagree. 7009 7010 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); 7011 if (!IsRotate && !(HasFSHL || HasFSHR)) 7012 return SDValue(); // Requires funnel shift support. 7013 7014 // Canonicalize shl to left side in a shl/srl pair. 7015 if (RHSShift.getOpcode() == ISD::SHL) { 7016 std::swap(LHS, RHS); 7017 std::swap(LHSShift, RHSShift); 7018 std::swap(LHSMask, RHSMask); 7019 } 7020 7021 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7022 SDValue LHSShiftArg = LHSShift.getOperand(0); 7023 SDValue LHSShiftAmt = LHSShift.getOperand(1); 7024 SDValue RHSShiftArg = RHSShift.getOperand(0); 7025 SDValue RHSShiftAmt = RHSShift.getOperand(1); 7026 7027 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 7028 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 7029 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) 7030 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) 7031 // iff C1+C2 == EltSizeInBits 7032 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 7033 ConstantSDNode *RHS) { 7034 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 7035 }; 7036 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 7037 SDValue Res; 7038 if (IsRotate && (HasROTL || HasROTR)) 7039 Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, 7040 HasROTL ? LHSShiftAmt : RHSShiftAmt); 7041 else 7042 Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, 7043 RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt); 7044 7045 // If there is an AND of either shifted operand, apply it to the result. 7046 if (LHSMask.getNode() || RHSMask.getNode()) { 7047 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 7048 SDValue Mask = AllOnes; 7049 7050 if (LHSMask.getNode()) { 7051 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 7052 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7053 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 7054 } 7055 if (RHSMask.getNode()) { 7056 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 7057 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7058 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 7059 } 7060 7061 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); 7062 } 7063 7064 return Res; 7065 } 7066 7067 // If there is a mask here, and we have a variable shift, we can't be sure 7068 // that we're masking out the right stuff. 7069 if (LHSMask.getNode() || RHSMask.getNode()) 7070 return SDValue(); 7071 7072 // If the shift amount is sign/zext/any-extended just peel it off. 7073 SDValue LExtOp0 = LHSShiftAmt; 7074 SDValue RExtOp0 = RHSShiftAmt; 7075 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7076 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7077 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7078 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 7079 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7080 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7081 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7082 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 7083 LExtOp0 = LHSShiftAmt.getOperand(0); 7084 RExtOp0 = RHSShiftAmt.getOperand(0); 7085 } 7086 7087 if (IsRotate && (HasROTL || HasROTR)) { 7088 SDValue TryL = 7089 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, 7090 RExtOp0, ISD::ROTL, ISD::ROTR, DL); 7091 if (TryL) 7092 return TryL; 7093 7094 SDValue TryR = 7095 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, 7096 LExtOp0, ISD::ROTR, ISD::ROTL, DL); 7097 if (TryR) 7098 return TryR; 7099 } 7100 7101 SDValue TryL = 7102 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, 7103 LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); 7104 if (TryL) 7105 return TryL; 7106 7107 SDValue TryR = 7108 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 7109 RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); 7110 if (TryR) 7111 return TryR; 7112 7113 return SDValue(); 7114 } 7115 7116 namespace { 7117 7118 /// Represents known origin of an individual byte in load combine pattern. The 7119 /// value of the byte is either constant zero or comes from memory. 7120 struct ByteProvider { 7121 // For constant zero providers Load is set to nullptr. For memory providers 7122 // Load represents the node which loads the byte from memory. 7123 // ByteOffset is the offset of the byte in the value produced by the load. 7124 LoadSDNode *Load = nullptr; 7125 unsigned ByteOffset = 0; 7126 7127 ByteProvider() = default; 7128 7129 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 7130 return ByteProvider(Load, ByteOffset); 7131 } 7132 7133 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 7134 7135 bool isConstantZero() const { return !Load; } 7136 bool isMemory() const { return Load; } 7137 7138 bool operator==(const ByteProvider &Other) const { 7139 return Other.Load == Load && Other.ByteOffset == ByteOffset; 7140 } 7141 7142 private: 7143 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 7144 : Load(Load), ByteOffset(ByteOffset) {} 7145 }; 7146 7147 } // end anonymous namespace 7148 7149 /// Recursively traverses the expression calculating the origin of the requested 7150 /// byte of the given value. Returns None if the provider can't be calculated. 7151 /// 7152 /// For all the values except the root of the expression verifies that the value 7153 /// has exactly one use and if it's not true return None. This way if the origin 7154 /// of the byte is returned it's guaranteed that the values which contribute to 7155 /// the byte are not used outside of this expression. 7156 /// 7157 /// Because the parts of the expression are not allowed to have more than one 7158 /// use this function iterates over trees, not DAGs. So it never visits the same 7159 /// node more than once. 7160 static const Optional<ByteProvider> 7161 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 7162 bool Root = false) { 7163 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 7164 if (Depth == 10) 7165 return None; 7166 7167 if (!Root && !Op.hasOneUse()) 7168 return None; 7169 7170 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 7171 unsigned BitWidth = Op.getValueSizeInBits(); 7172 if (BitWidth % 8 != 0) 7173 return None; 7174 unsigned ByteWidth = BitWidth / 8; 7175 assert(Index < ByteWidth && "invalid index requested"); 7176 (void) ByteWidth; 7177 7178 switch (Op.getOpcode()) { 7179 case ISD::OR: { 7180 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 7181 if (!LHS) 7182 return None; 7183 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 7184 if (!RHS) 7185 return None; 7186 7187 if (LHS->isConstantZero()) 7188 return RHS; 7189 if (RHS->isConstantZero()) 7190 return LHS; 7191 return None; 7192 } 7193 case ISD::SHL: { 7194 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 7195 if (!ShiftOp) 7196 return None; 7197 7198 uint64_t BitShift = ShiftOp->getZExtValue(); 7199 if (BitShift % 8 != 0) 7200 return None; 7201 uint64_t ByteShift = BitShift / 8; 7202 7203 return Index < ByteShift 7204 ? ByteProvider::getConstantZero() 7205 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 7206 Depth + 1); 7207 } 7208 case ISD::ANY_EXTEND: 7209 case ISD::SIGN_EXTEND: 7210 case ISD::ZERO_EXTEND: { 7211 SDValue NarrowOp = Op->getOperand(0); 7212 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 7213 if (NarrowBitWidth % 8 != 0) 7214 return None; 7215 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7216 7217 if (Index >= NarrowByteWidth) 7218 return Op.getOpcode() == ISD::ZERO_EXTEND 7219 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7220 : None; 7221 return calculateByteProvider(NarrowOp, Index, Depth + 1); 7222 } 7223 case ISD::BSWAP: 7224 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 7225 Depth + 1); 7226 case ISD::LOAD: { 7227 auto L = cast<LoadSDNode>(Op.getNode()); 7228 if (!L->isSimple() || L->isIndexed()) 7229 return None; 7230 7231 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 7232 if (NarrowBitWidth % 8 != 0) 7233 return None; 7234 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7235 7236 if (Index >= NarrowByteWidth) 7237 return L->getExtensionType() == ISD::ZEXTLOAD 7238 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7239 : None; 7240 return ByteProvider::getMemory(L, Index); 7241 } 7242 } 7243 7244 return None; 7245 } 7246 7247 static unsigned littleEndianByteAt(unsigned BW, unsigned i) { 7248 return i; 7249 } 7250 7251 static unsigned bigEndianByteAt(unsigned BW, unsigned i) { 7252 return BW - i - 1; 7253 } 7254 7255 // Check if the bytes offsets we are looking at match with either big or 7256 // little endian value loaded. Return true for big endian, false for little 7257 // endian, and None if match failed. 7258 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, 7259 int64_t FirstOffset) { 7260 // The endian can be decided only when it is 2 bytes at least. 7261 unsigned Width = ByteOffsets.size(); 7262 if (Width < 2) 7263 return None; 7264 7265 bool BigEndian = true, LittleEndian = true; 7266 for (unsigned i = 0; i < Width; i++) { 7267 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 7268 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); 7269 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); 7270 if (!BigEndian && !LittleEndian) 7271 return None; 7272 } 7273 7274 assert((BigEndian != LittleEndian) && "It should be either big endian or" 7275 "little endian"); 7276 return BigEndian; 7277 } 7278 7279 static SDValue stripTruncAndExt(SDValue Value) { 7280 switch (Value.getOpcode()) { 7281 case ISD::TRUNCATE: 7282 case ISD::ZERO_EXTEND: 7283 case ISD::SIGN_EXTEND: 7284 case ISD::ANY_EXTEND: 7285 return stripTruncAndExt(Value.getOperand(0)); 7286 } 7287 return Value; 7288 } 7289 7290 /// Match a pattern where a wide type scalar value is stored by several narrow 7291 /// stores. Fold it into a single store or a BSWAP and a store if the targets 7292 /// supports it. 7293 /// 7294 /// Assuming little endian target: 7295 /// i8 *p = ... 7296 /// i32 val = ... 7297 /// p[0] = (val >> 0) & 0xFF; 7298 /// p[1] = (val >> 8) & 0xFF; 7299 /// p[2] = (val >> 16) & 0xFF; 7300 /// p[3] = (val >> 24) & 0xFF; 7301 /// => 7302 /// *((i32)p) = val; 7303 /// 7304 /// i8 *p = ... 7305 /// i32 val = ... 7306 /// p[0] = (val >> 24) & 0xFF; 7307 /// p[1] = (val >> 16) & 0xFF; 7308 /// p[2] = (val >> 8) & 0xFF; 7309 /// p[3] = (val >> 0) & 0xFF; 7310 /// => 7311 /// *((i32)p) = BSWAP(val); 7312 SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { 7313 // The matching looks for "store (trunc x)" patterns that appear early but are 7314 // likely to be replaced by truncating store nodes during combining. 7315 // TODO: If there is evidence that running this later would help, this 7316 // limitation could be removed. Legality checks may need to be added 7317 // for the created store and optional bswap/rotate. 7318 if (LegalOperations) 7319 return SDValue(); 7320 7321 // We only handle merging simple stores of 1-4 bytes. 7322 // TODO: Allow unordered atomics when wider type is legal (see D66309) 7323 EVT MemVT = N->getMemoryVT(); 7324 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || 7325 !N->isSimple() || N->isIndexed()) 7326 return SDValue(); 7327 7328 // Collect all of the stores in the chain. 7329 SDValue Chain = N->getChain(); 7330 SmallVector<StoreSDNode *, 8> Stores = {N}; 7331 while (auto *Store = dyn_cast<StoreSDNode>(Chain)) { 7332 // All stores must be the same size to ensure that we are writing all of the 7333 // bytes in the wide value. 7334 // TODO: We could allow multiple sizes by tracking each stored byte. 7335 if (Store->getMemoryVT() != MemVT || !Store->isSimple() || 7336 Store->isIndexed()) 7337 return SDValue(); 7338 Stores.push_back(Store); 7339 Chain = Store->getChain(); 7340 } 7341 // There is no reason to continue if we do not have at least a pair of stores. 7342 if (Stores.size() < 2) 7343 return SDValue(); 7344 7345 // Handle simple types only. 7346 LLVMContext &Context = *DAG.getContext(); 7347 unsigned NumStores = Stores.size(); 7348 unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits(); 7349 unsigned WideNumBits = NumStores * NarrowNumBits; 7350 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); 7351 if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) 7352 return SDValue(); 7353 7354 // Check if all bytes of the source value that we are looking at are stored 7355 // to the same base address. Collect offsets from Base address into OffsetMap. 7356 SDValue SourceValue; 7357 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); 7358 int64_t FirstOffset = INT64_MAX; 7359 StoreSDNode *FirstStore = nullptr; 7360 Optional<BaseIndexOffset> Base; 7361 for (auto Store : Stores) { 7362 // All the stores store different parts of the CombinedValue. A truncate is 7363 // required to get the partial value. 7364 SDValue Trunc = Store->getValue(); 7365 if (Trunc.getOpcode() != ISD::TRUNCATE) 7366 return SDValue(); 7367 // Other than the first/last part, a shift operation is required to get the 7368 // offset. 7369 int64_t Offset = 0; 7370 SDValue WideVal = Trunc.getOperand(0); 7371 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && 7372 isa<ConstantSDNode>(WideVal.getOperand(1))) { 7373 // The shift amount must be a constant multiple of the narrow type. 7374 // It is translated to the offset address in the wide source value "y". 7375 // 7376 // x = srl y, ShiftAmtC 7377 // i8 z = trunc x 7378 // store z, ... 7379 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); 7380 if (ShiftAmtC % NarrowNumBits != 0) 7381 return SDValue(); 7382 7383 Offset = ShiftAmtC / NarrowNumBits; 7384 WideVal = WideVal.getOperand(0); 7385 } 7386 7387 // Stores must share the same source value with different offsets. 7388 // Truncate and extends should be stripped to get the single source value. 7389 if (!SourceValue) 7390 SourceValue = WideVal; 7391 else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) 7392 return SDValue(); 7393 else if (SourceValue.getValueType() != WideVT) { 7394 if (WideVal.getValueType() == WideVT || 7395 WideVal.getScalarValueSizeInBits() > 7396 SourceValue.getScalarValueSizeInBits()) 7397 SourceValue = WideVal; 7398 // Give up if the source value type is smaller than the store size. 7399 if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) 7400 return SDValue(); 7401 } 7402 7403 // Stores must share the same base address. 7404 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); 7405 int64_t ByteOffsetFromBase = 0; 7406 if (!Base) 7407 Base = Ptr; 7408 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7409 return SDValue(); 7410 7411 // Remember the first store. 7412 if (ByteOffsetFromBase < FirstOffset) { 7413 FirstStore = Store; 7414 FirstOffset = ByteOffsetFromBase; 7415 } 7416 // Map the offset in the store and the offset in the combined value, and 7417 // early return if it has been set before. 7418 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) 7419 return SDValue(); 7420 OffsetMap[Offset] = ByteOffsetFromBase; 7421 } 7422 7423 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7424 assert(FirstStore && "First store must be set"); 7425 7426 // Check that a store of the wide type is both allowed and fast on the target 7427 const DataLayout &Layout = DAG.getDataLayout(); 7428 bool Fast = false; 7429 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, 7430 *FirstStore->getMemOperand(), &Fast); 7431 if (!Allowed || !Fast) 7432 return SDValue(); 7433 7434 // Check if the pieces of the value are going to the expected places in memory 7435 // to merge the stores. 7436 auto checkOffsets = [&](bool MatchLittleEndian) { 7437 if (MatchLittleEndian) { 7438 for (unsigned i = 0; i != NumStores; ++i) 7439 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) 7440 return false; 7441 } else { // MatchBigEndian by reversing loop counter. 7442 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) 7443 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) 7444 return false; 7445 } 7446 return true; 7447 }; 7448 7449 // Check if the offsets line up for the native data layout of this target. 7450 bool NeedBswap = false; 7451 bool NeedRotate = false; 7452 if (!checkOffsets(Layout.isLittleEndian())) { 7453 // Special-case: check if byte offsets line up for the opposite endian. 7454 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) 7455 NeedBswap = true; 7456 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) 7457 NeedRotate = true; 7458 else 7459 return SDValue(); 7460 } 7461 7462 SDLoc DL(N); 7463 if (WideVT != SourceValue.getValueType()) { 7464 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && 7465 "Unexpected store value to merge"); 7466 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); 7467 } 7468 7469 // Before legalize we can introduce illegal bswaps/rotates which will be later 7470 // converted to an explicit bswap sequence. This way we end up with a single 7471 // store and byte shuffling instead of several stores and byte shuffling. 7472 if (NeedBswap) { 7473 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); 7474 } else if (NeedRotate) { 7475 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); 7476 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); 7477 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); 7478 } 7479 7480 SDValue NewStore = 7481 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), 7482 FirstStore->getPointerInfo(), FirstStore->getAlign()); 7483 7484 // Rely on other DAG combine rules to remove the other individual stores. 7485 DAG.ReplaceAllUsesWith(N, NewStore.getNode()); 7486 return NewStore; 7487 } 7488 7489 /// Match a pattern where a wide type scalar value is loaded by several narrow 7490 /// loads and combined by shifts and ors. Fold it into a single load or a load 7491 /// and a BSWAP if the targets supports it. 7492 /// 7493 /// Assuming little endian target: 7494 /// i8 *a = ... 7495 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 7496 /// => 7497 /// i32 val = *((i32)a) 7498 /// 7499 /// i8 *a = ... 7500 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 7501 /// => 7502 /// i32 val = BSWAP(*((i32)a)) 7503 /// 7504 /// TODO: This rule matches complex patterns with OR node roots and doesn't 7505 /// interact well with the worklist mechanism. When a part of the pattern is 7506 /// updated (e.g. one of the loads) its direct users are put into the worklist, 7507 /// but the root node of the pattern which triggers the load combine is not 7508 /// necessarily a direct user of the changed node. For example, once the address 7509 /// of t28 load is reassociated load combine won't be triggered: 7510 /// t25: i32 = add t4, Constant:i32<2> 7511 /// t26: i64 = sign_extend t25 7512 /// t27: i64 = add t2, t26 7513 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 7514 /// t29: i32 = zero_extend t28 7515 /// t32: i32 = shl t29, Constant:i8<8> 7516 /// t33: i32 = or t23, t32 7517 /// As a possible fix visitLoad can check if the load can be a part of a load 7518 /// combine pattern and add corresponding OR roots to the worklist. 7519 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 7520 assert(N->getOpcode() == ISD::OR && 7521 "Can only match load combining against OR nodes"); 7522 7523 // Handles simple types only 7524 EVT VT = N->getValueType(0); 7525 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 7526 return SDValue(); 7527 unsigned ByteWidth = VT.getSizeInBits() / 8; 7528 7529 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 7530 auto MemoryByteOffset = [&] (ByteProvider P) { 7531 assert(P.isMemory() && "Must be a memory byte provider"); 7532 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 7533 assert(LoadBitWidth % 8 == 0 && 7534 "can only analyze providers for individual bytes not bit"); 7535 unsigned LoadByteWidth = LoadBitWidth / 8; 7536 return IsBigEndianTarget 7537 ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) 7538 : littleEndianByteAt(LoadByteWidth, P.ByteOffset); 7539 }; 7540 7541 Optional<BaseIndexOffset> Base; 7542 SDValue Chain; 7543 7544 SmallPtrSet<LoadSDNode *, 8> Loads; 7545 Optional<ByteProvider> FirstByteProvider; 7546 int64_t FirstOffset = INT64_MAX; 7547 7548 // Check if all the bytes of the OR we are looking at are loaded from the same 7549 // base address. Collect bytes offsets from Base address in ByteOffsets. 7550 SmallVector<int64_t, 8> ByteOffsets(ByteWidth); 7551 unsigned ZeroExtendedBytes = 0; 7552 for (int i = ByteWidth - 1; i >= 0; --i) { 7553 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 7554 if (!P) 7555 return SDValue(); 7556 7557 if (P->isConstantZero()) { 7558 // It's OK for the N most significant bytes to be 0, we can just 7559 // zero-extend the load. 7560 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) 7561 return SDValue(); 7562 continue; 7563 } 7564 assert(P->isMemory() && "provenance should either be memory or zero"); 7565 7566 LoadSDNode *L = P->Load; 7567 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && 7568 !L->isIndexed() && 7569 "Must be enforced by calculateByteProvider"); 7570 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 7571 7572 // All loads must share the same chain 7573 SDValue LChain = L->getChain(); 7574 if (!Chain) 7575 Chain = LChain; 7576 else if (Chain != LChain) 7577 return SDValue(); 7578 7579 // Loads must share the same base address 7580 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 7581 int64_t ByteOffsetFromBase = 0; 7582 if (!Base) 7583 Base = Ptr; 7584 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7585 return SDValue(); 7586 7587 // Calculate the offset of the current byte from the base address 7588 ByteOffsetFromBase += MemoryByteOffset(*P); 7589 ByteOffsets[i] = ByteOffsetFromBase; 7590 7591 // Remember the first byte load 7592 if (ByteOffsetFromBase < FirstOffset) { 7593 FirstByteProvider = P; 7594 FirstOffset = ByteOffsetFromBase; 7595 } 7596 7597 Loads.insert(L); 7598 } 7599 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 7600 "memory, so there must be at least one load which produces the value"); 7601 assert(Base && "Base address of the accessed memory location must be set"); 7602 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7603 7604 bool NeedsZext = ZeroExtendedBytes > 0; 7605 7606 EVT MemVT = 7607 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); 7608 7609 if (!MemVT.isSimple()) 7610 return SDValue(); 7611 7612 // Before legalize we can introduce too wide illegal loads which will be later 7613 // split into legal sized loads. This enables us to combine i64 load by i8 7614 // patterns to a couple of i32 loads on 32 bit targets. 7615 if (LegalOperations && 7616 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 7617 MemVT)) 7618 return SDValue(); 7619 7620 // Check if the bytes of the OR we are looking at match with either big or 7621 // little endian value load 7622 Optional<bool> IsBigEndian = isBigEndian( 7623 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); 7624 if (!IsBigEndian.hasValue()) 7625 return SDValue(); 7626 7627 assert(FirstByteProvider && "must be set"); 7628 7629 // Ensure that the first byte is loaded from zero offset of the first load. 7630 // So the combined value can be loaded from the first load address. 7631 if (MemoryByteOffset(*FirstByteProvider) != 0) 7632 return SDValue(); 7633 LoadSDNode *FirstLoad = FirstByteProvider->Load; 7634 7635 // The node we are looking at matches with the pattern, check if we can 7636 // replace it with a single (possibly zero-extended) load and bswap + shift if 7637 // needed. 7638 7639 // If the load needs byte swap check if the target supports it 7640 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 7641 7642 // Before legalize we can introduce illegal bswaps which will be later 7643 // converted to an explicit bswap sequence. This way we end up with a single 7644 // load and byte shuffling instead of several loads and byte shuffling. 7645 // We do not introduce illegal bswaps when zero-extending as this tends to 7646 // introduce too many arithmetic instructions. 7647 if (NeedsBswap && (LegalOperations || NeedsZext) && 7648 !TLI.isOperationLegal(ISD::BSWAP, VT)) 7649 return SDValue(); 7650 7651 // If we need to bswap and zero extend, we have to insert a shift. Check that 7652 // it is legal. 7653 if (NeedsBswap && NeedsZext && LegalOperations && 7654 !TLI.isOperationLegal(ISD::SHL, VT)) 7655 return SDValue(); 7656 7657 // Check that a load of the wide type is both allowed and fast on the target 7658 bool Fast = false; 7659 bool Allowed = 7660 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 7661 *FirstLoad->getMemOperand(), &Fast); 7662 if (!Allowed || !Fast) 7663 return SDValue(); 7664 7665 SDValue NewLoad = 7666 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, 7667 Chain, FirstLoad->getBasePtr(), 7668 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); 7669 7670 // Transfer chain users from old loads to the new load. 7671 for (LoadSDNode *L : Loads) 7672 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 7673 7674 if (!NeedsBswap) 7675 return NewLoad; 7676 7677 SDValue ShiftedLoad = 7678 NeedsZext 7679 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, 7680 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, 7681 SDLoc(N), LegalOperations)) 7682 : NewLoad; 7683 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); 7684 } 7685 7686 // If the target has andn, bsl, or a similar bit-select instruction, 7687 // we want to unfold masked merge, with canonical pattern of: 7688 // | A | |B| 7689 // ((x ^ y) & m) ^ y 7690 // | D | 7691 // Into: 7692 // (x & m) | (y & ~m) 7693 // If y is a constant, and the 'andn' does not work with immediates, 7694 // we unfold into a different pattern: 7695 // ~(~x & m) & (m | y) 7696 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 7697 // the very least that breaks andnpd / andnps patterns, and because those 7698 // patterns are simplified in IR and shouldn't be created in the DAG 7699 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 7700 assert(N->getOpcode() == ISD::XOR); 7701 7702 // Don't touch 'not' (i.e. where y = -1). 7703 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 7704 return SDValue(); 7705 7706 EVT VT = N->getValueType(0); 7707 7708 // There are 3 commutable operators in the pattern, 7709 // so we have to deal with 8 possible variants of the basic pattern. 7710 SDValue X, Y, M; 7711 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 7712 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 7713 return false; 7714 SDValue Xor = And.getOperand(XorIdx); 7715 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 7716 return false; 7717 SDValue Xor0 = Xor.getOperand(0); 7718 SDValue Xor1 = Xor.getOperand(1); 7719 // Don't touch 'not' (i.e. where y = -1). 7720 if (isAllOnesOrAllOnesSplat(Xor1)) 7721 return false; 7722 if (Other == Xor0) 7723 std::swap(Xor0, Xor1); 7724 if (Other != Xor1) 7725 return false; 7726 X = Xor0; 7727 Y = Xor1; 7728 M = And.getOperand(XorIdx ? 0 : 1); 7729 return true; 7730 }; 7731 7732 SDValue N0 = N->getOperand(0); 7733 SDValue N1 = N->getOperand(1); 7734 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 7735 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 7736 return SDValue(); 7737 7738 // Don't do anything if the mask is constant. This should not be reachable. 7739 // InstCombine should have already unfolded this pattern, and DAGCombiner 7740 // probably shouldn't produce it, too. 7741 if (isa<ConstantSDNode>(M.getNode())) 7742 return SDValue(); 7743 7744 // We can transform if the target has AndNot 7745 if (!TLI.hasAndNot(M)) 7746 return SDValue(); 7747 7748 SDLoc DL(N); 7749 7750 // If Y is a constant, check that 'andn' works with immediates. 7751 if (!TLI.hasAndNot(Y)) { 7752 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 7753 // If not, we need to do a bit more work to make sure andn is still used. 7754 SDValue NotX = DAG.getNOT(DL, X, VT); 7755 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 7756 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 7757 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 7758 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 7759 } 7760 7761 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 7762 SDValue NotM = DAG.getNOT(DL, M, VT); 7763 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 7764 7765 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 7766 } 7767 7768 SDValue DAGCombiner::visitXOR(SDNode *N) { 7769 SDValue N0 = N->getOperand(0); 7770 SDValue N1 = N->getOperand(1); 7771 EVT VT = N0.getValueType(); 7772 7773 // fold vector ops 7774 if (VT.isVector()) { 7775 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7776 return FoldedVOp; 7777 7778 // fold (xor x, 0) -> x, vector edition 7779 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 7780 return N1; 7781 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 7782 return N0; 7783 } 7784 7785 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 7786 SDLoc DL(N); 7787 if (N0.isUndef() && N1.isUndef()) 7788 return DAG.getConstant(0, DL, VT); 7789 7790 // fold (xor x, undef) -> undef 7791 if (N0.isUndef()) 7792 return N0; 7793 if (N1.isUndef()) 7794 return N1; 7795 7796 // fold (xor c1, c2) -> c1^c2 7797 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) 7798 return C; 7799 7800 // canonicalize constant to RHS 7801 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 7802 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 7803 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 7804 7805 // fold (xor x, 0) -> x 7806 if (isNullConstant(N1)) 7807 return N0; 7808 7809 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7810 return NewSel; 7811 7812 // reassociate xor 7813 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 7814 return RXOR; 7815 7816 // fold !(x cc y) -> (x !cc y) 7817 unsigned N0Opcode = N0.getOpcode(); 7818 SDValue LHS, RHS, CC; 7819 if (TLI.isConstTrueVal(N1.getNode()) && 7820 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) { 7821 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 7822 LHS.getValueType()); 7823 if (!LegalOperations || 7824 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 7825 switch (N0Opcode) { 7826 default: 7827 llvm_unreachable("Unhandled SetCC Equivalent!"); 7828 case ISD::SETCC: 7829 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 7830 case ISD::SELECT_CC: 7831 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 7832 N0.getOperand(3), NotCC); 7833 case ISD::STRICT_FSETCC: 7834 case ISD::STRICT_FSETCCS: { 7835 if (N0.hasOneUse()) { 7836 // FIXME Can we handle multiple uses? Could we token factor the chain 7837 // results from the new/old setcc? 7838 SDValue SetCC = 7839 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, 7840 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); 7841 CombineTo(N, SetCC); 7842 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); 7843 recursivelyDeleteUnusedNodes(N0.getNode()); 7844 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7845 } 7846 break; 7847 } 7848 } 7849 } 7850 } 7851 7852 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 7853 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 7854 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 7855 SDValue V = N0.getOperand(0); 7856 SDLoc DL0(N0); 7857 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 7858 DAG.getConstant(1, DL0, V.getValueType())); 7859 AddToWorklist(V.getNode()); 7860 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 7861 } 7862 7863 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 7864 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 7865 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7866 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7867 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { 7868 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7869 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7870 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7871 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7872 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7873 } 7874 } 7875 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 7876 if (isAllOnesConstant(N1) && N0.hasOneUse() && 7877 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7878 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7879 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { 7880 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7881 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7882 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7883 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7884 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7885 } 7886 } 7887 7888 // fold (not (neg x)) -> (add X, -1) 7889 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if 7890 // Y is a constant or the subtract has a single use. 7891 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && 7892 isNullConstant(N0.getOperand(0))) { 7893 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), 7894 DAG.getAllOnesConstant(DL, VT)); 7895 } 7896 7897 // fold (not (add X, -1)) -> (neg X) 7898 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && 7899 isAllOnesOrAllOnesSplat(N0.getOperand(1))) { 7900 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 7901 N0.getOperand(0)); 7902 } 7903 7904 // fold (xor (and x, y), y) -> (and (not x), y) 7905 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 7906 SDValue X = N0.getOperand(0); 7907 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 7908 AddToWorklist(NotX.getNode()); 7909 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 7910 } 7911 7912 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 7913 ConstantSDNode *XorC = isConstOrConstSplat(N1); 7914 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 7915 unsigned BitWidth = VT.getScalarSizeInBits(); 7916 if (XorC && ShiftC) { 7917 // Don't crash on an oversized shift. We can not guarantee that a bogus 7918 // shift has been simplified to undef. 7919 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 7920 if (ShiftAmt < BitWidth) { 7921 APInt Ones = APInt::getAllOnes(BitWidth); 7922 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 7923 if (XorC->getAPIntValue() == Ones) { 7924 // If the xor constant is a shifted -1, do a 'not' before the shift: 7925 // xor (X << ShiftC), XorC --> (not X) << ShiftC 7926 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 7927 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 7928 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 7929 } 7930 } 7931 } 7932 } 7933 7934 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 7935 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 7936 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 7937 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 7938 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 7939 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 7940 SDValue S0 = S.getOperand(0); 7941 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) 7942 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 7943 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 7944 return DAG.getNode(ISD::ABS, DL, VT, S0); 7945 } 7946 } 7947 7948 // fold (xor x, x) -> 0 7949 if (N0 == N1) 7950 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 7951 7952 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 7953 // Here is a concrete example of this equivalence: 7954 // i16 x == 14 7955 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 7956 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 7957 // 7958 // => 7959 // 7960 // i16 ~1 == 0b1111111111111110 7961 // i16 rol(~1, 14) == 0b1011111111111111 7962 // 7963 // Some additional tips to help conceptualize this transform: 7964 // - Try to see the operation as placing a single zero in a value of all ones. 7965 // - There exists no value for x which would allow the result to contain zero. 7966 // - Values of x larger than the bitwidth are undefined and do not require a 7967 // consistent result. 7968 // - Pushing the zero left requires shifting one bits in from the right. 7969 // A rotate left of ~1 is a nice way of achieving the desired result. 7970 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 7971 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 7972 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 7973 N0.getOperand(1)); 7974 } 7975 7976 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 7977 if (N0Opcode == N1.getOpcode()) 7978 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 7979 return V; 7980 7981 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 7982 if (SDValue MM = unfoldMaskedMerge(N)) 7983 return MM; 7984 7985 // Simplify the expression using non-local knowledge. 7986 if (SimplifyDemandedBits(SDValue(N, 0))) 7987 return SDValue(N, 0); 7988 7989 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 7990 return Combined; 7991 7992 return SDValue(); 7993 } 7994 7995 /// If we have a shift-by-constant of a bitwise logic op that itself has a 7996 /// shift-by-constant operand with identical opcode, we may be able to convert 7997 /// that into 2 independent shifts followed by the logic op. This is a 7998 /// throughput improvement. 7999 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { 8000 // Match a one-use bitwise logic op. 8001 SDValue LogicOp = Shift->getOperand(0); 8002 if (!LogicOp.hasOneUse()) 8003 return SDValue(); 8004 8005 unsigned LogicOpcode = LogicOp.getOpcode(); 8006 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && 8007 LogicOpcode != ISD::XOR) 8008 return SDValue(); 8009 8010 // Find a matching one-use shift by constant. 8011 unsigned ShiftOpcode = Shift->getOpcode(); 8012 SDValue C1 = Shift->getOperand(1); 8013 ConstantSDNode *C1Node = isConstOrConstSplat(C1); 8014 assert(C1Node && "Expected a shift with constant operand"); 8015 const APInt &C1Val = C1Node->getAPIntValue(); 8016 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, 8017 const APInt *&ShiftAmtVal) { 8018 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) 8019 return false; 8020 8021 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); 8022 if (!ShiftCNode) 8023 return false; 8024 8025 // Capture the shifted operand and shift amount value. 8026 ShiftOp = V.getOperand(0); 8027 ShiftAmtVal = &ShiftCNode->getAPIntValue(); 8028 8029 // Shift amount types do not have to match their operand type, so check that 8030 // the constants are the same width. 8031 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) 8032 return false; 8033 8034 // The fold is not valid if the sum of the shift values exceeds bitwidth. 8035 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) 8036 return false; 8037 8038 return true; 8039 }; 8040 8041 // Logic ops are commutative, so check each operand for a match. 8042 SDValue X, Y; 8043 const APInt *C0Val; 8044 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) 8045 Y = LogicOp.getOperand(1); 8046 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) 8047 Y = LogicOp.getOperand(0); 8048 else 8049 return SDValue(); 8050 8051 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 8052 SDLoc DL(Shift); 8053 EVT VT = Shift->getValueType(0); 8054 EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); 8055 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); 8056 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); 8057 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); 8058 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); 8059 } 8060 8061 /// Handle transforms common to the three shifts, when the shift amount is a 8062 /// constant. 8063 /// We are looking for: (shift being one of shl/sra/srl) 8064 /// shift (binop X, C0), C1 8065 /// And want to transform into: 8066 /// binop (shift X, C1), (shift C0, C1) 8067 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { 8068 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); 8069 8070 // Do not turn a 'not' into a regular xor. 8071 if (isBitwiseNot(N->getOperand(0))) 8072 return SDValue(); 8073 8074 // The inner binop must be one-use, since we want to replace it. 8075 SDValue LHS = N->getOperand(0); 8076 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) 8077 return SDValue(); 8078 8079 // TODO: This is limited to early combining because it may reveal regressions 8080 // otherwise. But since we just checked a target hook to see if this is 8081 // desirable, that should have filtered out cases where this interferes 8082 // with some other pattern matching. 8083 if (!LegalTypes) 8084 if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) 8085 return R; 8086 8087 // We want to pull some binops through shifts, so that we have (and (shift)) 8088 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 8089 // thing happens with address calculations, so it's important to canonicalize 8090 // it. 8091 switch (LHS.getOpcode()) { 8092 default: 8093 return SDValue(); 8094 case ISD::OR: 8095 case ISD::XOR: 8096 case ISD::AND: 8097 break; 8098 case ISD::ADD: 8099 if (N->getOpcode() != ISD::SHL) 8100 return SDValue(); // only shl(add) not sr[al](add). 8101 break; 8102 } 8103 8104 // We require the RHS of the binop to be a constant and not opaque as well. 8105 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); 8106 if (!BinOpCst) 8107 return SDValue(); 8108 8109 // FIXME: disable this unless the input to the binop is a shift by a constant 8110 // or is copy/select. Enable this in other cases when figure out it's exactly 8111 // profitable. 8112 SDValue BinOpLHSVal = LHS.getOperand(0); 8113 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 8114 BinOpLHSVal.getOpcode() == ISD::SRA || 8115 BinOpLHSVal.getOpcode() == ISD::SRL) && 8116 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 8117 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 8118 BinOpLHSVal.getOpcode() == ISD::SELECT; 8119 8120 if (!IsShiftByConstant && !IsCopyOrSelect) 8121 return SDValue(); 8122 8123 if (IsCopyOrSelect && N->hasOneUse()) 8124 return SDValue(); 8125 8126 // Fold the constants, shifting the binop RHS by the shift amount. 8127 SDLoc DL(N); 8128 EVT VT = N->getValueType(0); 8129 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), 8130 N->getOperand(1)); 8131 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 8132 8133 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), 8134 N->getOperand(1)); 8135 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); 8136 } 8137 8138 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 8139 assert(N->getOpcode() == ISD::TRUNCATE); 8140 assert(N->getOperand(0).getOpcode() == ISD::AND); 8141 8142 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 8143 EVT TruncVT = N->getValueType(0); 8144 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 8145 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 8146 SDValue N01 = N->getOperand(0).getOperand(1); 8147 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 8148 SDLoc DL(N); 8149 SDValue N00 = N->getOperand(0).getOperand(0); 8150 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 8151 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 8152 AddToWorklist(Trunc00.getNode()); 8153 AddToWorklist(Trunc01.getNode()); 8154 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 8155 } 8156 } 8157 8158 return SDValue(); 8159 } 8160 8161 SDValue DAGCombiner::visitRotate(SDNode *N) { 8162 SDLoc dl(N); 8163 SDValue N0 = N->getOperand(0); 8164 SDValue N1 = N->getOperand(1); 8165 EVT VT = N->getValueType(0); 8166 unsigned Bitsize = VT.getScalarSizeInBits(); 8167 8168 // fold (rot x, 0) -> x 8169 if (isNullOrNullSplat(N1)) 8170 return N0; 8171 8172 // fold (rot x, c) -> x iff (c % BitSize) == 0 8173 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 8174 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 8175 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 8176 return N0; 8177 } 8178 8179 // fold (rot x, c) -> (rot x, c % BitSize) 8180 bool OutOfRange = false; 8181 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { 8182 OutOfRange |= C->getAPIntValue().uge(Bitsize); 8183 return true; 8184 }; 8185 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { 8186 EVT AmtVT = N1.getValueType(); 8187 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); 8188 if (SDValue Amt = 8189 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) 8190 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); 8191 } 8192 8193 // rot i16 X, 8 --> bswap X 8194 auto *RotAmtC = isConstOrConstSplat(N1); 8195 if (RotAmtC && RotAmtC->getAPIntValue() == 8 && 8196 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) 8197 return DAG.getNode(ISD::BSWAP, dl, VT, N0); 8198 8199 // Simplify the operands using demanded-bits information. 8200 if (SimplifyDemandedBits(SDValue(N, 0))) 8201 return SDValue(N, 0); 8202 8203 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 8204 if (N1.getOpcode() == ISD::TRUNCATE && 8205 N1.getOperand(0).getOpcode() == ISD::AND) { 8206 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8207 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 8208 } 8209 8210 unsigned NextOp = N0.getOpcode(); 8211 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 8212 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 8213 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 8214 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 8215 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 8216 EVT ShiftVT = C1->getValueType(0); 8217 bool SameSide = (N->getOpcode() == NextOp); 8218 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 8219 if (SDValue CombinedShift = DAG.FoldConstantArithmetic( 8220 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { 8221 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 8222 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 8223 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); 8224 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 8225 CombinedShiftNorm); 8226 } 8227 } 8228 } 8229 return SDValue(); 8230 } 8231 8232 SDValue DAGCombiner::visitSHL(SDNode *N) { 8233 SDValue N0 = N->getOperand(0); 8234 SDValue N1 = N->getOperand(1); 8235 if (SDValue V = DAG.simplifyShift(N0, N1)) 8236 return V; 8237 8238 EVT VT = N0.getValueType(); 8239 EVT ShiftVT = N1.getValueType(); 8240 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8241 8242 // fold vector ops 8243 if (VT.isVector()) { 8244 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8245 return FoldedVOp; 8246 8247 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 8248 // If setcc produces all-one true value then: 8249 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 8250 if (N1CV && N1CV->isConstant()) { 8251 if (N0.getOpcode() == ISD::AND) { 8252 SDValue N00 = N0->getOperand(0); 8253 SDValue N01 = N0->getOperand(1); 8254 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 8255 8256 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 8257 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 8258 TargetLowering::ZeroOrNegativeOneBooleanContent) { 8259 if (SDValue C = 8260 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) 8261 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 8262 } 8263 } 8264 } 8265 } 8266 8267 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8268 8269 // fold (shl c1, c2) -> c1<<c2 8270 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) 8271 return C; 8272 8273 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8274 return NewSel; 8275 8276 // if (shl x, c) is known to be zero, return 0 8277 if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) 8278 return DAG.getConstant(0, SDLoc(N), VT); 8279 8280 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 8281 if (N1.getOpcode() == ISD::TRUNCATE && 8282 N1.getOperand(0).getOpcode() == ISD::AND) { 8283 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8284 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 8285 } 8286 8287 if (SimplifyDemandedBits(SDValue(N, 0))) 8288 return SDValue(N, 0); 8289 8290 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 8291 if (N0.getOpcode() == ISD::SHL) { 8292 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8293 ConstantSDNode *RHS) { 8294 APInt c1 = LHS->getAPIntValue(); 8295 APInt c2 = RHS->getAPIntValue(); 8296 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8297 return (c1 + c2).uge(OpSizeInBits); 8298 }; 8299 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8300 return DAG.getConstant(0, SDLoc(N), VT); 8301 8302 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8303 ConstantSDNode *RHS) { 8304 APInt c1 = LHS->getAPIntValue(); 8305 APInt c2 = RHS->getAPIntValue(); 8306 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8307 return (c1 + c2).ult(OpSizeInBits); 8308 }; 8309 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8310 SDLoc DL(N); 8311 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8312 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 8313 } 8314 } 8315 8316 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) 8317 // For this to be valid, the second form must not preserve any of the bits 8318 // that are shifted out by the inner shift in the first form. This means 8319 // the outer shift size must be >= the number of bits added by the ext. 8320 // As a corollary, we don't care what kind of ext it is. 8321 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 8322 N0.getOpcode() == ISD::ANY_EXTEND || 8323 N0.getOpcode() == ISD::SIGN_EXTEND) && 8324 N0.getOperand(0).getOpcode() == ISD::SHL) { 8325 SDValue N0Op0 = N0.getOperand(0); 8326 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8327 EVT InnerVT = N0Op0.getValueType(); 8328 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); 8329 8330 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8331 ConstantSDNode *RHS) { 8332 APInt c1 = LHS->getAPIntValue(); 8333 APInt c2 = RHS->getAPIntValue(); 8334 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8335 return c2.uge(OpSizeInBits - InnerBitwidth) && 8336 (c1 + c2).uge(OpSizeInBits); 8337 }; 8338 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, 8339 /*AllowUndefs*/ false, 8340 /*AllowTypeMismatch*/ true)) 8341 return DAG.getConstant(0, SDLoc(N), VT); 8342 8343 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8344 ConstantSDNode *RHS) { 8345 APInt c1 = LHS->getAPIntValue(); 8346 APInt c2 = RHS->getAPIntValue(); 8347 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8348 return c2.uge(OpSizeInBits - InnerBitwidth) && 8349 (c1 + c2).ult(OpSizeInBits); 8350 }; 8351 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, 8352 /*AllowUndefs*/ false, 8353 /*AllowTypeMismatch*/ true)) { 8354 SDLoc DL(N); 8355 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); 8356 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); 8357 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); 8358 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); 8359 } 8360 } 8361 8362 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 8363 // Only fold this if the inner zext has no other uses to avoid increasing 8364 // the total number of instructions. 8365 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 8366 N0.getOperand(0).getOpcode() == ISD::SRL) { 8367 SDValue N0Op0 = N0.getOperand(0); 8368 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8369 8370 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8371 APInt c1 = LHS->getAPIntValue(); 8372 APInt c2 = RHS->getAPIntValue(); 8373 zeroExtendToMatch(c1, c2); 8374 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); 8375 }; 8376 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, 8377 /*AllowUndefs*/ false, 8378 /*AllowTypeMismatch*/ true)) { 8379 SDLoc DL(N); 8380 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); 8381 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); 8382 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); 8383 AddToWorklist(NewSHL.getNode()); 8384 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 8385 } 8386 } 8387 8388 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 8389 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 8390 // TODO - support non-uniform vector shift amounts. 8391 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 8392 N0->getFlags().hasExact()) { 8393 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8394 uint64_t C1 = N0C1->getZExtValue(); 8395 uint64_t C2 = N1C->getZExtValue(); 8396 SDLoc DL(N); 8397 if (C1 <= C2) 8398 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8399 DAG.getConstant(C2 - C1, DL, ShiftVT)); 8400 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 8401 DAG.getConstant(C1 - C2, DL, ShiftVT)); 8402 } 8403 } 8404 8405 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 8406 // (and (srl x, (sub c1, c2), MASK) 8407 // Only fold this if the inner shift has no other uses -- if it does, folding 8408 // this will increase the total number of instructions. 8409 // TODO - drop hasOneUse requirement if c1 == c2? 8410 // TODO - support non-uniform vector shift amounts. 8411 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 8412 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 8413 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8414 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 8415 uint64_t c1 = N0C1->getZExtValue(); 8416 uint64_t c2 = N1C->getZExtValue(); 8417 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 8418 SDValue Shift; 8419 if (c2 > c1) { 8420 Mask <<= c2 - c1; 8421 SDLoc DL(N); 8422 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8423 DAG.getConstant(c2 - c1, DL, ShiftVT)); 8424 } else { 8425 Mask.lshrInPlace(c1 - c2); 8426 SDLoc DL(N); 8427 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 8428 DAG.getConstant(c1 - c2, DL, ShiftVT)); 8429 } 8430 SDLoc DL(N0); 8431 return DAG.getNode(ISD::AND, DL, VT, Shift, 8432 DAG.getConstant(Mask, DL, VT)); 8433 } 8434 } 8435 } 8436 8437 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 8438 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 8439 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 8440 SDLoc DL(N); 8441 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 8442 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 8443 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 8444 } 8445 8446 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8447 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8448 // Variant of version done on multiply, except mul by a power of 2 is turned 8449 // into a shift. 8450 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 8451 N0.getNode()->hasOneUse() && 8452 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8453 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 8454 TLI.isDesirableToCommuteWithShift(N, Level)) { 8455 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 8456 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8457 AddToWorklist(Shl0.getNode()); 8458 AddToWorklist(Shl1.getNode()); 8459 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 8460 } 8461 8462 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 8463 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 8464 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8465 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 8466 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8467 if (isConstantOrConstantVector(Shl)) 8468 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 8469 } 8470 8471 if (N1C && !N1C->isOpaque()) 8472 if (SDValue NewSHL = visitShiftByConstant(N)) 8473 return NewSHL; 8474 8475 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). 8476 if (N0.getOpcode() == ISD::VSCALE) 8477 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { 8478 const APInt &C0 = N0.getConstantOperandAPInt(0); 8479 const APInt &C1 = NC1->getAPIntValue(); 8480 return DAG.getVScale(SDLoc(N), VT, C0 << C1); 8481 } 8482 8483 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)). 8484 APInt ShlVal; 8485 if (N0.getOpcode() == ISD::STEP_VECTOR) 8486 if (ISD::isConstantSplatVector(N1.getNode(), ShlVal)) { 8487 const APInt &C0 = N0.getConstantOperandAPInt(0); 8488 if (ShlVal.ult(C0.getBitWidth())) { 8489 APInt NewStep = C0 << ShlVal; 8490 return DAG.getStepVector(SDLoc(N), VT, NewStep); 8491 } 8492 } 8493 8494 return SDValue(); 8495 } 8496 8497 // Transform a right shift of a multiply into a multiply-high. 8498 // Examples: 8499 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) 8500 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) 8501 static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, 8502 const TargetLowering &TLI) { 8503 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 8504 "SRL or SRA node is required here!"); 8505 8506 // Check the shift amount. Proceed with the transformation if the shift 8507 // amount is constant. 8508 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); 8509 if (!ShiftAmtSrc) 8510 return SDValue(); 8511 8512 SDLoc DL(N); 8513 8514 // The operation feeding into the shift must be a multiply. 8515 SDValue ShiftOperand = N->getOperand(0); 8516 if (ShiftOperand.getOpcode() != ISD::MUL) 8517 return SDValue(); 8518 8519 // Both operands must be equivalent extend nodes. 8520 SDValue LeftOp = ShiftOperand.getOperand(0); 8521 SDValue RightOp = ShiftOperand.getOperand(1); 8522 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; 8523 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; 8524 8525 if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode()) 8526 return SDValue(); 8527 8528 EVT WideVT = LeftOp.getValueType(); 8529 // Proceed with the transformation if the wide types match. 8530 assert((WideVT == RightOp.getValueType()) && 8531 "Cannot have a multiply node with two different operand types."); 8532 8533 EVT NarrowVT = LeftOp.getOperand(0).getValueType(); 8534 // Check that the two extend nodes are the same type. 8535 if (NarrowVT != RightOp.getOperand(0).getValueType()) 8536 return SDValue(); 8537 8538 // Proceed with the transformation if the wide type is twice as large 8539 // as the narrow type. 8540 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); 8541 if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize) 8542 return SDValue(); 8543 8544 // Check the shift amount with the narrow type size. 8545 // Proceed with the transformation if the shift amount is the width 8546 // of the narrow type. 8547 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); 8548 if (ShiftAmt != NarrowVTSize) 8549 return SDValue(); 8550 8551 // If the operation feeding into the MUL is a sign extend (sext), 8552 // we use mulhs. Othewise, zero extends (zext) use mulhu. 8553 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; 8554 8555 // Combine to mulh if mulh is legal/custom for the narrow type on the target. 8556 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) 8557 return SDValue(); 8558 8559 SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), 8560 RightOp.getOperand(0)); 8561 return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT) 8562 : DAG.getZExtOrTrunc(Result, DL, WideVT)); 8563 } 8564 8565 SDValue DAGCombiner::visitSRA(SDNode *N) { 8566 SDValue N0 = N->getOperand(0); 8567 SDValue N1 = N->getOperand(1); 8568 if (SDValue V = DAG.simplifyShift(N0, N1)) 8569 return V; 8570 8571 EVT VT = N0.getValueType(); 8572 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8573 8574 // Arithmetic shifting an all-sign-bit value is a no-op. 8575 // fold (sra 0, x) -> 0 8576 // fold (sra -1, x) -> -1 8577 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 8578 return N0; 8579 8580 // fold vector ops 8581 if (VT.isVector()) 8582 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8583 return FoldedVOp; 8584 8585 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8586 8587 // fold (sra c1, c2) -> (sra c1, c2) 8588 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) 8589 return C; 8590 8591 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8592 return NewSel; 8593 8594 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 8595 // sext_inreg. 8596 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 8597 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 8598 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 8599 if (VT.isVector()) 8600 ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, 8601 VT.getVectorElementCount()); 8602 if (!LegalOperations || 8603 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == 8604 TargetLowering::Legal) 8605 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 8606 N0.getOperand(0), DAG.getValueType(ExtVT)); 8607 // Even if we can't convert to sext_inreg, we might be able to remove 8608 // this shift pair if the input is already sign extended. 8609 if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue()) 8610 return N0.getOperand(0); 8611 } 8612 8613 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 8614 // clamp (add c1, c2) to max shift. 8615 if (N0.getOpcode() == ISD::SRA) { 8616 SDLoc DL(N); 8617 EVT ShiftVT = N1.getValueType(); 8618 EVT ShiftSVT = ShiftVT.getScalarType(); 8619 SmallVector<SDValue, 16> ShiftValues; 8620 8621 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8622 APInt c1 = LHS->getAPIntValue(); 8623 APInt c2 = RHS->getAPIntValue(); 8624 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8625 APInt Sum = c1 + c2; 8626 unsigned ShiftSum = 8627 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 8628 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 8629 return true; 8630 }; 8631 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 8632 SDValue ShiftValue; 8633 if (N1.getOpcode() == ISD::BUILD_VECTOR) 8634 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 8635 else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 8636 assert(ShiftValues.size() == 1 && 8637 "Expected matchBinaryPredicate to return one element for " 8638 "SPLAT_VECTORs"); 8639 ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]); 8640 } else 8641 ShiftValue = ShiftValues[0]; 8642 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 8643 } 8644 } 8645 8646 // fold (sra (shl X, m), (sub result_size, n)) 8647 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 8648 // result_size - n != m. 8649 // If truncate is free for the target sext(shl) is likely to result in better 8650 // code. 8651 if (N0.getOpcode() == ISD::SHL && N1C) { 8652 // Get the two constanst of the shifts, CN0 = m, CN = n. 8653 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 8654 if (N01C) { 8655 LLVMContext &Ctx = *DAG.getContext(); 8656 // Determine what the truncate's result bitsize and type would be. 8657 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 8658 8659 if (VT.isVector()) 8660 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 8661 8662 // Determine the residual right-shift amount. 8663 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 8664 8665 // If the shift is not a no-op (in which case this should be just a sign 8666 // extend already), the truncated to type is legal, sign_extend is legal 8667 // on that type, and the truncate to that type is both legal and free, 8668 // perform the transform. 8669 if ((ShiftAmt > 0) && 8670 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 8671 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 8672 TLI.isTruncateFree(VT, TruncVT)) { 8673 SDLoc DL(N); 8674 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 8675 getShiftAmountTy(N0.getOperand(0).getValueType())); 8676 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 8677 N0.getOperand(0), Amt); 8678 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 8679 Shift); 8680 return DAG.getNode(ISD::SIGN_EXTEND, DL, 8681 N->getValueType(0), Trunc); 8682 } 8683 } 8684 } 8685 8686 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. 8687 // sra (add (shl X, N1C), AddC), N1C --> 8688 // sext (add (trunc X to (width - N1C)), AddC') 8689 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && 8690 N0.getOperand(0).getOpcode() == ISD::SHL && 8691 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { 8692 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { 8693 SDValue Shl = N0.getOperand(0); 8694 // Determine what the truncate's type would be and ask the target if that 8695 // is a free operation. 8696 LLVMContext &Ctx = *DAG.getContext(); 8697 unsigned ShiftAmt = N1C->getZExtValue(); 8698 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); 8699 if (VT.isVector()) 8700 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 8701 8702 // TODO: The simple type check probably belongs in the default hook 8703 // implementation and/or target-specific overrides (because 8704 // non-simple types likely require masking when legalized), but that 8705 // restriction may conflict with other transforms. 8706 if (TruncVT.isSimple() && isTypeLegal(TruncVT) && 8707 TLI.isTruncateFree(VT, TruncVT)) { 8708 SDLoc DL(N); 8709 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); 8710 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). 8711 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); 8712 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); 8713 return DAG.getSExtOrTrunc(Add, DL, VT); 8714 } 8715 } 8716 } 8717 8718 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 8719 if (N1.getOpcode() == ISD::TRUNCATE && 8720 N1.getOperand(0).getOpcode() == ISD::AND) { 8721 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8722 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 8723 } 8724 8725 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8726 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8727 // if c1 is equal to the number of bits the trunc removes 8728 // TODO - support non-uniform vector shift amounts. 8729 if (N0.getOpcode() == ISD::TRUNCATE && 8730 (N0.getOperand(0).getOpcode() == ISD::SRL || 8731 N0.getOperand(0).getOpcode() == ISD::SRA) && 8732 N0.getOperand(0).hasOneUse() && 8733 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { 8734 SDValue N0Op0 = N0.getOperand(0); 8735 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 8736 EVT LargeVT = N0Op0.getValueType(); 8737 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; 8738 if (LargeShift->getAPIntValue() == TruncBits) { 8739 SDLoc DL(N); 8740 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, 8741 getShiftAmountTy(LargeVT)); 8742 SDValue SRA = 8743 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); 8744 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 8745 } 8746 } 8747 } 8748 8749 // Simplify, based on bits shifted out of the LHS. 8750 if (SimplifyDemandedBits(SDValue(N, 0))) 8751 return SDValue(N, 0); 8752 8753 // If the sign bit is known to be zero, switch this to a SRL. 8754 if (DAG.SignBitIsZero(N0)) 8755 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 8756 8757 if (N1C && !N1C->isOpaque()) 8758 if (SDValue NewSRA = visitShiftByConstant(N)) 8759 return NewSRA; 8760 8761 // Try to transform this shift into a multiply-high if 8762 // it matches the appropriate pattern detected in combineShiftToMULH. 8763 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8764 return MULH; 8765 8766 return SDValue(); 8767 } 8768 8769 SDValue DAGCombiner::visitSRL(SDNode *N) { 8770 SDValue N0 = N->getOperand(0); 8771 SDValue N1 = N->getOperand(1); 8772 if (SDValue V = DAG.simplifyShift(N0, N1)) 8773 return V; 8774 8775 EVT VT = N0.getValueType(); 8776 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8777 8778 // fold vector ops 8779 if (VT.isVector()) 8780 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8781 return FoldedVOp; 8782 8783 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8784 8785 // fold (srl c1, c2) -> c1 >>u c2 8786 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) 8787 return C; 8788 8789 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8790 return NewSel; 8791 8792 // if (srl x, c) is known to be zero, return 0 8793 if (N1C && 8794 DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) 8795 return DAG.getConstant(0, SDLoc(N), VT); 8796 8797 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 8798 if (N0.getOpcode() == ISD::SRL) { 8799 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8800 ConstantSDNode *RHS) { 8801 APInt c1 = LHS->getAPIntValue(); 8802 APInt c2 = RHS->getAPIntValue(); 8803 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8804 return (c1 + c2).uge(OpSizeInBits); 8805 }; 8806 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8807 return DAG.getConstant(0, SDLoc(N), VT); 8808 8809 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8810 ConstantSDNode *RHS) { 8811 APInt c1 = LHS->getAPIntValue(); 8812 APInt c2 = RHS->getAPIntValue(); 8813 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8814 return (c1 + c2).ult(OpSizeInBits); 8815 }; 8816 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8817 SDLoc DL(N); 8818 EVT ShiftVT = N1.getValueType(); 8819 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8820 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 8821 } 8822 } 8823 8824 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 8825 N0.getOperand(0).getOpcode() == ISD::SRL) { 8826 SDValue InnerShift = N0.getOperand(0); 8827 // TODO - support non-uniform vector shift amounts. 8828 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { 8829 uint64_t c1 = N001C->getZExtValue(); 8830 uint64_t c2 = N1C->getZExtValue(); 8831 EVT InnerShiftVT = InnerShift.getValueType(); 8832 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); 8833 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 8834 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) 8835 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 8836 if (c1 + OpSizeInBits == InnerShiftSize) { 8837 SDLoc DL(N); 8838 if (c1 + c2 >= InnerShiftSize) 8839 return DAG.getConstant(0, DL, VT); 8840 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8841 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8842 InnerShift.getOperand(0), NewShiftAmt); 8843 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); 8844 } 8845 // In the more general case, we can clear the high bits after the shift: 8846 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) 8847 if (N0.hasOneUse() && InnerShift.hasOneUse() && 8848 c1 + c2 < InnerShiftSize) { 8849 SDLoc DL(N); 8850 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8851 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8852 InnerShift.getOperand(0), NewShiftAmt); 8853 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, 8854 OpSizeInBits - c2), 8855 DL, InnerShiftVT); 8856 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); 8857 return DAG.getNode(ISD::TRUNCATE, DL, VT, And); 8858 } 8859 } 8860 } 8861 8862 // fold (srl (shl x, c), c) -> (and x, cst2) 8863 // TODO - (srl (shl x, c1), c2). 8864 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 8865 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 8866 SDLoc DL(N); 8867 SDValue Mask = 8868 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 8869 AddToWorklist(Mask.getNode()); 8870 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 8871 } 8872 8873 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 8874 // TODO - support non-uniform vector shift amounts. 8875 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 8876 // Shifting in all undef bits? 8877 EVT SmallVT = N0.getOperand(0).getValueType(); 8878 unsigned BitSize = SmallVT.getScalarSizeInBits(); 8879 if (N1C->getAPIntValue().uge(BitSize)) 8880 return DAG.getUNDEF(VT); 8881 8882 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 8883 uint64_t ShiftAmt = N1C->getZExtValue(); 8884 SDLoc DL0(N0); 8885 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 8886 N0.getOperand(0), 8887 DAG.getConstant(ShiftAmt, DL0, 8888 getShiftAmountTy(SmallVT))); 8889 AddToWorklist(SmallShift.getNode()); 8890 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 8891 SDLoc DL(N); 8892 return DAG.getNode(ISD::AND, DL, VT, 8893 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 8894 DAG.getConstant(Mask, DL, VT)); 8895 } 8896 } 8897 8898 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 8899 // bit, which is unmodified by sra. 8900 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { 8901 if (N0.getOpcode() == ISD::SRA) 8902 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 8903 } 8904 8905 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 8906 if (N1C && N0.getOpcode() == ISD::CTLZ && 8907 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 8908 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 8909 8910 // If any of the input bits are KnownOne, then the input couldn't be all 8911 // zeros, thus the result of the srl will always be zero. 8912 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 8913 8914 // If all of the bits input the to ctlz node are known to be zero, then 8915 // the result of the ctlz is "32" and the result of the shift is one. 8916 APInt UnknownBits = ~Known.Zero; 8917 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 8918 8919 // Otherwise, check to see if there is exactly one bit input to the ctlz. 8920 if (UnknownBits.isPowerOf2()) { 8921 // Okay, we know that only that the single bit specified by UnknownBits 8922 // could be set on input to the CTLZ node. If this bit is set, the SRL 8923 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 8924 // to an SRL/XOR pair, which is likely to simplify more. 8925 unsigned ShAmt = UnknownBits.countTrailingZeros(); 8926 SDValue Op = N0.getOperand(0); 8927 8928 if (ShAmt) { 8929 SDLoc DL(N0); 8930 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 8931 DAG.getConstant(ShAmt, DL, 8932 getShiftAmountTy(Op.getValueType()))); 8933 AddToWorklist(Op.getNode()); 8934 } 8935 8936 SDLoc DL(N); 8937 return DAG.getNode(ISD::XOR, DL, VT, 8938 Op, DAG.getConstant(1, DL, VT)); 8939 } 8940 } 8941 8942 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 8943 if (N1.getOpcode() == ISD::TRUNCATE && 8944 N1.getOperand(0).getOpcode() == ISD::AND) { 8945 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8946 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 8947 } 8948 8949 // fold operands of srl based on knowledge that the low bits are not 8950 // demanded. 8951 if (SimplifyDemandedBits(SDValue(N, 0))) 8952 return SDValue(N, 0); 8953 8954 if (N1C && !N1C->isOpaque()) 8955 if (SDValue NewSRL = visitShiftByConstant(N)) 8956 return NewSRL; 8957 8958 // Attempt to convert a srl of a load into a narrower zero-extending load. 8959 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 8960 return NarrowLoad; 8961 8962 // Here is a common situation. We want to optimize: 8963 // 8964 // %a = ... 8965 // %b = and i32 %a, 2 8966 // %c = srl i32 %b, 1 8967 // brcond i32 %c ... 8968 // 8969 // into 8970 // 8971 // %a = ... 8972 // %b = and %a, 2 8973 // %c = setcc eq %b, 0 8974 // brcond %c ... 8975 // 8976 // However when after the source operand of SRL is optimized into AND, the SRL 8977 // itself may not be optimized further. Look for it and add the BRCOND into 8978 // the worklist. 8979 if (N->hasOneUse()) { 8980 SDNode *Use = *N->use_begin(); 8981 if (Use->getOpcode() == ISD::BRCOND) 8982 AddToWorklist(Use); 8983 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 8984 // Also look pass the truncate. 8985 Use = *Use->use_begin(); 8986 if (Use->getOpcode() == ISD::BRCOND) 8987 AddToWorklist(Use); 8988 } 8989 } 8990 8991 // Try to transform this shift into a multiply-high if 8992 // it matches the appropriate pattern detected in combineShiftToMULH. 8993 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8994 return MULH; 8995 8996 return SDValue(); 8997 } 8998 8999 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 9000 EVT VT = N->getValueType(0); 9001 SDValue N0 = N->getOperand(0); 9002 SDValue N1 = N->getOperand(1); 9003 SDValue N2 = N->getOperand(2); 9004 bool IsFSHL = N->getOpcode() == ISD::FSHL; 9005 unsigned BitWidth = VT.getScalarSizeInBits(); 9006 9007 // fold (fshl N0, N1, 0) -> N0 9008 // fold (fshr N0, N1, 0) -> N1 9009 if (isPowerOf2_32(BitWidth)) 9010 if (DAG.MaskedValueIsZero( 9011 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 9012 return IsFSHL ? N0 : N1; 9013 9014 auto IsUndefOrZero = [](SDValue V) { 9015 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 9016 }; 9017 9018 // TODO - support non-uniform vector shift amounts. 9019 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 9020 EVT ShAmtTy = N2.getValueType(); 9021 9022 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 9023 if (Cst->getAPIntValue().uge(BitWidth)) { 9024 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 9025 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 9026 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 9027 } 9028 9029 unsigned ShAmt = Cst->getZExtValue(); 9030 if (ShAmt == 0) 9031 return IsFSHL ? N0 : N1; 9032 9033 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 9034 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 9035 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 9036 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 9037 if (IsUndefOrZero(N0)) 9038 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 9039 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 9040 SDLoc(N), ShAmtTy)); 9041 if (IsUndefOrZero(N1)) 9042 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 9043 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 9044 SDLoc(N), ShAmtTy)); 9045 9046 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9047 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9048 // TODO - bigendian support once we have test coverage. 9049 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? 9050 // TODO - permit LHS EXTLOAD if extensions are shifted out. 9051 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && 9052 !DAG.getDataLayout().isBigEndian()) { 9053 auto *LHS = dyn_cast<LoadSDNode>(N0); 9054 auto *RHS = dyn_cast<LoadSDNode>(N1); 9055 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && 9056 LHS->getAddressSpace() == RHS->getAddressSpace() && 9057 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && 9058 ISD::isNON_EXTLoad(LHS)) { 9059 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { 9060 SDLoc DL(RHS); 9061 uint64_t PtrOff = 9062 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); 9063 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); 9064 bool Fast = false; 9065 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 9066 RHS->getAddressSpace(), NewAlign, 9067 RHS->getMemOperand()->getFlags(), &Fast) && 9068 Fast) { 9069 SDValue NewPtr = DAG.getMemBasePlusOffset( 9070 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); 9071 AddToWorklist(NewPtr.getNode()); 9072 SDValue Load = DAG.getLoad( 9073 VT, DL, RHS->getChain(), NewPtr, 9074 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, 9075 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); 9076 // Replace the old load's chain with the new load's chain. 9077 WorklistRemover DeadNodes(*this); 9078 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); 9079 return Load; 9080 } 9081 } 9082 } 9083 } 9084 } 9085 9086 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 9087 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 9088 // iff We know the shift amount is in range. 9089 // TODO: when is it worth doing SUB(BW, N2) as well? 9090 if (isPowerOf2_32(BitWidth)) { 9091 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 9092 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9093 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 9094 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9095 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 9096 } 9097 9098 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 9099 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 9100 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 9101 // is legal as well we might be better off avoiding non-constant (BW - N2). 9102 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 9103 if (N0 == N1 && hasOperation(RotOpc, VT)) 9104 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 9105 9106 // Simplify, based on bits shifted out of N0/N1. 9107 if (SimplifyDemandedBits(SDValue(N, 0))) 9108 return SDValue(N, 0); 9109 9110 return SDValue(); 9111 } 9112 9113 // Given a ABS node, detect the following pattern: 9114 // (ABS (SUB (EXTEND a), (EXTEND b))). 9115 // Generates UABD/SABD instruction. 9116 static SDValue combineABSToABD(SDNode *N, SelectionDAG &DAG, 9117 const TargetLowering &TLI) { 9118 SDValue AbsOp1 = N->getOperand(0); 9119 SDValue Op0, Op1; 9120 9121 if (AbsOp1.getOpcode() != ISD::SUB) 9122 return SDValue(); 9123 9124 Op0 = AbsOp1.getOperand(0); 9125 Op1 = AbsOp1.getOperand(1); 9126 9127 unsigned Opc0 = Op0.getOpcode(); 9128 // Check if the operands of the sub are (zero|sign)-extended. 9129 if (Opc0 != Op1.getOpcode() || 9130 (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND)) 9131 return SDValue(); 9132 9133 EVT VT1 = Op0.getOperand(0).getValueType(); 9134 EVT VT2 = Op1.getOperand(0).getValueType(); 9135 // Check if the operands are of same type and valid size. 9136 unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU; 9137 if (VT1 != VT2 || !TLI.isOperationLegalOrCustom(ABDOpcode, VT1)) 9138 return SDValue(); 9139 9140 Op0 = Op0.getOperand(0); 9141 Op1 = Op1.getOperand(0); 9142 SDValue ABD = 9143 DAG.getNode(ABDOpcode, SDLoc(N), Op0->getValueType(0), Op0, Op1); 9144 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), ABD); 9145 } 9146 9147 SDValue DAGCombiner::visitABS(SDNode *N) { 9148 SDValue N0 = N->getOperand(0); 9149 EVT VT = N->getValueType(0); 9150 9151 // fold (abs c1) -> c2 9152 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9153 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 9154 // fold (abs (abs x)) -> (abs x) 9155 if (N0.getOpcode() == ISD::ABS) 9156 return N0; 9157 // fold (abs x) -> x iff not-negative 9158 if (DAG.SignBitIsZero(N0)) 9159 return N0; 9160 9161 if (SDValue ABD = combineABSToABD(N, DAG, TLI)) 9162 return ABD; 9163 9164 return SDValue(); 9165 } 9166 9167 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 9168 SDValue N0 = N->getOperand(0); 9169 EVT VT = N->getValueType(0); 9170 9171 // fold (bswap c1) -> c2 9172 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9173 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 9174 // fold (bswap (bswap x)) -> x 9175 if (N0.getOpcode() == ISD::BSWAP) 9176 return N0->getOperand(0); 9177 return SDValue(); 9178 } 9179 9180 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 9181 SDValue N0 = N->getOperand(0); 9182 EVT VT = N->getValueType(0); 9183 9184 // fold (bitreverse c1) -> c2 9185 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9186 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 9187 // fold (bitreverse (bitreverse x)) -> x 9188 if (N0.getOpcode() == ISD::BITREVERSE) 9189 return N0.getOperand(0); 9190 return SDValue(); 9191 } 9192 9193 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 9194 SDValue N0 = N->getOperand(0); 9195 EVT VT = N->getValueType(0); 9196 9197 // fold (ctlz c1) -> c2 9198 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9199 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 9200 9201 // If the value is known never to be zero, switch to the undef version. 9202 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 9203 if (DAG.isKnownNeverZero(N0)) 9204 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9205 } 9206 9207 return SDValue(); 9208 } 9209 9210 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 9211 SDValue N0 = N->getOperand(0); 9212 EVT VT = N->getValueType(0); 9213 9214 // fold (ctlz_zero_undef c1) -> c2 9215 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9216 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9217 return SDValue(); 9218 } 9219 9220 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 9221 SDValue N0 = N->getOperand(0); 9222 EVT VT = N->getValueType(0); 9223 9224 // fold (cttz c1) -> c2 9225 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9226 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 9227 9228 // If the value is known never to be zero, switch to the undef version. 9229 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 9230 if (DAG.isKnownNeverZero(N0)) 9231 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9232 } 9233 9234 return SDValue(); 9235 } 9236 9237 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 9238 SDValue N0 = N->getOperand(0); 9239 EVT VT = N->getValueType(0); 9240 9241 // fold (cttz_zero_undef c1) -> c2 9242 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9243 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9244 return SDValue(); 9245 } 9246 9247 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 9248 SDValue N0 = N->getOperand(0); 9249 EVT VT = N->getValueType(0); 9250 9251 // fold (ctpop c1) -> c2 9252 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9253 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 9254 return SDValue(); 9255 } 9256 9257 // FIXME: This should be checking for no signed zeros on individual operands, as 9258 // well as no nans. 9259 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 9260 SDValue RHS, 9261 const TargetLowering &TLI) { 9262 const TargetOptions &Options = DAG.getTarget().Options; 9263 EVT VT = LHS.getValueType(); 9264 9265 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 9266 TLI.isProfitableToCombineMinNumMaxNum(VT) && 9267 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 9268 } 9269 9270 /// Generate Min/Max node 9271 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 9272 SDValue RHS, SDValue True, SDValue False, 9273 ISD::CondCode CC, const TargetLowering &TLI, 9274 SelectionDAG &DAG) { 9275 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 9276 return SDValue(); 9277 9278 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 9279 switch (CC) { 9280 case ISD::SETOLT: 9281 case ISD::SETOLE: 9282 case ISD::SETLT: 9283 case ISD::SETLE: 9284 case ISD::SETULT: 9285 case ISD::SETULE: { 9286 // Since it's known never nan to get here already, either fminnum or 9287 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 9288 // expanded in terms of it. 9289 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 9290 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9291 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9292 9293 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 9294 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9295 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9296 return SDValue(); 9297 } 9298 case ISD::SETOGT: 9299 case ISD::SETOGE: 9300 case ISD::SETGT: 9301 case ISD::SETGE: 9302 case ISD::SETUGT: 9303 case ISD::SETUGE: { 9304 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 9305 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9306 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9307 9308 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 9309 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9310 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9311 return SDValue(); 9312 } 9313 default: 9314 return SDValue(); 9315 } 9316 } 9317 9318 /// If a (v)select has a condition value that is a sign-bit test, try to smear 9319 /// the condition operand sign-bit across the value width and use it as a mask. 9320 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { 9321 SDValue Cond = N->getOperand(0); 9322 SDValue C1 = N->getOperand(1); 9323 SDValue C2 = N->getOperand(2); 9324 if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2)) 9325 return SDValue(); 9326 9327 EVT VT = N->getValueType(0); 9328 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || 9329 VT != Cond.getOperand(0).getValueType()) 9330 return SDValue(); 9331 9332 // The inverted-condition + commuted-select variants of these patterns are 9333 // canonicalized to these forms in IR. 9334 SDValue X = Cond.getOperand(0); 9335 SDValue CondC = Cond.getOperand(1); 9336 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 9337 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && 9338 isAllOnesOrAllOnesSplat(C2)) { 9339 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 9340 SDLoc DL(N); 9341 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9342 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9343 return DAG.getNode(ISD::OR, DL, VT, Sra, C1); 9344 } 9345 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { 9346 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 9347 SDLoc DL(N); 9348 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9349 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9350 return DAG.getNode(ISD::AND, DL, VT, Sra, C1); 9351 } 9352 return SDValue(); 9353 } 9354 9355 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 9356 SDValue Cond = N->getOperand(0); 9357 SDValue N1 = N->getOperand(1); 9358 SDValue N2 = N->getOperand(2); 9359 EVT VT = N->getValueType(0); 9360 EVT CondVT = Cond.getValueType(); 9361 SDLoc DL(N); 9362 9363 if (!VT.isInteger()) 9364 return SDValue(); 9365 9366 auto *C1 = dyn_cast<ConstantSDNode>(N1); 9367 auto *C2 = dyn_cast<ConstantSDNode>(N2); 9368 if (!C1 || !C2) 9369 return SDValue(); 9370 9371 // Only do this before legalization to avoid conflicting with target-specific 9372 // transforms in the other direction (create a select from a zext/sext). There 9373 // is also a target-independent combine here in DAGCombiner in the other 9374 // direction for (select Cond, -1, 0) when the condition is not i1. 9375 if (CondVT == MVT::i1 && !LegalOperations) { 9376 if (C1->isZero() && C2->isOne()) { 9377 // select Cond, 0, 1 --> zext (!Cond) 9378 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9379 if (VT != MVT::i1) 9380 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 9381 return NotCond; 9382 } 9383 if (C1->isZero() && C2->isAllOnes()) { 9384 // select Cond, 0, -1 --> sext (!Cond) 9385 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9386 if (VT != MVT::i1) 9387 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 9388 return NotCond; 9389 } 9390 if (C1->isOne() && C2->isZero()) { 9391 // select Cond, 1, 0 --> zext (Cond) 9392 if (VT != MVT::i1) 9393 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9394 return Cond; 9395 } 9396 if (C1->isAllOnes() && C2->isZero()) { 9397 // select Cond, -1, 0 --> sext (Cond) 9398 if (VT != MVT::i1) 9399 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9400 return Cond; 9401 } 9402 9403 // Use a target hook because some targets may prefer to transform in the 9404 // other direction. 9405 if (TLI.convertSelectOfConstantsToMath(VT)) { 9406 // For any constants that differ by 1, we can transform the select into an 9407 // extend and add. 9408 const APInt &C1Val = C1->getAPIntValue(); 9409 const APInt &C2Val = C2->getAPIntValue(); 9410 if (C1Val - 1 == C2Val) { 9411 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 9412 if (VT != MVT::i1) 9413 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9414 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9415 } 9416 if (C1Val + 1 == C2Val) { 9417 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 9418 if (VT != MVT::i1) 9419 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9420 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9421 } 9422 9423 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 9424 if (C1Val.isPowerOf2() && C2Val.isZero()) { 9425 if (VT != MVT::i1) 9426 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9427 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); 9428 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); 9429 } 9430 9431 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9432 return V; 9433 } 9434 9435 return SDValue(); 9436 } 9437 9438 // fold (select Cond, 0, 1) -> (xor Cond, 1) 9439 // We can't do this reliably if integer based booleans have different contents 9440 // to floating point based booleans. This is because we can't tell whether we 9441 // have an integer-based boolean or a floating-point-based boolean unless we 9442 // can find the SETCC that produced it and inspect its operands. This is 9443 // fairly easy if C is the SETCC node, but it can potentially be 9444 // undiscoverable (or not reasonably discoverable). For example, it could be 9445 // in another basic block or it could require searching a complicated 9446 // expression. 9447 if (CondVT.isInteger() && 9448 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 9449 TargetLowering::ZeroOrOneBooleanContent && 9450 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 9451 TargetLowering::ZeroOrOneBooleanContent && 9452 C1->isZero() && C2->isOne()) { 9453 SDValue NotCond = 9454 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 9455 if (VT.bitsEq(CondVT)) 9456 return NotCond; 9457 return DAG.getZExtOrTrunc(NotCond, DL, VT); 9458 } 9459 9460 return SDValue(); 9461 } 9462 9463 static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) { 9464 assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) && 9465 "Expected a (v)select"); 9466 SDValue Cond = N->getOperand(0); 9467 SDValue T = N->getOperand(1), F = N->getOperand(2); 9468 EVT VT = N->getValueType(0); 9469 if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1) 9470 return SDValue(); 9471 9472 // select Cond, Cond, F --> or Cond, F 9473 // select Cond, 1, F --> or Cond, F 9474 if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true)) 9475 return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F); 9476 9477 // select Cond, T, Cond --> and Cond, T 9478 // select Cond, T, 0 --> and Cond, T 9479 if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true)) 9480 return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T); 9481 9482 // select Cond, T, 1 --> or (not Cond), T 9483 if (isOneOrOneSplat(F, /* AllowUndefs */ true)) { 9484 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 9485 return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T); 9486 } 9487 9488 // select Cond, 0, F --> and (not Cond), F 9489 if (isNullOrNullSplat(T, /* AllowUndefs */ true)) { 9490 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 9491 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F); 9492 } 9493 9494 return SDValue(); 9495 } 9496 9497 SDValue DAGCombiner::visitSELECT(SDNode *N) { 9498 SDValue N0 = N->getOperand(0); 9499 SDValue N1 = N->getOperand(1); 9500 SDValue N2 = N->getOperand(2); 9501 EVT VT = N->getValueType(0); 9502 EVT VT0 = N0.getValueType(); 9503 SDLoc DL(N); 9504 SDNodeFlags Flags = N->getFlags(); 9505 9506 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9507 return V; 9508 9509 if (SDValue V = foldSelectOfConstants(N)) 9510 return V; 9511 9512 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 9513 return V; 9514 9515 // If we can fold this based on the true/false value, do so. 9516 if (SimplifySelectOps(N, N1, N2)) 9517 return SDValue(N, 0); // Don't revisit N. 9518 9519 if (VT0 == MVT::i1) { 9520 // The code in this block deals with the following 2 equivalences: 9521 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 9522 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 9523 // The target can specify its preferred form with the 9524 // shouldNormalizeToSelectSequence() callback. However we always transform 9525 // to the right anyway if we find the inner select exists in the DAG anyway 9526 // and we always transform to the left side if we know that we can further 9527 // optimize the combination of the conditions. 9528 bool normalizeToSequence = 9529 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 9530 // select (and Cond0, Cond1), X, Y 9531 // -> select Cond0, (select Cond1, X, Y), Y 9532 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 9533 SDValue Cond0 = N0->getOperand(0); 9534 SDValue Cond1 = N0->getOperand(1); 9535 SDValue InnerSelect = 9536 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); 9537 if (normalizeToSequence || !InnerSelect.use_empty()) 9538 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 9539 InnerSelect, N2, Flags); 9540 // Cleanup on failure. 9541 if (InnerSelect.use_empty()) 9542 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9543 } 9544 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 9545 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 9546 SDValue Cond0 = N0->getOperand(0); 9547 SDValue Cond1 = N0->getOperand(1); 9548 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), 9549 Cond1, N1, N2, Flags); 9550 if (normalizeToSequence || !InnerSelect.use_empty()) 9551 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 9552 InnerSelect, Flags); 9553 // Cleanup on failure. 9554 if (InnerSelect.use_empty()) 9555 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9556 } 9557 9558 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 9559 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 9560 SDValue N1_0 = N1->getOperand(0); 9561 SDValue N1_1 = N1->getOperand(1); 9562 SDValue N1_2 = N1->getOperand(2); 9563 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 9564 // Create the actual and node if we can generate good code for it. 9565 if (!normalizeToSequence) { 9566 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 9567 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, 9568 N2, Flags); 9569 } 9570 // Otherwise see if we can optimize the "and" to a better pattern. 9571 if (SDValue Combined = visitANDLike(N0, N1_0, N)) { 9572 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 9573 N2, Flags); 9574 } 9575 } 9576 } 9577 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 9578 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 9579 SDValue N2_0 = N2->getOperand(0); 9580 SDValue N2_1 = N2->getOperand(1); 9581 SDValue N2_2 = N2->getOperand(2); 9582 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 9583 // Create the actual or node if we can generate good code for it. 9584 if (!normalizeToSequence) { 9585 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 9586 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, 9587 N2_2, Flags); 9588 } 9589 // Otherwise see if we can optimize to a better pattern. 9590 if (SDValue Combined = visitORLike(N0, N2_0, N)) 9591 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 9592 N2_2, Flags); 9593 } 9594 } 9595 } 9596 9597 // select (not Cond), N1, N2 -> select Cond, N2, N1 9598 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { 9599 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); 9600 SelectOp->setFlags(Flags); 9601 return SelectOp; 9602 } 9603 9604 // Fold selects based on a setcc into other things, such as min/max/abs. 9605 if (N0.getOpcode() == ISD::SETCC) { 9606 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 9607 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9608 9609 // select (fcmp lt x, y), x, y -> fminnum x, y 9610 // select (fcmp gt x, y), x, y -> fmaxnum x, y 9611 // 9612 // This is OK if we don't care what happens if either operand is a NaN. 9613 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 9614 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 9615 CC, TLI, DAG)) 9616 return FMinMax; 9617 9618 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 9619 // This is conservatively limited to pre-legal-operations to give targets 9620 // a chance to reverse the transform if they want to do that. Also, it is 9621 // unlikely that the pattern would be formed late, so it's probably not 9622 // worth going through the other checks. 9623 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 9624 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 9625 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 9626 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 9627 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 9628 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 9629 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 9630 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 9631 // 9632 // The IR equivalent of this transform would have this form: 9633 // %a = add %x, C 9634 // %c = icmp ugt %x, ~C 9635 // %r = select %c, -1, %a 9636 // => 9637 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 9638 // %u0 = extractvalue %u, 0 9639 // %u1 = extractvalue %u, 1 9640 // %r = select %u1, -1, %u0 9641 SDVTList VTs = DAG.getVTList(VT, VT0); 9642 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 9643 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 9644 } 9645 } 9646 9647 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 9648 (!LegalOperations && 9649 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { 9650 // Any flags available in a select/setcc fold will be on the setcc as they 9651 // migrated from fcmp 9652 Flags = N0.getNode()->getFlags(); 9653 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, 9654 N2, N0.getOperand(2)); 9655 SelectNode->setFlags(Flags); 9656 return SelectNode; 9657 } 9658 9659 if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2)) 9660 return NewSel; 9661 } 9662 9663 if (!VT.isVector()) 9664 if (SDValue BinOp = foldSelectOfBinops(N)) 9665 return BinOp; 9666 9667 return SDValue(); 9668 } 9669 9670 // This function assumes all the vselect's arguments are CONCAT_VECTOR 9671 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 9672 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 9673 SDLoc DL(N); 9674 SDValue Cond = N->getOperand(0); 9675 SDValue LHS = N->getOperand(1); 9676 SDValue RHS = N->getOperand(2); 9677 EVT VT = N->getValueType(0); 9678 int NumElems = VT.getVectorNumElements(); 9679 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 9680 RHS.getOpcode() == ISD::CONCAT_VECTORS && 9681 Cond.getOpcode() == ISD::BUILD_VECTOR); 9682 9683 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 9684 // binary ones here. 9685 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 9686 return SDValue(); 9687 9688 // We're sure we have an even number of elements due to the 9689 // concat_vectors we have as arguments to vselect. 9690 // Skip BV elements until we find one that's not an UNDEF 9691 // After we find an UNDEF element, keep looping until we get to half the 9692 // length of the BV and see if all the non-undef nodes are the same. 9693 ConstantSDNode *BottomHalf = nullptr; 9694 for (int i = 0; i < NumElems / 2; ++i) { 9695 if (Cond->getOperand(i)->isUndef()) 9696 continue; 9697 9698 if (BottomHalf == nullptr) 9699 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9700 else if (Cond->getOperand(i).getNode() != BottomHalf) 9701 return SDValue(); 9702 } 9703 9704 // Do the same for the second half of the BuildVector 9705 ConstantSDNode *TopHalf = nullptr; 9706 for (int i = NumElems / 2; i < NumElems; ++i) { 9707 if (Cond->getOperand(i)->isUndef()) 9708 continue; 9709 9710 if (TopHalf == nullptr) 9711 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9712 else if (Cond->getOperand(i).getNode() != TopHalf) 9713 return SDValue(); 9714 } 9715 9716 assert(TopHalf && BottomHalf && 9717 "One half of the selector was all UNDEFs and the other was all the " 9718 "same value. This should have been addressed before this function."); 9719 return DAG.getNode( 9720 ISD::CONCAT_VECTORS, DL, VT, 9721 BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0), 9722 TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1)); 9723 } 9724 9725 bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { 9726 if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD) 9727 return false; 9728 9729 // For now we check only the LHS of the add. 9730 SDValue LHS = Index.getOperand(0); 9731 SDValue SplatVal = DAG.getSplatValue(LHS); 9732 if (!SplatVal) 9733 return false; 9734 9735 BasePtr = SplatVal; 9736 Index = Index.getOperand(1); 9737 return true; 9738 } 9739 9740 // Fold sext/zext of index into index type. 9741 bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index, 9742 bool Scaled, SelectionDAG &DAG) { 9743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9744 9745 if (Index.getOpcode() == ISD::ZERO_EXTEND) { 9746 SDValue Op = Index.getOperand(0); 9747 MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED); 9748 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 9749 Index = Op; 9750 return true; 9751 } 9752 } 9753 9754 if (Index.getOpcode() == ISD::SIGN_EXTEND) { 9755 SDValue Op = Index.getOperand(0); 9756 MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED); 9757 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 9758 Index = Op; 9759 return true; 9760 } 9761 } 9762 9763 return false; 9764 } 9765 9766 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 9767 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 9768 SDValue Mask = MSC->getMask(); 9769 SDValue Chain = MSC->getChain(); 9770 SDValue Index = MSC->getIndex(); 9771 SDValue Scale = MSC->getScale(); 9772 SDValue StoreVal = MSC->getValue(); 9773 SDValue BasePtr = MSC->getBasePtr(); 9774 SDLoc DL(N); 9775 9776 // Zap scatters with a zero mask. 9777 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 9778 return Chain; 9779 9780 if (refineUniformBase(BasePtr, Index, DAG)) { 9781 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 9782 return DAG.getMaskedScatter( 9783 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 9784 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 9785 } 9786 9787 if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) { 9788 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 9789 return DAG.getMaskedScatter( 9790 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 9791 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 9792 } 9793 9794 return SDValue(); 9795 } 9796 9797 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 9798 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 9799 SDValue Mask = MST->getMask(); 9800 SDValue Chain = MST->getChain(); 9801 SDLoc DL(N); 9802 9803 // Zap masked stores with a zero mask. 9804 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 9805 return Chain; 9806 9807 // If this is a masked load with an all ones mask, we can use a unmasked load. 9808 // FIXME: Can we do this for indexed, compressing, or truncating stores? 9809 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && 9810 MST->isUnindexed() && !MST->isCompressingStore() && 9811 !MST->isTruncatingStore()) 9812 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), 9813 MST->getBasePtr(), MST->getMemOperand()); 9814 9815 // Try transforming N to an indexed store. 9816 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9817 return SDValue(N, 0); 9818 9819 return SDValue(); 9820 } 9821 9822 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 9823 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 9824 SDValue Mask = MGT->getMask(); 9825 SDValue Chain = MGT->getChain(); 9826 SDValue Index = MGT->getIndex(); 9827 SDValue Scale = MGT->getScale(); 9828 SDValue PassThru = MGT->getPassThru(); 9829 SDValue BasePtr = MGT->getBasePtr(); 9830 SDLoc DL(N); 9831 9832 // Zap gathers with a zero mask. 9833 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 9834 return CombineTo(N, PassThru, MGT->getChain()); 9835 9836 if (refineUniformBase(BasePtr, Index, DAG)) { 9837 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 9838 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 9839 MGT->getMemoryVT(), DL, Ops, 9840 MGT->getMemOperand(), MGT->getIndexType(), 9841 MGT->getExtensionType()); 9842 } 9843 9844 if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) { 9845 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 9846 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 9847 MGT->getMemoryVT(), DL, Ops, 9848 MGT->getMemOperand(), MGT->getIndexType(), 9849 MGT->getExtensionType()); 9850 } 9851 9852 return SDValue(); 9853 } 9854 9855 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 9856 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 9857 SDValue Mask = MLD->getMask(); 9858 SDLoc DL(N); 9859 9860 // Zap masked loads with a zero mask. 9861 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 9862 return CombineTo(N, MLD->getPassThru(), MLD->getChain()); 9863 9864 // If this is a masked load with an all ones mask, we can use a unmasked load. 9865 // FIXME: Can we do this for indexed, expanding, or extending loads? 9866 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && 9867 MLD->isUnindexed() && !MLD->isExpandingLoad() && 9868 MLD->getExtensionType() == ISD::NON_EXTLOAD) { 9869 SDValue NewLd = DAG.getLoad(N->getValueType(0), SDLoc(N), MLD->getChain(), 9870 MLD->getBasePtr(), MLD->getMemOperand()); 9871 return CombineTo(N, NewLd, NewLd.getValue(1)); 9872 } 9873 9874 // Try transforming N to an indexed load. 9875 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9876 return SDValue(N, 0); 9877 9878 return SDValue(); 9879 } 9880 9881 /// A vector select of 2 constant vectors can be simplified to math/logic to 9882 /// avoid a variable select instruction and possibly avoid constant loads. 9883 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 9884 SDValue Cond = N->getOperand(0); 9885 SDValue N1 = N->getOperand(1); 9886 SDValue N2 = N->getOperand(2); 9887 EVT VT = N->getValueType(0); 9888 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 9889 !TLI.convertSelectOfConstantsToMath(VT) || 9890 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 9891 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 9892 return SDValue(); 9893 9894 // Check if we can use the condition value to increment/decrement a single 9895 // constant value. This simplifies a select to an add and removes a constant 9896 // load/materialization from the general case. 9897 bool AllAddOne = true; 9898 bool AllSubOne = true; 9899 unsigned Elts = VT.getVectorNumElements(); 9900 for (unsigned i = 0; i != Elts; ++i) { 9901 SDValue N1Elt = N1.getOperand(i); 9902 SDValue N2Elt = N2.getOperand(i); 9903 if (N1Elt.isUndef() || N2Elt.isUndef()) 9904 continue; 9905 if (N1Elt.getValueType() != N2Elt.getValueType()) 9906 continue; 9907 9908 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 9909 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 9910 if (C1 != C2 + 1) 9911 AllAddOne = false; 9912 if (C1 != C2 - 1) 9913 AllSubOne = false; 9914 } 9915 9916 // Further simplifications for the extra-special cases where the constants are 9917 // all 0 or all -1 should be implemented as folds of these patterns. 9918 SDLoc DL(N); 9919 if (AllAddOne || AllSubOne) { 9920 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 9921 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 9922 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 9923 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 9924 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 9925 } 9926 9927 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) 9928 APInt Pow2C; 9929 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && 9930 isNullOrNullSplat(N2)) { 9931 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); 9932 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); 9933 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); 9934 } 9935 9936 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9937 return V; 9938 9939 // The general case for select-of-constants: 9940 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 9941 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 9942 // leave that to a machine-specific pass. 9943 return SDValue(); 9944 } 9945 9946 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 9947 SDValue N0 = N->getOperand(0); 9948 SDValue N1 = N->getOperand(1); 9949 SDValue N2 = N->getOperand(2); 9950 EVT VT = N->getValueType(0); 9951 SDLoc DL(N); 9952 9953 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9954 return V; 9955 9956 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 9957 return V; 9958 9959 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 9960 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) 9961 return DAG.getSelect(DL, VT, F, N2, N1); 9962 9963 // Canonicalize integer abs. 9964 // vselect (setg[te] X, 0), X, -X -> 9965 // vselect (setgt X, -1), X, -X -> 9966 // vselect (setl[te] X, 0), -X, X -> 9967 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 9968 if (N0.getOpcode() == ISD::SETCC) { 9969 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 9970 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9971 bool isAbs = false; 9972 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 9973 9974 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 9975 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 9976 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 9977 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 9978 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 9979 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 9980 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 9981 9982 if (isAbs) { 9983 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 9984 return DAG.getNode(ISD::ABS, DL, VT, LHS); 9985 9986 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, 9987 DAG.getConstant(VT.getScalarSizeInBits() - 1, 9988 DL, getShiftAmountTy(VT))); 9989 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 9990 AddToWorklist(Shift.getNode()); 9991 AddToWorklist(Add.getNode()); 9992 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 9993 } 9994 9995 // vselect x, y (fcmp lt x, y) -> fminnum x, y 9996 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 9997 // 9998 // This is OK if we don't care about what happens if either operand is a 9999 // NaN. 10000 // 10001 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { 10002 if (SDValue FMinMax = 10003 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) 10004 return FMinMax; 10005 } 10006 10007 // If this select has a condition (setcc) with narrower operands than the 10008 // select, try to widen the compare to match the select width. 10009 // TODO: This should be extended to handle any constant. 10010 // TODO: This could be extended to handle non-loading patterns, but that 10011 // requires thorough testing to avoid regressions. 10012 if (isNullOrNullSplat(RHS)) { 10013 EVT NarrowVT = LHS.getValueType(); 10014 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 10015 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 10016 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 10017 unsigned WideWidth = WideVT.getScalarSizeInBits(); 10018 bool IsSigned = isSignedIntSetCC(CC); 10019 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10020 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 10021 SetCCWidth != 1 && SetCCWidth < WideWidth && 10022 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 10023 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 10024 // Both compare operands can be widened for free. The LHS can use an 10025 // extended load, and the RHS is a constant: 10026 // vselect (ext (setcc load(X), C)), N1, N2 --> 10027 // vselect (setcc extload(X), C'), N1, N2 10028 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10029 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 10030 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 10031 EVT WideSetCCVT = getSetCCResultType(WideVT); 10032 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 10033 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 10034 } 10035 } 10036 10037 // Match VSELECTs into add with unsigned saturation. 10038 if (hasOperation(ISD::UADDSAT, VT)) { 10039 // Check if one of the arms of the VSELECT is vector with all bits set. 10040 // If it's on the left side invert the predicate to simplify logic below. 10041 SDValue Other; 10042 ISD::CondCode SatCC = CC; 10043 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) { 10044 Other = N2; 10045 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10046 } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) { 10047 Other = N1; 10048 } 10049 10050 if (Other && Other.getOpcode() == ISD::ADD) { 10051 SDValue CondLHS = LHS, CondRHS = RHS; 10052 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10053 10054 // Canonicalize condition operands. 10055 if (SatCC == ISD::SETUGE) { 10056 std::swap(CondLHS, CondRHS); 10057 SatCC = ISD::SETULE; 10058 } 10059 10060 // We can test against either of the addition operands. 10061 // x <= x+y ? x+y : ~0 --> uaddsat x, y 10062 // x+y >= x ? x+y : ~0 --> uaddsat x, y 10063 if (SatCC == ISD::SETULE && Other == CondRHS && 10064 (OpLHS == CondLHS || OpRHS == CondLHS)) 10065 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10066 10067 if (OpRHS.getOpcode() == CondRHS.getOpcode() && 10068 (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10069 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) && 10070 CondLHS == OpLHS) { 10071 // If the RHS is a constant we have to reverse the const 10072 // canonicalization. 10073 // x >= ~C ? x+C : ~0 --> uaddsat x, C 10074 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10075 return Cond->getAPIntValue() == ~Op->getAPIntValue(); 10076 }; 10077 if (SatCC == ISD::SETULE && 10078 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) 10079 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10080 } 10081 } 10082 } 10083 10084 // Match VSELECTs into sub with unsigned saturation. 10085 if (hasOperation(ISD::USUBSAT, VT)) { 10086 // Check if one of the arms of the VSELECT is a zero vector. If it's on 10087 // the left side invert the predicate to simplify logic below. 10088 SDValue Other; 10089 ISD::CondCode SatCC = CC; 10090 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { 10091 Other = N2; 10092 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10093 } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) { 10094 Other = N1; 10095 } 10096 10097 if (Other && Other.getNumOperands() == 2) { 10098 SDValue CondRHS = RHS; 10099 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10100 10101 if (Other.getOpcode() == ISD::SUB && 10102 LHS.getOpcode() == ISD::ZERO_EXTEND && LHS.getOperand(0) == OpLHS && 10103 OpRHS.getOpcode() == ISD::TRUNCATE && OpRHS.getOperand(0) == RHS) { 10104 // Look for a general sub with unsigned saturation first. 10105 // zext(x) >= y ? x - trunc(y) : 0 10106 // --> usubsat(x,trunc(umin(y,SatLimit))) 10107 // zext(x) > y ? x - trunc(y) : 0 10108 // --> usubsat(x,trunc(umin(y,SatLimit))) 10109 if (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) 10110 return getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, DAG, 10111 DL); 10112 } 10113 10114 if (OpLHS == LHS) { 10115 // Look for a general sub with unsigned saturation first. 10116 // x >= y ? x-y : 0 --> usubsat x, y 10117 // x > y ? x-y : 0 --> usubsat x, y 10118 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && 10119 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) 10120 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10121 10122 if (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10123 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10124 if (CondRHS.getOpcode() == ISD::BUILD_VECTOR || 10125 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10126 // If the RHS is a constant we have to reverse the const 10127 // canonicalization. 10128 // x > C-1 ? x+-C : 0 --> usubsat x, C 10129 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10130 return (!Op && !Cond) || 10131 (Op && Cond && 10132 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); 10133 }; 10134 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && 10135 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, 10136 /*AllowUndefs*/ true)) { 10137 OpRHS = DAG.getNode(ISD::SUB, DL, VT, 10138 DAG.getConstant(0, DL, VT), OpRHS); 10139 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10140 } 10141 10142 // Another special case: If C was a sign bit, the sub has been 10143 // canonicalized into a xor. 10144 // FIXME: Would it be better to use computeKnownBits to determine 10145 // whether it's safe to decanonicalize the xor? 10146 // x s< 0 ? x^C : 0 --> usubsat x, C 10147 APInt SplatValue; 10148 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && 10149 ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) && 10150 ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) && 10151 SplatValue.isSignMask()) { 10152 // Note that we have to rebuild the RHS constant here to 10153 // ensure we don't rely on particular values of undef lanes. 10154 OpRHS = DAG.getConstant(SplatValue, DL, VT); 10155 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10156 } 10157 } 10158 } 10159 } 10160 } 10161 } 10162 } 10163 10164 if (SimplifySelectOps(N, N1, N2)) 10165 return SDValue(N, 0); // Don't revisit N. 10166 10167 // Fold (vselect all_ones, N1, N2) -> N1 10168 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 10169 return N1; 10170 // Fold (vselect all_zeros, N1, N2) -> N2 10171 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 10172 return N2; 10173 10174 // The ConvertSelectToConcatVector function is assuming both the above 10175 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 10176 // and addressed. 10177 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 10178 N2.getOpcode() == ISD::CONCAT_VECTORS && 10179 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 10180 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 10181 return CV; 10182 } 10183 10184 if (SDValue V = foldVSelectOfConstants(N)) 10185 return V; 10186 10187 return SDValue(); 10188 } 10189 10190 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 10191 SDValue N0 = N->getOperand(0); 10192 SDValue N1 = N->getOperand(1); 10193 SDValue N2 = N->getOperand(2); 10194 SDValue N3 = N->getOperand(3); 10195 SDValue N4 = N->getOperand(4); 10196 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 10197 10198 // fold select_cc lhs, rhs, x, x, cc -> x 10199 if (N2 == N3) 10200 return N2; 10201 10202 // Determine if the condition we're dealing with is constant 10203 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 10204 CC, SDLoc(N), false)) { 10205 AddToWorklist(SCC.getNode()); 10206 10207 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 10208 if (!SCCC->isZero()) 10209 return N2; // cond always true -> true val 10210 else 10211 return N3; // cond always false -> false val 10212 } else if (SCC->isUndef()) { 10213 // When the condition is UNDEF, just return the first operand. This is 10214 // coherent the DAG creation, no setcc node is created in this case 10215 return N2; 10216 } else if (SCC.getOpcode() == ISD::SETCC) { 10217 // Fold to a simpler select_cc 10218 SDValue SelectOp = DAG.getNode( 10219 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), 10220 SCC.getOperand(1), N2, N3, SCC.getOperand(2)); 10221 SelectOp->setFlags(SCC->getFlags()); 10222 return SelectOp; 10223 } 10224 } 10225 10226 // If we can fold this based on the true/false value, do so. 10227 if (SimplifySelectOps(N, N2, N3)) 10228 return SDValue(N, 0); // Don't revisit N. 10229 10230 // fold select_cc into other things, such as min/max/abs 10231 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 10232 } 10233 10234 SDValue DAGCombiner::visitSETCC(SDNode *N) { 10235 // setcc is very commonly used as an argument to brcond. This pattern 10236 // also lend itself to numerous combines and, as a result, it is desired 10237 // we keep the argument to a brcond as a setcc as much as possible. 10238 bool PreferSetCC = 10239 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 10240 10241 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10242 EVT VT = N->getValueType(0); 10243 10244 // SETCC(FREEZE(X), CONST, Cond) 10245 // => 10246 // FREEZE(SETCC(X, CONST, Cond)) 10247 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond) 10248 // isn't equivalent to true or false. 10249 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to 10250 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison. 10251 // 10252 // This transformation is beneficial because visitBRCOND can fold 10253 // BRCOND(FREEZE(X)) to BRCOND(X). 10254 10255 // Conservatively optimize integer comparisons only. 10256 if (PreferSetCC) { 10257 // Do this only when SETCC is going to be used by BRCOND. 10258 10259 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 10260 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 10261 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 10262 bool Updated = false; 10263 10264 // Is 'X Cond C' always true or false? 10265 auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) { 10266 bool False = (Cond == ISD::SETULT && C->isZero()) || 10267 (Cond == ISD::SETLT && C->isMinSignedValue()) || 10268 (Cond == ISD::SETUGT && C->isAllOnes()) || 10269 (Cond == ISD::SETGT && C->isMaxSignedValue()); 10270 bool True = (Cond == ISD::SETULE && C->isAllOnes()) || 10271 (Cond == ISD::SETLE && C->isMaxSignedValue()) || 10272 (Cond == ISD::SETUGE && C->isZero()) || 10273 (Cond == ISD::SETGE && C->isMinSignedValue()); 10274 return True || False; 10275 }; 10276 10277 if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) { 10278 if (!IsAlwaysTrueOrFalse(Cond, N1C)) { 10279 N0 = N0->getOperand(0); 10280 Updated = true; 10281 } 10282 } 10283 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) { 10284 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), 10285 N0C)) { 10286 N1 = N1->getOperand(0); 10287 Updated = true; 10288 } 10289 } 10290 10291 if (Updated) 10292 return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond)); 10293 } 10294 10295 SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond, 10296 SDLoc(N), !PreferSetCC); 10297 10298 if (!Combined) 10299 return SDValue(); 10300 10301 // If we prefer to have a setcc, and we don't, we'll try our best to 10302 // recreate one using rebuildSetCC. 10303 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 10304 SDValue NewSetCC = rebuildSetCC(Combined); 10305 10306 // We don't have anything interesting to combine to. 10307 if (NewSetCC.getNode() == N) 10308 return SDValue(); 10309 10310 if (NewSetCC) 10311 return NewSetCC; 10312 } 10313 10314 return Combined; 10315 } 10316 10317 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 10318 SDValue LHS = N->getOperand(0); 10319 SDValue RHS = N->getOperand(1); 10320 SDValue Carry = N->getOperand(2); 10321 SDValue Cond = N->getOperand(3); 10322 10323 // If Carry is false, fold to a regular SETCC. 10324 if (isNullConstant(Carry)) 10325 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 10326 10327 return SDValue(); 10328 } 10329 10330 /// Check if N satisfies: 10331 /// N is used once. 10332 /// N is a Load. 10333 /// The load is compatible with ExtOpcode. It means 10334 /// If load has explicit zero/sign extension, ExpOpcode must have the same 10335 /// extension. 10336 /// Otherwise returns true. 10337 static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) { 10338 if (!N.hasOneUse()) 10339 return false; 10340 10341 if (!isa<LoadSDNode>(N)) 10342 return false; 10343 10344 LoadSDNode *Load = cast<LoadSDNode>(N); 10345 ISD::LoadExtType LoadExt = Load->getExtensionType(); 10346 if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD) 10347 return true; 10348 10349 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same 10350 // extension. 10351 if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) || 10352 (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND)) 10353 return false; 10354 10355 return true; 10356 } 10357 10358 /// Fold 10359 /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) 10360 /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y) 10361 /// (aext (select c, load x, load y)) -> (select c, extload x, extload y) 10362 /// This function is called by the DAGCombiner when visiting sext/zext/aext 10363 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 10364 static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, 10365 SelectionDAG &DAG) { 10366 unsigned Opcode = N->getOpcode(); 10367 SDValue N0 = N->getOperand(0); 10368 EVT VT = N->getValueType(0); 10369 SDLoc DL(N); 10370 10371 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 10372 Opcode == ISD::ANY_EXTEND) && 10373 "Expected EXTEND dag node in input!"); 10374 10375 if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) || 10376 !N0.hasOneUse()) 10377 return SDValue(); 10378 10379 SDValue Op1 = N0->getOperand(1); 10380 SDValue Op2 = N0->getOperand(2); 10381 if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode)) 10382 return SDValue(); 10383 10384 auto ExtLoadOpcode = ISD::EXTLOAD; 10385 if (Opcode == ISD::SIGN_EXTEND) 10386 ExtLoadOpcode = ISD::SEXTLOAD; 10387 else if (Opcode == ISD::ZERO_EXTEND) 10388 ExtLoadOpcode = ISD::ZEXTLOAD; 10389 10390 LoadSDNode *Load1 = cast<LoadSDNode>(Op1); 10391 LoadSDNode *Load2 = cast<LoadSDNode>(Op2); 10392 if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) || 10393 !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT())) 10394 return SDValue(); 10395 10396 SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1); 10397 SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2); 10398 return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2); 10399 } 10400 10401 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 10402 /// a build_vector of constants. 10403 /// This function is called by the DAGCombiner when visiting sext/zext/aext 10404 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 10405 /// Vector extends are not folded if operations are legal; this is to 10406 /// avoid introducing illegal build_vector dag nodes. 10407 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 10408 SelectionDAG &DAG, bool LegalTypes) { 10409 unsigned Opcode = N->getOpcode(); 10410 SDValue N0 = N->getOperand(0); 10411 EVT VT = N->getValueType(0); 10412 SDLoc DL(N); 10413 10414 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 10415 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 10416 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 10417 && "Expected EXTEND dag node in input!"); 10418 10419 // fold (sext c1) -> c1 10420 // fold (zext c1) -> c1 10421 // fold (aext c1) -> c1 10422 if (isa<ConstantSDNode>(N0)) 10423 return DAG.getNode(Opcode, DL, VT, N0); 10424 10425 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 10426 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) 10427 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 10428 if (N0->getOpcode() == ISD::SELECT) { 10429 SDValue Op1 = N0->getOperand(1); 10430 SDValue Op2 = N0->getOperand(2); 10431 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && 10432 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { 10433 // For any_extend, choose sign extension of the constants to allow a 10434 // possible further transform to sign_extend_inreg.i.e. 10435 // 10436 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> 10437 // t2: i64 = any_extend t1 10438 // --> 10439 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> 10440 // --> 10441 // t4: i64 = sign_extend_inreg t3 10442 unsigned FoldOpc = Opcode; 10443 if (FoldOpc == ISD::ANY_EXTEND) 10444 FoldOpc = ISD::SIGN_EXTEND; 10445 return DAG.getSelect(DL, VT, N0->getOperand(0), 10446 DAG.getNode(FoldOpc, DL, VT, Op1), 10447 DAG.getNode(FoldOpc, DL, VT, Op2)); 10448 } 10449 } 10450 10451 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 10452 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 10453 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 10454 EVT SVT = VT.getScalarType(); 10455 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 10456 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 10457 return SDValue(); 10458 10459 // We can fold this node into a build_vector. 10460 unsigned VTBits = SVT.getSizeInBits(); 10461 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 10462 SmallVector<SDValue, 8> Elts; 10463 unsigned NumElts = VT.getVectorNumElements(); 10464 10465 // For zero-extensions, UNDEF elements still guarantee to have the upper 10466 // bits set to zero. 10467 bool IsZext = 10468 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 10469 10470 for (unsigned i = 0; i != NumElts; ++i) { 10471 SDValue Op = N0.getOperand(i); 10472 if (Op.isUndef()) { 10473 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 10474 continue; 10475 } 10476 10477 SDLoc DL(Op); 10478 // Get the constant value and if needed trunc it to the size of the type. 10479 // Nodes like build_vector might have constants wider than the scalar type. 10480 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 10481 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 10482 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 10483 else 10484 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 10485 } 10486 10487 return DAG.getBuildVector(VT, DL, Elts); 10488 } 10489 10490 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 10491 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 10492 // transformation. Returns true if extension are possible and the above 10493 // mentioned transformation is profitable. 10494 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 10495 unsigned ExtOpc, 10496 SmallVectorImpl<SDNode *> &ExtendNodes, 10497 const TargetLowering &TLI) { 10498 bool HasCopyToRegUses = false; 10499 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 10500 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 10501 UE = N0.getNode()->use_end(); 10502 UI != UE; ++UI) { 10503 SDNode *User = *UI; 10504 if (User == N) 10505 continue; 10506 if (UI.getUse().getResNo() != N0.getResNo()) 10507 continue; 10508 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 10509 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 10510 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 10511 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 10512 // Sign bits will be lost after a zext. 10513 return false; 10514 bool Add = false; 10515 for (unsigned i = 0; i != 2; ++i) { 10516 SDValue UseOp = User->getOperand(i); 10517 if (UseOp == N0) 10518 continue; 10519 if (!isa<ConstantSDNode>(UseOp)) 10520 return false; 10521 Add = true; 10522 } 10523 if (Add) 10524 ExtendNodes.push_back(User); 10525 continue; 10526 } 10527 // If truncates aren't free and there are users we can't 10528 // extend, it isn't worthwhile. 10529 if (!isTruncFree) 10530 return false; 10531 // Remember if this value is live-out. 10532 if (User->getOpcode() == ISD::CopyToReg) 10533 HasCopyToRegUses = true; 10534 } 10535 10536 if (HasCopyToRegUses) { 10537 bool BothLiveOut = false; 10538 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 10539 UI != UE; ++UI) { 10540 SDUse &Use = UI.getUse(); 10541 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 10542 BothLiveOut = true; 10543 break; 10544 } 10545 } 10546 if (BothLiveOut) 10547 // Both unextended and extended values are live out. There had better be 10548 // a good reason for the transformation. 10549 return ExtendNodes.size(); 10550 } 10551 return true; 10552 } 10553 10554 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 10555 SDValue OrigLoad, SDValue ExtLoad, 10556 ISD::NodeType ExtType) { 10557 // Extend SetCC uses if necessary. 10558 SDLoc DL(ExtLoad); 10559 for (SDNode *SetCC : SetCCs) { 10560 SmallVector<SDValue, 4> Ops; 10561 10562 for (unsigned j = 0; j != 2; ++j) { 10563 SDValue SOp = SetCC->getOperand(j); 10564 if (SOp == OrigLoad) 10565 Ops.push_back(ExtLoad); 10566 else 10567 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 10568 } 10569 10570 Ops.push_back(SetCC->getOperand(2)); 10571 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 10572 } 10573 } 10574 10575 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 10576 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 10577 SDValue N0 = N->getOperand(0); 10578 EVT DstVT = N->getValueType(0); 10579 EVT SrcVT = N0.getValueType(); 10580 10581 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10582 N->getOpcode() == ISD::ZERO_EXTEND) && 10583 "Unexpected node type (not an extend)!"); 10584 10585 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 10586 // For example, on a target with legal v4i32, but illegal v8i32, turn: 10587 // (v8i32 (sext (v8i16 (load x)))) 10588 // into: 10589 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10590 // (v4i32 (sextload (x + 16))))) 10591 // Where uses of the original load, i.e.: 10592 // (v8i16 (load x)) 10593 // are replaced with: 10594 // (v8i16 (truncate 10595 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10596 // (v4i32 (sextload (x + 16))))))) 10597 // 10598 // This combine is only applicable to illegal, but splittable, vectors. 10599 // All legal types, and illegal non-vector types, are handled elsewhere. 10600 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 10601 // 10602 if (N0->getOpcode() != ISD::LOAD) 10603 return SDValue(); 10604 10605 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10606 10607 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 10608 !N0.hasOneUse() || !LN0->isSimple() || 10609 !DstVT.isVector() || !DstVT.isPow2VectorType() || 10610 !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10611 return SDValue(); 10612 10613 SmallVector<SDNode *, 4> SetCCs; 10614 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 10615 return SDValue(); 10616 10617 ISD::LoadExtType ExtType = 10618 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10619 10620 // Try to split the vector types to get down to legal types. 10621 EVT SplitSrcVT = SrcVT; 10622 EVT SplitDstVT = DstVT; 10623 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 10624 SplitSrcVT.getVectorNumElements() > 1) { 10625 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 10626 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 10627 } 10628 10629 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 10630 return SDValue(); 10631 10632 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); 10633 10634 SDLoc DL(N); 10635 const unsigned NumSplits = 10636 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 10637 const unsigned Stride = SplitSrcVT.getStoreSize(); 10638 SmallVector<SDValue, 4> Loads; 10639 SmallVector<SDValue, 4> Chains; 10640 10641 SDValue BasePtr = LN0->getBasePtr(); 10642 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 10643 const unsigned Offset = Idx * Stride; 10644 const Align Align = commonAlignment(LN0->getAlign(), Offset); 10645 10646 SDValue SplitLoad = DAG.getExtLoad( 10647 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 10648 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 10649 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 10650 10651 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); 10652 10653 Loads.push_back(SplitLoad.getValue(0)); 10654 Chains.push_back(SplitLoad.getValue(1)); 10655 } 10656 10657 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 10658 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 10659 10660 // Simplify TF. 10661 AddToWorklist(NewChain.getNode()); 10662 10663 CombineTo(N, NewValue); 10664 10665 // Replace uses of the original load (before extension) 10666 // with a truncate of the concatenated sextloaded vectors. 10667 SDValue Trunc = 10668 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 10669 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 10670 CombineTo(N0.getNode(), Trunc, NewChain); 10671 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10672 } 10673 10674 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 10675 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 10676 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 10677 assert(N->getOpcode() == ISD::ZERO_EXTEND); 10678 EVT VT = N->getValueType(0); 10679 EVT OrigVT = N->getOperand(0).getValueType(); 10680 if (TLI.isZExtFree(OrigVT, VT)) 10681 return SDValue(); 10682 10683 // and/or/xor 10684 SDValue N0 = N->getOperand(0); 10685 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10686 N0.getOpcode() == ISD::XOR) || 10687 N0.getOperand(1).getOpcode() != ISD::Constant || 10688 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 10689 return SDValue(); 10690 10691 // shl/shr 10692 SDValue N1 = N0->getOperand(0); 10693 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 10694 N1.getOperand(1).getOpcode() != ISD::Constant || 10695 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 10696 return SDValue(); 10697 10698 // load 10699 if (!isa<LoadSDNode>(N1.getOperand(0))) 10700 return SDValue(); 10701 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 10702 EVT MemVT = Load->getMemoryVT(); 10703 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 10704 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 10705 return SDValue(); 10706 10707 10708 // If the shift op is SHL, the logic op must be AND, otherwise the result 10709 // will be wrong. 10710 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 10711 return SDValue(); 10712 10713 if (!N0.hasOneUse() || !N1.hasOneUse()) 10714 return SDValue(); 10715 10716 SmallVector<SDNode*, 4> SetCCs; 10717 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 10718 ISD::ZERO_EXTEND, SetCCs, TLI)) 10719 return SDValue(); 10720 10721 // Actually do the transformation. 10722 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 10723 Load->getChain(), Load->getBasePtr(), 10724 Load->getMemoryVT(), Load->getMemOperand()); 10725 10726 SDLoc DL1(N1); 10727 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 10728 N1.getOperand(1)); 10729 10730 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10731 SDLoc DL0(N0); 10732 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 10733 DAG.getConstant(Mask, DL0, VT)); 10734 10735 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 10736 CombineTo(N, And); 10737 if (SDValue(Load, 0).hasOneUse()) { 10738 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 10739 } else { 10740 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 10741 Load->getValueType(0), ExtLoad); 10742 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 10743 } 10744 10745 // N0 is dead at this point. 10746 recursivelyDeleteUnusedNodes(N0.getNode()); 10747 10748 return SDValue(N,0); // Return N so it doesn't get rechecked! 10749 } 10750 10751 /// If we're narrowing or widening the result of a vector select and the final 10752 /// size is the same size as a setcc (compare) feeding the select, then try to 10753 /// apply the cast operation to the select's operands because matching vector 10754 /// sizes for a select condition and other operands should be more efficient. 10755 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 10756 unsigned CastOpcode = Cast->getOpcode(); 10757 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 10758 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 10759 CastOpcode == ISD::FP_ROUND) && 10760 "Unexpected opcode for vector select narrowing/widening"); 10761 10762 // We only do this transform before legal ops because the pattern may be 10763 // obfuscated by target-specific operations after legalization. Do not create 10764 // an illegal select op, however, because that may be difficult to lower. 10765 EVT VT = Cast->getValueType(0); 10766 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 10767 return SDValue(); 10768 10769 SDValue VSel = Cast->getOperand(0); 10770 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 10771 VSel.getOperand(0).getOpcode() != ISD::SETCC) 10772 return SDValue(); 10773 10774 // Does the setcc have the same vector size as the casted select? 10775 SDValue SetCC = VSel.getOperand(0); 10776 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 10777 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 10778 return SDValue(); 10779 10780 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 10781 SDValue A = VSel.getOperand(1); 10782 SDValue B = VSel.getOperand(2); 10783 SDValue CastA, CastB; 10784 SDLoc DL(Cast); 10785 if (CastOpcode == ISD::FP_ROUND) { 10786 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 10787 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 10788 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 10789 } else { 10790 CastA = DAG.getNode(CastOpcode, DL, VT, A); 10791 CastB = DAG.getNode(CastOpcode, DL, VT, B); 10792 } 10793 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 10794 } 10795 10796 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10797 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10798 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 10799 const TargetLowering &TLI, EVT VT, 10800 bool LegalOperations, SDNode *N, 10801 SDValue N0, ISD::LoadExtType ExtLoadType) { 10802 SDNode *N0Node = N0.getNode(); 10803 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 10804 : ISD::isZEXTLoad(N0Node); 10805 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 10806 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 10807 return SDValue(); 10808 10809 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10810 EVT MemVT = LN0->getMemoryVT(); 10811 if ((LegalOperations || !LN0->isSimple() || 10812 VT.isVector()) && 10813 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 10814 return SDValue(); 10815 10816 SDValue ExtLoad = 10817 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 10818 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 10819 Combiner.CombineTo(N, ExtLoad); 10820 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10821 if (LN0->use_empty()) 10822 Combiner.recursivelyDeleteUnusedNodes(LN0); 10823 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10824 } 10825 10826 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10827 // Only generate vector extloads when 1) they're legal, and 2) they are 10828 // deemed desirable by the target. 10829 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 10830 const TargetLowering &TLI, EVT VT, 10831 bool LegalOperations, SDNode *N, SDValue N0, 10832 ISD::LoadExtType ExtLoadType, 10833 ISD::NodeType ExtOpc) { 10834 if (!ISD::isNON_EXTLoad(N0.getNode()) || 10835 !ISD::isUNINDEXEDLoad(N0.getNode()) || 10836 ((LegalOperations || VT.isVector() || 10837 !cast<LoadSDNode>(N0)->isSimple()) && 10838 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 10839 return {}; 10840 10841 bool DoXform = true; 10842 SmallVector<SDNode *, 4> SetCCs; 10843 if (!N0.hasOneUse()) 10844 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 10845 if (VT.isVector()) 10846 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 10847 if (!DoXform) 10848 return {}; 10849 10850 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10851 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 10852 LN0->getBasePtr(), N0.getValueType(), 10853 LN0->getMemOperand()); 10854 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 10855 // If the load value is used only by N, replace it via CombineTo N. 10856 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 10857 Combiner.CombineTo(N, ExtLoad); 10858 if (NoReplaceTrunc) { 10859 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10860 Combiner.recursivelyDeleteUnusedNodes(LN0); 10861 } else { 10862 SDValue Trunc = 10863 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 10864 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 10865 } 10866 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10867 } 10868 10869 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, 10870 const TargetLowering &TLI, EVT VT, 10871 SDNode *N, SDValue N0, 10872 ISD::LoadExtType ExtLoadType, 10873 ISD::NodeType ExtOpc) { 10874 if (!N0.hasOneUse()) 10875 return SDValue(); 10876 10877 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); 10878 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) 10879 return SDValue(); 10880 10881 if (!TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0))) 10882 return SDValue(); 10883 10884 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10885 return SDValue(); 10886 10887 SDLoc dl(Ld); 10888 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); 10889 SDValue NewLoad = DAG.getMaskedLoad( 10890 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), 10891 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), 10892 ExtLoadType, Ld->isExpandingLoad()); 10893 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); 10894 return NewLoad; 10895 } 10896 10897 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 10898 bool LegalOperations) { 10899 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10900 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 10901 10902 SDValue SetCC = N->getOperand(0); 10903 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 10904 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 10905 return SDValue(); 10906 10907 SDValue X = SetCC.getOperand(0); 10908 SDValue Ones = SetCC.getOperand(1); 10909 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 10910 EVT VT = N->getValueType(0); 10911 EVT XVT = X.getValueType(); 10912 // setge X, C is canonicalized to setgt, so we do not need to match that 10913 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 10914 // not require the 'not' op. 10915 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 10916 // Invert and smear/shift the sign bit: 10917 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 10918 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 10919 SDLoc DL(N); 10920 unsigned ShCt = VT.getSizeInBits() - 1; 10921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10922 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 10923 SDValue NotX = DAG.getNOT(DL, X, VT); 10924 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); 10925 auto ShiftOpcode = 10926 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 10927 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 10928 } 10929 } 10930 return SDValue(); 10931 } 10932 10933 SDValue DAGCombiner::foldSextSetcc(SDNode *N) { 10934 SDValue N0 = N->getOperand(0); 10935 if (N0.getOpcode() != ISD::SETCC) 10936 return SDValue(); 10937 10938 SDValue N00 = N0.getOperand(0); 10939 SDValue N01 = N0.getOperand(1); 10940 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10941 EVT VT = N->getValueType(0); 10942 EVT N00VT = N00.getValueType(); 10943 SDLoc DL(N); 10944 10945 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 10946 // the same size as the compared operands. Try to optimize sext(setcc()) 10947 // if this is the case. 10948 if (VT.isVector() && !LegalOperations && 10949 TLI.getBooleanContents(N00VT) == 10950 TargetLowering::ZeroOrNegativeOneBooleanContent) { 10951 EVT SVT = getSetCCResultType(N00VT); 10952 10953 // If we already have the desired type, don't change it. 10954 if (SVT != N0.getValueType()) { 10955 // We know that the # elements of the results is the same as the 10956 // # elements of the compare (and the # elements of the compare result 10957 // for that matter). Check to see that they are the same size. If so, 10958 // we know that the element size of the sext'd result matches the 10959 // element size of the compare operands. 10960 if (VT.getSizeInBits() == SVT.getSizeInBits()) 10961 return DAG.getSetCC(DL, VT, N00, N01, CC); 10962 10963 // If the desired elements are smaller or larger than the source 10964 // elements, we can use a matching integer vector type and then 10965 // truncate/sign extend. 10966 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 10967 if (SVT == MatchingVecType) { 10968 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 10969 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 10970 } 10971 } 10972 10973 // Try to eliminate the sext of a setcc by zexting the compare operands. 10974 if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) && 10975 !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) { 10976 bool IsSignedCmp = ISD::isSignedIntSetCC(CC); 10977 unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10978 unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10979 10980 // We have an unsupported narrow vector compare op that would be legal 10981 // if extended to the destination type. See if the compare operands 10982 // can be freely extended to the destination type. 10983 auto IsFreeToExtend = [&](SDValue V) { 10984 if (isConstantOrConstantVector(V, /*NoOpaques*/ true)) 10985 return true; 10986 // Match a simple, non-extended load that can be converted to a 10987 // legal {z/s}ext-load. 10988 // TODO: Allow widening of an existing {z/s}ext-load? 10989 if (!(ISD::isNON_EXTLoad(V.getNode()) && 10990 ISD::isUNINDEXEDLoad(V.getNode()) && 10991 cast<LoadSDNode>(V)->isSimple() && 10992 TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType()))) 10993 return false; 10994 10995 // Non-chain users of this value must either be the setcc in this 10996 // sequence or extends that can be folded into the new {z/s}ext-load. 10997 for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end(); 10998 UI != UE; ++UI) { 10999 // Skip uses of the chain and the setcc. 11000 SDNode *User = *UI; 11001 if (UI.getUse().getResNo() != 0 || User == N0.getNode()) 11002 continue; 11003 // Extra users must have exactly the same cast we are about to create. 11004 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad() 11005 // is enhanced similarly. 11006 if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT) 11007 return false; 11008 } 11009 return true; 11010 }; 11011 11012 if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) { 11013 SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00); 11014 SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01); 11015 return DAG.getSetCC(DL, VT, Ext0, Ext1, CC); 11016 } 11017 } 11018 } 11019 11020 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 11021 // Here, T can be 1 or -1, depending on the type of the setcc and 11022 // getBooleanContents(). 11023 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 11024 11025 // To determine the "true" side of the select, we need to know the high bit 11026 // of the value returned by the setcc if it evaluates to true. 11027 // If the type of the setcc is i1, then the true case of the select is just 11028 // sext(i1 1), that is, -1. 11029 // If the type of the setcc is larger (say, i8) then the value of the high 11030 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 11031 // of the appropriate width. 11032 SDValue ExtTrueVal = (SetCCWidth == 1) 11033 ? DAG.getAllOnesConstant(DL, VT) 11034 : DAG.getBoolConstant(true, DL, VT, N00VT); 11035 SDValue Zero = DAG.getConstant(0, DL, VT); 11036 if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 11037 return SCC; 11038 11039 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 11040 EVT SetCCVT = getSetCCResultType(N00VT); 11041 // Don't do this transform for i1 because there's a select transform 11042 // that would reverse it. 11043 // TODO: We should not do this transform at all without a target hook 11044 // because a sext is likely cheaper than a select? 11045 if (SetCCVT.getScalarSizeInBits() != 1 && 11046 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 11047 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 11048 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 11049 } 11050 } 11051 11052 return SDValue(); 11053 } 11054 11055 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 11056 SDValue N0 = N->getOperand(0); 11057 EVT VT = N->getValueType(0); 11058 SDLoc DL(N); 11059 11060 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11061 return Res; 11062 11063 // fold (sext (sext x)) -> (sext x) 11064 // fold (sext (aext x)) -> (sext x) 11065 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11066 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 11067 11068 if (N0.getOpcode() == ISD::TRUNCATE) { 11069 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 11070 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 11071 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 11072 SDNode *oye = N0.getOperand(0).getNode(); 11073 if (NarrowLoad.getNode() != N0.getNode()) { 11074 CombineTo(N0.getNode(), NarrowLoad); 11075 // CombineTo deleted the truncate, if needed, but not what's under it. 11076 AddToWorklist(oye); 11077 } 11078 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11079 } 11080 11081 // See if the value being truncated is already sign extended. If so, just 11082 // eliminate the trunc/sext pair. 11083 SDValue Op = N0.getOperand(0); 11084 unsigned OpBits = Op.getScalarValueSizeInBits(); 11085 unsigned MidBits = N0.getScalarValueSizeInBits(); 11086 unsigned DestBits = VT.getScalarSizeInBits(); 11087 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 11088 11089 if (OpBits == DestBits) { 11090 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 11091 // bits, it is already ready. 11092 if (NumSignBits > DestBits-MidBits) 11093 return Op; 11094 } else if (OpBits < DestBits) { 11095 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 11096 // bits, just sext from i32. 11097 if (NumSignBits > OpBits-MidBits) 11098 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 11099 } else { 11100 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 11101 // bits, just truncate to i32. 11102 if (NumSignBits > OpBits-MidBits) 11103 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 11104 } 11105 11106 // fold (sext (truncate x)) -> (sextinreg x). 11107 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 11108 N0.getValueType())) { 11109 if (OpBits < DestBits) 11110 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 11111 else if (OpBits > DestBits) 11112 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 11113 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 11114 DAG.getValueType(N0.getValueType())); 11115 } 11116 } 11117 11118 // Try to simplify (sext (load x)). 11119 if (SDValue foldedExt = 11120 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11121 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 11122 return foldedExt; 11123 11124 if (SDValue foldedExt = 11125 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, 11126 ISD::SIGN_EXTEND)) 11127 return foldedExt; 11128 11129 // fold (sext (load x)) to multiple smaller sextloads. 11130 // Only on illegal but splittable vectors. 11131 if (SDValue ExtLoad = CombineExtLoad(N)) 11132 return ExtLoad; 11133 11134 // Try to simplify (sext (sextload x)). 11135 if (SDValue foldedExt = tryToFoldExtOfExtload( 11136 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 11137 return foldedExt; 11138 11139 // fold (sext (and/or/xor (load x), cst)) -> 11140 // (and/or/xor (sextload x), (sext cst)) 11141 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11142 N0.getOpcode() == ISD::XOR) && 11143 isa<LoadSDNode>(N0.getOperand(0)) && 11144 N0.getOperand(1).getOpcode() == ISD::Constant && 11145 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11146 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11147 EVT MemVT = LN00->getMemoryVT(); 11148 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 11149 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 11150 SmallVector<SDNode*, 4> SetCCs; 11151 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11152 ISD::SIGN_EXTEND, SetCCs, TLI); 11153 if (DoXform) { 11154 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 11155 LN00->getChain(), LN00->getBasePtr(), 11156 LN00->getMemoryVT(), 11157 LN00->getMemOperand()); 11158 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); 11159 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11160 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11161 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 11162 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11163 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11164 CombineTo(N, And); 11165 // If N0 has multiple uses, change other uses as well. 11166 if (NoReplaceTruncAnd) { 11167 SDValue TruncAnd = 11168 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11169 CombineTo(N0.getNode(), TruncAnd); 11170 } 11171 if (NoReplaceTrunc) { 11172 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11173 } else { 11174 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11175 LN00->getValueType(0), ExtLoad); 11176 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11177 } 11178 return SDValue(N,0); // Return N so it doesn't get rechecked! 11179 } 11180 } 11181 } 11182 11183 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11184 return V; 11185 11186 if (SDValue V = foldSextSetcc(N)) 11187 return V; 11188 11189 // fold (sext x) -> (zext x) if the sign bit is known zero. 11190 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 11191 DAG.SignBitIsZero(N0)) 11192 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 11193 11194 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11195 return NewVSel; 11196 11197 // Eliminate this sign extend by doing a negation in the destination type: 11198 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 11199 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 11200 isNullOrNullSplat(N0.getOperand(0)) && 11201 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 11202 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 11203 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 11204 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 11205 } 11206 // Eliminate this sign extend by doing a decrement in the destination type: 11207 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 11208 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 11209 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 11210 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11211 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 11212 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 11213 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11214 } 11215 11216 // fold sext (not i1 X) -> add (zext i1 X), -1 11217 // TODO: This could be extended to handle bool vectors. 11218 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && 11219 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && 11220 TLI.isOperationLegal(ISD::ADD, VT)))) { 11221 // If we can eliminate the 'not', the sext form should be better 11222 if (SDValue NewXor = visitXOR(N0.getNode())) { 11223 // Returning N0 is a form of in-visit replacement that may have 11224 // invalidated N0. 11225 if (NewXor.getNode() == N0.getNode()) { 11226 // Return SDValue here as the xor should have already been replaced in 11227 // this sext. 11228 return SDValue(); 11229 } else { 11230 // Return a new sext with the new xor. 11231 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); 11232 } 11233 } 11234 11235 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 11236 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11237 } 11238 11239 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11240 return Res; 11241 11242 return SDValue(); 11243 } 11244 11245 // isTruncateOf - If N is a truncate of some other value, return true, record 11246 // the value being truncated in Op and which of Op's bits are zero/one in Known. 11247 // This function computes KnownBits to avoid a duplicated call to 11248 // computeKnownBits in the caller. 11249 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 11250 KnownBits &Known) { 11251 if (N->getOpcode() == ISD::TRUNCATE) { 11252 Op = N->getOperand(0); 11253 Known = DAG.computeKnownBits(Op); 11254 return true; 11255 } 11256 11257 if (N.getOpcode() != ISD::SETCC || 11258 N.getValueType().getScalarType() != MVT::i1 || 11259 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 11260 return false; 11261 11262 SDValue Op0 = N->getOperand(0); 11263 SDValue Op1 = N->getOperand(1); 11264 assert(Op0.getValueType() == Op1.getValueType()); 11265 11266 if (isNullOrNullSplat(Op0)) 11267 Op = Op1; 11268 else if (isNullOrNullSplat(Op1)) 11269 Op = Op0; 11270 else 11271 return false; 11272 11273 Known = DAG.computeKnownBits(Op); 11274 11275 return (Known.Zero | 1).isAllOnes(); 11276 } 11277 11278 /// Given an extending node with a pop-count operand, if the target does not 11279 /// support a pop-count in the narrow source type but does support it in the 11280 /// destination type, widen the pop-count to the destination type. 11281 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { 11282 assert((Extend->getOpcode() == ISD::ZERO_EXTEND || 11283 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); 11284 11285 SDValue CtPop = Extend->getOperand(0); 11286 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) 11287 return SDValue(); 11288 11289 EVT VT = Extend->getValueType(0); 11290 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11291 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || 11292 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) 11293 return SDValue(); 11294 11295 // zext (ctpop X) --> ctpop (zext X) 11296 SDLoc DL(Extend); 11297 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); 11298 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); 11299 } 11300 11301 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 11302 SDValue N0 = N->getOperand(0); 11303 EVT VT = N->getValueType(0); 11304 11305 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11306 return Res; 11307 11308 // fold (zext (zext x)) -> (zext x) 11309 // fold (zext (aext x)) -> (zext x) 11310 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11311 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 11312 N0.getOperand(0)); 11313 11314 // fold (zext (truncate x)) -> (zext x) or 11315 // (zext (truncate x)) -> (truncate x) 11316 // This is valid when the truncated bits of x are already zero. 11317 SDValue Op; 11318 KnownBits Known; 11319 if (isTruncateOf(DAG, N0, Op, Known)) { 11320 APInt TruncatedBits = 11321 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 11322 APInt(Op.getScalarValueSizeInBits(), 0) : 11323 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 11324 N0.getScalarValueSizeInBits(), 11325 std::min(Op.getScalarValueSizeInBits(), 11326 VT.getScalarSizeInBits())); 11327 if (TruncatedBits.isSubsetOf(Known.Zero)) 11328 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 11329 } 11330 11331 // fold (zext (truncate x)) -> (and x, mask) 11332 if (N0.getOpcode() == ISD::TRUNCATE) { 11333 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 11334 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 11335 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 11336 SDNode *oye = N0.getOperand(0).getNode(); 11337 if (NarrowLoad.getNode() != N0.getNode()) { 11338 CombineTo(N0.getNode(), NarrowLoad); 11339 // CombineTo deleted the truncate, if needed, but not what's under it. 11340 AddToWorklist(oye); 11341 } 11342 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11343 } 11344 11345 EVT SrcVT = N0.getOperand(0).getValueType(); 11346 EVT MinVT = N0.getValueType(); 11347 11348 // Try to mask before the extension to avoid having to generate a larger mask, 11349 // possibly over several sub-vectors. 11350 if (SrcVT.bitsLT(VT) && VT.isVector()) { 11351 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 11352 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 11353 SDValue Op = N0.getOperand(0); 11354 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 11355 AddToWorklist(Op.getNode()); 11356 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 11357 // Transfer the debug info; the new node is equivalent to N0. 11358 DAG.transferDbgValues(N0, ZExtOrTrunc); 11359 return ZExtOrTrunc; 11360 } 11361 } 11362 11363 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 11364 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11365 AddToWorklist(Op.getNode()); 11366 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 11367 // We may safely transfer the debug info describing the truncate node over 11368 // to the equivalent and operation. 11369 DAG.transferDbgValues(N0, And); 11370 return And; 11371 } 11372 } 11373 11374 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 11375 // if either of the casts is not free. 11376 if (N0.getOpcode() == ISD::AND && 11377 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11378 N0.getOperand(1).getOpcode() == ISD::Constant && 11379 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11380 N0.getValueType()) || 11381 !TLI.isZExtFree(N0.getValueType(), VT))) { 11382 SDValue X = N0.getOperand(0).getOperand(0); 11383 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 11384 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11385 SDLoc DL(N); 11386 return DAG.getNode(ISD::AND, DL, VT, 11387 X, DAG.getConstant(Mask, DL, VT)); 11388 } 11389 11390 // Try to simplify (zext (load x)). 11391 if (SDValue foldedExt = 11392 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11393 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11394 return foldedExt; 11395 11396 if (SDValue foldedExt = 11397 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, 11398 ISD::ZERO_EXTEND)) 11399 return foldedExt; 11400 11401 // fold (zext (load x)) to multiple smaller zextloads. 11402 // Only on illegal but splittable vectors. 11403 if (SDValue ExtLoad = CombineExtLoad(N)) 11404 return ExtLoad; 11405 11406 // fold (zext (and/or/xor (load x), cst)) -> 11407 // (and/or/xor (zextload x), (zext cst)) 11408 // Unless (and (load x) cst) will match as a zextload already and has 11409 // additional users. 11410 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11411 N0.getOpcode() == ISD::XOR) && 11412 isa<LoadSDNode>(N0.getOperand(0)) && 11413 N0.getOperand(1).getOpcode() == ISD::Constant && 11414 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11415 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11416 EVT MemVT = LN00->getMemoryVT(); 11417 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 11418 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 11419 bool DoXform = true; 11420 SmallVector<SDNode*, 4> SetCCs; 11421 if (!N0.hasOneUse()) { 11422 if (N0.getOpcode() == ISD::AND) { 11423 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 11424 EVT LoadResultTy = AndC->getValueType(0); 11425 EVT ExtVT; 11426 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 11427 DoXform = false; 11428 } 11429 } 11430 if (DoXform) 11431 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11432 ISD::ZERO_EXTEND, SetCCs, TLI); 11433 if (DoXform) { 11434 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 11435 LN00->getChain(), LN00->getBasePtr(), 11436 LN00->getMemoryVT(), 11437 LN00->getMemOperand()); 11438 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11439 SDLoc DL(N); 11440 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11441 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11442 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 11443 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11444 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11445 CombineTo(N, And); 11446 // If N0 has multiple uses, change other uses as well. 11447 if (NoReplaceTruncAnd) { 11448 SDValue TruncAnd = 11449 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11450 CombineTo(N0.getNode(), TruncAnd); 11451 } 11452 if (NoReplaceTrunc) { 11453 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11454 } else { 11455 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11456 LN00->getValueType(0), ExtLoad); 11457 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11458 } 11459 return SDValue(N,0); // Return N so it doesn't get rechecked! 11460 } 11461 } 11462 } 11463 11464 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 11465 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 11466 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 11467 return ZExtLoad; 11468 11469 // Try to simplify (zext (zextload x)). 11470 if (SDValue foldedExt = tryToFoldExtOfExtload( 11471 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 11472 return foldedExt; 11473 11474 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11475 return V; 11476 11477 if (N0.getOpcode() == ISD::SETCC) { 11478 // Only do this before legalize for now. 11479 if (!LegalOperations && VT.isVector() && 11480 N0.getValueType().getVectorElementType() == MVT::i1) { 11481 EVT N00VT = N0.getOperand(0).getValueType(); 11482 if (getSetCCResultType(N00VT) == N0.getValueType()) 11483 return SDValue(); 11484 11485 // We know that the # elements of the results is the same as the # 11486 // elements of the compare (and the # elements of the compare result for 11487 // that matter). Check to see that they are the same size. If so, we know 11488 // that the element size of the sext'd result matches the element size of 11489 // the compare operands. 11490 SDLoc DL(N); 11491 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 11492 // zext(setcc) -> zext_in_reg(vsetcc) for vectors. 11493 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 11494 N0.getOperand(1), N0.getOperand(2)); 11495 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); 11496 } 11497 11498 // If the desired elements are smaller or larger than the source 11499 // elements we can use a matching integer vector type and then 11500 // truncate/any extend followed by zext_in_reg. 11501 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11502 SDValue VsetCC = 11503 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 11504 N0.getOperand(1), N0.getOperand(2)); 11505 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, 11506 N0.getValueType()); 11507 } 11508 11509 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) 11510 SDLoc DL(N); 11511 EVT N0VT = N0.getValueType(); 11512 EVT N00VT = N0.getOperand(0).getValueType(); 11513 if (SDValue SCC = SimplifySelectCC( 11514 DL, N0.getOperand(0), N0.getOperand(1), 11515 DAG.getBoolConstant(true, DL, N0VT, N00VT), 11516 DAG.getBoolConstant(false, DL, N0VT, N00VT), 11517 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11518 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); 11519 } 11520 11521 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 11522 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 11523 isa<ConstantSDNode>(N0.getOperand(1)) && 11524 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11525 N0.hasOneUse()) { 11526 SDValue ShAmt = N0.getOperand(1); 11527 if (N0.getOpcode() == ISD::SHL) { 11528 SDValue InnerZExt = N0.getOperand(0); 11529 // If the original shl may be shifting out bits, do not perform this 11530 // transformation. 11531 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 11532 InnerZExt.getOperand(0).getValueSizeInBits(); 11533 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) 11534 return SDValue(); 11535 } 11536 11537 SDLoc DL(N); 11538 11539 // Ensure that the shift amount is wide enough for the shifted value. 11540 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) 11541 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 11542 11543 return DAG.getNode(N0.getOpcode(), DL, VT, 11544 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 11545 ShAmt); 11546 } 11547 11548 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11549 return NewVSel; 11550 11551 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11552 return NewCtPop; 11553 11554 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11555 return Res; 11556 11557 return SDValue(); 11558 } 11559 11560 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 11561 SDValue N0 = N->getOperand(0); 11562 EVT VT = N->getValueType(0); 11563 11564 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11565 return Res; 11566 11567 // fold (aext (aext x)) -> (aext x) 11568 // fold (aext (zext x)) -> (zext x) 11569 // fold (aext (sext x)) -> (sext x) 11570 if (N0.getOpcode() == ISD::ANY_EXTEND || 11571 N0.getOpcode() == ISD::ZERO_EXTEND || 11572 N0.getOpcode() == ISD::SIGN_EXTEND) 11573 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 11574 11575 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 11576 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 11577 if (N0.getOpcode() == ISD::TRUNCATE) { 11578 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 11579 SDNode *oye = N0.getOperand(0).getNode(); 11580 if (NarrowLoad.getNode() != N0.getNode()) { 11581 CombineTo(N0.getNode(), NarrowLoad); 11582 // CombineTo deleted the truncate, if needed, but not what's under it. 11583 AddToWorklist(oye); 11584 } 11585 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11586 } 11587 } 11588 11589 // fold (aext (truncate x)) 11590 if (N0.getOpcode() == ISD::TRUNCATE) 11591 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11592 11593 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 11594 // if the trunc is not free. 11595 if (N0.getOpcode() == ISD::AND && 11596 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11597 N0.getOperand(1).getOpcode() == ISD::Constant && 11598 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11599 N0.getValueType())) { 11600 SDLoc DL(N); 11601 SDValue X = N0.getOperand(0).getOperand(0); 11602 X = DAG.getAnyExtOrTrunc(X, DL, VT); 11603 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11604 return DAG.getNode(ISD::AND, DL, VT, 11605 X, DAG.getConstant(Mask, DL, VT)); 11606 } 11607 11608 // fold (aext (load x)) -> (aext (truncate (extload x))) 11609 // None of the supported targets knows how to perform load and any_ext 11610 // on vectors in one instruction, so attempt to fold to zext instead. 11611 if (VT.isVector()) { 11612 // Try to simplify (zext (load x)). 11613 if (SDValue foldedExt = 11614 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11615 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11616 return foldedExt; 11617 } else if (ISD::isNON_EXTLoad(N0.getNode()) && 11618 ISD::isUNINDEXEDLoad(N0.getNode()) && 11619 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 11620 bool DoXform = true; 11621 SmallVector<SDNode *, 4> SetCCs; 11622 if (!N0.hasOneUse()) 11623 DoXform = 11624 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 11625 if (DoXform) { 11626 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11627 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 11628 LN0->getChain(), LN0->getBasePtr(), 11629 N0.getValueType(), LN0->getMemOperand()); 11630 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 11631 // If the load value is used only by N, replace it via CombineTo N. 11632 bool NoReplaceTrunc = N0.hasOneUse(); 11633 CombineTo(N, ExtLoad); 11634 if (NoReplaceTrunc) { 11635 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11636 recursivelyDeleteUnusedNodes(LN0); 11637 } else { 11638 SDValue Trunc = 11639 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 11640 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 11641 } 11642 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11643 } 11644 } 11645 11646 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 11647 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 11648 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 11649 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 11650 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 11651 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11652 ISD::LoadExtType ExtType = LN0->getExtensionType(); 11653 EVT MemVT = LN0->getMemoryVT(); 11654 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 11655 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 11656 VT, LN0->getChain(), LN0->getBasePtr(), 11657 MemVT, LN0->getMemOperand()); 11658 CombineTo(N, ExtLoad); 11659 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11660 recursivelyDeleteUnusedNodes(LN0); 11661 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11662 } 11663 } 11664 11665 if (N0.getOpcode() == ISD::SETCC) { 11666 // For vectors: 11667 // aext(setcc) -> vsetcc 11668 // aext(setcc) -> truncate(vsetcc) 11669 // aext(setcc) -> aext(vsetcc) 11670 // Only do this before legalize for now. 11671 if (VT.isVector() && !LegalOperations) { 11672 EVT N00VT = N0.getOperand(0).getValueType(); 11673 if (getSetCCResultType(N00VT) == N0.getValueType()) 11674 return SDValue(); 11675 11676 // We know that the # elements of the results is the same as the 11677 // # elements of the compare (and the # elements of the compare result 11678 // for that matter). Check to see that they are the same size. If so, 11679 // we know that the element size of the sext'd result matches the 11680 // element size of the compare operands. 11681 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 11682 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 11683 N0.getOperand(1), 11684 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11685 11686 // If the desired elements are smaller or larger than the source 11687 // elements we can use a matching integer vector type and then 11688 // truncate/any extend 11689 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11690 SDValue VsetCC = 11691 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 11692 N0.getOperand(1), 11693 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11694 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 11695 } 11696 11697 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 11698 SDLoc DL(N); 11699 if (SDValue SCC = SimplifySelectCC( 11700 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 11701 DAG.getConstant(0, DL, VT), 11702 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11703 return SCC; 11704 } 11705 11706 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11707 return NewCtPop; 11708 11709 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11710 return Res; 11711 11712 return SDValue(); 11713 } 11714 11715 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 11716 unsigned Opcode = N->getOpcode(); 11717 SDValue N0 = N->getOperand(0); 11718 SDValue N1 = N->getOperand(1); 11719 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 11720 11721 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 11722 if (N0.getOpcode() == Opcode && 11723 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 11724 return N0; 11725 11726 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 11727 N0.getOperand(0).getOpcode() == Opcode) { 11728 // We have an assert, truncate, assert sandwich. Make one stronger assert 11729 // by asserting on the smallest asserted type to the larger source type. 11730 // This eliminates the later assert: 11731 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 11732 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 11733 SDValue BigA = N0.getOperand(0); 11734 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 11735 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 11736 "Asserting zero/sign-extended bits to a type larger than the " 11737 "truncated destination does not provide information"); 11738 11739 SDLoc DL(N); 11740 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 11741 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 11742 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 11743 BigA.getOperand(0), MinAssertVTVal); 11744 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 11745 } 11746 11747 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 11748 // than X. Just move the AssertZext in front of the truncate and drop the 11749 // AssertSExt. 11750 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 11751 N0.getOperand(0).getOpcode() == ISD::AssertSext && 11752 Opcode == ISD::AssertZext) { 11753 SDValue BigA = N0.getOperand(0); 11754 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 11755 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 11756 "Asserting zero/sign-extended bits to a type larger than the " 11757 "truncated destination does not provide information"); 11758 11759 if (AssertVT.bitsLT(BigA_AssertVT)) { 11760 SDLoc DL(N); 11761 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 11762 BigA.getOperand(0), N1); 11763 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 11764 } 11765 } 11766 11767 return SDValue(); 11768 } 11769 11770 SDValue DAGCombiner::visitAssertAlign(SDNode *N) { 11771 SDLoc DL(N); 11772 11773 Align AL = cast<AssertAlignSDNode>(N)->getAlign(); 11774 SDValue N0 = N->getOperand(0); 11775 11776 // Fold (assertalign (assertalign x, AL0), AL1) -> 11777 // (assertalign x, max(AL0, AL1)) 11778 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) 11779 return DAG.getAssertAlign(DL, N0.getOperand(0), 11780 std::max(AL, AAN->getAlign())); 11781 11782 // In rare cases, there are trivial arithmetic ops in source operands. Sink 11783 // this assert down to source operands so that those arithmetic ops could be 11784 // exposed to the DAG combining. 11785 switch (N0.getOpcode()) { 11786 default: 11787 break; 11788 case ISD::ADD: 11789 case ISD::SUB: { 11790 unsigned AlignShift = Log2(AL); 11791 SDValue LHS = N0.getOperand(0); 11792 SDValue RHS = N0.getOperand(1); 11793 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); 11794 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11795 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { 11796 if (LHSAlignShift < AlignShift) 11797 LHS = DAG.getAssertAlign(DL, LHS, AL); 11798 if (RHSAlignShift < AlignShift) 11799 RHS = DAG.getAssertAlign(DL, RHS, AL); 11800 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); 11801 } 11802 break; 11803 } 11804 } 11805 11806 return SDValue(); 11807 } 11808 11809 /// If the result of a wider load is shifted to right of N bits and then 11810 /// truncated to a narrower type and where N is a multiple of number of bits of 11811 /// the narrower type, transform it to a narrower load from address + N / num of 11812 /// bits of new type. Also narrow the load if the result is masked with an AND 11813 /// to effectively produce a smaller type. If the result is to be extended, also 11814 /// fold the extension to form a extending load. 11815 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 11816 unsigned Opc = N->getOpcode(); 11817 11818 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 11819 SDValue N0 = N->getOperand(0); 11820 EVT VT = N->getValueType(0); 11821 EVT ExtVT = VT; 11822 11823 // This transformation isn't valid for vector loads. 11824 if (VT.isVector()) 11825 return SDValue(); 11826 11827 unsigned ShAmt = 0; 11828 bool HasShiftedOffset = false; 11829 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 11830 // extended to VT. 11831 if (Opc == ISD::SIGN_EXTEND_INREG) { 11832 ExtType = ISD::SEXTLOAD; 11833 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 11834 } else if (Opc == ISD::SRL) { 11835 // Another special-case: SRL is basically zero-extending a narrower value, 11836 // or it maybe shifting a higher subword, half or byte into the lowest 11837 // bits. 11838 ExtType = ISD::ZEXTLOAD; 11839 N0 = SDValue(N, 0); 11840 11841 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); 11842 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 11843 if (!N01 || !LN0) 11844 return SDValue(); 11845 11846 uint64_t ShiftAmt = N01->getZExtValue(); 11847 uint64_t MemoryWidth = LN0->getMemoryVT().getScalarSizeInBits(); 11848 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) 11849 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); 11850 else 11851 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 11852 VT.getScalarSizeInBits() - ShiftAmt); 11853 } else if (Opc == ISD::AND) { 11854 // An AND with a constant mask is the same as a truncate + zero-extend. 11855 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11856 if (!AndC) 11857 return SDValue(); 11858 11859 const APInt &Mask = AndC->getAPIntValue(); 11860 unsigned ActiveBits = 0; 11861 if (Mask.isMask()) { 11862 ActiveBits = Mask.countTrailingOnes(); 11863 } else if (Mask.isShiftedMask()) { 11864 ShAmt = Mask.countTrailingZeros(); 11865 APInt ShiftedMask = Mask.lshr(ShAmt); 11866 ActiveBits = ShiftedMask.countTrailingOnes(); 11867 HasShiftedOffset = true; 11868 } else 11869 return SDValue(); 11870 11871 ExtType = ISD::ZEXTLOAD; 11872 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 11873 } 11874 11875 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 11876 SDValue SRL = N0; 11877 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { 11878 ShAmt = ConstShift->getZExtValue(); 11879 unsigned EVTBits = ExtVT.getScalarSizeInBits(); 11880 // Is the shift amount a multiple of size of VT? 11881 if ((ShAmt & (EVTBits-1)) == 0) { 11882 N0 = N0.getOperand(0); 11883 // Is the load width a multiple of size of VT? 11884 if ((N0.getScalarValueSizeInBits() & (EVTBits - 1)) != 0) 11885 return SDValue(); 11886 } 11887 11888 // At this point, we must have a load or else we can't do the transform. 11889 auto *LN0 = dyn_cast<LoadSDNode>(N0); 11890 if (!LN0) return SDValue(); 11891 11892 // Because a SRL must be assumed to *need* to zero-extend the high bits 11893 // (as opposed to anyext the high bits), we can't combine the zextload 11894 // lowering of SRL and an sextload. 11895 if (LN0->getExtensionType() == ISD::SEXTLOAD) 11896 return SDValue(); 11897 11898 // If the shift amount is larger than the input type then we're not 11899 // accessing any of the loaded bytes. If the load was a zextload/extload 11900 // then the result of the shift+trunc is zero/undef (handled elsewhere). 11901 if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) 11902 return SDValue(); 11903 11904 // If the SRL is only used by a masking AND, we may be able to adjust 11905 // the ExtVT to make the AND redundant. 11906 SDNode *Mask = *(SRL->use_begin()); 11907 if (Mask->getOpcode() == ISD::AND && 11908 isa<ConstantSDNode>(Mask->getOperand(1))) { 11909 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); 11910 if (ShiftMask.isMask()) { 11911 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 11912 ShiftMask.countTrailingOnes()); 11913 // If the mask is smaller, recompute the type. 11914 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && 11915 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) 11916 ExtVT = MaskedVT; 11917 } 11918 } 11919 } 11920 } 11921 11922 // If the load is shifted left (and the result isn't shifted back right), 11923 // we can fold the truncate through the shift. 11924 unsigned ShLeftAmt = 0; 11925 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 11926 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 11927 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 11928 ShLeftAmt = N01->getZExtValue(); 11929 N0 = N0.getOperand(0); 11930 } 11931 } 11932 11933 // If we haven't found a load, we can't narrow it. 11934 if (!isa<LoadSDNode>(N0)) 11935 return SDValue(); 11936 11937 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11938 // Reducing the width of a volatile load is illegal. For atomics, we may be 11939 // able to reduce the width provided we never widen again. (see D66309) 11940 if (!LN0->isSimple() || 11941 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 11942 return SDValue(); 11943 11944 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 11945 unsigned LVTStoreBits = 11946 LN0->getMemoryVT().getStoreSizeInBits().getFixedSize(); 11947 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize(); 11948 return LVTStoreBits - EVTStoreBits - ShAmt; 11949 }; 11950 11951 // For big endian targets, we need to adjust the offset to the pointer to 11952 // load the correct bytes. 11953 if (DAG.getDataLayout().isBigEndian()) 11954 ShAmt = AdjustBigEndianShift(ShAmt); 11955 11956 uint64_t PtrOff = ShAmt / 8; 11957 Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); 11958 SDLoc DL(LN0); 11959 // The original load itself didn't wrap, so an offset within it doesn't. 11960 SDNodeFlags Flags; 11961 Flags.setNoUnsignedWrap(true); 11962 SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), 11963 TypeSize::Fixed(PtrOff), DL, Flags); 11964 AddToWorklist(NewPtr.getNode()); 11965 11966 SDValue Load; 11967 if (ExtType == ISD::NON_EXTLOAD) 11968 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, 11969 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 11970 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 11971 else 11972 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, 11973 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 11974 NewAlign, LN0->getMemOperand()->getFlags(), 11975 LN0->getAAInfo()); 11976 11977 // Replace the old load's chain with the new load's chain. 11978 WorklistRemover DeadNodes(*this); 11979 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 11980 11981 // Shift the result left, if we've swallowed a left shift. 11982 SDValue Result = Load; 11983 if (ShLeftAmt != 0) { 11984 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 11985 if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) 11986 ShImmTy = VT; 11987 // If the shift amount is as large as the result size (but, presumably, 11988 // no larger than the source) then the useful bits of the result are 11989 // zero; we can't simply return the shortened shift, because the result 11990 // of that operation is undefined. 11991 if (ShLeftAmt >= VT.getScalarSizeInBits()) 11992 Result = DAG.getConstant(0, DL, VT); 11993 else 11994 Result = DAG.getNode(ISD::SHL, DL, VT, 11995 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 11996 } 11997 11998 if (HasShiftedOffset) { 11999 // Recalculate the shift amount after it has been altered to calculate 12000 // the offset. 12001 if (DAG.getDataLayout().isBigEndian()) 12002 ShAmt = AdjustBigEndianShift(ShAmt); 12003 12004 // We're using a shifted mask, so the load now has an offset. This means 12005 // that data has been loaded into the lower bytes than it would have been 12006 // before, so we need to shl the loaded data into the correct position in the 12007 // register. 12008 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 12009 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 12010 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 12011 } 12012 12013 // Return the new loaded value. 12014 return Result; 12015 } 12016 12017 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 12018 SDValue N0 = N->getOperand(0); 12019 SDValue N1 = N->getOperand(1); 12020 EVT VT = N->getValueType(0); 12021 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 12022 unsigned VTBits = VT.getScalarSizeInBits(); 12023 unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); 12024 12025 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 12026 if (N0.isUndef()) 12027 return DAG.getConstant(0, SDLoc(N), VT); 12028 12029 // fold (sext_in_reg c1) -> c1 12030 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 12031 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 12032 12033 // If the input is already sign extended, just drop the extension. 12034 if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1)) 12035 return N0; 12036 12037 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 12038 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 12039 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 12040 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), 12041 N1); 12042 12043 // fold (sext_in_reg (sext x)) -> (sext x) 12044 // fold (sext_in_reg (aext x)) -> (sext x) 12045 // if x is small enough or if we know that x has more than 1 sign bit and the 12046 // sign_extend_inreg is extending from one of them. 12047 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 12048 SDValue N00 = N0.getOperand(0); 12049 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12050 if ((N00Bits <= ExtVTBits || 12051 (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) && 12052 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12053 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 12054 } 12055 12056 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 12057 // if x is small enough or if we know that x has more than 1 sign bit and the 12058 // sign_extend_inreg is extending from one of them. 12059 if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 12060 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 12061 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 12062 SDValue N00 = N0.getOperand(0); 12063 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12064 unsigned DstElts = N0.getValueType().getVectorMinNumElements(); 12065 unsigned SrcElts = N00.getValueType().getVectorMinNumElements(); 12066 bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 12067 APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts); 12068 if ((N00Bits == ExtVTBits || 12069 (!IsZext && (N00Bits < ExtVTBits || 12070 (N00Bits - DAG.ComputeNumSignBits(N00, DemandedSrcElts)) < 12071 ExtVTBits))) && 12072 (!LegalOperations || 12073 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))) 12074 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00); 12075 } 12076 12077 // fold (sext_in_reg (zext x)) -> (sext x) 12078 // iff we are extending the source sign bit. 12079 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 12080 SDValue N00 = N0.getOperand(0); 12081 if (N00.getScalarValueSizeInBits() == ExtVTBits && 12082 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12083 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 12084 } 12085 12086 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 12087 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) 12088 return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); 12089 12090 // fold operands of sext_in_reg based on knowledge that the top bits are not 12091 // demanded. 12092 if (SimplifyDemandedBits(SDValue(N, 0))) 12093 return SDValue(N, 0); 12094 12095 // fold (sext_in_reg (load x)) -> (smaller sextload x) 12096 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 12097 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 12098 return NarrowLoad; 12099 12100 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 12101 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 12102 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 12103 if (N0.getOpcode() == ISD::SRL) { 12104 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 12105 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { 12106 // We can turn this into an SRA iff the input to the SRL is already sign 12107 // extended enough. 12108 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 12109 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) 12110 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 12111 N0.getOperand(1)); 12112 } 12113 } 12114 12115 // fold (sext_inreg (extload x)) -> (sextload x) 12116 // If sextload is not supported by target, we can only do the combine when 12117 // load has one use. Doing otherwise can block folding the extload with other 12118 // extends that the target does support. 12119 if (ISD::isEXTLoad(N0.getNode()) && 12120 ISD::isUNINDEXEDLoad(N0.getNode()) && 12121 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12122 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && 12123 N0.hasOneUse()) || 12124 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12125 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12126 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12127 LN0->getChain(), 12128 LN0->getBasePtr(), ExtVT, 12129 LN0->getMemOperand()); 12130 CombineTo(N, ExtLoad); 12131 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12132 AddToWorklist(ExtLoad.getNode()); 12133 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12134 } 12135 12136 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 12137 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 12138 N0.hasOneUse() && 12139 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12140 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && 12141 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12142 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12143 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12144 LN0->getChain(), 12145 LN0->getBasePtr(), ExtVT, 12146 LN0->getMemOperand()); 12147 CombineTo(N, ExtLoad); 12148 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12149 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12150 } 12151 12152 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) 12153 // ignore it if the masked load is already sign extended 12154 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { 12155 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && 12156 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && 12157 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { 12158 SDValue ExtMaskedLoad = DAG.getMaskedLoad( 12159 VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), 12160 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), 12161 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); 12162 CombineTo(N, ExtMaskedLoad); 12163 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); 12164 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12165 } 12166 } 12167 12168 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) 12169 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 12170 if (SDValue(GN0, 0).hasOneUse() && 12171 ExtVT == GN0->getMemoryVT() && 12172 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 12173 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 12174 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 12175 12176 SDValue ExtLoad = DAG.getMaskedGather( 12177 DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops, 12178 GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD); 12179 12180 CombineTo(N, ExtLoad); 12181 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12182 AddToWorklist(ExtLoad.getNode()); 12183 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12184 } 12185 } 12186 12187 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 12188 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { 12189 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 12190 N0.getOperand(1), false)) 12191 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); 12192 } 12193 12194 return SDValue(); 12195 } 12196 12197 SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) { 12198 SDValue N0 = N->getOperand(0); 12199 EVT VT = N->getValueType(0); 12200 12201 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same. 12202 if (N0.isUndef()) 12203 return DAG.getConstant(0, SDLoc(N), VT); 12204 12205 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 12206 return Res; 12207 12208 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 12209 return SDValue(N, 0); 12210 12211 return SDValue(); 12212 } 12213 12214 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 12215 SDValue N0 = N->getOperand(0); 12216 EVT VT = N->getValueType(0); 12217 EVT SrcVT = N0.getValueType(); 12218 bool isLE = DAG.getDataLayout().isLittleEndian(); 12219 12220 // noop truncate 12221 if (SrcVT == VT) 12222 return N0; 12223 12224 // fold (truncate (truncate x)) -> (truncate x) 12225 if (N0.getOpcode() == ISD::TRUNCATE) 12226 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12227 12228 // fold (truncate c1) -> c1 12229 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 12230 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 12231 if (C.getNode() != N) 12232 return C; 12233 } 12234 12235 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 12236 if (N0.getOpcode() == ISD::ZERO_EXTEND || 12237 N0.getOpcode() == ISD::SIGN_EXTEND || 12238 N0.getOpcode() == ISD::ANY_EXTEND) { 12239 // if the source is smaller than the dest, we still need an extend. 12240 if (N0.getOperand(0).getValueType().bitsLT(VT)) 12241 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 12242 // if the source is larger than the dest, than we just need the truncate. 12243 if (N0.getOperand(0).getValueType().bitsGT(VT)) 12244 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12245 // if the source and dest are the same type, we can drop both the extend 12246 // and the truncate. 12247 return N0.getOperand(0); 12248 } 12249 12250 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 12251 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 12252 return SDValue(); 12253 12254 // Fold extract-and-trunc into a narrow extract. For example: 12255 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 12256 // i32 y = TRUNCATE(i64 x) 12257 // -- becomes -- 12258 // v16i8 b = BITCAST (v2i64 val) 12259 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 12260 // 12261 // Note: We only run this optimization after type legalization (which often 12262 // creates this pattern) and before operation legalization after which 12263 // we need to be more careful about the vector instructions that we generate. 12264 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 12265 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 12266 EVT VecTy = N0.getOperand(0).getValueType(); 12267 EVT ExTy = N0.getValueType(); 12268 EVT TrTy = N->getValueType(0); 12269 12270 auto EltCnt = VecTy.getVectorElementCount(); 12271 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 12272 auto NewEltCnt = EltCnt * SizeRatio; 12273 12274 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); 12275 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 12276 12277 SDValue EltNo = N0->getOperand(1); 12278 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 12279 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12280 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 12281 12282 SDLoc DL(N); 12283 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 12284 DAG.getBitcast(NVT, N0.getOperand(0)), 12285 DAG.getVectorIdxConstant(Index, DL)); 12286 } 12287 } 12288 12289 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 12290 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 12291 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 12292 TLI.isTruncateFree(SrcVT, VT)) { 12293 SDLoc SL(N0); 12294 SDValue Cond = N0.getOperand(0); 12295 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 12296 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 12297 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 12298 } 12299 } 12300 12301 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 12302 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 12303 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 12304 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 12305 SDValue Amt = N0.getOperand(1); 12306 KnownBits Known = DAG.computeKnownBits(Amt); 12307 unsigned Size = VT.getScalarSizeInBits(); 12308 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 12309 SDLoc SL(N); 12310 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 12311 12312 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 12313 if (AmtVT != Amt.getValueType()) { 12314 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 12315 AddToWorklist(Amt.getNode()); 12316 } 12317 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 12318 } 12319 } 12320 12321 if (SDValue V = foldSubToUSubSat(VT, N0.getNode())) 12322 return V; 12323 12324 // Attempt to pre-truncate BUILD_VECTOR sources. 12325 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 12326 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && 12327 // Avoid creating illegal types if running after type legalizer. 12328 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { 12329 SDLoc DL(N); 12330 EVT SVT = VT.getScalarType(); 12331 SmallVector<SDValue, 8> TruncOps; 12332 for (const SDValue &Op : N0->op_values()) { 12333 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 12334 TruncOps.push_back(TruncOp); 12335 } 12336 return DAG.getBuildVector(VT, DL, TruncOps); 12337 } 12338 12339 // Fold a series of buildvector, bitcast, and truncate if possible. 12340 // For example fold 12341 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 12342 // (2xi32 (buildvector x, y)). 12343 if (Level == AfterLegalizeVectorOps && VT.isVector() && 12344 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 12345 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 12346 N0.getOperand(0).hasOneUse()) { 12347 SDValue BuildVect = N0.getOperand(0); 12348 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 12349 EVT TruncVecEltTy = VT.getVectorElementType(); 12350 12351 // Check that the element types match. 12352 if (BuildVectEltTy == TruncVecEltTy) { 12353 // Now we only need to compute the offset of the truncated elements. 12354 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 12355 unsigned TruncVecNumElts = VT.getVectorNumElements(); 12356 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 12357 12358 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 12359 "Invalid number of elements"); 12360 12361 SmallVector<SDValue, 8> Opnds; 12362 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 12363 Opnds.push_back(BuildVect.getOperand(i)); 12364 12365 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 12366 } 12367 } 12368 12369 // See if we can simplify the input to this truncate through knowledge that 12370 // only the low bits are being used. 12371 // For example "trunc (or (shl x, 8), y)" // -> trunc y 12372 // Currently we only perform this optimization on scalars because vectors 12373 // may have different active low bits. 12374 if (!VT.isVector()) { 12375 APInt Mask = 12376 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 12377 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 12378 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 12379 } 12380 12381 // fold (truncate (load x)) -> (smaller load x) 12382 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 12383 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 12384 if (SDValue Reduced = ReduceLoadWidth(N)) 12385 return Reduced; 12386 12387 // Handle the case where the load remains an extending load even 12388 // after truncation. 12389 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 12390 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12391 if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { 12392 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 12393 VT, LN0->getChain(), LN0->getBasePtr(), 12394 LN0->getMemoryVT(), 12395 LN0->getMemOperand()); 12396 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 12397 return NewLoad; 12398 } 12399 } 12400 } 12401 12402 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 12403 // where ... are all 'undef'. 12404 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 12405 SmallVector<EVT, 8> VTs; 12406 SDValue V; 12407 unsigned Idx = 0; 12408 unsigned NumDefs = 0; 12409 12410 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 12411 SDValue X = N0.getOperand(i); 12412 if (!X.isUndef()) { 12413 V = X; 12414 Idx = i; 12415 NumDefs++; 12416 } 12417 // Stop if more than one members are non-undef. 12418 if (NumDefs > 1) 12419 break; 12420 12421 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 12422 VT.getVectorElementType(), 12423 X.getValueType().getVectorElementCount())); 12424 } 12425 12426 if (NumDefs == 0) 12427 return DAG.getUNDEF(VT); 12428 12429 if (NumDefs == 1) { 12430 assert(V.getNode() && "The single defined operand is empty!"); 12431 SmallVector<SDValue, 8> Opnds; 12432 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 12433 if (i != Idx) { 12434 Opnds.push_back(DAG.getUNDEF(VTs[i])); 12435 continue; 12436 } 12437 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 12438 AddToWorklist(NV.getNode()); 12439 Opnds.push_back(NV); 12440 } 12441 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 12442 } 12443 } 12444 12445 // Fold truncate of a bitcast of a vector to an extract of the low vector 12446 // element. 12447 // 12448 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 12449 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 12450 SDValue VecSrc = N0.getOperand(0); 12451 EVT VecSrcVT = VecSrc.getValueType(); 12452 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && 12453 (!LegalOperations || 12454 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { 12455 SDLoc SL(N); 12456 12457 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; 12458 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, 12459 DAG.getVectorIdxConstant(Idx, SL)); 12460 } 12461 } 12462 12463 // Simplify the operands using demanded-bits information. 12464 if (SimplifyDemandedBits(SDValue(N, 0))) 12465 return SDValue(N, 0); 12466 12467 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 12468 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 12469 // When the adde's carry is not used. 12470 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 12471 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && 12472 // We only do for addcarry before legalize operation 12473 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 12474 TLI.isOperationLegal(N0.getOpcode(), VT))) { 12475 SDLoc SL(N); 12476 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 12477 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 12478 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 12479 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 12480 } 12481 12482 // fold (truncate (extract_subvector(ext x))) -> 12483 // (extract_subvector x) 12484 // TODO: This can be generalized to cover cases where the truncate and extract 12485 // do not fully cancel each other out. 12486 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 12487 SDValue N00 = N0.getOperand(0); 12488 if (N00.getOpcode() == ISD::SIGN_EXTEND || 12489 N00.getOpcode() == ISD::ZERO_EXTEND || 12490 N00.getOpcode() == ISD::ANY_EXTEND) { 12491 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 12492 VT.getVectorElementType()) 12493 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 12494 N00.getOperand(0), N0.getOperand(1)); 12495 } 12496 } 12497 12498 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 12499 return NewVSel; 12500 12501 // Narrow a suitable binary operation with a non-opaque constant operand by 12502 // moving it ahead of the truncate. This is limited to pre-legalization 12503 // because targets may prefer a wider type during later combines and invert 12504 // this transform. 12505 switch (N0.getOpcode()) { 12506 case ISD::ADD: 12507 case ISD::SUB: 12508 case ISD::MUL: 12509 case ISD::AND: 12510 case ISD::OR: 12511 case ISD::XOR: 12512 if (!LegalOperations && N0.hasOneUse() && 12513 (isConstantOrConstantVector(N0.getOperand(0), true) || 12514 isConstantOrConstantVector(N0.getOperand(1), true))) { 12515 // TODO: We already restricted this to pre-legalization, but for vectors 12516 // we are extra cautious to not create an unsupported operation. 12517 // Target-specific changes are likely needed to avoid regressions here. 12518 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 12519 SDLoc DL(N); 12520 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 12521 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 12522 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 12523 } 12524 } 12525 break; 12526 case ISD::USUBSAT: 12527 // Truncate the USUBSAT only if LHS is a known zero-extension, its not 12528 // enough to know that the upper bits are zero we must ensure that we don't 12529 // introduce an extra truncate. 12530 if (!LegalOperations && N0.hasOneUse() && 12531 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 12532 N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <= 12533 VT.getScalarSizeInBits() && 12534 hasOperation(N0.getOpcode(), VT)) { 12535 return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1), 12536 DAG, SDLoc(N)); 12537 } 12538 break; 12539 } 12540 12541 return SDValue(); 12542 } 12543 12544 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 12545 SDValue Elt = N->getOperand(i); 12546 if (Elt.getOpcode() != ISD::MERGE_VALUES) 12547 return Elt.getNode(); 12548 return Elt.getOperand(Elt.getResNo()).getNode(); 12549 } 12550 12551 /// build_pair (load, load) -> load 12552 /// if load locations are consecutive. 12553 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 12554 assert(N->getOpcode() == ISD::BUILD_PAIR); 12555 12556 auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 12557 auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 12558 12559 // A BUILD_PAIR is always having the least significant part in elt 0 and the 12560 // most significant part in elt 1. So when combining into one large load, we 12561 // need to consider the endianness. 12562 if (DAG.getDataLayout().isBigEndian()) 12563 std::swap(LD1, LD2); 12564 12565 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) || 12566 !LD1->hasOneUse() || !LD2->hasOneUse() || 12567 LD1->getAddressSpace() != LD2->getAddressSpace()) 12568 return SDValue(); 12569 12570 bool LD1Fast = false; 12571 EVT LD1VT = LD1->getValueType(0); 12572 unsigned LD1Bytes = LD1VT.getStoreSize(); 12573 if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 12574 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) && 12575 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 12576 *LD1->getMemOperand(), &LD1Fast) && LD1Fast) 12577 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 12578 LD1->getPointerInfo(), LD1->getAlign()); 12579 12580 return SDValue(); 12581 } 12582 12583 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 12584 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 12585 // and Lo parts; on big-endian machines it doesn't. 12586 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 12587 } 12588 12589 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 12590 const TargetLowering &TLI) { 12591 // If this is not a bitcast to an FP type or if the target doesn't have 12592 // IEEE754-compliant FP logic, we're done. 12593 EVT VT = N->getValueType(0); 12594 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 12595 return SDValue(); 12596 12597 // TODO: Handle cases where the integer constant is a different scalar 12598 // bitwidth to the FP. 12599 SDValue N0 = N->getOperand(0); 12600 EVT SourceVT = N0.getValueType(); 12601 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 12602 return SDValue(); 12603 12604 unsigned FPOpcode; 12605 APInt SignMask; 12606 switch (N0.getOpcode()) { 12607 case ISD::AND: 12608 FPOpcode = ISD::FABS; 12609 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12610 break; 12611 case ISD::XOR: 12612 FPOpcode = ISD::FNEG; 12613 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12614 break; 12615 case ISD::OR: 12616 FPOpcode = ISD::FABS; 12617 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12618 break; 12619 default: 12620 return SDValue(); 12621 } 12622 12623 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 12624 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 12625 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 12626 // fneg (fabs X) 12627 SDValue LogicOp0 = N0.getOperand(0); 12628 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 12629 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 12630 LogicOp0.getOpcode() == ISD::BITCAST && 12631 LogicOp0.getOperand(0).getValueType() == VT) { 12632 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 12633 NumFPLogicOpsConv++; 12634 if (N0.getOpcode() == ISD::OR) 12635 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 12636 return FPOp; 12637 } 12638 12639 return SDValue(); 12640 } 12641 12642 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 12643 SDValue N0 = N->getOperand(0); 12644 EVT VT = N->getValueType(0); 12645 12646 if (N0.isUndef()) 12647 return DAG.getUNDEF(VT); 12648 12649 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 12650 // Only do this before legalize types, unless both types are integer and the 12651 // scalar type is legal. Only do this before legalize ops, since the target 12652 // maybe depending on the bitcast. 12653 // First check to see if this is all constant. 12654 // TODO: Support FP bitcasts after legalize types. 12655 if (VT.isVector() && 12656 (!LegalTypes || 12657 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 12658 TLI.isTypeLegal(VT.getVectorElementType()))) && 12659 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 12660 cast<BuildVectorSDNode>(N0)->isConstant()) 12661 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 12662 VT.getVectorElementType()); 12663 12664 // If the input is a constant, let getNode fold it. 12665 if (isIntOrFPConstant(N0)) { 12666 // If we can't allow illegal operations, we need to check that this is just 12667 // a fp -> int or int -> conversion and that the resulting operation will 12668 // be legal. 12669 if (!LegalOperations || 12670 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 12671 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 12672 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 12673 TLI.isOperationLegal(ISD::Constant, VT))) { 12674 SDValue C = DAG.getBitcast(VT, N0); 12675 if (C.getNode() != N) 12676 return C; 12677 } 12678 } 12679 12680 // (conv (conv x, t1), t2) -> (conv x, t2) 12681 if (N0.getOpcode() == ISD::BITCAST) 12682 return DAG.getBitcast(VT, N0.getOperand(0)); 12683 12684 // fold (conv (load x)) -> (load (conv*)x) 12685 // If the resultant load doesn't need a higher alignment than the original! 12686 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 12687 // Do not remove the cast if the types differ in endian layout. 12688 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 12689 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 12690 // If the load is volatile, we only want to change the load type if the 12691 // resulting load is legal. Otherwise we might increase the number of 12692 // memory accesses. We don't care if the original type was legal or not 12693 // as we assume software couldn't rely on the number of accesses of an 12694 // illegal type. 12695 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || 12696 TLI.isOperationLegal(ISD::LOAD, VT))) { 12697 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12698 12699 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, 12700 *LN0->getMemOperand())) { 12701 SDValue Load = 12702 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 12703 LN0->getPointerInfo(), LN0->getAlign(), 12704 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 12705 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 12706 return Load; 12707 } 12708 } 12709 12710 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 12711 return V; 12712 12713 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 12714 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 12715 // 12716 // For ppc_fp128: 12717 // fold (bitcast (fneg x)) -> 12718 // flipbit = signbit 12719 // (xor (bitcast x) (build_pair flipbit, flipbit)) 12720 // 12721 // fold (bitcast (fabs x)) -> 12722 // flipbit = (and (extract_element (bitcast x), 0), signbit) 12723 // (xor (bitcast x) (build_pair flipbit, flipbit)) 12724 // This often reduces constant pool loads. 12725 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 12726 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 12727 N0.getNode()->hasOneUse() && VT.isInteger() && 12728 !VT.isVector() && !N0.getValueType().isVector()) { 12729 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 12730 AddToWorklist(NewConv.getNode()); 12731 12732 SDLoc DL(N); 12733 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 12734 assert(VT.getSizeInBits() == 128); 12735 SDValue SignBit = DAG.getConstant( 12736 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 12737 SDValue FlipBit; 12738 if (N0.getOpcode() == ISD::FNEG) { 12739 FlipBit = SignBit; 12740 AddToWorklist(FlipBit.getNode()); 12741 } else { 12742 assert(N0.getOpcode() == ISD::FABS); 12743 SDValue Hi = 12744 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 12745 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 12746 SDLoc(NewConv))); 12747 AddToWorklist(Hi.getNode()); 12748 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 12749 AddToWorklist(FlipBit.getNode()); 12750 } 12751 SDValue FlipBits = 12752 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 12753 AddToWorklist(FlipBits.getNode()); 12754 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 12755 } 12756 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 12757 if (N0.getOpcode() == ISD::FNEG) 12758 return DAG.getNode(ISD::XOR, DL, VT, 12759 NewConv, DAG.getConstant(SignBit, DL, VT)); 12760 assert(N0.getOpcode() == ISD::FABS); 12761 return DAG.getNode(ISD::AND, DL, VT, 12762 NewConv, DAG.getConstant(~SignBit, DL, VT)); 12763 } 12764 12765 // fold (bitconvert (fcopysign cst, x)) -> 12766 // (or (and (bitconvert x), sign), (and cst, (not sign))) 12767 // Note that we don't handle (copysign x, cst) because this can always be 12768 // folded to an fneg or fabs. 12769 // 12770 // For ppc_fp128: 12771 // fold (bitcast (fcopysign cst, x)) -> 12772 // flipbit = (and (extract_element 12773 // (xor (bitcast cst), (bitcast x)), 0), 12774 // signbit) 12775 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 12776 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 12777 isa<ConstantFPSDNode>(N0.getOperand(0)) && 12778 VT.isInteger() && !VT.isVector()) { 12779 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 12780 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 12781 if (isTypeLegal(IntXVT)) { 12782 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 12783 AddToWorklist(X.getNode()); 12784 12785 // If X has a different width than the result/lhs, sext it or truncate it. 12786 unsigned VTWidth = VT.getSizeInBits(); 12787 if (OrigXWidth < VTWidth) { 12788 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 12789 AddToWorklist(X.getNode()); 12790 } else if (OrigXWidth > VTWidth) { 12791 // To get the sign bit in the right place, we have to shift it right 12792 // before truncating. 12793 SDLoc DL(X); 12794 X = DAG.getNode(ISD::SRL, DL, 12795 X.getValueType(), X, 12796 DAG.getConstant(OrigXWidth-VTWidth, DL, 12797 X.getValueType())); 12798 AddToWorklist(X.getNode()); 12799 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 12800 AddToWorklist(X.getNode()); 12801 } 12802 12803 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 12804 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 12805 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 12806 AddToWorklist(Cst.getNode()); 12807 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 12808 AddToWorklist(X.getNode()); 12809 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 12810 AddToWorklist(XorResult.getNode()); 12811 SDValue XorResult64 = DAG.getNode( 12812 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 12813 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 12814 SDLoc(XorResult))); 12815 AddToWorklist(XorResult64.getNode()); 12816 SDValue FlipBit = 12817 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 12818 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 12819 AddToWorklist(FlipBit.getNode()); 12820 SDValue FlipBits = 12821 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 12822 AddToWorklist(FlipBits.getNode()); 12823 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 12824 } 12825 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 12826 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 12827 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 12828 AddToWorklist(X.getNode()); 12829 12830 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 12831 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 12832 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 12833 AddToWorklist(Cst.getNode()); 12834 12835 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 12836 } 12837 } 12838 12839 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 12840 if (N0.getOpcode() == ISD::BUILD_PAIR) 12841 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 12842 return CombineLD; 12843 12844 // Remove double bitcasts from shuffles - this is often a legacy of 12845 // XformToShuffleWithZero being used to combine bitmaskings (of 12846 // float vectors bitcast to integer vectors) into shuffles. 12847 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 12848 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 12849 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 12850 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 12851 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 12852 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 12853 12854 // If operands are a bitcast, peek through if it casts the original VT. 12855 // If operands are a constant, just bitcast back to original VT. 12856 auto PeekThroughBitcast = [&](SDValue Op) { 12857 if (Op.getOpcode() == ISD::BITCAST && 12858 Op.getOperand(0).getValueType() == VT) 12859 return SDValue(Op.getOperand(0)); 12860 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 12861 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 12862 return DAG.getBitcast(VT, Op); 12863 return SDValue(); 12864 }; 12865 12866 // FIXME: If either input vector is bitcast, try to convert the shuffle to 12867 // the result type of this bitcast. This would eliminate at least one 12868 // bitcast. See the transform in InstCombine. 12869 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 12870 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 12871 if (!(SV0 && SV1)) 12872 return SDValue(); 12873 12874 int MaskScale = 12875 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 12876 SmallVector<int, 8> NewMask; 12877 for (int M : SVN->getMask()) 12878 for (int i = 0; i != MaskScale; ++i) 12879 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 12880 12881 SDValue LegalShuffle = 12882 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); 12883 if (LegalShuffle) 12884 return LegalShuffle; 12885 } 12886 12887 return SDValue(); 12888 } 12889 12890 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 12891 EVT VT = N->getValueType(0); 12892 return CombineConsecutiveLoads(N, VT); 12893 } 12894 12895 SDValue DAGCombiner::visitFREEZE(SDNode *N) { 12896 SDValue N0 = N->getOperand(0); 12897 12898 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false)) 12899 return N0; 12900 12901 return SDValue(); 12902 } 12903 12904 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 12905 /// operands. DstEltVT indicates the destination element value type. 12906 SDValue DAGCombiner:: 12907 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 12908 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 12909 12910 // If this is already the right type, we're done. 12911 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 12912 12913 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 12914 unsigned DstBitSize = DstEltVT.getSizeInBits(); 12915 12916 // If this is a conversion of N elements of one type to N elements of another 12917 // type, convert each element. This handles FP<->INT cases. 12918 if (SrcBitSize == DstBitSize) { 12919 SmallVector<SDValue, 8> Ops; 12920 for (SDValue Op : BV->op_values()) { 12921 // If the vector element type is not legal, the BUILD_VECTOR operands 12922 // are promoted and implicitly truncated. Make that explicit here. 12923 if (Op.getValueType() != SrcEltVT) 12924 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 12925 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 12926 AddToWorklist(Ops.back().getNode()); 12927 } 12928 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 12929 BV->getValueType(0).getVectorNumElements()); 12930 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 12931 } 12932 12933 // Otherwise, we're growing or shrinking the elements. To avoid having to 12934 // handle annoying details of growing/shrinking FP values, we convert them to 12935 // int first. 12936 if (SrcEltVT.isFloatingPoint()) { 12937 // Convert the input float vector to a int vector where the elements are the 12938 // same sizes. 12939 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 12940 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 12941 SrcEltVT = IntVT; 12942 } 12943 12944 // Now we know the input is an integer vector. If the output is a FP type, 12945 // convert to integer first, then to FP of the right size. 12946 if (DstEltVT.isFloatingPoint()) { 12947 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 12948 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 12949 12950 // Next, convert to FP elements of the same size. 12951 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 12952 } 12953 12954 SDLoc DL(BV); 12955 12956 // Okay, we know the src/dst types are both integers of differing types. 12957 // Handling growing first. 12958 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 12959 if (SrcBitSize < DstBitSize) { 12960 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 12961 12962 SmallVector<SDValue, 8> Ops; 12963 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 12964 i += NumInputsPerOutput) { 12965 bool isLE = DAG.getDataLayout().isLittleEndian(); 12966 APInt NewBits = APInt(DstBitSize, 0); 12967 bool EltIsUndef = true; 12968 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 12969 // Shift the previously computed bits over. 12970 NewBits <<= SrcBitSize; 12971 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 12972 if (Op.isUndef()) continue; 12973 EltIsUndef = false; 12974 12975 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 12976 zextOrTrunc(SrcBitSize).zext(DstBitSize); 12977 } 12978 12979 if (EltIsUndef) 12980 Ops.push_back(DAG.getUNDEF(DstEltVT)); 12981 else 12982 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 12983 } 12984 12985 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 12986 return DAG.getBuildVector(VT, DL, Ops); 12987 } 12988 12989 // Finally, this must be the case where we are shrinking elements: each input 12990 // turns into multiple outputs. 12991 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 12992 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 12993 NumOutputsPerInput*BV->getNumOperands()); 12994 SmallVector<SDValue, 8> Ops; 12995 12996 for (const SDValue &Op : BV->op_values()) { 12997 if (Op.isUndef()) { 12998 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 12999 continue; 13000 } 13001 13002 APInt OpVal = cast<ConstantSDNode>(Op)-> 13003 getAPIntValue().zextOrTrunc(SrcBitSize); 13004 13005 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 13006 APInt ThisVal = OpVal.trunc(DstBitSize); 13007 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 13008 OpVal.lshrInPlace(DstBitSize); 13009 } 13010 13011 // For big endian targets, swap the order of the pieces of each element. 13012 if (DAG.getDataLayout().isBigEndian()) 13013 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 13014 } 13015 13016 return DAG.getBuildVector(VT, DL, Ops); 13017 } 13018 13019 // Returns true if floating point contraction is allowed on the FMUL-SDValue 13020 // `N` 13021 static bool isContractableFMUL(const TargetOptions &Options, SDValue N) { 13022 assert(N.getOpcode() == ISD::FMUL); 13023 13024 return Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 13025 N->getFlags().hasAllowContract(); 13026 } 13027 13028 // Return true if `N` can assume no infinities involved in it's computation. 13029 static bool hasNoInfs(const TargetOptions &Options, SDValue N) { 13030 return Options.NoInfsFPMath || N.getNode()->getFlags().hasNoInfs(); 13031 } 13032 13033 /// Try to perform FMA combining on a given FADD node. 13034 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 13035 SDValue N0 = N->getOperand(0); 13036 SDValue N1 = N->getOperand(1); 13037 EVT VT = N->getValueType(0); 13038 SDLoc SL(N); 13039 13040 const TargetOptions &Options = DAG.getTarget().Options; 13041 13042 // Floating-point multiply-add with intermediate rounding. 13043 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13044 13045 // Floating-point multiply-add without intermediate rounding. 13046 bool HasFMA = 13047 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13048 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13049 13050 // No valid opcode, do not combine. 13051 if (!HasFMAD && !HasFMA) 13052 return SDValue(); 13053 13054 bool CanReassociate = 13055 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13056 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13057 Options.UnsafeFPMath || HasFMAD); 13058 // If the addition is not contractable, do not combine. 13059 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13060 return SDValue(); 13061 13062 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13063 return SDValue(); 13064 13065 // Always prefer FMAD to FMA for precision. 13066 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13067 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13068 13069 auto isFusedOp = [&](SDValue N) { 13070 unsigned Opcode = N.getOpcode(); 13071 return Opcode == ISD::FMA || Opcode == ISD::FMAD; 13072 }; 13073 13074 // Is the node an FMUL and contractable either due to global flags or 13075 // SDNodeFlags. 13076 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13077 if (N.getOpcode() != ISD::FMUL) 13078 return false; 13079 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13080 }; 13081 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 13082 // prefer to fold the multiply with fewer uses. 13083 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 13084 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 13085 std::swap(N0, N1); 13086 } 13087 13088 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 13089 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 13090 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13091 N0.getOperand(1), N1); 13092 } 13093 13094 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 13095 // Note: Commutes FADD operands. 13096 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 13097 return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), 13098 N1.getOperand(1), N0); 13099 } 13100 13101 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) 13102 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) 13103 // This requires reassociation because it changes the order of operations. 13104 SDValue FMA, E; 13105 if (CanReassociate && isFusedOp(N0) && 13106 N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && 13107 N0.getOperand(2).hasOneUse()) { 13108 FMA = N0; 13109 E = N1; 13110 } else if (CanReassociate && isFusedOp(N1) && 13111 N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && 13112 N1.getOperand(2).hasOneUse()) { 13113 FMA = N1; 13114 E = N0; 13115 } 13116 if (FMA && E) { 13117 SDValue A = FMA.getOperand(0); 13118 SDValue B = FMA.getOperand(1); 13119 SDValue C = FMA.getOperand(2).getOperand(0); 13120 SDValue D = FMA.getOperand(2).getOperand(1); 13121 SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); 13122 return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE); 13123 } 13124 13125 // Look through FP_EXTEND nodes to do more combining. 13126 13127 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 13128 if (N0.getOpcode() == ISD::FP_EXTEND) { 13129 SDValue N00 = N0.getOperand(0); 13130 if (isContractableFMUL(N00) && 13131 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13132 N00.getValueType())) { 13133 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13134 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13135 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13136 N1); 13137 } 13138 } 13139 13140 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 13141 // Note: Commutes FADD operands. 13142 if (N1.getOpcode() == ISD::FP_EXTEND) { 13143 SDValue N10 = N1.getOperand(0); 13144 if (isContractableFMUL(N10) && 13145 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13146 N10.getValueType())) { 13147 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13148 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), 13149 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), 13150 N0); 13151 } 13152 } 13153 13154 // More folding opportunities when target permits. 13155 if (Aggressive) { 13156 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 13157 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 13158 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13159 SDValue Z) { 13160 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 13161 DAG.getNode(PreferredFusedOpcode, SL, VT, 13162 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13163 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 13164 Z)); 13165 }; 13166 if (isFusedOp(N0)) { 13167 SDValue N02 = N0.getOperand(2); 13168 if (N02.getOpcode() == ISD::FP_EXTEND) { 13169 SDValue N020 = N02.getOperand(0); 13170 if (isContractableFMUL(N020) && 13171 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13172 N020.getValueType())) { 13173 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 13174 N020.getOperand(0), N020.getOperand(1), 13175 N1); 13176 } 13177 } 13178 } 13179 13180 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 13181 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 13182 // FIXME: This turns two single-precision and one double-precision 13183 // operation into two double-precision operations, which might not be 13184 // interesting for all targets, especially GPUs. 13185 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13186 SDValue Z) { 13187 return DAG.getNode( 13188 PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 13189 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 13190 DAG.getNode(PreferredFusedOpcode, SL, VT, 13191 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13192 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); 13193 }; 13194 if (N0.getOpcode() == ISD::FP_EXTEND) { 13195 SDValue N00 = N0.getOperand(0); 13196 if (isFusedOp(N00)) { 13197 SDValue N002 = N00.getOperand(2); 13198 if (isContractableFMUL(N002) && 13199 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13200 N00.getValueType())) { 13201 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 13202 N002.getOperand(0), N002.getOperand(1), 13203 N1); 13204 } 13205 } 13206 } 13207 13208 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 13209 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 13210 if (isFusedOp(N1)) { 13211 SDValue N12 = N1.getOperand(2); 13212 if (N12.getOpcode() == ISD::FP_EXTEND) { 13213 SDValue N120 = N12.getOperand(0); 13214 if (isContractableFMUL(N120) && 13215 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13216 N120.getValueType())) { 13217 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 13218 N120.getOperand(0), N120.getOperand(1), 13219 N0); 13220 } 13221 } 13222 } 13223 13224 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 13225 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 13226 // FIXME: This turns two single-precision and one double-precision 13227 // operation into two double-precision operations, which might not be 13228 // interesting for all targets, especially GPUs. 13229 if (N1.getOpcode() == ISD::FP_EXTEND) { 13230 SDValue N10 = N1.getOperand(0); 13231 if (isFusedOp(N10)) { 13232 SDValue N102 = N10.getOperand(2); 13233 if (isContractableFMUL(N102) && 13234 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13235 N10.getValueType())) { 13236 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 13237 N102.getOperand(0), N102.getOperand(1), 13238 N0); 13239 } 13240 } 13241 } 13242 } 13243 13244 return SDValue(); 13245 } 13246 13247 /// Try to perform FMA combining on a given FSUB node. 13248 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 13249 SDValue N0 = N->getOperand(0); 13250 SDValue N1 = N->getOperand(1); 13251 EVT VT = N->getValueType(0); 13252 SDLoc SL(N); 13253 13254 const TargetOptions &Options = DAG.getTarget().Options; 13255 // Floating-point multiply-add with intermediate rounding. 13256 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13257 13258 // Floating-point multiply-add without intermediate rounding. 13259 bool HasFMA = 13260 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13261 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13262 13263 // No valid opcode, do not combine. 13264 if (!HasFMAD && !HasFMA) 13265 return SDValue(); 13266 13267 const SDNodeFlags Flags = N->getFlags(); 13268 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13269 Options.UnsafeFPMath || HasFMAD); 13270 13271 // If the subtraction is not contractable, do not combine. 13272 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13273 return SDValue(); 13274 13275 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13276 return SDValue(); 13277 13278 // Always prefer FMAD to FMA for precision. 13279 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13280 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13281 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); 13282 13283 // Is the node an FMUL and contractable either due to global flags or 13284 // SDNodeFlags. 13285 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13286 if (N.getOpcode() != ISD::FMUL) 13287 return false; 13288 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13289 }; 13290 13291 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13292 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { 13293 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { 13294 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), 13295 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); 13296 } 13297 return SDValue(); 13298 }; 13299 13300 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13301 // Note: Commutes FSUB operands. 13302 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { 13303 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { 13304 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13305 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), 13306 YZ.getOperand(1), X); 13307 } 13308 return SDValue(); 13309 }; 13310 13311 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), 13312 // prefer to fold the multiply with fewer uses. 13313 if (isContractableFMUL(N0) && isContractableFMUL(N1) && 13314 (N0.getNode()->use_size() > N1.getNode()->use_size())) { 13315 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) 13316 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13317 return V; 13318 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) 13319 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13320 return V; 13321 } else { 13322 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13323 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13324 return V; 13325 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13326 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13327 return V; 13328 } 13329 13330 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 13331 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 13332 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 13333 SDValue N00 = N0.getOperand(0).getOperand(0); 13334 SDValue N01 = N0.getOperand(0).getOperand(1); 13335 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13336 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 13337 DAG.getNode(ISD::FNEG, SL, VT, N1)); 13338 } 13339 13340 // Look through FP_EXTEND nodes to do more combining. 13341 13342 // fold (fsub (fpext (fmul x, y)), z) 13343 // -> (fma (fpext x), (fpext y), (fneg z)) 13344 if (N0.getOpcode() == ISD::FP_EXTEND) { 13345 SDValue N00 = N0.getOperand(0); 13346 if (isContractableFMUL(N00) && 13347 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13348 N00.getValueType())) { 13349 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13350 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13351 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13352 DAG.getNode(ISD::FNEG, SL, VT, N1)); 13353 } 13354 } 13355 13356 // fold (fsub x, (fpext (fmul y, z))) 13357 // -> (fma (fneg (fpext y)), (fpext z), x) 13358 // Note: Commutes FSUB operands. 13359 if (N1.getOpcode() == ISD::FP_EXTEND) { 13360 SDValue N10 = N1.getOperand(0); 13361 if (isContractableFMUL(N10) && 13362 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13363 N10.getValueType())) { 13364 return DAG.getNode( 13365 PreferredFusedOpcode, SL, VT, 13366 DAG.getNode(ISD::FNEG, SL, VT, 13367 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), 13368 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); 13369 } 13370 } 13371 13372 // fold (fsub (fpext (fneg (fmul, x, y))), z) 13373 // -> (fneg (fma (fpext x), (fpext y), z)) 13374 // Note: This could be removed with appropriate canonicalization of the 13375 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 13376 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 13377 // from implementing the canonicalization in visitFSUB. 13378 if (N0.getOpcode() == ISD::FP_EXTEND) { 13379 SDValue N00 = N0.getOperand(0); 13380 if (N00.getOpcode() == ISD::FNEG) { 13381 SDValue N000 = N00.getOperand(0); 13382 if (isContractableFMUL(N000) && 13383 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13384 N00.getValueType())) { 13385 return DAG.getNode( 13386 ISD::FNEG, SL, VT, 13387 DAG.getNode(PreferredFusedOpcode, SL, VT, 13388 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 13389 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 13390 N1)); 13391 } 13392 } 13393 } 13394 13395 // fold (fsub (fneg (fpext (fmul, x, y))), z) 13396 // -> (fneg (fma (fpext x)), (fpext y), z) 13397 // Note: This could be removed with appropriate canonicalization of the 13398 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 13399 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 13400 // from implementing the canonicalization in visitFSUB. 13401 if (N0.getOpcode() == ISD::FNEG) { 13402 SDValue N00 = N0.getOperand(0); 13403 if (N00.getOpcode() == ISD::FP_EXTEND) { 13404 SDValue N000 = N00.getOperand(0); 13405 if (isContractableFMUL(N000) && 13406 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13407 N000.getValueType())) { 13408 return DAG.getNode( 13409 ISD::FNEG, SL, VT, 13410 DAG.getNode(PreferredFusedOpcode, SL, VT, 13411 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 13412 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 13413 N1)); 13414 } 13415 } 13416 } 13417 13418 auto isReassociable = [Options](SDNode *N) { 13419 return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13420 }; 13421 13422 auto isContractableAndReassociableFMUL = [isContractableFMUL, 13423 isReassociable](SDValue N) { 13424 return isContractableFMUL(N) && isReassociable(N.getNode()); 13425 }; 13426 13427 auto isFusedOp = [&](SDValue N) { 13428 unsigned Opcode = N.getOpcode(); 13429 return Opcode == ISD::FMA || Opcode == ISD::FMAD; 13430 }; 13431 13432 // More folding opportunities when target permits. 13433 if (Aggressive && isReassociable(N)) { 13434 bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract(); 13435 // fold (fsub (fma x, y, (fmul u, v)), z) 13436 // -> (fma x, y (fma u, v, (fneg z))) 13437 if (CanFuse && isFusedOp(N0) && 13438 isContractableAndReassociableFMUL(N0.getOperand(2)) && 13439 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { 13440 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13441 N0.getOperand(1), 13442 DAG.getNode(PreferredFusedOpcode, SL, VT, 13443 N0.getOperand(2).getOperand(0), 13444 N0.getOperand(2).getOperand(1), 13445 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13446 } 13447 13448 // fold (fsub x, (fma y, z, (fmul u, v))) 13449 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 13450 if (CanFuse && isFusedOp(N1) && 13451 isContractableAndReassociableFMUL(N1.getOperand(2)) && 13452 N1->hasOneUse() && NoSignedZero) { 13453 SDValue N20 = N1.getOperand(2).getOperand(0); 13454 SDValue N21 = N1.getOperand(2).getOperand(1); 13455 return DAG.getNode( 13456 PreferredFusedOpcode, SL, VT, 13457 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 13458 DAG.getNode(PreferredFusedOpcode, SL, VT, 13459 DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); 13460 } 13461 13462 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 13463 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 13464 if (isFusedOp(N0) && N0->hasOneUse()) { 13465 SDValue N02 = N0.getOperand(2); 13466 if (N02.getOpcode() == ISD::FP_EXTEND) { 13467 SDValue N020 = N02.getOperand(0); 13468 if (isContractableAndReassociableFMUL(N020) && 13469 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13470 N020.getValueType())) { 13471 return DAG.getNode( 13472 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), 13473 DAG.getNode( 13474 PreferredFusedOpcode, SL, VT, 13475 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), 13476 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), 13477 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13478 } 13479 } 13480 } 13481 13482 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 13483 // -> (fma (fpext x), (fpext y), 13484 // (fma (fpext u), (fpext v), (fneg z))) 13485 // FIXME: This turns two single-precision and one double-precision 13486 // operation into two double-precision operations, which might not be 13487 // interesting for all targets, especially GPUs. 13488 if (N0.getOpcode() == ISD::FP_EXTEND) { 13489 SDValue N00 = N0.getOperand(0); 13490 if (isFusedOp(N00)) { 13491 SDValue N002 = N00.getOperand(2); 13492 if (isContractableAndReassociableFMUL(N002) && 13493 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13494 N00.getValueType())) { 13495 return DAG.getNode( 13496 PreferredFusedOpcode, SL, VT, 13497 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13498 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13499 DAG.getNode( 13500 PreferredFusedOpcode, SL, VT, 13501 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), 13502 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), 13503 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13504 } 13505 } 13506 } 13507 13508 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 13509 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 13510 if (isFusedOp(N1) && N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && 13511 N1->hasOneUse()) { 13512 SDValue N120 = N1.getOperand(2).getOperand(0); 13513 if (isContractableAndReassociableFMUL(N120) && 13514 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13515 N120.getValueType())) { 13516 SDValue N1200 = N120.getOperand(0); 13517 SDValue N1201 = N120.getOperand(1); 13518 return DAG.getNode( 13519 PreferredFusedOpcode, SL, VT, 13520 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 13521 DAG.getNode(PreferredFusedOpcode, SL, VT, 13522 DAG.getNode(ISD::FNEG, SL, VT, 13523 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), 13524 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); 13525 } 13526 } 13527 13528 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 13529 // -> (fma (fneg (fpext y)), (fpext z), 13530 // (fma (fneg (fpext u)), (fpext v), x)) 13531 // FIXME: This turns two single-precision and one double-precision 13532 // operation into two double-precision operations, which might not be 13533 // interesting for all targets, especially GPUs. 13534 if (N1.getOpcode() == ISD::FP_EXTEND && isFusedOp(N1.getOperand(0))) { 13535 SDValue CvtSrc = N1.getOperand(0); 13536 SDValue N100 = CvtSrc.getOperand(0); 13537 SDValue N101 = CvtSrc.getOperand(1); 13538 SDValue N102 = CvtSrc.getOperand(2); 13539 if (isContractableAndReassociableFMUL(N102) && 13540 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13541 CvtSrc.getValueType())) { 13542 SDValue N1020 = N102.getOperand(0); 13543 SDValue N1021 = N102.getOperand(1); 13544 return DAG.getNode( 13545 PreferredFusedOpcode, SL, VT, 13546 DAG.getNode(ISD::FNEG, SL, VT, 13547 DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), 13548 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 13549 DAG.getNode(PreferredFusedOpcode, SL, VT, 13550 DAG.getNode(ISD::FNEG, SL, VT, 13551 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), 13552 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); 13553 } 13554 } 13555 } 13556 13557 return SDValue(); 13558 } 13559 13560 /// Try to perform FMA combining on a given FMUL node based on the distributive 13561 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 13562 /// subtraction instead of addition). 13563 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 13564 SDValue N0 = N->getOperand(0); 13565 SDValue N1 = N->getOperand(1); 13566 EVT VT = N->getValueType(0); 13567 SDLoc SL(N); 13568 13569 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 13570 13571 const TargetOptions &Options = DAG.getTarget().Options; 13572 13573 // The transforms below are incorrect when x == 0 and y == inf, because the 13574 // intermediate multiplication produces a nan. 13575 SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1; 13576 if (!hasNoInfs(Options, FAdd)) 13577 return SDValue(); 13578 13579 // Floating-point multiply-add without intermediate rounding. 13580 bool HasFMA = 13581 isContractableFMUL(Options, SDValue(N, 0)) && 13582 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13583 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13584 13585 // Floating-point multiply-add with intermediate rounding. This can result 13586 // in a less precise result due to the changed rounding order. 13587 bool HasFMAD = Options.UnsafeFPMath && 13588 (LegalOperations && TLI.isFMADLegal(DAG, N)); 13589 13590 // No valid opcode, do not combine. 13591 if (!HasFMAD && !HasFMA) 13592 return SDValue(); 13593 13594 // Always prefer FMAD to FMA for precision. 13595 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13596 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13597 13598 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 13599 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 13600 auto FuseFADD = [&](SDValue X, SDValue Y) { 13601 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 13602 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 13603 if (C->isExactlyValue(+1.0)) 13604 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13605 Y); 13606 if (C->isExactlyValue(-1.0)) 13607 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13608 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13609 } 13610 } 13611 return SDValue(); 13612 }; 13613 13614 if (SDValue FMA = FuseFADD(N0, N1)) 13615 return FMA; 13616 if (SDValue FMA = FuseFADD(N1, N0)) 13617 return FMA; 13618 13619 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 13620 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 13621 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 13622 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 13623 auto FuseFSUB = [&](SDValue X, SDValue Y) { 13624 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 13625 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 13626 if (C0->isExactlyValue(+1.0)) 13627 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13628 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13629 Y); 13630 if (C0->isExactlyValue(-1.0)) 13631 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13632 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13633 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13634 } 13635 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 13636 if (C1->isExactlyValue(+1.0)) 13637 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13638 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13639 if (C1->isExactlyValue(-1.0)) 13640 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13641 Y); 13642 } 13643 } 13644 return SDValue(); 13645 }; 13646 13647 if (SDValue FMA = FuseFSUB(N0, N1)) 13648 return FMA; 13649 if (SDValue FMA = FuseFSUB(N1, N0)) 13650 return FMA; 13651 13652 return SDValue(); 13653 } 13654 13655 SDValue DAGCombiner::visitFADD(SDNode *N) { 13656 SDValue N0 = N->getOperand(0); 13657 SDValue N1 = N->getOperand(1); 13658 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 13659 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 13660 EVT VT = N->getValueType(0); 13661 SDLoc DL(N); 13662 const TargetOptions &Options = DAG.getTarget().Options; 13663 SDNodeFlags Flags = N->getFlags(); 13664 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13665 13666 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13667 return R; 13668 13669 // fold vector ops 13670 if (VT.isVector()) 13671 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13672 return FoldedVOp; 13673 13674 // fold (fadd c1, c2) -> c1 + c2 13675 if (N0CFP && N1CFP) 13676 return DAG.getNode(ISD::FADD, DL, VT, N0, N1); 13677 13678 // canonicalize constant to RHS 13679 if (N0CFP && !N1CFP) 13680 return DAG.getNode(ISD::FADD, DL, VT, N1, N0); 13681 13682 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 13683 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 13684 if (N1C && N1C->isZero()) 13685 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) 13686 return N0; 13687 13688 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13689 return NewSel; 13690 13691 // fold (fadd A, (fneg B)) -> (fsub A, B) 13692 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13693 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13694 N1, DAG, LegalOperations, ForCodeSize)) 13695 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); 13696 13697 // fold (fadd (fneg A), B) -> (fsub B, A) 13698 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13699 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13700 N0, DAG, LegalOperations, ForCodeSize)) 13701 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); 13702 13703 auto isFMulNegTwo = [](SDValue FMul) { 13704 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 13705 return false; 13706 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 13707 return C && C->isExactlyValue(-2.0); 13708 }; 13709 13710 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 13711 if (isFMulNegTwo(N0)) { 13712 SDValue B = N0.getOperand(0); 13713 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 13714 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); 13715 } 13716 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 13717 if (isFMulNegTwo(N1)) { 13718 SDValue B = N1.getOperand(0); 13719 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 13720 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); 13721 } 13722 13723 // No FP constant should be created after legalization as Instruction 13724 // Selection pass has a hard time dealing with FP constants. 13725 bool AllowNewConst = (Level < AfterLegalizeDAG); 13726 13727 // If nnan is enabled, fold lots of things. 13728 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 13729 // If allowed, fold (fadd (fneg x), x) -> 0.0 13730 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 13731 return DAG.getConstantFP(0.0, DL, VT); 13732 13733 // If allowed, fold (fadd x, (fneg x)) -> 0.0 13734 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 13735 return DAG.getConstantFP(0.0, DL, VT); 13736 } 13737 13738 // If 'unsafe math' or reassoc and nsz, fold lots of things. 13739 // TODO: break out portions of the transformations below for which Unsafe is 13740 // considered and which do not require both nsz and reassoc 13741 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 13742 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 13743 AllowNewConst) { 13744 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 13745 if (N1CFP && N0.getOpcode() == ISD::FADD && 13746 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 13747 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); 13748 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); 13749 } 13750 13751 // We can fold chains of FADD's of the same value into multiplications. 13752 // This transform is not safe in general because we are reducing the number 13753 // of rounding steps. 13754 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 13755 if (N0.getOpcode() == ISD::FMUL) { 13756 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 13757 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 13758 13759 // (fadd (fmul x, c), x) -> (fmul x, c+1) 13760 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 13761 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 13762 DAG.getConstantFP(1.0, DL, VT)); 13763 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); 13764 } 13765 13766 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 13767 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 13768 N1.getOperand(0) == N1.getOperand(1) && 13769 N0.getOperand(0) == N1.getOperand(0)) { 13770 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 13771 DAG.getConstantFP(2.0, DL, VT)); 13772 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); 13773 } 13774 } 13775 13776 if (N1.getOpcode() == ISD::FMUL) { 13777 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 13778 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 13779 13780 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 13781 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 13782 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 13783 DAG.getConstantFP(1.0, DL, VT)); 13784 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); 13785 } 13786 13787 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 13788 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 13789 N0.getOperand(0) == N0.getOperand(1) && 13790 N1.getOperand(0) == N0.getOperand(0)) { 13791 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 13792 DAG.getConstantFP(2.0, DL, VT)); 13793 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); 13794 } 13795 } 13796 13797 if (N0.getOpcode() == ISD::FADD) { 13798 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 13799 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 13800 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 13801 (N0.getOperand(0) == N1)) { 13802 return DAG.getNode(ISD::FMUL, DL, VT, N1, 13803 DAG.getConstantFP(3.0, DL, VT)); 13804 } 13805 } 13806 13807 if (N1.getOpcode() == ISD::FADD) { 13808 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 13809 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 13810 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 13811 N1.getOperand(0) == N0) { 13812 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13813 DAG.getConstantFP(3.0, DL, VT)); 13814 } 13815 } 13816 13817 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 13818 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 13819 N0.getOperand(0) == N0.getOperand(1) && 13820 N1.getOperand(0) == N1.getOperand(1) && 13821 N0.getOperand(0) == N1.getOperand(0)) { 13822 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 13823 DAG.getConstantFP(4.0, DL, VT)); 13824 } 13825 } 13826 } // enable-unsafe-fp-math 13827 13828 // FADD -> FMA combines: 13829 if (SDValue Fused = visitFADDForFMACombine(N)) { 13830 AddToWorklist(Fused.getNode()); 13831 return Fused; 13832 } 13833 return SDValue(); 13834 } 13835 13836 SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { 13837 SDValue Chain = N->getOperand(0); 13838 SDValue N0 = N->getOperand(1); 13839 SDValue N1 = N->getOperand(2); 13840 EVT VT = N->getValueType(0); 13841 EVT ChainVT = N->getValueType(1); 13842 SDLoc DL(N); 13843 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13844 13845 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) 13846 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 13847 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13848 N1, DAG, LegalOperations, ForCodeSize)) { 13849 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 13850 {Chain, N0, NegN1}); 13851 } 13852 13853 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) 13854 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 13855 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13856 N0, DAG, LegalOperations, ForCodeSize)) { 13857 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 13858 {Chain, N1, NegN0}); 13859 } 13860 return SDValue(); 13861 } 13862 13863 SDValue DAGCombiner::visitFSUB(SDNode *N) { 13864 SDValue N0 = N->getOperand(0); 13865 SDValue N1 = N->getOperand(1); 13866 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 13867 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 13868 EVT VT = N->getValueType(0); 13869 SDLoc DL(N); 13870 const TargetOptions &Options = DAG.getTarget().Options; 13871 const SDNodeFlags Flags = N->getFlags(); 13872 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13873 13874 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13875 return R; 13876 13877 // fold vector ops 13878 if (VT.isVector()) 13879 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13880 return FoldedVOp; 13881 13882 // fold (fsub c1, c2) -> c1-c2 13883 if (N0CFP && N1CFP) 13884 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1); 13885 13886 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13887 return NewSel; 13888 13889 // (fsub A, 0) -> A 13890 if (N1CFP && N1CFP->isZero()) { 13891 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || 13892 Flags.hasNoSignedZeros()) { 13893 return N0; 13894 } 13895 } 13896 13897 if (N0 == N1) { 13898 // (fsub x, x) -> 0.0 13899 if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) 13900 return DAG.getConstantFP(0.0f, DL, VT); 13901 } 13902 13903 // (fsub -0.0, N1) -> -N1 13904 if (N0CFP && N0CFP->isZero()) { 13905 if (N0CFP->isNegative() || 13906 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 13907 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are 13908 // flushed to zero, unless all users treat denorms as zero (DAZ). 13909 // FIXME: This transform will change the sign of a NaN and the behavior 13910 // of a signaling NaN. It is only valid when a NoNaN flag is present. 13911 DenormalMode DenormMode = DAG.getDenormalMode(VT); 13912 if (DenormMode == DenormalMode::getIEEE()) { 13913 if (SDValue NegN1 = 13914 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 13915 return NegN1; 13916 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13917 return DAG.getNode(ISD::FNEG, DL, VT, N1); 13918 } 13919 } 13920 } 13921 13922 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 13923 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 13924 N1.getOpcode() == ISD::FADD) { 13925 // X - (X + Y) -> -Y 13926 if (N0 == N1->getOperand(0)) 13927 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); 13928 // X - (Y + X) -> -Y 13929 if (N0 == N1->getOperand(1)) 13930 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); 13931 } 13932 13933 // fold (fsub A, (fneg B)) -> (fadd A, B) 13934 if (SDValue NegN1 = 13935 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 13936 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); 13937 13938 // FSUB -> FMA combines: 13939 if (SDValue Fused = visitFSUBForFMACombine(N)) { 13940 AddToWorklist(Fused.getNode()); 13941 return Fused; 13942 } 13943 13944 return SDValue(); 13945 } 13946 13947 SDValue DAGCombiner::visitFMUL(SDNode *N) { 13948 SDValue N0 = N->getOperand(0); 13949 SDValue N1 = N->getOperand(1); 13950 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 13951 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 13952 EVT VT = N->getValueType(0); 13953 SDLoc DL(N); 13954 const TargetOptions &Options = DAG.getTarget().Options; 13955 const SDNodeFlags Flags = N->getFlags(); 13956 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13957 13958 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13959 return R; 13960 13961 // fold vector ops 13962 if (VT.isVector()) { 13963 // This just handles C1 * C2 for vectors. Other vector folds are below. 13964 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13965 return FoldedVOp; 13966 } 13967 13968 // fold (fmul c1, c2) -> c1*c2 13969 if (N0CFP && N1CFP) 13970 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1); 13971 13972 // canonicalize constant to RHS 13973 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 13974 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 13975 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); 13976 13977 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13978 return NewSel; 13979 13980 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 13981 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 13982 if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && 13983 N0.getOpcode() == ISD::FMUL) { 13984 SDValue N00 = N0.getOperand(0); 13985 SDValue N01 = N0.getOperand(1); 13986 // Avoid an infinite loop by making sure that N00 is not a constant 13987 // (the inner multiply has not been constant folded yet). 13988 if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && 13989 !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { 13990 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); 13991 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); 13992 } 13993 } 13994 13995 // Match a special-case: we convert X * 2.0 into fadd. 13996 // fmul (fadd X, X), C -> fmul X, 2.0 * C 13997 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 13998 N0.getOperand(0) == N0.getOperand(1)) { 13999 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 14000 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); 14001 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); 14002 } 14003 } 14004 14005 // fold (fmul X, 2.0) -> (fadd X, X) 14006 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 14007 return DAG.getNode(ISD::FADD, DL, VT, N0, N0); 14008 14009 // fold (fmul X, -1.0) -> (fsub -0.0, X) 14010 if (N1CFP && N1CFP->isExactlyValue(-1.0)) { 14011 if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) { 14012 return DAG.getNode(ISD::FSUB, DL, VT, 14013 DAG.getConstantFP(-0.0, DL, VT), N0, Flags); 14014 } 14015 } 14016 14017 // -N0 * -N1 --> N0 * N1 14018 TargetLowering::NegatibleCost CostN0 = 14019 TargetLowering::NegatibleCost::Expensive; 14020 TargetLowering::NegatibleCost CostN1 = 14021 TargetLowering::NegatibleCost::Expensive; 14022 SDValue NegN0 = 14023 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14024 SDValue NegN1 = 14025 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14026 if (NegN0 && NegN1 && 14027 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14028 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14029 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); 14030 14031 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 14032 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 14033 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 14034 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 14035 TLI.isOperationLegal(ISD::FABS, VT)) { 14036 SDValue Select = N0, X = N1; 14037 if (Select.getOpcode() != ISD::SELECT) 14038 std::swap(Select, X); 14039 14040 SDValue Cond = Select.getOperand(0); 14041 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 14042 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 14043 14044 if (TrueOpnd && FalseOpnd && 14045 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 14046 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 14047 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 14048 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 14049 switch (CC) { 14050 default: break; 14051 case ISD::SETOLT: 14052 case ISD::SETULT: 14053 case ISD::SETOLE: 14054 case ISD::SETULE: 14055 case ISD::SETLT: 14056 case ISD::SETLE: 14057 std::swap(TrueOpnd, FalseOpnd); 14058 LLVM_FALLTHROUGH; 14059 case ISD::SETOGT: 14060 case ISD::SETUGT: 14061 case ISD::SETOGE: 14062 case ISD::SETUGE: 14063 case ISD::SETGT: 14064 case ISD::SETGE: 14065 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 14066 TLI.isOperationLegal(ISD::FNEG, VT)) 14067 return DAG.getNode(ISD::FNEG, DL, VT, 14068 DAG.getNode(ISD::FABS, DL, VT, X)); 14069 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 14070 return DAG.getNode(ISD::FABS, DL, VT, X); 14071 14072 break; 14073 } 14074 } 14075 } 14076 14077 // FMUL -> FMA combines: 14078 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 14079 AddToWorklist(Fused.getNode()); 14080 return Fused; 14081 } 14082 14083 return SDValue(); 14084 } 14085 14086 SDValue DAGCombiner::visitFMA(SDNode *N) { 14087 SDValue N0 = N->getOperand(0); 14088 SDValue N1 = N->getOperand(1); 14089 SDValue N2 = N->getOperand(2); 14090 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14091 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14092 EVT VT = N->getValueType(0); 14093 SDLoc DL(N); 14094 const TargetOptions &Options = DAG.getTarget().Options; 14095 // FMA nodes have flags that propagate to the created nodes. 14096 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14097 14098 bool UnsafeFPMath = 14099 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 14100 14101 // Constant fold FMA. 14102 if (isa<ConstantFPSDNode>(N0) && 14103 isa<ConstantFPSDNode>(N1) && 14104 isa<ConstantFPSDNode>(N2)) { 14105 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 14106 } 14107 14108 // (-N0 * -N1) + N2 --> (N0 * N1) + N2 14109 TargetLowering::NegatibleCost CostN0 = 14110 TargetLowering::NegatibleCost::Expensive; 14111 TargetLowering::NegatibleCost CostN1 = 14112 TargetLowering::NegatibleCost::Expensive; 14113 SDValue NegN0 = 14114 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14115 SDValue NegN1 = 14116 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14117 if (NegN0 && NegN1 && 14118 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14119 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14120 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); 14121 14122 if (UnsafeFPMath) { 14123 if (N0CFP && N0CFP->isZero()) 14124 return N2; 14125 if (N1CFP && N1CFP->isZero()) 14126 return N2; 14127 } 14128 14129 if (N0CFP && N0CFP->isExactlyValue(1.0)) 14130 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 14131 if (N1CFP && N1CFP->isExactlyValue(1.0)) 14132 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 14133 14134 // Canonicalize (fma c, x, y) -> (fma x, c, y) 14135 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14136 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14137 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 14138 14139 if (UnsafeFPMath) { 14140 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 14141 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 14142 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14143 DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 14144 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14145 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); 14146 } 14147 14148 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 14149 if (N0.getOpcode() == ISD::FMUL && 14150 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14151 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 14152 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14153 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), 14154 N2); 14155 } 14156 } 14157 14158 // (fma x, -1, y) -> (fadd (fneg x), y) 14159 if (N1CFP) { 14160 if (N1CFP->isExactlyValue(1.0)) 14161 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 14162 14163 if (N1CFP->isExactlyValue(-1.0) && 14164 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 14165 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 14166 AddToWorklist(RHSNeg.getNode()); 14167 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 14168 } 14169 14170 // fma (fneg x), K, y -> fma x -K, y 14171 if (N0.getOpcode() == ISD::FNEG && 14172 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 14173 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 14174 ForCodeSize)))) { 14175 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14176 DAG.getNode(ISD::FNEG, DL, VT, N1), N2); 14177 } 14178 } 14179 14180 if (UnsafeFPMath) { 14181 // (fma x, c, x) -> (fmul x, (c+1)) 14182 if (N1CFP && N0 == N2) { 14183 return DAG.getNode( 14184 ISD::FMUL, DL, VT, N0, 14185 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); 14186 } 14187 14188 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 14189 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 14190 return DAG.getNode( 14191 ISD::FMUL, DL, VT, N0, 14192 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); 14193 } 14194 } 14195 14196 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) 14197 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) 14198 if (!TLI.isFNegFree(VT)) 14199 if (SDValue Neg = TLI.getCheaperNegatedExpression( 14200 SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) 14201 return DAG.getNode(ISD::FNEG, DL, VT, Neg); 14202 return SDValue(); 14203 } 14204 14205 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 14206 // reciprocal. 14207 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 14208 // Notice that this is not always beneficial. One reason is different targets 14209 // may have different costs for FDIV and FMUL, so sometimes the cost of two 14210 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 14211 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 14212 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 14213 // TODO: Limit this transform based on optsize/minsize - it always creates at 14214 // least 1 extra instruction. But the perf win may be substantial enough 14215 // that only minsize should restrict this. 14216 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 14217 const SDNodeFlags Flags = N->getFlags(); 14218 if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) 14219 return SDValue(); 14220 14221 // Skip if current node is a reciprocal/fneg-reciprocal. 14222 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 14223 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 14224 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) 14225 return SDValue(); 14226 14227 // Exit early if the target does not want this transform or if there can't 14228 // possibly be enough uses of the divisor to make the transform worthwhile. 14229 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 14230 14231 // For splat vectors, scale the number of uses by the splat factor. If we can 14232 // convert the division into a scalar op, that will likely be much faster. 14233 unsigned NumElts = 1; 14234 EVT VT = N->getValueType(0); 14235 if (VT.isVector() && DAG.isSplatValue(N1)) 14236 NumElts = VT.getVectorNumElements(); 14237 14238 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 14239 return SDValue(); 14240 14241 // Find all FDIV users of the same divisor. 14242 // Use a set because duplicates may be present in the user list. 14243 SetVector<SDNode *> Users; 14244 for (auto *U : N1->uses()) { 14245 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 14246 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. 14247 if (U->getOperand(1).getOpcode() == ISD::FSQRT && 14248 U->getOperand(0) == U->getOperand(1).getOperand(0) && 14249 U->getFlags().hasAllowReassociation() && 14250 U->getFlags().hasNoSignedZeros()) 14251 continue; 14252 14253 // This division is eligible for optimization only if global unsafe math 14254 // is enabled or if this division allows reciprocal formation. 14255 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 14256 Users.insert(U); 14257 } 14258 } 14259 14260 // Now that we have the actual number of divisor uses, make sure it meets 14261 // the minimum threshold specified by the target. 14262 if ((Users.size() * NumElts) < MinUses) 14263 return SDValue(); 14264 14265 SDLoc DL(N); 14266 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14267 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 14268 14269 // Dividend / Divisor -> Dividend * Reciprocal 14270 for (auto *U : Users) { 14271 SDValue Dividend = U->getOperand(0); 14272 if (Dividend != FPOne) { 14273 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 14274 Reciprocal, Flags); 14275 CombineTo(U, NewNode); 14276 } else if (U != Reciprocal.getNode()) { 14277 // In the absence of fast-math-flags, this user node is always the 14278 // same node as Reciprocal, but with FMF they may be different nodes. 14279 CombineTo(U, Reciprocal); 14280 } 14281 } 14282 return SDValue(N, 0); // N was replaced. 14283 } 14284 14285 SDValue DAGCombiner::visitFDIV(SDNode *N) { 14286 SDValue N0 = N->getOperand(0); 14287 SDValue N1 = N->getOperand(1); 14288 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14289 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14290 EVT VT = N->getValueType(0); 14291 SDLoc DL(N); 14292 const TargetOptions &Options = DAG.getTarget().Options; 14293 SDNodeFlags Flags = N->getFlags(); 14294 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14295 14296 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14297 return R; 14298 14299 // fold vector ops 14300 if (VT.isVector()) 14301 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 14302 return FoldedVOp; 14303 14304 // fold (fdiv c1, c2) -> c1/c2 14305 if (N0CFP && N1CFP) 14306 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1); 14307 14308 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14309 return NewSel; 14310 14311 if (SDValue V = combineRepeatedFPDivisors(N)) 14312 return V; 14313 14314 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 14315 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 14316 if (N1CFP) { 14317 // Compute the reciprocal 1.0 / c2. 14318 const APFloat &N1APF = N1CFP->getValueAPF(); 14319 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 14320 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 14321 // Only do the transform if the reciprocal is a legal fp immediate that 14322 // isn't too nasty (eg NaN, denormal, ...). 14323 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 14324 (!LegalOperations || 14325 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 14326 // backend)... we should handle this gracefully after Legalize. 14327 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 14328 TLI.isOperationLegal(ISD::ConstantFP, VT) || 14329 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 14330 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14331 DAG.getConstantFP(Recip, DL, VT)); 14332 } 14333 14334 // If this FDIV is part of a reciprocal square root, it may be folded 14335 // into a target-specific square root estimate instruction. 14336 if (N1.getOpcode() == ISD::FSQRT) { 14337 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) 14338 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14339 } else if (N1.getOpcode() == ISD::FP_EXTEND && 14340 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14341 if (SDValue RV = 14342 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 14343 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 14344 AddToWorklist(RV.getNode()); 14345 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14346 } 14347 } else if (N1.getOpcode() == ISD::FP_ROUND && 14348 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14349 if (SDValue RV = 14350 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 14351 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 14352 AddToWorklist(RV.getNode()); 14353 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14354 } 14355 } else if (N1.getOpcode() == ISD::FMUL) { 14356 // Look through an FMUL. Even though this won't remove the FDIV directly, 14357 // it's still worthwhile to get rid of the FSQRT if possible. 14358 SDValue Sqrt, Y; 14359 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14360 Sqrt = N1.getOperand(0); 14361 Y = N1.getOperand(1); 14362 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 14363 Sqrt = N1.getOperand(1); 14364 Y = N1.getOperand(0); 14365 } 14366 if (Sqrt.getNode()) { 14367 // If the other multiply operand is known positive, pull it into the 14368 // sqrt. That will eliminate the division if we convert to an estimate. 14369 if (Flags.hasAllowReassociation() && N1.hasOneUse() && 14370 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { 14371 SDValue A; 14372 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) 14373 A = Y.getOperand(0); 14374 else if (Y == Sqrt.getOperand(0)) 14375 A = Y; 14376 if (A) { 14377 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) 14378 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) 14379 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); 14380 SDValue AAZ = 14381 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); 14382 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) 14383 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); 14384 14385 // Estimate creation failed. Clean up speculatively created nodes. 14386 recursivelyDeleteUnusedNodes(AAZ.getNode()); 14387 } 14388 } 14389 14390 // We found a FSQRT, so try to make this fold: 14391 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) 14392 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { 14393 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); 14394 AddToWorklist(Div.getNode()); 14395 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); 14396 } 14397 } 14398 } 14399 14400 // Fold into a reciprocal estimate and multiply instead of a real divide. 14401 if (Options.NoInfsFPMath || Flags.hasNoInfs()) 14402 if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) 14403 return RV; 14404 } 14405 14406 // Fold X/Sqrt(X) -> Sqrt(X) 14407 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 14408 (Options.UnsafeFPMath || Flags.hasAllowReassociation())) 14409 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) 14410 return N1; 14411 14412 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 14413 TargetLowering::NegatibleCost CostN0 = 14414 TargetLowering::NegatibleCost::Expensive; 14415 TargetLowering::NegatibleCost CostN1 = 14416 TargetLowering::NegatibleCost::Expensive; 14417 SDValue NegN0 = 14418 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14419 SDValue NegN1 = 14420 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14421 if (NegN0 && NegN1 && 14422 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14423 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14424 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); 14425 14426 return SDValue(); 14427 } 14428 14429 SDValue DAGCombiner::visitFREM(SDNode *N) { 14430 SDValue N0 = N->getOperand(0); 14431 SDValue N1 = N->getOperand(1); 14432 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14433 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14434 EVT VT = N->getValueType(0); 14435 SDNodeFlags Flags = N->getFlags(); 14436 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14437 14438 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14439 return R; 14440 14441 // fold (frem c1, c2) -> fmod(c1,c2) 14442 if (N0CFP && N1CFP) 14443 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1); 14444 14445 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14446 return NewSel; 14447 14448 return SDValue(); 14449 } 14450 14451 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 14452 SDNodeFlags Flags = N->getFlags(); 14453 const TargetOptions &Options = DAG.getTarget().Options; 14454 14455 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: 14456 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN 14457 if (!Flags.hasApproximateFuncs() || 14458 (!Options.NoInfsFPMath && !Flags.hasNoInfs())) 14459 return SDValue(); 14460 14461 SDValue N0 = N->getOperand(0); 14462 if (TLI.isFsqrtCheap(N0, DAG)) 14463 return SDValue(); 14464 14465 // FSQRT nodes have flags that propagate to the created nodes. 14466 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to 14467 // transform the fdiv, we may produce a sub-optimal estimate sequence 14468 // because the reciprocal calculation may not have to filter out a 14469 // 0.0 input. 14470 return buildSqrtEstimate(N0, Flags); 14471 } 14472 14473 /// copysign(x, fp_extend(y)) -> copysign(x, y) 14474 /// copysign(x, fp_round(y)) -> copysign(x, y) 14475 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 14476 SDValue N1 = N->getOperand(1); 14477 if ((N1.getOpcode() == ISD::FP_EXTEND || 14478 N1.getOpcode() == ISD::FP_ROUND)) { 14479 EVT N1VT = N1->getValueType(0); 14480 EVT N1Op0VT = N1->getOperand(0).getValueType(); 14481 14482 // Always fold no-op FP casts. 14483 if (N1VT == N1Op0VT) 14484 return true; 14485 14486 // Do not optimize out type conversion of f128 type yet. 14487 // For some targets like x86_64, configuration is changed to keep one f128 14488 // value in one SSE register, but instruction selection cannot handle 14489 // FCOPYSIGN on SSE registers yet. 14490 if (N1Op0VT == MVT::f128) 14491 return false; 14492 14493 // Avoid mismatched vector operand types, for better instruction selection. 14494 if (N1Op0VT.isVector()) 14495 return false; 14496 14497 return true; 14498 } 14499 return false; 14500 } 14501 14502 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 14503 SDValue N0 = N->getOperand(0); 14504 SDValue N1 = N->getOperand(1); 14505 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 14506 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 14507 EVT VT = N->getValueType(0); 14508 14509 if (N0CFP && N1CFP) // Constant fold 14510 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 14511 14512 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 14513 const APFloat &V = N1C->getValueAPF(); 14514 // copysign(x, c1) -> fabs(x) iff ispos(c1) 14515 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 14516 if (!V.isNegative()) { 14517 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 14518 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14519 } else { 14520 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 14521 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 14522 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 14523 } 14524 } 14525 14526 // copysign(fabs(x), y) -> copysign(x, y) 14527 // copysign(fneg(x), y) -> copysign(x, y) 14528 // copysign(copysign(x,z), y) -> copysign(x, y) 14529 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 14530 N0.getOpcode() == ISD::FCOPYSIGN) 14531 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 14532 14533 // copysign(x, abs(y)) -> abs(x) 14534 if (N1.getOpcode() == ISD::FABS) 14535 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14536 14537 // copysign(x, copysign(y,z)) -> copysign(x, z) 14538 if (N1.getOpcode() == ISD::FCOPYSIGN) 14539 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 14540 14541 // copysign(x, fp_extend(y)) -> copysign(x, y) 14542 // copysign(x, fp_round(y)) -> copysign(x, y) 14543 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 14544 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 14545 14546 return SDValue(); 14547 } 14548 14549 SDValue DAGCombiner::visitFPOW(SDNode *N) { 14550 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 14551 if (!ExponentC) 14552 return SDValue(); 14553 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14554 14555 // Try to convert x ** (1/3) into cube root. 14556 // TODO: Handle the various flavors of long double. 14557 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 14558 // Some range near 1/3 should be fine. 14559 EVT VT = N->getValueType(0); 14560 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 14561 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 14562 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 14563 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 14564 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 14565 // For regular numbers, rounding may cause the results to differ. 14566 // Therefore, we require { nsz ninf nnan afn } for this transform. 14567 // TODO: We could select out the special cases if we don't have nsz/ninf. 14568 SDNodeFlags Flags = N->getFlags(); 14569 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 14570 !Flags.hasApproximateFuncs()) 14571 return SDValue(); 14572 14573 // Do not create a cbrt() libcall if the target does not have it, and do not 14574 // turn a pow that has lowering support into a cbrt() libcall. 14575 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 14576 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 14577 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 14578 return SDValue(); 14579 14580 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); 14581 } 14582 14583 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 14584 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 14585 // TODO: This could be extended (using a target hook) to handle smaller 14586 // power-of-2 fractional exponents. 14587 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 14588 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 14589 if (ExponentIs025 || ExponentIs075) { 14590 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 14591 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 14592 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 14593 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 14594 // For regular numbers, rounding may cause the results to differ. 14595 // Therefore, we require { nsz ninf afn } for this transform. 14596 // TODO: We could select out the special cases if we don't have nsz/ninf. 14597 SDNodeFlags Flags = N->getFlags(); 14598 14599 // We only need no signed zeros for the 0.25 case. 14600 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 14601 !Flags.hasApproximateFuncs()) 14602 return SDValue(); 14603 14604 // Don't double the number of libcalls. We are trying to inline fast code. 14605 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 14606 return SDValue(); 14607 14608 // Assume that libcalls are the smallest code. 14609 // TODO: This restriction should probably be lifted for vectors. 14610 if (ForCodeSize) 14611 return SDValue(); 14612 14613 // pow(X, 0.25) --> sqrt(sqrt(X)) 14614 SDLoc DL(N); 14615 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); 14616 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); 14617 if (ExponentIs025) 14618 return SqrtSqrt; 14619 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 14620 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); 14621 } 14622 14623 return SDValue(); 14624 } 14625 14626 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 14627 const TargetLowering &TLI) { 14628 // This optimization is guarded by a function attribute because it may produce 14629 // unexpected results. Ie, programs may be relying on the platform-specific 14630 // undefined behavior when the float-to-int conversion overflows. 14631 const Function &F = DAG.getMachineFunction().getFunction(); 14632 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); 14633 if (StrictOverflow.getValueAsString().equals("false")) 14634 return SDValue(); 14635 14636 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 14637 // replacing casts with a libcall. We also must be allowed to ignore -0.0 14638 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 14639 // conversions would return +0.0. 14640 // FIXME: We should be able to use node-level FMF here. 14641 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 14642 EVT VT = N->getValueType(0); 14643 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 14644 !DAG.getTarget().Options.NoSignedZerosFPMath) 14645 return SDValue(); 14646 14647 // fptosi/fptoui round towards zero, so converting from FP to integer and 14648 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 14649 SDValue N0 = N->getOperand(0); 14650 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 14651 N0.getOperand(0).getValueType() == VT) 14652 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14653 14654 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 14655 N0.getOperand(0).getValueType() == VT) 14656 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14657 14658 return SDValue(); 14659 } 14660 14661 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 14662 SDValue N0 = N->getOperand(0); 14663 EVT VT = N->getValueType(0); 14664 EVT OpVT = N0.getValueType(); 14665 14666 // [us]itofp(undef) = 0, because the result value is bounded. 14667 if (N0.isUndef()) 14668 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14669 14670 // fold (sint_to_fp c1) -> c1fp 14671 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14672 // ...but only if the target supports immediate floating-point values 14673 (!LegalOperations || 14674 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14675 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14676 14677 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 14678 // but UINT_TO_FP is legal on this target, try to convert. 14679 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 14680 hasOperation(ISD::UINT_TO_FP, OpVT)) { 14681 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 14682 if (DAG.SignBitIsZero(N0)) 14683 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14684 } 14685 14686 // The next optimizations are desirable only if SELECT_CC can be lowered. 14687 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) 14688 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 14689 !VT.isVector() && 14690 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14691 SDLoc DL(N); 14692 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), 14693 DAG.getConstantFP(0.0, DL, VT)); 14694 } 14695 14696 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 14697 // (select (setcc x, y, cc), 1.0, 0.0) 14698 if (N0.getOpcode() == ISD::ZERO_EXTEND && 14699 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && 14700 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14701 SDLoc DL(N); 14702 return DAG.getSelect(DL, VT, N0.getOperand(0), 14703 DAG.getConstantFP(1.0, DL, VT), 14704 DAG.getConstantFP(0.0, DL, VT)); 14705 } 14706 14707 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14708 return FTrunc; 14709 14710 return SDValue(); 14711 } 14712 14713 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 14714 SDValue N0 = N->getOperand(0); 14715 EVT VT = N->getValueType(0); 14716 EVT OpVT = N0.getValueType(); 14717 14718 // [us]itofp(undef) = 0, because the result value is bounded. 14719 if (N0.isUndef()) 14720 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14721 14722 // fold (uint_to_fp c1) -> c1fp 14723 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14724 // ...but only if the target supports immediate floating-point values 14725 (!LegalOperations || 14726 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14727 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14728 14729 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 14730 // but SINT_TO_FP is legal on this target, try to convert. 14731 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 14732 hasOperation(ISD::SINT_TO_FP, OpVT)) { 14733 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 14734 if (DAG.SignBitIsZero(N0)) 14735 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14736 } 14737 14738 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) 14739 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 14740 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14741 SDLoc DL(N); 14742 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), 14743 DAG.getConstantFP(0.0, DL, VT)); 14744 } 14745 14746 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14747 return FTrunc; 14748 14749 return SDValue(); 14750 } 14751 14752 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 14753 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 14754 SDValue N0 = N->getOperand(0); 14755 EVT VT = N->getValueType(0); 14756 14757 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 14758 return SDValue(); 14759 14760 SDValue Src = N0.getOperand(0); 14761 EVT SrcVT = Src.getValueType(); 14762 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 14763 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 14764 14765 // We can safely assume the conversion won't overflow the output range, 14766 // because (for example) (uint8_t)18293.f is undefined behavior. 14767 14768 // Since we can assume the conversion won't overflow, our decision as to 14769 // whether the input will fit in the float should depend on the minimum 14770 // of the input range and output range. 14771 14772 // This means this is also safe for a signed input and unsigned output, since 14773 // a negative input would lead to undefined behavior. 14774 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 14775 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 14776 unsigned ActualSize = std::min(InputSize, OutputSize); 14777 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 14778 14779 // We can only fold away the float conversion if the input range can be 14780 // represented exactly in the float range. 14781 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 14782 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 14783 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 14784 : ISD::ZERO_EXTEND; 14785 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 14786 } 14787 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 14788 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 14789 return DAG.getBitcast(VT, Src); 14790 } 14791 return SDValue(); 14792 } 14793 14794 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 14795 SDValue N0 = N->getOperand(0); 14796 EVT VT = N->getValueType(0); 14797 14798 // fold (fp_to_sint undef) -> undef 14799 if (N0.isUndef()) 14800 return DAG.getUNDEF(VT); 14801 14802 // fold (fp_to_sint c1fp) -> c1 14803 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14804 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 14805 14806 return FoldIntToFPToInt(N, DAG); 14807 } 14808 14809 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 14810 SDValue N0 = N->getOperand(0); 14811 EVT VT = N->getValueType(0); 14812 14813 // fold (fp_to_uint undef) -> undef 14814 if (N0.isUndef()) 14815 return DAG.getUNDEF(VT); 14816 14817 // fold (fp_to_uint c1fp) -> c1 14818 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14819 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 14820 14821 return FoldIntToFPToInt(N, DAG); 14822 } 14823 14824 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 14825 SDValue N0 = N->getOperand(0); 14826 SDValue N1 = N->getOperand(1); 14827 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14828 EVT VT = N->getValueType(0); 14829 14830 // fold (fp_round c1fp) -> c1fp 14831 if (N0CFP) 14832 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 14833 14834 // fold (fp_round (fp_extend x)) -> x 14835 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 14836 return N0.getOperand(0); 14837 14838 // fold (fp_round (fp_round x)) -> (fp_round x) 14839 if (N0.getOpcode() == ISD::FP_ROUND) { 14840 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 14841 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 14842 14843 // Skip this folding if it results in an fp_round from f80 to f16. 14844 // 14845 // f80 to f16 always generates an expensive (and as yet, unimplemented) 14846 // libcall to __truncxfhf2 instead of selecting native f16 conversion 14847 // instructions from f32 or f64. Moreover, the first (value-preserving) 14848 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 14849 // x86. 14850 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 14851 return SDValue(); 14852 14853 // If the first fp_round isn't a value preserving truncation, it might 14854 // introduce a tie in the second fp_round, that wouldn't occur in the 14855 // single-step fp_round we want to fold to. 14856 // In other words, double rounding isn't the same as rounding. 14857 // Also, this is a value preserving truncation iff both fp_round's are. 14858 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 14859 SDLoc DL(N); 14860 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 14861 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 14862 } 14863 } 14864 14865 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 14866 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 14867 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 14868 N0.getOperand(0), N1); 14869 AddToWorklist(Tmp.getNode()); 14870 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 14871 Tmp, N0.getOperand(1)); 14872 } 14873 14874 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 14875 return NewVSel; 14876 14877 return SDValue(); 14878 } 14879 14880 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 14881 SDValue N0 = N->getOperand(0); 14882 EVT VT = N->getValueType(0); 14883 14884 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 14885 if (N->hasOneUse() && 14886 N->use_begin()->getOpcode() == ISD::FP_ROUND) 14887 return SDValue(); 14888 14889 // fold (fp_extend c1fp) -> c1fp 14890 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14891 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 14892 14893 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 14894 if (N0.getOpcode() == ISD::FP16_TO_FP && 14895 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 14896 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 14897 14898 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 14899 // value of X. 14900 if (N0.getOpcode() == ISD::FP_ROUND 14901 && N0.getConstantOperandVal(1) == 1) { 14902 SDValue In = N0.getOperand(0); 14903 if (In.getValueType() == VT) return In; 14904 if (VT.bitsLT(In.getValueType())) 14905 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 14906 In, N0.getOperand(1)); 14907 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 14908 } 14909 14910 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 14911 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 14912 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 14913 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 14914 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 14915 LN0->getChain(), 14916 LN0->getBasePtr(), N0.getValueType(), 14917 LN0->getMemOperand()); 14918 CombineTo(N, ExtLoad); 14919 CombineTo(N0.getNode(), 14920 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 14921 N0.getValueType(), ExtLoad, 14922 DAG.getIntPtrConstant(1, SDLoc(N0))), 14923 ExtLoad.getValue(1)); 14924 return SDValue(N, 0); // Return N so it doesn't get rechecked! 14925 } 14926 14927 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 14928 return NewVSel; 14929 14930 return SDValue(); 14931 } 14932 14933 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 14934 SDValue N0 = N->getOperand(0); 14935 EVT VT = N->getValueType(0); 14936 14937 // fold (fceil c1) -> fceil(c1) 14938 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14939 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 14940 14941 return SDValue(); 14942 } 14943 14944 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 14945 SDValue N0 = N->getOperand(0); 14946 EVT VT = N->getValueType(0); 14947 14948 // fold (ftrunc c1) -> ftrunc(c1) 14949 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14950 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 14951 14952 // fold ftrunc (known rounded int x) -> x 14953 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 14954 // likely to be generated to extract integer from a rounded floating value. 14955 switch (N0.getOpcode()) { 14956 default: break; 14957 case ISD::FRINT: 14958 case ISD::FTRUNC: 14959 case ISD::FNEARBYINT: 14960 case ISD::FFLOOR: 14961 case ISD::FCEIL: 14962 return N0; 14963 } 14964 14965 return SDValue(); 14966 } 14967 14968 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 14969 SDValue N0 = N->getOperand(0); 14970 EVT VT = N->getValueType(0); 14971 14972 // fold (ffloor c1) -> ffloor(c1) 14973 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14974 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 14975 14976 return SDValue(); 14977 } 14978 14979 SDValue DAGCombiner::visitFNEG(SDNode *N) { 14980 SDValue N0 = N->getOperand(0); 14981 EVT VT = N->getValueType(0); 14982 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14983 14984 // Constant fold FNEG. 14985 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14986 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 14987 14988 if (SDValue NegN0 = 14989 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) 14990 return NegN0; 14991 14992 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 14993 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't 14994 // know it was called from a context with a nsz flag if the input fsub does 14995 // not. 14996 if (N0.getOpcode() == ISD::FSUB && 14997 (DAG.getTarget().Options.NoSignedZerosFPMath || 14998 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { 14999 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), 15000 N0.getOperand(0)); 15001 } 15002 15003 if (SDValue Cast = foldSignChangeInBitcast(N)) 15004 return Cast; 15005 15006 return SDValue(); 15007 } 15008 15009 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, 15010 APFloat (*Op)(const APFloat &, const APFloat &)) { 15011 SDValue N0 = N->getOperand(0); 15012 SDValue N1 = N->getOperand(1); 15013 EVT VT = N->getValueType(0); 15014 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 15015 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 15016 const SDNodeFlags Flags = N->getFlags(); 15017 unsigned Opc = N->getOpcode(); 15018 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; 15019 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; 15020 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15021 15022 if (N0CFP && N1CFP) { 15023 const APFloat &C0 = N0CFP->getValueAPF(); 15024 const APFloat &C1 = N1CFP->getValueAPF(); 15025 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); 15026 } 15027 15028 // Canonicalize to constant on RHS. 15029 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 15030 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 15031 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 15032 15033 if (N1CFP) { 15034 const APFloat &AF = N1CFP->getValueAPF(); 15035 15036 // minnum(X, nan) -> X 15037 // maxnum(X, nan) -> X 15038 // minimum(X, nan) -> nan 15039 // maximum(X, nan) -> nan 15040 if (AF.isNaN()) 15041 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); 15042 15043 // In the following folds, inf can be replaced with the largest finite 15044 // float, if the ninf flag is set. 15045 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { 15046 // minnum(X, -inf) -> -inf 15047 // maxnum(X, +inf) -> +inf 15048 // minimum(X, -inf) -> -inf if nnan 15049 // maximum(X, +inf) -> +inf if nnan 15050 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) 15051 return N->getOperand(1); 15052 15053 // minnum(X, +inf) -> X if nnan 15054 // maxnum(X, -inf) -> X if nnan 15055 // minimum(X, +inf) -> X 15056 // maximum(X, -inf) -> X 15057 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) 15058 return N->getOperand(0); 15059 } 15060 } 15061 15062 return SDValue(); 15063 } 15064 15065 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 15066 return visitFMinMax(DAG, N, minnum); 15067 } 15068 15069 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 15070 return visitFMinMax(DAG, N, maxnum); 15071 } 15072 15073 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { 15074 return visitFMinMax(DAG, N, minimum); 15075 } 15076 15077 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { 15078 return visitFMinMax(DAG, N, maximum); 15079 } 15080 15081 SDValue DAGCombiner::visitFABS(SDNode *N) { 15082 SDValue N0 = N->getOperand(0); 15083 EVT VT = N->getValueType(0); 15084 15085 // fold (fabs c1) -> fabs(c1) 15086 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15087 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 15088 15089 // fold (fabs (fabs x)) -> (fabs x) 15090 if (N0.getOpcode() == ISD::FABS) 15091 return N->getOperand(0); 15092 15093 // fold (fabs (fneg x)) -> (fabs x) 15094 // fold (fabs (fcopysign x, y)) -> (fabs x) 15095 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 15096 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 15097 15098 if (SDValue Cast = foldSignChangeInBitcast(N)) 15099 return Cast; 15100 15101 return SDValue(); 15102 } 15103 15104 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 15105 SDValue Chain = N->getOperand(0); 15106 SDValue N1 = N->getOperand(1); 15107 SDValue N2 = N->getOperand(2); 15108 15109 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are 15110 // nondeterministic jumps). 15111 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { 15112 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, 15113 N1->getOperand(0), N2); 15114 } 15115 15116 // If N is a constant we could fold this into a fallthrough or unconditional 15117 // branch. However that doesn't happen very often in normal code, because 15118 // Instcombine/SimplifyCFG should have handled the available opportunities. 15119 // If we did this folding here, it would be necessary to update the 15120 // MachineBasicBlock CFG, which is awkward. 15121 15122 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 15123 // on the target. 15124 if (N1.getOpcode() == ISD::SETCC && 15125 TLI.isOperationLegalOrCustom(ISD::BR_CC, 15126 N1.getOperand(0).getValueType())) { 15127 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15128 Chain, N1.getOperand(2), 15129 N1.getOperand(0), N1.getOperand(1), N2); 15130 } 15131 15132 if (N1.hasOneUse()) { 15133 // rebuildSetCC calls visitXor which may change the Chain when there is a 15134 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. 15135 HandleSDNode ChainHandle(Chain); 15136 if (SDValue NewN1 = rebuildSetCC(N1)) 15137 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, 15138 ChainHandle.getValue(), NewN1, N2); 15139 } 15140 15141 return SDValue(); 15142 } 15143 15144 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 15145 if (N.getOpcode() == ISD::SRL || 15146 (N.getOpcode() == ISD::TRUNCATE && 15147 (N.getOperand(0).hasOneUse() && 15148 N.getOperand(0).getOpcode() == ISD::SRL))) { 15149 // Look pass the truncate. 15150 if (N.getOpcode() == ISD::TRUNCATE) 15151 N = N.getOperand(0); 15152 15153 // Match this pattern so that we can generate simpler code: 15154 // 15155 // %a = ... 15156 // %b = and i32 %a, 2 15157 // %c = srl i32 %b, 1 15158 // brcond i32 %c ... 15159 // 15160 // into 15161 // 15162 // %a = ... 15163 // %b = and i32 %a, 2 15164 // %c = setcc eq %b, 0 15165 // brcond %c ... 15166 // 15167 // This applies only when the AND constant value has one bit set and the 15168 // SRL constant is equal to the log2 of the AND constant. The back-end is 15169 // smart enough to convert the result into a TEST/JMP sequence. 15170 SDValue Op0 = N.getOperand(0); 15171 SDValue Op1 = N.getOperand(1); 15172 15173 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 15174 SDValue AndOp1 = Op0.getOperand(1); 15175 15176 if (AndOp1.getOpcode() == ISD::Constant) { 15177 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 15178 15179 if (AndConst.isPowerOf2() && 15180 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 15181 SDLoc DL(N); 15182 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 15183 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 15184 ISD::SETNE); 15185 } 15186 } 15187 } 15188 } 15189 15190 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) 15191 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) 15192 if (N.getOpcode() == ISD::XOR) { 15193 // Because we may call this on a speculatively constructed 15194 // SimplifiedSetCC Node, we need to simplify this node first. 15195 // Ideally this should be folded into SimplifySetCC and not 15196 // here. For now, grab a handle to N so we don't lose it from 15197 // replacements interal to the visit. 15198 HandleSDNode XORHandle(N); 15199 while (N.getOpcode() == ISD::XOR) { 15200 SDValue Tmp = visitXOR(N.getNode()); 15201 // No simplification done. 15202 if (!Tmp.getNode()) 15203 break; 15204 // Returning N is form in-visit replacement that may invalidated 15205 // N. Grab value from Handle. 15206 if (Tmp.getNode() == N.getNode()) 15207 N = XORHandle.getValue(); 15208 else // Node simplified. Try simplifying again. 15209 N = Tmp; 15210 } 15211 15212 if (N.getOpcode() != ISD::XOR) 15213 return N; 15214 15215 SDValue Op0 = N->getOperand(0); 15216 SDValue Op1 = N->getOperand(1); 15217 15218 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 15219 bool Equal = false; 15220 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) 15221 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && 15222 Op0.getValueType() == MVT::i1) { 15223 N = Op0; 15224 Op0 = N->getOperand(0); 15225 Op1 = N->getOperand(1); 15226 Equal = true; 15227 } 15228 15229 EVT SetCCVT = N.getValueType(); 15230 if (LegalTypes) 15231 SetCCVT = getSetCCResultType(SetCCVT); 15232 // Replace the uses of XOR with SETCC 15233 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, 15234 Equal ? ISD::SETEQ : ISD::SETNE); 15235 } 15236 } 15237 15238 return SDValue(); 15239 } 15240 15241 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 15242 // 15243 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 15244 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 15245 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 15246 15247 // If N is a constant we could fold this into a fallthrough or unconditional 15248 // branch. However that doesn't happen very often in normal code, because 15249 // Instcombine/SimplifyCFG should have handled the available opportunities. 15250 // If we did this folding here, it would be necessary to update the 15251 // MachineBasicBlock CFG, which is awkward. 15252 15253 // Use SimplifySetCC to simplify SETCC's. 15254 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 15255 CondLHS, CondRHS, CC->get(), SDLoc(N), 15256 false); 15257 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 15258 15259 // fold to a simpler setcc 15260 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 15261 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15262 N->getOperand(0), Simp.getOperand(2), 15263 Simp.getOperand(0), Simp.getOperand(1), 15264 N->getOperand(4)); 15265 15266 return SDValue(); 15267 } 15268 15269 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, 15270 bool &IsLoad, bool &IsMasked, SDValue &Ptr, 15271 const TargetLowering &TLI) { 15272 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 15273 if (LD->isIndexed()) 15274 return false; 15275 EVT VT = LD->getMemoryVT(); 15276 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) 15277 return false; 15278 Ptr = LD->getBasePtr(); 15279 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 15280 if (ST->isIndexed()) 15281 return false; 15282 EVT VT = ST->getMemoryVT(); 15283 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) 15284 return false; 15285 Ptr = ST->getBasePtr(); 15286 IsLoad = false; 15287 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 15288 if (LD->isIndexed()) 15289 return false; 15290 EVT VT = LD->getMemoryVT(); 15291 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && 15292 !TLI.isIndexedMaskedLoadLegal(Dec, VT)) 15293 return false; 15294 Ptr = LD->getBasePtr(); 15295 IsMasked = true; 15296 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 15297 if (ST->isIndexed()) 15298 return false; 15299 EVT VT = ST->getMemoryVT(); 15300 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && 15301 !TLI.isIndexedMaskedStoreLegal(Dec, VT)) 15302 return false; 15303 Ptr = ST->getBasePtr(); 15304 IsLoad = false; 15305 IsMasked = true; 15306 } else { 15307 return false; 15308 } 15309 return true; 15310 } 15311 15312 /// Try turning a load/store into a pre-indexed load/store when the base 15313 /// pointer is an add or subtract and it has other uses besides the load/store. 15314 /// After the transformation, the new indexed load/store has effectively folded 15315 /// the add/subtract in and all of its other uses are redirected to the 15316 /// new load/store. 15317 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 15318 if (Level < AfterLegalizeDAG) 15319 return false; 15320 15321 bool IsLoad = true; 15322 bool IsMasked = false; 15323 SDValue Ptr; 15324 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, 15325 Ptr, TLI)) 15326 return false; 15327 15328 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 15329 // out. There is no reason to make this a preinc/predec. 15330 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 15331 Ptr.getNode()->hasOneUse()) 15332 return false; 15333 15334 // Ask the target to do addressing mode selection. 15335 SDValue BasePtr; 15336 SDValue Offset; 15337 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15338 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 15339 return false; 15340 15341 // Backends without true r+i pre-indexed forms may need to pass a 15342 // constant base with a variable offset so that constant coercion 15343 // will work with the patterns in canonical form. 15344 bool Swapped = false; 15345 if (isa<ConstantSDNode>(BasePtr)) { 15346 std::swap(BasePtr, Offset); 15347 Swapped = true; 15348 } 15349 15350 // Don't create a indexed load / store with zero offset. 15351 if (isNullConstant(Offset)) 15352 return false; 15353 15354 // Try turning it into a pre-indexed load / store except when: 15355 // 1) The new base ptr is a frame index. 15356 // 2) If N is a store and the new base ptr is either the same as or is a 15357 // predecessor of the value being stored. 15358 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 15359 // that would create a cycle. 15360 // 4) All uses are load / store ops that use it as old base ptr. 15361 15362 // Check #1. Preinc'ing a frame index would require copying the stack pointer 15363 // (plus the implicit offset) to a register to preinc anyway. 15364 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15365 return false; 15366 15367 // Check #2. 15368 if (!IsLoad) { 15369 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() 15370 : cast<StoreSDNode>(N)->getValue(); 15371 15372 // Would require a copy. 15373 if (Val == BasePtr) 15374 return false; 15375 15376 // Would create a cycle. 15377 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 15378 return false; 15379 } 15380 15381 // Caches for hasPredecessorHelper. 15382 SmallPtrSet<const SDNode *, 32> Visited; 15383 SmallVector<const SDNode *, 16> Worklist; 15384 Worklist.push_back(N); 15385 15386 // If the offset is a constant, there may be other adds of constants that 15387 // can be folded with this one. We should do this to avoid having to keep 15388 // a copy of the original base pointer. 15389 SmallVector<SDNode *, 16> OtherUses; 15390 if (isa<ConstantSDNode>(Offset)) 15391 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 15392 UE = BasePtr.getNode()->use_end(); 15393 UI != UE; ++UI) { 15394 SDUse &Use = UI.getUse(); 15395 // Skip the use that is Ptr and uses of other results from BasePtr's 15396 // node (important for nodes that return multiple results). 15397 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 15398 continue; 15399 15400 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 15401 continue; 15402 15403 if (Use.getUser()->getOpcode() != ISD::ADD && 15404 Use.getUser()->getOpcode() != ISD::SUB) { 15405 OtherUses.clear(); 15406 break; 15407 } 15408 15409 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 15410 if (!isa<ConstantSDNode>(Op1)) { 15411 OtherUses.clear(); 15412 break; 15413 } 15414 15415 // FIXME: In some cases, we can be smarter about this. 15416 if (Op1.getValueType() != Offset.getValueType()) { 15417 OtherUses.clear(); 15418 break; 15419 } 15420 15421 OtherUses.push_back(Use.getUser()); 15422 } 15423 15424 if (Swapped) 15425 std::swap(BasePtr, Offset); 15426 15427 // Now check for #3 and #4. 15428 bool RealUse = false; 15429 15430 for (SDNode *Use : Ptr.getNode()->uses()) { 15431 if (Use == N) 15432 continue; 15433 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 15434 return false; 15435 15436 // If Ptr may be folded in addressing mode of other use, then it's 15437 // not profitable to do this transformation. 15438 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 15439 RealUse = true; 15440 } 15441 15442 if (!RealUse) 15443 return false; 15444 15445 SDValue Result; 15446 if (!IsMasked) { 15447 if (IsLoad) 15448 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 15449 else 15450 Result = 15451 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 15452 } else { 15453 if (IsLoad) 15454 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15455 Offset, AM); 15456 else 15457 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, 15458 Offset, AM); 15459 } 15460 ++PreIndexedNodes; 15461 ++NodesCombined; 15462 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 15463 Result.getNode()->dump(&DAG); dbgs() << '\n'); 15464 WorklistRemover DeadNodes(*this); 15465 if (IsLoad) { 15466 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15467 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15468 } else { 15469 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15470 } 15471 15472 // Finally, since the node is now dead, remove it from the graph. 15473 deleteAndRecombine(N); 15474 15475 if (Swapped) 15476 std::swap(BasePtr, Offset); 15477 15478 // Replace other uses of BasePtr that can be updated to use Ptr 15479 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 15480 unsigned OffsetIdx = 1; 15481 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 15482 OffsetIdx = 0; 15483 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 15484 BasePtr.getNode() && "Expected BasePtr operand"); 15485 15486 // We need to replace ptr0 in the following expression: 15487 // x0 * offset0 + y0 * ptr0 = t0 15488 // knowing that 15489 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 15490 // 15491 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 15492 // indexed load/store and the expression that needs to be re-written. 15493 // 15494 // Therefore, we have: 15495 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 15496 15497 auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 15498 const APInt &Offset0 = CN->getAPIntValue(); 15499 const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 15500 int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 15501 int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 15502 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 15503 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 15504 15505 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 15506 15507 APInt CNV = Offset0; 15508 if (X0 < 0) CNV = -CNV; 15509 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 15510 else CNV = CNV - Offset1; 15511 15512 SDLoc DL(OtherUses[i]); 15513 15514 // We can now generate the new expression. 15515 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 15516 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); 15517 15518 SDValue NewUse = DAG.getNode(Opcode, 15519 DL, 15520 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 15521 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 15522 deleteAndRecombine(OtherUses[i]); 15523 } 15524 15525 // Replace the uses of Ptr with uses of the updated base value. 15526 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); 15527 deleteAndRecombine(Ptr.getNode()); 15528 AddToWorklist(Result.getNode()); 15529 15530 return true; 15531 } 15532 15533 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, 15534 SDValue &BasePtr, SDValue &Offset, 15535 ISD::MemIndexedMode &AM, 15536 SelectionDAG &DAG, 15537 const TargetLowering &TLI) { 15538 if (PtrUse == N || 15539 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) 15540 return false; 15541 15542 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) 15543 return false; 15544 15545 // Don't create a indexed load / store with zero offset. 15546 if (isNullConstant(Offset)) 15547 return false; 15548 15549 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15550 return false; 15551 15552 SmallPtrSet<const SDNode *, 32> Visited; 15553 for (SDNode *Use : BasePtr.getNode()->uses()) { 15554 if (Use == Ptr.getNode()) 15555 continue; 15556 15557 // No if there's a later user which could perform the index instead. 15558 if (isa<MemSDNode>(Use)) { 15559 bool IsLoad = true; 15560 bool IsMasked = false; 15561 SDValue OtherPtr; 15562 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15563 IsMasked, OtherPtr, TLI)) { 15564 SmallVector<const SDNode *, 2> Worklist; 15565 Worklist.push_back(Use); 15566 if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) 15567 return false; 15568 } 15569 } 15570 15571 // If all the uses are load / store addresses, then don't do the 15572 // transformation. 15573 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { 15574 for (SDNode *UseUse : Use->uses()) 15575 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 15576 return false; 15577 } 15578 } 15579 return true; 15580 } 15581 15582 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, 15583 bool &IsMasked, SDValue &Ptr, 15584 SDValue &BasePtr, SDValue &Offset, 15585 ISD::MemIndexedMode &AM, 15586 SelectionDAG &DAG, 15587 const TargetLowering &TLI) { 15588 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15589 IsMasked, Ptr, TLI) || 15590 Ptr.getNode()->hasOneUse()) 15591 return nullptr; 15592 15593 // Try turning it into a post-indexed load / store except when 15594 // 1) All uses are load / store ops that use it as base ptr (and 15595 // it may be folded as addressing mmode). 15596 // 2) Op must be independent of N, i.e. Op is neither a predecessor 15597 // nor a successor of N. Otherwise, if Op is folded that would 15598 // create a cycle. 15599 for (SDNode *Op : Ptr->uses()) { 15600 // Check for #1. 15601 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) 15602 continue; 15603 15604 // Check for #2. 15605 SmallPtrSet<const SDNode *, 32> Visited; 15606 SmallVector<const SDNode *, 8> Worklist; 15607 // Ptr is predecessor to both N and Op. 15608 Visited.insert(Ptr.getNode()); 15609 Worklist.push_back(N); 15610 Worklist.push_back(Op); 15611 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 15612 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) 15613 return Op; 15614 } 15615 return nullptr; 15616 } 15617 15618 /// Try to combine a load/store with a add/sub of the base pointer node into a 15619 /// post-indexed load/store. The transformation folded the add/subtract into the 15620 /// new indexed load/store effectively and all of its uses are redirected to the 15621 /// new load/store. 15622 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 15623 if (Level < AfterLegalizeDAG) 15624 return false; 15625 15626 bool IsLoad = true; 15627 bool IsMasked = false; 15628 SDValue Ptr; 15629 SDValue BasePtr; 15630 SDValue Offset; 15631 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15632 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, 15633 Offset, AM, DAG, TLI); 15634 if (!Op) 15635 return false; 15636 15637 SDValue Result; 15638 if (!IsMasked) 15639 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15640 Offset, AM) 15641 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), 15642 BasePtr, Offset, AM); 15643 else 15644 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), 15645 BasePtr, Offset, AM) 15646 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), 15647 BasePtr, Offset, AM); 15648 ++PostIndexedNodes; 15649 ++NodesCombined; 15650 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); 15651 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); 15652 dbgs() << '\n'); 15653 WorklistRemover DeadNodes(*this); 15654 if (IsLoad) { 15655 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15656 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15657 } else { 15658 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15659 } 15660 15661 // Finally, since the node is now dead, remove it from the graph. 15662 deleteAndRecombine(N); 15663 15664 // Replace the uses of Use with uses of the updated base value. 15665 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 15666 Result.getValue(IsLoad ? 1 : 0)); 15667 deleteAndRecombine(Op); 15668 return true; 15669 } 15670 15671 /// Return the base-pointer arithmetic from an indexed \p LD. 15672 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 15673 ISD::MemIndexedMode AM = LD->getAddressingMode(); 15674 assert(AM != ISD::UNINDEXED); 15675 SDValue BP = LD->getOperand(1); 15676 SDValue Inc = LD->getOperand(2); 15677 15678 // Some backends use TargetConstants for load offsets, but don't expect 15679 // TargetConstants in general ADD nodes. We can convert these constants into 15680 // regular Constants (if the constant is not opaque). 15681 assert((Inc.getOpcode() != ISD::TargetConstant || 15682 !cast<ConstantSDNode>(Inc)->isOpaque()) && 15683 "Cannot split out indexing using opaque target constants"); 15684 if (Inc.getOpcode() == ISD::TargetConstant) { 15685 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 15686 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 15687 ConstInc->getValueType(0)); 15688 } 15689 15690 unsigned Opc = 15691 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 15692 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 15693 } 15694 15695 static inline ElementCount numVectorEltsOrZero(EVT T) { 15696 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); 15697 } 15698 15699 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 15700 Val = ST->getValue(); 15701 EVT STType = Val.getValueType(); 15702 EVT STMemType = ST->getMemoryVT(); 15703 if (STType == STMemType) 15704 return true; 15705 if (isTypeLegal(STMemType)) 15706 return false; // fail. 15707 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 15708 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 15709 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 15710 return true; 15711 } 15712 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 15713 STType.isInteger() && STMemType.isInteger()) { 15714 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 15715 return true; 15716 } 15717 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 15718 Val = DAG.getBitcast(STMemType, Val); 15719 return true; 15720 } 15721 return false; // fail. 15722 } 15723 15724 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 15725 EVT LDMemType = LD->getMemoryVT(); 15726 EVT LDType = LD->getValueType(0); 15727 assert(Val.getValueType() == LDMemType && 15728 "Attempting to extend value of non-matching type"); 15729 if (LDType == LDMemType) 15730 return true; 15731 if (LDMemType.isInteger() && LDType.isInteger()) { 15732 switch (LD->getExtensionType()) { 15733 case ISD::NON_EXTLOAD: 15734 Val = DAG.getBitcast(LDType, Val); 15735 return true; 15736 case ISD::EXTLOAD: 15737 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 15738 return true; 15739 case ISD::SEXTLOAD: 15740 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 15741 return true; 15742 case ISD::ZEXTLOAD: 15743 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 15744 return true; 15745 } 15746 } 15747 return false; 15748 } 15749 15750 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 15751 if (OptLevel == CodeGenOpt::None || !LD->isSimple()) 15752 return SDValue(); 15753 SDValue Chain = LD->getOperand(0); 15754 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 15755 // TODO: Relax this restriction for unordered atomics (see D66309) 15756 if (!ST || !ST->isSimple()) 15757 return SDValue(); 15758 15759 EVT LDType = LD->getValueType(0); 15760 EVT LDMemType = LD->getMemoryVT(); 15761 EVT STMemType = ST->getMemoryVT(); 15762 EVT STType = ST->getValue().getValueType(); 15763 15764 // There are two cases to consider here: 15765 // 1. The store is fixed width and the load is scalable. In this case we 15766 // don't know at compile time if the store completely envelops the load 15767 // so we abandon the optimisation. 15768 // 2. The store is scalable and the load is fixed width. We could 15769 // potentially support a limited number of cases here, but there has been 15770 // no cost-benefit analysis to prove it's worth it. 15771 bool LdStScalable = LDMemType.isScalableVector(); 15772 if (LdStScalable != STMemType.isScalableVector()) 15773 return SDValue(); 15774 15775 // If we are dealing with scalable vectors on a big endian platform the 15776 // calculation of offsets below becomes trickier, since we do not know at 15777 // compile time the absolute size of the vector. Until we've done more 15778 // analysis on big-endian platforms it seems better to bail out for now. 15779 if (LdStScalable && DAG.getDataLayout().isBigEndian()) 15780 return SDValue(); 15781 15782 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 15783 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 15784 int64_t Offset; 15785 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 15786 return SDValue(); 15787 15788 // Normalize for Endianness. After this Offset=0 will denote that the least 15789 // significant bit in the loaded value maps to the least significant bit in 15790 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 15791 // n:th least significant byte of the stored value. 15792 if (DAG.getDataLayout().isBigEndian()) 15793 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() - 15794 (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) / 15795 8 - 15796 Offset; 15797 15798 // Check that the stored value cover all bits that are loaded. 15799 bool STCoversLD; 15800 15801 TypeSize LdMemSize = LDMemType.getSizeInBits(); 15802 TypeSize StMemSize = STMemType.getSizeInBits(); 15803 if (LdStScalable) 15804 STCoversLD = (Offset == 0) && LdMemSize == StMemSize; 15805 else 15806 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <= 15807 StMemSize.getFixedSize()); 15808 15809 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 15810 if (LD->isIndexed()) { 15811 // Cannot handle opaque target constants and we must respect the user's 15812 // request not to split indexes from loads. 15813 if (!canSplitIdx(LD)) 15814 return SDValue(); 15815 SDValue Idx = SplitIndexingFromLoad(LD); 15816 SDValue Ops[] = {Val, Idx, Chain}; 15817 return CombineTo(LD, Ops, 3); 15818 } 15819 return CombineTo(LD, Val, Chain); 15820 }; 15821 15822 if (!STCoversLD) 15823 return SDValue(); 15824 15825 // Memory as copy space (potentially masked). 15826 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 15827 // Simple case: Direct non-truncating forwarding 15828 if (LDType.getSizeInBits() == LdMemSize) 15829 return ReplaceLd(LD, ST->getValue(), Chain); 15830 // Can we model the truncate and extension with an and mask? 15831 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 15832 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 15833 // Mask to size of LDMemType 15834 auto Mask = 15835 DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), 15836 StMemSize.getFixedSize()), 15837 SDLoc(ST), STType); 15838 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 15839 return ReplaceLd(LD, Val, Chain); 15840 } 15841 } 15842 15843 // TODO: Deal with nonzero offset. 15844 if (LD->getBasePtr().isUndef() || Offset != 0) 15845 return SDValue(); 15846 // Model necessary truncations / extenstions. 15847 SDValue Val; 15848 // Truncate Value To Stored Memory Size. 15849 do { 15850 if (!getTruncatedStoreValue(ST, Val)) 15851 continue; 15852 if (!isTypeLegal(LDMemType)) 15853 continue; 15854 if (STMemType != LDMemType) { 15855 // TODO: Support vectors? This requires extract_subvector/bitcast. 15856 if (!STMemType.isVector() && !LDMemType.isVector() && 15857 STMemType.isInteger() && LDMemType.isInteger()) 15858 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 15859 else 15860 continue; 15861 } 15862 if (!extendLoadedValueToExtension(LD, Val)) 15863 continue; 15864 return ReplaceLd(LD, Val, Chain); 15865 } while (false); 15866 15867 // On failure, cleanup dead nodes we may have created. 15868 if (Val->use_empty()) 15869 deleteAndRecombine(Val.getNode()); 15870 return SDValue(); 15871 } 15872 15873 SDValue DAGCombiner::visitLOAD(SDNode *N) { 15874 LoadSDNode *LD = cast<LoadSDNode>(N); 15875 SDValue Chain = LD->getChain(); 15876 SDValue Ptr = LD->getBasePtr(); 15877 15878 // If load is not volatile and there are no uses of the loaded value (and 15879 // the updated indexed value in case of indexed loads), change uses of the 15880 // chain value into uses of the chain input (i.e. delete the dead load). 15881 // TODO: Allow this for unordered atomics (see D66309) 15882 if (LD->isSimple()) { 15883 if (N->getValueType(1) == MVT::Other) { 15884 // Unindexed loads. 15885 if (!N->hasAnyUseOfValue(0)) { 15886 // It's not safe to use the two value CombineTo variant here. e.g. 15887 // v1, chain2 = load chain1, loc 15888 // v2, chain3 = load chain2, loc 15889 // v3 = add v2, c 15890 // Now we replace use of chain2 with chain1. This makes the second load 15891 // isomorphic to the one we are deleting, and thus makes this load live. 15892 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 15893 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); 15894 dbgs() << "\n"); 15895 WorklistRemover DeadNodes(*this); 15896 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 15897 AddUsersToWorklist(Chain.getNode()); 15898 if (N->use_empty()) 15899 deleteAndRecombine(N); 15900 15901 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15902 } 15903 } else { 15904 // Indexed loads. 15905 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 15906 15907 // If this load has an opaque TargetConstant offset, then we cannot split 15908 // the indexing into an add/sub directly (that TargetConstant may not be 15909 // valid for a different type of node, and we cannot convert an opaque 15910 // target constant into a regular constant). 15911 bool CanSplitIdx = canSplitIdx(LD); 15912 15913 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { 15914 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 15915 SDValue Index; 15916 if (N->hasAnyUseOfValue(1) && CanSplitIdx) { 15917 Index = SplitIndexingFromLoad(LD); 15918 // Try to fold the base pointer arithmetic into subsequent loads and 15919 // stores. 15920 AddUsersToWorklist(N); 15921 } else 15922 Index = DAG.getUNDEF(N->getValueType(1)); 15923 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 15924 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); 15925 dbgs() << " and 2 other values\n"); 15926 WorklistRemover DeadNodes(*this); 15927 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 15928 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 15929 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 15930 deleteAndRecombine(N); 15931 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15932 } 15933 } 15934 } 15935 15936 // If this load is directly stored, replace the load value with the stored 15937 // value. 15938 if (auto V = ForwardStoreValueToDirectLoad(LD)) 15939 return V; 15940 15941 // Try to infer better alignment information than the load already has. 15942 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { 15943 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 15944 if (*Alignment > LD->getAlign() && 15945 isAligned(*Alignment, LD->getSrcValueOffset())) { 15946 SDValue NewLoad = DAG.getExtLoad( 15947 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 15948 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, 15949 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 15950 // NewLoad will always be N as we are only refining the alignment 15951 assert(NewLoad.getNode() == N); 15952 (void)NewLoad; 15953 } 15954 } 15955 } 15956 15957 if (LD->isUnindexed()) { 15958 // Walk up chain skipping non-aliasing memory nodes. 15959 SDValue BetterChain = FindBetterChain(LD, Chain); 15960 15961 // If there is a better chain. 15962 if (Chain != BetterChain) { 15963 SDValue ReplLoad; 15964 15965 // Replace the chain to void dependency. 15966 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 15967 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 15968 BetterChain, Ptr, LD->getMemOperand()); 15969 } else { 15970 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 15971 LD->getValueType(0), 15972 BetterChain, Ptr, LD->getMemoryVT(), 15973 LD->getMemOperand()); 15974 } 15975 15976 // Create token factor to keep old chain connected. 15977 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 15978 MVT::Other, Chain, ReplLoad.getValue(1)); 15979 15980 // Replace uses with load result and token factor 15981 return CombineTo(N, ReplLoad.getValue(0), Token); 15982 } 15983 } 15984 15985 // Try transforming N to an indexed load. 15986 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 15987 return SDValue(N, 0); 15988 15989 // Try to slice up N to more direct loads if the slices are mapped to 15990 // different register banks or pairing can take place. 15991 if (SliceUpLoad(N)) 15992 return SDValue(N, 0); 15993 15994 return SDValue(); 15995 } 15996 15997 namespace { 15998 15999 /// Helper structure used to slice a load in smaller loads. 16000 /// Basically a slice is obtained from the following sequence: 16001 /// Origin = load Ty1, Base 16002 /// Shift = srl Ty1 Origin, CstTy Amount 16003 /// Inst = trunc Shift to Ty2 16004 /// 16005 /// Then, it will be rewritten into: 16006 /// Slice = load SliceTy, Base + SliceOffset 16007 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 16008 /// 16009 /// SliceTy is deduced from the number of bits that are actually used to 16010 /// build Inst. 16011 struct LoadedSlice { 16012 /// Helper structure used to compute the cost of a slice. 16013 struct Cost { 16014 /// Are we optimizing for code size. 16015 bool ForCodeSize = false; 16016 16017 /// Various cost. 16018 unsigned Loads = 0; 16019 unsigned Truncates = 0; 16020 unsigned CrossRegisterBanksCopies = 0; 16021 unsigned ZExts = 0; 16022 unsigned Shift = 0; 16023 16024 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} 16025 16026 /// Get the cost of one isolated slice. 16027 Cost(const LoadedSlice &LS, bool ForCodeSize) 16028 : ForCodeSize(ForCodeSize), Loads(1) { 16029 EVT TruncType = LS.Inst->getValueType(0); 16030 EVT LoadedType = LS.getLoadedType(); 16031 if (TruncType != LoadedType && 16032 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 16033 ZExts = 1; 16034 } 16035 16036 /// Account for slicing gain in the current cost. 16037 /// Slicing provide a few gains like removing a shift or a 16038 /// truncate. This method allows to grow the cost of the original 16039 /// load with the gain from this slice. 16040 void addSliceGain(const LoadedSlice &LS) { 16041 // Each slice saves a truncate. 16042 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 16043 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 16044 LS.Inst->getValueType(0))) 16045 ++Truncates; 16046 // If there is a shift amount, this slice gets rid of it. 16047 if (LS.Shift) 16048 ++Shift; 16049 // If this slice can merge a cross register bank copy, account for it. 16050 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 16051 ++CrossRegisterBanksCopies; 16052 } 16053 16054 Cost &operator+=(const Cost &RHS) { 16055 Loads += RHS.Loads; 16056 Truncates += RHS.Truncates; 16057 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 16058 ZExts += RHS.ZExts; 16059 Shift += RHS.Shift; 16060 return *this; 16061 } 16062 16063 bool operator==(const Cost &RHS) const { 16064 return Loads == RHS.Loads && Truncates == RHS.Truncates && 16065 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 16066 ZExts == RHS.ZExts && Shift == RHS.Shift; 16067 } 16068 16069 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 16070 16071 bool operator<(const Cost &RHS) const { 16072 // Assume cross register banks copies are as expensive as loads. 16073 // FIXME: Do we want some more target hooks? 16074 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 16075 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 16076 // Unless we are optimizing for code size, consider the 16077 // expensive operation first. 16078 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 16079 return ExpensiveOpsLHS < ExpensiveOpsRHS; 16080 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 16081 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 16082 } 16083 16084 bool operator>(const Cost &RHS) const { return RHS < *this; } 16085 16086 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 16087 16088 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 16089 }; 16090 16091 // The last instruction that represent the slice. This should be a 16092 // truncate instruction. 16093 SDNode *Inst; 16094 16095 // The original load instruction. 16096 LoadSDNode *Origin; 16097 16098 // The right shift amount in bits from the original load. 16099 unsigned Shift; 16100 16101 // The DAG from which Origin came from. 16102 // This is used to get some contextual information about legal types, etc. 16103 SelectionDAG *DAG; 16104 16105 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 16106 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 16107 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 16108 16109 /// Get the bits used in a chunk of bits \p BitWidth large. 16110 /// \return Result is \p BitWidth and has used bits set to 1 and 16111 /// not used bits set to 0. 16112 APInt getUsedBits() const { 16113 // Reproduce the trunc(lshr) sequence: 16114 // - Start from the truncated value. 16115 // - Zero extend to the desired bit width. 16116 // - Shift left. 16117 assert(Origin && "No original load to compare against."); 16118 unsigned BitWidth = Origin->getValueSizeInBits(0); 16119 assert(Inst && "This slice is not bound to an instruction"); 16120 assert(Inst->getValueSizeInBits(0) <= BitWidth && 16121 "Extracted slice is bigger than the whole type!"); 16122 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 16123 UsedBits.setAllBits(); 16124 UsedBits = UsedBits.zext(BitWidth); 16125 UsedBits <<= Shift; 16126 return UsedBits; 16127 } 16128 16129 /// Get the size of the slice to be loaded in bytes. 16130 unsigned getLoadedSize() const { 16131 unsigned SliceSize = getUsedBits().countPopulation(); 16132 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 16133 return SliceSize / 8; 16134 } 16135 16136 /// Get the type that will be loaded for this slice. 16137 /// Note: This may not be the final type for the slice. 16138 EVT getLoadedType() const { 16139 assert(DAG && "Missing context"); 16140 LLVMContext &Ctxt = *DAG->getContext(); 16141 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 16142 } 16143 16144 /// Get the alignment of the load used for this slice. 16145 Align getAlign() const { 16146 Align Alignment = Origin->getAlign(); 16147 uint64_t Offset = getOffsetFromBase(); 16148 if (Offset != 0) 16149 Alignment = commonAlignment(Alignment, Alignment.value() + Offset); 16150 return Alignment; 16151 } 16152 16153 /// Check if this slice can be rewritten with legal operations. 16154 bool isLegal() const { 16155 // An invalid slice is not legal. 16156 if (!Origin || !Inst || !DAG) 16157 return false; 16158 16159 // Offsets are for indexed load only, we do not handle that. 16160 if (!Origin->getOffset().isUndef()) 16161 return false; 16162 16163 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16164 16165 // Check that the type is legal. 16166 EVT SliceType = getLoadedType(); 16167 if (!TLI.isTypeLegal(SliceType)) 16168 return false; 16169 16170 // Check that the load is legal for this type. 16171 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 16172 return false; 16173 16174 // Check that the offset can be computed. 16175 // 1. Check its type. 16176 EVT PtrType = Origin->getBasePtr().getValueType(); 16177 if (PtrType == MVT::Untyped || PtrType.isExtended()) 16178 return false; 16179 16180 // 2. Check that it fits in the immediate. 16181 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 16182 return false; 16183 16184 // 3. Check that the computation is legal. 16185 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 16186 return false; 16187 16188 // Check that the zext is legal if it needs one. 16189 EVT TruncateType = Inst->getValueType(0); 16190 if (TruncateType != SliceType && 16191 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 16192 return false; 16193 16194 return true; 16195 } 16196 16197 /// Get the offset in bytes of this slice in the original chunk of 16198 /// bits. 16199 /// \pre DAG != nullptr. 16200 uint64_t getOffsetFromBase() const { 16201 assert(DAG && "Missing context."); 16202 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 16203 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 16204 uint64_t Offset = Shift / 8; 16205 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 16206 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 16207 "The size of the original loaded type is not a multiple of a" 16208 " byte."); 16209 // If Offset is bigger than TySizeInBytes, it means we are loading all 16210 // zeros. This should have been optimized before in the process. 16211 assert(TySizeInBytes > Offset && 16212 "Invalid shift amount for given loaded size"); 16213 if (IsBigEndian) 16214 Offset = TySizeInBytes - Offset - getLoadedSize(); 16215 return Offset; 16216 } 16217 16218 /// Generate the sequence of instructions to load the slice 16219 /// represented by this object and redirect the uses of this slice to 16220 /// this new sequence of instructions. 16221 /// \pre this->Inst && this->Origin are valid Instructions and this 16222 /// object passed the legal check: LoadedSlice::isLegal returned true. 16223 /// \return The last instruction of the sequence used to load the slice. 16224 SDValue loadSlice() const { 16225 assert(Inst && Origin && "Unable to replace a non-existing slice."); 16226 const SDValue &OldBaseAddr = Origin->getBasePtr(); 16227 SDValue BaseAddr = OldBaseAddr; 16228 // Get the offset in that chunk of bytes w.r.t. the endianness. 16229 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 16230 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 16231 if (Offset) { 16232 // BaseAddr = BaseAddr + Offset. 16233 EVT ArithType = BaseAddr.getValueType(); 16234 SDLoc DL(Origin); 16235 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 16236 DAG->getConstant(Offset, DL, ArithType)); 16237 } 16238 16239 // Create the type of the loaded slice according to its size. 16240 EVT SliceType = getLoadedType(); 16241 16242 // Create the load for the slice. 16243 SDValue LastInst = 16244 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 16245 Origin->getPointerInfo().getWithOffset(Offset), getAlign(), 16246 Origin->getMemOperand()->getFlags()); 16247 // If the final type is not the same as the loaded type, this means that 16248 // we have to pad with zero. Create a zero extend for that. 16249 EVT FinalType = Inst->getValueType(0); 16250 if (SliceType != FinalType) 16251 LastInst = 16252 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 16253 return LastInst; 16254 } 16255 16256 /// Check if this slice can be merged with an expensive cross register 16257 /// bank copy. E.g., 16258 /// i = load i32 16259 /// f = bitcast i32 i to float 16260 bool canMergeExpensiveCrossRegisterBankCopy() const { 16261 if (!Inst || !Inst->hasOneUse()) 16262 return false; 16263 SDNode *Use = *Inst->use_begin(); 16264 if (Use->getOpcode() != ISD::BITCAST) 16265 return false; 16266 assert(DAG && "Missing context"); 16267 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16268 EVT ResVT = Use->getValueType(0); 16269 const TargetRegisterClass *ResRC = 16270 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 16271 const TargetRegisterClass *ArgRC = 16272 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 16273 Use->getOperand(0)->isDivergent()); 16274 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 16275 return false; 16276 16277 // At this point, we know that we perform a cross-register-bank copy. 16278 // Check if it is expensive. 16279 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 16280 // Assume bitcasts are cheap, unless both register classes do not 16281 // explicitly share a common sub class. 16282 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 16283 return false; 16284 16285 // Check if it will be merged with the load. 16286 // 1. Check the alignment / fast memory access constraint. 16287 bool IsFast = false; 16288 if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT, 16289 Origin->getAddressSpace(), getAlign(), 16290 Origin->getMemOperand()->getFlags(), &IsFast) || 16291 !IsFast) 16292 return false; 16293 16294 // 2. Check that the load is a legal operation for that type. 16295 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 16296 return false; 16297 16298 // 3. Check that we do not have a zext in the way. 16299 if (Inst->getValueType(0) != getLoadedType()) 16300 return false; 16301 16302 return true; 16303 } 16304 }; 16305 16306 } // end anonymous namespace 16307 16308 /// Check that all bits set in \p UsedBits form a dense region, i.e., 16309 /// \p UsedBits looks like 0..0 1..1 0..0. 16310 static bool areUsedBitsDense(const APInt &UsedBits) { 16311 // If all the bits are one, this is dense! 16312 if (UsedBits.isAllOnes()) 16313 return true; 16314 16315 // Get rid of the unused bits on the right. 16316 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 16317 // Get rid of the unused bits on the left. 16318 if (NarrowedUsedBits.countLeadingZeros()) 16319 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 16320 // Check that the chunk of bits is completely used. 16321 return NarrowedUsedBits.isAllOnes(); 16322 } 16323 16324 /// Check whether or not \p First and \p Second are next to each other 16325 /// in memory. This means that there is no hole between the bits loaded 16326 /// by \p First and the bits loaded by \p Second. 16327 static bool areSlicesNextToEachOther(const LoadedSlice &First, 16328 const LoadedSlice &Second) { 16329 assert(First.Origin == Second.Origin && First.Origin && 16330 "Unable to match different memory origins."); 16331 APInt UsedBits = First.getUsedBits(); 16332 assert((UsedBits & Second.getUsedBits()) == 0 && 16333 "Slices are not supposed to overlap."); 16334 UsedBits |= Second.getUsedBits(); 16335 return areUsedBitsDense(UsedBits); 16336 } 16337 16338 /// Adjust the \p GlobalLSCost according to the target 16339 /// paring capabilities and the layout of the slices. 16340 /// \pre \p GlobalLSCost should account for at least as many loads as 16341 /// there is in the slices in \p LoadedSlices. 16342 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16343 LoadedSlice::Cost &GlobalLSCost) { 16344 unsigned NumberOfSlices = LoadedSlices.size(); 16345 // If there is less than 2 elements, no pairing is possible. 16346 if (NumberOfSlices < 2) 16347 return; 16348 16349 // Sort the slices so that elements that are likely to be next to each 16350 // other in memory are next to each other in the list. 16351 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 16352 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 16353 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 16354 }); 16355 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 16356 // First (resp. Second) is the first (resp. Second) potentially candidate 16357 // to be placed in a paired load. 16358 const LoadedSlice *First = nullptr; 16359 const LoadedSlice *Second = nullptr; 16360 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 16361 // Set the beginning of the pair. 16362 First = Second) { 16363 Second = &LoadedSlices[CurrSlice]; 16364 16365 // If First is NULL, it means we start a new pair. 16366 // Get to the next slice. 16367 if (!First) 16368 continue; 16369 16370 EVT LoadedType = First->getLoadedType(); 16371 16372 // If the types of the slices are different, we cannot pair them. 16373 if (LoadedType != Second->getLoadedType()) 16374 continue; 16375 16376 // Check if the target supplies paired loads for this type. 16377 Align RequiredAlignment; 16378 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 16379 // move to the next pair, this type is hopeless. 16380 Second = nullptr; 16381 continue; 16382 } 16383 // Check if we meet the alignment requirement. 16384 if (First->getAlign() < RequiredAlignment) 16385 continue; 16386 16387 // Check that both loads are next to each other in memory. 16388 if (!areSlicesNextToEachOther(*First, *Second)) 16389 continue; 16390 16391 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 16392 --GlobalLSCost.Loads; 16393 // Move to the next pair. 16394 Second = nullptr; 16395 } 16396 } 16397 16398 /// Check the profitability of all involved LoadedSlice. 16399 /// Currently, it is considered profitable if there is exactly two 16400 /// involved slices (1) which are (2) next to each other in memory, and 16401 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 16402 /// 16403 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 16404 /// the elements themselves. 16405 /// 16406 /// FIXME: When the cost model will be mature enough, we can relax 16407 /// constraints (1) and (2). 16408 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16409 const APInt &UsedBits, bool ForCodeSize) { 16410 unsigned NumberOfSlices = LoadedSlices.size(); 16411 if (StressLoadSlicing) 16412 return NumberOfSlices > 1; 16413 16414 // Check (1). 16415 if (NumberOfSlices != 2) 16416 return false; 16417 16418 // Check (2). 16419 if (!areUsedBitsDense(UsedBits)) 16420 return false; 16421 16422 // Check (3). 16423 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 16424 // The original code has one big load. 16425 OrigCost.Loads = 1; 16426 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 16427 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 16428 // Accumulate the cost of all the slices. 16429 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 16430 GlobalSlicingCost += SliceCost; 16431 16432 // Account as cost in the original configuration the gain obtained 16433 // with the current slices. 16434 OrigCost.addSliceGain(LS); 16435 } 16436 16437 // If the target supports paired load, adjust the cost accordingly. 16438 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 16439 return OrigCost > GlobalSlicingCost; 16440 } 16441 16442 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 16443 /// operations, split it in the various pieces being extracted. 16444 /// 16445 /// This sort of thing is introduced by SROA. 16446 /// This slicing takes care not to insert overlapping loads. 16447 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 16448 bool DAGCombiner::SliceUpLoad(SDNode *N) { 16449 if (Level < AfterLegalizeDAG) 16450 return false; 16451 16452 LoadSDNode *LD = cast<LoadSDNode>(N); 16453 if (!LD->isSimple() || !ISD::isNormalLoad(LD) || 16454 !LD->getValueType(0).isInteger()) 16455 return false; 16456 16457 // The algorithm to split up a load of a scalable vector into individual 16458 // elements currently requires knowing the length of the loaded type, 16459 // so will need adjusting to work on scalable vectors. 16460 if (LD->getValueType(0).isScalableVector()) 16461 return false; 16462 16463 // Keep track of already used bits to detect overlapping values. 16464 // In that case, we will just abort the transformation. 16465 APInt UsedBits(LD->getValueSizeInBits(0), 0); 16466 16467 SmallVector<LoadedSlice, 4> LoadedSlices; 16468 16469 // Check if this load is used as several smaller chunks of bits. 16470 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 16471 // of computation for each trunc. 16472 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 16473 UI != UIEnd; ++UI) { 16474 // Skip the uses of the chain. 16475 if (UI.getUse().getResNo() != 0) 16476 continue; 16477 16478 SDNode *User = *UI; 16479 unsigned Shift = 0; 16480 16481 // Check if this is a trunc(lshr). 16482 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 16483 isa<ConstantSDNode>(User->getOperand(1))) { 16484 Shift = User->getConstantOperandVal(1); 16485 User = *User->use_begin(); 16486 } 16487 16488 // At this point, User is a Truncate, iff we encountered, trunc or 16489 // trunc(lshr). 16490 if (User->getOpcode() != ISD::TRUNCATE) 16491 return false; 16492 16493 // The width of the type must be a power of 2 and greater than 8-bits. 16494 // Otherwise the load cannot be represented in LLVM IR. 16495 // Moreover, if we shifted with a non-8-bits multiple, the slice 16496 // will be across several bytes. We do not support that. 16497 unsigned Width = User->getValueSizeInBits(0); 16498 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 16499 return false; 16500 16501 // Build the slice for this chain of computations. 16502 LoadedSlice LS(User, LD, Shift, &DAG); 16503 APInt CurrentUsedBits = LS.getUsedBits(); 16504 16505 // Check if this slice overlaps with another. 16506 if ((CurrentUsedBits & UsedBits) != 0) 16507 return false; 16508 // Update the bits used globally. 16509 UsedBits |= CurrentUsedBits; 16510 16511 // Check if the new slice would be legal. 16512 if (!LS.isLegal()) 16513 return false; 16514 16515 // Record the slice. 16516 LoadedSlices.push_back(LS); 16517 } 16518 16519 // Abort slicing if it does not seem to be profitable. 16520 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 16521 return false; 16522 16523 ++SlicedLoads; 16524 16525 // Rewrite each chain to use an independent load. 16526 // By construction, each chain can be represented by a unique load. 16527 16528 // Prepare the argument for the new token factor for all the slices. 16529 SmallVector<SDValue, 8> ArgChains; 16530 for (const LoadedSlice &LS : LoadedSlices) { 16531 SDValue SliceInst = LS.loadSlice(); 16532 CombineTo(LS.Inst, SliceInst, true); 16533 if (SliceInst.getOpcode() != ISD::LOAD) 16534 SliceInst = SliceInst.getOperand(0); 16535 assert(SliceInst->getOpcode() == ISD::LOAD && 16536 "It takes more than a zext to get to the loaded slice!!"); 16537 ArgChains.push_back(SliceInst.getValue(1)); 16538 } 16539 16540 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 16541 ArgChains); 16542 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 16543 AddToWorklist(Chain.getNode()); 16544 return true; 16545 } 16546 16547 /// Check to see if V is (and load (ptr), imm), where the load is having 16548 /// specific bytes cleared out. If so, return the byte size being masked out 16549 /// and the shift amount. 16550 static std::pair<unsigned, unsigned> 16551 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 16552 std::pair<unsigned, unsigned> Result(0, 0); 16553 16554 // Check for the structure we're looking for. 16555 if (V->getOpcode() != ISD::AND || 16556 !isa<ConstantSDNode>(V->getOperand(1)) || 16557 !ISD::isNormalLoad(V->getOperand(0).getNode())) 16558 return Result; 16559 16560 // Check the chain and pointer. 16561 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 16562 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 16563 16564 // This only handles simple types. 16565 if (V.getValueType() != MVT::i16 && 16566 V.getValueType() != MVT::i32 && 16567 V.getValueType() != MVT::i64) 16568 return Result; 16569 16570 // Check the constant mask. Invert it so that the bits being masked out are 16571 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 16572 // follow the sign bit for uniformity. 16573 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 16574 unsigned NotMaskLZ = countLeadingZeros(NotMask); 16575 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 16576 unsigned NotMaskTZ = countTrailingZeros(NotMask); 16577 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 16578 if (NotMaskLZ == 64) return Result; // All zero mask. 16579 16580 // See if we have a continuous run of bits. If so, we have 0*1+0* 16581 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 16582 return Result; 16583 16584 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 16585 if (V.getValueType() != MVT::i64 && NotMaskLZ) 16586 NotMaskLZ -= 64-V.getValueSizeInBits(); 16587 16588 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 16589 switch (MaskedBytes) { 16590 case 1: 16591 case 2: 16592 case 4: break; 16593 default: return Result; // All one mask, or 5-byte mask. 16594 } 16595 16596 // Verify that the first bit starts at a multiple of mask so that the access 16597 // is aligned the same as the access width. 16598 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 16599 16600 // For narrowing to be valid, it must be the case that the load the 16601 // immediately preceding memory operation before the store. 16602 if (LD == Chain.getNode()) 16603 ; // ok. 16604 else if (Chain->getOpcode() == ISD::TokenFactor && 16605 SDValue(LD, 1).hasOneUse()) { 16606 // LD has only 1 chain use so they are no indirect dependencies. 16607 if (!LD->isOperandOf(Chain.getNode())) 16608 return Result; 16609 } else 16610 return Result; // Fail. 16611 16612 Result.first = MaskedBytes; 16613 Result.second = NotMaskTZ/8; 16614 return Result; 16615 } 16616 16617 /// Check to see if IVal is something that provides a value as specified by 16618 /// MaskInfo. If so, replace the specified store with a narrower store of 16619 /// truncated IVal. 16620 static SDValue 16621 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 16622 SDValue IVal, StoreSDNode *St, 16623 DAGCombiner *DC) { 16624 unsigned NumBytes = MaskInfo.first; 16625 unsigned ByteShift = MaskInfo.second; 16626 SelectionDAG &DAG = DC->getDAG(); 16627 16628 // Check to see if IVal is all zeros in the part being masked in by the 'or' 16629 // that uses this. If not, this is not a replacement. 16630 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 16631 ByteShift*8, (ByteShift+NumBytes)*8); 16632 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); 16633 16634 // Check that it is legal on the target to do this. It is legal if the new 16635 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 16636 // legalization (and the target doesn't explicitly think this is a bad idea). 16637 MVT VT = MVT::getIntegerVT(NumBytes * 8); 16638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 16639 if (!DC->isTypeLegal(VT)) 16640 return SDValue(); 16641 if (St->getMemOperand() && 16642 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 16643 *St->getMemOperand())) 16644 return SDValue(); 16645 16646 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 16647 // shifted by ByteShift and truncated down to NumBytes. 16648 if (ByteShift) { 16649 SDLoc DL(IVal); 16650 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 16651 DAG.getConstant(ByteShift*8, DL, 16652 DC->getShiftAmountTy(IVal.getValueType()))); 16653 } 16654 16655 // Figure out the offset for the store and the alignment of the access. 16656 unsigned StOffset; 16657 if (DAG.getDataLayout().isLittleEndian()) 16658 StOffset = ByteShift; 16659 else 16660 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 16661 16662 SDValue Ptr = St->getBasePtr(); 16663 if (StOffset) { 16664 SDLoc DL(IVal); 16665 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); 16666 } 16667 16668 // Truncate down to the new size. 16669 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 16670 16671 ++OpsNarrowed; 16672 return DAG 16673 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 16674 St->getPointerInfo().getWithOffset(StOffset), 16675 St->getOriginalAlign()); 16676 } 16677 16678 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 16679 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 16680 /// narrowing the load and store if it would end up being a win for performance 16681 /// or code size. 16682 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 16683 StoreSDNode *ST = cast<StoreSDNode>(N); 16684 if (!ST->isSimple()) 16685 return SDValue(); 16686 16687 SDValue Chain = ST->getChain(); 16688 SDValue Value = ST->getValue(); 16689 SDValue Ptr = ST->getBasePtr(); 16690 EVT VT = Value.getValueType(); 16691 16692 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 16693 return SDValue(); 16694 16695 unsigned Opc = Value.getOpcode(); 16696 16697 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 16698 // is a byte mask indicating a consecutive number of bytes, check to see if 16699 // Y is known to provide just those bytes. If so, we try to replace the 16700 // load + replace + store sequence with a single (narrower) store, which makes 16701 // the load dead. 16702 if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { 16703 std::pair<unsigned, unsigned> MaskedLoad; 16704 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 16705 if (MaskedLoad.first) 16706 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16707 Value.getOperand(1), ST,this)) 16708 return NewST; 16709 16710 // Or is commutative, so try swapping X and Y. 16711 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 16712 if (MaskedLoad.first) 16713 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16714 Value.getOperand(0), ST,this)) 16715 return NewST; 16716 } 16717 16718 if (!EnableReduceLoadOpStoreWidth) 16719 return SDValue(); 16720 16721 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 16722 Value.getOperand(1).getOpcode() != ISD::Constant) 16723 return SDValue(); 16724 16725 SDValue N0 = Value.getOperand(0); 16726 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 16727 Chain == SDValue(N0.getNode(), 1)) { 16728 LoadSDNode *LD = cast<LoadSDNode>(N0); 16729 if (LD->getBasePtr() != Ptr || 16730 LD->getPointerInfo().getAddrSpace() != 16731 ST->getPointerInfo().getAddrSpace()) 16732 return SDValue(); 16733 16734 // Find the type to narrow it the load / op / store to. 16735 SDValue N1 = Value.getOperand(1); 16736 unsigned BitWidth = N1.getValueSizeInBits(); 16737 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 16738 if (Opc == ISD::AND) 16739 Imm ^= APInt::getAllOnes(BitWidth); 16740 if (Imm == 0 || Imm.isAllOnes()) 16741 return SDValue(); 16742 unsigned ShAmt = Imm.countTrailingZeros(); 16743 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 16744 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 16745 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 16746 // The narrowing should be profitable, the load/store operation should be 16747 // legal (or custom) and the store size should be equal to the NewVT width. 16748 while (NewBW < BitWidth && 16749 (NewVT.getStoreSizeInBits() != NewBW || 16750 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 16751 !TLI.isNarrowingProfitable(VT, NewVT))) { 16752 NewBW = NextPowerOf2(NewBW); 16753 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 16754 } 16755 if (NewBW >= BitWidth) 16756 return SDValue(); 16757 16758 // If the lsb changed does not start at the type bitwidth boundary, 16759 // start at the previous one. 16760 if (ShAmt % NewBW) 16761 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 16762 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 16763 std::min(BitWidth, ShAmt + NewBW)); 16764 if ((Imm & Mask) == Imm) { 16765 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 16766 if (Opc == ISD::AND) 16767 NewImm ^= APInt::getAllOnes(NewBW); 16768 uint64_t PtrOff = ShAmt / 8; 16769 // For big endian targets, we need to adjust the offset to the pointer to 16770 // load the correct bytes. 16771 if (DAG.getDataLayout().isBigEndian()) 16772 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 16773 16774 bool IsFast = false; 16775 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); 16776 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT, 16777 LD->getAddressSpace(), NewAlign, 16778 LD->getMemOperand()->getFlags(), &IsFast) || 16779 !IsFast) 16780 return SDValue(); 16781 16782 SDValue NewPtr = 16783 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); 16784 SDValue NewLD = 16785 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 16786 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 16787 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 16788 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 16789 DAG.getConstant(NewImm, SDLoc(Value), 16790 NewVT)); 16791 SDValue NewST = 16792 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 16793 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 16794 16795 AddToWorklist(NewPtr.getNode()); 16796 AddToWorklist(NewLD.getNode()); 16797 AddToWorklist(NewVal.getNode()); 16798 WorklistRemover DeadNodes(*this); 16799 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 16800 ++OpsNarrowed; 16801 return NewST; 16802 } 16803 } 16804 16805 return SDValue(); 16806 } 16807 16808 /// For a given floating point load / store pair, if the load value isn't used 16809 /// by any other operations, then consider transforming the pair to integer 16810 /// load / store operations if the target deems the transformation profitable. 16811 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 16812 StoreSDNode *ST = cast<StoreSDNode>(N); 16813 SDValue Value = ST->getValue(); 16814 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 16815 Value.hasOneUse()) { 16816 LoadSDNode *LD = cast<LoadSDNode>(Value); 16817 EVT VT = LD->getMemoryVT(); 16818 if (!VT.isFloatingPoint() || 16819 VT != ST->getMemoryVT() || 16820 LD->isNonTemporal() || 16821 ST->isNonTemporal() || 16822 LD->getPointerInfo().getAddrSpace() != 0 || 16823 ST->getPointerInfo().getAddrSpace() != 0) 16824 return SDValue(); 16825 16826 TypeSize VTSize = VT.getSizeInBits(); 16827 16828 // We don't know the size of scalable types at compile time so we cannot 16829 // create an integer of the equivalent size. 16830 if (VTSize.isScalable()) 16831 return SDValue(); 16832 16833 bool FastLD = false, FastST = false; 16834 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); 16835 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 16836 !TLI.isOperationLegal(ISD::STORE, IntVT) || 16837 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 16838 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) || 16839 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 16840 *LD->getMemOperand(), &FastLD) || 16841 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 16842 *ST->getMemOperand(), &FastST) || 16843 !FastLD || !FastST) 16844 return SDValue(); 16845 16846 SDValue NewLD = 16847 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 16848 LD->getPointerInfo(), LD->getAlign()); 16849 16850 SDValue NewST = 16851 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), 16852 ST->getPointerInfo(), ST->getAlign()); 16853 16854 AddToWorklist(NewLD.getNode()); 16855 AddToWorklist(NewST.getNode()); 16856 WorklistRemover DeadNodes(*this); 16857 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 16858 ++LdStFP2Int; 16859 return NewST; 16860 } 16861 16862 return SDValue(); 16863 } 16864 16865 // This is a helper function for visitMUL to check the profitability 16866 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 16867 // MulNode is the original multiply, AddNode is (add x, c1), 16868 // and ConstNode is c2. 16869 // 16870 // If the (add x, c1) has multiple uses, we could increase 16871 // the number of adds if we make this transformation. 16872 // It would only be worth doing this if we can remove a 16873 // multiply in the process. Check for that here. 16874 // To illustrate: 16875 // (A + c1) * c3 16876 // (A + c2) * c3 16877 // We're checking for cases where we have common "c3 * A" expressions. 16878 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 16879 SDValue &AddNode, 16880 SDValue &ConstNode) { 16881 APInt Val; 16882 16883 // If the add only has one use, and the target thinks the folding is 16884 // profitable or does not lead to worse code, this would be OK to do. 16885 if (AddNode.getNode()->hasOneUse() && 16886 TLI.isMulAddWithConstProfitable(AddNode, ConstNode)) 16887 return true; 16888 16889 // Walk all the users of the constant with which we're multiplying. 16890 for (SDNode *Use : ConstNode->uses()) { 16891 if (Use == MulNode) // This use is the one we're on right now. Skip it. 16892 continue; 16893 16894 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 16895 SDNode *OtherOp; 16896 SDNode *MulVar = AddNode.getOperand(0).getNode(); 16897 16898 // OtherOp is what we're multiplying against the constant. 16899 if (Use->getOperand(0) == ConstNode) 16900 OtherOp = Use->getOperand(1).getNode(); 16901 else 16902 OtherOp = Use->getOperand(0).getNode(); 16903 16904 // Check to see if multiply is with the same operand of our "add". 16905 // 16906 // ConstNode = CONST 16907 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 16908 // ... 16909 // AddNode = (A + c1) <-- MulVar is A. 16910 // = AddNode * ConstNode <-- current visiting instruction. 16911 // 16912 // If we make this transformation, we will have a common 16913 // multiply (ConstNode * A) that we can save. 16914 if (OtherOp == MulVar) 16915 return true; 16916 16917 // Now check to see if a future expansion will give us a common 16918 // multiply. 16919 // 16920 // ConstNode = CONST 16921 // AddNode = (A + c1) 16922 // ... = AddNode * ConstNode <-- current visiting instruction. 16923 // ... 16924 // OtherOp = (A + c2) 16925 // Use = OtherOp * ConstNode <-- visiting Use. 16926 // 16927 // If we make this transformation, we will have a common 16928 // multiply (CONST * A) after we also do the same transformation 16929 // to the "t2" instruction. 16930 if (OtherOp->getOpcode() == ISD::ADD && 16931 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 16932 OtherOp->getOperand(0).getNode() == MulVar) 16933 return true; 16934 } 16935 } 16936 16937 // Didn't find a case where this would be profitable. 16938 return false; 16939 } 16940 16941 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 16942 unsigned NumStores) { 16943 SmallVector<SDValue, 8> Chains; 16944 SmallPtrSet<const SDNode *, 8> Visited; 16945 SDLoc StoreDL(StoreNodes[0].MemNode); 16946 16947 for (unsigned i = 0; i < NumStores; ++i) { 16948 Visited.insert(StoreNodes[i].MemNode); 16949 } 16950 16951 // don't include nodes that are children or repeated nodes. 16952 for (unsigned i = 0; i < NumStores; ++i) { 16953 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 16954 Chains.push_back(StoreNodes[i].MemNode->getChain()); 16955 } 16956 16957 assert(Chains.size() > 0 && "Chain should have generated a chain"); 16958 return DAG.getTokenFactor(StoreDL, Chains); 16959 } 16960 16961 bool DAGCombiner::mergeStoresOfConstantsOrVecElts( 16962 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 16963 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 16964 // Make sure we have something to merge. 16965 if (NumStores < 2) 16966 return false; 16967 16968 assert((!UseTrunc || !UseVector) && 16969 "This optimization cannot emit a vector truncating store"); 16970 16971 // The latest Node in the DAG. 16972 SDLoc DL(StoreNodes[0].MemNode); 16973 16974 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); 16975 unsigned SizeInBits = NumStores * ElementSizeBits; 16976 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16977 16978 Optional<MachineMemOperand::Flags> Flags; 16979 AAMDNodes AAInfo; 16980 for (unsigned I = 0; I != NumStores; ++I) { 16981 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 16982 if (!Flags) { 16983 Flags = St->getMemOperand()->getFlags(); 16984 AAInfo = St->getAAInfo(); 16985 continue; 16986 } 16987 // Skip merging if there's an inconsistent flag. 16988 if (Flags != St->getMemOperand()->getFlags()) 16989 return false; 16990 // Concatenate AA metadata. 16991 AAInfo = AAInfo.concat(St->getAAInfo()); 16992 } 16993 16994 EVT StoreTy; 16995 if (UseVector) { 16996 unsigned Elts = NumStores * NumMemElts; 16997 // Get the type for the merged vector store. 16998 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 16999 } else 17000 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 17001 17002 SDValue StoredVal; 17003 if (UseVector) { 17004 if (IsConstantSrc) { 17005 SmallVector<SDValue, 8> BuildVector; 17006 for (unsigned I = 0; I != NumStores; ++I) { 17007 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 17008 SDValue Val = St->getValue(); 17009 // If constant is of the wrong type, convert it now. 17010 if (MemVT != Val.getValueType()) { 17011 Val = peekThroughBitcasts(Val); 17012 // Deal with constants of wrong size. 17013 if (ElementSizeBits != Val.getValueSizeInBits()) { 17014 EVT IntMemVT = 17015 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 17016 if (isa<ConstantFPSDNode>(Val)) { 17017 // Not clear how to truncate FP values. 17018 return false; 17019 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 17020 Val = DAG.getConstant(C->getAPIntValue() 17021 .zextOrTrunc(Val.getValueSizeInBits()) 17022 .zextOrTrunc(ElementSizeBits), 17023 SDLoc(C), IntMemVT); 17024 } 17025 // Make sure correctly size type is the correct type. 17026 Val = DAG.getBitcast(MemVT, Val); 17027 } 17028 BuildVector.push_back(Val); 17029 } 17030 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17031 : ISD::BUILD_VECTOR, 17032 DL, StoreTy, BuildVector); 17033 } else { 17034 SmallVector<SDValue, 8> Ops; 17035 for (unsigned i = 0; i < NumStores; ++i) { 17036 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17037 SDValue Val = peekThroughBitcasts(St->getValue()); 17038 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 17039 // type MemVT. If the underlying value is not the correct 17040 // type, but it is an extraction of an appropriate vector we 17041 // can recast Val to be of the correct type. This may require 17042 // converting between EXTRACT_VECTOR_ELT and 17043 // EXTRACT_SUBVECTOR. 17044 if ((MemVT != Val.getValueType()) && 17045 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 17046 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 17047 EVT MemVTScalarTy = MemVT.getScalarType(); 17048 // We may need to add a bitcast here to get types to line up. 17049 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 17050 Val = DAG.getBitcast(MemVT, Val); 17051 } else { 17052 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 17053 : ISD::EXTRACT_VECTOR_ELT; 17054 SDValue Vec = Val.getOperand(0); 17055 SDValue Idx = Val.getOperand(1); 17056 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 17057 } 17058 } 17059 Ops.push_back(Val); 17060 } 17061 17062 // Build the extracted vector elements back into a vector. 17063 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17064 : ISD::BUILD_VECTOR, 17065 DL, StoreTy, Ops); 17066 } 17067 } else { 17068 // We should always use a vector store when merging extracted vector 17069 // elements, so this path implies a store of constants. 17070 assert(IsConstantSrc && "Merged vector elements should use vector store"); 17071 17072 APInt StoreInt(SizeInBits, 0); 17073 17074 // Construct a single integer constant which is made of the smaller 17075 // constant inputs. 17076 bool IsLE = DAG.getDataLayout().isLittleEndian(); 17077 for (unsigned i = 0; i < NumStores; ++i) { 17078 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 17079 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 17080 17081 SDValue Val = St->getValue(); 17082 Val = peekThroughBitcasts(Val); 17083 StoreInt <<= ElementSizeBits; 17084 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 17085 StoreInt |= C->getAPIntValue() 17086 .zextOrTrunc(ElementSizeBits) 17087 .zextOrTrunc(SizeInBits); 17088 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 17089 StoreInt |= C->getValueAPF() 17090 .bitcastToAPInt() 17091 .zextOrTrunc(ElementSizeBits) 17092 .zextOrTrunc(SizeInBits); 17093 // If fp truncation is necessary give up for now. 17094 if (MemVT.getSizeInBits() != ElementSizeBits) 17095 return false; 17096 } else { 17097 llvm_unreachable("Invalid constant element type"); 17098 } 17099 } 17100 17101 // Create the new Load and Store operations. 17102 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 17103 } 17104 17105 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17106 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 17107 17108 // make sure we use trunc store if it's necessary to be legal. 17109 SDValue NewStore; 17110 if (!UseTrunc) { 17111 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 17112 FirstInChain->getPointerInfo(), 17113 FirstInChain->getAlign(), Flags.getValue(), AAInfo); 17114 } else { // Must be realized as a trunc store 17115 EVT LegalizedStoredValTy = 17116 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 17117 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 17118 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 17119 SDValue ExtendedStoreVal = 17120 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 17121 LegalizedStoredValTy); 17122 NewStore = DAG.getTruncStore( 17123 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 17124 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 17125 FirstInChain->getAlign(), Flags.getValue(), AAInfo); 17126 } 17127 17128 // Replace all merged stores with the new store. 17129 for (unsigned i = 0; i < NumStores; ++i) 17130 CombineTo(StoreNodes[i].MemNode, NewStore); 17131 17132 AddToWorklist(NewChain.getNode()); 17133 return true; 17134 } 17135 17136 void DAGCombiner::getStoreMergeCandidates( 17137 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 17138 SDNode *&RootNode) { 17139 // This holds the base pointer, index, and the offset in bytes from the base 17140 // pointer. We must have a base and an offset. Do not handle stores to undef 17141 // base pointers. 17142 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 17143 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) 17144 return; 17145 17146 SDValue Val = peekThroughBitcasts(St->getValue()); 17147 StoreSource StoreSrc = getStoreSource(Val); 17148 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); 17149 17150 // Match on loadbaseptr if relevant. 17151 EVT MemVT = St->getMemoryVT(); 17152 BaseIndexOffset LBasePtr; 17153 EVT LoadVT; 17154 if (StoreSrc == StoreSource::Load) { 17155 auto *Ld = cast<LoadSDNode>(Val); 17156 LBasePtr = BaseIndexOffset::match(Ld, DAG); 17157 LoadVT = Ld->getMemoryVT(); 17158 // Load and store should be the same type. 17159 if (MemVT != LoadVT) 17160 return; 17161 // Loads must only have one use. 17162 if (!Ld->hasNUsesOfValue(1, 0)) 17163 return; 17164 // The memory operands must not be volatile/indexed/atomic. 17165 // TODO: May be able to relax for unordered atomics (see D66309) 17166 if (!Ld->isSimple() || Ld->isIndexed()) 17167 return; 17168 } 17169 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 17170 int64_t &Offset) -> bool { 17171 // The memory operands must not be volatile/indexed/atomic. 17172 // TODO: May be able to relax for unordered atomics (see D66309) 17173 if (!Other->isSimple() || Other->isIndexed()) 17174 return false; 17175 // Don't mix temporal stores with non-temporal stores. 17176 if (St->isNonTemporal() != Other->isNonTemporal()) 17177 return false; 17178 SDValue OtherBC = peekThroughBitcasts(Other->getValue()); 17179 // Allow merging constants of different types as integers. 17180 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 17181 : Other->getMemoryVT() != MemVT; 17182 switch (StoreSrc) { 17183 case StoreSource::Load: { 17184 if (NoTypeMatch) 17185 return false; 17186 // The Load's Base Ptr must also match. 17187 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); 17188 if (!OtherLd) 17189 return false; 17190 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); 17191 if (LoadVT != OtherLd->getMemoryVT()) 17192 return false; 17193 // Loads must only have one use. 17194 if (!OtherLd->hasNUsesOfValue(1, 0)) 17195 return false; 17196 // The memory operands must not be volatile/indexed/atomic. 17197 // TODO: May be able to relax for unordered atomics (see D66309) 17198 if (!OtherLd->isSimple() || OtherLd->isIndexed()) 17199 return false; 17200 // Don't mix temporal loads with non-temporal loads. 17201 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) 17202 return false; 17203 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 17204 return false; 17205 break; 17206 } 17207 case StoreSource::Constant: 17208 if (NoTypeMatch) 17209 return false; 17210 if (!isIntOrFPConstant(OtherBC)) 17211 return false; 17212 break; 17213 case StoreSource::Extract: 17214 // Do not merge truncated stores here. 17215 if (Other->isTruncatingStore()) 17216 return false; 17217 if (!MemVT.bitsEq(OtherBC.getValueType())) 17218 return false; 17219 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 17220 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) 17221 return false; 17222 break; 17223 default: 17224 llvm_unreachable("Unhandled store source for merging"); 17225 } 17226 Ptr = BaseIndexOffset::match(Other, DAG); 17227 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 17228 }; 17229 17230 // Check if the pair of StoreNode and the RootNode already bail out many 17231 // times which is over the limit in dependence check. 17232 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, 17233 SDNode *RootNode) -> bool { 17234 auto RootCount = StoreRootCountMap.find(StoreNode); 17235 return RootCount != StoreRootCountMap.end() && 17236 RootCount->second.first == RootNode && 17237 RootCount->second.second > StoreMergeDependenceLimit; 17238 }; 17239 17240 auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { 17241 // This must be a chain use. 17242 if (UseIter.getOperandNo() != 0) 17243 return; 17244 if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) { 17245 BaseIndexOffset Ptr; 17246 int64_t PtrDiff; 17247 if (CandidateMatch(OtherStore, Ptr, PtrDiff) && 17248 !OverLimitInDependenceCheck(OtherStore, RootNode)) 17249 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); 17250 } 17251 }; 17252 17253 // We looking for a root node which is an ancestor to all mergable 17254 // stores. We search up through a load, to our root and then down 17255 // through all children. For instance we will find Store{1,2,3} if 17256 // St is Store1, Store2. or Store3 where the root is not a load 17257 // which always true for nonvolatile ops. TODO: Expand 17258 // the search to find all valid candidates through multiple layers of loads. 17259 // 17260 // Root 17261 // |-------|-------| 17262 // Load Load Store3 17263 // | | 17264 // Store1 Store2 17265 // 17266 // FIXME: We should be able to climb and 17267 // descend TokenFactors to find candidates as well. 17268 17269 RootNode = St->getChain().getNode(); 17270 17271 unsigned NumNodesExplored = 0; 17272 const unsigned MaxSearchNodes = 1024; 17273 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 17274 RootNode = Ldn->getChain().getNode(); 17275 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17276 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { 17277 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain 17278 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 17279 TryToAddCandidate(I2); 17280 } 17281 } 17282 } else { 17283 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17284 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) 17285 TryToAddCandidate(I); 17286 } 17287 } 17288 17289 // We need to check that merging these stores does not cause a loop in 17290 // the DAG. Any store candidate may depend on another candidate 17291 // indirectly through its operand (we already consider dependencies 17292 // through the chain). Check in parallel by searching up from 17293 // non-chain operands of candidates. 17294 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 17295 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 17296 SDNode *RootNode) { 17297 // FIXME: We should be able to truncate a full search of 17298 // predecessors by doing a BFS and keeping tabs the originating 17299 // stores from which worklist nodes come from in a similar way to 17300 // TokenFactor simplfication. 17301 17302 SmallPtrSet<const SDNode *, 32> Visited; 17303 SmallVector<const SDNode *, 8> Worklist; 17304 17305 // RootNode is a predecessor to all candidates so we need not search 17306 // past it. Add RootNode (peeking through TokenFactors). Do not count 17307 // these towards size check. 17308 17309 Worklist.push_back(RootNode); 17310 while (!Worklist.empty()) { 17311 auto N = Worklist.pop_back_val(); 17312 if (!Visited.insert(N).second) 17313 continue; // Already present in Visited. 17314 if (N->getOpcode() == ISD::TokenFactor) { 17315 for (SDValue Op : N->ops()) 17316 Worklist.push_back(Op.getNode()); 17317 } 17318 } 17319 17320 // Don't count pruning nodes towards max. 17321 unsigned int Max = 1024 + Visited.size(); 17322 // Search Ops of store candidates. 17323 for (unsigned i = 0; i < NumStores; ++i) { 17324 SDNode *N = StoreNodes[i].MemNode; 17325 // Of the 4 Store Operands: 17326 // * Chain (Op 0) -> We have already considered these 17327 // in candidate selection and can be 17328 // safely ignored 17329 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 17330 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 17331 // but aren't necessarily fromt the same base node, so 17332 // cycles possible (e.g. via indexed store). 17333 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 17334 // non-indexed stores). Not constant on all targets (e.g. ARM) 17335 // and so can participate in a cycle. 17336 for (unsigned j = 1; j < N->getNumOperands(); ++j) 17337 Worklist.push_back(N->getOperand(j).getNode()); 17338 } 17339 // Search through DAG. We can stop early if we find a store node. 17340 for (unsigned i = 0; i < NumStores; ++i) 17341 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 17342 Max)) { 17343 // If the searching bail out, record the StoreNode and RootNode in the 17344 // StoreRootCountMap. If we have seen the pair many times over a limit, 17345 // we won't add the StoreNode into StoreNodes set again. 17346 if (Visited.size() >= Max) { 17347 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; 17348 if (RootCount.first == RootNode) 17349 RootCount.second++; 17350 else 17351 RootCount = {RootNode, 1}; 17352 } 17353 return false; 17354 } 17355 return true; 17356 } 17357 17358 unsigned 17359 DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 17360 int64_t ElementSizeBytes) const { 17361 while (true) { 17362 // Find a store past the width of the first store. 17363 size_t StartIdx = 0; 17364 while ((StartIdx + 1 < StoreNodes.size()) && 17365 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 17366 StoreNodes[StartIdx + 1].OffsetFromBase) 17367 ++StartIdx; 17368 17369 // Bail if we don't have enough candidates to merge. 17370 if (StartIdx + 1 >= StoreNodes.size()) 17371 return 0; 17372 17373 // Trim stores that overlapped with the first store. 17374 if (StartIdx) 17375 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 17376 17377 // Scan the memory operations on the chain and find the first 17378 // non-consecutive store memory address. 17379 unsigned NumConsecutiveStores = 1; 17380 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 17381 // Check that the addresses are consecutive starting from the second 17382 // element in the list of stores. 17383 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 17384 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 17385 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17386 break; 17387 NumConsecutiveStores = i + 1; 17388 } 17389 if (NumConsecutiveStores > 1) 17390 return NumConsecutiveStores; 17391 17392 // There are no consecutive stores at the start of the list. 17393 // Remove the first store and try again. 17394 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); 17395 } 17396 } 17397 17398 bool DAGCombiner::tryStoreMergeOfConstants( 17399 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 17400 EVT MemVT, SDNode *RootNode, bool AllowVectors) { 17401 LLVMContext &Context = *DAG.getContext(); 17402 const DataLayout &DL = DAG.getDataLayout(); 17403 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17404 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17405 bool MadeChange = false; 17406 17407 // Store the constants into memory as one consecutive store. 17408 while (NumConsecutiveStores >= 2) { 17409 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17410 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17411 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 17412 unsigned LastLegalType = 1; 17413 unsigned LastLegalVectorType = 1; 17414 bool LastIntegerTrunc = false; 17415 bool NonZero = false; 17416 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 17417 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17418 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 17419 SDValue StoredVal = ST->getValue(); 17420 bool IsElementZero = false; 17421 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 17422 IsElementZero = C->isZero(); 17423 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 17424 IsElementZero = C->getConstantFPValue()->isNullValue(); 17425 if (IsElementZero) { 17426 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 17427 FirstZeroAfterNonZero = i; 17428 } 17429 NonZero |= !IsElementZero; 17430 17431 // Find a legal type for the constant store. 17432 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17433 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17434 bool IsFast = false; 17435 17436 // Break early when size is too large to be legal. 17437 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17438 break; 17439 17440 if (TLI.isTypeLegal(StoreTy) && 17441 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17442 DAG.getMachineFunction()) && 17443 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17444 *FirstInChain->getMemOperand(), &IsFast) && 17445 IsFast) { 17446 LastIntegerTrunc = false; 17447 LastLegalType = i + 1; 17448 // Or check whether a truncstore is legal. 17449 } else if (TLI.getTypeAction(Context, StoreTy) == 17450 TargetLowering::TypePromoteInteger) { 17451 EVT LegalizedStoredValTy = 17452 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 17453 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17454 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 17455 DAG.getMachineFunction()) && 17456 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17457 *FirstInChain->getMemOperand(), &IsFast) && 17458 IsFast) { 17459 LastIntegerTrunc = true; 17460 LastLegalType = i + 1; 17461 } 17462 } 17463 17464 // We only use vectors if the constant is known to be zero or the 17465 // target allows it and the function is not marked with the 17466 // noimplicitfloat attribute. 17467 if ((!NonZero || 17468 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 17469 AllowVectors) { 17470 // Find a legal type for the vector store. 17471 unsigned Elts = (i + 1) * NumMemElts; 17472 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17473 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 17474 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 17475 TLI.allowsMemoryAccess(Context, DL, Ty, 17476 *FirstInChain->getMemOperand(), &IsFast) && 17477 IsFast) 17478 LastLegalVectorType = i + 1; 17479 } 17480 } 17481 17482 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; 17483 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 17484 bool UseTrunc = LastIntegerTrunc && !UseVector; 17485 17486 // Check if we found a legal integer type that creates a meaningful 17487 // merge. 17488 if (NumElem < 2) { 17489 // We know that candidate stores are in order and of correct 17490 // shape. While there is no mergeable sequence from the 17491 // beginning one may start later in the sequence. The only 17492 // reason a merge of size N could have failed where another of 17493 // the same size would not have, is if the alignment has 17494 // improved or we've dropped a non-zero value. Drop as many 17495 // candidates as we can here. 17496 unsigned NumSkip = 1; 17497 while ((NumSkip < NumConsecutiveStores) && 17498 (NumSkip < FirstZeroAfterNonZero) && 17499 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17500 NumSkip++; 17501 17502 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17503 NumConsecutiveStores -= NumSkip; 17504 continue; 17505 } 17506 17507 // Check that we can merge these candidates without causing a cycle. 17508 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 17509 RootNode)) { 17510 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17511 NumConsecutiveStores -= NumElem; 17512 continue; 17513 } 17514 17515 MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 17516 /*IsConstantSrc*/ true, 17517 UseVector, UseTrunc); 17518 17519 // Remove merged stores for next iteration. 17520 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17521 NumConsecutiveStores -= NumElem; 17522 } 17523 return MadeChange; 17524 } 17525 17526 bool DAGCombiner::tryStoreMergeOfExtracts( 17527 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 17528 EVT MemVT, SDNode *RootNode) { 17529 LLVMContext &Context = *DAG.getContext(); 17530 const DataLayout &DL = DAG.getDataLayout(); 17531 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17532 bool MadeChange = false; 17533 17534 // Loop on Consecutive Stores on success. 17535 while (NumConsecutiveStores >= 2) { 17536 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17537 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17538 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 17539 unsigned NumStoresToMerge = 1; 17540 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17541 // Find a legal type for the vector store. 17542 unsigned Elts = (i + 1) * NumMemElts; 17543 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 17544 bool IsFast = false; 17545 17546 // Break early when size is too large to be legal. 17547 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 17548 break; 17549 17550 if (TLI.isTypeLegal(Ty) && 17551 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 17552 TLI.allowsMemoryAccess(Context, DL, Ty, 17553 *FirstInChain->getMemOperand(), &IsFast) && 17554 IsFast) 17555 NumStoresToMerge = i + 1; 17556 } 17557 17558 // Check if we found a legal integer type creating a meaningful 17559 // merge. 17560 if (NumStoresToMerge < 2) { 17561 // We know that candidate stores are in order and of correct 17562 // shape. While there is no mergeable sequence from the 17563 // beginning one may start later in the sequence. The only 17564 // reason a merge of size N could have failed where another of 17565 // the same size would not have, is if the alignment has 17566 // improved. Drop as many candidates as we can here. 17567 unsigned NumSkip = 1; 17568 while ((NumSkip < NumConsecutiveStores) && 17569 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17570 NumSkip++; 17571 17572 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17573 NumConsecutiveStores -= NumSkip; 17574 continue; 17575 } 17576 17577 // Check that we can merge these candidates without causing a cycle. 17578 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, 17579 RootNode)) { 17580 StoreNodes.erase(StoreNodes.begin(), 17581 StoreNodes.begin() + NumStoresToMerge); 17582 NumConsecutiveStores -= NumStoresToMerge; 17583 continue; 17584 } 17585 17586 MadeChange |= mergeStoresOfConstantsOrVecElts( 17587 StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false, 17588 /*UseVector*/ true, /*UseTrunc*/ false); 17589 17590 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); 17591 NumConsecutiveStores -= NumStoresToMerge; 17592 } 17593 return MadeChange; 17594 } 17595 17596 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 17597 unsigned NumConsecutiveStores, EVT MemVT, 17598 SDNode *RootNode, bool AllowVectors, 17599 bool IsNonTemporalStore, 17600 bool IsNonTemporalLoad) { 17601 LLVMContext &Context = *DAG.getContext(); 17602 const DataLayout &DL = DAG.getDataLayout(); 17603 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17604 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17605 bool MadeChange = false; 17606 17607 // Look for load nodes which are used by the stored values. 17608 SmallVector<MemOpLink, 8> LoadNodes; 17609 17610 // Find acceptable loads. Loads need to have the same chain (token factor), 17611 // must not be zext, volatile, indexed, and they must be consecutive. 17612 BaseIndexOffset LdBasePtr; 17613 17614 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17615 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17616 SDValue Val = peekThroughBitcasts(St->getValue()); 17617 LoadSDNode *Ld = cast<LoadSDNode>(Val); 17618 17619 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 17620 // If this is not the first ptr that we check. 17621 int64_t LdOffset = 0; 17622 if (LdBasePtr.getBase().getNode()) { 17623 // The base ptr must be the same. 17624 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 17625 break; 17626 } else { 17627 // Check that all other base pointers are the same as this one. 17628 LdBasePtr = LdPtr; 17629 } 17630 17631 // We found a potential memory operand to merge. 17632 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 17633 } 17634 17635 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 17636 Align RequiredAlignment; 17637 bool NeedRotate = false; 17638 if (LoadNodes.size() == 2) { 17639 // If we have load/store pair instructions and we only have two values, 17640 // don't bother merging. 17641 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && 17642 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { 17643 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 17644 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 17645 break; 17646 } 17647 // If the loads are reversed, see if we can rotate the halves into place. 17648 int64_t Offset0 = LoadNodes[0].OffsetFromBase; 17649 int64_t Offset1 = LoadNodes[1].OffsetFromBase; 17650 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); 17651 if (Offset0 - Offset1 == ElementSizeBytes && 17652 (hasOperation(ISD::ROTL, PairVT) || 17653 hasOperation(ISD::ROTR, PairVT))) { 17654 std::swap(LoadNodes[0], LoadNodes[1]); 17655 NeedRotate = true; 17656 } 17657 } 17658 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17659 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17660 Align FirstStoreAlign = FirstInChain->getAlign(); 17661 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 17662 17663 // Scan the memory operations on the chain and find the first 17664 // non-consecutive load memory address. These variables hold the index in 17665 // the store node array. 17666 17667 unsigned LastConsecutiveLoad = 1; 17668 17669 // This variable refers to the size and not index in the array. 17670 unsigned LastLegalVectorType = 1; 17671 unsigned LastLegalIntegerType = 1; 17672 bool isDereferenceable = true; 17673 bool DoIntegerTruncate = false; 17674 int64_t StartAddress = LoadNodes[0].OffsetFromBase; 17675 SDValue LoadChain = FirstLoad->getChain(); 17676 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 17677 // All loads must share the same chain. 17678 if (LoadNodes[i].MemNode->getChain() != LoadChain) 17679 break; 17680 17681 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 17682 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17683 break; 17684 LastConsecutiveLoad = i; 17685 17686 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 17687 isDereferenceable = false; 17688 17689 // Find a legal type for the vector store. 17690 unsigned Elts = (i + 1) * NumMemElts; 17691 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17692 17693 // Break early when size is too large to be legal. 17694 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17695 break; 17696 17697 bool IsFastSt = false; 17698 bool IsFastLd = false; 17699 // Don't try vector types if we need a rotate. We may still fail the 17700 // legality checks for the integer type, but we can't handle the rotate 17701 // case with vectors. 17702 // FIXME: We could use a shuffle in place of the rotate. 17703 if (!NeedRotate && TLI.isTypeLegal(StoreTy) && 17704 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17705 DAG.getMachineFunction()) && 17706 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17707 *FirstInChain->getMemOperand(), &IsFastSt) && 17708 IsFastSt && 17709 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17710 *FirstLoad->getMemOperand(), &IsFastLd) && 17711 IsFastLd) { 17712 LastLegalVectorType = i + 1; 17713 } 17714 17715 // Find a legal type for the integer store. 17716 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17717 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17718 if (TLI.isTypeLegal(StoreTy) && 17719 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17720 DAG.getMachineFunction()) && 17721 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17722 *FirstInChain->getMemOperand(), &IsFastSt) && 17723 IsFastSt && 17724 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17725 *FirstLoad->getMemOperand(), &IsFastLd) && 17726 IsFastLd) { 17727 LastLegalIntegerType = i + 1; 17728 DoIntegerTruncate = false; 17729 // Or check whether a truncstore and extload is legal. 17730 } else if (TLI.getTypeAction(Context, StoreTy) == 17731 TargetLowering::TypePromoteInteger) { 17732 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 17733 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17734 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 17735 DAG.getMachineFunction()) && 17736 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && 17737 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && 17738 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 17739 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17740 *FirstInChain->getMemOperand(), &IsFastSt) && 17741 IsFastSt && 17742 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17743 *FirstLoad->getMemOperand(), &IsFastLd) && 17744 IsFastLd) { 17745 LastLegalIntegerType = i + 1; 17746 DoIntegerTruncate = true; 17747 } 17748 } 17749 } 17750 17751 // Only use vector types if the vector type is larger than the integer 17752 // type. If they are the same, use integers. 17753 bool UseVectorTy = 17754 LastLegalVectorType > LastLegalIntegerType && AllowVectors; 17755 unsigned LastLegalType = 17756 std::max(LastLegalVectorType, LastLegalIntegerType); 17757 17758 // We add +1 here because the LastXXX variables refer to location while 17759 // the NumElem refers to array/index size. 17760 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 17761 NumElem = std::min(LastLegalType, NumElem); 17762 Align FirstLoadAlign = FirstLoad->getAlign(); 17763 17764 if (NumElem < 2) { 17765 // We know that candidate stores are in order and of correct 17766 // shape. While there is no mergeable sequence from the 17767 // beginning one may start later in the sequence. The only 17768 // reason a merge of size N could have failed where another of 17769 // the same size would not have is if the alignment or either 17770 // the load or store has improved. Drop as many candidates as we 17771 // can here. 17772 unsigned NumSkip = 1; 17773 while ((NumSkip < LoadNodes.size()) && 17774 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && 17775 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) 17776 NumSkip++; 17777 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17778 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 17779 NumConsecutiveStores -= NumSkip; 17780 continue; 17781 } 17782 17783 // Check that we can merge these candidates without causing a cycle. 17784 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 17785 RootNode)) { 17786 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17787 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 17788 NumConsecutiveStores -= NumElem; 17789 continue; 17790 } 17791 17792 // Find if it is better to use vectors or integers to load and store 17793 // to memory. 17794 EVT JointMemOpVT; 17795 if (UseVectorTy) { 17796 // Find a legal type for the vector store. 17797 unsigned Elts = NumElem * NumMemElts; 17798 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17799 } else { 17800 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 17801 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 17802 } 17803 17804 SDLoc LoadDL(LoadNodes[0].MemNode); 17805 SDLoc StoreDL(StoreNodes[0].MemNode); 17806 17807 // The merged loads are required to have the same incoming chain, so 17808 // using the first's chain is acceptable. 17809 17810 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 17811 AddToWorklist(NewStoreChain.getNode()); 17812 17813 MachineMemOperand::Flags LdMMOFlags = 17814 isDereferenceable ? MachineMemOperand::MODereferenceable 17815 : MachineMemOperand::MONone; 17816 if (IsNonTemporalLoad) 17817 LdMMOFlags |= MachineMemOperand::MONonTemporal; 17818 17819 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore 17820 ? MachineMemOperand::MONonTemporal 17821 : MachineMemOperand::MONone; 17822 17823 SDValue NewLoad, NewStore; 17824 if (UseVectorTy || !DoIntegerTruncate) { 17825 NewLoad = DAG.getLoad( 17826 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 17827 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); 17828 SDValue StoreOp = NewLoad; 17829 if (NeedRotate) { 17830 unsigned LoadWidth = ElementSizeBytes * 8 * 2; 17831 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && 17832 "Unexpected type for rotate-able load pair"); 17833 SDValue RotAmt = 17834 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); 17835 // Target can convert to the identical ROTR if it does not have ROTL. 17836 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); 17837 } 17838 NewStore = DAG.getStore( 17839 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), 17840 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); 17841 } else { // This must be the truncstore/extload case 17842 EVT ExtendedTy = 17843 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 17844 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 17845 FirstLoad->getChain(), FirstLoad->getBasePtr(), 17846 FirstLoad->getPointerInfo(), JointMemOpVT, 17847 FirstLoadAlign, LdMMOFlags); 17848 NewStore = DAG.getTruncStore( 17849 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 17850 FirstInChain->getPointerInfo(), JointMemOpVT, 17851 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 17852 } 17853 17854 // Transfer chain users from old loads to the new load. 17855 for (unsigned i = 0; i < NumElem; ++i) { 17856 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 17857 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 17858 SDValue(NewLoad.getNode(), 1)); 17859 } 17860 17861 // Replace all stores with the new store. Recursively remove corresponding 17862 // values if they are no longer used. 17863 for (unsigned i = 0; i < NumElem; ++i) { 17864 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 17865 CombineTo(StoreNodes[i].MemNode, NewStore); 17866 if (Val.getNode()->use_empty()) 17867 recursivelyDeleteUnusedNodes(Val.getNode()); 17868 } 17869 17870 MadeChange = true; 17871 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17872 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 17873 NumConsecutiveStores -= NumElem; 17874 } 17875 return MadeChange; 17876 } 17877 17878 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { 17879 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) 17880 return false; 17881 17882 // TODO: Extend this function to merge stores of scalable vectors. 17883 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> 17884 // store since we know <vscale x 16 x i8> is exactly twice as large as 17885 // <vscale x 8 x i8>). Until then, bail out for scalable vectors. 17886 EVT MemVT = St->getMemoryVT(); 17887 if (MemVT.isScalableVector()) 17888 return false; 17889 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 17890 return false; 17891 17892 // This function cannot currently deal with non-byte-sized memory sizes. 17893 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17894 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) 17895 return false; 17896 17897 // Do not bother looking at stored values that are not constants, loads, or 17898 // extracted vector elements. 17899 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 17900 const StoreSource StoreSrc = getStoreSource(StoredVal); 17901 if (StoreSrc == StoreSource::Unknown) 17902 return false; 17903 17904 SmallVector<MemOpLink, 8> StoreNodes; 17905 SDNode *RootNode; 17906 // Find potential store merge candidates by searching through chain sub-DAG 17907 getStoreMergeCandidates(St, StoreNodes, RootNode); 17908 17909 // Check if there is anything to merge. 17910 if (StoreNodes.size() < 2) 17911 return false; 17912 17913 // Sort the memory operands according to their distance from the 17914 // base pointer. 17915 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 17916 return LHS.OffsetFromBase < RHS.OffsetFromBase; 17917 }); 17918 17919 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( 17920 Attribute::NoImplicitFloat); 17921 bool IsNonTemporalStore = St->isNonTemporal(); 17922 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && 17923 cast<LoadSDNode>(StoredVal)->isNonTemporal(); 17924 17925 // Store Merge attempts to merge the lowest stores. This generally 17926 // works out as if successful, as the remaining stores are checked 17927 // after the first collection of stores is merged. However, in the 17928 // case that a non-mergeable store is found first, e.g., {p[-2], 17929 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 17930 // mergeable cases. To prevent this, we prune such stores from the 17931 // front of StoreNodes here. 17932 bool MadeChange = false; 17933 while (StoreNodes.size() > 1) { 17934 unsigned NumConsecutiveStores = 17935 getConsecutiveStores(StoreNodes, ElementSizeBytes); 17936 // There are no more stores in the list to examine. 17937 if (NumConsecutiveStores == 0) 17938 return MadeChange; 17939 17940 // We have at least 2 consecutive stores. Try to merge them. 17941 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); 17942 switch (StoreSrc) { 17943 case StoreSource::Constant: 17944 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, 17945 MemVT, RootNode, AllowVectors); 17946 break; 17947 17948 case StoreSource::Extract: 17949 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, 17950 MemVT, RootNode); 17951 break; 17952 17953 case StoreSource::Load: 17954 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, 17955 MemVT, RootNode, AllowVectors, 17956 IsNonTemporalStore, IsNonTemporalLoad); 17957 break; 17958 17959 default: 17960 llvm_unreachable("Unhandled store source type"); 17961 } 17962 } 17963 return MadeChange; 17964 } 17965 17966 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 17967 SDLoc SL(ST); 17968 SDValue ReplStore; 17969 17970 // Replace the chain to avoid dependency. 17971 if (ST->isTruncatingStore()) { 17972 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 17973 ST->getBasePtr(), ST->getMemoryVT(), 17974 ST->getMemOperand()); 17975 } else { 17976 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 17977 ST->getMemOperand()); 17978 } 17979 17980 // Create token to keep both nodes around. 17981 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 17982 MVT::Other, ST->getChain(), ReplStore); 17983 17984 // Make sure the new and old chains are cleaned up. 17985 AddToWorklist(Token.getNode()); 17986 17987 // Don't add users to work list. 17988 return CombineTo(ST, Token, false); 17989 } 17990 17991 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 17992 SDValue Value = ST->getValue(); 17993 if (Value.getOpcode() == ISD::TargetConstantFP) 17994 return SDValue(); 17995 17996 if (!ISD::isNormalStore(ST)) 17997 return SDValue(); 17998 17999 SDLoc DL(ST); 18000 18001 SDValue Chain = ST->getChain(); 18002 SDValue Ptr = ST->getBasePtr(); 18003 18004 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 18005 18006 // NOTE: If the original store is volatile, this transform must not increase 18007 // the number of stores. For example, on x86-32 an f64 can be stored in one 18008 // processor operation but an i64 (which is not legal) requires two. So the 18009 // transform should not be done in this case. 18010 18011 SDValue Tmp; 18012 switch (CFP->getSimpleValueType(0).SimpleTy) { 18013 default: 18014 llvm_unreachable("Unknown FP type"); 18015 case MVT::f16: // We don't do this for these yet. 18016 case MVT::f80: 18017 case MVT::f128: 18018 case MVT::ppcf128: 18019 return SDValue(); 18020 case MVT::f32: 18021 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || 18022 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 18023 ; 18024 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 18025 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 18026 MVT::i32); 18027 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 18028 } 18029 18030 return SDValue(); 18031 case MVT::f64: 18032 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 18033 ST->isSimple()) || 18034 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 18035 ; 18036 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 18037 getZExtValue(), SDLoc(CFP), MVT::i64); 18038 return DAG.getStore(Chain, DL, Tmp, 18039 Ptr, ST->getMemOperand()); 18040 } 18041 18042 if (ST->isSimple() && 18043 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 18044 // Many FP stores are not made apparent until after legalize, e.g. for 18045 // argument passing. Since this is so common, custom legalize the 18046 // 64-bit integer store into two 32-bit stores. 18047 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 18048 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 18049 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 18050 if (DAG.getDataLayout().isBigEndian()) 18051 std::swap(Lo, Hi); 18052 18053 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18054 AAMDNodes AAInfo = ST->getAAInfo(); 18055 18056 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18057 ST->getOriginalAlign(), MMOFlags, AAInfo); 18058 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); 18059 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 18060 ST->getPointerInfo().getWithOffset(4), 18061 ST->getOriginalAlign(), MMOFlags, AAInfo); 18062 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 18063 St0, St1); 18064 } 18065 18066 return SDValue(); 18067 } 18068 } 18069 18070 SDValue DAGCombiner::visitSTORE(SDNode *N) { 18071 StoreSDNode *ST = cast<StoreSDNode>(N); 18072 SDValue Chain = ST->getChain(); 18073 SDValue Value = ST->getValue(); 18074 SDValue Ptr = ST->getBasePtr(); 18075 18076 // If this is a store of a bit convert, store the input value if the 18077 // resultant store does not need a higher alignment than the original. 18078 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 18079 ST->isUnindexed()) { 18080 EVT SVT = Value.getOperand(0).getValueType(); 18081 // If the store is volatile, we only want to change the store type if the 18082 // resulting store is legal. Otherwise we might increase the number of 18083 // memory accesses. We don't care if the original type was legal or not 18084 // as we assume software couldn't rely on the number of accesses of an 18085 // illegal type. 18086 // TODO: May be able to relax for unordered atomics (see D66309) 18087 if (((!LegalOperations && ST->isSimple()) || 18088 TLI.isOperationLegal(ISD::STORE, SVT)) && 18089 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, 18090 DAG, *ST->getMemOperand())) { 18091 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 18092 ST->getMemOperand()); 18093 } 18094 } 18095 18096 // Turn 'store undef, Ptr' -> nothing. 18097 if (Value.isUndef() && ST->isUnindexed()) 18098 return Chain; 18099 18100 // Try to infer better alignment information than the store already has. 18101 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { 18102 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 18103 if (*Alignment > ST->getAlign() && 18104 isAligned(*Alignment, ST->getSrcValueOffset())) { 18105 SDValue NewStore = 18106 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 18107 ST->getMemoryVT(), *Alignment, 18108 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 18109 // NewStore will always be N as we are only refining the alignment 18110 assert(NewStore.getNode() == N); 18111 (void)NewStore; 18112 } 18113 } 18114 } 18115 18116 // Try transforming a pair floating point load / store ops to integer 18117 // load / store ops. 18118 if (SDValue NewST = TransformFPLoadStorePair(N)) 18119 return NewST; 18120 18121 // Try transforming several stores into STORE (BSWAP). 18122 if (SDValue Store = mergeTruncStores(ST)) 18123 return Store; 18124 18125 if (ST->isUnindexed()) { 18126 // Walk up chain skipping non-aliasing memory nodes, on this store and any 18127 // adjacent stores. 18128 if (findBetterNeighborChains(ST)) { 18129 // replaceStoreChain uses CombineTo, which handled all of the worklist 18130 // manipulation. Return the original node to not do anything else. 18131 return SDValue(ST, 0); 18132 } 18133 Chain = ST->getChain(); 18134 } 18135 18136 // FIXME: is there such a thing as a truncating indexed store? 18137 if (ST->isTruncatingStore() && ST->isUnindexed() && 18138 Value.getValueType().isInteger() && 18139 (!isa<ConstantSDNode>(Value) || 18140 !cast<ConstantSDNode>(Value)->isOpaque())) { 18141 APInt TruncDemandedBits = 18142 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 18143 ST->getMemoryVT().getScalarSizeInBits()); 18144 18145 // See if we can simplify the input to this truncstore with knowledge that 18146 // only the low bits are being used. For example: 18147 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 18148 AddToWorklist(Value.getNode()); 18149 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) 18150 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 18151 ST->getMemOperand()); 18152 18153 // Otherwise, see if we can simplify the operation with 18154 // SimplifyDemandedBits, which only works if the value has a single use. 18155 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 18156 // Re-visit the store if anything changed and the store hasn't been merged 18157 // with another node (N is deleted) SimplifyDemandedBits will add Value's 18158 // node back to the worklist if necessary, but we also need to re-visit 18159 // the Store node itself. 18160 if (N->getOpcode() != ISD::DELETED_NODE) 18161 AddToWorklist(N); 18162 return SDValue(N, 0); 18163 } 18164 } 18165 18166 // If this is a load followed by a store to the same location, then the store 18167 // is dead/noop. 18168 // TODO: Can relax for unordered atomics (see D66309) 18169 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 18170 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 18171 ST->isUnindexed() && ST->isSimple() && 18172 Ld->getAddressSpace() == ST->getAddressSpace() && 18173 // There can't be any side effects between the load and store, such as 18174 // a call or store. 18175 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 18176 // The store is dead, remove it. 18177 return Chain; 18178 } 18179 } 18180 18181 // TODO: Can relax for unordered atomics (see D66309) 18182 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 18183 if (ST->isUnindexed() && ST->isSimple() && 18184 ST1->isUnindexed() && ST1->isSimple()) { 18185 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && 18186 ST->getMemoryVT() == ST1->getMemoryVT() && 18187 ST->getAddressSpace() == ST1->getAddressSpace()) { 18188 // If this is a store followed by a store with the same value to the 18189 // same location, then the store is dead/noop. 18190 return Chain; 18191 } 18192 18193 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 18194 !ST1->getBasePtr().isUndef() && 18195 // BaseIndexOffset and the code below requires knowing the size 18196 // of a vector, so bail out if MemoryVT is scalable. 18197 !ST->getMemoryVT().isScalableVector() && 18198 !ST1->getMemoryVT().isScalableVector() && 18199 ST->getAddressSpace() == ST1->getAddressSpace()) { 18200 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 18201 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 18202 unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); 18203 unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); 18204 // If this is a store who's preceding store to a subset of the current 18205 // location and no one other node is chained to that store we can 18206 // effectively drop the store. Do not remove stores to undef as they may 18207 // be used as data sinks. 18208 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 18209 CombineTo(ST1, ST1->getChain()); 18210 return SDValue(); 18211 } 18212 } 18213 } 18214 } 18215 18216 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 18217 // truncating store. We can do this even if this is already a truncstore. 18218 if ((Value.getOpcode() == ISD::FP_ROUND || 18219 Value.getOpcode() == ISD::TRUNCATE) && 18220 Value.getNode()->hasOneUse() && ST->isUnindexed() && 18221 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), 18222 ST->getMemoryVT(), LegalOperations)) { 18223 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 18224 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 18225 } 18226 18227 // Always perform this optimization before types are legal. If the target 18228 // prefers, also try this after legalization to catch stores that were created 18229 // by intrinsics or other nodes. 18230 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { 18231 while (true) { 18232 // There can be multiple store sequences on the same chain. 18233 // Keep trying to merge store sequences until we are unable to do so 18234 // or until we merge the last store on the chain. 18235 bool Changed = mergeConsecutiveStores(ST); 18236 if (!Changed) break; 18237 // Return N as merge only uses CombineTo and no worklist clean 18238 // up is necessary. 18239 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 18240 return SDValue(N, 0); 18241 } 18242 } 18243 18244 // Try transforming N to an indexed store. 18245 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 18246 return SDValue(N, 0); 18247 18248 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 18249 // 18250 // Make sure to do this only after attempting to merge stores in order to 18251 // avoid changing the types of some subset of stores due to visit order, 18252 // preventing their merging. 18253 if (isa<ConstantFPSDNode>(ST->getValue())) { 18254 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 18255 return NewSt; 18256 } 18257 18258 if (SDValue NewSt = splitMergedValStore(ST)) 18259 return NewSt; 18260 18261 return ReduceLoadOpStoreWidth(N); 18262 } 18263 18264 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 18265 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 18266 if (!LifetimeEnd->hasOffset()) 18267 return SDValue(); 18268 18269 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 18270 LifetimeEnd->getOffset(), false); 18271 18272 // We walk up the chains to find stores. 18273 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 18274 while (!Chains.empty()) { 18275 SDValue Chain = Chains.pop_back_val(); 18276 if (!Chain.hasOneUse()) 18277 continue; 18278 switch (Chain.getOpcode()) { 18279 case ISD::TokenFactor: 18280 for (unsigned Nops = Chain.getNumOperands(); Nops;) 18281 Chains.push_back(Chain.getOperand(--Nops)); 18282 break; 18283 case ISD::LIFETIME_START: 18284 case ISD::LIFETIME_END: 18285 // We can forward past any lifetime start/end that can be proven not to 18286 // alias the node. 18287 if (!mayAlias(Chain.getNode(), N)) 18288 Chains.push_back(Chain.getOperand(0)); 18289 break; 18290 case ISD::STORE: { 18291 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 18292 // TODO: Can relax for unordered atomics (see D66309) 18293 if (!ST->isSimple() || ST->isIndexed()) 18294 continue; 18295 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); 18296 // The bounds of a scalable store are not known until runtime, so this 18297 // store cannot be elided. 18298 if (StoreSize.isScalable()) 18299 continue; 18300 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 18301 // If we store purely within object bounds just before its lifetime ends, 18302 // we can remove the store. 18303 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 18304 StoreSize.getFixedSize() * 8)) { 18305 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 18306 dbgs() << "\nwithin LIFETIME_END of : "; 18307 LifetimeEndBase.dump(); dbgs() << "\n"); 18308 CombineTo(ST, ST->getChain()); 18309 return SDValue(N, 0); 18310 } 18311 } 18312 } 18313 } 18314 return SDValue(); 18315 } 18316 18317 /// For the instruction sequence of store below, F and I values 18318 /// are bundled together as an i64 value before being stored into memory. 18319 /// Sometimes it is more efficent to generate separate stores for F and I, 18320 /// which can remove the bitwise instructions or sink them to colder places. 18321 /// 18322 /// (store (or (zext (bitcast F to i32) to i64), 18323 /// (shl (zext I to i64), 32)), addr) --> 18324 /// (store F, addr) and (store I, addr+4) 18325 /// 18326 /// Similarly, splitting for other merged store can also be beneficial, like: 18327 /// For pair of {i32, i32}, i64 store --> two i32 stores. 18328 /// For pair of {i32, i16}, i64 store --> two i32 stores. 18329 /// For pair of {i16, i16}, i32 store --> two i16 stores. 18330 /// For pair of {i16, i8}, i32 store --> two i16 stores. 18331 /// For pair of {i8, i8}, i16 store --> two i8 stores. 18332 /// 18333 /// We allow each target to determine specifically which kind of splitting is 18334 /// supported. 18335 /// 18336 /// The store patterns are commonly seen from the simple code snippet below 18337 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 18338 /// void goo(const std::pair<int, float> &); 18339 /// hoo() { 18340 /// ... 18341 /// goo(std::make_pair(tmp, ftmp)); 18342 /// ... 18343 /// } 18344 /// 18345 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 18346 if (OptLevel == CodeGenOpt::None) 18347 return SDValue(); 18348 18349 // Can't change the number of memory accesses for a volatile store or break 18350 // atomicity for an atomic one. 18351 if (!ST->isSimple()) 18352 return SDValue(); 18353 18354 SDValue Val = ST->getValue(); 18355 SDLoc DL(ST); 18356 18357 // Match OR operand. 18358 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 18359 return SDValue(); 18360 18361 // Match SHL operand and get Lower and Higher parts of Val. 18362 SDValue Op1 = Val.getOperand(0); 18363 SDValue Op2 = Val.getOperand(1); 18364 SDValue Lo, Hi; 18365 if (Op1.getOpcode() != ISD::SHL) { 18366 std::swap(Op1, Op2); 18367 if (Op1.getOpcode() != ISD::SHL) 18368 return SDValue(); 18369 } 18370 Lo = Op2; 18371 Hi = Op1.getOperand(0); 18372 if (!Op1.hasOneUse()) 18373 return SDValue(); 18374 18375 // Match shift amount to HalfValBitSize. 18376 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 18377 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 18378 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 18379 return SDValue(); 18380 18381 // Lo and Hi are zero-extended from int with size less equal than 32 18382 // to i64. 18383 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 18384 !Lo.getOperand(0).getValueType().isScalarInteger() || 18385 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 18386 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 18387 !Hi.getOperand(0).getValueType().isScalarInteger() || 18388 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 18389 return SDValue(); 18390 18391 // Use the EVT of low and high parts before bitcast as the input 18392 // of target query. 18393 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 18394 ? Lo.getOperand(0).getValueType() 18395 : Lo.getValueType(); 18396 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 18397 ? Hi.getOperand(0).getValueType() 18398 : Hi.getValueType(); 18399 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 18400 return SDValue(); 18401 18402 // Start to split store. 18403 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18404 AAMDNodes AAInfo = ST->getAAInfo(); 18405 18406 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 18407 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 18408 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 18409 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 18410 18411 SDValue Chain = ST->getChain(); 18412 SDValue Ptr = ST->getBasePtr(); 18413 // Lower value store. 18414 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18415 ST->getOriginalAlign(), MMOFlags, AAInfo); 18416 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); 18417 // Higher value store. 18418 SDValue St1 = DAG.getStore( 18419 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 18420 ST->getOriginalAlign(), MMOFlags, AAInfo); 18421 return St1; 18422 } 18423 18424 /// Convert a disguised subvector insertion into a shuffle: 18425 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 18426 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && 18427 "Expected extract_vector_elt"); 18428 SDValue InsertVal = N->getOperand(1); 18429 SDValue Vec = N->getOperand(0); 18430 18431 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), 18432 // InsIndex) 18433 // --> (vector_shuffle X, Y) and variations where shuffle operands may be 18434 // CONCAT_VECTORS. 18435 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && 18436 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18437 isa<ConstantSDNode>(InsertVal.getOperand(1))) { 18438 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); 18439 ArrayRef<int> Mask = SVN->getMask(); 18440 18441 SDValue X = Vec.getOperand(0); 18442 SDValue Y = Vec.getOperand(1); 18443 18444 // Vec's operand 0 is using indices from 0 to N-1 and 18445 // operand 1 from N to 2N - 1, where N is the number of 18446 // elements in the vectors. 18447 SDValue InsertVal0 = InsertVal.getOperand(0); 18448 int ElementOffset = -1; 18449 18450 // We explore the inputs of the shuffle in order to see if we find the 18451 // source of the extract_vector_elt. If so, we can use it to modify the 18452 // shuffle rather than perform an insert_vector_elt. 18453 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; 18454 ArgWorkList.emplace_back(Mask.size(), Y); 18455 ArgWorkList.emplace_back(0, X); 18456 18457 while (!ArgWorkList.empty()) { 18458 int ArgOffset; 18459 SDValue ArgVal; 18460 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); 18461 18462 if (ArgVal == InsertVal0) { 18463 ElementOffset = ArgOffset; 18464 break; 18465 } 18466 18467 // Peek through concat_vector. 18468 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { 18469 int CurrentArgOffset = 18470 ArgOffset + ArgVal.getValueType().getVectorNumElements(); 18471 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); 18472 for (SDValue Op : reverse(ArgVal->ops())) { 18473 CurrentArgOffset -= Step; 18474 ArgWorkList.emplace_back(CurrentArgOffset, Op); 18475 } 18476 18477 // Make sure we went through all the elements and did not screw up index 18478 // computation. 18479 assert(CurrentArgOffset == ArgOffset); 18480 } 18481 } 18482 18483 if (ElementOffset != -1) { 18484 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); 18485 18486 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); 18487 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); 18488 assert(NewMask[InsIndex] < 18489 (int)(2 * Vec.getValueType().getVectorNumElements()) && 18490 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); 18491 18492 SDValue LegalShuffle = 18493 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, 18494 Y, NewMask, DAG); 18495 if (LegalShuffle) 18496 return LegalShuffle; 18497 } 18498 } 18499 18500 // insert_vector_elt V, (bitcast X from vector type), IdxC --> 18501 // bitcast(shuffle (bitcast V), (extended X), Mask) 18502 // Note: We do not use an insert_subvector node because that requires a 18503 // legal subvector type. 18504 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 18505 !InsertVal.getOperand(0).getValueType().isVector()) 18506 return SDValue(); 18507 18508 SDValue SubVec = InsertVal.getOperand(0); 18509 SDValue DestVec = N->getOperand(0); 18510 EVT SubVecVT = SubVec.getValueType(); 18511 EVT VT = DestVec.getValueType(); 18512 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 18513 // If the source only has a single vector element, the cost of creating adding 18514 // it to a vector is likely to exceed the cost of a insert_vector_elt. 18515 if (NumSrcElts == 1) 18516 return SDValue(); 18517 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 18518 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 18519 18520 // Step 1: Create a shuffle mask that implements this insert operation. The 18521 // vector that we are inserting into will be operand 0 of the shuffle, so 18522 // those elements are just 'i'. The inserted subvector is in the first 18523 // positions of operand 1 of the shuffle. Example: 18524 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 18525 SmallVector<int, 16> Mask(NumMaskVals); 18526 for (unsigned i = 0; i != NumMaskVals; ++i) { 18527 if (i / NumSrcElts == InsIndex) 18528 Mask[i] = (i % NumSrcElts) + NumMaskVals; 18529 else 18530 Mask[i] = i; 18531 } 18532 18533 // Bail out if the target can not handle the shuffle we want to create. 18534 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 18535 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 18536 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 18537 return SDValue(); 18538 18539 // Step 2: Create a wide vector from the inserted source vector by appending 18540 // undefined elements. This is the same size as our destination vector. 18541 SDLoc DL(N); 18542 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 18543 ConcatOps[0] = SubVec; 18544 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 18545 18546 // Step 3: Shuffle in the padded subvector. 18547 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 18548 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 18549 AddToWorklist(PaddedSubV.getNode()); 18550 AddToWorklist(DestVecBC.getNode()); 18551 AddToWorklist(Shuf.getNode()); 18552 return DAG.getBitcast(VT, Shuf); 18553 } 18554 18555 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 18556 SDValue InVec = N->getOperand(0); 18557 SDValue InVal = N->getOperand(1); 18558 SDValue EltNo = N->getOperand(2); 18559 SDLoc DL(N); 18560 18561 EVT VT = InVec.getValueType(); 18562 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 18563 18564 // Insert into out-of-bounds element is undefined. 18565 if (IndexC && VT.isFixedLengthVector() && 18566 IndexC->getZExtValue() >= VT.getVectorNumElements()) 18567 return DAG.getUNDEF(VT); 18568 18569 // Remove redundant insertions: 18570 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 18571 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18572 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 18573 return InVec; 18574 18575 if (!IndexC) { 18576 // If this is variable insert to undef vector, it might be better to splat: 18577 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 18578 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 18579 if (VT.isScalableVector()) 18580 return DAG.getSplatVector(VT, DL, InVal); 18581 else { 18582 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); 18583 return DAG.getBuildVector(VT, DL, Ops); 18584 } 18585 } 18586 return SDValue(); 18587 } 18588 18589 if (VT.isScalableVector()) 18590 return SDValue(); 18591 18592 unsigned NumElts = VT.getVectorNumElements(); 18593 18594 // We must know which element is being inserted for folds below here. 18595 unsigned Elt = IndexC->getZExtValue(); 18596 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 18597 return Shuf; 18598 18599 // Canonicalize insert_vector_elt dag nodes. 18600 // Example: 18601 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 18602 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 18603 // 18604 // Do this only if the child insert_vector node has one use; also 18605 // do this only if indices are both constants and Idx1 < Idx0. 18606 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 18607 && isa<ConstantSDNode>(InVec.getOperand(2))) { 18608 unsigned OtherElt = InVec.getConstantOperandVal(2); 18609 if (Elt < OtherElt) { 18610 // Swap nodes. 18611 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 18612 InVec.getOperand(0), InVal, EltNo); 18613 AddToWorklist(NewOp.getNode()); 18614 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 18615 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 18616 } 18617 } 18618 18619 // If we can't generate a legal BUILD_VECTOR, exit 18620 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 18621 return SDValue(); 18622 18623 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 18624 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 18625 // vector elements. 18626 SmallVector<SDValue, 8> Ops; 18627 // Do not combine these two vectors if the output vector will not replace 18628 // the input vector. 18629 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 18630 Ops.append(InVec.getNode()->op_begin(), 18631 InVec.getNode()->op_end()); 18632 } else if (InVec.isUndef()) { 18633 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 18634 } else { 18635 return SDValue(); 18636 } 18637 assert(Ops.size() == NumElts && "Unexpected vector size"); 18638 18639 // Insert the element 18640 if (Elt < Ops.size()) { 18641 // All the operands of BUILD_VECTOR must have the same type; 18642 // we enforce that here. 18643 EVT OpVT = Ops[0].getValueType(); 18644 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 18645 } 18646 18647 // Return the new vector 18648 return DAG.getBuildVector(VT, DL, Ops); 18649 } 18650 18651 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 18652 SDValue EltNo, 18653 LoadSDNode *OriginalLoad) { 18654 assert(OriginalLoad->isSimple()); 18655 18656 EVT ResultVT = EVE->getValueType(0); 18657 EVT VecEltVT = InVecVT.getVectorElementType(); 18658 18659 // If the vector element type is not a multiple of a byte then we are unable 18660 // to correctly compute an address to load only the extracted element as a 18661 // scalar. 18662 if (!VecEltVT.isByteSized()) 18663 return SDValue(); 18664 18665 ISD::LoadExtType ExtTy = 18666 ResultVT.bitsGT(VecEltVT) ? ISD::NON_EXTLOAD : ISD::EXTLOAD; 18667 if (!TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT) || 18668 !TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 18669 return SDValue(); 18670 18671 Align Alignment = OriginalLoad->getAlign(); 18672 MachinePointerInfo MPI; 18673 SDLoc DL(EVE); 18674 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 18675 int Elt = ConstEltNo->getZExtValue(); 18676 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 18677 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 18678 Alignment = commonAlignment(Alignment, PtrOff); 18679 } else { 18680 // Discard the pointer info except the address space because the memory 18681 // operand can't represent this new access since the offset is variable. 18682 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 18683 Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8); 18684 } 18685 18686 bool IsFast = false; 18687 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT, 18688 OriginalLoad->getAddressSpace(), Alignment, 18689 OriginalLoad->getMemOperand()->getFlags(), 18690 &IsFast) || 18691 !IsFast) 18692 return SDValue(); 18693 18694 SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(), 18695 InVecVT, EltNo); 18696 18697 // The replacement we need to do here is a little tricky: we need to 18698 // replace an extractelement of a load with a load. 18699 // Use ReplaceAllUsesOfValuesWith to do the replacement. 18700 // Note that this replacement assumes that the extractvalue is the only 18701 // use of the load; that's okay because we don't want to perform this 18702 // transformation in other cases anyway. 18703 SDValue Load; 18704 SDValue Chain; 18705 if (ResultVT.bitsGT(VecEltVT)) { 18706 // If the result type of vextract is wider than the load, then issue an 18707 // extending load instead. 18708 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 18709 VecEltVT) 18710 ? ISD::ZEXTLOAD 18711 : ISD::EXTLOAD; 18712 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 18713 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 18714 Alignment, OriginalLoad->getMemOperand()->getFlags(), 18715 OriginalLoad->getAAInfo()); 18716 Chain = Load.getValue(1); 18717 } else { 18718 Load = DAG.getLoad( 18719 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment, 18720 OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo()); 18721 Chain = Load.getValue(1); 18722 if (ResultVT.bitsLT(VecEltVT)) 18723 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 18724 else 18725 Load = DAG.getBitcast(ResultVT, Load); 18726 } 18727 WorklistRemover DeadNodes(*this); 18728 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 18729 SDValue To[] = { Load, Chain }; 18730 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 18731 // Make sure to revisit this node to clean it up; it will usually be dead. 18732 AddToWorklist(EVE); 18733 // Since we're explicitly calling ReplaceAllUses, add the new node to the 18734 // worklist explicitly as well. 18735 AddToWorklistWithUsers(Load.getNode()); 18736 ++OpsNarrowed; 18737 return SDValue(EVE, 0); 18738 } 18739 18740 /// Transform a vector binary operation into a scalar binary operation by moving 18741 /// the math/logic after an extract element of a vector. 18742 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 18743 bool LegalOperations) { 18744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18745 SDValue Vec = ExtElt->getOperand(0); 18746 SDValue Index = ExtElt->getOperand(1); 18747 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18748 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 18749 Vec.getNode()->getNumValues() != 1) 18750 return SDValue(); 18751 18752 // Targets may want to avoid this to prevent an expensive register transfer. 18753 if (!TLI.shouldScalarizeBinop(Vec)) 18754 return SDValue(); 18755 18756 // Extracting an element of a vector constant is constant-folded, so this 18757 // transform is just replacing a vector op with a scalar op while moving the 18758 // extract. 18759 SDValue Op0 = Vec.getOperand(0); 18760 SDValue Op1 = Vec.getOperand(1); 18761 if (isAnyConstantBuildVector(Op0, true) || 18762 isAnyConstantBuildVector(Op1, true)) { 18763 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 18764 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 18765 SDLoc DL(ExtElt); 18766 EVT VT = ExtElt->getValueType(0); 18767 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 18768 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 18769 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 18770 } 18771 18772 return SDValue(); 18773 } 18774 18775 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 18776 SDValue VecOp = N->getOperand(0); 18777 SDValue Index = N->getOperand(1); 18778 EVT ScalarVT = N->getValueType(0); 18779 EVT VecVT = VecOp.getValueType(); 18780 if (VecOp.isUndef()) 18781 return DAG.getUNDEF(ScalarVT); 18782 18783 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 18784 // 18785 // This only really matters if the index is non-constant since other combines 18786 // on the constant elements already work. 18787 SDLoc DL(N); 18788 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 18789 Index == VecOp.getOperand(2)) { 18790 SDValue Elt = VecOp.getOperand(1); 18791 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 18792 } 18793 18794 // (vextract (scalar_to_vector val, 0) -> val 18795 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 18796 // Only 0'th element of SCALAR_TO_VECTOR is defined. 18797 if (DAG.isKnownNeverZero(Index)) 18798 return DAG.getUNDEF(ScalarVT); 18799 18800 // Check if the result type doesn't match the inserted element type. A 18801 // SCALAR_TO_VECTOR may truncate the inserted element and the 18802 // EXTRACT_VECTOR_ELT may widen the extracted vector. 18803 SDValue InOp = VecOp.getOperand(0); 18804 if (InOp.getValueType() != ScalarVT) { 18805 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 18806 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 18807 } 18808 return InOp; 18809 } 18810 18811 // extract_vector_elt of out-of-bounds element -> UNDEF 18812 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18813 if (IndexC && VecVT.isFixedLengthVector() && 18814 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) 18815 return DAG.getUNDEF(ScalarVT); 18816 18817 // extract_vector_elt (build_vector x, y), 1 -> y 18818 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || 18819 VecOp.getOpcode() == ISD::SPLAT_VECTOR) && 18820 TLI.isTypeLegal(VecVT) && 18821 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 18822 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || 18823 VecVT.isFixedLengthVector()) && 18824 "BUILD_VECTOR used for scalable vectors"); 18825 unsigned IndexVal = 18826 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; 18827 SDValue Elt = VecOp.getOperand(IndexVal); 18828 EVT InEltVT = Elt.getValueType(); 18829 18830 // Sometimes build_vector's scalar input types do not match result type. 18831 if (ScalarVT == InEltVT) 18832 return Elt; 18833 18834 // TODO: It may be useful to truncate if free if the build_vector implicitly 18835 // converts. 18836 } 18837 18838 if (VecVT.isScalableVector()) 18839 return SDValue(); 18840 18841 // All the code from this point onwards assumes fixed width vectors, but it's 18842 // possible that some of the combinations could be made to work for scalable 18843 // vectors too. 18844 unsigned NumElts = VecVT.getVectorNumElements(); 18845 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 18846 18847 // TODO: These transforms should not require the 'hasOneUse' restriction, but 18848 // there are regressions on multiple targets without it. We can end up with a 18849 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 18850 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 18851 VecOp.hasOneUse()) { 18852 // The vector index of the LSBs of the source depend on the endian-ness. 18853 bool IsLE = DAG.getDataLayout().isLittleEndian(); 18854 unsigned ExtractIndex = IndexC->getZExtValue(); 18855 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 18856 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 18857 SDValue BCSrc = VecOp.getOperand(0); 18858 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 18859 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 18860 18861 if (LegalTypes && BCSrc.getValueType().isInteger() && 18862 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 18863 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 18864 // trunc i64 X to i32 18865 SDValue X = BCSrc.getOperand(0); 18866 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 18867 "Extract element and scalar to vector can't change element type " 18868 "from FP to integer."); 18869 unsigned XBitWidth = X.getValueSizeInBits(); 18870 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 18871 18872 // An extract element return value type can be wider than its vector 18873 // operand element type. In that case, the high bits are undefined, so 18874 // it's possible that we may need to extend rather than truncate. 18875 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 18876 assert(XBitWidth % VecEltBitWidth == 0 && 18877 "Scalar bitwidth must be a multiple of vector element bitwidth"); 18878 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 18879 } 18880 } 18881 } 18882 18883 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 18884 return BO; 18885 18886 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 18887 // We only perform this optimization before the op legalization phase because 18888 // we may introduce new vector instructions which are not backed by TD 18889 // patterns. For example on AVX, extracting elements from a wide vector 18890 // without using extract_subvector. However, if we can find an underlying 18891 // scalar value, then we can always use that. 18892 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 18893 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 18894 // Find the new index to extract from. 18895 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 18896 18897 // Extracting an undef index is undef. 18898 if (OrigElt == -1) 18899 return DAG.getUNDEF(ScalarVT); 18900 18901 // Select the right vector half to extract from. 18902 SDValue SVInVec; 18903 if (OrigElt < (int)NumElts) { 18904 SVInVec = VecOp.getOperand(0); 18905 } else { 18906 SVInVec = VecOp.getOperand(1); 18907 OrigElt -= NumElts; 18908 } 18909 18910 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 18911 SDValue InOp = SVInVec.getOperand(OrigElt); 18912 if (InOp.getValueType() != ScalarVT) { 18913 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 18914 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 18915 } 18916 18917 return InOp; 18918 } 18919 18920 // FIXME: We should handle recursing on other vector shuffles and 18921 // scalar_to_vector here as well. 18922 18923 if (!LegalOperations || 18924 // FIXME: Should really be just isOperationLegalOrCustom. 18925 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 18926 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 18927 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 18928 DAG.getVectorIdxConstant(OrigElt, DL)); 18929 } 18930 } 18931 18932 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 18933 // simplify it based on the (valid) extraction indices. 18934 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 18935 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18936 Use->getOperand(0) == VecOp && 18937 isa<ConstantSDNode>(Use->getOperand(1)); 18938 })) { 18939 APInt DemandedElts = APInt::getZero(NumElts); 18940 for (SDNode *Use : VecOp->uses()) { 18941 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 18942 if (CstElt->getAPIntValue().ult(NumElts)) 18943 DemandedElts.setBit(CstElt->getZExtValue()); 18944 } 18945 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 18946 // We simplified the vector operand of this extract element. If this 18947 // extract is not dead, visit it again so it is folded properly. 18948 if (N->getOpcode() != ISD::DELETED_NODE) 18949 AddToWorklist(N); 18950 return SDValue(N, 0); 18951 } 18952 APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth); 18953 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { 18954 // We simplified the vector operand of this extract element. If this 18955 // extract is not dead, visit it again so it is folded properly. 18956 if (N->getOpcode() != ISD::DELETED_NODE) 18957 AddToWorklist(N); 18958 return SDValue(N, 0); 18959 } 18960 } 18961 18962 // Everything under here is trying to match an extract of a loaded value. 18963 // If the result of load has to be truncated, then it's not necessarily 18964 // profitable. 18965 bool BCNumEltsChanged = false; 18966 EVT ExtVT = VecVT.getVectorElementType(); 18967 EVT LVT = ExtVT; 18968 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 18969 return SDValue(); 18970 18971 if (VecOp.getOpcode() == ISD::BITCAST) { 18972 // Don't duplicate a load with other uses. 18973 if (!VecOp.hasOneUse()) 18974 return SDValue(); 18975 18976 EVT BCVT = VecOp.getOperand(0).getValueType(); 18977 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 18978 return SDValue(); 18979 if (NumElts != BCVT.getVectorNumElements()) 18980 BCNumEltsChanged = true; 18981 VecOp = VecOp.getOperand(0); 18982 ExtVT = BCVT.getVectorElementType(); 18983 } 18984 18985 // extract (vector load $addr), i --> load $addr + i * size 18986 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 18987 ISD::isNormalLoad(VecOp.getNode()) && 18988 !Index->hasPredecessor(VecOp.getNode())) { 18989 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 18990 if (VecLoad && VecLoad->isSimple()) 18991 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 18992 } 18993 18994 // Perform only after legalization to ensure build_vector / vector_shuffle 18995 // optimizations have already been done. 18996 if (!LegalOperations || !IndexC) 18997 return SDValue(); 18998 18999 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 19000 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 19001 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 19002 int Elt = IndexC->getZExtValue(); 19003 LoadSDNode *LN0 = nullptr; 19004 if (ISD::isNormalLoad(VecOp.getNode())) { 19005 LN0 = cast<LoadSDNode>(VecOp); 19006 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 19007 VecOp.getOperand(0).getValueType() == ExtVT && 19008 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 19009 // Don't duplicate a load with other uses. 19010 if (!VecOp.hasOneUse()) 19011 return SDValue(); 19012 19013 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 19014 } 19015 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 19016 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 19017 // => 19018 // (load $addr+1*size) 19019 19020 // Don't duplicate a load with other uses. 19021 if (!VecOp.hasOneUse()) 19022 return SDValue(); 19023 19024 // If the bit convert changed the number of elements, it is unsafe 19025 // to examine the mask. 19026 if (BCNumEltsChanged) 19027 return SDValue(); 19028 19029 // Select the input vector, guarding against out of range extract vector. 19030 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 19031 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 19032 19033 if (VecOp.getOpcode() == ISD::BITCAST) { 19034 // Don't duplicate a load with other uses. 19035 if (!VecOp.hasOneUse()) 19036 return SDValue(); 19037 19038 VecOp = VecOp.getOperand(0); 19039 } 19040 if (ISD::isNormalLoad(VecOp.getNode())) { 19041 LN0 = cast<LoadSDNode>(VecOp); 19042 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 19043 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 19044 } 19045 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && 19046 VecVT.getVectorElementType() == ScalarVT && 19047 (!LegalTypes || 19048 TLI.isTypeLegal( 19049 VecOp.getOperand(0).getValueType().getVectorElementType()))) { 19050 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 19051 // -> extract_vector_elt a, 0 19052 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 19053 // -> extract_vector_elt a, 1 19054 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 19055 // -> extract_vector_elt b, 0 19056 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 19057 // -> extract_vector_elt b, 1 19058 SDLoc SL(N); 19059 EVT ConcatVT = VecOp.getOperand(0).getValueType(); 19060 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 19061 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, 19062 Index.getValueType()); 19063 19064 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); 19065 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, 19066 ConcatVT.getVectorElementType(), 19067 ConcatOp, NewIdx); 19068 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); 19069 } 19070 19071 // Make sure we found a non-volatile load and the extractelement is 19072 // the only use. 19073 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) 19074 return SDValue(); 19075 19076 // If Idx was -1 above, Elt is going to be -1, so just return undef. 19077 if (Elt == -1) 19078 return DAG.getUNDEF(LVT); 19079 19080 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 19081 } 19082 19083 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 19084 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 19085 // We perform this optimization post type-legalization because 19086 // the type-legalizer often scalarizes integer-promoted vectors. 19087 // Performing this optimization before may create bit-casts which 19088 // will be type-legalized to complex code sequences. 19089 // We perform this optimization only before the operation legalizer because we 19090 // may introduce illegal operations. 19091 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 19092 return SDValue(); 19093 19094 unsigned NumInScalars = N->getNumOperands(); 19095 SDLoc DL(N); 19096 EVT VT = N->getValueType(0); 19097 19098 // Check to see if this is a BUILD_VECTOR of a bunch of values 19099 // which come from any_extend or zero_extend nodes. If so, we can create 19100 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 19101 // optimizations. We do not handle sign-extend because we can't fill the sign 19102 // using shuffles. 19103 EVT SourceType = MVT::Other; 19104 bool AllAnyExt = true; 19105 19106 for (unsigned i = 0; i != NumInScalars; ++i) { 19107 SDValue In = N->getOperand(i); 19108 // Ignore undef inputs. 19109 if (In.isUndef()) continue; 19110 19111 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 19112 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 19113 19114 // Abort if the element is not an extension. 19115 if (!ZeroExt && !AnyExt) { 19116 SourceType = MVT::Other; 19117 break; 19118 } 19119 19120 // The input is a ZeroExt or AnyExt. Check the original type. 19121 EVT InTy = In.getOperand(0).getValueType(); 19122 19123 // Check that all of the widened source types are the same. 19124 if (SourceType == MVT::Other) 19125 // First time. 19126 SourceType = InTy; 19127 else if (InTy != SourceType) { 19128 // Multiple income types. Abort. 19129 SourceType = MVT::Other; 19130 break; 19131 } 19132 19133 // Check if all of the extends are ANY_EXTENDs. 19134 AllAnyExt &= AnyExt; 19135 } 19136 19137 // In order to have valid types, all of the inputs must be extended from the 19138 // same source type and all of the inputs must be any or zero extend. 19139 // Scalar sizes must be a power of two. 19140 EVT OutScalarTy = VT.getScalarType(); 19141 bool ValidTypes = SourceType != MVT::Other && 19142 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 19143 isPowerOf2_32(SourceType.getSizeInBits()); 19144 19145 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 19146 // turn into a single shuffle instruction. 19147 if (!ValidTypes) 19148 return SDValue(); 19149 19150 // If we already have a splat buildvector, then don't fold it if it means 19151 // introducing zeros. 19152 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) 19153 return SDValue(); 19154 19155 bool isLE = DAG.getDataLayout().isLittleEndian(); 19156 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 19157 assert(ElemRatio > 1 && "Invalid element size ratio"); 19158 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 19159 DAG.getConstant(0, DL, SourceType); 19160 19161 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 19162 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 19163 19164 // Populate the new build_vector 19165 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 19166 SDValue Cast = N->getOperand(i); 19167 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 19168 Cast.getOpcode() == ISD::ZERO_EXTEND || 19169 Cast.isUndef()) && "Invalid cast opcode"); 19170 SDValue In; 19171 if (Cast.isUndef()) 19172 In = DAG.getUNDEF(SourceType); 19173 else 19174 In = Cast->getOperand(0); 19175 unsigned Index = isLE ? (i * ElemRatio) : 19176 (i * ElemRatio + (ElemRatio - 1)); 19177 19178 assert(Index < Ops.size() && "Invalid index"); 19179 Ops[Index] = In; 19180 } 19181 19182 // The type of the new BUILD_VECTOR node. 19183 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 19184 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 19185 "Invalid vector size"); 19186 // Check if the new vector type is legal. 19187 if (!isTypeLegal(VecVT) || 19188 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 19189 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 19190 return SDValue(); 19191 19192 // Make the new BUILD_VECTOR. 19193 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 19194 19195 // The new BUILD_VECTOR node has the potential to be further optimized. 19196 AddToWorklist(BV.getNode()); 19197 // Bitcast to the desired type. 19198 return DAG.getBitcast(VT, BV); 19199 } 19200 19201 // Simplify (build_vec (trunc $1) 19202 // (trunc (srl $1 half-width)) 19203 // (trunc (srl $1 (2 * half-width))) …) 19204 // to (bitcast $1) 19205 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { 19206 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19207 19208 // Only for little endian 19209 if (!DAG.getDataLayout().isLittleEndian()) 19210 return SDValue(); 19211 19212 SDLoc DL(N); 19213 EVT VT = N->getValueType(0); 19214 EVT OutScalarTy = VT.getScalarType(); 19215 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); 19216 19217 // Only for power of two types to be sure that bitcast works well 19218 if (!isPowerOf2_64(ScalarTypeBitsize)) 19219 return SDValue(); 19220 19221 unsigned NumInScalars = N->getNumOperands(); 19222 19223 // Look through bitcasts 19224 auto PeekThroughBitcast = [](SDValue Op) { 19225 if (Op.getOpcode() == ISD::BITCAST) 19226 return Op.getOperand(0); 19227 return Op; 19228 }; 19229 19230 // The source value where all the parts are extracted. 19231 SDValue Src; 19232 for (unsigned i = 0; i != NumInScalars; ++i) { 19233 SDValue In = PeekThroughBitcast(N->getOperand(i)); 19234 // Ignore undef inputs. 19235 if (In.isUndef()) continue; 19236 19237 if (In.getOpcode() != ISD::TRUNCATE) 19238 return SDValue(); 19239 19240 In = PeekThroughBitcast(In.getOperand(0)); 19241 19242 if (In.getOpcode() != ISD::SRL) { 19243 // For now only build_vec without shuffling, handle shifts here in the 19244 // future. 19245 if (i != 0) 19246 return SDValue(); 19247 19248 Src = In; 19249 } else { 19250 // In is SRL 19251 SDValue part = PeekThroughBitcast(In.getOperand(0)); 19252 19253 if (!Src) { 19254 Src = part; 19255 } else if (Src != part) { 19256 // Vector parts do not stem from the same variable 19257 return SDValue(); 19258 } 19259 19260 SDValue ShiftAmtVal = In.getOperand(1); 19261 if (!isa<ConstantSDNode>(ShiftAmtVal)) 19262 return SDValue(); 19263 19264 uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); 19265 19266 // The extracted value is not extracted at the right position 19267 if (ShiftAmt != i * ScalarTypeBitsize) 19268 return SDValue(); 19269 } 19270 } 19271 19272 // Only cast if the size is the same 19273 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) 19274 return SDValue(); 19275 19276 return DAG.getBitcast(VT, Src); 19277 } 19278 19279 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 19280 ArrayRef<int> VectorMask, 19281 SDValue VecIn1, SDValue VecIn2, 19282 unsigned LeftIdx, bool DidSplitVec) { 19283 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 19284 19285 EVT VT = N->getValueType(0); 19286 EVT InVT1 = VecIn1.getValueType(); 19287 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 19288 19289 unsigned NumElems = VT.getVectorNumElements(); 19290 unsigned ShuffleNumElems = NumElems; 19291 19292 // If we artificially split a vector in two already, then the offsets in the 19293 // operands will all be based off of VecIn1, even those in VecIn2. 19294 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 19295 19296 uint64_t VTSize = VT.getFixedSizeInBits(); 19297 uint64_t InVT1Size = InVT1.getFixedSizeInBits(); 19298 uint64_t InVT2Size = InVT2.getFixedSizeInBits(); 19299 19300 assert(InVT2Size <= InVT1Size && 19301 "Inputs must be sorted to be in non-increasing vector size order."); 19302 19303 // We can't generate a shuffle node with mismatched input and output types. 19304 // Try to make the types match the type of the output. 19305 if (InVT1 != VT || InVT2 != VT) { 19306 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { 19307 // If the output vector length is a multiple of both input lengths, 19308 // we can concatenate them and pad the rest with undefs. 19309 unsigned NumConcats = VTSize / InVT1Size; 19310 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 19311 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 19312 ConcatOps[0] = VecIn1; 19313 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 19314 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19315 VecIn2 = SDValue(); 19316 } else if (InVT1Size == VTSize * 2) { 19317 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 19318 return SDValue(); 19319 19320 if (!VecIn2.getNode()) { 19321 // If we only have one input vector, and it's twice the size of the 19322 // output, split it in two. 19323 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 19324 DAG.getVectorIdxConstant(NumElems, DL)); 19325 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 19326 // Since we now have shorter input vectors, adjust the offset of the 19327 // second vector's start. 19328 Vec2Offset = NumElems; 19329 } else { 19330 assert(InVT2Size <= InVT1Size && 19331 "Second input is not going to be larger than the first one."); 19332 19333 // VecIn1 is wider than the output, and we have another, possibly 19334 // smaller input. Pad the smaller input with undefs, shuffle at the 19335 // input vector width, and extract the output. 19336 // The shuffle type is different than VT, so check legality again. 19337 if (LegalOperations && 19338 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 19339 return SDValue(); 19340 19341 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 19342 // lower it back into a BUILD_VECTOR. So if the inserted type is 19343 // illegal, don't even try. 19344 if (InVT1 != InVT2) { 19345 if (!TLI.isTypeLegal(InVT2)) 19346 return SDValue(); 19347 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 19348 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 19349 } 19350 ShuffleNumElems = NumElems * 2; 19351 } 19352 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { 19353 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 19354 ConcatOps[0] = VecIn2; 19355 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19356 } else { 19357 // TODO: Support cases where the length mismatch isn't exactly by a 19358 // factor of 2. 19359 // TODO: Move this check upwards, so that if we have bad type 19360 // mismatches, we don't create any DAG nodes. 19361 return SDValue(); 19362 } 19363 } 19364 19365 // Initialize mask to undef. 19366 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 19367 19368 // Only need to run up to the number of elements actually used, not the 19369 // total number of elements in the shuffle - if we are shuffling a wider 19370 // vector, the high lanes should be set to undef. 19371 for (unsigned i = 0; i != NumElems; ++i) { 19372 if (VectorMask[i] <= 0) 19373 continue; 19374 19375 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 19376 if (VectorMask[i] == (int)LeftIdx) { 19377 Mask[i] = ExtIndex; 19378 } else if (VectorMask[i] == (int)LeftIdx + 1) { 19379 Mask[i] = Vec2Offset + ExtIndex; 19380 } 19381 } 19382 19383 // The type the input vectors may have changed above. 19384 InVT1 = VecIn1.getValueType(); 19385 19386 // If we already have a VecIn2, it should have the same type as VecIn1. 19387 // If we don't, get an undef/zero vector of the appropriate type. 19388 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 19389 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 19390 19391 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 19392 if (ShuffleNumElems > NumElems) 19393 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 19394 19395 return Shuffle; 19396 } 19397 19398 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 19399 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19400 19401 // First, determine where the build vector is not undef. 19402 // TODO: We could extend this to handle zero elements as well as undefs. 19403 int NumBVOps = BV->getNumOperands(); 19404 int ZextElt = -1; 19405 for (int i = 0; i != NumBVOps; ++i) { 19406 SDValue Op = BV->getOperand(i); 19407 if (Op.isUndef()) 19408 continue; 19409 if (ZextElt == -1) 19410 ZextElt = i; 19411 else 19412 return SDValue(); 19413 } 19414 // Bail out if there's no non-undef element. 19415 if (ZextElt == -1) 19416 return SDValue(); 19417 19418 // The build vector contains some number of undef elements and exactly 19419 // one other element. That other element must be a zero-extended scalar 19420 // extracted from a vector at a constant index to turn this into a shuffle. 19421 // Also, require that the build vector does not implicitly truncate/extend 19422 // its elements. 19423 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 19424 EVT VT = BV->getValueType(0); 19425 SDValue Zext = BV->getOperand(ZextElt); 19426 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 19427 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 19428 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 19429 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 19430 return SDValue(); 19431 19432 // The zero-extend must be a multiple of the source size, and we must be 19433 // building a vector of the same size as the source of the extract element. 19434 SDValue Extract = Zext.getOperand(0); 19435 unsigned DestSize = Zext.getValueSizeInBits(); 19436 unsigned SrcSize = Extract.getValueSizeInBits(); 19437 if (DestSize % SrcSize != 0 || 19438 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 19439 return SDValue(); 19440 19441 // Create a shuffle mask that will combine the extracted element with zeros 19442 // and undefs. 19443 int ZextRatio = DestSize / SrcSize; 19444 int NumMaskElts = NumBVOps * ZextRatio; 19445 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 19446 for (int i = 0; i != NumMaskElts; ++i) { 19447 if (i / ZextRatio == ZextElt) { 19448 // The low bits of the (potentially translated) extracted element map to 19449 // the source vector. The high bits map to zero. We will use a zero vector 19450 // as the 2nd source operand of the shuffle, so use the 1st element of 19451 // that vector (mask value is number-of-elements) for the high bits. 19452 if (i % ZextRatio == 0) 19453 ShufMask[i] = Extract.getConstantOperandVal(1); 19454 else 19455 ShufMask[i] = NumMaskElts; 19456 } 19457 19458 // Undef elements of the build vector remain undef because we initialize 19459 // the shuffle mask with -1. 19460 } 19461 19462 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 19463 // bitcast (shuffle V, ZeroVec, VectorMask) 19464 SDLoc DL(BV); 19465 EVT VecVT = Extract.getOperand(0).getValueType(); 19466 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 19467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19468 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), 19469 ZeroVec, ShufMask, DAG); 19470 if (!Shuf) 19471 return SDValue(); 19472 return DAG.getBitcast(VT, Shuf); 19473 } 19474 19475 // FIXME: promote to STLExtras. 19476 template <typename R, typename T> 19477 static auto getFirstIndexOf(R &&Range, const T &Val) { 19478 auto I = find(Range, Val); 19479 if (I == Range.end()) 19480 return static_cast<decltype(std::distance(Range.begin(), I))>(-1); 19481 return std::distance(Range.begin(), I); 19482 } 19483 19484 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 19485 // operations. If the types of the vectors we're extracting from allow it, 19486 // turn this into a vector_shuffle node. 19487 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 19488 SDLoc DL(N); 19489 EVT VT = N->getValueType(0); 19490 19491 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 19492 if (!isTypeLegal(VT)) 19493 return SDValue(); 19494 19495 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 19496 return V; 19497 19498 // May only combine to shuffle after legalize if shuffle is legal. 19499 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 19500 return SDValue(); 19501 19502 bool UsesZeroVector = false; 19503 unsigned NumElems = N->getNumOperands(); 19504 19505 // Record, for each element of the newly built vector, which input vector 19506 // that element comes from. -1 stands for undef, 0 for the zero vector, 19507 // and positive values for the input vectors. 19508 // VectorMask maps each element to its vector number, and VecIn maps vector 19509 // numbers to their initial SDValues. 19510 19511 SmallVector<int, 8> VectorMask(NumElems, -1); 19512 SmallVector<SDValue, 8> VecIn; 19513 VecIn.push_back(SDValue()); 19514 19515 for (unsigned i = 0; i != NumElems; ++i) { 19516 SDValue Op = N->getOperand(i); 19517 19518 if (Op.isUndef()) 19519 continue; 19520 19521 // See if we can use a blend with a zero vector. 19522 // TODO: Should we generalize this to a blend with an arbitrary constant 19523 // vector? 19524 if (isNullConstant(Op) || isNullFPConstant(Op)) { 19525 UsesZeroVector = true; 19526 VectorMask[i] = 0; 19527 continue; 19528 } 19529 19530 // Not an undef or zero. If the input is something other than an 19531 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 19532 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 19533 !isa<ConstantSDNode>(Op.getOperand(1))) 19534 return SDValue(); 19535 SDValue ExtractedFromVec = Op.getOperand(0); 19536 19537 if (ExtractedFromVec.getValueType().isScalableVector()) 19538 return SDValue(); 19539 19540 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 19541 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 19542 return SDValue(); 19543 19544 // All inputs must have the same element type as the output. 19545 if (VT.getVectorElementType() != 19546 ExtractedFromVec.getValueType().getVectorElementType()) 19547 return SDValue(); 19548 19549 // Have we seen this input vector before? 19550 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 19551 // a map back from SDValues to numbers isn't worth it. 19552 int Idx = getFirstIndexOf(VecIn, ExtractedFromVec); 19553 if (Idx == -1) { // A new source vector? 19554 Idx = VecIn.size(); 19555 VecIn.push_back(ExtractedFromVec); 19556 } 19557 19558 VectorMask[i] = Idx; 19559 } 19560 19561 // If we didn't find at least one input vector, bail out. 19562 if (VecIn.size() < 2) 19563 return SDValue(); 19564 19565 // If all the Operands of BUILD_VECTOR extract from same 19566 // vector, then split the vector efficiently based on the maximum 19567 // vector access index and adjust the VectorMask and 19568 // VecIn accordingly. 19569 bool DidSplitVec = false; 19570 if (VecIn.size() == 2) { 19571 unsigned MaxIndex = 0; 19572 unsigned NearestPow2 = 0; 19573 SDValue Vec = VecIn.back(); 19574 EVT InVT = Vec.getValueType(); 19575 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 19576 19577 for (unsigned i = 0; i < NumElems; i++) { 19578 if (VectorMask[i] <= 0) 19579 continue; 19580 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 19581 IndexVec[i] = Index; 19582 MaxIndex = std::max(MaxIndex, Index); 19583 } 19584 19585 NearestPow2 = PowerOf2Ceil(MaxIndex); 19586 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 19587 NumElems * 2 < NearestPow2) { 19588 unsigned SplitSize = NearestPow2 / 2; 19589 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 19590 InVT.getVectorElementType(), SplitSize); 19591 if (TLI.isTypeLegal(SplitVT) && 19592 SplitSize + SplitVT.getVectorNumElements() <= 19593 InVT.getVectorNumElements()) { 19594 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19595 DAG.getVectorIdxConstant(SplitSize, DL)); 19596 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19597 DAG.getVectorIdxConstant(0, DL)); 19598 VecIn.pop_back(); 19599 VecIn.push_back(VecIn1); 19600 VecIn.push_back(VecIn2); 19601 DidSplitVec = true; 19602 19603 for (unsigned i = 0; i < NumElems; i++) { 19604 if (VectorMask[i] <= 0) 19605 continue; 19606 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 19607 } 19608 } 19609 } 19610 } 19611 19612 // Sort input vectors by decreasing vector element count, 19613 // while preserving the relative order of equally-sized vectors. 19614 // Note that we keep the first "implicit zero vector as-is. 19615 SmallVector<SDValue, 8> SortedVecIn(VecIn); 19616 llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(), 19617 [](const SDValue &a, const SDValue &b) { 19618 return a.getValueType().getVectorNumElements() > 19619 b.getValueType().getVectorNumElements(); 19620 }); 19621 19622 // We now also need to rebuild the VectorMask, because it referenced element 19623 // order in VecIn, and we just sorted them. 19624 for (int &SourceVectorIndex : VectorMask) { 19625 if (SourceVectorIndex <= 0) 19626 continue; 19627 unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]); 19628 assert(Idx > 0 && Idx < SortedVecIn.size() && 19629 VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure"); 19630 SourceVectorIndex = Idx; 19631 } 19632 19633 VecIn = std::move(SortedVecIn); 19634 19635 // TODO: Should this fire if some of the input vectors has illegal type (like 19636 // it does now), or should we let legalization run its course first? 19637 19638 // Shuffle phase: 19639 // Take pairs of vectors, and shuffle them so that the result has elements 19640 // from these vectors in the correct places. 19641 // For example, given: 19642 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 19643 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 19644 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 19645 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 19646 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 19647 // We will generate: 19648 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 19649 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 19650 SmallVector<SDValue, 4> Shuffles; 19651 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 19652 unsigned LeftIdx = 2 * In + 1; 19653 SDValue VecLeft = VecIn[LeftIdx]; 19654 SDValue VecRight = 19655 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 19656 19657 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 19658 VecRight, LeftIdx, DidSplitVec)) 19659 Shuffles.push_back(Shuffle); 19660 else 19661 return SDValue(); 19662 } 19663 19664 // If we need the zero vector as an "ingredient" in the blend tree, add it 19665 // to the list of shuffles. 19666 if (UsesZeroVector) 19667 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 19668 : DAG.getConstantFP(0.0, DL, VT)); 19669 19670 // If we only have one shuffle, we're done. 19671 if (Shuffles.size() == 1) 19672 return Shuffles[0]; 19673 19674 // Update the vector mask to point to the post-shuffle vectors. 19675 for (int &Vec : VectorMask) 19676 if (Vec == 0) 19677 Vec = Shuffles.size() - 1; 19678 else 19679 Vec = (Vec - 1) / 2; 19680 19681 // More than one shuffle. Generate a binary tree of blends, e.g. if from 19682 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 19683 // generate: 19684 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 19685 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 19686 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 19687 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 19688 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 19689 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 19690 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 19691 19692 // Make sure the initial size of the shuffle list is even. 19693 if (Shuffles.size() % 2) 19694 Shuffles.push_back(DAG.getUNDEF(VT)); 19695 19696 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 19697 if (CurSize % 2) { 19698 Shuffles[CurSize] = DAG.getUNDEF(VT); 19699 CurSize++; 19700 } 19701 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 19702 int Left = 2 * In; 19703 int Right = 2 * In + 1; 19704 SmallVector<int, 8> Mask(NumElems, -1); 19705 for (unsigned i = 0; i != NumElems; ++i) { 19706 if (VectorMask[i] == Left) { 19707 Mask[i] = i; 19708 VectorMask[i] = In; 19709 } else if (VectorMask[i] == Right) { 19710 Mask[i] = i + NumElems; 19711 VectorMask[i] = In; 19712 } 19713 } 19714 19715 Shuffles[In] = 19716 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 19717 } 19718 } 19719 return Shuffles[0]; 19720 } 19721 19722 // Try to turn a build vector of zero extends of extract vector elts into a 19723 // a vector zero extend and possibly an extract subvector. 19724 // TODO: Support sign extend? 19725 // TODO: Allow undef elements? 19726 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 19727 if (LegalOperations) 19728 return SDValue(); 19729 19730 EVT VT = N->getValueType(0); 19731 19732 bool FoundZeroExtend = false; 19733 SDValue Op0 = N->getOperand(0); 19734 auto checkElem = [&](SDValue Op) -> int64_t { 19735 unsigned Opc = Op.getOpcode(); 19736 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 19737 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 19738 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19739 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 19740 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 19741 return C->getZExtValue(); 19742 return -1; 19743 }; 19744 19745 // Make sure the first element matches 19746 // (zext (extract_vector_elt X, C)) 19747 // Offset must be a constant multiple of the 19748 // known-minimum vector length of the result type. 19749 int64_t Offset = checkElem(Op0); 19750 if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0) 19751 return SDValue(); 19752 19753 unsigned NumElems = N->getNumOperands(); 19754 SDValue In = Op0.getOperand(0).getOperand(0); 19755 EVT InSVT = In.getValueType().getScalarType(); 19756 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 19757 19758 // Don't create an illegal input type after type legalization. 19759 if (LegalTypes && !TLI.isTypeLegal(InVT)) 19760 return SDValue(); 19761 19762 // Ensure all the elements come from the same vector and are adjacent. 19763 for (unsigned i = 1; i != NumElems; ++i) { 19764 if ((Offset + i) != checkElem(N->getOperand(i))) 19765 return SDValue(); 19766 } 19767 19768 SDLoc DL(N); 19769 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 19770 Op0.getOperand(0).getOperand(1)); 19771 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 19772 VT, In); 19773 } 19774 19775 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 19776 EVT VT = N->getValueType(0); 19777 19778 // A vector built entirely of undefs is undef. 19779 if (ISD::allOperandsUndef(N)) 19780 return DAG.getUNDEF(VT); 19781 19782 // If this is a splat of a bitcast from another vector, change to a 19783 // concat_vector. 19784 // For example: 19785 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 19786 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 19787 // 19788 // If X is a build_vector itself, the concat can become a larger build_vector. 19789 // TODO: Maybe this is useful for non-splat too? 19790 if (!LegalOperations) { 19791 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 19792 Splat = peekThroughBitcasts(Splat); 19793 EVT SrcVT = Splat.getValueType(); 19794 if (SrcVT.isVector()) { 19795 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 19796 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 19797 SrcVT.getVectorElementType(), NumElts); 19798 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 19799 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 19800 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 19801 NewVT, Ops); 19802 return DAG.getBitcast(VT, Concat); 19803 } 19804 } 19805 } 19806 } 19807 19808 // Check if we can express BUILD VECTOR via subvector extract. 19809 if (!LegalTypes && (N->getNumOperands() > 1)) { 19810 SDValue Op0 = N->getOperand(0); 19811 auto checkElem = [&](SDValue Op) -> uint64_t { 19812 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 19813 (Op0.getOperand(0) == Op.getOperand(0))) 19814 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 19815 return CNode->getZExtValue(); 19816 return -1; 19817 }; 19818 19819 int Offset = checkElem(Op0); 19820 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 19821 if (Offset + i != checkElem(N->getOperand(i))) { 19822 Offset = -1; 19823 break; 19824 } 19825 } 19826 19827 if ((Offset == 0) && 19828 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 19829 return Op0.getOperand(0); 19830 if ((Offset != -1) && 19831 ((Offset % N->getValueType(0).getVectorNumElements()) == 19832 0)) // IDX must be multiple of output size. 19833 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 19834 Op0.getOperand(0), Op0.getOperand(1)); 19835 } 19836 19837 if (SDValue V = convertBuildVecZextToZext(N)) 19838 return V; 19839 19840 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 19841 return V; 19842 19843 if (SDValue V = reduceBuildVecTruncToBitCast(N)) 19844 return V; 19845 19846 if (SDValue V = reduceBuildVecToShuffle(N)) 19847 return V; 19848 19849 // A splat of a single element is a SPLAT_VECTOR if supported on the target. 19850 // Do this late as some of the above may replace the splat. 19851 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) 19852 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { 19853 assert(!V.isUndef() && "Splat of undef should have been handled earlier"); 19854 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); 19855 } 19856 19857 return SDValue(); 19858 } 19859 19860 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 19861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19862 EVT OpVT = N->getOperand(0).getValueType(); 19863 19864 // If the operands are legal vectors, leave them alone. 19865 if (TLI.isTypeLegal(OpVT)) 19866 return SDValue(); 19867 19868 SDLoc DL(N); 19869 EVT VT = N->getValueType(0); 19870 SmallVector<SDValue, 8> Ops; 19871 19872 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 19873 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 19874 19875 // Keep track of what we encounter. 19876 bool AnyInteger = false; 19877 bool AnyFP = false; 19878 for (const SDValue &Op : N->ops()) { 19879 if (ISD::BITCAST == Op.getOpcode() && 19880 !Op.getOperand(0).getValueType().isVector()) 19881 Ops.push_back(Op.getOperand(0)); 19882 else if (ISD::UNDEF == Op.getOpcode()) 19883 Ops.push_back(ScalarUndef); 19884 else 19885 return SDValue(); 19886 19887 // Note whether we encounter an integer or floating point scalar. 19888 // If it's neither, bail out, it could be something weird like x86mmx. 19889 EVT LastOpVT = Ops.back().getValueType(); 19890 if (LastOpVT.isFloatingPoint()) 19891 AnyFP = true; 19892 else if (LastOpVT.isInteger()) 19893 AnyInteger = true; 19894 else 19895 return SDValue(); 19896 } 19897 19898 // If any of the operands is a floating point scalar bitcast to a vector, 19899 // use floating point types throughout, and bitcast everything. 19900 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 19901 if (AnyFP) { 19902 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 19903 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 19904 if (AnyInteger) { 19905 for (SDValue &Op : Ops) { 19906 if (Op.getValueType() == SVT) 19907 continue; 19908 if (Op.isUndef()) 19909 Op = ScalarUndef; 19910 else 19911 Op = DAG.getBitcast(SVT, Op); 19912 } 19913 } 19914 } 19915 19916 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 19917 VT.getSizeInBits() / SVT.getSizeInBits()); 19918 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 19919 } 19920 19921 // Attempt to merge nested concat_vectors/undefs. 19922 // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d)) 19923 // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d) 19924 static SDValue combineConcatVectorOfConcatVectors(SDNode *N, 19925 SelectionDAG &DAG) { 19926 EVT VT = N->getValueType(0); 19927 19928 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types. 19929 EVT SubVT; 19930 SDValue FirstConcat; 19931 for (const SDValue &Op : N->ops()) { 19932 if (Op.isUndef()) 19933 continue; 19934 if (Op.getOpcode() != ISD::CONCAT_VECTORS) 19935 return SDValue(); 19936 if (!FirstConcat) { 19937 SubVT = Op.getOperand(0).getValueType(); 19938 if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) 19939 return SDValue(); 19940 FirstConcat = Op; 19941 continue; 19942 } 19943 if (SubVT != Op.getOperand(0).getValueType()) 19944 return SDValue(); 19945 } 19946 assert(FirstConcat && "Concat of all-undefs found"); 19947 19948 SmallVector<SDValue> ConcatOps; 19949 for (const SDValue &Op : N->ops()) { 19950 if (Op.isUndef()) { 19951 ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT)); 19952 continue; 19953 } 19954 ConcatOps.append(Op->op_begin(), Op->op_end()); 19955 } 19956 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps); 19957 } 19958 19959 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 19960 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 19961 // most two distinct vectors the same size as the result, attempt to turn this 19962 // into a legal shuffle. 19963 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 19964 EVT VT = N->getValueType(0); 19965 EVT OpVT = N->getOperand(0).getValueType(); 19966 19967 // We currently can't generate an appropriate shuffle for a scalable vector. 19968 if (VT.isScalableVector()) 19969 return SDValue(); 19970 19971 int NumElts = VT.getVectorNumElements(); 19972 int NumOpElts = OpVT.getVectorNumElements(); 19973 19974 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 19975 SmallVector<int, 8> Mask; 19976 19977 for (SDValue Op : N->ops()) { 19978 Op = peekThroughBitcasts(Op); 19979 19980 // UNDEF nodes convert to UNDEF shuffle mask values. 19981 if (Op.isUndef()) { 19982 Mask.append((unsigned)NumOpElts, -1); 19983 continue; 19984 } 19985 19986 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 19987 return SDValue(); 19988 19989 // What vector are we extracting the subvector from and at what index? 19990 SDValue ExtVec = Op.getOperand(0); 19991 int ExtIdx = Op.getConstantOperandVal(1); 19992 19993 // We want the EVT of the original extraction to correctly scale the 19994 // extraction index. 19995 EVT ExtVT = ExtVec.getValueType(); 19996 ExtVec = peekThroughBitcasts(ExtVec); 19997 19998 // UNDEF nodes convert to UNDEF shuffle mask values. 19999 if (ExtVec.isUndef()) { 20000 Mask.append((unsigned)NumOpElts, -1); 20001 continue; 20002 } 20003 20004 // Ensure that we are extracting a subvector from a vector the same 20005 // size as the result. 20006 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 20007 return SDValue(); 20008 20009 // Scale the subvector index to account for any bitcast. 20010 int NumExtElts = ExtVT.getVectorNumElements(); 20011 if (0 == (NumExtElts % NumElts)) 20012 ExtIdx /= (NumExtElts / NumElts); 20013 else if (0 == (NumElts % NumExtElts)) 20014 ExtIdx *= (NumElts / NumExtElts); 20015 else 20016 return SDValue(); 20017 20018 // At most we can reference 2 inputs in the final shuffle. 20019 if (SV0.isUndef() || SV0 == ExtVec) { 20020 SV0 = ExtVec; 20021 for (int i = 0; i != NumOpElts; ++i) 20022 Mask.push_back(i + ExtIdx); 20023 } else if (SV1.isUndef() || SV1 == ExtVec) { 20024 SV1 = ExtVec; 20025 for (int i = 0; i != NumOpElts; ++i) 20026 Mask.push_back(i + ExtIdx + NumElts); 20027 } else { 20028 return SDValue(); 20029 } 20030 } 20031 20032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20033 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 20034 DAG.getBitcast(VT, SV1), Mask, DAG); 20035 } 20036 20037 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { 20038 unsigned CastOpcode = N->getOperand(0).getOpcode(); 20039 switch (CastOpcode) { 20040 case ISD::SINT_TO_FP: 20041 case ISD::UINT_TO_FP: 20042 case ISD::FP_TO_SINT: 20043 case ISD::FP_TO_UINT: 20044 // TODO: Allow more opcodes? 20045 // case ISD::BITCAST: 20046 // case ISD::TRUNCATE: 20047 // case ISD::ZERO_EXTEND: 20048 // case ISD::SIGN_EXTEND: 20049 // case ISD::FP_EXTEND: 20050 break; 20051 default: 20052 return SDValue(); 20053 } 20054 20055 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); 20056 if (!SrcVT.isVector()) 20057 return SDValue(); 20058 20059 // All operands of the concat must be the same kind of cast from the same 20060 // source type. 20061 SmallVector<SDValue, 4> SrcOps; 20062 for (SDValue Op : N->ops()) { 20063 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || 20064 Op.getOperand(0).getValueType() != SrcVT) 20065 return SDValue(); 20066 SrcOps.push_back(Op.getOperand(0)); 20067 } 20068 20069 // The wider cast must be supported by the target. This is unusual because 20070 // the operation support type parameter depends on the opcode. In addition, 20071 // check the other type in the cast to make sure this is really legal. 20072 EVT VT = N->getValueType(0); 20073 EVT SrcEltVT = SrcVT.getVectorElementType(); 20074 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); 20075 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); 20076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20077 switch (CastOpcode) { 20078 case ISD::SINT_TO_FP: 20079 case ISD::UINT_TO_FP: 20080 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || 20081 !TLI.isTypeLegal(VT)) 20082 return SDValue(); 20083 break; 20084 case ISD::FP_TO_SINT: 20085 case ISD::FP_TO_UINT: 20086 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || 20087 !TLI.isTypeLegal(ConcatSrcVT)) 20088 return SDValue(); 20089 break; 20090 default: 20091 llvm_unreachable("Unexpected cast opcode"); 20092 } 20093 20094 // concat (cast X), (cast Y)... -> cast (concat X, Y...) 20095 SDLoc DL(N); 20096 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); 20097 return DAG.getNode(CastOpcode, DL, VT, NewConcat); 20098 } 20099 20100 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 20101 // If we only have one input vector, we don't need to do any concatenation. 20102 if (N->getNumOperands() == 1) 20103 return N->getOperand(0); 20104 20105 // Check if all of the operands are undefs. 20106 EVT VT = N->getValueType(0); 20107 if (ISD::allOperandsUndef(N)) 20108 return DAG.getUNDEF(VT); 20109 20110 // Optimize concat_vectors where all but the first of the vectors are undef. 20111 if (all_of(drop_begin(N->ops()), 20112 [](const SDValue &Op) { return Op.isUndef(); })) { 20113 SDValue In = N->getOperand(0); 20114 assert(In.getValueType().isVector() && "Must concat vectors"); 20115 20116 // If the input is a concat_vectors, just make a larger concat by padding 20117 // with smaller undefs. 20118 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { 20119 unsigned NumOps = N->getNumOperands() * In.getNumOperands(); 20120 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); 20121 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); 20122 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20123 } 20124 20125 SDValue Scalar = peekThroughOneUseBitcasts(In); 20126 20127 // concat_vectors(scalar_to_vector(scalar), undef) -> 20128 // scalar_to_vector(scalar) 20129 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 20130 Scalar.hasOneUse()) { 20131 EVT SVT = Scalar.getValueType().getVectorElementType(); 20132 if (SVT == Scalar.getOperand(0).getValueType()) 20133 Scalar = Scalar.getOperand(0); 20134 } 20135 20136 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 20137 if (!Scalar.getValueType().isVector()) { 20138 // If the bitcast type isn't legal, it might be a trunc of a legal type; 20139 // look through the trunc so we can still do the transform: 20140 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 20141 if (Scalar->getOpcode() == ISD::TRUNCATE && 20142 !TLI.isTypeLegal(Scalar.getValueType()) && 20143 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 20144 Scalar = Scalar->getOperand(0); 20145 20146 EVT SclTy = Scalar.getValueType(); 20147 20148 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 20149 return SDValue(); 20150 20151 // Bail out if the vector size is not a multiple of the scalar size. 20152 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 20153 return SDValue(); 20154 20155 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 20156 if (VNTNumElms < 2) 20157 return SDValue(); 20158 20159 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 20160 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 20161 return SDValue(); 20162 20163 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 20164 return DAG.getBitcast(VT, Res); 20165 } 20166 } 20167 20168 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 20169 // We have already tested above for an UNDEF only concatenation. 20170 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 20171 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 20172 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 20173 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 20174 }; 20175 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 20176 SmallVector<SDValue, 8> Opnds; 20177 EVT SVT = VT.getScalarType(); 20178 20179 EVT MinVT = SVT; 20180 if (!SVT.isFloatingPoint()) { 20181 // If BUILD_VECTOR are from built from integer, they may have different 20182 // operand types. Get the smallest type and truncate all operands to it. 20183 bool FoundMinVT = false; 20184 for (const SDValue &Op : N->ops()) 20185 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20186 EVT OpSVT = Op.getOperand(0).getValueType(); 20187 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 20188 FoundMinVT = true; 20189 } 20190 assert(FoundMinVT && "Concat vector type mismatch"); 20191 } 20192 20193 for (const SDValue &Op : N->ops()) { 20194 EVT OpVT = Op.getValueType(); 20195 unsigned NumElts = OpVT.getVectorNumElements(); 20196 20197 if (ISD::UNDEF == Op.getOpcode()) 20198 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 20199 20200 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20201 if (SVT.isFloatingPoint()) { 20202 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 20203 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 20204 } else { 20205 for (unsigned i = 0; i != NumElts; ++i) 20206 Opnds.push_back( 20207 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 20208 } 20209 } 20210 } 20211 20212 assert(VT.getVectorNumElements() == Opnds.size() && 20213 "Concat vector type mismatch"); 20214 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 20215 } 20216 20217 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 20218 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...). 20219 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 20220 return V; 20221 20222 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 20223 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE. 20224 if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG)) 20225 return V; 20226 20227 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 20228 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 20229 return V; 20230 } 20231 20232 if (SDValue V = combineConcatVectorOfCasts(N, DAG)) 20233 return V; 20234 20235 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 20236 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR 20237 // operands and look for a CONCAT operations that place the incoming vectors 20238 // at the exact same location. 20239 // 20240 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. 20241 SDValue SingleSource = SDValue(); 20242 unsigned PartNumElem = 20243 N->getOperand(0).getValueType().getVectorMinNumElements(); 20244 20245 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 20246 SDValue Op = N->getOperand(i); 20247 20248 if (Op.isUndef()) 20249 continue; 20250 20251 // Check if this is the identity extract: 20252 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 20253 return SDValue(); 20254 20255 // Find the single incoming vector for the extract_subvector. 20256 if (SingleSource.getNode()) { 20257 if (Op.getOperand(0) != SingleSource) 20258 return SDValue(); 20259 } else { 20260 SingleSource = Op.getOperand(0); 20261 20262 // Check the source type is the same as the type of the result. 20263 // If not, this concat may extend the vector, so we can not 20264 // optimize it away. 20265 if (SingleSource.getValueType() != N->getValueType(0)) 20266 return SDValue(); 20267 } 20268 20269 // Check that we are reading from the identity index. 20270 unsigned IdentityIndex = i * PartNumElem; 20271 if (Op.getConstantOperandAPInt(1) != IdentityIndex) 20272 return SDValue(); 20273 } 20274 20275 if (SingleSource.getNode()) 20276 return SingleSource; 20277 20278 return SDValue(); 20279 } 20280 20281 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find 20282 // if the subvector can be sourced for free. 20283 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { 20284 if (V.getOpcode() == ISD::INSERT_SUBVECTOR && 20285 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { 20286 return V.getOperand(1); 20287 } 20288 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 20289 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && 20290 V.getOperand(0).getValueType() == SubVT && 20291 (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { 20292 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); 20293 return V.getOperand(SubIdx); 20294 } 20295 return SDValue(); 20296 } 20297 20298 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 20299 SelectionDAG &DAG, 20300 bool LegalOperations) { 20301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20302 SDValue BinOp = Extract->getOperand(0); 20303 unsigned BinOpcode = BinOp.getOpcode(); 20304 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) 20305 return SDValue(); 20306 20307 EVT VecVT = BinOp.getValueType(); 20308 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 20309 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) 20310 return SDValue(); 20311 20312 SDValue Index = Extract->getOperand(1); 20313 EVT SubVT = Extract->getValueType(0); 20314 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) 20315 return SDValue(); 20316 20317 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); 20318 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); 20319 20320 // TODO: We could handle the case where only 1 operand is being inserted by 20321 // creating an extract of the other operand, but that requires checking 20322 // number of uses and/or costs. 20323 if (!Sub0 || !Sub1) 20324 return SDValue(); 20325 20326 // We are inserting both operands of the wide binop only to extract back 20327 // to the narrow vector size. Eliminate all of the insert/extract: 20328 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 20329 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, 20330 BinOp->getFlags()); 20331 } 20332 20333 /// If we are extracting a subvector produced by a wide binary operator try 20334 /// to use a narrow binary operator and/or avoid concatenation and extraction. 20335 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, 20336 bool LegalOperations) { 20337 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 20338 // some of these bailouts with other transforms. 20339 20340 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) 20341 return V; 20342 20343 // The extract index must be a constant, so we can map it to a concat operand. 20344 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 20345 if (!ExtractIndexC) 20346 return SDValue(); 20347 20348 // We are looking for an optionally bitcasted wide vector binary operator 20349 // feeding an extract subvector. 20350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20351 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 20352 unsigned BOpcode = BinOp.getOpcode(); 20353 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) 20354 return SDValue(); 20355 20356 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be 20357 // reduced to the unary fneg when it is visited, and we probably want to deal 20358 // with fneg in a target-specific way. 20359 if (BOpcode == ISD::FSUB) { 20360 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); 20361 if (C && C->getValueAPF().isNegZero()) 20362 return SDValue(); 20363 } 20364 20365 // The binop must be a vector type, so we can extract some fraction of it. 20366 EVT WideBVT = BinOp.getValueType(); 20367 // The optimisations below currently assume we are dealing with fixed length 20368 // vectors. It is possible to add support for scalable vectors, but at the 20369 // moment we've done no analysis to prove whether they are profitable or not. 20370 if (!WideBVT.isFixedLengthVector()) 20371 return SDValue(); 20372 20373 EVT VT = Extract->getValueType(0); 20374 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 20375 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 20376 "Extract index is not a multiple of the vector length."); 20377 20378 // Bail out if this is not a proper multiple width extraction. 20379 unsigned WideWidth = WideBVT.getSizeInBits(); 20380 unsigned NarrowWidth = VT.getSizeInBits(); 20381 if (WideWidth % NarrowWidth != 0) 20382 return SDValue(); 20383 20384 // Bail out if we are extracting a fraction of a single operation. This can 20385 // occur because we potentially looked through a bitcast of the binop. 20386 unsigned NarrowingRatio = WideWidth / NarrowWidth; 20387 unsigned WideNumElts = WideBVT.getVectorNumElements(); 20388 if (WideNumElts % NarrowingRatio != 0) 20389 return SDValue(); 20390 20391 // Bail out if the target does not support a narrower version of the binop. 20392 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 20393 WideNumElts / NarrowingRatio); 20394 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 20395 return SDValue(); 20396 20397 // If extraction is cheap, we don't need to look at the binop operands 20398 // for concat ops. The narrow binop alone makes this transform profitable. 20399 // We can't just reuse the original extract index operand because we may have 20400 // bitcasted. 20401 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 20402 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 20403 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 20404 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 20405 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 20406 SDLoc DL(Extract); 20407 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); 20408 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20409 BinOp.getOperand(0), NewExtIndex); 20410 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20411 BinOp.getOperand(1), NewExtIndex); 20412 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, 20413 BinOp.getNode()->getFlags()); 20414 return DAG.getBitcast(VT, NarrowBinOp); 20415 } 20416 20417 // Only handle the case where we are doubling and then halving. A larger ratio 20418 // may require more than two narrow binops to replace the wide binop. 20419 if (NarrowingRatio != 2) 20420 return SDValue(); 20421 20422 // TODO: The motivating case for this transform is an x86 AVX1 target. That 20423 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 20424 // flavors, but no other 256-bit integer support. This could be extended to 20425 // handle any binop, but that may require fixing/adding other folds to avoid 20426 // codegen regressions. 20427 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 20428 return SDValue(); 20429 20430 // We need at least one concatenation operation of a binop operand to make 20431 // this transform worthwhile. The concat must double the input vector sizes. 20432 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { 20433 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) 20434 return V.getOperand(ConcatOpNum); 20435 return SDValue(); 20436 }; 20437 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); 20438 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); 20439 20440 if (SubVecL || SubVecR) { 20441 // If a binop operand was not the result of a concat, we must extract a 20442 // half-sized operand for our new narrow binop: 20443 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 20444 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 20445 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 20446 SDLoc DL(Extract); 20447 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); 20448 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) 20449 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20450 BinOp.getOperand(0), IndexC); 20451 20452 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) 20453 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20454 BinOp.getOperand(1), IndexC); 20455 20456 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 20457 return DAG.getBitcast(VT, NarrowBinOp); 20458 } 20459 20460 return SDValue(); 20461 } 20462 20463 /// If we are extracting a subvector from a wide vector load, convert to a 20464 /// narrow load to eliminate the extraction: 20465 /// (extract_subvector (load wide vector)) --> (load narrow vector) 20466 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 20467 // TODO: Add support for big-endian. The offset calculation must be adjusted. 20468 if (DAG.getDataLayout().isBigEndian()) 20469 return SDValue(); 20470 20471 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 20472 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 20473 if (!Ld || Ld->getExtensionType() || !Ld->isSimple() || 20474 !ExtIdx) 20475 return SDValue(); 20476 20477 // Allow targets to opt-out. 20478 EVT VT = Extract->getValueType(0); 20479 20480 // We can only create byte sized loads. 20481 if (!VT.isByteSized()) 20482 return SDValue(); 20483 20484 unsigned Index = ExtIdx->getZExtValue(); 20485 unsigned NumElts = VT.getVectorMinNumElements(); 20486 20487 // The definition of EXTRACT_SUBVECTOR states that the index must be a 20488 // multiple of the minimum number of elements in the result type. 20489 assert(Index % NumElts == 0 && "The extract subvector index is not a " 20490 "multiple of the result's element count"); 20491 20492 // It's fine to use TypeSize here as we know the offset will not be negative. 20493 TypeSize Offset = VT.getStoreSize() * (Index / NumElts); 20494 20495 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20496 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 20497 return SDValue(); 20498 20499 // The narrow load will be offset from the base address of the old load if 20500 // we are extracting from something besides index 0 (little-endian). 20501 SDLoc DL(Extract); 20502 20503 // TODO: Use "BaseIndexOffset" to make this more effective. 20504 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); 20505 20506 uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); 20507 MachineFunction &MF = DAG.getMachineFunction(); 20508 MachineMemOperand *MMO; 20509 if (Offset.isScalable()) { 20510 MachinePointerInfo MPI = 20511 MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); 20512 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize); 20513 } else 20514 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(), 20515 StoreSize); 20516 20517 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 20518 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 20519 return NewLd; 20520 } 20521 20522 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 20523 EVT NVT = N->getValueType(0); 20524 SDValue V = N->getOperand(0); 20525 uint64_t ExtIdx = N->getConstantOperandVal(1); 20526 20527 // Extract from UNDEF is UNDEF. 20528 if (V.isUndef()) 20529 return DAG.getUNDEF(NVT); 20530 20531 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 20532 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 20533 return NarrowLoad; 20534 20535 // Combine an extract of an extract into a single extract_subvector. 20536 // ext (ext X, C), 0 --> ext X, C 20537 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { 20538 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 20539 V.getConstantOperandVal(1)) && 20540 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 20541 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 20542 V.getOperand(1)); 20543 } 20544 } 20545 20546 // Try to move vector bitcast after extract_subv by scaling extraction index: 20547 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 20548 if (V.getOpcode() == ISD::BITCAST && 20549 V.getOperand(0).getValueType().isVector() && 20550 (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) { 20551 SDValue SrcOp = V.getOperand(0); 20552 EVT SrcVT = SrcOp.getValueType(); 20553 unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); 20554 unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); 20555 if ((SrcNumElts % DestNumElts) == 0) { 20556 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 20557 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; 20558 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 20559 NewExtEC); 20560 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 20561 SDLoc DL(N); 20562 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); 20563 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 20564 V.getOperand(0), NewIndex); 20565 return DAG.getBitcast(NVT, NewExtract); 20566 } 20567 } 20568 if ((DestNumElts % SrcNumElts) == 0) { 20569 unsigned DestSrcRatio = DestNumElts / SrcNumElts; 20570 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { 20571 ElementCount NewExtEC = 20572 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); 20573 EVT ScalarVT = SrcVT.getScalarType(); 20574 if ((ExtIdx % DestSrcRatio) == 0) { 20575 SDLoc DL(N); 20576 unsigned IndexValScaled = ExtIdx / DestSrcRatio; 20577 EVT NewExtVT = 20578 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); 20579 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 20580 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 20581 SDValue NewExtract = 20582 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 20583 V.getOperand(0), NewIndex); 20584 return DAG.getBitcast(NVT, NewExtract); 20585 } 20586 if (NewExtEC.isScalar() && 20587 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { 20588 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 20589 SDValue NewExtract = 20590 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, 20591 V.getOperand(0), NewIndex); 20592 return DAG.getBitcast(NVT, NewExtract); 20593 } 20594 } 20595 } 20596 } 20597 } 20598 20599 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 20600 unsigned ExtNumElts = NVT.getVectorMinNumElements(); 20601 EVT ConcatSrcVT = V.getOperand(0).getValueType(); 20602 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && 20603 "Concat and extract subvector do not change element type"); 20604 assert((ExtIdx % ExtNumElts) == 0 && 20605 "Extract index is not a multiple of the input vector length."); 20606 20607 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); 20608 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; 20609 20610 // If the concatenated source types match this extract, it's a direct 20611 // simplification: 20612 // extract_subvec (concat V1, V2, ...), i --> Vi 20613 if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount()) 20614 return V.getOperand(ConcatOpIdx); 20615 20616 // If the concatenated source vectors are a multiple length of this extract, 20617 // then extract a fraction of one of those source vectors directly from a 20618 // concat operand. Example: 20619 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> 20620 // v2i8 extract_subvec v8i8 Y, 6 20621 if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() && 20622 ConcatSrcNumElts % ExtNumElts == 0) { 20623 SDLoc DL(N); 20624 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; 20625 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && 20626 "Trying to extract from >1 concat operand?"); 20627 assert(NewExtIdx % ExtNumElts == 0 && 20628 "Extract index is not a multiple of the input vector length."); 20629 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); 20630 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, 20631 V.getOperand(ConcatOpIdx), NewIndexC); 20632 } 20633 } 20634 20635 V = peekThroughBitcasts(V); 20636 20637 // If the input is a build vector. Try to make a smaller build vector. 20638 if (V.getOpcode() == ISD::BUILD_VECTOR) { 20639 EVT InVT = V.getValueType(); 20640 unsigned ExtractSize = NVT.getSizeInBits(); 20641 unsigned EltSize = InVT.getScalarSizeInBits(); 20642 // Only do this if we won't split any elements. 20643 if (ExtractSize % EltSize == 0) { 20644 unsigned NumElems = ExtractSize / EltSize; 20645 EVT EltVT = InVT.getVectorElementType(); 20646 EVT ExtractVT = 20647 NumElems == 1 ? EltVT 20648 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); 20649 if ((Level < AfterLegalizeDAG || 20650 (NumElems == 1 || 20651 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 20652 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 20653 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; 20654 20655 if (NumElems == 1) { 20656 SDValue Src = V->getOperand(IdxVal); 20657 if (EltVT != Src.getValueType()) 20658 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 20659 return DAG.getBitcast(NVT, Src); 20660 } 20661 20662 // Extract the pieces from the original build_vector. 20663 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), 20664 V->ops().slice(IdxVal, NumElems)); 20665 return DAG.getBitcast(NVT, BuildVec); 20666 } 20667 } 20668 } 20669 20670 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 20671 // Handle only simple case where vector being inserted and vector 20672 // being extracted are of same size. 20673 EVT SmallVT = V.getOperand(1).getValueType(); 20674 if (!NVT.bitsEq(SmallVT)) 20675 return SDValue(); 20676 20677 // Combine: 20678 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 20679 // Into: 20680 // indices are equal or bit offsets are equal => V1 20681 // otherwise => (extract_subvec V1, ExtIdx) 20682 uint64_t InsIdx = V.getConstantOperandVal(2); 20683 if (InsIdx * SmallVT.getScalarSizeInBits() == 20684 ExtIdx * NVT.getScalarSizeInBits()) { 20685 if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT)) 20686 return SDValue(); 20687 20688 return DAG.getBitcast(NVT, V.getOperand(1)); 20689 } 20690 return DAG.getNode( 20691 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 20692 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 20693 N->getOperand(1)); 20694 } 20695 20696 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) 20697 return NarrowBOp; 20698 20699 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 20700 return SDValue(N, 0); 20701 20702 return SDValue(); 20703 } 20704 20705 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 20706 /// followed by concatenation. Narrow vector ops may have better performance 20707 /// than wide ops, and this can unlock further narrowing of other vector ops. 20708 /// Targets can invert this transform later if it is not profitable. 20709 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 20710 SelectionDAG &DAG) { 20711 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 20712 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 20713 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 20714 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 20715 return SDValue(); 20716 20717 // Split the wide shuffle mask into halves. Any mask element that is accessing 20718 // operand 1 is offset down to account for narrowing of the vectors. 20719 ArrayRef<int> Mask = Shuf->getMask(); 20720 EVT VT = Shuf->getValueType(0); 20721 unsigned NumElts = VT.getVectorNumElements(); 20722 unsigned HalfNumElts = NumElts / 2; 20723 SmallVector<int, 16> Mask0(HalfNumElts, -1); 20724 SmallVector<int, 16> Mask1(HalfNumElts, -1); 20725 for (unsigned i = 0; i != NumElts; ++i) { 20726 if (Mask[i] == -1) 20727 continue; 20728 // If we reference the upper (undef) subvector then the element is undef. 20729 if ((Mask[i] % NumElts) >= HalfNumElts) 20730 continue; 20731 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 20732 if (i < HalfNumElts) 20733 Mask0[i] = M; 20734 else 20735 Mask1[i - HalfNumElts] = M; 20736 } 20737 20738 // Ask the target if this is a valid transform. 20739 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20740 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 20741 HalfNumElts); 20742 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 20743 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 20744 return SDValue(); 20745 20746 // shuffle (concat X, undef), (concat Y, undef), Mask --> 20747 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 20748 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 20749 SDLoc DL(Shuf); 20750 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 20751 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 20752 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 20753 } 20754 20755 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 20756 // or turn a shuffle of a single concat into simpler shuffle then concat. 20757 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 20758 EVT VT = N->getValueType(0); 20759 unsigned NumElts = VT.getVectorNumElements(); 20760 20761 SDValue N0 = N->getOperand(0); 20762 SDValue N1 = N->getOperand(1); 20763 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 20764 ArrayRef<int> Mask = SVN->getMask(); 20765 20766 SmallVector<SDValue, 4> Ops; 20767 EVT ConcatVT = N0.getOperand(0).getValueType(); 20768 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 20769 unsigned NumConcats = NumElts / NumElemsPerConcat; 20770 20771 auto IsUndefMaskElt = [](int i) { return i == -1; }; 20772 20773 // Special case: shuffle(concat(A,B)) can be more efficiently represented 20774 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 20775 // half vector elements. 20776 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 20777 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 20778 IsUndefMaskElt)) { 20779 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 20780 N0.getOperand(1), 20781 Mask.slice(0, NumElemsPerConcat)); 20782 N1 = DAG.getUNDEF(ConcatVT); 20783 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 20784 } 20785 20786 // Look at every vector that's inserted. We're looking for exact 20787 // subvector-sized copies from a concatenated vector 20788 for (unsigned I = 0; I != NumConcats; ++I) { 20789 unsigned Begin = I * NumElemsPerConcat; 20790 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 20791 20792 // Make sure we're dealing with a copy. 20793 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 20794 Ops.push_back(DAG.getUNDEF(ConcatVT)); 20795 continue; 20796 } 20797 20798 int OpIdx = -1; 20799 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 20800 if (IsUndefMaskElt(SubMask[i])) 20801 continue; 20802 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 20803 return SDValue(); 20804 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 20805 if (0 <= OpIdx && EltOpIdx != OpIdx) 20806 return SDValue(); 20807 OpIdx = EltOpIdx; 20808 } 20809 assert(0 <= OpIdx && "Unknown concat_vectors op"); 20810 20811 if (OpIdx < (int)N0.getNumOperands()) 20812 Ops.push_back(N0.getOperand(OpIdx)); 20813 else 20814 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 20815 } 20816 20817 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20818 } 20819 20820 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 20821 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 20822 // 20823 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 20824 // a simplification in some sense, but it isn't appropriate in general: some 20825 // BUILD_VECTORs are substantially cheaper than others. The general case 20826 // of a BUILD_VECTOR requires inserting each element individually (or 20827 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 20828 // all constants is a single constant pool load. A BUILD_VECTOR where each 20829 // element is identical is a splat. A BUILD_VECTOR where most of the operands 20830 // are undef lowers to a small number of element insertions. 20831 // 20832 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 20833 // We don't fold shuffles where one side is a non-zero constant, and we don't 20834 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 20835 // non-constant operands. This seems to work out reasonably well in practice. 20836 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 20837 SelectionDAG &DAG, 20838 const TargetLowering &TLI) { 20839 EVT VT = SVN->getValueType(0); 20840 unsigned NumElts = VT.getVectorNumElements(); 20841 SDValue N0 = SVN->getOperand(0); 20842 SDValue N1 = SVN->getOperand(1); 20843 20844 if (!N0->hasOneUse()) 20845 return SDValue(); 20846 20847 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 20848 // discussed above. 20849 if (!N1.isUndef()) { 20850 if (!N1->hasOneUse()) 20851 return SDValue(); 20852 20853 bool N0AnyConst = isAnyConstantBuildVector(N0); 20854 bool N1AnyConst = isAnyConstantBuildVector(N1); 20855 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 20856 return SDValue(); 20857 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 20858 return SDValue(); 20859 } 20860 20861 // If both inputs are splats of the same value then we can safely merge this 20862 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 20863 bool IsSplat = false; 20864 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 20865 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 20866 if (BV0 && BV1) 20867 if (SDValue Splat0 = BV0->getSplatValue()) 20868 IsSplat = (Splat0 == BV1->getSplatValue()); 20869 20870 SmallVector<SDValue, 8> Ops; 20871 SmallSet<SDValue, 16> DuplicateOps; 20872 for (int M : SVN->getMask()) { 20873 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 20874 if (M >= 0) { 20875 int Idx = M < (int)NumElts ? M : M - NumElts; 20876 SDValue &S = (M < (int)NumElts ? N0 : N1); 20877 if (S.getOpcode() == ISD::BUILD_VECTOR) { 20878 Op = S.getOperand(Idx); 20879 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 20880 SDValue Op0 = S.getOperand(0); 20881 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 20882 } else { 20883 // Operand can't be combined - bail out. 20884 return SDValue(); 20885 } 20886 } 20887 20888 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 20889 // generating a splat; semantically, this is fine, but it's likely to 20890 // generate low-quality code if the target can't reconstruct an appropriate 20891 // shuffle. 20892 if (!Op.isUndef() && !isIntOrFPConstant(Op)) 20893 if (!IsSplat && !DuplicateOps.insert(Op).second) 20894 return SDValue(); 20895 20896 Ops.push_back(Op); 20897 } 20898 20899 // BUILD_VECTOR requires all inputs to be of the same type, find the 20900 // maximum type and extend them all. 20901 EVT SVT = VT.getScalarType(); 20902 if (SVT.isInteger()) 20903 for (SDValue &Op : Ops) 20904 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 20905 if (SVT != VT.getScalarType()) 20906 for (SDValue &Op : Ops) 20907 Op = TLI.isZExtFree(Op.getValueType(), SVT) 20908 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 20909 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); 20910 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 20911 } 20912 20913 // Match shuffles that can be converted to any_vector_extend_in_reg. 20914 // This is often generated during legalization. 20915 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 20916 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 20917 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 20918 SelectionDAG &DAG, 20919 const TargetLowering &TLI, 20920 bool LegalOperations) { 20921 EVT VT = SVN->getValueType(0); 20922 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 20923 20924 // TODO Add support for big-endian when we have a test case. 20925 if (!VT.isInteger() || IsBigEndian) 20926 return SDValue(); 20927 20928 unsigned NumElts = VT.getVectorNumElements(); 20929 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20930 ArrayRef<int> Mask = SVN->getMask(); 20931 SDValue N0 = SVN->getOperand(0); 20932 20933 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 20934 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 20935 for (unsigned i = 0; i != NumElts; ++i) { 20936 if (Mask[i] < 0) 20937 continue; 20938 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 20939 continue; 20940 return false; 20941 } 20942 return true; 20943 }; 20944 20945 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 20946 // power-of-2 extensions as they are the most likely. 20947 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 20948 // Check for non power of 2 vector sizes 20949 if (NumElts % Scale != 0) 20950 continue; 20951 if (!isAnyExtend(Scale)) 20952 continue; 20953 20954 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 20955 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 20956 // Never create an illegal type. Only create unsupported operations if we 20957 // are pre-legalization. 20958 if (TLI.isTypeLegal(OutVT)) 20959 if (!LegalOperations || 20960 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 20961 return DAG.getBitcast(VT, 20962 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 20963 SDLoc(SVN), OutVT, N0)); 20964 } 20965 20966 return SDValue(); 20967 } 20968 20969 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 20970 // each source element of a large type into the lowest elements of a smaller 20971 // destination type. This is often generated during legalization. 20972 // If the source node itself was a '*_extend_vector_inreg' node then we should 20973 // then be able to remove it. 20974 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 20975 SelectionDAG &DAG) { 20976 EVT VT = SVN->getValueType(0); 20977 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 20978 20979 // TODO Add support for big-endian when we have a test case. 20980 if (!VT.isInteger() || IsBigEndian) 20981 return SDValue(); 20982 20983 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 20984 20985 unsigned Opcode = N0.getOpcode(); 20986 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 20987 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 20988 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 20989 return SDValue(); 20990 20991 SDValue N00 = N0.getOperand(0); 20992 ArrayRef<int> Mask = SVN->getMask(); 20993 unsigned NumElts = VT.getVectorNumElements(); 20994 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20995 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 20996 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 20997 20998 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 20999 return SDValue(); 21000 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 21001 21002 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 21003 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 21004 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 21005 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 21006 for (unsigned i = 0; i != NumElts; ++i) { 21007 if (Mask[i] < 0) 21008 continue; 21009 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 21010 continue; 21011 return false; 21012 } 21013 return true; 21014 }; 21015 21016 // At the moment we just handle the case where we've truncated back to the 21017 // same size as before the extension. 21018 // TODO: handle more extension/truncation cases as cases arise. 21019 if (EltSizeInBits != ExtSrcSizeInBits) 21020 return SDValue(); 21021 21022 // We can remove *extend_vector_inreg only if the truncation happens at 21023 // the same scale as the extension. 21024 if (isTruncate(ExtScale)) 21025 return DAG.getBitcast(VT, N00); 21026 21027 return SDValue(); 21028 } 21029 21030 // Combine shuffles of splat-shuffles of the form: 21031 // shuffle (shuffle V, undef, splat-mask), undef, M 21032 // If splat-mask contains undef elements, we need to be careful about 21033 // introducing undef's in the folded mask which are not the result of composing 21034 // the masks of the shuffles. 21035 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 21036 SelectionDAG &DAG) { 21037 if (!Shuf->getOperand(1).isUndef()) 21038 return SDValue(); 21039 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 21040 if (!Splat || !Splat->isSplat()) 21041 return SDValue(); 21042 21043 ArrayRef<int> ShufMask = Shuf->getMask(); 21044 ArrayRef<int> SplatMask = Splat->getMask(); 21045 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 21046 21047 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 21048 // every undef mask element in the splat-shuffle has a corresponding undef 21049 // element in the user-shuffle's mask or if the composition of mask elements 21050 // would result in undef. 21051 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 21052 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 21053 // In this case it is not legal to simplify to the splat-shuffle because we 21054 // may be exposing the users of the shuffle an undef element at index 1 21055 // which was not there before the combine. 21056 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 21057 // In this case the composition of masks yields SplatMask, so it's ok to 21058 // simplify to the splat-shuffle. 21059 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 21060 // In this case the composed mask includes all undef elements of SplatMask 21061 // and in addition sets element zero to undef. It is safe to simplify to 21062 // the splat-shuffle. 21063 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 21064 ArrayRef<int> SplatMask) { 21065 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 21066 if (UserMask[i] != -1 && SplatMask[i] == -1 && 21067 SplatMask[UserMask[i]] != -1) 21068 return false; 21069 return true; 21070 }; 21071 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 21072 return Shuf->getOperand(0); 21073 21074 // Create a new shuffle with a mask that is composed of the two shuffles' 21075 // masks. 21076 SmallVector<int, 32> NewMask; 21077 for (int Idx : ShufMask) 21078 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 21079 21080 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 21081 Splat->getOperand(0), Splat->getOperand(1), 21082 NewMask); 21083 } 21084 21085 /// Combine shuffle of shuffle of the form: 21086 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X 21087 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, 21088 SelectionDAG &DAG) { 21089 if (!OuterShuf->getOperand(1).isUndef()) 21090 return SDValue(); 21091 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); 21092 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) 21093 return SDValue(); 21094 21095 ArrayRef<int> OuterMask = OuterShuf->getMask(); 21096 ArrayRef<int> InnerMask = InnerShuf->getMask(); 21097 unsigned NumElts = OuterMask.size(); 21098 assert(NumElts == InnerMask.size() && "Mask length mismatch"); 21099 SmallVector<int, 32> CombinedMask(NumElts, -1); 21100 int SplatIndex = -1; 21101 for (unsigned i = 0; i != NumElts; ++i) { 21102 // Undef lanes remain undef. 21103 int OuterMaskElt = OuterMask[i]; 21104 if (OuterMaskElt == -1) 21105 continue; 21106 21107 // Peek through the shuffle masks to get the underlying source element. 21108 int InnerMaskElt = InnerMask[OuterMaskElt]; 21109 if (InnerMaskElt == -1) 21110 continue; 21111 21112 // Initialize the splatted element. 21113 if (SplatIndex == -1) 21114 SplatIndex = InnerMaskElt; 21115 21116 // Non-matching index - this is not a splat. 21117 if (SplatIndex != InnerMaskElt) 21118 return SDValue(); 21119 21120 CombinedMask[i] = InnerMaskElt; 21121 } 21122 assert((all_of(CombinedMask, [](int M) { return M == -1; }) || 21123 getSplatIndex(CombinedMask) != -1) && 21124 "Expected a splat mask"); 21125 21126 // TODO: The transform may be a win even if the mask is not legal. 21127 EVT VT = OuterShuf->getValueType(0); 21128 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); 21129 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) 21130 return SDValue(); 21131 21132 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), 21133 InnerShuf->getOperand(1), CombinedMask); 21134 } 21135 21136 /// If the shuffle mask is taking exactly one element from the first vector 21137 /// operand and passing through all other elements from the second vector 21138 /// operand, return the index of the mask element that is choosing an element 21139 /// from the first operand. Otherwise, return -1. 21140 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 21141 int MaskSize = Mask.size(); 21142 int EltFromOp0 = -1; 21143 // TODO: This does not match if there are undef elements in the shuffle mask. 21144 // Should we ignore undefs in the shuffle mask instead? The trade-off is 21145 // removing an instruction (a shuffle), but losing the knowledge that some 21146 // vector lanes are not needed. 21147 for (int i = 0; i != MaskSize; ++i) { 21148 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 21149 // We're looking for a shuffle of exactly one element from operand 0. 21150 if (EltFromOp0 != -1) 21151 return -1; 21152 EltFromOp0 = i; 21153 } else if (Mask[i] != i + MaskSize) { 21154 // Nothing from operand 1 can change lanes. 21155 return -1; 21156 } 21157 } 21158 return EltFromOp0; 21159 } 21160 21161 /// If a shuffle inserts exactly one element from a source vector operand into 21162 /// another vector operand and we can access the specified element as a scalar, 21163 /// then we can eliminate the shuffle. 21164 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 21165 SelectionDAG &DAG) { 21166 // First, check if we are taking one element of a vector and shuffling that 21167 // element into another vector. 21168 ArrayRef<int> Mask = Shuf->getMask(); 21169 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 21170 SDValue Op0 = Shuf->getOperand(0); 21171 SDValue Op1 = Shuf->getOperand(1); 21172 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 21173 if (ShufOp0Index == -1) { 21174 // Commute mask and check again. 21175 ShuffleVectorSDNode::commuteMask(CommutedMask); 21176 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 21177 if (ShufOp0Index == -1) 21178 return SDValue(); 21179 // Commute operands to match the commuted shuffle mask. 21180 std::swap(Op0, Op1); 21181 Mask = CommutedMask; 21182 } 21183 21184 // The shuffle inserts exactly one element from operand 0 into operand 1. 21185 // Now see if we can access that element as a scalar via a real insert element 21186 // instruction. 21187 // TODO: We can try harder to locate the element as a scalar. Examples: it 21188 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 21189 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 21190 "Shuffle mask value must be from operand 0"); 21191 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 21192 return SDValue(); 21193 21194 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 21195 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 21196 return SDValue(); 21197 21198 // There's an existing insertelement with constant insertion index, so we 21199 // don't need to check the legality/profitability of a replacement operation 21200 // that differs at most in the constant value. The target should be able to 21201 // lower any of those in a similar way. If not, legalization will expand this 21202 // to a scalar-to-vector plus shuffle. 21203 // 21204 // Note that the shuffle may move the scalar from the position that the insert 21205 // element used. Therefore, our new insert element occurs at the shuffle's 21206 // mask index value, not the insert's index value. 21207 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 21208 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); 21209 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 21210 Op1, Op0.getOperand(1), NewInsIndex); 21211 } 21212 21213 /// If we have a unary shuffle of a shuffle, see if it can be folded away 21214 /// completely. This has the potential to lose undef knowledge because the first 21215 /// shuffle may not have an undef mask element where the second one does. So 21216 /// only call this after doing simplifications based on demanded elements. 21217 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 21218 // shuf (shuf0 X, Y, Mask0), undef, Mask 21219 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 21220 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 21221 return SDValue(); 21222 21223 ArrayRef<int> Mask = Shuf->getMask(); 21224 ArrayRef<int> Mask0 = Shuf0->getMask(); 21225 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 21226 // Ignore undef elements. 21227 if (Mask[i] == -1) 21228 continue; 21229 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 21230 21231 // Is the element of the shuffle operand chosen by this shuffle the same as 21232 // the element chosen by the shuffle operand itself? 21233 if (Mask0[Mask[i]] != Mask0[i]) 21234 return SDValue(); 21235 } 21236 // Every element of this shuffle is identical to the result of the previous 21237 // shuffle, so we can replace this value. 21238 return Shuf->getOperand(0); 21239 } 21240 21241 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 21242 EVT VT = N->getValueType(0); 21243 unsigned NumElts = VT.getVectorNumElements(); 21244 21245 SDValue N0 = N->getOperand(0); 21246 SDValue N1 = N->getOperand(1); 21247 21248 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 21249 21250 // Canonicalize shuffle undef, undef -> undef 21251 if (N0.isUndef() && N1.isUndef()) 21252 return DAG.getUNDEF(VT); 21253 21254 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 21255 21256 // Canonicalize shuffle v, v -> v, undef 21257 if (N0 == N1) { 21258 SmallVector<int, 8> NewMask; 21259 for (unsigned i = 0; i != NumElts; ++i) { 21260 int Idx = SVN->getMaskElt(i); 21261 if (Idx >= (int)NumElts) Idx -= NumElts; 21262 NewMask.push_back(Idx); 21263 } 21264 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 21265 } 21266 21267 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 21268 if (N0.isUndef()) 21269 return DAG.getCommutedVectorShuffle(*SVN); 21270 21271 // Remove references to rhs if it is undef 21272 if (N1.isUndef()) { 21273 bool Changed = false; 21274 SmallVector<int, 8> NewMask; 21275 for (unsigned i = 0; i != NumElts; ++i) { 21276 int Idx = SVN->getMaskElt(i); 21277 if (Idx >= (int)NumElts) { 21278 Idx = -1; 21279 Changed = true; 21280 } 21281 NewMask.push_back(Idx); 21282 } 21283 if (Changed) 21284 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 21285 } 21286 21287 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 21288 return InsElt; 21289 21290 // A shuffle of a single vector that is a splatted value can always be folded. 21291 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 21292 return V; 21293 21294 if (SDValue V = formSplatFromShuffles(SVN, DAG)) 21295 return V; 21296 21297 // If it is a splat, check if the argument vector is another splat or a 21298 // build_vector. 21299 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 21300 int SplatIndex = SVN->getSplatIndex(); 21301 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && 21302 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { 21303 // splat (vector_bo L, R), Index --> 21304 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 21305 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 21306 SDLoc DL(N); 21307 EVT EltVT = VT.getScalarType(); 21308 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); 21309 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 21310 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 21311 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, 21312 N0.getNode()->getFlags()); 21313 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 21314 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 21315 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 21316 } 21317 21318 // If this is a bit convert that changes the element type of the vector but 21319 // not the number of vector elements, look through it. Be careful not to 21320 // look though conversions that change things like v4f32 to v2f64. 21321 SDNode *V = N0.getNode(); 21322 if (V->getOpcode() == ISD::BITCAST) { 21323 SDValue ConvInput = V->getOperand(0); 21324 if (ConvInput.getValueType().isVector() && 21325 ConvInput.getValueType().getVectorNumElements() == NumElts) 21326 V = ConvInput.getNode(); 21327 } 21328 21329 if (V->getOpcode() == ISD::BUILD_VECTOR) { 21330 assert(V->getNumOperands() == NumElts && 21331 "BUILD_VECTOR has wrong number of operands"); 21332 SDValue Base; 21333 bool AllSame = true; 21334 for (unsigned i = 0; i != NumElts; ++i) { 21335 if (!V->getOperand(i).isUndef()) { 21336 Base = V->getOperand(i); 21337 break; 21338 } 21339 } 21340 // Splat of <u, u, u, u>, return <u, u, u, u> 21341 if (!Base.getNode()) 21342 return N0; 21343 for (unsigned i = 0; i != NumElts; ++i) { 21344 if (V->getOperand(i) != Base) { 21345 AllSame = false; 21346 break; 21347 } 21348 } 21349 // Splat of <x, x, x, x>, return <x, x, x, x> 21350 if (AllSame) 21351 return N0; 21352 21353 // Canonicalize any other splat as a build_vector. 21354 SDValue Splatted = V->getOperand(SplatIndex); 21355 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 21356 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 21357 21358 // We may have jumped through bitcasts, so the type of the 21359 // BUILD_VECTOR may not match the type of the shuffle. 21360 if (V->getValueType(0) != VT) 21361 NewBV = DAG.getBitcast(VT, NewBV); 21362 return NewBV; 21363 } 21364 } 21365 21366 // Simplify source operands based on shuffle mask. 21367 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21368 return SDValue(N, 0); 21369 21370 // This is intentionally placed after demanded elements simplification because 21371 // it could eliminate knowledge of undef elements created by this shuffle. 21372 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 21373 return ShufOp; 21374 21375 // Match shuffles that can be converted to any_vector_extend_in_reg. 21376 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 21377 return V; 21378 21379 // Combine "truncate_vector_in_reg" style shuffles. 21380 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 21381 return V; 21382 21383 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 21384 Level < AfterLegalizeVectorOps && 21385 (N1.isUndef() || 21386 (N1.getOpcode() == ISD::CONCAT_VECTORS && 21387 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 21388 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 21389 return V; 21390 } 21391 21392 // A shuffle of a concat of the same narrow vector can be reduced to use 21393 // only low-half elements of a concat with undef: 21394 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' 21395 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && 21396 N0.getNumOperands() == 2 && 21397 N0.getOperand(0) == N0.getOperand(1)) { 21398 int HalfNumElts = (int)NumElts / 2; 21399 SmallVector<int, 8> NewMask; 21400 for (unsigned i = 0; i != NumElts; ++i) { 21401 int Idx = SVN->getMaskElt(i); 21402 if (Idx >= HalfNumElts) { 21403 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); 21404 Idx -= HalfNumElts; 21405 } 21406 NewMask.push_back(Idx); 21407 } 21408 if (TLI.isShuffleMaskLegal(NewMask, VT)) { 21409 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); 21410 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 21411 N0.getOperand(0), UndefVec); 21412 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); 21413 } 21414 } 21415 21416 // See if we can replace a shuffle with an insert_subvector. 21417 // e.g. v2i32 into v8i32: 21418 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7). 21419 // --> insert_subvector(lhs,rhs1,4). 21420 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) && 21421 TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) { 21422 auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) { 21423 // Ensure RHS subvectors are legal. 21424 assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors"); 21425 EVT SubVT = RHS.getOperand(0).getValueType(); 21426 int NumSubVecs = RHS.getNumOperands(); 21427 int NumSubElts = SubVT.getVectorNumElements(); 21428 assert((NumElts % NumSubElts) == 0 && "Subvector mismatch"); 21429 if (!TLI.isTypeLegal(SubVT)) 21430 return SDValue(); 21431 21432 // Don't bother if we have an unary shuffle (matches undef + LHS elts). 21433 if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; })) 21434 return SDValue(); 21435 21436 // Search [NumSubElts] spans for RHS sequence. 21437 // TODO: Can we avoid nested loops to increase performance? 21438 SmallVector<int> InsertionMask(NumElts); 21439 for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) { 21440 for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) { 21441 // Reset mask to identity. 21442 std::iota(InsertionMask.begin(), InsertionMask.end(), 0); 21443 21444 // Add subvector insertion. 21445 std::iota(InsertionMask.begin() + SubIdx, 21446 InsertionMask.begin() + SubIdx + NumSubElts, 21447 NumElts + (SubVec * NumSubElts)); 21448 21449 // See if the shuffle mask matches the reference insertion mask. 21450 bool MatchingShuffle = true; 21451 for (int i = 0; i != (int)NumElts; ++i) { 21452 int ExpectIdx = InsertionMask[i]; 21453 int ActualIdx = Mask[i]; 21454 if (0 <= ActualIdx && ExpectIdx != ActualIdx) { 21455 MatchingShuffle = false; 21456 break; 21457 } 21458 } 21459 21460 if (MatchingShuffle) 21461 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS, 21462 RHS.getOperand(SubVec), 21463 DAG.getVectorIdxConstant(SubIdx, SDLoc(N))); 21464 } 21465 } 21466 return SDValue(); 21467 }; 21468 ArrayRef<int> Mask = SVN->getMask(); 21469 if (N1.getOpcode() == ISD::CONCAT_VECTORS) 21470 if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask)) 21471 return InsertN1; 21472 if (N0.getOpcode() == ISD::CONCAT_VECTORS) { 21473 SmallVector<int> CommuteMask(Mask.begin(), Mask.end()); 21474 ShuffleVectorSDNode::commuteMask(CommuteMask); 21475 if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask)) 21476 return InsertN0; 21477 } 21478 } 21479 21480 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 21481 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 21482 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 21483 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 21484 return Res; 21485 21486 // If this shuffle only has a single input that is a bitcasted shuffle, 21487 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 21488 // back to their original types. 21489 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 21490 N1.isUndef() && Level < AfterLegalizeVectorOps && 21491 TLI.isTypeLegal(VT)) { 21492 21493 SDValue BC0 = peekThroughOneUseBitcasts(N0); 21494 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 21495 EVT SVT = VT.getScalarType(); 21496 EVT InnerVT = BC0->getValueType(0); 21497 EVT InnerSVT = InnerVT.getScalarType(); 21498 21499 // Determine which shuffle works with the smaller scalar type. 21500 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 21501 EVT ScaleSVT = ScaleVT.getScalarType(); 21502 21503 if (TLI.isTypeLegal(ScaleVT) && 21504 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 21505 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 21506 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 21507 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 21508 21509 // Scale the shuffle masks to the smaller scalar type. 21510 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 21511 SmallVector<int, 8> InnerMask; 21512 SmallVector<int, 8> OuterMask; 21513 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); 21514 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); 21515 21516 // Merge the shuffle masks. 21517 SmallVector<int, 8> NewMask; 21518 for (int M : OuterMask) 21519 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 21520 21521 // Test for shuffle mask legality over both commutations. 21522 SDValue SV0 = BC0->getOperand(0); 21523 SDValue SV1 = BC0->getOperand(1); 21524 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 21525 if (!LegalMask) { 21526 std::swap(SV0, SV1); 21527 ShuffleVectorSDNode::commuteMask(NewMask); 21528 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 21529 } 21530 21531 if (LegalMask) { 21532 SV0 = DAG.getBitcast(ScaleVT, SV0); 21533 SV1 = DAG.getBitcast(ScaleVT, SV1); 21534 return DAG.getBitcast( 21535 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 21536 } 21537 } 21538 } 21539 } 21540 21541 // Compute the combined shuffle mask for a shuffle with SV0 as the first 21542 // operand, and SV1 as the second operand. 21543 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false 21544 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true 21545 auto MergeInnerShuffle = 21546 [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN, 21547 ShuffleVectorSDNode *OtherSVN, SDValue N1, 21548 const TargetLowering &TLI, SDValue &SV0, SDValue &SV1, 21549 SmallVectorImpl<int> &Mask) -> bool { 21550 // Don't try to fold splats; they're likely to simplify somehow, or they 21551 // might be free. 21552 if (OtherSVN->isSplat()) 21553 return false; 21554 21555 SV0 = SV1 = SDValue(); 21556 Mask.clear(); 21557 21558 for (unsigned i = 0; i != NumElts; ++i) { 21559 int Idx = SVN->getMaskElt(i); 21560 if (Idx < 0) { 21561 // Propagate Undef. 21562 Mask.push_back(Idx); 21563 continue; 21564 } 21565 21566 if (Commute) 21567 Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts); 21568 21569 SDValue CurrentVec; 21570 if (Idx < (int)NumElts) { 21571 // This shuffle index refers to the inner shuffle N0. Lookup the inner 21572 // shuffle mask to identify which vector is actually referenced. 21573 Idx = OtherSVN->getMaskElt(Idx); 21574 if (Idx < 0) { 21575 // Propagate Undef. 21576 Mask.push_back(Idx); 21577 continue; 21578 } 21579 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) 21580 : OtherSVN->getOperand(1); 21581 } else { 21582 // This shuffle index references an element within N1. 21583 CurrentVec = N1; 21584 } 21585 21586 // Simple case where 'CurrentVec' is UNDEF. 21587 if (CurrentVec.isUndef()) { 21588 Mask.push_back(-1); 21589 continue; 21590 } 21591 21592 // Canonicalize the shuffle index. We don't know yet if CurrentVec 21593 // will be the first or second operand of the combined shuffle. 21594 Idx = Idx % NumElts; 21595 if (!SV0.getNode() || SV0 == CurrentVec) { 21596 // Ok. CurrentVec is the left hand side. 21597 // Update the mask accordingly. 21598 SV0 = CurrentVec; 21599 Mask.push_back(Idx); 21600 continue; 21601 } 21602 if (!SV1.getNode() || SV1 == CurrentVec) { 21603 // Ok. CurrentVec is the right hand side. 21604 // Update the mask accordingly. 21605 SV1 = CurrentVec; 21606 Mask.push_back(Idx + NumElts); 21607 continue; 21608 } 21609 21610 // Last chance - see if the vector is another shuffle and if it 21611 // uses one of the existing candidate shuffle ops. 21612 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { 21613 int InnerIdx = CurrentSVN->getMaskElt(Idx); 21614 if (InnerIdx < 0) { 21615 Mask.push_back(-1); 21616 continue; 21617 } 21618 SDValue InnerVec = (InnerIdx < (int)NumElts) 21619 ? CurrentSVN->getOperand(0) 21620 : CurrentSVN->getOperand(1); 21621 if (InnerVec.isUndef()) { 21622 Mask.push_back(-1); 21623 continue; 21624 } 21625 InnerIdx %= NumElts; 21626 if (InnerVec == SV0) { 21627 Mask.push_back(InnerIdx); 21628 continue; 21629 } 21630 if (InnerVec == SV1) { 21631 Mask.push_back(InnerIdx + NumElts); 21632 continue; 21633 } 21634 } 21635 21636 // Bail out if we cannot convert the shuffle pair into a single shuffle. 21637 return false; 21638 } 21639 21640 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 21641 return true; 21642 21643 // Avoid introducing shuffles with illegal mask. 21644 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 21645 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 21646 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 21647 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 21648 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 21649 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 21650 if (TLI.isShuffleMaskLegal(Mask, VT)) 21651 return true; 21652 21653 std::swap(SV0, SV1); 21654 ShuffleVectorSDNode::commuteMask(Mask); 21655 return TLI.isShuffleMaskLegal(Mask, VT); 21656 }; 21657 21658 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 21659 // Canonicalize shuffles according to rules: 21660 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 21661 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 21662 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 21663 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 21664 N0.getOpcode() != ISD::VECTOR_SHUFFLE) { 21665 // The incoming shuffle must be of the same type as the result of the 21666 // current shuffle. 21667 assert(N1->getOperand(0).getValueType() == VT && 21668 "Shuffle types don't match"); 21669 21670 SDValue SV0 = N1->getOperand(0); 21671 SDValue SV1 = N1->getOperand(1); 21672 bool HasSameOp0 = N0 == SV0; 21673 bool IsSV1Undef = SV1.isUndef(); 21674 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 21675 // Commute the operands of this shuffle so merging below will trigger. 21676 return DAG.getCommutedVectorShuffle(*SVN); 21677 } 21678 21679 // Canonicalize splat shuffles to the RHS to improve merging below. 21680 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u)) 21681 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && 21682 N1.getOpcode() == ISD::VECTOR_SHUFFLE && 21683 cast<ShuffleVectorSDNode>(N0)->isSplat() && 21684 !cast<ShuffleVectorSDNode>(N1)->isSplat()) { 21685 return DAG.getCommutedVectorShuffle(*SVN); 21686 } 21687 21688 // Try to fold according to rules: 21689 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 21690 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 21691 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 21692 // Don't try to fold shuffles with illegal type. 21693 // Only fold if this shuffle is the only user of the other shuffle. 21694 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well. 21695 for (int i = 0; i != 2; ++i) { 21696 if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE && 21697 N->isOnlyUserOf(N->getOperand(i).getNode())) { 21698 // The incoming shuffle must be of the same type as the result of the 21699 // current shuffle. 21700 auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i)); 21701 assert(OtherSV->getOperand(0).getValueType() == VT && 21702 "Shuffle types don't match"); 21703 21704 SDValue SV0, SV1; 21705 SmallVector<int, 4> Mask; 21706 if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI, 21707 SV0, SV1, Mask)) { 21708 // Check if all indices in Mask are Undef. In case, propagate Undef. 21709 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 21710 return DAG.getUNDEF(VT); 21711 21712 return DAG.getVectorShuffle(VT, SDLoc(N), 21713 SV0 ? SV0 : DAG.getUNDEF(VT), 21714 SV1 ? SV1 : DAG.getUNDEF(VT), Mask); 21715 } 21716 } 21717 } 21718 21719 // Merge shuffles through binops if we are able to merge it with at least 21720 // one other shuffles. 21721 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef) 21722 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) 21723 unsigned SrcOpcode = N0.getOpcode(); 21724 if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) && 21725 (N1.isUndef() || 21726 (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) { 21727 // Get binop source ops, or just pass on the undef. 21728 SDValue Op00 = N0.getOperand(0); 21729 SDValue Op01 = N0.getOperand(1); 21730 SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0); 21731 SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1); 21732 // TODO: We might be able to relax the VT check but we don't currently 21733 // have any isBinOp() that has different result/ops VTs so play safe until 21734 // we have test coverage. 21735 if (Op00.getValueType() == VT && Op10.getValueType() == VT && 21736 Op01.getValueType() == VT && Op11.getValueType() == VT && 21737 (Op00.getOpcode() == ISD::VECTOR_SHUFFLE || 21738 Op10.getOpcode() == ISD::VECTOR_SHUFFLE || 21739 Op01.getOpcode() == ISD::VECTOR_SHUFFLE || 21740 Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) { 21741 auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1, 21742 SmallVectorImpl<int> &Mask, bool LeftOp, 21743 bool Commute) { 21744 SDValue InnerN = Commute ? N1 : N0; 21745 SDValue Op0 = LeftOp ? Op00 : Op01; 21746 SDValue Op1 = LeftOp ? Op10 : Op11; 21747 if (Commute) 21748 std::swap(Op0, Op1); 21749 // Only accept the merged shuffle if we don't introduce undef elements, 21750 // or the inner shuffle already contained undef elements. 21751 auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0); 21752 return SVN0 && InnerN->isOnlyUserOf(SVN0) && 21753 MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1, 21754 Mask) && 21755 (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) || 21756 llvm::none_of(Mask, [](int M) { return M < 0; })); 21757 }; 21758 21759 // Ensure we don't increase the number of shuffles - we must merge a 21760 // shuffle from at least one of the LHS and RHS ops. 21761 bool MergedLeft = false; 21762 SDValue LeftSV0, LeftSV1; 21763 SmallVector<int, 4> LeftMask; 21764 if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) || 21765 CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) { 21766 MergedLeft = true; 21767 } else { 21768 LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 21769 LeftSV0 = Op00, LeftSV1 = Op10; 21770 } 21771 21772 bool MergedRight = false; 21773 SDValue RightSV0, RightSV1; 21774 SmallVector<int, 4> RightMask; 21775 if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) || 21776 CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) { 21777 MergedRight = true; 21778 } else { 21779 RightMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 21780 RightSV0 = Op01, RightSV1 = Op11; 21781 } 21782 21783 if (MergedLeft || MergedRight) { 21784 SDLoc DL(N); 21785 SDValue LHS = DAG.getVectorShuffle( 21786 VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT), 21787 LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask); 21788 SDValue RHS = DAG.getVectorShuffle( 21789 VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT), 21790 RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask); 21791 return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS); 21792 } 21793 } 21794 } 21795 } 21796 21797 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 21798 return V; 21799 21800 return SDValue(); 21801 } 21802 21803 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 21804 SDValue InVal = N->getOperand(0); 21805 EVT VT = N->getValueType(0); 21806 21807 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 21808 // with a VECTOR_SHUFFLE and possible truncate. 21809 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 21810 VT.isFixedLengthVector() && 21811 InVal->getOperand(0).getValueType().isFixedLengthVector()) { 21812 SDValue InVec = InVal->getOperand(0); 21813 SDValue EltNo = InVal->getOperand(1); 21814 auto InVecT = InVec.getValueType(); 21815 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 21816 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 21817 int Elt = C0->getZExtValue(); 21818 NewMask[0] = Elt; 21819 // If we have an implict truncate do truncate here as long as it's legal. 21820 // if it's not legal, this should 21821 if (VT.getScalarType() != InVal.getValueType() && 21822 InVal.getValueType().isScalarInteger() && 21823 isTypeLegal(VT.getScalarType())) { 21824 SDValue Val = 21825 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 21826 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 21827 } 21828 if (VT.getScalarType() == InVecT.getScalarType() && 21829 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { 21830 SDValue LegalShuffle = 21831 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, 21832 DAG.getUNDEF(InVecT), NewMask, DAG); 21833 if (LegalShuffle) { 21834 // If the initial vector is the correct size this shuffle is a 21835 // valid result. 21836 if (VT == InVecT) 21837 return LegalShuffle; 21838 // If not we must truncate the vector. 21839 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 21840 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); 21841 EVT SubVT = EVT::getVectorVT(*DAG.getContext(), 21842 InVecT.getVectorElementType(), 21843 VT.getVectorNumElements()); 21844 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, 21845 LegalShuffle, ZeroIdx); 21846 } 21847 } 21848 } 21849 } 21850 } 21851 21852 return SDValue(); 21853 } 21854 21855 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 21856 EVT VT = N->getValueType(0); 21857 SDValue N0 = N->getOperand(0); 21858 SDValue N1 = N->getOperand(1); 21859 SDValue N2 = N->getOperand(2); 21860 uint64_t InsIdx = N->getConstantOperandVal(2); 21861 21862 // If inserting an UNDEF, just return the original vector. 21863 if (N1.isUndef()) 21864 return N0; 21865 21866 // If this is an insert of an extracted vector into an undef vector, we can 21867 // just use the input to the extract. 21868 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 21869 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 21870 return N1.getOperand(0); 21871 21872 // If we are inserting a bitcast value into an undef, with the same 21873 // number of elements, just use the bitcast input of the extract. 21874 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 21875 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 21876 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 21877 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 21878 N1.getOperand(0).getOperand(1) == N2 && 21879 N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == 21880 VT.getVectorElementCount() && 21881 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 21882 VT.getSizeInBits()) { 21883 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 21884 } 21885 21886 // If both N1 and N2 are bitcast values on which insert_subvector 21887 // would makes sense, pull the bitcast through. 21888 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 21889 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 21890 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 21891 SDValue CN0 = N0.getOperand(0); 21892 SDValue CN1 = N1.getOperand(0); 21893 EVT CN0VT = CN0.getValueType(); 21894 EVT CN1VT = CN1.getValueType(); 21895 if (CN0VT.isVector() && CN1VT.isVector() && 21896 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 21897 CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { 21898 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 21899 CN0.getValueType(), CN0, CN1, N2); 21900 return DAG.getBitcast(VT, NewINSERT); 21901 } 21902 } 21903 21904 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 21905 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 21906 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 21907 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 21908 N0.getOperand(1).getValueType() == N1.getValueType() && 21909 N0.getOperand(2) == N2) 21910 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 21911 N1, N2); 21912 21913 // Eliminate an intermediate insert into an undef vector: 21914 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 21915 // insert_subvector undef, X, N2 21916 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 21917 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 21918 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 21919 N1.getOperand(1), N2); 21920 21921 // Push subvector bitcasts to the output, adjusting the index as we go. 21922 // insert_subvector(bitcast(v), bitcast(s), c1) 21923 // -> bitcast(insert_subvector(v, s, c2)) 21924 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 21925 N1.getOpcode() == ISD::BITCAST) { 21926 SDValue N0Src = peekThroughBitcasts(N0); 21927 SDValue N1Src = peekThroughBitcasts(N1); 21928 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 21929 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 21930 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 21931 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 21932 EVT NewVT; 21933 SDLoc DL(N); 21934 SDValue NewIdx; 21935 LLVMContext &Ctx = *DAG.getContext(); 21936 ElementCount NumElts = VT.getVectorElementCount(); 21937 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21938 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 21939 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 21940 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 21941 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); 21942 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 21943 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 21944 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { 21945 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, 21946 NumElts.divideCoefficientBy(Scale)); 21947 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); 21948 } 21949 } 21950 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 21951 SDValue Res = DAG.getBitcast(NewVT, N0Src); 21952 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 21953 return DAG.getBitcast(VT, Res); 21954 } 21955 } 21956 } 21957 21958 // Canonicalize insert_subvector dag nodes. 21959 // Example: 21960 // (insert_subvector (insert_subvector A, Idx0), Idx1) 21961 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 21962 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 21963 N1.getValueType() == N0.getOperand(1).getValueType()) { 21964 unsigned OtherIdx = N0.getConstantOperandVal(2); 21965 if (InsIdx < OtherIdx) { 21966 // Swap nodes. 21967 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 21968 N0.getOperand(0), N1, N2); 21969 AddToWorklist(NewOp.getNode()); 21970 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 21971 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 21972 } 21973 } 21974 21975 // If the input vector is a concatenation, and the insert replaces 21976 // one of the pieces, we can optimize into a single concat_vectors. 21977 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 21978 N0.getOperand(0).getValueType() == N1.getValueType() && 21979 N0.getOperand(0).getValueType().isScalableVector() == 21980 N1.getValueType().isScalableVector()) { 21981 unsigned Factor = N1.getValueType().getVectorMinNumElements(); 21982 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 21983 Ops[InsIdx / Factor] = N1; 21984 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 21985 } 21986 21987 // Simplify source operands based on insertion. 21988 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21989 return SDValue(N, 0); 21990 21991 return SDValue(); 21992 } 21993 21994 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 21995 SDValue N0 = N->getOperand(0); 21996 21997 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 21998 if (N0->getOpcode() == ISD::FP16_TO_FP) 21999 return N0->getOperand(0); 22000 22001 return SDValue(); 22002 } 22003 22004 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 22005 SDValue N0 = N->getOperand(0); 22006 22007 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 22008 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { 22009 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 22010 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 22011 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 22012 N0.getOperand(0)); 22013 } 22014 } 22015 22016 return SDValue(); 22017 } 22018 22019 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 22020 SDValue N0 = N->getOperand(0); 22021 EVT VT = N0.getValueType(); 22022 unsigned Opcode = N->getOpcode(); 22023 22024 // VECREDUCE over 1-element vector is just an extract. 22025 if (VT.getVectorElementCount().isScalar()) { 22026 SDLoc dl(N); 22027 SDValue Res = 22028 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 22029 DAG.getVectorIdxConstant(0, dl)); 22030 if (Res.getValueType() != N->getValueType(0)) 22031 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 22032 return Res; 22033 } 22034 22035 // On an boolean vector an and/or reduction is the same as a umin/umax 22036 // reduction. Convert them if the latter is legal while the former isn't. 22037 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 22038 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 22039 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 22040 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 22041 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 22042 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 22043 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 22044 } 22045 22046 return SDValue(); 22047 } 22048 22049 SDValue DAGCombiner::visitVPOp(SDNode *N) { 22050 // VP operations in which all vector elements are disabled - either by 22051 // determining that the mask is all false or that the EVL is 0 - can be 22052 // eliminated. 22053 bool AreAllEltsDisabled = false; 22054 if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode())) 22055 AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx)); 22056 if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode())) 22057 AreAllEltsDisabled |= 22058 ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode()); 22059 22060 // This is the only generic VP combine we support for now. 22061 if (!AreAllEltsDisabled) 22062 return SDValue(); 22063 22064 // Binary operations can be replaced by UNDEF. 22065 if (ISD::isVPBinaryOp(N->getOpcode())) 22066 return DAG.getUNDEF(N->getValueType(0)); 22067 22068 // VP Memory operations can be replaced by either the chain (stores) or the 22069 // chain + undef (loads). 22070 if (const auto *MemSD = dyn_cast<MemSDNode>(N)) { 22071 if (MemSD->writeMem()) 22072 return MemSD->getChain(); 22073 return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain()); 22074 } 22075 22076 // Reduction operations return the start operand when no elements are active. 22077 if (ISD::isVPReduction(N->getOpcode())) 22078 return N->getOperand(0); 22079 22080 return SDValue(); 22081 } 22082 22083 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 22084 /// with the destination vector and a zero vector. 22085 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 22086 /// vector_shuffle V, Zero, <0, 4, 2, 4> 22087 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 22088 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 22089 22090 EVT VT = N->getValueType(0); 22091 SDValue LHS = N->getOperand(0); 22092 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 22093 SDLoc DL(N); 22094 22095 // Make sure we're not running after operation legalization where it 22096 // may have custom lowered the vector shuffles. 22097 if (LegalOperations) 22098 return SDValue(); 22099 22100 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 22101 return SDValue(); 22102 22103 EVT RVT = RHS.getValueType(); 22104 unsigned NumElts = RHS.getNumOperands(); 22105 22106 // Attempt to create a valid clear mask, splitting the mask into 22107 // sub elements and checking to see if each is 22108 // all zeros or all ones - suitable for shuffle masking. 22109 auto BuildClearMask = [&](int Split) { 22110 int NumSubElts = NumElts * Split; 22111 int NumSubBits = RVT.getScalarSizeInBits() / Split; 22112 22113 SmallVector<int, 8> Indices; 22114 for (int i = 0; i != NumSubElts; ++i) { 22115 int EltIdx = i / Split; 22116 int SubIdx = i % Split; 22117 SDValue Elt = RHS.getOperand(EltIdx); 22118 // X & undef --> 0 (not undef). So this lane must be converted to choose 22119 // from the zero constant vector (same as if the element had all 0-bits). 22120 if (Elt.isUndef()) { 22121 Indices.push_back(i + NumSubElts); 22122 continue; 22123 } 22124 22125 APInt Bits; 22126 if (isa<ConstantSDNode>(Elt)) 22127 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 22128 else if (isa<ConstantFPSDNode>(Elt)) 22129 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 22130 else 22131 return SDValue(); 22132 22133 // Extract the sub element from the constant bit mask. 22134 if (DAG.getDataLayout().isBigEndian()) 22135 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); 22136 else 22137 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); 22138 22139 if (Bits.isAllOnes()) 22140 Indices.push_back(i); 22141 else if (Bits == 0) 22142 Indices.push_back(i + NumSubElts); 22143 else 22144 return SDValue(); 22145 } 22146 22147 // Let's see if the target supports this vector_shuffle. 22148 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 22149 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 22150 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 22151 return SDValue(); 22152 22153 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 22154 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 22155 DAG.getBitcast(ClearVT, LHS), 22156 Zero, Indices)); 22157 }; 22158 22159 // Determine maximum split level (byte level masking). 22160 int MaxSplit = 1; 22161 if (RVT.getScalarSizeInBits() % 8 == 0) 22162 MaxSplit = RVT.getScalarSizeInBits() / 8; 22163 22164 for (int Split = 1; Split <= MaxSplit; ++Split) 22165 if (RVT.getScalarSizeInBits() % Split == 0) 22166 if (SDValue S = BuildClearMask(Split)) 22167 return S; 22168 22169 return SDValue(); 22170 } 22171 22172 /// If a vector binop is performed on splat values, it may be profitable to 22173 /// extract, scalarize, and insert/splat. 22174 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { 22175 SDValue N0 = N->getOperand(0); 22176 SDValue N1 = N->getOperand(1); 22177 unsigned Opcode = N->getOpcode(); 22178 EVT VT = N->getValueType(0); 22179 EVT EltVT = VT.getVectorElementType(); 22180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 22181 22182 // TODO: Remove/replace the extract cost check? If the elements are available 22183 // as scalars, then there may be no extract cost. Should we ask if 22184 // inserting a scalar back into a vector is cheap instead? 22185 int Index0, Index1; 22186 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 22187 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 22188 if (!Src0 || !Src1 || Index0 != Index1 || 22189 Src0.getValueType().getVectorElementType() != EltVT || 22190 Src1.getValueType().getVectorElementType() != EltVT || 22191 !TLI.isExtractVecEltCheap(VT, Index0) || 22192 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 22193 return SDValue(); 22194 22195 SDLoc DL(N); 22196 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); 22197 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); 22198 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); 22199 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 22200 22201 // If all lanes but 1 are undefined, no need to splat the scalar result. 22202 // TODO: Keep track of undefs and use that info in the general case. 22203 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 22204 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 22205 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 22206 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 22207 // build_vec ..undef, (bo X, Y), undef... 22208 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 22209 Ops[Index0] = ScalarBO; 22210 return DAG.getBuildVector(VT, DL, Ops); 22211 } 22212 22213 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 22214 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 22215 return DAG.getBuildVector(VT, DL, Ops); 22216 } 22217 22218 /// Visit a binary vector operation, like ADD. 22219 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 22220 assert(N->getValueType(0).isVector() && 22221 "SimplifyVBinOp only works on vectors!"); 22222 22223 SDValue LHS = N->getOperand(0); 22224 SDValue RHS = N->getOperand(1); 22225 SDValue Ops[] = {LHS, RHS}; 22226 EVT VT = N->getValueType(0); 22227 unsigned Opcode = N->getOpcode(); 22228 SDNodeFlags Flags = N->getFlags(); 22229 22230 // See if we can constant fold the vector operation. 22231 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 22232 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 22233 return Fold; 22234 22235 // Move unary shuffles with identical masks after a vector binop: 22236 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 22237 // --> shuffle (VBinOp A, B), Undef, Mask 22238 // This does not require type legality checks because we are creating the 22239 // same types of operations that are in the original sequence. We do have to 22240 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 22241 // though. This code is adapted from the identical transform in instcombine. 22242 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 22243 Opcode != ISD::UREM && Opcode != ISD::SREM && 22244 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 22245 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 22246 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 22247 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 22248 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 22249 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 22250 SDLoc DL(N); 22251 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 22252 RHS.getOperand(0), Flags); 22253 SDValue UndefV = LHS.getOperand(1); 22254 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 22255 } 22256 22257 // Try to sink a splat shuffle after a binop with a uniform constant. 22258 // This is limited to cases where neither the shuffle nor the constant have 22259 // undefined elements because that could be poison-unsafe or inhibit 22260 // demanded elements analysis. It is further limited to not change a splat 22261 // of an inserted scalar because that may be optimized better by 22262 // load-folding or other target-specific behaviors. 22263 if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && 22264 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && 22265 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 22266 // binop (splat X), (splat C) --> splat (binop X, C) 22267 SDLoc DL(N); 22268 SDValue X = Shuf0->getOperand(0); 22269 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); 22270 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 22271 Shuf0->getMask()); 22272 } 22273 if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && 22274 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && 22275 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 22276 // binop (splat C), (splat X) --> splat (binop C, X) 22277 SDLoc DL(N); 22278 SDValue X = Shuf1->getOperand(0); 22279 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); 22280 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 22281 Shuf1->getMask()); 22282 } 22283 } 22284 22285 // The following pattern is likely to emerge with vector reduction ops. Moving 22286 // the binary operation ahead of insertion may allow using a narrower vector 22287 // instruction that has better performance than the wide version of the op: 22288 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 22289 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 22290 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 22291 LHS.getOperand(2) == RHS.getOperand(2) && 22292 (LHS.hasOneUse() || RHS.hasOneUse())) { 22293 SDValue X = LHS.getOperand(1); 22294 SDValue Y = RHS.getOperand(1); 22295 SDValue Z = LHS.getOperand(2); 22296 EVT NarrowVT = X.getValueType(); 22297 if (NarrowVT == Y.getValueType() && 22298 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, 22299 LegalOperations)) { 22300 // (binop undef, undef) may not return undef, so compute that result. 22301 SDLoc DL(N); 22302 SDValue VecC = 22303 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 22304 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 22305 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 22306 } 22307 } 22308 22309 // Make sure all but the first op are undef or constant. 22310 auto ConcatWithConstantOrUndef = [](SDValue Concat) { 22311 return Concat.getOpcode() == ISD::CONCAT_VECTORS && 22312 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { 22313 return Op.isUndef() || 22314 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); 22315 }); 22316 }; 22317 22318 // The following pattern is likely to emerge with vector reduction ops. Moving 22319 // the binary operation ahead of the concat may allow using a narrower vector 22320 // instruction that has better performance than the wide version of the op: 22321 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> 22322 // concat (VBinOp X, Y), VecC 22323 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && 22324 (LHS.hasOneUse() || RHS.hasOneUse())) { 22325 EVT NarrowVT = LHS.getOperand(0).getValueType(); 22326 if (NarrowVT == RHS.getOperand(0).getValueType() && 22327 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 22328 SDLoc DL(N); 22329 unsigned NumOperands = LHS.getNumOperands(); 22330 SmallVector<SDValue, 4> ConcatOps; 22331 for (unsigned i = 0; i != NumOperands; ++i) { 22332 // This constant fold for operands 1 and up. 22333 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), 22334 RHS.getOperand(i))); 22335 } 22336 22337 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 22338 } 22339 } 22340 22341 if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) 22342 return V; 22343 22344 return SDValue(); 22345 } 22346 22347 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 22348 SDValue N2) { 22349 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 22350 22351 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 22352 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 22353 22354 // If we got a simplified select_cc node back from SimplifySelectCC, then 22355 // break it down into a new SETCC node, and a new SELECT node, and then return 22356 // the SELECT node, since we were called with a SELECT node. 22357 if (SCC.getNode()) { 22358 // Check to see if we got a select_cc back (to turn into setcc/select). 22359 // Otherwise, just return whatever node we got back, like fabs. 22360 if (SCC.getOpcode() == ISD::SELECT_CC) { 22361 const SDNodeFlags Flags = N0.getNode()->getFlags(); 22362 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 22363 N0.getValueType(), 22364 SCC.getOperand(0), SCC.getOperand(1), 22365 SCC.getOperand(4), Flags); 22366 AddToWorklist(SETCC.getNode()); 22367 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 22368 SCC.getOperand(2), SCC.getOperand(3)); 22369 SelectNode->setFlags(Flags); 22370 return SelectNode; 22371 } 22372 22373 return SCC; 22374 } 22375 return SDValue(); 22376 } 22377 22378 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 22379 /// being selected between, see if we can simplify the select. Callers of this 22380 /// should assume that TheSelect is deleted if this returns true. As such, they 22381 /// should return the appropriate thing (e.g. the node) back to the top-level of 22382 /// the DAG combiner loop to avoid it being looked at. 22383 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 22384 SDValue RHS) { 22385 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 22386 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 22387 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 22388 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 22389 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 22390 SDValue Sqrt = RHS; 22391 ISD::CondCode CC; 22392 SDValue CmpLHS; 22393 const ConstantFPSDNode *Zero = nullptr; 22394 22395 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 22396 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 22397 CmpLHS = TheSelect->getOperand(0); 22398 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 22399 } else { 22400 // SELECT or VSELECT 22401 SDValue Cmp = TheSelect->getOperand(0); 22402 if (Cmp.getOpcode() == ISD::SETCC) { 22403 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 22404 CmpLHS = Cmp.getOperand(0); 22405 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 22406 } 22407 } 22408 if (Zero && Zero->isZero() && 22409 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 22410 CC == ISD::SETULT || CC == ISD::SETLT)) { 22411 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 22412 CombineTo(TheSelect, Sqrt); 22413 return true; 22414 } 22415 } 22416 } 22417 // Cannot simplify select with vector condition 22418 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 22419 22420 // If this is a select from two identical things, try to pull the operation 22421 // through the select. 22422 if (LHS.getOpcode() != RHS.getOpcode() || 22423 !LHS.hasOneUse() || !RHS.hasOneUse()) 22424 return false; 22425 22426 // If this is a load and the token chain is identical, replace the select 22427 // of two loads with a load through a select of the address to load from. 22428 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 22429 // constants have been dropped into the constant pool. 22430 if (LHS.getOpcode() == ISD::LOAD) { 22431 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 22432 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 22433 22434 // Token chains must be identical. 22435 if (LHS.getOperand(0) != RHS.getOperand(0) || 22436 // Do not let this transformation reduce the number of volatile loads. 22437 // Be conservative for atomics for the moment 22438 // TODO: This does appear to be legal for unordered atomics (see D66309) 22439 !LLD->isSimple() || !RLD->isSimple() || 22440 // FIXME: If either is a pre/post inc/dec load, 22441 // we'd need to split out the address adjustment. 22442 LLD->isIndexed() || RLD->isIndexed() || 22443 // If this is an EXTLOAD, the VT's must match. 22444 LLD->getMemoryVT() != RLD->getMemoryVT() || 22445 // If this is an EXTLOAD, the kind of extension must match. 22446 (LLD->getExtensionType() != RLD->getExtensionType() && 22447 // The only exception is if one of the extensions is anyext. 22448 LLD->getExtensionType() != ISD::EXTLOAD && 22449 RLD->getExtensionType() != ISD::EXTLOAD) || 22450 // FIXME: this discards src value information. This is 22451 // over-conservative. It would be beneficial to be able to remember 22452 // both potential memory locations. Since we are discarding 22453 // src value info, don't do the transformation if the memory 22454 // locations are not in the default address space. 22455 LLD->getPointerInfo().getAddrSpace() != 0 || 22456 RLD->getPointerInfo().getAddrSpace() != 0 || 22457 // We can't produce a CMOV of a TargetFrameIndex since we won't 22458 // generate the address generation required. 22459 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 22460 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 22461 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 22462 LLD->getBasePtr().getValueType())) 22463 return false; 22464 22465 // The loads must not depend on one another. 22466 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 22467 return false; 22468 22469 // Check that the select condition doesn't reach either load. If so, 22470 // folding this will induce a cycle into the DAG. If not, this is safe to 22471 // xform, so create a select of the addresses. 22472 22473 SmallPtrSet<const SDNode *, 32> Visited; 22474 SmallVector<const SDNode *, 16> Worklist; 22475 22476 // Always fail if LLD and RLD are not independent. TheSelect is a 22477 // predecessor to all Nodes in question so we need not search past it. 22478 22479 Visited.insert(TheSelect); 22480 Worklist.push_back(LLD); 22481 Worklist.push_back(RLD); 22482 22483 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 22484 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 22485 return false; 22486 22487 SDValue Addr; 22488 if (TheSelect->getOpcode() == ISD::SELECT) { 22489 // We cannot do this optimization if any pair of {RLD, LLD} is a 22490 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 22491 // Loads, we only need to check if CondNode is a successor to one of the 22492 // loads. We can further avoid this if there's no use of their chain 22493 // value. 22494 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 22495 Worklist.push_back(CondNode); 22496 22497 if ((LLD->hasAnyUseOfValue(1) && 22498 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 22499 (RLD->hasAnyUseOfValue(1) && 22500 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 22501 return false; 22502 22503 Addr = DAG.getSelect(SDLoc(TheSelect), 22504 LLD->getBasePtr().getValueType(), 22505 TheSelect->getOperand(0), LLD->getBasePtr(), 22506 RLD->getBasePtr()); 22507 } else { // Otherwise SELECT_CC 22508 // We cannot do this optimization if any pair of {RLD, LLD} is a 22509 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 22510 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 22511 // one of the loads. We can further avoid this if there's no use of their 22512 // chain value. 22513 22514 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 22515 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 22516 Worklist.push_back(CondLHS); 22517 Worklist.push_back(CondRHS); 22518 22519 if ((LLD->hasAnyUseOfValue(1) && 22520 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 22521 (RLD->hasAnyUseOfValue(1) && 22522 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 22523 return false; 22524 22525 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 22526 LLD->getBasePtr().getValueType(), 22527 TheSelect->getOperand(0), 22528 TheSelect->getOperand(1), 22529 LLD->getBasePtr(), RLD->getBasePtr(), 22530 TheSelect->getOperand(4)); 22531 } 22532 22533 SDValue Load; 22534 // It is safe to replace the two loads if they have different alignments, 22535 // but the new load must be the minimum (most restrictive) alignment of the 22536 // inputs. 22537 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); 22538 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 22539 if (!RLD->isInvariant()) 22540 MMOFlags &= ~MachineMemOperand::MOInvariant; 22541 if (!RLD->isDereferenceable()) 22542 MMOFlags &= ~MachineMemOperand::MODereferenceable; 22543 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 22544 // FIXME: Discards pointer and AA info. 22545 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 22546 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 22547 MMOFlags); 22548 } else { 22549 // FIXME: Discards pointer and AA info. 22550 Load = DAG.getExtLoad( 22551 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 22552 : LLD->getExtensionType(), 22553 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 22554 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 22555 } 22556 22557 // Users of the select now use the result of the load. 22558 CombineTo(TheSelect, Load); 22559 22560 // Users of the old loads now use the new load's chain. We know the 22561 // old-load value is dead now. 22562 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 22563 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 22564 return true; 22565 } 22566 22567 return false; 22568 } 22569 22570 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 22571 /// bitwise 'and'. 22572 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 22573 SDValue N1, SDValue N2, SDValue N3, 22574 ISD::CondCode CC) { 22575 // If this is a select where the false operand is zero and the compare is a 22576 // check of the sign bit, see if we can perform the "gzip trick": 22577 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 22578 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 22579 EVT XType = N0.getValueType(); 22580 EVT AType = N2.getValueType(); 22581 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 22582 return SDValue(); 22583 22584 // If the comparison is testing for a positive value, we have to invert 22585 // the sign bit mask, so only do that transform if the target has a bitwise 22586 // 'and not' instruction (the invert is free). 22587 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 22588 // (X > -1) ? A : 0 22589 // (X > 0) ? X : 0 <-- This is canonical signed max. 22590 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 22591 return SDValue(); 22592 } else if (CC == ISD::SETLT) { 22593 // (X < 0) ? A : 0 22594 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 22595 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 22596 return SDValue(); 22597 } else { 22598 return SDValue(); 22599 } 22600 22601 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 22602 // constant. 22603 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 22604 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 22605 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 22606 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 22607 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { 22608 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 22609 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 22610 AddToWorklist(Shift.getNode()); 22611 22612 if (XType.bitsGT(AType)) { 22613 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 22614 AddToWorklist(Shift.getNode()); 22615 } 22616 22617 if (CC == ISD::SETGT) 22618 Shift = DAG.getNOT(DL, Shift, AType); 22619 22620 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 22621 } 22622 } 22623 22624 unsigned ShCt = XType.getSizeInBits() - 1; 22625 if (TLI.shouldAvoidTransformToShift(XType, ShCt)) 22626 return SDValue(); 22627 22628 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 22629 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 22630 AddToWorklist(Shift.getNode()); 22631 22632 if (XType.bitsGT(AType)) { 22633 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 22634 AddToWorklist(Shift.getNode()); 22635 } 22636 22637 if (CC == ISD::SETGT) 22638 Shift = DAG.getNOT(DL, Shift, AType); 22639 22640 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 22641 } 22642 22643 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc. 22644 SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) { 22645 SDValue N0 = N->getOperand(0); 22646 SDValue N1 = N->getOperand(1); 22647 SDValue N2 = N->getOperand(2); 22648 EVT VT = N->getValueType(0); 22649 SDLoc DL(N); 22650 22651 unsigned BinOpc = N1.getOpcode(); 22652 if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc)) 22653 return SDValue(); 22654 22655 // The use checks are intentionally on SDNode because we may be dealing 22656 // with opcodes that produce more than one SDValue. 22657 // TODO: Do we really need to check N0 (the condition operand of the select)? 22658 // But removing that clause could cause an infinite loop... 22659 if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse()) 22660 return SDValue(); 22661 22662 // Binops may include opcodes that return multiple values, so all values 22663 // must be created/propagated from the newly created binops below. 22664 SDVTList OpVTs = N1->getVTList(); 22665 22666 // Fold select(cond, binop(x, y), binop(z, y)) 22667 // --> binop(select(cond, x, z), y) 22668 if (N1.getOperand(1) == N2.getOperand(1)) { 22669 SDValue NewSel = 22670 DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0)); 22671 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, NewSel, N1.getOperand(1)); 22672 NewBinOp->setFlags(N1->getFlags()); 22673 NewBinOp->intersectFlagsWith(N2->getFlags()); 22674 return NewBinOp; 22675 } 22676 22677 // Fold select(cond, binop(x, y), binop(x, z)) 22678 // --> binop(x, select(cond, y, z)) 22679 // Second op VT might be different (e.g. shift amount type) 22680 if (N1.getOperand(0) == N2.getOperand(0) && 22681 VT == N1.getOperand(1).getValueType() && 22682 VT == N2.getOperand(1).getValueType()) { 22683 SDValue NewSel = 22684 DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1)); 22685 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, N1.getOperand(0), NewSel); 22686 NewBinOp->setFlags(N1->getFlags()); 22687 NewBinOp->intersectFlagsWith(N2->getFlags()); 22688 return NewBinOp; 22689 } 22690 22691 // TODO: Handle isCommutativeBinOp patterns as well? 22692 return SDValue(); 22693 } 22694 22695 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. 22696 SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { 22697 SDValue N0 = N->getOperand(0); 22698 EVT VT = N->getValueType(0); 22699 bool IsFabs = N->getOpcode() == ISD::FABS; 22700 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); 22701 22702 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) 22703 return SDValue(); 22704 22705 SDValue Int = N0.getOperand(0); 22706 EVT IntVT = Int.getValueType(); 22707 22708 // The operand to cast should be integer. 22709 if (!IntVT.isInteger() || IntVT.isVector()) 22710 return SDValue(); 22711 22712 // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) 22713 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) 22714 APInt SignMask; 22715 if (N0.getValueType().isVector()) { 22716 // For vector, create a sign mask (0x80...) or its inverse (for fabs, 22717 // 0x7f...) per element and splat it. 22718 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 22719 if (IsFabs) 22720 SignMask = ~SignMask; 22721 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 22722 } else { 22723 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) 22724 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 22725 if (IsFabs) 22726 SignMask = ~SignMask; 22727 } 22728 SDLoc DL(N0); 22729 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, 22730 DAG.getConstant(SignMask, DL, IntVT)); 22731 AddToWorklist(Int.getNode()); 22732 return DAG.getBitcast(VT, Int); 22733 } 22734 22735 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 22736 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 22737 /// in it. This may be a win when the constant is not otherwise available 22738 /// because it replaces two constant pool loads with one. 22739 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 22740 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 22741 ISD::CondCode CC) { 22742 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) 22743 return SDValue(); 22744 22745 // If we are before legalize types, we want the other legalization to happen 22746 // first (for example, to avoid messing with soft float). 22747 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 22748 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 22749 EVT VT = N2.getValueType(); 22750 if (!TV || !FV || !TLI.isTypeLegal(VT)) 22751 return SDValue(); 22752 22753 // If a constant can be materialized without loads, this does not make sense. 22754 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 22755 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 22756 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 22757 return SDValue(); 22758 22759 // If both constants have multiple uses, then we won't need to do an extra 22760 // load. The values are likely around in registers for other users. 22761 if (!TV->hasOneUse() && !FV->hasOneUse()) 22762 return SDValue(); 22763 22764 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 22765 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 22766 Type *FPTy = Elts[0]->getType(); 22767 const DataLayout &TD = DAG.getDataLayout(); 22768 22769 // Create a ConstantArray of the two constants. 22770 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 22771 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 22772 TD.getPrefTypeAlign(FPTy)); 22773 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 22774 22775 // Get offsets to the 0 and 1 elements of the array, so we can select between 22776 // them. 22777 SDValue Zero = DAG.getIntPtrConstant(0, DL); 22778 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 22779 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 22780 SDValue Cond = 22781 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 22782 AddToWorklist(Cond.getNode()); 22783 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 22784 AddToWorklist(CstOffset.getNode()); 22785 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 22786 AddToWorklist(CPIdx.getNode()); 22787 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 22788 MachinePointerInfo::getConstantPool( 22789 DAG.getMachineFunction()), Alignment); 22790 } 22791 22792 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 22793 /// where 'cond' is the comparison specified by CC. 22794 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 22795 SDValue N2, SDValue N3, ISD::CondCode CC, 22796 bool NotExtCompare) { 22797 // (x ? y : y) -> y. 22798 if (N2 == N3) return N2; 22799 22800 EVT CmpOpVT = N0.getValueType(); 22801 EVT CmpResVT = getSetCCResultType(CmpOpVT); 22802 EVT VT = N2.getValueType(); 22803 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 22804 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 22805 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 22806 22807 // Determine if the condition we're dealing with is constant. 22808 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 22809 AddToWorklist(SCC.getNode()); 22810 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 22811 // fold select_cc true, x, y -> x 22812 // fold select_cc false, x, y -> y 22813 return !(SCCC->isZero()) ? N2 : N3; 22814 } 22815 } 22816 22817 if (SDValue V = 22818 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 22819 return V; 22820 22821 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 22822 return V; 22823 22824 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 22825 // where y is has a single bit set. 22826 // A plaintext description would be, we can turn the SELECT_CC into an AND 22827 // when the condition can be materialized as an all-ones register. Any 22828 // single bit-test can be materialized as an all-ones register with 22829 // shift-left and shift-right-arith. 22830 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 22831 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 22832 SDValue AndLHS = N0->getOperand(0); 22833 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 22834 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 22835 // Shift the tested bit over the sign bit. 22836 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 22837 unsigned ShCt = AndMask.getBitWidth() - 1; 22838 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 22839 SDValue ShlAmt = 22840 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 22841 getShiftAmountTy(AndLHS.getValueType())); 22842 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 22843 22844 // Now arithmetic right shift it all the way over, so the result is 22845 // either all-ones, or zero. 22846 SDValue ShrAmt = 22847 DAG.getConstant(ShCt, SDLoc(Shl), 22848 getShiftAmountTy(Shl.getValueType())); 22849 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 22850 22851 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 22852 } 22853 } 22854 } 22855 22856 // fold select C, 16, 0 -> shl C, 4 22857 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 22858 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 22859 22860 if ((Fold || Swap) && 22861 TLI.getBooleanContents(CmpOpVT) == 22862 TargetLowering::ZeroOrOneBooleanContent && 22863 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 22864 22865 if (Swap) { 22866 CC = ISD::getSetCCInverse(CC, CmpOpVT); 22867 std::swap(N2C, N3C); 22868 } 22869 22870 // If the caller doesn't want us to simplify this into a zext of a compare, 22871 // don't do it. 22872 if (NotExtCompare && N2C->isOne()) 22873 return SDValue(); 22874 22875 SDValue Temp, SCC; 22876 // zext (setcc n0, n1) 22877 if (LegalTypes) { 22878 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 22879 if (VT.bitsLT(SCC.getValueType())) 22880 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 22881 else 22882 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 22883 } else { 22884 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 22885 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 22886 } 22887 22888 AddToWorklist(SCC.getNode()); 22889 AddToWorklist(Temp.getNode()); 22890 22891 if (N2C->isOne()) 22892 return Temp; 22893 22894 unsigned ShCt = N2C->getAPIntValue().logBase2(); 22895 if (TLI.shouldAvoidTransformToShift(VT, ShCt)) 22896 return SDValue(); 22897 22898 // shl setcc result by log2 n2c 22899 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 22900 DAG.getConstant(ShCt, SDLoc(Temp), 22901 getShiftAmountTy(Temp.getValueType()))); 22902 } 22903 22904 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 22905 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 22906 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 22907 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 22908 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 22909 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 22910 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 22911 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 22912 if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 22913 SDValue ValueOnZero = N2; 22914 SDValue Count = N3; 22915 // If the condition is NE instead of E, swap the operands. 22916 if (CC == ISD::SETNE) 22917 std::swap(ValueOnZero, Count); 22918 // Check if the value on zero is a constant equal to the bits in the type. 22919 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 22920 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 22921 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 22922 // legal, combine to just cttz. 22923 if ((Count.getOpcode() == ISD::CTTZ || 22924 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 22925 N0 == Count.getOperand(0) && 22926 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 22927 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 22928 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 22929 // legal, combine to just ctlz. 22930 if ((Count.getOpcode() == ISD::CTLZ || 22931 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 22932 N0 == Count.getOperand(0) && 22933 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 22934 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 22935 } 22936 } 22937 } 22938 22939 // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C 22940 // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C 22941 if (!NotExtCompare && N1C && N2C && N3C && 22942 N2C->getAPIntValue() == ~N3C->getAPIntValue() && 22943 ((N1C->isAllOnes() && CC == ISD::SETGT) || 22944 (N1C->isZero() && CC == ISD::SETLT)) && 22945 !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) { 22946 SDValue ASR = DAG.getNode( 22947 ISD::SRA, DL, CmpOpVT, N0, 22948 DAG.getConstant(CmpOpVT.getScalarSizeInBits() - 1, DL, CmpOpVT)); 22949 return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASR, DL, VT), 22950 DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT)); 22951 } 22952 22953 return SDValue(); 22954 } 22955 22956 /// This is a stub for TargetLowering::SimplifySetCC. 22957 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 22958 ISD::CondCode Cond, const SDLoc &DL, 22959 bool foldBooleans) { 22960 TargetLowering::DAGCombinerInfo 22961 DagCombineInfo(DAG, Level, false, this); 22962 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 22963 } 22964 22965 /// Given an ISD::SDIV node expressing a divide by constant, return 22966 /// a DAG expression to select that will generate the same value by multiplying 22967 /// by a magic number. 22968 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 22969 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 22970 // when optimising for minimum size, we don't want to expand a div to a mul 22971 // and a shift. 22972 if (DAG.getMachineFunction().getFunction().hasMinSize()) 22973 return SDValue(); 22974 22975 SmallVector<SDNode *, 8> Built; 22976 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 22977 for (SDNode *N : Built) 22978 AddToWorklist(N); 22979 return S; 22980 } 22981 22982 return SDValue(); 22983 } 22984 22985 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 22986 /// DAG expression that will generate the same value by right shifting. 22987 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 22988 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 22989 if (!C) 22990 return SDValue(); 22991 22992 // Avoid division by zero. 22993 if (C->isZero()) 22994 return SDValue(); 22995 22996 SmallVector<SDNode *, 8> Built; 22997 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 22998 for (SDNode *N : Built) 22999 AddToWorklist(N); 23000 return S; 23001 } 23002 23003 return SDValue(); 23004 } 23005 23006 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 23007 /// expression that will generate the same value by multiplying by a magic 23008 /// number. 23009 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 23010 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 23011 // when optimising for minimum size, we don't want to expand a div to a mul 23012 // and a shift. 23013 if (DAG.getMachineFunction().getFunction().hasMinSize()) 23014 return SDValue(); 23015 23016 SmallVector<SDNode *, 8> Built; 23017 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 23018 for (SDNode *N : Built) 23019 AddToWorklist(N); 23020 return S; 23021 } 23022 23023 return SDValue(); 23024 } 23025 23026 /// Determines the LogBase2 value for a non-null input value using the 23027 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 23028 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 23029 EVT VT = V.getValueType(); 23030 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 23031 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 23032 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 23033 return LogBase2; 23034 } 23035 23036 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23037 /// For the reciprocal, we need to find the zero of the function: 23038 /// F(X) = 1/X - A [which has a zero at X = 1/A] 23039 /// => 23040 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 23041 /// does not require additional intermediate precision] 23042 /// For the last iteration, put numerator N into it to gain more precision: 23043 /// Result = N X_i + X_i (N - N A X_i) 23044 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, 23045 SDNodeFlags Flags) { 23046 if (LegalDAG) 23047 return SDValue(); 23048 23049 // TODO: Handle extended types? 23050 EVT VT = Op.getValueType(); 23051 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && 23052 VT.getScalarType() != MVT::f64) 23053 return SDValue(); 23054 23055 // If estimates are explicitly disabled for this function, we're done. 23056 MachineFunction &MF = DAG.getMachineFunction(); 23057 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 23058 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23059 return SDValue(); 23060 23061 // Estimates may be explicitly enabled for this type with a custom number of 23062 // refinement steps. 23063 int Iterations = TLI.getDivRefinementSteps(VT, MF); 23064 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 23065 AddToWorklist(Est.getNode()); 23066 23067 SDLoc DL(Op); 23068 if (Iterations) { 23069 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 23070 23071 // Newton iterations: Est = Est + Est (N - Arg * Est) 23072 // If this is the last iteration, also multiply by the numerator. 23073 for (int i = 0; i < Iterations; ++i) { 23074 SDValue MulEst = Est; 23075 23076 if (i == Iterations - 1) { 23077 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); 23078 AddToWorklist(MulEst.getNode()); 23079 } 23080 23081 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); 23082 AddToWorklist(NewEst.getNode()); 23083 23084 NewEst = DAG.getNode(ISD::FSUB, DL, VT, 23085 (i == Iterations - 1 ? N : FPOne), NewEst, Flags); 23086 AddToWorklist(NewEst.getNode()); 23087 23088 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23089 AddToWorklist(NewEst.getNode()); 23090 23091 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); 23092 AddToWorklist(Est.getNode()); 23093 } 23094 } else { 23095 // If no iterations are available, multiply with N. 23096 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); 23097 AddToWorklist(Est.getNode()); 23098 } 23099 23100 return Est; 23101 } 23102 23103 return SDValue(); 23104 } 23105 23106 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23107 /// For the reciprocal sqrt, we need to find the zero of the function: 23108 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23109 /// => 23110 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 23111 /// As a result, we precompute A/2 prior to the iteration loop. 23112 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 23113 unsigned Iterations, 23114 SDNodeFlags Flags, bool Reciprocal) { 23115 EVT VT = Arg.getValueType(); 23116 SDLoc DL(Arg); 23117 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 23118 23119 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 23120 // this entire sequence requires only one FP constant. 23121 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 23122 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 23123 23124 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 23125 for (unsigned i = 0; i < Iterations; ++i) { 23126 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 23127 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 23128 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 23129 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23130 } 23131 23132 // If non-reciprocal square root is requested, multiply the result by Arg. 23133 if (!Reciprocal) 23134 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 23135 23136 return Est; 23137 } 23138 23139 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23140 /// For the reciprocal sqrt, we need to find the zero of the function: 23141 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23142 /// => 23143 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 23144 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 23145 unsigned Iterations, 23146 SDNodeFlags Flags, bool Reciprocal) { 23147 EVT VT = Arg.getValueType(); 23148 SDLoc DL(Arg); 23149 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 23150 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 23151 23152 // This routine must enter the loop below to work correctly 23153 // when (Reciprocal == false). 23154 assert(Iterations > 0); 23155 23156 // Newton iterations for reciprocal square root: 23157 // E = (E * -0.5) * ((A * E) * E + -3.0) 23158 for (unsigned i = 0; i < Iterations; ++i) { 23159 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 23160 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 23161 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 23162 23163 // When calculating a square root at the last iteration build: 23164 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 23165 // (notice a common subexpression) 23166 SDValue LHS; 23167 if (Reciprocal || (i + 1) < Iterations) { 23168 // RSQRT: LHS = (E * -0.5) 23169 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 23170 } else { 23171 // SQRT: LHS = (A * E) * -0.5 23172 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 23173 } 23174 23175 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 23176 } 23177 23178 return Est; 23179 } 23180 23181 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 23182 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 23183 /// Op can be zero. 23184 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 23185 bool Reciprocal) { 23186 if (LegalDAG) 23187 return SDValue(); 23188 23189 // TODO: Handle extended types? 23190 EVT VT = Op.getValueType(); 23191 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && 23192 VT.getScalarType() != MVT::f64) 23193 return SDValue(); 23194 23195 // If estimates are explicitly disabled for this function, we're done. 23196 MachineFunction &MF = DAG.getMachineFunction(); 23197 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 23198 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23199 return SDValue(); 23200 23201 // Estimates may be explicitly enabled for this type with a custom number of 23202 // refinement steps. 23203 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 23204 23205 bool UseOneConstNR = false; 23206 if (SDValue Est = 23207 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 23208 Reciprocal)) { 23209 AddToWorklist(Est.getNode()); 23210 23211 if (Iterations) 23212 Est = UseOneConstNR 23213 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 23214 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 23215 if (!Reciprocal) { 23216 SDLoc DL(Op); 23217 // Try the target specific test first. 23218 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); 23219 23220 // The estimate is now completely wrong if the input was exactly 0.0 or 23221 // possibly a denormal. Force the answer to 0.0 or value provided by 23222 // target for those cases. 23223 Est = DAG.getNode( 23224 Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 23225 Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); 23226 } 23227 return Est; 23228 } 23229 23230 return SDValue(); 23231 } 23232 23233 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 23234 return buildSqrtEstimateImpl(Op, Flags, true); 23235 } 23236 23237 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 23238 return buildSqrtEstimateImpl(Op, Flags, false); 23239 } 23240 23241 /// Return true if there is any possibility that the two addresses overlap. 23242 bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const { 23243 23244 struct MemUseCharacteristics { 23245 bool IsVolatile; 23246 bool IsAtomic; 23247 SDValue BasePtr; 23248 int64_t Offset; 23249 Optional<int64_t> NumBytes; 23250 MachineMemOperand *MMO; 23251 }; 23252 23253 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 23254 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 23255 int64_t Offset = 0; 23256 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 23257 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 23258 ? C->getSExtValue() 23259 : (LSN->getAddressingMode() == ISD::PRE_DEC) 23260 ? -1 * C->getSExtValue() 23261 : 0; 23262 uint64_t Size = 23263 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); 23264 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), 23265 Offset /*base offset*/, 23266 Optional<int64_t>(Size), 23267 LSN->getMemOperand()}; 23268 } 23269 if (const auto *LN = cast<LifetimeSDNode>(N)) 23270 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), 23271 (LN->hasOffset()) ? LN->getOffset() : 0, 23272 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 23273 : Optional<int64_t>(), 23274 (MachineMemOperand *)nullptr}; 23275 // Default. 23276 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), 23277 (int64_t)0 /*offset*/, 23278 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 23279 }; 23280 23281 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 23282 MUC1 = getCharacteristics(Op1); 23283 23284 // If they are to the same address, then they must be aliases. 23285 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 23286 MUC0.Offset == MUC1.Offset) 23287 return true; 23288 23289 // If they are both volatile then they cannot be reordered. 23290 if (MUC0.IsVolatile && MUC1.IsVolatile) 23291 return true; 23292 23293 // Be conservative about atomics for the moment 23294 // TODO: This is way overconservative for unordered atomics (see D66309) 23295 if (MUC0.IsAtomic && MUC1.IsAtomic) 23296 return true; 23297 23298 if (MUC0.MMO && MUC1.MMO) { 23299 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 23300 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 23301 return false; 23302 } 23303 23304 // Try to prove that there is aliasing, or that there is no aliasing. Either 23305 // way, we can return now. If nothing can be proved, proceed with more tests. 23306 bool IsAlias; 23307 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 23308 DAG, IsAlias)) 23309 return IsAlias; 23310 23311 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 23312 // either are not known. 23313 if (!MUC0.MMO || !MUC1.MMO) 23314 return true; 23315 23316 // If one operation reads from invariant memory, and the other may store, they 23317 // cannot alias. These should really be checking the equivalent of mayWrite, 23318 // but it only matters for memory nodes other than load /store. 23319 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 23320 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 23321 return false; 23322 23323 // If we know required SrcValue1 and SrcValue2 have relatively large 23324 // alignment compared to the size and offset of the access, we may be able 23325 // to prove they do not alias. This check is conservative for now to catch 23326 // cases created by splitting vector types, it only works when the offsets are 23327 // multiples of the size of the data. 23328 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 23329 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 23330 Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); 23331 Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); 23332 auto &Size0 = MUC0.NumBytes; 23333 auto &Size1 = MUC1.NumBytes; 23334 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 23335 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && 23336 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && 23337 SrcValOffset1 % *Size1 == 0) { 23338 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); 23339 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); 23340 23341 // There is no overlap between these relatively aligned accesses of 23342 // similar size. Return no alias. 23343 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) 23344 return false; 23345 } 23346 23347 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 23348 ? CombinerGlobalAA 23349 : DAG.getSubtarget().useAA(); 23350 #ifndef NDEBUG 23351 if (CombinerAAOnlyFunc.getNumOccurrences() && 23352 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 23353 UseAA = false; 23354 #endif 23355 23356 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 23357 Size0.hasValue() && Size1.hasValue()) { 23358 // Use alias analysis information. 23359 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 23360 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; 23361 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; 23362 if (AA->isNoAlias( 23363 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 23364 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 23365 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 23366 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()))) 23367 return false; 23368 } 23369 23370 // Otherwise we have to assume they alias. 23371 return true; 23372 } 23373 23374 /// Walk up chain skipping non-aliasing memory nodes, 23375 /// looking for aliasing nodes and adding them to the Aliases vector. 23376 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 23377 SmallVectorImpl<SDValue> &Aliases) { 23378 SmallVector<SDValue, 8> Chains; // List of chains to visit. 23379 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 23380 23381 // Get alias information for node. 23382 // TODO: relax aliasing for unordered atomics (see D66309) 23383 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); 23384 23385 // Starting off. 23386 Chains.push_back(OriginalChain); 23387 unsigned Depth = 0; 23388 23389 // Attempt to improve chain by a single step 23390 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { 23391 switch (C.getOpcode()) { 23392 case ISD::EntryToken: 23393 // No need to mark EntryToken. 23394 C = SDValue(); 23395 return true; 23396 case ISD::LOAD: 23397 case ISD::STORE: { 23398 // Get alias information for C. 23399 // TODO: Relax aliasing for unordered atomics (see D66309) 23400 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 23401 cast<LSBaseSDNode>(C.getNode())->isSimple(); 23402 if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) { 23403 // Look further up the chain. 23404 C = C.getOperand(0); 23405 return true; 23406 } 23407 // Alias, so stop here. 23408 return false; 23409 } 23410 23411 case ISD::CopyFromReg: 23412 // Always forward past past CopyFromReg. 23413 C = C.getOperand(0); 23414 return true; 23415 23416 case ISD::LIFETIME_START: 23417 case ISD::LIFETIME_END: { 23418 // We can forward past any lifetime start/end that can be proven not to 23419 // alias the memory access. 23420 if (!mayAlias(N, C.getNode())) { 23421 // Look further up the chain. 23422 C = C.getOperand(0); 23423 return true; 23424 } 23425 return false; 23426 } 23427 default: 23428 return false; 23429 } 23430 }; 23431 23432 // Look at each chain and determine if it is an alias. If so, add it to the 23433 // aliases list. If not, then continue up the chain looking for the next 23434 // candidate. 23435 while (!Chains.empty()) { 23436 SDValue Chain = Chains.pop_back_val(); 23437 23438 // Don't bother if we've seen Chain before. 23439 if (!Visited.insert(Chain.getNode()).second) 23440 continue; 23441 23442 // For TokenFactor nodes, look at each operand and only continue up the 23443 // chain until we reach the depth limit. 23444 // 23445 // FIXME: The depth check could be made to return the last non-aliasing 23446 // chain we found before we hit a tokenfactor rather than the original 23447 // chain. 23448 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 23449 Aliases.clear(); 23450 Aliases.push_back(OriginalChain); 23451 return; 23452 } 23453 23454 if (Chain.getOpcode() == ISD::TokenFactor) { 23455 // We have to check each of the operands of the token factor for "small" 23456 // token factors, so we queue them up. Adding the operands to the queue 23457 // (stack) in reverse order maintains the original order and increases the 23458 // likelihood that getNode will find a matching token factor (CSE.) 23459 if (Chain.getNumOperands() > 16) { 23460 Aliases.push_back(Chain); 23461 continue; 23462 } 23463 for (unsigned n = Chain.getNumOperands(); n;) 23464 Chains.push_back(Chain.getOperand(--n)); 23465 ++Depth; 23466 continue; 23467 } 23468 // Everything else 23469 if (ImproveChain(Chain)) { 23470 // Updated Chain Found, Consider new chain if one exists. 23471 if (Chain.getNode()) 23472 Chains.push_back(Chain); 23473 ++Depth; 23474 continue; 23475 } 23476 // No Improved Chain Possible, treat as Alias. 23477 Aliases.push_back(Chain); 23478 } 23479 } 23480 23481 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 23482 /// (aliasing node.) 23483 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 23484 if (OptLevel == CodeGenOpt::None) 23485 return OldChain; 23486 23487 // Ops for replacing token factor. 23488 SmallVector<SDValue, 8> Aliases; 23489 23490 // Accumulate all the aliases to this node. 23491 GatherAllAliases(N, OldChain, Aliases); 23492 23493 // If no operands then chain to entry token. 23494 if (Aliases.size() == 0) 23495 return DAG.getEntryNode(); 23496 23497 // If a single operand then chain to it. We don't need to revisit it. 23498 if (Aliases.size() == 1) 23499 return Aliases[0]; 23500 23501 // Construct a custom tailored token factor. 23502 return DAG.getTokenFactor(SDLoc(N), Aliases); 23503 } 23504 23505 namespace { 23506 // TODO: Replace with with std::monostate when we move to C++17. 23507 struct UnitT { } Unit; 23508 bool operator==(const UnitT &, const UnitT &) { return true; } 23509 bool operator!=(const UnitT &, const UnitT &) { return false; } 23510 } // namespace 23511 23512 // This function tries to collect a bunch of potentially interesting 23513 // nodes to improve the chains of, all at once. This might seem 23514 // redundant, as this function gets called when visiting every store 23515 // node, so why not let the work be done on each store as it's visited? 23516 // 23517 // I believe this is mainly important because mergeConsecutiveStores 23518 // is unable to deal with merging stores of different sizes, so unless 23519 // we improve the chains of all the potential candidates up-front 23520 // before running mergeConsecutiveStores, it might only see some of 23521 // the nodes that will eventually be candidates, and then not be able 23522 // to go from a partially-merged state to the desired final 23523 // fully-merged state. 23524 23525 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 23526 SmallVector<StoreSDNode *, 8> ChainedStores; 23527 StoreSDNode *STChain = St; 23528 // Intervals records which offsets from BaseIndex have been covered. In 23529 // the common case, every store writes to the immediately previous address 23530 // space and thus merged with the previous interval at insertion time. 23531 23532 using IMap = 23533 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 23534 IMap::Allocator A; 23535 IMap Intervals(A); 23536 23537 // This holds the base pointer, index, and the offset in bytes from the base 23538 // pointer. 23539 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 23540 23541 // We must have a base and an offset. 23542 if (!BasePtr.getBase().getNode()) 23543 return false; 23544 23545 // Do not handle stores to undef base pointers. 23546 if (BasePtr.getBase().isUndef()) 23547 return false; 23548 23549 // Do not handle stores to opaque types 23550 if (St->getMemoryVT().isZeroSized()) 23551 return false; 23552 23553 // BaseIndexOffset assumes that offsets are fixed-size, which 23554 // is not valid for scalable vectors where the offsets are 23555 // scaled by `vscale`, so bail out early. 23556 if (St->getMemoryVT().isScalableVector()) 23557 return false; 23558 23559 // Add ST's interval. 23560 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 23561 23562 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 23563 if (Chain->getMemoryVT().isScalableVector()) 23564 return false; 23565 23566 // If the chain has more than one use, then we can't reorder the mem ops. 23567 if (!SDValue(Chain, 0)->hasOneUse()) 23568 break; 23569 // TODO: Relax for unordered atomics (see D66309) 23570 if (!Chain->isSimple() || Chain->isIndexed()) 23571 break; 23572 23573 // Find the base pointer and offset for this memory node. 23574 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 23575 // Check that the base pointer is the same as the original one. 23576 int64_t Offset; 23577 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 23578 break; 23579 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 23580 // Make sure we don't overlap with other intervals by checking the ones to 23581 // the left or right before inserting. 23582 auto I = Intervals.find(Offset); 23583 // If there's a next interval, we should end before it. 23584 if (I != Intervals.end() && I.start() < (Offset + Length)) 23585 break; 23586 // If there's a previous interval, we should start after it. 23587 if (I != Intervals.begin() && (--I).stop() <= Offset) 23588 break; 23589 Intervals.insert(Offset, Offset + Length, Unit); 23590 23591 ChainedStores.push_back(Chain); 23592 STChain = Chain; 23593 } 23594 23595 // If we didn't find a chained store, exit. 23596 if (ChainedStores.size() == 0) 23597 return false; 23598 23599 // Improve all chained stores (St and ChainedStores members) starting from 23600 // where the store chain ended and return single TokenFactor. 23601 SDValue NewChain = STChain->getChain(); 23602 SmallVector<SDValue, 8> TFOps; 23603 for (unsigned I = ChainedStores.size(); I;) { 23604 StoreSDNode *S = ChainedStores[--I]; 23605 SDValue BetterChain = FindBetterChain(S, NewChain); 23606 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 23607 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 23608 TFOps.push_back(SDValue(S, 0)); 23609 ChainedStores[I] = S; 23610 } 23611 23612 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 23613 SDValue BetterChain = FindBetterChain(St, NewChain); 23614 SDValue NewST; 23615 if (St->isTruncatingStore()) 23616 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 23617 St->getBasePtr(), St->getMemoryVT(), 23618 St->getMemOperand()); 23619 else 23620 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 23621 St->getBasePtr(), St->getMemOperand()); 23622 23623 TFOps.push_back(NewST); 23624 23625 // If we improved every element of TFOps, then we've lost the dependence on 23626 // NewChain to successors of St and we need to add it back to TFOps. Do so at 23627 // the beginning to keep relative order consistent with FindBetterChains. 23628 auto hasImprovedChain = [&](SDValue ST) -> bool { 23629 return ST->getOperand(0) != NewChain; 23630 }; 23631 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 23632 if (AddNewChain) 23633 TFOps.insert(TFOps.begin(), NewChain); 23634 23635 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 23636 CombineTo(St, TF); 23637 23638 // Add TF and its operands to the worklist. 23639 AddToWorklist(TF.getNode()); 23640 for (const SDValue &Op : TF->ops()) 23641 AddToWorklist(Op.getNode()); 23642 AddToWorklist(STChain); 23643 return true; 23644 } 23645 23646 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 23647 if (OptLevel == CodeGenOpt::None) 23648 return false; 23649 23650 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 23651 23652 // We must have a base and an offset. 23653 if (!BasePtr.getBase().getNode()) 23654 return false; 23655 23656 // Do not handle stores to undef base pointers. 23657 if (BasePtr.getBase().isUndef()) 23658 return false; 23659 23660 // Directly improve a chain of disjoint stores starting at St. 23661 if (parallelizeChainedStores(St)) 23662 return true; 23663 23664 // Improve St's Chain.. 23665 SDValue BetterChain = FindBetterChain(St, St->getChain()); 23666 if (St->getChain() != BetterChain) { 23667 replaceStoreChain(St, BetterChain); 23668 return true; 23669 } 23670 return false; 23671 } 23672 23673 /// This is the entry point for the file. 23674 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 23675 CodeGenOpt::Level OptLevel) { 23676 /// This is the main entry point to this class. 23677 DAGCombiner(*this, AA, OptLevel).Run(Level); 23678 } 23679