1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/RuntimeLibcalls.h" 42 #include "llvm/CodeGen/SelectionDAG.h" 43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/CodeGen/ValueTypes.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <functional> 73 #include <iterator> 74 #include <string> 75 #include <tuple> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "dagcombine" 81 82 STATISTIC(NodesCombined , "Number of dag nodes combined"); 83 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 84 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 85 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 86 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 87 STATISTIC(SlicedLoads, "Number of load sliced"); 88 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 89 90 static cl::opt<bool> 91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 92 cl::desc("Enable DAG combiner's use of IR alias analysis")); 93 94 static cl::opt<bool> 95 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 96 cl::desc("Enable DAG combiner's use of TBAA")); 97 98 #ifndef NDEBUG 99 static cl::opt<std::string> 100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 101 cl::desc("Only use DAG-combiner alias analysis in this" 102 " function")); 103 #endif 104 105 /// Hidden option to stress test load slicing, i.e., when this option 106 /// is enabled, load slicing bypasses most of its profitability guards. 107 static cl::opt<bool> 108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 109 cl::desc("Bypass the profitability model of load slicing"), 110 cl::init(false)); 111 112 static cl::opt<bool> 113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 114 cl::desc("DAG combiner may split indexing from loads")); 115 116 static cl::opt<bool> 117 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), 118 cl::desc("DAG combiner enable merging multiple stores " 119 "into a wider store")); 120 121 static cl::opt<unsigned> TokenFactorInlineLimit( 122 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), 123 cl::desc("Limit the number of operands to inline for Token Factors")); 124 125 static cl::opt<unsigned> StoreMergeDependenceLimit( 126 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), 127 cl::desc("Limit the number of times for the same StoreNode and RootNode " 128 "to bail out in store merging dependence check")); 129 130 static cl::opt<bool> EnableReduceLoadOpStoreWidth( 131 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), 132 cl::desc("DAG combiner enable reducing the width of load/op/store " 133 "sequence")); 134 135 static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( 136 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), 137 cl::desc("DAG combiner enable load/<replace bytes>/store with " 138 "a narrower store")); 139 140 namespace { 141 142 class DAGCombiner { 143 SelectionDAG &DAG; 144 const TargetLowering &TLI; 145 const SelectionDAGTargetInfo *STI; 146 CombineLevel Level; 147 CodeGenOpt::Level OptLevel; 148 bool LegalDAG = false; 149 bool LegalOperations = false; 150 bool LegalTypes = false; 151 bool ForCodeSize; 152 bool DisableGenericCombines; 153 154 /// Worklist of all of the nodes that need to be simplified. 155 /// 156 /// This must behave as a stack -- new nodes to process are pushed onto the 157 /// back and when processing we pop off of the back. 158 /// 159 /// The worklist will not contain duplicates but may contain null entries 160 /// due to nodes being deleted from the underlying DAG. 161 SmallVector<SDNode *, 64> Worklist; 162 163 /// Mapping from an SDNode to its position on the worklist. 164 /// 165 /// This is used to find and remove nodes from the worklist (by nulling 166 /// them) when they are deleted from the underlying DAG. It relies on 167 /// stable indices of nodes within the worklist. 168 DenseMap<SDNode *, unsigned> WorklistMap; 169 /// This records all nodes attempted to add to the worklist since we 170 /// considered a new worklist entry. As we keep do not add duplicate nodes 171 /// in the worklist, this is different from the tail of the worklist. 172 SmallSetVector<SDNode *, 32> PruningList; 173 174 /// Set of nodes which have been combined (at least once). 175 /// 176 /// This is used to allow us to reliably add any operands of a DAG node 177 /// which have not yet been combined to the worklist. 178 SmallPtrSet<SDNode *, 32> CombinedNodes; 179 180 /// Map from candidate StoreNode to the pair of RootNode and count. 181 /// The count is used to track how many times we have seen the StoreNode 182 /// with the same RootNode bail out in dependence check. If we have seen 183 /// the bail out for the same pair many times over a limit, we won't 184 /// consider the StoreNode with the same RootNode as store merging 185 /// candidate again. 186 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; 187 188 // AA - Used for DAG load/store alias analysis. 189 AliasAnalysis *AA; 190 191 /// When an instruction is simplified, add all users of the instruction to 192 /// the work lists because they might get more simplified now. 193 void AddUsersToWorklist(SDNode *N) { 194 for (SDNode *Node : N->uses()) 195 AddToWorklist(Node); 196 } 197 198 /// Convenient shorthand to add a node and all of its user to the worklist. 199 void AddToWorklistWithUsers(SDNode *N) { 200 AddUsersToWorklist(N); 201 AddToWorklist(N); 202 } 203 204 // Prune potentially dangling nodes. This is called after 205 // any visit to a node, but should also be called during a visit after any 206 // failed combine which may have created a DAG node. 207 void clearAddedDanglingWorklistEntries() { 208 // Check any nodes added to the worklist to see if they are prunable. 209 while (!PruningList.empty()) { 210 auto *N = PruningList.pop_back_val(); 211 if (N->use_empty()) 212 recursivelyDeleteUnusedNodes(N); 213 } 214 } 215 216 SDNode *getNextWorklistEntry() { 217 // Before we do any work, remove nodes that are not in use. 218 clearAddedDanglingWorklistEntries(); 219 SDNode *N = nullptr; 220 // The Worklist holds the SDNodes in order, but it may contain null 221 // entries. 222 while (!N && !Worklist.empty()) { 223 N = Worklist.pop_back_val(); 224 } 225 226 if (N) { 227 bool GoodWorklistEntry = WorklistMap.erase(N); 228 (void)GoodWorklistEntry; 229 assert(GoodWorklistEntry && 230 "Found a worklist entry without a corresponding map entry!"); 231 } 232 return N; 233 } 234 235 /// Call the node-specific routine that folds each particular type of node. 236 SDValue visit(SDNode *N); 237 238 public: 239 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 240 : DAG(D), TLI(D.getTargetLoweringInfo()), 241 STI(D.getSubtarget().getSelectionDAGInfo()), 242 Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) { 243 ForCodeSize = DAG.shouldOptForSize(); 244 DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); 245 246 MaximumLegalStoreInBits = 0; 247 // We use the minimum store size here, since that's all we can guarantee 248 // for the scalable vector types. 249 for (MVT VT : MVT::all_valuetypes()) 250 if (EVT(VT).isSimple() && VT != MVT::Other && 251 TLI.isTypeLegal(EVT(VT)) && 252 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) 253 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); 254 } 255 256 void ConsiderForPruning(SDNode *N) { 257 // Mark this for potential pruning. 258 PruningList.insert(N); 259 } 260 261 /// Add to the worklist making sure its instance is at the back (next to be 262 /// processed.) 263 void AddToWorklist(SDNode *N) { 264 assert(N->getOpcode() != ISD::DELETED_NODE && 265 "Deleted Node added to Worklist"); 266 267 // Skip handle nodes as they can't usefully be combined and confuse the 268 // zero-use deletion strategy. 269 if (N->getOpcode() == ISD::HANDLENODE) 270 return; 271 272 ConsiderForPruning(N); 273 274 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 275 Worklist.push_back(N); 276 } 277 278 /// Remove all instances of N from the worklist. 279 void removeFromWorklist(SDNode *N) { 280 CombinedNodes.erase(N); 281 PruningList.remove(N); 282 StoreRootCountMap.erase(N); 283 284 auto It = WorklistMap.find(N); 285 if (It == WorklistMap.end()) 286 return; // Not in the worklist. 287 288 // Null out the entry rather than erasing it to avoid a linear operation. 289 Worklist[It->second] = nullptr; 290 WorklistMap.erase(It); 291 } 292 293 void deleteAndRecombine(SDNode *N); 294 bool recursivelyDeleteUnusedNodes(SDNode *N); 295 296 /// Replaces all uses of the results of one DAG node with new values. 297 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 298 bool AddTo = true); 299 300 /// Replaces all uses of the results of one DAG node with new values. 301 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 302 return CombineTo(N, &Res, 1, AddTo); 303 } 304 305 /// Replaces all uses of the results of one DAG node with new values. 306 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 307 bool AddTo = true) { 308 SDValue To[] = { Res0, Res1 }; 309 return CombineTo(N, To, 2, AddTo); 310 } 311 312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 313 314 private: 315 unsigned MaximumLegalStoreInBits; 316 317 /// Check the specified integer node value to see if it can be simplified or 318 /// if things it uses can be simplified by bit propagation. 319 /// If so, return true. 320 bool SimplifyDemandedBits(SDValue Op) { 321 unsigned BitWidth = Op.getScalarValueSizeInBits(); 322 APInt DemandedBits = APInt::getAllOnes(BitWidth); 323 return SimplifyDemandedBits(Op, DemandedBits); 324 } 325 326 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 327 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 328 KnownBits Known; 329 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) 330 return false; 331 332 // Revisit the node. 333 AddToWorklist(Op.getNode()); 334 335 CommitTargetLoweringOpt(TLO); 336 return true; 337 } 338 339 /// Check the specified vector node value to see if it can be simplified or 340 /// if things it uses can be simplified as it only uses some of the 341 /// elements. If so, return true. 342 bool SimplifyDemandedVectorElts(SDValue Op) { 343 // TODO: For now just pretend it cannot be simplified. 344 if (Op.getValueType().isScalableVector()) 345 return false; 346 347 unsigned NumElts = Op.getValueType().getVectorNumElements(); 348 APInt DemandedElts = APInt::getAllOnes(NumElts); 349 return SimplifyDemandedVectorElts(Op, DemandedElts); 350 } 351 352 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 353 const APInt &DemandedElts, 354 bool AssumeSingleUse = false); 355 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 356 bool AssumeSingleUse = false); 357 358 bool CombineToPreIndexedLoadStore(SDNode *N); 359 bool CombineToPostIndexedLoadStore(SDNode *N); 360 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 361 bool SliceUpLoad(SDNode *N); 362 363 // Scalars have size 0 to distinguish from singleton vectors. 364 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 365 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 366 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 367 368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 369 /// load. 370 /// 371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 373 /// \param EltNo index of the vector element to load. 374 /// \param OriginalLoad load that EVE came from to be replaced. 375 /// \returns EVE on success SDValue() on failure. 376 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 377 SDValue EltNo, 378 LoadSDNode *OriginalLoad); 379 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 380 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 381 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 382 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 383 SDValue PromoteIntBinOp(SDValue Op); 384 SDValue PromoteIntShiftOp(SDValue Op); 385 SDValue PromoteExtend(SDValue Op); 386 bool PromoteLoad(SDValue Op); 387 388 /// Call the node-specific routine that knows how to fold each 389 /// particular type of node. If that doesn't do anything, try the 390 /// target-specific DAG combines. 391 SDValue combine(SDNode *N); 392 393 // Visitation implementation - Implement dag node combining for different 394 // node types. The semantics are as follows: 395 // Return Value: 396 // SDValue.getNode() == 0 - No change was made 397 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 398 // otherwise - N should be replaced by the returned Operand. 399 // 400 SDValue visitTokenFactor(SDNode *N); 401 SDValue visitMERGE_VALUES(SDNode *N); 402 SDValue visitADD(SDNode *N); 403 SDValue visitADDLike(SDNode *N); 404 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 405 SDValue visitSUB(SDNode *N); 406 SDValue visitADDSAT(SDNode *N); 407 SDValue visitSUBSAT(SDNode *N); 408 SDValue visitADDC(SDNode *N); 409 SDValue visitADDO(SDNode *N); 410 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 411 SDValue visitSUBC(SDNode *N); 412 SDValue visitSUBO(SDNode *N); 413 SDValue visitADDE(SDNode *N); 414 SDValue visitADDCARRY(SDNode *N); 415 SDValue visitSADDO_CARRY(SDNode *N); 416 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 417 SDValue visitSUBE(SDNode *N); 418 SDValue visitSUBCARRY(SDNode *N); 419 SDValue visitSSUBO_CARRY(SDNode *N); 420 SDValue visitMUL(SDNode *N); 421 SDValue visitMULFIX(SDNode *N); 422 SDValue useDivRem(SDNode *N); 423 SDValue visitSDIV(SDNode *N); 424 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 425 SDValue visitUDIV(SDNode *N); 426 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 427 SDValue visitREM(SDNode *N); 428 SDValue visitMULHU(SDNode *N); 429 SDValue visitMULHS(SDNode *N); 430 SDValue visitSMUL_LOHI(SDNode *N); 431 SDValue visitUMUL_LOHI(SDNode *N); 432 SDValue visitMULO(SDNode *N); 433 SDValue visitIMINMAX(SDNode *N); 434 SDValue visitAND(SDNode *N); 435 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 436 SDValue visitOR(SDNode *N); 437 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 438 SDValue visitXOR(SDNode *N); 439 SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL); 440 SDValue visitSHL(SDNode *N); 441 SDValue visitSRA(SDNode *N); 442 SDValue visitSRL(SDNode *N); 443 SDValue visitFunnelShift(SDNode *N); 444 SDValue visitRotate(SDNode *N); 445 SDValue visitABS(SDNode *N); 446 SDValue visitBSWAP(SDNode *N); 447 SDValue visitBITREVERSE(SDNode *N); 448 SDValue visitCTLZ(SDNode *N); 449 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 450 SDValue visitCTTZ(SDNode *N); 451 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 452 SDValue visitCTPOP(SDNode *N); 453 SDValue visitSELECT(SDNode *N); 454 SDValue visitVSELECT(SDNode *N); 455 SDValue visitSELECT_CC(SDNode *N); 456 SDValue visitSETCC(SDNode *N); 457 SDValue visitSETCCCARRY(SDNode *N); 458 SDValue visitSIGN_EXTEND(SDNode *N); 459 SDValue visitZERO_EXTEND(SDNode *N); 460 SDValue visitANY_EXTEND(SDNode *N); 461 SDValue visitAssertExt(SDNode *N); 462 SDValue visitAssertAlign(SDNode *N); 463 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 464 SDValue visitEXTEND_VECTOR_INREG(SDNode *N); 465 SDValue visitTRUNCATE(SDNode *N); 466 SDValue visitBITCAST(SDNode *N); 467 SDValue visitFREEZE(SDNode *N); 468 SDValue visitBUILD_PAIR(SDNode *N); 469 SDValue visitFADD(SDNode *N); 470 SDValue visitSTRICT_FADD(SDNode *N); 471 SDValue visitFSUB(SDNode *N); 472 SDValue visitFMUL(SDNode *N); 473 SDValue visitFMA(SDNode *N); 474 SDValue visitFDIV(SDNode *N); 475 SDValue visitFREM(SDNode *N); 476 SDValue visitFSQRT(SDNode *N); 477 SDValue visitFCOPYSIGN(SDNode *N); 478 SDValue visitFPOW(SDNode *N); 479 SDValue visitSINT_TO_FP(SDNode *N); 480 SDValue visitUINT_TO_FP(SDNode *N); 481 SDValue visitFP_TO_SINT(SDNode *N); 482 SDValue visitFP_TO_UINT(SDNode *N); 483 SDValue visitFP_ROUND(SDNode *N); 484 SDValue visitFP_EXTEND(SDNode *N); 485 SDValue visitFNEG(SDNode *N); 486 SDValue visitFABS(SDNode *N); 487 SDValue visitFCEIL(SDNode *N); 488 SDValue visitFTRUNC(SDNode *N); 489 SDValue visitFFLOOR(SDNode *N); 490 SDValue visitFMinMax(SDNode *N); 491 SDValue visitBRCOND(SDNode *N); 492 SDValue visitBR_CC(SDNode *N); 493 SDValue visitLOAD(SDNode *N); 494 495 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 496 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 497 498 SDValue visitSTORE(SDNode *N); 499 SDValue visitLIFETIME_END(SDNode *N); 500 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 501 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 502 SDValue visitBUILD_VECTOR(SDNode *N); 503 SDValue visitCONCAT_VECTORS(SDNode *N); 504 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 505 SDValue visitVECTOR_SHUFFLE(SDNode *N); 506 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 507 SDValue visitINSERT_SUBVECTOR(SDNode *N); 508 SDValue visitMLOAD(SDNode *N); 509 SDValue visitMSTORE(SDNode *N); 510 SDValue visitMGATHER(SDNode *N); 511 SDValue visitMSCATTER(SDNode *N); 512 SDValue visitFP_TO_FP16(SDNode *N); 513 SDValue visitFP16_TO_FP(SDNode *N); 514 SDValue visitVECREDUCE(SDNode *N); 515 SDValue visitVPOp(SDNode *N); 516 517 SDValue visitFADDForFMACombine(SDNode *N); 518 SDValue visitFSUBForFMACombine(SDNode *N); 519 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 520 521 SDValue XformToShuffleWithZero(SDNode *N); 522 bool reassociationCanBreakAddressingModePattern(unsigned Opc, 523 const SDLoc &DL, SDValue N0, 524 SDValue N1); 525 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 526 SDValue N1); 527 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 528 SDValue N1, SDNodeFlags Flags); 529 530 SDValue visitShiftByConstant(SDNode *N); 531 532 SDValue foldSelectOfConstants(SDNode *N); 533 SDValue foldVSelectOfConstants(SDNode *N); 534 SDValue foldBinOpIntoSelect(SDNode *BO); 535 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 536 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 537 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 538 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 539 SDValue N2, SDValue N3, ISD::CondCode CC, 540 bool NotExtCompare = false); 541 SDValue convertSelectOfFPConstantsToLoadOffset( 542 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 543 ISD::CondCode CC); 544 SDValue foldSignChangeInBitcast(SDNode *N); 545 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 546 SDValue N2, SDValue N3, ISD::CondCode CC); 547 SDValue foldSelectOfBinops(SDNode *N); 548 SDValue foldSextSetcc(SDNode *N); 549 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 550 const SDLoc &DL); 551 SDValue foldSubToUSubSat(EVT DstVT, SDNode *N); 552 SDValue unfoldMaskedMerge(SDNode *N); 553 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 554 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 555 const SDLoc &DL, bool foldBooleans); 556 SDValue rebuildSetCC(SDValue N); 557 558 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 559 SDValue &CC, bool MatchStrict = false) const; 560 bool isOneUseSetCC(SDValue N) const; 561 562 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 563 unsigned HiOp); 564 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 565 SDValue CombineExtLoad(SDNode *N); 566 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 567 SDValue combineRepeatedFPDivisors(SDNode *N); 568 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 569 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 570 SDValue BuildSDIV(SDNode *N); 571 SDValue BuildSDIVPow2(SDNode *N); 572 SDValue BuildUDIV(SDNode *N); 573 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 574 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); 575 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 576 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 577 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 578 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 579 SDNodeFlags Flags, bool Reciprocal); 580 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 581 SDNodeFlags Flags, bool Reciprocal); 582 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 583 bool DemandHighBits = true); 584 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 585 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 586 SDValue InnerPos, SDValue InnerNeg, 587 unsigned PosOpcode, unsigned NegOpcode, 588 const SDLoc &DL); 589 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, 590 SDValue InnerPos, SDValue InnerNeg, 591 unsigned PosOpcode, unsigned NegOpcode, 592 const SDLoc &DL); 593 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 594 SDValue MatchLoadCombine(SDNode *N); 595 SDValue mergeTruncStores(StoreSDNode *N); 596 SDValue reduceLoadWidth(SDNode *N); 597 SDValue ReduceLoadOpStoreWidth(SDNode *N); 598 SDValue splitMergedValStore(StoreSDNode *ST); 599 SDValue TransformFPLoadStorePair(SDNode *N); 600 SDValue convertBuildVecZextToZext(SDNode *N); 601 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 602 SDValue reduceBuildVecTruncToBitCast(SDNode *N); 603 SDValue reduceBuildVecToShuffle(SDNode *N); 604 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 605 ArrayRef<int> VectorMask, SDValue VecIn1, 606 SDValue VecIn2, unsigned LeftIdx, 607 bool DidSplitVec); 608 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 609 610 /// Walk up chain skipping non-aliasing memory nodes, 611 /// looking for aliasing nodes and adding them to the Aliases vector. 612 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 613 SmallVectorImpl<SDValue> &Aliases); 614 615 /// Return true if there is any possibility that the two addresses overlap. 616 bool mayAlias(SDNode *Op0, SDNode *Op1) const; 617 618 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 619 /// chain (aliasing node.) 620 SDValue FindBetterChain(SDNode *N, SDValue Chain); 621 622 /// Try to replace a store and any possibly adjacent stores on 623 /// consecutive chains with better chains. Return true only if St is 624 /// replaced. 625 /// 626 /// Notice that other chains may still be replaced even if the function 627 /// returns false. 628 bool findBetterNeighborChains(StoreSDNode *St); 629 630 // Helper for findBetterNeighborChains. Walk up store chain add additional 631 // chained stores that do not overlap and can be parallelized. 632 bool parallelizeChainedStores(StoreSDNode *St); 633 634 /// Holds a pointer to an LSBaseSDNode as well as information on where it 635 /// is located in a sequence of memory operations connected by a chain. 636 struct MemOpLink { 637 // Ptr to the mem node. 638 LSBaseSDNode *MemNode; 639 640 // Offset from the base ptr. 641 int64_t OffsetFromBase; 642 643 MemOpLink(LSBaseSDNode *N, int64_t Offset) 644 : MemNode(N), OffsetFromBase(Offset) {} 645 }; 646 647 // Classify the origin of a stored value. 648 enum class StoreSource { Unknown, Constant, Extract, Load }; 649 StoreSource getStoreSource(SDValue StoreVal) { 650 switch (StoreVal.getOpcode()) { 651 case ISD::Constant: 652 case ISD::ConstantFP: 653 return StoreSource::Constant; 654 case ISD::EXTRACT_VECTOR_ELT: 655 case ISD::EXTRACT_SUBVECTOR: 656 return StoreSource::Extract; 657 case ISD::LOAD: 658 return StoreSource::Load; 659 default: 660 return StoreSource::Unknown; 661 } 662 } 663 664 /// This is a helper function for visitMUL to check the profitability 665 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 666 /// MulNode is the original multiply, AddNode is (add x, c1), 667 /// and ConstNode is c2. 668 bool isMulAddWithConstProfitable(SDNode *MulNode, 669 SDValue &AddNode, 670 SDValue &ConstNode); 671 672 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 673 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 674 /// the type of the loaded value to be extended. 675 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 676 EVT LoadResultTy, EVT &ExtVT); 677 678 /// Helper function to calculate whether the given Load/Store can have its 679 /// width reduced to ExtVT. 680 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 681 EVT &MemVT, unsigned ShAmt = 0); 682 683 /// Used by BackwardsPropagateMask to find suitable loads. 684 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 685 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 686 ConstantSDNode *Mask, SDNode *&NodeToMask); 687 /// Attempt to propagate a given AND node back to load leaves so that they 688 /// can be combined into narrow loads. 689 bool BackwardsPropagateMask(SDNode *N); 690 691 /// Helper function for mergeConsecutiveStores which merges the component 692 /// store chains. 693 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 694 unsigned NumStores); 695 696 /// This is a helper function for mergeConsecutiveStores. When the source 697 /// elements of the consecutive stores are all constants or all extracted 698 /// vector elements, try to merge them into one larger store introducing 699 /// bitcasts if necessary. \return True if a merged store was created. 700 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 701 EVT MemVT, unsigned NumStores, 702 bool IsConstantSrc, bool UseVector, 703 bool UseTrunc); 704 705 /// This is a helper function for mergeConsecutiveStores. Stores that 706 /// potentially may be merged with St are placed in StoreNodes. RootNode is 707 /// a chain predecessor to all store candidates. 708 void getStoreMergeCandidates(StoreSDNode *St, 709 SmallVectorImpl<MemOpLink> &StoreNodes, 710 SDNode *&Root); 711 712 /// Helper function for mergeConsecutiveStores. Checks if candidate stores 713 /// have indirect dependency through their operands. RootNode is the 714 /// predecessor to all stores calculated by getStoreMergeCandidates and is 715 /// used to prune the dependency check. \return True if safe to merge. 716 bool checkMergeStoreCandidatesForDependencies( 717 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 718 SDNode *RootNode); 719 720 /// This is a helper function for mergeConsecutiveStores. Given a list of 721 /// store candidates, find the first N that are consecutive in memory. 722 /// Returns 0 if there are not at least 2 consecutive stores to try merging. 723 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 724 int64_t ElementSizeBytes) const; 725 726 /// This is a helper function for mergeConsecutiveStores. It is used for 727 /// store chains that are composed entirely of constant values. 728 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, 729 unsigned NumConsecutiveStores, 730 EVT MemVT, SDNode *Root, bool AllowVectors); 731 732 /// This is a helper function for mergeConsecutiveStores. It is used for 733 /// store chains that are composed entirely of extracted vector elements. 734 /// When extracting multiple vector elements, try to store them in one 735 /// vector store rather than a sequence of scalar stores. 736 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, 737 unsigned NumConsecutiveStores, EVT MemVT, 738 SDNode *Root); 739 740 /// This is a helper function for mergeConsecutiveStores. It is used for 741 /// store chains that are composed entirely of loaded values. 742 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 743 unsigned NumConsecutiveStores, EVT MemVT, 744 SDNode *Root, bool AllowVectors, 745 bool IsNonTemporalStore, bool IsNonTemporalLoad); 746 747 /// Merge consecutive store operations into a wide store. 748 /// This optimization uses wide integers or vectors when possible. 749 /// \return true if stores were merged. 750 bool mergeConsecutiveStores(StoreSDNode *St); 751 752 /// Try to transform a truncation where C is a constant: 753 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 754 /// 755 /// \p N needs to be a truncation and its first operand an AND. Other 756 /// requirements are checked by the function (e.g. that trunc is 757 /// single-use) and if missed an empty SDValue is returned. 758 SDValue distributeTruncateThroughAnd(SDNode *N); 759 760 /// Helper function to determine whether the target supports operation 761 /// given by \p Opcode for type \p VT, that is, whether the operation 762 /// is legal or custom before legalizing operations, and whether is 763 /// legal (but not custom) after legalization. 764 bool hasOperation(unsigned Opcode, EVT VT) { 765 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); 766 } 767 768 public: 769 /// Runs the dag combiner on all nodes in the work list 770 void Run(CombineLevel AtLevel); 771 772 SelectionDAG &getDAG() const { return DAG; } 773 774 /// Returns a type large enough to hold any valid shift amount - before type 775 /// legalization these can be huge. 776 EVT getShiftAmountTy(EVT LHSTy) { 777 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 778 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 779 } 780 781 /// This method returns true if we are running before type legalization or 782 /// if the specified VT is legal. 783 bool isTypeLegal(const EVT &VT) { 784 if (!LegalTypes) return true; 785 return TLI.isTypeLegal(VT); 786 } 787 788 /// Convenience wrapper around TargetLowering::getSetCCResultType 789 EVT getSetCCResultType(EVT VT) const { 790 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 791 } 792 793 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 794 SDValue OrigLoad, SDValue ExtLoad, 795 ISD::NodeType ExtType); 796 }; 797 798 /// This class is a DAGUpdateListener that removes any deleted 799 /// nodes from the worklist. 800 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 801 DAGCombiner &DC; 802 803 public: 804 explicit WorklistRemover(DAGCombiner &dc) 805 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 806 807 void NodeDeleted(SDNode *N, SDNode *E) override { 808 DC.removeFromWorklist(N); 809 } 810 }; 811 812 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 813 DAGCombiner &DC; 814 815 public: 816 explicit WorklistInserter(DAGCombiner &dc) 817 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 818 819 // FIXME: Ideally we could add N to the worklist, but this causes exponential 820 // compile time costs in large DAGs, e.g. Halide. 821 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 822 }; 823 824 } // end anonymous namespace 825 826 //===----------------------------------------------------------------------===// 827 // TargetLowering::DAGCombinerInfo implementation 828 //===----------------------------------------------------------------------===// 829 830 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 831 ((DAGCombiner*)DC)->AddToWorklist(N); 832 } 833 834 SDValue TargetLowering::DAGCombinerInfo:: 835 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 836 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 837 } 838 839 SDValue TargetLowering::DAGCombinerInfo:: 840 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 841 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 842 } 843 844 SDValue TargetLowering::DAGCombinerInfo:: 845 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 846 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 847 } 848 849 bool TargetLowering::DAGCombinerInfo:: 850 recursivelyDeleteUnusedNodes(SDNode *N) { 851 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); 852 } 853 854 void TargetLowering::DAGCombinerInfo:: 855 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 856 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // Helper Functions 861 //===----------------------------------------------------------------------===// 862 863 void DAGCombiner::deleteAndRecombine(SDNode *N) { 864 removeFromWorklist(N); 865 866 // If the operands of this node are only used by the node, they will now be 867 // dead. Make sure to re-visit them and recursively delete dead nodes. 868 for (const SDValue &Op : N->ops()) 869 // For an operand generating multiple values, one of the values may 870 // become dead allowing further simplification (e.g. split index 871 // arithmetic from an indexed load). 872 if (Op->hasOneUse() || Op->getNumValues() > 1) 873 AddToWorklist(Op.getNode()); 874 875 DAG.DeleteNode(N); 876 } 877 878 // APInts must be the same size for most operations, this helper 879 // function zero extends the shorter of the pair so that they match. 880 // We provide an Offset so that we can create bitwidths that won't overflow. 881 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 882 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 883 LHS = LHS.zextOrSelf(Bits); 884 RHS = RHS.zextOrSelf(Bits); 885 } 886 887 // Return true if this node is a setcc, or is a select_cc 888 // that selects between the target values used for true and false, making it 889 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 890 // the appropriate nodes based on the type of node we are checking. This 891 // simplifies life a bit for the callers. 892 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 893 SDValue &CC, bool MatchStrict) const { 894 if (N.getOpcode() == ISD::SETCC) { 895 LHS = N.getOperand(0); 896 RHS = N.getOperand(1); 897 CC = N.getOperand(2); 898 return true; 899 } 900 901 if (MatchStrict && 902 (N.getOpcode() == ISD::STRICT_FSETCC || 903 N.getOpcode() == ISD::STRICT_FSETCCS)) { 904 LHS = N.getOperand(1); 905 RHS = N.getOperand(2); 906 CC = N.getOperand(3); 907 return true; 908 } 909 910 if (N.getOpcode() != ISD::SELECT_CC || 911 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 912 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 913 return false; 914 915 if (TLI.getBooleanContents(N.getValueType()) == 916 TargetLowering::UndefinedBooleanContent) 917 return false; 918 919 LHS = N.getOperand(0); 920 RHS = N.getOperand(1); 921 CC = N.getOperand(4); 922 return true; 923 } 924 925 /// Return true if this is a SetCC-equivalent operation with only one use. 926 /// If this is true, it allows the users to invert the operation for free when 927 /// it is profitable to do so. 928 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 929 SDValue N0, N1, N2; 930 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 931 return true; 932 return false; 933 } 934 935 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { 936 if (!ScalarTy.isSimple()) 937 return false; 938 939 uint64_t MaskForTy = 0ULL; 940 switch (ScalarTy.getSimpleVT().SimpleTy) { 941 case MVT::i8: 942 MaskForTy = 0xFFULL; 943 break; 944 case MVT::i16: 945 MaskForTy = 0xFFFFULL; 946 break; 947 case MVT::i32: 948 MaskForTy = 0xFFFFFFFFULL; 949 break; 950 default: 951 return false; 952 break; 953 } 954 955 APInt Val; 956 if (ISD::isConstantSplatVector(N, Val)) 957 return Val.getLimitedValue() == MaskForTy; 958 959 return false; 960 } 961 962 // Determines if it is a constant integer or a splat/build vector of constant 963 // integers (and undefs). 964 // Do not permit build vector implicit truncation. 965 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 966 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 967 return !(Const->isOpaque() && NoOpaques); 968 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) 969 return false; 970 unsigned BitWidth = N.getScalarValueSizeInBits(); 971 for (const SDValue &Op : N->op_values()) { 972 if (Op.isUndef()) 973 continue; 974 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 975 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 976 (Const->isOpaque() && NoOpaques)) 977 return false; 978 } 979 return true; 980 } 981 982 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 983 // undef's. 984 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 985 if (V.getOpcode() != ISD::BUILD_VECTOR) 986 return false; 987 return isConstantOrConstantVector(V, NoOpaques) || 988 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 989 } 990 991 // Determine if this an indexed load with an opaque target constant index. 992 static bool canSplitIdx(LoadSDNode *LD) { 993 return MaySplitLoadIndex && 994 (LD->getOperand(2).getOpcode() != ISD::TargetConstant || 995 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); 996 } 997 998 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, 999 const SDLoc &DL, 1000 SDValue N0, 1001 SDValue N1) { 1002 // Currently this only tries to ensure we don't undo the GEP splits done by 1003 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, 1004 // we check if the following transformation would be problematic: 1005 // (load/store (add, (add, x, offset1), offset2)) -> 1006 // (load/store (add, x, offset1+offset2)). 1007 1008 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) 1009 return false; 1010 1011 if (N0.hasOneUse()) 1012 return false; 1013 1014 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 1015 auto *C2 = dyn_cast<ConstantSDNode>(N1); 1016 if (!C1 || !C2) 1017 return false; 1018 1019 const APInt &C1APIntVal = C1->getAPIntValue(); 1020 const APInt &C2APIntVal = C2->getAPIntValue(); 1021 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) 1022 return false; 1023 1024 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; 1025 if (CombinedValueIntVal.getBitWidth() > 64) 1026 return false; 1027 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); 1028 1029 for (SDNode *Node : N0->uses()) { 1030 auto LoadStore = dyn_cast<MemSDNode>(Node); 1031 if (LoadStore) { 1032 // Is x[offset2] already not a legal addressing mode? If so then 1033 // reassociating the constants breaks nothing (we test offset2 because 1034 // that's the one we hope to fold into the load or store). 1035 TargetLoweringBase::AddrMode AM; 1036 AM.HasBaseReg = true; 1037 AM.BaseOffs = C2APIntVal.getSExtValue(); 1038 EVT VT = LoadStore->getMemoryVT(); 1039 unsigned AS = LoadStore->getAddressSpace(); 1040 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); 1041 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1042 continue; 1043 1044 // Would x[offset1+offset2] still be a legal addressing mode? 1045 AM.BaseOffs = CombinedValue; 1046 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1047 return true; 1048 } 1049 } 1050 1051 return false; 1052 } 1053 1054 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 1055 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 1056 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 1057 SDValue N0, SDValue N1) { 1058 EVT VT = N0.getValueType(); 1059 1060 if (N0.getOpcode() != Opc) 1061 return SDValue(); 1062 1063 SDValue N00 = N0.getOperand(0); 1064 SDValue N01 = N0.getOperand(1); 1065 1066 if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N01))) { 1067 if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N1))) { 1068 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 1069 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1})) 1070 return DAG.getNode(Opc, DL, VT, N00, OpNode); 1071 return SDValue(); 1072 } 1073 if (N0.hasOneUse()) { 1074 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 1075 // iff (op x, c1) has one use 1076 if (SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1)) 1077 return DAG.getNode(Opc, DL, VT, OpNode, N01); 1078 return SDValue(); 1079 } 1080 } 1081 return SDValue(); 1082 } 1083 1084 // Try to reassociate commutative binops. 1085 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 1086 SDValue N1, SDNodeFlags Flags) { 1087 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1088 1089 // Floating-point reassociation is not allowed without loose FP math. 1090 if (N0.getValueType().isFloatingPoint() || 1091 N1.getValueType().isFloatingPoint()) 1092 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1093 return SDValue(); 1094 1095 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1096 return Combined; 1097 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1098 return Combined; 1099 return SDValue(); 1100 } 1101 1102 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1103 bool AddTo) { 1104 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1105 ++NodesCombined; 1106 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1107 To[0].getNode()->dump(&DAG); 1108 dbgs() << " and " << NumTo - 1 << " other values\n"); 1109 for (unsigned i = 0, e = NumTo; i != e; ++i) 1110 assert((!To[i].getNode() || 1111 N->getValueType(i) == To[i].getValueType()) && 1112 "Cannot combine value to value of different type!"); 1113 1114 WorklistRemover DeadNodes(*this); 1115 DAG.ReplaceAllUsesWith(N, To); 1116 if (AddTo) { 1117 // Push the new nodes and any users onto the worklist 1118 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1119 if (To[i].getNode()) { 1120 AddToWorklist(To[i].getNode()); 1121 AddUsersToWorklist(To[i].getNode()); 1122 } 1123 } 1124 } 1125 1126 // Finally, if the node is now dead, remove it from the graph. The node 1127 // may not be dead if the replacement process recursively simplified to 1128 // something else needing this node. 1129 if (N->use_empty()) 1130 deleteAndRecombine(N); 1131 return SDValue(N, 0); 1132 } 1133 1134 void DAGCombiner:: 1135 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1136 // Replace the old value with the new one. 1137 ++NodesCombined; 1138 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1139 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1140 dbgs() << '\n'); 1141 1142 // Replace all uses. If any nodes become isomorphic to other nodes and 1143 // are deleted, make sure to remove them from our worklist. 1144 WorklistRemover DeadNodes(*this); 1145 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1146 1147 // Push the new node and any (possibly new) users onto the worklist. 1148 AddToWorklistWithUsers(TLO.New.getNode()); 1149 1150 // Finally, if the node is now dead, remove it from the graph. The node 1151 // may not be dead if the replacement process recursively simplified to 1152 // something else needing this node. 1153 if (TLO.Old.getNode()->use_empty()) 1154 deleteAndRecombine(TLO.Old.getNode()); 1155 } 1156 1157 /// Check the specified integer node value to see if it can be simplified or if 1158 /// things it uses can be simplified by bit propagation. If so, return true. 1159 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1160 const APInt &DemandedElts, 1161 bool AssumeSingleUse) { 1162 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1163 KnownBits Known; 1164 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, 1165 AssumeSingleUse)) 1166 return false; 1167 1168 // Revisit the node. 1169 AddToWorklist(Op.getNode()); 1170 1171 CommitTargetLoweringOpt(TLO); 1172 return true; 1173 } 1174 1175 /// Check the specified vector node value to see if it can be simplified or 1176 /// if things it uses can be simplified as it only uses some of the elements. 1177 /// If so, return true. 1178 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1179 const APInt &DemandedElts, 1180 bool AssumeSingleUse) { 1181 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1182 APInt KnownUndef, KnownZero; 1183 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1184 TLO, 0, AssumeSingleUse)) 1185 return false; 1186 1187 // Revisit the node. 1188 AddToWorklist(Op.getNode()); 1189 1190 CommitTargetLoweringOpt(TLO); 1191 return true; 1192 } 1193 1194 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1195 SDLoc DL(Load); 1196 EVT VT = Load->getValueType(0); 1197 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1198 1199 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1200 Trunc.getNode()->dump(&DAG); dbgs() << '\n'); 1201 WorklistRemover DeadNodes(*this); 1202 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1203 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1204 deleteAndRecombine(Load); 1205 AddToWorklist(Trunc.getNode()); 1206 } 1207 1208 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1209 Replace = false; 1210 SDLoc DL(Op); 1211 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1212 LoadSDNode *LD = cast<LoadSDNode>(Op); 1213 EVT MemVT = LD->getMemoryVT(); 1214 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1215 : LD->getExtensionType(); 1216 Replace = true; 1217 return DAG.getExtLoad(ExtType, DL, PVT, 1218 LD->getChain(), LD->getBasePtr(), 1219 MemVT, LD->getMemOperand()); 1220 } 1221 1222 unsigned Opc = Op.getOpcode(); 1223 switch (Opc) { 1224 default: break; 1225 case ISD::AssertSext: 1226 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1227 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1228 break; 1229 case ISD::AssertZext: 1230 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1231 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1232 break; 1233 case ISD::Constant: { 1234 unsigned ExtOpc = 1235 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1236 return DAG.getNode(ExtOpc, DL, PVT, Op); 1237 } 1238 } 1239 1240 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1241 return SDValue(); 1242 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1243 } 1244 1245 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1246 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1247 return SDValue(); 1248 EVT OldVT = Op.getValueType(); 1249 SDLoc DL(Op); 1250 bool Replace = false; 1251 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1252 if (!NewOp.getNode()) 1253 return SDValue(); 1254 AddToWorklist(NewOp.getNode()); 1255 1256 if (Replace) 1257 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1258 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1259 DAG.getValueType(OldVT)); 1260 } 1261 1262 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1263 EVT OldVT = Op.getValueType(); 1264 SDLoc DL(Op); 1265 bool Replace = false; 1266 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1267 if (!NewOp.getNode()) 1268 return SDValue(); 1269 AddToWorklist(NewOp.getNode()); 1270 1271 if (Replace) 1272 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1273 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1274 } 1275 1276 /// Promote the specified integer binary operation if the target indicates it is 1277 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1278 /// i32 since i16 instructions are longer. 1279 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1280 if (!LegalOperations) 1281 return SDValue(); 1282 1283 EVT VT = Op.getValueType(); 1284 if (VT.isVector() || !VT.isInteger()) 1285 return SDValue(); 1286 1287 // If operation type is 'undesirable', e.g. i16 on x86, consider 1288 // promoting it. 1289 unsigned Opc = Op.getOpcode(); 1290 if (TLI.isTypeDesirableForOp(Opc, VT)) 1291 return SDValue(); 1292 1293 EVT PVT = VT; 1294 // Consult target whether it is a good idea to promote this operation and 1295 // what's the right type to promote it to. 1296 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1297 assert(PVT != VT && "Don't know what type to promote to!"); 1298 1299 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1300 1301 bool Replace0 = false; 1302 SDValue N0 = Op.getOperand(0); 1303 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1304 1305 bool Replace1 = false; 1306 SDValue N1 = Op.getOperand(1); 1307 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1308 SDLoc DL(Op); 1309 1310 SDValue RV = 1311 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1312 1313 // We are always replacing N0/N1's use in N and only need additional 1314 // replacements if there are additional uses. 1315 // Note: We are checking uses of the *nodes* (SDNode) rather than values 1316 // (SDValue) here because the node may reference multiple values 1317 // (for example, the chain value of a load node). 1318 Replace0 &= !N0->hasOneUse(); 1319 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1320 1321 // Combine Op here so it is preserved past replacements. 1322 CombineTo(Op.getNode(), RV); 1323 1324 // If operands have a use ordering, make sure we deal with 1325 // predecessor first. 1326 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { 1327 std::swap(N0, N1); 1328 std::swap(NN0, NN1); 1329 } 1330 1331 if (Replace0) { 1332 AddToWorklist(NN0.getNode()); 1333 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1334 } 1335 if (Replace1) { 1336 AddToWorklist(NN1.getNode()); 1337 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1338 } 1339 return Op; 1340 } 1341 return SDValue(); 1342 } 1343 1344 /// Promote the specified integer shift operation if the target indicates it is 1345 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1346 /// i32 since i16 instructions are longer. 1347 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1348 if (!LegalOperations) 1349 return SDValue(); 1350 1351 EVT VT = Op.getValueType(); 1352 if (VT.isVector() || !VT.isInteger()) 1353 return SDValue(); 1354 1355 // If operation type is 'undesirable', e.g. i16 on x86, consider 1356 // promoting it. 1357 unsigned Opc = Op.getOpcode(); 1358 if (TLI.isTypeDesirableForOp(Opc, VT)) 1359 return SDValue(); 1360 1361 EVT PVT = VT; 1362 // Consult target whether it is a good idea to promote this operation and 1363 // what's the right type to promote it to. 1364 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1365 assert(PVT != VT && "Don't know what type to promote to!"); 1366 1367 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1368 1369 bool Replace = false; 1370 SDValue N0 = Op.getOperand(0); 1371 SDValue N1 = Op.getOperand(1); 1372 if (Opc == ISD::SRA) 1373 N0 = SExtPromoteOperand(N0, PVT); 1374 else if (Opc == ISD::SRL) 1375 N0 = ZExtPromoteOperand(N0, PVT); 1376 else 1377 N0 = PromoteOperand(N0, PVT, Replace); 1378 1379 if (!N0.getNode()) 1380 return SDValue(); 1381 1382 SDLoc DL(Op); 1383 SDValue RV = 1384 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1385 1386 if (Replace) 1387 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1388 1389 // Deal with Op being deleted. 1390 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1391 return RV; 1392 } 1393 return SDValue(); 1394 } 1395 1396 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1397 if (!LegalOperations) 1398 return SDValue(); 1399 1400 EVT VT = Op.getValueType(); 1401 if (VT.isVector() || !VT.isInteger()) 1402 return SDValue(); 1403 1404 // If operation type is 'undesirable', e.g. i16 on x86, consider 1405 // promoting it. 1406 unsigned Opc = Op.getOpcode(); 1407 if (TLI.isTypeDesirableForOp(Opc, VT)) 1408 return SDValue(); 1409 1410 EVT PVT = VT; 1411 // Consult target whether it is a good idea to promote this operation and 1412 // what's the right type to promote it to. 1413 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1414 assert(PVT != VT && "Don't know what type to promote to!"); 1415 // fold (aext (aext x)) -> (aext x) 1416 // fold (aext (zext x)) -> (zext x) 1417 // fold (aext (sext x)) -> (sext x) 1418 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1419 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1420 } 1421 return SDValue(); 1422 } 1423 1424 bool DAGCombiner::PromoteLoad(SDValue Op) { 1425 if (!LegalOperations) 1426 return false; 1427 1428 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1429 return false; 1430 1431 EVT VT = Op.getValueType(); 1432 if (VT.isVector() || !VT.isInteger()) 1433 return false; 1434 1435 // If operation type is 'undesirable', e.g. i16 on x86, consider 1436 // promoting it. 1437 unsigned Opc = Op.getOpcode(); 1438 if (TLI.isTypeDesirableForOp(Opc, VT)) 1439 return false; 1440 1441 EVT PVT = VT; 1442 // Consult target whether it is a good idea to promote this operation and 1443 // what's the right type to promote it to. 1444 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1445 assert(PVT != VT && "Don't know what type to promote to!"); 1446 1447 SDLoc DL(Op); 1448 SDNode *N = Op.getNode(); 1449 LoadSDNode *LD = cast<LoadSDNode>(N); 1450 EVT MemVT = LD->getMemoryVT(); 1451 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1452 : LD->getExtensionType(); 1453 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1454 LD->getChain(), LD->getBasePtr(), 1455 MemVT, LD->getMemOperand()); 1456 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1457 1458 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1459 Result.getNode()->dump(&DAG); dbgs() << '\n'); 1460 WorklistRemover DeadNodes(*this); 1461 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1462 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1463 deleteAndRecombine(N); 1464 AddToWorklist(Result.getNode()); 1465 return true; 1466 } 1467 return false; 1468 } 1469 1470 /// Recursively delete a node which has no uses and any operands for 1471 /// which it is the only use. 1472 /// 1473 /// Note that this both deletes the nodes and removes them from the worklist. 1474 /// It also adds any nodes who have had a user deleted to the worklist as they 1475 /// may now have only one use and subject to other combines. 1476 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1477 if (!N->use_empty()) 1478 return false; 1479 1480 SmallSetVector<SDNode *, 16> Nodes; 1481 Nodes.insert(N); 1482 do { 1483 N = Nodes.pop_back_val(); 1484 if (!N) 1485 continue; 1486 1487 if (N->use_empty()) { 1488 for (const SDValue &ChildN : N->op_values()) 1489 Nodes.insert(ChildN.getNode()); 1490 1491 removeFromWorklist(N); 1492 DAG.DeleteNode(N); 1493 } else { 1494 AddToWorklist(N); 1495 } 1496 } while (!Nodes.empty()); 1497 return true; 1498 } 1499 1500 //===----------------------------------------------------------------------===// 1501 // Main DAG Combiner implementation 1502 //===----------------------------------------------------------------------===// 1503 1504 void DAGCombiner::Run(CombineLevel AtLevel) { 1505 // set the instance variables, so that the various visit routines may use it. 1506 Level = AtLevel; 1507 LegalDAG = Level >= AfterLegalizeDAG; 1508 LegalOperations = Level >= AfterLegalizeVectorOps; 1509 LegalTypes = Level >= AfterLegalizeTypes; 1510 1511 WorklistInserter AddNodes(*this); 1512 1513 // Add all the dag nodes to the worklist. 1514 for (SDNode &Node : DAG.allnodes()) 1515 AddToWorklist(&Node); 1516 1517 // Create a dummy node (which is not added to allnodes), that adds a reference 1518 // to the root node, preventing it from being deleted, and tracking any 1519 // changes of the root. 1520 HandleSDNode Dummy(DAG.getRoot()); 1521 1522 // While we have a valid worklist entry node, try to combine it. 1523 while (SDNode *N = getNextWorklistEntry()) { 1524 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1525 // N is deleted from the DAG, since they too may now be dead or may have a 1526 // reduced number of uses, allowing other xforms. 1527 if (recursivelyDeleteUnusedNodes(N)) 1528 continue; 1529 1530 WorklistRemover DeadNodes(*this); 1531 1532 // If this combine is running after legalizing the DAG, re-legalize any 1533 // nodes pulled off the worklist. 1534 if (LegalDAG) { 1535 SmallSetVector<SDNode *, 16> UpdatedNodes; 1536 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1537 1538 for (SDNode *LN : UpdatedNodes) 1539 AddToWorklistWithUsers(LN); 1540 1541 if (!NIsValid) 1542 continue; 1543 } 1544 1545 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1546 1547 // Add any operands of the new node which have not yet been combined to the 1548 // worklist as well. Because the worklist uniques things already, this 1549 // won't repeatedly process the same operand. 1550 CombinedNodes.insert(N); 1551 for (const SDValue &ChildN : N->op_values()) 1552 if (!CombinedNodes.count(ChildN.getNode())) 1553 AddToWorklist(ChildN.getNode()); 1554 1555 SDValue RV = combine(N); 1556 1557 if (!RV.getNode()) 1558 continue; 1559 1560 ++NodesCombined; 1561 1562 // If we get back the same node we passed in, rather than a new node or 1563 // zero, we know that the node must have defined multiple values and 1564 // CombineTo was used. Since CombineTo takes care of the worklist 1565 // mechanics for us, we have no work to do in this case. 1566 if (RV.getNode() == N) 1567 continue; 1568 1569 assert(N->getOpcode() != ISD::DELETED_NODE && 1570 RV.getOpcode() != ISD::DELETED_NODE && 1571 "Node was deleted but visit returned new node!"); 1572 1573 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); 1574 1575 if (N->getNumValues() == RV.getNode()->getNumValues()) 1576 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1577 else { 1578 assert(N->getValueType(0) == RV.getValueType() && 1579 N->getNumValues() == 1 && "Type mismatch"); 1580 DAG.ReplaceAllUsesWith(N, &RV); 1581 } 1582 1583 // Push the new node and any users onto the worklist. Omit this if the 1584 // new node is the EntryToken (e.g. if a store managed to get optimized 1585 // out), because re-visiting the EntryToken and its users will not uncover 1586 // any additional opportunities, but there may be a large number of such 1587 // users, potentially causing compile time explosion. 1588 if (RV.getOpcode() != ISD::EntryToken) { 1589 AddToWorklist(RV.getNode()); 1590 AddUsersToWorklist(RV.getNode()); 1591 } 1592 1593 // Finally, if the node is now dead, remove it from the graph. The node 1594 // may not be dead if the replacement process recursively simplified to 1595 // something else needing this node. This will also take care of adding any 1596 // operands which have lost a user to the worklist. 1597 recursivelyDeleteUnusedNodes(N); 1598 } 1599 1600 // If the root changed (e.g. it was a dead load, update the root). 1601 DAG.setRoot(Dummy.getValue()); 1602 DAG.RemoveDeadNodes(); 1603 } 1604 1605 SDValue DAGCombiner::visit(SDNode *N) { 1606 switch (N->getOpcode()) { 1607 default: break; 1608 case ISD::TokenFactor: return visitTokenFactor(N); 1609 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1610 case ISD::ADD: return visitADD(N); 1611 case ISD::SUB: return visitSUB(N); 1612 case ISD::SADDSAT: 1613 case ISD::UADDSAT: return visitADDSAT(N); 1614 case ISD::SSUBSAT: 1615 case ISD::USUBSAT: return visitSUBSAT(N); 1616 case ISD::ADDC: return visitADDC(N); 1617 case ISD::SADDO: 1618 case ISD::UADDO: return visitADDO(N); 1619 case ISD::SUBC: return visitSUBC(N); 1620 case ISD::SSUBO: 1621 case ISD::USUBO: return visitSUBO(N); 1622 case ISD::ADDE: return visitADDE(N); 1623 case ISD::ADDCARRY: return visitADDCARRY(N); 1624 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); 1625 case ISD::SUBE: return visitSUBE(N); 1626 case ISD::SUBCARRY: return visitSUBCARRY(N); 1627 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); 1628 case ISD::SMULFIX: 1629 case ISD::SMULFIXSAT: 1630 case ISD::UMULFIX: 1631 case ISD::UMULFIXSAT: return visitMULFIX(N); 1632 case ISD::MUL: return visitMUL(N); 1633 case ISD::SDIV: return visitSDIV(N); 1634 case ISD::UDIV: return visitUDIV(N); 1635 case ISD::SREM: 1636 case ISD::UREM: return visitREM(N); 1637 case ISD::MULHU: return visitMULHU(N); 1638 case ISD::MULHS: return visitMULHS(N); 1639 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1640 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1641 case ISD::SMULO: 1642 case ISD::UMULO: return visitMULO(N); 1643 case ISD::SMIN: 1644 case ISD::SMAX: 1645 case ISD::UMIN: 1646 case ISD::UMAX: return visitIMINMAX(N); 1647 case ISD::AND: return visitAND(N); 1648 case ISD::OR: return visitOR(N); 1649 case ISD::XOR: return visitXOR(N); 1650 case ISD::SHL: return visitSHL(N); 1651 case ISD::SRA: return visitSRA(N); 1652 case ISD::SRL: return visitSRL(N); 1653 case ISD::ROTR: 1654 case ISD::ROTL: return visitRotate(N); 1655 case ISD::FSHL: 1656 case ISD::FSHR: return visitFunnelShift(N); 1657 case ISD::ABS: return visitABS(N); 1658 case ISD::BSWAP: return visitBSWAP(N); 1659 case ISD::BITREVERSE: return visitBITREVERSE(N); 1660 case ISD::CTLZ: return visitCTLZ(N); 1661 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1662 case ISD::CTTZ: return visitCTTZ(N); 1663 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1664 case ISD::CTPOP: return visitCTPOP(N); 1665 case ISD::SELECT: return visitSELECT(N); 1666 case ISD::VSELECT: return visitVSELECT(N); 1667 case ISD::SELECT_CC: return visitSELECT_CC(N); 1668 case ISD::SETCC: return visitSETCC(N); 1669 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1670 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1671 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1672 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1673 case ISD::AssertSext: 1674 case ISD::AssertZext: return visitAssertExt(N); 1675 case ISD::AssertAlign: return visitAssertAlign(N); 1676 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1677 case ISD::SIGN_EXTEND_VECTOR_INREG: 1678 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N); 1679 case ISD::TRUNCATE: return visitTRUNCATE(N); 1680 case ISD::BITCAST: return visitBITCAST(N); 1681 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1682 case ISD::FADD: return visitFADD(N); 1683 case ISD::STRICT_FADD: return visitSTRICT_FADD(N); 1684 case ISD::FSUB: return visitFSUB(N); 1685 case ISD::FMUL: return visitFMUL(N); 1686 case ISD::FMA: return visitFMA(N); 1687 case ISD::FDIV: return visitFDIV(N); 1688 case ISD::FREM: return visitFREM(N); 1689 case ISD::FSQRT: return visitFSQRT(N); 1690 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1691 case ISD::FPOW: return visitFPOW(N); 1692 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1693 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1694 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1695 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1696 case ISD::FP_ROUND: return visitFP_ROUND(N); 1697 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1698 case ISD::FNEG: return visitFNEG(N); 1699 case ISD::FABS: return visitFABS(N); 1700 case ISD::FFLOOR: return visitFFLOOR(N); 1701 case ISD::FMINNUM: 1702 case ISD::FMAXNUM: 1703 case ISD::FMINIMUM: 1704 case ISD::FMAXIMUM: return visitFMinMax(N); 1705 case ISD::FCEIL: return visitFCEIL(N); 1706 case ISD::FTRUNC: return visitFTRUNC(N); 1707 case ISD::BRCOND: return visitBRCOND(N); 1708 case ISD::BR_CC: return visitBR_CC(N); 1709 case ISD::LOAD: return visitLOAD(N); 1710 case ISD::STORE: return visitSTORE(N); 1711 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1712 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1713 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1714 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1715 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1716 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1717 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1718 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1719 case ISD::MGATHER: return visitMGATHER(N); 1720 case ISD::MLOAD: return visitMLOAD(N); 1721 case ISD::MSCATTER: return visitMSCATTER(N); 1722 case ISD::MSTORE: return visitMSTORE(N); 1723 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1724 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1725 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1726 case ISD::FREEZE: return visitFREEZE(N); 1727 case ISD::VECREDUCE_FADD: 1728 case ISD::VECREDUCE_FMUL: 1729 case ISD::VECREDUCE_ADD: 1730 case ISD::VECREDUCE_MUL: 1731 case ISD::VECREDUCE_AND: 1732 case ISD::VECREDUCE_OR: 1733 case ISD::VECREDUCE_XOR: 1734 case ISD::VECREDUCE_SMAX: 1735 case ISD::VECREDUCE_SMIN: 1736 case ISD::VECREDUCE_UMAX: 1737 case ISD::VECREDUCE_UMIN: 1738 case ISD::VECREDUCE_FMAX: 1739 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1740 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC: 1741 #include "llvm/IR/VPIntrinsics.def" 1742 return visitVPOp(N); 1743 } 1744 return SDValue(); 1745 } 1746 1747 SDValue DAGCombiner::combine(SDNode *N) { 1748 SDValue RV; 1749 if (!DisableGenericCombines) 1750 RV = visit(N); 1751 1752 // If nothing happened, try a target-specific DAG combine. 1753 if (!RV.getNode()) { 1754 assert(N->getOpcode() != ISD::DELETED_NODE && 1755 "Node was deleted but visit returned NULL!"); 1756 1757 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1758 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1759 1760 // Expose the DAG combiner to the target combiner impls. 1761 TargetLowering::DAGCombinerInfo 1762 DagCombineInfo(DAG, Level, false, this); 1763 1764 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1765 } 1766 } 1767 1768 // If nothing happened still, try promoting the operation. 1769 if (!RV.getNode()) { 1770 switch (N->getOpcode()) { 1771 default: break; 1772 case ISD::ADD: 1773 case ISD::SUB: 1774 case ISD::MUL: 1775 case ISD::AND: 1776 case ISD::OR: 1777 case ISD::XOR: 1778 RV = PromoteIntBinOp(SDValue(N, 0)); 1779 break; 1780 case ISD::SHL: 1781 case ISD::SRA: 1782 case ISD::SRL: 1783 RV = PromoteIntShiftOp(SDValue(N, 0)); 1784 break; 1785 case ISD::SIGN_EXTEND: 1786 case ISD::ZERO_EXTEND: 1787 case ISD::ANY_EXTEND: 1788 RV = PromoteExtend(SDValue(N, 0)); 1789 break; 1790 case ISD::LOAD: 1791 if (PromoteLoad(SDValue(N, 0))) 1792 RV = SDValue(N, 0); 1793 break; 1794 } 1795 } 1796 1797 // If N is a commutative binary node, try to eliminate it if the commuted 1798 // version is already present in the DAG. 1799 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1800 N->getNumValues() == 1) { 1801 SDValue N0 = N->getOperand(0); 1802 SDValue N1 = N->getOperand(1); 1803 1804 // Constant operands are canonicalized to RHS. 1805 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1806 SDValue Ops[] = {N1, N0}; 1807 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1808 N->getFlags()); 1809 if (CSENode) 1810 return SDValue(CSENode, 0); 1811 } 1812 } 1813 1814 return RV; 1815 } 1816 1817 /// Given a node, return its input chain if it has one, otherwise return a null 1818 /// sd operand. 1819 static SDValue getInputChainForNode(SDNode *N) { 1820 if (unsigned NumOps = N->getNumOperands()) { 1821 if (N->getOperand(0).getValueType() == MVT::Other) 1822 return N->getOperand(0); 1823 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1824 return N->getOperand(NumOps-1); 1825 for (unsigned i = 1; i < NumOps-1; ++i) 1826 if (N->getOperand(i).getValueType() == MVT::Other) 1827 return N->getOperand(i); 1828 } 1829 return SDValue(); 1830 } 1831 1832 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1833 // If N has two operands, where one has an input chain equal to the other, 1834 // the 'other' chain is redundant. 1835 if (N->getNumOperands() == 2) { 1836 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1837 return N->getOperand(0); 1838 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1839 return N->getOperand(1); 1840 } 1841 1842 // Don't simplify token factors if optnone. 1843 if (OptLevel == CodeGenOpt::None) 1844 return SDValue(); 1845 1846 // Don't simplify the token factor if the node itself has too many operands. 1847 if (N->getNumOperands() > TokenFactorInlineLimit) 1848 return SDValue(); 1849 1850 // If the sole user is a token factor, we should make sure we have a 1851 // chance to merge them together. This prevents TF chains from inhibiting 1852 // optimizations. 1853 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1854 AddToWorklist(*(N->use_begin())); 1855 1856 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1857 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1858 SmallPtrSet<SDNode*, 16> SeenOps; 1859 bool Changed = false; // If we should replace this token factor. 1860 1861 // Start out with this token factor. 1862 TFs.push_back(N); 1863 1864 // Iterate through token factors. The TFs grows when new token factors are 1865 // encountered. 1866 for (unsigned i = 0; i < TFs.size(); ++i) { 1867 // Limit number of nodes to inline, to avoid quadratic compile times. 1868 // We have to add the outstanding Token Factors to Ops, otherwise we might 1869 // drop Ops from the resulting Token Factors. 1870 if (Ops.size() > TokenFactorInlineLimit) { 1871 for (unsigned j = i; j < TFs.size(); j++) 1872 Ops.emplace_back(TFs[j], 0); 1873 // Drop unprocessed Token Factors from TFs, so we do not add them to the 1874 // combiner worklist later. 1875 TFs.resize(i); 1876 break; 1877 } 1878 1879 SDNode *TF = TFs[i]; 1880 // Check each of the operands. 1881 for (const SDValue &Op : TF->op_values()) { 1882 switch (Op.getOpcode()) { 1883 case ISD::EntryToken: 1884 // Entry tokens don't need to be added to the list. They are 1885 // redundant. 1886 Changed = true; 1887 break; 1888 1889 case ISD::TokenFactor: 1890 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1891 // Queue up for processing. 1892 TFs.push_back(Op.getNode()); 1893 Changed = true; 1894 break; 1895 } 1896 LLVM_FALLTHROUGH; 1897 1898 default: 1899 // Only add if it isn't already in the list. 1900 if (SeenOps.insert(Op.getNode()).second) 1901 Ops.push_back(Op); 1902 else 1903 Changed = true; 1904 break; 1905 } 1906 } 1907 } 1908 1909 // Re-visit inlined Token Factors, to clean them up in case they have been 1910 // removed. Skip the first Token Factor, as this is the current node. 1911 for (unsigned i = 1, e = TFs.size(); i < e; i++) 1912 AddToWorklist(TFs[i]); 1913 1914 // Remove Nodes that are chained to another node in the list. Do so 1915 // by walking up chains breath-first stopping when we've seen 1916 // another operand. In general we must climb to the EntryNode, but we can exit 1917 // early if we find all remaining work is associated with just one operand as 1918 // no further pruning is possible. 1919 1920 // List of nodes to search through and original Ops from which they originate. 1921 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1922 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1923 SmallPtrSet<SDNode *, 16> SeenChains; 1924 bool DidPruneOps = false; 1925 1926 unsigned NumLeftToConsider = 0; 1927 for (const SDValue &Op : Ops) { 1928 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1929 OpWorkCount.push_back(1); 1930 } 1931 1932 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1933 // If this is an Op, we can remove the op from the list. Remark any 1934 // search associated with it as from the current OpNumber. 1935 if (SeenOps.contains(Op)) { 1936 Changed = true; 1937 DidPruneOps = true; 1938 unsigned OrigOpNumber = 0; 1939 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1940 OrigOpNumber++; 1941 assert((OrigOpNumber != Ops.size()) && 1942 "expected to find TokenFactor Operand"); 1943 // Re-mark worklist from OrigOpNumber to OpNumber 1944 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1945 if (Worklist[i].second == OrigOpNumber) { 1946 Worklist[i].second = OpNumber; 1947 } 1948 } 1949 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1950 OpWorkCount[OrigOpNumber] = 0; 1951 NumLeftToConsider--; 1952 } 1953 // Add if it's a new chain 1954 if (SeenChains.insert(Op).second) { 1955 OpWorkCount[OpNumber]++; 1956 Worklist.push_back(std::make_pair(Op, OpNumber)); 1957 } 1958 }; 1959 1960 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1961 // We need at least be consider at least 2 Ops to prune. 1962 if (NumLeftToConsider <= 1) 1963 break; 1964 auto CurNode = Worklist[i].first; 1965 auto CurOpNumber = Worklist[i].second; 1966 assert((OpWorkCount[CurOpNumber] > 0) && 1967 "Node should not appear in worklist"); 1968 switch (CurNode->getOpcode()) { 1969 case ISD::EntryToken: 1970 // Hitting EntryToken is the only way for the search to terminate without 1971 // hitting 1972 // another operand's search. Prevent us from marking this operand 1973 // considered. 1974 NumLeftToConsider++; 1975 break; 1976 case ISD::TokenFactor: 1977 for (const SDValue &Op : CurNode->op_values()) 1978 AddToWorklist(i, Op.getNode(), CurOpNumber); 1979 break; 1980 case ISD::LIFETIME_START: 1981 case ISD::LIFETIME_END: 1982 case ISD::CopyFromReg: 1983 case ISD::CopyToReg: 1984 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 1985 break; 1986 default: 1987 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 1988 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 1989 break; 1990 } 1991 OpWorkCount[CurOpNumber]--; 1992 if (OpWorkCount[CurOpNumber] == 0) 1993 NumLeftToConsider--; 1994 } 1995 1996 // If we've changed things around then replace token factor. 1997 if (Changed) { 1998 SDValue Result; 1999 if (Ops.empty()) { 2000 // The entry token is the only possible outcome. 2001 Result = DAG.getEntryNode(); 2002 } else { 2003 if (DidPruneOps) { 2004 SmallVector<SDValue, 8> PrunedOps; 2005 // 2006 for (const SDValue &Op : Ops) { 2007 if (SeenChains.count(Op.getNode()) == 0) 2008 PrunedOps.push_back(Op); 2009 } 2010 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 2011 } else { 2012 Result = DAG.getTokenFactor(SDLoc(N), Ops); 2013 } 2014 } 2015 return Result; 2016 } 2017 return SDValue(); 2018 } 2019 2020 /// MERGE_VALUES can always be eliminated. 2021 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 2022 WorklistRemover DeadNodes(*this); 2023 // Replacing results may cause a different MERGE_VALUES to suddenly 2024 // be CSE'd with N, and carry its uses with it. Iterate until no 2025 // uses remain, to ensure that the node can be safely deleted. 2026 // First add the users of this node to the work list so that they 2027 // can be tried again once they have new operands. 2028 AddUsersToWorklist(N); 2029 do { 2030 // Do as a single replacement to avoid rewalking use lists. 2031 SmallVector<SDValue, 8> Ops; 2032 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 2033 Ops.push_back(N->getOperand(i)); 2034 DAG.ReplaceAllUsesWith(N, Ops.data()); 2035 } while (!N->use_empty()); 2036 deleteAndRecombine(N); 2037 return SDValue(N, 0); // Return N so it doesn't get rechecked! 2038 } 2039 2040 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 2041 /// ConstantSDNode pointer else nullptr. 2042 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 2043 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 2044 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 2045 } 2046 2047 /// Return true if 'Use' is a load or a store that uses N as its base pointer 2048 /// and that N may be folded in the load / store addressing mode. 2049 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, 2050 const TargetLowering &TLI) { 2051 EVT VT; 2052 unsigned AS; 2053 2054 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 2055 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2056 return false; 2057 VT = LD->getMemoryVT(); 2058 AS = LD->getAddressSpace(); 2059 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 2060 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2061 return false; 2062 VT = ST->getMemoryVT(); 2063 AS = ST->getAddressSpace(); 2064 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { 2065 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2066 return false; 2067 VT = LD->getMemoryVT(); 2068 AS = LD->getAddressSpace(); 2069 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { 2070 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2071 return false; 2072 VT = ST->getMemoryVT(); 2073 AS = ST->getAddressSpace(); 2074 } else 2075 return false; 2076 2077 TargetLowering::AddrMode AM; 2078 if (N->getOpcode() == ISD::ADD) { 2079 AM.HasBaseReg = true; 2080 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2081 if (Offset) 2082 // [reg +/- imm] 2083 AM.BaseOffs = Offset->getSExtValue(); 2084 else 2085 // [reg +/- reg] 2086 AM.Scale = 1; 2087 } else if (N->getOpcode() == ISD::SUB) { 2088 AM.HasBaseReg = true; 2089 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2090 if (Offset) 2091 // [reg +/- imm] 2092 AM.BaseOffs = -Offset->getSExtValue(); 2093 else 2094 // [reg +/- reg] 2095 AM.Scale = 1; 2096 } else 2097 return false; 2098 2099 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 2100 VT.getTypeForEVT(*DAG.getContext()), AS); 2101 } 2102 2103 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 2104 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 2105 "Unexpected binary operator"); 2106 2107 // Don't do this unless the old select is going away. We want to eliminate the 2108 // binary operator, not replace a binop with a select. 2109 // TODO: Handle ISD::SELECT_CC. 2110 unsigned SelOpNo = 0; 2111 SDValue Sel = BO->getOperand(0); 2112 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 2113 SelOpNo = 1; 2114 Sel = BO->getOperand(1); 2115 } 2116 2117 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 2118 return SDValue(); 2119 2120 SDValue CT = Sel.getOperand(1); 2121 if (!isConstantOrConstantVector(CT, true) && 2122 !DAG.isConstantFPBuildVectorOrConstantFP(CT)) 2123 return SDValue(); 2124 2125 SDValue CF = Sel.getOperand(2); 2126 if (!isConstantOrConstantVector(CF, true) && 2127 !DAG.isConstantFPBuildVectorOrConstantFP(CF)) 2128 return SDValue(); 2129 2130 // Bail out if any constants are opaque because we can't constant fold those. 2131 // The exception is "and" and "or" with either 0 or -1 in which case we can 2132 // propagate non constant operands into select. I.e.: 2133 // and (select Cond, 0, -1), X --> select Cond, 0, X 2134 // or X, (select Cond, -1, 0) --> select Cond, -1, X 2135 auto BinOpcode = BO->getOpcode(); 2136 bool CanFoldNonConst = 2137 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 2138 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 2139 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 2140 2141 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 2142 if (!CanFoldNonConst && 2143 !isConstantOrConstantVector(CBO, true) && 2144 !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) 2145 return SDValue(); 2146 2147 EVT VT = BO->getValueType(0); 2148 2149 // We have a select-of-constants followed by a binary operator with a 2150 // constant. Eliminate the binop by pulling the constant math into the select. 2151 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2152 SDLoc DL(Sel); 2153 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2154 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2155 if (!CanFoldNonConst && !NewCT.isUndef() && 2156 !isConstantOrConstantVector(NewCT, true) && 2157 !DAG.isConstantFPBuildVectorOrConstantFP(NewCT)) 2158 return SDValue(); 2159 2160 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2161 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2162 if (!CanFoldNonConst && !NewCF.isUndef() && 2163 !isConstantOrConstantVector(NewCF, true) && 2164 !DAG.isConstantFPBuildVectorOrConstantFP(NewCF)) 2165 return SDValue(); 2166 2167 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2168 SelectOp->setFlags(BO->getFlags()); 2169 return SelectOp; 2170 } 2171 2172 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2173 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2174 "Expecting add or sub"); 2175 2176 // Match a constant operand and a zext operand for the math instruction: 2177 // add Z, C 2178 // sub C, Z 2179 bool IsAdd = N->getOpcode() == ISD::ADD; 2180 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2181 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2182 auto *CN = dyn_cast<ConstantSDNode>(C); 2183 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2184 return SDValue(); 2185 2186 // Match the zext operand as a setcc of a boolean. 2187 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2188 Z.getOperand(0).getValueType() != MVT::i1) 2189 return SDValue(); 2190 2191 // Match the compare as: setcc (X & 1), 0, eq. 2192 SDValue SetCC = Z.getOperand(0); 2193 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2194 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2195 SetCC.getOperand(0).getOpcode() != ISD::AND || 2196 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2197 return SDValue(); 2198 2199 // We are adding/subtracting a constant and an inverted low bit. Turn that 2200 // into a subtract/add of the low bit with incremented/decremented constant: 2201 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2202 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2203 EVT VT = C.getValueType(); 2204 SDLoc DL(N); 2205 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2206 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2207 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2208 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2209 } 2210 2211 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2212 /// a shift and add with a different constant. 2213 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2214 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2215 "Expecting add or sub"); 2216 2217 // We need a constant operand for the add/sub, and the other operand is a 2218 // logical shift right: add (srl), C or sub C, (srl). 2219 bool IsAdd = N->getOpcode() == ISD::ADD; 2220 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2221 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2222 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || 2223 ShiftOp.getOpcode() != ISD::SRL) 2224 return SDValue(); 2225 2226 // The shift must be of a 'not' value. 2227 SDValue Not = ShiftOp.getOperand(0); 2228 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2229 return SDValue(); 2230 2231 // The shift must be moving the sign bit to the least-significant-bit. 2232 EVT VT = ShiftOp.getValueType(); 2233 SDValue ShAmt = ShiftOp.getOperand(1); 2234 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2235 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) 2236 return SDValue(); 2237 2238 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2239 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2240 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2241 SDLoc DL(N); 2242 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2243 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2244 if (SDValue NewC = 2245 DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, 2246 {ConstantOp, DAG.getConstant(1, DL, VT)})) 2247 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); 2248 return SDValue(); 2249 } 2250 2251 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2252 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2253 /// are no common bits set in the operands). 2254 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2255 SDValue N0 = N->getOperand(0); 2256 SDValue N1 = N->getOperand(1); 2257 EVT VT = N0.getValueType(); 2258 SDLoc DL(N); 2259 2260 // fold (add x, undef) -> undef 2261 if (N0.isUndef()) 2262 return N0; 2263 if (N1.isUndef()) 2264 return N1; 2265 2266 // fold (add c1, c2) -> c1+c2 2267 if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1})) 2268 return C; 2269 2270 // canonicalize constant to RHS 2271 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2272 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2273 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2274 2275 // fold vector ops 2276 if (VT.isVector()) { 2277 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 2278 return FoldedVOp; 2279 2280 // fold (add x, 0) -> x, vector edition 2281 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2282 return N0; 2283 } 2284 2285 // fold (add x, 0) -> x 2286 if (isNullConstant(N1)) 2287 return N0; 2288 2289 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2290 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2291 if (N0.getOpcode() == ISD::SUB && 2292 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2293 SDValue Sub = 2294 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); 2295 assert(Sub && "Constant folding failed"); 2296 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2297 } 2298 2299 // fold ((c1-A)+c2) -> (c1+c2)-A 2300 if (N0.getOpcode() == ISD::SUB && 2301 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2302 SDValue Add = 2303 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); 2304 assert(Add && "Constant folding failed"); 2305 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2306 } 2307 2308 // add (sext i1 X), 1 -> zext (not i1 X) 2309 // We don't transform this pattern: 2310 // add (zext i1 X), -1 -> sext (not i1 X) 2311 // because most (?) targets generate better code for the zext form. 2312 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2313 isOneOrOneSplat(N1)) { 2314 SDValue X = N0.getOperand(0); 2315 if ((!LegalOperations || 2316 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2317 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2318 X.getScalarValueSizeInBits() == 1) { 2319 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2320 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2321 } 2322 } 2323 2324 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is 2325 // equivalent to (add x, c0). 2326 if (N0.getOpcode() == ISD::OR && 2327 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2328 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2329 if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, 2330 {N1, N0.getOperand(1)})) 2331 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2332 } 2333 } 2334 2335 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2336 return NewSel; 2337 2338 // reassociate add 2339 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { 2340 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2341 return RADD; 2342 2343 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is 2344 // equivalent to (add x, c). 2345 auto ReassociateAddOr = [&](SDValue N0, SDValue N1) { 2346 if (N0.getOpcode() == ISD::OR && N0.hasOneUse() && 2347 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2348 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2349 return DAG.getNode(ISD::ADD, DL, VT, 2350 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), 2351 N0.getOperand(1)); 2352 } 2353 return SDValue(); 2354 }; 2355 if (SDValue Add = ReassociateAddOr(N0, N1)) 2356 return Add; 2357 if (SDValue Add = ReassociateAddOr(N1, N0)) 2358 return Add; 2359 } 2360 // fold ((0-A) + B) -> B-A 2361 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2362 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2363 2364 // fold (A + (0-B)) -> A-B 2365 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2366 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2367 2368 // fold (A+(B-A)) -> B 2369 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2370 return N1.getOperand(0); 2371 2372 // fold ((B-A)+A) -> B 2373 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2374 return N0.getOperand(0); 2375 2376 // fold ((A-B)+(C-A)) -> (C-B) 2377 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2378 N0.getOperand(0) == N1.getOperand(1)) 2379 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2380 N0.getOperand(1)); 2381 2382 // fold ((A-B)+(B-C)) -> (A-C) 2383 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2384 N0.getOperand(1) == N1.getOperand(0)) 2385 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2386 N1.getOperand(1)); 2387 2388 // fold (A+(B-(A+C))) to (B-C) 2389 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2390 N0 == N1.getOperand(1).getOperand(0)) 2391 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2392 N1.getOperand(1).getOperand(1)); 2393 2394 // fold (A+(B-(C+A))) to (B-C) 2395 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2396 N0 == N1.getOperand(1).getOperand(1)) 2397 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2398 N1.getOperand(1).getOperand(0)); 2399 2400 // fold (A+((B-A)+or-C)) to (B+or-C) 2401 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2402 N1.getOperand(0).getOpcode() == ISD::SUB && 2403 N0 == N1.getOperand(0).getOperand(1)) 2404 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2405 N1.getOperand(1)); 2406 2407 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2408 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2409 SDValue N00 = N0.getOperand(0); 2410 SDValue N01 = N0.getOperand(1); 2411 SDValue N10 = N1.getOperand(0); 2412 SDValue N11 = N1.getOperand(1); 2413 2414 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2415 return DAG.getNode(ISD::SUB, DL, VT, 2416 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2417 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2418 } 2419 2420 // fold (add (umax X, C), -C) --> (usubsat X, C) 2421 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2422 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2423 return (!Max && !Op) || 2424 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2425 }; 2426 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2427 /*AllowUndefs*/ true)) 2428 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2429 N0.getOperand(1)); 2430 } 2431 2432 if (SimplifyDemandedBits(SDValue(N, 0))) 2433 return SDValue(N, 0); 2434 2435 if (isOneOrOneSplat(N1)) { 2436 // fold (add (xor a, -1), 1) -> (sub 0, a) 2437 if (isBitwiseNot(N0)) 2438 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2439 N0.getOperand(0)); 2440 2441 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2442 if (N0.getOpcode() == ISD::ADD) { 2443 SDValue A, Xor; 2444 2445 if (isBitwiseNot(N0.getOperand(0))) { 2446 A = N0.getOperand(1); 2447 Xor = N0.getOperand(0); 2448 } else if (isBitwiseNot(N0.getOperand(1))) { 2449 A = N0.getOperand(0); 2450 Xor = N0.getOperand(1); 2451 } 2452 2453 if (Xor) 2454 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2455 } 2456 2457 // Look for: 2458 // add (add x, y), 1 2459 // And if the target does not like this form then turn into: 2460 // sub y, (xor x, -1) 2461 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2462 N0.getOpcode() == ISD::ADD) { 2463 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2464 DAG.getAllOnesConstant(DL, VT)); 2465 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); 2466 } 2467 } 2468 2469 // (x - y) + -1 -> add (xor y, -1), x 2470 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2471 isAllOnesOrAllOnesSplat(N1)) { 2472 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2473 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2474 } 2475 2476 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2477 return Combined; 2478 2479 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2480 return Combined; 2481 2482 return SDValue(); 2483 } 2484 2485 SDValue DAGCombiner::visitADD(SDNode *N) { 2486 SDValue N0 = N->getOperand(0); 2487 SDValue N1 = N->getOperand(1); 2488 EVT VT = N0.getValueType(); 2489 SDLoc DL(N); 2490 2491 if (SDValue Combined = visitADDLike(N)) 2492 return Combined; 2493 2494 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2495 return V; 2496 2497 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2498 return V; 2499 2500 // fold (a+b) -> (a|b) iff a and b share no bits. 2501 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2502 DAG.haveNoCommonBitsSet(N0, N1)) 2503 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2504 2505 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). 2506 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { 2507 const APInt &C0 = N0->getConstantOperandAPInt(0); 2508 const APInt &C1 = N1->getConstantOperandAPInt(0); 2509 return DAG.getVScale(DL, VT, C0 + C1); 2510 } 2511 2512 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) 2513 if ((N0.getOpcode() == ISD::ADD) && 2514 (N0.getOperand(1).getOpcode() == ISD::VSCALE) && 2515 (N1.getOpcode() == ISD::VSCALE)) { 2516 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2517 const APInt &VS1 = N1->getConstantOperandAPInt(0); 2518 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); 2519 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); 2520 } 2521 2522 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2)) 2523 if (N0.getOpcode() == ISD::STEP_VECTOR && 2524 N1.getOpcode() == ISD::STEP_VECTOR) { 2525 const APInt &C0 = N0->getConstantOperandAPInt(0); 2526 const APInt &C1 = N1->getConstantOperandAPInt(0); 2527 APInt NewStep = C0 + C1; 2528 return DAG.getStepVector(DL, VT, NewStep); 2529 } 2530 2531 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2) 2532 if ((N0.getOpcode() == ISD::ADD) && 2533 (N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR) && 2534 (N1.getOpcode() == ISD::STEP_VECTOR)) { 2535 const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2536 const APInt &SV1 = N1->getConstantOperandAPInt(0); 2537 APInt NewStep = SV0 + SV1; 2538 SDValue SV = DAG.getStepVector(DL, VT, NewStep); 2539 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV); 2540 } 2541 2542 return SDValue(); 2543 } 2544 2545 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2546 unsigned Opcode = N->getOpcode(); 2547 SDValue N0 = N->getOperand(0); 2548 SDValue N1 = N->getOperand(1); 2549 EVT VT = N0.getValueType(); 2550 SDLoc DL(N); 2551 2552 // fold (add_sat x, undef) -> -1 2553 if (N0.isUndef() || N1.isUndef()) 2554 return DAG.getAllOnesConstant(DL, VT); 2555 2556 // fold (add_sat c1, c2) -> c3 2557 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 2558 return C; 2559 2560 // canonicalize constant to RHS 2561 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2562 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2563 return DAG.getNode(Opcode, DL, VT, N1, N0); 2564 2565 // fold vector ops 2566 if (VT.isVector()) { 2567 // TODO SimplifyVBinOp 2568 2569 // fold (add_sat x, 0) -> x, vector edition 2570 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2571 return N0; 2572 } 2573 2574 // fold (add_sat x, 0) -> x 2575 if (isNullConstant(N1)) 2576 return N0; 2577 2578 // If it cannot overflow, transform into an add. 2579 if (Opcode == ISD::UADDSAT) 2580 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2581 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2582 2583 return SDValue(); 2584 } 2585 2586 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2587 bool Masked = false; 2588 2589 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2590 while (true) { 2591 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2592 V = V.getOperand(0); 2593 continue; 2594 } 2595 2596 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2597 Masked = true; 2598 V = V.getOperand(0); 2599 continue; 2600 } 2601 2602 break; 2603 } 2604 2605 // If this is not a carry, return. 2606 if (V.getResNo() != 1) 2607 return SDValue(); 2608 2609 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2610 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2611 return SDValue(); 2612 2613 EVT VT = V.getNode()->getValueType(0); 2614 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2615 return SDValue(); 2616 2617 // If the result is masked, then no matter what kind of bool it is we can 2618 // return. If it isn't, then we need to make sure the bool type is either 0 or 2619 // 1 and not other values. 2620 if (Masked || 2621 TLI.getBooleanContents(V.getValueType()) == 2622 TargetLoweringBase::ZeroOrOneBooleanContent) 2623 return V; 2624 2625 return SDValue(); 2626 } 2627 2628 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2629 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2630 /// the opcode and bypass the mask operation. 2631 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2632 SelectionDAG &DAG, const SDLoc &DL) { 2633 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2634 return SDValue(); 2635 2636 EVT VT = N0.getValueType(); 2637 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2638 return SDValue(); 2639 2640 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2641 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2642 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2643 } 2644 2645 /// Helper for doing combines based on N0 and N1 being added to each other. 2646 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2647 SDNode *LocReference) { 2648 EVT VT = N0.getValueType(); 2649 SDLoc DL(LocReference); 2650 2651 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2652 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2653 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2654 return DAG.getNode(ISD::SUB, DL, VT, N0, 2655 DAG.getNode(ISD::SHL, DL, VT, 2656 N1.getOperand(0).getOperand(1), 2657 N1.getOperand(1))); 2658 2659 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2660 return V; 2661 2662 // Look for: 2663 // add (add x, 1), y 2664 // And if the target does not like this form then turn into: 2665 // sub y, (xor x, -1) 2666 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2667 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { 2668 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2669 DAG.getAllOnesConstant(DL, VT)); 2670 return DAG.getNode(ISD::SUB, DL, VT, N1, Not); 2671 } 2672 2673 // Hoist one-use subtraction by non-opaque constant: 2674 // (x - C) + y -> (x + y) - C 2675 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2676 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2677 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2678 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2679 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2680 } 2681 // Hoist one-use subtraction from non-opaque constant: 2682 // (C - x) + y -> (y - x) + C 2683 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2684 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 2685 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2686 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); 2687 } 2688 2689 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2690 // rather than 'add 0/-1' (the zext should get folded). 2691 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2692 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2693 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2694 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2695 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2696 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2697 } 2698 2699 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2700 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2701 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2702 if (TN->getVT() == MVT::i1) { 2703 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2704 DAG.getConstant(1, DL, VT)); 2705 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2706 } 2707 } 2708 2709 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2710 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2711 N1.getResNo() == 0) 2712 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2713 N0, N1.getOperand(0), N1.getOperand(2)); 2714 2715 // (add X, Carry) -> (addcarry X, 0, Carry) 2716 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2717 if (SDValue Carry = getAsCarry(TLI, N1)) 2718 return DAG.getNode(ISD::ADDCARRY, DL, 2719 DAG.getVTList(VT, Carry.getValueType()), N0, 2720 DAG.getConstant(0, DL, VT), Carry); 2721 2722 return SDValue(); 2723 } 2724 2725 SDValue DAGCombiner::visitADDC(SDNode *N) { 2726 SDValue N0 = N->getOperand(0); 2727 SDValue N1 = N->getOperand(1); 2728 EVT VT = N0.getValueType(); 2729 SDLoc DL(N); 2730 2731 // If the flag result is dead, turn this into an ADD. 2732 if (!N->hasAnyUseOfValue(1)) 2733 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2734 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2735 2736 // canonicalize constant to RHS. 2737 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2738 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2739 if (N0C && !N1C) 2740 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2741 2742 // fold (addc x, 0) -> x + no carry out 2743 if (isNullConstant(N1)) 2744 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2745 DL, MVT::Glue)); 2746 2747 // If it cannot overflow, transform into an add. 2748 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2749 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2750 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2751 2752 return SDValue(); 2753 } 2754 2755 /** 2756 * Flips a boolean if it is cheaper to compute. If the Force parameters is set, 2757 * then the flip also occurs if computing the inverse is the same cost. 2758 * This function returns an empty SDValue in case it cannot flip the boolean 2759 * without increasing the cost of the computation. If you want to flip a boolean 2760 * no matter what, use DAG.getLogicalNOT. 2761 */ 2762 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, 2763 const TargetLowering &TLI, 2764 bool Force) { 2765 if (Force && isa<ConstantSDNode>(V)) 2766 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2767 2768 if (V.getOpcode() != ISD::XOR) 2769 return SDValue(); 2770 2771 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2772 if (!Const) 2773 return SDValue(); 2774 2775 EVT VT = V.getValueType(); 2776 2777 bool IsFlip = false; 2778 switch(TLI.getBooleanContents(VT)) { 2779 case TargetLowering::ZeroOrOneBooleanContent: 2780 IsFlip = Const->isOne(); 2781 break; 2782 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2783 IsFlip = Const->isAllOnes(); 2784 break; 2785 case TargetLowering::UndefinedBooleanContent: 2786 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2787 break; 2788 } 2789 2790 if (IsFlip) 2791 return V.getOperand(0); 2792 if (Force) 2793 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2794 return SDValue(); 2795 } 2796 2797 SDValue DAGCombiner::visitADDO(SDNode *N) { 2798 SDValue N0 = N->getOperand(0); 2799 SDValue N1 = N->getOperand(1); 2800 EVT VT = N0.getValueType(); 2801 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2802 2803 EVT CarryVT = N->getValueType(1); 2804 SDLoc DL(N); 2805 2806 // If the flag result is dead, turn this into an ADD. 2807 if (!N->hasAnyUseOfValue(1)) 2808 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2809 DAG.getUNDEF(CarryVT)); 2810 2811 // canonicalize constant to RHS. 2812 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2813 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2814 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2815 2816 // fold (addo x, 0) -> x + no carry out 2817 if (isNullOrNullSplat(N1)) 2818 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2819 2820 if (!IsSigned) { 2821 // If it cannot overflow, transform into an add. 2822 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2823 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2824 DAG.getConstant(0, DL, CarryVT)); 2825 2826 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2827 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2828 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2829 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2830 return CombineTo( 2831 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 2832 } 2833 2834 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2835 return Combined; 2836 2837 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2838 return Combined; 2839 } 2840 2841 return SDValue(); 2842 } 2843 2844 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2845 EVT VT = N0.getValueType(); 2846 if (VT.isVector()) 2847 return SDValue(); 2848 2849 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2850 // If Y + 1 cannot overflow. 2851 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2852 SDValue Y = N1.getOperand(0); 2853 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2854 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2855 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2856 N1.getOperand(2)); 2857 } 2858 2859 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2860 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2861 if (SDValue Carry = getAsCarry(TLI, N1)) 2862 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2863 DAG.getConstant(0, SDLoc(N), VT), Carry); 2864 2865 return SDValue(); 2866 } 2867 2868 SDValue DAGCombiner::visitADDE(SDNode *N) { 2869 SDValue N0 = N->getOperand(0); 2870 SDValue N1 = N->getOperand(1); 2871 SDValue CarryIn = N->getOperand(2); 2872 2873 // canonicalize constant to RHS 2874 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2875 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2876 if (N0C && !N1C) 2877 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2878 N1, N0, CarryIn); 2879 2880 // fold (adde x, y, false) -> (addc x, y) 2881 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2882 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2883 2884 return SDValue(); 2885 } 2886 2887 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2888 SDValue N0 = N->getOperand(0); 2889 SDValue N1 = N->getOperand(1); 2890 SDValue CarryIn = N->getOperand(2); 2891 SDLoc DL(N); 2892 2893 // canonicalize constant to RHS 2894 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2895 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2896 if (N0C && !N1C) 2897 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2898 2899 // fold (addcarry x, y, false) -> (uaddo x, y) 2900 if (isNullConstant(CarryIn)) { 2901 if (!LegalOperations || 2902 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2903 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2904 } 2905 2906 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 2907 if (isNullConstant(N0) && isNullConstant(N1)) { 2908 EVT VT = N0.getValueType(); 2909 EVT CarryVT = CarryIn.getValueType(); 2910 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 2911 AddToWorklist(CarryExt.getNode()); 2912 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 2913 DAG.getConstant(1, DL, VT)), 2914 DAG.getConstant(0, DL, CarryVT)); 2915 } 2916 2917 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 2918 return Combined; 2919 2920 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 2921 return Combined; 2922 2923 return SDValue(); 2924 } 2925 2926 SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { 2927 SDValue N0 = N->getOperand(0); 2928 SDValue N1 = N->getOperand(1); 2929 SDValue CarryIn = N->getOperand(2); 2930 SDLoc DL(N); 2931 2932 // canonicalize constant to RHS 2933 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2934 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2935 if (N0C && !N1C) 2936 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); 2937 2938 // fold (saddo_carry x, y, false) -> (saddo x, y) 2939 if (isNullConstant(CarryIn)) { 2940 if (!LegalOperations || 2941 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) 2942 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); 2943 } 2944 2945 return SDValue(); 2946 } 2947 2948 /** 2949 * If we are facing some sort of diamond carry propapagtion pattern try to 2950 * break it up to generate something like: 2951 * (addcarry X, 0, (addcarry A, B, Z):Carry) 2952 * 2953 * The end result is usually an increase in operation required, but because the 2954 * carry is now linearized, other tranforms can kick in and optimize the DAG. 2955 * 2956 * Patterns typically look something like 2957 * (uaddo A, B) 2958 * / \ 2959 * Carry Sum 2960 * | \ 2961 * | (addcarry *, 0, Z) 2962 * | / 2963 * \ Carry 2964 * | / 2965 * (addcarry X, *, *) 2966 * 2967 * But numerous variation exist. Our goal is to identify A, B, X and Z and 2968 * produce a combine with a single path for carry propagation. 2969 */ 2970 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 2971 SDValue X, SDValue Carry0, SDValue Carry1, 2972 SDNode *N) { 2973 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) 2974 return SDValue(); 2975 if (Carry1.getOpcode() != ISD::UADDO) 2976 return SDValue(); 2977 2978 SDValue Z; 2979 2980 /** 2981 * First look for a suitable Z. It will present itself in the form of 2982 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true 2983 */ 2984 if (Carry0.getOpcode() == ISD::ADDCARRY && 2985 isNullConstant(Carry0.getOperand(1))) { 2986 Z = Carry0.getOperand(2); 2987 } else if (Carry0.getOpcode() == ISD::UADDO && 2988 isOneConstant(Carry0.getOperand(1))) { 2989 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); 2990 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); 2991 } else { 2992 // We couldn't find a suitable Z. 2993 return SDValue(); 2994 } 2995 2996 2997 auto cancelDiamond = [&](SDValue A,SDValue B) { 2998 SDLoc DL(N); 2999 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); 3000 Combiner.AddToWorklist(NewY.getNode()); 3001 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, 3002 DAG.getConstant(0, DL, X.getValueType()), 3003 NewY.getValue(1)); 3004 }; 3005 3006 /** 3007 * (uaddo A, B) 3008 * | 3009 * Sum 3010 * | 3011 * (addcarry *, 0, Z) 3012 */ 3013 if (Carry0.getOperand(0) == Carry1.getValue(0)) { 3014 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); 3015 } 3016 3017 /** 3018 * (addcarry A, 0, Z) 3019 * | 3020 * Sum 3021 * | 3022 * (uaddo *, B) 3023 */ 3024 if (Carry1.getOperand(0) == Carry0.getValue(0)) { 3025 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); 3026 } 3027 3028 if (Carry1.getOperand(1) == Carry0.getValue(0)) { 3029 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); 3030 } 3031 3032 return SDValue(); 3033 } 3034 3035 // If we are facing some sort of diamond carry/borrow in/out pattern try to 3036 // match patterns like: 3037 // 3038 // (uaddo A, B) CarryIn 3039 // | \ | 3040 // | \ | 3041 // PartialSum PartialCarryOutX / 3042 // | | / 3043 // | ____|____________/ 3044 // | / | 3045 // (uaddo *, *) \________ 3046 // | \ \ 3047 // | \ | 3048 // | PartialCarryOutY | 3049 // | \ | 3050 // | \ / 3051 // AddCarrySum | ______/ 3052 // | / 3053 // CarryOut = (or *, *) 3054 // 3055 // And generate ADDCARRY (or SUBCARRY) with two result values: 3056 // 3057 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) 3058 // 3059 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with 3060 // a single path for carry/borrow out propagation: 3061 static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 3062 const TargetLowering &TLI, SDValue Carry0, 3063 SDValue Carry1, SDNode *N) { 3064 if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) 3065 return SDValue(); 3066 unsigned Opcode = Carry0.getOpcode(); 3067 if (Opcode != Carry1.getOpcode()) 3068 return SDValue(); 3069 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) 3070 return SDValue(); 3071 3072 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the 3073 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in 3074 // the above ASCII art.) 3075 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3076 Carry1.getOperand(1) != Carry0.getValue(0)) 3077 std::swap(Carry0, Carry1); 3078 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3079 Carry1.getOperand(1) != Carry0.getValue(0)) 3080 return SDValue(); 3081 3082 // The carry in value must be on the righthand side for subtraction. 3083 unsigned CarryInOperandNum = 3084 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; 3085 if (Opcode == ISD::USUBO && CarryInOperandNum != 1) 3086 return SDValue(); 3087 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); 3088 3089 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; 3090 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) 3091 return SDValue(); 3092 3093 // Verify that the carry/borrow in is plausibly a carry/borrow bit. 3094 // TODO: make getAsCarry() aware of how partial carries are merged. 3095 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) 3096 return SDValue(); 3097 CarryIn = CarryIn.getOperand(0); 3098 if (CarryIn.getValueType() != MVT::i1) 3099 return SDValue(); 3100 3101 SDLoc DL(N); 3102 SDValue Merged = 3103 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), 3104 Carry0.getOperand(1), CarryIn); 3105 3106 // Please note that because we have proven that the result of the UADDO/USUBO 3107 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can 3108 // therefore prove that if the first UADDO/USUBO overflows, the second 3109 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the 3110 // maximum value. 3111 // 3112 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry 3113 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) 3114 // 3115 // This is important because it means that OR and XOR can be used to merge 3116 // carry flags; and that AND can return a constant zero. 3117 // 3118 // TODO: match other operations that can merge flags (ADD, etc) 3119 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); 3120 if (N->getOpcode() == ISD::AND) 3121 return DAG.getConstant(0, DL, MVT::i1); 3122 return Merged.getValue(1); 3123 } 3124 3125 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 3126 SDNode *N) { 3127 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. 3128 if (isBitwiseNot(N0)) 3129 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { 3130 SDLoc DL(N); 3131 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, 3132 N0.getOperand(0), NotC); 3133 return CombineTo( 3134 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 3135 } 3136 3137 // Iff the flag result is dead: 3138 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 3139 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo 3140 // or the dependency between the instructions. 3141 if ((N0.getOpcode() == ISD::ADD || 3142 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && 3143 N0.getValue(1) != CarryIn)) && 3144 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 3145 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 3146 N0.getOperand(0), N0.getOperand(1), CarryIn); 3147 3148 /** 3149 * When one of the addcarry argument is itself a carry, we may be facing 3150 * a diamond carry propagation. In which case we try to transform the DAG 3151 * to ensure linear carry propagation if that is possible. 3152 */ 3153 if (auto Y = getAsCarry(TLI, N1)) { 3154 // Because both are carries, Y and Z can be swapped. 3155 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) 3156 return R; 3157 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) 3158 return R; 3159 } 3160 3161 return SDValue(); 3162 } 3163 3164 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a 3165 // clamp/truncation if necessary. 3166 static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, 3167 SDValue RHS, SelectionDAG &DAG, 3168 const SDLoc &DL) { 3169 assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && 3170 "Illegal truncation"); 3171 3172 if (DstVT == SrcVT) 3173 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3174 3175 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by 3176 // clamping RHS. 3177 APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(), 3178 DstVT.getScalarSizeInBits()); 3179 if (!DAG.MaskedValueIsZero(LHS, UpperBits)) 3180 return SDValue(); 3181 3182 SDValue SatLimit = 3183 DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(), 3184 DstVT.getScalarSizeInBits()), 3185 DL, SrcVT); 3186 RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit); 3187 RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS); 3188 LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS); 3189 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3190 } 3191 3192 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to 3193 // usubsat(a,b), optionally as a truncated type. 3194 SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) { 3195 if (N->getOpcode() != ISD::SUB || 3196 !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT))) 3197 return SDValue(); 3198 3199 EVT SubVT = N->getValueType(0); 3200 SDValue Op0 = N->getOperand(0); 3201 SDValue Op1 = N->getOperand(1); 3202 3203 // Try to find umax(a,b) - b or a - umin(a,b) patterns 3204 // they may be converted to usubsat(a,b). 3205 if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 3206 SDValue MaxLHS = Op0.getOperand(0); 3207 SDValue MaxRHS = Op0.getOperand(1); 3208 if (MaxLHS == Op1) 3209 return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N)); 3210 if (MaxRHS == Op1) 3211 return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N)); 3212 } 3213 3214 if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) { 3215 SDValue MinLHS = Op1.getOperand(0); 3216 SDValue MinRHS = Op1.getOperand(1); 3217 if (MinLHS == Op0) 3218 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N)); 3219 if (MinRHS == Op0) 3220 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N)); 3221 } 3222 3223 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit))) 3224 if (Op1.getOpcode() == ISD::TRUNCATE && 3225 Op1.getOperand(0).getOpcode() == ISD::UMIN && 3226 Op1.getOperand(0).hasOneUse()) { 3227 SDValue MinLHS = Op1.getOperand(0).getOperand(0); 3228 SDValue MinRHS = Op1.getOperand(0).getOperand(1); 3229 if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0) 3230 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS, 3231 DAG, SDLoc(N)); 3232 if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0) 3233 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS, 3234 DAG, SDLoc(N)); 3235 } 3236 3237 return SDValue(); 3238 } 3239 3240 // Since it may not be valid to emit a fold to zero for vector initializers 3241 // check if we can before folding. 3242 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 3243 SelectionDAG &DAG, bool LegalOperations) { 3244 if (!VT.isVector()) 3245 return DAG.getConstant(0, DL, VT); 3246 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 3247 return DAG.getConstant(0, DL, VT); 3248 return SDValue(); 3249 } 3250 3251 SDValue DAGCombiner::visitSUB(SDNode *N) { 3252 SDValue N0 = N->getOperand(0); 3253 SDValue N1 = N->getOperand(1); 3254 EVT VT = N0.getValueType(); 3255 SDLoc DL(N); 3256 3257 // fold (sub x, x) -> 0 3258 // FIXME: Refactor this and xor and other similar operations together. 3259 if (N0 == N1) 3260 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 3261 3262 // fold (sub c1, c2) -> c3 3263 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) 3264 return C; 3265 3266 // fold vector ops 3267 if (VT.isVector()) { 3268 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 3269 return FoldedVOp; 3270 3271 // fold (sub x, 0) -> x, vector edition 3272 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3273 return N0; 3274 } 3275 3276 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3277 return NewSel; 3278 3279 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3280 3281 // fold (sub x, c) -> (add x, -c) 3282 if (N1C) { 3283 return DAG.getNode(ISD::ADD, DL, VT, N0, 3284 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3285 } 3286 3287 if (isNullOrNullSplat(N0)) { 3288 unsigned BitWidth = VT.getScalarSizeInBits(); 3289 // Right-shifting everything out but the sign bit followed by negation is 3290 // the same as flipping arithmetic/logical shift type without the negation: 3291 // -(X >>u 31) -> (X >>s 31) 3292 // -(X >>s 31) -> (X >>u 31) 3293 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 3294 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 3295 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { 3296 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 3297 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 3298 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 3299 } 3300 } 3301 3302 // 0 - X --> 0 if the sub is NUW. 3303 if (N->getFlags().hasNoUnsignedWrap()) 3304 return N0; 3305 3306 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 3307 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 3308 // N1 must be 0 because negating the minimum signed value is undefined. 3309 if (N->getFlags().hasNoSignedWrap()) 3310 return N0; 3311 3312 // 0 - X --> X if X is 0 or the minimum signed value. 3313 return N1; 3314 } 3315 3316 // Convert 0 - abs(x). 3317 if (N1->getOpcode() == ISD::ABS && 3318 !TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 3319 if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true)) 3320 return Result; 3321 3322 // Fold neg(splat(neg(x)) -> splat(x) 3323 if (VT.isVector()) { 3324 SDValue N1S = DAG.getSplatValue(N1, true); 3325 if (N1S && N1S.getOpcode() == ISD::SUB && 3326 isNullConstant(N1S.getOperand(0))) { 3327 if (VT.isScalableVector()) 3328 return DAG.getSplatVector(VT, DL, N1S.getOperand(1)); 3329 return DAG.getSplatBuildVector(VT, DL, N1S.getOperand(1)); 3330 } 3331 } 3332 } 3333 3334 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 3335 if (isAllOnesOrAllOnesSplat(N0)) 3336 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 3337 3338 // fold (A - (0-B)) -> A+B 3339 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 3340 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 3341 3342 // fold A-(A-B) -> B 3343 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 3344 return N1.getOperand(1); 3345 3346 // fold (A+B)-A -> B 3347 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 3348 return N0.getOperand(1); 3349 3350 // fold (A+B)-B -> A 3351 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 3352 return N0.getOperand(0); 3353 3354 // fold (A+C1)-C2 -> A+(C1-C2) 3355 if (N0.getOpcode() == ISD::ADD && 3356 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3357 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3358 SDValue NewC = 3359 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); 3360 assert(NewC && "Constant folding failed"); 3361 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 3362 } 3363 3364 // fold C2-(A+C1) -> (C2-C1)-A 3365 if (N1.getOpcode() == ISD::ADD) { 3366 SDValue N11 = N1.getOperand(1); 3367 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 3368 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 3369 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); 3370 assert(NewC && "Constant folding failed"); 3371 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 3372 } 3373 } 3374 3375 // fold (A-C1)-C2 -> A-(C1+C2) 3376 if (N0.getOpcode() == ISD::SUB && 3377 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3378 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3379 SDValue NewC = 3380 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); 3381 assert(NewC && "Constant folding failed"); 3382 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 3383 } 3384 3385 // fold (c1-A)-c2 -> (c1-c2)-A 3386 if (N0.getOpcode() == ISD::SUB && 3387 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3388 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 3389 SDValue NewC = 3390 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); 3391 assert(NewC && "Constant folding failed"); 3392 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 3393 } 3394 3395 // fold ((A+(B+or-C))-B) -> A+or-C 3396 if (N0.getOpcode() == ISD::ADD && 3397 (N0.getOperand(1).getOpcode() == ISD::SUB || 3398 N0.getOperand(1).getOpcode() == ISD::ADD) && 3399 N0.getOperand(1).getOperand(0) == N1) 3400 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 3401 N0.getOperand(1).getOperand(1)); 3402 3403 // fold ((A+(C+B))-B) -> A+C 3404 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 3405 N0.getOperand(1).getOperand(1) == N1) 3406 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 3407 N0.getOperand(1).getOperand(0)); 3408 3409 // fold ((A-(B-C))-C) -> A-B 3410 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 3411 N0.getOperand(1).getOperand(1) == N1) 3412 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 3413 N0.getOperand(1).getOperand(0)); 3414 3415 // fold (A-(B-C)) -> A+(C-B) 3416 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 3417 return DAG.getNode(ISD::ADD, DL, VT, N0, 3418 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 3419 N1.getOperand(0))); 3420 3421 // A - (A & B) -> A & (~B) 3422 if (N1.getOpcode() == ISD::AND) { 3423 SDValue A = N1.getOperand(0); 3424 SDValue B = N1.getOperand(1); 3425 if (A != N0) 3426 std::swap(A, B); 3427 if (A == N0 && 3428 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { 3429 SDValue InvB = 3430 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); 3431 return DAG.getNode(ISD::AND, DL, VT, A, InvB); 3432 } 3433 } 3434 3435 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 3436 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 3437 if (N1.getOperand(0).getOpcode() == ISD::SUB && 3438 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 3439 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3440 N1.getOperand(0).getOperand(1), 3441 N1.getOperand(1)); 3442 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3443 } 3444 if (N1.getOperand(1).getOpcode() == ISD::SUB && 3445 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 3446 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3447 N1.getOperand(0), 3448 N1.getOperand(1).getOperand(1)); 3449 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3450 } 3451 } 3452 3453 // If either operand of a sub is undef, the result is undef 3454 if (N0.isUndef()) 3455 return N0; 3456 if (N1.isUndef()) 3457 return N1; 3458 3459 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 3460 return V; 3461 3462 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 3463 return V; 3464 3465 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 3466 return V; 3467 3468 if (SDValue V = foldSubToUSubSat(VT, N)) 3469 return V; 3470 3471 // (x - y) - 1 -> add (xor y, -1), x 3472 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 3473 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 3474 DAG.getAllOnesConstant(DL, VT)); 3475 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 3476 } 3477 3478 // Look for: 3479 // sub y, (xor x, -1) 3480 // And if the target does not like this form then turn into: 3481 // add (add x, y), 1 3482 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { 3483 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); 3484 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); 3485 } 3486 3487 // Hoist one-use addition by non-opaque constant: 3488 // (x + C) - y -> (x - y) + C 3489 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 3490 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3491 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3492 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 3493 } 3494 // y - (x + C) -> (y - x) - C 3495 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 3496 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3497 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3498 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3499 } 3500 // (x - C) - y -> (x - y) - C 3501 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3502 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3503 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3504 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3505 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3506 } 3507 // (C - x) - y -> C - (x + y) 3508 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3509 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 3510 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); 3511 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); 3512 } 3513 3514 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3515 // rather than 'sub 0/1' (the sext should get folded). 3516 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3517 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3518 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3519 TLI.getBooleanContents(VT) == 3520 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3521 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3522 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3523 } 3524 3525 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3526 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3527 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3528 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3529 SDValue S0 = N1.getOperand(0); 3530 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) 3531 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3532 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 3533 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3534 } 3535 } 3536 3537 // If the relocation model supports it, consider symbol offsets. 3538 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3539 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3540 // fold (sub Sym, c) -> Sym-c 3541 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3542 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3543 GA->getOffset() - 3544 (uint64_t)N1C->getSExtValue()); 3545 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3546 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3547 if (GA->getGlobal() == GB->getGlobal()) 3548 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3549 DL, VT); 3550 } 3551 3552 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3553 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3554 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3555 if (TN->getVT() == MVT::i1) { 3556 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3557 DAG.getConstant(1, DL, VT)); 3558 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3559 } 3560 } 3561 3562 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) 3563 if (N1.getOpcode() == ISD::VSCALE) { 3564 const APInt &IntVal = N1.getConstantOperandAPInt(0); 3565 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); 3566 } 3567 3568 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C)) 3569 if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) { 3570 APInt NewStep = -N1.getConstantOperandAPInt(0); 3571 return DAG.getNode(ISD::ADD, DL, VT, N0, 3572 DAG.getStepVector(DL, VT, NewStep)); 3573 } 3574 3575 // Prefer an add for more folding potential and possibly better codegen: 3576 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3577 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3578 SDValue ShAmt = N1.getOperand(1); 3579 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3580 if (ShAmtC && 3581 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { 3582 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3583 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3584 } 3585 } 3586 3587 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { 3588 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) 3589 if (SDValue Carry = getAsCarry(TLI, N0)) { 3590 SDValue X = N1; 3591 SDValue Zero = DAG.getConstant(0, DL, VT); 3592 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); 3593 return DAG.getNode(ISD::ADDCARRY, DL, 3594 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, 3595 Carry); 3596 } 3597 } 3598 3599 return SDValue(); 3600 } 3601 3602 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3603 SDValue N0 = N->getOperand(0); 3604 SDValue N1 = N->getOperand(1); 3605 EVT VT = N0.getValueType(); 3606 SDLoc DL(N); 3607 3608 // fold (sub_sat x, undef) -> 0 3609 if (N0.isUndef() || N1.isUndef()) 3610 return DAG.getConstant(0, DL, VT); 3611 3612 // fold (sub_sat x, x) -> 0 3613 if (N0 == N1) 3614 return DAG.getConstant(0, DL, VT); 3615 3616 // fold (sub_sat c1, c2) -> c3 3617 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) 3618 return C; 3619 3620 // fold vector ops 3621 if (VT.isVector()) { 3622 // TODO SimplifyVBinOp 3623 3624 // fold (sub_sat x, 0) -> x, vector edition 3625 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3626 return N0; 3627 } 3628 3629 // fold (sub_sat x, 0) -> x 3630 if (isNullConstant(N1)) 3631 return N0; 3632 3633 return SDValue(); 3634 } 3635 3636 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3637 SDValue N0 = N->getOperand(0); 3638 SDValue N1 = N->getOperand(1); 3639 EVT VT = N0.getValueType(); 3640 SDLoc DL(N); 3641 3642 // If the flag result is dead, turn this into an SUB. 3643 if (!N->hasAnyUseOfValue(1)) 3644 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3645 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3646 3647 // fold (subc x, x) -> 0 + no borrow 3648 if (N0 == N1) 3649 return CombineTo(N, DAG.getConstant(0, DL, VT), 3650 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3651 3652 // fold (subc x, 0) -> x + no borrow 3653 if (isNullConstant(N1)) 3654 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3655 3656 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3657 if (isAllOnesConstant(N0)) 3658 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3659 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3660 3661 return SDValue(); 3662 } 3663 3664 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3665 SDValue N0 = N->getOperand(0); 3666 SDValue N1 = N->getOperand(1); 3667 EVT VT = N0.getValueType(); 3668 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3669 3670 EVT CarryVT = N->getValueType(1); 3671 SDLoc DL(N); 3672 3673 // If the flag result is dead, turn this into an SUB. 3674 if (!N->hasAnyUseOfValue(1)) 3675 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3676 DAG.getUNDEF(CarryVT)); 3677 3678 // fold (subo x, x) -> 0 + no borrow 3679 if (N0 == N1) 3680 return CombineTo(N, DAG.getConstant(0, DL, VT), 3681 DAG.getConstant(0, DL, CarryVT)); 3682 3683 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3684 3685 // fold (subox, c) -> (addo x, -c) 3686 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3687 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3688 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3689 } 3690 3691 // fold (subo x, 0) -> x + no borrow 3692 if (isNullOrNullSplat(N1)) 3693 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3694 3695 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3696 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3697 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3698 DAG.getConstant(0, DL, CarryVT)); 3699 3700 return SDValue(); 3701 } 3702 3703 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3704 SDValue N0 = N->getOperand(0); 3705 SDValue N1 = N->getOperand(1); 3706 SDValue CarryIn = N->getOperand(2); 3707 3708 // fold (sube x, y, false) -> (subc x, y) 3709 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3710 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3711 3712 return SDValue(); 3713 } 3714 3715 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3716 SDValue N0 = N->getOperand(0); 3717 SDValue N1 = N->getOperand(1); 3718 SDValue CarryIn = N->getOperand(2); 3719 3720 // fold (subcarry x, y, false) -> (usubo x, y) 3721 if (isNullConstant(CarryIn)) { 3722 if (!LegalOperations || 3723 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3724 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3725 } 3726 3727 return SDValue(); 3728 } 3729 3730 SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { 3731 SDValue N0 = N->getOperand(0); 3732 SDValue N1 = N->getOperand(1); 3733 SDValue CarryIn = N->getOperand(2); 3734 3735 // fold (ssubo_carry x, y, false) -> (ssubo x, y) 3736 if (isNullConstant(CarryIn)) { 3737 if (!LegalOperations || 3738 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) 3739 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); 3740 } 3741 3742 return SDValue(); 3743 } 3744 3745 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and 3746 // UMULFIXSAT here. 3747 SDValue DAGCombiner::visitMULFIX(SDNode *N) { 3748 SDValue N0 = N->getOperand(0); 3749 SDValue N1 = N->getOperand(1); 3750 SDValue Scale = N->getOperand(2); 3751 EVT VT = N0.getValueType(); 3752 3753 // fold (mulfix x, undef, scale) -> 0 3754 if (N0.isUndef() || N1.isUndef()) 3755 return DAG.getConstant(0, SDLoc(N), VT); 3756 3757 // Canonicalize constant to RHS (vector doesn't have to splat) 3758 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3759 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3760 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); 3761 3762 // fold (mulfix x, 0, scale) -> 0 3763 if (isNullConstant(N1)) 3764 return DAG.getConstant(0, SDLoc(N), VT); 3765 3766 return SDValue(); 3767 } 3768 3769 SDValue DAGCombiner::visitMUL(SDNode *N) { 3770 SDValue N0 = N->getOperand(0); 3771 SDValue N1 = N->getOperand(1); 3772 EVT VT = N0.getValueType(); 3773 3774 // fold (mul x, undef) -> 0 3775 if (N0.isUndef() || N1.isUndef()) 3776 return DAG.getConstant(0, SDLoc(N), VT); 3777 3778 // fold (mul c1, c2) -> c1*c2 3779 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) 3780 return C; 3781 3782 // canonicalize constant to RHS (vector doesn't have to splat) 3783 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3784 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3785 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3786 3787 bool N1IsConst = false; 3788 bool N1IsOpaqueConst = false; 3789 APInt ConstValue1; 3790 3791 // fold vector ops 3792 if (VT.isVector()) { 3793 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 3794 return FoldedVOp; 3795 3796 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3797 assert((!N1IsConst || 3798 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3799 "Splat APInt should be element width"); 3800 } else { 3801 N1IsConst = isa<ConstantSDNode>(N1); 3802 if (N1IsConst) { 3803 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3804 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3805 } 3806 } 3807 3808 // fold (mul x, 0) -> 0 3809 if (N1IsConst && ConstValue1.isZero()) 3810 return N1; 3811 3812 // fold (mul x, 1) -> x 3813 if (N1IsConst && ConstValue1.isOne()) 3814 return N0; 3815 3816 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3817 return NewSel; 3818 3819 // fold (mul x, -1) -> 0-x 3820 if (N1IsConst && ConstValue1.isAllOnes()) { 3821 SDLoc DL(N); 3822 return DAG.getNode(ISD::SUB, DL, VT, 3823 DAG.getConstant(0, DL, VT), N0); 3824 } 3825 3826 // fold (mul x, (1 << c)) -> x << c 3827 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3828 DAG.isKnownToBeAPowerOfTwo(N1) && 3829 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3830 SDLoc DL(N); 3831 SDValue LogBase2 = BuildLogBase2(N1, DL); 3832 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3833 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3834 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3835 } 3836 3837 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3838 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) { 3839 unsigned Log2Val = (-ConstValue1).logBase2(); 3840 SDLoc DL(N); 3841 // FIXME: If the input is something that is easily negated (e.g. a 3842 // single-use add), we should put the negate there. 3843 return DAG.getNode(ISD::SUB, DL, VT, 3844 DAG.getConstant(0, DL, VT), 3845 DAG.getNode(ISD::SHL, DL, VT, N0, 3846 DAG.getConstant(Log2Val, DL, 3847 getShiftAmountTy(N0.getValueType())))); 3848 } 3849 3850 // Try to transform: 3851 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3852 // mul x, (2^N + 1) --> add (shl x, N), x 3853 // mul x, (2^N - 1) --> sub (shl x, N), x 3854 // Examples: x * 33 --> (x << 5) + x 3855 // x * 15 --> (x << 4) - x 3856 // x * -33 --> -((x << 5) + x) 3857 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3858 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. 3859 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) 3860 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) 3861 // Examples: x * 0x8800 --> (x << 15) + (x << 11) 3862 // x * 0xf800 --> (x << 16) - (x << 11) 3863 // x * -0x8800 --> -((x << 15) + (x << 11)) 3864 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) 3865 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { 3866 // TODO: We could handle more general decomposition of any constant by 3867 // having the target set a limit on number of ops and making a 3868 // callback to determine that sequence (similar to sqrt expansion). 3869 unsigned MathOp = ISD::DELETED_NODE; 3870 APInt MulC = ConstValue1.abs(); 3871 // The constant `2` should be treated as (2^0 + 1). 3872 unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); 3873 MulC.lshrInPlace(TZeros); 3874 if ((MulC - 1).isPowerOf2()) 3875 MathOp = ISD::ADD; 3876 else if ((MulC + 1).isPowerOf2()) 3877 MathOp = ISD::SUB; 3878 3879 if (MathOp != ISD::DELETED_NODE) { 3880 unsigned ShAmt = 3881 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); 3882 ShAmt += TZeros; 3883 assert(ShAmt < VT.getScalarSizeInBits() && 3884 "multiply-by-constant generated out of bounds shift"); 3885 SDLoc DL(N); 3886 SDValue Shl = 3887 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); 3888 SDValue R = 3889 TZeros ? DAG.getNode(MathOp, DL, VT, Shl, 3890 DAG.getNode(ISD::SHL, DL, VT, N0, 3891 DAG.getConstant(TZeros, DL, VT))) 3892 : DAG.getNode(MathOp, DL, VT, Shl, N0); 3893 if (ConstValue1.isNegative()) 3894 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 3895 return R; 3896 } 3897 } 3898 3899 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 3900 if (N0.getOpcode() == ISD::SHL && 3901 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3902 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3903 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 3904 if (isConstantOrConstantVector(C3)) 3905 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 3906 } 3907 3908 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 3909 // use. 3910 { 3911 SDValue Sh, Y; 3912 3913 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 3914 if (N0.getOpcode() == ISD::SHL && 3915 isConstantOrConstantVector(N0.getOperand(1)) && 3916 N0.getNode()->hasOneUse()) { 3917 Sh = N0; Y = N1; 3918 } else if (N1.getOpcode() == ISD::SHL && 3919 isConstantOrConstantVector(N1.getOperand(1)) && 3920 N1.getNode()->hasOneUse()) { 3921 Sh = N1; Y = N0; 3922 } 3923 3924 if (Sh.getNode()) { 3925 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 3926 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 3927 } 3928 } 3929 3930 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 3931 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 3932 N0.getOpcode() == ISD::ADD && 3933 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 3934 isMulAddWithConstProfitable(N, N0, N1)) 3935 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 3936 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 3937 N0.getOperand(0), N1), 3938 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 3939 N0.getOperand(1), N1)); 3940 3941 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). 3942 if (N0.getOpcode() == ISD::VSCALE) 3943 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { 3944 const APInt &C0 = N0.getConstantOperandAPInt(0); 3945 const APInt &C1 = NC1->getAPIntValue(); 3946 return DAG.getVScale(SDLoc(N), VT, C0 * C1); 3947 } 3948 3949 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 3950 APInt MulVal; 3951 if (N0.getOpcode() == ISD::STEP_VECTOR) 3952 if (ISD::isConstantSplatVector(N1.getNode(), MulVal)) { 3953 const APInt &C0 = N0.getConstantOperandAPInt(0); 3954 APInt NewStep = C0 * MulVal; 3955 return DAG.getStepVector(SDLoc(N), VT, NewStep); 3956 } 3957 3958 // Fold ((mul x, 0/undef) -> 0, 3959 // (mul x, 1) -> x) -> x) 3960 // -> and(x, mask) 3961 // We can replace vectors with '0' and '1' factors with a clearing mask. 3962 if (VT.isFixedLengthVector()) { 3963 unsigned NumElts = VT.getVectorNumElements(); 3964 SmallBitVector ClearMask; 3965 ClearMask.reserve(NumElts); 3966 auto IsClearMask = [&ClearMask](ConstantSDNode *V) { 3967 if (!V || V->isZero()) { 3968 ClearMask.push_back(true); 3969 return true; 3970 } 3971 ClearMask.push_back(false); 3972 return V->isOne(); 3973 }; 3974 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && 3975 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { 3976 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); 3977 SDLoc DL(N); 3978 EVT LegalSVT = N1.getOperand(0).getValueType(); 3979 SDValue Zero = DAG.getConstant(0, DL, LegalSVT); 3980 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); 3981 SmallVector<SDValue, 16> Mask(NumElts, AllOnes); 3982 for (unsigned I = 0; I != NumElts; ++I) 3983 if (ClearMask[I]) 3984 Mask[I] = Zero; 3985 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); 3986 } 3987 } 3988 3989 // reassociate mul 3990 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 3991 return RMUL; 3992 3993 return SDValue(); 3994 } 3995 3996 /// Return true if divmod libcall is available. 3997 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 3998 const TargetLowering &TLI) { 3999 RTLIB::Libcall LC; 4000 EVT NodeType = Node->getValueType(0); 4001 if (!NodeType.isSimple()) 4002 return false; 4003 switch (NodeType.getSimpleVT().SimpleTy) { 4004 default: return false; // No libcall for vector types. 4005 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 4006 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 4007 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 4008 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 4009 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 4010 } 4011 4012 return TLI.getLibcallName(LC) != nullptr; 4013 } 4014 4015 /// Issue divrem if both quotient and remainder are needed. 4016 SDValue DAGCombiner::useDivRem(SDNode *Node) { 4017 if (Node->use_empty()) 4018 return SDValue(); // This is a dead node, leave it alone. 4019 4020 unsigned Opcode = Node->getOpcode(); 4021 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 4022 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 4023 4024 // DivMod lib calls can still work on non-legal types if using lib-calls. 4025 EVT VT = Node->getValueType(0); 4026 if (VT.isVector() || !VT.isInteger()) 4027 return SDValue(); 4028 4029 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 4030 return SDValue(); 4031 4032 // If DIVREM is going to get expanded into a libcall, 4033 // but there is no libcall available, then don't combine. 4034 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 4035 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 4036 return SDValue(); 4037 4038 // If div is legal, it's better to do the normal expansion 4039 unsigned OtherOpcode = 0; 4040 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 4041 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 4042 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 4043 return SDValue(); 4044 } else { 4045 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4046 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 4047 return SDValue(); 4048 } 4049 4050 SDValue Op0 = Node->getOperand(0); 4051 SDValue Op1 = Node->getOperand(1); 4052 SDValue combined; 4053 for (SDNode *User : Op0.getNode()->uses()) { 4054 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 4055 User->use_empty()) 4056 continue; 4057 // Convert the other matching node(s), too; 4058 // otherwise, the DIVREM may get target-legalized into something 4059 // target-specific that we won't be able to recognize. 4060 unsigned UserOpc = User->getOpcode(); 4061 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 4062 User->getOperand(0) == Op0 && 4063 User->getOperand(1) == Op1) { 4064 if (!combined) { 4065 if (UserOpc == OtherOpcode) { 4066 SDVTList VTs = DAG.getVTList(VT, VT); 4067 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 4068 } else if (UserOpc == DivRemOpc) { 4069 combined = SDValue(User, 0); 4070 } else { 4071 assert(UserOpc == Opcode); 4072 continue; 4073 } 4074 } 4075 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 4076 CombineTo(User, combined); 4077 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 4078 CombineTo(User, combined.getValue(1)); 4079 } 4080 } 4081 return combined; 4082 } 4083 4084 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 4085 SDValue N0 = N->getOperand(0); 4086 SDValue N1 = N->getOperand(1); 4087 EVT VT = N->getValueType(0); 4088 SDLoc DL(N); 4089 4090 unsigned Opc = N->getOpcode(); 4091 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 4092 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4093 4094 // X / undef -> undef 4095 // X % undef -> undef 4096 // X / 0 -> undef 4097 // X % 0 -> undef 4098 // NOTE: This includes vectors where any divisor element is zero/undef. 4099 if (DAG.isUndef(Opc, {N0, N1})) 4100 return DAG.getUNDEF(VT); 4101 4102 // undef / X -> 0 4103 // undef % X -> 0 4104 if (N0.isUndef()) 4105 return DAG.getConstant(0, DL, VT); 4106 4107 // 0 / X -> 0 4108 // 0 % X -> 0 4109 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4110 if (N0C && N0C->isZero()) 4111 return N0; 4112 4113 // X / X -> 1 4114 // X % X -> 0 4115 if (N0 == N1) 4116 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 4117 4118 // X / 1 -> X 4119 // X % 1 -> 0 4120 // If this is a boolean op (single-bit element type), we can't have 4121 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 4122 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 4123 // it's a 1. 4124 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 4125 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 4126 4127 return SDValue(); 4128 } 4129 4130 SDValue DAGCombiner::visitSDIV(SDNode *N) { 4131 SDValue N0 = N->getOperand(0); 4132 SDValue N1 = N->getOperand(1); 4133 EVT VT = N->getValueType(0); 4134 EVT CCVT = getSetCCResultType(VT); 4135 SDLoc DL(N); 4136 4137 // fold (sdiv c1, c2) -> c1/c2 4138 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) 4139 return C; 4140 4141 // fold vector ops 4142 if (VT.isVector()) 4143 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4144 return FoldedVOp; 4145 4146 // fold (sdiv X, -1) -> 0-X 4147 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4148 if (N1C && N1C->isAllOnes()) 4149 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 4150 4151 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 4152 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 4153 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4154 DAG.getConstant(1, DL, VT), 4155 DAG.getConstant(0, DL, VT)); 4156 4157 if (SDValue V = simplifyDivRem(N, DAG)) 4158 return V; 4159 4160 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4161 return NewSel; 4162 4163 // If we know the sign bits of both operands are zero, strength reduce to a 4164 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 4165 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4166 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 4167 4168 if (SDValue V = visitSDIVLike(N0, N1, N)) { 4169 // If the corresponding remainder node exists, update its users with 4170 // (Dividend - (Quotient * Divisor). 4171 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 4172 { N0, N1 })) { 4173 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4174 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4175 AddToWorklist(Mul.getNode()); 4176 AddToWorklist(Sub.getNode()); 4177 CombineTo(RemNode, Sub); 4178 } 4179 return V; 4180 } 4181 4182 // sdiv, srem -> sdivrem 4183 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4184 // true. Otherwise, we break the simplification logic in visitREM(). 4185 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4186 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4187 if (SDValue DivRem = useDivRem(N)) 4188 return DivRem; 4189 4190 return SDValue(); 4191 } 4192 4193 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4194 SDLoc DL(N); 4195 EVT VT = N->getValueType(0); 4196 EVT CCVT = getSetCCResultType(VT); 4197 unsigned BitWidth = VT.getScalarSizeInBits(); 4198 4199 // Helper for determining whether a value is a power-2 constant scalar or a 4200 // vector of such elements. 4201 auto IsPowerOfTwo = [](ConstantSDNode *C) { 4202 if (C->isZero() || C->isOpaque()) 4203 return false; 4204 if (C->getAPIntValue().isPowerOf2()) 4205 return true; 4206 if (C->getAPIntValue().isNegatedPowerOf2()) 4207 return true; 4208 return false; 4209 }; 4210 4211 // fold (sdiv X, pow2) -> simple ops after legalize 4212 // FIXME: We check for the exact bit here because the generic lowering gives 4213 // better results in that case. The target-specific lowering should learn how 4214 // to handle exact sdivs efficiently. 4215 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 4216 // Target-specific implementation of sdiv x, pow2. 4217 if (SDValue Res = BuildSDIVPow2(N)) 4218 return Res; 4219 4220 // Create constants that are functions of the shift amount value. 4221 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 4222 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 4223 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 4224 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 4225 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 4226 if (!isConstantOrConstantVector(Inexact)) 4227 return SDValue(); 4228 4229 // Splat the sign bit into the register 4230 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 4231 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 4232 AddToWorklist(Sign.getNode()); 4233 4234 // Add (N0 < 0) ? abs2 - 1 : 0; 4235 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 4236 AddToWorklist(Srl.getNode()); 4237 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 4238 AddToWorklist(Add.getNode()); 4239 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 4240 AddToWorklist(Sra.getNode()); 4241 4242 // Special case: (sdiv X, 1) -> X 4243 // Special Case: (sdiv X, -1) -> 0-X 4244 SDValue One = DAG.getConstant(1, DL, VT); 4245 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 4246 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 4247 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 4248 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 4249 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 4250 4251 // If dividing by a positive value, we're done. Otherwise, the result must 4252 // be negated. 4253 SDValue Zero = DAG.getConstant(0, DL, VT); 4254 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 4255 4256 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 4257 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 4258 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 4259 return Res; 4260 } 4261 4262 // If integer divide is expensive and we satisfy the requirements, emit an 4263 // alternate sequence. Targets may check function attributes for size/speed 4264 // trade-offs. 4265 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4266 if (isConstantOrConstantVector(N1) && 4267 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4268 if (SDValue Op = BuildSDIV(N)) 4269 return Op; 4270 4271 return SDValue(); 4272 } 4273 4274 SDValue DAGCombiner::visitUDIV(SDNode *N) { 4275 SDValue N0 = N->getOperand(0); 4276 SDValue N1 = N->getOperand(1); 4277 EVT VT = N->getValueType(0); 4278 EVT CCVT = getSetCCResultType(VT); 4279 SDLoc DL(N); 4280 4281 // fold (udiv c1, c2) -> c1/c2 4282 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) 4283 return C; 4284 4285 // fold vector ops 4286 if (VT.isVector()) 4287 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4288 return FoldedVOp; 4289 4290 // fold (udiv X, -1) -> select(X == -1, 1, 0) 4291 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4292 if (N1C && N1C->isAllOnes()) 4293 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4294 DAG.getConstant(1, DL, VT), 4295 DAG.getConstant(0, DL, VT)); 4296 4297 if (SDValue V = simplifyDivRem(N, DAG)) 4298 return V; 4299 4300 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4301 return NewSel; 4302 4303 if (SDValue V = visitUDIVLike(N0, N1, N)) { 4304 // If the corresponding remainder node exists, update its users with 4305 // (Dividend - (Quotient * Divisor). 4306 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 4307 { N0, N1 })) { 4308 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4309 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4310 AddToWorklist(Mul.getNode()); 4311 AddToWorklist(Sub.getNode()); 4312 CombineTo(RemNode, Sub); 4313 } 4314 return V; 4315 } 4316 4317 // sdiv, srem -> sdivrem 4318 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4319 // true. Otherwise, we break the simplification logic in visitREM(). 4320 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4321 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4322 if (SDValue DivRem = useDivRem(N)) 4323 return DivRem; 4324 4325 return SDValue(); 4326 } 4327 4328 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4329 SDLoc DL(N); 4330 EVT VT = N->getValueType(0); 4331 4332 // fold (udiv x, (1 << c)) -> x >>u c 4333 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4334 DAG.isKnownToBeAPowerOfTwo(N1)) { 4335 SDValue LogBase2 = BuildLogBase2(N1, DL); 4336 AddToWorklist(LogBase2.getNode()); 4337 4338 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4339 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 4340 AddToWorklist(Trunc.getNode()); 4341 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4342 } 4343 4344 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 4345 if (N1.getOpcode() == ISD::SHL) { 4346 SDValue N10 = N1.getOperand(0); 4347 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 4348 DAG.isKnownToBeAPowerOfTwo(N10)) { 4349 SDValue LogBase2 = BuildLogBase2(N10, DL); 4350 AddToWorklist(LogBase2.getNode()); 4351 4352 EVT ADDVT = N1.getOperand(1).getValueType(); 4353 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 4354 AddToWorklist(Trunc.getNode()); 4355 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 4356 AddToWorklist(Add.getNode()); 4357 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 4358 } 4359 } 4360 4361 // fold (udiv x, c) -> alternate 4362 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4363 if (isConstantOrConstantVector(N1) && 4364 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4365 if (SDValue Op = BuildUDIV(N)) 4366 return Op; 4367 4368 return SDValue(); 4369 } 4370 4371 // handles ISD::SREM and ISD::UREM 4372 SDValue DAGCombiner::visitREM(SDNode *N) { 4373 unsigned Opcode = N->getOpcode(); 4374 SDValue N0 = N->getOperand(0); 4375 SDValue N1 = N->getOperand(1); 4376 EVT VT = N->getValueType(0); 4377 EVT CCVT = getSetCCResultType(VT); 4378 4379 bool isSigned = (Opcode == ISD::SREM); 4380 SDLoc DL(N); 4381 4382 // fold (rem c1, c2) -> c1%c2 4383 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4384 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4385 return C; 4386 4387 // fold (urem X, -1) -> select(X == -1, 0, x) 4388 if (!isSigned && N1C && N1C->isAllOnes()) 4389 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4390 DAG.getConstant(0, DL, VT), N0); 4391 4392 if (SDValue V = simplifyDivRem(N, DAG)) 4393 return V; 4394 4395 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4396 return NewSel; 4397 4398 if (isSigned) { 4399 // If we know the sign bits of both operands are zero, strength reduce to a 4400 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 4401 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4402 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 4403 } else { 4404 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 4405 // fold (urem x, pow2) -> (and x, pow2-1) 4406 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4407 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4408 AddToWorklist(Add.getNode()); 4409 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4410 } 4411 if (N1.getOpcode() == ISD::SHL && 4412 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 4413 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 4414 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4415 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4416 AddToWorklist(Add.getNode()); 4417 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4418 } 4419 } 4420 4421 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4422 4423 // If X/C can be simplified by the division-by-constant logic, lower 4424 // X%C to the equivalent of X-X/C*C. 4425 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 4426 // speculative DIV must not cause a DIVREM conversion. We guard against this 4427 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 4428 // combine will not return a DIVREM. Regardless, checking cheapness here 4429 // makes sense since the simplification results in fatter code. 4430 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 4431 SDValue OptimizedDiv = 4432 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 4433 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) { 4434 // If the equivalent Div node also exists, update its users. 4435 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4436 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 4437 { N0, N1 })) 4438 CombineTo(DivNode, OptimizedDiv); 4439 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 4440 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4441 AddToWorklist(OptimizedDiv.getNode()); 4442 AddToWorklist(Mul.getNode()); 4443 return Sub; 4444 } 4445 } 4446 4447 // sdiv, srem -> sdivrem 4448 if (SDValue DivRem = useDivRem(N)) 4449 return DivRem.getValue(1); 4450 4451 return SDValue(); 4452 } 4453 4454 SDValue DAGCombiner::visitMULHS(SDNode *N) { 4455 SDValue N0 = N->getOperand(0); 4456 SDValue N1 = N->getOperand(1); 4457 EVT VT = N->getValueType(0); 4458 SDLoc DL(N); 4459 4460 // fold (mulhs c1, c2) 4461 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1})) 4462 return C; 4463 4464 // canonicalize constant to RHS. 4465 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4466 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4467 return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0); 4468 4469 if (VT.isVector()) { 4470 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4471 return FoldedVOp; 4472 4473 // fold (mulhs x, 0) -> 0 4474 // do not return N0/N1, because undef node may exist. 4475 if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) || 4476 ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4477 return DAG.getConstant(0, DL, VT); 4478 } 4479 4480 // fold (mulhs x, 0) -> 0 4481 if (isNullConstant(N1)) 4482 return N1; 4483 // fold (mulhs x, 1) -> (sra x, size(x)-1) 4484 if (isOneConstant(N1)) 4485 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 4486 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, 4487 getShiftAmountTy(N0.getValueType()))); 4488 4489 // fold (mulhs x, undef) -> 0 4490 if (N0.isUndef() || N1.isUndef()) 4491 return DAG.getConstant(0, DL, VT); 4492 4493 // If the type twice as wide is legal, transform the mulhs to a wider multiply 4494 // plus a shift. 4495 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && 4496 !VT.isVector()) { 4497 MVT Simple = VT.getSimpleVT(); 4498 unsigned SimpleSize = Simple.getSizeInBits(); 4499 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4500 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4501 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 4502 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 4503 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4504 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4505 DAG.getConstant(SimpleSize, DL, 4506 getShiftAmountTy(N1.getValueType()))); 4507 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4508 } 4509 } 4510 4511 return SDValue(); 4512 } 4513 4514 SDValue DAGCombiner::visitMULHU(SDNode *N) { 4515 SDValue N0 = N->getOperand(0); 4516 SDValue N1 = N->getOperand(1); 4517 EVT VT = N->getValueType(0); 4518 SDLoc DL(N); 4519 4520 // fold (mulhu c1, c2) 4521 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1})) 4522 return C; 4523 4524 // canonicalize constant to RHS. 4525 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4526 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4527 return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0); 4528 4529 if (VT.isVector()) { 4530 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4531 return FoldedVOp; 4532 4533 // fold (mulhu x, 0) -> 0 4534 // do not return N0/N1, because undef node may exist. 4535 if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) || 4536 ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4537 return DAG.getConstant(0, DL, VT); 4538 } 4539 4540 // fold (mulhu x, 0) -> 0 4541 if (isNullConstant(N1)) 4542 return N1; 4543 // fold (mulhu x, 1) -> 0 4544 if (isOneConstant(N1)) 4545 return DAG.getConstant(0, DL, N0.getValueType()); 4546 // fold (mulhu x, undef) -> 0 4547 if (N0.isUndef() || N1.isUndef()) 4548 return DAG.getConstant(0, DL, VT); 4549 4550 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 4551 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4552 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 4553 unsigned NumEltBits = VT.getScalarSizeInBits(); 4554 SDValue LogBase2 = BuildLogBase2(N1, DL); 4555 SDValue SRLAmt = DAG.getNode( 4556 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 4557 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4558 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 4559 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4560 } 4561 4562 // If the type twice as wide is legal, transform the mulhu to a wider multiply 4563 // plus a shift. 4564 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && 4565 !VT.isVector()) { 4566 MVT Simple = VT.getSimpleVT(); 4567 unsigned SimpleSize = Simple.getSizeInBits(); 4568 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4569 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4570 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 4571 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 4572 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4573 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4574 DAG.getConstant(SimpleSize, DL, 4575 getShiftAmountTy(N1.getValueType()))); 4576 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4577 } 4578 } 4579 4580 // Simplify the operands using demanded-bits information. 4581 // We don't have demanded bits support for MULHU so this just enables constant 4582 // folding based on known bits. 4583 if (SimplifyDemandedBits(SDValue(N, 0))) 4584 return SDValue(N, 0); 4585 4586 return SDValue(); 4587 } 4588 4589 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 4590 /// give the opcodes for the two computations that are being performed. Return 4591 /// true if a simplification was made. 4592 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 4593 unsigned HiOp) { 4594 // If the high half is not needed, just compute the low half. 4595 bool HiExists = N->hasAnyUseOfValue(1); 4596 if (!HiExists && (!LegalOperations || 4597 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 4598 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4599 return CombineTo(N, Res, Res); 4600 } 4601 4602 // If the low half is not needed, just compute the high half. 4603 bool LoExists = N->hasAnyUseOfValue(0); 4604 if (!LoExists && (!LegalOperations || 4605 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 4606 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4607 return CombineTo(N, Res, Res); 4608 } 4609 4610 // If both halves are used, return as it is. 4611 if (LoExists && HiExists) 4612 return SDValue(); 4613 4614 // If the two computed results can be simplified separately, separate them. 4615 if (LoExists) { 4616 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4617 AddToWorklist(Lo.getNode()); 4618 SDValue LoOpt = combine(Lo.getNode()); 4619 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 4620 (!LegalOperations || 4621 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 4622 return CombineTo(N, LoOpt, LoOpt); 4623 } 4624 4625 if (HiExists) { 4626 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4627 AddToWorklist(Hi.getNode()); 4628 SDValue HiOpt = combine(Hi.getNode()); 4629 if (HiOpt.getNode() && HiOpt != Hi && 4630 (!LegalOperations || 4631 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 4632 return CombineTo(N, HiOpt, HiOpt); 4633 } 4634 4635 return SDValue(); 4636 } 4637 4638 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 4639 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 4640 return Res; 4641 4642 EVT VT = N->getValueType(0); 4643 SDLoc DL(N); 4644 4645 // If the type is twice as wide is legal, transform the mulhu to a wider 4646 // multiply plus a shift. 4647 if (VT.isSimple() && !VT.isVector()) { 4648 MVT Simple = VT.getSimpleVT(); 4649 unsigned SimpleSize = Simple.getSizeInBits(); 4650 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4651 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4652 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4653 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4654 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4655 // Compute the high part as N1. 4656 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4657 DAG.getConstant(SimpleSize, DL, 4658 getShiftAmountTy(Lo.getValueType()))); 4659 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4660 // Compute the low part as N0. 4661 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4662 return CombineTo(N, Lo, Hi); 4663 } 4664 } 4665 4666 return SDValue(); 4667 } 4668 4669 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4670 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4671 return Res; 4672 4673 EVT VT = N->getValueType(0); 4674 SDLoc DL(N); 4675 4676 // (umul_lohi N0, 0) -> (0, 0) 4677 if (isNullConstant(N->getOperand(1))) { 4678 SDValue Zero = DAG.getConstant(0, DL, VT); 4679 return CombineTo(N, Zero, Zero); 4680 } 4681 4682 // (umul_lohi N0, 1) -> (N0, 0) 4683 if (isOneConstant(N->getOperand(1))) { 4684 SDValue Zero = DAG.getConstant(0, DL, VT); 4685 return CombineTo(N, N->getOperand(0), Zero); 4686 } 4687 4688 // If the type is twice as wide is legal, transform the mulhu to a wider 4689 // multiply plus a shift. 4690 if (VT.isSimple() && !VT.isVector()) { 4691 MVT Simple = VT.getSimpleVT(); 4692 unsigned SimpleSize = Simple.getSizeInBits(); 4693 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4694 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4695 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4696 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4697 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4698 // Compute the high part as N1. 4699 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4700 DAG.getConstant(SimpleSize, DL, 4701 getShiftAmountTy(Lo.getValueType()))); 4702 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4703 // Compute the low part as N0. 4704 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4705 return CombineTo(N, Lo, Hi); 4706 } 4707 } 4708 4709 return SDValue(); 4710 } 4711 4712 SDValue DAGCombiner::visitMULO(SDNode *N) { 4713 SDValue N0 = N->getOperand(0); 4714 SDValue N1 = N->getOperand(1); 4715 EVT VT = N0.getValueType(); 4716 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4717 4718 EVT CarryVT = N->getValueType(1); 4719 SDLoc DL(N); 4720 4721 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4722 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4723 4724 // fold operation with constant operands. 4725 // TODO: Move this to FoldConstantArithmetic when it supports nodes with 4726 // multiple results. 4727 if (N0C && N1C) { 4728 bool Overflow; 4729 APInt Result = 4730 IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow) 4731 : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow); 4732 return CombineTo(N, DAG.getConstant(Result, DL, VT), 4733 DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT)); 4734 } 4735 4736 // canonicalize constant to RHS. 4737 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4738 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4739 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 4740 4741 // fold (mulo x, 0) -> 0 + no carry out 4742 if (isNullOrNullSplat(N1)) 4743 return CombineTo(N, DAG.getConstant(0, DL, VT), 4744 DAG.getConstant(0, DL, CarryVT)); 4745 4746 // (mulo x, 2) -> (addo x, x) 4747 if (N1C && N1C->getAPIntValue() == 2) 4748 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, 4749 N->getVTList(), N0, N0); 4750 4751 if (IsSigned) { 4752 // A 1 bit SMULO overflows if both inputs are 1. 4753 if (VT.getScalarSizeInBits() == 1) { 4754 SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1); 4755 return CombineTo(N, And, 4756 DAG.getSetCC(DL, CarryVT, And, 4757 DAG.getConstant(0, DL, VT), ISD::SETNE)); 4758 } 4759 4760 // Multiplying n * m significant bits yields a result of n + m significant 4761 // bits. If the total number of significant bits does not exceed the 4762 // result bit width (minus 1), there is no overflow. 4763 unsigned SignBits = DAG.ComputeNumSignBits(N0); 4764 if (SignBits > 1) 4765 SignBits += DAG.ComputeNumSignBits(N1); 4766 if (SignBits > VT.getScalarSizeInBits() + 1) 4767 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4768 DAG.getConstant(0, DL, CarryVT)); 4769 } else { 4770 KnownBits N1Known = DAG.computeKnownBits(N1); 4771 KnownBits N0Known = DAG.computeKnownBits(N0); 4772 bool Overflow; 4773 (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow); 4774 if (!Overflow) 4775 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4776 DAG.getConstant(0, DL, CarryVT)); 4777 } 4778 4779 return SDValue(); 4780 } 4781 4782 // Function to calculate whether the Min/Max pair of SDNodes (potentially 4783 // swapped around) make a signed saturate pattern, clamping to between a signed 4784 // saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW. 4785 // Returns the node being clamped and the bitwidth of the clamp in BW. Should 4786 // work with both SMIN/SMAX nodes and setcc/select combo. The operands are the 4787 // same as SimplifySelectCC. N0<N1 ? N2 : N3. 4788 static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2, 4789 SDValue N3, ISD::CondCode CC, unsigned &BW, 4790 bool &Unsigned) { 4791 auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3, 4792 ISD::CondCode CC) { 4793 // The compare and select operand should be the same or the select operands 4794 // should be truncated versions of the comparison. 4795 if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) 4796 return 0; 4797 // The constants need to be the same or a truncated version of each other. 4798 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4799 ConstantSDNode *N3C = isConstOrConstSplat(N3); 4800 if (!N1C || !N3C) 4801 return 0; 4802 const APInt &C1 = N1C->getAPIntValue(); 4803 const APInt &C2 = N3C->getAPIntValue(); 4804 if (C1.getBitWidth() < C2.getBitWidth() || 4805 C1 != C2.sextOrSelf(C1.getBitWidth())) 4806 return 0; 4807 return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0); 4808 }; 4809 4810 // Check the initial value is a SMIN/SMAX equivalent. 4811 unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC); 4812 if (!Opcode0) 4813 return SDValue(); 4814 4815 SDValue N00, N01, N02, N03; 4816 ISD::CondCode N0CC; 4817 switch (N0.getOpcode()) { 4818 case ISD::SMIN: 4819 case ISD::SMAX: 4820 N00 = N02 = N0.getOperand(0); 4821 N01 = N03 = N0.getOperand(1); 4822 N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT; 4823 break; 4824 case ISD::SELECT_CC: 4825 N00 = N0.getOperand(0); 4826 N01 = N0.getOperand(1); 4827 N02 = N0.getOperand(2); 4828 N03 = N0.getOperand(3); 4829 N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get(); 4830 break; 4831 case ISD::SELECT: 4832 case ISD::VSELECT: 4833 if (N0.getOperand(0).getOpcode() != ISD::SETCC) 4834 return SDValue(); 4835 N00 = N0.getOperand(0).getOperand(0); 4836 N01 = N0.getOperand(0).getOperand(1); 4837 N02 = N0.getOperand(1); 4838 N03 = N0.getOperand(2); 4839 N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get(); 4840 break; 4841 default: 4842 return SDValue(); 4843 } 4844 4845 unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC); 4846 if (!Opcode1 || Opcode0 == Opcode1) 4847 return SDValue(); 4848 4849 ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01); 4850 ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1); 4851 if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0)) 4852 return SDValue(); 4853 4854 const APInt &MinC = MinCOp->getAPIntValue(); 4855 const APInt &MaxC = MaxCOp->getAPIntValue(); 4856 APInt MinCPlus1 = MinC + 1; 4857 if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) { 4858 BW = MinCPlus1.exactLogBase2() + 1; 4859 Unsigned = false; 4860 return N02; 4861 } 4862 4863 if (MaxC == 0 && MinCPlus1.isPowerOf2()) { 4864 BW = MinCPlus1.exactLogBase2(); 4865 Unsigned = true; 4866 return N02; 4867 } 4868 4869 return SDValue(); 4870 } 4871 4872 static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, 4873 SDValue N3, ISD::CondCode CC, 4874 SelectionDAG &DAG) { 4875 unsigned BW; 4876 bool Unsigned; 4877 SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned); 4878 if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT) 4879 return SDValue(); 4880 EVT FPVT = Fp.getOperand(0).getValueType(); 4881 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); 4882 if (FPVT.isVector()) 4883 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, 4884 FPVT.getVectorElementCount()); 4885 unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT; 4886 if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT)) 4887 return SDValue(); 4888 SDLoc DL(Fp); 4889 SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0), 4890 DAG.getValueType(NewVT.getScalarType())); 4891 return Unsigned ? DAG.getZExtOrTrunc(Sat, DL, N2->getValueType(0)) 4892 : DAG.getSExtOrTrunc(Sat, DL, N2->getValueType(0)); 4893 } 4894 4895 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 4896 SDValue N0 = N->getOperand(0); 4897 SDValue N1 = N->getOperand(1); 4898 EVT VT = N0.getValueType(); 4899 unsigned Opcode = N->getOpcode(); 4900 SDLoc DL(N); 4901 4902 // fold operation with constant operands. 4903 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4904 return C; 4905 4906 // canonicalize constant to RHS 4907 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4908 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4909 return DAG.getNode(Opcode, DL, VT, N1, N0); 4910 4911 // fold vector ops 4912 if (VT.isVector()) 4913 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 4914 return FoldedVOp; 4915 4916 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 4917 // Only do this if the current op isn't legal and the flipped is. 4918 if (!TLI.isOperationLegal(Opcode, VT) && 4919 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 4920 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 4921 unsigned AltOpcode; 4922 switch (Opcode) { 4923 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 4924 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 4925 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 4926 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 4927 default: llvm_unreachable("Unknown MINMAX opcode"); 4928 } 4929 if (TLI.isOperationLegal(AltOpcode, VT)) 4930 return DAG.getNode(AltOpcode, DL, VT, N0, N1); 4931 } 4932 4933 if (Opcode == ISD::SMIN || Opcode == ISD::SMAX) 4934 if (SDValue S = PerformMinMaxFpToSatCombine( 4935 N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG)) 4936 return S; 4937 4938 // Simplify the operands using demanded-bits information. 4939 if (SimplifyDemandedBits(SDValue(N, 0))) 4940 return SDValue(N, 0); 4941 4942 return SDValue(); 4943 } 4944 4945 /// If this is a bitwise logic instruction and both operands have the same 4946 /// opcode, try to sink the other opcode after the logic instruction. 4947 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 4948 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 4949 EVT VT = N0.getValueType(); 4950 unsigned LogicOpcode = N->getOpcode(); 4951 unsigned HandOpcode = N0.getOpcode(); 4952 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 4953 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 4954 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 4955 4956 // Bail early if none of these transforms apply. 4957 if (N0.getNumOperands() == 0) 4958 return SDValue(); 4959 4960 // FIXME: We should check number of uses of the operands to not increase 4961 // the instruction count for all transforms. 4962 4963 // Handle size-changing casts. 4964 SDValue X = N0.getOperand(0); 4965 SDValue Y = N1.getOperand(0); 4966 EVT XVT = X.getValueType(); 4967 SDLoc DL(N); 4968 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 4969 HandOpcode == ISD::SIGN_EXTEND) { 4970 // If both operands have other uses, this transform would create extra 4971 // instructions without eliminating anything. 4972 if (!N0.hasOneUse() && !N1.hasOneUse()) 4973 return SDValue(); 4974 // We need matching integer source types. 4975 if (XVT != Y.getValueType()) 4976 return SDValue(); 4977 // Don't create an illegal op during or after legalization. Don't ever 4978 // create an unsupported vector op. 4979 if ((VT.isVector() || LegalOperations) && 4980 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 4981 return SDValue(); 4982 // Avoid infinite looping with PromoteIntBinOp. 4983 // TODO: Should we apply desirable/legal constraints to all opcodes? 4984 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 4985 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 4986 return SDValue(); 4987 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 4988 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4989 return DAG.getNode(HandOpcode, DL, VT, Logic); 4990 } 4991 4992 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 4993 if (HandOpcode == ISD::TRUNCATE) { 4994 // If both operands have other uses, this transform would create extra 4995 // instructions without eliminating anything. 4996 if (!N0.hasOneUse() && !N1.hasOneUse()) 4997 return SDValue(); 4998 // We need matching source types. 4999 if (XVT != Y.getValueType()) 5000 return SDValue(); 5001 // Don't create an illegal op during or after legalization. 5002 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 5003 return SDValue(); 5004 // Be extra careful sinking truncate. If it's free, there's no benefit in 5005 // widening a binop. Also, don't create a logic op on an illegal type. 5006 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 5007 return SDValue(); 5008 if (!TLI.isTypeLegal(XVT)) 5009 return SDValue(); 5010 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5011 return DAG.getNode(HandOpcode, DL, VT, Logic); 5012 } 5013 5014 // For binops SHL/SRL/SRA/AND: 5015 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 5016 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 5017 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 5018 N0.getOperand(1) == N1.getOperand(1)) { 5019 // If either operand has other uses, this transform is not an improvement. 5020 if (!N0.hasOneUse() || !N1.hasOneUse()) 5021 return SDValue(); 5022 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5023 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 5024 } 5025 5026 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 5027 if (HandOpcode == ISD::BSWAP) { 5028 // If either operand has other uses, this transform is not an improvement. 5029 if (!N0.hasOneUse() || !N1.hasOneUse()) 5030 return SDValue(); 5031 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5032 return DAG.getNode(HandOpcode, DL, VT, Logic); 5033 } 5034 5035 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 5036 // Only perform this optimization up until type legalization, before 5037 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 5038 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 5039 // we don't want to undo this promotion. 5040 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 5041 // on scalars. 5042 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 5043 Level <= AfterLegalizeTypes) { 5044 // Input types must be integer and the same. 5045 if (XVT.isInteger() && XVT == Y.getValueType() && 5046 !(VT.isVector() && TLI.isTypeLegal(VT) && 5047 !XVT.isVector() && !TLI.isTypeLegal(XVT))) { 5048 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 5049 return DAG.getNode(HandOpcode, DL, VT, Logic); 5050 } 5051 } 5052 5053 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 5054 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 5055 // If both shuffles use the same mask, and both shuffle within a single 5056 // vector, then it is worthwhile to move the swizzle after the operation. 5057 // The type-legalizer generates this pattern when loading illegal 5058 // vector types from memory. In many cases this allows additional shuffle 5059 // optimizations. 5060 // There are other cases where moving the shuffle after the xor/and/or 5061 // is profitable even if shuffles don't perform a swizzle. 5062 // If both shuffles use the same mask, and both shuffles have the same first 5063 // or second operand, then it might still be profitable to move the shuffle 5064 // after the xor/and/or operation. 5065 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 5066 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 5067 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 5068 assert(X.getValueType() == Y.getValueType() && 5069 "Inputs to shuffles are not the same type"); 5070 5071 // Check that both shuffles use the same mask. The masks are known to be of 5072 // the same length because the result vector type is the same. 5073 // Check also that shuffles have only one use to avoid introducing extra 5074 // instructions. 5075 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 5076 !SVN0->getMask().equals(SVN1->getMask())) 5077 return SDValue(); 5078 5079 // Don't try to fold this node if it requires introducing a 5080 // build vector of all zeros that might be illegal at this stage. 5081 SDValue ShOp = N0.getOperand(1); 5082 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 5083 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 5084 5085 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 5086 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 5087 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 5088 N0.getOperand(0), N1.getOperand(0)); 5089 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 5090 } 5091 5092 // Don't try to fold this node if it requires introducing a 5093 // build vector of all zeros that might be illegal at this stage. 5094 ShOp = N0.getOperand(0); 5095 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 5096 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 5097 5098 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 5099 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 5100 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 5101 N1.getOperand(1)); 5102 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 5103 } 5104 } 5105 5106 return SDValue(); 5107 } 5108 5109 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 5110 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 5111 const SDLoc &DL) { 5112 SDValue LL, LR, RL, RR, N0CC, N1CC; 5113 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 5114 !isSetCCEquivalent(N1, RL, RR, N1CC)) 5115 return SDValue(); 5116 5117 assert(N0.getValueType() == N1.getValueType() && 5118 "Unexpected operand types for bitwise logic op"); 5119 assert(LL.getValueType() == LR.getValueType() && 5120 RL.getValueType() == RR.getValueType() && 5121 "Unexpected operand types for setcc"); 5122 5123 // If we're here post-legalization or the logic op type is not i1, the logic 5124 // op type must match a setcc result type. Also, all folds require new 5125 // operations on the left and right operands, so those types must match. 5126 EVT VT = N0.getValueType(); 5127 EVT OpVT = LL.getValueType(); 5128 if (LegalOperations || VT.getScalarType() != MVT::i1) 5129 if (VT != getSetCCResultType(OpVT)) 5130 return SDValue(); 5131 if (OpVT != RL.getValueType()) 5132 return SDValue(); 5133 5134 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 5135 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 5136 bool IsInteger = OpVT.isInteger(); 5137 if (LR == RR && CC0 == CC1 && IsInteger) { 5138 bool IsZero = isNullOrNullSplat(LR); 5139 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 5140 5141 // All bits clear? 5142 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 5143 // All sign bits clear? 5144 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 5145 // Any bits set? 5146 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 5147 // Any sign bits set? 5148 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 5149 5150 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 5151 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 5152 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 5153 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 5154 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 5155 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 5156 AddToWorklist(Or.getNode()); 5157 return DAG.getSetCC(DL, VT, Or, LR, CC1); 5158 } 5159 5160 // All bits set? 5161 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 5162 // All sign bits set? 5163 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 5164 // Any bits clear? 5165 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 5166 // Any sign bits clear? 5167 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 5168 5169 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 5170 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 5171 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 5172 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 5173 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 5174 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 5175 AddToWorklist(And.getNode()); 5176 return DAG.getSetCC(DL, VT, And, LR, CC1); 5177 } 5178 } 5179 5180 // TODO: What is the 'or' equivalent of this fold? 5181 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 5182 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 5183 IsInteger && CC0 == ISD::SETNE && 5184 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 5185 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 5186 SDValue One = DAG.getConstant(1, DL, OpVT); 5187 SDValue Two = DAG.getConstant(2, DL, OpVT); 5188 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 5189 AddToWorklist(Add.getNode()); 5190 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 5191 } 5192 5193 // Try more general transforms if the predicates match and the only user of 5194 // the compares is the 'and' or 'or'. 5195 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 5196 N0.hasOneUse() && N1.hasOneUse()) { 5197 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 5198 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 5199 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 5200 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 5201 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 5202 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 5203 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5204 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 5205 } 5206 5207 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 5208 // TODO - support non-uniform vector amounts. 5209 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 5210 // Match a shared variable operand and 2 non-opaque constant operands. 5211 ConstantSDNode *C0 = isConstOrConstSplat(LR); 5212 ConstantSDNode *C1 = isConstOrConstSplat(RR); 5213 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 5214 const APInt &CMax = 5215 APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue()); 5216 const APInt &CMin = 5217 APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue()); 5218 // The difference of the constants must be a single bit. 5219 if ((CMax - CMin).isPowerOf2()) { 5220 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) --> 5221 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq 5222 SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR); 5223 SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR); 5224 SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min); 5225 SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min); 5226 SDValue Mask = DAG.getNOT(DL, Diff, OpVT); 5227 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask); 5228 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5229 return DAG.getSetCC(DL, VT, And, Zero, CC0); 5230 } 5231 } 5232 } 5233 } 5234 5235 // Canonicalize equivalent operands to LL == RL. 5236 if (LL == RR && LR == RL) { 5237 CC1 = ISD::getSetCCSwappedOperands(CC1); 5238 std::swap(RL, RR); 5239 } 5240 5241 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5242 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5243 if (LL == RL && LR == RR) { 5244 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) 5245 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); 5246 if (NewCC != ISD::SETCC_INVALID && 5247 (!LegalOperations || 5248 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 5249 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 5250 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 5251 } 5252 5253 return SDValue(); 5254 } 5255 5256 /// This contains all DAGCombine rules which reduce two values combined by 5257 /// an And operation to a single value. This makes them reusable in the context 5258 /// of visitSELECT(). Rules involving constants are not included as 5259 /// visitSELECT() already handles those cases. 5260 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 5261 EVT VT = N1.getValueType(); 5262 SDLoc DL(N); 5263 5264 // fold (and x, undef) -> 0 5265 if (N0.isUndef() || N1.isUndef()) 5266 return DAG.getConstant(0, DL, VT); 5267 5268 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 5269 return V; 5270 5271 // TODO: Rewrite this to return a new 'AND' instead of using CombineTo. 5272 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 5273 VT.getSizeInBits() <= 64 && N0->hasOneUse()) { 5274 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5275 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 5276 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 5277 // immediate for an add, but it is legal if its top c2 bits are set, 5278 // transform the ADD so the immediate doesn't need to be materialized 5279 // in a register. 5280 APInt ADDC = ADDI->getAPIntValue(); 5281 APInt SRLC = SRLI->getAPIntValue(); 5282 if (ADDC.getMinSignedBits() <= 64 && 5283 SRLC.ult(VT.getSizeInBits()) && 5284 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5285 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 5286 SRLC.getZExtValue()); 5287 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 5288 ADDC |= Mask; 5289 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5290 SDLoc DL0(N0); 5291 SDValue NewAdd = 5292 DAG.getNode(ISD::ADD, DL0, VT, 5293 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 5294 CombineTo(N0.getNode(), NewAdd); 5295 // Return N so it doesn't get rechecked! 5296 return SDValue(N, 0); 5297 } 5298 } 5299 } 5300 } 5301 } 5302 } 5303 5304 // Reduce bit extract of low half of an integer to the narrower type. 5305 // (and (srl i64:x, K), KMask) -> 5306 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 5307 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 5308 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 5309 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5310 unsigned Size = VT.getSizeInBits(); 5311 const APInt &AndMask = CAnd->getAPIntValue(); 5312 unsigned ShiftBits = CShift->getZExtValue(); 5313 5314 // Bail out, this node will probably disappear anyway. 5315 if (ShiftBits == 0) 5316 return SDValue(); 5317 5318 unsigned MaskBits = AndMask.countTrailingOnes(); 5319 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 5320 5321 if (AndMask.isMask() && 5322 // Required bits must not span the two halves of the integer and 5323 // must fit in the half size type. 5324 (ShiftBits + MaskBits <= Size / 2) && 5325 TLI.isNarrowingProfitable(VT, HalfVT) && 5326 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 5327 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 5328 TLI.isTruncateFree(VT, HalfVT) && 5329 TLI.isZExtFree(HalfVT, VT)) { 5330 // The isNarrowingProfitable is to avoid regressions on PPC and 5331 // AArch64 which match a few 64-bit bit insert / bit extract patterns 5332 // on downstream users of this. Those patterns could probably be 5333 // extended to handle extensions mixed in. 5334 5335 SDValue SL(N0); 5336 assert(MaskBits <= Size); 5337 5338 // Extracting the highest bit of the low half. 5339 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 5340 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 5341 N0.getOperand(0)); 5342 5343 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 5344 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 5345 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 5346 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 5347 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 5348 } 5349 } 5350 } 5351 } 5352 5353 return SDValue(); 5354 } 5355 5356 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 5357 EVT LoadResultTy, EVT &ExtVT) { 5358 if (!AndC->getAPIntValue().isMask()) 5359 return false; 5360 5361 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 5362 5363 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5364 EVT LoadedVT = LoadN->getMemoryVT(); 5365 5366 if (ExtVT == LoadedVT && 5367 (!LegalOperations || 5368 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 5369 // ZEXTLOAD will match without needing to change the size of the value being 5370 // loaded. 5371 return true; 5372 } 5373 5374 // Do not change the width of a volatile or atomic loads. 5375 if (!LoadN->isSimple()) 5376 return false; 5377 5378 // Do not generate loads of non-round integer types since these can 5379 // be expensive (and would be wrong if the type is not byte sized). 5380 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 5381 return false; 5382 5383 if (LegalOperations && 5384 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 5385 return false; 5386 5387 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 5388 return false; 5389 5390 return true; 5391 } 5392 5393 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 5394 ISD::LoadExtType ExtType, EVT &MemVT, 5395 unsigned ShAmt) { 5396 if (!LDST) 5397 return false; 5398 // Only allow byte offsets. 5399 if (ShAmt % 8) 5400 return false; 5401 5402 // Do not generate loads of non-round integer types since these can 5403 // be expensive (and would be wrong if the type is not byte sized). 5404 if (!MemVT.isRound()) 5405 return false; 5406 5407 // Don't change the width of a volatile or atomic loads. 5408 if (!LDST->isSimple()) 5409 return false; 5410 5411 EVT LdStMemVT = LDST->getMemoryVT(); 5412 5413 // Bail out when changing the scalable property, since we can't be sure that 5414 // we're actually narrowing here. 5415 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) 5416 return false; 5417 5418 // Verify that we are actually reducing a load width here. 5419 if (LdStMemVT.bitsLT(MemVT)) 5420 return false; 5421 5422 // Ensure that this isn't going to produce an unsupported memory access. 5423 if (ShAmt) { 5424 assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); 5425 const unsigned ByteShAmt = ShAmt / 8; 5426 const Align LDSTAlign = LDST->getAlign(); 5427 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); 5428 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 5429 LDST->getAddressSpace(), NarrowAlign, 5430 LDST->getMemOperand()->getFlags())) 5431 return false; 5432 } 5433 5434 // It's not possible to generate a constant of extended or untyped type. 5435 EVT PtrType = LDST->getBasePtr().getValueType(); 5436 if (PtrType == MVT::Untyped || PtrType.isExtended()) 5437 return false; 5438 5439 if (isa<LoadSDNode>(LDST)) { 5440 LoadSDNode *Load = cast<LoadSDNode>(LDST); 5441 // Don't transform one with multiple uses, this would require adding a new 5442 // load. 5443 if (!SDValue(Load, 0).hasOneUse()) 5444 return false; 5445 5446 if (LegalOperations && 5447 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 5448 return false; 5449 5450 // For the transform to be legal, the load must produce only two values 5451 // (the value loaded and the chain). Don't transform a pre-increment 5452 // load, for example, which produces an extra value. Otherwise the 5453 // transformation is not equivalent, and the downstream logic to replace 5454 // uses gets things wrong. 5455 if (Load->getNumValues() > 2) 5456 return false; 5457 5458 // If the load that we're shrinking is an extload and we're not just 5459 // discarding the extension we can't simply shrink the load. Bail. 5460 // TODO: It would be possible to merge the extensions in some cases. 5461 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 5462 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5463 return false; 5464 5465 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 5466 return false; 5467 } else { 5468 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 5469 StoreSDNode *Store = cast<StoreSDNode>(LDST); 5470 // Can't write outside the original store 5471 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5472 return false; 5473 5474 if (LegalOperations && 5475 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 5476 return false; 5477 } 5478 return true; 5479 } 5480 5481 bool DAGCombiner::SearchForAndLoads(SDNode *N, 5482 SmallVectorImpl<LoadSDNode*> &Loads, 5483 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 5484 ConstantSDNode *Mask, 5485 SDNode *&NodeToMask) { 5486 // Recursively search for the operands, looking for loads which can be 5487 // narrowed. 5488 for (SDValue Op : N->op_values()) { 5489 if (Op.getValueType().isVector()) 5490 return false; 5491 5492 // Some constants may need fixing up later if they are too large. 5493 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5494 if (Mask->getValueType(0) != C->getValueType(0)) 5495 return false; 5496 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 5497 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 5498 NodesWithConsts.insert(N); 5499 continue; 5500 } 5501 5502 if (!Op.hasOneUse()) 5503 return false; 5504 5505 switch(Op.getOpcode()) { 5506 case ISD::LOAD: { 5507 auto *Load = cast<LoadSDNode>(Op); 5508 EVT ExtVT; 5509 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 5510 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 5511 5512 // ZEXTLOAD is already small enough. 5513 if (Load->getExtensionType() == ISD::ZEXTLOAD && 5514 ExtVT.bitsGE(Load->getMemoryVT())) 5515 continue; 5516 5517 // Use LE to convert equal sized loads to zext. 5518 if (ExtVT.bitsLE(Load->getMemoryVT())) 5519 Loads.push_back(Load); 5520 5521 continue; 5522 } 5523 return false; 5524 } 5525 case ISD::ZERO_EXTEND: 5526 case ISD::AssertZext: { 5527 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 5528 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5529 EVT VT = Op.getOpcode() == ISD::AssertZext 5530 ? cast<VTSDNode>(Op.getOperand(1))->getVT() 5531 : Op.getOperand(0).getValueType(); 5532 5533 // We can accept extending nodes if the mask is wider or an equal 5534 // width to the original type. 5535 if (ExtVT.bitsGE(VT)) 5536 continue; 5537 break; 5538 } 5539 case ISD::ANY_EXTEND: { 5540 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 5541 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5542 EVT VT = Op.getOperand(0).getValueType(); 5543 if (ExtVT.bitsGE(VT)) 5544 break; 5545 // Fallthrough to searching for nodes from the operands of the extend. 5546 LLVM_FALLTHROUGH; 5547 } 5548 case ISD::OR: 5549 case ISD::XOR: 5550 case ISD::AND: 5551 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 5552 NodeToMask)) 5553 return false; 5554 continue; 5555 } 5556 5557 // Allow one node which will masked along with any loads found. 5558 if (NodeToMask) 5559 return false; 5560 5561 // Also ensure that the node to be masked only produces one data result. 5562 NodeToMask = Op.getNode(); 5563 if (NodeToMask->getNumValues() > 1) { 5564 bool HasValue = false; 5565 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 5566 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 5567 if (VT != MVT::Glue && VT != MVT::Other) { 5568 if (HasValue) { 5569 NodeToMask = nullptr; 5570 return false; 5571 } 5572 HasValue = true; 5573 } 5574 } 5575 assert(HasValue && "Node to be masked has no data result?"); 5576 } 5577 } 5578 return true; 5579 } 5580 5581 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { 5582 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5583 if (!Mask) 5584 return false; 5585 5586 if (!Mask->getAPIntValue().isMask()) 5587 return false; 5588 5589 // No need to do anything if the and directly uses a load. 5590 if (isa<LoadSDNode>(N->getOperand(0))) 5591 return false; 5592 5593 SmallVector<LoadSDNode*, 8> Loads; 5594 SmallPtrSet<SDNode*, 2> NodesWithConsts; 5595 SDNode *FixupNode = nullptr; 5596 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 5597 if (Loads.size() == 0) 5598 return false; 5599 5600 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 5601 SDValue MaskOp = N->getOperand(1); 5602 5603 // If it exists, fixup the single node we allow in the tree that needs 5604 // masking. 5605 if (FixupNode) { 5606 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 5607 SDValue MaskOpT = DAG.getZExtOrTrunc(MaskOp, SDLoc(FixupNode), 5608 FixupNode->getValueType(0)); 5609 SDValue And = 5610 DAG.getNode(ISD::AND, SDLoc(FixupNode), FixupNode->getValueType(0), 5611 SDValue(FixupNode, 0), MaskOpT); 5612 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 5613 if (And.getOpcode() == ISD ::AND) 5614 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOpT); 5615 } 5616 5617 // Narrow any constants that need it. 5618 for (auto *LogicN : NodesWithConsts) { 5619 SDValue Op0 = LogicN->getOperand(0); 5620 SDValue Op1 = LogicN->getOperand(1); 5621 5622 if (isa<ConstantSDNode>(Op0)) 5623 std::swap(Op0, Op1); 5624 5625 SDValue MaskOpT = 5626 DAG.getZExtOrTrunc(MaskOp, SDLoc(Op1), Op1.getValueType()); 5627 SDValue And = 5628 DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), Op1, MaskOpT); 5629 5630 DAG.UpdateNodeOperands(LogicN, Op0, And); 5631 } 5632 5633 // Create narrow loads. 5634 for (auto *Load : Loads) { 5635 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 5636 SDValue MaskOpT = 5637 DAG.getZExtOrTrunc(MaskOp, SDLoc(Load), Load->getValueType(0)); 5638 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 5639 SDValue(Load, 0), MaskOpT); 5640 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 5641 if (And.getOpcode() == ISD ::AND) 5642 And = SDValue( 5643 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOpT), 0); 5644 SDValue NewLoad = reduceLoadWidth(And.getNode()); 5645 assert(NewLoad && 5646 "Shouldn't be masking the load if it can't be narrowed"); 5647 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 5648 } 5649 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 5650 return true; 5651 } 5652 return false; 5653 } 5654 5655 // Unfold 5656 // x & (-1 'logical shift' y) 5657 // To 5658 // (x 'opposite logical shift' y) 'logical shift' y 5659 // if it is better for performance. 5660 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 5661 assert(N->getOpcode() == ISD::AND); 5662 5663 SDValue N0 = N->getOperand(0); 5664 SDValue N1 = N->getOperand(1); 5665 5666 // Do we actually prefer shifts over mask? 5667 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 5668 return SDValue(); 5669 5670 // Try to match (-1 '[outer] logical shift' y) 5671 unsigned OuterShift; 5672 unsigned InnerShift; // The opposite direction to the OuterShift. 5673 SDValue Y; // Shift amount. 5674 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 5675 if (!M.hasOneUse()) 5676 return false; 5677 OuterShift = M->getOpcode(); 5678 if (OuterShift == ISD::SHL) 5679 InnerShift = ISD::SRL; 5680 else if (OuterShift == ISD::SRL) 5681 InnerShift = ISD::SHL; 5682 else 5683 return false; 5684 if (!isAllOnesConstant(M->getOperand(0))) 5685 return false; 5686 Y = M->getOperand(1); 5687 return true; 5688 }; 5689 5690 SDValue X; 5691 if (matchMask(N1)) 5692 X = N0; 5693 else if (matchMask(N0)) 5694 X = N1; 5695 else 5696 return SDValue(); 5697 5698 SDLoc DL(N); 5699 EVT VT = N->getValueType(0); 5700 5701 // tmp = x 'opposite logical shift' y 5702 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 5703 // ret = tmp 'logical shift' y 5704 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 5705 5706 return T1; 5707 } 5708 5709 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. 5710 /// For a target with a bit test, this is expected to become test + set and save 5711 /// at least 1 instruction. 5712 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { 5713 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); 5714 5715 // This is probably not worthwhile without a supported type. 5716 EVT VT = And->getValueType(0); 5717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5718 if (!TLI.isTypeLegal(VT)) 5719 return SDValue(); 5720 5721 // Look through an optional extension and find a 'not'. 5722 // TODO: Should we favor test+set even without the 'not' op? 5723 SDValue Not = And->getOperand(0), And1 = And->getOperand(1); 5724 if (Not.getOpcode() == ISD::ANY_EXTEND) 5725 Not = Not.getOperand(0); 5726 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) 5727 return SDValue(); 5728 5729 // Look though an optional truncation. The source operand may not be the same 5730 // type as the original 'and', but that is ok because we are masking off 5731 // everything but the low bit. 5732 SDValue Srl = Not.getOperand(0); 5733 if (Srl.getOpcode() == ISD::TRUNCATE) 5734 Srl = Srl.getOperand(0); 5735 5736 // Match a shift-right by constant. 5737 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || 5738 !isa<ConstantSDNode>(Srl.getOperand(1))) 5739 return SDValue(); 5740 5741 // We might have looked through casts that make this transform invalid. 5742 // TODO: If the source type is wider than the result type, do the mask and 5743 // compare in the source type. 5744 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); 5745 unsigned VTBitWidth = VT.getSizeInBits(); 5746 if (ShiftAmt.uge(VTBitWidth)) 5747 return SDValue(); 5748 5749 // Turn this into a bit-test pattern using mask op + setcc: 5750 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 5751 SDLoc DL(And); 5752 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); 5753 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5754 SDValue Mask = DAG.getConstant( 5755 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); 5756 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); 5757 SDValue Zero = DAG.getConstant(0, DL, VT); 5758 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); 5759 return DAG.getZExtOrTrunc(Setcc, DL, VT); 5760 } 5761 5762 /// For targets that support usubsat, match a bit-hack form of that operation 5763 /// that ends in 'and' and convert it. 5764 static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG) { 5765 SDValue N0 = N->getOperand(0); 5766 SDValue N1 = N->getOperand(1); 5767 EVT VT = N1.getValueType(); 5768 5769 // Canonicalize SRA as operand 1. 5770 if (N0.getOpcode() == ISD::SRA) 5771 std::swap(N0, N1); 5772 5773 // xor/add with SMIN (signmask) are logically equivalent. 5774 if (N0.getOpcode() != ISD::XOR && N0.getOpcode() != ISD::ADD) 5775 return SDValue(); 5776 5777 if (N1.getOpcode() != ISD::SRA || !N0.hasOneUse() || !N1.hasOneUse() || 5778 N0.getOperand(0) != N1.getOperand(0)) 5779 return SDValue(); 5780 5781 unsigned BitWidth = VT.getScalarSizeInBits(); 5782 ConstantSDNode *XorC = isConstOrConstSplat(N0.getOperand(1), true); 5783 ConstantSDNode *SraC = isConstOrConstSplat(N1.getOperand(1), true); 5784 if (!XorC || !XorC->getAPIntValue().isSignMask() || 5785 !SraC || SraC->getAPIntValue() != BitWidth - 1) 5786 return SDValue(); 5787 5788 // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128 5789 // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128 5790 SDLoc DL(N); 5791 SDValue SignMask = DAG.getConstant(XorC->getAPIntValue(), DL, VT); 5792 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), SignMask); 5793 } 5794 5795 SDValue DAGCombiner::visitAND(SDNode *N) { 5796 SDValue N0 = N->getOperand(0); 5797 SDValue N1 = N->getOperand(1); 5798 EVT VT = N1.getValueType(); 5799 5800 // x & x --> x 5801 if (N0 == N1) 5802 return N0; 5803 5804 // fold (and c1, c2) -> c1&c2 5805 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) 5806 return C; 5807 5808 // canonicalize constant to RHS 5809 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5810 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5811 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 5812 5813 // fold vector ops 5814 if (VT.isVector()) { 5815 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 5816 return FoldedVOp; 5817 5818 // fold (and x, 0) -> 0, vector edition 5819 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 5820 // do not return N0, because undef node may exist in N0 5821 return DAG.getConstant(APInt::getZero(N0.getScalarValueSizeInBits()), 5822 SDLoc(N), N0.getValueType()); 5823 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 5824 // do not return N1, because undef node may exist in N1 5825 return DAG.getConstant(APInt::getZero(N1.getScalarValueSizeInBits()), 5826 SDLoc(N), N1.getValueType()); 5827 5828 // fold (and x, -1) -> x, vector edition 5829 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 5830 return N1; 5831 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 5832 return N0; 5833 5834 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load 5835 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); 5836 auto *BVec = dyn_cast<BuildVectorSDNode>(N1); 5837 if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD && 5838 N0.hasOneUse() && N1.hasOneUse()) { 5839 EVT LoadVT = MLoad->getMemoryVT(); 5840 EVT ExtVT = VT; 5841 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { 5842 // For this AND to be a zero extension of the masked load the elements 5843 // of the BuildVec must mask the bottom bits of the extended element 5844 // type 5845 if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) { 5846 uint64_t ElementSize = 5847 LoadVT.getVectorElementType().getScalarSizeInBits(); 5848 if (Splat->getAPIntValue().isMask(ElementSize)) { 5849 return DAG.getMaskedLoad( 5850 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(), 5851 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), 5852 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), 5853 ISD::ZEXTLOAD, MLoad->isExpandingLoad()); 5854 } 5855 } 5856 } 5857 } 5858 } 5859 5860 // fold (and x, -1) -> x 5861 if (isAllOnesConstant(N1)) 5862 return N0; 5863 5864 // if (and x, c) is known to be zero, return 0 5865 unsigned BitWidth = VT.getScalarSizeInBits(); 5866 ConstantSDNode *N1C = isConstOrConstSplat(N1); 5867 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(BitWidth))) 5868 return DAG.getConstant(0, SDLoc(N), VT); 5869 5870 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5871 return NewSel; 5872 5873 // reassociate and 5874 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 5875 return RAND; 5876 5877 // Try to convert a constant mask AND into a shuffle clear mask. 5878 if (VT.isVector()) 5879 if (SDValue Shuffle = XformToShuffleWithZero(N)) 5880 return Shuffle; 5881 5882 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 5883 return Combined; 5884 5885 // fold (and (or x, C), D) -> D if (C & D) == D 5886 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 5887 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 5888 }; 5889 if (N0.getOpcode() == ISD::OR && 5890 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 5891 return N1; 5892 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 5893 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 5894 SDValue N0Op0 = N0.getOperand(0); 5895 APInt Mask = ~N1C->getAPIntValue(); 5896 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 5897 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 5898 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 5899 N0.getValueType(), N0Op0); 5900 5901 // Replace uses of the AND with uses of the Zero extend node. 5902 CombineTo(N, Zext); 5903 5904 // We actually want to replace all uses of the any_extend with the 5905 // zero_extend, to avoid duplicating things. This will later cause this 5906 // AND to be folded. 5907 CombineTo(N0.getNode(), Zext); 5908 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5909 } 5910 } 5911 5912 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 5913 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 5914 // already be zero by virtue of the width of the base type of the load. 5915 // 5916 // the 'X' node here can either be nothing or an extract_vector_elt to catch 5917 // more cases. 5918 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5919 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 5920 N0.getOperand(0).getOpcode() == ISD::LOAD && 5921 N0.getOperand(0).getResNo() == 0) || 5922 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 5923 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 5924 N0 : N0.getOperand(0) ); 5925 5926 // Get the constant (if applicable) the zero'th operand is being ANDed with. 5927 // This can be a pure constant or a vector splat, in which case we treat the 5928 // vector as a scalar and use the splat value. 5929 APInt Constant = APInt::getZero(1); 5930 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 5931 Constant = C->getAPIntValue(); 5932 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 5933 APInt SplatValue, SplatUndef; 5934 unsigned SplatBitSize; 5935 bool HasAnyUndefs; 5936 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 5937 SplatBitSize, HasAnyUndefs); 5938 if (IsSplat) { 5939 // Undef bits can contribute to a possible optimisation if set, so 5940 // set them. 5941 SplatValue |= SplatUndef; 5942 5943 // The splat value may be something like "0x00FFFFFF", which means 0 for 5944 // the first vector value and FF for the rest, repeating. We need a mask 5945 // that will apply equally to all members of the vector, so AND all the 5946 // lanes of the constant together. 5947 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); 5948 5949 // If the splat value has been compressed to a bitlength lower 5950 // than the size of the vector lane, we need to re-expand it to 5951 // the lane size. 5952 if (EltBitWidth > SplatBitSize) 5953 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); 5954 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) 5955 SplatValue |= SplatValue.shl(SplatBitSize); 5956 5957 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 5958 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 5959 if ((SplatBitSize % EltBitWidth) == 0) { 5960 Constant = APInt::getAllOnes(EltBitWidth); 5961 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) 5962 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); 5963 } 5964 } 5965 } 5966 5967 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 5968 // actually legal and isn't going to get expanded, else this is a false 5969 // optimisation. 5970 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 5971 Load->getValueType(0), 5972 Load->getMemoryVT()); 5973 5974 // Resize the constant to the same size as the original memory access before 5975 // extension. If it is still the AllOnesValue then this AND is completely 5976 // unneeded. 5977 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 5978 5979 bool B; 5980 switch (Load->getExtensionType()) { 5981 default: B = false; break; 5982 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 5983 case ISD::ZEXTLOAD: 5984 case ISD::NON_EXTLOAD: B = true; break; 5985 } 5986 5987 if (B && Constant.isAllOnes()) { 5988 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 5989 // preserve semantics once we get rid of the AND. 5990 SDValue NewLoad(Load, 0); 5991 5992 // Fold the AND away. NewLoad may get replaced immediately. 5993 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 5994 5995 if (Load->getExtensionType() == ISD::EXTLOAD) { 5996 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 5997 Load->getValueType(0), SDLoc(Load), 5998 Load->getChain(), Load->getBasePtr(), 5999 Load->getOffset(), Load->getMemoryVT(), 6000 Load->getMemOperand()); 6001 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 6002 if (Load->getNumValues() == 3) { 6003 // PRE/POST_INC loads have 3 values. 6004 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 6005 NewLoad.getValue(2) }; 6006 CombineTo(Load, To, 3, true); 6007 } else { 6008 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 6009 } 6010 } 6011 6012 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6013 } 6014 } 6015 6016 // fold (and (masked_gather x)) -> (zext_masked_gather x) 6017 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 6018 EVT MemVT = GN0->getMemoryVT(); 6019 EVT ScalarVT = MemVT.getScalarType(); 6020 6021 if (SDValue(GN0, 0).hasOneUse() && 6022 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && 6023 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 6024 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 6025 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 6026 6027 SDValue ZExtLoad = DAG.getMaskedGather( 6028 DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops, 6029 GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD); 6030 6031 CombineTo(N, ZExtLoad); 6032 AddToWorklist(ZExtLoad.getNode()); 6033 // Avoid recheck of N. 6034 return SDValue(N, 0); 6035 } 6036 } 6037 6038 // fold (and (load x), 255) -> (zextload x, i8) 6039 // fold (and (extload x, i16), 255) -> (zextload x, i8) 6040 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 6041 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 6042 (N0.getOpcode() == ISD::ANY_EXTEND && 6043 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 6044 if (SDValue Res = reduceLoadWidth(N)) { 6045 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 6046 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 6047 AddToWorklist(N); 6048 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 6049 return SDValue(N, 0); 6050 } 6051 } 6052 6053 if (LegalTypes) { 6054 // Attempt to propagate the AND back up to the leaves which, if they're 6055 // loads, can be combined to narrow loads and the AND node can be removed. 6056 // Perform after legalization so that extend nodes will already be 6057 // combined into the loads. 6058 if (BackwardsPropagateMask(N)) 6059 return SDValue(N, 0); 6060 } 6061 6062 if (SDValue Combined = visitANDLike(N0, N1, N)) 6063 return Combined; 6064 6065 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 6066 if (N0.getOpcode() == N1.getOpcode()) 6067 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6068 return V; 6069 6070 // Masking the negated extension of a boolean is just the zero-extended 6071 // boolean: 6072 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 6073 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 6074 // 6075 // Note: the SimplifyDemandedBits fold below can make an information-losing 6076 // transform, and then we have no way to find this better fold. 6077 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 6078 if (isNullOrNullSplat(N0.getOperand(0))) { 6079 SDValue SubRHS = N0.getOperand(1); 6080 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 6081 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 6082 return SubRHS; 6083 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 6084 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 6085 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 6086 } 6087 } 6088 6089 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 6090 // fold (and (sra)) -> (and (srl)) when possible. 6091 if (SimplifyDemandedBits(SDValue(N, 0))) 6092 return SDValue(N, 0); 6093 6094 // fold (zext_inreg (extload x)) -> (zextload x) 6095 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 6096 if (ISD::isUNINDEXEDLoad(N0.getNode()) && 6097 (ISD::isEXTLoad(N0.getNode()) || 6098 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { 6099 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6100 EVT MemVT = LN0->getMemoryVT(); 6101 // If we zero all the possible extended bits, then we can turn this into 6102 // a zextload if we are running before legalize or the operation is legal. 6103 unsigned ExtBitSize = N1.getScalarValueSizeInBits(); 6104 unsigned MemBitSize = MemVT.getScalarSizeInBits(); 6105 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); 6106 if (DAG.MaskedValueIsZero(N1, ExtBits) && 6107 ((!LegalOperations && LN0->isSimple()) || 6108 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 6109 SDValue ExtLoad = 6110 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), 6111 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 6112 AddToWorklist(N); 6113 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6114 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6115 } 6116 } 6117 6118 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 6119 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 6120 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 6121 N0.getOperand(1), false)) 6122 return BSwap; 6123 } 6124 6125 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 6126 return Shifts; 6127 6128 if (TLI.hasBitTest(N0, N1)) 6129 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) 6130 return V; 6131 6132 // Recognize the following pattern: 6133 // 6134 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) 6135 // 6136 // where bitmask is a mask that clears the upper bits of AndVT. The 6137 // number of bits in bitmask must be a power of two. 6138 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { 6139 if (LHS->getOpcode() != ISD::SIGN_EXTEND) 6140 return false; 6141 6142 auto *C = dyn_cast<ConstantSDNode>(RHS); 6143 if (!C) 6144 return false; 6145 6146 if (!C->getAPIntValue().isMask( 6147 LHS.getOperand(0).getValueType().getFixedSizeInBits())) 6148 return false; 6149 6150 return true; 6151 }; 6152 6153 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). 6154 if (IsAndZeroExtMask(N0, N1)) 6155 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); 6156 6157 if (hasOperation(ISD::USUBSAT, VT)) 6158 if (SDValue V = foldAndToUsubsat(N, DAG)) 6159 return V; 6160 6161 return SDValue(); 6162 } 6163 6164 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 6165 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 6166 bool DemandHighBits) { 6167 if (!LegalOperations) 6168 return SDValue(); 6169 6170 EVT VT = N->getValueType(0); 6171 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 6172 return SDValue(); 6173 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6174 return SDValue(); 6175 6176 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 6177 bool LookPassAnd0 = false; 6178 bool LookPassAnd1 = false; 6179 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 6180 std::swap(N0, N1); 6181 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 6182 std::swap(N0, N1); 6183 if (N0.getOpcode() == ISD::AND) { 6184 if (!N0.getNode()->hasOneUse()) 6185 return SDValue(); 6186 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6187 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 6188 // This is needed for X86. 6189 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 6190 N01C->getZExtValue() != 0xFFFF)) 6191 return SDValue(); 6192 N0 = N0.getOperand(0); 6193 LookPassAnd0 = true; 6194 } 6195 6196 if (N1.getOpcode() == ISD::AND) { 6197 if (!N1.getNode()->hasOneUse()) 6198 return SDValue(); 6199 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6200 if (!N11C || N11C->getZExtValue() != 0xFF) 6201 return SDValue(); 6202 N1 = N1.getOperand(0); 6203 LookPassAnd1 = true; 6204 } 6205 6206 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 6207 std::swap(N0, N1); 6208 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 6209 return SDValue(); 6210 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 6211 return SDValue(); 6212 6213 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6214 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6215 if (!N01C || !N11C) 6216 return SDValue(); 6217 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 6218 return SDValue(); 6219 6220 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 6221 SDValue N00 = N0->getOperand(0); 6222 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 6223 if (!N00.getNode()->hasOneUse()) 6224 return SDValue(); 6225 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 6226 if (!N001C || N001C->getZExtValue() != 0xFF) 6227 return SDValue(); 6228 N00 = N00.getOperand(0); 6229 LookPassAnd0 = true; 6230 } 6231 6232 SDValue N10 = N1->getOperand(0); 6233 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 6234 if (!N10.getNode()->hasOneUse()) 6235 return SDValue(); 6236 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 6237 // Also allow 0xFFFF since the bits will be shifted out. This is needed 6238 // for X86. 6239 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 6240 N101C->getZExtValue() != 0xFFFF)) 6241 return SDValue(); 6242 N10 = N10.getOperand(0); 6243 LookPassAnd1 = true; 6244 } 6245 6246 if (N00 != N10) 6247 return SDValue(); 6248 6249 // Make sure everything beyond the low halfword gets set to zero since the SRL 6250 // 16 will clear the top bits. 6251 unsigned OpSizeInBits = VT.getSizeInBits(); 6252 if (DemandHighBits && OpSizeInBits > 16) { 6253 // If the left-shift isn't masked out then the only way this is a bswap is 6254 // if all bits beyond the low 8 are 0. In that case the entire pattern 6255 // reduces to a left shift anyway: leave it for other parts of the combiner. 6256 if (!LookPassAnd0) 6257 return SDValue(); 6258 6259 // However, if the right shift isn't masked out then it might be because 6260 // it's not needed. See if we can spot that too. 6261 if (!LookPassAnd1 && 6262 !DAG.MaskedValueIsZero( 6263 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 6264 return SDValue(); 6265 } 6266 6267 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 6268 if (OpSizeInBits > 16) { 6269 SDLoc DL(N); 6270 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 6271 DAG.getConstant(OpSizeInBits - 16, DL, 6272 getShiftAmountTy(VT))); 6273 } 6274 return Res; 6275 } 6276 6277 /// Return true if the specified node is an element that makes up a 32-bit 6278 /// packed halfword byteswap. 6279 /// ((x & 0x000000ff) << 8) | 6280 /// ((x & 0x0000ff00) >> 8) | 6281 /// ((x & 0x00ff0000) << 8) | 6282 /// ((x & 0xff000000) >> 8) 6283 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 6284 if (!N.getNode()->hasOneUse()) 6285 return false; 6286 6287 unsigned Opc = N.getOpcode(); 6288 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 6289 return false; 6290 6291 SDValue N0 = N.getOperand(0); 6292 unsigned Opc0 = N0.getOpcode(); 6293 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 6294 return false; 6295 6296 ConstantSDNode *N1C = nullptr; 6297 // SHL or SRL: look upstream for AND mask operand 6298 if (Opc == ISD::AND) 6299 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6300 else if (Opc0 == ISD::AND) 6301 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6302 if (!N1C) 6303 return false; 6304 6305 unsigned MaskByteOffset; 6306 switch (N1C->getZExtValue()) { 6307 default: 6308 return false; 6309 case 0xFF: MaskByteOffset = 0; break; 6310 case 0xFF00: MaskByteOffset = 1; break; 6311 case 0xFFFF: 6312 // In case demanded bits didn't clear the bits that will be shifted out. 6313 // This is needed for X86. 6314 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 6315 MaskByteOffset = 1; 6316 break; 6317 } 6318 return false; 6319 case 0xFF0000: MaskByteOffset = 2; break; 6320 case 0xFF000000: MaskByteOffset = 3; break; 6321 } 6322 6323 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 6324 if (Opc == ISD::AND) { 6325 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 6326 // (x >> 8) & 0xff 6327 // (x >> 8) & 0xff0000 6328 if (Opc0 != ISD::SRL) 6329 return false; 6330 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6331 if (!C || C->getZExtValue() != 8) 6332 return false; 6333 } else { 6334 // (x << 8) & 0xff00 6335 // (x << 8) & 0xff000000 6336 if (Opc0 != ISD::SHL) 6337 return false; 6338 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6339 if (!C || C->getZExtValue() != 8) 6340 return false; 6341 } 6342 } else if (Opc == ISD::SHL) { 6343 // (x & 0xff) << 8 6344 // (x & 0xff0000) << 8 6345 if (MaskByteOffset != 0 && MaskByteOffset != 2) 6346 return false; 6347 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6348 if (!C || C->getZExtValue() != 8) 6349 return false; 6350 } else { // Opc == ISD::SRL 6351 // (x & 0xff00) >> 8 6352 // (x & 0xff000000) >> 8 6353 if (MaskByteOffset != 1 && MaskByteOffset != 3) 6354 return false; 6355 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6356 if (!C || C->getZExtValue() != 8) 6357 return false; 6358 } 6359 6360 if (Parts[MaskByteOffset]) 6361 return false; 6362 6363 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 6364 return true; 6365 } 6366 6367 // Match 2 elements of a packed halfword bswap. 6368 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { 6369 if (N.getOpcode() == ISD::OR) 6370 return isBSwapHWordElement(N.getOperand(0), Parts) && 6371 isBSwapHWordElement(N.getOperand(1), Parts); 6372 6373 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { 6374 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); 6375 if (!C || C->getAPIntValue() != 16) 6376 return false; 6377 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); 6378 return true; 6379 } 6380 6381 return false; 6382 } 6383 6384 // Match this pattern: 6385 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) 6386 // And rewrite this to: 6387 // (rotr (bswap A), 16) 6388 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, 6389 SelectionDAG &DAG, SDNode *N, SDValue N0, 6390 SDValue N1, EVT VT, EVT ShiftAmountTy) { 6391 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && 6392 "MatchBSwapHWordOrAndAnd: expecting i32"); 6393 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6394 return SDValue(); 6395 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) 6396 return SDValue(); 6397 // TODO: this is too restrictive; lifting this restriction requires more tests 6398 if (!N0->hasOneUse() || !N1->hasOneUse()) 6399 return SDValue(); 6400 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); 6401 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); 6402 if (!Mask0 || !Mask1) 6403 return SDValue(); 6404 if (Mask0->getAPIntValue() != 0xff00ff00 || 6405 Mask1->getAPIntValue() != 0x00ff00ff) 6406 return SDValue(); 6407 SDValue Shift0 = N0.getOperand(0); 6408 SDValue Shift1 = N1.getOperand(0); 6409 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) 6410 return SDValue(); 6411 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); 6412 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); 6413 if (!ShiftAmt0 || !ShiftAmt1) 6414 return SDValue(); 6415 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) 6416 return SDValue(); 6417 if (Shift0.getOperand(0) != Shift1.getOperand(0)) 6418 return SDValue(); 6419 6420 SDLoc DL(N); 6421 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); 6422 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); 6423 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6424 } 6425 6426 /// Match a 32-bit packed halfword bswap. That is 6427 /// ((x & 0x000000ff) << 8) | 6428 /// ((x & 0x0000ff00) >> 8) | 6429 /// ((x & 0x00ff0000) << 8) | 6430 /// ((x & 0xff000000) >> 8) 6431 /// => (rotl (bswap x), 16) 6432 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 6433 if (!LegalOperations) 6434 return SDValue(); 6435 6436 EVT VT = N->getValueType(0); 6437 if (VT != MVT::i32) 6438 return SDValue(); 6439 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6440 return SDValue(); 6441 6442 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, 6443 getShiftAmountTy(VT))) 6444 return BSwap; 6445 6446 // Try again with commuted operands. 6447 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, 6448 getShiftAmountTy(VT))) 6449 return BSwap; 6450 6451 6452 // Look for either 6453 // (or (bswaphpair), (bswaphpair)) 6454 // (or (or (bswaphpair), (and)), (and)) 6455 // (or (or (and), (bswaphpair)), (and)) 6456 SDNode *Parts[4] = {}; 6457 6458 if (isBSwapHWordPair(N0, Parts)) { 6459 // (or (or (and), (and)), (or (and), (and))) 6460 if (!isBSwapHWordPair(N1, Parts)) 6461 return SDValue(); 6462 } else if (N0.getOpcode() == ISD::OR) { 6463 // (or (or (or (and), (and)), (and)), (and)) 6464 if (!isBSwapHWordElement(N1, Parts)) 6465 return SDValue(); 6466 SDValue N00 = N0.getOperand(0); 6467 SDValue N01 = N0.getOperand(1); 6468 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && 6469 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) 6470 return SDValue(); 6471 } else 6472 return SDValue(); 6473 6474 // Make sure the parts are all coming from the same node. 6475 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 6476 return SDValue(); 6477 6478 SDLoc DL(N); 6479 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 6480 SDValue(Parts[0], 0)); 6481 6482 // Result of the bswap should be rotated by 16. If it's not legal, then 6483 // do (x << 16) | (x >> 16). 6484 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 6485 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 6486 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 6487 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6488 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6489 return DAG.getNode(ISD::OR, DL, VT, 6490 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 6491 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 6492 } 6493 6494 /// This contains all DAGCombine rules which reduce two values combined by 6495 /// an Or operation to a single value \see visitANDLike(). 6496 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 6497 EVT VT = N1.getValueType(); 6498 SDLoc DL(N); 6499 6500 // fold (or x, undef) -> -1 6501 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 6502 return DAG.getAllOnesConstant(DL, VT); 6503 6504 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 6505 return V; 6506 6507 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 6508 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 6509 // Don't increase # computations. 6510 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6511 // We can only do this xform if we know that bits from X that are set in C2 6512 // but not in C1 are already zero. Likewise for Y. 6513 if (const ConstantSDNode *N0O1C = 6514 getAsNonOpaqueConstant(N0.getOperand(1))) { 6515 if (const ConstantSDNode *N1O1C = 6516 getAsNonOpaqueConstant(N1.getOperand(1))) { 6517 // We can only do this xform if we know that bits from X that are set in 6518 // C2 but not in C1 are already zero. Likewise for Y. 6519 const APInt &LHSMask = N0O1C->getAPIntValue(); 6520 const APInt &RHSMask = N1O1C->getAPIntValue(); 6521 6522 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 6523 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 6524 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6525 N0.getOperand(0), N1.getOperand(0)); 6526 return DAG.getNode(ISD::AND, DL, VT, X, 6527 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 6528 } 6529 } 6530 } 6531 } 6532 6533 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 6534 if (N0.getOpcode() == ISD::AND && 6535 N1.getOpcode() == ISD::AND && 6536 N0.getOperand(0) == N1.getOperand(0) && 6537 // Don't increase # computations. 6538 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6539 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6540 N0.getOperand(1), N1.getOperand(1)); 6541 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 6542 } 6543 6544 return SDValue(); 6545 } 6546 6547 /// OR combines for which the commuted variant will be tried as well. 6548 static SDValue visitORCommutative( 6549 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 6550 EVT VT = N0.getValueType(); 6551 if (N0.getOpcode() == ISD::AND) { 6552 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 6553 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 6554 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 6555 6556 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 6557 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 6558 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 6559 } 6560 6561 return SDValue(); 6562 } 6563 6564 SDValue DAGCombiner::visitOR(SDNode *N) { 6565 SDValue N0 = N->getOperand(0); 6566 SDValue N1 = N->getOperand(1); 6567 EVT VT = N1.getValueType(); 6568 6569 // x | x --> x 6570 if (N0 == N1) 6571 return N0; 6572 6573 // fold (or c1, c2) -> c1|c2 6574 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) 6575 return C; 6576 6577 // canonicalize constant to RHS 6578 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6579 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6580 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 6581 6582 // fold vector ops 6583 if (VT.isVector()) { 6584 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 6585 return FoldedVOp; 6586 6587 // fold (or x, 0) -> x, vector edition 6588 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 6589 return N0; 6590 6591 // fold (or x, -1) -> -1, vector edition 6592 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 6593 // do not return N1, because undef node may exist in N1 6594 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 6595 6596 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 6597 // Do this only if the resulting shuffle is legal. 6598 if (isa<ShuffleVectorSDNode>(N0) && 6599 isa<ShuffleVectorSDNode>(N1) && 6600 // Avoid folding a node with illegal type. 6601 TLI.isTypeLegal(VT)) { 6602 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 6603 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 6604 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 6605 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 6606 // Ensure both shuffles have a zero input. 6607 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 6608 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 6609 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 6610 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 6611 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 6612 bool CanFold = true; 6613 int NumElts = VT.getVectorNumElements(); 6614 SmallVector<int, 4> Mask(NumElts); 6615 6616 for (int i = 0; i != NumElts; ++i) { 6617 int M0 = SV0->getMaskElt(i); 6618 int M1 = SV1->getMaskElt(i); 6619 6620 // Determine if either index is pointing to a zero vector. 6621 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 6622 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 6623 6624 // If one element is zero and the otherside is undef, keep undef. 6625 // This also handles the case that both are undef. 6626 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 6627 Mask[i] = -1; 6628 continue; 6629 } 6630 6631 // Make sure only one of the elements is zero. 6632 if (M0Zero == M1Zero) { 6633 CanFold = false; 6634 break; 6635 } 6636 6637 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 6638 6639 // We have a zero and non-zero element. If the non-zero came from 6640 // SV0 make the index a LHS index. If it came from SV1, make it 6641 // a RHS index. We need to mod by NumElts because we don't care 6642 // which operand it came from in the original shuffles. 6643 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 6644 } 6645 6646 if (CanFold) { 6647 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 6648 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 6649 6650 SDValue LegalShuffle = 6651 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, 6652 Mask, DAG); 6653 if (LegalShuffle) 6654 return LegalShuffle; 6655 } 6656 } 6657 } 6658 } 6659 6660 // fold (or x, 0) -> x 6661 if (isNullConstant(N1)) 6662 return N0; 6663 6664 // fold (or x, -1) -> -1 6665 if (isAllOnesConstant(N1)) 6666 return N1; 6667 6668 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6669 return NewSel; 6670 6671 // fold (or x, c) -> c iff (x & ~c) == 0 6672 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 6673 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 6674 return N1; 6675 6676 if (SDValue Combined = visitORLike(N0, N1, N)) 6677 return Combined; 6678 6679 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 6680 return Combined; 6681 6682 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 6683 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 6684 return BSwap; 6685 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 6686 return BSwap; 6687 6688 // reassociate or 6689 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 6690 return ROR; 6691 6692 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 6693 // iff (c1 & c2) != 0 or c1/c2 are undef. 6694 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 6695 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 6696 }; 6697 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 6698 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 6699 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 6700 {N1, N0.getOperand(1)})) { 6701 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 6702 AddToWorklist(IOR.getNode()); 6703 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 6704 } 6705 } 6706 6707 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 6708 return Combined; 6709 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 6710 return Combined; 6711 6712 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 6713 if (N0.getOpcode() == N1.getOpcode()) 6714 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6715 return V; 6716 6717 // See if this is some rotate idiom. 6718 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) 6719 return Rot; 6720 6721 if (SDValue Load = MatchLoadCombine(N)) 6722 return Load; 6723 6724 // Simplify the operands using demanded-bits information. 6725 if (SimplifyDemandedBits(SDValue(N, 0))) 6726 return SDValue(N, 0); 6727 6728 // If OR can be rewritten into ADD, try combines based on ADD. 6729 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 6730 DAG.haveNoCommonBitsSet(N0, N1)) 6731 if (SDValue Combined = visitADDLike(N)) 6732 return Combined; 6733 6734 return SDValue(); 6735 } 6736 6737 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 6738 if (Op.getOpcode() == ISD::AND && 6739 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 6740 Mask = Op.getOperand(1); 6741 return Op.getOperand(0); 6742 } 6743 return Op; 6744 } 6745 6746 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 6747 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 6748 SDValue &Mask) { 6749 Op = stripConstantMask(DAG, Op, Mask); 6750 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 6751 Shift = Op; 6752 return true; 6753 } 6754 return false; 6755 } 6756 6757 /// Helper function for visitOR to extract the needed side of a rotate idiom 6758 /// from a shl/srl/mul/udiv. This is meant to handle cases where 6759 /// InstCombine merged some outside op with one of the shifts from 6760 /// the rotate pattern. 6761 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 6762 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 6763 /// patterns: 6764 /// 6765 /// (or (add v v) (shrl v bitwidth-1)): 6766 /// expands (add v v) -> (shl v 1) 6767 /// 6768 /// (or (mul v c0) (shrl (mul v c1) c2)): 6769 /// expands (mul v c0) -> (shl (mul v c1) c3) 6770 /// 6771 /// (or (udiv v c0) (shl (udiv v c1) c2)): 6772 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 6773 /// 6774 /// (or (shl v c0) (shrl (shl v c1) c2)): 6775 /// expands (shl v c0) -> (shl (shl v c1) c3) 6776 /// 6777 /// (or (shrl v c0) (shl (shrl v c1) c2)): 6778 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 6779 /// 6780 /// Such that in all cases, c3+c2==bitwidth(op v c1). 6781 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 6782 SDValue ExtractFrom, SDValue &Mask, 6783 const SDLoc &DL) { 6784 assert(OppShift && ExtractFrom && "Empty SDValue"); 6785 assert( 6786 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 6787 "Existing shift must be valid as a rotate half"); 6788 6789 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 6790 6791 // Value and Type of the shift. 6792 SDValue OppShiftLHS = OppShift.getOperand(0); 6793 EVT ShiftedVT = OppShiftLHS.getValueType(); 6794 6795 // Amount of the existing shift. 6796 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 6797 6798 // (add v v) -> (shl v 1) 6799 // TODO: Should this be a general DAG canonicalization? 6800 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && 6801 ExtractFrom.getOpcode() == ISD::ADD && 6802 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && 6803 ExtractFrom.getOperand(0) == OppShiftLHS && 6804 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) 6805 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, 6806 DAG.getShiftAmountConstant(1, ShiftedVT, DL)); 6807 6808 // Preconditions: 6809 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 6810 // 6811 // Find opcode of the needed shift to be extracted from (op0 v c0). 6812 unsigned Opcode = ISD::DELETED_NODE; 6813 bool IsMulOrDiv = false; 6814 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 6815 // opcode or its arithmetic (mul or udiv) variant. 6816 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 6817 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 6818 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 6819 return false; 6820 Opcode = NeededShift; 6821 return true; 6822 }; 6823 // op0 must be either the needed shift opcode or the mul/udiv equivalent 6824 // that the needed shift can be extracted from. 6825 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 6826 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 6827 return SDValue(); 6828 6829 // op0 must be the same opcode on both sides, have the same LHS argument, 6830 // and produce the same value type. 6831 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 6832 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 6833 ShiftedVT != ExtractFrom.getValueType()) 6834 return SDValue(); 6835 6836 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 6837 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 6838 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 6839 ConstantSDNode *ExtractFromCst = 6840 isConstOrConstSplat(ExtractFrom.getOperand(1)); 6841 // TODO: We should be able to handle non-uniform constant vectors for these values 6842 // Check that we have constant values. 6843 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 6844 !OppLHSCst || !OppLHSCst->getAPIntValue() || 6845 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 6846 return SDValue(); 6847 6848 // Compute the shift amount we need to extract to complete the rotate. 6849 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 6850 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 6851 return SDValue(); 6852 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 6853 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 6854 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 6855 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 6856 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 6857 6858 // Now try extract the needed shift from the ExtractFrom op and see if the 6859 // result matches up with the existing shift's LHS op. 6860 if (IsMulOrDiv) { 6861 // Op to extract from is a mul or udiv by a constant. 6862 // Check: 6863 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 6864 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 6865 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 6866 NeededShiftAmt.getZExtValue()); 6867 APInt ResultAmt; 6868 APInt Rem; 6869 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 6870 if (Rem != 0 || ResultAmt != OppLHSAmt) 6871 return SDValue(); 6872 } else { 6873 // Op to extract from is a shift by a constant. 6874 // Check: 6875 // c2 - (bitwidth(op0 v c0) - c1) == c0 6876 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 6877 ExtractFromAmt.getBitWidth())) 6878 return SDValue(); 6879 } 6880 6881 // Return the expanded shift op that should allow a rotate to be formed. 6882 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 6883 EVT ResVT = ExtractFrom.getValueType(); 6884 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 6885 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 6886 } 6887 6888 // Return true if we can prove that, whenever Neg and Pos are both in the 6889 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 6890 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 6891 // 6892 // (or (shift1 X, Neg), (shift2 X, Pos)) 6893 // 6894 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 6895 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 6896 // to consider shift amounts with defined behavior. 6897 // 6898 // The IsRotate flag should be set when the LHS of both shifts is the same. 6899 // Otherwise if matching a general funnel shift, it should be clear. 6900 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 6901 SelectionDAG &DAG, bool IsRotate) { 6902 // If EltSize is a power of 2 then: 6903 // 6904 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 6905 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 6906 // 6907 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 6908 // for the stronger condition: 6909 // 6910 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 6911 // 6912 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 6913 // we can just replace Neg with Neg' for the rest of the function. 6914 // 6915 // In other cases we check for the even stronger condition: 6916 // 6917 // Neg == EltSize - Pos [B] 6918 // 6919 // for all Neg and Pos. Note that the (or ...) then invokes undefined 6920 // behavior if Pos == 0 (and consequently Neg == EltSize). 6921 // 6922 // We could actually use [A] whenever EltSize is a power of 2, but the 6923 // only extra cases that it would match are those uninteresting ones 6924 // where Neg and Pos are never in range at the same time. E.g. for 6925 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 6926 // as well as (sub 32, Pos), but: 6927 // 6928 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 6929 // 6930 // always invokes undefined behavior for 32-bit X. 6931 // 6932 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 6933 // 6934 // NOTE: We can only do this when matching an AND and not a general 6935 // funnel shift. 6936 unsigned MaskLoBits = 0; 6937 if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 6938 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 6939 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 6940 unsigned Bits = Log2_64(EltSize); 6941 if (NegC->getAPIntValue().getActiveBits() <= Bits && 6942 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 6943 Neg = Neg.getOperand(0); 6944 MaskLoBits = Bits; 6945 } 6946 } 6947 } 6948 6949 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 6950 if (Neg.getOpcode() != ISD::SUB) 6951 return false; 6952 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 6953 if (!NegC) 6954 return false; 6955 SDValue NegOp1 = Neg.getOperand(1); 6956 6957 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 6958 // Pos'. The truncation is redundant for the purpose of the equality. 6959 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 6960 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 6961 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 6962 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 6963 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 6964 MaskLoBits)) 6965 Pos = Pos.getOperand(0); 6966 } 6967 } 6968 6969 // The condition we need is now: 6970 // 6971 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 6972 // 6973 // If NegOp1 == Pos then we need: 6974 // 6975 // EltSize & Mask == NegC & Mask 6976 // 6977 // (because "x & Mask" is a truncation and distributes through subtraction). 6978 // 6979 // We also need to account for a potential truncation of NegOp1 if the amount 6980 // has already been legalized to a shift amount type. 6981 APInt Width; 6982 if ((Pos == NegOp1) || 6983 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) 6984 Width = NegC->getAPIntValue(); 6985 6986 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 6987 // Then the condition we want to prove becomes: 6988 // 6989 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 6990 // 6991 // which, again because "x & Mask" is a truncation, becomes: 6992 // 6993 // NegC & Mask == (EltSize - PosC) & Mask 6994 // EltSize & Mask == (NegC + PosC) & Mask 6995 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 6996 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 6997 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 6998 else 6999 return false; 7000 } else 7001 return false; 7002 7003 // Now we just need to check that EltSize & Mask == Width & Mask. 7004 if (MaskLoBits) 7005 // EltSize & Mask is 0 since Mask is EltSize - 1. 7006 return Width.getLoBits(MaskLoBits) == 0; 7007 return Width == EltSize; 7008 } 7009 7010 // A subroutine of MatchRotate used once we have found an OR of two opposite 7011 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 7012 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 7013 // former being preferred if supported. InnerPos and InnerNeg are Pos and 7014 // Neg with outer conversions stripped away. 7015 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 7016 SDValue Neg, SDValue InnerPos, 7017 SDValue InnerNeg, unsigned PosOpcode, 7018 unsigned NegOpcode, const SDLoc &DL) { 7019 // fold (or (shl x, (*ext y)), 7020 // (srl x, (*ext (sub 32, y)))) -> 7021 // (rotl x, y) or (rotr x, (sub 32, y)) 7022 // 7023 // fold (or (shl x, (*ext (sub 32, y))), 7024 // (srl x, (*ext y))) -> 7025 // (rotr x, y) or (rotl x, (sub 32, y)) 7026 EVT VT = Shifted.getValueType(); 7027 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, 7028 /*IsRotate*/ true)) { 7029 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 7030 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 7031 HasPos ? Pos : Neg); 7032 } 7033 7034 return SDValue(); 7035 } 7036 7037 // A subroutine of MatchRotate used once we have found an OR of two opposite 7038 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces 7039 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the 7040 // former being preferred if supported. InnerPos and InnerNeg are Pos and 7041 // Neg with outer conversions stripped away. 7042 // TODO: Merge with MatchRotatePosNeg. 7043 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, 7044 SDValue Neg, SDValue InnerPos, 7045 SDValue InnerNeg, unsigned PosOpcode, 7046 unsigned NegOpcode, const SDLoc &DL) { 7047 EVT VT = N0.getValueType(); 7048 unsigned EltBits = VT.getScalarSizeInBits(); 7049 7050 // fold (or (shl x0, (*ext y)), 7051 // (srl x1, (*ext (sub 32, y)))) -> 7052 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) 7053 // 7054 // fold (or (shl x0, (*ext (sub 32, y))), 7055 // (srl x1, (*ext y))) -> 7056 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) 7057 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) { 7058 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 7059 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, 7060 HasPos ? Pos : Neg); 7061 } 7062 7063 // Matching the shift+xor cases, we can't easily use the xor'd shift amount 7064 // so for now just use the PosOpcode case if its legal. 7065 // TODO: When can we use the NegOpcode case? 7066 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { 7067 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { 7068 if (Op.getOpcode() != BinOpc) 7069 return false; 7070 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); 7071 return Cst && (Cst->getAPIntValue() == Imm); 7072 }; 7073 7074 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) 7075 // -> (fshl x0, x1, y) 7076 if (IsBinOpImm(N1, ISD::SRL, 1) && 7077 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && 7078 InnerPos == InnerNeg.getOperand(0) && 7079 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { 7080 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); 7081 } 7082 7083 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) 7084 // -> (fshr x0, x1, y) 7085 if (IsBinOpImm(N0, ISD::SHL, 1) && 7086 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 7087 InnerNeg == InnerPos.getOperand(0) && 7088 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 7089 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 7090 } 7091 7092 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) 7093 // -> (fshr x0, x1, y) 7094 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? 7095 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && 7096 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 7097 InnerNeg == InnerPos.getOperand(0) && 7098 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 7099 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 7100 } 7101 } 7102 7103 return SDValue(); 7104 } 7105 7106 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 7107 // idioms for rotate, and if the target supports rotation instructions, generate 7108 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but 7109 // with different shifted sources. 7110 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 7111 EVT VT = LHS.getValueType(); 7112 7113 // The target must have at least one rotate/funnel flavor. 7114 // We still try to match rotate by constant pre-legalization. 7115 // TODO: Support pre-legalization funnel-shift by constant. 7116 bool HasROTL = hasOperation(ISD::ROTL, VT); 7117 bool HasROTR = hasOperation(ISD::ROTR, VT); 7118 bool HasFSHL = hasOperation(ISD::FSHL, VT); 7119 bool HasFSHR = hasOperation(ISD::FSHR, VT); 7120 if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 7121 return SDValue(); 7122 7123 // Check for truncated rotate. 7124 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 7125 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 7126 assert(LHS.getValueType() == RHS.getValueType()); 7127 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 7128 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); 7129 } 7130 } 7131 7132 // Match "(X shl/srl V1) & V2" where V2 may not be present. 7133 SDValue LHSShift; // The shift. 7134 SDValue LHSMask; // AND value if any. 7135 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 7136 7137 SDValue RHSShift; // The shift. 7138 SDValue RHSMask; // AND value if any. 7139 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 7140 7141 // If neither side matched a rotate half, bail 7142 if (!LHSShift && !RHSShift) 7143 return SDValue(); 7144 7145 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 7146 // side of the rotate, so try to handle that here. In all cases we need to 7147 // pass the matched shift from the opposite side to compute the opcode and 7148 // needed shift amount to extract. We still want to do this if both sides 7149 // matched a rotate half because one half may be a potential overshift that 7150 // can be broken down (ie if InstCombine merged two shl or srl ops into a 7151 // single one). 7152 7153 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 7154 if (LHSShift) 7155 if (SDValue NewRHSShift = 7156 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 7157 RHSShift = NewRHSShift; 7158 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 7159 if (RHSShift) 7160 if (SDValue NewLHSShift = 7161 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 7162 LHSShift = NewLHSShift; 7163 7164 // If a side is still missing, nothing else we can do. 7165 if (!RHSShift || !LHSShift) 7166 return SDValue(); 7167 7168 // At this point we've matched or extracted a shift op on each side. 7169 7170 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 7171 return SDValue(); // Shifts must disagree. 7172 7173 // TODO: Support pre-legalization funnel-shift by constant. 7174 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); 7175 if (!IsRotate && !(HasFSHL || HasFSHR)) 7176 return SDValue(); // Requires funnel shift support. 7177 7178 // Canonicalize shl to left side in a shl/srl pair. 7179 if (RHSShift.getOpcode() == ISD::SHL) { 7180 std::swap(LHS, RHS); 7181 std::swap(LHSShift, RHSShift); 7182 std::swap(LHSMask, RHSMask); 7183 } 7184 7185 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7186 SDValue LHSShiftArg = LHSShift.getOperand(0); 7187 SDValue LHSShiftAmt = LHSShift.getOperand(1); 7188 SDValue RHSShiftArg = RHSShift.getOperand(0); 7189 SDValue RHSShiftAmt = RHSShift.getOperand(1); 7190 7191 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 7192 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 7193 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) 7194 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) 7195 // iff C1+C2 == EltSizeInBits 7196 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 7197 ConstantSDNode *RHS) { 7198 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 7199 }; 7200 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 7201 SDValue Res; 7202 if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) { 7203 bool UseROTL = !LegalOperations || HasROTL; 7204 Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, 7205 UseROTL ? LHSShiftAmt : RHSShiftAmt); 7206 } else { 7207 bool UseFSHL = !LegalOperations || HasFSHL; 7208 Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, 7209 RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt); 7210 } 7211 7212 // If there is an AND of either shifted operand, apply it to the result. 7213 if (LHSMask.getNode() || RHSMask.getNode()) { 7214 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 7215 SDValue Mask = AllOnes; 7216 7217 if (LHSMask.getNode()) { 7218 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 7219 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7220 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 7221 } 7222 if (RHSMask.getNode()) { 7223 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 7224 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7225 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 7226 } 7227 7228 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); 7229 } 7230 7231 return Res; 7232 } 7233 7234 // Even pre-legalization, we can't easily rotate/funnel-shift by a variable 7235 // shift. 7236 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 7237 return SDValue(); 7238 7239 // If there is a mask here, and we have a variable shift, we can't be sure 7240 // that we're masking out the right stuff. 7241 if (LHSMask.getNode() || RHSMask.getNode()) 7242 return SDValue(); 7243 7244 // If the shift amount is sign/zext/any-extended just peel it off. 7245 SDValue LExtOp0 = LHSShiftAmt; 7246 SDValue RExtOp0 = RHSShiftAmt; 7247 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7248 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7249 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7250 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 7251 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7252 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7253 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7254 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 7255 LExtOp0 = LHSShiftAmt.getOperand(0); 7256 RExtOp0 = RHSShiftAmt.getOperand(0); 7257 } 7258 7259 if (IsRotate && (HasROTL || HasROTR)) { 7260 SDValue TryL = 7261 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, 7262 RExtOp0, ISD::ROTL, ISD::ROTR, DL); 7263 if (TryL) 7264 return TryL; 7265 7266 SDValue TryR = 7267 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, 7268 LExtOp0, ISD::ROTR, ISD::ROTL, DL); 7269 if (TryR) 7270 return TryR; 7271 } 7272 7273 SDValue TryL = 7274 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, 7275 LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); 7276 if (TryL) 7277 return TryL; 7278 7279 SDValue TryR = 7280 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 7281 RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); 7282 if (TryR) 7283 return TryR; 7284 7285 return SDValue(); 7286 } 7287 7288 namespace { 7289 7290 /// Represents known origin of an individual byte in load combine pattern. The 7291 /// value of the byte is either constant zero or comes from memory. 7292 struct ByteProvider { 7293 // For constant zero providers Load is set to nullptr. For memory providers 7294 // Load represents the node which loads the byte from memory. 7295 // ByteOffset is the offset of the byte in the value produced by the load. 7296 LoadSDNode *Load = nullptr; 7297 unsigned ByteOffset = 0; 7298 7299 ByteProvider() = default; 7300 7301 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 7302 return ByteProvider(Load, ByteOffset); 7303 } 7304 7305 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 7306 7307 bool isConstantZero() const { return !Load; } 7308 bool isMemory() const { return Load; } 7309 7310 bool operator==(const ByteProvider &Other) const { 7311 return Other.Load == Load && Other.ByteOffset == ByteOffset; 7312 } 7313 7314 private: 7315 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 7316 : Load(Load), ByteOffset(ByteOffset) {} 7317 }; 7318 7319 } // end anonymous namespace 7320 7321 /// Recursively traverses the expression calculating the origin of the requested 7322 /// byte of the given value. Returns None if the provider can't be calculated. 7323 /// 7324 /// For all the values except the root of the expression verifies that the value 7325 /// has exactly one use and if it's not true return None. This way if the origin 7326 /// of the byte is returned it's guaranteed that the values which contribute to 7327 /// the byte are not used outside of this expression. 7328 /// 7329 /// Because the parts of the expression are not allowed to have more than one 7330 /// use this function iterates over trees, not DAGs. So it never visits the same 7331 /// node more than once. 7332 static const Optional<ByteProvider> 7333 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 7334 bool Root = false) { 7335 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 7336 if (Depth == 10) 7337 return None; 7338 7339 if (!Root && !Op.hasOneUse()) 7340 return None; 7341 7342 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 7343 unsigned BitWidth = Op.getValueSizeInBits(); 7344 if (BitWidth % 8 != 0) 7345 return None; 7346 unsigned ByteWidth = BitWidth / 8; 7347 assert(Index < ByteWidth && "invalid index requested"); 7348 (void) ByteWidth; 7349 7350 switch (Op.getOpcode()) { 7351 case ISD::OR: { 7352 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 7353 if (!LHS) 7354 return None; 7355 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 7356 if (!RHS) 7357 return None; 7358 7359 if (LHS->isConstantZero()) 7360 return RHS; 7361 if (RHS->isConstantZero()) 7362 return LHS; 7363 return None; 7364 } 7365 case ISD::SHL: { 7366 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 7367 if (!ShiftOp) 7368 return None; 7369 7370 uint64_t BitShift = ShiftOp->getZExtValue(); 7371 if (BitShift % 8 != 0) 7372 return None; 7373 uint64_t ByteShift = BitShift / 8; 7374 7375 return Index < ByteShift 7376 ? ByteProvider::getConstantZero() 7377 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 7378 Depth + 1); 7379 } 7380 case ISD::ANY_EXTEND: 7381 case ISD::SIGN_EXTEND: 7382 case ISD::ZERO_EXTEND: { 7383 SDValue NarrowOp = Op->getOperand(0); 7384 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 7385 if (NarrowBitWidth % 8 != 0) 7386 return None; 7387 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7388 7389 if (Index >= NarrowByteWidth) 7390 return Op.getOpcode() == ISD::ZERO_EXTEND 7391 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7392 : None; 7393 return calculateByteProvider(NarrowOp, Index, Depth + 1); 7394 } 7395 case ISD::BSWAP: 7396 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 7397 Depth + 1); 7398 case ISD::LOAD: { 7399 auto L = cast<LoadSDNode>(Op.getNode()); 7400 if (!L->isSimple() || L->isIndexed()) 7401 return None; 7402 7403 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 7404 if (NarrowBitWidth % 8 != 0) 7405 return None; 7406 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7407 7408 if (Index >= NarrowByteWidth) 7409 return L->getExtensionType() == ISD::ZEXTLOAD 7410 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7411 : None; 7412 return ByteProvider::getMemory(L, Index); 7413 } 7414 } 7415 7416 return None; 7417 } 7418 7419 static unsigned littleEndianByteAt(unsigned BW, unsigned i) { 7420 return i; 7421 } 7422 7423 static unsigned bigEndianByteAt(unsigned BW, unsigned i) { 7424 return BW - i - 1; 7425 } 7426 7427 // Check if the bytes offsets we are looking at match with either big or 7428 // little endian value loaded. Return true for big endian, false for little 7429 // endian, and None if match failed. 7430 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, 7431 int64_t FirstOffset) { 7432 // The endian can be decided only when it is 2 bytes at least. 7433 unsigned Width = ByteOffsets.size(); 7434 if (Width < 2) 7435 return None; 7436 7437 bool BigEndian = true, LittleEndian = true; 7438 for (unsigned i = 0; i < Width; i++) { 7439 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 7440 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); 7441 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); 7442 if (!BigEndian && !LittleEndian) 7443 return None; 7444 } 7445 7446 assert((BigEndian != LittleEndian) && "It should be either big endian or" 7447 "little endian"); 7448 return BigEndian; 7449 } 7450 7451 static SDValue stripTruncAndExt(SDValue Value) { 7452 switch (Value.getOpcode()) { 7453 case ISD::TRUNCATE: 7454 case ISD::ZERO_EXTEND: 7455 case ISD::SIGN_EXTEND: 7456 case ISD::ANY_EXTEND: 7457 return stripTruncAndExt(Value.getOperand(0)); 7458 } 7459 return Value; 7460 } 7461 7462 /// Match a pattern where a wide type scalar value is stored by several narrow 7463 /// stores. Fold it into a single store or a BSWAP and a store if the targets 7464 /// supports it. 7465 /// 7466 /// Assuming little endian target: 7467 /// i8 *p = ... 7468 /// i32 val = ... 7469 /// p[0] = (val >> 0) & 0xFF; 7470 /// p[1] = (val >> 8) & 0xFF; 7471 /// p[2] = (val >> 16) & 0xFF; 7472 /// p[3] = (val >> 24) & 0xFF; 7473 /// => 7474 /// *((i32)p) = val; 7475 /// 7476 /// i8 *p = ... 7477 /// i32 val = ... 7478 /// p[0] = (val >> 24) & 0xFF; 7479 /// p[1] = (val >> 16) & 0xFF; 7480 /// p[2] = (val >> 8) & 0xFF; 7481 /// p[3] = (val >> 0) & 0xFF; 7482 /// => 7483 /// *((i32)p) = BSWAP(val); 7484 SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { 7485 // The matching looks for "store (trunc x)" patterns that appear early but are 7486 // likely to be replaced by truncating store nodes during combining. 7487 // TODO: If there is evidence that running this later would help, this 7488 // limitation could be removed. Legality checks may need to be added 7489 // for the created store and optional bswap/rotate. 7490 if (LegalOperations || OptLevel == CodeGenOpt::None) 7491 return SDValue(); 7492 7493 // We only handle merging simple stores of 1-4 bytes. 7494 // TODO: Allow unordered atomics when wider type is legal (see D66309) 7495 EVT MemVT = N->getMemoryVT(); 7496 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || 7497 !N->isSimple() || N->isIndexed()) 7498 return SDValue(); 7499 7500 // Collect all of the stores in the chain. 7501 SDValue Chain = N->getChain(); 7502 SmallVector<StoreSDNode *, 8> Stores = {N}; 7503 while (auto *Store = dyn_cast<StoreSDNode>(Chain)) { 7504 // All stores must be the same size to ensure that we are writing all of the 7505 // bytes in the wide value. 7506 // TODO: We could allow multiple sizes by tracking each stored byte. 7507 if (Store->getMemoryVT() != MemVT || !Store->isSimple() || 7508 Store->isIndexed()) 7509 return SDValue(); 7510 Stores.push_back(Store); 7511 Chain = Store->getChain(); 7512 } 7513 // There is no reason to continue if we do not have at least a pair of stores. 7514 if (Stores.size() < 2) 7515 return SDValue(); 7516 7517 // Handle simple types only. 7518 LLVMContext &Context = *DAG.getContext(); 7519 unsigned NumStores = Stores.size(); 7520 unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits(); 7521 unsigned WideNumBits = NumStores * NarrowNumBits; 7522 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); 7523 if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) 7524 return SDValue(); 7525 7526 // Check if all bytes of the source value that we are looking at are stored 7527 // to the same base address. Collect offsets from Base address into OffsetMap. 7528 SDValue SourceValue; 7529 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); 7530 int64_t FirstOffset = INT64_MAX; 7531 StoreSDNode *FirstStore = nullptr; 7532 Optional<BaseIndexOffset> Base; 7533 for (auto Store : Stores) { 7534 // All the stores store different parts of the CombinedValue. A truncate is 7535 // required to get the partial value. 7536 SDValue Trunc = Store->getValue(); 7537 if (Trunc.getOpcode() != ISD::TRUNCATE) 7538 return SDValue(); 7539 // Other than the first/last part, a shift operation is required to get the 7540 // offset. 7541 int64_t Offset = 0; 7542 SDValue WideVal = Trunc.getOperand(0); 7543 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && 7544 isa<ConstantSDNode>(WideVal.getOperand(1))) { 7545 // The shift amount must be a constant multiple of the narrow type. 7546 // It is translated to the offset address in the wide source value "y". 7547 // 7548 // x = srl y, ShiftAmtC 7549 // i8 z = trunc x 7550 // store z, ... 7551 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); 7552 if (ShiftAmtC % NarrowNumBits != 0) 7553 return SDValue(); 7554 7555 Offset = ShiftAmtC / NarrowNumBits; 7556 WideVal = WideVal.getOperand(0); 7557 } 7558 7559 // Stores must share the same source value with different offsets. 7560 // Truncate and extends should be stripped to get the single source value. 7561 if (!SourceValue) 7562 SourceValue = WideVal; 7563 else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) 7564 return SDValue(); 7565 else if (SourceValue.getValueType() != WideVT) { 7566 if (WideVal.getValueType() == WideVT || 7567 WideVal.getScalarValueSizeInBits() > 7568 SourceValue.getScalarValueSizeInBits()) 7569 SourceValue = WideVal; 7570 // Give up if the source value type is smaller than the store size. 7571 if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) 7572 return SDValue(); 7573 } 7574 7575 // Stores must share the same base address. 7576 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); 7577 int64_t ByteOffsetFromBase = 0; 7578 if (!Base) 7579 Base = Ptr; 7580 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7581 return SDValue(); 7582 7583 // Remember the first store. 7584 if (ByteOffsetFromBase < FirstOffset) { 7585 FirstStore = Store; 7586 FirstOffset = ByteOffsetFromBase; 7587 } 7588 // Map the offset in the store and the offset in the combined value, and 7589 // early return if it has been set before. 7590 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) 7591 return SDValue(); 7592 OffsetMap[Offset] = ByteOffsetFromBase; 7593 } 7594 7595 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7596 assert(FirstStore && "First store must be set"); 7597 7598 // Check that a store of the wide type is both allowed and fast on the target 7599 const DataLayout &Layout = DAG.getDataLayout(); 7600 bool Fast = false; 7601 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, 7602 *FirstStore->getMemOperand(), &Fast); 7603 if (!Allowed || !Fast) 7604 return SDValue(); 7605 7606 // Check if the pieces of the value are going to the expected places in memory 7607 // to merge the stores. 7608 auto checkOffsets = [&](bool MatchLittleEndian) { 7609 if (MatchLittleEndian) { 7610 for (unsigned i = 0; i != NumStores; ++i) 7611 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) 7612 return false; 7613 } else { // MatchBigEndian by reversing loop counter. 7614 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) 7615 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) 7616 return false; 7617 } 7618 return true; 7619 }; 7620 7621 // Check if the offsets line up for the native data layout of this target. 7622 bool NeedBswap = false; 7623 bool NeedRotate = false; 7624 if (!checkOffsets(Layout.isLittleEndian())) { 7625 // Special-case: check if byte offsets line up for the opposite endian. 7626 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) 7627 NeedBswap = true; 7628 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) 7629 NeedRotate = true; 7630 else 7631 return SDValue(); 7632 } 7633 7634 SDLoc DL(N); 7635 if (WideVT != SourceValue.getValueType()) { 7636 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && 7637 "Unexpected store value to merge"); 7638 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); 7639 } 7640 7641 // Before legalize we can introduce illegal bswaps/rotates which will be later 7642 // converted to an explicit bswap sequence. This way we end up with a single 7643 // store and byte shuffling instead of several stores and byte shuffling. 7644 if (NeedBswap) { 7645 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); 7646 } else if (NeedRotate) { 7647 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); 7648 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); 7649 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); 7650 } 7651 7652 SDValue NewStore = 7653 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), 7654 FirstStore->getPointerInfo(), FirstStore->getAlign()); 7655 7656 // Rely on other DAG combine rules to remove the other individual stores. 7657 DAG.ReplaceAllUsesWith(N, NewStore.getNode()); 7658 return NewStore; 7659 } 7660 7661 /// Match a pattern where a wide type scalar value is loaded by several narrow 7662 /// loads and combined by shifts and ors. Fold it into a single load or a load 7663 /// and a BSWAP if the targets supports it. 7664 /// 7665 /// Assuming little endian target: 7666 /// i8 *a = ... 7667 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 7668 /// => 7669 /// i32 val = *((i32)a) 7670 /// 7671 /// i8 *a = ... 7672 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 7673 /// => 7674 /// i32 val = BSWAP(*((i32)a)) 7675 /// 7676 /// TODO: This rule matches complex patterns with OR node roots and doesn't 7677 /// interact well with the worklist mechanism. When a part of the pattern is 7678 /// updated (e.g. one of the loads) its direct users are put into the worklist, 7679 /// but the root node of the pattern which triggers the load combine is not 7680 /// necessarily a direct user of the changed node. For example, once the address 7681 /// of t28 load is reassociated load combine won't be triggered: 7682 /// t25: i32 = add t4, Constant:i32<2> 7683 /// t26: i64 = sign_extend t25 7684 /// t27: i64 = add t2, t26 7685 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 7686 /// t29: i32 = zero_extend t28 7687 /// t32: i32 = shl t29, Constant:i8<8> 7688 /// t33: i32 = or t23, t32 7689 /// As a possible fix visitLoad can check if the load can be a part of a load 7690 /// combine pattern and add corresponding OR roots to the worklist. 7691 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 7692 assert(N->getOpcode() == ISD::OR && 7693 "Can only match load combining against OR nodes"); 7694 7695 // Handles simple types only 7696 EVT VT = N->getValueType(0); 7697 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 7698 return SDValue(); 7699 unsigned ByteWidth = VT.getSizeInBits() / 8; 7700 7701 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 7702 auto MemoryByteOffset = [&] (ByteProvider P) { 7703 assert(P.isMemory() && "Must be a memory byte provider"); 7704 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 7705 assert(LoadBitWidth % 8 == 0 && 7706 "can only analyze providers for individual bytes not bit"); 7707 unsigned LoadByteWidth = LoadBitWidth / 8; 7708 return IsBigEndianTarget 7709 ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) 7710 : littleEndianByteAt(LoadByteWidth, P.ByteOffset); 7711 }; 7712 7713 Optional<BaseIndexOffset> Base; 7714 SDValue Chain; 7715 7716 SmallPtrSet<LoadSDNode *, 8> Loads; 7717 Optional<ByteProvider> FirstByteProvider; 7718 int64_t FirstOffset = INT64_MAX; 7719 7720 // Check if all the bytes of the OR we are looking at are loaded from the same 7721 // base address. Collect bytes offsets from Base address in ByteOffsets. 7722 SmallVector<int64_t, 8> ByteOffsets(ByteWidth); 7723 unsigned ZeroExtendedBytes = 0; 7724 for (int i = ByteWidth - 1; i >= 0; --i) { 7725 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 7726 if (!P) 7727 return SDValue(); 7728 7729 if (P->isConstantZero()) { 7730 // It's OK for the N most significant bytes to be 0, we can just 7731 // zero-extend the load. 7732 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) 7733 return SDValue(); 7734 continue; 7735 } 7736 assert(P->isMemory() && "provenance should either be memory or zero"); 7737 7738 LoadSDNode *L = P->Load; 7739 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && 7740 !L->isIndexed() && 7741 "Must be enforced by calculateByteProvider"); 7742 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 7743 7744 // All loads must share the same chain 7745 SDValue LChain = L->getChain(); 7746 if (!Chain) 7747 Chain = LChain; 7748 else if (Chain != LChain) 7749 return SDValue(); 7750 7751 // Loads must share the same base address 7752 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 7753 int64_t ByteOffsetFromBase = 0; 7754 if (!Base) 7755 Base = Ptr; 7756 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7757 return SDValue(); 7758 7759 // Calculate the offset of the current byte from the base address 7760 ByteOffsetFromBase += MemoryByteOffset(*P); 7761 ByteOffsets[i] = ByteOffsetFromBase; 7762 7763 // Remember the first byte load 7764 if (ByteOffsetFromBase < FirstOffset) { 7765 FirstByteProvider = P; 7766 FirstOffset = ByteOffsetFromBase; 7767 } 7768 7769 Loads.insert(L); 7770 } 7771 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 7772 "memory, so there must be at least one load which produces the value"); 7773 assert(Base && "Base address of the accessed memory location must be set"); 7774 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7775 7776 bool NeedsZext = ZeroExtendedBytes > 0; 7777 7778 EVT MemVT = 7779 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); 7780 7781 if (!MemVT.isSimple()) 7782 return SDValue(); 7783 7784 // Before legalize we can introduce too wide illegal loads which will be later 7785 // split into legal sized loads. This enables us to combine i64 load by i8 7786 // patterns to a couple of i32 loads on 32 bit targets. 7787 if (LegalOperations && 7788 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 7789 MemVT)) 7790 return SDValue(); 7791 7792 // Check if the bytes of the OR we are looking at match with either big or 7793 // little endian value load 7794 Optional<bool> IsBigEndian = isBigEndian( 7795 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); 7796 if (!IsBigEndian.hasValue()) 7797 return SDValue(); 7798 7799 assert(FirstByteProvider && "must be set"); 7800 7801 // Ensure that the first byte is loaded from zero offset of the first load. 7802 // So the combined value can be loaded from the first load address. 7803 if (MemoryByteOffset(*FirstByteProvider) != 0) 7804 return SDValue(); 7805 LoadSDNode *FirstLoad = FirstByteProvider->Load; 7806 7807 // The node we are looking at matches with the pattern, check if we can 7808 // replace it with a single (possibly zero-extended) load and bswap + shift if 7809 // needed. 7810 7811 // If the load needs byte swap check if the target supports it 7812 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 7813 7814 // Before legalize we can introduce illegal bswaps which will be later 7815 // converted to an explicit bswap sequence. This way we end up with a single 7816 // load and byte shuffling instead of several loads and byte shuffling. 7817 // We do not introduce illegal bswaps when zero-extending as this tends to 7818 // introduce too many arithmetic instructions. 7819 if (NeedsBswap && (LegalOperations || NeedsZext) && 7820 !TLI.isOperationLegal(ISD::BSWAP, VT)) 7821 return SDValue(); 7822 7823 // If we need to bswap and zero extend, we have to insert a shift. Check that 7824 // it is legal. 7825 if (NeedsBswap && NeedsZext && LegalOperations && 7826 !TLI.isOperationLegal(ISD::SHL, VT)) 7827 return SDValue(); 7828 7829 // Check that a load of the wide type is both allowed and fast on the target 7830 bool Fast = false; 7831 bool Allowed = 7832 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 7833 *FirstLoad->getMemOperand(), &Fast); 7834 if (!Allowed || !Fast) 7835 return SDValue(); 7836 7837 SDValue NewLoad = 7838 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, 7839 Chain, FirstLoad->getBasePtr(), 7840 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); 7841 7842 // Transfer chain users from old loads to the new load. 7843 for (LoadSDNode *L : Loads) 7844 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 7845 7846 if (!NeedsBswap) 7847 return NewLoad; 7848 7849 SDValue ShiftedLoad = 7850 NeedsZext 7851 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, 7852 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, 7853 SDLoc(N), LegalOperations)) 7854 : NewLoad; 7855 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); 7856 } 7857 7858 // If the target has andn, bsl, or a similar bit-select instruction, 7859 // we want to unfold masked merge, with canonical pattern of: 7860 // | A | |B| 7861 // ((x ^ y) & m) ^ y 7862 // | D | 7863 // Into: 7864 // (x & m) | (y & ~m) 7865 // If y is a constant, m is not a 'not', and the 'andn' does not work with 7866 // immediates, we unfold into a different pattern: 7867 // ~(~x & m) & (m | y) 7868 // If x is a constant, m is a 'not', and the 'andn' does not work with 7869 // immediates, we unfold into a different pattern: 7870 // (x | ~m) & ~(~m & ~y) 7871 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 7872 // the very least that breaks andnpd / andnps patterns, and because those 7873 // patterns are simplified in IR and shouldn't be created in the DAG 7874 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 7875 assert(N->getOpcode() == ISD::XOR); 7876 7877 // Don't touch 'not' (i.e. where y = -1). 7878 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 7879 return SDValue(); 7880 7881 EVT VT = N->getValueType(0); 7882 7883 // There are 3 commutable operators in the pattern, 7884 // so we have to deal with 8 possible variants of the basic pattern. 7885 SDValue X, Y, M; 7886 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 7887 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 7888 return false; 7889 SDValue Xor = And.getOperand(XorIdx); 7890 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 7891 return false; 7892 SDValue Xor0 = Xor.getOperand(0); 7893 SDValue Xor1 = Xor.getOperand(1); 7894 // Don't touch 'not' (i.e. where y = -1). 7895 if (isAllOnesOrAllOnesSplat(Xor1)) 7896 return false; 7897 if (Other == Xor0) 7898 std::swap(Xor0, Xor1); 7899 if (Other != Xor1) 7900 return false; 7901 X = Xor0; 7902 Y = Xor1; 7903 M = And.getOperand(XorIdx ? 0 : 1); 7904 return true; 7905 }; 7906 7907 SDValue N0 = N->getOperand(0); 7908 SDValue N1 = N->getOperand(1); 7909 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 7910 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 7911 return SDValue(); 7912 7913 // Don't do anything if the mask is constant. This should not be reachable. 7914 // InstCombine should have already unfolded this pattern, and DAGCombiner 7915 // probably shouldn't produce it, too. 7916 if (isa<ConstantSDNode>(M.getNode())) 7917 return SDValue(); 7918 7919 // We can transform if the target has AndNot 7920 if (!TLI.hasAndNot(M)) 7921 return SDValue(); 7922 7923 SDLoc DL(N); 7924 7925 // If Y is a constant, check that 'andn' works with immediates. Unless M is 7926 // a bitwise not that would already allow ANDN to be used. 7927 if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) { 7928 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 7929 // If not, we need to do a bit more work to make sure andn is still used. 7930 SDValue NotX = DAG.getNOT(DL, X, VT); 7931 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 7932 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 7933 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 7934 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 7935 } 7936 7937 // If X is a constant and M is a bitwise not, check that 'andn' works with 7938 // immediates. 7939 if (!TLI.hasAndNot(X) && isBitwiseNot(M)) { 7940 assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable."); 7941 // If not, we need to do a bit more work to make sure andn is still used. 7942 SDValue NotM = M.getOperand(0); 7943 SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM); 7944 SDValue NotY = DAG.getNOT(DL, Y, VT); 7945 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY); 7946 SDValue NotRHS = DAG.getNOT(DL, RHS, VT); 7947 return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS); 7948 } 7949 7950 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 7951 SDValue NotM = DAG.getNOT(DL, M, VT); 7952 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 7953 7954 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 7955 } 7956 7957 SDValue DAGCombiner::visitXOR(SDNode *N) { 7958 SDValue N0 = N->getOperand(0); 7959 SDValue N1 = N->getOperand(1); 7960 EVT VT = N0.getValueType(); 7961 SDLoc DL(N); 7962 7963 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 7964 if (N0.isUndef() && N1.isUndef()) 7965 return DAG.getConstant(0, DL, VT); 7966 7967 // fold (xor x, undef) -> undef 7968 if (N0.isUndef()) 7969 return N0; 7970 if (N1.isUndef()) 7971 return N1; 7972 7973 // fold (xor c1, c2) -> c1^c2 7974 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) 7975 return C; 7976 7977 // canonicalize constant to RHS 7978 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 7979 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 7980 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 7981 7982 // fold vector ops 7983 if (VT.isVector()) { 7984 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 7985 return FoldedVOp; 7986 7987 // fold (xor x, 0) -> x, vector edition 7988 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 7989 return N0; 7990 } 7991 7992 // fold (xor x, 0) -> x 7993 if (isNullConstant(N1)) 7994 return N0; 7995 7996 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7997 return NewSel; 7998 7999 // reassociate xor 8000 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 8001 return RXOR; 8002 8003 // fold !(x cc y) -> (x !cc y) 8004 unsigned N0Opcode = N0.getOpcode(); 8005 SDValue LHS, RHS, CC; 8006 if (TLI.isConstTrueVal(N1.getNode()) && 8007 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) { 8008 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 8009 LHS.getValueType()); 8010 if (!LegalOperations || 8011 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 8012 switch (N0Opcode) { 8013 default: 8014 llvm_unreachable("Unhandled SetCC Equivalent!"); 8015 case ISD::SETCC: 8016 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 8017 case ISD::SELECT_CC: 8018 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 8019 N0.getOperand(3), NotCC); 8020 case ISD::STRICT_FSETCC: 8021 case ISD::STRICT_FSETCCS: { 8022 if (N0.hasOneUse()) { 8023 // FIXME Can we handle multiple uses? Could we token factor the chain 8024 // results from the new/old setcc? 8025 SDValue SetCC = 8026 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, 8027 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); 8028 CombineTo(N, SetCC); 8029 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); 8030 recursivelyDeleteUnusedNodes(N0.getNode()); 8031 return SDValue(N, 0); // Return N so it doesn't get rechecked! 8032 } 8033 break; 8034 } 8035 } 8036 } 8037 } 8038 8039 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 8040 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 8041 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 8042 SDValue V = N0.getOperand(0); 8043 SDLoc DL0(N0); 8044 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 8045 DAG.getConstant(1, DL0, V.getValueType())); 8046 AddToWorklist(V.getNode()); 8047 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 8048 } 8049 8050 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 8051 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 8052 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 8053 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 8054 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { 8055 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 8056 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 8057 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 8058 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 8059 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 8060 } 8061 } 8062 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 8063 if (isAllOnesConstant(N1) && N0.hasOneUse() && 8064 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 8065 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 8066 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { 8067 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 8068 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 8069 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 8070 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 8071 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 8072 } 8073 } 8074 8075 // fold (not (neg x)) -> (add X, -1) 8076 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if 8077 // Y is a constant or the subtract has a single use. 8078 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && 8079 isNullConstant(N0.getOperand(0))) { 8080 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), 8081 DAG.getAllOnesConstant(DL, VT)); 8082 } 8083 8084 // fold (not (add X, -1)) -> (neg X) 8085 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && 8086 isAllOnesOrAllOnesSplat(N0.getOperand(1))) { 8087 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 8088 N0.getOperand(0)); 8089 } 8090 8091 // fold (xor (and x, y), y) -> (and (not x), y) 8092 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 8093 SDValue X = N0.getOperand(0); 8094 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 8095 AddToWorklist(NotX.getNode()); 8096 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 8097 } 8098 8099 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 8100 ConstantSDNode *XorC = isConstOrConstSplat(N1); 8101 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 8102 unsigned BitWidth = VT.getScalarSizeInBits(); 8103 if (XorC && ShiftC) { 8104 // Don't crash on an oversized shift. We can not guarantee that a bogus 8105 // shift has been simplified to undef. 8106 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 8107 if (ShiftAmt < BitWidth) { 8108 APInt Ones = APInt::getAllOnes(BitWidth); 8109 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 8110 if (XorC->getAPIntValue() == Ones) { 8111 // If the xor constant is a shifted -1, do a 'not' before the shift: 8112 // xor (X << ShiftC), XorC --> (not X) << ShiftC 8113 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 8114 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 8115 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 8116 } 8117 } 8118 } 8119 } 8120 8121 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 8122 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 8123 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 8124 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 8125 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 8126 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 8127 SDValue S0 = S.getOperand(0); 8128 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) 8129 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 8130 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 8131 return DAG.getNode(ISD::ABS, DL, VT, S0); 8132 } 8133 } 8134 8135 // fold (xor x, x) -> 0 8136 if (N0 == N1) 8137 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 8138 8139 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 8140 // Here is a concrete example of this equivalence: 8141 // i16 x == 14 8142 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 8143 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 8144 // 8145 // => 8146 // 8147 // i16 ~1 == 0b1111111111111110 8148 // i16 rol(~1, 14) == 0b1011111111111111 8149 // 8150 // Some additional tips to help conceptualize this transform: 8151 // - Try to see the operation as placing a single zero in a value of all ones. 8152 // - There exists no value for x which would allow the result to contain zero. 8153 // - Values of x larger than the bitwidth are undefined and do not require a 8154 // consistent result. 8155 // - Pushing the zero left requires shifting one bits in from the right. 8156 // A rotate left of ~1 is a nice way of achieving the desired result. 8157 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 8158 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 8159 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 8160 N0.getOperand(1)); 8161 } 8162 8163 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 8164 if (N0Opcode == N1.getOpcode()) 8165 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 8166 return V; 8167 8168 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 8169 if (SDValue MM = unfoldMaskedMerge(N)) 8170 return MM; 8171 8172 // Simplify the expression using non-local knowledge. 8173 if (SimplifyDemandedBits(SDValue(N, 0))) 8174 return SDValue(N, 0); 8175 8176 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 8177 return Combined; 8178 8179 return SDValue(); 8180 } 8181 8182 /// If we have a shift-by-constant of a bitwise logic op that itself has a 8183 /// shift-by-constant operand with identical opcode, we may be able to convert 8184 /// that into 2 independent shifts followed by the logic op. This is a 8185 /// throughput improvement. 8186 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { 8187 // Match a one-use bitwise logic op. 8188 SDValue LogicOp = Shift->getOperand(0); 8189 if (!LogicOp.hasOneUse()) 8190 return SDValue(); 8191 8192 unsigned LogicOpcode = LogicOp.getOpcode(); 8193 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && 8194 LogicOpcode != ISD::XOR) 8195 return SDValue(); 8196 8197 // Find a matching one-use shift by constant. 8198 unsigned ShiftOpcode = Shift->getOpcode(); 8199 SDValue C1 = Shift->getOperand(1); 8200 ConstantSDNode *C1Node = isConstOrConstSplat(C1); 8201 assert(C1Node && "Expected a shift with constant operand"); 8202 const APInt &C1Val = C1Node->getAPIntValue(); 8203 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, 8204 const APInt *&ShiftAmtVal) { 8205 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) 8206 return false; 8207 8208 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); 8209 if (!ShiftCNode) 8210 return false; 8211 8212 // Capture the shifted operand and shift amount value. 8213 ShiftOp = V.getOperand(0); 8214 ShiftAmtVal = &ShiftCNode->getAPIntValue(); 8215 8216 // Shift amount types do not have to match their operand type, so check that 8217 // the constants are the same width. 8218 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) 8219 return false; 8220 8221 // The fold is not valid if the sum of the shift values exceeds bitwidth. 8222 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) 8223 return false; 8224 8225 return true; 8226 }; 8227 8228 // Logic ops are commutative, so check each operand for a match. 8229 SDValue X, Y; 8230 const APInt *C0Val; 8231 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) 8232 Y = LogicOp.getOperand(1); 8233 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) 8234 Y = LogicOp.getOperand(0); 8235 else 8236 return SDValue(); 8237 8238 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 8239 SDLoc DL(Shift); 8240 EVT VT = Shift->getValueType(0); 8241 EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); 8242 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); 8243 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); 8244 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); 8245 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); 8246 } 8247 8248 /// Handle transforms common to the three shifts, when the shift amount is a 8249 /// constant. 8250 /// We are looking for: (shift being one of shl/sra/srl) 8251 /// shift (binop X, C0), C1 8252 /// And want to transform into: 8253 /// binop (shift X, C1), (shift C0, C1) 8254 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { 8255 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); 8256 8257 // Do not turn a 'not' into a regular xor. 8258 if (isBitwiseNot(N->getOperand(0))) 8259 return SDValue(); 8260 8261 // The inner binop must be one-use, since we want to replace it. 8262 SDValue LHS = N->getOperand(0); 8263 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) 8264 return SDValue(); 8265 8266 // TODO: This is limited to early combining because it may reveal regressions 8267 // otherwise. But since we just checked a target hook to see if this is 8268 // desirable, that should have filtered out cases where this interferes 8269 // with some other pattern matching. 8270 if (!LegalTypes) 8271 if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) 8272 return R; 8273 8274 // We want to pull some binops through shifts, so that we have (and (shift)) 8275 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 8276 // thing happens with address calculations, so it's important to canonicalize 8277 // it. 8278 switch (LHS.getOpcode()) { 8279 default: 8280 return SDValue(); 8281 case ISD::OR: 8282 case ISD::XOR: 8283 case ISD::AND: 8284 break; 8285 case ISD::ADD: 8286 if (N->getOpcode() != ISD::SHL) 8287 return SDValue(); // only shl(add) not sr[al](add). 8288 break; 8289 } 8290 8291 // We require the RHS of the binop to be a constant and not opaque as well. 8292 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); 8293 if (!BinOpCst) 8294 return SDValue(); 8295 8296 // FIXME: disable this unless the input to the binop is a shift by a constant 8297 // or is copy/select. Enable this in other cases when figure out it's exactly 8298 // profitable. 8299 SDValue BinOpLHSVal = LHS.getOperand(0); 8300 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 8301 BinOpLHSVal.getOpcode() == ISD::SRA || 8302 BinOpLHSVal.getOpcode() == ISD::SRL) && 8303 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 8304 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 8305 BinOpLHSVal.getOpcode() == ISD::SELECT; 8306 8307 if (!IsShiftByConstant && !IsCopyOrSelect) 8308 return SDValue(); 8309 8310 if (IsCopyOrSelect && N->hasOneUse()) 8311 return SDValue(); 8312 8313 // Fold the constants, shifting the binop RHS by the shift amount. 8314 SDLoc DL(N); 8315 EVT VT = N->getValueType(0); 8316 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), 8317 N->getOperand(1)); 8318 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 8319 8320 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), 8321 N->getOperand(1)); 8322 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); 8323 } 8324 8325 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 8326 assert(N->getOpcode() == ISD::TRUNCATE); 8327 assert(N->getOperand(0).getOpcode() == ISD::AND); 8328 8329 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 8330 EVT TruncVT = N->getValueType(0); 8331 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 8332 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 8333 SDValue N01 = N->getOperand(0).getOperand(1); 8334 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 8335 SDLoc DL(N); 8336 SDValue N00 = N->getOperand(0).getOperand(0); 8337 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 8338 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 8339 AddToWorklist(Trunc00.getNode()); 8340 AddToWorklist(Trunc01.getNode()); 8341 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 8342 } 8343 } 8344 8345 return SDValue(); 8346 } 8347 8348 SDValue DAGCombiner::visitRotate(SDNode *N) { 8349 SDLoc dl(N); 8350 SDValue N0 = N->getOperand(0); 8351 SDValue N1 = N->getOperand(1); 8352 EVT VT = N->getValueType(0); 8353 unsigned Bitsize = VT.getScalarSizeInBits(); 8354 8355 // fold (rot x, 0) -> x 8356 if (isNullOrNullSplat(N1)) 8357 return N0; 8358 8359 // fold (rot x, c) -> x iff (c % BitSize) == 0 8360 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 8361 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 8362 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 8363 return N0; 8364 } 8365 8366 // fold (rot x, c) -> (rot x, c % BitSize) 8367 bool OutOfRange = false; 8368 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { 8369 OutOfRange |= C->getAPIntValue().uge(Bitsize); 8370 return true; 8371 }; 8372 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { 8373 EVT AmtVT = N1.getValueType(); 8374 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); 8375 if (SDValue Amt = 8376 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) 8377 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); 8378 } 8379 8380 // rot i16 X, 8 --> bswap X 8381 auto *RotAmtC = isConstOrConstSplat(N1); 8382 if (RotAmtC && RotAmtC->getAPIntValue() == 8 && 8383 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) 8384 return DAG.getNode(ISD::BSWAP, dl, VT, N0); 8385 8386 // Simplify the operands using demanded-bits information. 8387 if (SimplifyDemandedBits(SDValue(N, 0))) 8388 return SDValue(N, 0); 8389 8390 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 8391 if (N1.getOpcode() == ISD::TRUNCATE && 8392 N1.getOperand(0).getOpcode() == ISD::AND) { 8393 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8394 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 8395 } 8396 8397 unsigned NextOp = N0.getOpcode(); 8398 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 8399 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 8400 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 8401 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 8402 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 8403 EVT ShiftVT = C1->getValueType(0); 8404 bool SameSide = (N->getOpcode() == NextOp); 8405 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 8406 if (SDValue CombinedShift = DAG.FoldConstantArithmetic( 8407 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { 8408 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 8409 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 8410 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); 8411 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 8412 CombinedShiftNorm); 8413 } 8414 } 8415 } 8416 return SDValue(); 8417 } 8418 8419 SDValue DAGCombiner::visitSHL(SDNode *N) { 8420 SDValue N0 = N->getOperand(0); 8421 SDValue N1 = N->getOperand(1); 8422 if (SDValue V = DAG.simplifyShift(N0, N1)) 8423 return V; 8424 8425 EVT VT = N0.getValueType(); 8426 EVT ShiftVT = N1.getValueType(); 8427 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8428 8429 // fold (shl c1, c2) -> c1<<c2 8430 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) 8431 return C; 8432 8433 // fold vector ops 8434 if (VT.isVector()) { 8435 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 8436 return FoldedVOp; 8437 8438 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 8439 // If setcc produces all-one true value then: 8440 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 8441 if (N1CV && N1CV->isConstant()) { 8442 if (N0.getOpcode() == ISD::AND) { 8443 SDValue N00 = N0->getOperand(0); 8444 SDValue N01 = N0->getOperand(1); 8445 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 8446 8447 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 8448 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 8449 TargetLowering::ZeroOrNegativeOneBooleanContent) { 8450 if (SDValue C = 8451 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) 8452 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 8453 } 8454 } 8455 } 8456 } 8457 8458 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8459 return NewSel; 8460 8461 // if (shl x, c) is known to be zero, return 0 8462 if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) 8463 return DAG.getConstant(0, SDLoc(N), VT); 8464 8465 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 8466 if (N1.getOpcode() == ISD::TRUNCATE && 8467 N1.getOperand(0).getOpcode() == ISD::AND) { 8468 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8469 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 8470 } 8471 8472 if (SimplifyDemandedBits(SDValue(N, 0))) 8473 return SDValue(N, 0); 8474 8475 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 8476 if (N0.getOpcode() == ISD::SHL) { 8477 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8478 ConstantSDNode *RHS) { 8479 APInt c1 = LHS->getAPIntValue(); 8480 APInt c2 = RHS->getAPIntValue(); 8481 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8482 return (c1 + c2).uge(OpSizeInBits); 8483 }; 8484 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8485 return DAG.getConstant(0, SDLoc(N), VT); 8486 8487 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8488 ConstantSDNode *RHS) { 8489 APInt c1 = LHS->getAPIntValue(); 8490 APInt c2 = RHS->getAPIntValue(); 8491 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8492 return (c1 + c2).ult(OpSizeInBits); 8493 }; 8494 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8495 SDLoc DL(N); 8496 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8497 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 8498 } 8499 } 8500 8501 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) 8502 // For this to be valid, the second form must not preserve any of the bits 8503 // that are shifted out by the inner shift in the first form. This means 8504 // the outer shift size must be >= the number of bits added by the ext. 8505 // As a corollary, we don't care what kind of ext it is. 8506 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 8507 N0.getOpcode() == ISD::ANY_EXTEND || 8508 N0.getOpcode() == ISD::SIGN_EXTEND) && 8509 N0.getOperand(0).getOpcode() == ISD::SHL) { 8510 SDValue N0Op0 = N0.getOperand(0); 8511 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8512 EVT InnerVT = N0Op0.getValueType(); 8513 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); 8514 8515 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8516 ConstantSDNode *RHS) { 8517 APInt c1 = LHS->getAPIntValue(); 8518 APInt c2 = RHS->getAPIntValue(); 8519 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8520 return c2.uge(OpSizeInBits - InnerBitwidth) && 8521 (c1 + c2).uge(OpSizeInBits); 8522 }; 8523 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, 8524 /*AllowUndefs*/ false, 8525 /*AllowTypeMismatch*/ true)) 8526 return DAG.getConstant(0, SDLoc(N), VT); 8527 8528 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8529 ConstantSDNode *RHS) { 8530 APInt c1 = LHS->getAPIntValue(); 8531 APInt c2 = RHS->getAPIntValue(); 8532 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8533 return c2.uge(OpSizeInBits - InnerBitwidth) && 8534 (c1 + c2).ult(OpSizeInBits); 8535 }; 8536 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, 8537 /*AllowUndefs*/ false, 8538 /*AllowTypeMismatch*/ true)) { 8539 SDLoc DL(N); 8540 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); 8541 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); 8542 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); 8543 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); 8544 } 8545 } 8546 8547 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 8548 // Only fold this if the inner zext has no other uses to avoid increasing 8549 // the total number of instructions. 8550 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 8551 N0.getOperand(0).getOpcode() == ISD::SRL) { 8552 SDValue N0Op0 = N0.getOperand(0); 8553 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8554 8555 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8556 APInt c1 = LHS->getAPIntValue(); 8557 APInt c2 = RHS->getAPIntValue(); 8558 zeroExtendToMatch(c1, c2); 8559 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); 8560 }; 8561 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, 8562 /*AllowUndefs*/ false, 8563 /*AllowTypeMismatch*/ true)) { 8564 SDLoc DL(N); 8565 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); 8566 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); 8567 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); 8568 AddToWorklist(NewSHL.getNode()); 8569 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 8570 } 8571 } 8572 8573 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 8574 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 8575 // TODO - support non-uniform vector shift amounts. 8576 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8577 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 8578 N0->getFlags().hasExact()) { 8579 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8580 uint64_t C1 = N0C1->getZExtValue(); 8581 uint64_t C2 = N1C->getZExtValue(); 8582 SDLoc DL(N); 8583 if (C1 <= C2) 8584 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8585 DAG.getConstant(C2 - C1, DL, ShiftVT)); 8586 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 8587 DAG.getConstant(C1 - C2, DL, ShiftVT)); 8588 } 8589 } 8590 8591 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 8592 // (and (srl x, (sub c1, c2), MASK) 8593 // Only fold this if the inner shift has no other uses -- if it does, folding 8594 // this will increase the total number of instructions. 8595 // TODO - drop hasOneUse requirement if c1 == c2? 8596 // TODO - support non-uniform vector shift amounts. 8597 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 8598 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 8599 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8600 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 8601 uint64_t c1 = N0C1->getZExtValue(); 8602 uint64_t c2 = N1C->getZExtValue(); 8603 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 8604 SDValue Shift; 8605 if (c2 > c1) { 8606 Mask <<= c2 - c1; 8607 SDLoc DL(N); 8608 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8609 DAG.getConstant(c2 - c1, DL, ShiftVT)); 8610 } else { 8611 Mask.lshrInPlace(c1 - c2); 8612 SDLoc DL(N); 8613 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 8614 DAG.getConstant(c1 - c2, DL, ShiftVT)); 8615 } 8616 SDLoc DL(N0); 8617 return DAG.getNode(ISD::AND, DL, VT, Shift, 8618 DAG.getConstant(Mask, DL, VT)); 8619 } 8620 } 8621 } 8622 8623 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 8624 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 8625 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 8626 SDLoc DL(N); 8627 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 8628 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 8629 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 8630 } 8631 8632 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8633 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8634 // Variant of version done on multiply, except mul by a power of 2 is turned 8635 // into a shift. 8636 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 8637 N0.getNode()->hasOneUse() && 8638 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8639 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 8640 TLI.isDesirableToCommuteWithShift(N, Level)) { 8641 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 8642 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8643 AddToWorklist(Shl0.getNode()); 8644 AddToWorklist(Shl1.getNode()); 8645 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 8646 } 8647 8648 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 8649 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 8650 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8651 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 8652 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8653 if (isConstantOrConstantVector(Shl)) 8654 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 8655 } 8656 8657 if (N1C && !N1C->isOpaque()) 8658 if (SDValue NewSHL = visitShiftByConstant(N)) 8659 return NewSHL; 8660 8661 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). 8662 if (N0.getOpcode() == ISD::VSCALE) 8663 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { 8664 const APInt &C0 = N0.getConstantOperandAPInt(0); 8665 const APInt &C1 = NC1->getAPIntValue(); 8666 return DAG.getVScale(SDLoc(N), VT, C0 << C1); 8667 } 8668 8669 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)). 8670 APInt ShlVal; 8671 if (N0.getOpcode() == ISD::STEP_VECTOR) 8672 if (ISD::isConstantSplatVector(N1.getNode(), ShlVal)) { 8673 const APInt &C0 = N0.getConstantOperandAPInt(0); 8674 if (ShlVal.ult(C0.getBitWidth())) { 8675 APInt NewStep = C0 << ShlVal; 8676 return DAG.getStepVector(SDLoc(N), VT, NewStep); 8677 } 8678 } 8679 8680 return SDValue(); 8681 } 8682 8683 // Transform a right shift of a multiply into a multiply-high. 8684 // Examples: 8685 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) 8686 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) 8687 static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, 8688 const TargetLowering &TLI) { 8689 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 8690 "SRL or SRA node is required here!"); 8691 8692 // Check the shift amount. Proceed with the transformation if the shift 8693 // amount is constant. 8694 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); 8695 if (!ShiftAmtSrc) 8696 return SDValue(); 8697 8698 SDLoc DL(N); 8699 8700 // The operation feeding into the shift must be a multiply. 8701 SDValue ShiftOperand = N->getOperand(0); 8702 if (ShiftOperand.getOpcode() != ISD::MUL) 8703 return SDValue(); 8704 8705 // Both operands must be equivalent extend nodes. 8706 SDValue LeftOp = ShiftOperand.getOperand(0); 8707 SDValue RightOp = ShiftOperand.getOperand(1); 8708 8709 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; 8710 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; 8711 8712 if (!IsSignExt && !IsZeroExt) 8713 return SDValue(); 8714 8715 EVT NarrowVT = LeftOp.getOperand(0).getValueType(); 8716 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); 8717 8718 SDValue MulhRightOp; 8719 if (ConstantSDNode *Constant = isConstOrConstSplat(RightOp)) { 8720 unsigned ActiveBits = IsSignExt 8721 ? Constant->getAPIntValue().getMinSignedBits() 8722 : Constant->getAPIntValue().getActiveBits(); 8723 if (ActiveBits > NarrowVTSize) 8724 return SDValue(); 8725 MulhRightOp = DAG.getConstant( 8726 Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL, 8727 NarrowVT); 8728 } else { 8729 if (LeftOp.getOpcode() != RightOp.getOpcode()) 8730 return SDValue(); 8731 // Check that the two extend nodes are the same type. 8732 if (NarrowVT != RightOp.getOperand(0).getValueType()) 8733 return SDValue(); 8734 MulhRightOp = RightOp.getOperand(0); 8735 } 8736 8737 EVT WideVT = LeftOp.getValueType(); 8738 // Proceed with the transformation if the wide types match. 8739 assert((WideVT == RightOp.getValueType()) && 8740 "Cannot have a multiply node with two different operand types."); 8741 8742 // Proceed with the transformation if the wide type is twice as large 8743 // as the narrow type. 8744 if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize) 8745 return SDValue(); 8746 8747 // Check the shift amount with the narrow type size. 8748 // Proceed with the transformation if the shift amount is the width 8749 // of the narrow type. 8750 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); 8751 if (ShiftAmt != NarrowVTSize) 8752 return SDValue(); 8753 8754 // If the operation feeding into the MUL is a sign extend (sext), 8755 // we use mulhs. Othewise, zero extends (zext) use mulhu. 8756 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; 8757 8758 // Combine to mulh if mulh is legal/custom for the narrow type on the target. 8759 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) 8760 return SDValue(); 8761 8762 SDValue Result = 8763 DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp); 8764 return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT) 8765 : DAG.getZExtOrTrunc(Result, DL, WideVT)); 8766 } 8767 8768 SDValue DAGCombiner::visitSRA(SDNode *N) { 8769 SDValue N0 = N->getOperand(0); 8770 SDValue N1 = N->getOperand(1); 8771 if (SDValue V = DAG.simplifyShift(N0, N1)) 8772 return V; 8773 8774 EVT VT = N0.getValueType(); 8775 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8776 8777 // fold (sra c1, c2) -> (sra c1, c2) 8778 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) 8779 return C; 8780 8781 // Arithmetic shifting an all-sign-bit value is a no-op. 8782 // fold (sra 0, x) -> 0 8783 // fold (sra -1, x) -> -1 8784 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 8785 return N0; 8786 8787 // fold vector ops 8788 if (VT.isVector()) 8789 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 8790 return FoldedVOp; 8791 8792 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8793 return NewSel; 8794 8795 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 8796 // sext_inreg. 8797 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8798 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 8799 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 8800 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 8801 if (VT.isVector()) 8802 ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, 8803 VT.getVectorElementCount()); 8804 if (!LegalOperations || 8805 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == 8806 TargetLowering::Legal) 8807 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 8808 N0.getOperand(0), DAG.getValueType(ExtVT)); 8809 // Even if we can't convert to sext_inreg, we might be able to remove 8810 // this shift pair if the input is already sign extended. 8811 if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue()) 8812 return N0.getOperand(0); 8813 } 8814 8815 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 8816 // clamp (add c1, c2) to max shift. 8817 if (N0.getOpcode() == ISD::SRA) { 8818 SDLoc DL(N); 8819 EVT ShiftVT = N1.getValueType(); 8820 EVT ShiftSVT = ShiftVT.getScalarType(); 8821 SmallVector<SDValue, 16> ShiftValues; 8822 8823 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8824 APInt c1 = LHS->getAPIntValue(); 8825 APInt c2 = RHS->getAPIntValue(); 8826 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8827 APInt Sum = c1 + c2; 8828 unsigned ShiftSum = 8829 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 8830 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 8831 return true; 8832 }; 8833 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 8834 SDValue ShiftValue; 8835 if (N1.getOpcode() == ISD::BUILD_VECTOR) 8836 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 8837 else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 8838 assert(ShiftValues.size() == 1 && 8839 "Expected matchBinaryPredicate to return one element for " 8840 "SPLAT_VECTORs"); 8841 ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]); 8842 } else 8843 ShiftValue = ShiftValues[0]; 8844 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 8845 } 8846 } 8847 8848 // fold (sra (shl X, m), (sub result_size, n)) 8849 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 8850 // result_size - n != m. 8851 // If truncate is free for the target sext(shl) is likely to result in better 8852 // code. 8853 if (N0.getOpcode() == ISD::SHL && N1C) { 8854 // Get the two constanst of the shifts, CN0 = m, CN = n. 8855 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 8856 if (N01C) { 8857 LLVMContext &Ctx = *DAG.getContext(); 8858 // Determine what the truncate's result bitsize and type would be. 8859 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 8860 8861 if (VT.isVector()) 8862 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 8863 8864 // Determine the residual right-shift amount. 8865 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 8866 8867 // If the shift is not a no-op (in which case this should be just a sign 8868 // extend already), the truncated to type is legal, sign_extend is legal 8869 // on that type, and the truncate to that type is both legal and free, 8870 // perform the transform. 8871 if ((ShiftAmt > 0) && 8872 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 8873 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 8874 TLI.isTruncateFree(VT, TruncVT)) { 8875 SDLoc DL(N); 8876 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 8877 getShiftAmountTy(N0.getOperand(0).getValueType())); 8878 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 8879 N0.getOperand(0), Amt); 8880 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 8881 Shift); 8882 return DAG.getNode(ISD::SIGN_EXTEND, DL, 8883 N->getValueType(0), Trunc); 8884 } 8885 } 8886 } 8887 8888 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. 8889 // sra (add (shl X, N1C), AddC), N1C --> 8890 // sext (add (trunc X to (width - N1C)), AddC') 8891 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && 8892 N0.getOperand(0).getOpcode() == ISD::SHL && 8893 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { 8894 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { 8895 SDValue Shl = N0.getOperand(0); 8896 // Determine what the truncate's type would be and ask the target if that 8897 // is a free operation. 8898 LLVMContext &Ctx = *DAG.getContext(); 8899 unsigned ShiftAmt = N1C->getZExtValue(); 8900 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); 8901 if (VT.isVector()) 8902 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 8903 8904 // TODO: The simple type check probably belongs in the default hook 8905 // implementation and/or target-specific overrides (because 8906 // non-simple types likely require masking when legalized), but that 8907 // restriction may conflict with other transforms. 8908 if (TruncVT.isSimple() && isTypeLegal(TruncVT) && 8909 TLI.isTruncateFree(VT, TruncVT)) { 8910 SDLoc DL(N); 8911 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); 8912 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). 8913 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); 8914 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); 8915 return DAG.getSExtOrTrunc(Add, DL, VT); 8916 } 8917 } 8918 } 8919 8920 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 8921 if (N1.getOpcode() == ISD::TRUNCATE && 8922 N1.getOperand(0).getOpcode() == ISD::AND) { 8923 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8924 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 8925 } 8926 8927 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8928 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8929 // if c1 is equal to the number of bits the trunc removes 8930 // TODO - support non-uniform vector shift amounts. 8931 if (N0.getOpcode() == ISD::TRUNCATE && 8932 (N0.getOperand(0).getOpcode() == ISD::SRL || 8933 N0.getOperand(0).getOpcode() == ISD::SRA) && 8934 N0.getOperand(0).hasOneUse() && 8935 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { 8936 SDValue N0Op0 = N0.getOperand(0); 8937 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 8938 EVT LargeVT = N0Op0.getValueType(); 8939 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; 8940 if (LargeShift->getAPIntValue() == TruncBits) { 8941 SDLoc DL(N); 8942 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, 8943 getShiftAmountTy(LargeVT)); 8944 SDValue SRA = 8945 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); 8946 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 8947 } 8948 } 8949 } 8950 8951 // Simplify, based on bits shifted out of the LHS. 8952 if (SimplifyDemandedBits(SDValue(N, 0))) 8953 return SDValue(N, 0); 8954 8955 // If the sign bit is known to be zero, switch this to a SRL. 8956 if (DAG.SignBitIsZero(N0)) 8957 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 8958 8959 if (N1C && !N1C->isOpaque()) 8960 if (SDValue NewSRA = visitShiftByConstant(N)) 8961 return NewSRA; 8962 8963 // Try to transform this shift into a multiply-high if 8964 // it matches the appropriate pattern detected in combineShiftToMULH. 8965 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8966 return MULH; 8967 8968 return SDValue(); 8969 } 8970 8971 SDValue DAGCombiner::visitSRL(SDNode *N) { 8972 SDValue N0 = N->getOperand(0); 8973 SDValue N1 = N->getOperand(1); 8974 if (SDValue V = DAG.simplifyShift(N0, N1)) 8975 return V; 8976 8977 EVT VT = N0.getValueType(); 8978 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8979 8980 // fold (srl c1, c2) -> c1 >>u c2 8981 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) 8982 return C; 8983 8984 // fold vector ops 8985 if (VT.isVector()) 8986 if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N))) 8987 return FoldedVOp; 8988 8989 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8990 return NewSel; 8991 8992 // if (srl x, c) is known to be zero, return 0 8993 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8994 if (N1C && 8995 DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) 8996 return DAG.getConstant(0, SDLoc(N), VT); 8997 8998 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 8999 if (N0.getOpcode() == ISD::SRL) { 9000 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 9001 ConstantSDNode *RHS) { 9002 APInt c1 = LHS->getAPIntValue(); 9003 APInt c2 = RHS->getAPIntValue(); 9004 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 9005 return (c1 + c2).uge(OpSizeInBits); 9006 }; 9007 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 9008 return DAG.getConstant(0, SDLoc(N), VT); 9009 9010 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 9011 ConstantSDNode *RHS) { 9012 APInt c1 = LHS->getAPIntValue(); 9013 APInt c2 = RHS->getAPIntValue(); 9014 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 9015 return (c1 + c2).ult(OpSizeInBits); 9016 }; 9017 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 9018 SDLoc DL(N); 9019 EVT ShiftVT = N1.getValueType(); 9020 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 9021 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 9022 } 9023 } 9024 9025 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 9026 N0.getOperand(0).getOpcode() == ISD::SRL) { 9027 SDValue InnerShift = N0.getOperand(0); 9028 // TODO - support non-uniform vector shift amounts. 9029 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { 9030 uint64_t c1 = N001C->getZExtValue(); 9031 uint64_t c2 = N1C->getZExtValue(); 9032 EVT InnerShiftVT = InnerShift.getValueType(); 9033 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); 9034 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 9035 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) 9036 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 9037 if (c1 + OpSizeInBits == InnerShiftSize) { 9038 SDLoc DL(N); 9039 if (c1 + c2 >= InnerShiftSize) 9040 return DAG.getConstant(0, DL, VT); 9041 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 9042 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 9043 InnerShift.getOperand(0), NewShiftAmt); 9044 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); 9045 } 9046 // In the more general case, we can clear the high bits after the shift: 9047 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) 9048 if (N0.hasOneUse() && InnerShift.hasOneUse() && 9049 c1 + c2 < InnerShiftSize) { 9050 SDLoc DL(N); 9051 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 9052 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 9053 InnerShift.getOperand(0), NewShiftAmt); 9054 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, 9055 OpSizeInBits - c2), 9056 DL, InnerShiftVT); 9057 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); 9058 return DAG.getNode(ISD::TRUNCATE, DL, VT, And); 9059 } 9060 } 9061 } 9062 9063 // fold (srl (shl x, c), c) -> (and x, cst2) 9064 // TODO - (srl (shl x, c1), c2). 9065 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 9066 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 9067 SDLoc DL(N); 9068 SDValue Mask = 9069 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 9070 AddToWorklist(Mask.getNode()); 9071 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 9072 } 9073 9074 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 9075 // TODO - support non-uniform vector shift amounts. 9076 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 9077 // Shifting in all undef bits? 9078 EVT SmallVT = N0.getOperand(0).getValueType(); 9079 unsigned BitSize = SmallVT.getScalarSizeInBits(); 9080 if (N1C->getAPIntValue().uge(BitSize)) 9081 return DAG.getUNDEF(VT); 9082 9083 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 9084 uint64_t ShiftAmt = N1C->getZExtValue(); 9085 SDLoc DL0(N0); 9086 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 9087 N0.getOperand(0), 9088 DAG.getConstant(ShiftAmt, DL0, 9089 getShiftAmountTy(SmallVT))); 9090 AddToWorklist(SmallShift.getNode()); 9091 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 9092 SDLoc DL(N); 9093 return DAG.getNode(ISD::AND, DL, VT, 9094 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 9095 DAG.getConstant(Mask, DL, VT)); 9096 } 9097 } 9098 9099 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 9100 // bit, which is unmodified by sra. 9101 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { 9102 if (N0.getOpcode() == ISD::SRA) 9103 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 9104 } 9105 9106 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 9107 if (N1C && N0.getOpcode() == ISD::CTLZ && 9108 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 9109 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 9110 9111 // If any of the input bits are KnownOne, then the input couldn't be all 9112 // zeros, thus the result of the srl will always be zero. 9113 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 9114 9115 // If all of the bits input the to ctlz node are known to be zero, then 9116 // the result of the ctlz is "32" and the result of the shift is one. 9117 APInt UnknownBits = ~Known.Zero; 9118 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 9119 9120 // Otherwise, check to see if there is exactly one bit input to the ctlz. 9121 if (UnknownBits.isPowerOf2()) { 9122 // Okay, we know that only that the single bit specified by UnknownBits 9123 // could be set on input to the CTLZ node. If this bit is set, the SRL 9124 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 9125 // to an SRL/XOR pair, which is likely to simplify more. 9126 unsigned ShAmt = UnknownBits.countTrailingZeros(); 9127 SDValue Op = N0.getOperand(0); 9128 9129 if (ShAmt) { 9130 SDLoc DL(N0); 9131 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 9132 DAG.getConstant(ShAmt, DL, 9133 getShiftAmountTy(Op.getValueType()))); 9134 AddToWorklist(Op.getNode()); 9135 } 9136 9137 SDLoc DL(N); 9138 return DAG.getNode(ISD::XOR, DL, VT, 9139 Op, DAG.getConstant(1, DL, VT)); 9140 } 9141 } 9142 9143 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 9144 if (N1.getOpcode() == ISD::TRUNCATE && 9145 N1.getOperand(0).getOpcode() == ISD::AND) { 9146 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 9147 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 9148 } 9149 9150 // fold operands of srl based on knowledge that the low bits are not 9151 // demanded. 9152 if (SimplifyDemandedBits(SDValue(N, 0))) 9153 return SDValue(N, 0); 9154 9155 if (N1C && !N1C->isOpaque()) 9156 if (SDValue NewSRL = visitShiftByConstant(N)) 9157 return NewSRL; 9158 9159 // Attempt to convert a srl of a load into a narrower zero-extending load. 9160 if (SDValue NarrowLoad = reduceLoadWidth(N)) 9161 return NarrowLoad; 9162 9163 // Here is a common situation. We want to optimize: 9164 // 9165 // %a = ... 9166 // %b = and i32 %a, 2 9167 // %c = srl i32 %b, 1 9168 // brcond i32 %c ... 9169 // 9170 // into 9171 // 9172 // %a = ... 9173 // %b = and %a, 2 9174 // %c = setcc eq %b, 0 9175 // brcond %c ... 9176 // 9177 // However when after the source operand of SRL is optimized into AND, the SRL 9178 // itself may not be optimized further. Look for it and add the BRCOND into 9179 // the worklist. 9180 if (N->hasOneUse()) { 9181 SDNode *Use = *N->use_begin(); 9182 if (Use->getOpcode() == ISD::BRCOND) 9183 AddToWorklist(Use); 9184 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 9185 // Also look pass the truncate. 9186 Use = *Use->use_begin(); 9187 if (Use->getOpcode() == ISD::BRCOND) 9188 AddToWorklist(Use); 9189 } 9190 } 9191 9192 // Try to transform this shift into a multiply-high if 9193 // it matches the appropriate pattern detected in combineShiftToMULH. 9194 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 9195 return MULH; 9196 9197 return SDValue(); 9198 } 9199 9200 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 9201 EVT VT = N->getValueType(0); 9202 SDValue N0 = N->getOperand(0); 9203 SDValue N1 = N->getOperand(1); 9204 SDValue N2 = N->getOperand(2); 9205 bool IsFSHL = N->getOpcode() == ISD::FSHL; 9206 unsigned BitWidth = VT.getScalarSizeInBits(); 9207 9208 // fold (fshl N0, N1, 0) -> N0 9209 // fold (fshr N0, N1, 0) -> N1 9210 if (isPowerOf2_32(BitWidth)) 9211 if (DAG.MaskedValueIsZero( 9212 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 9213 return IsFSHL ? N0 : N1; 9214 9215 auto IsUndefOrZero = [](SDValue V) { 9216 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 9217 }; 9218 9219 // TODO - support non-uniform vector shift amounts. 9220 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 9221 EVT ShAmtTy = N2.getValueType(); 9222 9223 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 9224 if (Cst->getAPIntValue().uge(BitWidth)) { 9225 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 9226 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 9227 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 9228 } 9229 9230 unsigned ShAmt = Cst->getZExtValue(); 9231 if (ShAmt == 0) 9232 return IsFSHL ? N0 : N1; 9233 9234 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 9235 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 9236 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 9237 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 9238 if (IsUndefOrZero(N0)) 9239 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 9240 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 9241 SDLoc(N), ShAmtTy)); 9242 if (IsUndefOrZero(N1)) 9243 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 9244 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 9245 SDLoc(N), ShAmtTy)); 9246 9247 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9248 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9249 // TODO - bigendian support once we have test coverage. 9250 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? 9251 // TODO - permit LHS EXTLOAD if extensions are shifted out. 9252 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && 9253 !DAG.getDataLayout().isBigEndian()) { 9254 auto *LHS = dyn_cast<LoadSDNode>(N0); 9255 auto *RHS = dyn_cast<LoadSDNode>(N1); 9256 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && 9257 LHS->getAddressSpace() == RHS->getAddressSpace() && 9258 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && 9259 ISD::isNON_EXTLoad(LHS)) { 9260 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { 9261 SDLoc DL(RHS); 9262 uint64_t PtrOff = 9263 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); 9264 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); 9265 bool Fast = false; 9266 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 9267 RHS->getAddressSpace(), NewAlign, 9268 RHS->getMemOperand()->getFlags(), &Fast) && 9269 Fast) { 9270 SDValue NewPtr = DAG.getMemBasePlusOffset( 9271 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); 9272 AddToWorklist(NewPtr.getNode()); 9273 SDValue Load = DAG.getLoad( 9274 VT, DL, RHS->getChain(), NewPtr, 9275 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, 9276 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); 9277 // Replace the old load's chain with the new load's chain. 9278 WorklistRemover DeadNodes(*this); 9279 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); 9280 return Load; 9281 } 9282 } 9283 } 9284 } 9285 } 9286 9287 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 9288 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 9289 // iff We know the shift amount is in range. 9290 // TODO: when is it worth doing SUB(BW, N2) as well? 9291 if (isPowerOf2_32(BitWidth)) { 9292 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 9293 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9294 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 9295 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9296 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 9297 } 9298 9299 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 9300 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 9301 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 9302 // is legal as well we might be better off avoiding non-constant (BW - N2). 9303 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 9304 if (N0 == N1 && hasOperation(RotOpc, VT)) 9305 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 9306 9307 // Simplify, based on bits shifted out of N0/N1. 9308 if (SimplifyDemandedBits(SDValue(N, 0))) 9309 return SDValue(N, 0); 9310 9311 return SDValue(); 9312 } 9313 9314 // Given a ABS node, detect the following pattern: 9315 // (ABS (SUB (EXTEND a), (EXTEND b))). 9316 // Generates UABD/SABD instruction. 9317 static SDValue combineABSToABD(SDNode *N, SelectionDAG &DAG, 9318 const TargetLowering &TLI) { 9319 SDValue AbsOp1 = N->getOperand(0); 9320 SDValue Op0, Op1; 9321 9322 if (AbsOp1.getOpcode() != ISD::SUB) 9323 return SDValue(); 9324 9325 Op0 = AbsOp1.getOperand(0); 9326 Op1 = AbsOp1.getOperand(1); 9327 9328 unsigned Opc0 = Op0.getOpcode(); 9329 // Check if the operands of the sub are (zero|sign)-extended. 9330 if (Opc0 != Op1.getOpcode() || 9331 (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND)) 9332 return SDValue(); 9333 9334 EVT VT1 = Op0.getOperand(0).getValueType(); 9335 EVT VT2 = Op1.getOperand(0).getValueType(); 9336 // Check if the operands are of same type and valid size. 9337 unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU; 9338 if (VT1 != VT2 || !TLI.isOperationLegalOrCustom(ABDOpcode, VT1)) 9339 return SDValue(); 9340 9341 Op0 = Op0.getOperand(0); 9342 Op1 = Op1.getOperand(0); 9343 SDValue ABD = 9344 DAG.getNode(ABDOpcode, SDLoc(N), Op0->getValueType(0), Op0, Op1); 9345 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), ABD); 9346 } 9347 9348 SDValue DAGCombiner::visitABS(SDNode *N) { 9349 SDValue N0 = N->getOperand(0); 9350 EVT VT = N->getValueType(0); 9351 9352 // fold (abs c1) -> c2 9353 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9354 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 9355 // fold (abs (abs x)) -> (abs x) 9356 if (N0.getOpcode() == ISD::ABS) 9357 return N0; 9358 // fold (abs x) -> x iff not-negative 9359 if (DAG.SignBitIsZero(N0)) 9360 return N0; 9361 9362 if (SDValue ABD = combineABSToABD(N, DAG, TLI)) 9363 return ABD; 9364 9365 return SDValue(); 9366 } 9367 9368 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 9369 SDValue N0 = N->getOperand(0); 9370 EVT VT = N->getValueType(0); 9371 9372 // fold (bswap c1) -> c2 9373 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9374 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 9375 // fold (bswap (bswap x)) -> x 9376 if (N0.getOpcode() == ISD::BSWAP) 9377 return N0->getOperand(0); 9378 return SDValue(); 9379 } 9380 9381 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 9382 SDValue N0 = N->getOperand(0); 9383 EVT VT = N->getValueType(0); 9384 9385 // fold (bitreverse c1) -> c2 9386 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9387 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 9388 // fold (bitreverse (bitreverse x)) -> x 9389 if (N0.getOpcode() == ISD::BITREVERSE) 9390 return N0.getOperand(0); 9391 return SDValue(); 9392 } 9393 9394 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 9395 SDValue N0 = N->getOperand(0); 9396 EVT VT = N->getValueType(0); 9397 9398 // fold (ctlz c1) -> c2 9399 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9400 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 9401 9402 // If the value is known never to be zero, switch to the undef version. 9403 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 9404 if (DAG.isKnownNeverZero(N0)) 9405 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9406 } 9407 9408 return SDValue(); 9409 } 9410 9411 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 9412 SDValue N0 = N->getOperand(0); 9413 EVT VT = N->getValueType(0); 9414 9415 // fold (ctlz_zero_undef c1) -> c2 9416 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9417 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9418 return SDValue(); 9419 } 9420 9421 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 9422 SDValue N0 = N->getOperand(0); 9423 EVT VT = N->getValueType(0); 9424 9425 // fold (cttz c1) -> c2 9426 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9427 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 9428 9429 // If the value is known never to be zero, switch to the undef version. 9430 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 9431 if (DAG.isKnownNeverZero(N0)) 9432 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9433 } 9434 9435 return SDValue(); 9436 } 9437 9438 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 9439 SDValue N0 = N->getOperand(0); 9440 EVT VT = N->getValueType(0); 9441 9442 // fold (cttz_zero_undef c1) -> c2 9443 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9444 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9445 return SDValue(); 9446 } 9447 9448 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 9449 SDValue N0 = N->getOperand(0); 9450 EVT VT = N->getValueType(0); 9451 9452 // fold (ctpop c1) -> c2 9453 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9454 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 9455 return SDValue(); 9456 } 9457 9458 // FIXME: This should be checking for no signed zeros on individual operands, as 9459 // well as no nans. 9460 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 9461 SDValue RHS, 9462 const TargetLowering &TLI) { 9463 const TargetOptions &Options = DAG.getTarget().Options; 9464 EVT VT = LHS.getValueType(); 9465 9466 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 9467 TLI.isProfitableToCombineMinNumMaxNum(VT) && 9468 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 9469 } 9470 9471 /// Generate Min/Max node 9472 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 9473 SDValue RHS, SDValue True, SDValue False, 9474 ISD::CondCode CC, const TargetLowering &TLI, 9475 SelectionDAG &DAG) { 9476 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 9477 return SDValue(); 9478 9479 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 9480 switch (CC) { 9481 case ISD::SETOLT: 9482 case ISD::SETOLE: 9483 case ISD::SETLT: 9484 case ISD::SETLE: 9485 case ISD::SETULT: 9486 case ISD::SETULE: { 9487 // Since it's known never nan to get here already, either fminnum or 9488 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 9489 // expanded in terms of it. 9490 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 9491 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9492 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9493 9494 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 9495 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9496 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9497 return SDValue(); 9498 } 9499 case ISD::SETOGT: 9500 case ISD::SETOGE: 9501 case ISD::SETGT: 9502 case ISD::SETGE: 9503 case ISD::SETUGT: 9504 case ISD::SETUGE: { 9505 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 9506 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9507 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9508 9509 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 9510 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9511 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9512 return SDValue(); 9513 } 9514 default: 9515 return SDValue(); 9516 } 9517 } 9518 9519 /// If a (v)select has a condition value that is a sign-bit test, try to smear 9520 /// the condition operand sign-bit across the value width and use it as a mask. 9521 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { 9522 SDValue Cond = N->getOperand(0); 9523 SDValue C1 = N->getOperand(1); 9524 SDValue C2 = N->getOperand(2); 9525 if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2)) 9526 return SDValue(); 9527 9528 EVT VT = N->getValueType(0); 9529 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || 9530 VT != Cond.getOperand(0).getValueType()) 9531 return SDValue(); 9532 9533 // The inverted-condition + commuted-select variants of these patterns are 9534 // canonicalized to these forms in IR. 9535 SDValue X = Cond.getOperand(0); 9536 SDValue CondC = Cond.getOperand(1); 9537 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 9538 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && 9539 isAllOnesOrAllOnesSplat(C2)) { 9540 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 9541 SDLoc DL(N); 9542 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9543 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9544 return DAG.getNode(ISD::OR, DL, VT, Sra, C1); 9545 } 9546 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { 9547 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 9548 SDLoc DL(N); 9549 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9550 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9551 return DAG.getNode(ISD::AND, DL, VT, Sra, C1); 9552 } 9553 return SDValue(); 9554 } 9555 9556 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 9557 SDValue Cond = N->getOperand(0); 9558 SDValue N1 = N->getOperand(1); 9559 SDValue N2 = N->getOperand(2); 9560 EVT VT = N->getValueType(0); 9561 EVT CondVT = Cond.getValueType(); 9562 SDLoc DL(N); 9563 9564 if (!VT.isInteger()) 9565 return SDValue(); 9566 9567 auto *C1 = dyn_cast<ConstantSDNode>(N1); 9568 auto *C2 = dyn_cast<ConstantSDNode>(N2); 9569 if (!C1 || !C2) 9570 return SDValue(); 9571 9572 // Only do this before legalization to avoid conflicting with target-specific 9573 // transforms in the other direction (create a select from a zext/sext). There 9574 // is also a target-independent combine here in DAGCombiner in the other 9575 // direction for (select Cond, -1, 0) when the condition is not i1. 9576 if (CondVT == MVT::i1 && !LegalOperations) { 9577 if (C1->isZero() && C2->isOne()) { 9578 // select Cond, 0, 1 --> zext (!Cond) 9579 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9580 if (VT != MVT::i1) 9581 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 9582 return NotCond; 9583 } 9584 if (C1->isZero() && C2->isAllOnes()) { 9585 // select Cond, 0, -1 --> sext (!Cond) 9586 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9587 if (VT != MVT::i1) 9588 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 9589 return NotCond; 9590 } 9591 if (C1->isOne() && C2->isZero()) { 9592 // select Cond, 1, 0 --> zext (Cond) 9593 if (VT != MVT::i1) 9594 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9595 return Cond; 9596 } 9597 if (C1->isAllOnes() && C2->isZero()) { 9598 // select Cond, -1, 0 --> sext (Cond) 9599 if (VT != MVT::i1) 9600 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9601 return Cond; 9602 } 9603 9604 // Use a target hook because some targets may prefer to transform in the 9605 // other direction. 9606 if (TLI.convertSelectOfConstantsToMath(VT)) { 9607 // For any constants that differ by 1, we can transform the select into an 9608 // extend and add. 9609 const APInt &C1Val = C1->getAPIntValue(); 9610 const APInt &C2Val = C2->getAPIntValue(); 9611 if (C1Val - 1 == C2Val) { 9612 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 9613 if (VT != MVT::i1) 9614 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9615 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9616 } 9617 if (C1Val + 1 == C2Val) { 9618 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 9619 if (VT != MVT::i1) 9620 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9621 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9622 } 9623 9624 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 9625 if (C1Val.isPowerOf2() && C2Val.isZero()) { 9626 if (VT != MVT::i1) 9627 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9628 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); 9629 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); 9630 } 9631 9632 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9633 return V; 9634 } 9635 9636 return SDValue(); 9637 } 9638 9639 // fold (select Cond, 0, 1) -> (xor Cond, 1) 9640 // We can't do this reliably if integer based booleans have different contents 9641 // to floating point based booleans. This is because we can't tell whether we 9642 // have an integer-based boolean or a floating-point-based boolean unless we 9643 // can find the SETCC that produced it and inspect its operands. This is 9644 // fairly easy if C is the SETCC node, but it can potentially be 9645 // undiscoverable (or not reasonably discoverable). For example, it could be 9646 // in another basic block or it could require searching a complicated 9647 // expression. 9648 if (CondVT.isInteger() && 9649 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 9650 TargetLowering::ZeroOrOneBooleanContent && 9651 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 9652 TargetLowering::ZeroOrOneBooleanContent && 9653 C1->isZero() && C2->isOne()) { 9654 SDValue NotCond = 9655 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 9656 if (VT.bitsEq(CondVT)) 9657 return NotCond; 9658 return DAG.getZExtOrTrunc(NotCond, DL, VT); 9659 } 9660 9661 return SDValue(); 9662 } 9663 9664 static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) { 9665 assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) && 9666 "Expected a (v)select"); 9667 SDValue Cond = N->getOperand(0); 9668 SDValue T = N->getOperand(1), F = N->getOperand(2); 9669 EVT VT = N->getValueType(0); 9670 if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1) 9671 return SDValue(); 9672 9673 // select Cond, Cond, F --> or Cond, F 9674 // select Cond, 1, F --> or Cond, F 9675 if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true)) 9676 return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F); 9677 9678 // select Cond, T, Cond --> and Cond, T 9679 // select Cond, T, 0 --> and Cond, T 9680 if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true)) 9681 return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T); 9682 9683 // select Cond, T, 1 --> or (not Cond), T 9684 if (isOneOrOneSplat(F, /* AllowUndefs */ true)) { 9685 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 9686 return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T); 9687 } 9688 9689 // select Cond, 0, F --> and (not Cond), F 9690 if (isNullOrNullSplat(T, /* AllowUndefs */ true)) { 9691 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 9692 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F); 9693 } 9694 9695 return SDValue(); 9696 } 9697 9698 static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG) { 9699 SDValue N0 = N->getOperand(0); 9700 SDValue N1 = N->getOperand(1); 9701 SDValue N2 = N->getOperand(2); 9702 EVT VT = N->getValueType(0); 9703 if (N0.getOpcode() != ISD::SETCC || !N0.hasOneUse()) 9704 return SDValue(); 9705 9706 SDValue Cond0 = N0.getOperand(0); 9707 SDValue Cond1 = N0.getOperand(1); 9708 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9709 if (VT != Cond0.getValueType()) 9710 return SDValue(); 9711 9712 // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the 9713 // compare is inverted from that pattern ("Cond0 s> -1"). 9714 if (CC == ISD::SETLT && isNullOrNullSplat(Cond1)) 9715 ; // This is the pattern we are looking for. 9716 else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1)) 9717 std::swap(N1, N2); 9718 else 9719 return SDValue(); 9720 9721 // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & N1 9722 if (isNullOrNullSplat(N2)) { 9723 SDLoc DL(N); 9724 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 9725 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 9726 return DAG.getNode(ISD::AND, DL, VT, Sra, N1); 9727 } 9728 9729 // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | N2 9730 if (isAllOnesOrAllOnesSplat(N1)) { 9731 SDLoc DL(N); 9732 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 9733 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 9734 return DAG.getNode(ISD::OR, DL, VT, Sra, N2); 9735 } 9736 9737 // If we have to invert the sign bit mask, only do that transform if the 9738 // target has a bitwise 'and not' instruction (the invert is free). 9739 // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & N2 9740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9741 if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) { 9742 SDLoc DL(N); 9743 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 9744 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); 9745 SDValue Not = DAG.getNOT(DL, Sra, VT); 9746 return DAG.getNode(ISD::AND, DL, VT, Not, N2); 9747 } 9748 9749 // TODO: There's another pattern in this family, but it may require 9750 // implementing hasOrNot() to check for profitability: 9751 // (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | N2 9752 9753 return SDValue(); 9754 } 9755 9756 SDValue DAGCombiner::visitSELECT(SDNode *N) { 9757 SDValue N0 = N->getOperand(0); 9758 SDValue N1 = N->getOperand(1); 9759 SDValue N2 = N->getOperand(2); 9760 EVT VT = N->getValueType(0); 9761 EVT VT0 = N0.getValueType(); 9762 SDLoc DL(N); 9763 SDNodeFlags Flags = N->getFlags(); 9764 9765 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9766 return V; 9767 9768 if (SDValue V = foldSelectOfConstants(N)) 9769 return V; 9770 9771 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 9772 return V; 9773 9774 // If we can fold this based on the true/false value, do so. 9775 if (SimplifySelectOps(N, N1, N2)) 9776 return SDValue(N, 0); // Don't revisit N. 9777 9778 if (VT0 == MVT::i1) { 9779 // The code in this block deals with the following 2 equivalences: 9780 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 9781 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 9782 // The target can specify its preferred form with the 9783 // shouldNormalizeToSelectSequence() callback. However we always transform 9784 // to the right anyway if we find the inner select exists in the DAG anyway 9785 // and we always transform to the left side if we know that we can further 9786 // optimize the combination of the conditions. 9787 bool normalizeToSequence = 9788 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 9789 // select (and Cond0, Cond1), X, Y 9790 // -> select Cond0, (select Cond1, X, Y), Y 9791 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 9792 SDValue Cond0 = N0->getOperand(0); 9793 SDValue Cond1 = N0->getOperand(1); 9794 SDValue InnerSelect = 9795 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); 9796 if (normalizeToSequence || !InnerSelect.use_empty()) 9797 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 9798 InnerSelect, N2, Flags); 9799 // Cleanup on failure. 9800 if (InnerSelect.use_empty()) 9801 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9802 } 9803 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 9804 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 9805 SDValue Cond0 = N0->getOperand(0); 9806 SDValue Cond1 = N0->getOperand(1); 9807 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), 9808 Cond1, N1, N2, Flags); 9809 if (normalizeToSequence || !InnerSelect.use_empty()) 9810 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 9811 InnerSelect, Flags); 9812 // Cleanup on failure. 9813 if (InnerSelect.use_empty()) 9814 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9815 } 9816 9817 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 9818 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 9819 SDValue N1_0 = N1->getOperand(0); 9820 SDValue N1_1 = N1->getOperand(1); 9821 SDValue N1_2 = N1->getOperand(2); 9822 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 9823 // Create the actual and node if we can generate good code for it. 9824 if (!normalizeToSequence) { 9825 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 9826 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, 9827 N2, Flags); 9828 } 9829 // Otherwise see if we can optimize the "and" to a better pattern. 9830 if (SDValue Combined = visitANDLike(N0, N1_0, N)) { 9831 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 9832 N2, Flags); 9833 } 9834 } 9835 } 9836 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 9837 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 9838 SDValue N2_0 = N2->getOperand(0); 9839 SDValue N2_1 = N2->getOperand(1); 9840 SDValue N2_2 = N2->getOperand(2); 9841 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 9842 // Create the actual or node if we can generate good code for it. 9843 if (!normalizeToSequence) { 9844 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 9845 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, 9846 N2_2, Flags); 9847 } 9848 // Otherwise see if we can optimize to a better pattern. 9849 if (SDValue Combined = visitORLike(N0, N2_0, N)) 9850 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 9851 N2_2, Flags); 9852 } 9853 } 9854 } 9855 9856 // select (not Cond), N1, N2 -> select Cond, N2, N1 9857 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { 9858 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); 9859 SelectOp->setFlags(Flags); 9860 return SelectOp; 9861 } 9862 9863 // Fold selects based on a setcc into other things, such as min/max/abs. 9864 if (N0.getOpcode() == ISD::SETCC) { 9865 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 9866 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9867 9868 // select (fcmp lt x, y), x, y -> fminnum x, y 9869 // select (fcmp gt x, y), x, y -> fmaxnum x, y 9870 // 9871 // This is OK if we don't care what happens if either operand is a NaN. 9872 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 9873 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 9874 CC, TLI, DAG)) 9875 return FMinMax; 9876 9877 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 9878 // This is conservatively limited to pre-legal-operations to give targets 9879 // a chance to reverse the transform if they want to do that. Also, it is 9880 // unlikely that the pattern would be formed late, so it's probably not 9881 // worth going through the other checks. 9882 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 9883 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 9884 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 9885 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 9886 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 9887 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 9888 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 9889 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 9890 // 9891 // The IR equivalent of this transform would have this form: 9892 // %a = add %x, C 9893 // %c = icmp ugt %x, ~C 9894 // %r = select %c, -1, %a 9895 // => 9896 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 9897 // %u0 = extractvalue %u, 0 9898 // %u1 = extractvalue %u, 1 9899 // %r = select %u1, -1, %u0 9900 SDVTList VTs = DAG.getVTList(VT, VT0); 9901 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 9902 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 9903 } 9904 } 9905 9906 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 9907 (!LegalOperations && 9908 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { 9909 // Any flags available in a select/setcc fold will be on the setcc as they 9910 // migrated from fcmp 9911 Flags = N0.getNode()->getFlags(); 9912 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, 9913 N2, N0.getOperand(2)); 9914 SelectNode->setFlags(Flags); 9915 return SelectNode; 9916 } 9917 9918 if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2)) 9919 return NewSel; 9920 } 9921 9922 if (!VT.isVector()) 9923 if (SDValue BinOp = foldSelectOfBinops(N)) 9924 return BinOp; 9925 9926 return SDValue(); 9927 } 9928 9929 // This function assumes all the vselect's arguments are CONCAT_VECTOR 9930 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 9931 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 9932 SDLoc DL(N); 9933 SDValue Cond = N->getOperand(0); 9934 SDValue LHS = N->getOperand(1); 9935 SDValue RHS = N->getOperand(2); 9936 EVT VT = N->getValueType(0); 9937 int NumElems = VT.getVectorNumElements(); 9938 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 9939 RHS.getOpcode() == ISD::CONCAT_VECTORS && 9940 Cond.getOpcode() == ISD::BUILD_VECTOR); 9941 9942 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 9943 // binary ones here. 9944 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 9945 return SDValue(); 9946 9947 // We're sure we have an even number of elements due to the 9948 // concat_vectors we have as arguments to vselect. 9949 // Skip BV elements until we find one that's not an UNDEF 9950 // After we find an UNDEF element, keep looping until we get to half the 9951 // length of the BV and see if all the non-undef nodes are the same. 9952 ConstantSDNode *BottomHalf = nullptr; 9953 for (int i = 0; i < NumElems / 2; ++i) { 9954 if (Cond->getOperand(i)->isUndef()) 9955 continue; 9956 9957 if (BottomHalf == nullptr) 9958 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9959 else if (Cond->getOperand(i).getNode() != BottomHalf) 9960 return SDValue(); 9961 } 9962 9963 // Do the same for the second half of the BuildVector 9964 ConstantSDNode *TopHalf = nullptr; 9965 for (int i = NumElems / 2; i < NumElems; ++i) { 9966 if (Cond->getOperand(i)->isUndef()) 9967 continue; 9968 9969 if (TopHalf == nullptr) 9970 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9971 else if (Cond->getOperand(i).getNode() != TopHalf) 9972 return SDValue(); 9973 } 9974 9975 assert(TopHalf && BottomHalf && 9976 "One half of the selector was all UNDEFs and the other was all the " 9977 "same value. This should have been addressed before this function."); 9978 return DAG.getNode( 9979 ISD::CONCAT_VECTORS, DL, VT, 9980 BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0), 9981 TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1)); 9982 } 9983 9984 bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { 9985 if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD) 9986 return false; 9987 9988 // For now we check only the LHS of the add. 9989 SDValue LHS = Index.getOperand(0); 9990 SDValue SplatVal = DAG.getSplatValue(LHS); 9991 if (!SplatVal) 9992 return false; 9993 9994 BasePtr = SplatVal; 9995 Index = Index.getOperand(1); 9996 return true; 9997 } 9998 9999 // Fold sext/zext of index into index type. 10000 bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index, 10001 bool Scaled, SelectionDAG &DAG) { 10002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10003 10004 if (Index.getOpcode() == ISD::ZERO_EXTEND) { 10005 SDValue Op = Index.getOperand(0); 10006 MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED); 10007 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 10008 Index = Op; 10009 return true; 10010 } 10011 } 10012 10013 if (Index.getOpcode() == ISD::SIGN_EXTEND) { 10014 SDValue Op = Index.getOperand(0); 10015 MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED); 10016 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 10017 Index = Op; 10018 return true; 10019 } 10020 } 10021 10022 return false; 10023 } 10024 10025 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 10026 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 10027 SDValue Mask = MSC->getMask(); 10028 SDValue Chain = MSC->getChain(); 10029 SDValue Index = MSC->getIndex(); 10030 SDValue Scale = MSC->getScale(); 10031 SDValue StoreVal = MSC->getValue(); 10032 SDValue BasePtr = MSC->getBasePtr(); 10033 SDLoc DL(N); 10034 10035 // Zap scatters with a zero mask. 10036 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10037 return Chain; 10038 10039 if (refineUniformBase(BasePtr, Index, DAG)) { 10040 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 10041 return DAG.getMaskedScatter( 10042 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 10043 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 10044 } 10045 10046 if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) { 10047 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 10048 return DAG.getMaskedScatter( 10049 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 10050 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 10051 } 10052 10053 return SDValue(); 10054 } 10055 10056 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 10057 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 10058 SDValue Mask = MST->getMask(); 10059 SDValue Chain = MST->getChain(); 10060 SDValue Value = MST->getValue(); 10061 SDValue Ptr = MST->getBasePtr(); 10062 SDLoc DL(N); 10063 10064 // Zap masked stores with a zero mask. 10065 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10066 return Chain; 10067 10068 // If this is a masked load with an all ones mask, we can use a unmasked load. 10069 // FIXME: Can we do this for indexed, compressing, or truncating stores? 10070 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MST->isUnindexed() && 10071 !MST->isCompressingStore() && !MST->isTruncatingStore()) 10072 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), 10073 MST->getBasePtr(), MST->getPointerInfo(), 10074 MST->getOriginalAlign(), MachineMemOperand::MOStore, 10075 MST->getAAInfo()); 10076 10077 // Try transforming N to an indexed store. 10078 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10079 return SDValue(N, 0); 10080 10081 if (MST->isTruncatingStore() && MST->isUnindexed() && 10082 Value.getValueType().isInteger() && 10083 (!isa<ConstantSDNode>(Value) || 10084 !cast<ConstantSDNode>(Value)->isOpaque())) { 10085 APInt TruncDemandedBits = 10086 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 10087 MST->getMemoryVT().getScalarSizeInBits()); 10088 10089 // See if we can simplify the operation with 10090 // SimplifyDemandedBits, which only works if the value has a single use. 10091 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 10092 // Re-visit the store if anything changed and the store hasn't been merged 10093 // with another node (N is deleted) SimplifyDemandedBits will add Value's 10094 // node back to the worklist if necessary, but we also need to re-visit 10095 // the Store node itself. 10096 if (N->getOpcode() != ISD::DELETED_NODE) 10097 AddToWorklist(N); 10098 return SDValue(N, 0); 10099 } 10100 } 10101 10102 // If this is a TRUNC followed by a masked store, fold this into a masked 10103 // truncating store. We can do this even if this is already a masked 10104 // truncstore. 10105 if ((Value.getOpcode() == ISD::TRUNCATE) && Value.getNode()->hasOneUse() && 10106 MST->isUnindexed() && 10107 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), 10108 MST->getMemoryVT(), LegalOperations)) { 10109 auto Mask = TLI.promoteTargetBoolean(DAG, MST->getMask(), 10110 Value.getOperand(0).getValueType()); 10111 return DAG.getMaskedStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 10112 MST->getOffset(), Mask, MST->getMemoryVT(), 10113 MST->getMemOperand(), MST->getAddressingMode(), 10114 /*IsTruncating=*/true); 10115 } 10116 10117 return SDValue(); 10118 } 10119 10120 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 10121 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 10122 SDValue Mask = MGT->getMask(); 10123 SDValue Chain = MGT->getChain(); 10124 SDValue Index = MGT->getIndex(); 10125 SDValue Scale = MGT->getScale(); 10126 SDValue PassThru = MGT->getPassThru(); 10127 SDValue BasePtr = MGT->getBasePtr(); 10128 SDLoc DL(N); 10129 10130 // Zap gathers with a zero mask. 10131 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10132 return CombineTo(N, PassThru, MGT->getChain()); 10133 10134 if (refineUniformBase(BasePtr, Index, DAG)) { 10135 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 10136 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 10137 MGT->getMemoryVT(), DL, Ops, 10138 MGT->getMemOperand(), MGT->getIndexType(), 10139 MGT->getExtensionType()); 10140 } 10141 10142 if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) { 10143 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 10144 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 10145 MGT->getMemoryVT(), DL, Ops, 10146 MGT->getMemOperand(), MGT->getIndexType(), 10147 MGT->getExtensionType()); 10148 } 10149 10150 return SDValue(); 10151 } 10152 10153 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 10154 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 10155 SDValue Mask = MLD->getMask(); 10156 SDLoc DL(N); 10157 10158 // Zap masked loads with a zero mask. 10159 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 10160 return CombineTo(N, MLD->getPassThru(), MLD->getChain()); 10161 10162 // If this is a masked load with an all ones mask, we can use a unmasked load. 10163 // FIXME: Can we do this for indexed, expanding, or extending loads? 10164 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MLD->isUnindexed() && 10165 !MLD->isExpandingLoad() && MLD->getExtensionType() == ISD::NON_EXTLOAD) { 10166 SDValue NewLd = DAG.getLoad( 10167 N->getValueType(0), SDLoc(N), MLD->getChain(), MLD->getBasePtr(), 10168 MLD->getPointerInfo(), MLD->getOriginalAlign(), 10169 MachineMemOperand::MOLoad, MLD->getAAInfo(), MLD->getRanges()); 10170 return CombineTo(N, NewLd, NewLd.getValue(1)); 10171 } 10172 10173 // Try transforming N to an indexed load. 10174 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10175 return SDValue(N, 0); 10176 10177 return SDValue(); 10178 } 10179 10180 /// A vector select of 2 constant vectors can be simplified to math/logic to 10181 /// avoid a variable select instruction and possibly avoid constant loads. 10182 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 10183 SDValue Cond = N->getOperand(0); 10184 SDValue N1 = N->getOperand(1); 10185 SDValue N2 = N->getOperand(2); 10186 EVT VT = N->getValueType(0); 10187 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 10188 !TLI.convertSelectOfConstantsToMath(VT) || 10189 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 10190 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 10191 return SDValue(); 10192 10193 // Check if we can use the condition value to increment/decrement a single 10194 // constant value. This simplifies a select to an add and removes a constant 10195 // load/materialization from the general case. 10196 bool AllAddOne = true; 10197 bool AllSubOne = true; 10198 unsigned Elts = VT.getVectorNumElements(); 10199 for (unsigned i = 0; i != Elts; ++i) { 10200 SDValue N1Elt = N1.getOperand(i); 10201 SDValue N2Elt = N2.getOperand(i); 10202 if (N1Elt.isUndef() || N2Elt.isUndef()) 10203 continue; 10204 if (N1Elt.getValueType() != N2Elt.getValueType()) 10205 continue; 10206 10207 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 10208 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 10209 if (C1 != C2 + 1) 10210 AllAddOne = false; 10211 if (C1 != C2 - 1) 10212 AllSubOne = false; 10213 } 10214 10215 // Further simplifications for the extra-special cases where the constants are 10216 // all 0 or all -1 should be implemented as folds of these patterns. 10217 SDLoc DL(N); 10218 if (AllAddOne || AllSubOne) { 10219 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 10220 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 10221 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 10222 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 10223 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 10224 } 10225 10226 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) 10227 APInt Pow2C; 10228 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && 10229 isNullOrNullSplat(N2)) { 10230 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); 10231 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); 10232 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); 10233 } 10234 10235 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 10236 return V; 10237 10238 // The general case for select-of-constants: 10239 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 10240 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 10241 // leave that to a machine-specific pass. 10242 return SDValue(); 10243 } 10244 10245 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 10246 SDValue N0 = N->getOperand(0); 10247 SDValue N1 = N->getOperand(1); 10248 SDValue N2 = N->getOperand(2); 10249 EVT VT = N->getValueType(0); 10250 SDLoc DL(N); 10251 10252 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 10253 return V; 10254 10255 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 10256 return V; 10257 10258 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 10259 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) 10260 return DAG.getSelect(DL, VT, F, N2, N1); 10261 10262 // Canonicalize integer abs. 10263 // vselect (setg[te] X, 0), X, -X -> 10264 // vselect (setgt X, -1), X, -X -> 10265 // vselect (setl[te] X, 0), -X, X -> 10266 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 10267 if (N0.getOpcode() == ISD::SETCC) { 10268 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 10269 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10270 bool isAbs = false; 10271 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 10272 10273 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 10274 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 10275 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 10276 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 10277 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 10278 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 10279 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 10280 10281 if (isAbs) { 10282 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 10283 return DAG.getNode(ISD::ABS, DL, VT, LHS); 10284 10285 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, 10286 DAG.getConstant(VT.getScalarSizeInBits() - 1, 10287 DL, getShiftAmountTy(VT))); 10288 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 10289 AddToWorklist(Shift.getNode()); 10290 AddToWorklist(Add.getNode()); 10291 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 10292 } 10293 10294 // vselect x, y (fcmp lt x, y) -> fminnum x, y 10295 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 10296 // 10297 // This is OK if we don't care about what happens if either operand is a 10298 // NaN. 10299 // 10300 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { 10301 if (SDValue FMinMax = 10302 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) 10303 return FMinMax; 10304 } 10305 10306 if (SDValue S = PerformMinMaxFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) 10307 return S; 10308 10309 // If this select has a condition (setcc) with narrower operands than the 10310 // select, try to widen the compare to match the select width. 10311 // TODO: This should be extended to handle any constant. 10312 // TODO: This could be extended to handle non-loading patterns, but that 10313 // requires thorough testing to avoid regressions. 10314 if (isNullOrNullSplat(RHS)) { 10315 EVT NarrowVT = LHS.getValueType(); 10316 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 10317 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 10318 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 10319 unsigned WideWidth = WideVT.getScalarSizeInBits(); 10320 bool IsSigned = isSignedIntSetCC(CC); 10321 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10322 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 10323 SetCCWidth != 1 && SetCCWidth < WideWidth && 10324 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 10325 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 10326 // Both compare operands can be widened for free. The LHS can use an 10327 // extended load, and the RHS is a constant: 10328 // vselect (ext (setcc load(X), C)), N1, N2 --> 10329 // vselect (setcc extload(X), C'), N1, N2 10330 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10331 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 10332 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 10333 EVT WideSetCCVT = getSetCCResultType(WideVT); 10334 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 10335 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 10336 } 10337 } 10338 10339 // Match VSELECTs into add with unsigned saturation. 10340 if (hasOperation(ISD::UADDSAT, VT)) { 10341 // Check if one of the arms of the VSELECT is vector with all bits set. 10342 // If it's on the left side invert the predicate to simplify logic below. 10343 SDValue Other; 10344 ISD::CondCode SatCC = CC; 10345 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) { 10346 Other = N2; 10347 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10348 } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) { 10349 Other = N1; 10350 } 10351 10352 if (Other && Other.getOpcode() == ISD::ADD) { 10353 SDValue CondLHS = LHS, CondRHS = RHS; 10354 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10355 10356 // Canonicalize condition operands. 10357 if (SatCC == ISD::SETUGE) { 10358 std::swap(CondLHS, CondRHS); 10359 SatCC = ISD::SETULE; 10360 } 10361 10362 // We can test against either of the addition operands. 10363 // x <= x+y ? x+y : ~0 --> uaddsat x, y 10364 // x+y >= x ? x+y : ~0 --> uaddsat x, y 10365 if (SatCC == ISD::SETULE && Other == CondRHS && 10366 (OpLHS == CondLHS || OpRHS == CondLHS)) 10367 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10368 10369 if (OpRHS.getOpcode() == CondRHS.getOpcode() && 10370 (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10371 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) && 10372 CondLHS == OpLHS) { 10373 // If the RHS is a constant we have to reverse the const 10374 // canonicalization. 10375 // x >= ~C ? x+C : ~0 --> uaddsat x, C 10376 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10377 return Cond->getAPIntValue() == ~Op->getAPIntValue(); 10378 }; 10379 if (SatCC == ISD::SETULE && 10380 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) 10381 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10382 } 10383 } 10384 } 10385 10386 // Match VSELECTs into sub with unsigned saturation. 10387 if (hasOperation(ISD::USUBSAT, VT)) { 10388 // Check if one of the arms of the VSELECT is a zero vector. If it's on 10389 // the left side invert the predicate to simplify logic below. 10390 SDValue Other; 10391 ISD::CondCode SatCC = CC; 10392 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { 10393 Other = N2; 10394 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10395 } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) { 10396 Other = N1; 10397 } 10398 10399 if (Other && Other.getNumOperands() == 2) { 10400 SDValue CondRHS = RHS; 10401 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10402 10403 if (Other.getOpcode() == ISD::SUB && 10404 LHS.getOpcode() == ISD::ZERO_EXTEND && LHS.getOperand(0) == OpLHS && 10405 OpRHS.getOpcode() == ISD::TRUNCATE && OpRHS.getOperand(0) == RHS) { 10406 // Look for a general sub with unsigned saturation first. 10407 // zext(x) >= y ? x - trunc(y) : 0 10408 // --> usubsat(x,trunc(umin(y,SatLimit))) 10409 // zext(x) > y ? x - trunc(y) : 0 10410 // --> usubsat(x,trunc(umin(y,SatLimit))) 10411 if (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) 10412 return getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, DAG, 10413 DL); 10414 } 10415 10416 if (OpLHS == LHS) { 10417 // Look for a general sub with unsigned saturation first. 10418 // x >= y ? x-y : 0 --> usubsat x, y 10419 // x > y ? x-y : 0 --> usubsat x, y 10420 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && 10421 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) 10422 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10423 10424 if (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10425 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10426 if (CondRHS.getOpcode() == ISD::BUILD_VECTOR || 10427 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10428 // If the RHS is a constant we have to reverse the const 10429 // canonicalization. 10430 // x > C-1 ? x+-C : 0 --> usubsat x, C 10431 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10432 return (!Op && !Cond) || 10433 (Op && Cond && 10434 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); 10435 }; 10436 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && 10437 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, 10438 /*AllowUndefs*/ true)) { 10439 OpRHS = DAG.getNode(ISD::SUB, DL, VT, 10440 DAG.getConstant(0, DL, VT), OpRHS); 10441 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10442 } 10443 10444 // Another special case: If C was a sign bit, the sub has been 10445 // canonicalized into a xor. 10446 // FIXME: Would it be better to use computeKnownBits to determine 10447 // whether it's safe to decanonicalize the xor? 10448 // x s< 0 ? x^C : 0 --> usubsat x, C 10449 APInt SplatValue; 10450 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && 10451 ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) && 10452 ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) && 10453 SplatValue.isSignMask()) { 10454 // Note that we have to rebuild the RHS constant here to 10455 // ensure we don't rely on particular values of undef lanes. 10456 OpRHS = DAG.getConstant(SplatValue, DL, VT); 10457 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10458 } 10459 } 10460 } 10461 } 10462 } 10463 } 10464 } 10465 10466 if (SimplifySelectOps(N, N1, N2)) 10467 return SDValue(N, 0); // Don't revisit N. 10468 10469 // Fold (vselect all_ones, N1, N2) -> N1 10470 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 10471 return N1; 10472 // Fold (vselect all_zeros, N1, N2) -> N2 10473 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 10474 return N2; 10475 10476 // The ConvertSelectToConcatVector function is assuming both the above 10477 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 10478 // and addressed. 10479 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 10480 N2.getOpcode() == ISD::CONCAT_VECTORS && 10481 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 10482 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 10483 return CV; 10484 } 10485 10486 if (SDValue V = foldVSelectOfConstants(N)) 10487 return V; 10488 10489 if (hasOperation(ISD::SRA, VT)) 10490 if (SDValue V = foldVSelectToSignBitSplatMask(N, DAG)) 10491 return V; 10492 10493 return SDValue(); 10494 } 10495 10496 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 10497 SDValue N0 = N->getOperand(0); 10498 SDValue N1 = N->getOperand(1); 10499 SDValue N2 = N->getOperand(2); 10500 SDValue N3 = N->getOperand(3); 10501 SDValue N4 = N->getOperand(4); 10502 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 10503 10504 // fold select_cc lhs, rhs, x, x, cc -> x 10505 if (N2 == N3) 10506 return N2; 10507 10508 // Determine if the condition we're dealing with is constant 10509 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 10510 CC, SDLoc(N), false)) { 10511 AddToWorklist(SCC.getNode()); 10512 10513 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 10514 if (!SCCC->isZero()) 10515 return N2; // cond always true -> true val 10516 else 10517 return N3; // cond always false -> false val 10518 } else if (SCC->isUndef()) { 10519 // When the condition is UNDEF, just return the first operand. This is 10520 // coherent the DAG creation, no setcc node is created in this case 10521 return N2; 10522 } else if (SCC.getOpcode() == ISD::SETCC) { 10523 // Fold to a simpler select_cc 10524 SDValue SelectOp = DAG.getNode( 10525 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), 10526 SCC.getOperand(1), N2, N3, SCC.getOperand(2)); 10527 SelectOp->setFlags(SCC->getFlags()); 10528 return SelectOp; 10529 } 10530 } 10531 10532 // If we can fold this based on the true/false value, do so. 10533 if (SimplifySelectOps(N, N2, N3)) 10534 return SDValue(N, 0); // Don't revisit N. 10535 10536 // fold select_cc into other things, such as min/max/abs 10537 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 10538 } 10539 10540 SDValue DAGCombiner::visitSETCC(SDNode *N) { 10541 // setcc is very commonly used as an argument to brcond. This pattern 10542 // also lend itself to numerous combines and, as a result, it is desired 10543 // we keep the argument to a brcond as a setcc as much as possible. 10544 bool PreferSetCC = 10545 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 10546 10547 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10548 EVT VT = N->getValueType(0); 10549 10550 // SETCC(FREEZE(X), CONST, Cond) 10551 // => 10552 // FREEZE(SETCC(X, CONST, Cond)) 10553 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond) 10554 // isn't equivalent to true or false. 10555 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to 10556 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison. 10557 // 10558 // This transformation is beneficial because visitBRCOND can fold 10559 // BRCOND(FREEZE(X)) to BRCOND(X). 10560 10561 // Conservatively optimize integer comparisons only. 10562 if (PreferSetCC) { 10563 // Do this only when SETCC is going to be used by BRCOND. 10564 10565 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 10566 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 10567 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 10568 bool Updated = false; 10569 10570 // Is 'X Cond C' always true or false? 10571 auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) { 10572 bool False = (Cond == ISD::SETULT && C->isZero()) || 10573 (Cond == ISD::SETLT && C->isMinSignedValue()) || 10574 (Cond == ISD::SETUGT && C->isAllOnes()) || 10575 (Cond == ISD::SETGT && C->isMaxSignedValue()); 10576 bool True = (Cond == ISD::SETULE && C->isAllOnes()) || 10577 (Cond == ISD::SETLE && C->isMaxSignedValue()) || 10578 (Cond == ISD::SETUGE && C->isZero()) || 10579 (Cond == ISD::SETGE && C->isMinSignedValue()); 10580 return True || False; 10581 }; 10582 10583 if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) { 10584 if (!IsAlwaysTrueOrFalse(Cond, N1C)) { 10585 N0 = N0->getOperand(0); 10586 Updated = true; 10587 } 10588 } 10589 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) { 10590 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), 10591 N0C)) { 10592 N1 = N1->getOperand(0); 10593 Updated = true; 10594 } 10595 } 10596 10597 if (Updated) 10598 return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond)); 10599 } 10600 10601 SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond, 10602 SDLoc(N), !PreferSetCC); 10603 10604 if (!Combined) 10605 return SDValue(); 10606 10607 // If we prefer to have a setcc, and we don't, we'll try our best to 10608 // recreate one using rebuildSetCC. 10609 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 10610 SDValue NewSetCC = rebuildSetCC(Combined); 10611 10612 // We don't have anything interesting to combine to. 10613 if (NewSetCC.getNode() == N) 10614 return SDValue(); 10615 10616 if (NewSetCC) 10617 return NewSetCC; 10618 } 10619 10620 return Combined; 10621 } 10622 10623 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 10624 SDValue LHS = N->getOperand(0); 10625 SDValue RHS = N->getOperand(1); 10626 SDValue Carry = N->getOperand(2); 10627 SDValue Cond = N->getOperand(3); 10628 10629 // If Carry is false, fold to a regular SETCC. 10630 if (isNullConstant(Carry)) 10631 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 10632 10633 return SDValue(); 10634 } 10635 10636 /// Check if N satisfies: 10637 /// N is used once. 10638 /// N is a Load. 10639 /// The load is compatible with ExtOpcode. It means 10640 /// If load has explicit zero/sign extension, ExpOpcode must have the same 10641 /// extension. 10642 /// Otherwise returns true. 10643 static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) { 10644 if (!N.hasOneUse()) 10645 return false; 10646 10647 if (!isa<LoadSDNode>(N)) 10648 return false; 10649 10650 LoadSDNode *Load = cast<LoadSDNode>(N); 10651 ISD::LoadExtType LoadExt = Load->getExtensionType(); 10652 if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD) 10653 return true; 10654 10655 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same 10656 // extension. 10657 if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) || 10658 (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND)) 10659 return false; 10660 10661 return true; 10662 } 10663 10664 /// Fold 10665 /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) 10666 /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y) 10667 /// (aext (select c, load x, load y)) -> (select c, extload x, extload y) 10668 /// This function is called by the DAGCombiner when visiting sext/zext/aext 10669 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 10670 static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, 10671 SelectionDAG &DAG) { 10672 unsigned Opcode = N->getOpcode(); 10673 SDValue N0 = N->getOperand(0); 10674 EVT VT = N->getValueType(0); 10675 SDLoc DL(N); 10676 10677 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 10678 Opcode == ISD::ANY_EXTEND) && 10679 "Expected EXTEND dag node in input!"); 10680 10681 if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) || 10682 !N0.hasOneUse()) 10683 return SDValue(); 10684 10685 SDValue Op1 = N0->getOperand(1); 10686 SDValue Op2 = N0->getOperand(2); 10687 if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode)) 10688 return SDValue(); 10689 10690 auto ExtLoadOpcode = ISD::EXTLOAD; 10691 if (Opcode == ISD::SIGN_EXTEND) 10692 ExtLoadOpcode = ISD::SEXTLOAD; 10693 else if (Opcode == ISD::ZERO_EXTEND) 10694 ExtLoadOpcode = ISD::ZEXTLOAD; 10695 10696 LoadSDNode *Load1 = cast<LoadSDNode>(Op1); 10697 LoadSDNode *Load2 = cast<LoadSDNode>(Op2); 10698 if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) || 10699 !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT())) 10700 return SDValue(); 10701 10702 SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1); 10703 SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2); 10704 return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2); 10705 } 10706 10707 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 10708 /// a build_vector of constants. 10709 /// This function is called by the DAGCombiner when visiting sext/zext/aext 10710 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 10711 /// Vector extends are not folded if operations are legal; this is to 10712 /// avoid introducing illegal build_vector dag nodes. 10713 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 10714 SelectionDAG &DAG, bool LegalTypes) { 10715 unsigned Opcode = N->getOpcode(); 10716 SDValue N0 = N->getOperand(0); 10717 EVT VT = N->getValueType(0); 10718 SDLoc DL(N); 10719 10720 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 10721 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 10722 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 10723 && "Expected EXTEND dag node in input!"); 10724 10725 // fold (sext c1) -> c1 10726 // fold (zext c1) -> c1 10727 // fold (aext c1) -> c1 10728 if (isa<ConstantSDNode>(N0)) 10729 return DAG.getNode(Opcode, DL, VT, N0); 10730 10731 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 10732 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) 10733 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 10734 if (N0->getOpcode() == ISD::SELECT) { 10735 SDValue Op1 = N0->getOperand(1); 10736 SDValue Op2 = N0->getOperand(2); 10737 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && 10738 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { 10739 // For any_extend, choose sign extension of the constants to allow a 10740 // possible further transform to sign_extend_inreg.i.e. 10741 // 10742 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> 10743 // t2: i64 = any_extend t1 10744 // --> 10745 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> 10746 // --> 10747 // t4: i64 = sign_extend_inreg t3 10748 unsigned FoldOpc = Opcode; 10749 if (FoldOpc == ISD::ANY_EXTEND) 10750 FoldOpc = ISD::SIGN_EXTEND; 10751 return DAG.getSelect(DL, VT, N0->getOperand(0), 10752 DAG.getNode(FoldOpc, DL, VT, Op1), 10753 DAG.getNode(FoldOpc, DL, VT, Op2)); 10754 } 10755 } 10756 10757 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 10758 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 10759 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 10760 EVT SVT = VT.getScalarType(); 10761 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 10762 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 10763 return SDValue(); 10764 10765 // We can fold this node into a build_vector. 10766 unsigned VTBits = SVT.getSizeInBits(); 10767 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 10768 SmallVector<SDValue, 8> Elts; 10769 unsigned NumElts = VT.getVectorNumElements(); 10770 10771 // For zero-extensions, UNDEF elements still guarantee to have the upper 10772 // bits set to zero. 10773 bool IsZext = 10774 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 10775 10776 for (unsigned i = 0; i != NumElts; ++i) { 10777 SDValue Op = N0.getOperand(i); 10778 if (Op.isUndef()) { 10779 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 10780 continue; 10781 } 10782 10783 SDLoc DL(Op); 10784 // Get the constant value and if needed trunc it to the size of the type. 10785 // Nodes like build_vector might have constants wider than the scalar type. 10786 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 10787 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 10788 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 10789 else 10790 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 10791 } 10792 10793 return DAG.getBuildVector(VT, DL, Elts); 10794 } 10795 10796 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 10797 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 10798 // transformation. Returns true if extension are possible and the above 10799 // mentioned transformation is profitable. 10800 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 10801 unsigned ExtOpc, 10802 SmallVectorImpl<SDNode *> &ExtendNodes, 10803 const TargetLowering &TLI) { 10804 bool HasCopyToRegUses = false; 10805 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 10806 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 10807 UE = N0.getNode()->use_end(); 10808 UI != UE; ++UI) { 10809 SDNode *User = *UI; 10810 if (User == N) 10811 continue; 10812 if (UI.getUse().getResNo() != N0.getResNo()) 10813 continue; 10814 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 10815 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 10816 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 10817 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 10818 // Sign bits will be lost after a zext. 10819 return false; 10820 bool Add = false; 10821 for (unsigned i = 0; i != 2; ++i) { 10822 SDValue UseOp = User->getOperand(i); 10823 if (UseOp == N0) 10824 continue; 10825 if (!isa<ConstantSDNode>(UseOp)) 10826 return false; 10827 Add = true; 10828 } 10829 if (Add) 10830 ExtendNodes.push_back(User); 10831 continue; 10832 } 10833 // If truncates aren't free and there are users we can't 10834 // extend, it isn't worthwhile. 10835 if (!isTruncFree) 10836 return false; 10837 // Remember if this value is live-out. 10838 if (User->getOpcode() == ISD::CopyToReg) 10839 HasCopyToRegUses = true; 10840 } 10841 10842 if (HasCopyToRegUses) { 10843 bool BothLiveOut = false; 10844 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 10845 UI != UE; ++UI) { 10846 SDUse &Use = UI.getUse(); 10847 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 10848 BothLiveOut = true; 10849 break; 10850 } 10851 } 10852 if (BothLiveOut) 10853 // Both unextended and extended values are live out. There had better be 10854 // a good reason for the transformation. 10855 return ExtendNodes.size(); 10856 } 10857 return true; 10858 } 10859 10860 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 10861 SDValue OrigLoad, SDValue ExtLoad, 10862 ISD::NodeType ExtType) { 10863 // Extend SetCC uses if necessary. 10864 SDLoc DL(ExtLoad); 10865 for (SDNode *SetCC : SetCCs) { 10866 SmallVector<SDValue, 4> Ops; 10867 10868 for (unsigned j = 0; j != 2; ++j) { 10869 SDValue SOp = SetCC->getOperand(j); 10870 if (SOp == OrigLoad) 10871 Ops.push_back(ExtLoad); 10872 else 10873 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 10874 } 10875 10876 Ops.push_back(SetCC->getOperand(2)); 10877 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 10878 } 10879 } 10880 10881 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 10882 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 10883 SDValue N0 = N->getOperand(0); 10884 EVT DstVT = N->getValueType(0); 10885 EVT SrcVT = N0.getValueType(); 10886 10887 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10888 N->getOpcode() == ISD::ZERO_EXTEND) && 10889 "Unexpected node type (not an extend)!"); 10890 10891 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 10892 // For example, on a target with legal v4i32, but illegal v8i32, turn: 10893 // (v8i32 (sext (v8i16 (load x)))) 10894 // into: 10895 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10896 // (v4i32 (sextload (x + 16))))) 10897 // Where uses of the original load, i.e.: 10898 // (v8i16 (load x)) 10899 // are replaced with: 10900 // (v8i16 (truncate 10901 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10902 // (v4i32 (sextload (x + 16))))))) 10903 // 10904 // This combine is only applicable to illegal, but splittable, vectors. 10905 // All legal types, and illegal non-vector types, are handled elsewhere. 10906 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 10907 // 10908 if (N0->getOpcode() != ISD::LOAD) 10909 return SDValue(); 10910 10911 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10912 10913 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 10914 !N0.hasOneUse() || !LN0->isSimple() || 10915 !DstVT.isVector() || !DstVT.isPow2VectorType() || 10916 !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10917 return SDValue(); 10918 10919 SmallVector<SDNode *, 4> SetCCs; 10920 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 10921 return SDValue(); 10922 10923 ISD::LoadExtType ExtType = 10924 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10925 10926 // Try to split the vector types to get down to legal types. 10927 EVT SplitSrcVT = SrcVT; 10928 EVT SplitDstVT = DstVT; 10929 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 10930 SplitSrcVT.getVectorNumElements() > 1) { 10931 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 10932 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 10933 } 10934 10935 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 10936 return SDValue(); 10937 10938 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); 10939 10940 SDLoc DL(N); 10941 const unsigned NumSplits = 10942 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 10943 const unsigned Stride = SplitSrcVT.getStoreSize(); 10944 SmallVector<SDValue, 4> Loads; 10945 SmallVector<SDValue, 4> Chains; 10946 10947 SDValue BasePtr = LN0->getBasePtr(); 10948 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 10949 const unsigned Offset = Idx * Stride; 10950 const Align Align = commonAlignment(LN0->getAlign(), Offset); 10951 10952 SDValue SplitLoad = DAG.getExtLoad( 10953 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 10954 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 10955 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 10956 10957 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); 10958 10959 Loads.push_back(SplitLoad.getValue(0)); 10960 Chains.push_back(SplitLoad.getValue(1)); 10961 } 10962 10963 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 10964 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 10965 10966 // Simplify TF. 10967 AddToWorklist(NewChain.getNode()); 10968 10969 CombineTo(N, NewValue); 10970 10971 // Replace uses of the original load (before extension) 10972 // with a truncate of the concatenated sextloaded vectors. 10973 SDValue Trunc = 10974 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 10975 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 10976 CombineTo(N0.getNode(), Trunc, NewChain); 10977 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10978 } 10979 10980 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 10981 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 10982 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 10983 assert(N->getOpcode() == ISD::ZERO_EXTEND); 10984 EVT VT = N->getValueType(0); 10985 EVT OrigVT = N->getOperand(0).getValueType(); 10986 if (TLI.isZExtFree(OrigVT, VT)) 10987 return SDValue(); 10988 10989 // and/or/xor 10990 SDValue N0 = N->getOperand(0); 10991 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10992 N0.getOpcode() == ISD::XOR) || 10993 N0.getOperand(1).getOpcode() != ISD::Constant || 10994 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 10995 return SDValue(); 10996 10997 // shl/shr 10998 SDValue N1 = N0->getOperand(0); 10999 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 11000 N1.getOperand(1).getOpcode() != ISD::Constant || 11001 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 11002 return SDValue(); 11003 11004 // load 11005 if (!isa<LoadSDNode>(N1.getOperand(0))) 11006 return SDValue(); 11007 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 11008 EVT MemVT = Load->getMemoryVT(); 11009 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 11010 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 11011 return SDValue(); 11012 11013 11014 // If the shift op is SHL, the logic op must be AND, otherwise the result 11015 // will be wrong. 11016 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 11017 return SDValue(); 11018 11019 if (!N0.hasOneUse() || !N1.hasOneUse()) 11020 return SDValue(); 11021 11022 SmallVector<SDNode*, 4> SetCCs; 11023 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 11024 ISD::ZERO_EXTEND, SetCCs, TLI)) 11025 return SDValue(); 11026 11027 // Actually do the transformation. 11028 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 11029 Load->getChain(), Load->getBasePtr(), 11030 Load->getMemoryVT(), Load->getMemOperand()); 11031 11032 SDLoc DL1(N1); 11033 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 11034 N1.getOperand(1)); 11035 11036 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11037 SDLoc DL0(N0); 11038 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 11039 DAG.getConstant(Mask, DL0, VT)); 11040 11041 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 11042 CombineTo(N, And); 11043 if (SDValue(Load, 0).hasOneUse()) { 11044 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 11045 } else { 11046 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 11047 Load->getValueType(0), ExtLoad); 11048 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 11049 } 11050 11051 // N0 is dead at this point. 11052 recursivelyDeleteUnusedNodes(N0.getNode()); 11053 11054 return SDValue(N,0); // Return N so it doesn't get rechecked! 11055 } 11056 11057 /// If we're narrowing or widening the result of a vector select and the final 11058 /// size is the same size as a setcc (compare) feeding the select, then try to 11059 /// apply the cast operation to the select's operands because matching vector 11060 /// sizes for a select condition and other operands should be more efficient. 11061 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 11062 unsigned CastOpcode = Cast->getOpcode(); 11063 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 11064 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 11065 CastOpcode == ISD::FP_ROUND) && 11066 "Unexpected opcode for vector select narrowing/widening"); 11067 11068 // We only do this transform before legal ops because the pattern may be 11069 // obfuscated by target-specific operations after legalization. Do not create 11070 // an illegal select op, however, because that may be difficult to lower. 11071 EVT VT = Cast->getValueType(0); 11072 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 11073 return SDValue(); 11074 11075 SDValue VSel = Cast->getOperand(0); 11076 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 11077 VSel.getOperand(0).getOpcode() != ISD::SETCC) 11078 return SDValue(); 11079 11080 // Does the setcc have the same vector size as the casted select? 11081 SDValue SetCC = VSel.getOperand(0); 11082 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 11083 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 11084 return SDValue(); 11085 11086 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 11087 SDValue A = VSel.getOperand(1); 11088 SDValue B = VSel.getOperand(2); 11089 SDValue CastA, CastB; 11090 SDLoc DL(Cast); 11091 if (CastOpcode == ISD::FP_ROUND) { 11092 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 11093 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 11094 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 11095 } else { 11096 CastA = DAG.getNode(CastOpcode, DL, VT, A); 11097 CastB = DAG.getNode(CastOpcode, DL, VT, B); 11098 } 11099 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 11100 } 11101 11102 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11103 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11104 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 11105 const TargetLowering &TLI, EVT VT, 11106 bool LegalOperations, SDNode *N, 11107 SDValue N0, ISD::LoadExtType ExtLoadType) { 11108 SDNode *N0Node = N0.getNode(); 11109 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 11110 : ISD::isZEXTLoad(N0Node); 11111 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 11112 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 11113 return SDValue(); 11114 11115 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11116 EVT MemVT = LN0->getMemoryVT(); 11117 if ((LegalOperations || !LN0->isSimple() || 11118 VT.isVector()) && 11119 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 11120 return SDValue(); 11121 11122 SDValue ExtLoad = 11123 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 11124 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 11125 Combiner.CombineTo(N, ExtLoad); 11126 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11127 if (LN0->use_empty()) 11128 Combiner.recursivelyDeleteUnusedNodes(LN0); 11129 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11130 } 11131 11132 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 11133 // Only generate vector extloads when 1) they're legal, and 2) they are 11134 // deemed desirable by the target. 11135 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 11136 const TargetLowering &TLI, EVT VT, 11137 bool LegalOperations, SDNode *N, SDValue N0, 11138 ISD::LoadExtType ExtLoadType, 11139 ISD::NodeType ExtOpc) { 11140 if (!ISD::isNON_EXTLoad(N0.getNode()) || 11141 !ISD::isUNINDEXEDLoad(N0.getNode()) || 11142 ((LegalOperations || VT.isVector() || 11143 !cast<LoadSDNode>(N0)->isSimple()) && 11144 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 11145 return {}; 11146 11147 bool DoXform = true; 11148 SmallVector<SDNode *, 4> SetCCs; 11149 if (!N0.hasOneUse()) 11150 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 11151 if (VT.isVector()) 11152 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 11153 if (!DoXform) 11154 return {}; 11155 11156 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11157 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 11158 LN0->getBasePtr(), N0.getValueType(), 11159 LN0->getMemOperand()); 11160 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 11161 // If the load value is used only by N, replace it via CombineTo N. 11162 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 11163 Combiner.CombineTo(N, ExtLoad); 11164 if (NoReplaceTrunc) { 11165 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11166 Combiner.recursivelyDeleteUnusedNodes(LN0); 11167 } else { 11168 SDValue Trunc = 11169 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 11170 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 11171 } 11172 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11173 } 11174 11175 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, 11176 const TargetLowering &TLI, EVT VT, 11177 SDNode *N, SDValue N0, 11178 ISD::LoadExtType ExtLoadType, 11179 ISD::NodeType ExtOpc) { 11180 if (!N0.hasOneUse()) 11181 return SDValue(); 11182 11183 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); 11184 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) 11185 return SDValue(); 11186 11187 if (!TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0))) 11188 return SDValue(); 11189 11190 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 11191 return SDValue(); 11192 11193 SDLoc dl(Ld); 11194 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); 11195 SDValue NewLoad = DAG.getMaskedLoad( 11196 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), 11197 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), 11198 ExtLoadType, Ld->isExpandingLoad()); 11199 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); 11200 return NewLoad; 11201 } 11202 11203 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 11204 bool LegalOperations) { 11205 assert((N->getOpcode() == ISD::SIGN_EXTEND || 11206 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 11207 11208 SDValue SetCC = N->getOperand(0); 11209 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 11210 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 11211 return SDValue(); 11212 11213 SDValue X = SetCC.getOperand(0); 11214 SDValue Ones = SetCC.getOperand(1); 11215 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 11216 EVT VT = N->getValueType(0); 11217 EVT XVT = X.getValueType(); 11218 // setge X, C is canonicalized to setgt, so we do not need to match that 11219 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 11220 // not require the 'not' op. 11221 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 11222 // Invert and smear/shift the sign bit: 11223 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 11224 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 11225 SDLoc DL(N); 11226 unsigned ShCt = VT.getSizeInBits() - 1; 11227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11228 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 11229 SDValue NotX = DAG.getNOT(DL, X, VT); 11230 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); 11231 auto ShiftOpcode = 11232 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 11233 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 11234 } 11235 } 11236 return SDValue(); 11237 } 11238 11239 SDValue DAGCombiner::foldSextSetcc(SDNode *N) { 11240 SDValue N0 = N->getOperand(0); 11241 if (N0.getOpcode() != ISD::SETCC) 11242 return SDValue(); 11243 11244 SDValue N00 = N0.getOperand(0); 11245 SDValue N01 = N0.getOperand(1); 11246 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 11247 EVT VT = N->getValueType(0); 11248 EVT N00VT = N00.getValueType(); 11249 SDLoc DL(N); 11250 11251 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 11252 // the same size as the compared operands. Try to optimize sext(setcc()) 11253 // if this is the case. 11254 if (VT.isVector() && !LegalOperations && 11255 TLI.getBooleanContents(N00VT) == 11256 TargetLowering::ZeroOrNegativeOneBooleanContent) { 11257 EVT SVT = getSetCCResultType(N00VT); 11258 11259 // If we already have the desired type, don't change it. 11260 if (SVT != N0.getValueType()) { 11261 // We know that the # elements of the results is the same as the 11262 // # elements of the compare (and the # elements of the compare result 11263 // for that matter). Check to see that they are the same size. If so, 11264 // we know that the element size of the sext'd result matches the 11265 // element size of the compare operands. 11266 if (VT.getSizeInBits() == SVT.getSizeInBits()) 11267 return DAG.getSetCC(DL, VT, N00, N01, CC); 11268 11269 // If the desired elements are smaller or larger than the source 11270 // elements, we can use a matching integer vector type and then 11271 // truncate/sign extend. 11272 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 11273 if (SVT == MatchingVecType) { 11274 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 11275 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 11276 } 11277 } 11278 11279 // Try to eliminate the sext of a setcc by zexting the compare operands. 11280 if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) && 11281 !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) { 11282 bool IsSignedCmp = ISD::isSignedIntSetCC(CC); 11283 unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 11284 unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 11285 11286 // We have an unsupported narrow vector compare op that would be legal 11287 // if extended to the destination type. See if the compare operands 11288 // can be freely extended to the destination type. 11289 auto IsFreeToExtend = [&](SDValue V) { 11290 if (isConstantOrConstantVector(V, /*NoOpaques*/ true)) 11291 return true; 11292 // Match a simple, non-extended load that can be converted to a 11293 // legal {z/s}ext-load. 11294 // TODO: Allow widening of an existing {z/s}ext-load? 11295 if (!(ISD::isNON_EXTLoad(V.getNode()) && 11296 ISD::isUNINDEXEDLoad(V.getNode()) && 11297 cast<LoadSDNode>(V)->isSimple() && 11298 TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType()))) 11299 return false; 11300 11301 // Non-chain users of this value must either be the setcc in this 11302 // sequence or extends that can be folded into the new {z/s}ext-load. 11303 for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end(); 11304 UI != UE; ++UI) { 11305 // Skip uses of the chain and the setcc. 11306 SDNode *User = *UI; 11307 if (UI.getUse().getResNo() != 0 || User == N0.getNode()) 11308 continue; 11309 // Extra users must have exactly the same cast we are about to create. 11310 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad() 11311 // is enhanced similarly. 11312 if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT) 11313 return false; 11314 } 11315 return true; 11316 }; 11317 11318 if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) { 11319 SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00); 11320 SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01); 11321 return DAG.getSetCC(DL, VT, Ext0, Ext1, CC); 11322 } 11323 } 11324 } 11325 11326 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 11327 // Here, T can be 1 or -1, depending on the type of the setcc and 11328 // getBooleanContents(). 11329 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 11330 11331 // To determine the "true" side of the select, we need to know the high bit 11332 // of the value returned by the setcc if it evaluates to true. 11333 // If the type of the setcc is i1, then the true case of the select is just 11334 // sext(i1 1), that is, -1. 11335 // If the type of the setcc is larger (say, i8) then the value of the high 11336 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 11337 // of the appropriate width. 11338 SDValue ExtTrueVal = (SetCCWidth == 1) 11339 ? DAG.getAllOnesConstant(DL, VT) 11340 : DAG.getBoolConstant(true, DL, VT, N00VT); 11341 SDValue Zero = DAG.getConstant(0, DL, VT); 11342 if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 11343 return SCC; 11344 11345 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 11346 EVT SetCCVT = getSetCCResultType(N00VT); 11347 // Don't do this transform for i1 because there's a select transform 11348 // that would reverse it. 11349 // TODO: We should not do this transform at all without a target hook 11350 // because a sext is likely cheaper than a select? 11351 if (SetCCVT.getScalarSizeInBits() != 1 && 11352 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 11353 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 11354 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 11355 } 11356 } 11357 11358 return SDValue(); 11359 } 11360 11361 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 11362 SDValue N0 = N->getOperand(0); 11363 EVT VT = N->getValueType(0); 11364 SDLoc DL(N); 11365 11366 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11367 return Res; 11368 11369 // fold (sext (sext x)) -> (sext x) 11370 // fold (sext (aext x)) -> (sext x) 11371 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11372 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 11373 11374 if (N0.getOpcode() == ISD::TRUNCATE) { 11375 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 11376 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 11377 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 11378 SDNode *oye = N0.getOperand(0).getNode(); 11379 if (NarrowLoad.getNode() != N0.getNode()) { 11380 CombineTo(N0.getNode(), NarrowLoad); 11381 // CombineTo deleted the truncate, if needed, but not what's under it. 11382 AddToWorklist(oye); 11383 } 11384 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11385 } 11386 11387 // See if the value being truncated is already sign extended. If so, just 11388 // eliminate the trunc/sext pair. 11389 SDValue Op = N0.getOperand(0); 11390 unsigned OpBits = Op.getScalarValueSizeInBits(); 11391 unsigned MidBits = N0.getScalarValueSizeInBits(); 11392 unsigned DestBits = VT.getScalarSizeInBits(); 11393 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 11394 11395 if (OpBits == DestBits) { 11396 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 11397 // bits, it is already ready. 11398 if (NumSignBits > DestBits-MidBits) 11399 return Op; 11400 } else if (OpBits < DestBits) { 11401 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 11402 // bits, just sext from i32. 11403 if (NumSignBits > OpBits-MidBits) 11404 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 11405 } else { 11406 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 11407 // bits, just truncate to i32. 11408 if (NumSignBits > OpBits-MidBits) 11409 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 11410 } 11411 11412 // fold (sext (truncate x)) -> (sextinreg x). 11413 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 11414 N0.getValueType())) { 11415 if (OpBits < DestBits) 11416 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 11417 else if (OpBits > DestBits) 11418 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 11419 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 11420 DAG.getValueType(N0.getValueType())); 11421 } 11422 } 11423 11424 // Try to simplify (sext (load x)). 11425 if (SDValue foldedExt = 11426 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11427 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 11428 return foldedExt; 11429 11430 if (SDValue foldedExt = 11431 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, 11432 ISD::SIGN_EXTEND)) 11433 return foldedExt; 11434 11435 // fold (sext (load x)) to multiple smaller sextloads. 11436 // Only on illegal but splittable vectors. 11437 if (SDValue ExtLoad = CombineExtLoad(N)) 11438 return ExtLoad; 11439 11440 // Try to simplify (sext (sextload x)). 11441 if (SDValue foldedExt = tryToFoldExtOfExtload( 11442 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 11443 return foldedExt; 11444 11445 // fold (sext (and/or/xor (load x), cst)) -> 11446 // (and/or/xor (sextload x), (sext cst)) 11447 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11448 N0.getOpcode() == ISD::XOR) && 11449 isa<LoadSDNode>(N0.getOperand(0)) && 11450 N0.getOperand(1).getOpcode() == ISD::Constant && 11451 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11452 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11453 EVT MemVT = LN00->getMemoryVT(); 11454 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 11455 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 11456 SmallVector<SDNode*, 4> SetCCs; 11457 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11458 ISD::SIGN_EXTEND, SetCCs, TLI); 11459 if (DoXform) { 11460 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 11461 LN00->getChain(), LN00->getBasePtr(), 11462 LN00->getMemoryVT(), 11463 LN00->getMemOperand()); 11464 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); 11465 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11466 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11467 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 11468 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11469 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11470 CombineTo(N, And); 11471 // If N0 has multiple uses, change other uses as well. 11472 if (NoReplaceTruncAnd) { 11473 SDValue TruncAnd = 11474 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11475 CombineTo(N0.getNode(), TruncAnd); 11476 } 11477 if (NoReplaceTrunc) { 11478 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11479 } else { 11480 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11481 LN00->getValueType(0), ExtLoad); 11482 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11483 } 11484 return SDValue(N,0); // Return N so it doesn't get rechecked! 11485 } 11486 } 11487 } 11488 11489 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11490 return V; 11491 11492 if (SDValue V = foldSextSetcc(N)) 11493 return V; 11494 11495 // fold (sext x) -> (zext x) if the sign bit is known zero. 11496 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 11497 DAG.SignBitIsZero(N0)) 11498 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 11499 11500 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11501 return NewVSel; 11502 11503 // Eliminate this sign extend by doing a negation in the destination type: 11504 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 11505 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 11506 isNullOrNullSplat(N0.getOperand(0)) && 11507 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 11508 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 11509 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 11510 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 11511 } 11512 // Eliminate this sign extend by doing a decrement in the destination type: 11513 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 11514 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 11515 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 11516 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11517 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 11518 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 11519 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11520 } 11521 11522 // fold sext (not i1 X) -> add (zext i1 X), -1 11523 // TODO: This could be extended to handle bool vectors. 11524 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && 11525 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && 11526 TLI.isOperationLegal(ISD::ADD, VT)))) { 11527 // If we can eliminate the 'not', the sext form should be better 11528 if (SDValue NewXor = visitXOR(N0.getNode())) { 11529 // Returning N0 is a form of in-visit replacement that may have 11530 // invalidated N0. 11531 if (NewXor.getNode() == N0.getNode()) { 11532 // Return SDValue here as the xor should have already been replaced in 11533 // this sext. 11534 return SDValue(); 11535 } else { 11536 // Return a new sext with the new xor. 11537 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); 11538 } 11539 } 11540 11541 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 11542 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11543 } 11544 11545 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11546 return Res; 11547 11548 return SDValue(); 11549 } 11550 11551 // isTruncateOf - If N is a truncate of some other value, return true, record 11552 // the value being truncated in Op and which of Op's bits are zero/one in Known. 11553 // This function computes KnownBits to avoid a duplicated call to 11554 // computeKnownBits in the caller. 11555 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 11556 KnownBits &Known) { 11557 if (N->getOpcode() == ISD::TRUNCATE) { 11558 Op = N->getOperand(0); 11559 Known = DAG.computeKnownBits(Op); 11560 return true; 11561 } 11562 11563 if (N.getOpcode() != ISD::SETCC || 11564 N.getValueType().getScalarType() != MVT::i1 || 11565 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 11566 return false; 11567 11568 SDValue Op0 = N->getOperand(0); 11569 SDValue Op1 = N->getOperand(1); 11570 assert(Op0.getValueType() == Op1.getValueType()); 11571 11572 if (isNullOrNullSplat(Op0)) 11573 Op = Op1; 11574 else if (isNullOrNullSplat(Op1)) 11575 Op = Op0; 11576 else 11577 return false; 11578 11579 Known = DAG.computeKnownBits(Op); 11580 11581 return (Known.Zero | 1).isAllOnes(); 11582 } 11583 11584 /// Given an extending node with a pop-count operand, if the target does not 11585 /// support a pop-count in the narrow source type but does support it in the 11586 /// destination type, widen the pop-count to the destination type. 11587 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { 11588 assert((Extend->getOpcode() == ISD::ZERO_EXTEND || 11589 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); 11590 11591 SDValue CtPop = Extend->getOperand(0); 11592 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) 11593 return SDValue(); 11594 11595 EVT VT = Extend->getValueType(0); 11596 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11597 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || 11598 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) 11599 return SDValue(); 11600 11601 // zext (ctpop X) --> ctpop (zext X) 11602 SDLoc DL(Extend); 11603 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); 11604 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); 11605 } 11606 11607 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 11608 SDValue N0 = N->getOperand(0); 11609 EVT VT = N->getValueType(0); 11610 11611 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11612 return Res; 11613 11614 // fold (zext (zext x)) -> (zext x) 11615 // fold (zext (aext x)) -> (zext x) 11616 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11617 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 11618 N0.getOperand(0)); 11619 11620 // fold (zext (truncate x)) -> (zext x) or 11621 // (zext (truncate x)) -> (truncate x) 11622 // This is valid when the truncated bits of x are already zero. 11623 SDValue Op; 11624 KnownBits Known; 11625 if (isTruncateOf(DAG, N0, Op, Known)) { 11626 APInt TruncatedBits = 11627 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 11628 APInt(Op.getScalarValueSizeInBits(), 0) : 11629 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 11630 N0.getScalarValueSizeInBits(), 11631 std::min(Op.getScalarValueSizeInBits(), 11632 VT.getScalarSizeInBits())); 11633 if (TruncatedBits.isSubsetOf(Known.Zero)) 11634 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 11635 } 11636 11637 // fold (zext (truncate x)) -> (and x, mask) 11638 if (N0.getOpcode() == ISD::TRUNCATE) { 11639 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 11640 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 11641 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 11642 SDNode *oye = N0.getOperand(0).getNode(); 11643 if (NarrowLoad.getNode() != N0.getNode()) { 11644 CombineTo(N0.getNode(), NarrowLoad); 11645 // CombineTo deleted the truncate, if needed, but not what's under it. 11646 AddToWorklist(oye); 11647 } 11648 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11649 } 11650 11651 EVT SrcVT = N0.getOperand(0).getValueType(); 11652 EVT MinVT = N0.getValueType(); 11653 11654 // Try to mask before the extension to avoid having to generate a larger mask, 11655 // possibly over several sub-vectors. 11656 if (SrcVT.bitsLT(VT) && VT.isVector()) { 11657 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 11658 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 11659 SDValue Op = N0.getOperand(0); 11660 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 11661 AddToWorklist(Op.getNode()); 11662 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 11663 // Transfer the debug info; the new node is equivalent to N0. 11664 DAG.transferDbgValues(N0, ZExtOrTrunc); 11665 return ZExtOrTrunc; 11666 } 11667 } 11668 11669 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 11670 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11671 AddToWorklist(Op.getNode()); 11672 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 11673 // We may safely transfer the debug info describing the truncate node over 11674 // to the equivalent and operation. 11675 DAG.transferDbgValues(N0, And); 11676 return And; 11677 } 11678 } 11679 11680 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 11681 // if either of the casts is not free. 11682 if (N0.getOpcode() == ISD::AND && 11683 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11684 N0.getOperand(1).getOpcode() == ISD::Constant && 11685 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11686 N0.getValueType()) || 11687 !TLI.isZExtFree(N0.getValueType(), VT))) { 11688 SDValue X = N0.getOperand(0).getOperand(0); 11689 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 11690 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11691 SDLoc DL(N); 11692 return DAG.getNode(ISD::AND, DL, VT, 11693 X, DAG.getConstant(Mask, DL, VT)); 11694 } 11695 11696 // Try to simplify (zext (load x)). 11697 if (SDValue foldedExt = 11698 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11699 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11700 return foldedExt; 11701 11702 if (SDValue foldedExt = 11703 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, 11704 ISD::ZERO_EXTEND)) 11705 return foldedExt; 11706 11707 // fold (zext (load x)) to multiple smaller zextloads. 11708 // Only on illegal but splittable vectors. 11709 if (SDValue ExtLoad = CombineExtLoad(N)) 11710 return ExtLoad; 11711 11712 // fold (zext (and/or/xor (load x), cst)) -> 11713 // (and/or/xor (zextload x), (zext cst)) 11714 // Unless (and (load x) cst) will match as a zextload already and has 11715 // additional users. 11716 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11717 N0.getOpcode() == ISD::XOR) && 11718 isa<LoadSDNode>(N0.getOperand(0)) && 11719 N0.getOperand(1).getOpcode() == ISD::Constant && 11720 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11721 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11722 EVT MemVT = LN00->getMemoryVT(); 11723 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 11724 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 11725 bool DoXform = true; 11726 SmallVector<SDNode*, 4> SetCCs; 11727 if (!N0.hasOneUse()) { 11728 if (N0.getOpcode() == ISD::AND) { 11729 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 11730 EVT LoadResultTy = AndC->getValueType(0); 11731 EVT ExtVT; 11732 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 11733 DoXform = false; 11734 } 11735 } 11736 if (DoXform) 11737 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11738 ISD::ZERO_EXTEND, SetCCs, TLI); 11739 if (DoXform) { 11740 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 11741 LN00->getChain(), LN00->getBasePtr(), 11742 LN00->getMemoryVT(), 11743 LN00->getMemOperand()); 11744 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11745 SDLoc DL(N); 11746 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11747 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11748 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 11749 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11750 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11751 CombineTo(N, And); 11752 // If N0 has multiple uses, change other uses as well. 11753 if (NoReplaceTruncAnd) { 11754 SDValue TruncAnd = 11755 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11756 CombineTo(N0.getNode(), TruncAnd); 11757 } 11758 if (NoReplaceTrunc) { 11759 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11760 } else { 11761 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11762 LN00->getValueType(0), ExtLoad); 11763 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11764 } 11765 return SDValue(N,0); // Return N so it doesn't get rechecked! 11766 } 11767 } 11768 } 11769 11770 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 11771 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 11772 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 11773 return ZExtLoad; 11774 11775 // Try to simplify (zext (zextload x)). 11776 if (SDValue foldedExt = tryToFoldExtOfExtload( 11777 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 11778 return foldedExt; 11779 11780 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11781 return V; 11782 11783 if (N0.getOpcode() == ISD::SETCC) { 11784 // Only do this before legalize for now. 11785 if (!LegalOperations && VT.isVector() && 11786 N0.getValueType().getVectorElementType() == MVT::i1) { 11787 EVT N00VT = N0.getOperand(0).getValueType(); 11788 if (getSetCCResultType(N00VT) == N0.getValueType()) 11789 return SDValue(); 11790 11791 // We know that the # elements of the results is the same as the # 11792 // elements of the compare (and the # elements of the compare result for 11793 // that matter). Check to see that they are the same size. If so, we know 11794 // that the element size of the sext'd result matches the element size of 11795 // the compare operands. 11796 SDLoc DL(N); 11797 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 11798 // zext(setcc) -> zext_in_reg(vsetcc) for vectors. 11799 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 11800 N0.getOperand(1), N0.getOperand(2)); 11801 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); 11802 } 11803 11804 // If the desired elements are smaller or larger than the source 11805 // elements we can use a matching integer vector type and then 11806 // truncate/any extend followed by zext_in_reg. 11807 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11808 SDValue VsetCC = 11809 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 11810 N0.getOperand(1), N0.getOperand(2)); 11811 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, 11812 N0.getValueType()); 11813 } 11814 11815 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) 11816 SDLoc DL(N); 11817 EVT N0VT = N0.getValueType(); 11818 EVT N00VT = N0.getOperand(0).getValueType(); 11819 if (SDValue SCC = SimplifySelectCC( 11820 DL, N0.getOperand(0), N0.getOperand(1), 11821 DAG.getBoolConstant(true, DL, N0VT, N00VT), 11822 DAG.getBoolConstant(false, DL, N0VT, N00VT), 11823 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11824 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); 11825 } 11826 11827 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 11828 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 11829 isa<ConstantSDNode>(N0.getOperand(1)) && 11830 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11831 N0.hasOneUse()) { 11832 SDValue ShAmt = N0.getOperand(1); 11833 if (N0.getOpcode() == ISD::SHL) { 11834 SDValue InnerZExt = N0.getOperand(0); 11835 // If the original shl may be shifting out bits, do not perform this 11836 // transformation. 11837 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 11838 InnerZExt.getOperand(0).getValueSizeInBits(); 11839 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) 11840 return SDValue(); 11841 } 11842 11843 SDLoc DL(N); 11844 11845 // Ensure that the shift amount is wide enough for the shifted value. 11846 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) 11847 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 11848 11849 return DAG.getNode(N0.getOpcode(), DL, VT, 11850 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 11851 ShAmt); 11852 } 11853 11854 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11855 return NewVSel; 11856 11857 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11858 return NewCtPop; 11859 11860 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11861 return Res; 11862 11863 return SDValue(); 11864 } 11865 11866 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 11867 SDValue N0 = N->getOperand(0); 11868 EVT VT = N->getValueType(0); 11869 11870 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11871 return Res; 11872 11873 // fold (aext (aext x)) -> (aext x) 11874 // fold (aext (zext x)) -> (zext x) 11875 // fold (aext (sext x)) -> (sext x) 11876 if (N0.getOpcode() == ISD::ANY_EXTEND || 11877 N0.getOpcode() == ISD::ZERO_EXTEND || 11878 N0.getOpcode() == ISD::SIGN_EXTEND) 11879 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 11880 11881 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 11882 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 11883 if (N0.getOpcode() == ISD::TRUNCATE) { 11884 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { 11885 SDNode *oye = N0.getOperand(0).getNode(); 11886 if (NarrowLoad.getNode() != N0.getNode()) { 11887 CombineTo(N0.getNode(), NarrowLoad); 11888 // CombineTo deleted the truncate, if needed, but not what's under it. 11889 AddToWorklist(oye); 11890 } 11891 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11892 } 11893 } 11894 11895 // fold (aext (truncate x)) 11896 if (N0.getOpcode() == ISD::TRUNCATE) 11897 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11898 11899 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 11900 // if the trunc is not free. 11901 if (N0.getOpcode() == ISD::AND && 11902 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11903 N0.getOperand(1).getOpcode() == ISD::Constant && 11904 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11905 N0.getValueType())) { 11906 SDLoc DL(N); 11907 SDValue X = N0.getOperand(0).getOperand(0); 11908 X = DAG.getAnyExtOrTrunc(X, DL, VT); 11909 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11910 return DAG.getNode(ISD::AND, DL, VT, 11911 X, DAG.getConstant(Mask, DL, VT)); 11912 } 11913 11914 // fold (aext (load x)) -> (aext (truncate (extload x))) 11915 // None of the supported targets knows how to perform load and any_ext 11916 // on vectors in one instruction, so attempt to fold to zext instead. 11917 if (VT.isVector()) { 11918 // Try to simplify (zext (load x)). 11919 if (SDValue foldedExt = 11920 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11921 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11922 return foldedExt; 11923 } else if (ISD::isNON_EXTLoad(N0.getNode()) && 11924 ISD::isUNINDEXEDLoad(N0.getNode()) && 11925 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 11926 bool DoXform = true; 11927 SmallVector<SDNode *, 4> SetCCs; 11928 if (!N0.hasOneUse()) 11929 DoXform = 11930 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 11931 if (DoXform) { 11932 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11933 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 11934 LN0->getChain(), LN0->getBasePtr(), 11935 N0.getValueType(), LN0->getMemOperand()); 11936 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 11937 // If the load value is used only by N, replace it via CombineTo N. 11938 bool NoReplaceTrunc = N0.hasOneUse(); 11939 CombineTo(N, ExtLoad); 11940 if (NoReplaceTrunc) { 11941 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11942 recursivelyDeleteUnusedNodes(LN0); 11943 } else { 11944 SDValue Trunc = 11945 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 11946 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 11947 } 11948 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11949 } 11950 } 11951 11952 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 11953 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 11954 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 11955 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 11956 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 11957 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11958 ISD::LoadExtType ExtType = LN0->getExtensionType(); 11959 EVT MemVT = LN0->getMemoryVT(); 11960 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 11961 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 11962 VT, LN0->getChain(), LN0->getBasePtr(), 11963 MemVT, LN0->getMemOperand()); 11964 CombineTo(N, ExtLoad); 11965 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11966 recursivelyDeleteUnusedNodes(LN0); 11967 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11968 } 11969 } 11970 11971 if (N0.getOpcode() == ISD::SETCC) { 11972 // For vectors: 11973 // aext(setcc) -> vsetcc 11974 // aext(setcc) -> truncate(vsetcc) 11975 // aext(setcc) -> aext(vsetcc) 11976 // Only do this before legalize for now. 11977 if (VT.isVector() && !LegalOperations) { 11978 EVT N00VT = N0.getOperand(0).getValueType(); 11979 if (getSetCCResultType(N00VT) == N0.getValueType()) 11980 return SDValue(); 11981 11982 // We know that the # elements of the results is the same as the 11983 // # elements of the compare (and the # elements of the compare result 11984 // for that matter). Check to see that they are the same size. If so, 11985 // we know that the element size of the sext'd result matches the 11986 // element size of the compare operands. 11987 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 11988 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 11989 N0.getOperand(1), 11990 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11991 11992 // If the desired elements are smaller or larger than the source 11993 // elements we can use a matching integer vector type and then 11994 // truncate/any extend 11995 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11996 SDValue VsetCC = 11997 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 11998 N0.getOperand(1), 11999 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 12000 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 12001 } 12002 12003 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 12004 SDLoc DL(N); 12005 if (SDValue SCC = SimplifySelectCC( 12006 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 12007 DAG.getConstant(0, DL, VT), 12008 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 12009 return SCC; 12010 } 12011 12012 if (SDValue NewCtPop = widenCtPop(N, DAG)) 12013 return NewCtPop; 12014 12015 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 12016 return Res; 12017 12018 return SDValue(); 12019 } 12020 12021 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 12022 unsigned Opcode = N->getOpcode(); 12023 SDValue N0 = N->getOperand(0); 12024 SDValue N1 = N->getOperand(1); 12025 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 12026 12027 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 12028 if (N0.getOpcode() == Opcode && 12029 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 12030 return N0; 12031 12032 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 12033 N0.getOperand(0).getOpcode() == Opcode) { 12034 // We have an assert, truncate, assert sandwich. Make one stronger assert 12035 // by asserting on the smallest asserted type to the larger source type. 12036 // This eliminates the later assert: 12037 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 12038 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 12039 SDValue BigA = N0.getOperand(0); 12040 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 12041 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 12042 "Asserting zero/sign-extended bits to a type larger than the " 12043 "truncated destination does not provide information"); 12044 12045 SDLoc DL(N); 12046 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 12047 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 12048 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 12049 BigA.getOperand(0), MinAssertVTVal); 12050 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 12051 } 12052 12053 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 12054 // than X. Just move the AssertZext in front of the truncate and drop the 12055 // AssertSExt. 12056 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 12057 N0.getOperand(0).getOpcode() == ISD::AssertSext && 12058 Opcode == ISD::AssertZext) { 12059 SDValue BigA = N0.getOperand(0); 12060 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 12061 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 12062 "Asserting zero/sign-extended bits to a type larger than the " 12063 "truncated destination does not provide information"); 12064 12065 if (AssertVT.bitsLT(BigA_AssertVT)) { 12066 SDLoc DL(N); 12067 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 12068 BigA.getOperand(0), N1); 12069 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 12070 } 12071 } 12072 12073 return SDValue(); 12074 } 12075 12076 SDValue DAGCombiner::visitAssertAlign(SDNode *N) { 12077 SDLoc DL(N); 12078 12079 Align AL = cast<AssertAlignSDNode>(N)->getAlign(); 12080 SDValue N0 = N->getOperand(0); 12081 12082 // Fold (assertalign (assertalign x, AL0), AL1) -> 12083 // (assertalign x, max(AL0, AL1)) 12084 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) 12085 return DAG.getAssertAlign(DL, N0.getOperand(0), 12086 std::max(AL, AAN->getAlign())); 12087 12088 // In rare cases, there are trivial arithmetic ops in source operands. Sink 12089 // this assert down to source operands so that those arithmetic ops could be 12090 // exposed to the DAG combining. 12091 switch (N0.getOpcode()) { 12092 default: 12093 break; 12094 case ISD::ADD: 12095 case ISD::SUB: { 12096 unsigned AlignShift = Log2(AL); 12097 SDValue LHS = N0.getOperand(0); 12098 SDValue RHS = N0.getOperand(1); 12099 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); 12100 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 12101 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { 12102 if (LHSAlignShift < AlignShift) 12103 LHS = DAG.getAssertAlign(DL, LHS, AL); 12104 if (RHSAlignShift < AlignShift) 12105 RHS = DAG.getAssertAlign(DL, RHS, AL); 12106 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); 12107 } 12108 break; 12109 } 12110 } 12111 12112 return SDValue(); 12113 } 12114 12115 /// If the result of a load is shifted/masked/truncated to an effectively 12116 /// narrower type, try to transform the load to a narrower type and/or 12117 /// use an extending load. 12118 SDValue DAGCombiner::reduceLoadWidth(SDNode *N) { 12119 unsigned Opc = N->getOpcode(); 12120 12121 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 12122 SDValue N0 = N->getOperand(0); 12123 EVT VT = N->getValueType(0); 12124 EVT ExtVT = VT; 12125 12126 // This transformation isn't valid for vector loads. 12127 if (VT.isVector()) 12128 return SDValue(); 12129 12130 // The ShAmt variable is used to indicate that we've consumed a right 12131 // shift. I.e. we want to narrow the width of the load by skipping to load the 12132 // ShAmt least significant bits. 12133 unsigned ShAmt = 0; 12134 // A special case is when the least significant bits from the load are masked 12135 // away, but using an AND rather than a right shift. HasShiftedOffset is used 12136 // to indicate that the narrowed load should be left-shifted ShAmt bits to get 12137 // the result. 12138 bool HasShiftedOffset = false; 12139 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 12140 // extended to VT. 12141 if (Opc == ISD::SIGN_EXTEND_INREG) { 12142 ExtType = ISD::SEXTLOAD; 12143 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 12144 } else if (Opc == ISD::SRL) { 12145 // Another special-case: SRL is basically zero-extending a narrower value, 12146 // or it may be shifting a higher subword, half or byte into the lowest 12147 // bits. 12148 12149 // Only handle shift with constant shift amount, and the shiftee must be a 12150 // load. 12151 auto *LN = dyn_cast<LoadSDNode>(N0); 12152 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12153 if (!N1C || !LN) 12154 return SDValue(); 12155 // If the shift amount is larger than the memory type then we're not 12156 // accessing any of the loaded bytes. 12157 ShAmt = N1C->getZExtValue(); 12158 uint64_t MemoryWidth = LN->getMemoryVT().getScalarSizeInBits(); 12159 if (MemoryWidth <= ShAmt) 12160 return SDValue(); 12161 // Attempt to fold away the SRL by using ZEXTLOAD. 12162 ExtType = ISD::ZEXTLOAD; 12163 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); 12164 // If original load is a SEXTLOAD then we can't simply replace it by a 12165 // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD 12166 // followed by a ZEXT, but that is not handled at the moment). 12167 if (LN->getExtensionType() == ISD::SEXTLOAD) 12168 return SDValue(); 12169 } else if (Opc == ISD::AND) { 12170 // An AND with a constant mask is the same as a truncate + zero-extend. 12171 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12172 if (!AndC) 12173 return SDValue(); 12174 12175 const APInt &Mask = AndC->getAPIntValue(); 12176 unsigned ActiveBits = 0; 12177 if (Mask.isMask()) { 12178 ActiveBits = Mask.countTrailingOnes(); 12179 } else if (Mask.isShiftedMask()) { 12180 ShAmt = Mask.countTrailingZeros(); 12181 APInt ShiftedMask = Mask.lshr(ShAmt); 12182 ActiveBits = ShiftedMask.countTrailingOnes(); 12183 HasShiftedOffset = true; 12184 } else 12185 return SDValue(); 12186 12187 ExtType = ISD::ZEXTLOAD; 12188 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 12189 } 12190 12191 // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing 12192 // a right shift. Here we redo some of those checks, to possibly adjust the 12193 // ExtVT even further based on "a masking AND". We could also end up here for 12194 // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks 12195 // need to be done here as well. 12196 if (Opc == ISD::SRL || N0.getOpcode() == ISD::SRL) { 12197 SDValue SRL = Opc == ISD::SRL ? SDValue(N, 0) : N0; 12198 // Bail out when the SRL has more than one use. This is done for historical 12199 // (undocumented) reasons. Maybe intent was to guard the AND-masking below 12200 // check below? And maybe it could be non-profitable to do the transform in 12201 // case the SRL has multiple uses and we get here with Opc!=ISD::SRL? 12202 // FIXME: Can't we just skip this check for the Opc==ISD::SRL case. 12203 if (!SRL.hasOneUse()) 12204 return SDValue(); 12205 12206 // Only handle shift with constant shift amount, and the shiftee must be a 12207 // load. 12208 auto *LN = dyn_cast<LoadSDNode>(SRL.getOperand(0)); 12209 auto *SRL1C = dyn_cast<ConstantSDNode>(SRL.getOperand(1)); 12210 if (!SRL1C || !LN) 12211 return SDValue(); 12212 12213 // If the shift amount is larger than the input type then we're not 12214 // accessing any of the loaded bytes. If the load was a zextload/extload 12215 // then the result of the shift+trunc is zero/undef (handled elsewhere). 12216 ShAmt = SRL1C->getZExtValue(); 12217 if (ShAmt >= LN->getMemoryVT().getSizeInBits()) 12218 return SDValue(); 12219 12220 // Because a SRL must be assumed to *need* to zero-extend the high bits 12221 // (as opposed to anyext the high bits), we can't combine the zextload 12222 // lowering of SRL and an sextload. 12223 if (LN->getExtensionType() == ISD::SEXTLOAD) 12224 return SDValue(); 12225 12226 unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); 12227 // Is the shift amount a multiple of size of ExtVT? 12228 if ((ShAmt & (ExtVTBits - 1)) != 0) 12229 return SDValue(); 12230 // Is the load width a multiple of size of ExtVT? 12231 if ((SRL.getScalarValueSizeInBits() & (ExtVTBits - 1)) != 0) 12232 return SDValue(); 12233 12234 // If the SRL is only used by a masking AND, we may be able to adjust 12235 // the ExtVT to make the AND redundant. 12236 SDNode *Mask = *(SRL->use_begin()); 12237 if (SRL.hasOneUse() && Mask->getOpcode() == ISD::AND && 12238 isa<ConstantSDNode>(Mask->getOperand(1))) { 12239 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); 12240 if (ShiftMask.isMask()) { 12241 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 12242 ShiftMask.countTrailingOnes()); 12243 // If the mask is smaller, recompute the type. 12244 if ((ExtVTBits > MaskedVT.getScalarSizeInBits()) && 12245 TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT)) 12246 ExtVT = MaskedVT; 12247 } 12248 } 12249 12250 N0 = SRL.getOperand(0); 12251 } 12252 12253 // If the load is shifted left (and the result isn't shifted back right), we 12254 // can fold a truncate through the shift. The typical scenario is that N 12255 // points at a TRUNCATE here so the attempted fold is: 12256 // (truncate (shl (load x), c))) -> (shl (narrow load x), c) 12257 // ShLeftAmt will indicate how much a narrowed load should be shifted left. 12258 unsigned ShLeftAmt = 0; 12259 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 12260 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 12261 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 12262 ShLeftAmt = N01->getZExtValue(); 12263 N0 = N0.getOperand(0); 12264 } 12265 } 12266 12267 // If we haven't found a load, we can't narrow it. 12268 if (!isa<LoadSDNode>(N0)) 12269 return SDValue(); 12270 12271 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12272 // Reducing the width of a volatile load is illegal. For atomics, we may be 12273 // able to reduce the width provided we never widen again. (see D66309) 12274 if (!LN0->isSimple() || 12275 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 12276 return SDValue(); 12277 12278 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 12279 unsigned LVTStoreBits = 12280 LN0->getMemoryVT().getStoreSizeInBits().getFixedSize(); 12281 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize(); 12282 return LVTStoreBits - EVTStoreBits - ShAmt; 12283 }; 12284 12285 // We need to adjust the pointer to the load by ShAmt bits in order to load 12286 // the correct bytes. 12287 unsigned PtrAdjustmentInBits = 12288 DAG.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt) : ShAmt; 12289 12290 uint64_t PtrOff = PtrAdjustmentInBits / 8; 12291 Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); 12292 SDLoc DL(LN0); 12293 // The original load itself didn't wrap, so an offset within it doesn't. 12294 SDNodeFlags Flags; 12295 Flags.setNoUnsignedWrap(true); 12296 SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), 12297 TypeSize::Fixed(PtrOff), DL, Flags); 12298 AddToWorklist(NewPtr.getNode()); 12299 12300 SDValue Load; 12301 if (ExtType == ISD::NON_EXTLOAD) 12302 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, 12303 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 12304 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 12305 else 12306 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, 12307 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 12308 NewAlign, LN0->getMemOperand()->getFlags(), 12309 LN0->getAAInfo()); 12310 12311 // Replace the old load's chain with the new load's chain. 12312 WorklistRemover DeadNodes(*this); 12313 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 12314 12315 // Shift the result left, if we've swallowed a left shift. 12316 SDValue Result = Load; 12317 if (ShLeftAmt != 0) { 12318 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 12319 if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) 12320 ShImmTy = VT; 12321 // If the shift amount is as large as the result size (but, presumably, 12322 // no larger than the source) then the useful bits of the result are 12323 // zero; we can't simply return the shortened shift, because the result 12324 // of that operation is undefined. 12325 if (ShLeftAmt >= VT.getScalarSizeInBits()) 12326 Result = DAG.getConstant(0, DL, VT); 12327 else 12328 Result = DAG.getNode(ISD::SHL, DL, VT, 12329 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 12330 } 12331 12332 if (HasShiftedOffset) { 12333 // We're using a shifted mask, so the load now has an offset. This means 12334 // that data has been loaded into the lower bytes than it would have been 12335 // before, so we need to shl the loaded data into the correct position in the 12336 // register. 12337 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 12338 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 12339 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 12340 } 12341 12342 // Return the new loaded value. 12343 return Result; 12344 } 12345 12346 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 12347 SDValue N0 = N->getOperand(0); 12348 SDValue N1 = N->getOperand(1); 12349 EVT VT = N->getValueType(0); 12350 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 12351 unsigned VTBits = VT.getScalarSizeInBits(); 12352 unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); 12353 12354 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 12355 if (N0.isUndef()) 12356 return DAG.getConstant(0, SDLoc(N), VT); 12357 12358 // fold (sext_in_reg c1) -> c1 12359 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 12360 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 12361 12362 // If the input is already sign extended, just drop the extension. 12363 if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0)) 12364 return N0; 12365 12366 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 12367 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 12368 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 12369 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), 12370 N1); 12371 12372 // fold (sext_in_reg (sext x)) -> (sext x) 12373 // fold (sext_in_reg (aext x)) -> (sext x) 12374 // if x is small enough or if we know that x has more than 1 sign bit and the 12375 // sign_extend_inreg is extending from one of them. 12376 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 12377 SDValue N00 = N0.getOperand(0); 12378 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12379 if ((N00Bits <= ExtVTBits || 12380 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) && 12381 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12382 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 12383 } 12384 12385 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 12386 // if x is small enough or if we know that x has more than 1 sign bit and the 12387 // sign_extend_inreg is extending from one of them. 12388 if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 12389 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 12390 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 12391 SDValue N00 = N0.getOperand(0); 12392 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12393 unsigned DstElts = N0.getValueType().getVectorMinNumElements(); 12394 unsigned SrcElts = N00.getValueType().getVectorMinNumElements(); 12395 bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 12396 APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts); 12397 if ((N00Bits == ExtVTBits || 12398 (!IsZext && (N00Bits < ExtVTBits || 12399 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) && 12400 (!LegalOperations || 12401 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))) 12402 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00); 12403 } 12404 12405 // fold (sext_in_reg (zext x)) -> (sext x) 12406 // iff we are extending the source sign bit. 12407 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 12408 SDValue N00 = N0.getOperand(0); 12409 if (N00.getScalarValueSizeInBits() == ExtVTBits && 12410 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12411 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 12412 } 12413 12414 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 12415 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) 12416 return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); 12417 12418 // fold operands of sext_in_reg based on knowledge that the top bits are not 12419 // demanded. 12420 if (SimplifyDemandedBits(SDValue(N, 0))) 12421 return SDValue(N, 0); 12422 12423 // fold (sext_in_reg (load x)) -> (smaller sextload x) 12424 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 12425 if (SDValue NarrowLoad = reduceLoadWidth(N)) 12426 return NarrowLoad; 12427 12428 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 12429 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 12430 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 12431 if (N0.getOpcode() == ISD::SRL) { 12432 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 12433 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { 12434 // We can turn this into an SRA iff the input to the SRL is already sign 12435 // extended enough. 12436 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 12437 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) 12438 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 12439 N0.getOperand(1)); 12440 } 12441 } 12442 12443 // fold (sext_inreg (extload x)) -> (sextload x) 12444 // If sextload is not supported by target, we can only do the combine when 12445 // load has one use. Doing otherwise can block folding the extload with other 12446 // extends that the target does support. 12447 if (ISD::isEXTLoad(N0.getNode()) && 12448 ISD::isUNINDEXEDLoad(N0.getNode()) && 12449 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12450 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && 12451 N0.hasOneUse()) || 12452 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12453 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12454 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12455 LN0->getChain(), 12456 LN0->getBasePtr(), ExtVT, 12457 LN0->getMemOperand()); 12458 CombineTo(N, ExtLoad); 12459 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12460 AddToWorklist(ExtLoad.getNode()); 12461 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12462 } 12463 12464 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 12465 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 12466 N0.hasOneUse() && 12467 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12468 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && 12469 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12470 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12471 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12472 LN0->getChain(), 12473 LN0->getBasePtr(), ExtVT, 12474 LN0->getMemOperand()); 12475 CombineTo(N, ExtLoad); 12476 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12477 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12478 } 12479 12480 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) 12481 // ignore it if the masked load is already sign extended 12482 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { 12483 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && 12484 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && 12485 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { 12486 SDValue ExtMaskedLoad = DAG.getMaskedLoad( 12487 VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), 12488 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), 12489 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); 12490 CombineTo(N, ExtMaskedLoad); 12491 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); 12492 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12493 } 12494 } 12495 12496 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) 12497 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 12498 if (SDValue(GN0, 0).hasOneUse() && 12499 ExtVT == GN0->getMemoryVT() && 12500 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 12501 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 12502 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 12503 12504 SDValue ExtLoad = DAG.getMaskedGather( 12505 DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops, 12506 GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD); 12507 12508 CombineTo(N, ExtLoad); 12509 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12510 AddToWorklist(ExtLoad.getNode()); 12511 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12512 } 12513 } 12514 12515 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 12516 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { 12517 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 12518 N0.getOperand(1), false)) 12519 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); 12520 } 12521 12522 return SDValue(); 12523 } 12524 12525 SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) { 12526 SDValue N0 = N->getOperand(0); 12527 EVT VT = N->getValueType(0); 12528 12529 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same. 12530 if (N0.isUndef()) 12531 return DAG.getConstant(0, SDLoc(N), VT); 12532 12533 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 12534 return Res; 12535 12536 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 12537 return SDValue(N, 0); 12538 12539 return SDValue(); 12540 } 12541 12542 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 12543 SDValue N0 = N->getOperand(0); 12544 EVT VT = N->getValueType(0); 12545 EVT SrcVT = N0.getValueType(); 12546 bool isLE = DAG.getDataLayout().isLittleEndian(); 12547 12548 // noop truncate 12549 if (SrcVT == VT) 12550 return N0; 12551 12552 // fold (truncate (truncate x)) -> (truncate x) 12553 if (N0.getOpcode() == ISD::TRUNCATE) 12554 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12555 12556 // fold (truncate c1) -> c1 12557 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 12558 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 12559 if (C.getNode() != N) 12560 return C; 12561 } 12562 12563 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 12564 if (N0.getOpcode() == ISD::ZERO_EXTEND || 12565 N0.getOpcode() == ISD::SIGN_EXTEND || 12566 N0.getOpcode() == ISD::ANY_EXTEND) { 12567 // if the source is smaller than the dest, we still need an extend. 12568 if (N0.getOperand(0).getValueType().bitsLT(VT)) 12569 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 12570 // if the source is larger than the dest, than we just need the truncate. 12571 if (N0.getOperand(0).getValueType().bitsGT(VT)) 12572 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12573 // if the source and dest are the same type, we can drop both the extend 12574 // and the truncate. 12575 return N0.getOperand(0); 12576 } 12577 12578 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 12579 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 12580 return SDValue(); 12581 12582 // Fold extract-and-trunc into a narrow extract. For example: 12583 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 12584 // i32 y = TRUNCATE(i64 x) 12585 // -- becomes -- 12586 // v16i8 b = BITCAST (v2i64 val) 12587 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 12588 // 12589 // Note: We only run this optimization after type legalization (which often 12590 // creates this pattern) and before operation legalization after which 12591 // we need to be more careful about the vector instructions that we generate. 12592 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 12593 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 12594 EVT VecTy = N0.getOperand(0).getValueType(); 12595 EVT ExTy = N0.getValueType(); 12596 EVT TrTy = N->getValueType(0); 12597 12598 auto EltCnt = VecTy.getVectorElementCount(); 12599 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 12600 auto NewEltCnt = EltCnt * SizeRatio; 12601 12602 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); 12603 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 12604 12605 SDValue EltNo = N0->getOperand(1); 12606 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 12607 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12608 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 12609 12610 SDLoc DL(N); 12611 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 12612 DAG.getBitcast(NVT, N0.getOperand(0)), 12613 DAG.getVectorIdxConstant(Index, DL)); 12614 } 12615 } 12616 12617 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 12618 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 12619 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 12620 TLI.isTruncateFree(SrcVT, VT)) { 12621 SDLoc SL(N0); 12622 SDValue Cond = N0.getOperand(0); 12623 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 12624 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 12625 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 12626 } 12627 } 12628 12629 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 12630 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 12631 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 12632 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 12633 SDValue Amt = N0.getOperand(1); 12634 KnownBits Known = DAG.computeKnownBits(Amt); 12635 unsigned Size = VT.getScalarSizeInBits(); 12636 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 12637 SDLoc SL(N); 12638 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 12639 12640 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 12641 if (AmtVT != Amt.getValueType()) { 12642 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 12643 AddToWorklist(Amt.getNode()); 12644 } 12645 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 12646 } 12647 } 12648 12649 if (SDValue V = foldSubToUSubSat(VT, N0.getNode())) 12650 return V; 12651 12652 // Attempt to pre-truncate BUILD_VECTOR sources. 12653 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 12654 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && 12655 // Avoid creating illegal types if running after type legalizer. 12656 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { 12657 SDLoc DL(N); 12658 EVT SVT = VT.getScalarType(); 12659 SmallVector<SDValue, 8> TruncOps; 12660 for (const SDValue &Op : N0->op_values()) { 12661 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 12662 TruncOps.push_back(TruncOp); 12663 } 12664 return DAG.getBuildVector(VT, DL, TruncOps); 12665 } 12666 12667 // Fold a series of buildvector, bitcast, and truncate if possible. 12668 // For example fold 12669 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 12670 // (2xi32 (buildvector x, y)). 12671 if (Level == AfterLegalizeVectorOps && VT.isVector() && 12672 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 12673 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 12674 N0.getOperand(0).hasOneUse()) { 12675 SDValue BuildVect = N0.getOperand(0); 12676 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 12677 EVT TruncVecEltTy = VT.getVectorElementType(); 12678 12679 // Check that the element types match. 12680 if (BuildVectEltTy == TruncVecEltTy) { 12681 // Now we only need to compute the offset of the truncated elements. 12682 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 12683 unsigned TruncVecNumElts = VT.getVectorNumElements(); 12684 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 12685 12686 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 12687 "Invalid number of elements"); 12688 12689 SmallVector<SDValue, 8> Opnds; 12690 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 12691 Opnds.push_back(BuildVect.getOperand(i)); 12692 12693 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 12694 } 12695 } 12696 12697 // See if we can simplify the input to this truncate through knowledge that 12698 // only the low bits are being used. 12699 // For example "trunc (or (shl x, 8), y)" // -> trunc y 12700 // Currently we only perform this optimization on scalars because vectors 12701 // may have different active low bits. 12702 if (!VT.isVector()) { 12703 APInt Mask = 12704 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 12705 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 12706 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 12707 } 12708 12709 // fold (truncate (load x)) -> (smaller load x) 12710 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 12711 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 12712 if (SDValue Reduced = reduceLoadWidth(N)) 12713 return Reduced; 12714 12715 // Handle the case where the load remains an extending load even 12716 // after truncation. 12717 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 12718 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12719 if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { 12720 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 12721 VT, LN0->getChain(), LN0->getBasePtr(), 12722 LN0->getMemoryVT(), 12723 LN0->getMemOperand()); 12724 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 12725 return NewLoad; 12726 } 12727 } 12728 } 12729 12730 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 12731 // where ... are all 'undef'. 12732 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 12733 SmallVector<EVT, 8> VTs; 12734 SDValue V; 12735 unsigned Idx = 0; 12736 unsigned NumDefs = 0; 12737 12738 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 12739 SDValue X = N0.getOperand(i); 12740 if (!X.isUndef()) { 12741 V = X; 12742 Idx = i; 12743 NumDefs++; 12744 } 12745 // Stop if more than one members are non-undef. 12746 if (NumDefs > 1) 12747 break; 12748 12749 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 12750 VT.getVectorElementType(), 12751 X.getValueType().getVectorElementCount())); 12752 } 12753 12754 if (NumDefs == 0) 12755 return DAG.getUNDEF(VT); 12756 12757 if (NumDefs == 1) { 12758 assert(V.getNode() && "The single defined operand is empty!"); 12759 SmallVector<SDValue, 8> Opnds; 12760 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 12761 if (i != Idx) { 12762 Opnds.push_back(DAG.getUNDEF(VTs[i])); 12763 continue; 12764 } 12765 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 12766 AddToWorklist(NV.getNode()); 12767 Opnds.push_back(NV); 12768 } 12769 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 12770 } 12771 } 12772 12773 // Fold truncate of a bitcast of a vector to an extract of the low vector 12774 // element. 12775 // 12776 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 12777 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 12778 SDValue VecSrc = N0.getOperand(0); 12779 EVT VecSrcVT = VecSrc.getValueType(); 12780 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && 12781 (!LegalOperations || 12782 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { 12783 SDLoc SL(N); 12784 12785 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; 12786 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, 12787 DAG.getVectorIdxConstant(Idx, SL)); 12788 } 12789 } 12790 12791 // Simplify the operands using demanded-bits information. 12792 if (SimplifyDemandedBits(SDValue(N, 0))) 12793 return SDValue(N, 0); 12794 12795 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 12796 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 12797 // When the adde's carry is not used. 12798 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 12799 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && 12800 // We only do for addcarry before legalize operation 12801 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 12802 TLI.isOperationLegal(N0.getOpcode(), VT))) { 12803 SDLoc SL(N); 12804 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 12805 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 12806 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 12807 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 12808 } 12809 12810 // fold (truncate (extract_subvector(ext x))) -> 12811 // (extract_subvector x) 12812 // TODO: This can be generalized to cover cases where the truncate and extract 12813 // do not fully cancel each other out. 12814 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 12815 SDValue N00 = N0.getOperand(0); 12816 if (N00.getOpcode() == ISD::SIGN_EXTEND || 12817 N00.getOpcode() == ISD::ZERO_EXTEND || 12818 N00.getOpcode() == ISD::ANY_EXTEND) { 12819 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 12820 VT.getVectorElementType()) 12821 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 12822 N00.getOperand(0), N0.getOperand(1)); 12823 } 12824 } 12825 12826 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 12827 return NewVSel; 12828 12829 // Narrow a suitable binary operation with a non-opaque constant operand by 12830 // moving it ahead of the truncate. This is limited to pre-legalization 12831 // because targets may prefer a wider type during later combines and invert 12832 // this transform. 12833 switch (N0.getOpcode()) { 12834 case ISD::ADD: 12835 case ISD::SUB: 12836 case ISD::MUL: 12837 case ISD::AND: 12838 case ISD::OR: 12839 case ISD::XOR: 12840 if (!LegalOperations && N0.hasOneUse() && 12841 (isConstantOrConstantVector(N0.getOperand(0), true) || 12842 isConstantOrConstantVector(N0.getOperand(1), true))) { 12843 // TODO: We already restricted this to pre-legalization, but for vectors 12844 // we are extra cautious to not create an unsupported operation. 12845 // Target-specific changes are likely needed to avoid regressions here. 12846 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 12847 SDLoc DL(N); 12848 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 12849 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 12850 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 12851 } 12852 } 12853 break; 12854 case ISD::USUBSAT: 12855 // Truncate the USUBSAT only if LHS is a known zero-extension, its not 12856 // enough to know that the upper bits are zero we must ensure that we don't 12857 // introduce an extra truncate. 12858 if (!LegalOperations && N0.hasOneUse() && 12859 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 12860 N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <= 12861 VT.getScalarSizeInBits() && 12862 hasOperation(N0.getOpcode(), VT)) { 12863 return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1), 12864 DAG, SDLoc(N)); 12865 } 12866 break; 12867 } 12868 12869 return SDValue(); 12870 } 12871 12872 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 12873 SDValue Elt = N->getOperand(i); 12874 if (Elt.getOpcode() != ISD::MERGE_VALUES) 12875 return Elt.getNode(); 12876 return Elt.getOperand(Elt.getResNo()).getNode(); 12877 } 12878 12879 /// build_pair (load, load) -> load 12880 /// if load locations are consecutive. 12881 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 12882 assert(N->getOpcode() == ISD::BUILD_PAIR); 12883 12884 auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 12885 auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 12886 12887 // A BUILD_PAIR is always having the least significant part in elt 0 and the 12888 // most significant part in elt 1. So when combining into one large load, we 12889 // need to consider the endianness. 12890 if (DAG.getDataLayout().isBigEndian()) 12891 std::swap(LD1, LD2); 12892 12893 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) || 12894 !LD1->hasOneUse() || !LD2->hasOneUse() || 12895 LD1->getAddressSpace() != LD2->getAddressSpace()) 12896 return SDValue(); 12897 12898 bool LD1Fast = false; 12899 EVT LD1VT = LD1->getValueType(0); 12900 unsigned LD1Bytes = LD1VT.getStoreSize(); 12901 if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 12902 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) && 12903 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 12904 *LD1->getMemOperand(), &LD1Fast) && LD1Fast) 12905 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 12906 LD1->getPointerInfo(), LD1->getAlign()); 12907 12908 return SDValue(); 12909 } 12910 12911 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 12912 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 12913 // and Lo parts; on big-endian machines it doesn't. 12914 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 12915 } 12916 12917 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 12918 const TargetLowering &TLI) { 12919 // If this is not a bitcast to an FP type or if the target doesn't have 12920 // IEEE754-compliant FP logic, we're done. 12921 EVT VT = N->getValueType(0); 12922 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 12923 return SDValue(); 12924 12925 // TODO: Handle cases where the integer constant is a different scalar 12926 // bitwidth to the FP. 12927 SDValue N0 = N->getOperand(0); 12928 EVT SourceVT = N0.getValueType(); 12929 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 12930 return SDValue(); 12931 12932 unsigned FPOpcode; 12933 APInt SignMask; 12934 switch (N0.getOpcode()) { 12935 case ISD::AND: 12936 FPOpcode = ISD::FABS; 12937 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12938 break; 12939 case ISD::XOR: 12940 FPOpcode = ISD::FNEG; 12941 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12942 break; 12943 case ISD::OR: 12944 FPOpcode = ISD::FABS; 12945 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12946 break; 12947 default: 12948 return SDValue(); 12949 } 12950 12951 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 12952 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 12953 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 12954 // fneg (fabs X) 12955 SDValue LogicOp0 = N0.getOperand(0); 12956 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 12957 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 12958 LogicOp0.getOpcode() == ISD::BITCAST && 12959 LogicOp0.getOperand(0).getValueType() == VT) { 12960 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 12961 NumFPLogicOpsConv++; 12962 if (N0.getOpcode() == ISD::OR) 12963 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 12964 return FPOp; 12965 } 12966 12967 return SDValue(); 12968 } 12969 12970 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 12971 SDValue N0 = N->getOperand(0); 12972 EVT VT = N->getValueType(0); 12973 12974 if (N0.isUndef()) 12975 return DAG.getUNDEF(VT); 12976 12977 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 12978 // Only do this before legalize types, unless both types are integer and the 12979 // scalar type is legal. Only do this before legalize ops, since the target 12980 // maybe depending on the bitcast. 12981 // First check to see if this is all constant. 12982 // TODO: Support FP bitcasts after legalize types. 12983 if (VT.isVector() && 12984 (!LegalTypes || 12985 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 12986 TLI.isTypeLegal(VT.getVectorElementType()))) && 12987 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 12988 cast<BuildVectorSDNode>(N0)->isConstant()) 12989 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 12990 VT.getVectorElementType()); 12991 12992 // If the input is a constant, let getNode fold it. 12993 if (isIntOrFPConstant(N0)) { 12994 // If we can't allow illegal operations, we need to check that this is just 12995 // a fp -> int or int -> conversion and that the resulting operation will 12996 // be legal. 12997 if (!LegalOperations || 12998 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 12999 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 13000 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 13001 TLI.isOperationLegal(ISD::Constant, VT))) { 13002 SDValue C = DAG.getBitcast(VT, N0); 13003 if (C.getNode() != N) 13004 return C; 13005 } 13006 } 13007 13008 // (conv (conv x, t1), t2) -> (conv x, t2) 13009 if (N0.getOpcode() == ISD::BITCAST) 13010 return DAG.getBitcast(VT, N0.getOperand(0)); 13011 13012 // fold (conv (load x)) -> (load (conv*)x) 13013 // If the resultant load doesn't need a higher alignment than the original! 13014 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 13015 // Do not remove the cast if the types differ in endian layout. 13016 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 13017 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 13018 // If the load is volatile, we only want to change the load type if the 13019 // resulting load is legal. Otherwise we might increase the number of 13020 // memory accesses. We don't care if the original type was legal or not 13021 // as we assume software couldn't rely on the number of accesses of an 13022 // illegal type. 13023 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || 13024 TLI.isOperationLegal(ISD::LOAD, VT))) { 13025 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 13026 13027 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, 13028 *LN0->getMemOperand())) { 13029 SDValue Load = 13030 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 13031 LN0->getPointerInfo(), LN0->getAlign(), 13032 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 13033 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 13034 return Load; 13035 } 13036 } 13037 13038 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 13039 return V; 13040 13041 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 13042 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 13043 // 13044 // For ppc_fp128: 13045 // fold (bitcast (fneg x)) -> 13046 // flipbit = signbit 13047 // (xor (bitcast x) (build_pair flipbit, flipbit)) 13048 // 13049 // fold (bitcast (fabs x)) -> 13050 // flipbit = (and (extract_element (bitcast x), 0), signbit) 13051 // (xor (bitcast x) (build_pair flipbit, flipbit)) 13052 // This often reduces constant pool loads. 13053 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 13054 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 13055 N0.getNode()->hasOneUse() && VT.isInteger() && 13056 !VT.isVector() && !N0.getValueType().isVector()) { 13057 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 13058 AddToWorklist(NewConv.getNode()); 13059 13060 SDLoc DL(N); 13061 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 13062 assert(VT.getSizeInBits() == 128); 13063 SDValue SignBit = DAG.getConstant( 13064 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 13065 SDValue FlipBit; 13066 if (N0.getOpcode() == ISD::FNEG) { 13067 FlipBit = SignBit; 13068 AddToWorklist(FlipBit.getNode()); 13069 } else { 13070 assert(N0.getOpcode() == ISD::FABS); 13071 SDValue Hi = 13072 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 13073 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 13074 SDLoc(NewConv))); 13075 AddToWorklist(Hi.getNode()); 13076 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 13077 AddToWorklist(FlipBit.getNode()); 13078 } 13079 SDValue FlipBits = 13080 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 13081 AddToWorklist(FlipBits.getNode()); 13082 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 13083 } 13084 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 13085 if (N0.getOpcode() == ISD::FNEG) 13086 return DAG.getNode(ISD::XOR, DL, VT, 13087 NewConv, DAG.getConstant(SignBit, DL, VT)); 13088 assert(N0.getOpcode() == ISD::FABS); 13089 return DAG.getNode(ISD::AND, DL, VT, 13090 NewConv, DAG.getConstant(~SignBit, DL, VT)); 13091 } 13092 13093 // fold (bitconvert (fcopysign cst, x)) -> 13094 // (or (and (bitconvert x), sign), (and cst, (not sign))) 13095 // Note that we don't handle (copysign x, cst) because this can always be 13096 // folded to an fneg or fabs. 13097 // 13098 // For ppc_fp128: 13099 // fold (bitcast (fcopysign cst, x)) -> 13100 // flipbit = (and (extract_element 13101 // (xor (bitcast cst), (bitcast x)), 0), 13102 // signbit) 13103 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 13104 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 13105 isa<ConstantFPSDNode>(N0.getOperand(0)) && 13106 VT.isInteger() && !VT.isVector()) { 13107 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 13108 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 13109 if (isTypeLegal(IntXVT)) { 13110 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 13111 AddToWorklist(X.getNode()); 13112 13113 // If X has a different width than the result/lhs, sext it or truncate it. 13114 unsigned VTWidth = VT.getSizeInBits(); 13115 if (OrigXWidth < VTWidth) { 13116 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 13117 AddToWorklist(X.getNode()); 13118 } else if (OrigXWidth > VTWidth) { 13119 // To get the sign bit in the right place, we have to shift it right 13120 // before truncating. 13121 SDLoc DL(X); 13122 X = DAG.getNode(ISD::SRL, DL, 13123 X.getValueType(), X, 13124 DAG.getConstant(OrigXWidth-VTWidth, DL, 13125 X.getValueType())); 13126 AddToWorklist(X.getNode()); 13127 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 13128 AddToWorklist(X.getNode()); 13129 } 13130 13131 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 13132 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 13133 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 13134 AddToWorklist(Cst.getNode()); 13135 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 13136 AddToWorklist(X.getNode()); 13137 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 13138 AddToWorklist(XorResult.getNode()); 13139 SDValue XorResult64 = DAG.getNode( 13140 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 13141 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 13142 SDLoc(XorResult))); 13143 AddToWorklist(XorResult64.getNode()); 13144 SDValue FlipBit = 13145 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 13146 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 13147 AddToWorklist(FlipBit.getNode()); 13148 SDValue FlipBits = 13149 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 13150 AddToWorklist(FlipBits.getNode()); 13151 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 13152 } 13153 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 13154 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 13155 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 13156 AddToWorklist(X.getNode()); 13157 13158 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 13159 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 13160 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 13161 AddToWorklist(Cst.getNode()); 13162 13163 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 13164 } 13165 } 13166 13167 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 13168 if (N0.getOpcode() == ISD::BUILD_PAIR) 13169 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 13170 return CombineLD; 13171 13172 // Remove double bitcasts from shuffles - this is often a legacy of 13173 // XformToShuffleWithZero being used to combine bitmaskings (of 13174 // float vectors bitcast to integer vectors) into shuffles. 13175 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 13176 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 13177 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 13178 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 13179 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 13180 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 13181 13182 // If operands are a bitcast, peek through if it casts the original VT. 13183 // If operands are a constant, just bitcast back to original VT. 13184 auto PeekThroughBitcast = [&](SDValue Op) { 13185 if (Op.getOpcode() == ISD::BITCAST && 13186 Op.getOperand(0).getValueType() == VT) 13187 return SDValue(Op.getOperand(0)); 13188 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 13189 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 13190 return DAG.getBitcast(VT, Op); 13191 return SDValue(); 13192 }; 13193 13194 // FIXME: If either input vector is bitcast, try to convert the shuffle to 13195 // the result type of this bitcast. This would eliminate at least one 13196 // bitcast. See the transform in InstCombine. 13197 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 13198 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 13199 if (!(SV0 && SV1)) 13200 return SDValue(); 13201 13202 int MaskScale = 13203 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 13204 SmallVector<int, 8> NewMask; 13205 for (int M : SVN->getMask()) 13206 for (int i = 0; i != MaskScale; ++i) 13207 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 13208 13209 SDValue LegalShuffle = 13210 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); 13211 if (LegalShuffle) 13212 return LegalShuffle; 13213 } 13214 13215 return SDValue(); 13216 } 13217 13218 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 13219 EVT VT = N->getValueType(0); 13220 return CombineConsecutiveLoads(N, VT); 13221 } 13222 13223 SDValue DAGCombiner::visitFREEZE(SDNode *N) { 13224 SDValue N0 = N->getOperand(0); 13225 13226 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false)) 13227 return N0; 13228 13229 return SDValue(); 13230 } 13231 13232 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 13233 /// operands. DstEltVT indicates the destination element value type. 13234 SDValue DAGCombiner:: 13235 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 13236 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 13237 13238 // If this is already the right type, we're done. 13239 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 13240 13241 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 13242 unsigned DstBitSize = DstEltVT.getSizeInBits(); 13243 13244 // If this is a conversion of N elements of one type to N elements of another 13245 // type, convert each element. This handles FP<->INT cases. 13246 if (SrcBitSize == DstBitSize) { 13247 SmallVector<SDValue, 8> Ops; 13248 for (SDValue Op : BV->op_values()) { 13249 // If the vector element type is not legal, the BUILD_VECTOR operands 13250 // are promoted and implicitly truncated. Make that explicit here. 13251 if (Op.getValueType() != SrcEltVT) 13252 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 13253 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 13254 AddToWorklist(Ops.back().getNode()); 13255 } 13256 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 13257 BV->getValueType(0).getVectorNumElements()); 13258 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 13259 } 13260 13261 // Otherwise, we're growing or shrinking the elements. To avoid having to 13262 // handle annoying details of growing/shrinking FP values, we convert them to 13263 // int first. 13264 if (SrcEltVT.isFloatingPoint()) { 13265 // Convert the input float vector to a int vector where the elements are the 13266 // same sizes. 13267 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 13268 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 13269 SrcEltVT = IntVT; 13270 } 13271 13272 // Now we know the input is an integer vector. If the output is a FP type, 13273 // convert to integer first, then to FP of the right size. 13274 if (DstEltVT.isFloatingPoint()) { 13275 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 13276 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 13277 13278 // Next, convert to FP elements of the same size. 13279 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 13280 } 13281 13282 // Okay, we know the src/dst types are both integers of differing types. 13283 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 13284 13285 // TODO: Should ConstantFoldBITCASTofBUILD_VECTOR always take a 13286 // BuildVectorSDNode? 13287 auto *BVN = cast<BuildVectorSDNode>(BV); 13288 13289 // Extract the constant raw bit data. 13290 BitVector UndefElements; 13291 SmallVector<APInt> RawBits; 13292 bool IsLE = DAG.getDataLayout().isLittleEndian(); 13293 if (!BVN->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements)) 13294 return SDValue(); 13295 13296 SDLoc DL(BV); 13297 SmallVector<SDValue, 8> Ops; 13298 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) { 13299 if (UndefElements[I]) 13300 Ops.push_back(DAG.getUNDEF(DstEltVT)); 13301 else 13302 Ops.push_back(DAG.getConstant(RawBits[I], DL, DstEltVT)); 13303 } 13304 13305 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 13306 return DAG.getBuildVector(VT, DL, Ops); 13307 } 13308 13309 // Returns true if floating point contraction is allowed on the FMUL-SDValue 13310 // `N` 13311 static bool isContractableFMUL(const TargetOptions &Options, SDValue N) { 13312 assert(N.getOpcode() == ISD::FMUL); 13313 13314 return Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 13315 N->getFlags().hasAllowContract(); 13316 } 13317 13318 // Returns true if `N` can assume no infinities involved in its computation. 13319 static bool hasNoInfs(const TargetOptions &Options, SDValue N) { 13320 return Options.NoInfsFPMath || N.getNode()->getFlags().hasNoInfs(); 13321 } 13322 13323 /// Try to perform FMA combining on a given FADD node. 13324 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 13325 SDValue N0 = N->getOperand(0); 13326 SDValue N1 = N->getOperand(1); 13327 EVT VT = N->getValueType(0); 13328 SDLoc SL(N); 13329 13330 const TargetOptions &Options = DAG.getTarget().Options; 13331 13332 // Floating-point multiply-add with intermediate rounding. 13333 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13334 13335 // Floating-point multiply-add without intermediate rounding. 13336 bool HasFMA = 13337 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13338 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13339 13340 // No valid opcode, do not combine. 13341 if (!HasFMAD && !HasFMA) 13342 return SDValue(); 13343 13344 bool CanReassociate = 13345 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13346 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13347 Options.UnsafeFPMath || HasFMAD); 13348 // If the addition is not contractable, do not combine. 13349 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13350 return SDValue(); 13351 13352 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13353 return SDValue(); 13354 13355 // Always prefer FMAD to FMA for precision. 13356 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13357 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13358 13359 auto isFusedOp = [&](SDValue N) { 13360 unsigned Opcode = N.getOpcode(); 13361 return Opcode == ISD::FMA || Opcode == ISD::FMAD; 13362 }; 13363 13364 // Is the node an FMUL and contractable either due to global flags or 13365 // SDNodeFlags. 13366 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13367 if (N.getOpcode() != ISD::FMUL) 13368 return false; 13369 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13370 }; 13371 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 13372 // prefer to fold the multiply with fewer uses. 13373 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 13374 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 13375 std::swap(N0, N1); 13376 } 13377 13378 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 13379 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 13380 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13381 N0.getOperand(1), N1); 13382 } 13383 13384 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 13385 // Note: Commutes FADD operands. 13386 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 13387 return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), 13388 N1.getOperand(1), N0); 13389 } 13390 13391 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) 13392 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) 13393 // This requires reassociation because it changes the order of operations. 13394 SDValue FMA, E; 13395 if (CanReassociate && isFusedOp(N0) && 13396 N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && 13397 N0.getOperand(2).hasOneUse()) { 13398 FMA = N0; 13399 E = N1; 13400 } else if (CanReassociate && isFusedOp(N1) && 13401 N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && 13402 N1.getOperand(2).hasOneUse()) { 13403 FMA = N1; 13404 E = N0; 13405 } 13406 if (FMA && E) { 13407 SDValue A = FMA.getOperand(0); 13408 SDValue B = FMA.getOperand(1); 13409 SDValue C = FMA.getOperand(2).getOperand(0); 13410 SDValue D = FMA.getOperand(2).getOperand(1); 13411 SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); 13412 return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE); 13413 } 13414 13415 // Look through FP_EXTEND nodes to do more combining. 13416 13417 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 13418 if (N0.getOpcode() == ISD::FP_EXTEND) { 13419 SDValue N00 = N0.getOperand(0); 13420 if (isContractableFMUL(N00) && 13421 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13422 N00.getValueType())) { 13423 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13424 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13425 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13426 N1); 13427 } 13428 } 13429 13430 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 13431 // Note: Commutes FADD operands. 13432 if (N1.getOpcode() == ISD::FP_EXTEND) { 13433 SDValue N10 = N1.getOperand(0); 13434 if (isContractableFMUL(N10) && 13435 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13436 N10.getValueType())) { 13437 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13438 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), 13439 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), 13440 N0); 13441 } 13442 } 13443 13444 // More folding opportunities when target permits. 13445 if (Aggressive) { 13446 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 13447 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 13448 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13449 SDValue Z) { 13450 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 13451 DAG.getNode(PreferredFusedOpcode, SL, VT, 13452 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13453 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 13454 Z)); 13455 }; 13456 if (isFusedOp(N0)) { 13457 SDValue N02 = N0.getOperand(2); 13458 if (N02.getOpcode() == ISD::FP_EXTEND) { 13459 SDValue N020 = N02.getOperand(0); 13460 if (isContractableFMUL(N020) && 13461 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13462 N020.getValueType())) { 13463 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 13464 N020.getOperand(0), N020.getOperand(1), 13465 N1); 13466 } 13467 } 13468 } 13469 13470 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 13471 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 13472 // FIXME: This turns two single-precision and one double-precision 13473 // operation into two double-precision operations, which might not be 13474 // interesting for all targets, especially GPUs. 13475 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13476 SDValue Z) { 13477 return DAG.getNode( 13478 PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 13479 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 13480 DAG.getNode(PreferredFusedOpcode, SL, VT, 13481 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13482 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); 13483 }; 13484 if (N0.getOpcode() == ISD::FP_EXTEND) { 13485 SDValue N00 = N0.getOperand(0); 13486 if (isFusedOp(N00)) { 13487 SDValue N002 = N00.getOperand(2); 13488 if (isContractableFMUL(N002) && 13489 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13490 N00.getValueType())) { 13491 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 13492 N002.getOperand(0), N002.getOperand(1), 13493 N1); 13494 } 13495 } 13496 } 13497 13498 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 13499 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 13500 if (isFusedOp(N1)) { 13501 SDValue N12 = N1.getOperand(2); 13502 if (N12.getOpcode() == ISD::FP_EXTEND) { 13503 SDValue N120 = N12.getOperand(0); 13504 if (isContractableFMUL(N120) && 13505 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13506 N120.getValueType())) { 13507 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 13508 N120.getOperand(0), N120.getOperand(1), 13509 N0); 13510 } 13511 } 13512 } 13513 13514 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 13515 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 13516 // FIXME: This turns two single-precision and one double-precision 13517 // operation into two double-precision operations, which might not be 13518 // interesting for all targets, especially GPUs. 13519 if (N1.getOpcode() == ISD::FP_EXTEND) { 13520 SDValue N10 = N1.getOperand(0); 13521 if (isFusedOp(N10)) { 13522 SDValue N102 = N10.getOperand(2); 13523 if (isContractableFMUL(N102) && 13524 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13525 N10.getValueType())) { 13526 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 13527 N102.getOperand(0), N102.getOperand(1), 13528 N0); 13529 } 13530 } 13531 } 13532 } 13533 13534 return SDValue(); 13535 } 13536 13537 /// Try to perform FMA combining on a given FSUB node. 13538 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 13539 SDValue N0 = N->getOperand(0); 13540 SDValue N1 = N->getOperand(1); 13541 EVT VT = N->getValueType(0); 13542 SDLoc SL(N); 13543 13544 const TargetOptions &Options = DAG.getTarget().Options; 13545 // Floating-point multiply-add with intermediate rounding. 13546 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13547 13548 // Floating-point multiply-add without intermediate rounding. 13549 bool HasFMA = 13550 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13551 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13552 13553 // No valid opcode, do not combine. 13554 if (!HasFMAD && !HasFMA) 13555 return SDValue(); 13556 13557 const SDNodeFlags Flags = N->getFlags(); 13558 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13559 Options.UnsafeFPMath || HasFMAD); 13560 13561 // If the subtraction is not contractable, do not combine. 13562 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13563 return SDValue(); 13564 13565 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13566 return SDValue(); 13567 13568 // Always prefer FMAD to FMA for precision. 13569 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13570 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13571 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); 13572 13573 // Is the node an FMUL and contractable either due to global flags or 13574 // SDNodeFlags. 13575 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13576 if (N.getOpcode() != ISD::FMUL) 13577 return false; 13578 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13579 }; 13580 13581 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13582 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { 13583 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { 13584 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), 13585 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); 13586 } 13587 return SDValue(); 13588 }; 13589 13590 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13591 // Note: Commutes FSUB operands. 13592 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { 13593 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { 13594 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13595 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), 13596 YZ.getOperand(1), X); 13597 } 13598 return SDValue(); 13599 }; 13600 13601 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), 13602 // prefer to fold the multiply with fewer uses. 13603 if (isContractableFMUL(N0) && isContractableFMUL(N1) && 13604 (N0.getNode()->use_size() > N1.getNode()->use_size())) { 13605 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) 13606 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13607 return V; 13608 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) 13609 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13610 return V; 13611 } else { 13612 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13613 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13614 return V; 13615 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13616 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13617 return V; 13618 } 13619 13620 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 13621 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 13622 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 13623 SDValue N00 = N0.getOperand(0).getOperand(0); 13624 SDValue N01 = N0.getOperand(0).getOperand(1); 13625 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13626 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 13627 DAG.getNode(ISD::FNEG, SL, VT, N1)); 13628 } 13629 13630 // Look through FP_EXTEND nodes to do more combining. 13631 13632 // fold (fsub (fpext (fmul x, y)), z) 13633 // -> (fma (fpext x), (fpext y), (fneg z)) 13634 if (N0.getOpcode() == ISD::FP_EXTEND) { 13635 SDValue N00 = N0.getOperand(0); 13636 if (isContractableFMUL(N00) && 13637 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13638 N00.getValueType())) { 13639 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13640 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13641 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13642 DAG.getNode(ISD::FNEG, SL, VT, N1)); 13643 } 13644 } 13645 13646 // fold (fsub x, (fpext (fmul y, z))) 13647 // -> (fma (fneg (fpext y)), (fpext z), x) 13648 // Note: Commutes FSUB operands. 13649 if (N1.getOpcode() == ISD::FP_EXTEND) { 13650 SDValue N10 = N1.getOperand(0); 13651 if (isContractableFMUL(N10) && 13652 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13653 N10.getValueType())) { 13654 return DAG.getNode( 13655 PreferredFusedOpcode, SL, VT, 13656 DAG.getNode(ISD::FNEG, SL, VT, 13657 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), 13658 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); 13659 } 13660 } 13661 13662 // fold (fsub (fpext (fneg (fmul, x, y))), z) 13663 // -> (fneg (fma (fpext x), (fpext y), z)) 13664 // Note: This could be removed with appropriate canonicalization of the 13665 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 13666 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 13667 // from implementing the canonicalization in visitFSUB. 13668 if (N0.getOpcode() == ISD::FP_EXTEND) { 13669 SDValue N00 = N0.getOperand(0); 13670 if (N00.getOpcode() == ISD::FNEG) { 13671 SDValue N000 = N00.getOperand(0); 13672 if (isContractableFMUL(N000) && 13673 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13674 N00.getValueType())) { 13675 return DAG.getNode( 13676 ISD::FNEG, SL, VT, 13677 DAG.getNode(PreferredFusedOpcode, SL, VT, 13678 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 13679 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 13680 N1)); 13681 } 13682 } 13683 } 13684 13685 // fold (fsub (fneg (fpext (fmul, x, y))), z) 13686 // -> (fneg (fma (fpext x)), (fpext y), z) 13687 // Note: This could be removed with appropriate canonicalization of the 13688 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 13689 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 13690 // from implementing the canonicalization in visitFSUB. 13691 if (N0.getOpcode() == ISD::FNEG) { 13692 SDValue N00 = N0.getOperand(0); 13693 if (N00.getOpcode() == ISD::FP_EXTEND) { 13694 SDValue N000 = N00.getOperand(0); 13695 if (isContractableFMUL(N000) && 13696 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13697 N000.getValueType())) { 13698 return DAG.getNode( 13699 ISD::FNEG, SL, VT, 13700 DAG.getNode(PreferredFusedOpcode, SL, VT, 13701 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 13702 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 13703 N1)); 13704 } 13705 } 13706 } 13707 13708 auto isReassociable = [Options](SDNode *N) { 13709 return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13710 }; 13711 13712 auto isContractableAndReassociableFMUL = [isContractableFMUL, 13713 isReassociable](SDValue N) { 13714 return isContractableFMUL(N) && isReassociable(N.getNode()); 13715 }; 13716 13717 auto isFusedOp = [&](SDValue N) { 13718 unsigned Opcode = N.getOpcode(); 13719 return Opcode == ISD::FMA || Opcode == ISD::FMAD; 13720 }; 13721 13722 // More folding opportunities when target permits. 13723 if (Aggressive && isReassociable(N)) { 13724 bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract(); 13725 // fold (fsub (fma x, y, (fmul u, v)), z) 13726 // -> (fma x, y (fma u, v, (fneg z))) 13727 if (CanFuse && isFusedOp(N0) && 13728 isContractableAndReassociableFMUL(N0.getOperand(2)) && 13729 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { 13730 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13731 N0.getOperand(1), 13732 DAG.getNode(PreferredFusedOpcode, SL, VT, 13733 N0.getOperand(2).getOperand(0), 13734 N0.getOperand(2).getOperand(1), 13735 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13736 } 13737 13738 // fold (fsub x, (fma y, z, (fmul u, v))) 13739 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 13740 if (CanFuse && isFusedOp(N1) && 13741 isContractableAndReassociableFMUL(N1.getOperand(2)) && 13742 N1->hasOneUse() && NoSignedZero) { 13743 SDValue N20 = N1.getOperand(2).getOperand(0); 13744 SDValue N21 = N1.getOperand(2).getOperand(1); 13745 return DAG.getNode( 13746 PreferredFusedOpcode, SL, VT, 13747 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 13748 DAG.getNode(PreferredFusedOpcode, SL, VT, 13749 DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); 13750 } 13751 13752 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 13753 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 13754 if (isFusedOp(N0) && N0->hasOneUse()) { 13755 SDValue N02 = N0.getOperand(2); 13756 if (N02.getOpcode() == ISD::FP_EXTEND) { 13757 SDValue N020 = N02.getOperand(0); 13758 if (isContractableAndReassociableFMUL(N020) && 13759 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13760 N020.getValueType())) { 13761 return DAG.getNode( 13762 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), 13763 DAG.getNode( 13764 PreferredFusedOpcode, SL, VT, 13765 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), 13766 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), 13767 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13768 } 13769 } 13770 } 13771 13772 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 13773 // -> (fma (fpext x), (fpext y), 13774 // (fma (fpext u), (fpext v), (fneg z))) 13775 // FIXME: This turns two single-precision and one double-precision 13776 // operation into two double-precision operations, which might not be 13777 // interesting for all targets, especially GPUs. 13778 if (N0.getOpcode() == ISD::FP_EXTEND) { 13779 SDValue N00 = N0.getOperand(0); 13780 if (isFusedOp(N00)) { 13781 SDValue N002 = N00.getOperand(2); 13782 if (isContractableAndReassociableFMUL(N002) && 13783 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13784 N00.getValueType())) { 13785 return DAG.getNode( 13786 PreferredFusedOpcode, SL, VT, 13787 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13788 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13789 DAG.getNode( 13790 PreferredFusedOpcode, SL, VT, 13791 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), 13792 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), 13793 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13794 } 13795 } 13796 } 13797 13798 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 13799 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 13800 if (isFusedOp(N1) && N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && 13801 N1->hasOneUse()) { 13802 SDValue N120 = N1.getOperand(2).getOperand(0); 13803 if (isContractableAndReassociableFMUL(N120) && 13804 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13805 N120.getValueType())) { 13806 SDValue N1200 = N120.getOperand(0); 13807 SDValue N1201 = N120.getOperand(1); 13808 return DAG.getNode( 13809 PreferredFusedOpcode, SL, VT, 13810 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 13811 DAG.getNode(PreferredFusedOpcode, SL, VT, 13812 DAG.getNode(ISD::FNEG, SL, VT, 13813 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), 13814 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); 13815 } 13816 } 13817 13818 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 13819 // -> (fma (fneg (fpext y)), (fpext z), 13820 // (fma (fneg (fpext u)), (fpext v), x)) 13821 // FIXME: This turns two single-precision and one double-precision 13822 // operation into two double-precision operations, which might not be 13823 // interesting for all targets, especially GPUs. 13824 if (N1.getOpcode() == ISD::FP_EXTEND && isFusedOp(N1.getOperand(0))) { 13825 SDValue CvtSrc = N1.getOperand(0); 13826 SDValue N100 = CvtSrc.getOperand(0); 13827 SDValue N101 = CvtSrc.getOperand(1); 13828 SDValue N102 = CvtSrc.getOperand(2); 13829 if (isContractableAndReassociableFMUL(N102) && 13830 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13831 CvtSrc.getValueType())) { 13832 SDValue N1020 = N102.getOperand(0); 13833 SDValue N1021 = N102.getOperand(1); 13834 return DAG.getNode( 13835 PreferredFusedOpcode, SL, VT, 13836 DAG.getNode(ISD::FNEG, SL, VT, 13837 DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), 13838 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 13839 DAG.getNode(PreferredFusedOpcode, SL, VT, 13840 DAG.getNode(ISD::FNEG, SL, VT, 13841 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), 13842 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); 13843 } 13844 } 13845 } 13846 13847 return SDValue(); 13848 } 13849 13850 /// Try to perform FMA combining on a given FMUL node based on the distributive 13851 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 13852 /// subtraction instead of addition). 13853 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 13854 SDValue N0 = N->getOperand(0); 13855 SDValue N1 = N->getOperand(1); 13856 EVT VT = N->getValueType(0); 13857 SDLoc SL(N); 13858 13859 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 13860 13861 const TargetOptions &Options = DAG.getTarget().Options; 13862 13863 // The transforms below are incorrect when x == 0 and y == inf, because the 13864 // intermediate multiplication produces a nan. 13865 SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1; 13866 if (!hasNoInfs(Options, FAdd)) 13867 return SDValue(); 13868 13869 // Floating-point multiply-add without intermediate rounding. 13870 bool HasFMA = 13871 isContractableFMUL(Options, SDValue(N, 0)) && 13872 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13873 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13874 13875 // Floating-point multiply-add with intermediate rounding. This can result 13876 // in a less precise result due to the changed rounding order. 13877 bool HasFMAD = Options.UnsafeFPMath && 13878 (LegalOperations && TLI.isFMADLegal(DAG, N)); 13879 13880 // No valid opcode, do not combine. 13881 if (!HasFMAD && !HasFMA) 13882 return SDValue(); 13883 13884 // Always prefer FMAD to FMA for precision. 13885 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13886 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13887 13888 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 13889 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 13890 auto FuseFADD = [&](SDValue X, SDValue Y) { 13891 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 13892 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 13893 if (C->isExactlyValue(+1.0)) 13894 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13895 Y); 13896 if (C->isExactlyValue(-1.0)) 13897 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13898 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13899 } 13900 } 13901 return SDValue(); 13902 }; 13903 13904 if (SDValue FMA = FuseFADD(N0, N1)) 13905 return FMA; 13906 if (SDValue FMA = FuseFADD(N1, N0)) 13907 return FMA; 13908 13909 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 13910 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 13911 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 13912 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 13913 auto FuseFSUB = [&](SDValue X, SDValue Y) { 13914 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 13915 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 13916 if (C0->isExactlyValue(+1.0)) 13917 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13918 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13919 Y); 13920 if (C0->isExactlyValue(-1.0)) 13921 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13922 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13923 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13924 } 13925 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 13926 if (C1->isExactlyValue(+1.0)) 13927 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13928 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13929 if (C1->isExactlyValue(-1.0)) 13930 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13931 Y); 13932 } 13933 } 13934 return SDValue(); 13935 }; 13936 13937 if (SDValue FMA = FuseFSUB(N0, N1)) 13938 return FMA; 13939 if (SDValue FMA = FuseFSUB(N1, N0)) 13940 return FMA; 13941 13942 return SDValue(); 13943 } 13944 13945 SDValue DAGCombiner::visitFADD(SDNode *N) { 13946 SDValue N0 = N->getOperand(0); 13947 SDValue N1 = N->getOperand(1); 13948 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 13949 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 13950 EVT VT = N->getValueType(0); 13951 SDLoc DL(N); 13952 const TargetOptions &Options = DAG.getTarget().Options; 13953 SDNodeFlags Flags = N->getFlags(); 13954 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13955 13956 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13957 return R; 13958 13959 // fold (fadd c1, c2) -> c1 + c2 13960 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FADD, DL, VT, {N0, N1})) 13961 return C; 13962 13963 // canonicalize constant to RHS 13964 if (N0CFP && !N1CFP) 13965 return DAG.getNode(ISD::FADD, DL, VT, N1, N0); 13966 13967 // fold vector ops 13968 if (VT.isVector()) 13969 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 13970 return FoldedVOp; 13971 13972 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 13973 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 13974 if (N1C && N1C->isZero()) 13975 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) 13976 return N0; 13977 13978 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13979 return NewSel; 13980 13981 // fold (fadd A, (fneg B)) -> (fsub A, B) 13982 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13983 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13984 N1, DAG, LegalOperations, ForCodeSize)) 13985 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); 13986 13987 // fold (fadd (fneg A), B) -> (fsub B, A) 13988 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13989 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13990 N0, DAG, LegalOperations, ForCodeSize)) 13991 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); 13992 13993 auto isFMulNegTwo = [](SDValue FMul) { 13994 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 13995 return false; 13996 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 13997 return C && C->isExactlyValue(-2.0); 13998 }; 13999 14000 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 14001 if (isFMulNegTwo(N0)) { 14002 SDValue B = N0.getOperand(0); 14003 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 14004 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); 14005 } 14006 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 14007 if (isFMulNegTwo(N1)) { 14008 SDValue B = N1.getOperand(0); 14009 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 14010 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); 14011 } 14012 14013 // No FP constant should be created after legalization as Instruction 14014 // Selection pass has a hard time dealing with FP constants. 14015 bool AllowNewConst = (Level < AfterLegalizeDAG); 14016 14017 // If nnan is enabled, fold lots of things. 14018 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 14019 // If allowed, fold (fadd (fneg x), x) -> 0.0 14020 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 14021 return DAG.getConstantFP(0.0, DL, VT); 14022 14023 // If allowed, fold (fadd x, (fneg x)) -> 0.0 14024 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 14025 return DAG.getConstantFP(0.0, DL, VT); 14026 } 14027 14028 // If 'unsafe math' or reassoc and nsz, fold lots of things. 14029 // TODO: break out portions of the transformations below for which Unsafe is 14030 // considered and which do not require both nsz and reassoc 14031 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 14032 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 14033 AllowNewConst) { 14034 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 14035 if (N1CFP && N0.getOpcode() == ISD::FADD && 14036 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 14037 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); 14038 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); 14039 } 14040 14041 // We can fold chains of FADD's of the same value into multiplications. 14042 // This transform is not safe in general because we are reducing the number 14043 // of rounding steps. 14044 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 14045 if (N0.getOpcode() == ISD::FMUL) { 14046 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 14047 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 14048 14049 // (fadd (fmul x, c), x) -> (fmul x, c+1) 14050 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 14051 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 14052 DAG.getConstantFP(1.0, DL, VT)); 14053 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); 14054 } 14055 14056 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 14057 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 14058 N1.getOperand(0) == N1.getOperand(1) && 14059 N0.getOperand(0) == N1.getOperand(0)) { 14060 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 14061 DAG.getConstantFP(2.0, DL, VT)); 14062 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); 14063 } 14064 } 14065 14066 if (N1.getOpcode() == ISD::FMUL) { 14067 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 14068 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 14069 14070 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 14071 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 14072 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 14073 DAG.getConstantFP(1.0, DL, VT)); 14074 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); 14075 } 14076 14077 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 14078 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 14079 N0.getOperand(0) == N0.getOperand(1) && 14080 N1.getOperand(0) == N0.getOperand(0)) { 14081 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 14082 DAG.getConstantFP(2.0, DL, VT)); 14083 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); 14084 } 14085 } 14086 14087 if (N0.getOpcode() == ISD::FADD) { 14088 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 14089 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 14090 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 14091 (N0.getOperand(0) == N1)) { 14092 return DAG.getNode(ISD::FMUL, DL, VT, N1, 14093 DAG.getConstantFP(3.0, DL, VT)); 14094 } 14095 } 14096 14097 if (N1.getOpcode() == ISD::FADD) { 14098 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 14099 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 14100 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 14101 N1.getOperand(0) == N0) { 14102 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14103 DAG.getConstantFP(3.0, DL, VT)); 14104 } 14105 } 14106 14107 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 14108 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 14109 N0.getOperand(0) == N0.getOperand(1) && 14110 N1.getOperand(0) == N1.getOperand(1) && 14111 N0.getOperand(0) == N1.getOperand(0)) { 14112 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 14113 DAG.getConstantFP(4.0, DL, VT)); 14114 } 14115 } 14116 } // enable-unsafe-fp-math 14117 14118 // FADD -> FMA combines: 14119 if (SDValue Fused = visitFADDForFMACombine(N)) { 14120 AddToWorklist(Fused.getNode()); 14121 return Fused; 14122 } 14123 return SDValue(); 14124 } 14125 14126 SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { 14127 SDValue Chain = N->getOperand(0); 14128 SDValue N0 = N->getOperand(1); 14129 SDValue N1 = N->getOperand(2); 14130 EVT VT = N->getValueType(0); 14131 EVT ChainVT = N->getValueType(1); 14132 SDLoc DL(N); 14133 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14134 14135 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) 14136 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 14137 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 14138 N1, DAG, LegalOperations, ForCodeSize)) { 14139 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 14140 {Chain, N0, NegN1}); 14141 } 14142 14143 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) 14144 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 14145 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 14146 N0, DAG, LegalOperations, ForCodeSize)) { 14147 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 14148 {Chain, N1, NegN0}); 14149 } 14150 return SDValue(); 14151 } 14152 14153 SDValue DAGCombiner::visitFSUB(SDNode *N) { 14154 SDValue N0 = N->getOperand(0); 14155 SDValue N1 = N->getOperand(1); 14156 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 14157 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 14158 EVT VT = N->getValueType(0); 14159 SDLoc DL(N); 14160 const TargetOptions &Options = DAG.getTarget().Options; 14161 const SDNodeFlags Flags = N->getFlags(); 14162 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14163 14164 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14165 return R; 14166 14167 // fold (fsub c1, c2) -> c1-c2 14168 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FSUB, DL, VT, {N0, N1})) 14169 return C; 14170 14171 // fold vector ops 14172 if (VT.isVector()) 14173 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14174 return FoldedVOp; 14175 14176 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14177 return NewSel; 14178 14179 // (fsub A, 0) -> A 14180 if (N1CFP && N1CFP->isZero()) { 14181 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || 14182 Flags.hasNoSignedZeros()) { 14183 return N0; 14184 } 14185 } 14186 14187 if (N0 == N1) { 14188 // (fsub x, x) -> 0.0 14189 if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) 14190 return DAG.getConstantFP(0.0f, DL, VT); 14191 } 14192 14193 // (fsub -0.0, N1) -> -N1 14194 if (N0CFP && N0CFP->isZero()) { 14195 if (N0CFP->isNegative() || 14196 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 14197 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are 14198 // flushed to zero, unless all users treat denorms as zero (DAZ). 14199 // FIXME: This transform will change the sign of a NaN and the behavior 14200 // of a signaling NaN. It is only valid when a NoNaN flag is present. 14201 DenormalMode DenormMode = DAG.getDenormalMode(VT); 14202 if (DenormMode == DenormalMode::getIEEE()) { 14203 if (SDValue NegN1 = 14204 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 14205 return NegN1; 14206 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 14207 return DAG.getNode(ISD::FNEG, DL, VT, N1); 14208 } 14209 } 14210 } 14211 14212 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 14213 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 14214 N1.getOpcode() == ISD::FADD) { 14215 // X - (X + Y) -> -Y 14216 if (N0 == N1->getOperand(0)) 14217 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); 14218 // X - (Y + X) -> -Y 14219 if (N0 == N1->getOperand(1)) 14220 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); 14221 } 14222 14223 // fold (fsub A, (fneg B)) -> (fadd A, B) 14224 if (SDValue NegN1 = 14225 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 14226 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); 14227 14228 // FSUB -> FMA combines: 14229 if (SDValue Fused = visitFSUBForFMACombine(N)) { 14230 AddToWorklist(Fused.getNode()); 14231 return Fused; 14232 } 14233 14234 return SDValue(); 14235 } 14236 14237 SDValue DAGCombiner::visitFMUL(SDNode *N) { 14238 SDValue N0 = N->getOperand(0); 14239 SDValue N1 = N->getOperand(1); 14240 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 14241 EVT VT = N->getValueType(0); 14242 SDLoc DL(N); 14243 const TargetOptions &Options = DAG.getTarget().Options; 14244 const SDNodeFlags Flags = N->getFlags(); 14245 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14246 14247 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14248 return R; 14249 14250 // fold (fmul c1, c2) -> c1*c2 14251 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMUL, DL, VT, {N0, N1})) 14252 return C; 14253 14254 // canonicalize constant to RHS 14255 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14256 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14257 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); 14258 14259 // fold vector ops 14260 if (VT.isVector()) 14261 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14262 return FoldedVOp; 14263 14264 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14265 return NewSel; 14266 14267 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 14268 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 14269 if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14270 N0.getOpcode() == ISD::FMUL) { 14271 SDValue N00 = N0.getOperand(0); 14272 SDValue N01 = N0.getOperand(1); 14273 // Avoid an infinite loop by making sure that N00 is not a constant 14274 // (the inner multiply has not been constant folded yet). 14275 if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && 14276 !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { 14277 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); 14278 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); 14279 } 14280 } 14281 14282 // Match a special-case: we convert X * 2.0 into fadd. 14283 // fmul (fadd X, X), C -> fmul X, 2.0 * C 14284 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 14285 N0.getOperand(0) == N0.getOperand(1)) { 14286 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 14287 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); 14288 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); 14289 } 14290 } 14291 14292 // fold (fmul X, 2.0) -> (fadd X, X) 14293 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 14294 return DAG.getNode(ISD::FADD, DL, VT, N0, N0); 14295 14296 // fold (fmul X, -1.0) -> (fsub -0.0, X) 14297 if (N1CFP && N1CFP->isExactlyValue(-1.0)) { 14298 if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) { 14299 return DAG.getNode(ISD::FSUB, DL, VT, 14300 DAG.getConstantFP(-0.0, DL, VT), N0, Flags); 14301 } 14302 } 14303 14304 // -N0 * -N1 --> N0 * N1 14305 TargetLowering::NegatibleCost CostN0 = 14306 TargetLowering::NegatibleCost::Expensive; 14307 TargetLowering::NegatibleCost CostN1 = 14308 TargetLowering::NegatibleCost::Expensive; 14309 SDValue NegN0 = 14310 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14311 SDValue NegN1 = 14312 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14313 if (NegN0 && NegN1 && 14314 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14315 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14316 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); 14317 14318 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 14319 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 14320 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 14321 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 14322 TLI.isOperationLegal(ISD::FABS, VT)) { 14323 SDValue Select = N0, X = N1; 14324 if (Select.getOpcode() != ISD::SELECT) 14325 std::swap(Select, X); 14326 14327 SDValue Cond = Select.getOperand(0); 14328 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 14329 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 14330 14331 if (TrueOpnd && FalseOpnd && 14332 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 14333 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 14334 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 14335 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 14336 switch (CC) { 14337 default: break; 14338 case ISD::SETOLT: 14339 case ISD::SETULT: 14340 case ISD::SETOLE: 14341 case ISD::SETULE: 14342 case ISD::SETLT: 14343 case ISD::SETLE: 14344 std::swap(TrueOpnd, FalseOpnd); 14345 LLVM_FALLTHROUGH; 14346 case ISD::SETOGT: 14347 case ISD::SETUGT: 14348 case ISD::SETOGE: 14349 case ISD::SETUGE: 14350 case ISD::SETGT: 14351 case ISD::SETGE: 14352 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 14353 TLI.isOperationLegal(ISD::FNEG, VT)) 14354 return DAG.getNode(ISD::FNEG, DL, VT, 14355 DAG.getNode(ISD::FABS, DL, VT, X)); 14356 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 14357 return DAG.getNode(ISD::FABS, DL, VT, X); 14358 14359 break; 14360 } 14361 } 14362 } 14363 14364 // FMUL -> FMA combines: 14365 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 14366 AddToWorklist(Fused.getNode()); 14367 return Fused; 14368 } 14369 14370 return SDValue(); 14371 } 14372 14373 SDValue DAGCombiner::visitFMA(SDNode *N) { 14374 SDValue N0 = N->getOperand(0); 14375 SDValue N1 = N->getOperand(1); 14376 SDValue N2 = N->getOperand(2); 14377 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14378 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14379 EVT VT = N->getValueType(0); 14380 SDLoc DL(N); 14381 const TargetOptions &Options = DAG.getTarget().Options; 14382 // FMA nodes have flags that propagate to the created nodes. 14383 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14384 14385 bool UnsafeFPMath = 14386 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 14387 14388 // Constant fold FMA. 14389 if (isa<ConstantFPSDNode>(N0) && 14390 isa<ConstantFPSDNode>(N1) && 14391 isa<ConstantFPSDNode>(N2)) { 14392 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 14393 } 14394 14395 // (-N0 * -N1) + N2 --> (N0 * N1) + N2 14396 TargetLowering::NegatibleCost CostN0 = 14397 TargetLowering::NegatibleCost::Expensive; 14398 TargetLowering::NegatibleCost CostN1 = 14399 TargetLowering::NegatibleCost::Expensive; 14400 SDValue NegN0 = 14401 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14402 SDValue NegN1 = 14403 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14404 if (NegN0 && NegN1 && 14405 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14406 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14407 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); 14408 14409 if (UnsafeFPMath) { 14410 if (N0CFP && N0CFP->isZero()) 14411 return N2; 14412 if (N1CFP && N1CFP->isZero()) 14413 return N2; 14414 } 14415 14416 if (N0CFP && N0CFP->isExactlyValue(1.0)) 14417 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 14418 if (N1CFP && N1CFP->isExactlyValue(1.0)) 14419 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 14420 14421 // Canonicalize (fma c, x, y) -> (fma x, c, y) 14422 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14423 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14424 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 14425 14426 if (UnsafeFPMath) { 14427 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 14428 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 14429 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14430 DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 14431 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14432 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); 14433 } 14434 14435 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 14436 if (N0.getOpcode() == ISD::FMUL && 14437 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14438 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 14439 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14440 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), 14441 N2); 14442 } 14443 } 14444 14445 // (fma x, -1, y) -> (fadd (fneg x), y) 14446 if (N1CFP) { 14447 if (N1CFP->isExactlyValue(1.0)) 14448 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 14449 14450 if (N1CFP->isExactlyValue(-1.0) && 14451 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 14452 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 14453 AddToWorklist(RHSNeg.getNode()); 14454 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 14455 } 14456 14457 // fma (fneg x), K, y -> fma x -K, y 14458 if (N0.getOpcode() == ISD::FNEG && 14459 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 14460 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 14461 ForCodeSize)))) { 14462 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14463 DAG.getNode(ISD::FNEG, DL, VT, N1), N2); 14464 } 14465 } 14466 14467 if (UnsafeFPMath) { 14468 // (fma x, c, x) -> (fmul x, (c+1)) 14469 if (N1CFP && N0 == N2) { 14470 return DAG.getNode( 14471 ISD::FMUL, DL, VT, N0, 14472 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); 14473 } 14474 14475 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 14476 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 14477 return DAG.getNode( 14478 ISD::FMUL, DL, VT, N0, 14479 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); 14480 } 14481 } 14482 14483 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) 14484 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) 14485 if (!TLI.isFNegFree(VT)) 14486 if (SDValue Neg = TLI.getCheaperNegatedExpression( 14487 SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) 14488 return DAG.getNode(ISD::FNEG, DL, VT, Neg); 14489 return SDValue(); 14490 } 14491 14492 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 14493 // reciprocal. 14494 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 14495 // Notice that this is not always beneficial. One reason is different targets 14496 // may have different costs for FDIV and FMUL, so sometimes the cost of two 14497 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 14498 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 14499 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 14500 // TODO: Limit this transform based on optsize/minsize - it always creates at 14501 // least 1 extra instruction. But the perf win may be substantial enough 14502 // that only minsize should restrict this. 14503 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 14504 const SDNodeFlags Flags = N->getFlags(); 14505 if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) 14506 return SDValue(); 14507 14508 // Skip if current node is a reciprocal/fneg-reciprocal. 14509 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 14510 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 14511 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) 14512 return SDValue(); 14513 14514 // Exit early if the target does not want this transform or if there can't 14515 // possibly be enough uses of the divisor to make the transform worthwhile. 14516 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 14517 14518 // For splat vectors, scale the number of uses by the splat factor. If we can 14519 // convert the division into a scalar op, that will likely be much faster. 14520 unsigned NumElts = 1; 14521 EVT VT = N->getValueType(0); 14522 if (VT.isVector() && DAG.isSplatValue(N1)) 14523 NumElts = VT.getVectorNumElements(); 14524 14525 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 14526 return SDValue(); 14527 14528 // Find all FDIV users of the same divisor. 14529 // Use a set because duplicates may be present in the user list. 14530 SetVector<SDNode *> Users; 14531 for (auto *U : N1->uses()) { 14532 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 14533 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. 14534 if (U->getOperand(1).getOpcode() == ISD::FSQRT && 14535 U->getOperand(0) == U->getOperand(1).getOperand(0) && 14536 U->getFlags().hasAllowReassociation() && 14537 U->getFlags().hasNoSignedZeros()) 14538 continue; 14539 14540 // This division is eligible for optimization only if global unsafe math 14541 // is enabled or if this division allows reciprocal formation. 14542 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 14543 Users.insert(U); 14544 } 14545 } 14546 14547 // Now that we have the actual number of divisor uses, make sure it meets 14548 // the minimum threshold specified by the target. 14549 if ((Users.size() * NumElts) < MinUses) 14550 return SDValue(); 14551 14552 SDLoc DL(N); 14553 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14554 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 14555 14556 // Dividend / Divisor -> Dividend * Reciprocal 14557 for (auto *U : Users) { 14558 SDValue Dividend = U->getOperand(0); 14559 if (Dividend != FPOne) { 14560 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 14561 Reciprocal, Flags); 14562 CombineTo(U, NewNode); 14563 } else if (U != Reciprocal.getNode()) { 14564 // In the absence of fast-math-flags, this user node is always the 14565 // same node as Reciprocal, but with FMF they may be different nodes. 14566 CombineTo(U, Reciprocal); 14567 } 14568 } 14569 return SDValue(N, 0); // N was replaced. 14570 } 14571 14572 SDValue DAGCombiner::visitFDIV(SDNode *N) { 14573 SDValue N0 = N->getOperand(0); 14574 SDValue N1 = N->getOperand(1); 14575 EVT VT = N->getValueType(0); 14576 SDLoc DL(N); 14577 const TargetOptions &Options = DAG.getTarget().Options; 14578 SDNodeFlags Flags = N->getFlags(); 14579 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14580 14581 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14582 return R; 14583 14584 // fold (fdiv c1, c2) -> c1/c2 14585 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FDIV, DL, VT, {N0, N1})) 14586 return C; 14587 14588 // fold vector ops 14589 if (VT.isVector()) 14590 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) 14591 return FoldedVOp; 14592 14593 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14594 return NewSel; 14595 14596 if (SDValue V = combineRepeatedFPDivisors(N)) 14597 return V; 14598 14599 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 14600 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 14601 if (auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1)) { 14602 // Compute the reciprocal 1.0 / c2. 14603 const APFloat &N1APF = N1CFP->getValueAPF(); 14604 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 14605 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 14606 // Only do the transform if the reciprocal is a legal fp immediate that 14607 // isn't too nasty (eg NaN, denormal, ...). 14608 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 14609 (!LegalOperations || 14610 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 14611 // backend)... we should handle this gracefully after Legalize. 14612 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 14613 TLI.isOperationLegal(ISD::ConstantFP, VT) || 14614 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 14615 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14616 DAG.getConstantFP(Recip, DL, VT)); 14617 } 14618 14619 // If this FDIV is part of a reciprocal square root, it may be folded 14620 // into a target-specific square root estimate instruction. 14621 if (N1.getOpcode() == ISD::FSQRT) { 14622 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) 14623 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14624 } else if (N1.getOpcode() == ISD::FP_EXTEND && 14625 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14626 if (SDValue RV = 14627 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 14628 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 14629 AddToWorklist(RV.getNode()); 14630 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14631 } 14632 } else if (N1.getOpcode() == ISD::FP_ROUND && 14633 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14634 if (SDValue RV = 14635 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 14636 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 14637 AddToWorklist(RV.getNode()); 14638 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14639 } 14640 } else if (N1.getOpcode() == ISD::FMUL) { 14641 // Look through an FMUL. Even though this won't remove the FDIV directly, 14642 // it's still worthwhile to get rid of the FSQRT if possible. 14643 SDValue Sqrt, Y; 14644 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14645 Sqrt = N1.getOperand(0); 14646 Y = N1.getOperand(1); 14647 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 14648 Sqrt = N1.getOperand(1); 14649 Y = N1.getOperand(0); 14650 } 14651 if (Sqrt.getNode()) { 14652 // If the other multiply operand is known positive, pull it into the 14653 // sqrt. That will eliminate the division if we convert to an estimate. 14654 if (Flags.hasAllowReassociation() && N1.hasOneUse() && 14655 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { 14656 SDValue A; 14657 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) 14658 A = Y.getOperand(0); 14659 else if (Y == Sqrt.getOperand(0)) 14660 A = Y; 14661 if (A) { 14662 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) 14663 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) 14664 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); 14665 SDValue AAZ = 14666 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); 14667 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) 14668 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); 14669 14670 // Estimate creation failed. Clean up speculatively created nodes. 14671 recursivelyDeleteUnusedNodes(AAZ.getNode()); 14672 } 14673 } 14674 14675 // We found a FSQRT, so try to make this fold: 14676 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) 14677 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { 14678 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); 14679 AddToWorklist(Div.getNode()); 14680 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); 14681 } 14682 } 14683 } 14684 14685 // Fold into a reciprocal estimate and multiply instead of a real divide. 14686 if (Options.NoInfsFPMath || Flags.hasNoInfs()) 14687 if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) 14688 return RV; 14689 } 14690 14691 // Fold X/Sqrt(X) -> Sqrt(X) 14692 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 14693 (Options.UnsafeFPMath || Flags.hasAllowReassociation())) 14694 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) 14695 return N1; 14696 14697 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 14698 TargetLowering::NegatibleCost CostN0 = 14699 TargetLowering::NegatibleCost::Expensive; 14700 TargetLowering::NegatibleCost CostN1 = 14701 TargetLowering::NegatibleCost::Expensive; 14702 SDValue NegN0 = 14703 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14704 SDValue NegN1 = 14705 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14706 if (NegN0 && NegN1 && 14707 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14708 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14709 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); 14710 14711 return SDValue(); 14712 } 14713 14714 SDValue DAGCombiner::visitFREM(SDNode *N) { 14715 SDValue N0 = N->getOperand(0); 14716 SDValue N1 = N->getOperand(1); 14717 EVT VT = N->getValueType(0); 14718 SDNodeFlags Flags = N->getFlags(); 14719 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14720 14721 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14722 return R; 14723 14724 // fold (frem c1, c2) -> fmod(c1,c2) 14725 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FREM, SDLoc(N), VT, {N0, N1})) 14726 return C; 14727 14728 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14729 return NewSel; 14730 14731 return SDValue(); 14732 } 14733 14734 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 14735 SDNodeFlags Flags = N->getFlags(); 14736 const TargetOptions &Options = DAG.getTarget().Options; 14737 14738 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: 14739 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN 14740 if (!Flags.hasApproximateFuncs() || 14741 (!Options.NoInfsFPMath && !Flags.hasNoInfs())) 14742 return SDValue(); 14743 14744 SDValue N0 = N->getOperand(0); 14745 if (TLI.isFsqrtCheap(N0, DAG)) 14746 return SDValue(); 14747 14748 // FSQRT nodes have flags that propagate to the created nodes. 14749 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to 14750 // transform the fdiv, we may produce a sub-optimal estimate sequence 14751 // because the reciprocal calculation may not have to filter out a 14752 // 0.0 input. 14753 return buildSqrtEstimate(N0, Flags); 14754 } 14755 14756 /// copysign(x, fp_extend(y)) -> copysign(x, y) 14757 /// copysign(x, fp_round(y)) -> copysign(x, y) 14758 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 14759 SDValue N1 = N->getOperand(1); 14760 if ((N1.getOpcode() == ISD::FP_EXTEND || 14761 N1.getOpcode() == ISD::FP_ROUND)) { 14762 EVT N1VT = N1->getValueType(0); 14763 EVT N1Op0VT = N1->getOperand(0).getValueType(); 14764 14765 // Always fold no-op FP casts. 14766 if (N1VT == N1Op0VT) 14767 return true; 14768 14769 // Do not optimize out type conversion of f128 type yet. 14770 // For some targets like x86_64, configuration is changed to keep one f128 14771 // value in one SSE register, but instruction selection cannot handle 14772 // FCOPYSIGN on SSE registers yet. 14773 if (N1Op0VT == MVT::f128) 14774 return false; 14775 14776 // Avoid mismatched vector operand types, for better instruction selection. 14777 if (N1Op0VT.isVector()) 14778 return false; 14779 14780 return true; 14781 } 14782 return false; 14783 } 14784 14785 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 14786 SDValue N0 = N->getOperand(0); 14787 SDValue N1 = N->getOperand(1); 14788 EVT VT = N->getValueType(0); 14789 14790 // fold (fcopysign c1, c2) -> fcopysign(c1,c2) 14791 if (SDValue C = 14792 DAG.FoldConstantArithmetic(ISD::FCOPYSIGN, SDLoc(N), VT, {N0, N1})) 14793 return C; 14794 14795 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 14796 const APFloat &V = N1C->getValueAPF(); 14797 // copysign(x, c1) -> fabs(x) iff ispos(c1) 14798 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 14799 if (!V.isNegative()) { 14800 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 14801 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14802 } else { 14803 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 14804 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 14805 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 14806 } 14807 } 14808 14809 // copysign(fabs(x), y) -> copysign(x, y) 14810 // copysign(fneg(x), y) -> copysign(x, y) 14811 // copysign(copysign(x,z), y) -> copysign(x, y) 14812 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 14813 N0.getOpcode() == ISD::FCOPYSIGN) 14814 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 14815 14816 // copysign(x, abs(y)) -> abs(x) 14817 if (N1.getOpcode() == ISD::FABS) 14818 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14819 14820 // copysign(x, copysign(y,z)) -> copysign(x, z) 14821 if (N1.getOpcode() == ISD::FCOPYSIGN) 14822 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 14823 14824 // copysign(x, fp_extend(y)) -> copysign(x, y) 14825 // copysign(x, fp_round(y)) -> copysign(x, y) 14826 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 14827 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 14828 14829 return SDValue(); 14830 } 14831 14832 SDValue DAGCombiner::visitFPOW(SDNode *N) { 14833 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 14834 if (!ExponentC) 14835 return SDValue(); 14836 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14837 14838 // Try to convert x ** (1/3) into cube root. 14839 // TODO: Handle the various flavors of long double. 14840 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 14841 // Some range near 1/3 should be fine. 14842 EVT VT = N->getValueType(0); 14843 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 14844 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 14845 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 14846 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 14847 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 14848 // For regular numbers, rounding may cause the results to differ. 14849 // Therefore, we require { nsz ninf nnan afn } for this transform. 14850 // TODO: We could select out the special cases if we don't have nsz/ninf. 14851 SDNodeFlags Flags = N->getFlags(); 14852 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 14853 !Flags.hasApproximateFuncs()) 14854 return SDValue(); 14855 14856 // Do not create a cbrt() libcall if the target does not have it, and do not 14857 // turn a pow that has lowering support into a cbrt() libcall. 14858 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 14859 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 14860 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 14861 return SDValue(); 14862 14863 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); 14864 } 14865 14866 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 14867 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 14868 // TODO: This could be extended (using a target hook) to handle smaller 14869 // power-of-2 fractional exponents. 14870 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 14871 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 14872 if (ExponentIs025 || ExponentIs075) { 14873 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 14874 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 14875 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 14876 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 14877 // For regular numbers, rounding may cause the results to differ. 14878 // Therefore, we require { nsz ninf afn } for this transform. 14879 // TODO: We could select out the special cases if we don't have nsz/ninf. 14880 SDNodeFlags Flags = N->getFlags(); 14881 14882 // We only need no signed zeros for the 0.25 case. 14883 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 14884 !Flags.hasApproximateFuncs()) 14885 return SDValue(); 14886 14887 // Don't double the number of libcalls. We are trying to inline fast code. 14888 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 14889 return SDValue(); 14890 14891 // Assume that libcalls are the smallest code. 14892 // TODO: This restriction should probably be lifted for vectors. 14893 if (ForCodeSize) 14894 return SDValue(); 14895 14896 // pow(X, 0.25) --> sqrt(sqrt(X)) 14897 SDLoc DL(N); 14898 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); 14899 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); 14900 if (ExponentIs025) 14901 return SqrtSqrt; 14902 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 14903 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); 14904 } 14905 14906 return SDValue(); 14907 } 14908 14909 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 14910 const TargetLowering &TLI) { 14911 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 14912 // replacing casts with a libcall. We also must be allowed to ignore -0.0 14913 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 14914 // conversions would return +0.0. 14915 // FIXME: We should be able to use node-level FMF here. 14916 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 14917 EVT VT = N->getValueType(0); 14918 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 14919 !DAG.getTarget().Options.NoSignedZerosFPMath) 14920 return SDValue(); 14921 14922 // fptosi/fptoui round towards zero, so converting from FP to integer and 14923 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 14924 SDValue N0 = N->getOperand(0); 14925 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 14926 N0.getOperand(0).getValueType() == VT) 14927 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14928 14929 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 14930 N0.getOperand(0).getValueType() == VT) 14931 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14932 14933 return SDValue(); 14934 } 14935 14936 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 14937 SDValue N0 = N->getOperand(0); 14938 EVT VT = N->getValueType(0); 14939 EVT OpVT = N0.getValueType(); 14940 14941 // [us]itofp(undef) = 0, because the result value is bounded. 14942 if (N0.isUndef()) 14943 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14944 14945 // fold (sint_to_fp c1) -> c1fp 14946 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14947 // ...but only if the target supports immediate floating-point values 14948 (!LegalOperations || 14949 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14950 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14951 14952 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 14953 // but UINT_TO_FP is legal on this target, try to convert. 14954 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 14955 hasOperation(ISD::UINT_TO_FP, OpVT)) { 14956 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 14957 if (DAG.SignBitIsZero(N0)) 14958 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14959 } 14960 14961 // The next optimizations are desirable only if SELECT_CC can be lowered. 14962 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) 14963 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 14964 !VT.isVector() && 14965 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14966 SDLoc DL(N); 14967 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), 14968 DAG.getConstantFP(0.0, DL, VT)); 14969 } 14970 14971 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 14972 // (select (setcc x, y, cc), 1.0, 0.0) 14973 if (N0.getOpcode() == ISD::ZERO_EXTEND && 14974 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && 14975 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14976 SDLoc DL(N); 14977 return DAG.getSelect(DL, VT, N0.getOperand(0), 14978 DAG.getConstantFP(1.0, DL, VT), 14979 DAG.getConstantFP(0.0, DL, VT)); 14980 } 14981 14982 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14983 return FTrunc; 14984 14985 return SDValue(); 14986 } 14987 14988 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 14989 SDValue N0 = N->getOperand(0); 14990 EVT VT = N->getValueType(0); 14991 EVT OpVT = N0.getValueType(); 14992 14993 // [us]itofp(undef) = 0, because the result value is bounded. 14994 if (N0.isUndef()) 14995 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14996 14997 // fold (uint_to_fp c1) -> c1fp 14998 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14999 // ...but only if the target supports immediate floating-point values 15000 (!LegalOperations || 15001 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 15002 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 15003 15004 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 15005 // but SINT_TO_FP is legal on this target, try to convert. 15006 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 15007 hasOperation(ISD::SINT_TO_FP, OpVT)) { 15008 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 15009 if (DAG.SignBitIsZero(N0)) 15010 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 15011 } 15012 15013 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) 15014 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 15015 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 15016 SDLoc DL(N); 15017 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), 15018 DAG.getConstantFP(0.0, DL, VT)); 15019 } 15020 15021 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 15022 return FTrunc; 15023 15024 return SDValue(); 15025 } 15026 15027 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 15028 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 15029 SDValue N0 = N->getOperand(0); 15030 EVT VT = N->getValueType(0); 15031 15032 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 15033 return SDValue(); 15034 15035 SDValue Src = N0.getOperand(0); 15036 EVT SrcVT = Src.getValueType(); 15037 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 15038 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 15039 15040 // We can safely assume the conversion won't overflow the output range, 15041 // because (for example) (uint8_t)18293.f is undefined behavior. 15042 15043 // Since we can assume the conversion won't overflow, our decision as to 15044 // whether the input will fit in the float should depend on the minimum 15045 // of the input range and output range. 15046 15047 // This means this is also safe for a signed input and unsigned output, since 15048 // a negative input would lead to undefined behavior. 15049 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 15050 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 15051 unsigned ActualSize = std::min(InputSize, OutputSize); 15052 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 15053 15054 // We can only fold away the float conversion if the input range can be 15055 // represented exactly in the float range. 15056 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 15057 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 15058 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 15059 : ISD::ZERO_EXTEND; 15060 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 15061 } 15062 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 15063 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 15064 return DAG.getBitcast(VT, Src); 15065 } 15066 return SDValue(); 15067 } 15068 15069 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 15070 SDValue N0 = N->getOperand(0); 15071 EVT VT = N->getValueType(0); 15072 15073 // fold (fp_to_sint undef) -> undef 15074 if (N0.isUndef()) 15075 return DAG.getUNDEF(VT); 15076 15077 // fold (fp_to_sint c1fp) -> c1 15078 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15079 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 15080 15081 return FoldIntToFPToInt(N, DAG); 15082 } 15083 15084 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 15085 SDValue N0 = N->getOperand(0); 15086 EVT VT = N->getValueType(0); 15087 15088 // fold (fp_to_uint undef) -> undef 15089 if (N0.isUndef()) 15090 return DAG.getUNDEF(VT); 15091 15092 // fold (fp_to_uint c1fp) -> c1 15093 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15094 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 15095 15096 return FoldIntToFPToInt(N, DAG); 15097 } 15098 15099 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 15100 SDValue N0 = N->getOperand(0); 15101 SDValue N1 = N->getOperand(1); 15102 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 15103 EVT VT = N->getValueType(0); 15104 15105 // fold (fp_round c1fp) -> c1fp 15106 if (N0CFP) 15107 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 15108 15109 // fold (fp_round (fp_extend x)) -> x 15110 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 15111 return N0.getOperand(0); 15112 15113 // fold (fp_round (fp_round x)) -> (fp_round x) 15114 if (N0.getOpcode() == ISD::FP_ROUND) { 15115 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 15116 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 15117 15118 // Skip this folding if it results in an fp_round from f80 to f16. 15119 // 15120 // f80 to f16 always generates an expensive (and as yet, unimplemented) 15121 // libcall to __truncxfhf2 instead of selecting native f16 conversion 15122 // instructions from f32 or f64. Moreover, the first (value-preserving) 15123 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 15124 // x86. 15125 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 15126 return SDValue(); 15127 15128 // If the first fp_round isn't a value preserving truncation, it might 15129 // introduce a tie in the second fp_round, that wouldn't occur in the 15130 // single-step fp_round we want to fold to. 15131 // In other words, double rounding isn't the same as rounding. 15132 // Also, this is a value preserving truncation iff both fp_round's are. 15133 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 15134 SDLoc DL(N); 15135 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 15136 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 15137 } 15138 } 15139 15140 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 15141 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 15142 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 15143 N0.getOperand(0), N1); 15144 AddToWorklist(Tmp.getNode()); 15145 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 15146 Tmp, N0.getOperand(1)); 15147 } 15148 15149 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 15150 return NewVSel; 15151 15152 return SDValue(); 15153 } 15154 15155 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 15156 SDValue N0 = N->getOperand(0); 15157 EVT VT = N->getValueType(0); 15158 15159 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 15160 if (N->hasOneUse() && 15161 N->use_begin()->getOpcode() == ISD::FP_ROUND) 15162 return SDValue(); 15163 15164 // fold (fp_extend c1fp) -> c1fp 15165 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15166 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 15167 15168 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 15169 if (N0.getOpcode() == ISD::FP16_TO_FP && 15170 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 15171 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 15172 15173 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 15174 // value of X. 15175 if (N0.getOpcode() == ISD::FP_ROUND 15176 && N0.getConstantOperandVal(1) == 1) { 15177 SDValue In = N0.getOperand(0); 15178 if (In.getValueType() == VT) return In; 15179 if (VT.bitsLT(In.getValueType())) 15180 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 15181 In, N0.getOperand(1)); 15182 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 15183 } 15184 15185 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 15186 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 15187 TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, VT, N0.getValueType())) { 15188 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 15189 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 15190 LN0->getChain(), 15191 LN0->getBasePtr(), N0.getValueType(), 15192 LN0->getMemOperand()); 15193 CombineTo(N, ExtLoad); 15194 CombineTo(N0.getNode(), 15195 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 15196 N0.getValueType(), ExtLoad, 15197 DAG.getIntPtrConstant(1, SDLoc(N0))), 15198 ExtLoad.getValue(1)); 15199 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15200 } 15201 15202 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 15203 return NewVSel; 15204 15205 return SDValue(); 15206 } 15207 15208 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 15209 SDValue N0 = N->getOperand(0); 15210 EVT VT = N->getValueType(0); 15211 15212 // fold (fceil c1) -> fceil(c1) 15213 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15214 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 15215 15216 return SDValue(); 15217 } 15218 15219 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 15220 SDValue N0 = N->getOperand(0); 15221 EVT VT = N->getValueType(0); 15222 15223 // fold (ftrunc c1) -> ftrunc(c1) 15224 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15225 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 15226 15227 // fold ftrunc (known rounded int x) -> x 15228 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 15229 // likely to be generated to extract integer from a rounded floating value. 15230 switch (N0.getOpcode()) { 15231 default: break; 15232 case ISD::FRINT: 15233 case ISD::FTRUNC: 15234 case ISD::FNEARBYINT: 15235 case ISD::FFLOOR: 15236 case ISD::FCEIL: 15237 return N0; 15238 } 15239 15240 return SDValue(); 15241 } 15242 15243 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 15244 SDValue N0 = N->getOperand(0); 15245 EVT VT = N->getValueType(0); 15246 15247 // fold (ffloor c1) -> ffloor(c1) 15248 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15249 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 15250 15251 return SDValue(); 15252 } 15253 15254 SDValue DAGCombiner::visitFNEG(SDNode *N) { 15255 SDValue N0 = N->getOperand(0); 15256 EVT VT = N->getValueType(0); 15257 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15258 15259 // Constant fold FNEG. 15260 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15261 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 15262 15263 if (SDValue NegN0 = 15264 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) 15265 return NegN0; 15266 15267 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 15268 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't 15269 // know it was called from a context with a nsz flag if the input fsub does 15270 // not. 15271 if (N0.getOpcode() == ISD::FSUB && 15272 (DAG.getTarget().Options.NoSignedZerosFPMath || 15273 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { 15274 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), 15275 N0.getOperand(0)); 15276 } 15277 15278 if (SDValue Cast = foldSignChangeInBitcast(N)) 15279 return Cast; 15280 15281 return SDValue(); 15282 } 15283 15284 SDValue DAGCombiner::visitFMinMax(SDNode *N) { 15285 SDValue N0 = N->getOperand(0); 15286 SDValue N1 = N->getOperand(1); 15287 EVT VT = N->getValueType(0); 15288 const SDNodeFlags Flags = N->getFlags(); 15289 unsigned Opc = N->getOpcode(); 15290 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; 15291 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; 15292 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 15293 15294 // Constant fold. 15295 if (SDValue C = DAG.FoldConstantArithmetic(Opc, SDLoc(N), VT, {N0, N1})) 15296 return C; 15297 15298 // Canonicalize to constant on RHS. 15299 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 15300 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 15301 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 15302 15303 if (const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1)) { 15304 const APFloat &AF = N1CFP->getValueAPF(); 15305 15306 // minnum(X, nan) -> X 15307 // maxnum(X, nan) -> X 15308 // minimum(X, nan) -> nan 15309 // maximum(X, nan) -> nan 15310 if (AF.isNaN()) 15311 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); 15312 15313 // In the following folds, inf can be replaced with the largest finite 15314 // float, if the ninf flag is set. 15315 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { 15316 // minnum(X, -inf) -> -inf 15317 // maxnum(X, +inf) -> +inf 15318 // minimum(X, -inf) -> -inf if nnan 15319 // maximum(X, +inf) -> +inf if nnan 15320 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) 15321 return N->getOperand(1); 15322 15323 // minnum(X, +inf) -> X if nnan 15324 // maxnum(X, -inf) -> X if nnan 15325 // minimum(X, +inf) -> X 15326 // maximum(X, -inf) -> X 15327 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) 15328 return N->getOperand(0); 15329 } 15330 } 15331 15332 return SDValue(); 15333 } 15334 15335 SDValue DAGCombiner::visitFABS(SDNode *N) { 15336 SDValue N0 = N->getOperand(0); 15337 EVT VT = N->getValueType(0); 15338 15339 // fold (fabs c1) -> fabs(c1) 15340 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15341 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 15342 15343 // fold (fabs (fabs x)) -> (fabs x) 15344 if (N0.getOpcode() == ISD::FABS) 15345 return N->getOperand(0); 15346 15347 // fold (fabs (fneg x)) -> (fabs x) 15348 // fold (fabs (fcopysign x, y)) -> (fabs x) 15349 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 15350 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 15351 15352 if (SDValue Cast = foldSignChangeInBitcast(N)) 15353 return Cast; 15354 15355 return SDValue(); 15356 } 15357 15358 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 15359 SDValue Chain = N->getOperand(0); 15360 SDValue N1 = N->getOperand(1); 15361 SDValue N2 = N->getOperand(2); 15362 15363 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are 15364 // nondeterministic jumps). 15365 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { 15366 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, 15367 N1->getOperand(0), N2); 15368 } 15369 15370 // If N is a constant we could fold this into a fallthrough or unconditional 15371 // branch. However that doesn't happen very often in normal code, because 15372 // Instcombine/SimplifyCFG should have handled the available opportunities. 15373 // If we did this folding here, it would be necessary to update the 15374 // MachineBasicBlock CFG, which is awkward. 15375 15376 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 15377 // on the target. 15378 if (N1.getOpcode() == ISD::SETCC && 15379 TLI.isOperationLegalOrCustom(ISD::BR_CC, 15380 N1.getOperand(0).getValueType())) { 15381 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15382 Chain, N1.getOperand(2), 15383 N1.getOperand(0), N1.getOperand(1), N2); 15384 } 15385 15386 if (N1.hasOneUse()) { 15387 // rebuildSetCC calls visitXor which may change the Chain when there is a 15388 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. 15389 HandleSDNode ChainHandle(Chain); 15390 if (SDValue NewN1 = rebuildSetCC(N1)) 15391 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, 15392 ChainHandle.getValue(), NewN1, N2); 15393 } 15394 15395 return SDValue(); 15396 } 15397 15398 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 15399 if (N.getOpcode() == ISD::SRL || 15400 (N.getOpcode() == ISD::TRUNCATE && 15401 (N.getOperand(0).hasOneUse() && 15402 N.getOperand(0).getOpcode() == ISD::SRL))) { 15403 // Look pass the truncate. 15404 if (N.getOpcode() == ISD::TRUNCATE) 15405 N = N.getOperand(0); 15406 15407 // Match this pattern so that we can generate simpler code: 15408 // 15409 // %a = ... 15410 // %b = and i32 %a, 2 15411 // %c = srl i32 %b, 1 15412 // brcond i32 %c ... 15413 // 15414 // into 15415 // 15416 // %a = ... 15417 // %b = and i32 %a, 2 15418 // %c = setcc eq %b, 0 15419 // brcond %c ... 15420 // 15421 // This applies only when the AND constant value has one bit set and the 15422 // SRL constant is equal to the log2 of the AND constant. The back-end is 15423 // smart enough to convert the result into a TEST/JMP sequence. 15424 SDValue Op0 = N.getOperand(0); 15425 SDValue Op1 = N.getOperand(1); 15426 15427 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 15428 SDValue AndOp1 = Op0.getOperand(1); 15429 15430 if (AndOp1.getOpcode() == ISD::Constant) { 15431 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 15432 15433 if (AndConst.isPowerOf2() && 15434 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 15435 SDLoc DL(N); 15436 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 15437 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 15438 ISD::SETNE); 15439 } 15440 } 15441 } 15442 } 15443 15444 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) 15445 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) 15446 if (N.getOpcode() == ISD::XOR) { 15447 // Because we may call this on a speculatively constructed 15448 // SimplifiedSetCC Node, we need to simplify this node first. 15449 // Ideally this should be folded into SimplifySetCC and not 15450 // here. For now, grab a handle to N so we don't lose it from 15451 // replacements interal to the visit. 15452 HandleSDNode XORHandle(N); 15453 while (N.getOpcode() == ISD::XOR) { 15454 SDValue Tmp = visitXOR(N.getNode()); 15455 // No simplification done. 15456 if (!Tmp.getNode()) 15457 break; 15458 // Returning N is form in-visit replacement that may invalidated 15459 // N. Grab value from Handle. 15460 if (Tmp.getNode() == N.getNode()) 15461 N = XORHandle.getValue(); 15462 else // Node simplified. Try simplifying again. 15463 N = Tmp; 15464 } 15465 15466 if (N.getOpcode() != ISD::XOR) 15467 return N; 15468 15469 SDValue Op0 = N->getOperand(0); 15470 SDValue Op1 = N->getOperand(1); 15471 15472 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 15473 bool Equal = false; 15474 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) 15475 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && 15476 Op0.getValueType() == MVT::i1) { 15477 N = Op0; 15478 Op0 = N->getOperand(0); 15479 Op1 = N->getOperand(1); 15480 Equal = true; 15481 } 15482 15483 EVT SetCCVT = N.getValueType(); 15484 if (LegalTypes) 15485 SetCCVT = getSetCCResultType(SetCCVT); 15486 // Replace the uses of XOR with SETCC 15487 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, 15488 Equal ? ISD::SETEQ : ISD::SETNE); 15489 } 15490 } 15491 15492 return SDValue(); 15493 } 15494 15495 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 15496 // 15497 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 15498 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 15499 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 15500 15501 // If N is a constant we could fold this into a fallthrough or unconditional 15502 // branch. However that doesn't happen very often in normal code, because 15503 // Instcombine/SimplifyCFG should have handled the available opportunities. 15504 // If we did this folding here, it would be necessary to update the 15505 // MachineBasicBlock CFG, which is awkward. 15506 15507 // Use SimplifySetCC to simplify SETCC's. 15508 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 15509 CondLHS, CondRHS, CC->get(), SDLoc(N), 15510 false); 15511 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 15512 15513 // fold to a simpler setcc 15514 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 15515 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15516 N->getOperand(0), Simp.getOperand(2), 15517 Simp.getOperand(0), Simp.getOperand(1), 15518 N->getOperand(4)); 15519 15520 return SDValue(); 15521 } 15522 15523 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, 15524 bool &IsLoad, bool &IsMasked, SDValue &Ptr, 15525 const TargetLowering &TLI) { 15526 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 15527 if (LD->isIndexed()) 15528 return false; 15529 EVT VT = LD->getMemoryVT(); 15530 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) 15531 return false; 15532 Ptr = LD->getBasePtr(); 15533 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 15534 if (ST->isIndexed()) 15535 return false; 15536 EVT VT = ST->getMemoryVT(); 15537 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) 15538 return false; 15539 Ptr = ST->getBasePtr(); 15540 IsLoad = false; 15541 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 15542 if (LD->isIndexed()) 15543 return false; 15544 EVT VT = LD->getMemoryVT(); 15545 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && 15546 !TLI.isIndexedMaskedLoadLegal(Dec, VT)) 15547 return false; 15548 Ptr = LD->getBasePtr(); 15549 IsMasked = true; 15550 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 15551 if (ST->isIndexed()) 15552 return false; 15553 EVT VT = ST->getMemoryVT(); 15554 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && 15555 !TLI.isIndexedMaskedStoreLegal(Dec, VT)) 15556 return false; 15557 Ptr = ST->getBasePtr(); 15558 IsLoad = false; 15559 IsMasked = true; 15560 } else { 15561 return false; 15562 } 15563 return true; 15564 } 15565 15566 /// Try turning a load/store into a pre-indexed load/store when the base 15567 /// pointer is an add or subtract and it has other uses besides the load/store. 15568 /// After the transformation, the new indexed load/store has effectively folded 15569 /// the add/subtract in and all of its other uses are redirected to the 15570 /// new load/store. 15571 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 15572 if (Level < AfterLegalizeDAG) 15573 return false; 15574 15575 bool IsLoad = true; 15576 bool IsMasked = false; 15577 SDValue Ptr; 15578 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, 15579 Ptr, TLI)) 15580 return false; 15581 15582 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 15583 // out. There is no reason to make this a preinc/predec. 15584 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 15585 Ptr.getNode()->hasOneUse()) 15586 return false; 15587 15588 // Ask the target to do addressing mode selection. 15589 SDValue BasePtr; 15590 SDValue Offset; 15591 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15592 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 15593 return false; 15594 15595 // Backends without true r+i pre-indexed forms may need to pass a 15596 // constant base with a variable offset so that constant coercion 15597 // will work with the patterns in canonical form. 15598 bool Swapped = false; 15599 if (isa<ConstantSDNode>(BasePtr)) { 15600 std::swap(BasePtr, Offset); 15601 Swapped = true; 15602 } 15603 15604 // Don't create a indexed load / store with zero offset. 15605 if (isNullConstant(Offset)) 15606 return false; 15607 15608 // Try turning it into a pre-indexed load / store except when: 15609 // 1) The new base ptr is a frame index. 15610 // 2) If N is a store and the new base ptr is either the same as or is a 15611 // predecessor of the value being stored. 15612 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 15613 // that would create a cycle. 15614 // 4) All uses are load / store ops that use it as old base ptr. 15615 15616 // Check #1. Preinc'ing a frame index would require copying the stack pointer 15617 // (plus the implicit offset) to a register to preinc anyway. 15618 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15619 return false; 15620 15621 // Check #2. 15622 if (!IsLoad) { 15623 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() 15624 : cast<StoreSDNode>(N)->getValue(); 15625 15626 // Would require a copy. 15627 if (Val == BasePtr) 15628 return false; 15629 15630 // Would create a cycle. 15631 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 15632 return false; 15633 } 15634 15635 // Caches for hasPredecessorHelper. 15636 SmallPtrSet<const SDNode *, 32> Visited; 15637 SmallVector<const SDNode *, 16> Worklist; 15638 Worklist.push_back(N); 15639 15640 // If the offset is a constant, there may be other adds of constants that 15641 // can be folded with this one. We should do this to avoid having to keep 15642 // a copy of the original base pointer. 15643 SmallVector<SDNode *, 16> OtherUses; 15644 if (isa<ConstantSDNode>(Offset)) 15645 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 15646 UE = BasePtr.getNode()->use_end(); 15647 UI != UE; ++UI) { 15648 SDUse &Use = UI.getUse(); 15649 // Skip the use that is Ptr and uses of other results from BasePtr's 15650 // node (important for nodes that return multiple results). 15651 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 15652 continue; 15653 15654 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 15655 continue; 15656 15657 if (Use.getUser()->getOpcode() != ISD::ADD && 15658 Use.getUser()->getOpcode() != ISD::SUB) { 15659 OtherUses.clear(); 15660 break; 15661 } 15662 15663 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 15664 if (!isa<ConstantSDNode>(Op1)) { 15665 OtherUses.clear(); 15666 break; 15667 } 15668 15669 // FIXME: In some cases, we can be smarter about this. 15670 if (Op1.getValueType() != Offset.getValueType()) { 15671 OtherUses.clear(); 15672 break; 15673 } 15674 15675 OtherUses.push_back(Use.getUser()); 15676 } 15677 15678 if (Swapped) 15679 std::swap(BasePtr, Offset); 15680 15681 // Now check for #3 and #4. 15682 bool RealUse = false; 15683 15684 for (SDNode *Use : Ptr.getNode()->uses()) { 15685 if (Use == N) 15686 continue; 15687 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 15688 return false; 15689 15690 // If Ptr may be folded in addressing mode of other use, then it's 15691 // not profitable to do this transformation. 15692 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 15693 RealUse = true; 15694 } 15695 15696 if (!RealUse) 15697 return false; 15698 15699 SDValue Result; 15700 if (!IsMasked) { 15701 if (IsLoad) 15702 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 15703 else 15704 Result = 15705 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 15706 } else { 15707 if (IsLoad) 15708 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15709 Offset, AM); 15710 else 15711 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, 15712 Offset, AM); 15713 } 15714 ++PreIndexedNodes; 15715 ++NodesCombined; 15716 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 15717 Result.getNode()->dump(&DAG); dbgs() << '\n'); 15718 WorklistRemover DeadNodes(*this); 15719 if (IsLoad) { 15720 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15721 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15722 } else { 15723 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15724 } 15725 15726 // Finally, since the node is now dead, remove it from the graph. 15727 deleteAndRecombine(N); 15728 15729 if (Swapped) 15730 std::swap(BasePtr, Offset); 15731 15732 // Replace other uses of BasePtr that can be updated to use Ptr 15733 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 15734 unsigned OffsetIdx = 1; 15735 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 15736 OffsetIdx = 0; 15737 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 15738 BasePtr.getNode() && "Expected BasePtr operand"); 15739 15740 // We need to replace ptr0 in the following expression: 15741 // x0 * offset0 + y0 * ptr0 = t0 15742 // knowing that 15743 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 15744 // 15745 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 15746 // indexed load/store and the expression that needs to be re-written. 15747 // 15748 // Therefore, we have: 15749 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 15750 15751 auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 15752 const APInt &Offset0 = CN->getAPIntValue(); 15753 const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 15754 int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 15755 int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 15756 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 15757 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 15758 15759 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 15760 15761 APInt CNV = Offset0; 15762 if (X0 < 0) CNV = -CNV; 15763 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 15764 else CNV = CNV - Offset1; 15765 15766 SDLoc DL(OtherUses[i]); 15767 15768 // We can now generate the new expression. 15769 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 15770 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); 15771 15772 SDValue NewUse = DAG.getNode(Opcode, 15773 DL, 15774 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 15775 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 15776 deleteAndRecombine(OtherUses[i]); 15777 } 15778 15779 // Replace the uses of Ptr with uses of the updated base value. 15780 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); 15781 deleteAndRecombine(Ptr.getNode()); 15782 AddToWorklist(Result.getNode()); 15783 15784 return true; 15785 } 15786 15787 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, 15788 SDValue &BasePtr, SDValue &Offset, 15789 ISD::MemIndexedMode &AM, 15790 SelectionDAG &DAG, 15791 const TargetLowering &TLI) { 15792 if (PtrUse == N || 15793 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) 15794 return false; 15795 15796 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) 15797 return false; 15798 15799 // Don't create a indexed load / store with zero offset. 15800 if (isNullConstant(Offset)) 15801 return false; 15802 15803 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15804 return false; 15805 15806 SmallPtrSet<const SDNode *, 32> Visited; 15807 for (SDNode *Use : BasePtr.getNode()->uses()) { 15808 if (Use == Ptr.getNode()) 15809 continue; 15810 15811 // No if there's a later user which could perform the index instead. 15812 if (isa<MemSDNode>(Use)) { 15813 bool IsLoad = true; 15814 bool IsMasked = false; 15815 SDValue OtherPtr; 15816 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15817 IsMasked, OtherPtr, TLI)) { 15818 SmallVector<const SDNode *, 2> Worklist; 15819 Worklist.push_back(Use); 15820 if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) 15821 return false; 15822 } 15823 } 15824 15825 // If all the uses are load / store addresses, then don't do the 15826 // transformation. 15827 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { 15828 for (SDNode *UseUse : Use->uses()) 15829 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 15830 return false; 15831 } 15832 } 15833 return true; 15834 } 15835 15836 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, 15837 bool &IsMasked, SDValue &Ptr, 15838 SDValue &BasePtr, SDValue &Offset, 15839 ISD::MemIndexedMode &AM, 15840 SelectionDAG &DAG, 15841 const TargetLowering &TLI) { 15842 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15843 IsMasked, Ptr, TLI) || 15844 Ptr.getNode()->hasOneUse()) 15845 return nullptr; 15846 15847 // Try turning it into a post-indexed load / store except when 15848 // 1) All uses are load / store ops that use it as base ptr (and 15849 // it may be folded as addressing mmode). 15850 // 2) Op must be independent of N, i.e. Op is neither a predecessor 15851 // nor a successor of N. Otherwise, if Op is folded that would 15852 // create a cycle. 15853 for (SDNode *Op : Ptr->uses()) { 15854 // Check for #1. 15855 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) 15856 continue; 15857 15858 // Check for #2. 15859 SmallPtrSet<const SDNode *, 32> Visited; 15860 SmallVector<const SDNode *, 8> Worklist; 15861 // Ptr is predecessor to both N and Op. 15862 Visited.insert(Ptr.getNode()); 15863 Worklist.push_back(N); 15864 Worklist.push_back(Op); 15865 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 15866 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) 15867 return Op; 15868 } 15869 return nullptr; 15870 } 15871 15872 /// Try to combine a load/store with a add/sub of the base pointer node into a 15873 /// post-indexed load/store. The transformation folded the add/subtract into the 15874 /// new indexed load/store effectively and all of its uses are redirected to the 15875 /// new load/store. 15876 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 15877 if (Level < AfterLegalizeDAG) 15878 return false; 15879 15880 bool IsLoad = true; 15881 bool IsMasked = false; 15882 SDValue Ptr; 15883 SDValue BasePtr; 15884 SDValue Offset; 15885 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15886 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, 15887 Offset, AM, DAG, TLI); 15888 if (!Op) 15889 return false; 15890 15891 SDValue Result; 15892 if (!IsMasked) 15893 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15894 Offset, AM) 15895 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), 15896 BasePtr, Offset, AM); 15897 else 15898 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), 15899 BasePtr, Offset, AM) 15900 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), 15901 BasePtr, Offset, AM); 15902 ++PostIndexedNodes; 15903 ++NodesCombined; 15904 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); 15905 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); 15906 dbgs() << '\n'); 15907 WorklistRemover DeadNodes(*this); 15908 if (IsLoad) { 15909 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15910 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15911 } else { 15912 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15913 } 15914 15915 // Finally, since the node is now dead, remove it from the graph. 15916 deleteAndRecombine(N); 15917 15918 // Replace the uses of Use with uses of the updated base value. 15919 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 15920 Result.getValue(IsLoad ? 1 : 0)); 15921 deleteAndRecombine(Op); 15922 return true; 15923 } 15924 15925 /// Return the base-pointer arithmetic from an indexed \p LD. 15926 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 15927 ISD::MemIndexedMode AM = LD->getAddressingMode(); 15928 assert(AM != ISD::UNINDEXED); 15929 SDValue BP = LD->getOperand(1); 15930 SDValue Inc = LD->getOperand(2); 15931 15932 // Some backends use TargetConstants for load offsets, but don't expect 15933 // TargetConstants in general ADD nodes. We can convert these constants into 15934 // regular Constants (if the constant is not opaque). 15935 assert((Inc.getOpcode() != ISD::TargetConstant || 15936 !cast<ConstantSDNode>(Inc)->isOpaque()) && 15937 "Cannot split out indexing using opaque target constants"); 15938 if (Inc.getOpcode() == ISD::TargetConstant) { 15939 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 15940 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 15941 ConstInc->getValueType(0)); 15942 } 15943 15944 unsigned Opc = 15945 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 15946 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 15947 } 15948 15949 static inline ElementCount numVectorEltsOrZero(EVT T) { 15950 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); 15951 } 15952 15953 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 15954 Val = ST->getValue(); 15955 EVT STType = Val.getValueType(); 15956 EVT STMemType = ST->getMemoryVT(); 15957 if (STType == STMemType) 15958 return true; 15959 if (isTypeLegal(STMemType)) 15960 return false; // fail. 15961 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 15962 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 15963 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 15964 return true; 15965 } 15966 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 15967 STType.isInteger() && STMemType.isInteger()) { 15968 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 15969 return true; 15970 } 15971 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 15972 Val = DAG.getBitcast(STMemType, Val); 15973 return true; 15974 } 15975 return false; // fail. 15976 } 15977 15978 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 15979 EVT LDMemType = LD->getMemoryVT(); 15980 EVT LDType = LD->getValueType(0); 15981 assert(Val.getValueType() == LDMemType && 15982 "Attempting to extend value of non-matching type"); 15983 if (LDType == LDMemType) 15984 return true; 15985 if (LDMemType.isInteger() && LDType.isInteger()) { 15986 switch (LD->getExtensionType()) { 15987 case ISD::NON_EXTLOAD: 15988 Val = DAG.getBitcast(LDType, Val); 15989 return true; 15990 case ISD::EXTLOAD: 15991 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 15992 return true; 15993 case ISD::SEXTLOAD: 15994 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 15995 return true; 15996 case ISD::ZEXTLOAD: 15997 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 15998 return true; 15999 } 16000 } 16001 return false; 16002 } 16003 16004 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 16005 if (OptLevel == CodeGenOpt::None || !LD->isSimple()) 16006 return SDValue(); 16007 SDValue Chain = LD->getOperand(0); 16008 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 16009 // TODO: Relax this restriction for unordered atomics (see D66309) 16010 if (!ST || !ST->isSimple()) 16011 return SDValue(); 16012 16013 EVT LDType = LD->getValueType(0); 16014 EVT LDMemType = LD->getMemoryVT(); 16015 EVT STMemType = ST->getMemoryVT(); 16016 EVT STType = ST->getValue().getValueType(); 16017 16018 // There are two cases to consider here: 16019 // 1. The store is fixed width and the load is scalable. In this case we 16020 // don't know at compile time if the store completely envelops the load 16021 // so we abandon the optimisation. 16022 // 2. The store is scalable and the load is fixed width. We could 16023 // potentially support a limited number of cases here, but there has been 16024 // no cost-benefit analysis to prove it's worth it. 16025 bool LdStScalable = LDMemType.isScalableVector(); 16026 if (LdStScalable != STMemType.isScalableVector()) 16027 return SDValue(); 16028 16029 // If we are dealing with scalable vectors on a big endian platform the 16030 // calculation of offsets below becomes trickier, since we do not know at 16031 // compile time the absolute size of the vector. Until we've done more 16032 // analysis on big-endian platforms it seems better to bail out for now. 16033 if (LdStScalable && DAG.getDataLayout().isBigEndian()) 16034 return SDValue(); 16035 16036 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 16037 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 16038 int64_t Offset; 16039 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 16040 return SDValue(); 16041 16042 // Normalize for Endianness. After this Offset=0 will denote that the least 16043 // significant bit in the loaded value maps to the least significant bit in 16044 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 16045 // n:th least significant byte of the stored value. 16046 if (DAG.getDataLayout().isBigEndian()) 16047 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() - 16048 (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) / 16049 8 - 16050 Offset; 16051 16052 // Check that the stored value cover all bits that are loaded. 16053 bool STCoversLD; 16054 16055 TypeSize LdMemSize = LDMemType.getSizeInBits(); 16056 TypeSize StMemSize = STMemType.getSizeInBits(); 16057 if (LdStScalable) 16058 STCoversLD = (Offset == 0) && LdMemSize == StMemSize; 16059 else 16060 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <= 16061 StMemSize.getFixedSize()); 16062 16063 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 16064 if (LD->isIndexed()) { 16065 // Cannot handle opaque target constants and we must respect the user's 16066 // request not to split indexes from loads. 16067 if (!canSplitIdx(LD)) 16068 return SDValue(); 16069 SDValue Idx = SplitIndexingFromLoad(LD); 16070 SDValue Ops[] = {Val, Idx, Chain}; 16071 return CombineTo(LD, Ops, 3); 16072 } 16073 return CombineTo(LD, Val, Chain); 16074 }; 16075 16076 if (!STCoversLD) 16077 return SDValue(); 16078 16079 // Memory as copy space (potentially masked). 16080 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 16081 // Simple case: Direct non-truncating forwarding 16082 if (LDType.getSizeInBits() == LdMemSize) 16083 return ReplaceLd(LD, ST->getValue(), Chain); 16084 // Can we model the truncate and extension with an and mask? 16085 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 16086 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 16087 // Mask to size of LDMemType 16088 auto Mask = 16089 DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), 16090 StMemSize.getFixedSize()), 16091 SDLoc(ST), STType); 16092 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 16093 return ReplaceLd(LD, Val, Chain); 16094 } 16095 } 16096 16097 // TODO: Deal with nonzero offset. 16098 if (LD->getBasePtr().isUndef() || Offset != 0) 16099 return SDValue(); 16100 // Model necessary truncations / extenstions. 16101 SDValue Val; 16102 // Truncate Value To Stored Memory Size. 16103 do { 16104 if (!getTruncatedStoreValue(ST, Val)) 16105 continue; 16106 if (!isTypeLegal(LDMemType)) 16107 continue; 16108 if (STMemType != LDMemType) { 16109 // TODO: Support vectors? This requires extract_subvector/bitcast. 16110 if (!STMemType.isVector() && !LDMemType.isVector() && 16111 STMemType.isInteger() && LDMemType.isInteger()) 16112 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 16113 else 16114 continue; 16115 } 16116 if (!extendLoadedValueToExtension(LD, Val)) 16117 continue; 16118 return ReplaceLd(LD, Val, Chain); 16119 } while (false); 16120 16121 // On failure, cleanup dead nodes we may have created. 16122 if (Val->use_empty()) 16123 deleteAndRecombine(Val.getNode()); 16124 return SDValue(); 16125 } 16126 16127 SDValue DAGCombiner::visitLOAD(SDNode *N) { 16128 LoadSDNode *LD = cast<LoadSDNode>(N); 16129 SDValue Chain = LD->getChain(); 16130 SDValue Ptr = LD->getBasePtr(); 16131 16132 // If load is not volatile and there are no uses of the loaded value (and 16133 // the updated indexed value in case of indexed loads), change uses of the 16134 // chain value into uses of the chain input (i.e. delete the dead load). 16135 // TODO: Allow this for unordered atomics (see D66309) 16136 if (LD->isSimple()) { 16137 if (N->getValueType(1) == MVT::Other) { 16138 // Unindexed loads. 16139 if (!N->hasAnyUseOfValue(0)) { 16140 // It's not safe to use the two value CombineTo variant here. e.g. 16141 // v1, chain2 = load chain1, loc 16142 // v2, chain3 = load chain2, loc 16143 // v3 = add v2, c 16144 // Now we replace use of chain2 with chain1. This makes the second load 16145 // isomorphic to the one we are deleting, and thus makes this load live. 16146 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 16147 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); 16148 dbgs() << "\n"); 16149 WorklistRemover DeadNodes(*this); 16150 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 16151 AddUsersToWorklist(Chain.getNode()); 16152 if (N->use_empty()) 16153 deleteAndRecombine(N); 16154 16155 return SDValue(N, 0); // Return N so it doesn't get rechecked! 16156 } 16157 } else { 16158 // Indexed loads. 16159 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 16160 16161 // If this load has an opaque TargetConstant offset, then we cannot split 16162 // the indexing into an add/sub directly (that TargetConstant may not be 16163 // valid for a different type of node, and we cannot convert an opaque 16164 // target constant into a regular constant). 16165 bool CanSplitIdx = canSplitIdx(LD); 16166 16167 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { 16168 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 16169 SDValue Index; 16170 if (N->hasAnyUseOfValue(1) && CanSplitIdx) { 16171 Index = SplitIndexingFromLoad(LD); 16172 // Try to fold the base pointer arithmetic into subsequent loads and 16173 // stores. 16174 AddUsersToWorklist(N); 16175 } else 16176 Index = DAG.getUNDEF(N->getValueType(1)); 16177 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 16178 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); 16179 dbgs() << " and 2 other values\n"); 16180 WorklistRemover DeadNodes(*this); 16181 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 16182 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 16183 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 16184 deleteAndRecombine(N); 16185 return SDValue(N, 0); // Return N so it doesn't get rechecked! 16186 } 16187 } 16188 } 16189 16190 // If this load is directly stored, replace the load value with the stored 16191 // value. 16192 if (auto V = ForwardStoreValueToDirectLoad(LD)) 16193 return V; 16194 16195 // Try to infer better alignment information than the load already has. 16196 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { 16197 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 16198 if (*Alignment > LD->getAlign() && 16199 isAligned(*Alignment, LD->getSrcValueOffset())) { 16200 SDValue NewLoad = DAG.getExtLoad( 16201 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 16202 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, 16203 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 16204 // NewLoad will always be N as we are only refining the alignment 16205 assert(NewLoad.getNode() == N); 16206 (void)NewLoad; 16207 } 16208 } 16209 } 16210 16211 if (LD->isUnindexed()) { 16212 // Walk up chain skipping non-aliasing memory nodes. 16213 SDValue BetterChain = FindBetterChain(LD, Chain); 16214 16215 // If there is a better chain. 16216 if (Chain != BetterChain) { 16217 SDValue ReplLoad; 16218 16219 // Replace the chain to void dependency. 16220 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 16221 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 16222 BetterChain, Ptr, LD->getMemOperand()); 16223 } else { 16224 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 16225 LD->getValueType(0), 16226 BetterChain, Ptr, LD->getMemoryVT(), 16227 LD->getMemOperand()); 16228 } 16229 16230 // Create token factor to keep old chain connected. 16231 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 16232 MVT::Other, Chain, ReplLoad.getValue(1)); 16233 16234 // Replace uses with load result and token factor 16235 return CombineTo(N, ReplLoad.getValue(0), Token); 16236 } 16237 } 16238 16239 // Try transforming N to an indexed load. 16240 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 16241 return SDValue(N, 0); 16242 16243 // Try to slice up N to more direct loads if the slices are mapped to 16244 // different register banks or pairing can take place. 16245 if (SliceUpLoad(N)) 16246 return SDValue(N, 0); 16247 16248 return SDValue(); 16249 } 16250 16251 namespace { 16252 16253 /// Helper structure used to slice a load in smaller loads. 16254 /// Basically a slice is obtained from the following sequence: 16255 /// Origin = load Ty1, Base 16256 /// Shift = srl Ty1 Origin, CstTy Amount 16257 /// Inst = trunc Shift to Ty2 16258 /// 16259 /// Then, it will be rewritten into: 16260 /// Slice = load SliceTy, Base + SliceOffset 16261 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 16262 /// 16263 /// SliceTy is deduced from the number of bits that are actually used to 16264 /// build Inst. 16265 struct LoadedSlice { 16266 /// Helper structure used to compute the cost of a slice. 16267 struct Cost { 16268 /// Are we optimizing for code size. 16269 bool ForCodeSize = false; 16270 16271 /// Various cost. 16272 unsigned Loads = 0; 16273 unsigned Truncates = 0; 16274 unsigned CrossRegisterBanksCopies = 0; 16275 unsigned ZExts = 0; 16276 unsigned Shift = 0; 16277 16278 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} 16279 16280 /// Get the cost of one isolated slice. 16281 Cost(const LoadedSlice &LS, bool ForCodeSize) 16282 : ForCodeSize(ForCodeSize), Loads(1) { 16283 EVT TruncType = LS.Inst->getValueType(0); 16284 EVT LoadedType = LS.getLoadedType(); 16285 if (TruncType != LoadedType && 16286 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 16287 ZExts = 1; 16288 } 16289 16290 /// Account for slicing gain in the current cost. 16291 /// Slicing provide a few gains like removing a shift or a 16292 /// truncate. This method allows to grow the cost of the original 16293 /// load with the gain from this slice. 16294 void addSliceGain(const LoadedSlice &LS) { 16295 // Each slice saves a truncate. 16296 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 16297 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 16298 LS.Inst->getValueType(0))) 16299 ++Truncates; 16300 // If there is a shift amount, this slice gets rid of it. 16301 if (LS.Shift) 16302 ++Shift; 16303 // If this slice can merge a cross register bank copy, account for it. 16304 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 16305 ++CrossRegisterBanksCopies; 16306 } 16307 16308 Cost &operator+=(const Cost &RHS) { 16309 Loads += RHS.Loads; 16310 Truncates += RHS.Truncates; 16311 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 16312 ZExts += RHS.ZExts; 16313 Shift += RHS.Shift; 16314 return *this; 16315 } 16316 16317 bool operator==(const Cost &RHS) const { 16318 return Loads == RHS.Loads && Truncates == RHS.Truncates && 16319 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 16320 ZExts == RHS.ZExts && Shift == RHS.Shift; 16321 } 16322 16323 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 16324 16325 bool operator<(const Cost &RHS) const { 16326 // Assume cross register banks copies are as expensive as loads. 16327 // FIXME: Do we want some more target hooks? 16328 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 16329 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 16330 // Unless we are optimizing for code size, consider the 16331 // expensive operation first. 16332 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 16333 return ExpensiveOpsLHS < ExpensiveOpsRHS; 16334 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 16335 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 16336 } 16337 16338 bool operator>(const Cost &RHS) const { return RHS < *this; } 16339 16340 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 16341 16342 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 16343 }; 16344 16345 // The last instruction that represent the slice. This should be a 16346 // truncate instruction. 16347 SDNode *Inst; 16348 16349 // The original load instruction. 16350 LoadSDNode *Origin; 16351 16352 // The right shift amount in bits from the original load. 16353 unsigned Shift; 16354 16355 // The DAG from which Origin came from. 16356 // This is used to get some contextual information about legal types, etc. 16357 SelectionDAG *DAG; 16358 16359 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 16360 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 16361 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 16362 16363 /// Get the bits used in a chunk of bits \p BitWidth large. 16364 /// \return Result is \p BitWidth and has used bits set to 1 and 16365 /// not used bits set to 0. 16366 APInt getUsedBits() const { 16367 // Reproduce the trunc(lshr) sequence: 16368 // - Start from the truncated value. 16369 // - Zero extend to the desired bit width. 16370 // - Shift left. 16371 assert(Origin && "No original load to compare against."); 16372 unsigned BitWidth = Origin->getValueSizeInBits(0); 16373 assert(Inst && "This slice is not bound to an instruction"); 16374 assert(Inst->getValueSizeInBits(0) <= BitWidth && 16375 "Extracted slice is bigger than the whole type!"); 16376 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 16377 UsedBits.setAllBits(); 16378 UsedBits = UsedBits.zext(BitWidth); 16379 UsedBits <<= Shift; 16380 return UsedBits; 16381 } 16382 16383 /// Get the size of the slice to be loaded in bytes. 16384 unsigned getLoadedSize() const { 16385 unsigned SliceSize = getUsedBits().countPopulation(); 16386 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 16387 return SliceSize / 8; 16388 } 16389 16390 /// Get the type that will be loaded for this slice. 16391 /// Note: This may not be the final type for the slice. 16392 EVT getLoadedType() const { 16393 assert(DAG && "Missing context"); 16394 LLVMContext &Ctxt = *DAG->getContext(); 16395 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 16396 } 16397 16398 /// Get the alignment of the load used for this slice. 16399 Align getAlign() const { 16400 Align Alignment = Origin->getAlign(); 16401 uint64_t Offset = getOffsetFromBase(); 16402 if (Offset != 0) 16403 Alignment = commonAlignment(Alignment, Alignment.value() + Offset); 16404 return Alignment; 16405 } 16406 16407 /// Check if this slice can be rewritten with legal operations. 16408 bool isLegal() const { 16409 // An invalid slice is not legal. 16410 if (!Origin || !Inst || !DAG) 16411 return false; 16412 16413 // Offsets are for indexed load only, we do not handle that. 16414 if (!Origin->getOffset().isUndef()) 16415 return false; 16416 16417 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16418 16419 // Check that the type is legal. 16420 EVT SliceType = getLoadedType(); 16421 if (!TLI.isTypeLegal(SliceType)) 16422 return false; 16423 16424 // Check that the load is legal for this type. 16425 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 16426 return false; 16427 16428 // Check that the offset can be computed. 16429 // 1. Check its type. 16430 EVT PtrType = Origin->getBasePtr().getValueType(); 16431 if (PtrType == MVT::Untyped || PtrType.isExtended()) 16432 return false; 16433 16434 // 2. Check that it fits in the immediate. 16435 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 16436 return false; 16437 16438 // 3. Check that the computation is legal. 16439 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 16440 return false; 16441 16442 // Check that the zext is legal if it needs one. 16443 EVT TruncateType = Inst->getValueType(0); 16444 if (TruncateType != SliceType && 16445 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 16446 return false; 16447 16448 return true; 16449 } 16450 16451 /// Get the offset in bytes of this slice in the original chunk of 16452 /// bits. 16453 /// \pre DAG != nullptr. 16454 uint64_t getOffsetFromBase() const { 16455 assert(DAG && "Missing context."); 16456 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 16457 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 16458 uint64_t Offset = Shift / 8; 16459 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 16460 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 16461 "The size of the original loaded type is not a multiple of a" 16462 " byte."); 16463 // If Offset is bigger than TySizeInBytes, it means we are loading all 16464 // zeros. This should have been optimized before in the process. 16465 assert(TySizeInBytes > Offset && 16466 "Invalid shift amount for given loaded size"); 16467 if (IsBigEndian) 16468 Offset = TySizeInBytes - Offset - getLoadedSize(); 16469 return Offset; 16470 } 16471 16472 /// Generate the sequence of instructions to load the slice 16473 /// represented by this object and redirect the uses of this slice to 16474 /// this new sequence of instructions. 16475 /// \pre this->Inst && this->Origin are valid Instructions and this 16476 /// object passed the legal check: LoadedSlice::isLegal returned true. 16477 /// \return The last instruction of the sequence used to load the slice. 16478 SDValue loadSlice() const { 16479 assert(Inst && Origin && "Unable to replace a non-existing slice."); 16480 const SDValue &OldBaseAddr = Origin->getBasePtr(); 16481 SDValue BaseAddr = OldBaseAddr; 16482 // Get the offset in that chunk of bytes w.r.t. the endianness. 16483 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 16484 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 16485 if (Offset) { 16486 // BaseAddr = BaseAddr + Offset. 16487 EVT ArithType = BaseAddr.getValueType(); 16488 SDLoc DL(Origin); 16489 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 16490 DAG->getConstant(Offset, DL, ArithType)); 16491 } 16492 16493 // Create the type of the loaded slice according to its size. 16494 EVT SliceType = getLoadedType(); 16495 16496 // Create the load for the slice. 16497 SDValue LastInst = 16498 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 16499 Origin->getPointerInfo().getWithOffset(Offset), getAlign(), 16500 Origin->getMemOperand()->getFlags()); 16501 // If the final type is not the same as the loaded type, this means that 16502 // we have to pad with zero. Create a zero extend for that. 16503 EVT FinalType = Inst->getValueType(0); 16504 if (SliceType != FinalType) 16505 LastInst = 16506 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 16507 return LastInst; 16508 } 16509 16510 /// Check if this slice can be merged with an expensive cross register 16511 /// bank copy. E.g., 16512 /// i = load i32 16513 /// f = bitcast i32 i to float 16514 bool canMergeExpensiveCrossRegisterBankCopy() const { 16515 if (!Inst || !Inst->hasOneUse()) 16516 return false; 16517 SDNode *Use = *Inst->use_begin(); 16518 if (Use->getOpcode() != ISD::BITCAST) 16519 return false; 16520 assert(DAG && "Missing context"); 16521 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16522 EVT ResVT = Use->getValueType(0); 16523 const TargetRegisterClass *ResRC = 16524 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 16525 const TargetRegisterClass *ArgRC = 16526 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 16527 Use->getOperand(0)->isDivergent()); 16528 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 16529 return false; 16530 16531 // At this point, we know that we perform a cross-register-bank copy. 16532 // Check if it is expensive. 16533 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 16534 // Assume bitcasts are cheap, unless both register classes do not 16535 // explicitly share a common sub class. 16536 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 16537 return false; 16538 16539 // Check if it will be merged with the load. 16540 // 1. Check the alignment / fast memory access constraint. 16541 bool IsFast = false; 16542 if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT, 16543 Origin->getAddressSpace(), getAlign(), 16544 Origin->getMemOperand()->getFlags(), &IsFast) || 16545 !IsFast) 16546 return false; 16547 16548 // 2. Check that the load is a legal operation for that type. 16549 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 16550 return false; 16551 16552 // 3. Check that we do not have a zext in the way. 16553 if (Inst->getValueType(0) != getLoadedType()) 16554 return false; 16555 16556 return true; 16557 } 16558 }; 16559 16560 } // end anonymous namespace 16561 16562 /// Check that all bits set in \p UsedBits form a dense region, i.e., 16563 /// \p UsedBits looks like 0..0 1..1 0..0. 16564 static bool areUsedBitsDense(const APInt &UsedBits) { 16565 // If all the bits are one, this is dense! 16566 if (UsedBits.isAllOnes()) 16567 return true; 16568 16569 // Get rid of the unused bits on the right. 16570 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 16571 // Get rid of the unused bits on the left. 16572 if (NarrowedUsedBits.countLeadingZeros()) 16573 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 16574 // Check that the chunk of bits is completely used. 16575 return NarrowedUsedBits.isAllOnes(); 16576 } 16577 16578 /// Check whether or not \p First and \p Second are next to each other 16579 /// in memory. This means that there is no hole between the bits loaded 16580 /// by \p First and the bits loaded by \p Second. 16581 static bool areSlicesNextToEachOther(const LoadedSlice &First, 16582 const LoadedSlice &Second) { 16583 assert(First.Origin == Second.Origin && First.Origin && 16584 "Unable to match different memory origins."); 16585 APInt UsedBits = First.getUsedBits(); 16586 assert((UsedBits & Second.getUsedBits()) == 0 && 16587 "Slices are not supposed to overlap."); 16588 UsedBits |= Second.getUsedBits(); 16589 return areUsedBitsDense(UsedBits); 16590 } 16591 16592 /// Adjust the \p GlobalLSCost according to the target 16593 /// paring capabilities and the layout of the slices. 16594 /// \pre \p GlobalLSCost should account for at least as many loads as 16595 /// there is in the slices in \p LoadedSlices. 16596 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16597 LoadedSlice::Cost &GlobalLSCost) { 16598 unsigned NumberOfSlices = LoadedSlices.size(); 16599 // If there is less than 2 elements, no pairing is possible. 16600 if (NumberOfSlices < 2) 16601 return; 16602 16603 // Sort the slices so that elements that are likely to be next to each 16604 // other in memory are next to each other in the list. 16605 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 16606 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 16607 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 16608 }); 16609 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 16610 // First (resp. Second) is the first (resp. Second) potentially candidate 16611 // to be placed in a paired load. 16612 const LoadedSlice *First = nullptr; 16613 const LoadedSlice *Second = nullptr; 16614 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 16615 // Set the beginning of the pair. 16616 First = Second) { 16617 Second = &LoadedSlices[CurrSlice]; 16618 16619 // If First is NULL, it means we start a new pair. 16620 // Get to the next slice. 16621 if (!First) 16622 continue; 16623 16624 EVT LoadedType = First->getLoadedType(); 16625 16626 // If the types of the slices are different, we cannot pair them. 16627 if (LoadedType != Second->getLoadedType()) 16628 continue; 16629 16630 // Check if the target supplies paired loads for this type. 16631 Align RequiredAlignment; 16632 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 16633 // move to the next pair, this type is hopeless. 16634 Second = nullptr; 16635 continue; 16636 } 16637 // Check if we meet the alignment requirement. 16638 if (First->getAlign() < RequiredAlignment) 16639 continue; 16640 16641 // Check that both loads are next to each other in memory. 16642 if (!areSlicesNextToEachOther(*First, *Second)) 16643 continue; 16644 16645 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 16646 --GlobalLSCost.Loads; 16647 // Move to the next pair. 16648 Second = nullptr; 16649 } 16650 } 16651 16652 /// Check the profitability of all involved LoadedSlice. 16653 /// Currently, it is considered profitable if there is exactly two 16654 /// involved slices (1) which are (2) next to each other in memory, and 16655 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 16656 /// 16657 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 16658 /// the elements themselves. 16659 /// 16660 /// FIXME: When the cost model will be mature enough, we can relax 16661 /// constraints (1) and (2). 16662 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16663 const APInt &UsedBits, bool ForCodeSize) { 16664 unsigned NumberOfSlices = LoadedSlices.size(); 16665 if (StressLoadSlicing) 16666 return NumberOfSlices > 1; 16667 16668 // Check (1). 16669 if (NumberOfSlices != 2) 16670 return false; 16671 16672 // Check (2). 16673 if (!areUsedBitsDense(UsedBits)) 16674 return false; 16675 16676 // Check (3). 16677 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 16678 // The original code has one big load. 16679 OrigCost.Loads = 1; 16680 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 16681 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 16682 // Accumulate the cost of all the slices. 16683 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 16684 GlobalSlicingCost += SliceCost; 16685 16686 // Account as cost in the original configuration the gain obtained 16687 // with the current slices. 16688 OrigCost.addSliceGain(LS); 16689 } 16690 16691 // If the target supports paired load, adjust the cost accordingly. 16692 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 16693 return OrigCost > GlobalSlicingCost; 16694 } 16695 16696 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 16697 /// operations, split it in the various pieces being extracted. 16698 /// 16699 /// This sort of thing is introduced by SROA. 16700 /// This slicing takes care not to insert overlapping loads. 16701 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 16702 bool DAGCombiner::SliceUpLoad(SDNode *N) { 16703 if (Level < AfterLegalizeDAG) 16704 return false; 16705 16706 LoadSDNode *LD = cast<LoadSDNode>(N); 16707 if (!LD->isSimple() || !ISD::isNormalLoad(LD) || 16708 !LD->getValueType(0).isInteger()) 16709 return false; 16710 16711 // The algorithm to split up a load of a scalable vector into individual 16712 // elements currently requires knowing the length of the loaded type, 16713 // so will need adjusting to work on scalable vectors. 16714 if (LD->getValueType(0).isScalableVector()) 16715 return false; 16716 16717 // Keep track of already used bits to detect overlapping values. 16718 // In that case, we will just abort the transformation. 16719 APInt UsedBits(LD->getValueSizeInBits(0), 0); 16720 16721 SmallVector<LoadedSlice, 4> LoadedSlices; 16722 16723 // Check if this load is used as several smaller chunks of bits. 16724 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 16725 // of computation for each trunc. 16726 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 16727 UI != UIEnd; ++UI) { 16728 // Skip the uses of the chain. 16729 if (UI.getUse().getResNo() != 0) 16730 continue; 16731 16732 SDNode *User = *UI; 16733 unsigned Shift = 0; 16734 16735 // Check if this is a trunc(lshr). 16736 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 16737 isa<ConstantSDNode>(User->getOperand(1))) { 16738 Shift = User->getConstantOperandVal(1); 16739 User = *User->use_begin(); 16740 } 16741 16742 // At this point, User is a Truncate, iff we encountered, trunc or 16743 // trunc(lshr). 16744 if (User->getOpcode() != ISD::TRUNCATE) 16745 return false; 16746 16747 // The width of the type must be a power of 2 and greater than 8-bits. 16748 // Otherwise the load cannot be represented in LLVM IR. 16749 // Moreover, if we shifted with a non-8-bits multiple, the slice 16750 // will be across several bytes. We do not support that. 16751 unsigned Width = User->getValueSizeInBits(0); 16752 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 16753 return false; 16754 16755 // Build the slice for this chain of computations. 16756 LoadedSlice LS(User, LD, Shift, &DAG); 16757 APInt CurrentUsedBits = LS.getUsedBits(); 16758 16759 // Check if this slice overlaps with another. 16760 if ((CurrentUsedBits & UsedBits) != 0) 16761 return false; 16762 // Update the bits used globally. 16763 UsedBits |= CurrentUsedBits; 16764 16765 // Check if the new slice would be legal. 16766 if (!LS.isLegal()) 16767 return false; 16768 16769 // Record the slice. 16770 LoadedSlices.push_back(LS); 16771 } 16772 16773 // Abort slicing if it does not seem to be profitable. 16774 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 16775 return false; 16776 16777 ++SlicedLoads; 16778 16779 // Rewrite each chain to use an independent load. 16780 // By construction, each chain can be represented by a unique load. 16781 16782 // Prepare the argument for the new token factor for all the slices. 16783 SmallVector<SDValue, 8> ArgChains; 16784 for (const LoadedSlice &LS : LoadedSlices) { 16785 SDValue SliceInst = LS.loadSlice(); 16786 CombineTo(LS.Inst, SliceInst, true); 16787 if (SliceInst.getOpcode() != ISD::LOAD) 16788 SliceInst = SliceInst.getOperand(0); 16789 assert(SliceInst->getOpcode() == ISD::LOAD && 16790 "It takes more than a zext to get to the loaded slice!!"); 16791 ArgChains.push_back(SliceInst.getValue(1)); 16792 } 16793 16794 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 16795 ArgChains); 16796 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 16797 AddToWorklist(Chain.getNode()); 16798 return true; 16799 } 16800 16801 /// Check to see if V is (and load (ptr), imm), where the load is having 16802 /// specific bytes cleared out. If so, return the byte size being masked out 16803 /// and the shift amount. 16804 static std::pair<unsigned, unsigned> 16805 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 16806 std::pair<unsigned, unsigned> Result(0, 0); 16807 16808 // Check for the structure we're looking for. 16809 if (V->getOpcode() != ISD::AND || 16810 !isa<ConstantSDNode>(V->getOperand(1)) || 16811 !ISD::isNormalLoad(V->getOperand(0).getNode())) 16812 return Result; 16813 16814 // Check the chain and pointer. 16815 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 16816 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 16817 16818 // This only handles simple types. 16819 if (V.getValueType() != MVT::i16 && 16820 V.getValueType() != MVT::i32 && 16821 V.getValueType() != MVT::i64) 16822 return Result; 16823 16824 // Check the constant mask. Invert it so that the bits being masked out are 16825 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 16826 // follow the sign bit for uniformity. 16827 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 16828 unsigned NotMaskLZ = countLeadingZeros(NotMask); 16829 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 16830 unsigned NotMaskTZ = countTrailingZeros(NotMask); 16831 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 16832 if (NotMaskLZ == 64) return Result; // All zero mask. 16833 16834 // See if we have a continuous run of bits. If so, we have 0*1+0* 16835 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 16836 return Result; 16837 16838 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 16839 if (V.getValueType() != MVT::i64 && NotMaskLZ) 16840 NotMaskLZ -= 64-V.getValueSizeInBits(); 16841 16842 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 16843 switch (MaskedBytes) { 16844 case 1: 16845 case 2: 16846 case 4: break; 16847 default: return Result; // All one mask, or 5-byte mask. 16848 } 16849 16850 // Verify that the first bit starts at a multiple of mask so that the access 16851 // is aligned the same as the access width. 16852 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 16853 16854 // For narrowing to be valid, it must be the case that the load the 16855 // immediately preceding memory operation before the store. 16856 if (LD == Chain.getNode()) 16857 ; // ok. 16858 else if (Chain->getOpcode() == ISD::TokenFactor && 16859 SDValue(LD, 1).hasOneUse()) { 16860 // LD has only 1 chain use so they are no indirect dependencies. 16861 if (!LD->isOperandOf(Chain.getNode())) 16862 return Result; 16863 } else 16864 return Result; // Fail. 16865 16866 Result.first = MaskedBytes; 16867 Result.second = NotMaskTZ/8; 16868 return Result; 16869 } 16870 16871 /// Check to see if IVal is something that provides a value as specified by 16872 /// MaskInfo. If so, replace the specified store with a narrower store of 16873 /// truncated IVal. 16874 static SDValue 16875 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 16876 SDValue IVal, StoreSDNode *St, 16877 DAGCombiner *DC) { 16878 unsigned NumBytes = MaskInfo.first; 16879 unsigned ByteShift = MaskInfo.second; 16880 SelectionDAG &DAG = DC->getDAG(); 16881 16882 // Check to see if IVal is all zeros in the part being masked in by the 'or' 16883 // that uses this. If not, this is not a replacement. 16884 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 16885 ByteShift*8, (ByteShift+NumBytes)*8); 16886 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); 16887 16888 // Check that it is legal on the target to do this. It is legal if the new 16889 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 16890 // legalization (and the target doesn't explicitly think this is a bad idea). 16891 MVT VT = MVT::getIntegerVT(NumBytes * 8); 16892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 16893 if (!DC->isTypeLegal(VT)) 16894 return SDValue(); 16895 if (St->getMemOperand() && 16896 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 16897 *St->getMemOperand())) 16898 return SDValue(); 16899 16900 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 16901 // shifted by ByteShift and truncated down to NumBytes. 16902 if (ByteShift) { 16903 SDLoc DL(IVal); 16904 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 16905 DAG.getConstant(ByteShift*8, DL, 16906 DC->getShiftAmountTy(IVal.getValueType()))); 16907 } 16908 16909 // Figure out the offset for the store and the alignment of the access. 16910 unsigned StOffset; 16911 if (DAG.getDataLayout().isLittleEndian()) 16912 StOffset = ByteShift; 16913 else 16914 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 16915 16916 SDValue Ptr = St->getBasePtr(); 16917 if (StOffset) { 16918 SDLoc DL(IVal); 16919 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); 16920 } 16921 16922 // Truncate down to the new size. 16923 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 16924 16925 ++OpsNarrowed; 16926 return DAG 16927 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 16928 St->getPointerInfo().getWithOffset(StOffset), 16929 St->getOriginalAlign()); 16930 } 16931 16932 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 16933 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 16934 /// narrowing the load and store if it would end up being a win for performance 16935 /// or code size. 16936 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 16937 StoreSDNode *ST = cast<StoreSDNode>(N); 16938 if (!ST->isSimple()) 16939 return SDValue(); 16940 16941 SDValue Chain = ST->getChain(); 16942 SDValue Value = ST->getValue(); 16943 SDValue Ptr = ST->getBasePtr(); 16944 EVT VT = Value.getValueType(); 16945 16946 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 16947 return SDValue(); 16948 16949 unsigned Opc = Value.getOpcode(); 16950 16951 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 16952 // is a byte mask indicating a consecutive number of bytes, check to see if 16953 // Y is known to provide just those bytes. If so, we try to replace the 16954 // load + replace + store sequence with a single (narrower) store, which makes 16955 // the load dead. 16956 if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { 16957 std::pair<unsigned, unsigned> MaskedLoad; 16958 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 16959 if (MaskedLoad.first) 16960 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16961 Value.getOperand(1), ST,this)) 16962 return NewST; 16963 16964 // Or is commutative, so try swapping X and Y. 16965 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 16966 if (MaskedLoad.first) 16967 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16968 Value.getOperand(0), ST,this)) 16969 return NewST; 16970 } 16971 16972 if (!EnableReduceLoadOpStoreWidth) 16973 return SDValue(); 16974 16975 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 16976 Value.getOperand(1).getOpcode() != ISD::Constant) 16977 return SDValue(); 16978 16979 SDValue N0 = Value.getOperand(0); 16980 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 16981 Chain == SDValue(N0.getNode(), 1)) { 16982 LoadSDNode *LD = cast<LoadSDNode>(N0); 16983 if (LD->getBasePtr() != Ptr || 16984 LD->getPointerInfo().getAddrSpace() != 16985 ST->getPointerInfo().getAddrSpace()) 16986 return SDValue(); 16987 16988 // Find the type to narrow it the load / op / store to. 16989 SDValue N1 = Value.getOperand(1); 16990 unsigned BitWidth = N1.getValueSizeInBits(); 16991 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 16992 if (Opc == ISD::AND) 16993 Imm ^= APInt::getAllOnes(BitWidth); 16994 if (Imm == 0 || Imm.isAllOnes()) 16995 return SDValue(); 16996 unsigned ShAmt = Imm.countTrailingZeros(); 16997 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 16998 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 16999 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 17000 // The narrowing should be profitable, the load/store operation should be 17001 // legal (or custom) and the store size should be equal to the NewVT width. 17002 while (NewBW < BitWidth && 17003 (NewVT.getStoreSizeInBits() != NewBW || 17004 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 17005 !TLI.isNarrowingProfitable(VT, NewVT))) { 17006 NewBW = NextPowerOf2(NewBW); 17007 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 17008 } 17009 if (NewBW >= BitWidth) 17010 return SDValue(); 17011 17012 // If the lsb changed does not start at the type bitwidth boundary, 17013 // start at the previous one. 17014 if (ShAmt % NewBW) 17015 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 17016 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 17017 std::min(BitWidth, ShAmt + NewBW)); 17018 if ((Imm & Mask) == Imm) { 17019 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 17020 if (Opc == ISD::AND) 17021 NewImm ^= APInt::getAllOnes(NewBW); 17022 uint64_t PtrOff = ShAmt / 8; 17023 // For big endian targets, we need to adjust the offset to the pointer to 17024 // load the correct bytes. 17025 if (DAG.getDataLayout().isBigEndian()) 17026 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 17027 17028 bool IsFast = false; 17029 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); 17030 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT, 17031 LD->getAddressSpace(), NewAlign, 17032 LD->getMemOperand()->getFlags(), &IsFast) || 17033 !IsFast) 17034 return SDValue(); 17035 17036 SDValue NewPtr = 17037 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); 17038 SDValue NewLD = 17039 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 17040 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 17041 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 17042 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 17043 DAG.getConstant(NewImm, SDLoc(Value), 17044 NewVT)); 17045 SDValue NewST = 17046 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 17047 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 17048 17049 AddToWorklist(NewPtr.getNode()); 17050 AddToWorklist(NewLD.getNode()); 17051 AddToWorklist(NewVal.getNode()); 17052 WorklistRemover DeadNodes(*this); 17053 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 17054 ++OpsNarrowed; 17055 return NewST; 17056 } 17057 } 17058 17059 return SDValue(); 17060 } 17061 17062 /// For a given floating point load / store pair, if the load value isn't used 17063 /// by any other operations, then consider transforming the pair to integer 17064 /// load / store operations if the target deems the transformation profitable. 17065 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 17066 StoreSDNode *ST = cast<StoreSDNode>(N); 17067 SDValue Value = ST->getValue(); 17068 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 17069 Value.hasOneUse()) { 17070 LoadSDNode *LD = cast<LoadSDNode>(Value); 17071 EVT VT = LD->getMemoryVT(); 17072 if (!VT.isFloatingPoint() || 17073 VT != ST->getMemoryVT() || 17074 LD->isNonTemporal() || 17075 ST->isNonTemporal() || 17076 LD->getPointerInfo().getAddrSpace() != 0 || 17077 ST->getPointerInfo().getAddrSpace() != 0) 17078 return SDValue(); 17079 17080 TypeSize VTSize = VT.getSizeInBits(); 17081 17082 // We don't know the size of scalable types at compile time so we cannot 17083 // create an integer of the equivalent size. 17084 if (VTSize.isScalable()) 17085 return SDValue(); 17086 17087 bool FastLD = false, FastST = false; 17088 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); 17089 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 17090 !TLI.isOperationLegal(ISD::STORE, IntVT) || 17091 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 17092 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) || 17093 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 17094 *LD->getMemOperand(), &FastLD) || 17095 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 17096 *ST->getMemOperand(), &FastST) || 17097 !FastLD || !FastST) 17098 return SDValue(); 17099 17100 SDValue NewLD = 17101 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 17102 LD->getPointerInfo(), LD->getAlign()); 17103 17104 SDValue NewST = 17105 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), 17106 ST->getPointerInfo(), ST->getAlign()); 17107 17108 AddToWorklist(NewLD.getNode()); 17109 AddToWorklist(NewST.getNode()); 17110 WorklistRemover DeadNodes(*this); 17111 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 17112 ++LdStFP2Int; 17113 return NewST; 17114 } 17115 17116 return SDValue(); 17117 } 17118 17119 // This is a helper function for visitMUL to check the profitability 17120 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 17121 // MulNode is the original multiply, AddNode is (add x, c1), 17122 // and ConstNode is c2. 17123 // 17124 // If the (add x, c1) has multiple uses, we could increase 17125 // the number of adds if we make this transformation. 17126 // It would only be worth doing this if we can remove a 17127 // multiply in the process. Check for that here. 17128 // To illustrate: 17129 // (A + c1) * c3 17130 // (A + c2) * c3 17131 // We're checking for cases where we have common "c3 * A" expressions. 17132 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 17133 SDValue &AddNode, 17134 SDValue &ConstNode) { 17135 APInt Val; 17136 17137 // If the add only has one use, and the target thinks the folding is 17138 // profitable or does not lead to worse code, this would be OK to do. 17139 if (AddNode.getNode()->hasOneUse() && 17140 TLI.isMulAddWithConstProfitable(AddNode, ConstNode)) 17141 return true; 17142 17143 // Walk all the users of the constant with which we're multiplying. 17144 for (SDNode *Use : ConstNode->uses()) { 17145 if (Use == MulNode) // This use is the one we're on right now. Skip it. 17146 continue; 17147 17148 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 17149 SDNode *OtherOp; 17150 SDNode *MulVar = AddNode.getOperand(0).getNode(); 17151 17152 // OtherOp is what we're multiplying against the constant. 17153 if (Use->getOperand(0) == ConstNode) 17154 OtherOp = Use->getOperand(1).getNode(); 17155 else 17156 OtherOp = Use->getOperand(0).getNode(); 17157 17158 // Check to see if multiply is with the same operand of our "add". 17159 // 17160 // ConstNode = CONST 17161 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 17162 // ... 17163 // AddNode = (A + c1) <-- MulVar is A. 17164 // = AddNode * ConstNode <-- current visiting instruction. 17165 // 17166 // If we make this transformation, we will have a common 17167 // multiply (ConstNode * A) that we can save. 17168 if (OtherOp == MulVar) 17169 return true; 17170 17171 // Now check to see if a future expansion will give us a common 17172 // multiply. 17173 // 17174 // ConstNode = CONST 17175 // AddNode = (A + c1) 17176 // ... = AddNode * ConstNode <-- current visiting instruction. 17177 // ... 17178 // OtherOp = (A + c2) 17179 // Use = OtherOp * ConstNode <-- visiting Use. 17180 // 17181 // If we make this transformation, we will have a common 17182 // multiply (CONST * A) after we also do the same transformation 17183 // to the "t2" instruction. 17184 if (OtherOp->getOpcode() == ISD::ADD && 17185 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 17186 OtherOp->getOperand(0).getNode() == MulVar) 17187 return true; 17188 } 17189 } 17190 17191 // Didn't find a case where this would be profitable. 17192 return false; 17193 } 17194 17195 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 17196 unsigned NumStores) { 17197 SmallVector<SDValue, 8> Chains; 17198 SmallPtrSet<const SDNode *, 8> Visited; 17199 SDLoc StoreDL(StoreNodes[0].MemNode); 17200 17201 for (unsigned i = 0; i < NumStores; ++i) { 17202 Visited.insert(StoreNodes[i].MemNode); 17203 } 17204 17205 // don't include nodes that are children or repeated nodes. 17206 for (unsigned i = 0; i < NumStores; ++i) { 17207 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 17208 Chains.push_back(StoreNodes[i].MemNode->getChain()); 17209 } 17210 17211 assert(Chains.size() > 0 && "Chain should have generated a chain"); 17212 return DAG.getTokenFactor(StoreDL, Chains); 17213 } 17214 17215 bool DAGCombiner::mergeStoresOfConstantsOrVecElts( 17216 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 17217 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 17218 // Make sure we have something to merge. 17219 if (NumStores < 2) 17220 return false; 17221 17222 assert((!UseTrunc || !UseVector) && 17223 "This optimization cannot emit a vector truncating store"); 17224 17225 // The latest Node in the DAG. 17226 SDLoc DL(StoreNodes[0].MemNode); 17227 17228 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); 17229 unsigned SizeInBits = NumStores * ElementSizeBits; 17230 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17231 17232 Optional<MachineMemOperand::Flags> Flags; 17233 AAMDNodes AAInfo; 17234 for (unsigned I = 0; I != NumStores; ++I) { 17235 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 17236 if (!Flags) { 17237 Flags = St->getMemOperand()->getFlags(); 17238 AAInfo = St->getAAInfo(); 17239 continue; 17240 } 17241 // Skip merging if there's an inconsistent flag. 17242 if (Flags != St->getMemOperand()->getFlags()) 17243 return false; 17244 // Concatenate AA metadata. 17245 AAInfo = AAInfo.concat(St->getAAInfo()); 17246 } 17247 17248 EVT StoreTy; 17249 if (UseVector) { 17250 unsigned Elts = NumStores * NumMemElts; 17251 // Get the type for the merged vector store. 17252 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 17253 } else 17254 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 17255 17256 SDValue StoredVal; 17257 if (UseVector) { 17258 if (IsConstantSrc) { 17259 SmallVector<SDValue, 8> BuildVector; 17260 for (unsigned I = 0; I != NumStores; ++I) { 17261 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 17262 SDValue Val = St->getValue(); 17263 // If constant is of the wrong type, convert it now. 17264 if (MemVT != Val.getValueType()) { 17265 Val = peekThroughBitcasts(Val); 17266 // Deal with constants of wrong size. 17267 if (ElementSizeBits != Val.getValueSizeInBits()) { 17268 EVT IntMemVT = 17269 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 17270 if (isa<ConstantFPSDNode>(Val)) { 17271 // Not clear how to truncate FP values. 17272 return false; 17273 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 17274 Val = DAG.getConstant(C->getAPIntValue() 17275 .zextOrTrunc(Val.getValueSizeInBits()) 17276 .zextOrTrunc(ElementSizeBits), 17277 SDLoc(C), IntMemVT); 17278 } 17279 // Make sure correctly size type is the correct type. 17280 Val = DAG.getBitcast(MemVT, Val); 17281 } 17282 BuildVector.push_back(Val); 17283 } 17284 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17285 : ISD::BUILD_VECTOR, 17286 DL, StoreTy, BuildVector); 17287 } else { 17288 SmallVector<SDValue, 8> Ops; 17289 for (unsigned i = 0; i < NumStores; ++i) { 17290 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17291 SDValue Val = peekThroughBitcasts(St->getValue()); 17292 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 17293 // type MemVT. If the underlying value is not the correct 17294 // type, but it is an extraction of an appropriate vector we 17295 // can recast Val to be of the correct type. This may require 17296 // converting between EXTRACT_VECTOR_ELT and 17297 // EXTRACT_SUBVECTOR. 17298 if ((MemVT != Val.getValueType()) && 17299 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 17300 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 17301 EVT MemVTScalarTy = MemVT.getScalarType(); 17302 // We may need to add a bitcast here to get types to line up. 17303 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 17304 Val = DAG.getBitcast(MemVT, Val); 17305 } else { 17306 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 17307 : ISD::EXTRACT_VECTOR_ELT; 17308 SDValue Vec = Val.getOperand(0); 17309 SDValue Idx = Val.getOperand(1); 17310 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 17311 } 17312 } 17313 Ops.push_back(Val); 17314 } 17315 17316 // Build the extracted vector elements back into a vector. 17317 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17318 : ISD::BUILD_VECTOR, 17319 DL, StoreTy, Ops); 17320 } 17321 } else { 17322 // We should always use a vector store when merging extracted vector 17323 // elements, so this path implies a store of constants. 17324 assert(IsConstantSrc && "Merged vector elements should use vector store"); 17325 17326 APInt StoreInt(SizeInBits, 0); 17327 17328 // Construct a single integer constant which is made of the smaller 17329 // constant inputs. 17330 bool IsLE = DAG.getDataLayout().isLittleEndian(); 17331 for (unsigned i = 0; i < NumStores; ++i) { 17332 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 17333 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 17334 17335 SDValue Val = St->getValue(); 17336 Val = peekThroughBitcasts(Val); 17337 StoreInt <<= ElementSizeBits; 17338 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 17339 StoreInt |= C->getAPIntValue() 17340 .zextOrTrunc(ElementSizeBits) 17341 .zextOrTrunc(SizeInBits); 17342 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 17343 StoreInt |= C->getValueAPF() 17344 .bitcastToAPInt() 17345 .zextOrTrunc(ElementSizeBits) 17346 .zextOrTrunc(SizeInBits); 17347 // If fp truncation is necessary give up for now. 17348 if (MemVT.getSizeInBits() != ElementSizeBits) 17349 return false; 17350 } else { 17351 llvm_unreachable("Invalid constant element type"); 17352 } 17353 } 17354 17355 // Create the new Load and Store operations. 17356 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 17357 } 17358 17359 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17360 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 17361 17362 // make sure we use trunc store if it's necessary to be legal. 17363 SDValue NewStore; 17364 if (!UseTrunc) { 17365 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 17366 FirstInChain->getPointerInfo(), 17367 FirstInChain->getAlign(), Flags.getValue(), AAInfo); 17368 } else { // Must be realized as a trunc store 17369 EVT LegalizedStoredValTy = 17370 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 17371 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 17372 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 17373 SDValue ExtendedStoreVal = 17374 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 17375 LegalizedStoredValTy); 17376 NewStore = DAG.getTruncStore( 17377 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 17378 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 17379 FirstInChain->getAlign(), Flags.getValue(), AAInfo); 17380 } 17381 17382 // Replace all merged stores with the new store. 17383 for (unsigned i = 0; i < NumStores; ++i) 17384 CombineTo(StoreNodes[i].MemNode, NewStore); 17385 17386 AddToWorklist(NewChain.getNode()); 17387 return true; 17388 } 17389 17390 void DAGCombiner::getStoreMergeCandidates( 17391 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 17392 SDNode *&RootNode) { 17393 // This holds the base pointer, index, and the offset in bytes from the base 17394 // pointer. We must have a base and an offset. Do not handle stores to undef 17395 // base pointers. 17396 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 17397 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) 17398 return; 17399 17400 SDValue Val = peekThroughBitcasts(St->getValue()); 17401 StoreSource StoreSrc = getStoreSource(Val); 17402 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); 17403 17404 // Match on loadbaseptr if relevant. 17405 EVT MemVT = St->getMemoryVT(); 17406 BaseIndexOffset LBasePtr; 17407 EVT LoadVT; 17408 if (StoreSrc == StoreSource::Load) { 17409 auto *Ld = cast<LoadSDNode>(Val); 17410 LBasePtr = BaseIndexOffset::match(Ld, DAG); 17411 LoadVT = Ld->getMemoryVT(); 17412 // Load and store should be the same type. 17413 if (MemVT != LoadVT) 17414 return; 17415 // Loads must only have one use. 17416 if (!Ld->hasNUsesOfValue(1, 0)) 17417 return; 17418 // The memory operands must not be volatile/indexed/atomic. 17419 // TODO: May be able to relax for unordered atomics (see D66309) 17420 if (!Ld->isSimple() || Ld->isIndexed()) 17421 return; 17422 } 17423 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 17424 int64_t &Offset) -> bool { 17425 // The memory operands must not be volatile/indexed/atomic. 17426 // TODO: May be able to relax for unordered atomics (see D66309) 17427 if (!Other->isSimple() || Other->isIndexed()) 17428 return false; 17429 // Don't mix temporal stores with non-temporal stores. 17430 if (St->isNonTemporal() != Other->isNonTemporal()) 17431 return false; 17432 SDValue OtherBC = peekThroughBitcasts(Other->getValue()); 17433 // Allow merging constants of different types as integers. 17434 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 17435 : Other->getMemoryVT() != MemVT; 17436 switch (StoreSrc) { 17437 case StoreSource::Load: { 17438 if (NoTypeMatch) 17439 return false; 17440 // The Load's Base Ptr must also match. 17441 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); 17442 if (!OtherLd) 17443 return false; 17444 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); 17445 if (LoadVT != OtherLd->getMemoryVT()) 17446 return false; 17447 // Loads must only have one use. 17448 if (!OtherLd->hasNUsesOfValue(1, 0)) 17449 return false; 17450 // The memory operands must not be volatile/indexed/atomic. 17451 // TODO: May be able to relax for unordered atomics (see D66309) 17452 if (!OtherLd->isSimple() || OtherLd->isIndexed()) 17453 return false; 17454 // Don't mix temporal loads with non-temporal loads. 17455 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) 17456 return false; 17457 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 17458 return false; 17459 break; 17460 } 17461 case StoreSource::Constant: 17462 if (NoTypeMatch) 17463 return false; 17464 if (!isIntOrFPConstant(OtherBC)) 17465 return false; 17466 break; 17467 case StoreSource::Extract: 17468 // Do not merge truncated stores here. 17469 if (Other->isTruncatingStore()) 17470 return false; 17471 if (!MemVT.bitsEq(OtherBC.getValueType())) 17472 return false; 17473 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 17474 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) 17475 return false; 17476 break; 17477 default: 17478 llvm_unreachable("Unhandled store source for merging"); 17479 } 17480 Ptr = BaseIndexOffset::match(Other, DAG); 17481 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 17482 }; 17483 17484 // Check if the pair of StoreNode and the RootNode already bail out many 17485 // times which is over the limit in dependence check. 17486 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, 17487 SDNode *RootNode) -> bool { 17488 auto RootCount = StoreRootCountMap.find(StoreNode); 17489 return RootCount != StoreRootCountMap.end() && 17490 RootCount->second.first == RootNode && 17491 RootCount->second.second > StoreMergeDependenceLimit; 17492 }; 17493 17494 auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { 17495 // This must be a chain use. 17496 if (UseIter.getOperandNo() != 0) 17497 return; 17498 if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) { 17499 BaseIndexOffset Ptr; 17500 int64_t PtrDiff; 17501 if (CandidateMatch(OtherStore, Ptr, PtrDiff) && 17502 !OverLimitInDependenceCheck(OtherStore, RootNode)) 17503 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); 17504 } 17505 }; 17506 17507 // We looking for a root node which is an ancestor to all mergable 17508 // stores. We search up through a load, to our root and then down 17509 // through all children. For instance we will find Store{1,2,3} if 17510 // St is Store1, Store2. or Store3 where the root is not a load 17511 // which always true for nonvolatile ops. TODO: Expand 17512 // the search to find all valid candidates through multiple layers of loads. 17513 // 17514 // Root 17515 // |-------|-------| 17516 // Load Load Store3 17517 // | | 17518 // Store1 Store2 17519 // 17520 // FIXME: We should be able to climb and 17521 // descend TokenFactors to find candidates as well. 17522 17523 RootNode = St->getChain().getNode(); 17524 17525 unsigned NumNodesExplored = 0; 17526 const unsigned MaxSearchNodes = 1024; 17527 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 17528 RootNode = Ldn->getChain().getNode(); 17529 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17530 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { 17531 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain 17532 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 17533 TryToAddCandidate(I2); 17534 } 17535 // Check stores that depend on the root (e.g. Store 3 in the chart above). 17536 if (I.getOperandNo() == 0 && isa<StoreSDNode>(*I)) { 17537 TryToAddCandidate(I); 17538 } 17539 } 17540 } else { 17541 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17542 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) 17543 TryToAddCandidate(I); 17544 } 17545 } 17546 17547 // We need to check that merging these stores does not cause a loop in 17548 // the DAG. Any store candidate may depend on another candidate 17549 // indirectly through its operand (we already consider dependencies 17550 // through the chain). Check in parallel by searching up from 17551 // non-chain operands of candidates. 17552 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 17553 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 17554 SDNode *RootNode) { 17555 // FIXME: We should be able to truncate a full search of 17556 // predecessors by doing a BFS and keeping tabs the originating 17557 // stores from which worklist nodes come from in a similar way to 17558 // TokenFactor simplfication. 17559 17560 SmallPtrSet<const SDNode *, 32> Visited; 17561 SmallVector<const SDNode *, 8> Worklist; 17562 17563 // RootNode is a predecessor to all candidates so we need not search 17564 // past it. Add RootNode (peeking through TokenFactors). Do not count 17565 // these towards size check. 17566 17567 Worklist.push_back(RootNode); 17568 while (!Worklist.empty()) { 17569 auto N = Worklist.pop_back_val(); 17570 if (!Visited.insert(N).second) 17571 continue; // Already present in Visited. 17572 if (N->getOpcode() == ISD::TokenFactor) { 17573 for (SDValue Op : N->ops()) 17574 Worklist.push_back(Op.getNode()); 17575 } 17576 } 17577 17578 // Don't count pruning nodes towards max. 17579 unsigned int Max = 1024 + Visited.size(); 17580 // Search Ops of store candidates. 17581 for (unsigned i = 0; i < NumStores; ++i) { 17582 SDNode *N = StoreNodes[i].MemNode; 17583 // Of the 4 Store Operands: 17584 // * Chain (Op 0) -> We have already considered these 17585 // in candidate selection and can be 17586 // safely ignored 17587 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 17588 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 17589 // but aren't necessarily fromt the same base node, so 17590 // cycles possible (e.g. via indexed store). 17591 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 17592 // non-indexed stores). Not constant on all targets (e.g. ARM) 17593 // and so can participate in a cycle. 17594 for (unsigned j = 1; j < N->getNumOperands(); ++j) 17595 Worklist.push_back(N->getOperand(j).getNode()); 17596 } 17597 // Search through DAG. We can stop early if we find a store node. 17598 for (unsigned i = 0; i < NumStores; ++i) 17599 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 17600 Max)) { 17601 // If the searching bail out, record the StoreNode and RootNode in the 17602 // StoreRootCountMap. If we have seen the pair many times over a limit, 17603 // we won't add the StoreNode into StoreNodes set again. 17604 if (Visited.size() >= Max) { 17605 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; 17606 if (RootCount.first == RootNode) 17607 RootCount.second++; 17608 else 17609 RootCount = {RootNode, 1}; 17610 } 17611 return false; 17612 } 17613 return true; 17614 } 17615 17616 unsigned 17617 DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 17618 int64_t ElementSizeBytes) const { 17619 while (true) { 17620 // Find a store past the width of the first store. 17621 size_t StartIdx = 0; 17622 while ((StartIdx + 1 < StoreNodes.size()) && 17623 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 17624 StoreNodes[StartIdx + 1].OffsetFromBase) 17625 ++StartIdx; 17626 17627 // Bail if we don't have enough candidates to merge. 17628 if (StartIdx + 1 >= StoreNodes.size()) 17629 return 0; 17630 17631 // Trim stores that overlapped with the first store. 17632 if (StartIdx) 17633 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 17634 17635 // Scan the memory operations on the chain and find the first 17636 // non-consecutive store memory address. 17637 unsigned NumConsecutiveStores = 1; 17638 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 17639 // Check that the addresses are consecutive starting from the second 17640 // element in the list of stores. 17641 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 17642 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 17643 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17644 break; 17645 NumConsecutiveStores = i + 1; 17646 } 17647 if (NumConsecutiveStores > 1) 17648 return NumConsecutiveStores; 17649 17650 // There are no consecutive stores at the start of the list. 17651 // Remove the first store and try again. 17652 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); 17653 } 17654 } 17655 17656 bool DAGCombiner::tryStoreMergeOfConstants( 17657 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 17658 EVT MemVT, SDNode *RootNode, bool AllowVectors) { 17659 LLVMContext &Context = *DAG.getContext(); 17660 const DataLayout &DL = DAG.getDataLayout(); 17661 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17662 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17663 bool MadeChange = false; 17664 17665 // Store the constants into memory as one consecutive store. 17666 while (NumConsecutiveStores >= 2) { 17667 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17668 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17669 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 17670 unsigned LastLegalType = 1; 17671 unsigned LastLegalVectorType = 1; 17672 bool LastIntegerTrunc = false; 17673 bool NonZero = false; 17674 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 17675 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17676 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 17677 SDValue StoredVal = ST->getValue(); 17678 bool IsElementZero = false; 17679 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 17680 IsElementZero = C->isZero(); 17681 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 17682 IsElementZero = C->getConstantFPValue()->isNullValue(); 17683 if (IsElementZero) { 17684 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 17685 FirstZeroAfterNonZero = i; 17686 } 17687 NonZero |= !IsElementZero; 17688 17689 // Find a legal type for the constant store. 17690 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17691 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17692 bool IsFast = false; 17693 17694 // Break early when size is too large to be legal. 17695 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17696 break; 17697 17698 if (TLI.isTypeLegal(StoreTy) && 17699 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17700 DAG.getMachineFunction()) && 17701 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17702 *FirstInChain->getMemOperand(), &IsFast) && 17703 IsFast) { 17704 LastIntegerTrunc = false; 17705 LastLegalType = i + 1; 17706 // Or check whether a truncstore is legal. 17707 } else if (TLI.getTypeAction(Context, StoreTy) == 17708 TargetLowering::TypePromoteInteger) { 17709 EVT LegalizedStoredValTy = 17710 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 17711 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17712 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 17713 DAG.getMachineFunction()) && 17714 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17715 *FirstInChain->getMemOperand(), &IsFast) && 17716 IsFast) { 17717 LastIntegerTrunc = true; 17718 LastLegalType = i + 1; 17719 } 17720 } 17721 17722 // We only use vectors if the constant is known to be zero or the 17723 // target allows it and the function is not marked with the 17724 // noimplicitfloat attribute. 17725 if ((!NonZero || 17726 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 17727 AllowVectors) { 17728 // Find a legal type for the vector store. 17729 unsigned Elts = (i + 1) * NumMemElts; 17730 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17731 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 17732 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 17733 TLI.allowsMemoryAccess(Context, DL, Ty, 17734 *FirstInChain->getMemOperand(), &IsFast) && 17735 IsFast) 17736 LastLegalVectorType = i + 1; 17737 } 17738 } 17739 17740 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; 17741 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 17742 bool UseTrunc = LastIntegerTrunc && !UseVector; 17743 17744 // Check if we found a legal integer type that creates a meaningful 17745 // merge. 17746 if (NumElem < 2) { 17747 // We know that candidate stores are in order and of correct 17748 // shape. While there is no mergeable sequence from the 17749 // beginning one may start later in the sequence. The only 17750 // reason a merge of size N could have failed where another of 17751 // the same size would not have, is if the alignment has 17752 // improved or we've dropped a non-zero value. Drop as many 17753 // candidates as we can here. 17754 unsigned NumSkip = 1; 17755 while ((NumSkip < NumConsecutiveStores) && 17756 (NumSkip < FirstZeroAfterNonZero) && 17757 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17758 NumSkip++; 17759 17760 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17761 NumConsecutiveStores -= NumSkip; 17762 continue; 17763 } 17764 17765 // Check that we can merge these candidates without causing a cycle. 17766 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 17767 RootNode)) { 17768 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17769 NumConsecutiveStores -= NumElem; 17770 continue; 17771 } 17772 17773 MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 17774 /*IsConstantSrc*/ true, 17775 UseVector, UseTrunc); 17776 17777 // Remove merged stores for next iteration. 17778 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17779 NumConsecutiveStores -= NumElem; 17780 } 17781 return MadeChange; 17782 } 17783 17784 bool DAGCombiner::tryStoreMergeOfExtracts( 17785 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 17786 EVT MemVT, SDNode *RootNode) { 17787 LLVMContext &Context = *DAG.getContext(); 17788 const DataLayout &DL = DAG.getDataLayout(); 17789 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17790 bool MadeChange = false; 17791 17792 // Loop on Consecutive Stores on success. 17793 while (NumConsecutiveStores >= 2) { 17794 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17795 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17796 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 17797 unsigned NumStoresToMerge = 1; 17798 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17799 // Find a legal type for the vector store. 17800 unsigned Elts = (i + 1) * NumMemElts; 17801 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 17802 bool IsFast = false; 17803 17804 // Break early when size is too large to be legal. 17805 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 17806 break; 17807 17808 if (TLI.isTypeLegal(Ty) && 17809 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 17810 TLI.allowsMemoryAccess(Context, DL, Ty, 17811 *FirstInChain->getMemOperand(), &IsFast) && 17812 IsFast) 17813 NumStoresToMerge = i + 1; 17814 } 17815 17816 // Check if we found a legal integer type creating a meaningful 17817 // merge. 17818 if (NumStoresToMerge < 2) { 17819 // We know that candidate stores are in order and of correct 17820 // shape. While there is no mergeable sequence from the 17821 // beginning one may start later in the sequence. The only 17822 // reason a merge of size N could have failed where another of 17823 // the same size would not have, is if the alignment has 17824 // improved. Drop as many candidates as we can here. 17825 unsigned NumSkip = 1; 17826 while ((NumSkip < NumConsecutiveStores) && 17827 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17828 NumSkip++; 17829 17830 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17831 NumConsecutiveStores -= NumSkip; 17832 continue; 17833 } 17834 17835 // Check that we can merge these candidates without causing a cycle. 17836 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, 17837 RootNode)) { 17838 StoreNodes.erase(StoreNodes.begin(), 17839 StoreNodes.begin() + NumStoresToMerge); 17840 NumConsecutiveStores -= NumStoresToMerge; 17841 continue; 17842 } 17843 17844 MadeChange |= mergeStoresOfConstantsOrVecElts( 17845 StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false, 17846 /*UseVector*/ true, /*UseTrunc*/ false); 17847 17848 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); 17849 NumConsecutiveStores -= NumStoresToMerge; 17850 } 17851 return MadeChange; 17852 } 17853 17854 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 17855 unsigned NumConsecutiveStores, EVT MemVT, 17856 SDNode *RootNode, bool AllowVectors, 17857 bool IsNonTemporalStore, 17858 bool IsNonTemporalLoad) { 17859 LLVMContext &Context = *DAG.getContext(); 17860 const DataLayout &DL = DAG.getDataLayout(); 17861 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17862 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17863 bool MadeChange = false; 17864 17865 // Look for load nodes which are used by the stored values. 17866 SmallVector<MemOpLink, 8> LoadNodes; 17867 17868 // Find acceptable loads. Loads need to have the same chain (token factor), 17869 // must not be zext, volatile, indexed, and they must be consecutive. 17870 BaseIndexOffset LdBasePtr; 17871 17872 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17873 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17874 SDValue Val = peekThroughBitcasts(St->getValue()); 17875 LoadSDNode *Ld = cast<LoadSDNode>(Val); 17876 17877 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 17878 // If this is not the first ptr that we check. 17879 int64_t LdOffset = 0; 17880 if (LdBasePtr.getBase().getNode()) { 17881 // The base ptr must be the same. 17882 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 17883 break; 17884 } else { 17885 // Check that all other base pointers are the same as this one. 17886 LdBasePtr = LdPtr; 17887 } 17888 17889 // We found a potential memory operand to merge. 17890 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 17891 } 17892 17893 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 17894 Align RequiredAlignment; 17895 bool NeedRotate = false; 17896 if (LoadNodes.size() == 2) { 17897 // If we have load/store pair instructions and we only have two values, 17898 // don't bother merging. 17899 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && 17900 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { 17901 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 17902 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 17903 break; 17904 } 17905 // If the loads are reversed, see if we can rotate the halves into place. 17906 int64_t Offset0 = LoadNodes[0].OffsetFromBase; 17907 int64_t Offset1 = LoadNodes[1].OffsetFromBase; 17908 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); 17909 if (Offset0 - Offset1 == ElementSizeBytes && 17910 (hasOperation(ISD::ROTL, PairVT) || 17911 hasOperation(ISD::ROTR, PairVT))) { 17912 std::swap(LoadNodes[0], LoadNodes[1]); 17913 NeedRotate = true; 17914 } 17915 } 17916 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17917 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17918 Align FirstStoreAlign = FirstInChain->getAlign(); 17919 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 17920 17921 // Scan the memory operations on the chain and find the first 17922 // non-consecutive load memory address. These variables hold the index in 17923 // the store node array. 17924 17925 unsigned LastConsecutiveLoad = 1; 17926 17927 // This variable refers to the size and not index in the array. 17928 unsigned LastLegalVectorType = 1; 17929 unsigned LastLegalIntegerType = 1; 17930 bool isDereferenceable = true; 17931 bool DoIntegerTruncate = false; 17932 int64_t StartAddress = LoadNodes[0].OffsetFromBase; 17933 SDValue LoadChain = FirstLoad->getChain(); 17934 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 17935 // All loads must share the same chain. 17936 if (LoadNodes[i].MemNode->getChain() != LoadChain) 17937 break; 17938 17939 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 17940 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17941 break; 17942 LastConsecutiveLoad = i; 17943 17944 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 17945 isDereferenceable = false; 17946 17947 // Find a legal type for the vector store. 17948 unsigned Elts = (i + 1) * NumMemElts; 17949 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17950 17951 // Break early when size is too large to be legal. 17952 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17953 break; 17954 17955 bool IsFastSt = false; 17956 bool IsFastLd = false; 17957 // Don't try vector types if we need a rotate. We may still fail the 17958 // legality checks for the integer type, but we can't handle the rotate 17959 // case with vectors. 17960 // FIXME: We could use a shuffle in place of the rotate. 17961 if (!NeedRotate && TLI.isTypeLegal(StoreTy) && 17962 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17963 DAG.getMachineFunction()) && 17964 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17965 *FirstInChain->getMemOperand(), &IsFastSt) && 17966 IsFastSt && 17967 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17968 *FirstLoad->getMemOperand(), &IsFastLd) && 17969 IsFastLd) { 17970 LastLegalVectorType = i + 1; 17971 } 17972 17973 // Find a legal type for the integer store. 17974 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17975 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17976 if (TLI.isTypeLegal(StoreTy) && 17977 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17978 DAG.getMachineFunction()) && 17979 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17980 *FirstInChain->getMemOperand(), &IsFastSt) && 17981 IsFastSt && 17982 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17983 *FirstLoad->getMemOperand(), &IsFastLd) && 17984 IsFastLd) { 17985 LastLegalIntegerType = i + 1; 17986 DoIntegerTruncate = false; 17987 // Or check whether a truncstore and extload is legal. 17988 } else if (TLI.getTypeAction(Context, StoreTy) == 17989 TargetLowering::TypePromoteInteger) { 17990 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 17991 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17992 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 17993 DAG.getMachineFunction()) && 17994 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && 17995 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && 17996 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 17997 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17998 *FirstInChain->getMemOperand(), &IsFastSt) && 17999 IsFastSt && 18000 TLI.allowsMemoryAccess(Context, DL, StoreTy, 18001 *FirstLoad->getMemOperand(), &IsFastLd) && 18002 IsFastLd) { 18003 LastLegalIntegerType = i + 1; 18004 DoIntegerTruncate = true; 18005 } 18006 } 18007 } 18008 18009 // Only use vector types if the vector type is larger than the integer 18010 // type. If they are the same, use integers. 18011 bool UseVectorTy = 18012 LastLegalVectorType > LastLegalIntegerType && AllowVectors; 18013 unsigned LastLegalType = 18014 std::max(LastLegalVectorType, LastLegalIntegerType); 18015 18016 // We add +1 here because the LastXXX variables refer to location while 18017 // the NumElem refers to array/index size. 18018 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 18019 NumElem = std::min(LastLegalType, NumElem); 18020 Align FirstLoadAlign = FirstLoad->getAlign(); 18021 18022 if (NumElem < 2) { 18023 // We know that candidate stores are in order and of correct 18024 // shape. While there is no mergeable sequence from the 18025 // beginning one may start later in the sequence. The only 18026 // reason a merge of size N could have failed where another of 18027 // the same size would not have is if the alignment or either 18028 // the load or store has improved. Drop as many candidates as we 18029 // can here. 18030 unsigned NumSkip = 1; 18031 while ((NumSkip < LoadNodes.size()) && 18032 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && 18033 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) 18034 NumSkip++; 18035 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 18036 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 18037 NumConsecutiveStores -= NumSkip; 18038 continue; 18039 } 18040 18041 // Check that we can merge these candidates without causing a cycle. 18042 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 18043 RootNode)) { 18044 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 18045 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 18046 NumConsecutiveStores -= NumElem; 18047 continue; 18048 } 18049 18050 // Find if it is better to use vectors or integers to load and store 18051 // to memory. 18052 EVT JointMemOpVT; 18053 if (UseVectorTy) { 18054 // Find a legal type for the vector store. 18055 unsigned Elts = NumElem * NumMemElts; 18056 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 18057 } else { 18058 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 18059 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 18060 } 18061 18062 SDLoc LoadDL(LoadNodes[0].MemNode); 18063 SDLoc StoreDL(StoreNodes[0].MemNode); 18064 18065 // The merged loads are required to have the same incoming chain, so 18066 // using the first's chain is acceptable. 18067 18068 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 18069 AddToWorklist(NewStoreChain.getNode()); 18070 18071 MachineMemOperand::Flags LdMMOFlags = 18072 isDereferenceable ? MachineMemOperand::MODereferenceable 18073 : MachineMemOperand::MONone; 18074 if (IsNonTemporalLoad) 18075 LdMMOFlags |= MachineMemOperand::MONonTemporal; 18076 18077 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore 18078 ? MachineMemOperand::MONonTemporal 18079 : MachineMemOperand::MONone; 18080 18081 SDValue NewLoad, NewStore; 18082 if (UseVectorTy || !DoIntegerTruncate) { 18083 NewLoad = DAG.getLoad( 18084 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 18085 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); 18086 SDValue StoreOp = NewLoad; 18087 if (NeedRotate) { 18088 unsigned LoadWidth = ElementSizeBytes * 8 * 2; 18089 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && 18090 "Unexpected type for rotate-able load pair"); 18091 SDValue RotAmt = 18092 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); 18093 // Target can convert to the identical ROTR if it does not have ROTL. 18094 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); 18095 } 18096 NewStore = DAG.getStore( 18097 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), 18098 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); 18099 } else { // This must be the truncstore/extload case 18100 EVT ExtendedTy = 18101 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 18102 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 18103 FirstLoad->getChain(), FirstLoad->getBasePtr(), 18104 FirstLoad->getPointerInfo(), JointMemOpVT, 18105 FirstLoadAlign, LdMMOFlags); 18106 NewStore = DAG.getTruncStore( 18107 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 18108 FirstInChain->getPointerInfo(), JointMemOpVT, 18109 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 18110 } 18111 18112 // Transfer chain users from old loads to the new load. 18113 for (unsigned i = 0; i < NumElem; ++i) { 18114 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 18115 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 18116 SDValue(NewLoad.getNode(), 1)); 18117 } 18118 18119 // Replace all stores with the new store. Recursively remove corresponding 18120 // values if they are no longer used. 18121 for (unsigned i = 0; i < NumElem; ++i) { 18122 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 18123 CombineTo(StoreNodes[i].MemNode, NewStore); 18124 if (Val.getNode()->use_empty()) 18125 recursivelyDeleteUnusedNodes(Val.getNode()); 18126 } 18127 18128 MadeChange = true; 18129 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 18130 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 18131 NumConsecutiveStores -= NumElem; 18132 } 18133 return MadeChange; 18134 } 18135 18136 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { 18137 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) 18138 return false; 18139 18140 // TODO: Extend this function to merge stores of scalable vectors. 18141 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> 18142 // store since we know <vscale x 16 x i8> is exactly twice as large as 18143 // <vscale x 8 x i8>). Until then, bail out for scalable vectors. 18144 EVT MemVT = St->getMemoryVT(); 18145 if (MemVT.isScalableVector()) 18146 return false; 18147 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 18148 return false; 18149 18150 // This function cannot currently deal with non-byte-sized memory sizes. 18151 int64_t ElementSizeBytes = MemVT.getStoreSize(); 18152 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) 18153 return false; 18154 18155 // Do not bother looking at stored values that are not constants, loads, or 18156 // extracted vector elements. 18157 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 18158 const StoreSource StoreSrc = getStoreSource(StoredVal); 18159 if (StoreSrc == StoreSource::Unknown) 18160 return false; 18161 18162 SmallVector<MemOpLink, 8> StoreNodes; 18163 SDNode *RootNode; 18164 // Find potential store merge candidates by searching through chain sub-DAG 18165 getStoreMergeCandidates(St, StoreNodes, RootNode); 18166 18167 // Check if there is anything to merge. 18168 if (StoreNodes.size() < 2) 18169 return false; 18170 18171 // Sort the memory operands according to their distance from the 18172 // base pointer. 18173 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 18174 return LHS.OffsetFromBase < RHS.OffsetFromBase; 18175 }); 18176 18177 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( 18178 Attribute::NoImplicitFloat); 18179 bool IsNonTemporalStore = St->isNonTemporal(); 18180 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && 18181 cast<LoadSDNode>(StoredVal)->isNonTemporal(); 18182 18183 // Store Merge attempts to merge the lowest stores. This generally 18184 // works out as if successful, as the remaining stores are checked 18185 // after the first collection of stores is merged. However, in the 18186 // case that a non-mergeable store is found first, e.g., {p[-2], 18187 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 18188 // mergeable cases. To prevent this, we prune such stores from the 18189 // front of StoreNodes here. 18190 bool MadeChange = false; 18191 while (StoreNodes.size() > 1) { 18192 unsigned NumConsecutiveStores = 18193 getConsecutiveStores(StoreNodes, ElementSizeBytes); 18194 // There are no more stores in the list to examine. 18195 if (NumConsecutiveStores == 0) 18196 return MadeChange; 18197 18198 // We have at least 2 consecutive stores. Try to merge them. 18199 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); 18200 switch (StoreSrc) { 18201 case StoreSource::Constant: 18202 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, 18203 MemVT, RootNode, AllowVectors); 18204 break; 18205 18206 case StoreSource::Extract: 18207 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, 18208 MemVT, RootNode); 18209 break; 18210 18211 case StoreSource::Load: 18212 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, 18213 MemVT, RootNode, AllowVectors, 18214 IsNonTemporalStore, IsNonTemporalLoad); 18215 break; 18216 18217 default: 18218 llvm_unreachable("Unhandled store source type"); 18219 } 18220 } 18221 return MadeChange; 18222 } 18223 18224 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 18225 SDLoc SL(ST); 18226 SDValue ReplStore; 18227 18228 // Replace the chain to avoid dependency. 18229 if (ST->isTruncatingStore()) { 18230 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 18231 ST->getBasePtr(), ST->getMemoryVT(), 18232 ST->getMemOperand()); 18233 } else { 18234 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 18235 ST->getMemOperand()); 18236 } 18237 18238 // Create token to keep both nodes around. 18239 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 18240 MVT::Other, ST->getChain(), ReplStore); 18241 18242 // Make sure the new and old chains are cleaned up. 18243 AddToWorklist(Token.getNode()); 18244 18245 // Don't add users to work list. 18246 return CombineTo(ST, Token, false); 18247 } 18248 18249 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 18250 SDValue Value = ST->getValue(); 18251 if (Value.getOpcode() == ISD::TargetConstantFP) 18252 return SDValue(); 18253 18254 if (!ISD::isNormalStore(ST)) 18255 return SDValue(); 18256 18257 SDLoc DL(ST); 18258 18259 SDValue Chain = ST->getChain(); 18260 SDValue Ptr = ST->getBasePtr(); 18261 18262 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 18263 18264 // NOTE: If the original store is volatile, this transform must not increase 18265 // the number of stores. For example, on x86-32 an f64 can be stored in one 18266 // processor operation but an i64 (which is not legal) requires two. So the 18267 // transform should not be done in this case. 18268 18269 SDValue Tmp; 18270 switch (CFP->getSimpleValueType(0).SimpleTy) { 18271 default: 18272 llvm_unreachable("Unknown FP type"); 18273 case MVT::f16: // We don't do this for these yet. 18274 case MVT::f80: 18275 case MVT::f128: 18276 case MVT::ppcf128: 18277 return SDValue(); 18278 case MVT::f32: 18279 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || 18280 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 18281 ; 18282 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 18283 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 18284 MVT::i32); 18285 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 18286 } 18287 18288 return SDValue(); 18289 case MVT::f64: 18290 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 18291 ST->isSimple()) || 18292 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 18293 ; 18294 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 18295 getZExtValue(), SDLoc(CFP), MVT::i64); 18296 return DAG.getStore(Chain, DL, Tmp, 18297 Ptr, ST->getMemOperand()); 18298 } 18299 18300 if (ST->isSimple() && 18301 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 18302 // Many FP stores are not made apparent until after legalize, e.g. for 18303 // argument passing. Since this is so common, custom legalize the 18304 // 64-bit integer store into two 32-bit stores. 18305 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 18306 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 18307 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 18308 if (DAG.getDataLayout().isBigEndian()) 18309 std::swap(Lo, Hi); 18310 18311 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18312 AAMDNodes AAInfo = ST->getAAInfo(); 18313 18314 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18315 ST->getOriginalAlign(), MMOFlags, AAInfo); 18316 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); 18317 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 18318 ST->getPointerInfo().getWithOffset(4), 18319 ST->getOriginalAlign(), MMOFlags, AAInfo); 18320 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 18321 St0, St1); 18322 } 18323 18324 return SDValue(); 18325 } 18326 } 18327 18328 SDValue DAGCombiner::visitSTORE(SDNode *N) { 18329 StoreSDNode *ST = cast<StoreSDNode>(N); 18330 SDValue Chain = ST->getChain(); 18331 SDValue Value = ST->getValue(); 18332 SDValue Ptr = ST->getBasePtr(); 18333 18334 // If this is a store of a bit convert, store the input value if the 18335 // resultant store does not need a higher alignment than the original. 18336 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 18337 ST->isUnindexed()) { 18338 EVT SVT = Value.getOperand(0).getValueType(); 18339 // If the store is volatile, we only want to change the store type if the 18340 // resulting store is legal. Otherwise we might increase the number of 18341 // memory accesses. We don't care if the original type was legal or not 18342 // as we assume software couldn't rely on the number of accesses of an 18343 // illegal type. 18344 // TODO: May be able to relax for unordered atomics (see D66309) 18345 if (((!LegalOperations && ST->isSimple()) || 18346 TLI.isOperationLegal(ISD::STORE, SVT)) && 18347 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, 18348 DAG, *ST->getMemOperand())) { 18349 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 18350 ST->getMemOperand()); 18351 } 18352 } 18353 18354 // Turn 'store undef, Ptr' -> nothing. 18355 if (Value.isUndef() && ST->isUnindexed()) 18356 return Chain; 18357 18358 // Try to infer better alignment information than the store already has. 18359 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { 18360 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 18361 if (*Alignment > ST->getAlign() && 18362 isAligned(*Alignment, ST->getSrcValueOffset())) { 18363 SDValue NewStore = 18364 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 18365 ST->getMemoryVT(), *Alignment, 18366 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 18367 // NewStore will always be N as we are only refining the alignment 18368 assert(NewStore.getNode() == N); 18369 (void)NewStore; 18370 } 18371 } 18372 } 18373 18374 // Try transforming a pair floating point load / store ops to integer 18375 // load / store ops. 18376 if (SDValue NewST = TransformFPLoadStorePair(N)) 18377 return NewST; 18378 18379 // Try transforming several stores into STORE (BSWAP). 18380 if (SDValue Store = mergeTruncStores(ST)) 18381 return Store; 18382 18383 if (ST->isUnindexed()) { 18384 // Walk up chain skipping non-aliasing memory nodes, on this store and any 18385 // adjacent stores. 18386 if (findBetterNeighborChains(ST)) { 18387 // replaceStoreChain uses CombineTo, which handled all of the worklist 18388 // manipulation. Return the original node to not do anything else. 18389 return SDValue(ST, 0); 18390 } 18391 Chain = ST->getChain(); 18392 } 18393 18394 // FIXME: is there such a thing as a truncating indexed store? 18395 if (ST->isTruncatingStore() && ST->isUnindexed() && 18396 Value.getValueType().isInteger() && 18397 (!isa<ConstantSDNode>(Value) || 18398 !cast<ConstantSDNode>(Value)->isOpaque())) { 18399 APInt TruncDemandedBits = 18400 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 18401 ST->getMemoryVT().getScalarSizeInBits()); 18402 18403 // See if we can simplify the input to this truncstore with knowledge that 18404 // only the low bits are being used. For example: 18405 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 18406 AddToWorklist(Value.getNode()); 18407 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) 18408 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 18409 ST->getMemOperand()); 18410 18411 // Otherwise, see if we can simplify the operation with 18412 // SimplifyDemandedBits, which only works if the value has a single use. 18413 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 18414 // Re-visit the store if anything changed and the store hasn't been merged 18415 // with another node (N is deleted) SimplifyDemandedBits will add Value's 18416 // node back to the worklist if necessary, but we also need to re-visit 18417 // the Store node itself. 18418 if (N->getOpcode() != ISD::DELETED_NODE) 18419 AddToWorklist(N); 18420 return SDValue(N, 0); 18421 } 18422 } 18423 18424 // If this is a load followed by a store to the same location, then the store 18425 // is dead/noop. 18426 // TODO: Can relax for unordered atomics (see D66309) 18427 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 18428 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 18429 ST->isUnindexed() && ST->isSimple() && 18430 Ld->getAddressSpace() == ST->getAddressSpace() && 18431 // There can't be any side effects between the load and store, such as 18432 // a call or store. 18433 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 18434 // The store is dead, remove it. 18435 return Chain; 18436 } 18437 } 18438 18439 // TODO: Can relax for unordered atomics (see D66309) 18440 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 18441 if (ST->isUnindexed() && ST->isSimple() && 18442 ST1->isUnindexed() && ST1->isSimple()) { 18443 if (OptLevel != CodeGenOpt::None && ST1->getBasePtr() == Ptr && 18444 ST1->getValue() == Value && ST->getMemoryVT() == ST1->getMemoryVT() && 18445 ST->getAddressSpace() == ST1->getAddressSpace()) { 18446 // If this is a store followed by a store with the same value to the 18447 // same location, then the store is dead/noop. 18448 return Chain; 18449 } 18450 18451 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 18452 !ST1->getBasePtr().isUndef() && 18453 // BaseIndexOffset and the code below requires knowing the size 18454 // of a vector, so bail out if MemoryVT is scalable. 18455 !ST->getMemoryVT().isScalableVector() && 18456 !ST1->getMemoryVT().isScalableVector() && 18457 ST->getAddressSpace() == ST1->getAddressSpace()) { 18458 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 18459 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 18460 unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); 18461 unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); 18462 // If this is a store who's preceding store to a subset of the current 18463 // location and no one other node is chained to that store we can 18464 // effectively drop the store. Do not remove stores to undef as they may 18465 // be used as data sinks. 18466 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 18467 CombineTo(ST1, ST1->getChain()); 18468 return SDValue(); 18469 } 18470 } 18471 } 18472 } 18473 18474 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 18475 // truncating store. We can do this even if this is already a truncstore. 18476 if ((Value.getOpcode() == ISD::FP_ROUND || 18477 Value.getOpcode() == ISD::TRUNCATE) && 18478 Value.getNode()->hasOneUse() && ST->isUnindexed() && 18479 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), 18480 ST->getMemoryVT(), LegalOperations)) { 18481 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 18482 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 18483 } 18484 18485 // Always perform this optimization before types are legal. If the target 18486 // prefers, also try this after legalization to catch stores that were created 18487 // by intrinsics or other nodes. 18488 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { 18489 while (true) { 18490 // There can be multiple store sequences on the same chain. 18491 // Keep trying to merge store sequences until we are unable to do so 18492 // or until we merge the last store on the chain. 18493 bool Changed = mergeConsecutiveStores(ST); 18494 if (!Changed) break; 18495 // Return N as merge only uses CombineTo and no worklist clean 18496 // up is necessary. 18497 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 18498 return SDValue(N, 0); 18499 } 18500 } 18501 18502 // Try transforming N to an indexed store. 18503 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 18504 return SDValue(N, 0); 18505 18506 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 18507 // 18508 // Make sure to do this only after attempting to merge stores in order to 18509 // avoid changing the types of some subset of stores due to visit order, 18510 // preventing their merging. 18511 if (isa<ConstantFPSDNode>(ST->getValue())) { 18512 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 18513 return NewSt; 18514 } 18515 18516 if (SDValue NewSt = splitMergedValStore(ST)) 18517 return NewSt; 18518 18519 return ReduceLoadOpStoreWidth(N); 18520 } 18521 18522 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 18523 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 18524 if (!LifetimeEnd->hasOffset()) 18525 return SDValue(); 18526 18527 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 18528 LifetimeEnd->getOffset(), false); 18529 18530 // We walk up the chains to find stores. 18531 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 18532 while (!Chains.empty()) { 18533 SDValue Chain = Chains.pop_back_val(); 18534 if (!Chain.hasOneUse()) 18535 continue; 18536 switch (Chain.getOpcode()) { 18537 case ISD::TokenFactor: 18538 for (unsigned Nops = Chain.getNumOperands(); Nops;) 18539 Chains.push_back(Chain.getOperand(--Nops)); 18540 break; 18541 case ISD::LIFETIME_START: 18542 case ISD::LIFETIME_END: 18543 // We can forward past any lifetime start/end that can be proven not to 18544 // alias the node. 18545 if (!mayAlias(Chain.getNode(), N)) 18546 Chains.push_back(Chain.getOperand(0)); 18547 break; 18548 case ISD::STORE: { 18549 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 18550 // TODO: Can relax for unordered atomics (see D66309) 18551 if (!ST->isSimple() || ST->isIndexed()) 18552 continue; 18553 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); 18554 // The bounds of a scalable store are not known until runtime, so this 18555 // store cannot be elided. 18556 if (StoreSize.isScalable()) 18557 continue; 18558 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 18559 // If we store purely within object bounds just before its lifetime ends, 18560 // we can remove the store. 18561 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 18562 StoreSize.getFixedSize() * 8)) { 18563 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 18564 dbgs() << "\nwithin LIFETIME_END of : "; 18565 LifetimeEndBase.dump(); dbgs() << "\n"); 18566 CombineTo(ST, ST->getChain()); 18567 return SDValue(N, 0); 18568 } 18569 } 18570 } 18571 } 18572 return SDValue(); 18573 } 18574 18575 /// For the instruction sequence of store below, F and I values 18576 /// are bundled together as an i64 value before being stored into memory. 18577 /// Sometimes it is more efficent to generate separate stores for F and I, 18578 /// which can remove the bitwise instructions or sink them to colder places. 18579 /// 18580 /// (store (or (zext (bitcast F to i32) to i64), 18581 /// (shl (zext I to i64), 32)), addr) --> 18582 /// (store F, addr) and (store I, addr+4) 18583 /// 18584 /// Similarly, splitting for other merged store can also be beneficial, like: 18585 /// For pair of {i32, i32}, i64 store --> two i32 stores. 18586 /// For pair of {i32, i16}, i64 store --> two i32 stores. 18587 /// For pair of {i16, i16}, i32 store --> two i16 stores. 18588 /// For pair of {i16, i8}, i32 store --> two i16 stores. 18589 /// For pair of {i8, i8}, i16 store --> two i8 stores. 18590 /// 18591 /// We allow each target to determine specifically which kind of splitting is 18592 /// supported. 18593 /// 18594 /// The store patterns are commonly seen from the simple code snippet below 18595 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 18596 /// void goo(const std::pair<int, float> &); 18597 /// hoo() { 18598 /// ... 18599 /// goo(std::make_pair(tmp, ftmp)); 18600 /// ... 18601 /// } 18602 /// 18603 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 18604 if (OptLevel == CodeGenOpt::None) 18605 return SDValue(); 18606 18607 // Can't change the number of memory accesses for a volatile store or break 18608 // atomicity for an atomic one. 18609 if (!ST->isSimple()) 18610 return SDValue(); 18611 18612 SDValue Val = ST->getValue(); 18613 SDLoc DL(ST); 18614 18615 // Match OR operand. 18616 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 18617 return SDValue(); 18618 18619 // Match SHL operand and get Lower and Higher parts of Val. 18620 SDValue Op1 = Val.getOperand(0); 18621 SDValue Op2 = Val.getOperand(1); 18622 SDValue Lo, Hi; 18623 if (Op1.getOpcode() != ISD::SHL) { 18624 std::swap(Op1, Op2); 18625 if (Op1.getOpcode() != ISD::SHL) 18626 return SDValue(); 18627 } 18628 Lo = Op2; 18629 Hi = Op1.getOperand(0); 18630 if (!Op1.hasOneUse()) 18631 return SDValue(); 18632 18633 // Match shift amount to HalfValBitSize. 18634 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 18635 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 18636 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 18637 return SDValue(); 18638 18639 // Lo and Hi are zero-extended from int with size less equal than 32 18640 // to i64. 18641 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 18642 !Lo.getOperand(0).getValueType().isScalarInteger() || 18643 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 18644 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 18645 !Hi.getOperand(0).getValueType().isScalarInteger() || 18646 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 18647 return SDValue(); 18648 18649 // Use the EVT of low and high parts before bitcast as the input 18650 // of target query. 18651 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 18652 ? Lo.getOperand(0).getValueType() 18653 : Lo.getValueType(); 18654 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 18655 ? Hi.getOperand(0).getValueType() 18656 : Hi.getValueType(); 18657 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 18658 return SDValue(); 18659 18660 // Start to split store. 18661 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18662 AAMDNodes AAInfo = ST->getAAInfo(); 18663 18664 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 18665 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 18666 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 18667 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 18668 18669 SDValue Chain = ST->getChain(); 18670 SDValue Ptr = ST->getBasePtr(); 18671 // Lower value store. 18672 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18673 ST->getOriginalAlign(), MMOFlags, AAInfo); 18674 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); 18675 // Higher value store. 18676 SDValue St1 = DAG.getStore( 18677 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 18678 ST->getOriginalAlign(), MMOFlags, AAInfo); 18679 return St1; 18680 } 18681 18682 /// Convert a disguised subvector insertion into a shuffle: 18683 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 18684 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && 18685 "Expected extract_vector_elt"); 18686 SDValue InsertVal = N->getOperand(1); 18687 SDValue Vec = N->getOperand(0); 18688 18689 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), 18690 // InsIndex) 18691 // --> (vector_shuffle X, Y) and variations where shuffle operands may be 18692 // CONCAT_VECTORS. 18693 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && 18694 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18695 isa<ConstantSDNode>(InsertVal.getOperand(1))) { 18696 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); 18697 ArrayRef<int> Mask = SVN->getMask(); 18698 18699 SDValue X = Vec.getOperand(0); 18700 SDValue Y = Vec.getOperand(1); 18701 18702 // Vec's operand 0 is using indices from 0 to N-1 and 18703 // operand 1 from N to 2N - 1, where N is the number of 18704 // elements in the vectors. 18705 SDValue InsertVal0 = InsertVal.getOperand(0); 18706 int ElementOffset = -1; 18707 18708 // We explore the inputs of the shuffle in order to see if we find the 18709 // source of the extract_vector_elt. If so, we can use it to modify the 18710 // shuffle rather than perform an insert_vector_elt. 18711 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; 18712 ArgWorkList.emplace_back(Mask.size(), Y); 18713 ArgWorkList.emplace_back(0, X); 18714 18715 while (!ArgWorkList.empty()) { 18716 int ArgOffset; 18717 SDValue ArgVal; 18718 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); 18719 18720 if (ArgVal == InsertVal0) { 18721 ElementOffset = ArgOffset; 18722 break; 18723 } 18724 18725 // Peek through concat_vector. 18726 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { 18727 int CurrentArgOffset = 18728 ArgOffset + ArgVal.getValueType().getVectorNumElements(); 18729 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); 18730 for (SDValue Op : reverse(ArgVal->ops())) { 18731 CurrentArgOffset -= Step; 18732 ArgWorkList.emplace_back(CurrentArgOffset, Op); 18733 } 18734 18735 // Make sure we went through all the elements and did not screw up index 18736 // computation. 18737 assert(CurrentArgOffset == ArgOffset); 18738 } 18739 } 18740 18741 if (ElementOffset != -1) { 18742 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); 18743 18744 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); 18745 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); 18746 assert(NewMask[InsIndex] < 18747 (int)(2 * Vec.getValueType().getVectorNumElements()) && 18748 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); 18749 18750 SDValue LegalShuffle = 18751 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, 18752 Y, NewMask, DAG); 18753 if (LegalShuffle) 18754 return LegalShuffle; 18755 } 18756 } 18757 18758 // insert_vector_elt V, (bitcast X from vector type), IdxC --> 18759 // bitcast(shuffle (bitcast V), (extended X), Mask) 18760 // Note: We do not use an insert_subvector node because that requires a 18761 // legal subvector type. 18762 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 18763 !InsertVal.getOperand(0).getValueType().isVector()) 18764 return SDValue(); 18765 18766 SDValue SubVec = InsertVal.getOperand(0); 18767 SDValue DestVec = N->getOperand(0); 18768 EVT SubVecVT = SubVec.getValueType(); 18769 EVT VT = DestVec.getValueType(); 18770 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 18771 // If the source only has a single vector element, the cost of creating adding 18772 // it to a vector is likely to exceed the cost of a insert_vector_elt. 18773 if (NumSrcElts == 1) 18774 return SDValue(); 18775 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 18776 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 18777 18778 // Step 1: Create a shuffle mask that implements this insert operation. The 18779 // vector that we are inserting into will be operand 0 of the shuffle, so 18780 // those elements are just 'i'. The inserted subvector is in the first 18781 // positions of operand 1 of the shuffle. Example: 18782 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 18783 SmallVector<int, 16> Mask(NumMaskVals); 18784 for (unsigned i = 0; i != NumMaskVals; ++i) { 18785 if (i / NumSrcElts == InsIndex) 18786 Mask[i] = (i % NumSrcElts) + NumMaskVals; 18787 else 18788 Mask[i] = i; 18789 } 18790 18791 // Bail out if the target can not handle the shuffle we want to create. 18792 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 18793 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 18794 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 18795 return SDValue(); 18796 18797 // Step 2: Create a wide vector from the inserted source vector by appending 18798 // undefined elements. This is the same size as our destination vector. 18799 SDLoc DL(N); 18800 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 18801 ConcatOps[0] = SubVec; 18802 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 18803 18804 // Step 3: Shuffle in the padded subvector. 18805 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 18806 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 18807 AddToWorklist(PaddedSubV.getNode()); 18808 AddToWorklist(DestVecBC.getNode()); 18809 AddToWorklist(Shuf.getNode()); 18810 return DAG.getBitcast(VT, Shuf); 18811 } 18812 18813 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 18814 SDValue InVec = N->getOperand(0); 18815 SDValue InVal = N->getOperand(1); 18816 SDValue EltNo = N->getOperand(2); 18817 SDLoc DL(N); 18818 18819 EVT VT = InVec.getValueType(); 18820 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 18821 18822 // Insert into out-of-bounds element is undefined. 18823 if (IndexC && VT.isFixedLengthVector() && 18824 IndexC->getZExtValue() >= VT.getVectorNumElements()) 18825 return DAG.getUNDEF(VT); 18826 18827 // Remove redundant insertions: 18828 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 18829 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18830 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 18831 return InVec; 18832 18833 if (!IndexC) { 18834 // If this is variable insert to undef vector, it might be better to splat: 18835 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 18836 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 18837 if (VT.isScalableVector()) 18838 return DAG.getSplatVector(VT, DL, InVal); 18839 else { 18840 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); 18841 return DAG.getBuildVector(VT, DL, Ops); 18842 } 18843 } 18844 return SDValue(); 18845 } 18846 18847 if (VT.isScalableVector()) 18848 return SDValue(); 18849 18850 unsigned NumElts = VT.getVectorNumElements(); 18851 18852 // We must know which element is being inserted for folds below here. 18853 unsigned Elt = IndexC->getZExtValue(); 18854 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 18855 return Shuf; 18856 18857 // Canonicalize insert_vector_elt dag nodes. 18858 // Example: 18859 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 18860 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 18861 // 18862 // Do this only if the child insert_vector node has one use; also 18863 // do this only if indices are both constants and Idx1 < Idx0. 18864 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 18865 && isa<ConstantSDNode>(InVec.getOperand(2))) { 18866 unsigned OtherElt = InVec.getConstantOperandVal(2); 18867 if (Elt < OtherElt) { 18868 // Swap nodes. 18869 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 18870 InVec.getOperand(0), InVal, EltNo); 18871 AddToWorklist(NewOp.getNode()); 18872 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 18873 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 18874 } 18875 } 18876 18877 // If we can't generate a legal BUILD_VECTOR, exit 18878 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 18879 return SDValue(); 18880 18881 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 18882 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 18883 // vector elements. 18884 SmallVector<SDValue, 8> Ops; 18885 // Do not combine these two vectors if the output vector will not replace 18886 // the input vector. 18887 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 18888 Ops.append(InVec.getNode()->op_begin(), 18889 InVec.getNode()->op_end()); 18890 } else if (InVec.isUndef()) { 18891 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 18892 } else { 18893 return SDValue(); 18894 } 18895 assert(Ops.size() == NumElts && "Unexpected vector size"); 18896 18897 // Insert the element 18898 if (Elt < Ops.size()) { 18899 // All the operands of BUILD_VECTOR must have the same type; 18900 // we enforce that here. 18901 EVT OpVT = Ops[0].getValueType(); 18902 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 18903 } 18904 18905 // Return the new vector 18906 return DAG.getBuildVector(VT, DL, Ops); 18907 } 18908 18909 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 18910 SDValue EltNo, 18911 LoadSDNode *OriginalLoad) { 18912 assert(OriginalLoad->isSimple()); 18913 18914 EVT ResultVT = EVE->getValueType(0); 18915 EVT VecEltVT = InVecVT.getVectorElementType(); 18916 18917 // If the vector element type is not a multiple of a byte then we are unable 18918 // to correctly compute an address to load only the extracted element as a 18919 // scalar. 18920 if (!VecEltVT.isByteSized()) 18921 return SDValue(); 18922 18923 ISD::LoadExtType ExtTy = 18924 ResultVT.bitsGT(VecEltVT) ? ISD::NON_EXTLOAD : ISD::EXTLOAD; 18925 if (!TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT) || 18926 !TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 18927 return SDValue(); 18928 18929 Align Alignment = OriginalLoad->getAlign(); 18930 MachinePointerInfo MPI; 18931 SDLoc DL(EVE); 18932 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 18933 int Elt = ConstEltNo->getZExtValue(); 18934 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 18935 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 18936 Alignment = commonAlignment(Alignment, PtrOff); 18937 } else { 18938 // Discard the pointer info except the address space because the memory 18939 // operand can't represent this new access since the offset is variable. 18940 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 18941 Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8); 18942 } 18943 18944 bool IsFast = false; 18945 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT, 18946 OriginalLoad->getAddressSpace(), Alignment, 18947 OriginalLoad->getMemOperand()->getFlags(), 18948 &IsFast) || 18949 !IsFast) 18950 return SDValue(); 18951 18952 SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(), 18953 InVecVT, EltNo); 18954 18955 // The replacement we need to do here is a little tricky: we need to 18956 // replace an extractelement of a load with a load. 18957 // Use ReplaceAllUsesOfValuesWith to do the replacement. 18958 // Note that this replacement assumes that the extractvalue is the only 18959 // use of the load; that's okay because we don't want to perform this 18960 // transformation in other cases anyway. 18961 SDValue Load; 18962 SDValue Chain; 18963 if (ResultVT.bitsGT(VecEltVT)) { 18964 // If the result type of vextract is wider than the load, then issue an 18965 // extending load instead. 18966 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 18967 VecEltVT) 18968 ? ISD::ZEXTLOAD 18969 : ISD::EXTLOAD; 18970 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 18971 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 18972 Alignment, OriginalLoad->getMemOperand()->getFlags(), 18973 OriginalLoad->getAAInfo()); 18974 Chain = Load.getValue(1); 18975 } else { 18976 Load = DAG.getLoad( 18977 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment, 18978 OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo()); 18979 Chain = Load.getValue(1); 18980 if (ResultVT.bitsLT(VecEltVT)) 18981 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 18982 else 18983 Load = DAG.getBitcast(ResultVT, Load); 18984 } 18985 WorklistRemover DeadNodes(*this); 18986 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 18987 SDValue To[] = { Load, Chain }; 18988 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 18989 // Make sure to revisit this node to clean it up; it will usually be dead. 18990 AddToWorklist(EVE); 18991 // Since we're explicitly calling ReplaceAllUses, add the new node to the 18992 // worklist explicitly as well. 18993 AddToWorklistWithUsers(Load.getNode()); 18994 ++OpsNarrowed; 18995 return SDValue(EVE, 0); 18996 } 18997 18998 /// Transform a vector binary operation into a scalar binary operation by moving 18999 /// the math/logic after an extract element of a vector. 19000 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 19001 bool LegalOperations) { 19002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19003 SDValue Vec = ExtElt->getOperand(0); 19004 SDValue Index = ExtElt->getOperand(1); 19005 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 19006 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 19007 Vec.getNode()->getNumValues() != 1) 19008 return SDValue(); 19009 19010 // Targets may want to avoid this to prevent an expensive register transfer. 19011 if (!TLI.shouldScalarizeBinop(Vec)) 19012 return SDValue(); 19013 19014 // Extracting an element of a vector constant is constant-folded, so this 19015 // transform is just replacing a vector op with a scalar op while moving the 19016 // extract. 19017 SDValue Op0 = Vec.getOperand(0); 19018 SDValue Op1 = Vec.getOperand(1); 19019 if (isAnyConstantBuildVector(Op0, true) || 19020 isAnyConstantBuildVector(Op1, true)) { 19021 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 19022 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 19023 SDLoc DL(ExtElt); 19024 EVT VT = ExtElt->getValueType(0); 19025 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 19026 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 19027 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 19028 } 19029 19030 return SDValue(); 19031 } 19032 19033 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 19034 SDValue VecOp = N->getOperand(0); 19035 SDValue Index = N->getOperand(1); 19036 EVT ScalarVT = N->getValueType(0); 19037 EVT VecVT = VecOp.getValueType(); 19038 if (VecOp.isUndef()) 19039 return DAG.getUNDEF(ScalarVT); 19040 19041 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 19042 // 19043 // This only really matters if the index is non-constant since other combines 19044 // on the constant elements already work. 19045 SDLoc DL(N); 19046 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 19047 Index == VecOp.getOperand(2)) { 19048 SDValue Elt = VecOp.getOperand(1); 19049 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 19050 } 19051 19052 // (vextract (scalar_to_vector val, 0) -> val 19053 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 19054 // Only 0'th element of SCALAR_TO_VECTOR is defined. 19055 if (DAG.isKnownNeverZero(Index)) 19056 return DAG.getUNDEF(ScalarVT); 19057 19058 // Check if the result type doesn't match the inserted element type. A 19059 // SCALAR_TO_VECTOR may truncate the inserted element and the 19060 // EXTRACT_VECTOR_ELT may widen the extracted vector. 19061 SDValue InOp = VecOp.getOperand(0); 19062 if (InOp.getValueType() != ScalarVT) { 19063 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 19064 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 19065 } 19066 return InOp; 19067 } 19068 19069 // extract_vector_elt of out-of-bounds element -> UNDEF 19070 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 19071 if (IndexC && VecVT.isFixedLengthVector() && 19072 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) 19073 return DAG.getUNDEF(ScalarVT); 19074 19075 // extract_vector_elt (build_vector x, y), 1 -> y 19076 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || 19077 VecOp.getOpcode() == ISD::SPLAT_VECTOR) && 19078 TLI.isTypeLegal(VecVT) && 19079 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 19080 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || 19081 VecVT.isFixedLengthVector()) && 19082 "BUILD_VECTOR used for scalable vectors"); 19083 unsigned IndexVal = 19084 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; 19085 SDValue Elt = VecOp.getOperand(IndexVal); 19086 EVT InEltVT = Elt.getValueType(); 19087 19088 // Sometimes build_vector's scalar input types do not match result type. 19089 if (ScalarVT == InEltVT) 19090 return Elt; 19091 19092 // TODO: It may be useful to truncate if free if the build_vector implicitly 19093 // converts. 19094 } 19095 19096 if (VecVT.isScalableVector()) 19097 return SDValue(); 19098 19099 // All the code from this point onwards assumes fixed width vectors, but it's 19100 // possible that some of the combinations could be made to work for scalable 19101 // vectors too. 19102 unsigned NumElts = VecVT.getVectorNumElements(); 19103 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 19104 19105 // TODO: These transforms should not require the 'hasOneUse' restriction, but 19106 // there are regressions on multiple targets without it. We can end up with a 19107 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 19108 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 19109 VecOp.hasOneUse()) { 19110 // The vector index of the LSBs of the source depend on the endian-ness. 19111 bool IsLE = DAG.getDataLayout().isLittleEndian(); 19112 unsigned ExtractIndex = IndexC->getZExtValue(); 19113 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 19114 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 19115 SDValue BCSrc = VecOp.getOperand(0); 19116 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 19117 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 19118 19119 if (LegalTypes && BCSrc.getValueType().isInteger() && 19120 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 19121 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 19122 // trunc i64 X to i32 19123 SDValue X = BCSrc.getOperand(0); 19124 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 19125 "Extract element and scalar to vector can't change element type " 19126 "from FP to integer."); 19127 unsigned XBitWidth = X.getValueSizeInBits(); 19128 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 19129 19130 // An extract element return value type can be wider than its vector 19131 // operand element type. In that case, the high bits are undefined, so 19132 // it's possible that we may need to extend rather than truncate. 19133 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 19134 assert(XBitWidth % VecEltBitWidth == 0 && 19135 "Scalar bitwidth must be a multiple of vector element bitwidth"); 19136 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 19137 } 19138 } 19139 } 19140 19141 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 19142 return BO; 19143 19144 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 19145 // We only perform this optimization before the op legalization phase because 19146 // we may introduce new vector instructions which are not backed by TD 19147 // patterns. For example on AVX, extracting elements from a wide vector 19148 // without using extract_subvector. However, if we can find an underlying 19149 // scalar value, then we can always use that. 19150 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 19151 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 19152 // Find the new index to extract from. 19153 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 19154 19155 // Extracting an undef index is undef. 19156 if (OrigElt == -1) 19157 return DAG.getUNDEF(ScalarVT); 19158 19159 // Select the right vector half to extract from. 19160 SDValue SVInVec; 19161 if (OrigElt < (int)NumElts) { 19162 SVInVec = VecOp.getOperand(0); 19163 } else { 19164 SVInVec = VecOp.getOperand(1); 19165 OrigElt -= NumElts; 19166 } 19167 19168 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 19169 SDValue InOp = SVInVec.getOperand(OrigElt); 19170 if (InOp.getValueType() != ScalarVT) { 19171 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 19172 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 19173 } 19174 19175 return InOp; 19176 } 19177 19178 // FIXME: We should handle recursing on other vector shuffles and 19179 // scalar_to_vector here as well. 19180 19181 if (!LegalOperations || 19182 // FIXME: Should really be just isOperationLegalOrCustom. 19183 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 19184 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 19185 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 19186 DAG.getVectorIdxConstant(OrigElt, DL)); 19187 } 19188 } 19189 19190 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 19191 // simplify it based on the (valid) extraction indices. 19192 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 19193 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19194 Use->getOperand(0) == VecOp && 19195 isa<ConstantSDNode>(Use->getOperand(1)); 19196 })) { 19197 APInt DemandedElts = APInt::getZero(NumElts); 19198 for (SDNode *Use : VecOp->uses()) { 19199 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 19200 if (CstElt->getAPIntValue().ult(NumElts)) 19201 DemandedElts.setBit(CstElt->getZExtValue()); 19202 } 19203 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 19204 // We simplified the vector operand of this extract element. If this 19205 // extract is not dead, visit it again so it is folded properly. 19206 if (N->getOpcode() != ISD::DELETED_NODE) 19207 AddToWorklist(N); 19208 return SDValue(N, 0); 19209 } 19210 APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth); 19211 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { 19212 // We simplified the vector operand of this extract element. If this 19213 // extract is not dead, visit it again so it is folded properly. 19214 if (N->getOpcode() != ISD::DELETED_NODE) 19215 AddToWorklist(N); 19216 return SDValue(N, 0); 19217 } 19218 } 19219 19220 // Everything under here is trying to match an extract of a loaded value. 19221 // If the result of load has to be truncated, then it's not necessarily 19222 // profitable. 19223 bool BCNumEltsChanged = false; 19224 EVT ExtVT = VecVT.getVectorElementType(); 19225 EVT LVT = ExtVT; 19226 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 19227 return SDValue(); 19228 19229 if (VecOp.getOpcode() == ISD::BITCAST) { 19230 // Don't duplicate a load with other uses. 19231 if (!VecOp.hasOneUse()) 19232 return SDValue(); 19233 19234 EVT BCVT = VecOp.getOperand(0).getValueType(); 19235 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 19236 return SDValue(); 19237 if (NumElts != BCVT.getVectorNumElements()) 19238 BCNumEltsChanged = true; 19239 VecOp = VecOp.getOperand(0); 19240 ExtVT = BCVT.getVectorElementType(); 19241 } 19242 19243 // extract (vector load $addr), i --> load $addr + i * size 19244 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 19245 ISD::isNormalLoad(VecOp.getNode()) && 19246 !Index->hasPredecessor(VecOp.getNode())) { 19247 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 19248 if (VecLoad && VecLoad->isSimple()) 19249 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 19250 } 19251 19252 // Perform only after legalization to ensure build_vector / vector_shuffle 19253 // optimizations have already been done. 19254 if (!LegalOperations || !IndexC) 19255 return SDValue(); 19256 19257 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 19258 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 19259 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 19260 int Elt = IndexC->getZExtValue(); 19261 LoadSDNode *LN0 = nullptr; 19262 if (ISD::isNormalLoad(VecOp.getNode())) { 19263 LN0 = cast<LoadSDNode>(VecOp); 19264 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 19265 VecOp.getOperand(0).getValueType() == ExtVT && 19266 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 19267 // Don't duplicate a load with other uses. 19268 if (!VecOp.hasOneUse()) 19269 return SDValue(); 19270 19271 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 19272 } 19273 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 19274 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 19275 // => 19276 // (load $addr+1*size) 19277 19278 // Don't duplicate a load with other uses. 19279 if (!VecOp.hasOneUse()) 19280 return SDValue(); 19281 19282 // If the bit convert changed the number of elements, it is unsafe 19283 // to examine the mask. 19284 if (BCNumEltsChanged) 19285 return SDValue(); 19286 19287 // Select the input vector, guarding against out of range extract vector. 19288 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 19289 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 19290 19291 if (VecOp.getOpcode() == ISD::BITCAST) { 19292 // Don't duplicate a load with other uses. 19293 if (!VecOp.hasOneUse()) 19294 return SDValue(); 19295 19296 VecOp = VecOp.getOperand(0); 19297 } 19298 if (ISD::isNormalLoad(VecOp.getNode())) { 19299 LN0 = cast<LoadSDNode>(VecOp); 19300 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 19301 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 19302 } 19303 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && 19304 VecVT.getVectorElementType() == ScalarVT && 19305 (!LegalTypes || 19306 TLI.isTypeLegal( 19307 VecOp.getOperand(0).getValueType().getVectorElementType()))) { 19308 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 19309 // -> extract_vector_elt a, 0 19310 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 19311 // -> extract_vector_elt a, 1 19312 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 19313 // -> extract_vector_elt b, 0 19314 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 19315 // -> extract_vector_elt b, 1 19316 SDLoc SL(N); 19317 EVT ConcatVT = VecOp.getOperand(0).getValueType(); 19318 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 19319 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, 19320 Index.getValueType()); 19321 19322 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); 19323 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, 19324 ConcatVT.getVectorElementType(), 19325 ConcatOp, NewIdx); 19326 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); 19327 } 19328 19329 // Make sure we found a non-volatile load and the extractelement is 19330 // the only use. 19331 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) 19332 return SDValue(); 19333 19334 // If Idx was -1 above, Elt is going to be -1, so just return undef. 19335 if (Elt == -1) 19336 return DAG.getUNDEF(LVT); 19337 19338 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 19339 } 19340 19341 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 19342 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 19343 // We perform this optimization post type-legalization because 19344 // the type-legalizer often scalarizes integer-promoted vectors. 19345 // Performing this optimization before may create bit-casts which 19346 // will be type-legalized to complex code sequences. 19347 // We perform this optimization only before the operation legalizer because we 19348 // may introduce illegal operations. 19349 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 19350 return SDValue(); 19351 19352 unsigned NumInScalars = N->getNumOperands(); 19353 SDLoc DL(N); 19354 EVT VT = N->getValueType(0); 19355 19356 // Check to see if this is a BUILD_VECTOR of a bunch of values 19357 // which come from any_extend or zero_extend nodes. If so, we can create 19358 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 19359 // optimizations. We do not handle sign-extend because we can't fill the sign 19360 // using shuffles. 19361 EVT SourceType = MVT::Other; 19362 bool AllAnyExt = true; 19363 19364 for (unsigned i = 0; i != NumInScalars; ++i) { 19365 SDValue In = N->getOperand(i); 19366 // Ignore undef inputs. 19367 if (In.isUndef()) continue; 19368 19369 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 19370 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 19371 19372 // Abort if the element is not an extension. 19373 if (!ZeroExt && !AnyExt) { 19374 SourceType = MVT::Other; 19375 break; 19376 } 19377 19378 // The input is a ZeroExt or AnyExt. Check the original type. 19379 EVT InTy = In.getOperand(0).getValueType(); 19380 19381 // Check that all of the widened source types are the same. 19382 if (SourceType == MVT::Other) 19383 // First time. 19384 SourceType = InTy; 19385 else if (InTy != SourceType) { 19386 // Multiple income types. Abort. 19387 SourceType = MVT::Other; 19388 break; 19389 } 19390 19391 // Check if all of the extends are ANY_EXTENDs. 19392 AllAnyExt &= AnyExt; 19393 } 19394 19395 // In order to have valid types, all of the inputs must be extended from the 19396 // same source type and all of the inputs must be any or zero extend. 19397 // Scalar sizes must be a power of two. 19398 EVT OutScalarTy = VT.getScalarType(); 19399 bool ValidTypes = SourceType != MVT::Other && 19400 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 19401 isPowerOf2_32(SourceType.getSizeInBits()); 19402 19403 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 19404 // turn into a single shuffle instruction. 19405 if (!ValidTypes) 19406 return SDValue(); 19407 19408 // If we already have a splat buildvector, then don't fold it if it means 19409 // introducing zeros. 19410 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) 19411 return SDValue(); 19412 19413 bool isLE = DAG.getDataLayout().isLittleEndian(); 19414 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 19415 assert(ElemRatio > 1 && "Invalid element size ratio"); 19416 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 19417 DAG.getConstant(0, DL, SourceType); 19418 19419 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 19420 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 19421 19422 // Populate the new build_vector 19423 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 19424 SDValue Cast = N->getOperand(i); 19425 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 19426 Cast.getOpcode() == ISD::ZERO_EXTEND || 19427 Cast.isUndef()) && "Invalid cast opcode"); 19428 SDValue In; 19429 if (Cast.isUndef()) 19430 In = DAG.getUNDEF(SourceType); 19431 else 19432 In = Cast->getOperand(0); 19433 unsigned Index = isLE ? (i * ElemRatio) : 19434 (i * ElemRatio + (ElemRatio - 1)); 19435 19436 assert(Index < Ops.size() && "Invalid index"); 19437 Ops[Index] = In; 19438 } 19439 19440 // The type of the new BUILD_VECTOR node. 19441 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 19442 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 19443 "Invalid vector size"); 19444 // Check if the new vector type is legal. 19445 if (!isTypeLegal(VecVT) || 19446 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 19447 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 19448 return SDValue(); 19449 19450 // Make the new BUILD_VECTOR. 19451 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 19452 19453 // The new BUILD_VECTOR node has the potential to be further optimized. 19454 AddToWorklist(BV.getNode()); 19455 // Bitcast to the desired type. 19456 return DAG.getBitcast(VT, BV); 19457 } 19458 19459 // Simplify (build_vec (trunc $1) 19460 // (trunc (srl $1 half-width)) 19461 // (trunc (srl $1 (2 * half-width))) …) 19462 // to (bitcast $1) 19463 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { 19464 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19465 19466 // Only for little endian 19467 if (!DAG.getDataLayout().isLittleEndian()) 19468 return SDValue(); 19469 19470 SDLoc DL(N); 19471 EVT VT = N->getValueType(0); 19472 EVT OutScalarTy = VT.getScalarType(); 19473 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); 19474 19475 // Only for power of two types to be sure that bitcast works well 19476 if (!isPowerOf2_64(ScalarTypeBitsize)) 19477 return SDValue(); 19478 19479 unsigned NumInScalars = N->getNumOperands(); 19480 19481 // Look through bitcasts 19482 auto PeekThroughBitcast = [](SDValue Op) { 19483 if (Op.getOpcode() == ISD::BITCAST) 19484 return Op.getOperand(0); 19485 return Op; 19486 }; 19487 19488 // The source value where all the parts are extracted. 19489 SDValue Src; 19490 for (unsigned i = 0; i != NumInScalars; ++i) { 19491 SDValue In = PeekThroughBitcast(N->getOperand(i)); 19492 // Ignore undef inputs. 19493 if (In.isUndef()) continue; 19494 19495 if (In.getOpcode() != ISD::TRUNCATE) 19496 return SDValue(); 19497 19498 In = PeekThroughBitcast(In.getOperand(0)); 19499 19500 if (In.getOpcode() != ISD::SRL) { 19501 // For now only build_vec without shuffling, handle shifts here in the 19502 // future. 19503 if (i != 0) 19504 return SDValue(); 19505 19506 Src = In; 19507 } else { 19508 // In is SRL 19509 SDValue part = PeekThroughBitcast(In.getOperand(0)); 19510 19511 if (!Src) { 19512 Src = part; 19513 } else if (Src != part) { 19514 // Vector parts do not stem from the same variable 19515 return SDValue(); 19516 } 19517 19518 SDValue ShiftAmtVal = In.getOperand(1); 19519 if (!isa<ConstantSDNode>(ShiftAmtVal)) 19520 return SDValue(); 19521 19522 uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); 19523 19524 // The extracted value is not extracted at the right position 19525 if (ShiftAmt != i * ScalarTypeBitsize) 19526 return SDValue(); 19527 } 19528 } 19529 19530 // Only cast if the size is the same 19531 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) 19532 return SDValue(); 19533 19534 return DAG.getBitcast(VT, Src); 19535 } 19536 19537 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 19538 ArrayRef<int> VectorMask, 19539 SDValue VecIn1, SDValue VecIn2, 19540 unsigned LeftIdx, bool DidSplitVec) { 19541 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 19542 19543 EVT VT = N->getValueType(0); 19544 EVT InVT1 = VecIn1.getValueType(); 19545 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 19546 19547 unsigned NumElems = VT.getVectorNumElements(); 19548 unsigned ShuffleNumElems = NumElems; 19549 19550 // If we artificially split a vector in two already, then the offsets in the 19551 // operands will all be based off of VecIn1, even those in VecIn2. 19552 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 19553 19554 uint64_t VTSize = VT.getFixedSizeInBits(); 19555 uint64_t InVT1Size = InVT1.getFixedSizeInBits(); 19556 uint64_t InVT2Size = InVT2.getFixedSizeInBits(); 19557 19558 assert(InVT2Size <= InVT1Size && 19559 "Inputs must be sorted to be in non-increasing vector size order."); 19560 19561 // We can't generate a shuffle node with mismatched input and output types. 19562 // Try to make the types match the type of the output. 19563 if (InVT1 != VT || InVT2 != VT) { 19564 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { 19565 // If the output vector length is a multiple of both input lengths, 19566 // we can concatenate them and pad the rest with undefs. 19567 unsigned NumConcats = VTSize / InVT1Size; 19568 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 19569 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 19570 ConcatOps[0] = VecIn1; 19571 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 19572 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19573 VecIn2 = SDValue(); 19574 } else if (InVT1Size == VTSize * 2) { 19575 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 19576 return SDValue(); 19577 19578 if (!VecIn2.getNode()) { 19579 // If we only have one input vector, and it's twice the size of the 19580 // output, split it in two. 19581 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 19582 DAG.getVectorIdxConstant(NumElems, DL)); 19583 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 19584 // Since we now have shorter input vectors, adjust the offset of the 19585 // second vector's start. 19586 Vec2Offset = NumElems; 19587 } else { 19588 assert(InVT2Size <= InVT1Size && 19589 "Second input is not going to be larger than the first one."); 19590 19591 // VecIn1 is wider than the output, and we have another, possibly 19592 // smaller input. Pad the smaller input with undefs, shuffle at the 19593 // input vector width, and extract the output. 19594 // The shuffle type is different than VT, so check legality again. 19595 if (LegalOperations && 19596 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 19597 return SDValue(); 19598 19599 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 19600 // lower it back into a BUILD_VECTOR. So if the inserted type is 19601 // illegal, don't even try. 19602 if (InVT1 != InVT2) { 19603 if (!TLI.isTypeLegal(InVT2)) 19604 return SDValue(); 19605 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 19606 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 19607 } 19608 ShuffleNumElems = NumElems * 2; 19609 } 19610 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { 19611 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 19612 ConcatOps[0] = VecIn2; 19613 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19614 } else { 19615 // TODO: Support cases where the length mismatch isn't exactly by a 19616 // factor of 2. 19617 // TODO: Move this check upwards, so that if we have bad type 19618 // mismatches, we don't create any DAG nodes. 19619 return SDValue(); 19620 } 19621 } 19622 19623 // Initialize mask to undef. 19624 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 19625 19626 // Only need to run up to the number of elements actually used, not the 19627 // total number of elements in the shuffle - if we are shuffling a wider 19628 // vector, the high lanes should be set to undef. 19629 for (unsigned i = 0; i != NumElems; ++i) { 19630 if (VectorMask[i] <= 0) 19631 continue; 19632 19633 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 19634 if (VectorMask[i] == (int)LeftIdx) { 19635 Mask[i] = ExtIndex; 19636 } else if (VectorMask[i] == (int)LeftIdx + 1) { 19637 Mask[i] = Vec2Offset + ExtIndex; 19638 } 19639 } 19640 19641 // The type the input vectors may have changed above. 19642 InVT1 = VecIn1.getValueType(); 19643 19644 // If we already have a VecIn2, it should have the same type as VecIn1. 19645 // If we don't, get an undef/zero vector of the appropriate type. 19646 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 19647 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 19648 19649 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 19650 if (ShuffleNumElems > NumElems) 19651 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 19652 19653 return Shuffle; 19654 } 19655 19656 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 19657 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19658 19659 // First, determine where the build vector is not undef. 19660 // TODO: We could extend this to handle zero elements as well as undefs. 19661 int NumBVOps = BV->getNumOperands(); 19662 int ZextElt = -1; 19663 for (int i = 0; i != NumBVOps; ++i) { 19664 SDValue Op = BV->getOperand(i); 19665 if (Op.isUndef()) 19666 continue; 19667 if (ZextElt == -1) 19668 ZextElt = i; 19669 else 19670 return SDValue(); 19671 } 19672 // Bail out if there's no non-undef element. 19673 if (ZextElt == -1) 19674 return SDValue(); 19675 19676 // The build vector contains some number of undef elements and exactly 19677 // one other element. That other element must be a zero-extended scalar 19678 // extracted from a vector at a constant index to turn this into a shuffle. 19679 // Also, require that the build vector does not implicitly truncate/extend 19680 // its elements. 19681 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 19682 EVT VT = BV->getValueType(0); 19683 SDValue Zext = BV->getOperand(ZextElt); 19684 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 19685 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 19686 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 19687 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 19688 return SDValue(); 19689 19690 // The zero-extend must be a multiple of the source size, and we must be 19691 // building a vector of the same size as the source of the extract element. 19692 SDValue Extract = Zext.getOperand(0); 19693 unsigned DestSize = Zext.getValueSizeInBits(); 19694 unsigned SrcSize = Extract.getValueSizeInBits(); 19695 if (DestSize % SrcSize != 0 || 19696 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 19697 return SDValue(); 19698 19699 // Create a shuffle mask that will combine the extracted element with zeros 19700 // and undefs. 19701 int ZextRatio = DestSize / SrcSize; 19702 int NumMaskElts = NumBVOps * ZextRatio; 19703 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 19704 for (int i = 0; i != NumMaskElts; ++i) { 19705 if (i / ZextRatio == ZextElt) { 19706 // The low bits of the (potentially translated) extracted element map to 19707 // the source vector. The high bits map to zero. We will use a zero vector 19708 // as the 2nd source operand of the shuffle, so use the 1st element of 19709 // that vector (mask value is number-of-elements) for the high bits. 19710 if (i % ZextRatio == 0) 19711 ShufMask[i] = Extract.getConstantOperandVal(1); 19712 else 19713 ShufMask[i] = NumMaskElts; 19714 } 19715 19716 // Undef elements of the build vector remain undef because we initialize 19717 // the shuffle mask with -1. 19718 } 19719 19720 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 19721 // bitcast (shuffle V, ZeroVec, VectorMask) 19722 SDLoc DL(BV); 19723 EVT VecVT = Extract.getOperand(0).getValueType(); 19724 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 19725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19726 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), 19727 ZeroVec, ShufMask, DAG); 19728 if (!Shuf) 19729 return SDValue(); 19730 return DAG.getBitcast(VT, Shuf); 19731 } 19732 19733 // FIXME: promote to STLExtras. 19734 template <typename R, typename T> 19735 static auto getFirstIndexOf(R &&Range, const T &Val) { 19736 auto I = find(Range, Val); 19737 if (I == Range.end()) 19738 return static_cast<decltype(std::distance(Range.begin(), I))>(-1); 19739 return std::distance(Range.begin(), I); 19740 } 19741 19742 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 19743 // operations. If the types of the vectors we're extracting from allow it, 19744 // turn this into a vector_shuffle node. 19745 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 19746 SDLoc DL(N); 19747 EVT VT = N->getValueType(0); 19748 19749 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 19750 if (!isTypeLegal(VT)) 19751 return SDValue(); 19752 19753 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 19754 return V; 19755 19756 // May only combine to shuffle after legalize if shuffle is legal. 19757 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 19758 return SDValue(); 19759 19760 bool UsesZeroVector = false; 19761 unsigned NumElems = N->getNumOperands(); 19762 19763 // Record, for each element of the newly built vector, which input vector 19764 // that element comes from. -1 stands for undef, 0 for the zero vector, 19765 // and positive values for the input vectors. 19766 // VectorMask maps each element to its vector number, and VecIn maps vector 19767 // numbers to their initial SDValues. 19768 19769 SmallVector<int, 8> VectorMask(NumElems, -1); 19770 SmallVector<SDValue, 8> VecIn; 19771 VecIn.push_back(SDValue()); 19772 19773 for (unsigned i = 0; i != NumElems; ++i) { 19774 SDValue Op = N->getOperand(i); 19775 19776 if (Op.isUndef()) 19777 continue; 19778 19779 // See if we can use a blend with a zero vector. 19780 // TODO: Should we generalize this to a blend with an arbitrary constant 19781 // vector? 19782 if (isNullConstant(Op) || isNullFPConstant(Op)) { 19783 UsesZeroVector = true; 19784 VectorMask[i] = 0; 19785 continue; 19786 } 19787 19788 // Not an undef or zero. If the input is something other than an 19789 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 19790 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 19791 !isa<ConstantSDNode>(Op.getOperand(1))) 19792 return SDValue(); 19793 SDValue ExtractedFromVec = Op.getOperand(0); 19794 19795 if (ExtractedFromVec.getValueType().isScalableVector()) 19796 return SDValue(); 19797 19798 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 19799 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 19800 return SDValue(); 19801 19802 // All inputs must have the same element type as the output. 19803 if (VT.getVectorElementType() != 19804 ExtractedFromVec.getValueType().getVectorElementType()) 19805 return SDValue(); 19806 19807 // Have we seen this input vector before? 19808 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 19809 // a map back from SDValues to numbers isn't worth it. 19810 int Idx = getFirstIndexOf(VecIn, ExtractedFromVec); 19811 if (Idx == -1) { // A new source vector? 19812 Idx = VecIn.size(); 19813 VecIn.push_back(ExtractedFromVec); 19814 } 19815 19816 VectorMask[i] = Idx; 19817 } 19818 19819 // If we didn't find at least one input vector, bail out. 19820 if (VecIn.size() < 2) 19821 return SDValue(); 19822 19823 // If all the Operands of BUILD_VECTOR extract from same 19824 // vector, then split the vector efficiently based on the maximum 19825 // vector access index and adjust the VectorMask and 19826 // VecIn accordingly. 19827 bool DidSplitVec = false; 19828 if (VecIn.size() == 2) { 19829 unsigned MaxIndex = 0; 19830 unsigned NearestPow2 = 0; 19831 SDValue Vec = VecIn.back(); 19832 EVT InVT = Vec.getValueType(); 19833 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 19834 19835 for (unsigned i = 0; i < NumElems; i++) { 19836 if (VectorMask[i] <= 0) 19837 continue; 19838 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 19839 IndexVec[i] = Index; 19840 MaxIndex = std::max(MaxIndex, Index); 19841 } 19842 19843 NearestPow2 = PowerOf2Ceil(MaxIndex); 19844 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 19845 NumElems * 2 < NearestPow2) { 19846 unsigned SplitSize = NearestPow2 / 2; 19847 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 19848 InVT.getVectorElementType(), SplitSize); 19849 if (TLI.isTypeLegal(SplitVT) && 19850 SplitSize + SplitVT.getVectorNumElements() <= 19851 InVT.getVectorNumElements()) { 19852 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19853 DAG.getVectorIdxConstant(SplitSize, DL)); 19854 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19855 DAG.getVectorIdxConstant(0, DL)); 19856 VecIn.pop_back(); 19857 VecIn.push_back(VecIn1); 19858 VecIn.push_back(VecIn2); 19859 DidSplitVec = true; 19860 19861 for (unsigned i = 0; i < NumElems; i++) { 19862 if (VectorMask[i] <= 0) 19863 continue; 19864 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 19865 } 19866 } 19867 } 19868 } 19869 19870 // Sort input vectors by decreasing vector element count, 19871 // while preserving the relative order of equally-sized vectors. 19872 // Note that we keep the first "implicit zero vector as-is. 19873 SmallVector<SDValue, 8> SortedVecIn(VecIn); 19874 llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(), 19875 [](const SDValue &a, const SDValue &b) { 19876 return a.getValueType().getVectorNumElements() > 19877 b.getValueType().getVectorNumElements(); 19878 }); 19879 19880 // We now also need to rebuild the VectorMask, because it referenced element 19881 // order in VecIn, and we just sorted them. 19882 for (int &SourceVectorIndex : VectorMask) { 19883 if (SourceVectorIndex <= 0) 19884 continue; 19885 unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]); 19886 assert(Idx > 0 && Idx < SortedVecIn.size() && 19887 VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure"); 19888 SourceVectorIndex = Idx; 19889 } 19890 19891 VecIn = std::move(SortedVecIn); 19892 19893 // TODO: Should this fire if some of the input vectors has illegal type (like 19894 // it does now), or should we let legalization run its course first? 19895 19896 // Shuffle phase: 19897 // Take pairs of vectors, and shuffle them so that the result has elements 19898 // from these vectors in the correct places. 19899 // For example, given: 19900 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 19901 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 19902 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 19903 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 19904 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 19905 // We will generate: 19906 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 19907 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 19908 SmallVector<SDValue, 4> Shuffles; 19909 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 19910 unsigned LeftIdx = 2 * In + 1; 19911 SDValue VecLeft = VecIn[LeftIdx]; 19912 SDValue VecRight = 19913 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 19914 19915 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 19916 VecRight, LeftIdx, DidSplitVec)) 19917 Shuffles.push_back(Shuffle); 19918 else 19919 return SDValue(); 19920 } 19921 19922 // If we need the zero vector as an "ingredient" in the blend tree, add it 19923 // to the list of shuffles. 19924 if (UsesZeroVector) 19925 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 19926 : DAG.getConstantFP(0.0, DL, VT)); 19927 19928 // If we only have one shuffle, we're done. 19929 if (Shuffles.size() == 1) 19930 return Shuffles[0]; 19931 19932 // Update the vector mask to point to the post-shuffle vectors. 19933 for (int &Vec : VectorMask) 19934 if (Vec == 0) 19935 Vec = Shuffles.size() - 1; 19936 else 19937 Vec = (Vec - 1) / 2; 19938 19939 // More than one shuffle. Generate a binary tree of blends, e.g. if from 19940 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 19941 // generate: 19942 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 19943 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 19944 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 19945 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 19946 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 19947 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 19948 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 19949 19950 // Make sure the initial size of the shuffle list is even. 19951 if (Shuffles.size() % 2) 19952 Shuffles.push_back(DAG.getUNDEF(VT)); 19953 19954 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 19955 if (CurSize % 2) { 19956 Shuffles[CurSize] = DAG.getUNDEF(VT); 19957 CurSize++; 19958 } 19959 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 19960 int Left = 2 * In; 19961 int Right = 2 * In + 1; 19962 SmallVector<int, 8> Mask(NumElems, -1); 19963 for (unsigned i = 0; i != NumElems; ++i) { 19964 if (VectorMask[i] == Left) { 19965 Mask[i] = i; 19966 VectorMask[i] = In; 19967 } else if (VectorMask[i] == Right) { 19968 Mask[i] = i + NumElems; 19969 VectorMask[i] = In; 19970 } 19971 } 19972 19973 Shuffles[In] = 19974 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 19975 } 19976 } 19977 return Shuffles[0]; 19978 } 19979 19980 // Try to turn a build vector of zero extends of extract vector elts into a 19981 // a vector zero extend and possibly an extract subvector. 19982 // TODO: Support sign extend? 19983 // TODO: Allow undef elements? 19984 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 19985 if (LegalOperations) 19986 return SDValue(); 19987 19988 EVT VT = N->getValueType(0); 19989 19990 bool FoundZeroExtend = false; 19991 SDValue Op0 = N->getOperand(0); 19992 auto checkElem = [&](SDValue Op) -> int64_t { 19993 unsigned Opc = Op.getOpcode(); 19994 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 19995 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 19996 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19997 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 19998 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 19999 return C->getZExtValue(); 20000 return -1; 20001 }; 20002 20003 // Make sure the first element matches 20004 // (zext (extract_vector_elt X, C)) 20005 // Offset must be a constant multiple of the 20006 // known-minimum vector length of the result type. 20007 int64_t Offset = checkElem(Op0); 20008 if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0) 20009 return SDValue(); 20010 20011 unsigned NumElems = N->getNumOperands(); 20012 SDValue In = Op0.getOperand(0).getOperand(0); 20013 EVT InSVT = In.getValueType().getScalarType(); 20014 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 20015 20016 // Don't create an illegal input type after type legalization. 20017 if (LegalTypes && !TLI.isTypeLegal(InVT)) 20018 return SDValue(); 20019 20020 // Ensure all the elements come from the same vector and are adjacent. 20021 for (unsigned i = 1; i != NumElems; ++i) { 20022 if ((Offset + i) != checkElem(N->getOperand(i))) 20023 return SDValue(); 20024 } 20025 20026 SDLoc DL(N); 20027 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 20028 Op0.getOperand(0).getOperand(1)); 20029 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 20030 VT, In); 20031 } 20032 20033 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 20034 EVT VT = N->getValueType(0); 20035 20036 // A vector built entirely of undefs is undef. 20037 if (ISD::allOperandsUndef(N)) 20038 return DAG.getUNDEF(VT); 20039 20040 // If this is a splat of a bitcast from another vector, change to a 20041 // concat_vector. 20042 // For example: 20043 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 20044 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 20045 // 20046 // If X is a build_vector itself, the concat can become a larger build_vector. 20047 // TODO: Maybe this is useful for non-splat too? 20048 if (!LegalOperations) { 20049 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 20050 Splat = peekThroughBitcasts(Splat); 20051 EVT SrcVT = Splat.getValueType(); 20052 if (SrcVT.isVector()) { 20053 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 20054 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 20055 SrcVT.getVectorElementType(), NumElts); 20056 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 20057 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 20058 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 20059 NewVT, Ops); 20060 return DAG.getBitcast(VT, Concat); 20061 } 20062 } 20063 } 20064 } 20065 20066 // Check if we can express BUILD VECTOR via subvector extract. 20067 if (!LegalTypes && (N->getNumOperands() > 1)) { 20068 SDValue Op0 = N->getOperand(0); 20069 auto checkElem = [&](SDValue Op) -> uint64_t { 20070 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 20071 (Op0.getOperand(0) == Op.getOperand(0))) 20072 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 20073 return CNode->getZExtValue(); 20074 return -1; 20075 }; 20076 20077 int Offset = checkElem(Op0); 20078 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 20079 if (Offset + i != checkElem(N->getOperand(i))) { 20080 Offset = -1; 20081 break; 20082 } 20083 } 20084 20085 if ((Offset == 0) && 20086 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 20087 return Op0.getOperand(0); 20088 if ((Offset != -1) && 20089 ((Offset % N->getValueType(0).getVectorNumElements()) == 20090 0)) // IDX must be multiple of output size. 20091 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 20092 Op0.getOperand(0), Op0.getOperand(1)); 20093 } 20094 20095 if (SDValue V = convertBuildVecZextToZext(N)) 20096 return V; 20097 20098 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 20099 return V; 20100 20101 if (SDValue V = reduceBuildVecTruncToBitCast(N)) 20102 return V; 20103 20104 if (SDValue V = reduceBuildVecToShuffle(N)) 20105 return V; 20106 20107 // A splat of a single element is a SPLAT_VECTOR if supported on the target. 20108 // Do this late as some of the above may replace the splat. 20109 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) 20110 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { 20111 assert(!V.isUndef() && "Splat of undef should have been handled earlier"); 20112 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); 20113 } 20114 20115 return SDValue(); 20116 } 20117 20118 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 20119 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20120 EVT OpVT = N->getOperand(0).getValueType(); 20121 20122 // If the operands are legal vectors, leave them alone. 20123 if (TLI.isTypeLegal(OpVT)) 20124 return SDValue(); 20125 20126 SDLoc DL(N); 20127 EVT VT = N->getValueType(0); 20128 SmallVector<SDValue, 8> Ops; 20129 20130 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 20131 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 20132 20133 // Keep track of what we encounter. 20134 bool AnyInteger = false; 20135 bool AnyFP = false; 20136 for (const SDValue &Op : N->ops()) { 20137 if (ISD::BITCAST == Op.getOpcode() && 20138 !Op.getOperand(0).getValueType().isVector()) 20139 Ops.push_back(Op.getOperand(0)); 20140 else if (ISD::UNDEF == Op.getOpcode()) 20141 Ops.push_back(ScalarUndef); 20142 else 20143 return SDValue(); 20144 20145 // Note whether we encounter an integer or floating point scalar. 20146 // If it's neither, bail out, it could be something weird like x86mmx. 20147 EVT LastOpVT = Ops.back().getValueType(); 20148 if (LastOpVT.isFloatingPoint()) 20149 AnyFP = true; 20150 else if (LastOpVT.isInteger()) 20151 AnyInteger = true; 20152 else 20153 return SDValue(); 20154 } 20155 20156 // If any of the operands is a floating point scalar bitcast to a vector, 20157 // use floating point types throughout, and bitcast everything. 20158 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 20159 if (AnyFP) { 20160 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 20161 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 20162 if (AnyInteger) { 20163 for (SDValue &Op : Ops) { 20164 if (Op.getValueType() == SVT) 20165 continue; 20166 if (Op.isUndef()) 20167 Op = ScalarUndef; 20168 else 20169 Op = DAG.getBitcast(SVT, Op); 20170 } 20171 } 20172 } 20173 20174 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 20175 VT.getSizeInBits() / SVT.getSizeInBits()); 20176 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 20177 } 20178 20179 // Attempt to merge nested concat_vectors/undefs. 20180 // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d)) 20181 // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d) 20182 static SDValue combineConcatVectorOfConcatVectors(SDNode *N, 20183 SelectionDAG &DAG) { 20184 EVT VT = N->getValueType(0); 20185 20186 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types. 20187 EVT SubVT; 20188 SDValue FirstConcat; 20189 for (const SDValue &Op : N->ops()) { 20190 if (Op.isUndef()) 20191 continue; 20192 if (Op.getOpcode() != ISD::CONCAT_VECTORS) 20193 return SDValue(); 20194 if (!FirstConcat) { 20195 SubVT = Op.getOperand(0).getValueType(); 20196 if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) 20197 return SDValue(); 20198 FirstConcat = Op; 20199 continue; 20200 } 20201 if (SubVT != Op.getOperand(0).getValueType()) 20202 return SDValue(); 20203 } 20204 assert(FirstConcat && "Concat of all-undefs found"); 20205 20206 SmallVector<SDValue> ConcatOps; 20207 for (const SDValue &Op : N->ops()) { 20208 if (Op.isUndef()) { 20209 ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT)); 20210 continue; 20211 } 20212 ConcatOps.append(Op->op_begin(), Op->op_end()); 20213 } 20214 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps); 20215 } 20216 20217 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 20218 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 20219 // most two distinct vectors the same size as the result, attempt to turn this 20220 // into a legal shuffle. 20221 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 20222 EVT VT = N->getValueType(0); 20223 EVT OpVT = N->getOperand(0).getValueType(); 20224 20225 // We currently can't generate an appropriate shuffle for a scalable vector. 20226 if (VT.isScalableVector()) 20227 return SDValue(); 20228 20229 int NumElts = VT.getVectorNumElements(); 20230 int NumOpElts = OpVT.getVectorNumElements(); 20231 20232 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 20233 SmallVector<int, 8> Mask; 20234 20235 for (SDValue Op : N->ops()) { 20236 Op = peekThroughBitcasts(Op); 20237 20238 // UNDEF nodes convert to UNDEF shuffle mask values. 20239 if (Op.isUndef()) { 20240 Mask.append((unsigned)NumOpElts, -1); 20241 continue; 20242 } 20243 20244 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 20245 return SDValue(); 20246 20247 // What vector are we extracting the subvector from and at what index? 20248 SDValue ExtVec = Op.getOperand(0); 20249 int ExtIdx = Op.getConstantOperandVal(1); 20250 20251 // We want the EVT of the original extraction to correctly scale the 20252 // extraction index. 20253 EVT ExtVT = ExtVec.getValueType(); 20254 ExtVec = peekThroughBitcasts(ExtVec); 20255 20256 // UNDEF nodes convert to UNDEF shuffle mask values. 20257 if (ExtVec.isUndef()) { 20258 Mask.append((unsigned)NumOpElts, -1); 20259 continue; 20260 } 20261 20262 // Ensure that we are extracting a subvector from a vector the same 20263 // size as the result. 20264 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 20265 return SDValue(); 20266 20267 // Scale the subvector index to account for any bitcast. 20268 int NumExtElts = ExtVT.getVectorNumElements(); 20269 if (0 == (NumExtElts % NumElts)) 20270 ExtIdx /= (NumExtElts / NumElts); 20271 else if (0 == (NumElts % NumExtElts)) 20272 ExtIdx *= (NumElts / NumExtElts); 20273 else 20274 return SDValue(); 20275 20276 // At most we can reference 2 inputs in the final shuffle. 20277 if (SV0.isUndef() || SV0 == ExtVec) { 20278 SV0 = ExtVec; 20279 for (int i = 0; i != NumOpElts; ++i) 20280 Mask.push_back(i + ExtIdx); 20281 } else if (SV1.isUndef() || SV1 == ExtVec) { 20282 SV1 = ExtVec; 20283 for (int i = 0; i != NumOpElts; ++i) 20284 Mask.push_back(i + ExtIdx + NumElts); 20285 } else { 20286 return SDValue(); 20287 } 20288 } 20289 20290 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20291 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 20292 DAG.getBitcast(VT, SV1), Mask, DAG); 20293 } 20294 20295 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { 20296 unsigned CastOpcode = N->getOperand(0).getOpcode(); 20297 switch (CastOpcode) { 20298 case ISD::SINT_TO_FP: 20299 case ISD::UINT_TO_FP: 20300 case ISD::FP_TO_SINT: 20301 case ISD::FP_TO_UINT: 20302 // TODO: Allow more opcodes? 20303 // case ISD::BITCAST: 20304 // case ISD::TRUNCATE: 20305 // case ISD::ZERO_EXTEND: 20306 // case ISD::SIGN_EXTEND: 20307 // case ISD::FP_EXTEND: 20308 break; 20309 default: 20310 return SDValue(); 20311 } 20312 20313 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); 20314 if (!SrcVT.isVector()) 20315 return SDValue(); 20316 20317 // All operands of the concat must be the same kind of cast from the same 20318 // source type. 20319 SmallVector<SDValue, 4> SrcOps; 20320 for (SDValue Op : N->ops()) { 20321 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || 20322 Op.getOperand(0).getValueType() != SrcVT) 20323 return SDValue(); 20324 SrcOps.push_back(Op.getOperand(0)); 20325 } 20326 20327 // The wider cast must be supported by the target. This is unusual because 20328 // the operation support type parameter depends on the opcode. In addition, 20329 // check the other type in the cast to make sure this is really legal. 20330 EVT VT = N->getValueType(0); 20331 EVT SrcEltVT = SrcVT.getVectorElementType(); 20332 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); 20333 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); 20334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20335 switch (CastOpcode) { 20336 case ISD::SINT_TO_FP: 20337 case ISD::UINT_TO_FP: 20338 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || 20339 !TLI.isTypeLegal(VT)) 20340 return SDValue(); 20341 break; 20342 case ISD::FP_TO_SINT: 20343 case ISD::FP_TO_UINT: 20344 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || 20345 !TLI.isTypeLegal(ConcatSrcVT)) 20346 return SDValue(); 20347 break; 20348 default: 20349 llvm_unreachable("Unexpected cast opcode"); 20350 } 20351 20352 // concat (cast X), (cast Y)... -> cast (concat X, Y...) 20353 SDLoc DL(N); 20354 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); 20355 return DAG.getNode(CastOpcode, DL, VT, NewConcat); 20356 } 20357 20358 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 20359 // If we only have one input vector, we don't need to do any concatenation. 20360 if (N->getNumOperands() == 1) 20361 return N->getOperand(0); 20362 20363 // Check if all of the operands are undefs. 20364 EVT VT = N->getValueType(0); 20365 if (ISD::allOperandsUndef(N)) 20366 return DAG.getUNDEF(VT); 20367 20368 // Optimize concat_vectors where all but the first of the vectors are undef. 20369 if (all_of(drop_begin(N->ops()), 20370 [](const SDValue &Op) { return Op.isUndef(); })) { 20371 SDValue In = N->getOperand(0); 20372 assert(In.getValueType().isVector() && "Must concat vectors"); 20373 20374 // If the input is a concat_vectors, just make a larger concat by padding 20375 // with smaller undefs. 20376 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { 20377 unsigned NumOps = N->getNumOperands() * In.getNumOperands(); 20378 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); 20379 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); 20380 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20381 } 20382 20383 SDValue Scalar = peekThroughOneUseBitcasts(In); 20384 20385 // concat_vectors(scalar_to_vector(scalar), undef) -> 20386 // scalar_to_vector(scalar) 20387 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 20388 Scalar.hasOneUse()) { 20389 EVT SVT = Scalar.getValueType().getVectorElementType(); 20390 if (SVT == Scalar.getOperand(0).getValueType()) 20391 Scalar = Scalar.getOperand(0); 20392 } 20393 20394 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 20395 if (!Scalar.getValueType().isVector()) { 20396 // If the bitcast type isn't legal, it might be a trunc of a legal type; 20397 // look through the trunc so we can still do the transform: 20398 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 20399 if (Scalar->getOpcode() == ISD::TRUNCATE && 20400 !TLI.isTypeLegal(Scalar.getValueType()) && 20401 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 20402 Scalar = Scalar->getOperand(0); 20403 20404 EVT SclTy = Scalar.getValueType(); 20405 20406 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 20407 return SDValue(); 20408 20409 // Bail out if the vector size is not a multiple of the scalar size. 20410 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 20411 return SDValue(); 20412 20413 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 20414 if (VNTNumElms < 2) 20415 return SDValue(); 20416 20417 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 20418 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 20419 return SDValue(); 20420 20421 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 20422 return DAG.getBitcast(VT, Res); 20423 } 20424 } 20425 20426 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 20427 // We have already tested above for an UNDEF only concatenation. 20428 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 20429 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 20430 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 20431 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 20432 }; 20433 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 20434 SmallVector<SDValue, 8> Opnds; 20435 EVT SVT = VT.getScalarType(); 20436 20437 EVT MinVT = SVT; 20438 if (!SVT.isFloatingPoint()) { 20439 // If BUILD_VECTOR are from built from integer, they may have different 20440 // operand types. Get the smallest type and truncate all operands to it. 20441 bool FoundMinVT = false; 20442 for (const SDValue &Op : N->ops()) 20443 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20444 EVT OpSVT = Op.getOperand(0).getValueType(); 20445 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 20446 FoundMinVT = true; 20447 } 20448 assert(FoundMinVT && "Concat vector type mismatch"); 20449 } 20450 20451 for (const SDValue &Op : N->ops()) { 20452 EVT OpVT = Op.getValueType(); 20453 unsigned NumElts = OpVT.getVectorNumElements(); 20454 20455 if (ISD::UNDEF == Op.getOpcode()) 20456 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 20457 20458 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20459 if (SVT.isFloatingPoint()) { 20460 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 20461 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 20462 } else { 20463 for (unsigned i = 0; i != NumElts; ++i) 20464 Opnds.push_back( 20465 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 20466 } 20467 } 20468 } 20469 20470 assert(VT.getVectorNumElements() == Opnds.size() && 20471 "Concat vector type mismatch"); 20472 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 20473 } 20474 20475 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 20476 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...). 20477 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 20478 return V; 20479 20480 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 20481 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE. 20482 if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG)) 20483 return V; 20484 20485 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 20486 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 20487 return V; 20488 } 20489 20490 if (SDValue V = combineConcatVectorOfCasts(N, DAG)) 20491 return V; 20492 20493 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 20494 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR 20495 // operands and look for a CONCAT operations that place the incoming vectors 20496 // at the exact same location. 20497 // 20498 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. 20499 SDValue SingleSource = SDValue(); 20500 unsigned PartNumElem = 20501 N->getOperand(0).getValueType().getVectorMinNumElements(); 20502 20503 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 20504 SDValue Op = N->getOperand(i); 20505 20506 if (Op.isUndef()) 20507 continue; 20508 20509 // Check if this is the identity extract: 20510 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 20511 return SDValue(); 20512 20513 // Find the single incoming vector for the extract_subvector. 20514 if (SingleSource.getNode()) { 20515 if (Op.getOperand(0) != SingleSource) 20516 return SDValue(); 20517 } else { 20518 SingleSource = Op.getOperand(0); 20519 20520 // Check the source type is the same as the type of the result. 20521 // If not, this concat may extend the vector, so we can not 20522 // optimize it away. 20523 if (SingleSource.getValueType() != N->getValueType(0)) 20524 return SDValue(); 20525 } 20526 20527 // Check that we are reading from the identity index. 20528 unsigned IdentityIndex = i * PartNumElem; 20529 if (Op.getConstantOperandAPInt(1) != IdentityIndex) 20530 return SDValue(); 20531 } 20532 20533 if (SingleSource.getNode()) 20534 return SingleSource; 20535 20536 return SDValue(); 20537 } 20538 20539 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find 20540 // if the subvector can be sourced for free. 20541 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { 20542 if (V.getOpcode() == ISD::INSERT_SUBVECTOR && 20543 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { 20544 return V.getOperand(1); 20545 } 20546 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 20547 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && 20548 V.getOperand(0).getValueType() == SubVT && 20549 (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { 20550 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); 20551 return V.getOperand(SubIdx); 20552 } 20553 return SDValue(); 20554 } 20555 20556 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 20557 SelectionDAG &DAG, 20558 bool LegalOperations) { 20559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20560 SDValue BinOp = Extract->getOperand(0); 20561 unsigned BinOpcode = BinOp.getOpcode(); 20562 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) 20563 return SDValue(); 20564 20565 EVT VecVT = BinOp.getValueType(); 20566 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 20567 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) 20568 return SDValue(); 20569 20570 SDValue Index = Extract->getOperand(1); 20571 EVT SubVT = Extract->getValueType(0); 20572 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) 20573 return SDValue(); 20574 20575 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); 20576 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); 20577 20578 // TODO: We could handle the case where only 1 operand is being inserted by 20579 // creating an extract of the other operand, but that requires checking 20580 // number of uses and/or costs. 20581 if (!Sub0 || !Sub1) 20582 return SDValue(); 20583 20584 // We are inserting both operands of the wide binop only to extract back 20585 // to the narrow vector size. Eliminate all of the insert/extract: 20586 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 20587 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, 20588 BinOp->getFlags()); 20589 } 20590 20591 /// If we are extracting a subvector produced by a wide binary operator try 20592 /// to use a narrow binary operator and/or avoid concatenation and extraction. 20593 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, 20594 bool LegalOperations) { 20595 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 20596 // some of these bailouts with other transforms. 20597 20598 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) 20599 return V; 20600 20601 // The extract index must be a constant, so we can map it to a concat operand. 20602 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 20603 if (!ExtractIndexC) 20604 return SDValue(); 20605 20606 // We are looking for an optionally bitcasted wide vector binary operator 20607 // feeding an extract subvector. 20608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20609 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 20610 unsigned BOpcode = BinOp.getOpcode(); 20611 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) 20612 return SDValue(); 20613 20614 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be 20615 // reduced to the unary fneg when it is visited, and we probably want to deal 20616 // with fneg in a target-specific way. 20617 if (BOpcode == ISD::FSUB) { 20618 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); 20619 if (C && C->getValueAPF().isNegZero()) 20620 return SDValue(); 20621 } 20622 20623 // The binop must be a vector type, so we can extract some fraction of it. 20624 EVT WideBVT = BinOp.getValueType(); 20625 // The optimisations below currently assume we are dealing with fixed length 20626 // vectors. It is possible to add support for scalable vectors, but at the 20627 // moment we've done no analysis to prove whether they are profitable or not. 20628 if (!WideBVT.isFixedLengthVector()) 20629 return SDValue(); 20630 20631 EVT VT = Extract->getValueType(0); 20632 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 20633 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 20634 "Extract index is not a multiple of the vector length."); 20635 20636 // Bail out if this is not a proper multiple width extraction. 20637 unsigned WideWidth = WideBVT.getSizeInBits(); 20638 unsigned NarrowWidth = VT.getSizeInBits(); 20639 if (WideWidth % NarrowWidth != 0) 20640 return SDValue(); 20641 20642 // Bail out if we are extracting a fraction of a single operation. This can 20643 // occur because we potentially looked through a bitcast of the binop. 20644 unsigned NarrowingRatio = WideWidth / NarrowWidth; 20645 unsigned WideNumElts = WideBVT.getVectorNumElements(); 20646 if (WideNumElts % NarrowingRatio != 0) 20647 return SDValue(); 20648 20649 // Bail out if the target does not support a narrower version of the binop. 20650 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 20651 WideNumElts / NarrowingRatio); 20652 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 20653 return SDValue(); 20654 20655 // If extraction is cheap, we don't need to look at the binop operands 20656 // for concat ops. The narrow binop alone makes this transform profitable. 20657 // We can't just reuse the original extract index operand because we may have 20658 // bitcasted. 20659 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 20660 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 20661 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 20662 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 20663 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 20664 SDLoc DL(Extract); 20665 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); 20666 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20667 BinOp.getOperand(0), NewExtIndex); 20668 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20669 BinOp.getOperand(1), NewExtIndex); 20670 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, 20671 BinOp.getNode()->getFlags()); 20672 return DAG.getBitcast(VT, NarrowBinOp); 20673 } 20674 20675 // Only handle the case where we are doubling and then halving. A larger ratio 20676 // may require more than two narrow binops to replace the wide binop. 20677 if (NarrowingRatio != 2) 20678 return SDValue(); 20679 20680 // TODO: The motivating case for this transform is an x86 AVX1 target. That 20681 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 20682 // flavors, but no other 256-bit integer support. This could be extended to 20683 // handle any binop, but that may require fixing/adding other folds to avoid 20684 // codegen regressions. 20685 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 20686 return SDValue(); 20687 20688 // We need at least one concatenation operation of a binop operand to make 20689 // this transform worthwhile. The concat must double the input vector sizes. 20690 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { 20691 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) 20692 return V.getOperand(ConcatOpNum); 20693 return SDValue(); 20694 }; 20695 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); 20696 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); 20697 20698 if (SubVecL || SubVecR) { 20699 // If a binop operand was not the result of a concat, we must extract a 20700 // half-sized operand for our new narrow binop: 20701 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 20702 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 20703 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 20704 SDLoc DL(Extract); 20705 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); 20706 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) 20707 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20708 BinOp.getOperand(0), IndexC); 20709 20710 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) 20711 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20712 BinOp.getOperand(1), IndexC); 20713 20714 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 20715 return DAG.getBitcast(VT, NarrowBinOp); 20716 } 20717 20718 return SDValue(); 20719 } 20720 20721 /// If we are extracting a subvector from a wide vector load, convert to a 20722 /// narrow load to eliminate the extraction: 20723 /// (extract_subvector (load wide vector)) --> (load narrow vector) 20724 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 20725 // TODO: Add support for big-endian. The offset calculation must be adjusted. 20726 if (DAG.getDataLayout().isBigEndian()) 20727 return SDValue(); 20728 20729 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 20730 if (!Ld || Ld->getExtensionType() || !Ld->isSimple()) 20731 return SDValue(); 20732 20733 // Allow targets to opt-out. 20734 EVT VT = Extract->getValueType(0); 20735 20736 // We can only create byte sized loads. 20737 if (!VT.isByteSized()) 20738 return SDValue(); 20739 20740 unsigned Index = Extract->getConstantOperandVal(1); 20741 unsigned NumElts = VT.getVectorMinNumElements(); 20742 20743 // The definition of EXTRACT_SUBVECTOR states that the index must be a 20744 // multiple of the minimum number of elements in the result type. 20745 assert(Index % NumElts == 0 && "The extract subvector index is not a " 20746 "multiple of the result's element count"); 20747 20748 // It's fine to use TypeSize here as we know the offset will not be negative. 20749 TypeSize Offset = VT.getStoreSize() * (Index / NumElts); 20750 20751 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20752 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 20753 return SDValue(); 20754 20755 // The narrow load will be offset from the base address of the old load if 20756 // we are extracting from something besides index 0 (little-endian). 20757 SDLoc DL(Extract); 20758 20759 // TODO: Use "BaseIndexOffset" to make this more effective. 20760 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); 20761 20762 uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); 20763 MachineFunction &MF = DAG.getMachineFunction(); 20764 MachineMemOperand *MMO; 20765 if (Offset.isScalable()) { 20766 MachinePointerInfo MPI = 20767 MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); 20768 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize); 20769 } else 20770 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(), 20771 StoreSize); 20772 20773 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 20774 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 20775 return NewLd; 20776 } 20777 20778 /// Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)), 20779 /// try to produce VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?), 20780 /// EXTRACT_SUBVECTOR(Op?, ?), 20781 /// Mask')) 20782 /// iff it is legal and profitable to do so. Notably, the trimmed mask 20783 /// (containing only the elements that are extracted) 20784 /// must reference at most two subvectors. 20785 static SDValue foldExtractSubvectorFromShuffleVector(SDNode *N, 20786 SelectionDAG &DAG, 20787 const TargetLowering &TLI, 20788 bool LegalOperations) { 20789 assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && 20790 "Must only be called on EXTRACT_SUBVECTOR's"); 20791 20792 SDValue N0 = N->getOperand(0); 20793 20794 // Only deal with non-scalable vectors. 20795 EVT NarrowVT = N->getValueType(0); 20796 EVT WideVT = N0.getValueType(); 20797 if (!NarrowVT.isFixedLengthVector() || !WideVT.isFixedLengthVector()) 20798 return SDValue(); 20799 20800 // The operand must be a shufflevector. 20801 auto *WideShuffleVector = dyn_cast<ShuffleVectorSDNode>(N0); 20802 if (!WideShuffleVector) 20803 return SDValue(); 20804 20805 // The old shuffleneeds to go away. 20806 if (!WideShuffleVector->hasOneUse()) 20807 return SDValue(); 20808 20809 // And the narrow shufflevector that we'll form must be legal. 20810 if (LegalOperations && 20811 !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, NarrowVT)) 20812 return SDValue(); 20813 20814 uint64_t FirstExtractedEltIdx = N->getConstantOperandVal(1); 20815 int NumEltsExtracted = NarrowVT.getVectorNumElements(); 20816 assert((FirstExtractedEltIdx % NumEltsExtracted) == 0 && 20817 "Extract index is not a multiple of the output vector length."); 20818 20819 int WideNumElts = WideVT.getVectorNumElements(); 20820 20821 SmallVector<int, 16> NewMask; 20822 NewMask.reserve(NumEltsExtracted); 20823 SmallSetVector<std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>, 2> 20824 DemandedSubvectors; 20825 20826 // Try to decode the wide mask into narrow mask from at most two subvectors. 20827 for (int M : WideShuffleVector->getMask().slice(FirstExtractedEltIdx, 20828 NumEltsExtracted)) { 20829 assert((M >= -1) && (M < (2 * WideNumElts)) && 20830 "Out-of-bounds shuffle mask?"); 20831 20832 if (M < 0) { 20833 // Does not depend on operands, does not require adjustment. 20834 NewMask.emplace_back(M); 20835 continue; 20836 } 20837 20838 // From which operand of the shuffle does this shuffle mask element pick? 20839 int WideShufOpIdx = M / WideNumElts; 20840 // Which element of that operand is picked? 20841 int OpEltIdx = M % WideNumElts; 20842 20843 assert((OpEltIdx + WideShufOpIdx * WideNumElts) == M && 20844 "Shuffle mask vector decomposition failure."); 20845 20846 // And which NumEltsExtracted-sized subvector of that operand is that? 20847 int OpSubvecIdx = OpEltIdx / NumEltsExtracted; 20848 // And which element within that subvector of that operand is that? 20849 int OpEltIdxInSubvec = OpEltIdx % NumEltsExtracted; 20850 20851 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted) == OpEltIdx && 20852 "Shuffle mask subvector decomposition failure."); 20853 20854 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted + 20855 WideShufOpIdx * WideNumElts) == M && 20856 "Shuffle mask full decomposition failure."); 20857 20858 SDValue Op = WideShuffleVector->getOperand(WideShufOpIdx); 20859 20860 if (Op.isUndef()) { 20861 // Picking from an undef operand. Let's adjust mask instead. 20862 NewMask.emplace_back(-1); 20863 continue; 20864 } 20865 20866 // Profitability check: only deal with extractions from the first subvector. 20867 if (OpSubvecIdx != 0) 20868 return SDValue(); 20869 20870 const std::pair<SDValue, int> DemandedSubvector = 20871 std::make_pair(Op, OpSubvecIdx); 20872 20873 if (DemandedSubvectors.insert(DemandedSubvector)) { 20874 if (DemandedSubvectors.size() > 2) 20875 return SDValue(); // We can't handle more than two subvectors. 20876 // How many elements into the WideVT does this subvector start? 20877 int Index = NumEltsExtracted * OpSubvecIdx; 20878 // Bail out if the extraction isn't going to be cheap. 20879 if (!TLI.isExtractSubvectorCheap(NarrowVT, WideVT, Index)) 20880 return SDValue(); 20881 } 20882 20883 // Ok, but from which operand of the new shuffle will this element pick? 20884 int NewOpIdx = 20885 getFirstIndexOf(DemandedSubvectors.getArrayRef(), DemandedSubvector); 20886 assert((NewOpIdx == 0 || NewOpIdx == 1) && "Unexpected operand index."); 20887 20888 int AdjM = OpEltIdxInSubvec + NewOpIdx * NumEltsExtracted; 20889 NewMask.emplace_back(AdjM); 20890 } 20891 assert(NewMask.size() == (unsigned)NumEltsExtracted && "Produced bad mask."); 20892 assert(DemandedSubvectors.size() <= 2 && 20893 "Should have ended up demanding at most two subvectors."); 20894 20895 // Did we discover that the shuffle does not actually depend on operands? 20896 if (DemandedSubvectors.empty()) 20897 return DAG.getUNDEF(NarrowVT); 20898 20899 // We still perform the exact same EXTRACT_SUBVECTOR, just on different 20900 // operand[s]/index[es], so there is no point in checking for it's legality. 20901 20902 // Do not turn a legal shuffle into an illegal one. 20903 if (TLI.isShuffleMaskLegal(WideShuffleVector->getMask(), WideVT) && 20904 !TLI.isShuffleMaskLegal(NewMask, NarrowVT)) 20905 return SDValue(); 20906 20907 SDLoc DL(N); 20908 20909 SmallVector<SDValue, 2> NewOps; 20910 for (const std::pair<SDValue /*Op*/, int /*SubvectorIndex*/> 20911 &DemandedSubvector : DemandedSubvectors) { 20912 // How many elements into the WideVT does this subvector start? 20913 int Index = NumEltsExtracted * DemandedSubvector.second; 20914 SDValue IndexC = DAG.getVectorIdxConstant(Index, DL); 20915 NewOps.emplace_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowVT, 20916 DemandedSubvector.first, IndexC)); 20917 } 20918 assert((NewOps.size() == 1 || NewOps.size() == 2) && 20919 "Should end up with either one or two ops"); 20920 20921 // If we ended up with only one operand, pad with an undef. 20922 if (NewOps.size() == 1) 20923 NewOps.emplace_back(DAG.getUNDEF(NarrowVT)); 20924 20925 return DAG.getVectorShuffle(NarrowVT, DL, NewOps[0], NewOps[1], NewMask); 20926 } 20927 20928 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 20929 EVT NVT = N->getValueType(0); 20930 SDValue V = N->getOperand(0); 20931 uint64_t ExtIdx = N->getConstantOperandVal(1); 20932 20933 // Extract from UNDEF is UNDEF. 20934 if (V.isUndef()) 20935 return DAG.getUNDEF(NVT); 20936 20937 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 20938 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 20939 return NarrowLoad; 20940 20941 // Combine an extract of an extract into a single extract_subvector. 20942 // ext (ext X, C), 0 --> ext X, C 20943 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { 20944 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 20945 V.getConstantOperandVal(1)) && 20946 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 20947 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 20948 V.getOperand(1)); 20949 } 20950 } 20951 20952 // Try to move vector bitcast after extract_subv by scaling extraction index: 20953 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 20954 if (V.getOpcode() == ISD::BITCAST && 20955 V.getOperand(0).getValueType().isVector() && 20956 (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) { 20957 SDValue SrcOp = V.getOperand(0); 20958 EVT SrcVT = SrcOp.getValueType(); 20959 unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); 20960 unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); 20961 if ((SrcNumElts % DestNumElts) == 0) { 20962 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 20963 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; 20964 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 20965 NewExtEC); 20966 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 20967 SDLoc DL(N); 20968 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); 20969 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 20970 V.getOperand(0), NewIndex); 20971 return DAG.getBitcast(NVT, NewExtract); 20972 } 20973 } 20974 if ((DestNumElts % SrcNumElts) == 0) { 20975 unsigned DestSrcRatio = DestNumElts / SrcNumElts; 20976 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { 20977 ElementCount NewExtEC = 20978 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); 20979 EVT ScalarVT = SrcVT.getScalarType(); 20980 if ((ExtIdx % DestSrcRatio) == 0) { 20981 SDLoc DL(N); 20982 unsigned IndexValScaled = ExtIdx / DestSrcRatio; 20983 EVT NewExtVT = 20984 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); 20985 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 20986 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 20987 SDValue NewExtract = 20988 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 20989 V.getOperand(0), NewIndex); 20990 return DAG.getBitcast(NVT, NewExtract); 20991 } 20992 if (NewExtEC.isScalar() && 20993 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { 20994 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 20995 SDValue NewExtract = 20996 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, 20997 V.getOperand(0), NewIndex); 20998 return DAG.getBitcast(NVT, NewExtract); 20999 } 21000 } 21001 } 21002 } 21003 } 21004 21005 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 21006 unsigned ExtNumElts = NVT.getVectorMinNumElements(); 21007 EVT ConcatSrcVT = V.getOperand(0).getValueType(); 21008 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && 21009 "Concat and extract subvector do not change element type"); 21010 assert((ExtIdx % ExtNumElts) == 0 && 21011 "Extract index is not a multiple of the input vector length."); 21012 21013 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); 21014 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; 21015 21016 // If the concatenated source types match this extract, it's a direct 21017 // simplification: 21018 // extract_subvec (concat V1, V2, ...), i --> Vi 21019 if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount()) 21020 return V.getOperand(ConcatOpIdx); 21021 21022 // If the concatenated source vectors are a multiple length of this extract, 21023 // then extract a fraction of one of those source vectors directly from a 21024 // concat operand. Example: 21025 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> 21026 // v2i8 extract_subvec v8i8 Y, 6 21027 if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() && 21028 ConcatSrcNumElts % ExtNumElts == 0) { 21029 SDLoc DL(N); 21030 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; 21031 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && 21032 "Trying to extract from >1 concat operand?"); 21033 assert(NewExtIdx % ExtNumElts == 0 && 21034 "Extract index is not a multiple of the input vector length."); 21035 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); 21036 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, 21037 V.getOperand(ConcatOpIdx), NewIndexC); 21038 } 21039 } 21040 21041 if (SDValue V = 21042 foldExtractSubvectorFromShuffleVector(N, DAG, TLI, LegalOperations)) 21043 return V; 21044 21045 V = peekThroughBitcasts(V); 21046 21047 // If the input is a build vector. Try to make a smaller build vector. 21048 if (V.getOpcode() == ISD::BUILD_VECTOR) { 21049 EVT InVT = V.getValueType(); 21050 unsigned ExtractSize = NVT.getSizeInBits(); 21051 unsigned EltSize = InVT.getScalarSizeInBits(); 21052 // Only do this if we won't split any elements. 21053 if (ExtractSize % EltSize == 0) { 21054 unsigned NumElems = ExtractSize / EltSize; 21055 EVT EltVT = InVT.getVectorElementType(); 21056 EVT ExtractVT = 21057 NumElems == 1 ? EltVT 21058 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); 21059 if ((Level < AfterLegalizeDAG || 21060 (NumElems == 1 || 21061 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 21062 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 21063 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; 21064 21065 if (NumElems == 1) { 21066 SDValue Src = V->getOperand(IdxVal); 21067 if (EltVT != Src.getValueType()) 21068 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 21069 return DAG.getBitcast(NVT, Src); 21070 } 21071 21072 // Extract the pieces from the original build_vector. 21073 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), 21074 V->ops().slice(IdxVal, NumElems)); 21075 return DAG.getBitcast(NVT, BuildVec); 21076 } 21077 } 21078 } 21079 21080 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 21081 // Handle only simple case where vector being inserted and vector 21082 // being extracted are of same size. 21083 EVT SmallVT = V.getOperand(1).getValueType(); 21084 if (!NVT.bitsEq(SmallVT)) 21085 return SDValue(); 21086 21087 // Combine: 21088 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 21089 // Into: 21090 // indices are equal or bit offsets are equal => V1 21091 // otherwise => (extract_subvec V1, ExtIdx) 21092 uint64_t InsIdx = V.getConstantOperandVal(2); 21093 if (InsIdx * SmallVT.getScalarSizeInBits() == 21094 ExtIdx * NVT.getScalarSizeInBits()) { 21095 if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT)) 21096 return SDValue(); 21097 21098 return DAG.getBitcast(NVT, V.getOperand(1)); 21099 } 21100 return DAG.getNode( 21101 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 21102 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 21103 N->getOperand(1)); 21104 } 21105 21106 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) 21107 return NarrowBOp; 21108 21109 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21110 return SDValue(N, 0); 21111 21112 return SDValue(); 21113 } 21114 21115 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 21116 /// followed by concatenation. Narrow vector ops may have better performance 21117 /// than wide ops, and this can unlock further narrowing of other vector ops. 21118 /// Targets can invert this transform later if it is not profitable. 21119 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 21120 SelectionDAG &DAG) { 21121 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 21122 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 21123 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 21124 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 21125 return SDValue(); 21126 21127 // Split the wide shuffle mask into halves. Any mask element that is accessing 21128 // operand 1 is offset down to account for narrowing of the vectors. 21129 ArrayRef<int> Mask = Shuf->getMask(); 21130 EVT VT = Shuf->getValueType(0); 21131 unsigned NumElts = VT.getVectorNumElements(); 21132 unsigned HalfNumElts = NumElts / 2; 21133 SmallVector<int, 16> Mask0(HalfNumElts, -1); 21134 SmallVector<int, 16> Mask1(HalfNumElts, -1); 21135 for (unsigned i = 0; i != NumElts; ++i) { 21136 if (Mask[i] == -1) 21137 continue; 21138 // If we reference the upper (undef) subvector then the element is undef. 21139 if ((Mask[i] % NumElts) >= HalfNumElts) 21140 continue; 21141 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 21142 if (i < HalfNumElts) 21143 Mask0[i] = M; 21144 else 21145 Mask1[i - HalfNumElts] = M; 21146 } 21147 21148 // Ask the target if this is a valid transform. 21149 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 21150 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 21151 HalfNumElts); 21152 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 21153 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 21154 return SDValue(); 21155 21156 // shuffle (concat X, undef), (concat Y, undef), Mask --> 21157 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 21158 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 21159 SDLoc DL(Shuf); 21160 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 21161 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 21162 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 21163 } 21164 21165 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 21166 // or turn a shuffle of a single concat into simpler shuffle then concat. 21167 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 21168 EVT VT = N->getValueType(0); 21169 unsigned NumElts = VT.getVectorNumElements(); 21170 21171 SDValue N0 = N->getOperand(0); 21172 SDValue N1 = N->getOperand(1); 21173 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 21174 ArrayRef<int> Mask = SVN->getMask(); 21175 21176 SmallVector<SDValue, 4> Ops; 21177 EVT ConcatVT = N0.getOperand(0).getValueType(); 21178 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 21179 unsigned NumConcats = NumElts / NumElemsPerConcat; 21180 21181 auto IsUndefMaskElt = [](int i) { return i == -1; }; 21182 21183 // Special case: shuffle(concat(A,B)) can be more efficiently represented 21184 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 21185 // half vector elements. 21186 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 21187 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 21188 IsUndefMaskElt)) { 21189 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 21190 N0.getOperand(1), 21191 Mask.slice(0, NumElemsPerConcat)); 21192 N1 = DAG.getUNDEF(ConcatVT); 21193 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 21194 } 21195 21196 // Look at every vector that's inserted. We're looking for exact 21197 // subvector-sized copies from a concatenated vector 21198 for (unsigned I = 0; I != NumConcats; ++I) { 21199 unsigned Begin = I * NumElemsPerConcat; 21200 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 21201 21202 // Make sure we're dealing with a copy. 21203 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 21204 Ops.push_back(DAG.getUNDEF(ConcatVT)); 21205 continue; 21206 } 21207 21208 int OpIdx = -1; 21209 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 21210 if (IsUndefMaskElt(SubMask[i])) 21211 continue; 21212 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 21213 return SDValue(); 21214 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 21215 if (0 <= OpIdx && EltOpIdx != OpIdx) 21216 return SDValue(); 21217 OpIdx = EltOpIdx; 21218 } 21219 assert(0 <= OpIdx && "Unknown concat_vectors op"); 21220 21221 if (OpIdx < (int)N0.getNumOperands()) 21222 Ops.push_back(N0.getOperand(OpIdx)); 21223 else 21224 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 21225 } 21226 21227 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 21228 } 21229 21230 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 21231 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 21232 // 21233 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 21234 // a simplification in some sense, but it isn't appropriate in general: some 21235 // BUILD_VECTORs are substantially cheaper than others. The general case 21236 // of a BUILD_VECTOR requires inserting each element individually (or 21237 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 21238 // all constants is a single constant pool load. A BUILD_VECTOR where each 21239 // element is identical is a splat. A BUILD_VECTOR where most of the operands 21240 // are undef lowers to a small number of element insertions. 21241 // 21242 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 21243 // We don't fold shuffles where one side is a non-zero constant, and we don't 21244 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 21245 // non-constant operands. This seems to work out reasonably well in practice. 21246 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 21247 SelectionDAG &DAG, 21248 const TargetLowering &TLI) { 21249 EVT VT = SVN->getValueType(0); 21250 unsigned NumElts = VT.getVectorNumElements(); 21251 SDValue N0 = SVN->getOperand(0); 21252 SDValue N1 = SVN->getOperand(1); 21253 21254 if (!N0->hasOneUse()) 21255 return SDValue(); 21256 21257 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 21258 // discussed above. 21259 if (!N1.isUndef()) { 21260 if (!N1->hasOneUse()) 21261 return SDValue(); 21262 21263 bool N0AnyConst = isAnyConstantBuildVector(N0); 21264 bool N1AnyConst = isAnyConstantBuildVector(N1); 21265 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 21266 return SDValue(); 21267 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 21268 return SDValue(); 21269 } 21270 21271 // If both inputs are splats of the same value then we can safely merge this 21272 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 21273 bool IsSplat = false; 21274 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 21275 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 21276 if (BV0 && BV1) 21277 if (SDValue Splat0 = BV0->getSplatValue()) 21278 IsSplat = (Splat0 == BV1->getSplatValue()); 21279 21280 SmallVector<SDValue, 8> Ops; 21281 SmallSet<SDValue, 16> DuplicateOps; 21282 for (int M : SVN->getMask()) { 21283 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 21284 if (M >= 0) { 21285 int Idx = M < (int)NumElts ? M : M - NumElts; 21286 SDValue &S = (M < (int)NumElts ? N0 : N1); 21287 if (S.getOpcode() == ISD::BUILD_VECTOR) { 21288 Op = S.getOperand(Idx); 21289 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 21290 SDValue Op0 = S.getOperand(0); 21291 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 21292 } else { 21293 // Operand can't be combined - bail out. 21294 return SDValue(); 21295 } 21296 } 21297 21298 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 21299 // generating a splat; semantically, this is fine, but it's likely to 21300 // generate low-quality code if the target can't reconstruct an appropriate 21301 // shuffle. 21302 if (!Op.isUndef() && !isIntOrFPConstant(Op)) 21303 if (!IsSplat && !DuplicateOps.insert(Op).second) 21304 return SDValue(); 21305 21306 Ops.push_back(Op); 21307 } 21308 21309 // BUILD_VECTOR requires all inputs to be of the same type, find the 21310 // maximum type and extend them all. 21311 EVT SVT = VT.getScalarType(); 21312 if (SVT.isInteger()) 21313 for (SDValue &Op : Ops) 21314 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 21315 if (SVT != VT.getScalarType()) 21316 for (SDValue &Op : Ops) 21317 Op = TLI.isZExtFree(Op.getValueType(), SVT) 21318 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 21319 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); 21320 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 21321 } 21322 21323 // Match shuffles that can be converted to any_vector_extend_in_reg. 21324 // This is often generated during legalization. 21325 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 21326 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 21327 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 21328 SelectionDAG &DAG, 21329 const TargetLowering &TLI, 21330 bool LegalOperations) { 21331 EVT VT = SVN->getValueType(0); 21332 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 21333 21334 // TODO Add support for big-endian when we have a test case. 21335 if (!VT.isInteger() || IsBigEndian) 21336 return SDValue(); 21337 21338 unsigned NumElts = VT.getVectorNumElements(); 21339 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21340 ArrayRef<int> Mask = SVN->getMask(); 21341 SDValue N0 = SVN->getOperand(0); 21342 21343 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 21344 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 21345 for (unsigned i = 0; i != NumElts; ++i) { 21346 if (Mask[i] < 0) 21347 continue; 21348 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 21349 continue; 21350 return false; 21351 } 21352 return true; 21353 }; 21354 21355 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 21356 // power-of-2 extensions as they are the most likely. 21357 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 21358 // Check for non power of 2 vector sizes 21359 if (NumElts % Scale != 0) 21360 continue; 21361 if (!isAnyExtend(Scale)) 21362 continue; 21363 21364 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 21365 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 21366 // Never create an illegal type. Only create unsupported operations if we 21367 // are pre-legalization. 21368 if (TLI.isTypeLegal(OutVT)) 21369 if (!LegalOperations || 21370 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 21371 return DAG.getBitcast(VT, 21372 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 21373 SDLoc(SVN), OutVT, N0)); 21374 } 21375 21376 return SDValue(); 21377 } 21378 21379 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 21380 // each source element of a large type into the lowest elements of a smaller 21381 // destination type. This is often generated during legalization. 21382 // If the source node itself was a '*_extend_vector_inreg' node then we should 21383 // then be able to remove it. 21384 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 21385 SelectionDAG &DAG) { 21386 EVT VT = SVN->getValueType(0); 21387 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 21388 21389 // TODO Add support for big-endian when we have a test case. 21390 if (!VT.isInteger() || IsBigEndian) 21391 return SDValue(); 21392 21393 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 21394 21395 unsigned Opcode = N0.getOpcode(); 21396 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 21397 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 21398 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 21399 return SDValue(); 21400 21401 SDValue N00 = N0.getOperand(0); 21402 ArrayRef<int> Mask = SVN->getMask(); 21403 unsigned NumElts = VT.getVectorNumElements(); 21404 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21405 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 21406 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 21407 21408 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 21409 return SDValue(); 21410 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 21411 21412 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 21413 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 21414 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 21415 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 21416 for (unsigned i = 0; i != NumElts; ++i) { 21417 if (Mask[i] < 0) 21418 continue; 21419 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 21420 continue; 21421 return false; 21422 } 21423 return true; 21424 }; 21425 21426 // At the moment we just handle the case where we've truncated back to the 21427 // same size as before the extension. 21428 // TODO: handle more extension/truncation cases as cases arise. 21429 if (EltSizeInBits != ExtSrcSizeInBits) 21430 return SDValue(); 21431 21432 // We can remove *extend_vector_inreg only if the truncation happens at 21433 // the same scale as the extension. 21434 if (isTruncate(ExtScale)) 21435 return DAG.getBitcast(VT, N00); 21436 21437 return SDValue(); 21438 } 21439 21440 // Combine shuffles of splat-shuffles of the form: 21441 // shuffle (shuffle V, undef, splat-mask), undef, M 21442 // If splat-mask contains undef elements, we need to be careful about 21443 // introducing undef's in the folded mask which are not the result of composing 21444 // the masks of the shuffles. 21445 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 21446 SelectionDAG &DAG) { 21447 if (!Shuf->getOperand(1).isUndef()) 21448 return SDValue(); 21449 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 21450 if (!Splat || !Splat->isSplat()) 21451 return SDValue(); 21452 21453 ArrayRef<int> ShufMask = Shuf->getMask(); 21454 ArrayRef<int> SplatMask = Splat->getMask(); 21455 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 21456 21457 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 21458 // every undef mask element in the splat-shuffle has a corresponding undef 21459 // element in the user-shuffle's mask or if the composition of mask elements 21460 // would result in undef. 21461 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 21462 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 21463 // In this case it is not legal to simplify to the splat-shuffle because we 21464 // may be exposing the users of the shuffle an undef element at index 1 21465 // which was not there before the combine. 21466 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 21467 // In this case the composition of masks yields SplatMask, so it's ok to 21468 // simplify to the splat-shuffle. 21469 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 21470 // In this case the composed mask includes all undef elements of SplatMask 21471 // and in addition sets element zero to undef. It is safe to simplify to 21472 // the splat-shuffle. 21473 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 21474 ArrayRef<int> SplatMask) { 21475 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 21476 if (UserMask[i] != -1 && SplatMask[i] == -1 && 21477 SplatMask[UserMask[i]] != -1) 21478 return false; 21479 return true; 21480 }; 21481 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 21482 return Shuf->getOperand(0); 21483 21484 // Create a new shuffle with a mask that is composed of the two shuffles' 21485 // masks. 21486 SmallVector<int, 32> NewMask; 21487 for (int Idx : ShufMask) 21488 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 21489 21490 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 21491 Splat->getOperand(0), Splat->getOperand(1), 21492 NewMask); 21493 } 21494 21495 /// Combine shuffle of shuffle of the form: 21496 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X 21497 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, 21498 SelectionDAG &DAG) { 21499 if (!OuterShuf->getOperand(1).isUndef()) 21500 return SDValue(); 21501 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); 21502 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) 21503 return SDValue(); 21504 21505 ArrayRef<int> OuterMask = OuterShuf->getMask(); 21506 ArrayRef<int> InnerMask = InnerShuf->getMask(); 21507 unsigned NumElts = OuterMask.size(); 21508 assert(NumElts == InnerMask.size() && "Mask length mismatch"); 21509 SmallVector<int, 32> CombinedMask(NumElts, -1); 21510 int SplatIndex = -1; 21511 for (unsigned i = 0; i != NumElts; ++i) { 21512 // Undef lanes remain undef. 21513 int OuterMaskElt = OuterMask[i]; 21514 if (OuterMaskElt == -1) 21515 continue; 21516 21517 // Peek through the shuffle masks to get the underlying source element. 21518 int InnerMaskElt = InnerMask[OuterMaskElt]; 21519 if (InnerMaskElt == -1) 21520 continue; 21521 21522 // Initialize the splatted element. 21523 if (SplatIndex == -1) 21524 SplatIndex = InnerMaskElt; 21525 21526 // Non-matching index - this is not a splat. 21527 if (SplatIndex != InnerMaskElt) 21528 return SDValue(); 21529 21530 CombinedMask[i] = InnerMaskElt; 21531 } 21532 assert((all_of(CombinedMask, [](int M) { return M == -1; }) || 21533 getSplatIndex(CombinedMask) != -1) && 21534 "Expected a splat mask"); 21535 21536 // TODO: The transform may be a win even if the mask is not legal. 21537 EVT VT = OuterShuf->getValueType(0); 21538 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); 21539 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) 21540 return SDValue(); 21541 21542 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), 21543 InnerShuf->getOperand(1), CombinedMask); 21544 } 21545 21546 /// If the shuffle mask is taking exactly one element from the first vector 21547 /// operand and passing through all other elements from the second vector 21548 /// operand, return the index of the mask element that is choosing an element 21549 /// from the first operand. Otherwise, return -1. 21550 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 21551 int MaskSize = Mask.size(); 21552 int EltFromOp0 = -1; 21553 // TODO: This does not match if there are undef elements in the shuffle mask. 21554 // Should we ignore undefs in the shuffle mask instead? The trade-off is 21555 // removing an instruction (a shuffle), but losing the knowledge that some 21556 // vector lanes are not needed. 21557 for (int i = 0; i != MaskSize; ++i) { 21558 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 21559 // We're looking for a shuffle of exactly one element from operand 0. 21560 if (EltFromOp0 != -1) 21561 return -1; 21562 EltFromOp0 = i; 21563 } else if (Mask[i] != i + MaskSize) { 21564 // Nothing from operand 1 can change lanes. 21565 return -1; 21566 } 21567 } 21568 return EltFromOp0; 21569 } 21570 21571 /// If a shuffle inserts exactly one element from a source vector operand into 21572 /// another vector operand and we can access the specified element as a scalar, 21573 /// then we can eliminate the shuffle. 21574 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 21575 SelectionDAG &DAG) { 21576 // First, check if we are taking one element of a vector and shuffling that 21577 // element into another vector. 21578 ArrayRef<int> Mask = Shuf->getMask(); 21579 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 21580 SDValue Op0 = Shuf->getOperand(0); 21581 SDValue Op1 = Shuf->getOperand(1); 21582 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 21583 if (ShufOp0Index == -1) { 21584 // Commute mask and check again. 21585 ShuffleVectorSDNode::commuteMask(CommutedMask); 21586 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 21587 if (ShufOp0Index == -1) 21588 return SDValue(); 21589 // Commute operands to match the commuted shuffle mask. 21590 std::swap(Op0, Op1); 21591 Mask = CommutedMask; 21592 } 21593 21594 // The shuffle inserts exactly one element from operand 0 into operand 1. 21595 // Now see if we can access that element as a scalar via a real insert element 21596 // instruction. 21597 // TODO: We can try harder to locate the element as a scalar. Examples: it 21598 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 21599 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 21600 "Shuffle mask value must be from operand 0"); 21601 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 21602 return SDValue(); 21603 21604 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 21605 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 21606 return SDValue(); 21607 21608 // There's an existing insertelement with constant insertion index, so we 21609 // don't need to check the legality/profitability of a replacement operation 21610 // that differs at most in the constant value. The target should be able to 21611 // lower any of those in a similar way. If not, legalization will expand this 21612 // to a scalar-to-vector plus shuffle. 21613 // 21614 // Note that the shuffle may move the scalar from the position that the insert 21615 // element used. Therefore, our new insert element occurs at the shuffle's 21616 // mask index value, not the insert's index value. 21617 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 21618 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); 21619 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 21620 Op1, Op0.getOperand(1), NewInsIndex); 21621 } 21622 21623 /// If we have a unary shuffle of a shuffle, see if it can be folded away 21624 /// completely. This has the potential to lose undef knowledge because the first 21625 /// shuffle may not have an undef mask element where the second one does. So 21626 /// only call this after doing simplifications based on demanded elements. 21627 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 21628 // shuf (shuf0 X, Y, Mask0), undef, Mask 21629 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 21630 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 21631 return SDValue(); 21632 21633 ArrayRef<int> Mask = Shuf->getMask(); 21634 ArrayRef<int> Mask0 = Shuf0->getMask(); 21635 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 21636 // Ignore undef elements. 21637 if (Mask[i] == -1) 21638 continue; 21639 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 21640 21641 // Is the element of the shuffle operand chosen by this shuffle the same as 21642 // the element chosen by the shuffle operand itself? 21643 if (Mask0[Mask[i]] != Mask0[i]) 21644 return SDValue(); 21645 } 21646 // Every element of this shuffle is identical to the result of the previous 21647 // shuffle, so we can replace this value. 21648 return Shuf->getOperand(0); 21649 } 21650 21651 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 21652 EVT VT = N->getValueType(0); 21653 unsigned NumElts = VT.getVectorNumElements(); 21654 21655 SDValue N0 = N->getOperand(0); 21656 SDValue N1 = N->getOperand(1); 21657 21658 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 21659 21660 // Canonicalize shuffle undef, undef -> undef 21661 if (N0.isUndef() && N1.isUndef()) 21662 return DAG.getUNDEF(VT); 21663 21664 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 21665 21666 // Canonicalize shuffle v, v -> v, undef 21667 if (N0 == N1) 21668 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 21669 createUnaryMask(SVN->getMask(), NumElts)); 21670 21671 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 21672 if (N0.isUndef()) 21673 return DAG.getCommutedVectorShuffle(*SVN); 21674 21675 // Remove references to rhs if it is undef 21676 if (N1.isUndef()) { 21677 bool Changed = false; 21678 SmallVector<int, 8> NewMask; 21679 for (unsigned i = 0; i != NumElts; ++i) { 21680 int Idx = SVN->getMaskElt(i); 21681 if (Idx >= (int)NumElts) { 21682 Idx = -1; 21683 Changed = true; 21684 } 21685 NewMask.push_back(Idx); 21686 } 21687 if (Changed) 21688 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 21689 } 21690 21691 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 21692 return InsElt; 21693 21694 // A shuffle of a single vector that is a splatted value can always be folded. 21695 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 21696 return V; 21697 21698 if (SDValue V = formSplatFromShuffles(SVN, DAG)) 21699 return V; 21700 21701 // If it is a splat, check if the argument vector is another splat or a 21702 // build_vector. 21703 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 21704 int SplatIndex = SVN->getSplatIndex(); 21705 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && 21706 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { 21707 // splat (vector_bo L, R), Index --> 21708 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 21709 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 21710 SDLoc DL(N); 21711 EVT EltVT = VT.getScalarType(); 21712 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); 21713 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 21714 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 21715 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, 21716 N0.getNode()->getFlags()); 21717 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 21718 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 21719 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 21720 } 21721 21722 // If this is a bit convert that changes the element type of the vector but 21723 // not the number of vector elements, look through it. Be careful not to 21724 // look though conversions that change things like v4f32 to v2f64. 21725 SDNode *V = N0.getNode(); 21726 if (V->getOpcode() == ISD::BITCAST) { 21727 SDValue ConvInput = V->getOperand(0); 21728 if (ConvInput.getValueType().isVector() && 21729 ConvInput.getValueType().getVectorNumElements() == NumElts) 21730 V = ConvInput.getNode(); 21731 } 21732 21733 if (V->getOpcode() == ISD::BUILD_VECTOR) { 21734 assert(V->getNumOperands() == NumElts && 21735 "BUILD_VECTOR has wrong number of operands"); 21736 SDValue Base; 21737 bool AllSame = true; 21738 for (unsigned i = 0; i != NumElts; ++i) { 21739 if (!V->getOperand(i).isUndef()) { 21740 Base = V->getOperand(i); 21741 break; 21742 } 21743 } 21744 // Splat of <u, u, u, u>, return <u, u, u, u> 21745 if (!Base.getNode()) 21746 return N0; 21747 for (unsigned i = 0; i != NumElts; ++i) { 21748 if (V->getOperand(i) != Base) { 21749 AllSame = false; 21750 break; 21751 } 21752 } 21753 // Splat of <x, x, x, x>, return <x, x, x, x> 21754 if (AllSame) 21755 return N0; 21756 21757 // Canonicalize any other splat as a build_vector. 21758 SDValue Splatted = V->getOperand(SplatIndex); 21759 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 21760 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 21761 21762 // We may have jumped through bitcasts, so the type of the 21763 // BUILD_VECTOR may not match the type of the shuffle. 21764 if (V->getValueType(0) != VT) 21765 NewBV = DAG.getBitcast(VT, NewBV); 21766 return NewBV; 21767 } 21768 } 21769 21770 // Simplify source operands based on shuffle mask. 21771 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21772 return SDValue(N, 0); 21773 21774 // This is intentionally placed after demanded elements simplification because 21775 // it could eliminate knowledge of undef elements created by this shuffle. 21776 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 21777 return ShufOp; 21778 21779 // Match shuffles that can be converted to any_vector_extend_in_reg. 21780 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 21781 return V; 21782 21783 // Combine "truncate_vector_in_reg" style shuffles. 21784 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 21785 return V; 21786 21787 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 21788 Level < AfterLegalizeVectorOps && 21789 (N1.isUndef() || 21790 (N1.getOpcode() == ISD::CONCAT_VECTORS && 21791 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 21792 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 21793 return V; 21794 } 21795 21796 // A shuffle of a concat of the same narrow vector can be reduced to use 21797 // only low-half elements of a concat with undef: 21798 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' 21799 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && 21800 N0.getNumOperands() == 2 && 21801 N0.getOperand(0) == N0.getOperand(1)) { 21802 int HalfNumElts = (int)NumElts / 2; 21803 SmallVector<int, 8> NewMask; 21804 for (unsigned i = 0; i != NumElts; ++i) { 21805 int Idx = SVN->getMaskElt(i); 21806 if (Idx >= HalfNumElts) { 21807 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); 21808 Idx -= HalfNumElts; 21809 } 21810 NewMask.push_back(Idx); 21811 } 21812 if (TLI.isShuffleMaskLegal(NewMask, VT)) { 21813 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); 21814 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 21815 N0.getOperand(0), UndefVec); 21816 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); 21817 } 21818 } 21819 21820 // See if we can replace a shuffle with an insert_subvector. 21821 // e.g. v2i32 into v8i32: 21822 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7). 21823 // --> insert_subvector(lhs,rhs1,4). 21824 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) && 21825 TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) { 21826 auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) { 21827 // Ensure RHS subvectors are legal. 21828 assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors"); 21829 EVT SubVT = RHS.getOperand(0).getValueType(); 21830 int NumSubVecs = RHS.getNumOperands(); 21831 int NumSubElts = SubVT.getVectorNumElements(); 21832 assert((NumElts % NumSubElts) == 0 && "Subvector mismatch"); 21833 if (!TLI.isTypeLegal(SubVT)) 21834 return SDValue(); 21835 21836 // Don't bother if we have an unary shuffle (matches undef + LHS elts). 21837 if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; })) 21838 return SDValue(); 21839 21840 // Search [NumSubElts] spans for RHS sequence. 21841 // TODO: Can we avoid nested loops to increase performance? 21842 SmallVector<int> InsertionMask(NumElts); 21843 for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) { 21844 for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) { 21845 // Reset mask to identity. 21846 std::iota(InsertionMask.begin(), InsertionMask.end(), 0); 21847 21848 // Add subvector insertion. 21849 std::iota(InsertionMask.begin() + SubIdx, 21850 InsertionMask.begin() + SubIdx + NumSubElts, 21851 NumElts + (SubVec * NumSubElts)); 21852 21853 // See if the shuffle mask matches the reference insertion mask. 21854 bool MatchingShuffle = true; 21855 for (int i = 0; i != (int)NumElts; ++i) { 21856 int ExpectIdx = InsertionMask[i]; 21857 int ActualIdx = Mask[i]; 21858 if (0 <= ActualIdx && ExpectIdx != ActualIdx) { 21859 MatchingShuffle = false; 21860 break; 21861 } 21862 } 21863 21864 if (MatchingShuffle) 21865 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS, 21866 RHS.getOperand(SubVec), 21867 DAG.getVectorIdxConstant(SubIdx, SDLoc(N))); 21868 } 21869 } 21870 return SDValue(); 21871 }; 21872 ArrayRef<int> Mask = SVN->getMask(); 21873 if (N1.getOpcode() == ISD::CONCAT_VECTORS) 21874 if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask)) 21875 return InsertN1; 21876 if (N0.getOpcode() == ISD::CONCAT_VECTORS) { 21877 SmallVector<int> CommuteMask(Mask.begin(), Mask.end()); 21878 ShuffleVectorSDNode::commuteMask(CommuteMask); 21879 if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask)) 21880 return InsertN0; 21881 } 21882 } 21883 21884 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 21885 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 21886 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 21887 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 21888 return Res; 21889 21890 // If this shuffle only has a single input that is a bitcasted shuffle, 21891 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 21892 // back to their original types. 21893 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 21894 N1.isUndef() && Level < AfterLegalizeVectorOps && 21895 TLI.isTypeLegal(VT)) { 21896 21897 SDValue BC0 = peekThroughOneUseBitcasts(N0); 21898 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 21899 EVT SVT = VT.getScalarType(); 21900 EVT InnerVT = BC0->getValueType(0); 21901 EVT InnerSVT = InnerVT.getScalarType(); 21902 21903 // Determine which shuffle works with the smaller scalar type. 21904 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 21905 EVT ScaleSVT = ScaleVT.getScalarType(); 21906 21907 if (TLI.isTypeLegal(ScaleVT) && 21908 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 21909 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 21910 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 21911 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 21912 21913 // Scale the shuffle masks to the smaller scalar type. 21914 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 21915 SmallVector<int, 8> InnerMask; 21916 SmallVector<int, 8> OuterMask; 21917 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); 21918 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); 21919 21920 // Merge the shuffle masks. 21921 SmallVector<int, 8> NewMask; 21922 for (int M : OuterMask) 21923 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 21924 21925 // Test for shuffle mask legality over both commutations. 21926 SDValue SV0 = BC0->getOperand(0); 21927 SDValue SV1 = BC0->getOperand(1); 21928 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 21929 if (!LegalMask) { 21930 std::swap(SV0, SV1); 21931 ShuffleVectorSDNode::commuteMask(NewMask); 21932 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 21933 } 21934 21935 if (LegalMask) { 21936 SV0 = DAG.getBitcast(ScaleVT, SV0); 21937 SV1 = DAG.getBitcast(ScaleVT, SV1); 21938 return DAG.getBitcast( 21939 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 21940 } 21941 } 21942 } 21943 } 21944 21945 // Compute the combined shuffle mask for a shuffle with SV0 as the first 21946 // operand, and SV1 as the second operand. 21947 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false 21948 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true 21949 auto MergeInnerShuffle = 21950 [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN, 21951 ShuffleVectorSDNode *OtherSVN, SDValue N1, 21952 const TargetLowering &TLI, SDValue &SV0, SDValue &SV1, 21953 SmallVectorImpl<int> &Mask) -> bool { 21954 // Don't try to fold splats; they're likely to simplify somehow, or they 21955 // might be free. 21956 if (OtherSVN->isSplat()) 21957 return false; 21958 21959 SV0 = SV1 = SDValue(); 21960 Mask.clear(); 21961 21962 for (unsigned i = 0; i != NumElts; ++i) { 21963 int Idx = SVN->getMaskElt(i); 21964 if (Idx < 0) { 21965 // Propagate Undef. 21966 Mask.push_back(Idx); 21967 continue; 21968 } 21969 21970 if (Commute) 21971 Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts); 21972 21973 SDValue CurrentVec; 21974 if (Idx < (int)NumElts) { 21975 // This shuffle index refers to the inner shuffle N0. Lookup the inner 21976 // shuffle mask to identify which vector is actually referenced. 21977 Idx = OtherSVN->getMaskElt(Idx); 21978 if (Idx < 0) { 21979 // Propagate Undef. 21980 Mask.push_back(Idx); 21981 continue; 21982 } 21983 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) 21984 : OtherSVN->getOperand(1); 21985 } else { 21986 // This shuffle index references an element within N1. 21987 CurrentVec = N1; 21988 } 21989 21990 // Simple case where 'CurrentVec' is UNDEF. 21991 if (CurrentVec.isUndef()) { 21992 Mask.push_back(-1); 21993 continue; 21994 } 21995 21996 // Canonicalize the shuffle index. We don't know yet if CurrentVec 21997 // will be the first or second operand of the combined shuffle. 21998 Idx = Idx % NumElts; 21999 if (!SV0.getNode() || SV0 == CurrentVec) { 22000 // Ok. CurrentVec is the left hand side. 22001 // Update the mask accordingly. 22002 SV0 = CurrentVec; 22003 Mask.push_back(Idx); 22004 continue; 22005 } 22006 if (!SV1.getNode() || SV1 == CurrentVec) { 22007 // Ok. CurrentVec is the right hand side. 22008 // Update the mask accordingly. 22009 SV1 = CurrentVec; 22010 Mask.push_back(Idx + NumElts); 22011 continue; 22012 } 22013 22014 // Last chance - see if the vector is another shuffle and if it 22015 // uses one of the existing candidate shuffle ops. 22016 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { 22017 int InnerIdx = CurrentSVN->getMaskElt(Idx); 22018 if (InnerIdx < 0) { 22019 Mask.push_back(-1); 22020 continue; 22021 } 22022 SDValue InnerVec = (InnerIdx < (int)NumElts) 22023 ? CurrentSVN->getOperand(0) 22024 : CurrentSVN->getOperand(1); 22025 if (InnerVec.isUndef()) { 22026 Mask.push_back(-1); 22027 continue; 22028 } 22029 InnerIdx %= NumElts; 22030 if (InnerVec == SV0) { 22031 Mask.push_back(InnerIdx); 22032 continue; 22033 } 22034 if (InnerVec == SV1) { 22035 Mask.push_back(InnerIdx + NumElts); 22036 continue; 22037 } 22038 } 22039 22040 // Bail out if we cannot convert the shuffle pair into a single shuffle. 22041 return false; 22042 } 22043 22044 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 22045 return true; 22046 22047 // Avoid introducing shuffles with illegal mask. 22048 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 22049 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 22050 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 22051 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 22052 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 22053 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 22054 if (TLI.isShuffleMaskLegal(Mask, VT)) 22055 return true; 22056 22057 std::swap(SV0, SV1); 22058 ShuffleVectorSDNode::commuteMask(Mask); 22059 return TLI.isShuffleMaskLegal(Mask, VT); 22060 }; 22061 22062 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 22063 // Canonicalize shuffles according to rules: 22064 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 22065 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 22066 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 22067 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 22068 N0.getOpcode() != ISD::VECTOR_SHUFFLE) { 22069 // The incoming shuffle must be of the same type as the result of the 22070 // current shuffle. 22071 assert(N1->getOperand(0).getValueType() == VT && 22072 "Shuffle types don't match"); 22073 22074 SDValue SV0 = N1->getOperand(0); 22075 SDValue SV1 = N1->getOperand(1); 22076 bool HasSameOp0 = N0 == SV0; 22077 bool IsSV1Undef = SV1.isUndef(); 22078 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 22079 // Commute the operands of this shuffle so merging below will trigger. 22080 return DAG.getCommutedVectorShuffle(*SVN); 22081 } 22082 22083 // Canonicalize splat shuffles to the RHS to improve merging below. 22084 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u)) 22085 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && 22086 N1.getOpcode() == ISD::VECTOR_SHUFFLE && 22087 cast<ShuffleVectorSDNode>(N0)->isSplat() && 22088 !cast<ShuffleVectorSDNode>(N1)->isSplat()) { 22089 return DAG.getCommutedVectorShuffle(*SVN); 22090 } 22091 22092 // Try to fold according to rules: 22093 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 22094 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 22095 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 22096 // Don't try to fold shuffles with illegal type. 22097 // Only fold if this shuffle is the only user of the other shuffle. 22098 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well. 22099 for (int i = 0; i != 2; ++i) { 22100 if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE && 22101 N->isOnlyUserOf(N->getOperand(i).getNode())) { 22102 // The incoming shuffle must be of the same type as the result of the 22103 // current shuffle. 22104 auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i)); 22105 assert(OtherSV->getOperand(0).getValueType() == VT && 22106 "Shuffle types don't match"); 22107 22108 SDValue SV0, SV1; 22109 SmallVector<int, 4> Mask; 22110 if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI, 22111 SV0, SV1, Mask)) { 22112 // Check if all indices in Mask are Undef. In case, propagate Undef. 22113 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 22114 return DAG.getUNDEF(VT); 22115 22116 return DAG.getVectorShuffle(VT, SDLoc(N), 22117 SV0 ? SV0 : DAG.getUNDEF(VT), 22118 SV1 ? SV1 : DAG.getUNDEF(VT), Mask); 22119 } 22120 } 22121 } 22122 22123 // Merge shuffles through binops if we are able to merge it with at least 22124 // one other shuffles. 22125 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef) 22126 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) 22127 unsigned SrcOpcode = N0.getOpcode(); 22128 if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) && 22129 (N1.isUndef() || 22130 (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) { 22131 // Get binop source ops, or just pass on the undef. 22132 SDValue Op00 = N0.getOperand(0); 22133 SDValue Op01 = N0.getOperand(1); 22134 SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0); 22135 SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1); 22136 // TODO: We might be able to relax the VT check but we don't currently 22137 // have any isBinOp() that has different result/ops VTs so play safe until 22138 // we have test coverage. 22139 if (Op00.getValueType() == VT && Op10.getValueType() == VT && 22140 Op01.getValueType() == VT && Op11.getValueType() == VT && 22141 (Op00.getOpcode() == ISD::VECTOR_SHUFFLE || 22142 Op10.getOpcode() == ISD::VECTOR_SHUFFLE || 22143 Op01.getOpcode() == ISD::VECTOR_SHUFFLE || 22144 Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) { 22145 auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1, 22146 SmallVectorImpl<int> &Mask, bool LeftOp, 22147 bool Commute) { 22148 SDValue InnerN = Commute ? N1 : N0; 22149 SDValue Op0 = LeftOp ? Op00 : Op01; 22150 SDValue Op1 = LeftOp ? Op10 : Op11; 22151 if (Commute) 22152 std::swap(Op0, Op1); 22153 // Only accept the merged shuffle if we don't introduce undef elements, 22154 // or the inner shuffle already contained undef elements. 22155 auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0); 22156 return SVN0 && InnerN->isOnlyUserOf(SVN0) && 22157 MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1, 22158 Mask) && 22159 (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) || 22160 llvm::none_of(Mask, [](int M) { return M < 0; })); 22161 }; 22162 22163 // Ensure we don't increase the number of shuffles - we must merge a 22164 // shuffle from at least one of the LHS and RHS ops. 22165 bool MergedLeft = false; 22166 SDValue LeftSV0, LeftSV1; 22167 SmallVector<int, 4> LeftMask; 22168 if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) || 22169 CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) { 22170 MergedLeft = true; 22171 } else { 22172 LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 22173 LeftSV0 = Op00, LeftSV1 = Op10; 22174 } 22175 22176 bool MergedRight = false; 22177 SDValue RightSV0, RightSV1; 22178 SmallVector<int, 4> RightMask; 22179 if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) || 22180 CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) { 22181 MergedRight = true; 22182 } else { 22183 RightMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 22184 RightSV0 = Op01, RightSV1 = Op11; 22185 } 22186 22187 if (MergedLeft || MergedRight) { 22188 SDLoc DL(N); 22189 SDValue LHS = DAG.getVectorShuffle( 22190 VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT), 22191 LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask); 22192 SDValue RHS = DAG.getVectorShuffle( 22193 VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT), 22194 RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask); 22195 return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS); 22196 } 22197 } 22198 } 22199 } 22200 22201 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 22202 return V; 22203 22204 return SDValue(); 22205 } 22206 22207 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 22208 SDValue InVal = N->getOperand(0); 22209 EVT VT = N->getValueType(0); 22210 22211 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 22212 // with a VECTOR_SHUFFLE and possible truncate. 22213 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 22214 VT.isFixedLengthVector() && 22215 InVal->getOperand(0).getValueType().isFixedLengthVector()) { 22216 SDValue InVec = InVal->getOperand(0); 22217 SDValue EltNo = InVal->getOperand(1); 22218 auto InVecT = InVec.getValueType(); 22219 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 22220 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 22221 int Elt = C0->getZExtValue(); 22222 NewMask[0] = Elt; 22223 // If we have an implict truncate do truncate here as long as it's legal. 22224 // if it's not legal, this should 22225 if (VT.getScalarType() != InVal.getValueType() && 22226 InVal.getValueType().isScalarInteger() && 22227 isTypeLegal(VT.getScalarType())) { 22228 SDValue Val = 22229 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 22230 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 22231 } 22232 if (VT.getScalarType() == InVecT.getScalarType() && 22233 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { 22234 SDValue LegalShuffle = 22235 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, 22236 DAG.getUNDEF(InVecT), NewMask, DAG); 22237 if (LegalShuffle) { 22238 // If the initial vector is the correct size this shuffle is a 22239 // valid result. 22240 if (VT == InVecT) 22241 return LegalShuffle; 22242 // If not we must truncate the vector. 22243 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 22244 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); 22245 EVT SubVT = EVT::getVectorVT(*DAG.getContext(), 22246 InVecT.getVectorElementType(), 22247 VT.getVectorNumElements()); 22248 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, 22249 LegalShuffle, ZeroIdx); 22250 } 22251 } 22252 } 22253 } 22254 } 22255 22256 return SDValue(); 22257 } 22258 22259 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 22260 EVT VT = N->getValueType(0); 22261 SDValue N0 = N->getOperand(0); 22262 SDValue N1 = N->getOperand(1); 22263 SDValue N2 = N->getOperand(2); 22264 uint64_t InsIdx = N->getConstantOperandVal(2); 22265 22266 // If inserting an UNDEF, just return the original vector. 22267 if (N1.isUndef()) 22268 return N0; 22269 22270 // If this is an insert of an extracted vector into an undef vector, we can 22271 // just use the input to the extract. 22272 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 22273 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 22274 return N1.getOperand(0); 22275 22276 // If we are inserting a bitcast value into an undef, with the same 22277 // number of elements, just use the bitcast input of the extract. 22278 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 22279 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 22280 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 22281 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 22282 N1.getOperand(0).getOperand(1) == N2 && 22283 N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == 22284 VT.getVectorElementCount() && 22285 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 22286 VT.getSizeInBits()) { 22287 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 22288 } 22289 22290 // If both N1 and N2 are bitcast values on which insert_subvector 22291 // would makes sense, pull the bitcast through. 22292 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 22293 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 22294 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 22295 SDValue CN0 = N0.getOperand(0); 22296 SDValue CN1 = N1.getOperand(0); 22297 EVT CN0VT = CN0.getValueType(); 22298 EVT CN1VT = CN1.getValueType(); 22299 if (CN0VT.isVector() && CN1VT.isVector() && 22300 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 22301 CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { 22302 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 22303 CN0.getValueType(), CN0, CN1, N2); 22304 return DAG.getBitcast(VT, NewINSERT); 22305 } 22306 } 22307 22308 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 22309 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 22310 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 22311 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 22312 N0.getOperand(1).getValueType() == N1.getValueType() && 22313 N0.getOperand(2) == N2) 22314 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 22315 N1, N2); 22316 22317 // Eliminate an intermediate insert into an undef vector: 22318 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 22319 // insert_subvector undef, X, N2 22320 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 22321 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 22322 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 22323 N1.getOperand(1), N2); 22324 22325 // Push subvector bitcasts to the output, adjusting the index as we go. 22326 // insert_subvector(bitcast(v), bitcast(s), c1) 22327 // -> bitcast(insert_subvector(v, s, c2)) 22328 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 22329 N1.getOpcode() == ISD::BITCAST) { 22330 SDValue N0Src = peekThroughBitcasts(N0); 22331 SDValue N1Src = peekThroughBitcasts(N1); 22332 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 22333 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 22334 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 22335 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 22336 EVT NewVT; 22337 SDLoc DL(N); 22338 SDValue NewIdx; 22339 LLVMContext &Ctx = *DAG.getContext(); 22340 ElementCount NumElts = VT.getVectorElementCount(); 22341 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 22342 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 22343 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 22344 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 22345 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); 22346 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 22347 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 22348 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { 22349 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, 22350 NumElts.divideCoefficientBy(Scale)); 22351 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); 22352 } 22353 } 22354 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 22355 SDValue Res = DAG.getBitcast(NewVT, N0Src); 22356 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 22357 return DAG.getBitcast(VT, Res); 22358 } 22359 } 22360 } 22361 22362 // Canonicalize insert_subvector dag nodes. 22363 // Example: 22364 // (insert_subvector (insert_subvector A, Idx0), Idx1) 22365 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 22366 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 22367 N1.getValueType() == N0.getOperand(1).getValueType()) { 22368 unsigned OtherIdx = N0.getConstantOperandVal(2); 22369 if (InsIdx < OtherIdx) { 22370 // Swap nodes. 22371 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 22372 N0.getOperand(0), N1, N2); 22373 AddToWorklist(NewOp.getNode()); 22374 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 22375 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 22376 } 22377 } 22378 22379 // If the input vector is a concatenation, and the insert replaces 22380 // one of the pieces, we can optimize into a single concat_vectors. 22381 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 22382 N0.getOperand(0).getValueType() == N1.getValueType() && 22383 N0.getOperand(0).getValueType().isScalableVector() == 22384 N1.getValueType().isScalableVector()) { 22385 unsigned Factor = N1.getValueType().getVectorMinNumElements(); 22386 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 22387 Ops[InsIdx / Factor] = N1; 22388 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 22389 } 22390 22391 // Simplify source operands based on insertion. 22392 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 22393 return SDValue(N, 0); 22394 22395 return SDValue(); 22396 } 22397 22398 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 22399 SDValue N0 = N->getOperand(0); 22400 22401 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 22402 if (N0->getOpcode() == ISD::FP16_TO_FP) 22403 return N0->getOperand(0); 22404 22405 return SDValue(); 22406 } 22407 22408 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 22409 SDValue N0 = N->getOperand(0); 22410 22411 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 22412 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { 22413 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 22414 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 22415 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 22416 N0.getOperand(0)); 22417 } 22418 } 22419 22420 return SDValue(); 22421 } 22422 22423 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 22424 SDValue N0 = N->getOperand(0); 22425 EVT VT = N0.getValueType(); 22426 unsigned Opcode = N->getOpcode(); 22427 22428 // VECREDUCE over 1-element vector is just an extract. 22429 if (VT.getVectorElementCount().isScalar()) { 22430 SDLoc dl(N); 22431 SDValue Res = 22432 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 22433 DAG.getVectorIdxConstant(0, dl)); 22434 if (Res.getValueType() != N->getValueType(0)) 22435 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 22436 return Res; 22437 } 22438 22439 // On an boolean vector an and/or reduction is the same as a umin/umax 22440 // reduction. Convert them if the latter is legal while the former isn't. 22441 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 22442 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 22443 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 22444 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 22445 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 22446 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 22447 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 22448 } 22449 22450 return SDValue(); 22451 } 22452 22453 SDValue DAGCombiner::visitVPOp(SDNode *N) { 22454 // VP operations in which all vector elements are disabled - either by 22455 // determining that the mask is all false or that the EVL is 0 - can be 22456 // eliminated. 22457 bool AreAllEltsDisabled = false; 22458 if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode())) 22459 AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx)); 22460 if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode())) 22461 AreAllEltsDisabled |= 22462 ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode()); 22463 22464 // This is the only generic VP combine we support for now. 22465 if (!AreAllEltsDisabled) 22466 return SDValue(); 22467 22468 // Binary operations can be replaced by UNDEF. 22469 if (ISD::isVPBinaryOp(N->getOpcode())) 22470 return DAG.getUNDEF(N->getValueType(0)); 22471 22472 // VP Memory operations can be replaced by either the chain (stores) or the 22473 // chain + undef (loads). 22474 if (const auto *MemSD = dyn_cast<MemSDNode>(N)) { 22475 if (MemSD->writeMem()) 22476 return MemSD->getChain(); 22477 return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain()); 22478 } 22479 22480 // Reduction operations return the start operand when no elements are active. 22481 if (ISD::isVPReduction(N->getOpcode())) 22482 return N->getOperand(0); 22483 22484 return SDValue(); 22485 } 22486 22487 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 22488 /// with the destination vector and a zero vector. 22489 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 22490 /// vector_shuffle V, Zero, <0, 4, 2, 4> 22491 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 22492 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 22493 22494 EVT VT = N->getValueType(0); 22495 SDValue LHS = N->getOperand(0); 22496 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 22497 SDLoc DL(N); 22498 22499 // Make sure we're not running after operation legalization where it 22500 // may have custom lowered the vector shuffles. 22501 if (LegalOperations) 22502 return SDValue(); 22503 22504 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 22505 return SDValue(); 22506 22507 EVT RVT = RHS.getValueType(); 22508 unsigned NumElts = RHS.getNumOperands(); 22509 22510 // Attempt to create a valid clear mask, splitting the mask into 22511 // sub elements and checking to see if each is 22512 // all zeros or all ones - suitable for shuffle masking. 22513 auto BuildClearMask = [&](int Split) { 22514 int NumSubElts = NumElts * Split; 22515 int NumSubBits = RVT.getScalarSizeInBits() / Split; 22516 22517 SmallVector<int, 8> Indices; 22518 for (int i = 0; i != NumSubElts; ++i) { 22519 int EltIdx = i / Split; 22520 int SubIdx = i % Split; 22521 SDValue Elt = RHS.getOperand(EltIdx); 22522 // X & undef --> 0 (not undef). So this lane must be converted to choose 22523 // from the zero constant vector (same as if the element had all 0-bits). 22524 if (Elt.isUndef()) { 22525 Indices.push_back(i + NumSubElts); 22526 continue; 22527 } 22528 22529 APInt Bits; 22530 if (isa<ConstantSDNode>(Elt)) 22531 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 22532 else if (isa<ConstantFPSDNode>(Elt)) 22533 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 22534 else 22535 return SDValue(); 22536 22537 // Extract the sub element from the constant bit mask. 22538 if (DAG.getDataLayout().isBigEndian()) 22539 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); 22540 else 22541 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); 22542 22543 if (Bits.isAllOnes()) 22544 Indices.push_back(i); 22545 else if (Bits == 0) 22546 Indices.push_back(i + NumSubElts); 22547 else 22548 return SDValue(); 22549 } 22550 22551 // Let's see if the target supports this vector_shuffle. 22552 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 22553 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 22554 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 22555 return SDValue(); 22556 22557 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 22558 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 22559 DAG.getBitcast(ClearVT, LHS), 22560 Zero, Indices)); 22561 }; 22562 22563 // Determine maximum split level (byte level masking). 22564 int MaxSplit = 1; 22565 if (RVT.getScalarSizeInBits() % 8 == 0) 22566 MaxSplit = RVT.getScalarSizeInBits() / 8; 22567 22568 for (int Split = 1; Split <= MaxSplit; ++Split) 22569 if (RVT.getScalarSizeInBits() % Split == 0) 22570 if (SDValue S = BuildClearMask(Split)) 22571 return S; 22572 22573 return SDValue(); 22574 } 22575 22576 /// If a vector binop is performed on splat values, it may be profitable to 22577 /// extract, scalarize, and insert/splat. 22578 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG, 22579 const SDLoc &DL) { 22580 SDValue N0 = N->getOperand(0); 22581 SDValue N1 = N->getOperand(1); 22582 unsigned Opcode = N->getOpcode(); 22583 EVT VT = N->getValueType(0); 22584 EVT EltVT = VT.getVectorElementType(); 22585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 22586 22587 // TODO: Remove/replace the extract cost check? If the elements are available 22588 // as scalars, then there may be no extract cost. Should we ask if 22589 // inserting a scalar back into a vector is cheap instead? 22590 int Index0, Index1; 22591 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 22592 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 22593 if (!Src0 || !Src1 || Index0 != Index1 || 22594 Src0.getValueType().getVectorElementType() != EltVT || 22595 Src1.getValueType().getVectorElementType() != EltVT || 22596 !TLI.isExtractVecEltCheap(VT, Index0) || 22597 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 22598 return SDValue(); 22599 22600 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); 22601 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); 22602 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); 22603 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 22604 22605 // If all lanes but 1 are undefined, no need to splat the scalar result. 22606 // TODO: Keep track of undefs and use that info in the general case. 22607 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 22608 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 22609 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 22610 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 22611 // build_vec ..undef, (bo X, Y), undef... 22612 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 22613 Ops[Index0] = ScalarBO; 22614 return DAG.getBuildVector(VT, DL, Ops); 22615 } 22616 22617 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 22618 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 22619 return DAG.getBuildVector(VT, DL, Ops); 22620 } 22621 22622 /// Visit a binary vector operation, like ADD. 22623 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N, const SDLoc &DL) { 22624 EVT VT = N->getValueType(0); 22625 assert(VT.isVector() && "SimplifyVBinOp only works on vectors!"); 22626 22627 SDValue LHS = N->getOperand(0); 22628 SDValue RHS = N->getOperand(1); 22629 unsigned Opcode = N->getOpcode(); 22630 SDNodeFlags Flags = N->getFlags(); 22631 22632 // Move unary shuffles with identical masks after a vector binop: 22633 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 22634 // --> shuffle (VBinOp A, B), Undef, Mask 22635 // This does not require type legality checks because we are creating the 22636 // same types of operations that are in the original sequence. We do have to 22637 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 22638 // though. This code is adapted from the identical transform in instcombine. 22639 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 22640 Opcode != ISD::UREM && Opcode != ISD::SREM && 22641 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 22642 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 22643 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 22644 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 22645 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 22646 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 22647 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 22648 RHS.getOperand(0), Flags); 22649 SDValue UndefV = LHS.getOperand(1); 22650 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 22651 } 22652 22653 // Try to sink a splat shuffle after a binop with a uniform constant. 22654 // This is limited to cases where neither the shuffle nor the constant have 22655 // undefined elements because that could be poison-unsafe or inhibit 22656 // demanded elements analysis. It is further limited to not change a splat 22657 // of an inserted scalar because that may be optimized better by 22658 // load-folding or other target-specific behaviors. 22659 if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && 22660 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && 22661 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 22662 // binop (splat X), (splat C) --> splat (binop X, C) 22663 SDValue X = Shuf0->getOperand(0); 22664 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); 22665 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 22666 Shuf0->getMask()); 22667 } 22668 if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && 22669 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && 22670 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 22671 // binop (splat C), (splat X) --> splat (binop C, X) 22672 SDValue X = Shuf1->getOperand(0); 22673 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); 22674 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 22675 Shuf1->getMask()); 22676 } 22677 } 22678 22679 // The following pattern is likely to emerge with vector reduction ops. Moving 22680 // the binary operation ahead of insertion may allow using a narrower vector 22681 // instruction that has better performance than the wide version of the op: 22682 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 22683 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 22684 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 22685 LHS.getOperand(2) == RHS.getOperand(2) && 22686 (LHS.hasOneUse() || RHS.hasOneUse())) { 22687 SDValue X = LHS.getOperand(1); 22688 SDValue Y = RHS.getOperand(1); 22689 SDValue Z = LHS.getOperand(2); 22690 EVT NarrowVT = X.getValueType(); 22691 if (NarrowVT == Y.getValueType() && 22692 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, 22693 LegalOperations)) { 22694 // (binop undef, undef) may not return undef, so compute that result. 22695 SDValue VecC = 22696 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 22697 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 22698 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 22699 } 22700 } 22701 22702 // Make sure all but the first op are undef or constant. 22703 auto ConcatWithConstantOrUndef = [](SDValue Concat) { 22704 return Concat.getOpcode() == ISD::CONCAT_VECTORS && 22705 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { 22706 return Op.isUndef() || 22707 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); 22708 }); 22709 }; 22710 22711 // The following pattern is likely to emerge with vector reduction ops. Moving 22712 // the binary operation ahead of the concat may allow using a narrower vector 22713 // instruction that has better performance than the wide version of the op: 22714 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> 22715 // concat (VBinOp X, Y), VecC 22716 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && 22717 (LHS.hasOneUse() || RHS.hasOneUse())) { 22718 EVT NarrowVT = LHS.getOperand(0).getValueType(); 22719 if (NarrowVT == RHS.getOperand(0).getValueType() && 22720 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 22721 unsigned NumOperands = LHS.getNumOperands(); 22722 SmallVector<SDValue, 4> ConcatOps; 22723 for (unsigned i = 0; i != NumOperands; ++i) { 22724 // This constant fold for operands 1 and up. 22725 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), 22726 RHS.getOperand(i))); 22727 } 22728 22729 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 22730 } 22731 } 22732 22733 if (SDValue V = scalarizeBinOpOfSplats(N, DAG, DL)) 22734 return V; 22735 22736 return SDValue(); 22737 } 22738 22739 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 22740 SDValue N2) { 22741 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 22742 22743 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 22744 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 22745 22746 // If we got a simplified select_cc node back from SimplifySelectCC, then 22747 // break it down into a new SETCC node, and a new SELECT node, and then return 22748 // the SELECT node, since we were called with a SELECT node. 22749 if (SCC.getNode()) { 22750 // Check to see if we got a select_cc back (to turn into setcc/select). 22751 // Otherwise, just return whatever node we got back, like fabs. 22752 if (SCC.getOpcode() == ISD::SELECT_CC) { 22753 const SDNodeFlags Flags = N0.getNode()->getFlags(); 22754 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 22755 N0.getValueType(), 22756 SCC.getOperand(0), SCC.getOperand(1), 22757 SCC.getOperand(4), Flags); 22758 AddToWorklist(SETCC.getNode()); 22759 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 22760 SCC.getOperand(2), SCC.getOperand(3)); 22761 SelectNode->setFlags(Flags); 22762 return SelectNode; 22763 } 22764 22765 return SCC; 22766 } 22767 return SDValue(); 22768 } 22769 22770 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 22771 /// being selected between, see if we can simplify the select. Callers of this 22772 /// should assume that TheSelect is deleted if this returns true. As such, they 22773 /// should return the appropriate thing (e.g. the node) back to the top-level of 22774 /// the DAG combiner loop to avoid it being looked at. 22775 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 22776 SDValue RHS) { 22777 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 22778 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 22779 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 22780 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 22781 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 22782 SDValue Sqrt = RHS; 22783 ISD::CondCode CC; 22784 SDValue CmpLHS; 22785 const ConstantFPSDNode *Zero = nullptr; 22786 22787 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 22788 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 22789 CmpLHS = TheSelect->getOperand(0); 22790 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 22791 } else { 22792 // SELECT or VSELECT 22793 SDValue Cmp = TheSelect->getOperand(0); 22794 if (Cmp.getOpcode() == ISD::SETCC) { 22795 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 22796 CmpLHS = Cmp.getOperand(0); 22797 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 22798 } 22799 } 22800 if (Zero && Zero->isZero() && 22801 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 22802 CC == ISD::SETULT || CC == ISD::SETLT)) { 22803 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 22804 CombineTo(TheSelect, Sqrt); 22805 return true; 22806 } 22807 } 22808 } 22809 // Cannot simplify select with vector condition 22810 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 22811 22812 // If this is a select from two identical things, try to pull the operation 22813 // through the select. 22814 if (LHS.getOpcode() != RHS.getOpcode() || 22815 !LHS.hasOneUse() || !RHS.hasOneUse()) 22816 return false; 22817 22818 // If this is a load and the token chain is identical, replace the select 22819 // of two loads with a load through a select of the address to load from. 22820 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 22821 // constants have been dropped into the constant pool. 22822 if (LHS.getOpcode() == ISD::LOAD) { 22823 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 22824 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 22825 22826 // Token chains must be identical. 22827 if (LHS.getOperand(0) != RHS.getOperand(0) || 22828 // Do not let this transformation reduce the number of volatile loads. 22829 // Be conservative for atomics for the moment 22830 // TODO: This does appear to be legal for unordered atomics (see D66309) 22831 !LLD->isSimple() || !RLD->isSimple() || 22832 // FIXME: If either is a pre/post inc/dec load, 22833 // we'd need to split out the address adjustment. 22834 LLD->isIndexed() || RLD->isIndexed() || 22835 // If this is an EXTLOAD, the VT's must match. 22836 LLD->getMemoryVT() != RLD->getMemoryVT() || 22837 // If this is an EXTLOAD, the kind of extension must match. 22838 (LLD->getExtensionType() != RLD->getExtensionType() && 22839 // The only exception is if one of the extensions is anyext. 22840 LLD->getExtensionType() != ISD::EXTLOAD && 22841 RLD->getExtensionType() != ISD::EXTLOAD) || 22842 // FIXME: this discards src value information. This is 22843 // over-conservative. It would be beneficial to be able to remember 22844 // both potential memory locations. Since we are discarding 22845 // src value info, don't do the transformation if the memory 22846 // locations are not in the default address space. 22847 LLD->getPointerInfo().getAddrSpace() != 0 || 22848 RLD->getPointerInfo().getAddrSpace() != 0 || 22849 // We can't produce a CMOV of a TargetFrameIndex since we won't 22850 // generate the address generation required. 22851 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 22852 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 22853 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 22854 LLD->getBasePtr().getValueType())) 22855 return false; 22856 22857 // The loads must not depend on one another. 22858 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 22859 return false; 22860 22861 // Check that the select condition doesn't reach either load. If so, 22862 // folding this will induce a cycle into the DAG. If not, this is safe to 22863 // xform, so create a select of the addresses. 22864 22865 SmallPtrSet<const SDNode *, 32> Visited; 22866 SmallVector<const SDNode *, 16> Worklist; 22867 22868 // Always fail if LLD and RLD are not independent. TheSelect is a 22869 // predecessor to all Nodes in question so we need not search past it. 22870 22871 Visited.insert(TheSelect); 22872 Worklist.push_back(LLD); 22873 Worklist.push_back(RLD); 22874 22875 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 22876 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 22877 return false; 22878 22879 SDValue Addr; 22880 if (TheSelect->getOpcode() == ISD::SELECT) { 22881 // We cannot do this optimization if any pair of {RLD, LLD} is a 22882 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 22883 // Loads, we only need to check if CondNode is a successor to one of the 22884 // loads. We can further avoid this if there's no use of their chain 22885 // value. 22886 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 22887 Worklist.push_back(CondNode); 22888 22889 if ((LLD->hasAnyUseOfValue(1) && 22890 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 22891 (RLD->hasAnyUseOfValue(1) && 22892 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 22893 return false; 22894 22895 Addr = DAG.getSelect(SDLoc(TheSelect), 22896 LLD->getBasePtr().getValueType(), 22897 TheSelect->getOperand(0), LLD->getBasePtr(), 22898 RLD->getBasePtr()); 22899 } else { // Otherwise SELECT_CC 22900 // We cannot do this optimization if any pair of {RLD, LLD} is a 22901 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 22902 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 22903 // one of the loads. We can further avoid this if there's no use of their 22904 // chain value. 22905 22906 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 22907 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 22908 Worklist.push_back(CondLHS); 22909 Worklist.push_back(CondRHS); 22910 22911 if ((LLD->hasAnyUseOfValue(1) && 22912 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 22913 (RLD->hasAnyUseOfValue(1) && 22914 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 22915 return false; 22916 22917 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 22918 LLD->getBasePtr().getValueType(), 22919 TheSelect->getOperand(0), 22920 TheSelect->getOperand(1), 22921 LLD->getBasePtr(), RLD->getBasePtr(), 22922 TheSelect->getOperand(4)); 22923 } 22924 22925 SDValue Load; 22926 // It is safe to replace the two loads if they have different alignments, 22927 // but the new load must be the minimum (most restrictive) alignment of the 22928 // inputs. 22929 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); 22930 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 22931 if (!RLD->isInvariant()) 22932 MMOFlags &= ~MachineMemOperand::MOInvariant; 22933 if (!RLD->isDereferenceable()) 22934 MMOFlags &= ~MachineMemOperand::MODereferenceable; 22935 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 22936 // FIXME: Discards pointer and AA info. 22937 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 22938 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 22939 MMOFlags); 22940 } else { 22941 // FIXME: Discards pointer and AA info. 22942 Load = DAG.getExtLoad( 22943 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 22944 : LLD->getExtensionType(), 22945 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 22946 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 22947 } 22948 22949 // Users of the select now use the result of the load. 22950 CombineTo(TheSelect, Load); 22951 22952 // Users of the old loads now use the new load's chain. We know the 22953 // old-load value is dead now. 22954 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 22955 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 22956 return true; 22957 } 22958 22959 return false; 22960 } 22961 22962 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 22963 /// bitwise 'and'. 22964 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 22965 SDValue N1, SDValue N2, SDValue N3, 22966 ISD::CondCode CC) { 22967 // If this is a select where the false operand is zero and the compare is a 22968 // check of the sign bit, see if we can perform the "gzip trick": 22969 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 22970 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 22971 EVT XType = N0.getValueType(); 22972 EVT AType = N2.getValueType(); 22973 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 22974 return SDValue(); 22975 22976 // If the comparison is testing for a positive value, we have to invert 22977 // the sign bit mask, so only do that transform if the target has a bitwise 22978 // 'and not' instruction (the invert is free). 22979 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 22980 // (X > -1) ? A : 0 22981 // (X > 0) ? X : 0 <-- This is canonical signed max. 22982 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 22983 return SDValue(); 22984 } else if (CC == ISD::SETLT) { 22985 // (X < 0) ? A : 0 22986 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 22987 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 22988 return SDValue(); 22989 } else { 22990 return SDValue(); 22991 } 22992 22993 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 22994 // constant. 22995 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 22996 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 22997 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 22998 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 22999 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { 23000 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 23001 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 23002 AddToWorklist(Shift.getNode()); 23003 23004 if (XType.bitsGT(AType)) { 23005 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 23006 AddToWorklist(Shift.getNode()); 23007 } 23008 23009 if (CC == ISD::SETGT) 23010 Shift = DAG.getNOT(DL, Shift, AType); 23011 23012 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 23013 } 23014 } 23015 23016 unsigned ShCt = XType.getSizeInBits() - 1; 23017 if (TLI.shouldAvoidTransformToShift(XType, ShCt)) 23018 return SDValue(); 23019 23020 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 23021 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 23022 AddToWorklist(Shift.getNode()); 23023 23024 if (XType.bitsGT(AType)) { 23025 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 23026 AddToWorklist(Shift.getNode()); 23027 } 23028 23029 if (CC == ISD::SETGT) 23030 Shift = DAG.getNOT(DL, Shift, AType); 23031 23032 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 23033 } 23034 23035 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc. 23036 SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) { 23037 SDValue N0 = N->getOperand(0); 23038 SDValue N1 = N->getOperand(1); 23039 SDValue N2 = N->getOperand(2); 23040 EVT VT = N->getValueType(0); 23041 SDLoc DL(N); 23042 23043 unsigned BinOpc = N1.getOpcode(); 23044 if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc)) 23045 return SDValue(); 23046 23047 // The use checks are intentionally on SDNode because we may be dealing 23048 // with opcodes that produce more than one SDValue. 23049 // TODO: Do we really need to check N0 (the condition operand of the select)? 23050 // But removing that clause could cause an infinite loop... 23051 if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse()) 23052 return SDValue(); 23053 23054 // Binops may include opcodes that return multiple values, so all values 23055 // must be created/propagated from the newly created binops below. 23056 SDVTList OpVTs = N1->getVTList(); 23057 23058 // Fold select(cond, binop(x, y), binop(z, y)) 23059 // --> binop(select(cond, x, z), y) 23060 if (N1.getOperand(1) == N2.getOperand(1)) { 23061 SDValue NewSel = 23062 DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0)); 23063 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, NewSel, N1.getOperand(1)); 23064 NewBinOp->setFlags(N1->getFlags()); 23065 NewBinOp->intersectFlagsWith(N2->getFlags()); 23066 return NewBinOp; 23067 } 23068 23069 // Fold select(cond, binop(x, y), binop(x, z)) 23070 // --> binop(x, select(cond, y, z)) 23071 // Second op VT might be different (e.g. shift amount type) 23072 if (N1.getOperand(0) == N2.getOperand(0) && 23073 VT == N1.getOperand(1).getValueType() && 23074 VT == N2.getOperand(1).getValueType()) { 23075 SDValue NewSel = 23076 DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1)); 23077 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, N1.getOperand(0), NewSel); 23078 NewBinOp->setFlags(N1->getFlags()); 23079 NewBinOp->intersectFlagsWith(N2->getFlags()); 23080 return NewBinOp; 23081 } 23082 23083 // TODO: Handle isCommutativeBinOp patterns as well? 23084 return SDValue(); 23085 } 23086 23087 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. 23088 SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { 23089 SDValue N0 = N->getOperand(0); 23090 EVT VT = N->getValueType(0); 23091 bool IsFabs = N->getOpcode() == ISD::FABS; 23092 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); 23093 23094 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) 23095 return SDValue(); 23096 23097 SDValue Int = N0.getOperand(0); 23098 EVT IntVT = Int.getValueType(); 23099 23100 // The operand to cast should be integer. 23101 if (!IntVT.isInteger() || IntVT.isVector()) 23102 return SDValue(); 23103 23104 // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) 23105 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) 23106 APInt SignMask; 23107 if (N0.getValueType().isVector()) { 23108 // For vector, create a sign mask (0x80...) or its inverse (for fabs, 23109 // 0x7f...) per element and splat it. 23110 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 23111 if (IsFabs) 23112 SignMask = ~SignMask; 23113 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 23114 } else { 23115 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) 23116 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 23117 if (IsFabs) 23118 SignMask = ~SignMask; 23119 } 23120 SDLoc DL(N0); 23121 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, 23122 DAG.getConstant(SignMask, DL, IntVT)); 23123 AddToWorklist(Int.getNode()); 23124 return DAG.getBitcast(VT, Int); 23125 } 23126 23127 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 23128 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 23129 /// in it. This may be a win when the constant is not otherwise available 23130 /// because it replaces two constant pool loads with one. 23131 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 23132 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 23133 ISD::CondCode CC) { 23134 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) 23135 return SDValue(); 23136 23137 // If we are before legalize types, we want the other legalization to happen 23138 // first (for example, to avoid messing with soft float). 23139 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 23140 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 23141 EVT VT = N2.getValueType(); 23142 if (!TV || !FV || !TLI.isTypeLegal(VT)) 23143 return SDValue(); 23144 23145 // If a constant can be materialized without loads, this does not make sense. 23146 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 23147 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 23148 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 23149 return SDValue(); 23150 23151 // If both constants have multiple uses, then we won't need to do an extra 23152 // load. The values are likely around in registers for other users. 23153 if (!TV->hasOneUse() && !FV->hasOneUse()) 23154 return SDValue(); 23155 23156 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 23157 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 23158 Type *FPTy = Elts[0]->getType(); 23159 const DataLayout &TD = DAG.getDataLayout(); 23160 23161 // Create a ConstantArray of the two constants. 23162 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 23163 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 23164 TD.getPrefTypeAlign(FPTy)); 23165 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 23166 23167 // Get offsets to the 0 and 1 elements of the array, so we can select between 23168 // them. 23169 SDValue Zero = DAG.getIntPtrConstant(0, DL); 23170 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 23171 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 23172 SDValue Cond = 23173 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 23174 AddToWorklist(Cond.getNode()); 23175 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 23176 AddToWorklist(CstOffset.getNode()); 23177 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 23178 AddToWorklist(CPIdx.getNode()); 23179 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 23180 MachinePointerInfo::getConstantPool( 23181 DAG.getMachineFunction()), Alignment); 23182 } 23183 23184 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 23185 /// where 'cond' is the comparison specified by CC. 23186 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 23187 SDValue N2, SDValue N3, ISD::CondCode CC, 23188 bool NotExtCompare) { 23189 // (x ? y : y) -> y. 23190 if (N2 == N3) return N2; 23191 23192 EVT CmpOpVT = N0.getValueType(); 23193 EVT CmpResVT = getSetCCResultType(CmpOpVT); 23194 EVT VT = N2.getValueType(); 23195 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 23196 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 23197 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 23198 23199 // Determine if the condition we're dealing with is constant. 23200 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 23201 AddToWorklist(SCC.getNode()); 23202 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 23203 // fold select_cc true, x, y -> x 23204 // fold select_cc false, x, y -> y 23205 return !(SCCC->isZero()) ? N2 : N3; 23206 } 23207 } 23208 23209 if (SDValue V = 23210 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 23211 return V; 23212 23213 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 23214 return V; 23215 23216 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 23217 // where y is has a single bit set. 23218 // A plaintext description would be, we can turn the SELECT_CC into an AND 23219 // when the condition can be materialized as an all-ones register. Any 23220 // single bit-test can be materialized as an all-ones register with 23221 // shift-left and shift-right-arith. 23222 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 23223 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 23224 SDValue AndLHS = N0->getOperand(0); 23225 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 23226 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 23227 // Shift the tested bit over the sign bit. 23228 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 23229 unsigned ShCt = AndMask.getBitWidth() - 1; 23230 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 23231 SDValue ShlAmt = 23232 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 23233 getShiftAmountTy(AndLHS.getValueType())); 23234 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 23235 23236 // Now arithmetic right shift it all the way over, so the result is 23237 // either all-ones, or zero. 23238 SDValue ShrAmt = 23239 DAG.getConstant(ShCt, SDLoc(Shl), 23240 getShiftAmountTy(Shl.getValueType())); 23241 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 23242 23243 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 23244 } 23245 } 23246 } 23247 23248 // fold select C, 16, 0 -> shl C, 4 23249 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 23250 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 23251 23252 if ((Fold || Swap) && 23253 TLI.getBooleanContents(CmpOpVT) == 23254 TargetLowering::ZeroOrOneBooleanContent && 23255 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 23256 23257 if (Swap) { 23258 CC = ISD::getSetCCInverse(CC, CmpOpVT); 23259 std::swap(N2C, N3C); 23260 } 23261 23262 // If the caller doesn't want us to simplify this into a zext of a compare, 23263 // don't do it. 23264 if (NotExtCompare && N2C->isOne()) 23265 return SDValue(); 23266 23267 SDValue Temp, SCC; 23268 // zext (setcc n0, n1) 23269 if (LegalTypes) { 23270 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 23271 if (VT.bitsLT(SCC.getValueType())) 23272 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 23273 else 23274 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 23275 } else { 23276 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 23277 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 23278 } 23279 23280 AddToWorklist(SCC.getNode()); 23281 AddToWorklist(Temp.getNode()); 23282 23283 if (N2C->isOne()) 23284 return Temp; 23285 23286 unsigned ShCt = N2C->getAPIntValue().logBase2(); 23287 if (TLI.shouldAvoidTransformToShift(VT, ShCt)) 23288 return SDValue(); 23289 23290 // shl setcc result by log2 n2c 23291 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 23292 DAG.getConstant(ShCt, SDLoc(Temp), 23293 getShiftAmountTy(Temp.getValueType()))); 23294 } 23295 23296 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 23297 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 23298 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 23299 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 23300 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 23301 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 23302 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 23303 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 23304 if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 23305 SDValue ValueOnZero = N2; 23306 SDValue Count = N3; 23307 // If the condition is NE instead of E, swap the operands. 23308 if (CC == ISD::SETNE) 23309 std::swap(ValueOnZero, Count); 23310 // Check if the value on zero is a constant equal to the bits in the type. 23311 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 23312 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 23313 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 23314 // legal, combine to just cttz. 23315 if ((Count.getOpcode() == ISD::CTTZ || 23316 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 23317 N0 == Count.getOperand(0) && 23318 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 23319 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 23320 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 23321 // legal, combine to just ctlz. 23322 if ((Count.getOpcode() == ISD::CTLZ || 23323 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 23324 N0 == Count.getOperand(0) && 23325 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 23326 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 23327 } 23328 } 23329 } 23330 23331 // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C 23332 // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C 23333 if (!NotExtCompare && N1C && N2C && N3C && 23334 N2C->getAPIntValue() == ~N3C->getAPIntValue() && 23335 ((N1C->isAllOnes() && CC == ISD::SETGT) || 23336 (N1C->isZero() && CC == ISD::SETLT)) && 23337 !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) { 23338 SDValue ASR = DAG.getNode( 23339 ISD::SRA, DL, CmpOpVT, N0, 23340 DAG.getConstant(CmpOpVT.getScalarSizeInBits() - 1, DL, CmpOpVT)); 23341 return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASR, DL, VT), 23342 DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT)); 23343 } 23344 23345 if (SDValue S = PerformMinMaxFpToSatCombine(N0, N1, N2, N3, CC, DAG)) 23346 return S; 23347 23348 return SDValue(); 23349 } 23350 23351 /// This is a stub for TargetLowering::SimplifySetCC. 23352 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 23353 ISD::CondCode Cond, const SDLoc &DL, 23354 bool foldBooleans) { 23355 TargetLowering::DAGCombinerInfo 23356 DagCombineInfo(DAG, Level, false, this); 23357 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 23358 } 23359 23360 /// Given an ISD::SDIV node expressing a divide by constant, return 23361 /// a DAG expression to select that will generate the same value by multiplying 23362 /// by a magic number. 23363 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 23364 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 23365 // when optimising for minimum size, we don't want to expand a div to a mul 23366 // and a shift. 23367 if (DAG.getMachineFunction().getFunction().hasMinSize()) 23368 return SDValue(); 23369 23370 SmallVector<SDNode *, 8> Built; 23371 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 23372 for (SDNode *N : Built) 23373 AddToWorklist(N); 23374 return S; 23375 } 23376 23377 return SDValue(); 23378 } 23379 23380 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 23381 /// DAG expression that will generate the same value by right shifting. 23382 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 23383 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 23384 if (!C) 23385 return SDValue(); 23386 23387 // Avoid division by zero. 23388 if (C->isZero()) 23389 return SDValue(); 23390 23391 SmallVector<SDNode *, 8> Built; 23392 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 23393 for (SDNode *N : Built) 23394 AddToWorklist(N); 23395 return S; 23396 } 23397 23398 return SDValue(); 23399 } 23400 23401 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 23402 /// expression that will generate the same value by multiplying by a magic 23403 /// number. 23404 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 23405 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 23406 // when optimising for minimum size, we don't want to expand a div to a mul 23407 // and a shift. 23408 if (DAG.getMachineFunction().getFunction().hasMinSize()) 23409 return SDValue(); 23410 23411 SmallVector<SDNode *, 8> Built; 23412 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 23413 for (SDNode *N : Built) 23414 AddToWorklist(N); 23415 return S; 23416 } 23417 23418 return SDValue(); 23419 } 23420 23421 /// Determines the LogBase2 value for a non-null input value using the 23422 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 23423 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 23424 EVT VT = V.getValueType(); 23425 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 23426 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 23427 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 23428 return LogBase2; 23429 } 23430 23431 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23432 /// For the reciprocal, we need to find the zero of the function: 23433 /// F(X) = 1/X - A [which has a zero at X = 1/A] 23434 /// => 23435 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 23436 /// does not require additional intermediate precision] 23437 /// For the last iteration, put numerator N into it to gain more precision: 23438 /// Result = N X_i + X_i (N - N A X_i) 23439 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, 23440 SDNodeFlags Flags) { 23441 if (LegalDAG) 23442 return SDValue(); 23443 23444 // TODO: Handle extended types? 23445 EVT VT = Op.getValueType(); 23446 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && 23447 VT.getScalarType() != MVT::f64) 23448 return SDValue(); 23449 23450 // If estimates are explicitly disabled for this function, we're done. 23451 MachineFunction &MF = DAG.getMachineFunction(); 23452 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 23453 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23454 return SDValue(); 23455 23456 // Estimates may be explicitly enabled for this type with a custom number of 23457 // refinement steps. 23458 int Iterations = TLI.getDivRefinementSteps(VT, MF); 23459 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 23460 AddToWorklist(Est.getNode()); 23461 23462 SDLoc DL(Op); 23463 if (Iterations) { 23464 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 23465 23466 // Newton iterations: Est = Est + Est (N - Arg * Est) 23467 // If this is the last iteration, also multiply by the numerator. 23468 for (int i = 0; i < Iterations; ++i) { 23469 SDValue MulEst = Est; 23470 23471 if (i == Iterations - 1) { 23472 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); 23473 AddToWorklist(MulEst.getNode()); 23474 } 23475 23476 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); 23477 AddToWorklist(NewEst.getNode()); 23478 23479 NewEst = DAG.getNode(ISD::FSUB, DL, VT, 23480 (i == Iterations - 1 ? N : FPOne), NewEst, Flags); 23481 AddToWorklist(NewEst.getNode()); 23482 23483 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23484 AddToWorklist(NewEst.getNode()); 23485 23486 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); 23487 AddToWorklist(Est.getNode()); 23488 } 23489 } else { 23490 // If no iterations are available, multiply with N. 23491 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); 23492 AddToWorklist(Est.getNode()); 23493 } 23494 23495 return Est; 23496 } 23497 23498 return SDValue(); 23499 } 23500 23501 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23502 /// For the reciprocal sqrt, we need to find the zero of the function: 23503 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23504 /// => 23505 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 23506 /// As a result, we precompute A/2 prior to the iteration loop. 23507 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 23508 unsigned Iterations, 23509 SDNodeFlags Flags, bool Reciprocal) { 23510 EVT VT = Arg.getValueType(); 23511 SDLoc DL(Arg); 23512 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 23513 23514 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 23515 // this entire sequence requires only one FP constant. 23516 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 23517 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 23518 23519 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 23520 for (unsigned i = 0; i < Iterations; ++i) { 23521 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 23522 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 23523 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 23524 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23525 } 23526 23527 // If non-reciprocal square root is requested, multiply the result by Arg. 23528 if (!Reciprocal) 23529 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 23530 23531 return Est; 23532 } 23533 23534 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23535 /// For the reciprocal sqrt, we need to find the zero of the function: 23536 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23537 /// => 23538 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 23539 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 23540 unsigned Iterations, 23541 SDNodeFlags Flags, bool Reciprocal) { 23542 EVT VT = Arg.getValueType(); 23543 SDLoc DL(Arg); 23544 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 23545 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 23546 23547 // This routine must enter the loop below to work correctly 23548 // when (Reciprocal == false). 23549 assert(Iterations > 0); 23550 23551 // Newton iterations for reciprocal square root: 23552 // E = (E * -0.5) * ((A * E) * E + -3.0) 23553 for (unsigned i = 0; i < Iterations; ++i) { 23554 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 23555 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 23556 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 23557 23558 // When calculating a square root at the last iteration build: 23559 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 23560 // (notice a common subexpression) 23561 SDValue LHS; 23562 if (Reciprocal || (i + 1) < Iterations) { 23563 // RSQRT: LHS = (E * -0.5) 23564 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 23565 } else { 23566 // SQRT: LHS = (A * E) * -0.5 23567 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 23568 } 23569 23570 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 23571 } 23572 23573 return Est; 23574 } 23575 23576 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 23577 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 23578 /// Op can be zero. 23579 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 23580 bool Reciprocal) { 23581 if (LegalDAG) 23582 return SDValue(); 23583 23584 // TODO: Handle extended types? 23585 EVT VT = Op.getValueType(); 23586 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && 23587 VT.getScalarType() != MVT::f64) 23588 return SDValue(); 23589 23590 // If estimates are explicitly disabled for this function, we're done. 23591 MachineFunction &MF = DAG.getMachineFunction(); 23592 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 23593 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23594 return SDValue(); 23595 23596 // Estimates may be explicitly enabled for this type with a custom number of 23597 // refinement steps. 23598 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 23599 23600 bool UseOneConstNR = false; 23601 if (SDValue Est = 23602 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 23603 Reciprocal)) { 23604 AddToWorklist(Est.getNode()); 23605 23606 if (Iterations) 23607 Est = UseOneConstNR 23608 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 23609 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 23610 if (!Reciprocal) { 23611 SDLoc DL(Op); 23612 // Try the target specific test first. 23613 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); 23614 23615 // The estimate is now completely wrong if the input was exactly 0.0 or 23616 // possibly a denormal. Force the answer to 0.0 or value provided by 23617 // target for those cases. 23618 Est = DAG.getNode( 23619 Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 23620 Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); 23621 } 23622 return Est; 23623 } 23624 23625 return SDValue(); 23626 } 23627 23628 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 23629 return buildSqrtEstimateImpl(Op, Flags, true); 23630 } 23631 23632 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 23633 return buildSqrtEstimateImpl(Op, Flags, false); 23634 } 23635 23636 /// Return true if there is any possibility that the two addresses overlap. 23637 bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const { 23638 23639 struct MemUseCharacteristics { 23640 bool IsVolatile; 23641 bool IsAtomic; 23642 SDValue BasePtr; 23643 int64_t Offset; 23644 Optional<int64_t> NumBytes; 23645 MachineMemOperand *MMO; 23646 }; 23647 23648 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 23649 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 23650 int64_t Offset = 0; 23651 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 23652 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 23653 ? C->getSExtValue() 23654 : (LSN->getAddressingMode() == ISD::PRE_DEC) 23655 ? -1 * C->getSExtValue() 23656 : 0; 23657 uint64_t Size = 23658 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); 23659 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), 23660 Offset /*base offset*/, 23661 Optional<int64_t>(Size), 23662 LSN->getMemOperand()}; 23663 } 23664 if (const auto *LN = cast<LifetimeSDNode>(N)) 23665 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), 23666 (LN->hasOffset()) ? LN->getOffset() : 0, 23667 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 23668 : Optional<int64_t>(), 23669 (MachineMemOperand *)nullptr}; 23670 // Default. 23671 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), 23672 (int64_t)0 /*offset*/, 23673 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 23674 }; 23675 23676 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 23677 MUC1 = getCharacteristics(Op1); 23678 23679 // If they are to the same address, then they must be aliases. 23680 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 23681 MUC0.Offset == MUC1.Offset) 23682 return true; 23683 23684 // If they are both volatile then they cannot be reordered. 23685 if (MUC0.IsVolatile && MUC1.IsVolatile) 23686 return true; 23687 23688 // Be conservative about atomics for the moment 23689 // TODO: This is way overconservative for unordered atomics (see D66309) 23690 if (MUC0.IsAtomic && MUC1.IsAtomic) 23691 return true; 23692 23693 if (MUC0.MMO && MUC1.MMO) { 23694 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 23695 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 23696 return false; 23697 } 23698 23699 // Try to prove that there is aliasing, or that there is no aliasing. Either 23700 // way, we can return now. If nothing can be proved, proceed with more tests. 23701 bool IsAlias; 23702 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 23703 DAG, IsAlias)) 23704 return IsAlias; 23705 23706 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 23707 // either are not known. 23708 if (!MUC0.MMO || !MUC1.MMO) 23709 return true; 23710 23711 // If one operation reads from invariant memory, and the other may store, they 23712 // cannot alias. These should really be checking the equivalent of mayWrite, 23713 // but it only matters for memory nodes other than load /store. 23714 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 23715 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 23716 return false; 23717 23718 // If we know required SrcValue1 and SrcValue2 have relatively large 23719 // alignment compared to the size and offset of the access, we may be able 23720 // to prove they do not alias. This check is conservative for now to catch 23721 // cases created by splitting vector types, it only works when the offsets are 23722 // multiples of the size of the data. 23723 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 23724 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 23725 Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); 23726 Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); 23727 auto &Size0 = MUC0.NumBytes; 23728 auto &Size1 = MUC1.NumBytes; 23729 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 23730 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && 23731 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && 23732 SrcValOffset1 % *Size1 == 0) { 23733 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); 23734 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); 23735 23736 // There is no overlap between these relatively aligned accesses of 23737 // similar size. Return no alias. 23738 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) 23739 return false; 23740 } 23741 23742 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 23743 ? CombinerGlobalAA 23744 : DAG.getSubtarget().useAA(); 23745 #ifndef NDEBUG 23746 if (CombinerAAOnlyFunc.getNumOccurrences() && 23747 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 23748 UseAA = false; 23749 #endif 23750 23751 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 23752 Size0.hasValue() && Size1.hasValue()) { 23753 // Use alias analysis information. 23754 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 23755 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; 23756 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; 23757 if (AA->isNoAlias( 23758 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 23759 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 23760 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 23761 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()))) 23762 return false; 23763 } 23764 23765 // Otherwise we have to assume they alias. 23766 return true; 23767 } 23768 23769 /// Walk up chain skipping non-aliasing memory nodes, 23770 /// looking for aliasing nodes and adding them to the Aliases vector. 23771 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 23772 SmallVectorImpl<SDValue> &Aliases) { 23773 SmallVector<SDValue, 8> Chains; // List of chains to visit. 23774 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 23775 23776 // Get alias information for node. 23777 // TODO: relax aliasing for unordered atomics (see D66309) 23778 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); 23779 23780 // Starting off. 23781 Chains.push_back(OriginalChain); 23782 unsigned Depth = 0; 23783 23784 // Attempt to improve chain by a single step 23785 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { 23786 switch (C.getOpcode()) { 23787 case ISD::EntryToken: 23788 // No need to mark EntryToken. 23789 C = SDValue(); 23790 return true; 23791 case ISD::LOAD: 23792 case ISD::STORE: { 23793 // Get alias information for C. 23794 // TODO: Relax aliasing for unordered atomics (see D66309) 23795 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 23796 cast<LSBaseSDNode>(C.getNode())->isSimple(); 23797 if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) { 23798 // Look further up the chain. 23799 C = C.getOperand(0); 23800 return true; 23801 } 23802 // Alias, so stop here. 23803 return false; 23804 } 23805 23806 case ISD::CopyFromReg: 23807 // Always forward past past CopyFromReg. 23808 C = C.getOperand(0); 23809 return true; 23810 23811 case ISD::LIFETIME_START: 23812 case ISD::LIFETIME_END: { 23813 // We can forward past any lifetime start/end that can be proven not to 23814 // alias the memory access. 23815 if (!mayAlias(N, C.getNode())) { 23816 // Look further up the chain. 23817 C = C.getOperand(0); 23818 return true; 23819 } 23820 return false; 23821 } 23822 default: 23823 return false; 23824 } 23825 }; 23826 23827 // Look at each chain and determine if it is an alias. If so, add it to the 23828 // aliases list. If not, then continue up the chain looking for the next 23829 // candidate. 23830 while (!Chains.empty()) { 23831 SDValue Chain = Chains.pop_back_val(); 23832 23833 // Don't bother if we've seen Chain before. 23834 if (!Visited.insert(Chain.getNode()).second) 23835 continue; 23836 23837 // For TokenFactor nodes, look at each operand and only continue up the 23838 // chain until we reach the depth limit. 23839 // 23840 // FIXME: The depth check could be made to return the last non-aliasing 23841 // chain we found before we hit a tokenfactor rather than the original 23842 // chain. 23843 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 23844 Aliases.clear(); 23845 Aliases.push_back(OriginalChain); 23846 return; 23847 } 23848 23849 if (Chain.getOpcode() == ISD::TokenFactor) { 23850 // We have to check each of the operands of the token factor for "small" 23851 // token factors, so we queue them up. Adding the operands to the queue 23852 // (stack) in reverse order maintains the original order and increases the 23853 // likelihood that getNode will find a matching token factor (CSE.) 23854 if (Chain.getNumOperands() > 16) { 23855 Aliases.push_back(Chain); 23856 continue; 23857 } 23858 for (unsigned n = Chain.getNumOperands(); n;) 23859 Chains.push_back(Chain.getOperand(--n)); 23860 ++Depth; 23861 continue; 23862 } 23863 // Everything else 23864 if (ImproveChain(Chain)) { 23865 // Updated Chain Found, Consider new chain if one exists. 23866 if (Chain.getNode()) 23867 Chains.push_back(Chain); 23868 ++Depth; 23869 continue; 23870 } 23871 // No Improved Chain Possible, treat as Alias. 23872 Aliases.push_back(Chain); 23873 } 23874 } 23875 23876 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 23877 /// (aliasing node.) 23878 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 23879 if (OptLevel == CodeGenOpt::None) 23880 return OldChain; 23881 23882 // Ops for replacing token factor. 23883 SmallVector<SDValue, 8> Aliases; 23884 23885 // Accumulate all the aliases to this node. 23886 GatherAllAliases(N, OldChain, Aliases); 23887 23888 // If no operands then chain to entry token. 23889 if (Aliases.size() == 0) 23890 return DAG.getEntryNode(); 23891 23892 // If a single operand then chain to it. We don't need to revisit it. 23893 if (Aliases.size() == 1) 23894 return Aliases[0]; 23895 23896 // Construct a custom tailored token factor. 23897 return DAG.getTokenFactor(SDLoc(N), Aliases); 23898 } 23899 23900 namespace { 23901 // TODO: Replace with with std::monostate when we move to C++17. 23902 struct UnitT { } Unit; 23903 bool operator==(const UnitT &, const UnitT &) { return true; } 23904 bool operator!=(const UnitT &, const UnitT &) { return false; } 23905 } // namespace 23906 23907 // This function tries to collect a bunch of potentially interesting 23908 // nodes to improve the chains of, all at once. This might seem 23909 // redundant, as this function gets called when visiting every store 23910 // node, so why not let the work be done on each store as it's visited? 23911 // 23912 // I believe this is mainly important because mergeConsecutiveStores 23913 // is unable to deal with merging stores of different sizes, so unless 23914 // we improve the chains of all the potential candidates up-front 23915 // before running mergeConsecutiveStores, it might only see some of 23916 // the nodes that will eventually be candidates, and then not be able 23917 // to go from a partially-merged state to the desired final 23918 // fully-merged state. 23919 23920 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 23921 SmallVector<StoreSDNode *, 8> ChainedStores; 23922 StoreSDNode *STChain = St; 23923 // Intervals records which offsets from BaseIndex have been covered. In 23924 // the common case, every store writes to the immediately previous address 23925 // space and thus merged with the previous interval at insertion time. 23926 23927 using IMap = 23928 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 23929 IMap::Allocator A; 23930 IMap Intervals(A); 23931 23932 // This holds the base pointer, index, and the offset in bytes from the base 23933 // pointer. 23934 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 23935 23936 // We must have a base and an offset. 23937 if (!BasePtr.getBase().getNode()) 23938 return false; 23939 23940 // Do not handle stores to undef base pointers. 23941 if (BasePtr.getBase().isUndef()) 23942 return false; 23943 23944 // Do not handle stores to opaque types 23945 if (St->getMemoryVT().isZeroSized()) 23946 return false; 23947 23948 // BaseIndexOffset assumes that offsets are fixed-size, which 23949 // is not valid for scalable vectors where the offsets are 23950 // scaled by `vscale`, so bail out early. 23951 if (St->getMemoryVT().isScalableVector()) 23952 return false; 23953 23954 // Add ST's interval. 23955 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 23956 23957 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 23958 if (Chain->getMemoryVT().isScalableVector()) 23959 return false; 23960 23961 // If the chain has more than one use, then we can't reorder the mem ops. 23962 if (!SDValue(Chain, 0)->hasOneUse()) 23963 break; 23964 // TODO: Relax for unordered atomics (see D66309) 23965 if (!Chain->isSimple() || Chain->isIndexed()) 23966 break; 23967 23968 // Find the base pointer and offset for this memory node. 23969 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 23970 // Check that the base pointer is the same as the original one. 23971 int64_t Offset; 23972 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 23973 break; 23974 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 23975 // Make sure we don't overlap with other intervals by checking the ones to 23976 // the left or right before inserting. 23977 auto I = Intervals.find(Offset); 23978 // If there's a next interval, we should end before it. 23979 if (I != Intervals.end() && I.start() < (Offset + Length)) 23980 break; 23981 // If there's a previous interval, we should start after it. 23982 if (I != Intervals.begin() && (--I).stop() <= Offset) 23983 break; 23984 Intervals.insert(Offset, Offset + Length, Unit); 23985 23986 ChainedStores.push_back(Chain); 23987 STChain = Chain; 23988 } 23989 23990 // If we didn't find a chained store, exit. 23991 if (ChainedStores.size() == 0) 23992 return false; 23993 23994 // Improve all chained stores (St and ChainedStores members) starting from 23995 // where the store chain ended and return single TokenFactor. 23996 SDValue NewChain = STChain->getChain(); 23997 SmallVector<SDValue, 8> TFOps; 23998 for (unsigned I = ChainedStores.size(); I;) { 23999 StoreSDNode *S = ChainedStores[--I]; 24000 SDValue BetterChain = FindBetterChain(S, NewChain); 24001 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 24002 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 24003 TFOps.push_back(SDValue(S, 0)); 24004 ChainedStores[I] = S; 24005 } 24006 24007 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 24008 SDValue BetterChain = FindBetterChain(St, NewChain); 24009 SDValue NewST; 24010 if (St->isTruncatingStore()) 24011 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 24012 St->getBasePtr(), St->getMemoryVT(), 24013 St->getMemOperand()); 24014 else 24015 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 24016 St->getBasePtr(), St->getMemOperand()); 24017 24018 TFOps.push_back(NewST); 24019 24020 // If we improved every element of TFOps, then we've lost the dependence on 24021 // NewChain to successors of St and we need to add it back to TFOps. Do so at 24022 // the beginning to keep relative order consistent with FindBetterChains. 24023 auto hasImprovedChain = [&](SDValue ST) -> bool { 24024 return ST->getOperand(0) != NewChain; 24025 }; 24026 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 24027 if (AddNewChain) 24028 TFOps.insert(TFOps.begin(), NewChain); 24029 24030 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 24031 CombineTo(St, TF); 24032 24033 // Add TF and its operands to the worklist. 24034 AddToWorklist(TF.getNode()); 24035 for (const SDValue &Op : TF->ops()) 24036 AddToWorklist(Op.getNode()); 24037 AddToWorklist(STChain); 24038 return true; 24039 } 24040 24041 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 24042 if (OptLevel == CodeGenOpt::None) 24043 return false; 24044 24045 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 24046 24047 // We must have a base and an offset. 24048 if (!BasePtr.getBase().getNode()) 24049 return false; 24050 24051 // Do not handle stores to undef base pointers. 24052 if (BasePtr.getBase().isUndef()) 24053 return false; 24054 24055 // Directly improve a chain of disjoint stores starting at St. 24056 if (parallelizeChainedStores(St)) 24057 return true; 24058 24059 // Improve St's Chain.. 24060 SDValue BetterChain = FindBetterChain(St, St->getChain()); 24061 if (St->getChain() != BetterChain) { 24062 replaceStoreChain(St, BetterChain); 24063 return true; 24064 } 24065 return false; 24066 } 24067 24068 /// This is the entry point for the file. 24069 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 24070 CodeGenOpt::Level OptLevel) { 24071 /// This is the main entry point to this class. 24072 DAGCombiner(*this, AA, OptLevel).Run(Level); 24073 } 24074