1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/RuntimeLibcalls.h" 42 #include "llvm/CodeGen/SelectionDAG.h" 43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/CodeGen/ValueTypes.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <functional> 73 #include <iterator> 74 #include <string> 75 #include <tuple> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "dagcombine" 81 82 STATISTIC(NodesCombined , "Number of dag nodes combined"); 83 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 84 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 85 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 86 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 87 STATISTIC(SlicedLoads, "Number of load sliced"); 88 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 89 90 static cl::opt<bool> 91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 92 cl::desc("Enable DAG combiner's use of IR alias analysis")); 93 94 static cl::opt<bool> 95 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 96 cl::desc("Enable DAG combiner's use of TBAA")); 97 98 #ifndef NDEBUG 99 static cl::opt<std::string> 100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 101 cl::desc("Only use DAG-combiner alias analysis in this" 102 " function")); 103 #endif 104 105 /// Hidden option to stress test load slicing, i.e., when this option 106 /// is enabled, load slicing bypasses most of its profitability guards. 107 static cl::opt<bool> 108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 109 cl::desc("Bypass the profitability model of load slicing"), 110 cl::init(false)); 111 112 static cl::opt<bool> 113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 114 cl::desc("DAG combiner may split indexing from loads")); 115 116 static cl::opt<bool> 117 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), 118 cl::desc("DAG combiner enable merging multiple stores " 119 "into a wider store")); 120 121 static cl::opt<unsigned> TokenFactorInlineLimit( 122 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), 123 cl::desc("Limit the number of operands to inline for Token Factors")); 124 125 static cl::opt<unsigned> StoreMergeDependenceLimit( 126 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), 127 cl::desc("Limit the number of times for the same StoreNode and RootNode " 128 "to bail out in store merging dependence check")); 129 130 static cl::opt<bool> EnableReduceLoadOpStoreWidth( 131 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), 132 cl::desc("DAG cominber enable reducing the width of load/op/store " 133 "sequence")); 134 135 static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( 136 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), 137 cl::desc("DAG cominber enable load/<replace bytes>/store with " 138 "a narrower store")); 139 140 namespace { 141 142 class DAGCombiner { 143 SelectionDAG &DAG; 144 const TargetLowering &TLI; 145 const SelectionDAGTargetInfo *STI; 146 CombineLevel Level; 147 CodeGenOpt::Level OptLevel; 148 bool LegalDAG = false; 149 bool LegalOperations = false; 150 bool LegalTypes = false; 151 bool ForCodeSize; 152 bool DisableGenericCombines; 153 154 /// Worklist of all of the nodes that need to be simplified. 155 /// 156 /// This must behave as a stack -- new nodes to process are pushed onto the 157 /// back and when processing we pop off of the back. 158 /// 159 /// The worklist will not contain duplicates but may contain null entries 160 /// due to nodes being deleted from the underlying DAG. 161 SmallVector<SDNode *, 64> Worklist; 162 163 /// Mapping from an SDNode to its position on the worklist. 164 /// 165 /// This is used to find and remove nodes from the worklist (by nulling 166 /// them) when they are deleted from the underlying DAG. It relies on 167 /// stable indices of nodes within the worklist. 168 DenseMap<SDNode *, unsigned> WorklistMap; 169 /// This records all nodes attempted to add to the worklist since we 170 /// considered a new worklist entry. As we keep do not add duplicate nodes 171 /// in the worklist, this is different from the tail of the worklist. 172 SmallSetVector<SDNode *, 32> PruningList; 173 174 /// Set of nodes which have been combined (at least once). 175 /// 176 /// This is used to allow us to reliably add any operands of a DAG node 177 /// which have not yet been combined to the worklist. 178 SmallPtrSet<SDNode *, 32> CombinedNodes; 179 180 /// Map from candidate StoreNode to the pair of RootNode and count. 181 /// The count is used to track how many times we have seen the StoreNode 182 /// with the same RootNode bail out in dependence check. If we have seen 183 /// the bail out for the same pair many times over a limit, we won't 184 /// consider the StoreNode with the same RootNode as store merging 185 /// candidate again. 186 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; 187 188 // AA - Used for DAG load/store alias analysis. 189 AliasAnalysis *AA; 190 191 /// When an instruction is simplified, add all users of the instruction to 192 /// the work lists because they might get more simplified now. 193 void AddUsersToWorklist(SDNode *N) { 194 for (SDNode *Node : N->uses()) 195 AddToWorklist(Node); 196 } 197 198 /// Convenient shorthand to add a node and all of its user to the worklist. 199 void AddToWorklistWithUsers(SDNode *N) { 200 AddUsersToWorklist(N); 201 AddToWorklist(N); 202 } 203 204 // Prune potentially dangling nodes. This is called after 205 // any visit to a node, but should also be called during a visit after any 206 // failed combine which may have created a DAG node. 207 void clearAddedDanglingWorklistEntries() { 208 // Check any nodes added to the worklist to see if they are prunable. 209 while (!PruningList.empty()) { 210 auto *N = PruningList.pop_back_val(); 211 if (N->use_empty()) 212 recursivelyDeleteUnusedNodes(N); 213 } 214 } 215 216 SDNode *getNextWorklistEntry() { 217 // Before we do any work, remove nodes that are not in use. 218 clearAddedDanglingWorklistEntries(); 219 SDNode *N = nullptr; 220 // The Worklist holds the SDNodes in order, but it may contain null 221 // entries. 222 while (!N && !Worklist.empty()) { 223 N = Worklist.pop_back_val(); 224 } 225 226 if (N) { 227 bool GoodWorklistEntry = WorklistMap.erase(N); 228 (void)GoodWorklistEntry; 229 assert(GoodWorklistEntry && 230 "Found a worklist entry without a corresponding map entry!"); 231 } 232 return N; 233 } 234 235 /// Call the node-specific routine that folds each particular type of node. 236 SDValue visit(SDNode *N); 237 238 public: 239 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 240 : DAG(D), TLI(D.getTargetLoweringInfo()), 241 STI(D.getSubtarget().getSelectionDAGInfo()), 242 Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) { 243 ForCodeSize = DAG.shouldOptForSize(); 244 DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); 245 246 MaximumLegalStoreInBits = 0; 247 // We use the minimum store size here, since that's all we can guarantee 248 // for the scalable vector types. 249 for (MVT VT : MVT::all_valuetypes()) 250 if (EVT(VT).isSimple() && VT != MVT::Other && 251 TLI.isTypeLegal(EVT(VT)) && 252 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) 253 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); 254 } 255 256 void ConsiderForPruning(SDNode *N) { 257 // Mark this for potential pruning. 258 PruningList.insert(N); 259 } 260 261 /// Add to the worklist making sure its instance is at the back (next to be 262 /// processed.) 263 void AddToWorklist(SDNode *N) { 264 assert(N->getOpcode() != ISD::DELETED_NODE && 265 "Deleted Node added to Worklist"); 266 267 // Skip handle nodes as they can't usefully be combined and confuse the 268 // zero-use deletion strategy. 269 if (N->getOpcode() == ISD::HANDLENODE) 270 return; 271 272 ConsiderForPruning(N); 273 274 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 275 Worklist.push_back(N); 276 } 277 278 /// Remove all instances of N from the worklist. 279 void removeFromWorklist(SDNode *N) { 280 CombinedNodes.erase(N); 281 PruningList.remove(N); 282 StoreRootCountMap.erase(N); 283 284 auto It = WorklistMap.find(N); 285 if (It == WorklistMap.end()) 286 return; // Not in the worklist. 287 288 // Null out the entry rather than erasing it to avoid a linear operation. 289 Worklist[It->second] = nullptr; 290 WorklistMap.erase(It); 291 } 292 293 void deleteAndRecombine(SDNode *N); 294 bool recursivelyDeleteUnusedNodes(SDNode *N); 295 296 /// Replaces all uses of the results of one DAG node with new values. 297 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 298 bool AddTo = true); 299 300 /// Replaces all uses of the results of one DAG node with new values. 301 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 302 return CombineTo(N, &Res, 1, AddTo); 303 } 304 305 /// Replaces all uses of the results of one DAG node with new values. 306 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 307 bool AddTo = true) { 308 SDValue To[] = { Res0, Res1 }; 309 return CombineTo(N, To, 2, AddTo); 310 } 311 312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 313 314 private: 315 unsigned MaximumLegalStoreInBits; 316 317 /// Check the specified integer node value to see if it can be simplified or 318 /// if things it uses can be simplified by bit propagation. 319 /// If so, return true. 320 bool SimplifyDemandedBits(SDValue Op) { 321 unsigned BitWidth = Op.getScalarValueSizeInBits(); 322 APInt DemandedBits = APInt::getAllOnesValue(BitWidth); 323 return SimplifyDemandedBits(Op, DemandedBits); 324 } 325 326 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 327 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 328 KnownBits Known; 329 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) 330 return false; 331 332 // Revisit the node. 333 AddToWorklist(Op.getNode()); 334 335 CommitTargetLoweringOpt(TLO); 336 return true; 337 } 338 339 /// Check the specified vector node value to see if it can be simplified or 340 /// if things it uses can be simplified as it only uses some of the 341 /// elements. If so, return true. 342 bool SimplifyDemandedVectorElts(SDValue Op) { 343 // TODO: For now just pretend it cannot be simplified. 344 if (Op.getValueType().isScalableVector()) 345 return false; 346 347 unsigned NumElts = Op.getValueType().getVectorNumElements(); 348 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 349 return SimplifyDemandedVectorElts(Op, DemandedElts); 350 } 351 352 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 353 const APInt &DemandedElts, 354 bool AssumeSingleUse = false); 355 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 356 bool AssumeSingleUse = false); 357 358 bool CombineToPreIndexedLoadStore(SDNode *N); 359 bool CombineToPostIndexedLoadStore(SDNode *N); 360 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 361 bool SliceUpLoad(SDNode *N); 362 363 // Scalars have size 0 to distinguish from singleton vectors. 364 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 365 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 366 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 367 368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 369 /// load. 370 /// 371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 373 /// \param EltNo index of the vector element to load. 374 /// \param OriginalLoad load that EVE came from to be replaced. 375 /// \returns EVE on success SDValue() on failure. 376 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 377 SDValue EltNo, 378 LoadSDNode *OriginalLoad); 379 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 380 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 381 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 382 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 383 SDValue PromoteIntBinOp(SDValue Op); 384 SDValue PromoteIntShiftOp(SDValue Op); 385 SDValue PromoteExtend(SDValue Op); 386 bool PromoteLoad(SDValue Op); 387 388 /// Call the node-specific routine that knows how to fold each 389 /// particular type of node. If that doesn't do anything, try the 390 /// target-specific DAG combines. 391 SDValue combine(SDNode *N); 392 393 // Visitation implementation - Implement dag node combining for different 394 // node types. The semantics are as follows: 395 // Return Value: 396 // SDValue.getNode() == 0 - No change was made 397 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 398 // otherwise - N should be replaced by the returned Operand. 399 // 400 SDValue visitTokenFactor(SDNode *N); 401 SDValue visitMERGE_VALUES(SDNode *N); 402 SDValue visitADD(SDNode *N); 403 SDValue visitADDLike(SDNode *N); 404 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 405 SDValue visitSUB(SDNode *N); 406 SDValue visitADDSAT(SDNode *N); 407 SDValue visitSUBSAT(SDNode *N); 408 SDValue visitADDC(SDNode *N); 409 SDValue visitADDO(SDNode *N); 410 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 411 SDValue visitSUBC(SDNode *N); 412 SDValue visitSUBO(SDNode *N); 413 SDValue visitADDE(SDNode *N); 414 SDValue visitADDCARRY(SDNode *N); 415 SDValue visitSADDO_CARRY(SDNode *N); 416 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 417 SDValue visitSUBE(SDNode *N); 418 SDValue visitSUBCARRY(SDNode *N); 419 SDValue visitSSUBO_CARRY(SDNode *N); 420 SDValue visitMUL(SDNode *N); 421 SDValue visitMULFIX(SDNode *N); 422 SDValue useDivRem(SDNode *N); 423 SDValue visitSDIV(SDNode *N); 424 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 425 SDValue visitUDIV(SDNode *N); 426 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 427 SDValue visitREM(SDNode *N); 428 SDValue visitMULHU(SDNode *N); 429 SDValue visitMULHS(SDNode *N); 430 SDValue visitSMUL_LOHI(SDNode *N); 431 SDValue visitUMUL_LOHI(SDNode *N); 432 SDValue visitMULO(SDNode *N); 433 SDValue visitIMINMAX(SDNode *N); 434 SDValue visitAND(SDNode *N); 435 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 436 SDValue visitOR(SDNode *N); 437 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 438 SDValue visitXOR(SDNode *N); 439 SDValue SimplifyVBinOp(SDNode *N); 440 SDValue visitSHL(SDNode *N); 441 SDValue visitSRA(SDNode *N); 442 SDValue visitSRL(SDNode *N); 443 SDValue visitFunnelShift(SDNode *N); 444 SDValue visitRotate(SDNode *N); 445 SDValue visitABS(SDNode *N); 446 SDValue visitBSWAP(SDNode *N); 447 SDValue visitBITREVERSE(SDNode *N); 448 SDValue visitCTLZ(SDNode *N); 449 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 450 SDValue visitCTTZ(SDNode *N); 451 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 452 SDValue visitCTPOP(SDNode *N); 453 SDValue visitSELECT(SDNode *N); 454 SDValue visitVSELECT(SDNode *N); 455 SDValue visitSELECT_CC(SDNode *N); 456 SDValue visitSETCC(SDNode *N); 457 SDValue visitSETCCCARRY(SDNode *N); 458 SDValue visitSIGN_EXTEND(SDNode *N); 459 SDValue visitZERO_EXTEND(SDNode *N); 460 SDValue visitANY_EXTEND(SDNode *N); 461 SDValue visitAssertExt(SDNode *N); 462 SDValue visitAssertAlign(SDNode *N); 463 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 464 SDValue visitEXTEND_VECTOR_INREG(SDNode *N); 465 SDValue visitTRUNCATE(SDNode *N); 466 SDValue visitBITCAST(SDNode *N); 467 SDValue visitFREEZE(SDNode *N); 468 SDValue visitBUILD_PAIR(SDNode *N); 469 SDValue visitFADD(SDNode *N); 470 SDValue visitSTRICT_FADD(SDNode *N); 471 SDValue visitFSUB(SDNode *N); 472 SDValue visitFMUL(SDNode *N); 473 SDValue visitFMA(SDNode *N); 474 SDValue visitFDIV(SDNode *N); 475 SDValue visitFREM(SDNode *N); 476 SDValue visitFSQRT(SDNode *N); 477 SDValue visitFCOPYSIGN(SDNode *N); 478 SDValue visitFPOW(SDNode *N); 479 SDValue visitSINT_TO_FP(SDNode *N); 480 SDValue visitUINT_TO_FP(SDNode *N); 481 SDValue visitFP_TO_SINT(SDNode *N); 482 SDValue visitFP_TO_UINT(SDNode *N); 483 SDValue visitFP_ROUND(SDNode *N); 484 SDValue visitFP_EXTEND(SDNode *N); 485 SDValue visitFNEG(SDNode *N); 486 SDValue visitFABS(SDNode *N); 487 SDValue visitFCEIL(SDNode *N); 488 SDValue visitFTRUNC(SDNode *N); 489 SDValue visitFFLOOR(SDNode *N); 490 SDValue visitFMINNUM(SDNode *N); 491 SDValue visitFMAXNUM(SDNode *N); 492 SDValue visitFMINIMUM(SDNode *N); 493 SDValue visitFMAXIMUM(SDNode *N); 494 SDValue visitBRCOND(SDNode *N); 495 SDValue visitBR_CC(SDNode *N); 496 SDValue visitLOAD(SDNode *N); 497 498 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 499 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 500 501 SDValue visitSTORE(SDNode *N); 502 SDValue visitLIFETIME_END(SDNode *N); 503 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 504 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 505 SDValue visitBUILD_VECTOR(SDNode *N); 506 SDValue visitCONCAT_VECTORS(SDNode *N); 507 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 508 SDValue visitVECTOR_SHUFFLE(SDNode *N); 509 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 510 SDValue visitINSERT_SUBVECTOR(SDNode *N); 511 SDValue visitMLOAD(SDNode *N); 512 SDValue visitMSTORE(SDNode *N); 513 SDValue visitMGATHER(SDNode *N); 514 SDValue visitMSCATTER(SDNode *N); 515 SDValue visitFP_TO_FP16(SDNode *N); 516 SDValue visitFP16_TO_FP(SDNode *N); 517 SDValue visitVECREDUCE(SDNode *N); 518 519 SDValue visitFADDForFMACombine(SDNode *N); 520 SDValue visitFSUBForFMACombine(SDNode *N); 521 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 522 523 SDValue XformToShuffleWithZero(SDNode *N); 524 bool reassociationCanBreakAddressingModePattern(unsigned Opc, 525 const SDLoc &DL, SDValue N0, 526 SDValue N1); 527 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 528 SDValue N1); 529 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 530 SDValue N1, SDNodeFlags Flags); 531 532 SDValue visitShiftByConstant(SDNode *N); 533 534 SDValue foldSelectOfConstants(SDNode *N); 535 SDValue foldVSelectOfConstants(SDNode *N); 536 SDValue foldBinOpIntoSelect(SDNode *BO); 537 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 538 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 539 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 540 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 541 SDValue N2, SDValue N3, ISD::CondCode CC, 542 bool NotExtCompare = false); 543 SDValue convertSelectOfFPConstantsToLoadOffset( 544 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 545 ISD::CondCode CC); 546 SDValue foldSignChangeInBitcast(SDNode *N); 547 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 548 SDValue N2, SDValue N3, ISD::CondCode CC); 549 SDValue foldSelectOfBinops(SDNode *N); 550 SDValue foldSextSetcc(SDNode *N); 551 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 552 const SDLoc &DL); 553 SDValue foldSubToUSubSat(EVT DstVT, SDNode *N); 554 SDValue unfoldMaskedMerge(SDNode *N); 555 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 556 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 557 const SDLoc &DL, bool foldBooleans); 558 SDValue rebuildSetCC(SDValue N); 559 560 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 561 SDValue &CC, bool MatchStrict = false) const; 562 bool isOneUseSetCC(SDValue N) const; 563 564 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 565 unsigned HiOp); 566 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 567 SDValue CombineExtLoad(SDNode *N); 568 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 569 SDValue combineRepeatedFPDivisors(SDNode *N); 570 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 571 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 572 SDValue BuildSDIV(SDNode *N); 573 SDValue BuildSDIVPow2(SDNode *N); 574 SDValue BuildUDIV(SDNode *N); 575 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 576 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); 577 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 578 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 579 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 580 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 581 SDNodeFlags Flags, bool Reciprocal); 582 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 583 SDNodeFlags Flags, bool Reciprocal); 584 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 585 bool DemandHighBits = true); 586 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 587 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 588 SDValue InnerPos, SDValue InnerNeg, 589 unsigned PosOpcode, unsigned NegOpcode, 590 const SDLoc &DL); 591 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, 592 SDValue InnerPos, SDValue InnerNeg, 593 unsigned PosOpcode, unsigned NegOpcode, 594 const SDLoc &DL); 595 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 596 SDValue MatchLoadCombine(SDNode *N); 597 SDValue mergeTruncStores(StoreSDNode *N); 598 SDValue ReduceLoadWidth(SDNode *N); 599 SDValue ReduceLoadOpStoreWidth(SDNode *N); 600 SDValue splitMergedValStore(StoreSDNode *ST); 601 SDValue TransformFPLoadStorePair(SDNode *N); 602 SDValue convertBuildVecZextToZext(SDNode *N); 603 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 604 SDValue reduceBuildVecTruncToBitCast(SDNode *N); 605 SDValue reduceBuildVecToShuffle(SDNode *N); 606 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 607 ArrayRef<int> VectorMask, SDValue VecIn1, 608 SDValue VecIn2, unsigned LeftIdx, 609 bool DidSplitVec); 610 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 611 612 /// Walk up chain skipping non-aliasing memory nodes, 613 /// looking for aliasing nodes and adding them to the Aliases vector. 614 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 615 SmallVectorImpl<SDValue> &Aliases); 616 617 /// Return true if there is any possibility that the two addresses overlap. 618 bool isAlias(SDNode *Op0, SDNode *Op1) const; 619 620 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 621 /// chain (aliasing node.) 622 SDValue FindBetterChain(SDNode *N, SDValue Chain); 623 624 /// Try to replace a store and any possibly adjacent stores on 625 /// consecutive chains with better chains. Return true only if St is 626 /// replaced. 627 /// 628 /// Notice that other chains may still be replaced even if the function 629 /// returns false. 630 bool findBetterNeighborChains(StoreSDNode *St); 631 632 // Helper for findBetterNeighborChains. Walk up store chain add additional 633 // chained stores that do not overlap and can be parallelized. 634 bool parallelizeChainedStores(StoreSDNode *St); 635 636 /// Holds a pointer to an LSBaseSDNode as well as information on where it 637 /// is located in a sequence of memory operations connected by a chain. 638 struct MemOpLink { 639 // Ptr to the mem node. 640 LSBaseSDNode *MemNode; 641 642 // Offset from the base ptr. 643 int64_t OffsetFromBase; 644 645 MemOpLink(LSBaseSDNode *N, int64_t Offset) 646 : MemNode(N), OffsetFromBase(Offset) {} 647 }; 648 649 // Classify the origin of a stored value. 650 enum class StoreSource { Unknown, Constant, Extract, Load }; 651 StoreSource getStoreSource(SDValue StoreVal) { 652 switch (StoreVal.getOpcode()) { 653 case ISD::Constant: 654 case ISD::ConstantFP: 655 return StoreSource::Constant; 656 case ISD::EXTRACT_VECTOR_ELT: 657 case ISD::EXTRACT_SUBVECTOR: 658 return StoreSource::Extract; 659 case ISD::LOAD: 660 return StoreSource::Load; 661 default: 662 return StoreSource::Unknown; 663 } 664 } 665 666 /// This is a helper function for visitMUL to check the profitability 667 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 668 /// MulNode is the original multiply, AddNode is (add x, c1), 669 /// and ConstNode is c2. 670 bool isMulAddWithConstProfitable(SDNode *MulNode, 671 SDValue &AddNode, 672 SDValue &ConstNode); 673 674 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 675 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 676 /// the type of the loaded value to be extended. 677 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 678 EVT LoadResultTy, EVT &ExtVT); 679 680 /// Helper function to calculate whether the given Load/Store can have its 681 /// width reduced to ExtVT. 682 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 683 EVT &MemVT, unsigned ShAmt = 0); 684 685 /// Used by BackwardsPropagateMask to find suitable loads. 686 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 687 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 688 ConstantSDNode *Mask, SDNode *&NodeToMask); 689 /// Attempt to propagate a given AND node back to load leaves so that they 690 /// can be combined into narrow loads. 691 bool BackwardsPropagateMask(SDNode *N); 692 693 /// Helper function for mergeConsecutiveStores which merges the component 694 /// store chains. 695 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 696 unsigned NumStores); 697 698 /// This is a helper function for mergeConsecutiveStores. When the source 699 /// elements of the consecutive stores are all constants or all extracted 700 /// vector elements, try to merge them into one larger store introducing 701 /// bitcasts if necessary. \return True if a merged store was created. 702 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 703 EVT MemVT, unsigned NumStores, 704 bool IsConstantSrc, bool UseVector, 705 bool UseTrunc); 706 707 /// This is a helper function for mergeConsecutiveStores. Stores that 708 /// potentially may be merged with St are placed in StoreNodes. RootNode is 709 /// a chain predecessor to all store candidates. 710 void getStoreMergeCandidates(StoreSDNode *St, 711 SmallVectorImpl<MemOpLink> &StoreNodes, 712 SDNode *&Root); 713 714 /// Helper function for mergeConsecutiveStores. Checks if candidate stores 715 /// have indirect dependency through their operands. RootNode is the 716 /// predecessor to all stores calculated by getStoreMergeCandidates and is 717 /// used to prune the dependency check. \return True if safe to merge. 718 bool checkMergeStoreCandidatesForDependencies( 719 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 720 SDNode *RootNode); 721 722 /// This is a helper function for mergeConsecutiveStores. Given a list of 723 /// store candidates, find the first N that are consecutive in memory. 724 /// Returns 0 if there are not at least 2 consecutive stores to try merging. 725 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 726 int64_t ElementSizeBytes) const; 727 728 /// This is a helper function for mergeConsecutiveStores. It is used for 729 /// store chains that are composed entirely of constant values. 730 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, 731 unsigned NumConsecutiveStores, 732 EVT MemVT, SDNode *Root, bool AllowVectors); 733 734 /// This is a helper function for mergeConsecutiveStores. It is used for 735 /// store chains that are composed entirely of extracted vector elements. 736 /// When extracting multiple vector elements, try to store them in one 737 /// vector store rather than a sequence of scalar stores. 738 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, 739 unsigned NumConsecutiveStores, EVT MemVT, 740 SDNode *Root); 741 742 /// This is a helper function for mergeConsecutiveStores. It is used for 743 /// store chains that are composed entirely of loaded values. 744 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 745 unsigned NumConsecutiveStores, EVT MemVT, 746 SDNode *Root, bool AllowVectors, 747 bool IsNonTemporalStore, bool IsNonTemporalLoad); 748 749 /// Merge consecutive store operations into a wide store. 750 /// This optimization uses wide integers or vectors when possible. 751 /// \return true if stores were merged. 752 bool mergeConsecutiveStores(StoreSDNode *St); 753 754 /// Try to transform a truncation where C is a constant: 755 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 756 /// 757 /// \p N needs to be a truncation and its first operand an AND. Other 758 /// requirements are checked by the function (e.g. that trunc is 759 /// single-use) and if missed an empty SDValue is returned. 760 SDValue distributeTruncateThroughAnd(SDNode *N); 761 762 /// Helper function to determine whether the target supports operation 763 /// given by \p Opcode for type \p VT, that is, whether the operation 764 /// is legal or custom before legalizing operations, and whether is 765 /// legal (but not custom) after legalization. 766 bool hasOperation(unsigned Opcode, EVT VT) { 767 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); 768 } 769 770 public: 771 /// Runs the dag combiner on all nodes in the work list 772 void Run(CombineLevel AtLevel); 773 774 SelectionDAG &getDAG() const { return DAG; } 775 776 /// Returns a type large enough to hold any valid shift amount - before type 777 /// legalization these can be huge. 778 EVT getShiftAmountTy(EVT LHSTy) { 779 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 780 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 781 } 782 783 /// This method returns true if we are running before type legalization or 784 /// if the specified VT is legal. 785 bool isTypeLegal(const EVT &VT) { 786 if (!LegalTypes) return true; 787 return TLI.isTypeLegal(VT); 788 } 789 790 /// Convenience wrapper around TargetLowering::getSetCCResultType 791 EVT getSetCCResultType(EVT VT) const { 792 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 793 } 794 795 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 796 SDValue OrigLoad, SDValue ExtLoad, 797 ISD::NodeType ExtType); 798 }; 799 800 /// This class is a DAGUpdateListener that removes any deleted 801 /// nodes from the worklist. 802 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 803 DAGCombiner &DC; 804 805 public: 806 explicit WorklistRemover(DAGCombiner &dc) 807 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 808 809 void NodeDeleted(SDNode *N, SDNode *E) override { 810 DC.removeFromWorklist(N); 811 } 812 }; 813 814 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 815 DAGCombiner &DC; 816 817 public: 818 explicit WorklistInserter(DAGCombiner &dc) 819 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 820 821 // FIXME: Ideally we could add N to the worklist, but this causes exponential 822 // compile time costs in large DAGs, e.g. Halide. 823 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 824 }; 825 826 } // end anonymous namespace 827 828 //===----------------------------------------------------------------------===// 829 // TargetLowering::DAGCombinerInfo implementation 830 //===----------------------------------------------------------------------===// 831 832 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 833 ((DAGCombiner*)DC)->AddToWorklist(N); 834 } 835 836 SDValue TargetLowering::DAGCombinerInfo:: 837 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 838 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 839 } 840 841 SDValue TargetLowering::DAGCombinerInfo:: 842 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 843 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 844 } 845 846 SDValue TargetLowering::DAGCombinerInfo:: 847 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 848 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 849 } 850 851 bool TargetLowering::DAGCombinerInfo:: 852 recursivelyDeleteUnusedNodes(SDNode *N) { 853 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); 854 } 855 856 void TargetLowering::DAGCombinerInfo:: 857 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 858 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 859 } 860 861 //===----------------------------------------------------------------------===// 862 // Helper Functions 863 //===----------------------------------------------------------------------===// 864 865 void DAGCombiner::deleteAndRecombine(SDNode *N) { 866 removeFromWorklist(N); 867 868 // If the operands of this node are only used by the node, they will now be 869 // dead. Make sure to re-visit them and recursively delete dead nodes. 870 for (const SDValue &Op : N->ops()) 871 // For an operand generating multiple values, one of the values may 872 // become dead allowing further simplification (e.g. split index 873 // arithmetic from an indexed load). 874 if (Op->hasOneUse() || Op->getNumValues() > 1) 875 AddToWorklist(Op.getNode()); 876 877 DAG.DeleteNode(N); 878 } 879 880 // APInts must be the same size for most operations, this helper 881 // function zero extends the shorter of the pair so that they match. 882 // We provide an Offset so that we can create bitwidths that won't overflow. 883 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 884 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 885 LHS = LHS.zextOrSelf(Bits); 886 RHS = RHS.zextOrSelf(Bits); 887 } 888 889 // Return true if this node is a setcc, or is a select_cc 890 // that selects between the target values used for true and false, making it 891 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 892 // the appropriate nodes based on the type of node we are checking. This 893 // simplifies life a bit for the callers. 894 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 895 SDValue &CC, bool MatchStrict) const { 896 if (N.getOpcode() == ISD::SETCC) { 897 LHS = N.getOperand(0); 898 RHS = N.getOperand(1); 899 CC = N.getOperand(2); 900 return true; 901 } 902 903 if (MatchStrict && 904 (N.getOpcode() == ISD::STRICT_FSETCC || 905 N.getOpcode() == ISD::STRICT_FSETCCS)) { 906 LHS = N.getOperand(1); 907 RHS = N.getOperand(2); 908 CC = N.getOperand(3); 909 return true; 910 } 911 912 if (N.getOpcode() != ISD::SELECT_CC || 913 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 914 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 915 return false; 916 917 if (TLI.getBooleanContents(N.getValueType()) == 918 TargetLowering::UndefinedBooleanContent) 919 return false; 920 921 LHS = N.getOperand(0); 922 RHS = N.getOperand(1); 923 CC = N.getOperand(4); 924 return true; 925 } 926 927 /// Return true if this is a SetCC-equivalent operation with only one use. 928 /// If this is true, it allows the users to invert the operation for free when 929 /// it is profitable to do so. 930 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 931 SDValue N0, N1, N2; 932 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 933 return true; 934 return false; 935 } 936 937 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { 938 if (!ScalarTy.isSimple()) 939 return false; 940 941 uint64_t MaskForTy = 0ULL; 942 switch (ScalarTy.getSimpleVT().SimpleTy) { 943 case MVT::i8: 944 MaskForTy = 0xFFULL; 945 break; 946 case MVT::i16: 947 MaskForTy = 0xFFFFULL; 948 break; 949 case MVT::i32: 950 MaskForTy = 0xFFFFFFFFULL; 951 break; 952 default: 953 return false; 954 break; 955 } 956 957 APInt Val; 958 if (ISD::isConstantSplatVector(N, Val)) 959 return Val.getLimitedValue() == MaskForTy; 960 961 return false; 962 } 963 964 // Determines if it is a constant integer or a splat/build vector of constant 965 // integers (and undefs). 966 // Do not permit build vector implicit truncation. 967 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 968 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 969 return !(Const->isOpaque() && NoOpaques); 970 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) 971 return false; 972 unsigned BitWidth = N.getScalarValueSizeInBits(); 973 for (const SDValue &Op : N->op_values()) { 974 if (Op.isUndef()) 975 continue; 976 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 977 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 978 (Const->isOpaque() && NoOpaques)) 979 return false; 980 } 981 return true; 982 } 983 984 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 985 // undef's. 986 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 987 if (V.getOpcode() != ISD::BUILD_VECTOR) 988 return false; 989 return isConstantOrConstantVector(V, NoOpaques) || 990 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 991 } 992 993 // Determine if this an indexed load with an opaque target constant index. 994 static bool canSplitIdx(LoadSDNode *LD) { 995 return MaySplitLoadIndex && 996 (LD->getOperand(2).getOpcode() != ISD::TargetConstant || 997 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); 998 } 999 1000 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, 1001 const SDLoc &DL, 1002 SDValue N0, 1003 SDValue N1) { 1004 // Currently this only tries to ensure we don't undo the GEP splits done by 1005 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, 1006 // we check if the following transformation would be problematic: 1007 // (load/store (add, (add, x, offset1), offset2)) -> 1008 // (load/store (add, x, offset1+offset2)). 1009 1010 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) 1011 return false; 1012 1013 if (N0.hasOneUse()) 1014 return false; 1015 1016 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 1017 auto *C2 = dyn_cast<ConstantSDNode>(N1); 1018 if (!C1 || !C2) 1019 return false; 1020 1021 const APInt &C1APIntVal = C1->getAPIntValue(); 1022 const APInt &C2APIntVal = C2->getAPIntValue(); 1023 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) 1024 return false; 1025 1026 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; 1027 if (CombinedValueIntVal.getBitWidth() > 64) 1028 return false; 1029 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); 1030 1031 for (SDNode *Node : N0->uses()) { 1032 auto LoadStore = dyn_cast<MemSDNode>(Node); 1033 if (LoadStore) { 1034 // Is x[offset2] already not a legal addressing mode? If so then 1035 // reassociating the constants breaks nothing (we test offset2 because 1036 // that's the one we hope to fold into the load or store). 1037 TargetLoweringBase::AddrMode AM; 1038 AM.HasBaseReg = true; 1039 AM.BaseOffs = C2APIntVal.getSExtValue(); 1040 EVT VT = LoadStore->getMemoryVT(); 1041 unsigned AS = LoadStore->getAddressSpace(); 1042 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); 1043 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1044 continue; 1045 1046 // Would x[offset1+offset2] still be a legal addressing mode? 1047 AM.BaseOffs = CombinedValue; 1048 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1049 return true; 1050 } 1051 } 1052 1053 return false; 1054 } 1055 1056 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 1057 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 1058 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 1059 SDValue N0, SDValue N1) { 1060 EVT VT = N0.getValueType(); 1061 1062 if (N0.getOpcode() != Opc) 1063 return SDValue(); 1064 1065 if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 1066 if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1067 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 1068 if (SDValue OpNode = 1069 DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1})) 1070 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 1071 return SDValue(); 1072 } 1073 if (N0.hasOneUse()) { 1074 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 1075 // iff (op x, c1) has one use 1076 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 1077 if (!OpNode.getNode()) 1078 return SDValue(); 1079 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 1080 } 1081 } 1082 return SDValue(); 1083 } 1084 1085 // Try to reassociate commutative binops. 1086 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 1087 SDValue N1, SDNodeFlags Flags) { 1088 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1089 1090 // Floating-point reassociation is not allowed without loose FP math. 1091 if (N0.getValueType().isFloatingPoint() || 1092 N1.getValueType().isFloatingPoint()) 1093 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1094 return SDValue(); 1095 1096 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1097 return Combined; 1098 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1099 return Combined; 1100 return SDValue(); 1101 } 1102 1103 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1104 bool AddTo) { 1105 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1106 ++NodesCombined; 1107 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1108 To[0].getNode()->dump(&DAG); 1109 dbgs() << " and " << NumTo - 1 << " other values\n"); 1110 for (unsigned i = 0, e = NumTo; i != e; ++i) 1111 assert((!To[i].getNode() || 1112 N->getValueType(i) == To[i].getValueType()) && 1113 "Cannot combine value to value of different type!"); 1114 1115 WorklistRemover DeadNodes(*this); 1116 DAG.ReplaceAllUsesWith(N, To); 1117 if (AddTo) { 1118 // Push the new nodes and any users onto the worklist 1119 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1120 if (To[i].getNode()) { 1121 AddToWorklist(To[i].getNode()); 1122 AddUsersToWorklist(To[i].getNode()); 1123 } 1124 } 1125 } 1126 1127 // Finally, if the node is now dead, remove it from the graph. The node 1128 // may not be dead if the replacement process recursively simplified to 1129 // something else needing this node. 1130 if (N->use_empty()) 1131 deleteAndRecombine(N); 1132 return SDValue(N, 0); 1133 } 1134 1135 void DAGCombiner:: 1136 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1137 // Replace the old value with the new one. 1138 ++NodesCombined; 1139 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1140 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1141 dbgs() << '\n'); 1142 1143 // Replace all uses. If any nodes become isomorphic to other nodes and 1144 // are deleted, make sure to remove them from our worklist. 1145 WorklistRemover DeadNodes(*this); 1146 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1147 1148 // Push the new node and any (possibly new) users onto the worklist. 1149 AddToWorklistWithUsers(TLO.New.getNode()); 1150 1151 // Finally, if the node is now dead, remove it from the graph. The node 1152 // may not be dead if the replacement process recursively simplified to 1153 // something else needing this node. 1154 if (TLO.Old.getNode()->use_empty()) 1155 deleteAndRecombine(TLO.Old.getNode()); 1156 } 1157 1158 /// Check the specified integer node value to see if it can be simplified or if 1159 /// things it uses can be simplified by bit propagation. If so, return true. 1160 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1161 const APInt &DemandedElts, 1162 bool AssumeSingleUse) { 1163 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1164 KnownBits Known; 1165 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, 1166 AssumeSingleUse)) 1167 return false; 1168 1169 // Revisit the node. 1170 AddToWorklist(Op.getNode()); 1171 1172 CommitTargetLoweringOpt(TLO); 1173 return true; 1174 } 1175 1176 /// Check the specified vector node value to see if it can be simplified or 1177 /// if things it uses can be simplified as it only uses some of the elements. 1178 /// If so, return true. 1179 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1180 const APInt &DemandedElts, 1181 bool AssumeSingleUse) { 1182 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1183 APInt KnownUndef, KnownZero; 1184 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1185 TLO, 0, AssumeSingleUse)) 1186 return false; 1187 1188 // Revisit the node. 1189 AddToWorklist(Op.getNode()); 1190 1191 CommitTargetLoweringOpt(TLO); 1192 return true; 1193 } 1194 1195 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1196 SDLoc DL(Load); 1197 EVT VT = Load->getValueType(0); 1198 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1199 1200 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1201 Trunc.getNode()->dump(&DAG); dbgs() << '\n'); 1202 WorklistRemover DeadNodes(*this); 1203 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1204 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1205 deleteAndRecombine(Load); 1206 AddToWorklist(Trunc.getNode()); 1207 } 1208 1209 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1210 Replace = false; 1211 SDLoc DL(Op); 1212 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1213 LoadSDNode *LD = cast<LoadSDNode>(Op); 1214 EVT MemVT = LD->getMemoryVT(); 1215 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1216 : LD->getExtensionType(); 1217 Replace = true; 1218 return DAG.getExtLoad(ExtType, DL, PVT, 1219 LD->getChain(), LD->getBasePtr(), 1220 MemVT, LD->getMemOperand()); 1221 } 1222 1223 unsigned Opc = Op.getOpcode(); 1224 switch (Opc) { 1225 default: break; 1226 case ISD::AssertSext: 1227 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1228 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1229 break; 1230 case ISD::AssertZext: 1231 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1232 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1233 break; 1234 case ISD::Constant: { 1235 unsigned ExtOpc = 1236 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1237 return DAG.getNode(ExtOpc, DL, PVT, Op); 1238 } 1239 } 1240 1241 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1242 return SDValue(); 1243 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1244 } 1245 1246 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1247 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1248 return SDValue(); 1249 EVT OldVT = Op.getValueType(); 1250 SDLoc DL(Op); 1251 bool Replace = false; 1252 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1253 if (!NewOp.getNode()) 1254 return SDValue(); 1255 AddToWorklist(NewOp.getNode()); 1256 1257 if (Replace) 1258 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1259 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1260 DAG.getValueType(OldVT)); 1261 } 1262 1263 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1264 EVT OldVT = Op.getValueType(); 1265 SDLoc DL(Op); 1266 bool Replace = false; 1267 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1268 if (!NewOp.getNode()) 1269 return SDValue(); 1270 AddToWorklist(NewOp.getNode()); 1271 1272 if (Replace) 1273 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1274 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1275 } 1276 1277 /// Promote the specified integer binary operation if the target indicates it is 1278 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1279 /// i32 since i16 instructions are longer. 1280 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1281 if (!LegalOperations) 1282 return SDValue(); 1283 1284 EVT VT = Op.getValueType(); 1285 if (VT.isVector() || !VT.isInteger()) 1286 return SDValue(); 1287 1288 // If operation type is 'undesirable', e.g. i16 on x86, consider 1289 // promoting it. 1290 unsigned Opc = Op.getOpcode(); 1291 if (TLI.isTypeDesirableForOp(Opc, VT)) 1292 return SDValue(); 1293 1294 EVT PVT = VT; 1295 // Consult target whether it is a good idea to promote this operation and 1296 // what's the right type to promote it to. 1297 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1298 assert(PVT != VT && "Don't know what type to promote to!"); 1299 1300 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1301 1302 bool Replace0 = false; 1303 SDValue N0 = Op.getOperand(0); 1304 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1305 1306 bool Replace1 = false; 1307 SDValue N1 = Op.getOperand(1); 1308 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1309 SDLoc DL(Op); 1310 1311 SDValue RV = 1312 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1313 1314 // We are always replacing N0/N1's use in N and only need additional 1315 // replacements if there are additional uses. 1316 // Note: We are checking uses of the *nodes* (SDNode) rather than values 1317 // (SDValue) here because the node may reference multiple values 1318 // (for example, the chain value of a load node). 1319 Replace0 &= !N0->hasOneUse(); 1320 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1321 1322 // Combine Op here so it is preserved past replacements. 1323 CombineTo(Op.getNode(), RV); 1324 1325 // If operands have a use ordering, make sure we deal with 1326 // predecessor first. 1327 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { 1328 std::swap(N0, N1); 1329 std::swap(NN0, NN1); 1330 } 1331 1332 if (Replace0) { 1333 AddToWorklist(NN0.getNode()); 1334 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1335 } 1336 if (Replace1) { 1337 AddToWorklist(NN1.getNode()); 1338 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1339 } 1340 return Op; 1341 } 1342 return SDValue(); 1343 } 1344 1345 /// Promote the specified integer shift operation if the target indicates it is 1346 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1347 /// i32 since i16 instructions are longer. 1348 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1349 if (!LegalOperations) 1350 return SDValue(); 1351 1352 EVT VT = Op.getValueType(); 1353 if (VT.isVector() || !VT.isInteger()) 1354 return SDValue(); 1355 1356 // If operation type is 'undesirable', e.g. i16 on x86, consider 1357 // promoting it. 1358 unsigned Opc = Op.getOpcode(); 1359 if (TLI.isTypeDesirableForOp(Opc, VT)) 1360 return SDValue(); 1361 1362 EVT PVT = VT; 1363 // Consult target whether it is a good idea to promote this operation and 1364 // what's the right type to promote it to. 1365 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1366 assert(PVT != VT && "Don't know what type to promote to!"); 1367 1368 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1369 1370 bool Replace = false; 1371 SDValue N0 = Op.getOperand(0); 1372 SDValue N1 = Op.getOperand(1); 1373 if (Opc == ISD::SRA) 1374 N0 = SExtPromoteOperand(N0, PVT); 1375 else if (Opc == ISD::SRL) 1376 N0 = ZExtPromoteOperand(N0, PVT); 1377 else 1378 N0 = PromoteOperand(N0, PVT, Replace); 1379 1380 if (!N0.getNode()) 1381 return SDValue(); 1382 1383 SDLoc DL(Op); 1384 SDValue RV = 1385 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1386 1387 if (Replace) 1388 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1389 1390 // Deal with Op being deleted. 1391 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1392 return RV; 1393 } 1394 return SDValue(); 1395 } 1396 1397 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1398 if (!LegalOperations) 1399 return SDValue(); 1400 1401 EVT VT = Op.getValueType(); 1402 if (VT.isVector() || !VT.isInteger()) 1403 return SDValue(); 1404 1405 // If operation type is 'undesirable', e.g. i16 on x86, consider 1406 // promoting it. 1407 unsigned Opc = Op.getOpcode(); 1408 if (TLI.isTypeDesirableForOp(Opc, VT)) 1409 return SDValue(); 1410 1411 EVT PVT = VT; 1412 // Consult target whether it is a good idea to promote this operation and 1413 // what's the right type to promote it to. 1414 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1415 assert(PVT != VT && "Don't know what type to promote to!"); 1416 // fold (aext (aext x)) -> (aext x) 1417 // fold (aext (zext x)) -> (zext x) 1418 // fold (aext (sext x)) -> (sext x) 1419 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1420 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1421 } 1422 return SDValue(); 1423 } 1424 1425 bool DAGCombiner::PromoteLoad(SDValue Op) { 1426 if (!LegalOperations) 1427 return false; 1428 1429 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1430 return false; 1431 1432 EVT VT = Op.getValueType(); 1433 if (VT.isVector() || !VT.isInteger()) 1434 return false; 1435 1436 // If operation type is 'undesirable', e.g. i16 on x86, consider 1437 // promoting it. 1438 unsigned Opc = Op.getOpcode(); 1439 if (TLI.isTypeDesirableForOp(Opc, VT)) 1440 return false; 1441 1442 EVT PVT = VT; 1443 // Consult target whether it is a good idea to promote this operation and 1444 // what's the right type to promote it to. 1445 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1446 assert(PVT != VT && "Don't know what type to promote to!"); 1447 1448 SDLoc DL(Op); 1449 SDNode *N = Op.getNode(); 1450 LoadSDNode *LD = cast<LoadSDNode>(N); 1451 EVT MemVT = LD->getMemoryVT(); 1452 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1453 : LD->getExtensionType(); 1454 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1455 LD->getChain(), LD->getBasePtr(), 1456 MemVT, LD->getMemOperand()); 1457 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1458 1459 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1460 Result.getNode()->dump(&DAG); dbgs() << '\n'); 1461 WorklistRemover DeadNodes(*this); 1462 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1463 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1464 deleteAndRecombine(N); 1465 AddToWorklist(Result.getNode()); 1466 return true; 1467 } 1468 return false; 1469 } 1470 1471 /// Recursively delete a node which has no uses and any operands for 1472 /// which it is the only use. 1473 /// 1474 /// Note that this both deletes the nodes and removes them from the worklist. 1475 /// It also adds any nodes who have had a user deleted to the worklist as they 1476 /// may now have only one use and subject to other combines. 1477 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1478 if (!N->use_empty()) 1479 return false; 1480 1481 SmallSetVector<SDNode *, 16> Nodes; 1482 Nodes.insert(N); 1483 do { 1484 N = Nodes.pop_back_val(); 1485 if (!N) 1486 continue; 1487 1488 if (N->use_empty()) { 1489 for (const SDValue &ChildN : N->op_values()) 1490 Nodes.insert(ChildN.getNode()); 1491 1492 removeFromWorklist(N); 1493 DAG.DeleteNode(N); 1494 } else { 1495 AddToWorklist(N); 1496 } 1497 } while (!Nodes.empty()); 1498 return true; 1499 } 1500 1501 //===----------------------------------------------------------------------===// 1502 // Main DAG Combiner implementation 1503 //===----------------------------------------------------------------------===// 1504 1505 void DAGCombiner::Run(CombineLevel AtLevel) { 1506 // set the instance variables, so that the various visit routines may use it. 1507 Level = AtLevel; 1508 LegalDAG = Level >= AfterLegalizeDAG; 1509 LegalOperations = Level >= AfterLegalizeVectorOps; 1510 LegalTypes = Level >= AfterLegalizeTypes; 1511 1512 WorklistInserter AddNodes(*this); 1513 1514 // Add all the dag nodes to the worklist. 1515 for (SDNode &Node : DAG.allnodes()) 1516 AddToWorklist(&Node); 1517 1518 // Create a dummy node (which is not added to allnodes), that adds a reference 1519 // to the root node, preventing it from being deleted, and tracking any 1520 // changes of the root. 1521 HandleSDNode Dummy(DAG.getRoot()); 1522 1523 // While we have a valid worklist entry node, try to combine it. 1524 while (SDNode *N = getNextWorklistEntry()) { 1525 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1526 // N is deleted from the DAG, since they too may now be dead or may have a 1527 // reduced number of uses, allowing other xforms. 1528 if (recursivelyDeleteUnusedNodes(N)) 1529 continue; 1530 1531 WorklistRemover DeadNodes(*this); 1532 1533 // If this combine is running after legalizing the DAG, re-legalize any 1534 // nodes pulled off the worklist. 1535 if (LegalDAG) { 1536 SmallSetVector<SDNode *, 16> UpdatedNodes; 1537 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1538 1539 for (SDNode *LN : UpdatedNodes) 1540 AddToWorklistWithUsers(LN); 1541 1542 if (!NIsValid) 1543 continue; 1544 } 1545 1546 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1547 1548 // Add any operands of the new node which have not yet been combined to the 1549 // worklist as well. Because the worklist uniques things already, this 1550 // won't repeatedly process the same operand. 1551 CombinedNodes.insert(N); 1552 for (const SDValue &ChildN : N->op_values()) 1553 if (!CombinedNodes.count(ChildN.getNode())) 1554 AddToWorklist(ChildN.getNode()); 1555 1556 SDValue RV = combine(N); 1557 1558 if (!RV.getNode()) 1559 continue; 1560 1561 ++NodesCombined; 1562 1563 // If we get back the same node we passed in, rather than a new node or 1564 // zero, we know that the node must have defined multiple values and 1565 // CombineTo was used. Since CombineTo takes care of the worklist 1566 // mechanics for us, we have no work to do in this case. 1567 if (RV.getNode() == N) 1568 continue; 1569 1570 assert(N->getOpcode() != ISD::DELETED_NODE && 1571 RV.getOpcode() != ISD::DELETED_NODE && 1572 "Node was deleted but visit returned new node!"); 1573 1574 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); 1575 1576 if (N->getNumValues() == RV.getNode()->getNumValues()) 1577 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1578 else { 1579 assert(N->getValueType(0) == RV.getValueType() && 1580 N->getNumValues() == 1 && "Type mismatch"); 1581 DAG.ReplaceAllUsesWith(N, &RV); 1582 } 1583 1584 // Push the new node and any users onto the worklist. Omit this if the 1585 // new node is the EntryToken (e.g. if a store managed to get optimized 1586 // out), because re-visiting the EntryToken and its users will not uncover 1587 // any additional opportunities, but there may be a large number of such 1588 // users, potentially causing compile time explosion. 1589 if (RV.getOpcode() != ISD::EntryToken) { 1590 AddToWorklist(RV.getNode()); 1591 AddUsersToWorklist(RV.getNode()); 1592 } 1593 1594 // Finally, if the node is now dead, remove it from the graph. The node 1595 // may not be dead if the replacement process recursively simplified to 1596 // something else needing this node. This will also take care of adding any 1597 // operands which have lost a user to the worklist. 1598 recursivelyDeleteUnusedNodes(N); 1599 } 1600 1601 // If the root changed (e.g. it was a dead load, update the root). 1602 DAG.setRoot(Dummy.getValue()); 1603 DAG.RemoveDeadNodes(); 1604 } 1605 1606 SDValue DAGCombiner::visit(SDNode *N) { 1607 switch (N->getOpcode()) { 1608 default: break; 1609 case ISD::TokenFactor: return visitTokenFactor(N); 1610 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1611 case ISD::ADD: return visitADD(N); 1612 case ISD::SUB: return visitSUB(N); 1613 case ISD::SADDSAT: 1614 case ISD::UADDSAT: return visitADDSAT(N); 1615 case ISD::SSUBSAT: 1616 case ISD::USUBSAT: return visitSUBSAT(N); 1617 case ISD::ADDC: return visitADDC(N); 1618 case ISD::SADDO: 1619 case ISD::UADDO: return visitADDO(N); 1620 case ISD::SUBC: return visitSUBC(N); 1621 case ISD::SSUBO: 1622 case ISD::USUBO: return visitSUBO(N); 1623 case ISD::ADDE: return visitADDE(N); 1624 case ISD::ADDCARRY: return visitADDCARRY(N); 1625 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); 1626 case ISD::SUBE: return visitSUBE(N); 1627 case ISD::SUBCARRY: return visitSUBCARRY(N); 1628 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); 1629 case ISD::SMULFIX: 1630 case ISD::SMULFIXSAT: 1631 case ISD::UMULFIX: 1632 case ISD::UMULFIXSAT: return visitMULFIX(N); 1633 case ISD::MUL: return visitMUL(N); 1634 case ISD::SDIV: return visitSDIV(N); 1635 case ISD::UDIV: return visitUDIV(N); 1636 case ISD::SREM: 1637 case ISD::UREM: return visitREM(N); 1638 case ISD::MULHU: return visitMULHU(N); 1639 case ISD::MULHS: return visitMULHS(N); 1640 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1641 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1642 case ISD::SMULO: 1643 case ISD::UMULO: return visitMULO(N); 1644 case ISD::SMIN: 1645 case ISD::SMAX: 1646 case ISD::UMIN: 1647 case ISD::UMAX: return visitIMINMAX(N); 1648 case ISD::AND: return visitAND(N); 1649 case ISD::OR: return visitOR(N); 1650 case ISD::XOR: return visitXOR(N); 1651 case ISD::SHL: return visitSHL(N); 1652 case ISD::SRA: return visitSRA(N); 1653 case ISD::SRL: return visitSRL(N); 1654 case ISD::ROTR: 1655 case ISD::ROTL: return visitRotate(N); 1656 case ISD::FSHL: 1657 case ISD::FSHR: return visitFunnelShift(N); 1658 case ISD::ABS: return visitABS(N); 1659 case ISD::BSWAP: return visitBSWAP(N); 1660 case ISD::BITREVERSE: return visitBITREVERSE(N); 1661 case ISD::CTLZ: return visitCTLZ(N); 1662 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1663 case ISD::CTTZ: return visitCTTZ(N); 1664 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1665 case ISD::CTPOP: return visitCTPOP(N); 1666 case ISD::SELECT: return visitSELECT(N); 1667 case ISD::VSELECT: return visitVSELECT(N); 1668 case ISD::SELECT_CC: return visitSELECT_CC(N); 1669 case ISD::SETCC: return visitSETCC(N); 1670 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1671 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1672 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1673 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1674 case ISD::AssertSext: 1675 case ISD::AssertZext: return visitAssertExt(N); 1676 case ISD::AssertAlign: return visitAssertAlign(N); 1677 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1678 case ISD::SIGN_EXTEND_VECTOR_INREG: 1679 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N); 1680 case ISD::TRUNCATE: return visitTRUNCATE(N); 1681 case ISD::BITCAST: return visitBITCAST(N); 1682 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1683 case ISD::FADD: return visitFADD(N); 1684 case ISD::STRICT_FADD: return visitSTRICT_FADD(N); 1685 case ISD::FSUB: return visitFSUB(N); 1686 case ISD::FMUL: return visitFMUL(N); 1687 case ISD::FMA: return visitFMA(N); 1688 case ISD::FDIV: return visitFDIV(N); 1689 case ISD::FREM: return visitFREM(N); 1690 case ISD::FSQRT: return visitFSQRT(N); 1691 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1692 case ISD::FPOW: return visitFPOW(N); 1693 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1694 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1695 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1696 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1697 case ISD::FP_ROUND: return visitFP_ROUND(N); 1698 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1699 case ISD::FNEG: return visitFNEG(N); 1700 case ISD::FABS: return visitFABS(N); 1701 case ISD::FFLOOR: return visitFFLOOR(N); 1702 case ISD::FMINNUM: return visitFMINNUM(N); 1703 case ISD::FMAXNUM: return visitFMAXNUM(N); 1704 case ISD::FMINIMUM: return visitFMINIMUM(N); 1705 case ISD::FMAXIMUM: return visitFMAXIMUM(N); 1706 case ISD::FCEIL: return visitFCEIL(N); 1707 case ISD::FTRUNC: return visitFTRUNC(N); 1708 case ISD::BRCOND: return visitBRCOND(N); 1709 case ISD::BR_CC: return visitBR_CC(N); 1710 case ISD::LOAD: return visitLOAD(N); 1711 case ISD::STORE: return visitSTORE(N); 1712 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1713 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1714 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1715 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1716 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1717 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1718 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1719 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1720 case ISD::MGATHER: return visitMGATHER(N); 1721 case ISD::MLOAD: return visitMLOAD(N); 1722 case ISD::MSCATTER: return visitMSCATTER(N); 1723 case ISD::MSTORE: return visitMSTORE(N); 1724 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1725 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1726 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1727 case ISD::FREEZE: return visitFREEZE(N); 1728 case ISD::VECREDUCE_FADD: 1729 case ISD::VECREDUCE_FMUL: 1730 case ISD::VECREDUCE_ADD: 1731 case ISD::VECREDUCE_MUL: 1732 case ISD::VECREDUCE_AND: 1733 case ISD::VECREDUCE_OR: 1734 case ISD::VECREDUCE_XOR: 1735 case ISD::VECREDUCE_SMAX: 1736 case ISD::VECREDUCE_SMIN: 1737 case ISD::VECREDUCE_UMAX: 1738 case ISD::VECREDUCE_UMIN: 1739 case ISD::VECREDUCE_FMAX: 1740 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1741 } 1742 return SDValue(); 1743 } 1744 1745 SDValue DAGCombiner::combine(SDNode *N) { 1746 SDValue RV; 1747 if (!DisableGenericCombines) 1748 RV = visit(N); 1749 1750 // If nothing happened, try a target-specific DAG combine. 1751 if (!RV.getNode()) { 1752 assert(N->getOpcode() != ISD::DELETED_NODE && 1753 "Node was deleted but visit returned NULL!"); 1754 1755 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1756 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1757 1758 // Expose the DAG combiner to the target combiner impls. 1759 TargetLowering::DAGCombinerInfo 1760 DagCombineInfo(DAG, Level, false, this); 1761 1762 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1763 } 1764 } 1765 1766 // If nothing happened still, try promoting the operation. 1767 if (!RV.getNode()) { 1768 switch (N->getOpcode()) { 1769 default: break; 1770 case ISD::ADD: 1771 case ISD::SUB: 1772 case ISD::MUL: 1773 case ISD::AND: 1774 case ISD::OR: 1775 case ISD::XOR: 1776 RV = PromoteIntBinOp(SDValue(N, 0)); 1777 break; 1778 case ISD::SHL: 1779 case ISD::SRA: 1780 case ISD::SRL: 1781 RV = PromoteIntShiftOp(SDValue(N, 0)); 1782 break; 1783 case ISD::SIGN_EXTEND: 1784 case ISD::ZERO_EXTEND: 1785 case ISD::ANY_EXTEND: 1786 RV = PromoteExtend(SDValue(N, 0)); 1787 break; 1788 case ISD::LOAD: 1789 if (PromoteLoad(SDValue(N, 0))) 1790 RV = SDValue(N, 0); 1791 break; 1792 } 1793 } 1794 1795 // If N is a commutative binary node, try to eliminate it if the commuted 1796 // version is already present in the DAG. 1797 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1798 N->getNumValues() == 1) { 1799 SDValue N0 = N->getOperand(0); 1800 SDValue N1 = N->getOperand(1); 1801 1802 // Constant operands are canonicalized to RHS. 1803 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1804 SDValue Ops[] = {N1, N0}; 1805 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1806 N->getFlags()); 1807 if (CSENode) 1808 return SDValue(CSENode, 0); 1809 } 1810 } 1811 1812 return RV; 1813 } 1814 1815 /// Given a node, return its input chain if it has one, otherwise return a null 1816 /// sd operand. 1817 static SDValue getInputChainForNode(SDNode *N) { 1818 if (unsigned NumOps = N->getNumOperands()) { 1819 if (N->getOperand(0).getValueType() == MVT::Other) 1820 return N->getOperand(0); 1821 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1822 return N->getOperand(NumOps-1); 1823 for (unsigned i = 1; i < NumOps-1; ++i) 1824 if (N->getOperand(i).getValueType() == MVT::Other) 1825 return N->getOperand(i); 1826 } 1827 return SDValue(); 1828 } 1829 1830 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1831 // If N has two operands, where one has an input chain equal to the other, 1832 // the 'other' chain is redundant. 1833 if (N->getNumOperands() == 2) { 1834 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1835 return N->getOperand(0); 1836 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1837 return N->getOperand(1); 1838 } 1839 1840 // Don't simplify token factors if optnone. 1841 if (OptLevel == CodeGenOpt::None) 1842 return SDValue(); 1843 1844 // Don't simplify the token factor if the node itself has too many operands. 1845 if (N->getNumOperands() > TokenFactorInlineLimit) 1846 return SDValue(); 1847 1848 // If the sole user is a token factor, we should make sure we have a 1849 // chance to merge them together. This prevents TF chains from inhibiting 1850 // optimizations. 1851 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1852 AddToWorklist(*(N->use_begin())); 1853 1854 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1855 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1856 SmallPtrSet<SDNode*, 16> SeenOps; 1857 bool Changed = false; // If we should replace this token factor. 1858 1859 // Start out with this token factor. 1860 TFs.push_back(N); 1861 1862 // Iterate through token factors. The TFs grows when new token factors are 1863 // encountered. 1864 for (unsigned i = 0; i < TFs.size(); ++i) { 1865 // Limit number of nodes to inline, to avoid quadratic compile times. 1866 // We have to add the outstanding Token Factors to Ops, otherwise we might 1867 // drop Ops from the resulting Token Factors. 1868 if (Ops.size() > TokenFactorInlineLimit) { 1869 for (unsigned j = i; j < TFs.size(); j++) 1870 Ops.emplace_back(TFs[j], 0); 1871 // Drop unprocessed Token Factors from TFs, so we do not add them to the 1872 // combiner worklist later. 1873 TFs.resize(i); 1874 break; 1875 } 1876 1877 SDNode *TF = TFs[i]; 1878 // Check each of the operands. 1879 for (const SDValue &Op : TF->op_values()) { 1880 switch (Op.getOpcode()) { 1881 case ISD::EntryToken: 1882 // Entry tokens don't need to be added to the list. They are 1883 // redundant. 1884 Changed = true; 1885 break; 1886 1887 case ISD::TokenFactor: 1888 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1889 // Queue up for processing. 1890 TFs.push_back(Op.getNode()); 1891 Changed = true; 1892 break; 1893 } 1894 LLVM_FALLTHROUGH; 1895 1896 default: 1897 // Only add if it isn't already in the list. 1898 if (SeenOps.insert(Op.getNode()).second) 1899 Ops.push_back(Op); 1900 else 1901 Changed = true; 1902 break; 1903 } 1904 } 1905 } 1906 1907 // Re-visit inlined Token Factors, to clean them up in case they have been 1908 // removed. Skip the first Token Factor, as this is the current node. 1909 for (unsigned i = 1, e = TFs.size(); i < e; i++) 1910 AddToWorklist(TFs[i]); 1911 1912 // Remove Nodes that are chained to another node in the list. Do so 1913 // by walking up chains breath-first stopping when we've seen 1914 // another operand. In general we must climb to the EntryNode, but we can exit 1915 // early if we find all remaining work is associated with just one operand as 1916 // no further pruning is possible. 1917 1918 // List of nodes to search through and original Ops from which they originate. 1919 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1920 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1921 SmallPtrSet<SDNode *, 16> SeenChains; 1922 bool DidPruneOps = false; 1923 1924 unsigned NumLeftToConsider = 0; 1925 for (const SDValue &Op : Ops) { 1926 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1927 OpWorkCount.push_back(1); 1928 } 1929 1930 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1931 // If this is an Op, we can remove the op from the list. Remark any 1932 // search associated with it as from the current OpNumber. 1933 if (SeenOps.contains(Op)) { 1934 Changed = true; 1935 DidPruneOps = true; 1936 unsigned OrigOpNumber = 0; 1937 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1938 OrigOpNumber++; 1939 assert((OrigOpNumber != Ops.size()) && 1940 "expected to find TokenFactor Operand"); 1941 // Re-mark worklist from OrigOpNumber to OpNumber 1942 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1943 if (Worklist[i].second == OrigOpNumber) { 1944 Worklist[i].second = OpNumber; 1945 } 1946 } 1947 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1948 OpWorkCount[OrigOpNumber] = 0; 1949 NumLeftToConsider--; 1950 } 1951 // Add if it's a new chain 1952 if (SeenChains.insert(Op).second) { 1953 OpWorkCount[OpNumber]++; 1954 Worklist.push_back(std::make_pair(Op, OpNumber)); 1955 } 1956 }; 1957 1958 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1959 // We need at least be consider at least 2 Ops to prune. 1960 if (NumLeftToConsider <= 1) 1961 break; 1962 auto CurNode = Worklist[i].first; 1963 auto CurOpNumber = Worklist[i].second; 1964 assert((OpWorkCount[CurOpNumber] > 0) && 1965 "Node should not appear in worklist"); 1966 switch (CurNode->getOpcode()) { 1967 case ISD::EntryToken: 1968 // Hitting EntryToken is the only way for the search to terminate without 1969 // hitting 1970 // another operand's search. Prevent us from marking this operand 1971 // considered. 1972 NumLeftToConsider++; 1973 break; 1974 case ISD::TokenFactor: 1975 for (const SDValue &Op : CurNode->op_values()) 1976 AddToWorklist(i, Op.getNode(), CurOpNumber); 1977 break; 1978 case ISD::LIFETIME_START: 1979 case ISD::LIFETIME_END: 1980 case ISD::CopyFromReg: 1981 case ISD::CopyToReg: 1982 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 1983 break; 1984 default: 1985 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 1986 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 1987 break; 1988 } 1989 OpWorkCount[CurOpNumber]--; 1990 if (OpWorkCount[CurOpNumber] == 0) 1991 NumLeftToConsider--; 1992 } 1993 1994 // If we've changed things around then replace token factor. 1995 if (Changed) { 1996 SDValue Result; 1997 if (Ops.empty()) { 1998 // The entry token is the only possible outcome. 1999 Result = DAG.getEntryNode(); 2000 } else { 2001 if (DidPruneOps) { 2002 SmallVector<SDValue, 8> PrunedOps; 2003 // 2004 for (const SDValue &Op : Ops) { 2005 if (SeenChains.count(Op.getNode()) == 0) 2006 PrunedOps.push_back(Op); 2007 } 2008 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 2009 } else { 2010 Result = DAG.getTokenFactor(SDLoc(N), Ops); 2011 } 2012 } 2013 return Result; 2014 } 2015 return SDValue(); 2016 } 2017 2018 /// MERGE_VALUES can always be eliminated. 2019 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 2020 WorklistRemover DeadNodes(*this); 2021 // Replacing results may cause a different MERGE_VALUES to suddenly 2022 // be CSE'd with N, and carry its uses with it. Iterate until no 2023 // uses remain, to ensure that the node can be safely deleted. 2024 // First add the users of this node to the work list so that they 2025 // can be tried again once they have new operands. 2026 AddUsersToWorklist(N); 2027 do { 2028 // Do as a single replacement to avoid rewalking use lists. 2029 SmallVector<SDValue, 8> Ops; 2030 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 2031 Ops.push_back(N->getOperand(i)); 2032 DAG.ReplaceAllUsesWith(N, Ops.data()); 2033 } while (!N->use_empty()); 2034 deleteAndRecombine(N); 2035 return SDValue(N, 0); // Return N so it doesn't get rechecked! 2036 } 2037 2038 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 2039 /// ConstantSDNode pointer else nullptr. 2040 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 2041 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 2042 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 2043 } 2044 2045 /// Return true if 'Use' is a load or a store that uses N as its base pointer 2046 /// and that N may be folded in the load / store addressing mode. 2047 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, 2048 const TargetLowering &TLI) { 2049 EVT VT; 2050 unsigned AS; 2051 2052 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 2053 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2054 return false; 2055 VT = LD->getMemoryVT(); 2056 AS = LD->getAddressSpace(); 2057 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 2058 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2059 return false; 2060 VT = ST->getMemoryVT(); 2061 AS = ST->getAddressSpace(); 2062 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { 2063 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2064 return false; 2065 VT = LD->getMemoryVT(); 2066 AS = LD->getAddressSpace(); 2067 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { 2068 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2069 return false; 2070 VT = ST->getMemoryVT(); 2071 AS = ST->getAddressSpace(); 2072 } else 2073 return false; 2074 2075 TargetLowering::AddrMode AM; 2076 if (N->getOpcode() == ISD::ADD) { 2077 AM.HasBaseReg = true; 2078 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2079 if (Offset) 2080 // [reg +/- imm] 2081 AM.BaseOffs = Offset->getSExtValue(); 2082 else 2083 // [reg +/- reg] 2084 AM.Scale = 1; 2085 } else if (N->getOpcode() == ISD::SUB) { 2086 AM.HasBaseReg = true; 2087 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2088 if (Offset) 2089 // [reg +/- imm] 2090 AM.BaseOffs = -Offset->getSExtValue(); 2091 else 2092 // [reg +/- reg] 2093 AM.Scale = 1; 2094 } else 2095 return false; 2096 2097 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 2098 VT.getTypeForEVT(*DAG.getContext()), AS); 2099 } 2100 2101 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 2102 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 2103 "Unexpected binary operator"); 2104 2105 // Don't do this unless the old select is going away. We want to eliminate the 2106 // binary operator, not replace a binop with a select. 2107 // TODO: Handle ISD::SELECT_CC. 2108 unsigned SelOpNo = 0; 2109 SDValue Sel = BO->getOperand(0); 2110 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 2111 SelOpNo = 1; 2112 Sel = BO->getOperand(1); 2113 } 2114 2115 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 2116 return SDValue(); 2117 2118 SDValue CT = Sel.getOperand(1); 2119 if (!isConstantOrConstantVector(CT, true) && 2120 !DAG.isConstantFPBuildVectorOrConstantFP(CT)) 2121 return SDValue(); 2122 2123 SDValue CF = Sel.getOperand(2); 2124 if (!isConstantOrConstantVector(CF, true) && 2125 !DAG.isConstantFPBuildVectorOrConstantFP(CF)) 2126 return SDValue(); 2127 2128 // Bail out if any constants are opaque because we can't constant fold those. 2129 // The exception is "and" and "or" with either 0 or -1 in which case we can 2130 // propagate non constant operands into select. I.e.: 2131 // and (select Cond, 0, -1), X --> select Cond, 0, X 2132 // or X, (select Cond, -1, 0) --> select Cond, -1, X 2133 auto BinOpcode = BO->getOpcode(); 2134 bool CanFoldNonConst = 2135 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 2136 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 2137 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 2138 2139 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 2140 if (!CanFoldNonConst && 2141 !isConstantOrConstantVector(CBO, true) && 2142 !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) 2143 return SDValue(); 2144 2145 EVT VT = BO->getValueType(0); 2146 2147 // We have a select-of-constants followed by a binary operator with a 2148 // constant. Eliminate the binop by pulling the constant math into the select. 2149 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2150 SDLoc DL(Sel); 2151 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2152 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2153 if (!CanFoldNonConst && !NewCT.isUndef() && 2154 !isConstantOrConstantVector(NewCT, true) && 2155 !DAG.isConstantFPBuildVectorOrConstantFP(NewCT)) 2156 return SDValue(); 2157 2158 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2159 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2160 if (!CanFoldNonConst && !NewCF.isUndef() && 2161 !isConstantOrConstantVector(NewCF, true) && 2162 !DAG.isConstantFPBuildVectorOrConstantFP(NewCF)) 2163 return SDValue(); 2164 2165 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2166 SelectOp->setFlags(BO->getFlags()); 2167 return SelectOp; 2168 } 2169 2170 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2171 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2172 "Expecting add or sub"); 2173 2174 // Match a constant operand and a zext operand for the math instruction: 2175 // add Z, C 2176 // sub C, Z 2177 bool IsAdd = N->getOpcode() == ISD::ADD; 2178 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2179 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2180 auto *CN = dyn_cast<ConstantSDNode>(C); 2181 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2182 return SDValue(); 2183 2184 // Match the zext operand as a setcc of a boolean. 2185 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2186 Z.getOperand(0).getValueType() != MVT::i1) 2187 return SDValue(); 2188 2189 // Match the compare as: setcc (X & 1), 0, eq. 2190 SDValue SetCC = Z.getOperand(0); 2191 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2192 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2193 SetCC.getOperand(0).getOpcode() != ISD::AND || 2194 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2195 return SDValue(); 2196 2197 // We are adding/subtracting a constant and an inverted low bit. Turn that 2198 // into a subtract/add of the low bit with incremented/decremented constant: 2199 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2200 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2201 EVT VT = C.getValueType(); 2202 SDLoc DL(N); 2203 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2204 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2205 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2206 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2207 } 2208 2209 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2210 /// a shift and add with a different constant. 2211 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2212 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2213 "Expecting add or sub"); 2214 2215 // We need a constant operand for the add/sub, and the other operand is a 2216 // logical shift right: add (srl), C or sub C, (srl). 2217 bool IsAdd = N->getOpcode() == ISD::ADD; 2218 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2219 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2220 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || 2221 ShiftOp.getOpcode() != ISD::SRL) 2222 return SDValue(); 2223 2224 // The shift must be of a 'not' value. 2225 SDValue Not = ShiftOp.getOperand(0); 2226 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2227 return SDValue(); 2228 2229 // The shift must be moving the sign bit to the least-significant-bit. 2230 EVT VT = ShiftOp.getValueType(); 2231 SDValue ShAmt = ShiftOp.getOperand(1); 2232 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2233 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) 2234 return SDValue(); 2235 2236 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2237 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2238 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2239 SDLoc DL(N); 2240 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2241 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2242 if (SDValue NewC = 2243 DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, 2244 {ConstantOp, DAG.getConstant(1, DL, VT)})) 2245 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); 2246 return SDValue(); 2247 } 2248 2249 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2250 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2251 /// are no common bits set in the operands). 2252 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2253 SDValue N0 = N->getOperand(0); 2254 SDValue N1 = N->getOperand(1); 2255 EVT VT = N0.getValueType(); 2256 SDLoc DL(N); 2257 2258 // fold vector ops 2259 if (VT.isVector()) { 2260 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2261 return FoldedVOp; 2262 2263 // fold (add x, 0) -> x, vector edition 2264 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2265 return N0; 2266 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 2267 return N1; 2268 } 2269 2270 // fold (add x, undef) -> undef 2271 if (N0.isUndef()) 2272 return N0; 2273 2274 if (N1.isUndef()) 2275 return N1; 2276 2277 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2278 // canonicalize constant to RHS 2279 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2280 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2281 // fold (add c1, c2) -> c1+c2 2282 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}); 2283 } 2284 2285 // fold (add x, 0) -> x 2286 if (isNullConstant(N1)) 2287 return N0; 2288 2289 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2290 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2291 if (N0.getOpcode() == ISD::SUB && 2292 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2293 SDValue Sub = 2294 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); 2295 assert(Sub && "Constant folding failed"); 2296 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2297 } 2298 2299 // fold ((c1-A)+c2) -> (c1+c2)-A 2300 if (N0.getOpcode() == ISD::SUB && 2301 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2302 SDValue Add = 2303 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); 2304 assert(Add && "Constant folding failed"); 2305 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2306 } 2307 2308 // add (sext i1 X), 1 -> zext (not i1 X) 2309 // We don't transform this pattern: 2310 // add (zext i1 X), -1 -> sext (not i1 X) 2311 // because most (?) targets generate better code for the zext form. 2312 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2313 isOneOrOneSplat(N1)) { 2314 SDValue X = N0.getOperand(0); 2315 if ((!LegalOperations || 2316 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2317 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2318 X.getScalarValueSizeInBits() == 1) { 2319 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2320 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2321 } 2322 } 2323 2324 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is 2325 // equivalent to (add x, c0). 2326 if (N0.getOpcode() == ISD::OR && 2327 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2328 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2329 if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, 2330 {N1, N0.getOperand(1)})) 2331 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2332 } 2333 } 2334 2335 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2336 return NewSel; 2337 2338 // reassociate add 2339 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { 2340 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2341 return RADD; 2342 2343 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is 2344 // equivalent to (add x, c). 2345 auto ReassociateAddOr = [&](SDValue N0, SDValue N1) { 2346 if (N0.getOpcode() == ISD::OR && N0.hasOneUse() && 2347 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2348 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2349 return DAG.getNode(ISD::ADD, DL, VT, 2350 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), 2351 N0.getOperand(1)); 2352 } 2353 return SDValue(); 2354 }; 2355 if (SDValue Add = ReassociateAddOr(N0, N1)) 2356 return Add; 2357 if (SDValue Add = ReassociateAddOr(N1, N0)) 2358 return Add; 2359 } 2360 // fold ((0-A) + B) -> B-A 2361 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2362 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2363 2364 // fold (A + (0-B)) -> A-B 2365 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2366 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2367 2368 // fold (A+(B-A)) -> B 2369 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2370 return N1.getOperand(0); 2371 2372 // fold ((B-A)+A) -> B 2373 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2374 return N0.getOperand(0); 2375 2376 // fold ((A-B)+(C-A)) -> (C-B) 2377 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2378 N0.getOperand(0) == N1.getOperand(1)) 2379 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2380 N0.getOperand(1)); 2381 2382 // fold ((A-B)+(B-C)) -> (A-C) 2383 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2384 N0.getOperand(1) == N1.getOperand(0)) 2385 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2386 N1.getOperand(1)); 2387 2388 // fold (A+(B-(A+C))) to (B-C) 2389 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2390 N0 == N1.getOperand(1).getOperand(0)) 2391 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2392 N1.getOperand(1).getOperand(1)); 2393 2394 // fold (A+(B-(C+A))) to (B-C) 2395 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2396 N0 == N1.getOperand(1).getOperand(1)) 2397 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2398 N1.getOperand(1).getOperand(0)); 2399 2400 // fold (A+((B-A)+or-C)) to (B+or-C) 2401 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2402 N1.getOperand(0).getOpcode() == ISD::SUB && 2403 N0 == N1.getOperand(0).getOperand(1)) 2404 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2405 N1.getOperand(1)); 2406 2407 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2408 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2409 SDValue N00 = N0.getOperand(0); 2410 SDValue N01 = N0.getOperand(1); 2411 SDValue N10 = N1.getOperand(0); 2412 SDValue N11 = N1.getOperand(1); 2413 2414 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2415 return DAG.getNode(ISD::SUB, DL, VT, 2416 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2417 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2418 } 2419 2420 // fold (add (umax X, C), -C) --> (usubsat X, C) 2421 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2422 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2423 return (!Max && !Op) || 2424 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2425 }; 2426 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2427 /*AllowUndefs*/ true)) 2428 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2429 N0.getOperand(1)); 2430 } 2431 2432 if (SimplifyDemandedBits(SDValue(N, 0))) 2433 return SDValue(N, 0); 2434 2435 if (isOneOrOneSplat(N1)) { 2436 // fold (add (xor a, -1), 1) -> (sub 0, a) 2437 if (isBitwiseNot(N0)) 2438 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2439 N0.getOperand(0)); 2440 2441 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2442 if (N0.getOpcode() == ISD::ADD) { 2443 SDValue A, Xor; 2444 2445 if (isBitwiseNot(N0.getOperand(0))) { 2446 A = N0.getOperand(1); 2447 Xor = N0.getOperand(0); 2448 } else if (isBitwiseNot(N0.getOperand(1))) { 2449 A = N0.getOperand(0); 2450 Xor = N0.getOperand(1); 2451 } 2452 2453 if (Xor) 2454 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2455 } 2456 2457 // Look for: 2458 // add (add x, y), 1 2459 // And if the target does not like this form then turn into: 2460 // sub y, (xor x, -1) 2461 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2462 N0.getOpcode() == ISD::ADD) { 2463 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2464 DAG.getAllOnesConstant(DL, VT)); 2465 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); 2466 } 2467 } 2468 2469 // (x - y) + -1 -> add (xor y, -1), x 2470 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2471 isAllOnesOrAllOnesSplat(N1)) { 2472 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2473 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2474 } 2475 2476 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2477 return Combined; 2478 2479 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2480 return Combined; 2481 2482 return SDValue(); 2483 } 2484 2485 SDValue DAGCombiner::visitADD(SDNode *N) { 2486 SDValue N0 = N->getOperand(0); 2487 SDValue N1 = N->getOperand(1); 2488 EVT VT = N0.getValueType(); 2489 SDLoc DL(N); 2490 2491 if (SDValue Combined = visitADDLike(N)) 2492 return Combined; 2493 2494 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2495 return V; 2496 2497 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2498 return V; 2499 2500 // fold (a+b) -> (a|b) iff a and b share no bits. 2501 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2502 DAG.haveNoCommonBitsSet(N0, N1)) 2503 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2504 2505 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). 2506 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { 2507 const APInt &C0 = N0->getConstantOperandAPInt(0); 2508 const APInt &C1 = N1->getConstantOperandAPInt(0); 2509 return DAG.getVScale(DL, VT, C0 + C1); 2510 } 2511 2512 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) 2513 if ((N0.getOpcode() == ISD::ADD) && 2514 (N0.getOperand(1).getOpcode() == ISD::VSCALE) && 2515 (N1.getOpcode() == ISD::VSCALE)) { 2516 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2517 const APInt &VS1 = N1->getConstantOperandAPInt(0); 2518 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); 2519 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); 2520 } 2521 2522 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2)) 2523 if (N0.getOpcode() == ISD::STEP_VECTOR && 2524 N1.getOpcode() == ISD::STEP_VECTOR) { 2525 const APInt &C0 = N0->getConstantOperandAPInt(0); 2526 const APInt &C1 = N1->getConstantOperandAPInt(0); 2527 APInt NewStep = C0 + C1; 2528 return DAG.getStepVector(DL, VT, NewStep); 2529 } 2530 2531 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2) 2532 if ((N0.getOpcode() == ISD::ADD) && 2533 (N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR) && 2534 (N1.getOpcode() == ISD::STEP_VECTOR)) { 2535 const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2536 const APInt &SV1 = N1->getConstantOperandAPInt(0); 2537 APInt NewStep = SV0 + SV1; 2538 SDValue SV = DAG.getStepVector(DL, VT, NewStep); 2539 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV); 2540 } 2541 2542 return SDValue(); 2543 } 2544 2545 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2546 unsigned Opcode = N->getOpcode(); 2547 SDValue N0 = N->getOperand(0); 2548 SDValue N1 = N->getOperand(1); 2549 EVT VT = N0.getValueType(); 2550 SDLoc DL(N); 2551 2552 // fold vector ops 2553 if (VT.isVector()) { 2554 // TODO SimplifyVBinOp 2555 2556 // fold (add_sat x, 0) -> x, vector edition 2557 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 2558 return N0; 2559 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 2560 return N1; 2561 } 2562 2563 // fold (add_sat x, undef) -> -1 2564 if (N0.isUndef() || N1.isUndef()) 2565 return DAG.getAllOnesConstant(DL, VT); 2566 2567 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2568 // canonicalize constant to RHS 2569 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2570 return DAG.getNode(Opcode, DL, VT, N1, N0); 2571 // fold (add_sat c1, c2) -> c3 2572 return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}); 2573 } 2574 2575 // fold (add_sat x, 0) -> x 2576 if (isNullConstant(N1)) 2577 return N0; 2578 2579 // If it cannot overflow, transform into an add. 2580 if (Opcode == ISD::UADDSAT) 2581 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2582 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2583 2584 return SDValue(); 2585 } 2586 2587 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2588 bool Masked = false; 2589 2590 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2591 while (true) { 2592 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2593 V = V.getOperand(0); 2594 continue; 2595 } 2596 2597 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2598 Masked = true; 2599 V = V.getOperand(0); 2600 continue; 2601 } 2602 2603 break; 2604 } 2605 2606 // If this is not a carry, return. 2607 if (V.getResNo() != 1) 2608 return SDValue(); 2609 2610 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2611 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2612 return SDValue(); 2613 2614 EVT VT = V.getNode()->getValueType(0); 2615 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2616 return SDValue(); 2617 2618 // If the result is masked, then no matter what kind of bool it is we can 2619 // return. If it isn't, then we need to make sure the bool type is either 0 or 2620 // 1 and not other values. 2621 if (Masked || 2622 TLI.getBooleanContents(V.getValueType()) == 2623 TargetLoweringBase::ZeroOrOneBooleanContent) 2624 return V; 2625 2626 return SDValue(); 2627 } 2628 2629 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2630 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2631 /// the opcode and bypass the mask operation. 2632 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2633 SelectionDAG &DAG, const SDLoc &DL) { 2634 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2635 return SDValue(); 2636 2637 EVT VT = N0.getValueType(); 2638 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2639 return SDValue(); 2640 2641 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2642 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2643 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2644 } 2645 2646 /// Helper for doing combines based on N0 and N1 being added to each other. 2647 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2648 SDNode *LocReference) { 2649 EVT VT = N0.getValueType(); 2650 SDLoc DL(LocReference); 2651 2652 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2653 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2654 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2655 return DAG.getNode(ISD::SUB, DL, VT, N0, 2656 DAG.getNode(ISD::SHL, DL, VT, 2657 N1.getOperand(0).getOperand(1), 2658 N1.getOperand(1))); 2659 2660 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2661 return V; 2662 2663 // Look for: 2664 // add (add x, 1), y 2665 // And if the target does not like this form then turn into: 2666 // sub y, (xor x, -1) 2667 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2668 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { 2669 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2670 DAG.getAllOnesConstant(DL, VT)); 2671 return DAG.getNode(ISD::SUB, DL, VT, N1, Not); 2672 } 2673 2674 // Hoist one-use subtraction by non-opaque constant: 2675 // (x - C) + y -> (x + y) - C 2676 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2677 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2678 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2679 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2680 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2681 } 2682 // Hoist one-use subtraction from non-opaque constant: 2683 // (C - x) + y -> (y - x) + C 2684 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2685 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 2686 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2687 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); 2688 } 2689 2690 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2691 // rather than 'add 0/-1' (the zext should get folded). 2692 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2693 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2694 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2695 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2696 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2697 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2698 } 2699 2700 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2701 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2702 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2703 if (TN->getVT() == MVT::i1) { 2704 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2705 DAG.getConstant(1, DL, VT)); 2706 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2707 } 2708 } 2709 2710 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2711 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2712 N1.getResNo() == 0) 2713 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2714 N0, N1.getOperand(0), N1.getOperand(2)); 2715 2716 // (add X, Carry) -> (addcarry X, 0, Carry) 2717 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2718 if (SDValue Carry = getAsCarry(TLI, N1)) 2719 return DAG.getNode(ISD::ADDCARRY, DL, 2720 DAG.getVTList(VT, Carry.getValueType()), N0, 2721 DAG.getConstant(0, DL, VT), Carry); 2722 2723 return SDValue(); 2724 } 2725 2726 SDValue DAGCombiner::visitADDC(SDNode *N) { 2727 SDValue N0 = N->getOperand(0); 2728 SDValue N1 = N->getOperand(1); 2729 EVT VT = N0.getValueType(); 2730 SDLoc DL(N); 2731 2732 // If the flag result is dead, turn this into an ADD. 2733 if (!N->hasAnyUseOfValue(1)) 2734 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2735 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2736 2737 // canonicalize constant to RHS. 2738 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2739 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2740 if (N0C && !N1C) 2741 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2742 2743 // fold (addc x, 0) -> x + no carry out 2744 if (isNullConstant(N1)) 2745 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2746 DL, MVT::Glue)); 2747 2748 // If it cannot overflow, transform into an add. 2749 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2750 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2751 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2752 2753 return SDValue(); 2754 } 2755 2756 /** 2757 * Flips a boolean if it is cheaper to compute. If the Force parameters is set, 2758 * then the flip also occurs if computing the inverse is the same cost. 2759 * This function returns an empty SDValue in case it cannot flip the boolean 2760 * without increasing the cost of the computation. If you want to flip a boolean 2761 * no matter what, use DAG.getLogicalNOT. 2762 */ 2763 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, 2764 const TargetLowering &TLI, 2765 bool Force) { 2766 if (Force && isa<ConstantSDNode>(V)) 2767 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2768 2769 if (V.getOpcode() != ISD::XOR) 2770 return SDValue(); 2771 2772 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2773 if (!Const) 2774 return SDValue(); 2775 2776 EVT VT = V.getValueType(); 2777 2778 bool IsFlip = false; 2779 switch(TLI.getBooleanContents(VT)) { 2780 case TargetLowering::ZeroOrOneBooleanContent: 2781 IsFlip = Const->isOne(); 2782 break; 2783 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2784 IsFlip = Const->isAllOnesValue(); 2785 break; 2786 case TargetLowering::UndefinedBooleanContent: 2787 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2788 break; 2789 } 2790 2791 if (IsFlip) 2792 return V.getOperand(0); 2793 if (Force) 2794 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2795 return SDValue(); 2796 } 2797 2798 SDValue DAGCombiner::visitADDO(SDNode *N) { 2799 SDValue N0 = N->getOperand(0); 2800 SDValue N1 = N->getOperand(1); 2801 EVT VT = N0.getValueType(); 2802 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2803 2804 EVT CarryVT = N->getValueType(1); 2805 SDLoc DL(N); 2806 2807 // If the flag result is dead, turn this into an ADD. 2808 if (!N->hasAnyUseOfValue(1)) 2809 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2810 DAG.getUNDEF(CarryVT)); 2811 2812 // canonicalize constant to RHS. 2813 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2814 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2815 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2816 2817 // fold (addo x, 0) -> x + no carry out 2818 if (isNullOrNullSplat(N1)) 2819 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2820 2821 if (!IsSigned) { 2822 // If it cannot overflow, transform into an add. 2823 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2824 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2825 DAG.getConstant(0, DL, CarryVT)); 2826 2827 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2828 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2829 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2830 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2831 return CombineTo( 2832 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 2833 } 2834 2835 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2836 return Combined; 2837 2838 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2839 return Combined; 2840 } 2841 2842 return SDValue(); 2843 } 2844 2845 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2846 EVT VT = N0.getValueType(); 2847 if (VT.isVector()) 2848 return SDValue(); 2849 2850 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2851 // If Y + 1 cannot overflow. 2852 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2853 SDValue Y = N1.getOperand(0); 2854 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2855 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2856 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2857 N1.getOperand(2)); 2858 } 2859 2860 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2861 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2862 if (SDValue Carry = getAsCarry(TLI, N1)) 2863 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2864 DAG.getConstant(0, SDLoc(N), VT), Carry); 2865 2866 return SDValue(); 2867 } 2868 2869 SDValue DAGCombiner::visitADDE(SDNode *N) { 2870 SDValue N0 = N->getOperand(0); 2871 SDValue N1 = N->getOperand(1); 2872 SDValue CarryIn = N->getOperand(2); 2873 2874 // canonicalize constant to RHS 2875 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2876 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2877 if (N0C && !N1C) 2878 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2879 N1, N0, CarryIn); 2880 2881 // fold (adde x, y, false) -> (addc x, y) 2882 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2883 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2884 2885 return SDValue(); 2886 } 2887 2888 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2889 SDValue N0 = N->getOperand(0); 2890 SDValue N1 = N->getOperand(1); 2891 SDValue CarryIn = N->getOperand(2); 2892 SDLoc DL(N); 2893 2894 // canonicalize constant to RHS 2895 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2896 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2897 if (N0C && !N1C) 2898 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2899 2900 // fold (addcarry x, y, false) -> (uaddo x, y) 2901 if (isNullConstant(CarryIn)) { 2902 if (!LegalOperations || 2903 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2904 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2905 } 2906 2907 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 2908 if (isNullConstant(N0) && isNullConstant(N1)) { 2909 EVT VT = N0.getValueType(); 2910 EVT CarryVT = CarryIn.getValueType(); 2911 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 2912 AddToWorklist(CarryExt.getNode()); 2913 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 2914 DAG.getConstant(1, DL, VT)), 2915 DAG.getConstant(0, DL, CarryVT)); 2916 } 2917 2918 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 2919 return Combined; 2920 2921 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 2922 return Combined; 2923 2924 return SDValue(); 2925 } 2926 2927 SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { 2928 SDValue N0 = N->getOperand(0); 2929 SDValue N1 = N->getOperand(1); 2930 SDValue CarryIn = N->getOperand(2); 2931 SDLoc DL(N); 2932 2933 // canonicalize constant to RHS 2934 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2935 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2936 if (N0C && !N1C) 2937 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); 2938 2939 // fold (saddo_carry x, y, false) -> (saddo x, y) 2940 if (isNullConstant(CarryIn)) { 2941 if (!LegalOperations || 2942 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) 2943 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); 2944 } 2945 2946 return SDValue(); 2947 } 2948 2949 /** 2950 * If we are facing some sort of diamond carry propapagtion pattern try to 2951 * break it up to generate something like: 2952 * (addcarry X, 0, (addcarry A, B, Z):Carry) 2953 * 2954 * The end result is usually an increase in operation required, but because the 2955 * carry is now linearized, other tranforms can kick in and optimize the DAG. 2956 * 2957 * Patterns typically look something like 2958 * (uaddo A, B) 2959 * / \ 2960 * Carry Sum 2961 * | \ 2962 * | (addcarry *, 0, Z) 2963 * | / 2964 * \ Carry 2965 * | / 2966 * (addcarry X, *, *) 2967 * 2968 * But numerous variation exist. Our goal is to identify A, B, X and Z and 2969 * produce a combine with a single path for carry propagation. 2970 */ 2971 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 2972 SDValue X, SDValue Carry0, SDValue Carry1, 2973 SDNode *N) { 2974 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) 2975 return SDValue(); 2976 if (Carry1.getOpcode() != ISD::UADDO) 2977 return SDValue(); 2978 2979 SDValue Z; 2980 2981 /** 2982 * First look for a suitable Z. It will present itself in the form of 2983 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true 2984 */ 2985 if (Carry0.getOpcode() == ISD::ADDCARRY && 2986 isNullConstant(Carry0.getOperand(1))) { 2987 Z = Carry0.getOperand(2); 2988 } else if (Carry0.getOpcode() == ISD::UADDO && 2989 isOneConstant(Carry0.getOperand(1))) { 2990 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); 2991 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); 2992 } else { 2993 // We couldn't find a suitable Z. 2994 return SDValue(); 2995 } 2996 2997 2998 auto cancelDiamond = [&](SDValue A,SDValue B) { 2999 SDLoc DL(N); 3000 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); 3001 Combiner.AddToWorklist(NewY.getNode()); 3002 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, 3003 DAG.getConstant(0, DL, X.getValueType()), 3004 NewY.getValue(1)); 3005 }; 3006 3007 /** 3008 * (uaddo A, B) 3009 * | 3010 * Sum 3011 * | 3012 * (addcarry *, 0, Z) 3013 */ 3014 if (Carry0.getOperand(0) == Carry1.getValue(0)) { 3015 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); 3016 } 3017 3018 /** 3019 * (addcarry A, 0, Z) 3020 * | 3021 * Sum 3022 * | 3023 * (uaddo *, B) 3024 */ 3025 if (Carry1.getOperand(0) == Carry0.getValue(0)) { 3026 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); 3027 } 3028 3029 if (Carry1.getOperand(1) == Carry0.getValue(0)) { 3030 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); 3031 } 3032 3033 return SDValue(); 3034 } 3035 3036 // If we are facing some sort of diamond carry/borrow in/out pattern try to 3037 // match patterns like: 3038 // 3039 // (uaddo A, B) CarryIn 3040 // | \ | 3041 // | \ | 3042 // PartialSum PartialCarryOutX / 3043 // | | / 3044 // | ____|____________/ 3045 // | / | 3046 // (uaddo *, *) \________ 3047 // | \ \ 3048 // | \ | 3049 // | PartialCarryOutY | 3050 // | \ | 3051 // | \ / 3052 // AddCarrySum | ______/ 3053 // | / 3054 // CarryOut = (or *, *) 3055 // 3056 // And generate ADDCARRY (or SUBCARRY) with two result values: 3057 // 3058 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) 3059 // 3060 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with 3061 // a single path for carry/borrow out propagation: 3062 static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 3063 const TargetLowering &TLI, SDValue Carry0, 3064 SDValue Carry1, SDNode *N) { 3065 if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) 3066 return SDValue(); 3067 unsigned Opcode = Carry0.getOpcode(); 3068 if (Opcode != Carry1.getOpcode()) 3069 return SDValue(); 3070 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) 3071 return SDValue(); 3072 3073 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the 3074 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in 3075 // the above ASCII art.) 3076 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3077 Carry1.getOperand(1) != Carry0.getValue(0)) 3078 std::swap(Carry0, Carry1); 3079 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3080 Carry1.getOperand(1) != Carry0.getValue(0)) 3081 return SDValue(); 3082 3083 // The carry in value must be on the righthand side for subtraction. 3084 unsigned CarryInOperandNum = 3085 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; 3086 if (Opcode == ISD::USUBO && CarryInOperandNum != 1) 3087 return SDValue(); 3088 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); 3089 3090 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; 3091 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) 3092 return SDValue(); 3093 3094 // Verify that the carry/borrow in is plausibly a carry/borrow bit. 3095 // TODO: make getAsCarry() aware of how partial carries are merged. 3096 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) 3097 return SDValue(); 3098 CarryIn = CarryIn.getOperand(0); 3099 if (CarryIn.getValueType() != MVT::i1) 3100 return SDValue(); 3101 3102 SDLoc DL(N); 3103 SDValue Merged = 3104 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), 3105 Carry0.getOperand(1), CarryIn); 3106 3107 // Please note that because we have proven that the result of the UADDO/USUBO 3108 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can 3109 // therefore prove that if the first UADDO/USUBO overflows, the second 3110 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the 3111 // maximum value. 3112 // 3113 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry 3114 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) 3115 // 3116 // This is important because it means that OR and XOR can be used to merge 3117 // carry flags; and that AND can return a constant zero. 3118 // 3119 // TODO: match other operations that can merge flags (ADD, etc) 3120 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); 3121 if (N->getOpcode() == ISD::AND) 3122 return DAG.getConstant(0, DL, MVT::i1); 3123 return Merged.getValue(1); 3124 } 3125 3126 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 3127 SDNode *N) { 3128 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. 3129 if (isBitwiseNot(N0)) 3130 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { 3131 SDLoc DL(N); 3132 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, 3133 N0.getOperand(0), NotC); 3134 return CombineTo( 3135 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 3136 } 3137 3138 // Iff the flag result is dead: 3139 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 3140 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo 3141 // or the dependency between the instructions. 3142 if ((N0.getOpcode() == ISD::ADD || 3143 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && 3144 N0.getValue(1) != CarryIn)) && 3145 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 3146 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 3147 N0.getOperand(0), N0.getOperand(1), CarryIn); 3148 3149 /** 3150 * When one of the addcarry argument is itself a carry, we may be facing 3151 * a diamond carry propagation. In which case we try to transform the DAG 3152 * to ensure linear carry propagation if that is possible. 3153 */ 3154 if (auto Y = getAsCarry(TLI, N1)) { 3155 // Because both are carries, Y and Z can be swapped. 3156 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) 3157 return R; 3158 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) 3159 return R; 3160 } 3161 3162 return SDValue(); 3163 } 3164 3165 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a 3166 // clamp/truncation if necessary. 3167 static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, 3168 SDValue RHS, SelectionDAG &DAG, 3169 const SDLoc &DL) { 3170 assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && 3171 "Illegal truncation"); 3172 3173 if (DstVT == SrcVT) 3174 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3175 3176 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by 3177 // clamping RHS. 3178 APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(), 3179 DstVT.getScalarSizeInBits()); 3180 if (!DAG.MaskedValueIsZero(LHS, UpperBits)) 3181 return SDValue(); 3182 3183 SDValue SatLimit = 3184 DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(), 3185 DstVT.getScalarSizeInBits()), 3186 DL, SrcVT); 3187 RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit); 3188 RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS); 3189 LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS); 3190 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); 3191 } 3192 3193 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to 3194 // usubsat(a,b), optionally as a truncated type. 3195 SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) { 3196 if (N->getOpcode() != ISD::SUB || 3197 !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT))) 3198 return SDValue(); 3199 3200 EVT SubVT = N->getValueType(0); 3201 SDValue Op0 = N->getOperand(0); 3202 SDValue Op1 = N->getOperand(1); 3203 3204 // Try to find umax(a,b) - b or a - umin(a,b) patterns 3205 // they may be converted to usubsat(a,b). 3206 if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 3207 SDValue MaxLHS = Op0.getOperand(0); 3208 SDValue MaxRHS = Op0.getOperand(1); 3209 if (MaxLHS == Op1) 3210 return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N)); 3211 if (MaxRHS == Op1) 3212 return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N)); 3213 } 3214 3215 if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) { 3216 SDValue MinLHS = Op1.getOperand(0); 3217 SDValue MinRHS = Op1.getOperand(1); 3218 if (MinLHS == Op0) 3219 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N)); 3220 if (MinRHS == Op0) 3221 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N)); 3222 } 3223 3224 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit))) 3225 if (Op1.getOpcode() == ISD::TRUNCATE && 3226 Op1.getOperand(0).getOpcode() == ISD::UMIN && 3227 Op1.getOperand(0).hasOneUse()) { 3228 SDValue MinLHS = Op1.getOperand(0).getOperand(0); 3229 SDValue MinRHS = Op1.getOperand(0).getOperand(1); 3230 if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0) 3231 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS, 3232 DAG, SDLoc(N)); 3233 if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0) 3234 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS, 3235 DAG, SDLoc(N)); 3236 } 3237 3238 return SDValue(); 3239 } 3240 3241 // Since it may not be valid to emit a fold to zero for vector initializers 3242 // check if we can before folding. 3243 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 3244 SelectionDAG &DAG, bool LegalOperations) { 3245 if (!VT.isVector()) 3246 return DAG.getConstant(0, DL, VT); 3247 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 3248 return DAG.getConstant(0, DL, VT); 3249 return SDValue(); 3250 } 3251 3252 SDValue DAGCombiner::visitSUB(SDNode *N) { 3253 SDValue N0 = N->getOperand(0); 3254 SDValue N1 = N->getOperand(1); 3255 EVT VT = N0.getValueType(); 3256 SDLoc DL(N); 3257 3258 // fold vector ops 3259 if (VT.isVector()) { 3260 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3261 return FoldedVOp; 3262 3263 // fold (sub x, 0) -> x, vector edition 3264 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3265 return N0; 3266 } 3267 3268 // fold (sub x, x) -> 0 3269 // FIXME: Refactor this and xor and other similar operations together. 3270 if (N0 == N1) 3271 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 3272 3273 // fold (sub c1, c2) -> c3 3274 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) 3275 return C; 3276 3277 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3278 return NewSel; 3279 3280 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3281 3282 // fold (sub x, c) -> (add x, -c) 3283 if (N1C) { 3284 return DAG.getNode(ISD::ADD, DL, VT, N0, 3285 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3286 } 3287 3288 if (isNullOrNullSplat(N0)) { 3289 unsigned BitWidth = VT.getScalarSizeInBits(); 3290 // Right-shifting everything out but the sign bit followed by negation is 3291 // the same as flipping arithmetic/logical shift type without the negation: 3292 // -(X >>u 31) -> (X >>s 31) 3293 // -(X >>s 31) -> (X >>u 31) 3294 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 3295 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 3296 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { 3297 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 3298 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 3299 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 3300 } 3301 } 3302 3303 // 0 - X --> 0 if the sub is NUW. 3304 if (N->getFlags().hasNoUnsignedWrap()) 3305 return N0; 3306 3307 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 3308 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 3309 // N1 must be 0 because negating the minimum signed value is undefined. 3310 if (N->getFlags().hasNoSignedWrap()) 3311 return N0; 3312 3313 // 0 - X --> X if X is 0 or the minimum signed value. 3314 return N1; 3315 } 3316 3317 // Convert 0 - abs(x). 3318 SDValue Result; 3319 if (N1->getOpcode() == ISD::ABS && 3320 !TLI.isOperationLegalOrCustom(ISD::ABS, VT) && 3321 TLI.expandABS(N1.getNode(), Result, DAG, true)) 3322 return Result; 3323 3324 // Fold neg(splat(neg(x)) -> splat(x) 3325 if (VT.isVector()) { 3326 SDValue N1S = DAG.getSplatValue(N1, true); 3327 if (N1S && N1S.getOpcode() == ISD::SUB && 3328 isNullConstant(N1S.getOperand(0))) { 3329 if (VT.isScalableVector()) 3330 return DAG.getSplatVector(VT, DL, N1S.getOperand(1)); 3331 return DAG.getSplatBuildVector(VT, DL, N1S.getOperand(1)); 3332 } 3333 } 3334 } 3335 3336 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 3337 if (isAllOnesOrAllOnesSplat(N0)) 3338 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 3339 3340 // fold (A - (0-B)) -> A+B 3341 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 3342 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 3343 3344 // fold A-(A-B) -> B 3345 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 3346 return N1.getOperand(1); 3347 3348 // fold (A+B)-A -> B 3349 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 3350 return N0.getOperand(1); 3351 3352 // fold (A+B)-B -> A 3353 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 3354 return N0.getOperand(0); 3355 3356 // fold (A+C1)-C2 -> A+(C1-C2) 3357 if (N0.getOpcode() == ISD::ADD && 3358 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3359 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3360 SDValue NewC = 3361 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); 3362 assert(NewC && "Constant folding failed"); 3363 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 3364 } 3365 3366 // fold C2-(A+C1) -> (C2-C1)-A 3367 if (N1.getOpcode() == ISD::ADD) { 3368 SDValue N11 = N1.getOperand(1); 3369 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 3370 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 3371 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); 3372 assert(NewC && "Constant folding failed"); 3373 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 3374 } 3375 } 3376 3377 // fold (A-C1)-C2 -> A-(C1+C2) 3378 if (N0.getOpcode() == ISD::SUB && 3379 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3380 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3381 SDValue NewC = 3382 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); 3383 assert(NewC && "Constant folding failed"); 3384 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 3385 } 3386 3387 // fold (c1-A)-c2 -> (c1-c2)-A 3388 if (N0.getOpcode() == ISD::SUB && 3389 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3390 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 3391 SDValue NewC = 3392 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); 3393 assert(NewC && "Constant folding failed"); 3394 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 3395 } 3396 3397 // fold ((A+(B+or-C))-B) -> A+or-C 3398 if (N0.getOpcode() == ISD::ADD && 3399 (N0.getOperand(1).getOpcode() == ISD::SUB || 3400 N0.getOperand(1).getOpcode() == ISD::ADD) && 3401 N0.getOperand(1).getOperand(0) == N1) 3402 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 3403 N0.getOperand(1).getOperand(1)); 3404 3405 // fold ((A+(C+B))-B) -> A+C 3406 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 3407 N0.getOperand(1).getOperand(1) == N1) 3408 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 3409 N0.getOperand(1).getOperand(0)); 3410 3411 // fold ((A-(B-C))-C) -> A-B 3412 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 3413 N0.getOperand(1).getOperand(1) == N1) 3414 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 3415 N0.getOperand(1).getOperand(0)); 3416 3417 // fold (A-(B-C)) -> A+(C-B) 3418 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 3419 return DAG.getNode(ISD::ADD, DL, VT, N0, 3420 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 3421 N1.getOperand(0))); 3422 3423 // A - (A & B) -> A & (~B) 3424 if (N1.getOpcode() == ISD::AND) { 3425 SDValue A = N1.getOperand(0); 3426 SDValue B = N1.getOperand(1); 3427 if (A != N0) 3428 std::swap(A, B); 3429 if (A == N0 && 3430 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { 3431 SDValue InvB = 3432 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); 3433 return DAG.getNode(ISD::AND, DL, VT, A, InvB); 3434 } 3435 } 3436 3437 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 3438 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 3439 if (N1.getOperand(0).getOpcode() == ISD::SUB && 3440 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 3441 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3442 N1.getOperand(0).getOperand(1), 3443 N1.getOperand(1)); 3444 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3445 } 3446 if (N1.getOperand(1).getOpcode() == ISD::SUB && 3447 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 3448 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3449 N1.getOperand(0), 3450 N1.getOperand(1).getOperand(1)); 3451 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3452 } 3453 } 3454 3455 // If either operand of a sub is undef, the result is undef 3456 if (N0.isUndef()) 3457 return N0; 3458 if (N1.isUndef()) 3459 return N1; 3460 3461 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 3462 return V; 3463 3464 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 3465 return V; 3466 3467 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 3468 return V; 3469 3470 if (SDValue V = foldSubToUSubSat(VT, N)) 3471 return V; 3472 3473 // (x - y) - 1 -> add (xor y, -1), x 3474 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 3475 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 3476 DAG.getAllOnesConstant(DL, VT)); 3477 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 3478 } 3479 3480 // Look for: 3481 // sub y, (xor x, -1) 3482 // And if the target does not like this form then turn into: 3483 // add (add x, y), 1 3484 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { 3485 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); 3486 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); 3487 } 3488 3489 // Hoist one-use addition by non-opaque constant: 3490 // (x + C) - y -> (x - y) + C 3491 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 3492 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3493 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3494 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 3495 } 3496 // y - (x + C) -> (y - x) - C 3497 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 3498 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3499 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3500 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3501 } 3502 // (x - C) - y -> (x - y) - C 3503 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3504 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3505 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3506 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3507 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3508 } 3509 // (C - x) - y -> C - (x + y) 3510 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3511 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 3512 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); 3513 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); 3514 } 3515 3516 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3517 // rather than 'sub 0/1' (the sext should get folded). 3518 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3519 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3520 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3521 TLI.getBooleanContents(VT) == 3522 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3523 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3524 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3525 } 3526 3527 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3528 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3529 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3530 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3531 SDValue S0 = N1.getOperand(0); 3532 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) 3533 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3534 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 3535 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3536 } 3537 } 3538 3539 // If the relocation model supports it, consider symbol offsets. 3540 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3541 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3542 // fold (sub Sym, c) -> Sym-c 3543 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3544 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3545 GA->getOffset() - 3546 (uint64_t)N1C->getSExtValue()); 3547 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3548 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3549 if (GA->getGlobal() == GB->getGlobal()) 3550 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3551 DL, VT); 3552 } 3553 3554 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3555 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3556 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3557 if (TN->getVT() == MVT::i1) { 3558 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3559 DAG.getConstant(1, DL, VT)); 3560 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3561 } 3562 } 3563 3564 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) 3565 if (N1.getOpcode() == ISD::VSCALE) { 3566 const APInt &IntVal = N1.getConstantOperandAPInt(0); 3567 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); 3568 } 3569 3570 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C)) 3571 if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) { 3572 APInt NewStep = -N1.getConstantOperandAPInt(0); 3573 return DAG.getNode(ISD::ADD, DL, VT, N0, 3574 DAG.getStepVector(DL, VT, NewStep)); 3575 } 3576 3577 // Prefer an add for more folding potential and possibly better codegen: 3578 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3579 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3580 SDValue ShAmt = N1.getOperand(1); 3581 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3582 if (ShAmtC && 3583 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { 3584 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3585 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3586 } 3587 } 3588 3589 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { 3590 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) 3591 if (SDValue Carry = getAsCarry(TLI, N0)) { 3592 SDValue X = N1; 3593 SDValue Zero = DAG.getConstant(0, DL, VT); 3594 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); 3595 return DAG.getNode(ISD::ADDCARRY, DL, 3596 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, 3597 Carry); 3598 } 3599 } 3600 3601 return SDValue(); 3602 } 3603 3604 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3605 SDValue N0 = N->getOperand(0); 3606 SDValue N1 = N->getOperand(1); 3607 EVT VT = N0.getValueType(); 3608 SDLoc DL(N); 3609 3610 // fold vector ops 3611 if (VT.isVector()) { 3612 // TODO SimplifyVBinOp 3613 3614 // fold (sub_sat x, 0) -> x, vector edition 3615 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 3616 return N0; 3617 } 3618 3619 // fold (sub_sat x, undef) -> 0 3620 if (N0.isUndef() || N1.isUndef()) 3621 return DAG.getConstant(0, DL, VT); 3622 3623 // fold (sub_sat x, x) -> 0 3624 if (N0 == N1) 3625 return DAG.getConstant(0, DL, VT); 3626 3627 // fold (sub_sat c1, c2) -> c3 3628 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) 3629 return C; 3630 3631 // fold (sub_sat x, 0) -> x 3632 if (isNullConstant(N1)) 3633 return N0; 3634 3635 return SDValue(); 3636 } 3637 3638 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3639 SDValue N0 = N->getOperand(0); 3640 SDValue N1 = N->getOperand(1); 3641 EVT VT = N0.getValueType(); 3642 SDLoc DL(N); 3643 3644 // If the flag result is dead, turn this into an SUB. 3645 if (!N->hasAnyUseOfValue(1)) 3646 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3647 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3648 3649 // fold (subc x, x) -> 0 + no borrow 3650 if (N0 == N1) 3651 return CombineTo(N, DAG.getConstant(0, DL, VT), 3652 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3653 3654 // fold (subc x, 0) -> x + no borrow 3655 if (isNullConstant(N1)) 3656 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3657 3658 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3659 if (isAllOnesConstant(N0)) 3660 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3661 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3662 3663 return SDValue(); 3664 } 3665 3666 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3667 SDValue N0 = N->getOperand(0); 3668 SDValue N1 = N->getOperand(1); 3669 EVT VT = N0.getValueType(); 3670 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3671 3672 EVT CarryVT = N->getValueType(1); 3673 SDLoc DL(N); 3674 3675 // If the flag result is dead, turn this into an SUB. 3676 if (!N->hasAnyUseOfValue(1)) 3677 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3678 DAG.getUNDEF(CarryVT)); 3679 3680 // fold (subo x, x) -> 0 + no borrow 3681 if (N0 == N1) 3682 return CombineTo(N, DAG.getConstant(0, DL, VT), 3683 DAG.getConstant(0, DL, CarryVT)); 3684 3685 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3686 3687 // fold (subox, c) -> (addo x, -c) 3688 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3689 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3690 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3691 } 3692 3693 // fold (subo x, 0) -> x + no borrow 3694 if (isNullOrNullSplat(N1)) 3695 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3696 3697 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3698 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3699 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3700 DAG.getConstant(0, DL, CarryVT)); 3701 3702 return SDValue(); 3703 } 3704 3705 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3706 SDValue N0 = N->getOperand(0); 3707 SDValue N1 = N->getOperand(1); 3708 SDValue CarryIn = N->getOperand(2); 3709 3710 // fold (sube x, y, false) -> (subc x, y) 3711 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3712 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3713 3714 return SDValue(); 3715 } 3716 3717 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3718 SDValue N0 = N->getOperand(0); 3719 SDValue N1 = N->getOperand(1); 3720 SDValue CarryIn = N->getOperand(2); 3721 3722 // fold (subcarry x, y, false) -> (usubo x, y) 3723 if (isNullConstant(CarryIn)) { 3724 if (!LegalOperations || 3725 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3726 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3727 } 3728 3729 return SDValue(); 3730 } 3731 3732 SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { 3733 SDValue N0 = N->getOperand(0); 3734 SDValue N1 = N->getOperand(1); 3735 SDValue CarryIn = N->getOperand(2); 3736 3737 // fold (ssubo_carry x, y, false) -> (ssubo x, y) 3738 if (isNullConstant(CarryIn)) { 3739 if (!LegalOperations || 3740 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) 3741 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); 3742 } 3743 3744 return SDValue(); 3745 } 3746 3747 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and 3748 // UMULFIXSAT here. 3749 SDValue DAGCombiner::visitMULFIX(SDNode *N) { 3750 SDValue N0 = N->getOperand(0); 3751 SDValue N1 = N->getOperand(1); 3752 SDValue Scale = N->getOperand(2); 3753 EVT VT = N0.getValueType(); 3754 3755 // fold (mulfix x, undef, scale) -> 0 3756 if (N0.isUndef() || N1.isUndef()) 3757 return DAG.getConstant(0, SDLoc(N), VT); 3758 3759 // Canonicalize constant to RHS (vector doesn't have to splat) 3760 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3761 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3762 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); 3763 3764 // fold (mulfix x, 0, scale) -> 0 3765 if (isNullConstant(N1)) 3766 return DAG.getConstant(0, SDLoc(N), VT); 3767 3768 return SDValue(); 3769 } 3770 3771 SDValue DAGCombiner::visitMUL(SDNode *N) { 3772 SDValue N0 = N->getOperand(0); 3773 SDValue N1 = N->getOperand(1); 3774 EVT VT = N0.getValueType(); 3775 3776 // fold (mul x, undef) -> 0 3777 if (N0.isUndef() || N1.isUndef()) 3778 return DAG.getConstant(0, SDLoc(N), VT); 3779 3780 bool N1IsConst = false; 3781 bool N1IsOpaqueConst = false; 3782 APInt ConstValue1; 3783 3784 // fold vector ops 3785 if (VT.isVector()) { 3786 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3787 return FoldedVOp; 3788 3789 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3790 assert((!N1IsConst || 3791 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3792 "Splat APInt should be element width"); 3793 } else { 3794 N1IsConst = isa<ConstantSDNode>(N1); 3795 if (N1IsConst) { 3796 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3797 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3798 } 3799 } 3800 3801 // fold (mul c1, c2) -> c1*c2 3802 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) 3803 return C; 3804 3805 // canonicalize constant to RHS (vector doesn't have to splat) 3806 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3807 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3808 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3809 3810 // fold (mul x, 0) -> 0 3811 if (N1IsConst && ConstValue1.isNullValue()) 3812 return N1; 3813 3814 // fold (mul x, 1) -> x 3815 if (N1IsConst && ConstValue1.isOneValue()) 3816 return N0; 3817 3818 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3819 return NewSel; 3820 3821 // fold (mul x, -1) -> 0-x 3822 if (N1IsConst && ConstValue1.isAllOnesValue()) { 3823 SDLoc DL(N); 3824 return DAG.getNode(ISD::SUB, DL, VT, 3825 DAG.getConstant(0, DL, VT), N0); 3826 } 3827 3828 // fold (mul x, (1 << c)) -> x << c 3829 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3830 DAG.isKnownToBeAPowerOfTwo(N1) && 3831 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3832 SDLoc DL(N); 3833 SDValue LogBase2 = BuildLogBase2(N1, DL); 3834 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3835 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3836 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3837 } 3838 3839 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3840 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { 3841 unsigned Log2Val = (-ConstValue1).logBase2(); 3842 SDLoc DL(N); 3843 // FIXME: If the input is something that is easily negated (e.g. a 3844 // single-use add), we should put the negate there. 3845 return DAG.getNode(ISD::SUB, DL, VT, 3846 DAG.getConstant(0, DL, VT), 3847 DAG.getNode(ISD::SHL, DL, VT, N0, 3848 DAG.getConstant(Log2Val, DL, 3849 getShiftAmountTy(N0.getValueType())))); 3850 } 3851 3852 // Try to transform: 3853 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3854 // mul x, (2^N + 1) --> add (shl x, N), x 3855 // mul x, (2^N - 1) --> sub (shl x, N), x 3856 // Examples: x * 33 --> (x << 5) + x 3857 // x * 15 --> (x << 4) - x 3858 // x * -33 --> -((x << 5) + x) 3859 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3860 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. 3861 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) 3862 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) 3863 // Examples: x * 0x8800 --> (x << 15) + (x << 11) 3864 // x * 0xf800 --> (x << 16) - (x << 11) 3865 // x * -0x8800 --> -((x << 15) + (x << 11)) 3866 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) 3867 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { 3868 // TODO: We could handle more general decomposition of any constant by 3869 // having the target set a limit on number of ops and making a 3870 // callback to determine that sequence (similar to sqrt expansion). 3871 unsigned MathOp = ISD::DELETED_NODE; 3872 APInt MulC = ConstValue1.abs(); 3873 // The constant `2` should be treated as (2^0 + 1). 3874 unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); 3875 MulC.lshrInPlace(TZeros); 3876 if ((MulC - 1).isPowerOf2()) 3877 MathOp = ISD::ADD; 3878 else if ((MulC + 1).isPowerOf2()) 3879 MathOp = ISD::SUB; 3880 3881 if (MathOp != ISD::DELETED_NODE) { 3882 unsigned ShAmt = 3883 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); 3884 ShAmt += TZeros; 3885 assert(ShAmt < VT.getScalarSizeInBits() && 3886 "multiply-by-constant generated out of bounds shift"); 3887 SDLoc DL(N); 3888 SDValue Shl = 3889 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); 3890 SDValue R = 3891 TZeros ? DAG.getNode(MathOp, DL, VT, Shl, 3892 DAG.getNode(ISD::SHL, DL, VT, N0, 3893 DAG.getConstant(TZeros, DL, VT))) 3894 : DAG.getNode(MathOp, DL, VT, Shl, N0); 3895 if (ConstValue1.isNegative()) 3896 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 3897 return R; 3898 } 3899 } 3900 3901 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 3902 if (N0.getOpcode() == ISD::SHL && 3903 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3904 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3905 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 3906 if (isConstantOrConstantVector(C3)) 3907 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 3908 } 3909 3910 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 3911 // use. 3912 { 3913 SDValue Sh(nullptr, 0), Y(nullptr, 0); 3914 3915 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 3916 if (N0.getOpcode() == ISD::SHL && 3917 isConstantOrConstantVector(N0.getOperand(1)) && 3918 N0.getNode()->hasOneUse()) { 3919 Sh = N0; Y = N1; 3920 } else if (N1.getOpcode() == ISD::SHL && 3921 isConstantOrConstantVector(N1.getOperand(1)) && 3922 N1.getNode()->hasOneUse()) { 3923 Sh = N1; Y = N0; 3924 } 3925 3926 if (Sh.getNode()) { 3927 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 3928 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 3929 } 3930 } 3931 3932 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 3933 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 3934 N0.getOpcode() == ISD::ADD && 3935 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 3936 isMulAddWithConstProfitable(N, N0, N1)) 3937 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 3938 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 3939 N0.getOperand(0), N1), 3940 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 3941 N0.getOperand(1), N1)); 3942 3943 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). 3944 if (N0.getOpcode() == ISD::VSCALE) 3945 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { 3946 const APInt &C0 = N0.getConstantOperandAPInt(0); 3947 const APInt &C1 = NC1->getAPIntValue(); 3948 return DAG.getVScale(SDLoc(N), VT, C0 * C1); 3949 } 3950 3951 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 3952 APInt MulVal; 3953 if (N0.getOpcode() == ISD::STEP_VECTOR) 3954 if (ISD::isConstantSplatVector(N1.getNode(), MulVal)) { 3955 const APInt &C0 = N0.getConstantOperandAPInt(0); 3956 APInt NewStep = C0 * MulVal; 3957 return DAG.getStepVector(SDLoc(N), VT, NewStep); 3958 } 3959 3960 // Fold ((mul x, 0/undef) -> 0, 3961 // (mul x, 1) -> x) -> x) 3962 // -> and(x, mask) 3963 // We can replace vectors with '0' and '1' factors with a clearing mask. 3964 if (VT.isFixedLengthVector()) { 3965 unsigned NumElts = VT.getVectorNumElements(); 3966 SmallBitVector ClearMask; 3967 ClearMask.reserve(NumElts); 3968 auto IsClearMask = [&ClearMask](ConstantSDNode *V) { 3969 if (!V || V->isNullValue()) { 3970 ClearMask.push_back(true); 3971 return true; 3972 } 3973 ClearMask.push_back(false); 3974 return V->isOne(); 3975 }; 3976 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && 3977 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { 3978 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); 3979 SDLoc DL(N); 3980 EVT LegalSVT = N1.getOperand(0).getValueType(); 3981 SDValue Zero = DAG.getConstant(0, DL, LegalSVT); 3982 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); 3983 SmallVector<SDValue, 16> Mask(NumElts, AllOnes); 3984 for (unsigned I = 0; I != NumElts; ++I) 3985 if (ClearMask[I]) 3986 Mask[I] = Zero; 3987 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); 3988 } 3989 } 3990 3991 // reassociate mul 3992 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 3993 return RMUL; 3994 3995 return SDValue(); 3996 } 3997 3998 /// Return true if divmod libcall is available. 3999 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 4000 const TargetLowering &TLI) { 4001 RTLIB::Libcall LC; 4002 EVT NodeType = Node->getValueType(0); 4003 if (!NodeType.isSimple()) 4004 return false; 4005 switch (NodeType.getSimpleVT().SimpleTy) { 4006 default: return false; // No libcall for vector types. 4007 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 4008 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 4009 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 4010 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 4011 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 4012 } 4013 4014 return TLI.getLibcallName(LC) != nullptr; 4015 } 4016 4017 /// Issue divrem if both quotient and remainder are needed. 4018 SDValue DAGCombiner::useDivRem(SDNode *Node) { 4019 if (Node->use_empty()) 4020 return SDValue(); // This is a dead node, leave it alone. 4021 4022 unsigned Opcode = Node->getOpcode(); 4023 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 4024 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 4025 4026 // DivMod lib calls can still work on non-legal types if using lib-calls. 4027 EVT VT = Node->getValueType(0); 4028 if (VT.isVector() || !VT.isInteger()) 4029 return SDValue(); 4030 4031 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 4032 return SDValue(); 4033 4034 // If DIVREM is going to get expanded into a libcall, 4035 // but there is no libcall available, then don't combine. 4036 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 4037 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 4038 return SDValue(); 4039 4040 // If div is legal, it's better to do the normal expansion 4041 unsigned OtherOpcode = 0; 4042 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 4043 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 4044 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 4045 return SDValue(); 4046 } else { 4047 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4048 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 4049 return SDValue(); 4050 } 4051 4052 SDValue Op0 = Node->getOperand(0); 4053 SDValue Op1 = Node->getOperand(1); 4054 SDValue combined; 4055 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 4056 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 4057 SDNode *User = *UI; 4058 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 4059 User->use_empty()) 4060 continue; 4061 // Convert the other matching node(s), too; 4062 // otherwise, the DIVREM may get target-legalized into something 4063 // target-specific that we won't be able to recognize. 4064 unsigned UserOpc = User->getOpcode(); 4065 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 4066 User->getOperand(0) == Op0 && 4067 User->getOperand(1) == Op1) { 4068 if (!combined) { 4069 if (UserOpc == OtherOpcode) { 4070 SDVTList VTs = DAG.getVTList(VT, VT); 4071 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 4072 } else if (UserOpc == DivRemOpc) { 4073 combined = SDValue(User, 0); 4074 } else { 4075 assert(UserOpc == Opcode); 4076 continue; 4077 } 4078 } 4079 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 4080 CombineTo(User, combined); 4081 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 4082 CombineTo(User, combined.getValue(1)); 4083 } 4084 } 4085 return combined; 4086 } 4087 4088 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 4089 SDValue N0 = N->getOperand(0); 4090 SDValue N1 = N->getOperand(1); 4091 EVT VT = N->getValueType(0); 4092 SDLoc DL(N); 4093 4094 unsigned Opc = N->getOpcode(); 4095 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 4096 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4097 4098 // X / undef -> undef 4099 // X % undef -> undef 4100 // X / 0 -> undef 4101 // X % 0 -> undef 4102 // NOTE: This includes vectors where any divisor element is zero/undef. 4103 if (DAG.isUndef(Opc, {N0, N1})) 4104 return DAG.getUNDEF(VT); 4105 4106 // undef / X -> 0 4107 // undef % X -> 0 4108 if (N0.isUndef()) 4109 return DAG.getConstant(0, DL, VT); 4110 4111 // 0 / X -> 0 4112 // 0 % X -> 0 4113 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4114 if (N0C && N0C->isNullValue()) 4115 return N0; 4116 4117 // X / X -> 1 4118 // X % X -> 0 4119 if (N0 == N1) 4120 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 4121 4122 // X / 1 -> X 4123 // X % 1 -> 0 4124 // If this is a boolean op (single-bit element type), we can't have 4125 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 4126 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 4127 // it's a 1. 4128 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 4129 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 4130 4131 return SDValue(); 4132 } 4133 4134 SDValue DAGCombiner::visitSDIV(SDNode *N) { 4135 SDValue N0 = N->getOperand(0); 4136 SDValue N1 = N->getOperand(1); 4137 EVT VT = N->getValueType(0); 4138 EVT CCVT = getSetCCResultType(VT); 4139 4140 // fold vector ops 4141 if (VT.isVector()) 4142 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4143 return FoldedVOp; 4144 4145 SDLoc DL(N); 4146 4147 // fold (sdiv c1, c2) -> c1/c2 4148 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4149 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) 4150 return C; 4151 4152 // fold (sdiv X, -1) -> 0-X 4153 if (N1C && N1C->isAllOnesValue()) 4154 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 4155 4156 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 4157 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 4158 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4159 DAG.getConstant(1, DL, VT), 4160 DAG.getConstant(0, DL, VT)); 4161 4162 if (SDValue V = simplifyDivRem(N, DAG)) 4163 return V; 4164 4165 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4166 return NewSel; 4167 4168 // If we know the sign bits of both operands are zero, strength reduce to a 4169 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 4170 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4171 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 4172 4173 if (SDValue V = visitSDIVLike(N0, N1, N)) { 4174 // If the corresponding remainder node exists, update its users with 4175 // (Dividend - (Quotient * Divisor). 4176 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 4177 { N0, N1 })) { 4178 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4179 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4180 AddToWorklist(Mul.getNode()); 4181 AddToWorklist(Sub.getNode()); 4182 CombineTo(RemNode, Sub); 4183 } 4184 return V; 4185 } 4186 4187 // sdiv, srem -> sdivrem 4188 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4189 // true. Otherwise, we break the simplification logic in visitREM(). 4190 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4191 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4192 if (SDValue DivRem = useDivRem(N)) 4193 return DivRem; 4194 4195 return SDValue(); 4196 } 4197 4198 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4199 SDLoc DL(N); 4200 EVT VT = N->getValueType(0); 4201 EVT CCVT = getSetCCResultType(VT); 4202 unsigned BitWidth = VT.getScalarSizeInBits(); 4203 4204 // Helper for determining whether a value is a power-2 constant scalar or a 4205 // vector of such elements. 4206 auto IsPowerOfTwo = [](ConstantSDNode *C) { 4207 if (C->isNullValue() || C->isOpaque()) 4208 return false; 4209 if (C->getAPIntValue().isPowerOf2()) 4210 return true; 4211 if ((-C->getAPIntValue()).isPowerOf2()) 4212 return true; 4213 return false; 4214 }; 4215 4216 // fold (sdiv X, pow2) -> simple ops after legalize 4217 // FIXME: We check for the exact bit here because the generic lowering gives 4218 // better results in that case. The target-specific lowering should learn how 4219 // to handle exact sdivs efficiently. 4220 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 4221 // Target-specific implementation of sdiv x, pow2. 4222 if (SDValue Res = BuildSDIVPow2(N)) 4223 return Res; 4224 4225 // Create constants that are functions of the shift amount value. 4226 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 4227 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 4228 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 4229 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 4230 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 4231 if (!isConstantOrConstantVector(Inexact)) 4232 return SDValue(); 4233 4234 // Splat the sign bit into the register 4235 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 4236 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 4237 AddToWorklist(Sign.getNode()); 4238 4239 // Add (N0 < 0) ? abs2 - 1 : 0; 4240 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 4241 AddToWorklist(Srl.getNode()); 4242 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 4243 AddToWorklist(Add.getNode()); 4244 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 4245 AddToWorklist(Sra.getNode()); 4246 4247 // Special case: (sdiv X, 1) -> X 4248 // Special Case: (sdiv X, -1) -> 0-X 4249 SDValue One = DAG.getConstant(1, DL, VT); 4250 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 4251 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 4252 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 4253 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 4254 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 4255 4256 // If dividing by a positive value, we're done. Otherwise, the result must 4257 // be negated. 4258 SDValue Zero = DAG.getConstant(0, DL, VT); 4259 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 4260 4261 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 4262 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 4263 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 4264 return Res; 4265 } 4266 4267 // If integer divide is expensive and we satisfy the requirements, emit an 4268 // alternate sequence. Targets may check function attributes for size/speed 4269 // trade-offs. 4270 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4271 if (isConstantOrConstantVector(N1) && 4272 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4273 if (SDValue Op = BuildSDIV(N)) 4274 return Op; 4275 4276 return SDValue(); 4277 } 4278 4279 SDValue DAGCombiner::visitUDIV(SDNode *N) { 4280 SDValue N0 = N->getOperand(0); 4281 SDValue N1 = N->getOperand(1); 4282 EVT VT = N->getValueType(0); 4283 EVT CCVT = getSetCCResultType(VT); 4284 4285 // fold vector ops 4286 if (VT.isVector()) 4287 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4288 return FoldedVOp; 4289 4290 SDLoc DL(N); 4291 4292 // fold (udiv c1, c2) -> c1/c2 4293 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4294 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) 4295 return C; 4296 4297 // fold (udiv X, -1) -> select(X == -1, 1, 0) 4298 if (N1C && N1C->getAPIntValue().isAllOnesValue()) 4299 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4300 DAG.getConstant(1, DL, VT), 4301 DAG.getConstant(0, DL, VT)); 4302 4303 if (SDValue V = simplifyDivRem(N, DAG)) 4304 return V; 4305 4306 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4307 return NewSel; 4308 4309 if (SDValue V = visitUDIVLike(N0, N1, N)) { 4310 // If the corresponding remainder node exists, update its users with 4311 // (Dividend - (Quotient * Divisor). 4312 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 4313 { N0, N1 })) { 4314 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4315 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4316 AddToWorklist(Mul.getNode()); 4317 AddToWorklist(Sub.getNode()); 4318 CombineTo(RemNode, Sub); 4319 } 4320 return V; 4321 } 4322 4323 // sdiv, srem -> sdivrem 4324 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4325 // true. Otherwise, we break the simplification logic in visitREM(). 4326 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4327 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4328 if (SDValue DivRem = useDivRem(N)) 4329 return DivRem; 4330 4331 return SDValue(); 4332 } 4333 4334 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4335 SDLoc DL(N); 4336 EVT VT = N->getValueType(0); 4337 4338 // fold (udiv x, (1 << c)) -> x >>u c 4339 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4340 DAG.isKnownToBeAPowerOfTwo(N1)) { 4341 SDValue LogBase2 = BuildLogBase2(N1, DL); 4342 AddToWorklist(LogBase2.getNode()); 4343 4344 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4345 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 4346 AddToWorklist(Trunc.getNode()); 4347 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4348 } 4349 4350 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 4351 if (N1.getOpcode() == ISD::SHL) { 4352 SDValue N10 = N1.getOperand(0); 4353 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 4354 DAG.isKnownToBeAPowerOfTwo(N10)) { 4355 SDValue LogBase2 = BuildLogBase2(N10, DL); 4356 AddToWorklist(LogBase2.getNode()); 4357 4358 EVT ADDVT = N1.getOperand(1).getValueType(); 4359 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 4360 AddToWorklist(Trunc.getNode()); 4361 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 4362 AddToWorklist(Add.getNode()); 4363 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 4364 } 4365 } 4366 4367 // fold (udiv x, c) -> alternate 4368 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4369 if (isConstantOrConstantVector(N1) && 4370 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4371 if (SDValue Op = BuildUDIV(N)) 4372 return Op; 4373 4374 return SDValue(); 4375 } 4376 4377 // handles ISD::SREM and ISD::UREM 4378 SDValue DAGCombiner::visitREM(SDNode *N) { 4379 unsigned Opcode = N->getOpcode(); 4380 SDValue N0 = N->getOperand(0); 4381 SDValue N1 = N->getOperand(1); 4382 EVT VT = N->getValueType(0); 4383 EVT CCVT = getSetCCResultType(VT); 4384 4385 bool isSigned = (Opcode == ISD::SREM); 4386 SDLoc DL(N); 4387 4388 // fold (rem c1, c2) -> c1%c2 4389 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4390 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4391 return C; 4392 4393 // fold (urem X, -1) -> select(X == -1, 0, x) 4394 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) 4395 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4396 DAG.getConstant(0, DL, VT), N0); 4397 4398 if (SDValue V = simplifyDivRem(N, DAG)) 4399 return V; 4400 4401 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4402 return NewSel; 4403 4404 if (isSigned) { 4405 // If we know the sign bits of both operands are zero, strength reduce to a 4406 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 4407 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4408 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 4409 } else { 4410 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 4411 // fold (urem x, pow2) -> (and x, pow2-1) 4412 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4413 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4414 AddToWorklist(Add.getNode()); 4415 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4416 } 4417 if (N1.getOpcode() == ISD::SHL && 4418 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 4419 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 4420 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4421 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4422 AddToWorklist(Add.getNode()); 4423 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4424 } 4425 } 4426 4427 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4428 4429 // If X/C can be simplified by the division-by-constant logic, lower 4430 // X%C to the equivalent of X-X/C*C. 4431 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 4432 // speculative DIV must not cause a DIVREM conversion. We guard against this 4433 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 4434 // combine will not return a DIVREM. Regardless, checking cheapness here 4435 // makes sense since the simplification results in fatter code. 4436 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 4437 SDValue OptimizedDiv = 4438 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 4439 if (OptimizedDiv.getNode()) { 4440 // If the equivalent Div node also exists, update its users. 4441 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4442 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 4443 { N0, N1 })) 4444 CombineTo(DivNode, OptimizedDiv); 4445 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 4446 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4447 AddToWorklist(OptimizedDiv.getNode()); 4448 AddToWorklist(Mul.getNode()); 4449 return Sub; 4450 } 4451 } 4452 4453 // sdiv, srem -> sdivrem 4454 if (SDValue DivRem = useDivRem(N)) 4455 return DivRem.getValue(1); 4456 4457 return SDValue(); 4458 } 4459 4460 SDValue DAGCombiner::visitMULHS(SDNode *N) { 4461 SDValue N0 = N->getOperand(0); 4462 SDValue N1 = N->getOperand(1); 4463 EVT VT = N->getValueType(0); 4464 SDLoc DL(N); 4465 4466 if (VT.isVector()) { 4467 // fold (mulhs x, 0) -> 0 4468 // do not return N0/N1, because undef node may exist. 4469 if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) || 4470 ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4471 return DAG.getConstant(0, DL, VT); 4472 } 4473 4474 // fold (mulhs c1, c2) 4475 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1})) 4476 return C; 4477 4478 // canonicalize constant to RHS. 4479 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4480 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4481 return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0); 4482 4483 // fold (mulhs x, 0) -> 0 4484 if (isNullConstant(N1)) 4485 return N1; 4486 // fold (mulhs x, 1) -> (sra x, size(x)-1) 4487 if (isOneConstant(N1)) 4488 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 4489 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, 4490 getShiftAmountTy(N0.getValueType()))); 4491 4492 // fold (mulhs x, undef) -> 0 4493 if (N0.isUndef() || N1.isUndef()) 4494 return DAG.getConstant(0, DL, VT); 4495 4496 // If the type twice as wide is legal, transform the mulhs to a wider multiply 4497 // plus a shift. 4498 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && 4499 !VT.isVector()) { 4500 MVT Simple = VT.getSimpleVT(); 4501 unsigned SimpleSize = Simple.getSizeInBits(); 4502 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4503 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4504 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 4505 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 4506 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4507 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4508 DAG.getConstant(SimpleSize, DL, 4509 getShiftAmountTy(N1.getValueType()))); 4510 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4511 } 4512 } 4513 4514 return SDValue(); 4515 } 4516 4517 SDValue DAGCombiner::visitMULHU(SDNode *N) { 4518 SDValue N0 = N->getOperand(0); 4519 SDValue N1 = N->getOperand(1); 4520 EVT VT = N->getValueType(0); 4521 SDLoc DL(N); 4522 4523 if (VT.isVector()) { 4524 // fold (mulhu x, 0) -> 0 4525 // do not return N0/N1, because undef node may exist. 4526 if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) || 4527 ISD::isConstantSplatVectorAllZeros(N1.getNode())) 4528 return DAG.getConstant(0, DL, VT); 4529 } 4530 4531 // fold (mulhu c1, c2) 4532 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1})) 4533 return C; 4534 4535 // canonicalize constant to RHS. 4536 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4537 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4538 return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0); 4539 4540 // fold (mulhu x, 0) -> 0 4541 if (isNullConstant(N1)) 4542 return N1; 4543 // fold (mulhu x, 1) -> 0 4544 if (isOneConstant(N1)) 4545 return DAG.getConstant(0, DL, N0.getValueType()); 4546 // fold (mulhu x, undef) -> 0 4547 if (N0.isUndef() || N1.isUndef()) 4548 return DAG.getConstant(0, DL, VT); 4549 4550 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 4551 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4552 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 4553 unsigned NumEltBits = VT.getScalarSizeInBits(); 4554 SDValue LogBase2 = BuildLogBase2(N1, DL); 4555 SDValue SRLAmt = DAG.getNode( 4556 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 4557 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4558 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 4559 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4560 } 4561 4562 // If the type twice as wide is legal, transform the mulhu to a wider multiply 4563 // plus a shift. 4564 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && 4565 !VT.isVector()) { 4566 MVT Simple = VT.getSimpleVT(); 4567 unsigned SimpleSize = Simple.getSizeInBits(); 4568 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4569 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4570 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 4571 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 4572 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4573 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4574 DAG.getConstant(SimpleSize, DL, 4575 getShiftAmountTy(N1.getValueType()))); 4576 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4577 } 4578 } 4579 4580 // Simplify the operands using demanded-bits information. 4581 // We don't have demanded bits support for MULHU so this just enables constant 4582 // folding based on known bits. 4583 if (SimplifyDemandedBits(SDValue(N, 0))) 4584 return SDValue(N, 0); 4585 4586 return SDValue(); 4587 } 4588 4589 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 4590 /// give the opcodes for the two computations that are being performed. Return 4591 /// true if a simplification was made. 4592 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 4593 unsigned HiOp) { 4594 // If the high half is not needed, just compute the low half. 4595 bool HiExists = N->hasAnyUseOfValue(1); 4596 if (!HiExists && (!LegalOperations || 4597 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 4598 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4599 return CombineTo(N, Res, Res); 4600 } 4601 4602 // If the low half is not needed, just compute the high half. 4603 bool LoExists = N->hasAnyUseOfValue(0); 4604 if (!LoExists && (!LegalOperations || 4605 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 4606 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4607 return CombineTo(N, Res, Res); 4608 } 4609 4610 // If both halves are used, return as it is. 4611 if (LoExists && HiExists) 4612 return SDValue(); 4613 4614 // If the two computed results can be simplified separately, separate them. 4615 if (LoExists) { 4616 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4617 AddToWorklist(Lo.getNode()); 4618 SDValue LoOpt = combine(Lo.getNode()); 4619 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 4620 (!LegalOperations || 4621 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 4622 return CombineTo(N, LoOpt, LoOpt); 4623 } 4624 4625 if (HiExists) { 4626 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4627 AddToWorklist(Hi.getNode()); 4628 SDValue HiOpt = combine(Hi.getNode()); 4629 if (HiOpt.getNode() && HiOpt != Hi && 4630 (!LegalOperations || 4631 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 4632 return CombineTo(N, HiOpt, HiOpt); 4633 } 4634 4635 return SDValue(); 4636 } 4637 4638 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 4639 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 4640 return Res; 4641 4642 EVT VT = N->getValueType(0); 4643 SDLoc DL(N); 4644 4645 // If the type is twice as wide is legal, transform the mulhu to a wider 4646 // multiply plus a shift. 4647 if (VT.isSimple() && !VT.isVector()) { 4648 MVT Simple = VT.getSimpleVT(); 4649 unsigned SimpleSize = Simple.getSizeInBits(); 4650 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4651 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4652 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4653 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4654 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4655 // Compute the high part as N1. 4656 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4657 DAG.getConstant(SimpleSize, DL, 4658 getShiftAmountTy(Lo.getValueType()))); 4659 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4660 // Compute the low part as N0. 4661 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4662 return CombineTo(N, Lo, Hi); 4663 } 4664 } 4665 4666 return SDValue(); 4667 } 4668 4669 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4670 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4671 return Res; 4672 4673 EVT VT = N->getValueType(0); 4674 SDLoc DL(N); 4675 4676 // (umul_lohi N0, 0) -> (0, 0) 4677 if (isNullConstant(N->getOperand(1))) { 4678 SDValue Zero = DAG.getConstant(0, DL, VT); 4679 return CombineTo(N, Zero, Zero); 4680 } 4681 4682 // (umul_lohi N0, 1) -> (N0, 0) 4683 if (isOneConstant(N->getOperand(1))) { 4684 SDValue Zero = DAG.getConstant(0, DL, VT); 4685 return CombineTo(N, N->getOperand(0), Zero); 4686 } 4687 4688 // If the type is twice as wide is legal, transform the mulhu to a wider 4689 // multiply plus a shift. 4690 if (VT.isSimple() && !VT.isVector()) { 4691 MVT Simple = VT.getSimpleVT(); 4692 unsigned SimpleSize = Simple.getSizeInBits(); 4693 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4694 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4695 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4696 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4697 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4698 // Compute the high part as N1. 4699 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4700 DAG.getConstant(SimpleSize, DL, 4701 getShiftAmountTy(Lo.getValueType()))); 4702 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4703 // Compute the low part as N0. 4704 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4705 return CombineTo(N, Lo, Hi); 4706 } 4707 } 4708 4709 return SDValue(); 4710 } 4711 4712 SDValue DAGCombiner::visitMULO(SDNode *N) { 4713 SDValue N0 = N->getOperand(0); 4714 SDValue N1 = N->getOperand(1); 4715 EVT VT = N0.getValueType(); 4716 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4717 4718 EVT CarryVT = N->getValueType(1); 4719 SDLoc DL(N); 4720 4721 ConstantSDNode *N0C = isConstOrConstSplat(N0); 4722 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4723 4724 // fold operation with constant operands. 4725 // TODO: Move this to FoldConstantArithmetic when it supports nodes with 4726 // multiple results. 4727 if (N0C && N1C) { 4728 bool Overflow; 4729 APInt Result = 4730 IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow) 4731 : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow); 4732 return CombineTo(N, DAG.getConstant(Result, DL, VT), 4733 DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT)); 4734 } 4735 4736 // canonicalize constant to RHS. 4737 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4738 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4739 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 4740 4741 // fold (mulo x, 0) -> 0 + no carry out 4742 if (isNullOrNullSplat(N1)) 4743 return CombineTo(N, DAG.getConstant(0, DL, VT), 4744 DAG.getConstant(0, DL, CarryVT)); 4745 4746 // (mulo x, 2) -> (addo x, x) 4747 if (N1C && N1C->getAPIntValue() == 2) 4748 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, 4749 N->getVTList(), N0, N0); 4750 4751 if (IsSigned) { 4752 // A 1 bit SMULO overflows if both inputs are 1. 4753 if (VT.getScalarSizeInBits() == 1) { 4754 SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1); 4755 return CombineTo(N, And, 4756 DAG.getSetCC(DL, CarryVT, And, 4757 DAG.getConstant(0, DL, VT), ISD::SETNE)); 4758 } 4759 4760 // Multiplying n * m significant bits yields a result of n + m significant 4761 // bits. If the total number of significant bits does not exceed the 4762 // result bit width (minus 1), there is no overflow. 4763 unsigned SignBits = DAG.ComputeNumSignBits(N0); 4764 if (SignBits > 1) 4765 SignBits += DAG.ComputeNumSignBits(N1); 4766 if (SignBits > VT.getScalarSizeInBits() + 1) 4767 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4768 DAG.getConstant(0, DL, CarryVT)); 4769 } else { 4770 KnownBits N1Known = DAG.computeKnownBits(N1); 4771 KnownBits N0Known = DAG.computeKnownBits(N0); 4772 bool Overflow; 4773 (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow); 4774 if (!Overflow) 4775 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), 4776 DAG.getConstant(0, DL, CarryVT)); 4777 } 4778 4779 return SDValue(); 4780 } 4781 4782 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 4783 SDValue N0 = N->getOperand(0); 4784 SDValue N1 = N->getOperand(1); 4785 EVT VT = N0.getValueType(); 4786 unsigned Opcode = N->getOpcode(); 4787 4788 // fold vector ops 4789 if (VT.isVector()) 4790 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4791 return FoldedVOp; 4792 4793 // fold operation with constant operands. 4794 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1})) 4795 return C; 4796 4797 // canonicalize constant to RHS 4798 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4799 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4800 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 4801 4802 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 4803 // Only do this if the current op isn't legal and the flipped is. 4804 if (!TLI.isOperationLegal(Opcode, VT) && 4805 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 4806 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 4807 unsigned AltOpcode; 4808 switch (Opcode) { 4809 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 4810 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 4811 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 4812 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 4813 default: llvm_unreachable("Unknown MINMAX opcode"); 4814 } 4815 if (TLI.isOperationLegal(AltOpcode, VT)) 4816 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); 4817 } 4818 4819 // Simplify the operands using demanded-bits information. 4820 if (SimplifyDemandedBits(SDValue(N, 0))) 4821 return SDValue(N, 0); 4822 4823 return SDValue(); 4824 } 4825 4826 /// If this is a bitwise logic instruction and both operands have the same 4827 /// opcode, try to sink the other opcode after the logic instruction. 4828 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 4829 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 4830 EVT VT = N0.getValueType(); 4831 unsigned LogicOpcode = N->getOpcode(); 4832 unsigned HandOpcode = N0.getOpcode(); 4833 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 4834 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 4835 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 4836 4837 // Bail early if none of these transforms apply. 4838 if (N0.getNumOperands() == 0) 4839 return SDValue(); 4840 4841 // FIXME: We should check number of uses of the operands to not increase 4842 // the instruction count for all transforms. 4843 4844 // Handle size-changing casts. 4845 SDValue X = N0.getOperand(0); 4846 SDValue Y = N1.getOperand(0); 4847 EVT XVT = X.getValueType(); 4848 SDLoc DL(N); 4849 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 4850 HandOpcode == ISD::SIGN_EXTEND) { 4851 // If both operands have other uses, this transform would create extra 4852 // instructions without eliminating anything. 4853 if (!N0.hasOneUse() && !N1.hasOneUse()) 4854 return SDValue(); 4855 // We need matching integer source types. 4856 if (XVT != Y.getValueType()) 4857 return SDValue(); 4858 // Don't create an illegal op during or after legalization. Don't ever 4859 // create an unsupported vector op. 4860 if ((VT.isVector() || LegalOperations) && 4861 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 4862 return SDValue(); 4863 // Avoid infinite looping with PromoteIntBinOp. 4864 // TODO: Should we apply desirable/legal constraints to all opcodes? 4865 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 4866 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 4867 return SDValue(); 4868 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 4869 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4870 return DAG.getNode(HandOpcode, DL, VT, Logic); 4871 } 4872 4873 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 4874 if (HandOpcode == ISD::TRUNCATE) { 4875 // If both operands have other uses, this transform would create extra 4876 // instructions without eliminating anything. 4877 if (!N0.hasOneUse() && !N1.hasOneUse()) 4878 return SDValue(); 4879 // We need matching source types. 4880 if (XVT != Y.getValueType()) 4881 return SDValue(); 4882 // Don't create an illegal op during or after legalization. 4883 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 4884 return SDValue(); 4885 // Be extra careful sinking truncate. If it's free, there's no benefit in 4886 // widening a binop. Also, don't create a logic op on an illegal type. 4887 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 4888 return SDValue(); 4889 if (!TLI.isTypeLegal(XVT)) 4890 return SDValue(); 4891 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4892 return DAG.getNode(HandOpcode, DL, VT, Logic); 4893 } 4894 4895 // For binops SHL/SRL/SRA/AND: 4896 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 4897 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 4898 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 4899 N0.getOperand(1) == N1.getOperand(1)) { 4900 // If either operand has other uses, this transform is not an improvement. 4901 if (!N0.hasOneUse() || !N1.hasOneUse()) 4902 return SDValue(); 4903 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4904 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 4905 } 4906 4907 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 4908 if (HandOpcode == ISD::BSWAP) { 4909 // If either operand has other uses, this transform is not an improvement. 4910 if (!N0.hasOneUse() || !N1.hasOneUse()) 4911 return SDValue(); 4912 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4913 return DAG.getNode(HandOpcode, DL, VT, Logic); 4914 } 4915 4916 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 4917 // Only perform this optimization up until type legalization, before 4918 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 4919 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 4920 // we don't want to undo this promotion. 4921 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 4922 // on scalars. 4923 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 4924 Level <= AfterLegalizeTypes) { 4925 // Input types must be integer and the same. 4926 if (XVT.isInteger() && XVT == Y.getValueType() && 4927 !(VT.isVector() && TLI.isTypeLegal(VT) && 4928 !XVT.isVector() && !TLI.isTypeLegal(XVT))) { 4929 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4930 return DAG.getNode(HandOpcode, DL, VT, Logic); 4931 } 4932 } 4933 4934 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 4935 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 4936 // If both shuffles use the same mask, and both shuffle within a single 4937 // vector, then it is worthwhile to move the swizzle after the operation. 4938 // The type-legalizer generates this pattern when loading illegal 4939 // vector types from memory. In many cases this allows additional shuffle 4940 // optimizations. 4941 // There are other cases where moving the shuffle after the xor/and/or 4942 // is profitable even if shuffles don't perform a swizzle. 4943 // If both shuffles use the same mask, and both shuffles have the same first 4944 // or second operand, then it might still be profitable to move the shuffle 4945 // after the xor/and/or operation. 4946 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 4947 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 4948 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 4949 assert(X.getValueType() == Y.getValueType() && 4950 "Inputs to shuffles are not the same type"); 4951 4952 // Check that both shuffles use the same mask. The masks are known to be of 4953 // the same length because the result vector type is the same. 4954 // Check also that shuffles have only one use to avoid introducing extra 4955 // instructions. 4956 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 4957 !SVN0->getMask().equals(SVN1->getMask())) 4958 return SDValue(); 4959 4960 // Don't try to fold this node if it requires introducing a 4961 // build vector of all zeros that might be illegal at this stage. 4962 SDValue ShOp = N0.getOperand(1); 4963 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4964 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4965 4966 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 4967 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 4968 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 4969 N0.getOperand(0), N1.getOperand(0)); 4970 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 4971 } 4972 4973 // Don't try to fold this node if it requires introducing a 4974 // build vector of all zeros that might be illegal at this stage. 4975 ShOp = N0.getOperand(0); 4976 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4977 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4978 4979 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 4980 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 4981 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 4982 N1.getOperand(1)); 4983 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 4984 } 4985 } 4986 4987 return SDValue(); 4988 } 4989 4990 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 4991 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 4992 const SDLoc &DL) { 4993 SDValue LL, LR, RL, RR, N0CC, N1CC; 4994 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 4995 !isSetCCEquivalent(N1, RL, RR, N1CC)) 4996 return SDValue(); 4997 4998 assert(N0.getValueType() == N1.getValueType() && 4999 "Unexpected operand types for bitwise logic op"); 5000 assert(LL.getValueType() == LR.getValueType() && 5001 RL.getValueType() == RR.getValueType() && 5002 "Unexpected operand types for setcc"); 5003 5004 // If we're here post-legalization or the logic op type is not i1, the logic 5005 // op type must match a setcc result type. Also, all folds require new 5006 // operations on the left and right operands, so those types must match. 5007 EVT VT = N0.getValueType(); 5008 EVT OpVT = LL.getValueType(); 5009 if (LegalOperations || VT.getScalarType() != MVT::i1) 5010 if (VT != getSetCCResultType(OpVT)) 5011 return SDValue(); 5012 if (OpVT != RL.getValueType()) 5013 return SDValue(); 5014 5015 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 5016 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 5017 bool IsInteger = OpVT.isInteger(); 5018 if (LR == RR && CC0 == CC1 && IsInteger) { 5019 bool IsZero = isNullOrNullSplat(LR); 5020 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 5021 5022 // All bits clear? 5023 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 5024 // All sign bits clear? 5025 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 5026 // Any bits set? 5027 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 5028 // Any sign bits set? 5029 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 5030 5031 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 5032 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 5033 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 5034 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 5035 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 5036 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 5037 AddToWorklist(Or.getNode()); 5038 return DAG.getSetCC(DL, VT, Or, LR, CC1); 5039 } 5040 5041 // All bits set? 5042 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 5043 // All sign bits set? 5044 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 5045 // Any bits clear? 5046 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 5047 // Any sign bits clear? 5048 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 5049 5050 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 5051 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 5052 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 5053 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 5054 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 5055 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 5056 AddToWorklist(And.getNode()); 5057 return DAG.getSetCC(DL, VT, And, LR, CC1); 5058 } 5059 } 5060 5061 // TODO: What is the 'or' equivalent of this fold? 5062 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 5063 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 5064 IsInteger && CC0 == ISD::SETNE && 5065 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 5066 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 5067 SDValue One = DAG.getConstant(1, DL, OpVT); 5068 SDValue Two = DAG.getConstant(2, DL, OpVT); 5069 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 5070 AddToWorklist(Add.getNode()); 5071 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 5072 } 5073 5074 // Try more general transforms if the predicates match and the only user of 5075 // the compares is the 'and' or 'or'. 5076 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 5077 N0.hasOneUse() && N1.hasOneUse()) { 5078 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 5079 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 5080 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 5081 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 5082 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 5083 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 5084 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5085 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 5086 } 5087 5088 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 5089 // TODO - support non-uniform vector amounts. 5090 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 5091 // Match a shared variable operand and 2 non-opaque constant operands. 5092 ConstantSDNode *C0 = isConstOrConstSplat(LR); 5093 ConstantSDNode *C1 = isConstOrConstSplat(RR); 5094 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 5095 const APInt &CMax = 5096 APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue()); 5097 const APInt &CMin = 5098 APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue()); 5099 // The difference of the constants must be a single bit. 5100 if ((CMax - CMin).isPowerOf2()) { 5101 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) --> 5102 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq 5103 SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR); 5104 SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR); 5105 SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min); 5106 SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min); 5107 SDValue Mask = DAG.getNOT(DL, Diff, OpVT); 5108 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask); 5109 SDValue Zero = DAG.getConstant(0, DL, OpVT); 5110 return DAG.getSetCC(DL, VT, And, Zero, CC0); 5111 } 5112 } 5113 } 5114 } 5115 5116 // Canonicalize equivalent operands to LL == RL. 5117 if (LL == RR && LR == RL) { 5118 CC1 = ISD::getSetCCSwappedOperands(CC1); 5119 std::swap(RL, RR); 5120 } 5121 5122 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5123 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 5124 if (LL == RL && LR == RR) { 5125 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) 5126 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); 5127 if (NewCC != ISD::SETCC_INVALID && 5128 (!LegalOperations || 5129 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 5130 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 5131 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 5132 } 5133 5134 return SDValue(); 5135 } 5136 5137 /// This contains all DAGCombine rules which reduce two values combined by 5138 /// an And operation to a single value. This makes them reusable in the context 5139 /// of visitSELECT(). Rules involving constants are not included as 5140 /// visitSELECT() already handles those cases. 5141 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 5142 EVT VT = N1.getValueType(); 5143 SDLoc DL(N); 5144 5145 // fold (and x, undef) -> 0 5146 if (N0.isUndef() || N1.isUndef()) 5147 return DAG.getConstant(0, DL, VT); 5148 5149 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 5150 return V; 5151 5152 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 5153 VT.getSizeInBits() <= 64) { 5154 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5155 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 5156 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 5157 // immediate for an add, but it is legal if its top c2 bits are set, 5158 // transform the ADD so the immediate doesn't need to be materialized 5159 // in a register. 5160 APInt ADDC = ADDI->getAPIntValue(); 5161 APInt SRLC = SRLI->getAPIntValue(); 5162 if (ADDC.getMinSignedBits() <= 64 && 5163 SRLC.ult(VT.getSizeInBits()) && 5164 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5165 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 5166 SRLC.getZExtValue()); 5167 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 5168 ADDC |= Mask; 5169 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 5170 SDLoc DL0(N0); 5171 SDValue NewAdd = 5172 DAG.getNode(ISD::ADD, DL0, VT, 5173 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 5174 CombineTo(N0.getNode(), NewAdd); 5175 // Return N so it doesn't get rechecked! 5176 return SDValue(N, 0); 5177 } 5178 } 5179 } 5180 } 5181 } 5182 } 5183 5184 // Reduce bit extract of low half of an integer to the narrower type. 5185 // (and (srl i64:x, K), KMask) -> 5186 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 5187 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 5188 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 5189 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5190 unsigned Size = VT.getSizeInBits(); 5191 const APInt &AndMask = CAnd->getAPIntValue(); 5192 unsigned ShiftBits = CShift->getZExtValue(); 5193 5194 // Bail out, this node will probably disappear anyway. 5195 if (ShiftBits == 0) 5196 return SDValue(); 5197 5198 unsigned MaskBits = AndMask.countTrailingOnes(); 5199 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 5200 5201 if (AndMask.isMask() && 5202 // Required bits must not span the two halves of the integer and 5203 // must fit in the half size type. 5204 (ShiftBits + MaskBits <= Size / 2) && 5205 TLI.isNarrowingProfitable(VT, HalfVT) && 5206 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 5207 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 5208 TLI.isTruncateFree(VT, HalfVT) && 5209 TLI.isZExtFree(HalfVT, VT)) { 5210 // The isNarrowingProfitable is to avoid regressions on PPC and 5211 // AArch64 which match a few 64-bit bit insert / bit extract patterns 5212 // on downstream users of this. Those patterns could probably be 5213 // extended to handle extensions mixed in. 5214 5215 SDValue SL(N0); 5216 assert(MaskBits <= Size); 5217 5218 // Extracting the highest bit of the low half. 5219 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 5220 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 5221 N0.getOperand(0)); 5222 5223 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 5224 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 5225 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 5226 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 5227 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 5228 } 5229 } 5230 } 5231 } 5232 5233 return SDValue(); 5234 } 5235 5236 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 5237 EVT LoadResultTy, EVT &ExtVT) { 5238 if (!AndC->getAPIntValue().isMask()) 5239 return false; 5240 5241 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 5242 5243 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5244 EVT LoadedVT = LoadN->getMemoryVT(); 5245 5246 if (ExtVT == LoadedVT && 5247 (!LegalOperations || 5248 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 5249 // ZEXTLOAD will match without needing to change the size of the value being 5250 // loaded. 5251 return true; 5252 } 5253 5254 // Do not change the width of a volatile or atomic loads. 5255 if (!LoadN->isSimple()) 5256 return false; 5257 5258 // Do not generate loads of non-round integer types since these can 5259 // be expensive (and would be wrong if the type is not byte sized). 5260 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 5261 return false; 5262 5263 if (LegalOperations && 5264 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 5265 return false; 5266 5267 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 5268 return false; 5269 5270 return true; 5271 } 5272 5273 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 5274 ISD::LoadExtType ExtType, EVT &MemVT, 5275 unsigned ShAmt) { 5276 if (!LDST) 5277 return false; 5278 // Only allow byte offsets. 5279 if (ShAmt % 8) 5280 return false; 5281 5282 // Do not generate loads of non-round integer types since these can 5283 // be expensive (and would be wrong if the type is not byte sized). 5284 if (!MemVT.isRound()) 5285 return false; 5286 5287 // Don't change the width of a volatile or atomic loads. 5288 if (!LDST->isSimple()) 5289 return false; 5290 5291 EVT LdStMemVT = LDST->getMemoryVT(); 5292 5293 // Bail out when changing the scalable property, since we can't be sure that 5294 // we're actually narrowing here. 5295 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) 5296 return false; 5297 5298 // Verify that we are actually reducing a load width here. 5299 if (LdStMemVT.bitsLT(MemVT)) 5300 return false; 5301 5302 // Ensure that this isn't going to produce an unsupported memory access. 5303 if (ShAmt) { 5304 assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); 5305 const unsigned ByteShAmt = ShAmt / 8; 5306 const Align LDSTAlign = LDST->getAlign(); 5307 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); 5308 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 5309 LDST->getAddressSpace(), NarrowAlign, 5310 LDST->getMemOperand()->getFlags())) 5311 return false; 5312 } 5313 5314 // It's not possible to generate a constant of extended or untyped type. 5315 EVT PtrType = LDST->getBasePtr().getValueType(); 5316 if (PtrType == MVT::Untyped || PtrType.isExtended()) 5317 return false; 5318 5319 if (isa<LoadSDNode>(LDST)) { 5320 LoadSDNode *Load = cast<LoadSDNode>(LDST); 5321 // Don't transform one with multiple uses, this would require adding a new 5322 // load. 5323 if (!SDValue(Load, 0).hasOneUse()) 5324 return false; 5325 5326 if (LegalOperations && 5327 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 5328 return false; 5329 5330 // For the transform to be legal, the load must produce only two values 5331 // (the value loaded and the chain). Don't transform a pre-increment 5332 // load, for example, which produces an extra value. Otherwise the 5333 // transformation is not equivalent, and the downstream logic to replace 5334 // uses gets things wrong. 5335 if (Load->getNumValues() > 2) 5336 return false; 5337 5338 // If the load that we're shrinking is an extload and we're not just 5339 // discarding the extension we can't simply shrink the load. Bail. 5340 // TODO: It would be possible to merge the extensions in some cases. 5341 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 5342 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5343 return false; 5344 5345 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 5346 return false; 5347 } else { 5348 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 5349 StoreSDNode *Store = cast<StoreSDNode>(LDST); 5350 // Can't write outside the original store 5351 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5352 return false; 5353 5354 if (LegalOperations && 5355 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 5356 return false; 5357 } 5358 return true; 5359 } 5360 5361 bool DAGCombiner::SearchForAndLoads(SDNode *N, 5362 SmallVectorImpl<LoadSDNode*> &Loads, 5363 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 5364 ConstantSDNode *Mask, 5365 SDNode *&NodeToMask) { 5366 // Recursively search for the operands, looking for loads which can be 5367 // narrowed. 5368 for (SDValue Op : N->op_values()) { 5369 if (Op.getValueType().isVector()) 5370 return false; 5371 5372 // Some constants may need fixing up later if they are too large. 5373 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5374 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 5375 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 5376 NodesWithConsts.insert(N); 5377 continue; 5378 } 5379 5380 if (!Op.hasOneUse()) 5381 return false; 5382 5383 switch(Op.getOpcode()) { 5384 case ISD::LOAD: { 5385 auto *Load = cast<LoadSDNode>(Op); 5386 EVT ExtVT; 5387 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 5388 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 5389 5390 // ZEXTLOAD is already small enough. 5391 if (Load->getExtensionType() == ISD::ZEXTLOAD && 5392 ExtVT.bitsGE(Load->getMemoryVT())) 5393 continue; 5394 5395 // Use LE to convert equal sized loads to zext. 5396 if (ExtVT.bitsLE(Load->getMemoryVT())) 5397 Loads.push_back(Load); 5398 5399 continue; 5400 } 5401 return false; 5402 } 5403 case ISD::ZERO_EXTEND: 5404 case ISD::AssertZext: { 5405 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 5406 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5407 EVT VT = Op.getOpcode() == ISD::AssertZext ? 5408 cast<VTSDNode>(Op.getOperand(1))->getVT() : 5409 Op.getOperand(0).getValueType(); 5410 5411 // We can accept extending nodes if the mask is wider or an equal 5412 // width to the original type. 5413 if (ExtVT.bitsGE(VT)) 5414 continue; 5415 break; 5416 } 5417 case ISD::OR: 5418 case ISD::XOR: 5419 case ISD::AND: 5420 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 5421 NodeToMask)) 5422 return false; 5423 continue; 5424 } 5425 5426 // Allow one node which will masked along with any loads found. 5427 if (NodeToMask) 5428 return false; 5429 5430 // Also ensure that the node to be masked only produces one data result. 5431 NodeToMask = Op.getNode(); 5432 if (NodeToMask->getNumValues() > 1) { 5433 bool HasValue = false; 5434 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 5435 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 5436 if (VT != MVT::Glue && VT != MVT::Other) { 5437 if (HasValue) { 5438 NodeToMask = nullptr; 5439 return false; 5440 } 5441 HasValue = true; 5442 } 5443 } 5444 assert(HasValue && "Node to be masked has no data result?"); 5445 } 5446 } 5447 return true; 5448 } 5449 5450 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { 5451 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5452 if (!Mask) 5453 return false; 5454 5455 if (!Mask->getAPIntValue().isMask()) 5456 return false; 5457 5458 // No need to do anything if the and directly uses a load. 5459 if (isa<LoadSDNode>(N->getOperand(0))) 5460 return false; 5461 5462 SmallVector<LoadSDNode*, 8> Loads; 5463 SmallPtrSet<SDNode*, 2> NodesWithConsts; 5464 SDNode *FixupNode = nullptr; 5465 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 5466 if (Loads.size() == 0) 5467 return false; 5468 5469 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 5470 SDValue MaskOp = N->getOperand(1); 5471 5472 // If it exists, fixup the single node we allow in the tree that needs 5473 // masking. 5474 if (FixupNode) { 5475 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 5476 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), 5477 FixupNode->getValueType(0), 5478 SDValue(FixupNode, 0), MaskOp); 5479 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 5480 if (And.getOpcode() == ISD ::AND) 5481 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); 5482 } 5483 5484 // Narrow any constants that need it. 5485 for (auto *LogicN : NodesWithConsts) { 5486 SDValue Op0 = LogicN->getOperand(0); 5487 SDValue Op1 = LogicN->getOperand(1); 5488 5489 if (isa<ConstantSDNode>(Op0)) 5490 std::swap(Op0, Op1); 5491 5492 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), 5493 Op1, MaskOp); 5494 5495 DAG.UpdateNodeOperands(LogicN, Op0, And); 5496 } 5497 5498 // Create narrow loads. 5499 for (auto *Load : Loads) { 5500 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 5501 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 5502 SDValue(Load, 0), MaskOp); 5503 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 5504 if (And.getOpcode() == ISD ::AND) 5505 And = SDValue( 5506 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); 5507 SDValue NewLoad = ReduceLoadWidth(And.getNode()); 5508 assert(NewLoad && 5509 "Shouldn't be masking the load if it can't be narrowed"); 5510 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 5511 } 5512 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 5513 return true; 5514 } 5515 return false; 5516 } 5517 5518 // Unfold 5519 // x & (-1 'logical shift' y) 5520 // To 5521 // (x 'opposite logical shift' y) 'logical shift' y 5522 // if it is better for performance. 5523 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 5524 assert(N->getOpcode() == ISD::AND); 5525 5526 SDValue N0 = N->getOperand(0); 5527 SDValue N1 = N->getOperand(1); 5528 5529 // Do we actually prefer shifts over mask? 5530 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 5531 return SDValue(); 5532 5533 // Try to match (-1 '[outer] logical shift' y) 5534 unsigned OuterShift; 5535 unsigned InnerShift; // The opposite direction to the OuterShift. 5536 SDValue Y; // Shift amount. 5537 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 5538 if (!M.hasOneUse()) 5539 return false; 5540 OuterShift = M->getOpcode(); 5541 if (OuterShift == ISD::SHL) 5542 InnerShift = ISD::SRL; 5543 else if (OuterShift == ISD::SRL) 5544 InnerShift = ISD::SHL; 5545 else 5546 return false; 5547 if (!isAllOnesConstant(M->getOperand(0))) 5548 return false; 5549 Y = M->getOperand(1); 5550 return true; 5551 }; 5552 5553 SDValue X; 5554 if (matchMask(N1)) 5555 X = N0; 5556 else if (matchMask(N0)) 5557 X = N1; 5558 else 5559 return SDValue(); 5560 5561 SDLoc DL(N); 5562 EVT VT = N->getValueType(0); 5563 5564 // tmp = x 'opposite logical shift' y 5565 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 5566 // ret = tmp 'logical shift' y 5567 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 5568 5569 return T1; 5570 } 5571 5572 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. 5573 /// For a target with a bit test, this is expected to become test + set and save 5574 /// at least 1 instruction. 5575 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { 5576 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); 5577 5578 // This is probably not worthwhile without a supported type. 5579 EVT VT = And->getValueType(0); 5580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5581 if (!TLI.isTypeLegal(VT)) 5582 return SDValue(); 5583 5584 // Look through an optional extension and find a 'not'. 5585 // TODO: Should we favor test+set even without the 'not' op? 5586 SDValue Not = And->getOperand(0), And1 = And->getOperand(1); 5587 if (Not.getOpcode() == ISD::ANY_EXTEND) 5588 Not = Not.getOperand(0); 5589 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) 5590 return SDValue(); 5591 5592 // Look though an optional truncation. The source operand may not be the same 5593 // type as the original 'and', but that is ok because we are masking off 5594 // everything but the low bit. 5595 SDValue Srl = Not.getOperand(0); 5596 if (Srl.getOpcode() == ISD::TRUNCATE) 5597 Srl = Srl.getOperand(0); 5598 5599 // Match a shift-right by constant. 5600 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || 5601 !isa<ConstantSDNode>(Srl.getOperand(1))) 5602 return SDValue(); 5603 5604 // We might have looked through casts that make this transform invalid. 5605 // TODO: If the source type is wider than the result type, do the mask and 5606 // compare in the source type. 5607 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); 5608 unsigned VTBitWidth = VT.getSizeInBits(); 5609 if (ShiftAmt.uge(VTBitWidth)) 5610 return SDValue(); 5611 5612 // Turn this into a bit-test pattern using mask op + setcc: 5613 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 5614 SDLoc DL(And); 5615 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); 5616 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5617 SDValue Mask = DAG.getConstant( 5618 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); 5619 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); 5620 SDValue Zero = DAG.getConstant(0, DL, VT); 5621 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); 5622 return DAG.getZExtOrTrunc(Setcc, DL, VT); 5623 } 5624 5625 SDValue DAGCombiner::visitAND(SDNode *N) { 5626 SDValue N0 = N->getOperand(0); 5627 SDValue N1 = N->getOperand(1); 5628 EVT VT = N1.getValueType(); 5629 5630 // x & x --> x 5631 if (N0 == N1) 5632 return N0; 5633 5634 // fold vector ops 5635 if (VT.isVector()) { 5636 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 5637 return FoldedVOp; 5638 5639 // fold (and x, 0) -> 0, vector edition 5640 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 5641 // do not return N0, because undef node may exist in N0 5642 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), 5643 SDLoc(N), N0.getValueType()); 5644 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 5645 // do not return N1, because undef node may exist in N1 5646 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), 5647 SDLoc(N), N1.getValueType()); 5648 5649 // fold (and x, -1) -> x, vector edition 5650 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 5651 return N1; 5652 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 5653 return N0; 5654 5655 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load 5656 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); 5657 auto *BVec = dyn_cast<BuildVectorSDNode>(N1); 5658 if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD && 5659 N0.hasOneUse() && N1.hasOneUse()) { 5660 EVT LoadVT = MLoad->getMemoryVT(); 5661 EVT ExtVT = VT; 5662 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { 5663 // For this AND to be a zero extension of the masked load the elements 5664 // of the BuildVec must mask the bottom bits of the extended element 5665 // type 5666 if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) { 5667 uint64_t ElementSize = 5668 LoadVT.getVectorElementType().getScalarSizeInBits(); 5669 if (Splat->getAPIntValue().isMask(ElementSize)) { 5670 return DAG.getMaskedLoad( 5671 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(), 5672 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), 5673 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), 5674 ISD::ZEXTLOAD, MLoad->isExpandingLoad()); 5675 } 5676 } 5677 } 5678 } 5679 } 5680 5681 // fold (and c1, c2) -> c1&c2 5682 ConstantSDNode *N1C = isConstOrConstSplat(N1); 5683 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) 5684 return C; 5685 5686 // canonicalize constant to RHS 5687 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5688 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5689 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 5690 5691 // fold (and x, -1) -> x 5692 if (isAllOnesConstant(N1)) 5693 return N0; 5694 5695 // if (and x, c) is known to be zero, return 0 5696 unsigned BitWidth = VT.getScalarSizeInBits(); 5697 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 5698 APInt::getAllOnesValue(BitWidth))) 5699 return DAG.getConstant(0, SDLoc(N), VT); 5700 5701 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5702 return NewSel; 5703 5704 // reassociate and 5705 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 5706 return RAND; 5707 5708 // Try to convert a constant mask AND into a shuffle clear mask. 5709 if (VT.isVector()) 5710 if (SDValue Shuffle = XformToShuffleWithZero(N)) 5711 return Shuffle; 5712 5713 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 5714 return Combined; 5715 5716 // fold (and (or x, C), D) -> D if (C & D) == D 5717 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 5718 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 5719 }; 5720 if (N0.getOpcode() == ISD::OR && 5721 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 5722 return N1; 5723 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 5724 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 5725 SDValue N0Op0 = N0.getOperand(0); 5726 APInt Mask = ~N1C->getAPIntValue(); 5727 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 5728 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 5729 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 5730 N0.getValueType(), N0Op0); 5731 5732 // Replace uses of the AND with uses of the Zero extend node. 5733 CombineTo(N, Zext); 5734 5735 // We actually want to replace all uses of the any_extend with the 5736 // zero_extend, to avoid duplicating things. This will later cause this 5737 // AND to be folded. 5738 CombineTo(N0.getNode(), Zext); 5739 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5740 } 5741 } 5742 5743 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 5744 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 5745 // already be zero by virtue of the width of the base type of the load. 5746 // 5747 // the 'X' node here can either be nothing or an extract_vector_elt to catch 5748 // more cases. 5749 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5750 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 5751 N0.getOperand(0).getOpcode() == ISD::LOAD && 5752 N0.getOperand(0).getResNo() == 0) || 5753 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 5754 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 5755 N0 : N0.getOperand(0) ); 5756 5757 // Get the constant (if applicable) the zero'th operand is being ANDed with. 5758 // This can be a pure constant or a vector splat, in which case we treat the 5759 // vector as a scalar and use the splat value. 5760 APInt Constant = APInt::getNullValue(1); 5761 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 5762 Constant = C->getAPIntValue(); 5763 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 5764 APInt SplatValue, SplatUndef; 5765 unsigned SplatBitSize; 5766 bool HasAnyUndefs; 5767 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 5768 SplatBitSize, HasAnyUndefs); 5769 if (IsSplat) { 5770 // Undef bits can contribute to a possible optimisation if set, so 5771 // set them. 5772 SplatValue |= SplatUndef; 5773 5774 // The splat value may be something like "0x00FFFFFF", which means 0 for 5775 // the first vector value and FF for the rest, repeating. We need a mask 5776 // that will apply equally to all members of the vector, so AND all the 5777 // lanes of the constant together. 5778 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); 5779 5780 // If the splat value has been compressed to a bitlength lower 5781 // than the size of the vector lane, we need to re-expand it to 5782 // the lane size. 5783 if (EltBitWidth > SplatBitSize) 5784 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); 5785 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) 5786 SplatValue |= SplatValue.shl(SplatBitSize); 5787 5788 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 5789 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 5790 if ((SplatBitSize % EltBitWidth) == 0) { 5791 Constant = APInt::getAllOnesValue(EltBitWidth); 5792 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) 5793 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); 5794 } 5795 } 5796 } 5797 5798 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 5799 // actually legal and isn't going to get expanded, else this is a false 5800 // optimisation. 5801 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 5802 Load->getValueType(0), 5803 Load->getMemoryVT()); 5804 5805 // Resize the constant to the same size as the original memory access before 5806 // extension. If it is still the AllOnesValue then this AND is completely 5807 // unneeded. 5808 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 5809 5810 bool B; 5811 switch (Load->getExtensionType()) { 5812 default: B = false; break; 5813 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 5814 case ISD::ZEXTLOAD: 5815 case ISD::NON_EXTLOAD: B = true; break; 5816 } 5817 5818 if (B && Constant.isAllOnesValue()) { 5819 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 5820 // preserve semantics once we get rid of the AND. 5821 SDValue NewLoad(Load, 0); 5822 5823 // Fold the AND away. NewLoad may get replaced immediately. 5824 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 5825 5826 if (Load->getExtensionType() == ISD::EXTLOAD) { 5827 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 5828 Load->getValueType(0), SDLoc(Load), 5829 Load->getChain(), Load->getBasePtr(), 5830 Load->getOffset(), Load->getMemoryVT(), 5831 Load->getMemOperand()); 5832 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 5833 if (Load->getNumValues() == 3) { 5834 // PRE/POST_INC loads have 3 values. 5835 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 5836 NewLoad.getValue(2) }; 5837 CombineTo(Load, To, 3, true); 5838 } else { 5839 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 5840 } 5841 } 5842 5843 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5844 } 5845 } 5846 5847 // fold (and (masked_gather x)) -> (zext_masked_gather x) 5848 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 5849 EVT MemVT = GN0->getMemoryVT(); 5850 EVT ScalarVT = MemVT.getScalarType(); 5851 5852 if (SDValue(GN0, 0).hasOneUse() && 5853 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && 5854 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 5855 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 5856 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 5857 5858 SDValue ZExtLoad = DAG.getMaskedGather( 5859 DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops, 5860 GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD); 5861 5862 CombineTo(N, ZExtLoad); 5863 AddToWorklist(ZExtLoad.getNode()); 5864 // Avoid recheck of N. 5865 return SDValue(N, 0); 5866 } 5867 } 5868 5869 // fold (and (load x), 255) -> (zextload x, i8) 5870 // fold (and (extload x, i16), 255) -> (zextload x, i8) 5871 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 5872 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 5873 (N0.getOpcode() == ISD::ANY_EXTEND && 5874 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 5875 if (SDValue Res = ReduceLoadWidth(N)) { 5876 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 5877 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 5878 AddToWorklist(N); 5879 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 5880 return SDValue(N, 0); 5881 } 5882 } 5883 5884 if (LegalTypes) { 5885 // Attempt to propagate the AND back up to the leaves which, if they're 5886 // loads, can be combined to narrow loads and the AND node can be removed. 5887 // Perform after legalization so that extend nodes will already be 5888 // combined into the loads. 5889 if (BackwardsPropagateMask(N)) 5890 return SDValue(N, 0); 5891 } 5892 5893 if (SDValue Combined = visitANDLike(N0, N1, N)) 5894 return Combined; 5895 5896 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 5897 if (N0.getOpcode() == N1.getOpcode()) 5898 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 5899 return V; 5900 5901 // Masking the negated extension of a boolean is just the zero-extended 5902 // boolean: 5903 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 5904 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 5905 // 5906 // Note: the SimplifyDemandedBits fold below can make an information-losing 5907 // transform, and then we have no way to find this better fold. 5908 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 5909 if (isNullOrNullSplat(N0.getOperand(0))) { 5910 SDValue SubRHS = N0.getOperand(1); 5911 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 5912 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5913 return SubRHS; 5914 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 5915 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5916 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 5917 } 5918 } 5919 5920 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 5921 // fold (and (sra)) -> (and (srl)) when possible. 5922 if (SimplifyDemandedBits(SDValue(N, 0))) 5923 return SDValue(N, 0); 5924 5925 // fold (zext_inreg (extload x)) -> (zextload x) 5926 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 5927 if (ISD::isUNINDEXEDLoad(N0.getNode()) && 5928 (ISD::isEXTLoad(N0.getNode()) || 5929 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { 5930 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5931 EVT MemVT = LN0->getMemoryVT(); 5932 // If we zero all the possible extended bits, then we can turn this into 5933 // a zextload if we are running before legalize or the operation is legal. 5934 unsigned ExtBitSize = N1.getScalarValueSizeInBits(); 5935 unsigned MemBitSize = MemVT.getScalarSizeInBits(); 5936 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); 5937 if (DAG.MaskedValueIsZero(N1, ExtBits) && 5938 ((!LegalOperations && LN0->isSimple()) || 5939 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 5940 SDValue ExtLoad = 5941 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), 5942 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 5943 AddToWorklist(N); 5944 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 5945 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5946 } 5947 } 5948 5949 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 5950 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 5951 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 5952 N0.getOperand(1), false)) 5953 return BSwap; 5954 } 5955 5956 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 5957 return Shifts; 5958 5959 if (TLI.hasBitTest(N0, N1)) 5960 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) 5961 return V; 5962 5963 // Recognize the following pattern: 5964 // 5965 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) 5966 // 5967 // where bitmask is a mask that clears the upper bits of AndVT. The 5968 // number of bits in bitmask must be a power of two. 5969 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { 5970 if (LHS->getOpcode() != ISD::SIGN_EXTEND) 5971 return false; 5972 5973 auto *C = dyn_cast<ConstantSDNode>(RHS); 5974 if (!C) 5975 return false; 5976 5977 if (!C->getAPIntValue().isMask( 5978 LHS.getOperand(0).getValueType().getFixedSizeInBits())) 5979 return false; 5980 5981 return true; 5982 }; 5983 5984 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). 5985 if (IsAndZeroExtMask(N0, N1)) 5986 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); 5987 5988 return SDValue(); 5989 } 5990 5991 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 5992 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 5993 bool DemandHighBits) { 5994 if (!LegalOperations) 5995 return SDValue(); 5996 5997 EVT VT = N->getValueType(0); 5998 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 5999 return SDValue(); 6000 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6001 return SDValue(); 6002 6003 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 6004 bool LookPassAnd0 = false; 6005 bool LookPassAnd1 = false; 6006 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 6007 std::swap(N0, N1); 6008 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 6009 std::swap(N0, N1); 6010 if (N0.getOpcode() == ISD::AND) { 6011 if (!N0.getNode()->hasOneUse()) 6012 return SDValue(); 6013 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6014 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 6015 // This is needed for X86. 6016 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 6017 N01C->getZExtValue() != 0xFFFF)) 6018 return SDValue(); 6019 N0 = N0.getOperand(0); 6020 LookPassAnd0 = true; 6021 } 6022 6023 if (N1.getOpcode() == ISD::AND) { 6024 if (!N1.getNode()->hasOneUse()) 6025 return SDValue(); 6026 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6027 if (!N11C || N11C->getZExtValue() != 0xFF) 6028 return SDValue(); 6029 N1 = N1.getOperand(0); 6030 LookPassAnd1 = true; 6031 } 6032 6033 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 6034 std::swap(N0, N1); 6035 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 6036 return SDValue(); 6037 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 6038 return SDValue(); 6039 6040 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6041 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 6042 if (!N01C || !N11C) 6043 return SDValue(); 6044 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 6045 return SDValue(); 6046 6047 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 6048 SDValue N00 = N0->getOperand(0); 6049 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 6050 if (!N00.getNode()->hasOneUse()) 6051 return SDValue(); 6052 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 6053 if (!N001C || N001C->getZExtValue() != 0xFF) 6054 return SDValue(); 6055 N00 = N00.getOperand(0); 6056 LookPassAnd0 = true; 6057 } 6058 6059 SDValue N10 = N1->getOperand(0); 6060 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 6061 if (!N10.getNode()->hasOneUse()) 6062 return SDValue(); 6063 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 6064 // Also allow 0xFFFF since the bits will be shifted out. This is needed 6065 // for X86. 6066 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 6067 N101C->getZExtValue() != 0xFFFF)) 6068 return SDValue(); 6069 N10 = N10.getOperand(0); 6070 LookPassAnd1 = true; 6071 } 6072 6073 if (N00 != N10) 6074 return SDValue(); 6075 6076 // Make sure everything beyond the low halfword gets set to zero since the SRL 6077 // 16 will clear the top bits. 6078 unsigned OpSizeInBits = VT.getSizeInBits(); 6079 if (DemandHighBits && OpSizeInBits > 16) { 6080 // If the left-shift isn't masked out then the only way this is a bswap is 6081 // if all bits beyond the low 8 are 0. In that case the entire pattern 6082 // reduces to a left shift anyway: leave it for other parts of the combiner. 6083 if (!LookPassAnd0) 6084 return SDValue(); 6085 6086 // However, if the right shift isn't masked out then it might be because 6087 // it's not needed. See if we can spot that too. 6088 if (!LookPassAnd1 && 6089 !DAG.MaskedValueIsZero( 6090 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 6091 return SDValue(); 6092 } 6093 6094 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 6095 if (OpSizeInBits > 16) { 6096 SDLoc DL(N); 6097 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 6098 DAG.getConstant(OpSizeInBits - 16, DL, 6099 getShiftAmountTy(VT))); 6100 } 6101 return Res; 6102 } 6103 6104 /// Return true if the specified node is an element that makes up a 32-bit 6105 /// packed halfword byteswap. 6106 /// ((x & 0x000000ff) << 8) | 6107 /// ((x & 0x0000ff00) >> 8) | 6108 /// ((x & 0x00ff0000) << 8) | 6109 /// ((x & 0xff000000) >> 8) 6110 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 6111 if (!N.getNode()->hasOneUse()) 6112 return false; 6113 6114 unsigned Opc = N.getOpcode(); 6115 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 6116 return false; 6117 6118 SDValue N0 = N.getOperand(0); 6119 unsigned Opc0 = N0.getOpcode(); 6120 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 6121 return false; 6122 6123 ConstantSDNode *N1C = nullptr; 6124 // SHL or SRL: look upstream for AND mask operand 6125 if (Opc == ISD::AND) 6126 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6127 else if (Opc0 == ISD::AND) 6128 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6129 if (!N1C) 6130 return false; 6131 6132 unsigned MaskByteOffset; 6133 switch (N1C->getZExtValue()) { 6134 default: 6135 return false; 6136 case 0xFF: MaskByteOffset = 0; break; 6137 case 0xFF00: MaskByteOffset = 1; break; 6138 case 0xFFFF: 6139 // In case demanded bits didn't clear the bits that will be shifted out. 6140 // This is needed for X86. 6141 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 6142 MaskByteOffset = 1; 6143 break; 6144 } 6145 return false; 6146 case 0xFF0000: MaskByteOffset = 2; break; 6147 case 0xFF000000: MaskByteOffset = 3; break; 6148 } 6149 6150 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 6151 if (Opc == ISD::AND) { 6152 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 6153 // (x >> 8) & 0xff 6154 // (x >> 8) & 0xff0000 6155 if (Opc0 != ISD::SRL) 6156 return false; 6157 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6158 if (!C || C->getZExtValue() != 8) 6159 return false; 6160 } else { 6161 // (x << 8) & 0xff00 6162 // (x << 8) & 0xff000000 6163 if (Opc0 != ISD::SHL) 6164 return false; 6165 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6166 if (!C || C->getZExtValue() != 8) 6167 return false; 6168 } 6169 } else if (Opc == ISD::SHL) { 6170 // (x & 0xff) << 8 6171 // (x & 0xff0000) << 8 6172 if (MaskByteOffset != 0 && MaskByteOffset != 2) 6173 return false; 6174 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6175 if (!C || C->getZExtValue() != 8) 6176 return false; 6177 } else { // Opc == ISD::SRL 6178 // (x & 0xff00) >> 8 6179 // (x & 0xff000000) >> 8 6180 if (MaskByteOffset != 1 && MaskByteOffset != 3) 6181 return false; 6182 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 6183 if (!C || C->getZExtValue() != 8) 6184 return false; 6185 } 6186 6187 if (Parts[MaskByteOffset]) 6188 return false; 6189 6190 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 6191 return true; 6192 } 6193 6194 // Match 2 elements of a packed halfword bswap. 6195 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { 6196 if (N.getOpcode() == ISD::OR) 6197 return isBSwapHWordElement(N.getOperand(0), Parts) && 6198 isBSwapHWordElement(N.getOperand(1), Parts); 6199 6200 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { 6201 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); 6202 if (!C || C->getAPIntValue() != 16) 6203 return false; 6204 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); 6205 return true; 6206 } 6207 6208 return false; 6209 } 6210 6211 // Match this pattern: 6212 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) 6213 // And rewrite this to: 6214 // (rotr (bswap A), 16) 6215 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, 6216 SelectionDAG &DAG, SDNode *N, SDValue N0, 6217 SDValue N1, EVT VT, EVT ShiftAmountTy) { 6218 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && 6219 "MatchBSwapHWordOrAndAnd: expecting i32"); 6220 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6221 return SDValue(); 6222 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) 6223 return SDValue(); 6224 // TODO: this is too restrictive; lifting this restriction requires more tests 6225 if (!N0->hasOneUse() || !N1->hasOneUse()) 6226 return SDValue(); 6227 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); 6228 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); 6229 if (!Mask0 || !Mask1) 6230 return SDValue(); 6231 if (Mask0->getAPIntValue() != 0xff00ff00 || 6232 Mask1->getAPIntValue() != 0x00ff00ff) 6233 return SDValue(); 6234 SDValue Shift0 = N0.getOperand(0); 6235 SDValue Shift1 = N1.getOperand(0); 6236 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) 6237 return SDValue(); 6238 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); 6239 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); 6240 if (!ShiftAmt0 || !ShiftAmt1) 6241 return SDValue(); 6242 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) 6243 return SDValue(); 6244 if (Shift0.getOperand(0) != Shift1.getOperand(0)) 6245 return SDValue(); 6246 6247 SDLoc DL(N); 6248 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); 6249 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); 6250 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6251 } 6252 6253 /// Match a 32-bit packed halfword bswap. That is 6254 /// ((x & 0x000000ff) << 8) | 6255 /// ((x & 0x0000ff00) >> 8) | 6256 /// ((x & 0x00ff0000) << 8) | 6257 /// ((x & 0xff000000) >> 8) 6258 /// => (rotl (bswap x), 16) 6259 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 6260 if (!LegalOperations) 6261 return SDValue(); 6262 6263 EVT VT = N->getValueType(0); 6264 if (VT != MVT::i32) 6265 return SDValue(); 6266 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6267 return SDValue(); 6268 6269 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, 6270 getShiftAmountTy(VT))) 6271 return BSwap; 6272 6273 // Try again with commuted operands. 6274 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, 6275 getShiftAmountTy(VT))) 6276 return BSwap; 6277 6278 6279 // Look for either 6280 // (or (bswaphpair), (bswaphpair)) 6281 // (or (or (bswaphpair), (and)), (and)) 6282 // (or (or (and), (bswaphpair)), (and)) 6283 SDNode *Parts[4] = {}; 6284 6285 if (isBSwapHWordPair(N0, Parts)) { 6286 // (or (or (and), (and)), (or (and), (and))) 6287 if (!isBSwapHWordPair(N1, Parts)) 6288 return SDValue(); 6289 } else if (N0.getOpcode() == ISD::OR) { 6290 // (or (or (or (and), (and)), (and)), (and)) 6291 if (!isBSwapHWordElement(N1, Parts)) 6292 return SDValue(); 6293 SDValue N00 = N0.getOperand(0); 6294 SDValue N01 = N0.getOperand(1); 6295 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && 6296 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) 6297 return SDValue(); 6298 } else 6299 return SDValue(); 6300 6301 // Make sure the parts are all coming from the same node. 6302 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 6303 return SDValue(); 6304 6305 SDLoc DL(N); 6306 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 6307 SDValue(Parts[0], 0)); 6308 6309 // Result of the bswap should be rotated by 16. If it's not legal, then 6310 // do (x << 16) | (x >> 16). 6311 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 6312 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 6313 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 6314 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6315 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6316 return DAG.getNode(ISD::OR, DL, VT, 6317 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 6318 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 6319 } 6320 6321 /// This contains all DAGCombine rules which reduce two values combined by 6322 /// an Or operation to a single value \see visitANDLike(). 6323 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 6324 EVT VT = N1.getValueType(); 6325 SDLoc DL(N); 6326 6327 // fold (or x, undef) -> -1 6328 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 6329 return DAG.getAllOnesConstant(DL, VT); 6330 6331 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 6332 return V; 6333 6334 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 6335 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 6336 // Don't increase # computations. 6337 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6338 // We can only do this xform if we know that bits from X that are set in C2 6339 // but not in C1 are already zero. Likewise for Y. 6340 if (const ConstantSDNode *N0O1C = 6341 getAsNonOpaqueConstant(N0.getOperand(1))) { 6342 if (const ConstantSDNode *N1O1C = 6343 getAsNonOpaqueConstant(N1.getOperand(1))) { 6344 // We can only do this xform if we know that bits from X that are set in 6345 // C2 but not in C1 are already zero. Likewise for Y. 6346 const APInt &LHSMask = N0O1C->getAPIntValue(); 6347 const APInt &RHSMask = N1O1C->getAPIntValue(); 6348 6349 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 6350 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 6351 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6352 N0.getOperand(0), N1.getOperand(0)); 6353 return DAG.getNode(ISD::AND, DL, VT, X, 6354 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 6355 } 6356 } 6357 } 6358 } 6359 6360 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 6361 if (N0.getOpcode() == ISD::AND && 6362 N1.getOpcode() == ISD::AND && 6363 N0.getOperand(0) == N1.getOperand(0) && 6364 // Don't increase # computations. 6365 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6366 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6367 N0.getOperand(1), N1.getOperand(1)); 6368 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 6369 } 6370 6371 return SDValue(); 6372 } 6373 6374 /// OR combines for which the commuted variant will be tried as well. 6375 static SDValue visitORCommutative( 6376 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 6377 EVT VT = N0.getValueType(); 6378 if (N0.getOpcode() == ISD::AND) { 6379 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 6380 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 6381 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 6382 6383 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 6384 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 6385 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 6386 } 6387 6388 return SDValue(); 6389 } 6390 6391 SDValue DAGCombiner::visitOR(SDNode *N) { 6392 SDValue N0 = N->getOperand(0); 6393 SDValue N1 = N->getOperand(1); 6394 EVT VT = N1.getValueType(); 6395 6396 // x | x --> x 6397 if (N0 == N1) 6398 return N0; 6399 6400 // fold vector ops 6401 if (VT.isVector()) { 6402 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 6403 return FoldedVOp; 6404 6405 // fold (or x, 0) -> x, vector edition 6406 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 6407 return N1; 6408 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 6409 return N0; 6410 6411 // fold (or x, -1) -> -1, vector edition 6412 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 6413 // do not return N0, because undef node may exist in N0 6414 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); 6415 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) 6416 // do not return N1, because undef node may exist in N1 6417 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 6418 6419 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 6420 // Do this only if the resulting shuffle is legal. 6421 if (isa<ShuffleVectorSDNode>(N0) && 6422 isa<ShuffleVectorSDNode>(N1) && 6423 // Avoid folding a node with illegal type. 6424 TLI.isTypeLegal(VT)) { 6425 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 6426 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 6427 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 6428 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 6429 // Ensure both shuffles have a zero input. 6430 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 6431 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 6432 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 6433 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 6434 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 6435 bool CanFold = true; 6436 int NumElts = VT.getVectorNumElements(); 6437 SmallVector<int, 4> Mask(NumElts); 6438 6439 for (int i = 0; i != NumElts; ++i) { 6440 int M0 = SV0->getMaskElt(i); 6441 int M1 = SV1->getMaskElt(i); 6442 6443 // Determine if either index is pointing to a zero vector. 6444 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 6445 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 6446 6447 // If one element is zero and the otherside is undef, keep undef. 6448 // This also handles the case that both are undef. 6449 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 6450 Mask[i] = -1; 6451 continue; 6452 } 6453 6454 // Make sure only one of the elements is zero. 6455 if (M0Zero == M1Zero) { 6456 CanFold = false; 6457 break; 6458 } 6459 6460 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 6461 6462 // We have a zero and non-zero element. If the non-zero came from 6463 // SV0 make the index a LHS index. If it came from SV1, make it 6464 // a RHS index. We need to mod by NumElts because we don't care 6465 // which operand it came from in the original shuffles. 6466 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 6467 } 6468 6469 if (CanFold) { 6470 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 6471 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 6472 6473 SDValue LegalShuffle = 6474 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, 6475 Mask, DAG); 6476 if (LegalShuffle) 6477 return LegalShuffle; 6478 } 6479 } 6480 } 6481 } 6482 6483 // fold (or c1, c2) -> c1|c2 6484 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 6485 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) 6486 return C; 6487 6488 // canonicalize constant to RHS 6489 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6490 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6491 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 6492 6493 // fold (or x, 0) -> x 6494 if (isNullConstant(N1)) 6495 return N0; 6496 6497 // fold (or x, -1) -> -1 6498 if (isAllOnesConstant(N1)) 6499 return N1; 6500 6501 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6502 return NewSel; 6503 6504 // fold (or x, c) -> c iff (x & ~c) == 0 6505 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 6506 return N1; 6507 6508 if (SDValue Combined = visitORLike(N0, N1, N)) 6509 return Combined; 6510 6511 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 6512 return Combined; 6513 6514 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 6515 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 6516 return BSwap; 6517 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 6518 return BSwap; 6519 6520 // reassociate or 6521 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 6522 return ROR; 6523 6524 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 6525 // iff (c1 & c2) != 0 or c1/c2 are undef. 6526 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 6527 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 6528 }; 6529 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 6530 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 6531 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 6532 {N1, N0.getOperand(1)})) { 6533 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 6534 AddToWorklist(IOR.getNode()); 6535 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 6536 } 6537 } 6538 6539 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 6540 return Combined; 6541 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 6542 return Combined; 6543 6544 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 6545 if (N0.getOpcode() == N1.getOpcode()) 6546 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6547 return V; 6548 6549 // See if this is some rotate idiom. 6550 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) 6551 return Rot; 6552 6553 if (SDValue Load = MatchLoadCombine(N)) 6554 return Load; 6555 6556 // Simplify the operands using demanded-bits information. 6557 if (SimplifyDemandedBits(SDValue(N, 0))) 6558 return SDValue(N, 0); 6559 6560 // If OR can be rewritten into ADD, try combines based on ADD. 6561 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 6562 DAG.haveNoCommonBitsSet(N0, N1)) 6563 if (SDValue Combined = visitADDLike(N)) 6564 return Combined; 6565 6566 return SDValue(); 6567 } 6568 6569 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 6570 if (Op.getOpcode() == ISD::AND && 6571 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 6572 Mask = Op.getOperand(1); 6573 return Op.getOperand(0); 6574 } 6575 return Op; 6576 } 6577 6578 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 6579 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 6580 SDValue &Mask) { 6581 Op = stripConstantMask(DAG, Op, Mask); 6582 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 6583 Shift = Op; 6584 return true; 6585 } 6586 return false; 6587 } 6588 6589 /// Helper function for visitOR to extract the needed side of a rotate idiom 6590 /// from a shl/srl/mul/udiv. This is meant to handle cases where 6591 /// InstCombine merged some outside op with one of the shifts from 6592 /// the rotate pattern. 6593 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 6594 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 6595 /// patterns: 6596 /// 6597 /// (or (add v v) (shrl v bitwidth-1)): 6598 /// expands (add v v) -> (shl v 1) 6599 /// 6600 /// (or (mul v c0) (shrl (mul v c1) c2)): 6601 /// expands (mul v c0) -> (shl (mul v c1) c3) 6602 /// 6603 /// (or (udiv v c0) (shl (udiv v c1) c2)): 6604 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 6605 /// 6606 /// (or (shl v c0) (shrl (shl v c1) c2)): 6607 /// expands (shl v c0) -> (shl (shl v c1) c3) 6608 /// 6609 /// (or (shrl v c0) (shl (shrl v c1) c2)): 6610 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 6611 /// 6612 /// Such that in all cases, c3+c2==bitwidth(op v c1). 6613 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 6614 SDValue ExtractFrom, SDValue &Mask, 6615 const SDLoc &DL) { 6616 assert(OppShift && ExtractFrom && "Empty SDValue"); 6617 assert( 6618 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 6619 "Existing shift must be valid as a rotate half"); 6620 6621 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 6622 6623 // Value and Type of the shift. 6624 SDValue OppShiftLHS = OppShift.getOperand(0); 6625 EVT ShiftedVT = OppShiftLHS.getValueType(); 6626 6627 // Amount of the existing shift. 6628 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 6629 6630 // (add v v) -> (shl v 1) 6631 // TODO: Should this be a general DAG canonicalization? 6632 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && 6633 ExtractFrom.getOpcode() == ISD::ADD && 6634 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && 6635 ExtractFrom.getOperand(0) == OppShiftLHS && 6636 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) 6637 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, 6638 DAG.getShiftAmountConstant(1, ShiftedVT, DL)); 6639 6640 // Preconditions: 6641 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 6642 // 6643 // Find opcode of the needed shift to be extracted from (op0 v c0). 6644 unsigned Opcode = ISD::DELETED_NODE; 6645 bool IsMulOrDiv = false; 6646 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 6647 // opcode or its arithmetic (mul or udiv) variant. 6648 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 6649 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 6650 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 6651 return false; 6652 Opcode = NeededShift; 6653 return true; 6654 }; 6655 // op0 must be either the needed shift opcode or the mul/udiv equivalent 6656 // that the needed shift can be extracted from. 6657 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 6658 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 6659 return SDValue(); 6660 6661 // op0 must be the same opcode on both sides, have the same LHS argument, 6662 // and produce the same value type. 6663 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 6664 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 6665 ShiftedVT != ExtractFrom.getValueType()) 6666 return SDValue(); 6667 6668 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 6669 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 6670 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 6671 ConstantSDNode *ExtractFromCst = 6672 isConstOrConstSplat(ExtractFrom.getOperand(1)); 6673 // TODO: We should be able to handle non-uniform constant vectors for these values 6674 // Check that we have constant values. 6675 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 6676 !OppLHSCst || !OppLHSCst->getAPIntValue() || 6677 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 6678 return SDValue(); 6679 6680 // Compute the shift amount we need to extract to complete the rotate. 6681 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 6682 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 6683 return SDValue(); 6684 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 6685 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 6686 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 6687 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 6688 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 6689 6690 // Now try extract the needed shift from the ExtractFrom op and see if the 6691 // result matches up with the existing shift's LHS op. 6692 if (IsMulOrDiv) { 6693 // Op to extract from is a mul or udiv by a constant. 6694 // Check: 6695 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 6696 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 6697 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 6698 NeededShiftAmt.getZExtValue()); 6699 APInt ResultAmt; 6700 APInt Rem; 6701 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 6702 if (Rem != 0 || ResultAmt != OppLHSAmt) 6703 return SDValue(); 6704 } else { 6705 // Op to extract from is a shift by a constant. 6706 // Check: 6707 // c2 - (bitwidth(op0 v c0) - c1) == c0 6708 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 6709 ExtractFromAmt.getBitWidth())) 6710 return SDValue(); 6711 } 6712 6713 // Return the expanded shift op that should allow a rotate to be formed. 6714 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 6715 EVT ResVT = ExtractFrom.getValueType(); 6716 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 6717 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 6718 } 6719 6720 // Return true if we can prove that, whenever Neg and Pos are both in the 6721 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 6722 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 6723 // 6724 // (or (shift1 X, Neg), (shift2 X, Pos)) 6725 // 6726 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 6727 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 6728 // to consider shift amounts with defined behavior. 6729 // 6730 // The IsRotate flag should be set when the LHS of both shifts is the same. 6731 // Otherwise if matching a general funnel shift, it should be clear. 6732 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 6733 SelectionDAG &DAG, bool IsRotate) { 6734 // If EltSize is a power of 2 then: 6735 // 6736 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 6737 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 6738 // 6739 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 6740 // for the stronger condition: 6741 // 6742 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 6743 // 6744 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 6745 // we can just replace Neg with Neg' for the rest of the function. 6746 // 6747 // In other cases we check for the even stronger condition: 6748 // 6749 // Neg == EltSize - Pos [B] 6750 // 6751 // for all Neg and Pos. Note that the (or ...) then invokes undefined 6752 // behavior if Pos == 0 (and consequently Neg == EltSize). 6753 // 6754 // We could actually use [A] whenever EltSize is a power of 2, but the 6755 // only extra cases that it would match are those uninteresting ones 6756 // where Neg and Pos are never in range at the same time. E.g. for 6757 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 6758 // as well as (sub 32, Pos), but: 6759 // 6760 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 6761 // 6762 // always invokes undefined behavior for 32-bit X. 6763 // 6764 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 6765 // 6766 // NOTE: We can only do this when matching an AND and not a general 6767 // funnel shift. 6768 unsigned MaskLoBits = 0; 6769 if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 6770 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 6771 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 6772 unsigned Bits = Log2_64(EltSize); 6773 if (NegC->getAPIntValue().getActiveBits() <= Bits && 6774 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 6775 Neg = Neg.getOperand(0); 6776 MaskLoBits = Bits; 6777 } 6778 } 6779 } 6780 6781 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 6782 if (Neg.getOpcode() != ISD::SUB) 6783 return false; 6784 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 6785 if (!NegC) 6786 return false; 6787 SDValue NegOp1 = Neg.getOperand(1); 6788 6789 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 6790 // Pos'. The truncation is redundant for the purpose of the equality. 6791 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 6792 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 6793 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 6794 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 6795 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 6796 MaskLoBits)) 6797 Pos = Pos.getOperand(0); 6798 } 6799 } 6800 6801 // The condition we need is now: 6802 // 6803 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 6804 // 6805 // If NegOp1 == Pos then we need: 6806 // 6807 // EltSize & Mask == NegC & Mask 6808 // 6809 // (because "x & Mask" is a truncation and distributes through subtraction). 6810 // 6811 // We also need to account for a potential truncation of NegOp1 if the amount 6812 // has already been legalized to a shift amount type. 6813 APInt Width; 6814 if ((Pos == NegOp1) || 6815 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) 6816 Width = NegC->getAPIntValue(); 6817 6818 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 6819 // Then the condition we want to prove becomes: 6820 // 6821 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 6822 // 6823 // which, again because "x & Mask" is a truncation, becomes: 6824 // 6825 // NegC & Mask == (EltSize - PosC) & Mask 6826 // EltSize & Mask == (NegC + PosC) & Mask 6827 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 6828 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 6829 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 6830 else 6831 return false; 6832 } else 6833 return false; 6834 6835 // Now we just need to check that EltSize & Mask == Width & Mask. 6836 if (MaskLoBits) 6837 // EltSize & Mask is 0 since Mask is EltSize - 1. 6838 return Width.getLoBits(MaskLoBits) == 0; 6839 return Width == EltSize; 6840 } 6841 6842 // A subroutine of MatchRotate used once we have found an OR of two opposite 6843 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 6844 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 6845 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6846 // Neg with outer conversions stripped away. 6847 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 6848 SDValue Neg, SDValue InnerPos, 6849 SDValue InnerNeg, unsigned PosOpcode, 6850 unsigned NegOpcode, const SDLoc &DL) { 6851 // fold (or (shl x, (*ext y)), 6852 // (srl x, (*ext (sub 32, y)))) -> 6853 // (rotl x, y) or (rotr x, (sub 32, y)) 6854 // 6855 // fold (or (shl x, (*ext (sub 32, y))), 6856 // (srl x, (*ext y))) -> 6857 // (rotr x, y) or (rotl x, (sub 32, y)) 6858 EVT VT = Shifted.getValueType(); 6859 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, 6860 /*IsRotate*/ true)) { 6861 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6862 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 6863 HasPos ? Pos : Neg); 6864 } 6865 6866 return SDValue(); 6867 } 6868 6869 // A subroutine of MatchRotate used once we have found an OR of two opposite 6870 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces 6871 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the 6872 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6873 // Neg with outer conversions stripped away. 6874 // TODO: Merge with MatchRotatePosNeg. 6875 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, 6876 SDValue Neg, SDValue InnerPos, 6877 SDValue InnerNeg, unsigned PosOpcode, 6878 unsigned NegOpcode, const SDLoc &DL) { 6879 EVT VT = N0.getValueType(); 6880 unsigned EltBits = VT.getScalarSizeInBits(); 6881 6882 // fold (or (shl x0, (*ext y)), 6883 // (srl x1, (*ext (sub 32, y)))) -> 6884 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) 6885 // 6886 // fold (or (shl x0, (*ext (sub 32, y))), 6887 // (srl x1, (*ext y))) -> 6888 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) 6889 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) { 6890 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6891 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, 6892 HasPos ? Pos : Neg); 6893 } 6894 6895 // Matching the shift+xor cases, we can't easily use the xor'd shift amount 6896 // so for now just use the PosOpcode case if its legal. 6897 // TODO: When can we use the NegOpcode case? 6898 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { 6899 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { 6900 if (Op.getOpcode() != BinOpc) 6901 return false; 6902 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); 6903 return Cst && (Cst->getAPIntValue() == Imm); 6904 }; 6905 6906 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) 6907 // -> (fshl x0, x1, y) 6908 if (IsBinOpImm(N1, ISD::SRL, 1) && 6909 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && 6910 InnerPos == InnerNeg.getOperand(0) && 6911 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { 6912 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); 6913 } 6914 6915 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) 6916 // -> (fshr x0, x1, y) 6917 if (IsBinOpImm(N0, ISD::SHL, 1) && 6918 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6919 InnerNeg == InnerPos.getOperand(0) && 6920 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6921 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6922 } 6923 6924 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) 6925 // -> (fshr x0, x1, y) 6926 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? 6927 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && 6928 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6929 InnerNeg == InnerPos.getOperand(0) && 6930 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6931 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6932 } 6933 } 6934 6935 return SDValue(); 6936 } 6937 6938 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 6939 // idioms for rotate, and if the target supports rotation instructions, generate 6940 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but 6941 // with different shifted sources. 6942 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 6943 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 6944 EVT VT = LHS.getValueType(); 6945 if (!TLI.isTypeLegal(VT)) 6946 return SDValue(); 6947 6948 // The target must have at least one rotate/funnel flavor. 6949 bool HasROTL = hasOperation(ISD::ROTL, VT); 6950 bool HasROTR = hasOperation(ISD::ROTR, VT); 6951 bool HasFSHL = hasOperation(ISD::FSHL, VT); 6952 bool HasFSHR = hasOperation(ISD::FSHR, VT); 6953 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 6954 return SDValue(); 6955 6956 // Check for truncated rotate. 6957 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 6958 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 6959 assert(LHS.getValueType() == RHS.getValueType()); 6960 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 6961 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); 6962 } 6963 } 6964 6965 // Match "(X shl/srl V1) & V2" where V2 may not be present. 6966 SDValue LHSShift; // The shift. 6967 SDValue LHSMask; // AND value if any. 6968 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 6969 6970 SDValue RHSShift; // The shift. 6971 SDValue RHSMask; // AND value if any. 6972 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 6973 6974 // If neither side matched a rotate half, bail 6975 if (!LHSShift && !RHSShift) 6976 return SDValue(); 6977 6978 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 6979 // side of the rotate, so try to handle that here. In all cases we need to 6980 // pass the matched shift from the opposite side to compute the opcode and 6981 // needed shift amount to extract. We still want to do this if both sides 6982 // matched a rotate half because one half may be a potential overshift that 6983 // can be broken down (ie if InstCombine merged two shl or srl ops into a 6984 // single one). 6985 6986 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 6987 if (LHSShift) 6988 if (SDValue NewRHSShift = 6989 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 6990 RHSShift = NewRHSShift; 6991 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 6992 if (RHSShift) 6993 if (SDValue NewLHSShift = 6994 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 6995 LHSShift = NewLHSShift; 6996 6997 // If a side is still missing, nothing else we can do. 6998 if (!RHSShift || !LHSShift) 6999 return SDValue(); 7000 7001 // At this point we've matched or extracted a shift op on each side. 7002 7003 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 7004 return SDValue(); // Shifts must disagree. 7005 7006 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); 7007 if (!IsRotate && !(HasFSHL || HasFSHR)) 7008 return SDValue(); // Requires funnel shift support. 7009 7010 // Canonicalize shl to left side in a shl/srl pair. 7011 if (RHSShift.getOpcode() == ISD::SHL) { 7012 std::swap(LHS, RHS); 7013 std::swap(LHSShift, RHSShift); 7014 std::swap(LHSMask, RHSMask); 7015 } 7016 7017 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7018 SDValue LHSShiftArg = LHSShift.getOperand(0); 7019 SDValue LHSShiftAmt = LHSShift.getOperand(1); 7020 SDValue RHSShiftArg = RHSShift.getOperand(0); 7021 SDValue RHSShiftAmt = RHSShift.getOperand(1); 7022 7023 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 7024 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 7025 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) 7026 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) 7027 // iff C1+C2 == EltSizeInBits 7028 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 7029 ConstantSDNode *RHS) { 7030 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 7031 }; 7032 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 7033 SDValue Res; 7034 if (IsRotate && (HasROTL || HasROTR)) 7035 Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, 7036 HasROTL ? LHSShiftAmt : RHSShiftAmt); 7037 else 7038 Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, 7039 RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt); 7040 7041 // If there is an AND of either shifted operand, apply it to the result. 7042 if (LHSMask.getNode() || RHSMask.getNode()) { 7043 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 7044 SDValue Mask = AllOnes; 7045 7046 if (LHSMask.getNode()) { 7047 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 7048 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7049 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 7050 } 7051 if (RHSMask.getNode()) { 7052 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 7053 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 7054 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 7055 } 7056 7057 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); 7058 } 7059 7060 return Res; 7061 } 7062 7063 // If there is a mask here, and we have a variable shift, we can't be sure 7064 // that we're masking out the right stuff. 7065 if (LHSMask.getNode() || RHSMask.getNode()) 7066 return SDValue(); 7067 7068 // If the shift amount is sign/zext/any-extended just peel it off. 7069 SDValue LExtOp0 = LHSShiftAmt; 7070 SDValue RExtOp0 = RHSShiftAmt; 7071 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7072 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7073 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7074 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 7075 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 7076 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 7077 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 7078 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 7079 LExtOp0 = LHSShiftAmt.getOperand(0); 7080 RExtOp0 = RHSShiftAmt.getOperand(0); 7081 } 7082 7083 if (IsRotate && (HasROTL || HasROTR)) { 7084 SDValue TryL = 7085 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, 7086 RExtOp0, ISD::ROTL, ISD::ROTR, DL); 7087 if (TryL) 7088 return TryL; 7089 7090 SDValue TryR = 7091 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, 7092 LExtOp0, ISD::ROTR, ISD::ROTL, DL); 7093 if (TryR) 7094 return TryR; 7095 } 7096 7097 SDValue TryL = 7098 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, 7099 LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); 7100 if (TryL) 7101 return TryL; 7102 7103 SDValue TryR = 7104 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 7105 RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); 7106 if (TryR) 7107 return TryR; 7108 7109 return SDValue(); 7110 } 7111 7112 namespace { 7113 7114 /// Represents known origin of an individual byte in load combine pattern. The 7115 /// value of the byte is either constant zero or comes from memory. 7116 struct ByteProvider { 7117 // For constant zero providers Load is set to nullptr. For memory providers 7118 // Load represents the node which loads the byte from memory. 7119 // ByteOffset is the offset of the byte in the value produced by the load. 7120 LoadSDNode *Load = nullptr; 7121 unsigned ByteOffset = 0; 7122 7123 ByteProvider() = default; 7124 7125 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 7126 return ByteProvider(Load, ByteOffset); 7127 } 7128 7129 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 7130 7131 bool isConstantZero() const { return !Load; } 7132 bool isMemory() const { return Load; } 7133 7134 bool operator==(const ByteProvider &Other) const { 7135 return Other.Load == Load && Other.ByteOffset == ByteOffset; 7136 } 7137 7138 private: 7139 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 7140 : Load(Load), ByteOffset(ByteOffset) {} 7141 }; 7142 7143 } // end anonymous namespace 7144 7145 /// Recursively traverses the expression calculating the origin of the requested 7146 /// byte of the given value. Returns None if the provider can't be calculated. 7147 /// 7148 /// For all the values except the root of the expression verifies that the value 7149 /// has exactly one use and if it's not true return None. This way if the origin 7150 /// of the byte is returned it's guaranteed that the values which contribute to 7151 /// the byte are not used outside of this expression. 7152 /// 7153 /// Because the parts of the expression are not allowed to have more than one 7154 /// use this function iterates over trees, not DAGs. So it never visits the same 7155 /// node more than once. 7156 static const Optional<ByteProvider> 7157 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 7158 bool Root = false) { 7159 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 7160 if (Depth == 10) 7161 return None; 7162 7163 if (!Root && !Op.hasOneUse()) 7164 return None; 7165 7166 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 7167 unsigned BitWidth = Op.getValueSizeInBits(); 7168 if (BitWidth % 8 != 0) 7169 return None; 7170 unsigned ByteWidth = BitWidth / 8; 7171 assert(Index < ByteWidth && "invalid index requested"); 7172 (void) ByteWidth; 7173 7174 switch (Op.getOpcode()) { 7175 case ISD::OR: { 7176 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 7177 if (!LHS) 7178 return None; 7179 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 7180 if (!RHS) 7181 return None; 7182 7183 if (LHS->isConstantZero()) 7184 return RHS; 7185 if (RHS->isConstantZero()) 7186 return LHS; 7187 return None; 7188 } 7189 case ISD::SHL: { 7190 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 7191 if (!ShiftOp) 7192 return None; 7193 7194 uint64_t BitShift = ShiftOp->getZExtValue(); 7195 if (BitShift % 8 != 0) 7196 return None; 7197 uint64_t ByteShift = BitShift / 8; 7198 7199 return Index < ByteShift 7200 ? ByteProvider::getConstantZero() 7201 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 7202 Depth + 1); 7203 } 7204 case ISD::ANY_EXTEND: 7205 case ISD::SIGN_EXTEND: 7206 case ISD::ZERO_EXTEND: { 7207 SDValue NarrowOp = Op->getOperand(0); 7208 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 7209 if (NarrowBitWidth % 8 != 0) 7210 return None; 7211 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7212 7213 if (Index >= NarrowByteWidth) 7214 return Op.getOpcode() == ISD::ZERO_EXTEND 7215 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7216 : None; 7217 return calculateByteProvider(NarrowOp, Index, Depth + 1); 7218 } 7219 case ISD::BSWAP: 7220 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 7221 Depth + 1); 7222 case ISD::LOAD: { 7223 auto L = cast<LoadSDNode>(Op.getNode()); 7224 if (!L->isSimple() || L->isIndexed()) 7225 return None; 7226 7227 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 7228 if (NarrowBitWidth % 8 != 0) 7229 return None; 7230 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7231 7232 if (Index >= NarrowByteWidth) 7233 return L->getExtensionType() == ISD::ZEXTLOAD 7234 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7235 : None; 7236 return ByteProvider::getMemory(L, Index); 7237 } 7238 } 7239 7240 return None; 7241 } 7242 7243 static unsigned littleEndianByteAt(unsigned BW, unsigned i) { 7244 return i; 7245 } 7246 7247 static unsigned bigEndianByteAt(unsigned BW, unsigned i) { 7248 return BW - i - 1; 7249 } 7250 7251 // Check if the bytes offsets we are looking at match with either big or 7252 // little endian value loaded. Return true for big endian, false for little 7253 // endian, and None if match failed. 7254 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, 7255 int64_t FirstOffset) { 7256 // The endian can be decided only when it is 2 bytes at least. 7257 unsigned Width = ByteOffsets.size(); 7258 if (Width < 2) 7259 return None; 7260 7261 bool BigEndian = true, LittleEndian = true; 7262 for (unsigned i = 0; i < Width; i++) { 7263 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 7264 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); 7265 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); 7266 if (!BigEndian && !LittleEndian) 7267 return None; 7268 } 7269 7270 assert((BigEndian != LittleEndian) && "It should be either big endian or" 7271 "little endian"); 7272 return BigEndian; 7273 } 7274 7275 static SDValue stripTruncAndExt(SDValue Value) { 7276 switch (Value.getOpcode()) { 7277 case ISD::TRUNCATE: 7278 case ISD::ZERO_EXTEND: 7279 case ISD::SIGN_EXTEND: 7280 case ISD::ANY_EXTEND: 7281 return stripTruncAndExt(Value.getOperand(0)); 7282 } 7283 return Value; 7284 } 7285 7286 /// Match a pattern where a wide type scalar value is stored by several narrow 7287 /// stores. Fold it into a single store or a BSWAP and a store if the targets 7288 /// supports it. 7289 /// 7290 /// Assuming little endian target: 7291 /// i8 *p = ... 7292 /// i32 val = ... 7293 /// p[0] = (val >> 0) & 0xFF; 7294 /// p[1] = (val >> 8) & 0xFF; 7295 /// p[2] = (val >> 16) & 0xFF; 7296 /// p[3] = (val >> 24) & 0xFF; 7297 /// => 7298 /// *((i32)p) = val; 7299 /// 7300 /// i8 *p = ... 7301 /// i32 val = ... 7302 /// p[0] = (val >> 24) & 0xFF; 7303 /// p[1] = (val >> 16) & 0xFF; 7304 /// p[2] = (val >> 8) & 0xFF; 7305 /// p[3] = (val >> 0) & 0xFF; 7306 /// => 7307 /// *((i32)p) = BSWAP(val); 7308 SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { 7309 // The matching looks for "store (trunc x)" patterns that appear early but are 7310 // likely to be replaced by truncating store nodes during combining. 7311 // TODO: If there is evidence that running this later would help, this 7312 // limitation could be removed. Legality checks may need to be added 7313 // for the created store and optional bswap/rotate. 7314 if (LegalOperations) 7315 return SDValue(); 7316 7317 // We only handle merging simple stores of 1-4 bytes. 7318 // TODO: Allow unordered atomics when wider type is legal (see D66309) 7319 EVT MemVT = N->getMemoryVT(); 7320 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || 7321 !N->isSimple() || N->isIndexed()) 7322 return SDValue(); 7323 7324 // Collect all of the stores in the chain. 7325 SDValue Chain = N->getChain(); 7326 SmallVector<StoreSDNode *, 8> Stores = {N}; 7327 while (auto *Store = dyn_cast<StoreSDNode>(Chain)) { 7328 // All stores must be the same size to ensure that we are writing all of the 7329 // bytes in the wide value. 7330 // TODO: We could allow multiple sizes by tracking each stored byte. 7331 if (Store->getMemoryVT() != MemVT || !Store->isSimple() || 7332 Store->isIndexed()) 7333 return SDValue(); 7334 Stores.push_back(Store); 7335 Chain = Store->getChain(); 7336 } 7337 // There is no reason to continue if we do not have at least a pair of stores. 7338 if (Stores.size() < 2) 7339 return SDValue(); 7340 7341 // Handle simple types only. 7342 LLVMContext &Context = *DAG.getContext(); 7343 unsigned NumStores = Stores.size(); 7344 unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits(); 7345 unsigned WideNumBits = NumStores * NarrowNumBits; 7346 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); 7347 if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) 7348 return SDValue(); 7349 7350 // Check if all bytes of the source value that we are looking at are stored 7351 // to the same base address. Collect offsets from Base address into OffsetMap. 7352 SDValue SourceValue; 7353 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); 7354 int64_t FirstOffset = INT64_MAX; 7355 StoreSDNode *FirstStore = nullptr; 7356 Optional<BaseIndexOffset> Base; 7357 for (auto Store : Stores) { 7358 // All the stores store different parts of the CombinedValue. A truncate is 7359 // required to get the partial value. 7360 SDValue Trunc = Store->getValue(); 7361 if (Trunc.getOpcode() != ISD::TRUNCATE) 7362 return SDValue(); 7363 // Other than the first/last part, a shift operation is required to get the 7364 // offset. 7365 int64_t Offset = 0; 7366 SDValue WideVal = Trunc.getOperand(0); 7367 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && 7368 isa<ConstantSDNode>(WideVal.getOperand(1))) { 7369 // The shift amount must be a constant multiple of the narrow type. 7370 // It is translated to the offset address in the wide source value "y". 7371 // 7372 // x = srl y, ShiftAmtC 7373 // i8 z = trunc x 7374 // store z, ... 7375 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); 7376 if (ShiftAmtC % NarrowNumBits != 0) 7377 return SDValue(); 7378 7379 Offset = ShiftAmtC / NarrowNumBits; 7380 WideVal = WideVal.getOperand(0); 7381 } 7382 7383 // Stores must share the same source value with different offsets. 7384 // Truncate and extends should be stripped to get the single source value. 7385 if (!SourceValue) 7386 SourceValue = WideVal; 7387 else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) 7388 return SDValue(); 7389 else if (SourceValue.getValueType() != WideVT) { 7390 if (WideVal.getValueType() == WideVT || 7391 WideVal.getScalarValueSizeInBits() > 7392 SourceValue.getScalarValueSizeInBits()) 7393 SourceValue = WideVal; 7394 // Give up if the source value type is smaller than the store size. 7395 if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) 7396 return SDValue(); 7397 } 7398 7399 // Stores must share the same base address. 7400 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); 7401 int64_t ByteOffsetFromBase = 0; 7402 if (!Base) 7403 Base = Ptr; 7404 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7405 return SDValue(); 7406 7407 // Remember the first store. 7408 if (ByteOffsetFromBase < FirstOffset) { 7409 FirstStore = Store; 7410 FirstOffset = ByteOffsetFromBase; 7411 } 7412 // Map the offset in the store and the offset in the combined value, and 7413 // early return if it has been set before. 7414 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) 7415 return SDValue(); 7416 OffsetMap[Offset] = ByteOffsetFromBase; 7417 } 7418 7419 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7420 assert(FirstStore && "First store must be set"); 7421 7422 // Check that a store of the wide type is both allowed and fast on the target 7423 const DataLayout &Layout = DAG.getDataLayout(); 7424 bool Fast = false; 7425 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, 7426 *FirstStore->getMemOperand(), &Fast); 7427 if (!Allowed || !Fast) 7428 return SDValue(); 7429 7430 // Check if the pieces of the value are going to the expected places in memory 7431 // to merge the stores. 7432 auto checkOffsets = [&](bool MatchLittleEndian) { 7433 if (MatchLittleEndian) { 7434 for (unsigned i = 0; i != NumStores; ++i) 7435 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) 7436 return false; 7437 } else { // MatchBigEndian by reversing loop counter. 7438 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) 7439 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) 7440 return false; 7441 } 7442 return true; 7443 }; 7444 7445 // Check if the offsets line up for the native data layout of this target. 7446 bool NeedBswap = false; 7447 bool NeedRotate = false; 7448 if (!checkOffsets(Layout.isLittleEndian())) { 7449 // Special-case: check if byte offsets line up for the opposite endian. 7450 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) 7451 NeedBswap = true; 7452 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) 7453 NeedRotate = true; 7454 else 7455 return SDValue(); 7456 } 7457 7458 SDLoc DL(N); 7459 if (WideVT != SourceValue.getValueType()) { 7460 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && 7461 "Unexpected store value to merge"); 7462 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); 7463 } 7464 7465 // Before legalize we can introduce illegal bswaps/rotates which will be later 7466 // converted to an explicit bswap sequence. This way we end up with a single 7467 // store and byte shuffling instead of several stores and byte shuffling. 7468 if (NeedBswap) { 7469 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); 7470 } else if (NeedRotate) { 7471 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); 7472 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); 7473 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); 7474 } 7475 7476 SDValue NewStore = 7477 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), 7478 FirstStore->getPointerInfo(), FirstStore->getAlign()); 7479 7480 // Rely on other DAG combine rules to remove the other individual stores. 7481 DAG.ReplaceAllUsesWith(N, NewStore.getNode()); 7482 return NewStore; 7483 } 7484 7485 /// Match a pattern where a wide type scalar value is loaded by several narrow 7486 /// loads and combined by shifts and ors. Fold it into a single load or a load 7487 /// and a BSWAP if the targets supports it. 7488 /// 7489 /// Assuming little endian target: 7490 /// i8 *a = ... 7491 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 7492 /// => 7493 /// i32 val = *((i32)a) 7494 /// 7495 /// i8 *a = ... 7496 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 7497 /// => 7498 /// i32 val = BSWAP(*((i32)a)) 7499 /// 7500 /// TODO: This rule matches complex patterns with OR node roots and doesn't 7501 /// interact well with the worklist mechanism. When a part of the pattern is 7502 /// updated (e.g. one of the loads) its direct users are put into the worklist, 7503 /// but the root node of the pattern which triggers the load combine is not 7504 /// necessarily a direct user of the changed node. For example, once the address 7505 /// of t28 load is reassociated load combine won't be triggered: 7506 /// t25: i32 = add t4, Constant:i32<2> 7507 /// t26: i64 = sign_extend t25 7508 /// t27: i64 = add t2, t26 7509 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 7510 /// t29: i32 = zero_extend t28 7511 /// t32: i32 = shl t29, Constant:i8<8> 7512 /// t33: i32 = or t23, t32 7513 /// As a possible fix visitLoad can check if the load can be a part of a load 7514 /// combine pattern and add corresponding OR roots to the worklist. 7515 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 7516 assert(N->getOpcode() == ISD::OR && 7517 "Can only match load combining against OR nodes"); 7518 7519 // Handles simple types only 7520 EVT VT = N->getValueType(0); 7521 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 7522 return SDValue(); 7523 unsigned ByteWidth = VT.getSizeInBits() / 8; 7524 7525 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 7526 auto MemoryByteOffset = [&] (ByteProvider P) { 7527 assert(P.isMemory() && "Must be a memory byte provider"); 7528 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 7529 assert(LoadBitWidth % 8 == 0 && 7530 "can only analyze providers for individual bytes not bit"); 7531 unsigned LoadByteWidth = LoadBitWidth / 8; 7532 return IsBigEndianTarget 7533 ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) 7534 : littleEndianByteAt(LoadByteWidth, P.ByteOffset); 7535 }; 7536 7537 Optional<BaseIndexOffset> Base; 7538 SDValue Chain; 7539 7540 SmallPtrSet<LoadSDNode *, 8> Loads; 7541 Optional<ByteProvider> FirstByteProvider; 7542 int64_t FirstOffset = INT64_MAX; 7543 7544 // Check if all the bytes of the OR we are looking at are loaded from the same 7545 // base address. Collect bytes offsets from Base address in ByteOffsets. 7546 SmallVector<int64_t, 8> ByteOffsets(ByteWidth); 7547 unsigned ZeroExtendedBytes = 0; 7548 for (int i = ByteWidth - 1; i >= 0; --i) { 7549 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 7550 if (!P) 7551 return SDValue(); 7552 7553 if (P->isConstantZero()) { 7554 // It's OK for the N most significant bytes to be 0, we can just 7555 // zero-extend the load. 7556 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) 7557 return SDValue(); 7558 continue; 7559 } 7560 assert(P->isMemory() && "provenance should either be memory or zero"); 7561 7562 LoadSDNode *L = P->Load; 7563 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && 7564 !L->isIndexed() && 7565 "Must be enforced by calculateByteProvider"); 7566 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 7567 7568 // All loads must share the same chain 7569 SDValue LChain = L->getChain(); 7570 if (!Chain) 7571 Chain = LChain; 7572 else if (Chain != LChain) 7573 return SDValue(); 7574 7575 // Loads must share the same base address 7576 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 7577 int64_t ByteOffsetFromBase = 0; 7578 if (!Base) 7579 Base = Ptr; 7580 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7581 return SDValue(); 7582 7583 // Calculate the offset of the current byte from the base address 7584 ByteOffsetFromBase += MemoryByteOffset(*P); 7585 ByteOffsets[i] = ByteOffsetFromBase; 7586 7587 // Remember the first byte load 7588 if (ByteOffsetFromBase < FirstOffset) { 7589 FirstByteProvider = P; 7590 FirstOffset = ByteOffsetFromBase; 7591 } 7592 7593 Loads.insert(L); 7594 } 7595 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 7596 "memory, so there must be at least one load which produces the value"); 7597 assert(Base && "Base address of the accessed memory location must be set"); 7598 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7599 7600 bool NeedsZext = ZeroExtendedBytes > 0; 7601 7602 EVT MemVT = 7603 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); 7604 7605 if (!MemVT.isSimple()) 7606 return SDValue(); 7607 7608 // Before legalize we can introduce too wide illegal loads which will be later 7609 // split into legal sized loads. This enables us to combine i64 load by i8 7610 // patterns to a couple of i32 loads on 32 bit targets. 7611 if (LegalOperations && 7612 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 7613 MemVT)) 7614 return SDValue(); 7615 7616 // Check if the bytes of the OR we are looking at match with either big or 7617 // little endian value load 7618 Optional<bool> IsBigEndian = isBigEndian( 7619 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); 7620 if (!IsBigEndian.hasValue()) 7621 return SDValue(); 7622 7623 assert(FirstByteProvider && "must be set"); 7624 7625 // Ensure that the first byte is loaded from zero offset of the first load. 7626 // So the combined value can be loaded from the first load address. 7627 if (MemoryByteOffset(*FirstByteProvider) != 0) 7628 return SDValue(); 7629 LoadSDNode *FirstLoad = FirstByteProvider->Load; 7630 7631 // The node we are looking at matches with the pattern, check if we can 7632 // replace it with a single (possibly zero-extended) load and bswap + shift if 7633 // needed. 7634 7635 // If the load needs byte swap check if the target supports it 7636 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 7637 7638 // Before legalize we can introduce illegal bswaps which will be later 7639 // converted to an explicit bswap sequence. This way we end up with a single 7640 // load and byte shuffling instead of several loads and byte shuffling. 7641 // We do not introduce illegal bswaps when zero-extending as this tends to 7642 // introduce too many arithmetic instructions. 7643 if (NeedsBswap && (LegalOperations || NeedsZext) && 7644 !TLI.isOperationLegal(ISD::BSWAP, VT)) 7645 return SDValue(); 7646 7647 // If we need to bswap and zero extend, we have to insert a shift. Check that 7648 // it is legal. 7649 if (NeedsBswap && NeedsZext && LegalOperations && 7650 !TLI.isOperationLegal(ISD::SHL, VT)) 7651 return SDValue(); 7652 7653 // Check that a load of the wide type is both allowed and fast on the target 7654 bool Fast = false; 7655 bool Allowed = 7656 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 7657 *FirstLoad->getMemOperand(), &Fast); 7658 if (!Allowed || !Fast) 7659 return SDValue(); 7660 7661 SDValue NewLoad = 7662 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, 7663 Chain, FirstLoad->getBasePtr(), 7664 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); 7665 7666 // Transfer chain users from old loads to the new load. 7667 for (LoadSDNode *L : Loads) 7668 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 7669 7670 if (!NeedsBswap) 7671 return NewLoad; 7672 7673 SDValue ShiftedLoad = 7674 NeedsZext 7675 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, 7676 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, 7677 SDLoc(N), LegalOperations)) 7678 : NewLoad; 7679 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); 7680 } 7681 7682 // If the target has andn, bsl, or a similar bit-select instruction, 7683 // we want to unfold masked merge, with canonical pattern of: 7684 // | A | |B| 7685 // ((x ^ y) & m) ^ y 7686 // | D | 7687 // Into: 7688 // (x & m) | (y & ~m) 7689 // If y is a constant, and the 'andn' does not work with immediates, 7690 // we unfold into a different pattern: 7691 // ~(~x & m) & (m | y) 7692 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 7693 // the very least that breaks andnpd / andnps patterns, and because those 7694 // patterns are simplified in IR and shouldn't be created in the DAG 7695 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 7696 assert(N->getOpcode() == ISD::XOR); 7697 7698 // Don't touch 'not' (i.e. where y = -1). 7699 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 7700 return SDValue(); 7701 7702 EVT VT = N->getValueType(0); 7703 7704 // There are 3 commutable operators in the pattern, 7705 // so we have to deal with 8 possible variants of the basic pattern. 7706 SDValue X, Y, M; 7707 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 7708 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 7709 return false; 7710 SDValue Xor = And.getOperand(XorIdx); 7711 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 7712 return false; 7713 SDValue Xor0 = Xor.getOperand(0); 7714 SDValue Xor1 = Xor.getOperand(1); 7715 // Don't touch 'not' (i.e. where y = -1). 7716 if (isAllOnesOrAllOnesSplat(Xor1)) 7717 return false; 7718 if (Other == Xor0) 7719 std::swap(Xor0, Xor1); 7720 if (Other != Xor1) 7721 return false; 7722 X = Xor0; 7723 Y = Xor1; 7724 M = And.getOperand(XorIdx ? 0 : 1); 7725 return true; 7726 }; 7727 7728 SDValue N0 = N->getOperand(0); 7729 SDValue N1 = N->getOperand(1); 7730 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 7731 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 7732 return SDValue(); 7733 7734 // Don't do anything if the mask is constant. This should not be reachable. 7735 // InstCombine should have already unfolded this pattern, and DAGCombiner 7736 // probably shouldn't produce it, too. 7737 if (isa<ConstantSDNode>(M.getNode())) 7738 return SDValue(); 7739 7740 // We can transform if the target has AndNot 7741 if (!TLI.hasAndNot(M)) 7742 return SDValue(); 7743 7744 SDLoc DL(N); 7745 7746 // If Y is a constant, check that 'andn' works with immediates. 7747 if (!TLI.hasAndNot(Y)) { 7748 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 7749 // If not, we need to do a bit more work to make sure andn is still used. 7750 SDValue NotX = DAG.getNOT(DL, X, VT); 7751 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 7752 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 7753 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 7754 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 7755 } 7756 7757 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 7758 SDValue NotM = DAG.getNOT(DL, M, VT); 7759 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 7760 7761 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 7762 } 7763 7764 SDValue DAGCombiner::visitXOR(SDNode *N) { 7765 SDValue N0 = N->getOperand(0); 7766 SDValue N1 = N->getOperand(1); 7767 EVT VT = N0.getValueType(); 7768 7769 // fold vector ops 7770 if (VT.isVector()) { 7771 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7772 return FoldedVOp; 7773 7774 // fold (xor x, 0) -> x, vector edition 7775 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 7776 return N1; 7777 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) 7778 return N0; 7779 } 7780 7781 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 7782 SDLoc DL(N); 7783 if (N0.isUndef() && N1.isUndef()) 7784 return DAG.getConstant(0, DL, VT); 7785 7786 // fold (xor x, undef) -> undef 7787 if (N0.isUndef()) 7788 return N0; 7789 if (N1.isUndef()) 7790 return N1; 7791 7792 // fold (xor c1, c2) -> c1^c2 7793 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) 7794 return C; 7795 7796 // canonicalize constant to RHS 7797 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 7798 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 7799 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 7800 7801 // fold (xor x, 0) -> x 7802 if (isNullConstant(N1)) 7803 return N0; 7804 7805 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7806 return NewSel; 7807 7808 // reassociate xor 7809 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 7810 return RXOR; 7811 7812 // fold !(x cc y) -> (x !cc y) 7813 unsigned N0Opcode = N0.getOpcode(); 7814 SDValue LHS, RHS, CC; 7815 if (TLI.isConstTrueVal(N1.getNode()) && 7816 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) { 7817 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 7818 LHS.getValueType()); 7819 if (!LegalOperations || 7820 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 7821 switch (N0Opcode) { 7822 default: 7823 llvm_unreachable("Unhandled SetCC Equivalent!"); 7824 case ISD::SETCC: 7825 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 7826 case ISD::SELECT_CC: 7827 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 7828 N0.getOperand(3), NotCC); 7829 case ISD::STRICT_FSETCC: 7830 case ISD::STRICT_FSETCCS: { 7831 if (N0.hasOneUse()) { 7832 // FIXME Can we handle multiple uses? Could we token factor the chain 7833 // results from the new/old setcc? 7834 SDValue SetCC = 7835 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, 7836 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); 7837 CombineTo(N, SetCC); 7838 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); 7839 recursivelyDeleteUnusedNodes(N0.getNode()); 7840 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7841 } 7842 break; 7843 } 7844 } 7845 } 7846 } 7847 7848 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 7849 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 7850 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 7851 SDValue V = N0.getOperand(0); 7852 SDLoc DL0(N0); 7853 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 7854 DAG.getConstant(1, DL0, V.getValueType())); 7855 AddToWorklist(V.getNode()); 7856 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 7857 } 7858 7859 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 7860 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 7861 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7862 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7863 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { 7864 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7865 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7866 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7867 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7868 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7869 } 7870 } 7871 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 7872 if (isAllOnesConstant(N1) && N0.hasOneUse() && 7873 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7874 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7875 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { 7876 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7877 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7878 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7879 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7880 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7881 } 7882 } 7883 7884 // fold (not (neg x)) -> (add X, -1) 7885 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if 7886 // Y is a constant or the subtract has a single use. 7887 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && 7888 isNullConstant(N0.getOperand(0))) { 7889 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), 7890 DAG.getAllOnesConstant(DL, VT)); 7891 } 7892 7893 // fold (not (add X, -1)) -> (neg X) 7894 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && 7895 isAllOnesOrAllOnesSplat(N0.getOperand(1))) { 7896 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 7897 N0.getOperand(0)); 7898 } 7899 7900 // fold (xor (and x, y), y) -> (and (not x), y) 7901 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 7902 SDValue X = N0.getOperand(0); 7903 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 7904 AddToWorklist(NotX.getNode()); 7905 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 7906 } 7907 7908 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 7909 ConstantSDNode *XorC = isConstOrConstSplat(N1); 7910 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 7911 unsigned BitWidth = VT.getScalarSizeInBits(); 7912 if (XorC && ShiftC) { 7913 // Don't crash on an oversized shift. We can not guarantee that a bogus 7914 // shift has been simplified to undef. 7915 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 7916 if (ShiftAmt < BitWidth) { 7917 APInt Ones = APInt::getAllOnesValue(BitWidth); 7918 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 7919 if (XorC->getAPIntValue() == Ones) { 7920 // If the xor constant is a shifted -1, do a 'not' before the shift: 7921 // xor (X << ShiftC), XorC --> (not X) << ShiftC 7922 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 7923 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 7924 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 7925 } 7926 } 7927 } 7928 } 7929 7930 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 7931 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 7932 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 7933 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 7934 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 7935 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 7936 SDValue S0 = S.getOperand(0); 7937 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) 7938 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 7939 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 7940 return DAG.getNode(ISD::ABS, DL, VT, S0); 7941 } 7942 } 7943 7944 // fold (xor x, x) -> 0 7945 if (N0 == N1) 7946 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 7947 7948 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 7949 // Here is a concrete example of this equivalence: 7950 // i16 x == 14 7951 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 7952 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 7953 // 7954 // => 7955 // 7956 // i16 ~1 == 0b1111111111111110 7957 // i16 rol(~1, 14) == 0b1011111111111111 7958 // 7959 // Some additional tips to help conceptualize this transform: 7960 // - Try to see the operation as placing a single zero in a value of all ones. 7961 // - There exists no value for x which would allow the result to contain zero. 7962 // - Values of x larger than the bitwidth are undefined and do not require a 7963 // consistent result. 7964 // - Pushing the zero left requires shifting one bits in from the right. 7965 // A rotate left of ~1 is a nice way of achieving the desired result. 7966 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 7967 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 7968 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 7969 N0.getOperand(1)); 7970 } 7971 7972 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 7973 if (N0Opcode == N1.getOpcode()) 7974 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 7975 return V; 7976 7977 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 7978 if (SDValue MM = unfoldMaskedMerge(N)) 7979 return MM; 7980 7981 // Simplify the expression using non-local knowledge. 7982 if (SimplifyDemandedBits(SDValue(N, 0))) 7983 return SDValue(N, 0); 7984 7985 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 7986 return Combined; 7987 7988 return SDValue(); 7989 } 7990 7991 /// If we have a shift-by-constant of a bitwise logic op that itself has a 7992 /// shift-by-constant operand with identical opcode, we may be able to convert 7993 /// that into 2 independent shifts followed by the logic op. This is a 7994 /// throughput improvement. 7995 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { 7996 // Match a one-use bitwise logic op. 7997 SDValue LogicOp = Shift->getOperand(0); 7998 if (!LogicOp.hasOneUse()) 7999 return SDValue(); 8000 8001 unsigned LogicOpcode = LogicOp.getOpcode(); 8002 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && 8003 LogicOpcode != ISD::XOR) 8004 return SDValue(); 8005 8006 // Find a matching one-use shift by constant. 8007 unsigned ShiftOpcode = Shift->getOpcode(); 8008 SDValue C1 = Shift->getOperand(1); 8009 ConstantSDNode *C1Node = isConstOrConstSplat(C1); 8010 assert(C1Node && "Expected a shift with constant operand"); 8011 const APInt &C1Val = C1Node->getAPIntValue(); 8012 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, 8013 const APInt *&ShiftAmtVal) { 8014 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) 8015 return false; 8016 8017 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); 8018 if (!ShiftCNode) 8019 return false; 8020 8021 // Capture the shifted operand and shift amount value. 8022 ShiftOp = V.getOperand(0); 8023 ShiftAmtVal = &ShiftCNode->getAPIntValue(); 8024 8025 // Shift amount types do not have to match their operand type, so check that 8026 // the constants are the same width. 8027 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) 8028 return false; 8029 8030 // The fold is not valid if the sum of the shift values exceeds bitwidth. 8031 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) 8032 return false; 8033 8034 return true; 8035 }; 8036 8037 // Logic ops are commutative, so check each operand for a match. 8038 SDValue X, Y; 8039 const APInt *C0Val; 8040 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) 8041 Y = LogicOp.getOperand(1); 8042 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) 8043 Y = LogicOp.getOperand(0); 8044 else 8045 return SDValue(); 8046 8047 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 8048 SDLoc DL(Shift); 8049 EVT VT = Shift->getValueType(0); 8050 EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); 8051 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); 8052 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); 8053 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); 8054 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); 8055 } 8056 8057 /// Handle transforms common to the three shifts, when the shift amount is a 8058 /// constant. 8059 /// We are looking for: (shift being one of shl/sra/srl) 8060 /// shift (binop X, C0), C1 8061 /// And want to transform into: 8062 /// binop (shift X, C1), (shift C0, C1) 8063 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { 8064 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); 8065 8066 // Do not turn a 'not' into a regular xor. 8067 if (isBitwiseNot(N->getOperand(0))) 8068 return SDValue(); 8069 8070 // The inner binop must be one-use, since we want to replace it. 8071 SDValue LHS = N->getOperand(0); 8072 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) 8073 return SDValue(); 8074 8075 // TODO: This is limited to early combining because it may reveal regressions 8076 // otherwise. But since we just checked a target hook to see if this is 8077 // desirable, that should have filtered out cases where this interferes 8078 // with some other pattern matching. 8079 if (!LegalTypes) 8080 if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) 8081 return R; 8082 8083 // We want to pull some binops through shifts, so that we have (and (shift)) 8084 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 8085 // thing happens with address calculations, so it's important to canonicalize 8086 // it. 8087 switch (LHS.getOpcode()) { 8088 default: 8089 return SDValue(); 8090 case ISD::OR: 8091 case ISD::XOR: 8092 case ISD::AND: 8093 break; 8094 case ISD::ADD: 8095 if (N->getOpcode() != ISD::SHL) 8096 return SDValue(); // only shl(add) not sr[al](add). 8097 break; 8098 } 8099 8100 // We require the RHS of the binop to be a constant and not opaque as well. 8101 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); 8102 if (!BinOpCst) 8103 return SDValue(); 8104 8105 // FIXME: disable this unless the input to the binop is a shift by a constant 8106 // or is copy/select. Enable this in other cases when figure out it's exactly 8107 // profitable. 8108 SDValue BinOpLHSVal = LHS.getOperand(0); 8109 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 8110 BinOpLHSVal.getOpcode() == ISD::SRA || 8111 BinOpLHSVal.getOpcode() == ISD::SRL) && 8112 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 8113 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 8114 BinOpLHSVal.getOpcode() == ISD::SELECT; 8115 8116 if (!IsShiftByConstant && !IsCopyOrSelect) 8117 return SDValue(); 8118 8119 if (IsCopyOrSelect && N->hasOneUse()) 8120 return SDValue(); 8121 8122 // Fold the constants, shifting the binop RHS by the shift amount. 8123 SDLoc DL(N); 8124 EVT VT = N->getValueType(0); 8125 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), 8126 N->getOperand(1)); 8127 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 8128 8129 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), 8130 N->getOperand(1)); 8131 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); 8132 } 8133 8134 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 8135 assert(N->getOpcode() == ISD::TRUNCATE); 8136 assert(N->getOperand(0).getOpcode() == ISD::AND); 8137 8138 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 8139 EVT TruncVT = N->getValueType(0); 8140 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 8141 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 8142 SDValue N01 = N->getOperand(0).getOperand(1); 8143 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 8144 SDLoc DL(N); 8145 SDValue N00 = N->getOperand(0).getOperand(0); 8146 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 8147 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 8148 AddToWorklist(Trunc00.getNode()); 8149 AddToWorklist(Trunc01.getNode()); 8150 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 8151 } 8152 } 8153 8154 return SDValue(); 8155 } 8156 8157 SDValue DAGCombiner::visitRotate(SDNode *N) { 8158 SDLoc dl(N); 8159 SDValue N0 = N->getOperand(0); 8160 SDValue N1 = N->getOperand(1); 8161 EVT VT = N->getValueType(0); 8162 unsigned Bitsize = VT.getScalarSizeInBits(); 8163 8164 // fold (rot x, 0) -> x 8165 if (isNullOrNullSplat(N1)) 8166 return N0; 8167 8168 // fold (rot x, c) -> x iff (c % BitSize) == 0 8169 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 8170 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 8171 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 8172 return N0; 8173 } 8174 8175 // fold (rot x, c) -> (rot x, c % BitSize) 8176 bool OutOfRange = false; 8177 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { 8178 OutOfRange |= C->getAPIntValue().uge(Bitsize); 8179 return true; 8180 }; 8181 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { 8182 EVT AmtVT = N1.getValueType(); 8183 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); 8184 if (SDValue Amt = 8185 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) 8186 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); 8187 } 8188 8189 // rot i16 X, 8 --> bswap X 8190 auto *RotAmtC = isConstOrConstSplat(N1); 8191 if (RotAmtC && RotAmtC->getAPIntValue() == 8 && 8192 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) 8193 return DAG.getNode(ISD::BSWAP, dl, VT, N0); 8194 8195 // Simplify the operands using demanded-bits information. 8196 if (SimplifyDemandedBits(SDValue(N, 0))) 8197 return SDValue(N, 0); 8198 8199 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 8200 if (N1.getOpcode() == ISD::TRUNCATE && 8201 N1.getOperand(0).getOpcode() == ISD::AND) { 8202 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8203 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 8204 } 8205 8206 unsigned NextOp = N0.getOpcode(); 8207 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 8208 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 8209 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 8210 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 8211 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 8212 EVT ShiftVT = C1->getValueType(0); 8213 bool SameSide = (N->getOpcode() == NextOp); 8214 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 8215 if (SDValue CombinedShift = DAG.FoldConstantArithmetic( 8216 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { 8217 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 8218 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 8219 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); 8220 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 8221 CombinedShiftNorm); 8222 } 8223 } 8224 } 8225 return SDValue(); 8226 } 8227 8228 SDValue DAGCombiner::visitSHL(SDNode *N) { 8229 SDValue N0 = N->getOperand(0); 8230 SDValue N1 = N->getOperand(1); 8231 if (SDValue V = DAG.simplifyShift(N0, N1)) 8232 return V; 8233 8234 EVT VT = N0.getValueType(); 8235 EVT ShiftVT = N1.getValueType(); 8236 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8237 8238 // fold vector ops 8239 if (VT.isVector()) { 8240 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8241 return FoldedVOp; 8242 8243 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 8244 // If setcc produces all-one true value then: 8245 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 8246 if (N1CV && N1CV->isConstant()) { 8247 if (N0.getOpcode() == ISD::AND) { 8248 SDValue N00 = N0->getOperand(0); 8249 SDValue N01 = N0->getOperand(1); 8250 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 8251 8252 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 8253 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 8254 TargetLowering::ZeroOrNegativeOneBooleanContent) { 8255 if (SDValue C = 8256 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) 8257 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 8258 } 8259 } 8260 } 8261 } 8262 8263 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8264 8265 // fold (shl c1, c2) -> c1<<c2 8266 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) 8267 return C; 8268 8269 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8270 return NewSel; 8271 8272 // if (shl x, c) is known to be zero, return 0 8273 if (DAG.MaskedValueIsZero(SDValue(N, 0), 8274 APInt::getAllOnesValue(OpSizeInBits))) 8275 return DAG.getConstant(0, SDLoc(N), VT); 8276 8277 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 8278 if (N1.getOpcode() == ISD::TRUNCATE && 8279 N1.getOperand(0).getOpcode() == ISD::AND) { 8280 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8281 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 8282 } 8283 8284 if (SimplifyDemandedBits(SDValue(N, 0))) 8285 return SDValue(N, 0); 8286 8287 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 8288 if (N0.getOpcode() == ISD::SHL) { 8289 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8290 ConstantSDNode *RHS) { 8291 APInt c1 = LHS->getAPIntValue(); 8292 APInt c2 = RHS->getAPIntValue(); 8293 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8294 return (c1 + c2).uge(OpSizeInBits); 8295 }; 8296 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8297 return DAG.getConstant(0, SDLoc(N), VT); 8298 8299 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8300 ConstantSDNode *RHS) { 8301 APInt c1 = LHS->getAPIntValue(); 8302 APInt c2 = RHS->getAPIntValue(); 8303 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8304 return (c1 + c2).ult(OpSizeInBits); 8305 }; 8306 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8307 SDLoc DL(N); 8308 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8309 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 8310 } 8311 } 8312 8313 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) 8314 // For this to be valid, the second form must not preserve any of the bits 8315 // that are shifted out by the inner shift in the first form. This means 8316 // the outer shift size must be >= the number of bits added by the ext. 8317 // As a corollary, we don't care what kind of ext it is. 8318 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 8319 N0.getOpcode() == ISD::ANY_EXTEND || 8320 N0.getOpcode() == ISD::SIGN_EXTEND) && 8321 N0.getOperand(0).getOpcode() == ISD::SHL) { 8322 SDValue N0Op0 = N0.getOperand(0); 8323 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8324 EVT InnerVT = N0Op0.getValueType(); 8325 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); 8326 8327 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8328 ConstantSDNode *RHS) { 8329 APInt c1 = LHS->getAPIntValue(); 8330 APInt c2 = RHS->getAPIntValue(); 8331 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8332 return c2.uge(OpSizeInBits - InnerBitwidth) && 8333 (c1 + c2).uge(OpSizeInBits); 8334 }; 8335 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, 8336 /*AllowUndefs*/ false, 8337 /*AllowTypeMismatch*/ true)) 8338 return DAG.getConstant(0, SDLoc(N), VT); 8339 8340 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8341 ConstantSDNode *RHS) { 8342 APInt c1 = LHS->getAPIntValue(); 8343 APInt c2 = RHS->getAPIntValue(); 8344 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8345 return c2.uge(OpSizeInBits - InnerBitwidth) && 8346 (c1 + c2).ult(OpSizeInBits); 8347 }; 8348 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, 8349 /*AllowUndefs*/ false, 8350 /*AllowTypeMismatch*/ true)) { 8351 SDLoc DL(N); 8352 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); 8353 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); 8354 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); 8355 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); 8356 } 8357 } 8358 8359 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 8360 // Only fold this if the inner zext has no other uses to avoid increasing 8361 // the total number of instructions. 8362 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 8363 N0.getOperand(0).getOpcode() == ISD::SRL) { 8364 SDValue N0Op0 = N0.getOperand(0); 8365 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8366 8367 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8368 APInt c1 = LHS->getAPIntValue(); 8369 APInt c2 = RHS->getAPIntValue(); 8370 zeroExtendToMatch(c1, c2); 8371 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); 8372 }; 8373 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, 8374 /*AllowUndefs*/ false, 8375 /*AllowTypeMismatch*/ true)) { 8376 SDLoc DL(N); 8377 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); 8378 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); 8379 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); 8380 AddToWorklist(NewSHL.getNode()); 8381 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 8382 } 8383 } 8384 8385 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 8386 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 8387 // TODO - support non-uniform vector shift amounts. 8388 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 8389 N0->getFlags().hasExact()) { 8390 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8391 uint64_t C1 = N0C1->getZExtValue(); 8392 uint64_t C2 = N1C->getZExtValue(); 8393 SDLoc DL(N); 8394 if (C1 <= C2) 8395 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8396 DAG.getConstant(C2 - C1, DL, ShiftVT)); 8397 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 8398 DAG.getConstant(C1 - C2, DL, ShiftVT)); 8399 } 8400 } 8401 8402 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 8403 // (and (srl x, (sub c1, c2), MASK) 8404 // Only fold this if the inner shift has no other uses -- if it does, folding 8405 // this will increase the total number of instructions. 8406 // TODO - drop hasOneUse requirement if c1 == c2? 8407 // TODO - support non-uniform vector shift amounts. 8408 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 8409 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 8410 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8411 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 8412 uint64_t c1 = N0C1->getZExtValue(); 8413 uint64_t c2 = N1C->getZExtValue(); 8414 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 8415 SDValue Shift; 8416 if (c2 > c1) { 8417 Mask <<= c2 - c1; 8418 SDLoc DL(N); 8419 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8420 DAG.getConstant(c2 - c1, DL, ShiftVT)); 8421 } else { 8422 Mask.lshrInPlace(c1 - c2); 8423 SDLoc DL(N); 8424 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 8425 DAG.getConstant(c1 - c2, DL, ShiftVT)); 8426 } 8427 SDLoc DL(N0); 8428 return DAG.getNode(ISD::AND, DL, VT, Shift, 8429 DAG.getConstant(Mask, DL, VT)); 8430 } 8431 } 8432 } 8433 8434 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 8435 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 8436 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 8437 SDLoc DL(N); 8438 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 8439 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 8440 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 8441 } 8442 8443 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8444 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8445 // Variant of version done on multiply, except mul by a power of 2 is turned 8446 // into a shift. 8447 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 8448 N0.getNode()->hasOneUse() && 8449 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8450 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 8451 TLI.isDesirableToCommuteWithShift(N, Level)) { 8452 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 8453 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8454 AddToWorklist(Shl0.getNode()); 8455 AddToWorklist(Shl1.getNode()); 8456 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 8457 } 8458 8459 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 8460 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 8461 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8462 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 8463 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8464 if (isConstantOrConstantVector(Shl)) 8465 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 8466 } 8467 8468 if (N1C && !N1C->isOpaque()) 8469 if (SDValue NewSHL = visitShiftByConstant(N)) 8470 return NewSHL; 8471 8472 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). 8473 if (N0.getOpcode() == ISD::VSCALE) 8474 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { 8475 const APInt &C0 = N0.getConstantOperandAPInt(0); 8476 const APInt &C1 = NC1->getAPIntValue(); 8477 return DAG.getVScale(SDLoc(N), VT, C0 << C1); 8478 } 8479 8480 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)). 8481 APInt ShlVal; 8482 if (N0.getOpcode() == ISD::STEP_VECTOR) 8483 if (ISD::isConstantSplatVector(N1.getNode(), ShlVal)) { 8484 const APInt &C0 = N0.getConstantOperandAPInt(0); 8485 if (ShlVal.ult(C0.getBitWidth())) { 8486 APInt NewStep = C0 << ShlVal; 8487 return DAG.getStepVector(SDLoc(N), VT, NewStep); 8488 } 8489 } 8490 8491 return SDValue(); 8492 } 8493 8494 // Transform a right shift of a multiply into a multiply-high. 8495 // Examples: 8496 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) 8497 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) 8498 static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, 8499 const TargetLowering &TLI) { 8500 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 8501 "SRL or SRA node is required here!"); 8502 8503 // Check the shift amount. Proceed with the transformation if the shift 8504 // amount is constant. 8505 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); 8506 if (!ShiftAmtSrc) 8507 return SDValue(); 8508 8509 SDLoc DL(N); 8510 8511 // The operation feeding into the shift must be a multiply. 8512 SDValue ShiftOperand = N->getOperand(0); 8513 if (ShiftOperand.getOpcode() != ISD::MUL) 8514 return SDValue(); 8515 8516 // Both operands must be equivalent extend nodes. 8517 SDValue LeftOp = ShiftOperand.getOperand(0); 8518 SDValue RightOp = ShiftOperand.getOperand(1); 8519 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; 8520 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; 8521 8522 if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode()) 8523 return SDValue(); 8524 8525 EVT WideVT1 = LeftOp.getValueType(); 8526 EVT WideVT2 = RightOp.getValueType(); 8527 (void)WideVT2; 8528 // Proceed with the transformation if the wide types match. 8529 assert((WideVT1 == WideVT2) && 8530 "Cannot have a multiply node with two different operand types."); 8531 8532 EVT NarrowVT = LeftOp.getOperand(0).getValueType(); 8533 // Check that the two extend nodes are the same type. 8534 if (NarrowVT != RightOp.getOperand(0).getValueType()) 8535 return SDValue(); 8536 8537 // Proceed with the transformation if the wide type is twice as large 8538 // as the narrow type. 8539 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); 8540 if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize) 8541 return SDValue(); 8542 8543 // Check the shift amount with the narrow type size. 8544 // Proceed with the transformation if the shift amount is the width 8545 // of the narrow type. 8546 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); 8547 if (ShiftAmt != NarrowVTSize) 8548 return SDValue(); 8549 8550 // If the operation feeding into the MUL is a sign extend (sext), 8551 // we use mulhs. Othewise, zero extends (zext) use mulhu. 8552 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; 8553 8554 // Combine to mulh if mulh is legal/custom for the narrow type on the target. 8555 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) 8556 return SDValue(); 8557 8558 SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), 8559 RightOp.getOperand(0)); 8560 return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1) 8561 : DAG.getZExtOrTrunc(Result, DL, WideVT1)); 8562 } 8563 8564 SDValue DAGCombiner::visitSRA(SDNode *N) { 8565 SDValue N0 = N->getOperand(0); 8566 SDValue N1 = N->getOperand(1); 8567 if (SDValue V = DAG.simplifyShift(N0, N1)) 8568 return V; 8569 8570 EVT VT = N0.getValueType(); 8571 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8572 8573 // Arithmetic shifting an all-sign-bit value is a no-op. 8574 // fold (sra 0, x) -> 0 8575 // fold (sra -1, x) -> -1 8576 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 8577 return N0; 8578 8579 // fold vector ops 8580 if (VT.isVector()) 8581 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8582 return FoldedVOp; 8583 8584 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8585 8586 // fold (sra c1, c2) -> (sra c1, c2) 8587 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) 8588 return C; 8589 8590 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8591 return NewSel; 8592 8593 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 8594 // sext_inreg. 8595 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 8596 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 8597 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 8598 if (VT.isVector()) 8599 ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, 8600 VT.getVectorElementCount()); 8601 if (!LegalOperations || 8602 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == 8603 TargetLowering::Legal) 8604 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 8605 N0.getOperand(0), DAG.getValueType(ExtVT)); 8606 // Even if we can't convert to sext_inreg, we might be able to remove 8607 // this shift pair if the input is already sign extended. 8608 if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue()) 8609 return N0.getOperand(0); 8610 } 8611 8612 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 8613 // clamp (add c1, c2) to max shift. 8614 if (N0.getOpcode() == ISD::SRA) { 8615 SDLoc DL(N); 8616 EVT ShiftVT = N1.getValueType(); 8617 EVT ShiftSVT = ShiftVT.getScalarType(); 8618 SmallVector<SDValue, 16> ShiftValues; 8619 8620 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8621 APInt c1 = LHS->getAPIntValue(); 8622 APInt c2 = RHS->getAPIntValue(); 8623 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8624 APInt Sum = c1 + c2; 8625 unsigned ShiftSum = 8626 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 8627 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 8628 return true; 8629 }; 8630 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 8631 SDValue ShiftValue; 8632 if (N1.getOpcode() == ISD::BUILD_VECTOR) 8633 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 8634 else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 8635 assert(ShiftValues.size() == 1 && 8636 "Expected matchBinaryPredicate to return one element for " 8637 "SPLAT_VECTORs"); 8638 ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]); 8639 } else 8640 ShiftValue = ShiftValues[0]; 8641 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 8642 } 8643 } 8644 8645 // fold (sra (shl X, m), (sub result_size, n)) 8646 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 8647 // result_size - n != m. 8648 // If truncate is free for the target sext(shl) is likely to result in better 8649 // code. 8650 if (N0.getOpcode() == ISD::SHL && N1C) { 8651 // Get the two constanst of the shifts, CN0 = m, CN = n. 8652 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 8653 if (N01C) { 8654 LLVMContext &Ctx = *DAG.getContext(); 8655 // Determine what the truncate's result bitsize and type would be. 8656 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 8657 8658 if (VT.isVector()) 8659 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 8660 8661 // Determine the residual right-shift amount. 8662 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 8663 8664 // If the shift is not a no-op (in which case this should be just a sign 8665 // extend already), the truncated to type is legal, sign_extend is legal 8666 // on that type, and the truncate to that type is both legal and free, 8667 // perform the transform. 8668 if ((ShiftAmt > 0) && 8669 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 8670 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 8671 TLI.isTruncateFree(VT, TruncVT)) { 8672 SDLoc DL(N); 8673 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 8674 getShiftAmountTy(N0.getOperand(0).getValueType())); 8675 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 8676 N0.getOperand(0), Amt); 8677 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 8678 Shift); 8679 return DAG.getNode(ISD::SIGN_EXTEND, DL, 8680 N->getValueType(0), Trunc); 8681 } 8682 } 8683 } 8684 8685 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. 8686 // sra (add (shl X, N1C), AddC), N1C --> 8687 // sext (add (trunc X to (width - N1C)), AddC') 8688 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && 8689 N0.getOperand(0).getOpcode() == ISD::SHL && 8690 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { 8691 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { 8692 SDValue Shl = N0.getOperand(0); 8693 // Determine what the truncate's type would be and ask the target if that 8694 // is a free operation. 8695 LLVMContext &Ctx = *DAG.getContext(); 8696 unsigned ShiftAmt = N1C->getZExtValue(); 8697 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); 8698 if (VT.isVector()) 8699 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); 8700 8701 // TODO: The simple type check probably belongs in the default hook 8702 // implementation and/or target-specific overrides (because 8703 // non-simple types likely require masking when legalized), but that 8704 // restriction may conflict with other transforms. 8705 if (TruncVT.isSimple() && isTypeLegal(TruncVT) && 8706 TLI.isTruncateFree(VT, TruncVT)) { 8707 SDLoc DL(N); 8708 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); 8709 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). 8710 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); 8711 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); 8712 return DAG.getSExtOrTrunc(Add, DL, VT); 8713 } 8714 } 8715 } 8716 8717 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 8718 if (N1.getOpcode() == ISD::TRUNCATE && 8719 N1.getOperand(0).getOpcode() == ISD::AND) { 8720 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8721 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 8722 } 8723 8724 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8725 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8726 // if c1 is equal to the number of bits the trunc removes 8727 // TODO - support non-uniform vector shift amounts. 8728 if (N0.getOpcode() == ISD::TRUNCATE && 8729 (N0.getOperand(0).getOpcode() == ISD::SRL || 8730 N0.getOperand(0).getOpcode() == ISD::SRA) && 8731 N0.getOperand(0).hasOneUse() && 8732 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { 8733 SDValue N0Op0 = N0.getOperand(0); 8734 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 8735 EVT LargeVT = N0Op0.getValueType(); 8736 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; 8737 if (LargeShift->getAPIntValue() == TruncBits) { 8738 SDLoc DL(N); 8739 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, 8740 getShiftAmountTy(LargeVT)); 8741 SDValue SRA = 8742 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); 8743 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 8744 } 8745 } 8746 } 8747 8748 // Simplify, based on bits shifted out of the LHS. 8749 if (SimplifyDemandedBits(SDValue(N, 0))) 8750 return SDValue(N, 0); 8751 8752 // If the sign bit is known to be zero, switch this to a SRL. 8753 if (DAG.SignBitIsZero(N0)) 8754 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 8755 8756 if (N1C && !N1C->isOpaque()) 8757 if (SDValue NewSRA = visitShiftByConstant(N)) 8758 return NewSRA; 8759 8760 // Try to transform this shift into a multiply-high if 8761 // it matches the appropriate pattern detected in combineShiftToMULH. 8762 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8763 return MULH; 8764 8765 return SDValue(); 8766 } 8767 8768 SDValue DAGCombiner::visitSRL(SDNode *N) { 8769 SDValue N0 = N->getOperand(0); 8770 SDValue N1 = N->getOperand(1); 8771 if (SDValue V = DAG.simplifyShift(N0, N1)) 8772 return V; 8773 8774 EVT VT = N0.getValueType(); 8775 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8776 8777 // fold vector ops 8778 if (VT.isVector()) 8779 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8780 return FoldedVOp; 8781 8782 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8783 8784 // fold (srl c1, c2) -> c1 >>u c2 8785 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) 8786 return C; 8787 8788 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8789 return NewSel; 8790 8791 // if (srl x, c) is known to be zero, return 0 8792 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 8793 APInt::getAllOnesValue(OpSizeInBits))) 8794 return DAG.getConstant(0, SDLoc(N), VT); 8795 8796 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 8797 if (N0.getOpcode() == ISD::SRL) { 8798 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8799 ConstantSDNode *RHS) { 8800 APInt c1 = LHS->getAPIntValue(); 8801 APInt c2 = RHS->getAPIntValue(); 8802 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8803 return (c1 + c2).uge(OpSizeInBits); 8804 }; 8805 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8806 return DAG.getConstant(0, SDLoc(N), VT); 8807 8808 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8809 ConstantSDNode *RHS) { 8810 APInt c1 = LHS->getAPIntValue(); 8811 APInt c2 = RHS->getAPIntValue(); 8812 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8813 return (c1 + c2).ult(OpSizeInBits); 8814 }; 8815 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8816 SDLoc DL(N); 8817 EVT ShiftVT = N1.getValueType(); 8818 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8819 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 8820 } 8821 } 8822 8823 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 8824 N0.getOperand(0).getOpcode() == ISD::SRL) { 8825 SDValue InnerShift = N0.getOperand(0); 8826 // TODO - support non-uniform vector shift amounts. 8827 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { 8828 uint64_t c1 = N001C->getZExtValue(); 8829 uint64_t c2 = N1C->getZExtValue(); 8830 EVT InnerShiftVT = InnerShift.getValueType(); 8831 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); 8832 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 8833 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) 8834 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 8835 if (c1 + OpSizeInBits == InnerShiftSize) { 8836 SDLoc DL(N); 8837 if (c1 + c2 >= InnerShiftSize) 8838 return DAG.getConstant(0, DL, VT); 8839 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8840 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8841 InnerShift.getOperand(0), NewShiftAmt); 8842 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); 8843 } 8844 // In the more general case, we can clear the high bits after the shift: 8845 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) 8846 if (N0.hasOneUse() && InnerShift.hasOneUse() && 8847 c1 + c2 < InnerShiftSize) { 8848 SDLoc DL(N); 8849 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8850 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8851 InnerShift.getOperand(0), NewShiftAmt); 8852 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, 8853 OpSizeInBits - c2), 8854 DL, InnerShiftVT); 8855 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); 8856 return DAG.getNode(ISD::TRUNCATE, DL, VT, And); 8857 } 8858 } 8859 } 8860 8861 // fold (srl (shl x, c), c) -> (and x, cst2) 8862 // TODO - (srl (shl x, c1), c2). 8863 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 8864 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 8865 SDLoc DL(N); 8866 SDValue Mask = 8867 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 8868 AddToWorklist(Mask.getNode()); 8869 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 8870 } 8871 8872 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 8873 // TODO - support non-uniform vector shift amounts. 8874 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 8875 // Shifting in all undef bits? 8876 EVT SmallVT = N0.getOperand(0).getValueType(); 8877 unsigned BitSize = SmallVT.getScalarSizeInBits(); 8878 if (N1C->getAPIntValue().uge(BitSize)) 8879 return DAG.getUNDEF(VT); 8880 8881 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 8882 uint64_t ShiftAmt = N1C->getZExtValue(); 8883 SDLoc DL0(N0); 8884 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 8885 N0.getOperand(0), 8886 DAG.getConstant(ShiftAmt, DL0, 8887 getShiftAmountTy(SmallVT))); 8888 AddToWorklist(SmallShift.getNode()); 8889 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 8890 SDLoc DL(N); 8891 return DAG.getNode(ISD::AND, DL, VT, 8892 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 8893 DAG.getConstant(Mask, DL, VT)); 8894 } 8895 } 8896 8897 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 8898 // bit, which is unmodified by sra. 8899 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { 8900 if (N0.getOpcode() == ISD::SRA) 8901 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 8902 } 8903 8904 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 8905 if (N1C && N0.getOpcode() == ISD::CTLZ && 8906 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 8907 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 8908 8909 // If any of the input bits are KnownOne, then the input couldn't be all 8910 // zeros, thus the result of the srl will always be zero. 8911 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 8912 8913 // If all of the bits input the to ctlz node are known to be zero, then 8914 // the result of the ctlz is "32" and the result of the shift is one. 8915 APInt UnknownBits = ~Known.Zero; 8916 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 8917 8918 // Otherwise, check to see if there is exactly one bit input to the ctlz. 8919 if (UnknownBits.isPowerOf2()) { 8920 // Okay, we know that only that the single bit specified by UnknownBits 8921 // could be set on input to the CTLZ node. If this bit is set, the SRL 8922 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 8923 // to an SRL/XOR pair, which is likely to simplify more. 8924 unsigned ShAmt = UnknownBits.countTrailingZeros(); 8925 SDValue Op = N0.getOperand(0); 8926 8927 if (ShAmt) { 8928 SDLoc DL(N0); 8929 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 8930 DAG.getConstant(ShAmt, DL, 8931 getShiftAmountTy(Op.getValueType()))); 8932 AddToWorklist(Op.getNode()); 8933 } 8934 8935 SDLoc DL(N); 8936 return DAG.getNode(ISD::XOR, DL, VT, 8937 Op, DAG.getConstant(1, DL, VT)); 8938 } 8939 } 8940 8941 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 8942 if (N1.getOpcode() == ISD::TRUNCATE && 8943 N1.getOperand(0).getOpcode() == ISD::AND) { 8944 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8945 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 8946 } 8947 8948 // fold operands of srl based on knowledge that the low bits are not 8949 // demanded. 8950 if (SimplifyDemandedBits(SDValue(N, 0))) 8951 return SDValue(N, 0); 8952 8953 if (N1C && !N1C->isOpaque()) 8954 if (SDValue NewSRL = visitShiftByConstant(N)) 8955 return NewSRL; 8956 8957 // Attempt to convert a srl of a load into a narrower zero-extending load. 8958 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 8959 return NarrowLoad; 8960 8961 // Here is a common situation. We want to optimize: 8962 // 8963 // %a = ... 8964 // %b = and i32 %a, 2 8965 // %c = srl i32 %b, 1 8966 // brcond i32 %c ... 8967 // 8968 // into 8969 // 8970 // %a = ... 8971 // %b = and %a, 2 8972 // %c = setcc eq %b, 0 8973 // brcond %c ... 8974 // 8975 // However when after the source operand of SRL is optimized into AND, the SRL 8976 // itself may not be optimized further. Look for it and add the BRCOND into 8977 // the worklist. 8978 if (N->hasOneUse()) { 8979 SDNode *Use = *N->use_begin(); 8980 if (Use->getOpcode() == ISD::BRCOND) 8981 AddToWorklist(Use); 8982 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 8983 // Also look pass the truncate. 8984 Use = *Use->use_begin(); 8985 if (Use->getOpcode() == ISD::BRCOND) 8986 AddToWorklist(Use); 8987 } 8988 } 8989 8990 // Try to transform this shift into a multiply-high if 8991 // it matches the appropriate pattern detected in combineShiftToMULH. 8992 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8993 return MULH; 8994 8995 return SDValue(); 8996 } 8997 8998 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 8999 EVT VT = N->getValueType(0); 9000 SDValue N0 = N->getOperand(0); 9001 SDValue N1 = N->getOperand(1); 9002 SDValue N2 = N->getOperand(2); 9003 bool IsFSHL = N->getOpcode() == ISD::FSHL; 9004 unsigned BitWidth = VT.getScalarSizeInBits(); 9005 9006 // fold (fshl N0, N1, 0) -> N0 9007 // fold (fshr N0, N1, 0) -> N1 9008 if (isPowerOf2_32(BitWidth)) 9009 if (DAG.MaskedValueIsZero( 9010 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 9011 return IsFSHL ? N0 : N1; 9012 9013 auto IsUndefOrZero = [](SDValue V) { 9014 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 9015 }; 9016 9017 // TODO - support non-uniform vector shift amounts. 9018 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 9019 EVT ShAmtTy = N2.getValueType(); 9020 9021 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 9022 if (Cst->getAPIntValue().uge(BitWidth)) { 9023 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 9024 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 9025 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 9026 } 9027 9028 unsigned ShAmt = Cst->getZExtValue(); 9029 if (ShAmt == 0) 9030 return IsFSHL ? N0 : N1; 9031 9032 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 9033 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 9034 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 9035 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 9036 if (IsUndefOrZero(N0)) 9037 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 9038 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 9039 SDLoc(N), ShAmtTy)); 9040 if (IsUndefOrZero(N1)) 9041 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 9042 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 9043 SDLoc(N), ShAmtTy)); 9044 9045 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9046 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 9047 // TODO - bigendian support once we have test coverage. 9048 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? 9049 // TODO - permit LHS EXTLOAD if extensions are shifted out. 9050 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && 9051 !DAG.getDataLayout().isBigEndian()) { 9052 auto *LHS = dyn_cast<LoadSDNode>(N0); 9053 auto *RHS = dyn_cast<LoadSDNode>(N1); 9054 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && 9055 LHS->getAddressSpace() == RHS->getAddressSpace() && 9056 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && 9057 ISD::isNON_EXTLoad(LHS)) { 9058 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { 9059 SDLoc DL(RHS); 9060 uint64_t PtrOff = 9061 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); 9062 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); 9063 bool Fast = false; 9064 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 9065 RHS->getAddressSpace(), NewAlign, 9066 RHS->getMemOperand()->getFlags(), &Fast) && 9067 Fast) { 9068 SDValue NewPtr = DAG.getMemBasePlusOffset( 9069 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); 9070 AddToWorklist(NewPtr.getNode()); 9071 SDValue Load = DAG.getLoad( 9072 VT, DL, RHS->getChain(), NewPtr, 9073 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, 9074 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); 9075 // Replace the old load's chain with the new load's chain. 9076 WorklistRemover DeadNodes(*this); 9077 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); 9078 return Load; 9079 } 9080 } 9081 } 9082 } 9083 } 9084 9085 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 9086 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 9087 // iff We know the shift amount is in range. 9088 // TODO: when is it worth doing SUB(BW, N2) as well? 9089 if (isPowerOf2_32(BitWidth)) { 9090 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 9091 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9092 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 9093 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 9094 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 9095 } 9096 9097 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 9098 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 9099 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 9100 // is legal as well we might be better off avoiding non-constant (BW - N2). 9101 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 9102 if (N0 == N1 && hasOperation(RotOpc, VT)) 9103 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 9104 9105 // Simplify, based on bits shifted out of N0/N1. 9106 if (SimplifyDemandedBits(SDValue(N, 0))) 9107 return SDValue(N, 0); 9108 9109 return SDValue(); 9110 } 9111 9112 // Given a ABS node, detect the following pattern: 9113 // (ABS (SUB (EXTEND a), (EXTEND b))). 9114 // Generates UABD/SABD instruction. 9115 static SDValue combineABSToABD(SDNode *N, SelectionDAG &DAG, 9116 const TargetLowering &TLI) { 9117 SDValue AbsOp1 = N->getOperand(0); 9118 SDValue Op0, Op1; 9119 9120 if (AbsOp1.getOpcode() != ISD::SUB) 9121 return SDValue(); 9122 9123 Op0 = AbsOp1.getOperand(0); 9124 Op1 = AbsOp1.getOperand(1); 9125 9126 unsigned Opc0 = Op0.getOpcode(); 9127 // Check if the operands of the sub are (zero|sign)-extended. 9128 if (Opc0 != Op1.getOpcode() || 9129 (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND)) 9130 return SDValue(); 9131 9132 EVT VT1 = Op0.getOperand(0).getValueType(); 9133 EVT VT2 = Op1.getOperand(0).getValueType(); 9134 // Check if the operands are of same type and valid size. 9135 unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU; 9136 if (VT1 != VT2 || !TLI.isOperationLegalOrCustom(ABDOpcode, VT1)) 9137 return SDValue(); 9138 9139 Op0 = Op0.getOperand(0); 9140 Op1 = Op1.getOperand(0); 9141 SDValue ABD = 9142 DAG.getNode(ABDOpcode, SDLoc(N), Op0->getValueType(0), Op0, Op1); 9143 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), ABD); 9144 } 9145 9146 SDValue DAGCombiner::visitABS(SDNode *N) { 9147 SDValue N0 = N->getOperand(0); 9148 EVT VT = N->getValueType(0); 9149 9150 // fold (abs c1) -> c2 9151 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9152 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 9153 // fold (abs (abs x)) -> (abs x) 9154 if (N0.getOpcode() == ISD::ABS) 9155 return N0; 9156 // fold (abs x) -> x iff not-negative 9157 if (DAG.SignBitIsZero(N0)) 9158 return N0; 9159 9160 if (SDValue ABD = combineABSToABD(N, DAG, TLI)) 9161 return ABD; 9162 9163 return SDValue(); 9164 } 9165 9166 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 9167 SDValue N0 = N->getOperand(0); 9168 EVT VT = N->getValueType(0); 9169 9170 // fold (bswap c1) -> c2 9171 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9172 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 9173 // fold (bswap (bswap x)) -> x 9174 if (N0.getOpcode() == ISD::BSWAP) 9175 return N0->getOperand(0); 9176 return SDValue(); 9177 } 9178 9179 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 9180 SDValue N0 = N->getOperand(0); 9181 EVT VT = N->getValueType(0); 9182 9183 // fold (bitreverse c1) -> c2 9184 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9185 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 9186 // fold (bitreverse (bitreverse x)) -> x 9187 if (N0.getOpcode() == ISD::BITREVERSE) 9188 return N0.getOperand(0); 9189 return SDValue(); 9190 } 9191 9192 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 9193 SDValue N0 = N->getOperand(0); 9194 EVT VT = N->getValueType(0); 9195 9196 // fold (ctlz c1) -> c2 9197 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9198 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 9199 9200 // If the value is known never to be zero, switch to the undef version. 9201 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 9202 if (DAG.isKnownNeverZero(N0)) 9203 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9204 } 9205 9206 return SDValue(); 9207 } 9208 9209 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 9210 SDValue N0 = N->getOperand(0); 9211 EVT VT = N->getValueType(0); 9212 9213 // fold (ctlz_zero_undef c1) -> c2 9214 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9215 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9216 return SDValue(); 9217 } 9218 9219 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 9220 SDValue N0 = N->getOperand(0); 9221 EVT VT = N->getValueType(0); 9222 9223 // fold (cttz c1) -> c2 9224 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9225 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 9226 9227 // If the value is known never to be zero, switch to the undef version. 9228 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 9229 if (DAG.isKnownNeverZero(N0)) 9230 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9231 } 9232 9233 return SDValue(); 9234 } 9235 9236 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 9237 SDValue N0 = N->getOperand(0); 9238 EVT VT = N->getValueType(0); 9239 9240 // fold (cttz_zero_undef c1) -> c2 9241 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9242 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 9243 return SDValue(); 9244 } 9245 9246 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 9247 SDValue N0 = N->getOperand(0); 9248 EVT VT = N->getValueType(0); 9249 9250 // fold (ctpop c1) -> c2 9251 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 9252 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 9253 return SDValue(); 9254 } 9255 9256 // FIXME: This should be checking for no signed zeros on individual operands, as 9257 // well as no nans. 9258 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 9259 SDValue RHS, 9260 const TargetLowering &TLI) { 9261 const TargetOptions &Options = DAG.getTarget().Options; 9262 EVT VT = LHS.getValueType(); 9263 9264 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 9265 TLI.isProfitableToCombineMinNumMaxNum(VT) && 9266 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 9267 } 9268 9269 /// Generate Min/Max node 9270 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 9271 SDValue RHS, SDValue True, SDValue False, 9272 ISD::CondCode CC, const TargetLowering &TLI, 9273 SelectionDAG &DAG) { 9274 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 9275 return SDValue(); 9276 9277 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 9278 switch (CC) { 9279 case ISD::SETOLT: 9280 case ISD::SETOLE: 9281 case ISD::SETLT: 9282 case ISD::SETLE: 9283 case ISD::SETULT: 9284 case ISD::SETULE: { 9285 // Since it's known never nan to get here already, either fminnum or 9286 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 9287 // expanded in terms of it. 9288 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 9289 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9290 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9291 9292 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 9293 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9294 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9295 return SDValue(); 9296 } 9297 case ISD::SETOGT: 9298 case ISD::SETOGE: 9299 case ISD::SETGT: 9300 case ISD::SETGE: 9301 case ISD::SETUGT: 9302 case ISD::SETUGE: { 9303 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 9304 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9305 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9306 9307 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 9308 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9309 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9310 return SDValue(); 9311 } 9312 default: 9313 return SDValue(); 9314 } 9315 } 9316 9317 /// If a (v)select has a condition value that is a sign-bit test, try to smear 9318 /// the condition operand sign-bit across the value width and use it as a mask. 9319 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { 9320 SDValue Cond = N->getOperand(0); 9321 SDValue C1 = N->getOperand(1); 9322 SDValue C2 = N->getOperand(2); 9323 if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2)) 9324 return SDValue(); 9325 9326 EVT VT = N->getValueType(0); 9327 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || 9328 VT != Cond.getOperand(0).getValueType()) 9329 return SDValue(); 9330 9331 // The inverted-condition + commuted-select variants of these patterns are 9332 // canonicalized to these forms in IR. 9333 SDValue X = Cond.getOperand(0); 9334 SDValue CondC = Cond.getOperand(1); 9335 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 9336 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && 9337 isAllOnesOrAllOnesSplat(C2)) { 9338 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 9339 SDLoc DL(N); 9340 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9341 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9342 return DAG.getNode(ISD::OR, DL, VT, Sra, C1); 9343 } 9344 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { 9345 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 9346 SDLoc DL(N); 9347 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9348 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9349 return DAG.getNode(ISD::AND, DL, VT, Sra, C1); 9350 } 9351 return SDValue(); 9352 } 9353 9354 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 9355 SDValue Cond = N->getOperand(0); 9356 SDValue N1 = N->getOperand(1); 9357 SDValue N2 = N->getOperand(2); 9358 EVT VT = N->getValueType(0); 9359 EVT CondVT = Cond.getValueType(); 9360 SDLoc DL(N); 9361 9362 if (!VT.isInteger()) 9363 return SDValue(); 9364 9365 auto *C1 = dyn_cast<ConstantSDNode>(N1); 9366 auto *C2 = dyn_cast<ConstantSDNode>(N2); 9367 if (!C1 || !C2) 9368 return SDValue(); 9369 9370 // Only do this before legalization to avoid conflicting with target-specific 9371 // transforms in the other direction (create a select from a zext/sext). There 9372 // is also a target-independent combine here in DAGCombiner in the other 9373 // direction for (select Cond, -1, 0) when the condition is not i1. 9374 if (CondVT == MVT::i1 && !LegalOperations) { 9375 if (C1->isNullValue() && C2->isOne()) { 9376 // select Cond, 0, 1 --> zext (!Cond) 9377 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9378 if (VT != MVT::i1) 9379 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 9380 return NotCond; 9381 } 9382 if (C1->isNullValue() && C2->isAllOnesValue()) { 9383 // select Cond, 0, -1 --> sext (!Cond) 9384 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9385 if (VT != MVT::i1) 9386 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 9387 return NotCond; 9388 } 9389 if (C1->isOne() && C2->isNullValue()) { 9390 // select Cond, 1, 0 --> zext (Cond) 9391 if (VT != MVT::i1) 9392 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9393 return Cond; 9394 } 9395 if (C1->isAllOnesValue() && C2->isNullValue()) { 9396 // select Cond, -1, 0 --> sext (Cond) 9397 if (VT != MVT::i1) 9398 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9399 return Cond; 9400 } 9401 9402 // Use a target hook because some targets may prefer to transform in the 9403 // other direction. 9404 if (TLI.convertSelectOfConstantsToMath(VT)) { 9405 // For any constants that differ by 1, we can transform the select into an 9406 // extend and add. 9407 const APInt &C1Val = C1->getAPIntValue(); 9408 const APInt &C2Val = C2->getAPIntValue(); 9409 if (C1Val - 1 == C2Val) { 9410 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 9411 if (VT != MVT::i1) 9412 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9413 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9414 } 9415 if (C1Val + 1 == C2Val) { 9416 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 9417 if (VT != MVT::i1) 9418 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9419 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9420 } 9421 9422 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 9423 if (C1Val.isPowerOf2() && C2Val.isNullValue()) { 9424 if (VT != MVT::i1) 9425 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9426 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); 9427 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); 9428 } 9429 9430 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9431 return V; 9432 } 9433 9434 return SDValue(); 9435 } 9436 9437 // fold (select Cond, 0, 1) -> (xor Cond, 1) 9438 // We can't do this reliably if integer based booleans have different contents 9439 // to floating point based booleans. This is because we can't tell whether we 9440 // have an integer-based boolean or a floating-point-based boolean unless we 9441 // can find the SETCC that produced it and inspect its operands. This is 9442 // fairly easy if C is the SETCC node, but it can potentially be 9443 // undiscoverable (or not reasonably discoverable). For example, it could be 9444 // in another basic block or it could require searching a complicated 9445 // expression. 9446 if (CondVT.isInteger() && 9447 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 9448 TargetLowering::ZeroOrOneBooleanContent && 9449 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 9450 TargetLowering::ZeroOrOneBooleanContent && 9451 C1->isNullValue() && C2->isOne()) { 9452 SDValue NotCond = 9453 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 9454 if (VT.bitsEq(CondVT)) 9455 return NotCond; 9456 return DAG.getZExtOrTrunc(NotCond, DL, VT); 9457 } 9458 9459 return SDValue(); 9460 } 9461 9462 static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) { 9463 assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) && 9464 "Expected a (v)select"); 9465 SDValue Cond = N->getOperand(0); 9466 SDValue T = N->getOperand(1), F = N->getOperand(2); 9467 EVT VT = N->getValueType(0); 9468 if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1) 9469 return SDValue(); 9470 9471 // select Cond, Cond, F --> or Cond, F 9472 // select Cond, 1, F --> or Cond, F 9473 if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true)) 9474 return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F); 9475 9476 // select Cond, T, Cond --> and Cond, T 9477 // select Cond, T, 0 --> and Cond, T 9478 if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true)) 9479 return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T); 9480 9481 // select Cond, T, 1 --> or (not Cond), T 9482 if (isOneOrOneSplat(F, /* AllowUndefs */ true)) { 9483 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 9484 return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T); 9485 } 9486 9487 // select Cond, 0, F --> and (not Cond), F 9488 if (isNullOrNullSplat(T, /* AllowUndefs */ true)) { 9489 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT); 9490 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F); 9491 } 9492 9493 return SDValue(); 9494 } 9495 9496 SDValue DAGCombiner::visitSELECT(SDNode *N) { 9497 SDValue N0 = N->getOperand(0); 9498 SDValue N1 = N->getOperand(1); 9499 SDValue N2 = N->getOperand(2); 9500 EVT VT = N->getValueType(0); 9501 EVT VT0 = N0.getValueType(); 9502 SDLoc DL(N); 9503 SDNodeFlags Flags = N->getFlags(); 9504 9505 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9506 return V; 9507 9508 if (SDValue V = foldSelectOfConstants(N)) 9509 return V; 9510 9511 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 9512 return V; 9513 9514 // If we can fold this based on the true/false value, do so. 9515 if (SimplifySelectOps(N, N1, N2)) 9516 return SDValue(N, 0); // Don't revisit N. 9517 9518 if (VT0 == MVT::i1) { 9519 // The code in this block deals with the following 2 equivalences: 9520 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 9521 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 9522 // The target can specify its preferred form with the 9523 // shouldNormalizeToSelectSequence() callback. However we always transform 9524 // to the right anyway if we find the inner select exists in the DAG anyway 9525 // and we always transform to the left side if we know that we can further 9526 // optimize the combination of the conditions. 9527 bool normalizeToSequence = 9528 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 9529 // select (and Cond0, Cond1), X, Y 9530 // -> select Cond0, (select Cond1, X, Y), Y 9531 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 9532 SDValue Cond0 = N0->getOperand(0); 9533 SDValue Cond1 = N0->getOperand(1); 9534 SDValue InnerSelect = 9535 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); 9536 if (normalizeToSequence || !InnerSelect.use_empty()) 9537 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 9538 InnerSelect, N2, Flags); 9539 // Cleanup on failure. 9540 if (InnerSelect.use_empty()) 9541 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9542 } 9543 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 9544 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 9545 SDValue Cond0 = N0->getOperand(0); 9546 SDValue Cond1 = N0->getOperand(1); 9547 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), 9548 Cond1, N1, N2, Flags); 9549 if (normalizeToSequence || !InnerSelect.use_empty()) 9550 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 9551 InnerSelect, Flags); 9552 // Cleanup on failure. 9553 if (InnerSelect.use_empty()) 9554 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9555 } 9556 9557 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 9558 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 9559 SDValue N1_0 = N1->getOperand(0); 9560 SDValue N1_1 = N1->getOperand(1); 9561 SDValue N1_2 = N1->getOperand(2); 9562 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 9563 // Create the actual and node if we can generate good code for it. 9564 if (!normalizeToSequence) { 9565 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 9566 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, 9567 N2, Flags); 9568 } 9569 // Otherwise see if we can optimize the "and" to a better pattern. 9570 if (SDValue Combined = visitANDLike(N0, N1_0, N)) { 9571 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 9572 N2, Flags); 9573 } 9574 } 9575 } 9576 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 9577 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 9578 SDValue N2_0 = N2->getOperand(0); 9579 SDValue N2_1 = N2->getOperand(1); 9580 SDValue N2_2 = N2->getOperand(2); 9581 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 9582 // Create the actual or node if we can generate good code for it. 9583 if (!normalizeToSequence) { 9584 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 9585 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, 9586 N2_2, Flags); 9587 } 9588 // Otherwise see if we can optimize to a better pattern. 9589 if (SDValue Combined = visitORLike(N0, N2_0, N)) 9590 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 9591 N2_2, Flags); 9592 } 9593 } 9594 } 9595 9596 // select (not Cond), N1, N2 -> select Cond, N2, N1 9597 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { 9598 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); 9599 SelectOp->setFlags(Flags); 9600 return SelectOp; 9601 } 9602 9603 // Fold selects based on a setcc into other things, such as min/max/abs. 9604 if (N0.getOpcode() == ISD::SETCC) { 9605 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 9606 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9607 9608 // select (fcmp lt x, y), x, y -> fminnum x, y 9609 // select (fcmp gt x, y), x, y -> fmaxnum x, y 9610 // 9611 // This is OK if we don't care what happens if either operand is a NaN. 9612 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 9613 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 9614 CC, TLI, DAG)) 9615 return FMinMax; 9616 9617 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 9618 // This is conservatively limited to pre-legal-operations to give targets 9619 // a chance to reverse the transform if they want to do that. Also, it is 9620 // unlikely that the pattern would be formed late, so it's probably not 9621 // worth going through the other checks. 9622 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 9623 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 9624 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 9625 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 9626 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 9627 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 9628 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 9629 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 9630 // 9631 // The IR equivalent of this transform would have this form: 9632 // %a = add %x, C 9633 // %c = icmp ugt %x, ~C 9634 // %r = select %c, -1, %a 9635 // => 9636 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 9637 // %u0 = extractvalue %u, 0 9638 // %u1 = extractvalue %u, 1 9639 // %r = select %u1, -1, %u0 9640 SDVTList VTs = DAG.getVTList(VT, VT0); 9641 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 9642 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 9643 } 9644 } 9645 9646 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 9647 (!LegalOperations && 9648 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { 9649 // Any flags available in a select/setcc fold will be on the setcc as they 9650 // migrated from fcmp 9651 Flags = N0.getNode()->getFlags(); 9652 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, 9653 N2, N0.getOperand(2)); 9654 SelectNode->setFlags(Flags); 9655 return SelectNode; 9656 } 9657 9658 if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2)) 9659 return NewSel; 9660 } 9661 9662 if (!VT.isVector()) 9663 if (SDValue BinOp = foldSelectOfBinops(N)) 9664 return BinOp; 9665 9666 return SDValue(); 9667 } 9668 9669 // This function assumes all the vselect's arguments are CONCAT_VECTOR 9670 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 9671 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 9672 SDLoc DL(N); 9673 SDValue Cond = N->getOperand(0); 9674 SDValue LHS = N->getOperand(1); 9675 SDValue RHS = N->getOperand(2); 9676 EVT VT = N->getValueType(0); 9677 int NumElems = VT.getVectorNumElements(); 9678 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 9679 RHS.getOpcode() == ISD::CONCAT_VECTORS && 9680 Cond.getOpcode() == ISD::BUILD_VECTOR); 9681 9682 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 9683 // binary ones here. 9684 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 9685 return SDValue(); 9686 9687 // We're sure we have an even number of elements due to the 9688 // concat_vectors we have as arguments to vselect. 9689 // Skip BV elements until we find one that's not an UNDEF 9690 // After we find an UNDEF element, keep looping until we get to half the 9691 // length of the BV and see if all the non-undef nodes are the same. 9692 ConstantSDNode *BottomHalf = nullptr; 9693 for (int i = 0; i < NumElems / 2; ++i) { 9694 if (Cond->getOperand(i)->isUndef()) 9695 continue; 9696 9697 if (BottomHalf == nullptr) 9698 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9699 else if (Cond->getOperand(i).getNode() != BottomHalf) 9700 return SDValue(); 9701 } 9702 9703 // Do the same for the second half of the BuildVector 9704 ConstantSDNode *TopHalf = nullptr; 9705 for (int i = NumElems / 2; i < NumElems; ++i) { 9706 if (Cond->getOperand(i)->isUndef()) 9707 continue; 9708 9709 if (TopHalf == nullptr) 9710 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9711 else if (Cond->getOperand(i).getNode() != TopHalf) 9712 return SDValue(); 9713 } 9714 9715 assert(TopHalf && BottomHalf && 9716 "One half of the selector was all UNDEFs and the other was all the " 9717 "same value. This should have been addressed before this function."); 9718 return DAG.getNode( 9719 ISD::CONCAT_VECTORS, DL, VT, 9720 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 9721 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 9722 } 9723 9724 bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { 9725 if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD) 9726 return false; 9727 9728 // For now we check only the LHS of the add. 9729 SDValue LHS = Index.getOperand(0); 9730 SDValue SplatVal = DAG.getSplatValue(LHS); 9731 if (!SplatVal) 9732 return false; 9733 9734 BasePtr = SplatVal; 9735 Index = Index.getOperand(1); 9736 return true; 9737 } 9738 9739 // Fold sext/zext of index into index type. 9740 bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index, 9741 bool Scaled, SelectionDAG &DAG) { 9742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9743 9744 if (Index.getOpcode() == ISD::ZERO_EXTEND) { 9745 SDValue Op = Index.getOperand(0); 9746 MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED); 9747 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 9748 Index = Op; 9749 return true; 9750 } 9751 } 9752 9753 if (Index.getOpcode() == ISD::SIGN_EXTEND) { 9754 SDValue Op = Index.getOperand(0); 9755 MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED); 9756 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 9757 Index = Op; 9758 return true; 9759 } 9760 } 9761 9762 return false; 9763 } 9764 9765 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 9766 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 9767 SDValue Mask = MSC->getMask(); 9768 SDValue Chain = MSC->getChain(); 9769 SDValue Index = MSC->getIndex(); 9770 SDValue Scale = MSC->getScale(); 9771 SDValue StoreVal = MSC->getValue(); 9772 SDValue BasePtr = MSC->getBasePtr(); 9773 SDLoc DL(N); 9774 9775 // Zap scatters with a zero mask. 9776 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 9777 return Chain; 9778 9779 if (refineUniformBase(BasePtr, Index, DAG)) { 9780 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 9781 return DAG.getMaskedScatter( 9782 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 9783 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 9784 } 9785 9786 if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) { 9787 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 9788 return DAG.getMaskedScatter( 9789 DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, 9790 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 9791 } 9792 9793 return SDValue(); 9794 } 9795 9796 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 9797 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 9798 SDValue Mask = MST->getMask(); 9799 SDValue Chain = MST->getChain(); 9800 SDLoc DL(N); 9801 9802 // Zap masked stores with a zero mask. 9803 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 9804 return Chain; 9805 9806 // If this is a masked load with an all ones mask, we can use a unmasked load. 9807 // FIXME: Can we do this for indexed, compressing, or truncating stores? 9808 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && 9809 MST->isUnindexed() && !MST->isCompressingStore() && 9810 !MST->isTruncatingStore()) 9811 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), 9812 MST->getBasePtr(), MST->getMemOperand()); 9813 9814 // Try transforming N to an indexed store. 9815 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9816 return SDValue(N, 0); 9817 9818 return SDValue(); 9819 } 9820 9821 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 9822 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 9823 SDValue Mask = MGT->getMask(); 9824 SDValue Chain = MGT->getChain(); 9825 SDValue Index = MGT->getIndex(); 9826 SDValue Scale = MGT->getScale(); 9827 SDValue PassThru = MGT->getPassThru(); 9828 SDValue BasePtr = MGT->getBasePtr(); 9829 SDLoc DL(N); 9830 9831 // Zap gathers with a zero mask. 9832 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 9833 return CombineTo(N, PassThru, MGT->getChain()); 9834 9835 if (refineUniformBase(BasePtr, Index, DAG)) { 9836 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 9837 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 9838 MGT->getMemoryVT(), DL, Ops, 9839 MGT->getMemOperand(), MGT->getIndexType(), 9840 MGT->getExtensionType()); 9841 } 9842 9843 if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) { 9844 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 9845 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 9846 MGT->getMemoryVT(), DL, Ops, 9847 MGT->getMemOperand(), MGT->getIndexType(), 9848 MGT->getExtensionType()); 9849 } 9850 9851 return SDValue(); 9852 } 9853 9854 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 9855 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 9856 SDValue Mask = MLD->getMask(); 9857 SDLoc DL(N); 9858 9859 // Zap masked loads with a zero mask. 9860 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) 9861 return CombineTo(N, MLD->getPassThru(), MLD->getChain()); 9862 9863 // If this is a masked load with an all ones mask, we can use a unmasked load. 9864 // FIXME: Can we do this for indexed, expanding, or extending loads? 9865 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && 9866 MLD->isUnindexed() && !MLD->isExpandingLoad() && 9867 MLD->getExtensionType() == ISD::NON_EXTLOAD) { 9868 SDValue NewLd = DAG.getLoad(N->getValueType(0), SDLoc(N), MLD->getChain(), 9869 MLD->getBasePtr(), MLD->getMemOperand()); 9870 return CombineTo(N, NewLd, NewLd.getValue(1)); 9871 } 9872 9873 // Try transforming N to an indexed load. 9874 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9875 return SDValue(N, 0); 9876 9877 return SDValue(); 9878 } 9879 9880 /// A vector select of 2 constant vectors can be simplified to math/logic to 9881 /// avoid a variable select instruction and possibly avoid constant loads. 9882 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 9883 SDValue Cond = N->getOperand(0); 9884 SDValue N1 = N->getOperand(1); 9885 SDValue N2 = N->getOperand(2); 9886 EVT VT = N->getValueType(0); 9887 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 9888 !TLI.convertSelectOfConstantsToMath(VT) || 9889 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 9890 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 9891 return SDValue(); 9892 9893 // Check if we can use the condition value to increment/decrement a single 9894 // constant value. This simplifies a select to an add and removes a constant 9895 // load/materialization from the general case. 9896 bool AllAddOne = true; 9897 bool AllSubOne = true; 9898 unsigned Elts = VT.getVectorNumElements(); 9899 for (unsigned i = 0; i != Elts; ++i) { 9900 SDValue N1Elt = N1.getOperand(i); 9901 SDValue N2Elt = N2.getOperand(i); 9902 if (N1Elt.isUndef() || N2Elt.isUndef()) 9903 continue; 9904 if (N1Elt.getValueType() != N2Elt.getValueType()) 9905 continue; 9906 9907 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 9908 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 9909 if (C1 != C2 + 1) 9910 AllAddOne = false; 9911 if (C1 != C2 - 1) 9912 AllSubOne = false; 9913 } 9914 9915 // Further simplifications for the extra-special cases where the constants are 9916 // all 0 or all -1 should be implemented as folds of these patterns. 9917 SDLoc DL(N); 9918 if (AllAddOne || AllSubOne) { 9919 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 9920 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 9921 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 9922 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 9923 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 9924 } 9925 9926 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) 9927 APInt Pow2C; 9928 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && 9929 isNullOrNullSplat(N2)) { 9930 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); 9931 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); 9932 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); 9933 } 9934 9935 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9936 return V; 9937 9938 // The general case for select-of-constants: 9939 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 9940 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 9941 // leave that to a machine-specific pass. 9942 return SDValue(); 9943 } 9944 9945 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 9946 SDValue N0 = N->getOperand(0); 9947 SDValue N1 = N->getOperand(1); 9948 SDValue N2 = N->getOperand(2); 9949 EVT VT = N->getValueType(0); 9950 SDLoc DL(N); 9951 9952 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9953 return V; 9954 9955 if (SDValue V = foldBoolSelectToLogic(N, DAG)) 9956 return V; 9957 9958 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 9959 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) 9960 return DAG.getSelect(DL, VT, F, N2, N1); 9961 9962 // Canonicalize integer abs. 9963 // vselect (setg[te] X, 0), X, -X -> 9964 // vselect (setgt X, -1), X, -X -> 9965 // vselect (setl[te] X, 0), -X, X -> 9966 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 9967 if (N0.getOpcode() == ISD::SETCC) { 9968 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 9969 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9970 bool isAbs = false; 9971 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 9972 9973 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 9974 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 9975 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 9976 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 9977 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 9978 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 9979 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 9980 9981 if (isAbs) { 9982 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 9983 return DAG.getNode(ISD::ABS, DL, VT, LHS); 9984 9985 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, 9986 DAG.getConstant(VT.getScalarSizeInBits() - 1, 9987 DL, getShiftAmountTy(VT))); 9988 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 9989 AddToWorklist(Shift.getNode()); 9990 AddToWorklist(Add.getNode()); 9991 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 9992 } 9993 9994 // vselect x, y (fcmp lt x, y) -> fminnum x, y 9995 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 9996 // 9997 // This is OK if we don't care about what happens if either operand is a 9998 // NaN. 9999 // 10000 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { 10001 if (SDValue FMinMax = 10002 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) 10003 return FMinMax; 10004 } 10005 10006 // If this select has a condition (setcc) with narrower operands than the 10007 // select, try to widen the compare to match the select width. 10008 // TODO: This should be extended to handle any constant. 10009 // TODO: This could be extended to handle non-loading patterns, but that 10010 // requires thorough testing to avoid regressions. 10011 if (isNullOrNullSplat(RHS)) { 10012 EVT NarrowVT = LHS.getValueType(); 10013 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 10014 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 10015 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 10016 unsigned WideWidth = WideVT.getScalarSizeInBits(); 10017 bool IsSigned = isSignedIntSetCC(CC); 10018 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10019 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 10020 SetCCWidth != 1 && SetCCWidth < WideWidth && 10021 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 10022 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 10023 // Both compare operands can be widened for free. The LHS can use an 10024 // extended load, and the RHS is a constant: 10025 // vselect (ext (setcc load(X), C)), N1, N2 --> 10026 // vselect (setcc extload(X), C'), N1, N2 10027 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10028 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 10029 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 10030 EVT WideSetCCVT = getSetCCResultType(WideVT); 10031 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 10032 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 10033 } 10034 } 10035 10036 // Match VSELECTs into add with unsigned saturation. 10037 if (hasOperation(ISD::UADDSAT, VT)) { 10038 // Check if one of the arms of the VSELECT is vector with all bits set. 10039 // If it's on the left side invert the predicate to simplify logic below. 10040 SDValue Other; 10041 ISD::CondCode SatCC = CC; 10042 if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) { 10043 Other = N2; 10044 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10045 } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) { 10046 Other = N1; 10047 } 10048 10049 if (Other && Other.getOpcode() == ISD::ADD) { 10050 SDValue CondLHS = LHS, CondRHS = RHS; 10051 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10052 10053 // Canonicalize condition operands. 10054 if (SatCC == ISD::SETUGE) { 10055 std::swap(CondLHS, CondRHS); 10056 SatCC = ISD::SETULE; 10057 } 10058 10059 // We can test against either of the addition operands. 10060 // x <= x+y ? x+y : ~0 --> uaddsat x, y 10061 // x+y >= x ? x+y : ~0 --> uaddsat x, y 10062 if (SatCC == ISD::SETULE && Other == CondRHS && 10063 (OpLHS == CondLHS || OpRHS == CondLHS)) 10064 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10065 10066 if (OpRHS.getOpcode() == CondRHS.getOpcode() && 10067 (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10068 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) && 10069 CondLHS == OpLHS) { 10070 // If the RHS is a constant we have to reverse the const 10071 // canonicalization. 10072 // x >= ~C ? x+C : ~0 --> uaddsat x, C 10073 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10074 return Cond->getAPIntValue() == ~Op->getAPIntValue(); 10075 }; 10076 if (SatCC == ISD::SETULE && 10077 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) 10078 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 10079 } 10080 } 10081 } 10082 10083 // Match VSELECTs into sub with unsigned saturation. 10084 if (hasOperation(ISD::USUBSAT, VT)) { 10085 // Check if one of the arms of the VSELECT is a zero vector. If it's on 10086 // the left side invert the predicate to simplify logic below. 10087 SDValue Other; 10088 ISD::CondCode SatCC = CC; 10089 if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { 10090 Other = N2; 10091 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 10092 } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) { 10093 Other = N1; 10094 } 10095 10096 if (Other && Other.getNumOperands() == 2) { 10097 SDValue CondRHS = RHS; 10098 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 10099 10100 if (Other.getOpcode() == ISD::SUB && 10101 LHS.getOpcode() == ISD::ZERO_EXTEND && LHS.getOperand(0) == OpLHS && 10102 OpRHS.getOpcode() == ISD::TRUNCATE && OpRHS.getOperand(0) == RHS) { 10103 // Look for a general sub with unsigned saturation first. 10104 // zext(x) >= y ? x - trunc(y) : 0 10105 // --> usubsat(x,trunc(umin(y,SatLimit))) 10106 // zext(x) > y ? x - trunc(y) : 0 10107 // --> usubsat(x,trunc(umin(y,SatLimit))) 10108 if (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) 10109 return getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, DAG, 10110 DL); 10111 } 10112 10113 if (OpLHS == LHS) { 10114 // Look for a general sub with unsigned saturation first. 10115 // x >= y ? x-y : 0 --> usubsat x, y 10116 // x > y ? x-y : 0 --> usubsat x, y 10117 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && 10118 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) 10119 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10120 10121 if (OpRHS.getOpcode() == ISD::BUILD_VECTOR || 10122 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10123 if (CondRHS.getOpcode() == ISD::BUILD_VECTOR || 10124 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) { 10125 // If the RHS is a constant we have to reverse the const 10126 // canonicalization. 10127 // x > C-1 ? x+-C : 0 --> usubsat x, C 10128 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 10129 return (!Op && !Cond) || 10130 (Op && Cond && 10131 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); 10132 }; 10133 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && 10134 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, 10135 /*AllowUndefs*/ true)) { 10136 OpRHS = DAG.getNode(ISD::SUB, DL, VT, 10137 DAG.getConstant(0, DL, VT), OpRHS); 10138 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10139 } 10140 10141 // Another special case: If C was a sign bit, the sub has been 10142 // canonicalized into a xor. 10143 // FIXME: Would it be better to use computeKnownBits to determine 10144 // whether it's safe to decanonicalize the xor? 10145 // x s< 0 ? x^C : 0 --> usubsat x, C 10146 APInt SplatValue; 10147 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && 10148 ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) && 10149 ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) && 10150 SplatValue.isSignMask()) { 10151 // Note that we have to rebuild the RHS constant here to 10152 // ensure we don't rely on particular values of undef lanes. 10153 OpRHS = DAG.getConstant(SplatValue, DL, VT); 10154 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 10155 } 10156 } 10157 } 10158 } 10159 } 10160 } 10161 } 10162 10163 if (SimplifySelectOps(N, N1, N2)) 10164 return SDValue(N, 0); // Don't revisit N. 10165 10166 // Fold (vselect all_ones, N1, N2) -> N1 10167 if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) 10168 return N1; 10169 // Fold (vselect all_zeros, N1, N2) -> N2 10170 if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) 10171 return N2; 10172 10173 // The ConvertSelectToConcatVector function is assuming both the above 10174 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 10175 // and addressed. 10176 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 10177 N2.getOpcode() == ISD::CONCAT_VECTORS && 10178 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 10179 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 10180 return CV; 10181 } 10182 10183 if (SDValue V = foldVSelectOfConstants(N)) 10184 return V; 10185 10186 return SDValue(); 10187 } 10188 10189 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 10190 SDValue N0 = N->getOperand(0); 10191 SDValue N1 = N->getOperand(1); 10192 SDValue N2 = N->getOperand(2); 10193 SDValue N3 = N->getOperand(3); 10194 SDValue N4 = N->getOperand(4); 10195 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 10196 10197 // fold select_cc lhs, rhs, x, x, cc -> x 10198 if (N2 == N3) 10199 return N2; 10200 10201 // Determine if the condition we're dealing with is constant 10202 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 10203 CC, SDLoc(N), false)) { 10204 AddToWorklist(SCC.getNode()); 10205 10206 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 10207 if (!SCCC->isNullValue()) 10208 return N2; // cond always true -> true val 10209 else 10210 return N3; // cond always false -> false val 10211 } else if (SCC->isUndef()) { 10212 // When the condition is UNDEF, just return the first operand. This is 10213 // coherent the DAG creation, no setcc node is created in this case 10214 return N2; 10215 } else if (SCC.getOpcode() == ISD::SETCC) { 10216 // Fold to a simpler select_cc 10217 SDValue SelectOp = DAG.getNode( 10218 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), 10219 SCC.getOperand(1), N2, N3, SCC.getOperand(2)); 10220 SelectOp->setFlags(SCC->getFlags()); 10221 return SelectOp; 10222 } 10223 } 10224 10225 // If we can fold this based on the true/false value, do so. 10226 if (SimplifySelectOps(N, N2, N3)) 10227 return SDValue(N, 0); // Don't revisit N. 10228 10229 // fold select_cc into other things, such as min/max/abs 10230 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 10231 } 10232 10233 SDValue DAGCombiner::visitSETCC(SDNode *N) { 10234 // setcc is very commonly used as an argument to brcond. This pattern 10235 // also lend itself to numerous combines and, as a result, it is desired 10236 // we keep the argument to a brcond as a setcc as much as possible. 10237 bool PreferSetCC = 10238 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 10239 10240 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10241 EVT VT = N->getValueType(0); 10242 10243 // SETCC(FREEZE(X), CONST, Cond) 10244 // => 10245 // FREEZE(SETCC(X, CONST, Cond)) 10246 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond) 10247 // isn't equivalent to true or false. 10248 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to 10249 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison. 10250 // 10251 // This transformation is beneficial because visitBRCOND can fold 10252 // BRCOND(FREEZE(X)) to BRCOND(X). 10253 10254 // Conservatively optimize integer comparisons only. 10255 if (PreferSetCC) { 10256 // Do this only when SETCC is going to be used by BRCOND. 10257 10258 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 10259 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 10260 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 10261 bool Updated = false; 10262 10263 // Is 'X Cond C' always true or false? 10264 auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) { 10265 bool False = (Cond == ISD::SETULT && C->isNullValue()) || 10266 (Cond == ISD::SETLT && C->isMinSignedValue()) || 10267 (Cond == ISD::SETUGT && C->isAllOnesValue()) || 10268 (Cond == ISD::SETGT && C->isMaxSignedValue()); 10269 bool True = (Cond == ISD::SETULE && C->isAllOnesValue()) || 10270 (Cond == ISD::SETLE && C->isMaxSignedValue()) || 10271 (Cond == ISD::SETUGE && C->isNullValue()) || 10272 (Cond == ISD::SETGE && C->isMinSignedValue()); 10273 return True || False; 10274 }; 10275 10276 if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) { 10277 if (!IsAlwaysTrueOrFalse(Cond, N1C)) { 10278 N0 = N0->getOperand(0); 10279 Updated = true; 10280 } 10281 } 10282 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) { 10283 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), 10284 N0C)) { 10285 N1 = N1->getOperand(0); 10286 Updated = true; 10287 } 10288 } 10289 10290 if (Updated) 10291 return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond)); 10292 } 10293 10294 SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond, 10295 SDLoc(N), !PreferSetCC); 10296 10297 if (!Combined) 10298 return SDValue(); 10299 10300 // If we prefer to have a setcc, and we don't, we'll try our best to 10301 // recreate one using rebuildSetCC. 10302 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 10303 SDValue NewSetCC = rebuildSetCC(Combined); 10304 10305 // We don't have anything interesting to combine to. 10306 if (NewSetCC.getNode() == N) 10307 return SDValue(); 10308 10309 if (NewSetCC) 10310 return NewSetCC; 10311 } 10312 10313 return Combined; 10314 } 10315 10316 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 10317 SDValue LHS = N->getOperand(0); 10318 SDValue RHS = N->getOperand(1); 10319 SDValue Carry = N->getOperand(2); 10320 SDValue Cond = N->getOperand(3); 10321 10322 // If Carry is false, fold to a regular SETCC. 10323 if (isNullConstant(Carry)) 10324 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 10325 10326 return SDValue(); 10327 } 10328 10329 /// Check if N satisfies: 10330 /// N is used once. 10331 /// N is a Load. 10332 /// The load is compatible with ExtOpcode. It means 10333 /// If load has explicit zero/sign extension, ExpOpcode must have the same 10334 /// extension. 10335 /// Otherwise returns true. 10336 static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) { 10337 if (!N.hasOneUse()) 10338 return false; 10339 10340 if (!isa<LoadSDNode>(N)) 10341 return false; 10342 10343 LoadSDNode *Load = cast<LoadSDNode>(N); 10344 ISD::LoadExtType LoadExt = Load->getExtensionType(); 10345 if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD) 10346 return true; 10347 10348 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same 10349 // extension. 10350 if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) || 10351 (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND)) 10352 return false; 10353 10354 return true; 10355 } 10356 10357 /// Fold 10358 /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) 10359 /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y) 10360 /// (aext (select c, load x, load y)) -> (select c, extload x, extload y) 10361 /// This function is called by the DAGCombiner when visiting sext/zext/aext 10362 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 10363 static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, 10364 SelectionDAG &DAG) { 10365 unsigned Opcode = N->getOpcode(); 10366 SDValue N0 = N->getOperand(0); 10367 EVT VT = N->getValueType(0); 10368 SDLoc DL(N); 10369 10370 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 10371 Opcode == ISD::ANY_EXTEND) && 10372 "Expected EXTEND dag node in input!"); 10373 10374 if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) || 10375 !N0.hasOneUse()) 10376 return SDValue(); 10377 10378 SDValue Op1 = N0->getOperand(1); 10379 SDValue Op2 = N0->getOperand(2); 10380 if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode)) 10381 return SDValue(); 10382 10383 auto ExtLoadOpcode = ISD::EXTLOAD; 10384 if (Opcode == ISD::SIGN_EXTEND) 10385 ExtLoadOpcode = ISD::SEXTLOAD; 10386 else if (Opcode == ISD::ZERO_EXTEND) 10387 ExtLoadOpcode = ISD::ZEXTLOAD; 10388 10389 LoadSDNode *Load1 = cast<LoadSDNode>(Op1); 10390 LoadSDNode *Load2 = cast<LoadSDNode>(Op2); 10391 if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) || 10392 !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT())) 10393 return SDValue(); 10394 10395 SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1); 10396 SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2); 10397 return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2); 10398 } 10399 10400 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 10401 /// a build_vector of constants. 10402 /// This function is called by the DAGCombiner when visiting sext/zext/aext 10403 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 10404 /// Vector extends are not folded if operations are legal; this is to 10405 /// avoid introducing illegal build_vector dag nodes. 10406 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 10407 SelectionDAG &DAG, bool LegalTypes) { 10408 unsigned Opcode = N->getOpcode(); 10409 SDValue N0 = N->getOperand(0); 10410 EVT VT = N->getValueType(0); 10411 SDLoc DL(N); 10412 10413 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 10414 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 10415 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 10416 && "Expected EXTEND dag node in input!"); 10417 10418 // fold (sext c1) -> c1 10419 // fold (zext c1) -> c1 10420 // fold (aext c1) -> c1 10421 if (isa<ConstantSDNode>(N0)) 10422 return DAG.getNode(Opcode, DL, VT, N0); 10423 10424 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 10425 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) 10426 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 10427 if (N0->getOpcode() == ISD::SELECT) { 10428 SDValue Op1 = N0->getOperand(1); 10429 SDValue Op2 = N0->getOperand(2); 10430 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && 10431 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { 10432 // For any_extend, choose sign extension of the constants to allow a 10433 // possible further transform to sign_extend_inreg.i.e. 10434 // 10435 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> 10436 // t2: i64 = any_extend t1 10437 // --> 10438 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> 10439 // --> 10440 // t4: i64 = sign_extend_inreg t3 10441 unsigned FoldOpc = Opcode; 10442 if (FoldOpc == ISD::ANY_EXTEND) 10443 FoldOpc = ISD::SIGN_EXTEND; 10444 return DAG.getSelect(DL, VT, N0->getOperand(0), 10445 DAG.getNode(FoldOpc, DL, VT, Op1), 10446 DAG.getNode(FoldOpc, DL, VT, Op2)); 10447 } 10448 } 10449 10450 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 10451 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 10452 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 10453 EVT SVT = VT.getScalarType(); 10454 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 10455 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 10456 return SDValue(); 10457 10458 // We can fold this node into a build_vector. 10459 unsigned VTBits = SVT.getSizeInBits(); 10460 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 10461 SmallVector<SDValue, 8> Elts; 10462 unsigned NumElts = VT.getVectorNumElements(); 10463 10464 // For zero-extensions, UNDEF elements still guarantee to have the upper 10465 // bits set to zero. 10466 bool IsZext = 10467 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 10468 10469 for (unsigned i = 0; i != NumElts; ++i) { 10470 SDValue Op = N0.getOperand(i); 10471 if (Op.isUndef()) { 10472 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 10473 continue; 10474 } 10475 10476 SDLoc DL(Op); 10477 // Get the constant value and if needed trunc it to the size of the type. 10478 // Nodes like build_vector might have constants wider than the scalar type. 10479 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 10480 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 10481 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 10482 else 10483 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 10484 } 10485 10486 return DAG.getBuildVector(VT, DL, Elts); 10487 } 10488 10489 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 10490 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 10491 // transformation. Returns true if extension are possible and the above 10492 // mentioned transformation is profitable. 10493 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 10494 unsigned ExtOpc, 10495 SmallVectorImpl<SDNode *> &ExtendNodes, 10496 const TargetLowering &TLI) { 10497 bool HasCopyToRegUses = false; 10498 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 10499 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 10500 UE = N0.getNode()->use_end(); 10501 UI != UE; ++UI) { 10502 SDNode *User = *UI; 10503 if (User == N) 10504 continue; 10505 if (UI.getUse().getResNo() != N0.getResNo()) 10506 continue; 10507 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 10508 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 10509 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 10510 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 10511 // Sign bits will be lost after a zext. 10512 return false; 10513 bool Add = false; 10514 for (unsigned i = 0; i != 2; ++i) { 10515 SDValue UseOp = User->getOperand(i); 10516 if (UseOp == N0) 10517 continue; 10518 if (!isa<ConstantSDNode>(UseOp)) 10519 return false; 10520 Add = true; 10521 } 10522 if (Add) 10523 ExtendNodes.push_back(User); 10524 continue; 10525 } 10526 // If truncates aren't free and there are users we can't 10527 // extend, it isn't worthwhile. 10528 if (!isTruncFree) 10529 return false; 10530 // Remember if this value is live-out. 10531 if (User->getOpcode() == ISD::CopyToReg) 10532 HasCopyToRegUses = true; 10533 } 10534 10535 if (HasCopyToRegUses) { 10536 bool BothLiveOut = false; 10537 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 10538 UI != UE; ++UI) { 10539 SDUse &Use = UI.getUse(); 10540 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 10541 BothLiveOut = true; 10542 break; 10543 } 10544 } 10545 if (BothLiveOut) 10546 // Both unextended and extended values are live out. There had better be 10547 // a good reason for the transformation. 10548 return ExtendNodes.size(); 10549 } 10550 return true; 10551 } 10552 10553 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 10554 SDValue OrigLoad, SDValue ExtLoad, 10555 ISD::NodeType ExtType) { 10556 // Extend SetCC uses if necessary. 10557 SDLoc DL(ExtLoad); 10558 for (SDNode *SetCC : SetCCs) { 10559 SmallVector<SDValue, 4> Ops; 10560 10561 for (unsigned j = 0; j != 2; ++j) { 10562 SDValue SOp = SetCC->getOperand(j); 10563 if (SOp == OrigLoad) 10564 Ops.push_back(ExtLoad); 10565 else 10566 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 10567 } 10568 10569 Ops.push_back(SetCC->getOperand(2)); 10570 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 10571 } 10572 } 10573 10574 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 10575 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 10576 SDValue N0 = N->getOperand(0); 10577 EVT DstVT = N->getValueType(0); 10578 EVT SrcVT = N0.getValueType(); 10579 10580 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10581 N->getOpcode() == ISD::ZERO_EXTEND) && 10582 "Unexpected node type (not an extend)!"); 10583 10584 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 10585 // For example, on a target with legal v4i32, but illegal v8i32, turn: 10586 // (v8i32 (sext (v8i16 (load x)))) 10587 // into: 10588 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10589 // (v4i32 (sextload (x + 16))))) 10590 // Where uses of the original load, i.e.: 10591 // (v8i16 (load x)) 10592 // are replaced with: 10593 // (v8i16 (truncate 10594 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10595 // (v4i32 (sextload (x + 16))))))) 10596 // 10597 // This combine is only applicable to illegal, but splittable, vectors. 10598 // All legal types, and illegal non-vector types, are handled elsewhere. 10599 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 10600 // 10601 if (N0->getOpcode() != ISD::LOAD) 10602 return SDValue(); 10603 10604 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10605 10606 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 10607 !N0.hasOneUse() || !LN0->isSimple() || 10608 !DstVT.isVector() || !DstVT.isPow2VectorType() || 10609 !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10610 return SDValue(); 10611 10612 SmallVector<SDNode *, 4> SetCCs; 10613 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 10614 return SDValue(); 10615 10616 ISD::LoadExtType ExtType = 10617 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10618 10619 // Try to split the vector types to get down to legal types. 10620 EVT SplitSrcVT = SrcVT; 10621 EVT SplitDstVT = DstVT; 10622 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 10623 SplitSrcVT.getVectorNumElements() > 1) { 10624 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 10625 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 10626 } 10627 10628 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 10629 return SDValue(); 10630 10631 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); 10632 10633 SDLoc DL(N); 10634 const unsigned NumSplits = 10635 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 10636 const unsigned Stride = SplitSrcVT.getStoreSize(); 10637 SmallVector<SDValue, 4> Loads; 10638 SmallVector<SDValue, 4> Chains; 10639 10640 SDValue BasePtr = LN0->getBasePtr(); 10641 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 10642 const unsigned Offset = Idx * Stride; 10643 const Align Align = commonAlignment(LN0->getAlign(), Offset); 10644 10645 SDValue SplitLoad = DAG.getExtLoad( 10646 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 10647 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 10648 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 10649 10650 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); 10651 10652 Loads.push_back(SplitLoad.getValue(0)); 10653 Chains.push_back(SplitLoad.getValue(1)); 10654 } 10655 10656 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 10657 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 10658 10659 // Simplify TF. 10660 AddToWorklist(NewChain.getNode()); 10661 10662 CombineTo(N, NewValue); 10663 10664 // Replace uses of the original load (before extension) 10665 // with a truncate of the concatenated sextloaded vectors. 10666 SDValue Trunc = 10667 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 10668 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 10669 CombineTo(N0.getNode(), Trunc, NewChain); 10670 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10671 } 10672 10673 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 10674 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 10675 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 10676 assert(N->getOpcode() == ISD::ZERO_EXTEND); 10677 EVT VT = N->getValueType(0); 10678 EVT OrigVT = N->getOperand(0).getValueType(); 10679 if (TLI.isZExtFree(OrigVT, VT)) 10680 return SDValue(); 10681 10682 // and/or/xor 10683 SDValue N0 = N->getOperand(0); 10684 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10685 N0.getOpcode() == ISD::XOR) || 10686 N0.getOperand(1).getOpcode() != ISD::Constant || 10687 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 10688 return SDValue(); 10689 10690 // shl/shr 10691 SDValue N1 = N0->getOperand(0); 10692 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 10693 N1.getOperand(1).getOpcode() != ISD::Constant || 10694 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 10695 return SDValue(); 10696 10697 // load 10698 if (!isa<LoadSDNode>(N1.getOperand(0))) 10699 return SDValue(); 10700 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 10701 EVT MemVT = Load->getMemoryVT(); 10702 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 10703 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 10704 return SDValue(); 10705 10706 10707 // If the shift op is SHL, the logic op must be AND, otherwise the result 10708 // will be wrong. 10709 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 10710 return SDValue(); 10711 10712 if (!N0.hasOneUse() || !N1.hasOneUse()) 10713 return SDValue(); 10714 10715 SmallVector<SDNode*, 4> SetCCs; 10716 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 10717 ISD::ZERO_EXTEND, SetCCs, TLI)) 10718 return SDValue(); 10719 10720 // Actually do the transformation. 10721 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 10722 Load->getChain(), Load->getBasePtr(), 10723 Load->getMemoryVT(), Load->getMemOperand()); 10724 10725 SDLoc DL1(N1); 10726 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 10727 N1.getOperand(1)); 10728 10729 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10730 SDLoc DL0(N0); 10731 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 10732 DAG.getConstant(Mask, DL0, VT)); 10733 10734 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 10735 CombineTo(N, And); 10736 if (SDValue(Load, 0).hasOneUse()) { 10737 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 10738 } else { 10739 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 10740 Load->getValueType(0), ExtLoad); 10741 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 10742 } 10743 10744 // N0 is dead at this point. 10745 recursivelyDeleteUnusedNodes(N0.getNode()); 10746 10747 return SDValue(N,0); // Return N so it doesn't get rechecked! 10748 } 10749 10750 /// If we're narrowing or widening the result of a vector select and the final 10751 /// size is the same size as a setcc (compare) feeding the select, then try to 10752 /// apply the cast operation to the select's operands because matching vector 10753 /// sizes for a select condition and other operands should be more efficient. 10754 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 10755 unsigned CastOpcode = Cast->getOpcode(); 10756 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 10757 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 10758 CastOpcode == ISD::FP_ROUND) && 10759 "Unexpected opcode for vector select narrowing/widening"); 10760 10761 // We only do this transform before legal ops because the pattern may be 10762 // obfuscated by target-specific operations after legalization. Do not create 10763 // an illegal select op, however, because that may be difficult to lower. 10764 EVT VT = Cast->getValueType(0); 10765 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 10766 return SDValue(); 10767 10768 SDValue VSel = Cast->getOperand(0); 10769 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 10770 VSel.getOperand(0).getOpcode() != ISD::SETCC) 10771 return SDValue(); 10772 10773 // Does the setcc have the same vector size as the casted select? 10774 SDValue SetCC = VSel.getOperand(0); 10775 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 10776 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 10777 return SDValue(); 10778 10779 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 10780 SDValue A = VSel.getOperand(1); 10781 SDValue B = VSel.getOperand(2); 10782 SDValue CastA, CastB; 10783 SDLoc DL(Cast); 10784 if (CastOpcode == ISD::FP_ROUND) { 10785 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 10786 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 10787 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 10788 } else { 10789 CastA = DAG.getNode(CastOpcode, DL, VT, A); 10790 CastB = DAG.getNode(CastOpcode, DL, VT, B); 10791 } 10792 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 10793 } 10794 10795 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10796 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10797 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 10798 const TargetLowering &TLI, EVT VT, 10799 bool LegalOperations, SDNode *N, 10800 SDValue N0, ISD::LoadExtType ExtLoadType) { 10801 SDNode *N0Node = N0.getNode(); 10802 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 10803 : ISD::isZEXTLoad(N0Node); 10804 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 10805 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 10806 return SDValue(); 10807 10808 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10809 EVT MemVT = LN0->getMemoryVT(); 10810 if ((LegalOperations || !LN0->isSimple() || 10811 VT.isVector()) && 10812 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 10813 return SDValue(); 10814 10815 SDValue ExtLoad = 10816 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 10817 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 10818 Combiner.CombineTo(N, ExtLoad); 10819 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10820 if (LN0->use_empty()) 10821 Combiner.recursivelyDeleteUnusedNodes(LN0); 10822 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10823 } 10824 10825 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10826 // Only generate vector extloads when 1) they're legal, and 2) they are 10827 // deemed desirable by the target. 10828 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 10829 const TargetLowering &TLI, EVT VT, 10830 bool LegalOperations, SDNode *N, SDValue N0, 10831 ISD::LoadExtType ExtLoadType, 10832 ISD::NodeType ExtOpc) { 10833 if (!ISD::isNON_EXTLoad(N0.getNode()) || 10834 !ISD::isUNINDEXEDLoad(N0.getNode()) || 10835 ((LegalOperations || VT.isVector() || 10836 !cast<LoadSDNode>(N0)->isSimple()) && 10837 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 10838 return {}; 10839 10840 bool DoXform = true; 10841 SmallVector<SDNode *, 4> SetCCs; 10842 if (!N0.hasOneUse()) 10843 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 10844 if (VT.isVector()) 10845 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 10846 if (!DoXform) 10847 return {}; 10848 10849 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10850 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 10851 LN0->getBasePtr(), N0.getValueType(), 10852 LN0->getMemOperand()); 10853 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 10854 // If the load value is used only by N, replace it via CombineTo N. 10855 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 10856 Combiner.CombineTo(N, ExtLoad); 10857 if (NoReplaceTrunc) { 10858 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10859 Combiner.recursivelyDeleteUnusedNodes(LN0); 10860 } else { 10861 SDValue Trunc = 10862 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 10863 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 10864 } 10865 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10866 } 10867 10868 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, 10869 const TargetLowering &TLI, EVT VT, 10870 SDNode *N, SDValue N0, 10871 ISD::LoadExtType ExtLoadType, 10872 ISD::NodeType ExtOpc) { 10873 if (!N0.hasOneUse()) 10874 return SDValue(); 10875 10876 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); 10877 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) 10878 return SDValue(); 10879 10880 if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0))) 10881 return SDValue(); 10882 10883 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10884 return SDValue(); 10885 10886 SDLoc dl(Ld); 10887 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); 10888 SDValue NewLoad = DAG.getMaskedLoad( 10889 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), 10890 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), 10891 ExtLoadType, Ld->isExpandingLoad()); 10892 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); 10893 return NewLoad; 10894 } 10895 10896 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 10897 bool LegalOperations) { 10898 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10899 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 10900 10901 SDValue SetCC = N->getOperand(0); 10902 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 10903 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 10904 return SDValue(); 10905 10906 SDValue X = SetCC.getOperand(0); 10907 SDValue Ones = SetCC.getOperand(1); 10908 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 10909 EVT VT = N->getValueType(0); 10910 EVT XVT = X.getValueType(); 10911 // setge X, C is canonicalized to setgt, so we do not need to match that 10912 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 10913 // not require the 'not' op. 10914 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 10915 // Invert and smear/shift the sign bit: 10916 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 10917 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 10918 SDLoc DL(N); 10919 unsigned ShCt = VT.getSizeInBits() - 1; 10920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10921 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 10922 SDValue NotX = DAG.getNOT(DL, X, VT); 10923 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); 10924 auto ShiftOpcode = 10925 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 10926 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 10927 } 10928 } 10929 return SDValue(); 10930 } 10931 10932 SDValue DAGCombiner::foldSextSetcc(SDNode *N) { 10933 SDValue N0 = N->getOperand(0); 10934 if (N0.getOpcode() != ISD::SETCC) 10935 return SDValue(); 10936 10937 SDValue N00 = N0.getOperand(0); 10938 SDValue N01 = N0.getOperand(1); 10939 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10940 EVT VT = N->getValueType(0); 10941 EVT N00VT = N00.getValueType(); 10942 SDLoc DL(N); 10943 10944 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 10945 // the same size as the compared operands. Try to optimize sext(setcc()) 10946 // if this is the case. 10947 if (VT.isVector() && !LegalOperations && 10948 TLI.getBooleanContents(N00VT) == 10949 TargetLowering::ZeroOrNegativeOneBooleanContent) { 10950 EVT SVT = getSetCCResultType(N00VT); 10951 10952 // If we already have the desired type, don't change it. 10953 if (SVT != N0.getValueType()) { 10954 // We know that the # elements of the results is the same as the 10955 // # elements of the compare (and the # elements of the compare result 10956 // for that matter). Check to see that they are the same size. If so, 10957 // we know that the element size of the sext'd result matches the 10958 // element size of the compare operands. 10959 if (VT.getSizeInBits() == SVT.getSizeInBits()) 10960 return DAG.getSetCC(DL, VT, N00, N01, CC); 10961 10962 // If the desired elements are smaller or larger than the source 10963 // elements, we can use a matching integer vector type and then 10964 // truncate/sign extend. 10965 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 10966 if (SVT == MatchingVecType) { 10967 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 10968 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 10969 } 10970 } 10971 10972 // Try to eliminate the sext of a setcc by zexting the compare operands. 10973 if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) && 10974 !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) { 10975 bool IsSignedCmp = ISD::isSignedIntSetCC(CC); 10976 unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10977 unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10978 10979 // We have an unsupported narrow vector compare op that would be legal 10980 // if extended to the destination type. See if the compare operands 10981 // can be freely extended to the destination type. 10982 auto IsFreeToExtend = [&](SDValue V) { 10983 if (isConstantOrConstantVector(V, /*NoOpaques*/ true)) 10984 return true; 10985 // Match a simple, non-extended load that can be converted to a 10986 // legal {z/s}ext-load. 10987 // TODO: Allow widening of an existing {z/s}ext-load? 10988 if (!(ISD::isNON_EXTLoad(V.getNode()) && 10989 ISD::isUNINDEXEDLoad(V.getNode()) && 10990 cast<LoadSDNode>(V)->isSimple() && 10991 TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType()))) 10992 return false; 10993 10994 // Non-chain users of this value must either be the setcc in this 10995 // sequence or extends that can be folded into the new {z/s}ext-load. 10996 for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end(); 10997 UI != UE; ++UI) { 10998 // Skip uses of the chain and the setcc. 10999 SDNode *User = *UI; 11000 if (UI.getUse().getResNo() != 0 || User == N0.getNode()) 11001 continue; 11002 // Extra users must have exactly the same cast we are about to create. 11003 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad() 11004 // is enhanced similarly. 11005 if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT) 11006 return false; 11007 } 11008 return true; 11009 }; 11010 11011 if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) { 11012 SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00); 11013 SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01); 11014 return DAG.getSetCC(DL, VT, Ext0, Ext1, CC); 11015 } 11016 } 11017 } 11018 11019 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 11020 // Here, T can be 1 or -1, depending on the type of the setcc and 11021 // getBooleanContents(). 11022 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 11023 11024 // To determine the "true" side of the select, we need to know the high bit 11025 // of the value returned by the setcc if it evaluates to true. 11026 // If the type of the setcc is i1, then the true case of the select is just 11027 // sext(i1 1), that is, -1. 11028 // If the type of the setcc is larger (say, i8) then the value of the high 11029 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 11030 // of the appropriate width. 11031 SDValue ExtTrueVal = (SetCCWidth == 1) 11032 ? DAG.getAllOnesConstant(DL, VT) 11033 : DAG.getBoolConstant(true, DL, VT, N00VT); 11034 SDValue Zero = DAG.getConstant(0, DL, VT); 11035 if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 11036 return SCC; 11037 11038 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 11039 EVT SetCCVT = getSetCCResultType(N00VT); 11040 // Don't do this transform for i1 because there's a select transform 11041 // that would reverse it. 11042 // TODO: We should not do this transform at all without a target hook 11043 // because a sext is likely cheaper than a select? 11044 if (SetCCVT.getScalarSizeInBits() != 1 && 11045 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 11046 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 11047 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 11048 } 11049 } 11050 11051 return SDValue(); 11052 } 11053 11054 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 11055 SDValue N0 = N->getOperand(0); 11056 EVT VT = N->getValueType(0); 11057 SDLoc DL(N); 11058 11059 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11060 return Res; 11061 11062 // fold (sext (sext x)) -> (sext x) 11063 // fold (sext (aext x)) -> (sext x) 11064 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11065 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 11066 11067 if (N0.getOpcode() == ISD::TRUNCATE) { 11068 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 11069 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 11070 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 11071 SDNode *oye = N0.getOperand(0).getNode(); 11072 if (NarrowLoad.getNode() != N0.getNode()) { 11073 CombineTo(N0.getNode(), NarrowLoad); 11074 // CombineTo deleted the truncate, if needed, but not what's under it. 11075 AddToWorklist(oye); 11076 } 11077 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11078 } 11079 11080 // See if the value being truncated is already sign extended. If so, just 11081 // eliminate the trunc/sext pair. 11082 SDValue Op = N0.getOperand(0); 11083 unsigned OpBits = Op.getScalarValueSizeInBits(); 11084 unsigned MidBits = N0.getScalarValueSizeInBits(); 11085 unsigned DestBits = VT.getScalarSizeInBits(); 11086 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 11087 11088 if (OpBits == DestBits) { 11089 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 11090 // bits, it is already ready. 11091 if (NumSignBits > DestBits-MidBits) 11092 return Op; 11093 } else if (OpBits < DestBits) { 11094 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 11095 // bits, just sext from i32. 11096 if (NumSignBits > OpBits-MidBits) 11097 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 11098 } else { 11099 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 11100 // bits, just truncate to i32. 11101 if (NumSignBits > OpBits-MidBits) 11102 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 11103 } 11104 11105 // fold (sext (truncate x)) -> (sextinreg x). 11106 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 11107 N0.getValueType())) { 11108 if (OpBits < DestBits) 11109 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 11110 else if (OpBits > DestBits) 11111 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 11112 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 11113 DAG.getValueType(N0.getValueType())); 11114 } 11115 } 11116 11117 // Try to simplify (sext (load x)). 11118 if (SDValue foldedExt = 11119 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11120 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 11121 return foldedExt; 11122 11123 if (SDValue foldedExt = 11124 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, 11125 ISD::SIGN_EXTEND)) 11126 return foldedExt; 11127 11128 // fold (sext (load x)) to multiple smaller sextloads. 11129 // Only on illegal but splittable vectors. 11130 if (SDValue ExtLoad = CombineExtLoad(N)) 11131 return ExtLoad; 11132 11133 // Try to simplify (sext (sextload x)). 11134 if (SDValue foldedExt = tryToFoldExtOfExtload( 11135 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 11136 return foldedExt; 11137 11138 // fold (sext (and/or/xor (load x), cst)) -> 11139 // (and/or/xor (sextload x), (sext cst)) 11140 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11141 N0.getOpcode() == ISD::XOR) && 11142 isa<LoadSDNode>(N0.getOperand(0)) && 11143 N0.getOperand(1).getOpcode() == ISD::Constant && 11144 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11145 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11146 EVT MemVT = LN00->getMemoryVT(); 11147 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 11148 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 11149 SmallVector<SDNode*, 4> SetCCs; 11150 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11151 ISD::SIGN_EXTEND, SetCCs, TLI); 11152 if (DoXform) { 11153 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 11154 LN00->getChain(), LN00->getBasePtr(), 11155 LN00->getMemoryVT(), 11156 LN00->getMemOperand()); 11157 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); 11158 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11159 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11160 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 11161 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11162 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11163 CombineTo(N, And); 11164 // If N0 has multiple uses, change other uses as well. 11165 if (NoReplaceTruncAnd) { 11166 SDValue TruncAnd = 11167 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11168 CombineTo(N0.getNode(), TruncAnd); 11169 } 11170 if (NoReplaceTrunc) { 11171 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11172 } else { 11173 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11174 LN00->getValueType(0), ExtLoad); 11175 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11176 } 11177 return SDValue(N,0); // Return N so it doesn't get rechecked! 11178 } 11179 } 11180 } 11181 11182 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11183 return V; 11184 11185 if (SDValue V = foldSextSetcc(N)) 11186 return V; 11187 11188 // fold (sext x) -> (zext x) if the sign bit is known zero. 11189 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 11190 DAG.SignBitIsZero(N0)) 11191 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 11192 11193 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11194 return NewVSel; 11195 11196 // Eliminate this sign extend by doing a negation in the destination type: 11197 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 11198 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 11199 isNullOrNullSplat(N0.getOperand(0)) && 11200 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 11201 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 11202 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 11203 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 11204 } 11205 // Eliminate this sign extend by doing a decrement in the destination type: 11206 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 11207 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 11208 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 11209 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11210 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 11211 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 11212 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11213 } 11214 11215 // fold sext (not i1 X) -> add (zext i1 X), -1 11216 // TODO: This could be extended to handle bool vectors. 11217 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && 11218 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && 11219 TLI.isOperationLegal(ISD::ADD, VT)))) { 11220 // If we can eliminate the 'not', the sext form should be better 11221 if (SDValue NewXor = visitXOR(N0.getNode())) { 11222 // Returning N0 is a form of in-visit replacement that may have 11223 // invalidated N0. 11224 if (NewXor.getNode() == N0.getNode()) { 11225 // Return SDValue here as the xor should have already been replaced in 11226 // this sext. 11227 return SDValue(); 11228 } else { 11229 // Return a new sext with the new xor. 11230 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); 11231 } 11232 } 11233 11234 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 11235 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 11236 } 11237 11238 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11239 return Res; 11240 11241 return SDValue(); 11242 } 11243 11244 // isTruncateOf - If N is a truncate of some other value, return true, record 11245 // the value being truncated in Op and which of Op's bits are zero/one in Known. 11246 // This function computes KnownBits to avoid a duplicated call to 11247 // computeKnownBits in the caller. 11248 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 11249 KnownBits &Known) { 11250 if (N->getOpcode() == ISD::TRUNCATE) { 11251 Op = N->getOperand(0); 11252 Known = DAG.computeKnownBits(Op); 11253 return true; 11254 } 11255 11256 if (N.getOpcode() != ISD::SETCC || 11257 N.getValueType().getScalarType() != MVT::i1 || 11258 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 11259 return false; 11260 11261 SDValue Op0 = N->getOperand(0); 11262 SDValue Op1 = N->getOperand(1); 11263 assert(Op0.getValueType() == Op1.getValueType()); 11264 11265 if (isNullOrNullSplat(Op0)) 11266 Op = Op1; 11267 else if (isNullOrNullSplat(Op1)) 11268 Op = Op0; 11269 else 11270 return false; 11271 11272 Known = DAG.computeKnownBits(Op); 11273 11274 return (Known.Zero | 1).isAllOnesValue(); 11275 } 11276 11277 /// Given an extending node with a pop-count operand, if the target does not 11278 /// support a pop-count in the narrow source type but does support it in the 11279 /// destination type, widen the pop-count to the destination type. 11280 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { 11281 assert((Extend->getOpcode() == ISD::ZERO_EXTEND || 11282 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); 11283 11284 SDValue CtPop = Extend->getOperand(0); 11285 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) 11286 return SDValue(); 11287 11288 EVT VT = Extend->getValueType(0); 11289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11290 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || 11291 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) 11292 return SDValue(); 11293 11294 // zext (ctpop X) --> ctpop (zext X) 11295 SDLoc DL(Extend); 11296 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); 11297 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); 11298 } 11299 11300 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 11301 SDValue N0 = N->getOperand(0); 11302 EVT VT = N->getValueType(0); 11303 11304 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11305 return Res; 11306 11307 // fold (zext (zext x)) -> (zext x) 11308 // fold (zext (aext x)) -> (zext x) 11309 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 11310 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 11311 N0.getOperand(0)); 11312 11313 // fold (zext (truncate x)) -> (zext x) or 11314 // (zext (truncate x)) -> (truncate x) 11315 // This is valid when the truncated bits of x are already zero. 11316 SDValue Op; 11317 KnownBits Known; 11318 if (isTruncateOf(DAG, N0, Op, Known)) { 11319 APInt TruncatedBits = 11320 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 11321 APInt(Op.getScalarValueSizeInBits(), 0) : 11322 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 11323 N0.getScalarValueSizeInBits(), 11324 std::min(Op.getScalarValueSizeInBits(), 11325 VT.getScalarSizeInBits())); 11326 if (TruncatedBits.isSubsetOf(Known.Zero)) 11327 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 11328 } 11329 11330 // fold (zext (truncate x)) -> (and x, mask) 11331 if (N0.getOpcode() == ISD::TRUNCATE) { 11332 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 11333 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 11334 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 11335 SDNode *oye = N0.getOperand(0).getNode(); 11336 if (NarrowLoad.getNode() != N0.getNode()) { 11337 CombineTo(N0.getNode(), NarrowLoad); 11338 // CombineTo deleted the truncate, if needed, but not what's under it. 11339 AddToWorklist(oye); 11340 } 11341 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11342 } 11343 11344 EVT SrcVT = N0.getOperand(0).getValueType(); 11345 EVT MinVT = N0.getValueType(); 11346 11347 // Try to mask before the extension to avoid having to generate a larger mask, 11348 // possibly over several sub-vectors. 11349 if (SrcVT.bitsLT(VT) && VT.isVector()) { 11350 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 11351 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 11352 SDValue Op = N0.getOperand(0); 11353 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 11354 AddToWorklist(Op.getNode()); 11355 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 11356 // Transfer the debug info; the new node is equivalent to N0. 11357 DAG.transferDbgValues(N0, ZExtOrTrunc); 11358 return ZExtOrTrunc; 11359 } 11360 } 11361 11362 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 11363 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11364 AddToWorklist(Op.getNode()); 11365 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 11366 // We may safely transfer the debug info describing the truncate node over 11367 // to the equivalent and operation. 11368 DAG.transferDbgValues(N0, And); 11369 return And; 11370 } 11371 } 11372 11373 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 11374 // if either of the casts is not free. 11375 if (N0.getOpcode() == ISD::AND && 11376 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11377 N0.getOperand(1).getOpcode() == ISD::Constant && 11378 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11379 N0.getValueType()) || 11380 !TLI.isZExtFree(N0.getValueType(), VT))) { 11381 SDValue X = N0.getOperand(0).getOperand(0); 11382 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 11383 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11384 SDLoc DL(N); 11385 return DAG.getNode(ISD::AND, DL, VT, 11386 X, DAG.getConstant(Mask, DL, VT)); 11387 } 11388 11389 // Try to simplify (zext (load x)). 11390 if (SDValue foldedExt = 11391 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11392 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11393 return foldedExt; 11394 11395 if (SDValue foldedExt = 11396 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, 11397 ISD::ZERO_EXTEND)) 11398 return foldedExt; 11399 11400 // fold (zext (load x)) to multiple smaller zextloads. 11401 // Only on illegal but splittable vectors. 11402 if (SDValue ExtLoad = CombineExtLoad(N)) 11403 return ExtLoad; 11404 11405 // fold (zext (and/or/xor (load x), cst)) -> 11406 // (and/or/xor (zextload x), (zext cst)) 11407 // Unless (and (load x) cst) will match as a zextload already and has 11408 // additional users. 11409 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 11410 N0.getOpcode() == ISD::XOR) && 11411 isa<LoadSDNode>(N0.getOperand(0)) && 11412 N0.getOperand(1).getOpcode() == ISD::Constant && 11413 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 11414 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 11415 EVT MemVT = LN00->getMemoryVT(); 11416 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 11417 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 11418 bool DoXform = true; 11419 SmallVector<SDNode*, 4> SetCCs; 11420 if (!N0.hasOneUse()) { 11421 if (N0.getOpcode() == ISD::AND) { 11422 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 11423 EVT LoadResultTy = AndC->getValueType(0); 11424 EVT ExtVT; 11425 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 11426 DoXform = false; 11427 } 11428 } 11429 if (DoXform) 11430 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 11431 ISD::ZERO_EXTEND, SetCCs, TLI); 11432 if (DoXform) { 11433 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 11434 LN00->getChain(), LN00->getBasePtr(), 11435 LN00->getMemoryVT(), 11436 LN00->getMemOperand()); 11437 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11438 SDLoc DL(N); 11439 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 11440 ExtLoad, DAG.getConstant(Mask, DL, VT)); 11441 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 11442 bool NoReplaceTruncAnd = !N0.hasOneUse(); 11443 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 11444 CombineTo(N, And); 11445 // If N0 has multiple uses, change other uses as well. 11446 if (NoReplaceTruncAnd) { 11447 SDValue TruncAnd = 11448 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 11449 CombineTo(N0.getNode(), TruncAnd); 11450 } 11451 if (NoReplaceTrunc) { 11452 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 11453 } else { 11454 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 11455 LN00->getValueType(0), ExtLoad); 11456 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 11457 } 11458 return SDValue(N,0); // Return N so it doesn't get rechecked! 11459 } 11460 } 11461 } 11462 11463 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 11464 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 11465 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 11466 return ZExtLoad; 11467 11468 // Try to simplify (zext (zextload x)). 11469 if (SDValue foldedExt = tryToFoldExtOfExtload( 11470 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 11471 return foldedExt; 11472 11473 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 11474 return V; 11475 11476 if (N0.getOpcode() == ISD::SETCC) { 11477 // Only do this before legalize for now. 11478 if (!LegalOperations && VT.isVector() && 11479 N0.getValueType().getVectorElementType() == MVT::i1) { 11480 EVT N00VT = N0.getOperand(0).getValueType(); 11481 if (getSetCCResultType(N00VT) == N0.getValueType()) 11482 return SDValue(); 11483 11484 // We know that the # elements of the results is the same as the # 11485 // elements of the compare (and the # elements of the compare result for 11486 // that matter). Check to see that they are the same size. If so, we know 11487 // that the element size of the sext'd result matches the element size of 11488 // the compare operands. 11489 SDLoc DL(N); 11490 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 11491 // zext(setcc) -> zext_in_reg(vsetcc) for vectors. 11492 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 11493 N0.getOperand(1), N0.getOperand(2)); 11494 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); 11495 } 11496 11497 // If the desired elements are smaller or larger than the source 11498 // elements we can use a matching integer vector type and then 11499 // truncate/any extend followed by zext_in_reg. 11500 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11501 SDValue VsetCC = 11502 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 11503 N0.getOperand(1), N0.getOperand(2)); 11504 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, 11505 N0.getValueType()); 11506 } 11507 11508 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) 11509 SDLoc DL(N); 11510 EVT N0VT = N0.getValueType(); 11511 EVT N00VT = N0.getOperand(0).getValueType(); 11512 if (SDValue SCC = SimplifySelectCC( 11513 DL, N0.getOperand(0), N0.getOperand(1), 11514 DAG.getBoolConstant(true, DL, N0VT, N00VT), 11515 DAG.getBoolConstant(false, DL, N0VT, N00VT), 11516 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11517 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); 11518 } 11519 11520 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 11521 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 11522 isa<ConstantSDNode>(N0.getOperand(1)) && 11523 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11524 N0.hasOneUse()) { 11525 SDValue ShAmt = N0.getOperand(1); 11526 if (N0.getOpcode() == ISD::SHL) { 11527 SDValue InnerZExt = N0.getOperand(0); 11528 // If the original shl may be shifting out bits, do not perform this 11529 // transformation. 11530 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 11531 InnerZExt.getOperand(0).getValueSizeInBits(); 11532 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) 11533 return SDValue(); 11534 } 11535 11536 SDLoc DL(N); 11537 11538 // Ensure that the shift amount is wide enough for the shifted value. 11539 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) 11540 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 11541 11542 return DAG.getNode(N0.getOpcode(), DL, VT, 11543 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 11544 ShAmt); 11545 } 11546 11547 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11548 return NewVSel; 11549 11550 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11551 return NewCtPop; 11552 11553 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11554 return Res; 11555 11556 return SDValue(); 11557 } 11558 11559 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 11560 SDValue N0 = N->getOperand(0); 11561 EVT VT = N->getValueType(0); 11562 11563 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11564 return Res; 11565 11566 // fold (aext (aext x)) -> (aext x) 11567 // fold (aext (zext x)) -> (zext x) 11568 // fold (aext (sext x)) -> (sext x) 11569 if (N0.getOpcode() == ISD::ANY_EXTEND || 11570 N0.getOpcode() == ISD::ZERO_EXTEND || 11571 N0.getOpcode() == ISD::SIGN_EXTEND) 11572 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 11573 11574 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 11575 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 11576 if (N0.getOpcode() == ISD::TRUNCATE) { 11577 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 11578 SDNode *oye = N0.getOperand(0).getNode(); 11579 if (NarrowLoad.getNode() != N0.getNode()) { 11580 CombineTo(N0.getNode(), NarrowLoad); 11581 // CombineTo deleted the truncate, if needed, but not what's under it. 11582 AddToWorklist(oye); 11583 } 11584 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11585 } 11586 } 11587 11588 // fold (aext (truncate x)) 11589 if (N0.getOpcode() == ISD::TRUNCATE) 11590 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11591 11592 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 11593 // if the trunc is not free. 11594 if (N0.getOpcode() == ISD::AND && 11595 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11596 N0.getOperand(1).getOpcode() == ISD::Constant && 11597 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11598 N0.getValueType())) { 11599 SDLoc DL(N); 11600 SDValue X = N0.getOperand(0).getOperand(0); 11601 X = DAG.getAnyExtOrTrunc(X, DL, VT); 11602 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11603 return DAG.getNode(ISD::AND, DL, VT, 11604 X, DAG.getConstant(Mask, DL, VT)); 11605 } 11606 11607 // fold (aext (load x)) -> (aext (truncate (extload x))) 11608 // None of the supported targets knows how to perform load and any_ext 11609 // on vectors in one instruction, so attempt to fold to zext instead. 11610 if (VT.isVector()) { 11611 // Try to simplify (zext (load x)). 11612 if (SDValue foldedExt = 11613 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11614 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11615 return foldedExt; 11616 } else if (ISD::isNON_EXTLoad(N0.getNode()) && 11617 ISD::isUNINDEXEDLoad(N0.getNode()) && 11618 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 11619 bool DoXform = true; 11620 SmallVector<SDNode *, 4> SetCCs; 11621 if (!N0.hasOneUse()) 11622 DoXform = 11623 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 11624 if (DoXform) { 11625 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11626 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 11627 LN0->getChain(), LN0->getBasePtr(), 11628 N0.getValueType(), LN0->getMemOperand()); 11629 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 11630 // If the load value is used only by N, replace it via CombineTo N. 11631 bool NoReplaceTrunc = N0.hasOneUse(); 11632 CombineTo(N, ExtLoad); 11633 if (NoReplaceTrunc) { 11634 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11635 recursivelyDeleteUnusedNodes(LN0); 11636 } else { 11637 SDValue Trunc = 11638 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 11639 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 11640 } 11641 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11642 } 11643 } 11644 11645 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 11646 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 11647 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 11648 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 11649 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 11650 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11651 ISD::LoadExtType ExtType = LN0->getExtensionType(); 11652 EVT MemVT = LN0->getMemoryVT(); 11653 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 11654 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 11655 VT, LN0->getChain(), LN0->getBasePtr(), 11656 MemVT, LN0->getMemOperand()); 11657 CombineTo(N, ExtLoad); 11658 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11659 recursivelyDeleteUnusedNodes(LN0); 11660 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11661 } 11662 } 11663 11664 if (N0.getOpcode() == ISD::SETCC) { 11665 // For vectors: 11666 // aext(setcc) -> vsetcc 11667 // aext(setcc) -> truncate(vsetcc) 11668 // aext(setcc) -> aext(vsetcc) 11669 // Only do this before legalize for now. 11670 if (VT.isVector() && !LegalOperations) { 11671 EVT N00VT = N0.getOperand(0).getValueType(); 11672 if (getSetCCResultType(N00VT) == N0.getValueType()) 11673 return SDValue(); 11674 11675 // We know that the # elements of the results is the same as the 11676 // # elements of the compare (and the # elements of the compare result 11677 // for that matter). Check to see that they are the same size. If so, 11678 // we know that the element size of the sext'd result matches the 11679 // element size of the compare operands. 11680 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 11681 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 11682 N0.getOperand(1), 11683 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11684 11685 // If the desired elements are smaller or larger than the source 11686 // elements we can use a matching integer vector type and then 11687 // truncate/any extend 11688 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11689 SDValue VsetCC = 11690 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 11691 N0.getOperand(1), 11692 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11693 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 11694 } 11695 11696 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 11697 SDLoc DL(N); 11698 if (SDValue SCC = SimplifySelectCC( 11699 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 11700 DAG.getConstant(0, DL, VT), 11701 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11702 return SCC; 11703 } 11704 11705 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11706 return NewCtPop; 11707 11708 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG)) 11709 return Res; 11710 11711 return SDValue(); 11712 } 11713 11714 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 11715 unsigned Opcode = N->getOpcode(); 11716 SDValue N0 = N->getOperand(0); 11717 SDValue N1 = N->getOperand(1); 11718 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 11719 11720 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 11721 if (N0.getOpcode() == Opcode && 11722 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 11723 return N0; 11724 11725 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 11726 N0.getOperand(0).getOpcode() == Opcode) { 11727 // We have an assert, truncate, assert sandwich. Make one stronger assert 11728 // by asserting on the smallest asserted type to the larger source type. 11729 // This eliminates the later assert: 11730 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 11731 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 11732 SDValue BigA = N0.getOperand(0); 11733 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 11734 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 11735 "Asserting zero/sign-extended bits to a type larger than the " 11736 "truncated destination does not provide information"); 11737 11738 SDLoc DL(N); 11739 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 11740 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 11741 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 11742 BigA.getOperand(0), MinAssertVTVal); 11743 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 11744 } 11745 11746 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 11747 // than X. Just move the AssertZext in front of the truncate and drop the 11748 // AssertSExt. 11749 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 11750 N0.getOperand(0).getOpcode() == ISD::AssertSext && 11751 Opcode == ISD::AssertZext) { 11752 SDValue BigA = N0.getOperand(0); 11753 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 11754 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 11755 "Asserting zero/sign-extended bits to a type larger than the " 11756 "truncated destination does not provide information"); 11757 11758 if (AssertVT.bitsLT(BigA_AssertVT)) { 11759 SDLoc DL(N); 11760 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 11761 BigA.getOperand(0), N1); 11762 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 11763 } 11764 } 11765 11766 return SDValue(); 11767 } 11768 11769 SDValue DAGCombiner::visitAssertAlign(SDNode *N) { 11770 SDLoc DL(N); 11771 11772 Align AL = cast<AssertAlignSDNode>(N)->getAlign(); 11773 SDValue N0 = N->getOperand(0); 11774 11775 // Fold (assertalign (assertalign x, AL0), AL1) -> 11776 // (assertalign x, max(AL0, AL1)) 11777 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) 11778 return DAG.getAssertAlign(DL, N0.getOperand(0), 11779 std::max(AL, AAN->getAlign())); 11780 11781 // In rare cases, there are trivial arithmetic ops in source operands. Sink 11782 // this assert down to source operands so that those arithmetic ops could be 11783 // exposed to the DAG combining. 11784 switch (N0.getOpcode()) { 11785 default: 11786 break; 11787 case ISD::ADD: 11788 case ISD::SUB: { 11789 unsigned AlignShift = Log2(AL); 11790 SDValue LHS = N0.getOperand(0); 11791 SDValue RHS = N0.getOperand(1); 11792 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); 11793 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11794 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { 11795 if (LHSAlignShift < AlignShift) 11796 LHS = DAG.getAssertAlign(DL, LHS, AL); 11797 if (RHSAlignShift < AlignShift) 11798 RHS = DAG.getAssertAlign(DL, RHS, AL); 11799 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); 11800 } 11801 break; 11802 } 11803 } 11804 11805 return SDValue(); 11806 } 11807 11808 /// If the result of a wider load is shifted to right of N bits and then 11809 /// truncated to a narrower type and where N is a multiple of number of bits of 11810 /// the narrower type, transform it to a narrower load from address + N / num of 11811 /// bits of new type. Also narrow the load if the result is masked with an AND 11812 /// to effectively produce a smaller type. If the result is to be extended, also 11813 /// fold the extension to form a extending load. 11814 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 11815 unsigned Opc = N->getOpcode(); 11816 11817 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 11818 SDValue N0 = N->getOperand(0); 11819 EVT VT = N->getValueType(0); 11820 EVT ExtVT = VT; 11821 11822 // This transformation isn't valid for vector loads. 11823 if (VT.isVector()) 11824 return SDValue(); 11825 11826 unsigned ShAmt = 0; 11827 bool HasShiftedOffset = false; 11828 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 11829 // extended to VT. 11830 if (Opc == ISD::SIGN_EXTEND_INREG) { 11831 ExtType = ISD::SEXTLOAD; 11832 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 11833 } else if (Opc == ISD::SRL) { 11834 // Another special-case: SRL is basically zero-extending a narrower value, 11835 // or it maybe shifting a higher subword, half or byte into the lowest 11836 // bits. 11837 ExtType = ISD::ZEXTLOAD; 11838 N0 = SDValue(N, 0); 11839 11840 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); 11841 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 11842 if (!N01 || !LN0) 11843 return SDValue(); 11844 11845 uint64_t ShiftAmt = N01->getZExtValue(); 11846 uint64_t MemoryWidth = LN0->getMemoryVT().getScalarSizeInBits(); 11847 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) 11848 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); 11849 else 11850 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 11851 VT.getScalarSizeInBits() - ShiftAmt); 11852 } else if (Opc == ISD::AND) { 11853 // An AND with a constant mask is the same as a truncate + zero-extend. 11854 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11855 if (!AndC) 11856 return SDValue(); 11857 11858 const APInt &Mask = AndC->getAPIntValue(); 11859 unsigned ActiveBits = 0; 11860 if (Mask.isMask()) { 11861 ActiveBits = Mask.countTrailingOnes(); 11862 } else if (Mask.isShiftedMask()) { 11863 ShAmt = Mask.countTrailingZeros(); 11864 APInt ShiftedMask = Mask.lshr(ShAmt); 11865 ActiveBits = ShiftedMask.countTrailingOnes(); 11866 HasShiftedOffset = true; 11867 } else 11868 return SDValue(); 11869 11870 ExtType = ISD::ZEXTLOAD; 11871 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 11872 } 11873 11874 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 11875 SDValue SRL = N0; 11876 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { 11877 ShAmt = ConstShift->getZExtValue(); 11878 unsigned EVTBits = ExtVT.getScalarSizeInBits(); 11879 // Is the shift amount a multiple of size of VT? 11880 if ((ShAmt & (EVTBits-1)) == 0) { 11881 N0 = N0.getOperand(0); 11882 // Is the load width a multiple of size of VT? 11883 if ((N0.getScalarValueSizeInBits() & (EVTBits - 1)) != 0) 11884 return SDValue(); 11885 } 11886 11887 // At this point, we must have a load or else we can't do the transform. 11888 auto *LN0 = dyn_cast<LoadSDNode>(N0); 11889 if (!LN0) return SDValue(); 11890 11891 // Because a SRL must be assumed to *need* to zero-extend the high bits 11892 // (as opposed to anyext the high bits), we can't combine the zextload 11893 // lowering of SRL and an sextload. 11894 if (LN0->getExtensionType() == ISD::SEXTLOAD) 11895 return SDValue(); 11896 11897 // If the shift amount is larger than the input type then we're not 11898 // accessing any of the loaded bytes. If the load was a zextload/extload 11899 // then the result of the shift+trunc is zero/undef (handled elsewhere). 11900 if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) 11901 return SDValue(); 11902 11903 // If the SRL is only used by a masking AND, we may be able to adjust 11904 // the ExtVT to make the AND redundant. 11905 SDNode *Mask = *(SRL->use_begin()); 11906 if (Mask->getOpcode() == ISD::AND && 11907 isa<ConstantSDNode>(Mask->getOperand(1))) { 11908 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); 11909 if (ShiftMask.isMask()) { 11910 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 11911 ShiftMask.countTrailingOnes()); 11912 // If the mask is smaller, recompute the type. 11913 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && 11914 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) 11915 ExtVT = MaskedVT; 11916 } 11917 } 11918 } 11919 } 11920 11921 // If the load is shifted left (and the result isn't shifted back right), 11922 // we can fold the truncate through the shift. 11923 unsigned ShLeftAmt = 0; 11924 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 11925 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 11926 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 11927 ShLeftAmt = N01->getZExtValue(); 11928 N0 = N0.getOperand(0); 11929 } 11930 } 11931 11932 // If we haven't found a load, we can't narrow it. 11933 if (!isa<LoadSDNode>(N0)) 11934 return SDValue(); 11935 11936 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11937 // Reducing the width of a volatile load is illegal. For atomics, we may be 11938 // able to reduce the width provided we never widen again. (see D66309) 11939 if (!LN0->isSimple() || 11940 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 11941 return SDValue(); 11942 11943 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 11944 unsigned LVTStoreBits = 11945 LN0->getMemoryVT().getStoreSizeInBits().getFixedSize(); 11946 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize(); 11947 return LVTStoreBits - EVTStoreBits - ShAmt; 11948 }; 11949 11950 // For big endian targets, we need to adjust the offset to the pointer to 11951 // load the correct bytes. 11952 if (DAG.getDataLayout().isBigEndian()) 11953 ShAmt = AdjustBigEndianShift(ShAmt); 11954 11955 uint64_t PtrOff = ShAmt / 8; 11956 Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); 11957 SDLoc DL(LN0); 11958 // The original load itself didn't wrap, so an offset within it doesn't. 11959 SDNodeFlags Flags; 11960 Flags.setNoUnsignedWrap(true); 11961 SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), 11962 TypeSize::Fixed(PtrOff), DL, Flags); 11963 AddToWorklist(NewPtr.getNode()); 11964 11965 SDValue Load; 11966 if (ExtType == ISD::NON_EXTLOAD) 11967 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, 11968 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 11969 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 11970 else 11971 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, 11972 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 11973 NewAlign, LN0->getMemOperand()->getFlags(), 11974 LN0->getAAInfo()); 11975 11976 // Replace the old load's chain with the new load's chain. 11977 WorklistRemover DeadNodes(*this); 11978 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 11979 11980 // Shift the result left, if we've swallowed a left shift. 11981 SDValue Result = Load; 11982 if (ShLeftAmt != 0) { 11983 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 11984 if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) 11985 ShImmTy = VT; 11986 // If the shift amount is as large as the result size (but, presumably, 11987 // no larger than the source) then the useful bits of the result are 11988 // zero; we can't simply return the shortened shift, because the result 11989 // of that operation is undefined. 11990 if (ShLeftAmt >= VT.getScalarSizeInBits()) 11991 Result = DAG.getConstant(0, DL, VT); 11992 else 11993 Result = DAG.getNode(ISD::SHL, DL, VT, 11994 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 11995 } 11996 11997 if (HasShiftedOffset) { 11998 // Recalculate the shift amount after it has been altered to calculate 11999 // the offset. 12000 if (DAG.getDataLayout().isBigEndian()) 12001 ShAmt = AdjustBigEndianShift(ShAmt); 12002 12003 // We're using a shifted mask, so the load now has an offset. This means 12004 // that data has been loaded into the lower bytes than it would have been 12005 // before, so we need to shl the loaded data into the correct position in the 12006 // register. 12007 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 12008 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 12009 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 12010 } 12011 12012 // Return the new loaded value. 12013 return Result; 12014 } 12015 12016 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 12017 SDValue N0 = N->getOperand(0); 12018 SDValue N1 = N->getOperand(1); 12019 EVT VT = N->getValueType(0); 12020 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 12021 unsigned VTBits = VT.getScalarSizeInBits(); 12022 unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); 12023 12024 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 12025 if (N0.isUndef()) 12026 return DAG.getConstant(0, SDLoc(N), VT); 12027 12028 // fold (sext_in_reg c1) -> c1 12029 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 12030 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 12031 12032 // If the input is already sign extended, just drop the extension. 12033 if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1)) 12034 return N0; 12035 12036 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 12037 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 12038 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 12039 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), 12040 N1); 12041 12042 // fold (sext_in_reg (sext x)) -> (sext x) 12043 // fold (sext_in_reg (aext x)) -> (sext x) 12044 // if x is small enough or if we know that x has more than 1 sign bit and the 12045 // sign_extend_inreg is extending from one of them. 12046 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 12047 SDValue N00 = N0.getOperand(0); 12048 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12049 if ((N00Bits <= ExtVTBits || 12050 (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) && 12051 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12052 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 12053 } 12054 12055 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 12056 // if x is small enough or if we know that x has more than 1 sign bit and the 12057 // sign_extend_inreg is extending from one of them. 12058 if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 12059 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 12060 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 12061 SDValue N00 = N0.getOperand(0); 12062 unsigned N00Bits = N00.getScalarValueSizeInBits(); 12063 unsigned DstElts = N0.getValueType().getVectorMinNumElements(); 12064 unsigned SrcElts = N00.getValueType().getVectorMinNumElements(); 12065 bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 12066 APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts); 12067 if ((N00Bits == ExtVTBits || 12068 (!IsZext && (N00Bits < ExtVTBits || 12069 (N00Bits - DAG.ComputeNumSignBits(N00, DemandedSrcElts)) < 12070 ExtVTBits))) && 12071 (!LegalOperations || 12072 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))) 12073 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00); 12074 } 12075 12076 // fold (sext_in_reg (zext x)) -> (sext x) 12077 // iff we are extending the source sign bit. 12078 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 12079 SDValue N00 = N0.getOperand(0); 12080 if (N00.getScalarValueSizeInBits() == ExtVTBits && 12081 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 12082 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 12083 } 12084 12085 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 12086 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) 12087 return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); 12088 12089 // fold operands of sext_in_reg based on knowledge that the top bits are not 12090 // demanded. 12091 if (SimplifyDemandedBits(SDValue(N, 0))) 12092 return SDValue(N, 0); 12093 12094 // fold (sext_in_reg (load x)) -> (smaller sextload x) 12095 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 12096 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 12097 return NarrowLoad; 12098 12099 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 12100 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 12101 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 12102 if (N0.getOpcode() == ISD::SRL) { 12103 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 12104 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { 12105 // We can turn this into an SRA iff the input to the SRL is already sign 12106 // extended enough. 12107 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 12108 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) 12109 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 12110 N0.getOperand(1)); 12111 } 12112 } 12113 12114 // fold (sext_inreg (extload x)) -> (sextload x) 12115 // If sextload is not supported by target, we can only do the combine when 12116 // load has one use. Doing otherwise can block folding the extload with other 12117 // extends that the target does support. 12118 if (ISD::isEXTLoad(N0.getNode()) && 12119 ISD::isUNINDEXEDLoad(N0.getNode()) && 12120 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12121 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && 12122 N0.hasOneUse()) || 12123 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12124 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12125 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12126 LN0->getChain(), 12127 LN0->getBasePtr(), ExtVT, 12128 LN0->getMemOperand()); 12129 CombineTo(N, ExtLoad); 12130 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12131 AddToWorklist(ExtLoad.getNode()); 12132 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12133 } 12134 12135 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 12136 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 12137 N0.hasOneUse() && 12138 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 12139 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && 12140 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 12141 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12142 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 12143 LN0->getChain(), 12144 LN0->getBasePtr(), ExtVT, 12145 LN0->getMemOperand()); 12146 CombineTo(N, ExtLoad); 12147 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12148 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12149 } 12150 12151 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) 12152 // ignore it if the masked load is already sign extended 12153 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { 12154 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && 12155 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && 12156 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { 12157 SDValue ExtMaskedLoad = DAG.getMaskedLoad( 12158 VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), 12159 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), 12160 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); 12161 CombineTo(N, ExtMaskedLoad); 12162 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); 12163 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12164 } 12165 } 12166 12167 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) 12168 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 12169 if (SDValue(GN0, 0).hasOneUse() && 12170 ExtVT == GN0->getMemoryVT() && 12171 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 12172 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 12173 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 12174 12175 SDValue ExtLoad = DAG.getMaskedGather( 12176 DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops, 12177 GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD); 12178 12179 CombineTo(N, ExtLoad); 12180 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 12181 AddToWorklist(ExtLoad.getNode()); 12182 return SDValue(N, 0); // Return N so it doesn't get rechecked! 12183 } 12184 } 12185 12186 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 12187 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { 12188 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 12189 N0.getOperand(1), false)) 12190 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); 12191 } 12192 12193 return SDValue(); 12194 } 12195 12196 SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) { 12197 SDValue N0 = N->getOperand(0); 12198 EVT VT = N->getValueType(0); 12199 12200 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same. 12201 if (N0.isUndef()) 12202 return DAG.getConstant(0, SDLoc(N), VT); 12203 12204 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 12205 return Res; 12206 12207 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 12208 return SDValue(N, 0); 12209 12210 return SDValue(); 12211 } 12212 12213 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 12214 SDValue N0 = N->getOperand(0); 12215 EVT VT = N->getValueType(0); 12216 EVT SrcVT = N0.getValueType(); 12217 bool isLE = DAG.getDataLayout().isLittleEndian(); 12218 12219 // noop truncate 12220 if (SrcVT == VT) 12221 return N0; 12222 12223 // fold (truncate (truncate x)) -> (truncate x) 12224 if (N0.getOpcode() == ISD::TRUNCATE) 12225 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12226 12227 // fold (truncate c1) -> c1 12228 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 12229 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 12230 if (C.getNode() != N) 12231 return C; 12232 } 12233 12234 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 12235 if (N0.getOpcode() == ISD::ZERO_EXTEND || 12236 N0.getOpcode() == ISD::SIGN_EXTEND || 12237 N0.getOpcode() == ISD::ANY_EXTEND) { 12238 // if the source is smaller than the dest, we still need an extend. 12239 if (N0.getOperand(0).getValueType().bitsLT(VT)) 12240 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 12241 // if the source is larger than the dest, than we just need the truncate. 12242 if (N0.getOperand(0).getValueType().bitsGT(VT)) 12243 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 12244 // if the source and dest are the same type, we can drop both the extend 12245 // and the truncate. 12246 return N0.getOperand(0); 12247 } 12248 12249 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 12250 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 12251 return SDValue(); 12252 12253 // Fold extract-and-trunc into a narrow extract. For example: 12254 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 12255 // i32 y = TRUNCATE(i64 x) 12256 // -- becomes -- 12257 // v16i8 b = BITCAST (v2i64 val) 12258 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 12259 // 12260 // Note: We only run this optimization after type legalization (which often 12261 // creates this pattern) and before operation legalization after which 12262 // we need to be more careful about the vector instructions that we generate. 12263 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 12264 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 12265 EVT VecTy = N0.getOperand(0).getValueType(); 12266 EVT ExTy = N0.getValueType(); 12267 EVT TrTy = N->getValueType(0); 12268 12269 auto EltCnt = VecTy.getVectorElementCount(); 12270 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 12271 auto NewEltCnt = EltCnt * SizeRatio; 12272 12273 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); 12274 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 12275 12276 SDValue EltNo = N0->getOperand(1); 12277 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 12278 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12279 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 12280 12281 SDLoc DL(N); 12282 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 12283 DAG.getBitcast(NVT, N0.getOperand(0)), 12284 DAG.getVectorIdxConstant(Index, DL)); 12285 } 12286 } 12287 12288 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 12289 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 12290 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 12291 TLI.isTruncateFree(SrcVT, VT)) { 12292 SDLoc SL(N0); 12293 SDValue Cond = N0.getOperand(0); 12294 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 12295 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 12296 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 12297 } 12298 } 12299 12300 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 12301 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 12302 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 12303 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 12304 SDValue Amt = N0.getOperand(1); 12305 KnownBits Known = DAG.computeKnownBits(Amt); 12306 unsigned Size = VT.getScalarSizeInBits(); 12307 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 12308 SDLoc SL(N); 12309 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 12310 12311 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 12312 if (AmtVT != Amt.getValueType()) { 12313 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 12314 AddToWorklist(Amt.getNode()); 12315 } 12316 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 12317 } 12318 } 12319 12320 if (SDValue V = foldSubToUSubSat(VT, N0.getNode())) 12321 return V; 12322 12323 // Attempt to pre-truncate BUILD_VECTOR sources. 12324 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 12325 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && 12326 // Avoid creating illegal types if running after type legalizer. 12327 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { 12328 SDLoc DL(N); 12329 EVT SVT = VT.getScalarType(); 12330 SmallVector<SDValue, 8> TruncOps; 12331 for (const SDValue &Op : N0->op_values()) { 12332 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 12333 TruncOps.push_back(TruncOp); 12334 } 12335 return DAG.getBuildVector(VT, DL, TruncOps); 12336 } 12337 12338 // Fold a series of buildvector, bitcast, and truncate if possible. 12339 // For example fold 12340 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 12341 // (2xi32 (buildvector x, y)). 12342 if (Level == AfterLegalizeVectorOps && VT.isVector() && 12343 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 12344 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 12345 N0.getOperand(0).hasOneUse()) { 12346 SDValue BuildVect = N0.getOperand(0); 12347 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 12348 EVT TruncVecEltTy = VT.getVectorElementType(); 12349 12350 // Check that the element types match. 12351 if (BuildVectEltTy == TruncVecEltTy) { 12352 // Now we only need to compute the offset of the truncated elements. 12353 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 12354 unsigned TruncVecNumElts = VT.getVectorNumElements(); 12355 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 12356 12357 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 12358 "Invalid number of elements"); 12359 12360 SmallVector<SDValue, 8> Opnds; 12361 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 12362 Opnds.push_back(BuildVect.getOperand(i)); 12363 12364 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 12365 } 12366 } 12367 12368 // See if we can simplify the input to this truncate through knowledge that 12369 // only the low bits are being used. 12370 // For example "trunc (or (shl x, 8), y)" // -> trunc y 12371 // Currently we only perform this optimization on scalars because vectors 12372 // may have different active low bits. 12373 if (!VT.isVector()) { 12374 APInt Mask = 12375 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 12376 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 12377 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 12378 } 12379 12380 // fold (truncate (load x)) -> (smaller load x) 12381 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 12382 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 12383 if (SDValue Reduced = ReduceLoadWidth(N)) 12384 return Reduced; 12385 12386 // Handle the case where the load remains an extending load even 12387 // after truncation. 12388 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 12389 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12390 if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { 12391 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 12392 VT, LN0->getChain(), LN0->getBasePtr(), 12393 LN0->getMemoryVT(), 12394 LN0->getMemOperand()); 12395 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 12396 return NewLoad; 12397 } 12398 } 12399 } 12400 12401 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 12402 // where ... are all 'undef'. 12403 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 12404 SmallVector<EVT, 8> VTs; 12405 SDValue V; 12406 unsigned Idx = 0; 12407 unsigned NumDefs = 0; 12408 12409 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 12410 SDValue X = N0.getOperand(i); 12411 if (!X.isUndef()) { 12412 V = X; 12413 Idx = i; 12414 NumDefs++; 12415 } 12416 // Stop if more than one members are non-undef. 12417 if (NumDefs > 1) 12418 break; 12419 12420 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 12421 VT.getVectorElementType(), 12422 X.getValueType().getVectorElementCount())); 12423 } 12424 12425 if (NumDefs == 0) 12426 return DAG.getUNDEF(VT); 12427 12428 if (NumDefs == 1) { 12429 assert(V.getNode() && "The single defined operand is empty!"); 12430 SmallVector<SDValue, 8> Opnds; 12431 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 12432 if (i != Idx) { 12433 Opnds.push_back(DAG.getUNDEF(VTs[i])); 12434 continue; 12435 } 12436 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 12437 AddToWorklist(NV.getNode()); 12438 Opnds.push_back(NV); 12439 } 12440 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 12441 } 12442 } 12443 12444 // Fold truncate of a bitcast of a vector to an extract of the low vector 12445 // element. 12446 // 12447 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 12448 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 12449 SDValue VecSrc = N0.getOperand(0); 12450 EVT VecSrcVT = VecSrc.getValueType(); 12451 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && 12452 (!LegalOperations || 12453 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { 12454 SDLoc SL(N); 12455 12456 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; 12457 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, 12458 DAG.getVectorIdxConstant(Idx, SL)); 12459 } 12460 } 12461 12462 // Simplify the operands using demanded-bits information. 12463 if (SimplifyDemandedBits(SDValue(N, 0))) 12464 return SDValue(N, 0); 12465 12466 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 12467 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 12468 // When the adde's carry is not used. 12469 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 12470 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && 12471 // We only do for addcarry before legalize operation 12472 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 12473 TLI.isOperationLegal(N0.getOpcode(), VT))) { 12474 SDLoc SL(N); 12475 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 12476 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 12477 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 12478 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 12479 } 12480 12481 // fold (truncate (extract_subvector(ext x))) -> 12482 // (extract_subvector x) 12483 // TODO: This can be generalized to cover cases where the truncate and extract 12484 // do not fully cancel each other out. 12485 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 12486 SDValue N00 = N0.getOperand(0); 12487 if (N00.getOpcode() == ISD::SIGN_EXTEND || 12488 N00.getOpcode() == ISD::ZERO_EXTEND || 12489 N00.getOpcode() == ISD::ANY_EXTEND) { 12490 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 12491 VT.getVectorElementType()) 12492 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 12493 N00.getOperand(0), N0.getOperand(1)); 12494 } 12495 } 12496 12497 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 12498 return NewVSel; 12499 12500 // Narrow a suitable binary operation with a non-opaque constant operand by 12501 // moving it ahead of the truncate. This is limited to pre-legalization 12502 // because targets may prefer a wider type during later combines and invert 12503 // this transform. 12504 switch (N0.getOpcode()) { 12505 case ISD::ADD: 12506 case ISD::SUB: 12507 case ISD::MUL: 12508 case ISD::AND: 12509 case ISD::OR: 12510 case ISD::XOR: 12511 if (!LegalOperations && N0.hasOneUse() && 12512 (isConstantOrConstantVector(N0.getOperand(0), true) || 12513 isConstantOrConstantVector(N0.getOperand(1), true))) { 12514 // TODO: We already restricted this to pre-legalization, but for vectors 12515 // we are extra cautious to not create an unsupported operation. 12516 // Target-specific changes are likely needed to avoid regressions here. 12517 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 12518 SDLoc DL(N); 12519 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 12520 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 12521 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 12522 } 12523 } 12524 break; 12525 case ISD::USUBSAT: 12526 // Truncate the USUBSAT only if LHS is a known zero-extension, its not 12527 // enough to know that the upper bits are zero we must ensure that we don't 12528 // introduce an extra truncate. 12529 if (!LegalOperations && N0.hasOneUse() && 12530 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 12531 N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <= 12532 VT.getScalarSizeInBits() && 12533 hasOperation(N0.getOpcode(), VT)) { 12534 return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1), 12535 DAG, SDLoc(N)); 12536 } 12537 break; 12538 } 12539 12540 return SDValue(); 12541 } 12542 12543 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 12544 SDValue Elt = N->getOperand(i); 12545 if (Elt.getOpcode() != ISD::MERGE_VALUES) 12546 return Elt.getNode(); 12547 return Elt.getOperand(Elt.getResNo()).getNode(); 12548 } 12549 12550 /// build_pair (load, load) -> load 12551 /// if load locations are consecutive. 12552 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 12553 assert(N->getOpcode() == ISD::BUILD_PAIR); 12554 12555 auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 12556 auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 12557 12558 // A BUILD_PAIR is always having the least significant part in elt 0 and the 12559 // most significant part in elt 1. So when combining into one large load, we 12560 // need to consider the endianness. 12561 if (DAG.getDataLayout().isBigEndian()) 12562 std::swap(LD1, LD2); 12563 12564 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) || 12565 !LD1->hasOneUse() || !LD2->hasOneUse() || 12566 LD1->getAddressSpace() != LD2->getAddressSpace()) 12567 return SDValue(); 12568 12569 bool LD1Fast = false; 12570 EVT LD1VT = LD1->getValueType(0); 12571 unsigned LD1Bytes = LD1VT.getStoreSize(); 12572 if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 12573 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) && 12574 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 12575 *LD1->getMemOperand(), &LD1Fast) && LD1Fast) 12576 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 12577 LD1->getPointerInfo(), LD1->getAlign()); 12578 12579 return SDValue(); 12580 } 12581 12582 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 12583 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 12584 // and Lo parts; on big-endian machines it doesn't. 12585 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 12586 } 12587 12588 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 12589 const TargetLowering &TLI) { 12590 // If this is not a bitcast to an FP type or if the target doesn't have 12591 // IEEE754-compliant FP logic, we're done. 12592 EVT VT = N->getValueType(0); 12593 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 12594 return SDValue(); 12595 12596 // TODO: Handle cases where the integer constant is a different scalar 12597 // bitwidth to the FP. 12598 SDValue N0 = N->getOperand(0); 12599 EVT SourceVT = N0.getValueType(); 12600 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 12601 return SDValue(); 12602 12603 unsigned FPOpcode; 12604 APInt SignMask; 12605 switch (N0.getOpcode()) { 12606 case ISD::AND: 12607 FPOpcode = ISD::FABS; 12608 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12609 break; 12610 case ISD::XOR: 12611 FPOpcode = ISD::FNEG; 12612 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12613 break; 12614 case ISD::OR: 12615 FPOpcode = ISD::FABS; 12616 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12617 break; 12618 default: 12619 return SDValue(); 12620 } 12621 12622 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 12623 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 12624 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 12625 // fneg (fabs X) 12626 SDValue LogicOp0 = N0.getOperand(0); 12627 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 12628 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 12629 LogicOp0.getOpcode() == ISD::BITCAST && 12630 LogicOp0.getOperand(0).getValueType() == VT) { 12631 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 12632 NumFPLogicOpsConv++; 12633 if (N0.getOpcode() == ISD::OR) 12634 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 12635 return FPOp; 12636 } 12637 12638 return SDValue(); 12639 } 12640 12641 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 12642 SDValue N0 = N->getOperand(0); 12643 EVT VT = N->getValueType(0); 12644 12645 if (N0.isUndef()) 12646 return DAG.getUNDEF(VT); 12647 12648 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 12649 // Only do this before legalize types, unless both types are integer and the 12650 // scalar type is legal. Only do this before legalize ops, since the target 12651 // maybe depending on the bitcast. 12652 // First check to see if this is all constant. 12653 // TODO: Support FP bitcasts after legalize types. 12654 if (VT.isVector() && 12655 (!LegalTypes || 12656 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 12657 TLI.isTypeLegal(VT.getVectorElementType()))) && 12658 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 12659 cast<BuildVectorSDNode>(N0)->isConstant()) 12660 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 12661 VT.getVectorElementType()); 12662 12663 // If the input is a constant, let getNode fold it. 12664 if (isIntOrFPConstant(N0)) { 12665 // If we can't allow illegal operations, we need to check that this is just 12666 // a fp -> int or int -> conversion and that the resulting operation will 12667 // be legal. 12668 if (!LegalOperations || 12669 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 12670 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 12671 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 12672 TLI.isOperationLegal(ISD::Constant, VT))) { 12673 SDValue C = DAG.getBitcast(VT, N0); 12674 if (C.getNode() != N) 12675 return C; 12676 } 12677 } 12678 12679 // (conv (conv x, t1), t2) -> (conv x, t2) 12680 if (N0.getOpcode() == ISD::BITCAST) 12681 return DAG.getBitcast(VT, N0.getOperand(0)); 12682 12683 // fold (conv (load x)) -> (load (conv*)x) 12684 // If the resultant load doesn't need a higher alignment than the original! 12685 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 12686 // Do not remove the cast if the types differ in endian layout. 12687 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 12688 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 12689 // If the load is volatile, we only want to change the load type if the 12690 // resulting load is legal. Otherwise we might increase the number of 12691 // memory accesses. We don't care if the original type was legal or not 12692 // as we assume software couldn't rely on the number of accesses of an 12693 // illegal type. 12694 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || 12695 TLI.isOperationLegal(ISD::LOAD, VT))) { 12696 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12697 12698 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, 12699 *LN0->getMemOperand())) { 12700 SDValue Load = 12701 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 12702 LN0->getPointerInfo(), LN0->getAlign(), 12703 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 12704 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 12705 return Load; 12706 } 12707 } 12708 12709 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 12710 return V; 12711 12712 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 12713 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 12714 // 12715 // For ppc_fp128: 12716 // fold (bitcast (fneg x)) -> 12717 // flipbit = signbit 12718 // (xor (bitcast x) (build_pair flipbit, flipbit)) 12719 // 12720 // fold (bitcast (fabs x)) -> 12721 // flipbit = (and (extract_element (bitcast x), 0), signbit) 12722 // (xor (bitcast x) (build_pair flipbit, flipbit)) 12723 // This often reduces constant pool loads. 12724 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 12725 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 12726 N0.getNode()->hasOneUse() && VT.isInteger() && 12727 !VT.isVector() && !N0.getValueType().isVector()) { 12728 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 12729 AddToWorklist(NewConv.getNode()); 12730 12731 SDLoc DL(N); 12732 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 12733 assert(VT.getSizeInBits() == 128); 12734 SDValue SignBit = DAG.getConstant( 12735 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 12736 SDValue FlipBit; 12737 if (N0.getOpcode() == ISD::FNEG) { 12738 FlipBit = SignBit; 12739 AddToWorklist(FlipBit.getNode()); 12740 } else { 12741 assert(N0.getOpcode() == ISD::FABS); 12742 SDValue Hi = 12743 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 12744 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 12745 SDLoc(NewConv))); 12746 AddToWorklist(Hi.getNode()); 12747 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 12748 AddToWorklist(FlipBit.getNode()); 12749 } 12750 SDValue FlipBits = 12751 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 12752 AddToWorklist(FlipBits.getNode()); 12753 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 12754 } 12755 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 12756 if (N0.getOpcode() == ISD::FNEG) 12757 return DAG.getNode(ISD::XOR, DL, VT, 12758 NewConv, DAG.getConstant(SignBit, DL, VT)); 12759 assert(N0.getOpcode() == ISD::FABS); 12760 return DAG.getNode(ISD::AND, DL, VT, 12761 NewConv, DAG.getConstant(~SignBit, DL, VT)); 12762 } 12763 12764 // fold (bitconvert (fcopysign cst, x)) -> 12765 // (or (and (bitconvert x), sign), (and cst, (not sign))) 12766 // Note that we don't handle (copysign x, cst) because this can always be 12767 // folded to an fneg or fabs. 12768 // 12769 // For ppc_fp128: 12770 // fold (bitcast (fcopysign cst, x)) -> 12771 // flipbit = (and (extract_element 12772 // (xor (bitcast cst), (bitcast x)), 0), 12773 // signbit) 12774 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 12775 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 12776 isa<ConstantFPSDNode>(N0.getOperand(0)) && 12777 VT.isInteger() && !VT.isVector()) { 12778 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 12779 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 12780 if (isTypeLegal(IntXVT)) { 12781 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 12782 AddToWorklist(X.getNode()); 12783 12784 // If X has a different width than the result/lhs, sext it or truncate it. 12785 unsigned VTWidth = VT.getSizeInBits(); 12786 if (OrigXWidth < VTWidth) { 12787 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 12788 AddToWorklist(X.getNode()); 12789 } else if (OrigXWidth > VTWidth) { 12790 // To get the sign bit in the right place, we have to shift it right 12791 // before truncating. 12792 SDLoc DL(X); 12793 X = DAG.getNode(ISD::SRL, DL, 12794 X.getValueType(), X, 12795 DAG.getConstant(OrigXWidth-VTWidth, DL, 12796 X.getValueType())); 12797 AddToWorklist(X.getNode()); 12798 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 12799 AddToWorklist(X.getNode()); 12800 } 12801 12802 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 12803 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 12804 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 12805 AddToWorklist(Cst.getNode()); 12806 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 12807 AddToWorklist(X.getNode()); 12808 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 12809 AddToWorklist(XorResult.getNode()); 12810 SDValue XorResult64 = DAG.getNode( 12811 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 12812 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 12813 SDLoc(XorResult))); 12814 AddToWorklist(XorResult64.getNode()); 12815 SDValue FlipBit = 12816 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 12817 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 12818 AddToWorklist(FlipBit.getNode()); 12819 SDValue FlipBits = 12820 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 12821 AddToWorklist(FlipBits.getNode()); 12822 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 12823 } 12824 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 12825 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 12826 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 12827 AddToWorklist(X.getNode()); 12828 12829 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 12830 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 12831 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 12832 AddToWorklist(Cst.getNode()); 12833 12834 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 12835 } 12836 } 12837 12838 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 12839 if (N0.getOpcode() == ISD::BUILD_PAIR) 12840 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 12841 return CombineLD; 12842 12843 // Remove double bitcasts from shuffles - this is often a legacy of 12844 // XformToShuffleWithZero being used to combine bitmaskings (of 12845 // float vectors bitcast to integer vectors) into shuffles. 12846 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 12847 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 12848 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 12849 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 12850 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 12851 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 12852 12853 // If operands are a bitcast, peek through if it casts the original VT. 12854 // If operands are a constant, just bitcast back to original VT. 12855 auto PeekThroughBitcast = [&](SDValue Op) { 12856 if (Op.getOpcode() == ISD::BITCAST && 12857 Op.getOperand(0).getValueType() == VT) 12858 return SDValue(Op.getOperand(0)); 12859 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 12860 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 12861 return DAG.getBitcast(VT, Op); 12862 return SDValue(); 12863 }; 12864 12865 // FIXME: If either input vector is bitcast, try to convert the shuffle to 12866 // the result type of this bitcast. This would eliminate at least one 12867 // bitcast. See the transform in InstCombine. 12868 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 12869 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 12870 if (!(SV0 && SV1)) 12871 return SDValue(); 12872 12873 int MaskScale = 12874 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 12875 SmallVector<int, 8> NewMask; 12876 for (int M : SVN->getMask()) 12877 for (int i = 0; i != MaskScale; ++i) 12878 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 12879 12880 SDValue LegalShuffle = 12881 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); 12882 if (LegalShuffle) 12883 return LegalShuffle; 12884 } 12885 12886 return SDValue(); 12887 } 12888 12889 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 12890 EVT VT = N->getValueType(0); 12891 return CombineConsecutiveLoads(N, VT); 12892 } 12893 12894 SDValue DAGCombiner::visitFREEZE(SDNode *N) { 12895 SDValue N0 = N->getOperand(0); 12896 12897 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false)) 12898 return N0; 12899 12900 return SDValue(); 12901 } 12902 12903 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 12904 /// operands. DstEltVT indicates the destination element value type. 12905 SDValue DAGCombiner:: 12906 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 12907 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 12908 12909 // If this is already the right type, we're done. 12910 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 12911 12912 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 12913 unsigned DstBitSize = DstEltVT.getSizeInBits(); 12914 12915 // If this is a conversion of N elements of one type to N elements of another 12916 // type, convert each element. This handles FP<->INT cases. 12917 if (SrcBitSize == DstBitSize) { 12918 SmallVector<SDValue, 8> Ops; 12919 for (SDValue Op : BV->op_values()) { 12920 // If the vector element type is not legal, the BUILD_VECTOR operands 12921 // are promoted and implicitly truncated. Make that explicit here. 12922 if (Op.getValueType() != SrcEltVT) 12923 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 12924 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 12925 AddToWorklist(Ops.back().getNode()); 12926 } 12927 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 12928 BV->getValueType(0).getVectorNumElements()); 12929 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 12930 } 12931 12932 // Otherwise, we're growing or shrinking the elements. To avoid having to 12933 // handle annoying details of growing/shrinking FP values, we convert them to 12934 // int first. 12935 if (SrcEltVT.isFloatingPoint()) { 12936 // Convert the input float vector to a int vector where the elements are the 12937 // same sizes. 12938 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 12939 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 12940 SrcEltVT = IntVT; 12941 } 12942 12943 // Now we know the input is an integer vector. If the output is a FP type, 12944 // convert to integer first, then to FP of the right size. 12945 if (DstEltVT.isFloatingPoint()) { 12946 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 12947 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 12948 12949 // Next, convert to FP elements of the same size. 12950 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 12951 } 12952 12953 SDLoc DL(BV); 12954 12955 // Okay, we know the src/dst types are both integers of differing types. 12956 // Handling growing first. 12957 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 12958 if (SrcBitSize < DstBitSize) { 12959 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 12960 12961 SmallVector<SDValue, 8> Ops; 12962 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 12963 i += NumInputsPerOutput) { 12964 bool isLE = DAG.getDataLayout().isLittleEndian(); 12965 APInt NewBits = APInt(DstBitSize, 0); 12966 bool EltIsUndef = true; 12967 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 12968 // Shift the previously computed bits over. 12969 NewBits <<= SrcBitSize; 12970 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 12971 if (Op.isUndef()) continue; 12972 EltIsUndef = false; 12973 12974 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 12975 zextOrTrunc(SrcBitSize).zext(DstBitSize); 12976 } 12977 12978 if (EltIsUndef) 12979 Ops.push_back(DAG.getUNDEF(DstEltVT)); 12980 else 12981 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 12982 } 12983 12984 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 12985 return DAG.getBuildVector(VT, DL, Ops); 12986 } 12987 12988 // Finally, this must be the case where we are shrinking elements: each input 12989 // turns into multiple outputs. 12990 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 12991 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 12992 NumOutputsPerInput*BV->getNumOperands()); 12993 SmallVector<SDValue, 8> Ops; 12994 12995 for (const SDValue &Op : BV->op_values()) { 12996 if (Op.isUndef()) { 12997 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 12998 continue; 12999 } 13000 13001 APInt OpVal = cast<ConstantSDNode>(Op)-> 13002 getAPIntValue().zextOrTrunc(SrcBitSize); 13003 13004 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 13005 APInt ThisVal = OpVal.trunc(DstBitSize); 13006 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 13007 OpVal.lshrInPlace(DstBitSize); 13008 } 13009 13010 // For big endian targets, swap the order of the pieces of each element. 13011 if (DAG.getDataLayout().isBigEndian()) 13012 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 13013 } 13014 13015 return DAG.getBuildVector(VT, DL, Ops); 13016 } 13017 13018 /// Try to perform FMA combining on a given FADD node. 13019 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 13020 SDValue N0 = N->getOperand(0); 13021 SDValue N1 = N->getOperand(1); 13022 EVT VT = N->getValueType(0); 13023 SDLoc SL(N); 13024 13025 const TargetOptions &Options = DAG.getTarget().Options; 13026 13027 // Floating-point multiply-add with intermediate rounding. 13028 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13029 13030 // Floating-point multiply-add without intermediate rounding. 13031 bool HasFMA = 13032 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13033 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13034 13035 // No valid opcode, do not combine. 13036 if (!HasFMAD && !HasFMA) 13037 return SDValue(); 13038 13039 bool CanReassociate = 13040 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13041 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13042 Options.UnsafeFPMath || HasFMAD); 13043 // If the addition is not contractable, do not combine. 13044 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13045 return SDValue(); 13046 13047 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13048 return SDValue(); 13049 13050 // Always prefer FMAD to FMA for precision. 13051 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13052 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13053 13054 // Is the node an FMUL and contractable either due to global flags or 13055 // SDNodeFlags. 13056 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13057 if (N.getOpcode() != ISD::FMUL) 13058 return false; 13059 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13060 }; 13061 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 13062 // prefer to fold the multiply with fewer uses. 13063 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 13064 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 13065 std::swap(N0, N1); 13066 } 13067 13068 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 13069 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 13070 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13071 N0.getOperand(1), N1); 13072 } 13073 13074 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 13075 // Note: Commutes FADD operands. 13076 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 13077 return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), 13078 N1.getOperand(1), N0); 13079 } 13080 13081 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) 13082 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) 13083 // This requires reassociation because it changes the order of operations. 13084 SDValue FMA, E; 13085 if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode && 13086 N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && 13087 N0.getOperand(2).hasOneUse()) { 13088 FMA = N0; 13089 E = N1; 13090 } else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode && 13091 N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && 13092 N1.getOperand(2).hasOneUse()) { 13093 FMA = N1; 13094 E = N0; 13095 } 13096 if (FMA && E) { 13097 SDValue A = FMA.getOperand(0); 13098 SDValue B = FMA.getOperand(1); 13099 SDValue C = FMA.getOperand(2).getOperand(0); 13100 SDValue D = FMA.getOperand(2).getOperand(1); 13101 SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); 13102 return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE); 13103 } 13104 13105 // Look through FP_EXTEND nodes to do more combining. 13106 13107 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 13108 if (N0.getOpcode() == ISD::FP_EXTEND) { 13109 SDValue N00 = N0.getOperand(0); 13110 if (isContractableFMUL(N00) && 13111 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13112 N00.getValueType())) { 13113 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13114 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13115 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13116 N1); 13117 } 13118 } 13119 13120 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 13121 // Note: Commutes FADD operands. 13122 if (N1.getOpcode() == ISD::FP_EXTEND) { 13123 SDValue N10 = N1.getOperand(0); 13124 if (isContractableFMUL(N10) && 13125 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13126 N10.getValueType())) { 13127 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13128 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), 13129 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), 13130 N0); 13131 } 13132 } 13133 13134 // More folding opportunities when target permits. 13135 if (Aggressive) { 13136 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 13137 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 13138 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13139 SDValue Z) { 13140 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 13141 DAG.getNode(PreferredFusedOpcode, SL, VT, 13142 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13143 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 13144 Z)); 13145 }; 13146 if (N0.getOpcode() == PreferredFusedOpcode) { 13147 SDValue N02 = N0.getOperand(2); 13148 if (N02.getOpcode() == ISD::FP_EXTEND) { 13149 SDValue N020 = N02.getOperand(0); 13150 if (isContractableFMUL(N020) && 13151 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13152 N020.getValueType())) { 13153 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 13154 N020.getOperand(0), N020.getOperand(1), 13155 N1); 13156 } 13157 } 13158 } 13159 13160 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 13161 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 13162 // FIXME: This turns two single-precision and one double-precision 13163 // operation into two double-precision operations, which might not be 13164 // interesting for all targets, especially GPUs. 13165 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 13166 SDValue Z) { 13167 return DAG.getNode( 13168 PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 13169 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 13170 DAG.getNode(PreferredFusedOpcode, SL, VT, 13171 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 13172 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); 13173 }; 13174 if (N0.getOpcode() == ISD::FP_EXTEND) { 13175 SDValue N00 = N0.getOperand(0); 13176 if (N00.getOpcode() == PreferredFusedOpcode) { 13177 SDValue N002 = N00.getOperand(2); 13178 if (isContractableFMUL(N002) && 13179 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13180 N00.getValueType())) { 13181 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 13182 N002.getOperand(0), N002.getOperand(1), 13183 N1); 13184 } 13185 } 13186 } 13187 13188 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 13189 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 13190 if (N1.getOpcode() == PreferredFusedOpcode) { 13191 SDValue N12 = N1.getOperand(2); 13192 if (N12.getOpcode() == ISD::FP_EXTEND) { 13193 SDValue N120 = N12.getOperand(0); 13194 if (isContractableFMUL(N120) && 13195 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13196 N120.getValueType())) { 13197 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 13198 N120.getOperand(0), N120.getOperand(1), 13199 N0); 13200 } 13201 } 13202 } 13203 13204 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 13205 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 13206 // FIXME: This turns two single-precision and one double-precision 13207 // operation into two double-precision operations, which might not be 13208 // interesting for all targets, especially GPUs. 13209 if (N1.getOpcode() == ISD::FP_EXTEND) { 13210 SDValue N10 = N1.getOperand(0); 13211 if (N10.getOpcode() == PreferredFusedOpcode) { 13212 SDValue N102 = N10.getOperand(2); 13213 if (isContractableFMUL(N102) && 13214 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13215 N10.getValueType())) { 13216 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 13217 N102.getOperand(0), N102.getOperand(1), 13218 N0); 13219 } 13220 } 13221 } 13222 } 13223 13224 return SDValue(); 13225 } 13226 13227 /// Try to perform FMA combining on a given FSUB node. 13228 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 13229 SDValue N0 = N->getOperand(0); 13230 SDValue N1 = N->getOperand(1); 13231 EVT VT = N->getValueType(0); 13232 SDLoc SL(N); 13233 13234 const TargetOptions &Options = DAG.getTarget().Options; 13235 // Floating-point multiply-add with intermediate rounding. 13236 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 13237 13238 // Floating-point multiply-add without intermediate rounding. 13239 bool HasFMA = 13240 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13241 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13242 13243 // No valid opcode, do not combine. 13244 if (!HasFMAD && !HasFMA) 13245 return SDValue(); 13246 13247 const SDNodeFlags Flags = N->getFlags(); 13248 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 13249 Options.UnsafeFPMath || HasFMAD); 13250 13251 // If the subtraction is not contractable, do not combine. 13252 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) 13253 return SDValue(); 13254 13255 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) 13256 return SDValue(); 13257 13258 // Always prefer FMAD to FMA for precision. 13259 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13260 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13261 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); 13262 13263 // Is the node an FMUL and contractable either due to global flags or 13264 // SDNodeFlags. 13265 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 13266 if (N.getOpcode() != ISD::FMUL) 13267 return false; 13268 return AllowFusionGlobally || N->getFlags().hasAllowContract(); 13269 }; 13270 13271 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13272 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { 13273 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { 13274 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), 13275 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); 13276 } 13277 return SDValue(); 13278 }; 13279 13280 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13281 // Note: Commutes FSUB operands. 13282 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { 13283 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { 13284 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13285 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), 13286 YZ.getOperand(1), X); 13287 } 13288 return SDValue(); 13289 }; 13290 13291 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), 13292 // prefer to fold the multiply with fewer uses. 13293 if (isContractableFMUL(N0) && isContractableFMUL(N1) && 13294 (N0.getNode()->use_size() > N1.getNode()->use_size())) { 13295 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) 13296 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13297 return V; 13298 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) 13299 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13300 return V; 13301 } else { 13302 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 13303 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 13304 return V; 13305 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 13306 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 13307 return V; 13308 } 13309 13310 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 13311 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 13312 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 13313 SDValue N00 = N0.getOperand(0).getOperand(0); 13314 SDValue N01 = N0.getOperand(0).getOperand(1); 13315 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13316 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 13317 DAG.getNode(ISD::FNEG, SL, VT, N1)); 13318 } 13319 13320 // Look through FP_EXTEND nodes to do more combining. 13321 13322 // fold (fsub (fpext (fmul x, y)), z) 13323 // -> (fma (fpext x), (fpext y), (fneg z)) 13324 if (N0.getOpcode() == ISD::FP_EXTEND) { 13325 SDValue N00 = N0.getOperand(0); 13326 if (isContractableFMUL(N00) && 13327 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13328 N00.getValueType())) { 13329 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13330 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13331 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13332 DAG.getNode(ISD::FNEG, SL, VT, N1)); 13333 } 13334 } 13335 13336 // fold (fsub x, (fpext (fmul y, z))) 13337 // -> (fma (fneg (fpext y)), (fpext z), x) 13338 // Note: Commutes FSUB operands. 13339 if (N1.getOpcode() == ISD::FP_EXTEND) { 13340 SDValue N10 = N1.getOperand(0); 13341 if (isContractableFMUL(N10) && 13342 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13343 N10.getValueType())) { 13344 return DAG.getNode( 13345 PreferredFusedOpcode, SL, VT, 13346 DAG.getNode(ISD::FNEG, SL, VT, 13347 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), 13348 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); 13349 } 13350 } 13351 13352 // fold (fsub (fpext (fneg (fmul, x, y))), z) 13353 // -> (fneg (fma (fpext x), (fpext y), z)) 13354 // Note: This could be removed with appropriate canonicalization of the 13355 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 13356 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 13357 // from implementing the canonicalization in visitFSUB. 13358 if (N0.getOpcode() == ISD::FP_EXTEND) { 13359 SDValue N00 = N0.getOperand(0); 13360 if (N00.getOpcode() == ISD::FNEG) { 13361 SDValue N000 = N00.getOperand(0); 13362 if (isContractableFMUL(N000) && 13363 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13364 N00.getValueType())) { 13365 return DAG.getNode( 13366 ISD::FNEG, SL, VT, 13367 DAG.getNode(PreferredFusedOpcode, SL, VT, 13368 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 13369 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 13370 N1)); 13371 } 13372 } 13373 } 13374 13375 // fold (fsub (fneg (fpext (fmul, x, y))), z) 13376 // -> (fneg (fma (fpext x)), (fpext y), z) 13377 // Note: This could be removed with appropriate canonicalization of the 13378 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 13379 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 13380 // from implementing the canonicalization in visitFSUB. 13381 if (N0.getOpcode() == ISD::FNEG) { 13382 SDValue N00 = N0.getOperand(0); 13383 if (N00.getOpcode() == ISD::FP_EXTEND) { 13384 SDValue N000 = N00.getOperand(0); 13385 if (isContractableFMUL(N000) && 13386 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13387 N000.getValueType())) { 13388 return DAG.getNode( 13389 ISD::FNEG, SL, VT, 13390 DAG.getNode(PreferredFusedOpcode, SL, VT, 13391 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 13392 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 13393 N1)); 13394 } 13395 } 13396 } 13397 13398 auto isReassociable = [Options](SDNode *N) { 13399 return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13400 }; 13401 13402 auto isContractableAndReassociableFMUL = [isContractableFMUL, 13403 isReassociable](SDValue N) { 13404 return isContractableFMUL(N) && isReassociable(N.getNode()); 13405 }; 13406 13407 // More folding opportunities when target permits. 13408 if (Aggressive && isReassociable(N)) { 13409 bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract(); 13410 // fold (fsub (fma x, y, (fmul u, v)), z) 13411 // -> (fma x, y (fma u, v, (fneg z))) 13412 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && 13413 isContractableAndReassociableFMUL(N0.getOperand(2)) && 13414 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { 13415 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 13416 N0.getOperand(1), 13417 DAG.getNode(PreferredFusedOpcode, SL, VT, 13418 N0.getOperand(2).getOperand(0), 13419 N0.getOperand(2).getOperand(1), 13420 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13421 } 13422 13423 // fold (fsub x, (fma y, z, (fmul u, v))) 13424 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 13425 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && 13426 isContractableAndReassociableFMUL(N1.getOperand(2)) && 13427 N1->hasOneUse() && NoSignedZero) { 13428 SDValue N20 = N1.getOperand(2).getOperand(0); 13429 SDValue N21 = N1.getOperand(2).getOperand(1); 13430 return DAG.getNode( 13431 PreferredFusedOpcode, SL, VT, 13432 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 13433 DAG.getNode(PreferredFusedOpcode, SL, VT, 13434 DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); 13435 } 13436 13437 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 13438 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 13439 if (N0.getOpcode() == PreferredFusedOpcode && 13440 N0->hasOneUse()) { 13441 SDValue N02 = N0.getOperand(2); 13442 if (N02.getOpcode() == ISD::FP_EXTEND) { 13443 SDValue N020 = N02.getOperand(0); 13444 if (isContractableAndReassociableFMUL(N020) && 13445 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13446 N020.getValueType())) { 13447 return DAG.getNode( 13448 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), 13449 DAG.getNode( 13450 PreferredFusedOpcode, SL, VT, 13451 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), 13452 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), 13453 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13454 } 13455 } 13456 } 13457 13458 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 13459 // -> (fma (fpext x), (fpext y), 13460 // (fma (fpext u), (fpext v), (fneg z))) 13461 // FIXME: This turns two single-precision and one double-precision 13462 // operation into two double-precision operations, which might not be 13463 // interesting for all targets, especially GPUs. 13464 if (N0.getOpcode() == ISD::FP_EXTEND) { 13465 SDValue N00 = N0.getOperand(0); 13466 if (N00.getOpcode() == PreferredFusedOpcode) { 13467 SDValue N002 = N00.getOperand(2); 13468 if (isContractableAndReassociableFMUL(N002) && 13469 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13470 N00.getValueType())) { 13471 return DAG.getNode( 13472 PreferredFusedOpcode, SL, VT, 13473 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 13474 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 13475 DAG.getNode( 13476 PreferredFusedOpcode, SL, VT, 13477 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), 13478 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), 13479 DAG.getNode(ISD::FNEG, SL, VT, N1))); 13480 } 13481 } 13482 } 13483 13484 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 13485 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 13486 if (N1.getOpcode() == PreferredFusedOpcode && 13487 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && 13488 N1->hasOneUse()) { 13489 SDValue N120 = N1.getOperand(2).getOperand(0); 13490 if (isContractableAndReassociableFMUL(N120) && 13491 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13492 N120.getValueType())) { 13493 SDValue N1200 = N120.getOperand(0); 13494 SDValue N1201 = N120.getOperand(1); 13495 return DAG.getNode( 13496 PreferredFusedOpcode, SL, VT, 13497 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 13498 DAG.getNode(PreferredFusedOpcode, SL, VT, 13499 DAG.getNode(ISD::FNEG, SL, VT, 13500 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), 13501 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); 13502 } 13503 } 13504 13505 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 13506 // -> (fma (fneg (fpext y)), (fpext z), 13507 // (fma (fneg (fpext u)), (fpext v), x)) 13508 // FIXME: This turns two single-precision and one double-precision 13509 // operation into two double-precision operations, which might not be 13510 // interesting for all targets, especially GPUs. 13511 if (N1.getOpcode() == ISD::FP_EXTEND && 13512 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 13513 SDValue CvtSrc = N1.getOperand(0); 13514 SDValue N100 = CvtSrc.getOperand(0); 13515 SDValue N101 = CvtSrc.getOperand(1); 13516 SDValue N102 = CvtSrc.getOperand(2); 13517 if (isContractableAndReassociableFMUL(N102) && 13518 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13519 CvtSrc.getValueType())) { 13520 SDValue N1020 = N102.getOperand(0); 13521 SDValue N1021 = N102.getOperand(1); 13522 return DAG.getNode( 13523 PreferredFusedOpcode, SL, VT, 13524 DAG.getNode(ISD::FNEG, SL, VT, 13525 DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), 13526 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 13527 DAG.getNode(PreferredFusedOpcode, SL, VT, 13528 DAG.getNode(ISD::FNEG, SL, VT, 13529 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), 13530 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); 13531 } 13532 } 13533 } 13534 13535 return SDValue(); 13536 } 13537 13538 /// Try to perform FMA combining on a given FMUL node based on the distributive 13539 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 13540 /// subtraction instead of addition). 13541 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 13542 SDValue N0 = N->getOperand(0); 13543 SDValue N1 = N->getOperand(1); 13544 EVT VT = N->getValueType(0); 13545 SDLoc SL(N); 13546 13547 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 13548 13549 const TargetOptions &Options = DAG.getTarget().Options; 13550 13551 // The transforms below are incorrect when x == 0 and y == inf, because the 13552 // intermediate multiplication produces a nan. 13553 if (!Options.NoInfsFPMath) 13554 return SDValue(); 13555 13556 // Floating-point multiply-add without intermediate rounding. 13557 bool HasFMA = 13558 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && 13559 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13560 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13561 13562 // Floating-point multiply-add with intermediate rounding. This can result 13563 // in a less precise result due to the changed rounding order. 13564 bool HasFMAD = Options.UnsafeFPMath && 13565 (LegalOperations && TLI.isFMADLegal(DAG, N)); 13566 13567 // No valid opcode, do not combine. 13568 if (!HasFMAD && !HasFMA) 13569 return SDValue(); 13570 13571 // Always prefer FMAD to FMA for precision. 13572 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13573 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13574 13575 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 13576 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 13577 auto FuseFADD = [&](SDValue X, SDValue Y) { 13578 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 13579 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 13580 if (C->isExactlyValue(+1.0)) 13581 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13582 Y); 13583 if (C->isExactlyValue(-1.0)) 13584 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13585 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13586 } 13587 } 13588 return SDValue(); 13589 }; 13590 13591 if (SDValue FMA = FuseFADD(N0, N1)) 13592 return FMA; 13593 if (SDValue FMA = FuseFADD(N1, N0)) 13594 return FMA; 13595 13596 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 13597 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 13598 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 13599 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 13600 auto FuseFSUB = [&](SDValue X, SDValue Y) { 13601 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 13602 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 13603 if (C0->isExactlyValue(+1.0)) 13604 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13605 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13606 Y); 13607 if (C0->isExactlyValue(-1.0)) 13608 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13609 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13610 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13611 } 13612 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 13613 if (C1->isExactlyValue(+1.0)) 13614 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13615 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13616 if (C1->isExactlyValue(-1.0)) 13617 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13618 Y); 13619 } 13620 } 13621 return SDValue(); 13622 }; 13623 13624 if (SDValue FMA = FuseFSUB(N0, N1)) 13625 return FMA; 13626 if (SDValue FMA = FuseFSUB(N1, N0)) 13627 return FMA; 13628 13629 return SDValue(); 13630 } 13631 13632 SDValue DAGCombiner::visitFADD(SDNode *N) { 13633 SDValue N0 = N->getOperand(0); 13634 SDValue N1 = N->getOperand(1); 13635 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 13636 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 13637 EVT VT = N->getValueType(0); 13638 SDLoc DL(N); 13639 const TargetOptions &Options = DAG.getTarget().Options; 13640 SDNodeFlags Flags = N->getFlags(); 13641 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13642 13643 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13644 return R; 13645 13646 // fold vector ops 13647 if (VT.isVector()) 13648 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13649 return FoldedVOp; 13650 13651 // fold (fadd c1, c2) -> c1 + c2 13652 if (N0CFP && N1CFP) 13653 return DAG.getNode(ISD::FADD, DL, VT, N0, N1); 13654 13655 // canonicalize constant to RHS 13656 if (N0CFP && !N1CFP) 13657 return DAG.getNode(ISD::FADD, DL, VT, N1, N0); 13658 13659 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 13660 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 13661 if (N1C && N1C->isZero()) 13662 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) 13663 return N0; 13664 13665 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13666 return NewSel; 13667 13668 // fold (fadd A, (fneg B)) -> (fsub A, B) 13669 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13670 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13671 N1, DAG, LegalOperations, ForCodeSize)) 13672 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); 13673 13674 // fold (fadd (fneg A), B) -> (fsub B, A) 13675 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13676 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13677 N0, DAG, LegalOperations, ForCodeSize)) 13678 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); 13679 13680 auto isFMulNegTwo = [](SDValue FMul) { 13681 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 13682 return false; 13683 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 13684 return C && C->isExactlyValue(-2.0); 13685 }; 13686 13687 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 13688 if (isFMulNegTwo(N0)) { 13689 SDValue B = N0.getOperand(0); 13690 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 13691 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); 13692 } 13693 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 13694 if (isFMulNegTwo(N1)) { 13695 SDValue B = N1.getOperand(0); 13696 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 13697 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); 13698 } 13699 13700 // No FP constant should be created after legalization as Instruction 13701 // Selection pass has a hard time dealing with FP constants. 13702 bool AllowNewConst = (Level < AfterLegalizeDAG); 13703 13704 // If nnan is enabled, fold lots of things. 13705 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 13706 // If allowed, fold (fadd (fneg x), x) -> 0.0 13707 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 13708 return DAG.getConstantFP(0.0, DL, VT); 13709 13710 // If allowed, fold (fadd x, (fneg x)) -> 0.0 13711 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 13712 return DAG.getConstantFP(0.0, DL, VT); 13713 } 13714 13715 // If 'unsafe math' or reassoc and nsz, fold lots of things. 13716 // TODO: break out portions of the transformations below for which Unsafe is 13717 // considered and which do not require both nsz and reassoc 13718 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 13719 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 13720 AllowNewConst) { 13721 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 13722 if (N1CFP && N0.getOpcode() == ISD::FADD && 13723 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 13724 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); 13725 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); 13726 } 13727 13728 // We can fold chains of FADD's of the same value into multiplications. 13729 // This transform is not safe in general because we are reducing the number 13730 // of rounding steps. 13731 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 13732 if (N0.getOpcode() == ISD::FMUL) { 13733 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 13734 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 13735 13736 // (fadd (fmul x, c), x) -> (fmul x, c+1) 13737 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 13738 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 13739 DAG.getConstantFP(1.0, DL, VT)); 13740 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); 13741 } 13742 13743 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 13744 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 13745 N1.getOperand(0) == N1.getOperand(1) && 13746 N0.getOperand(0) == N1.getOperand(0)) { 13747 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 13748 DAG.getConstantFP(2.0, DL, VT)); 13749 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); 13750 } 13751 } 13752 13753 if (N1.getOpcode() == ISD::FMUL) { 13754 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 13755 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 13756 13757 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 13758 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 13759 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 13760 DAG.getConstantFP(1.0, DL, VT)); 13761 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); 13762 } 13763 13764 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 13765 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 13766 N0.getOperand(0) == N0.getOperand(1) && 13767 N1.getOperand(0) == N0.getOperand(0)) { 13768 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 13769 DAG.getConstantFP(2.0, DL, VT)); 13770 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); 13771 } 13772 } 13773 13774 if (N0.getOpcode() == ISD::FADD) { 13775 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 13776 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 13777 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 13778 (N0.getOperand(0) == N1)) { 13779 return DAG.getNode(ISD::FMUL, DL, VT, N1, 13780 DAG.getConstantFP(3.0, DL, VT)); 13781 } 13782 } 13783 13784 if (N1.getOpcode() == ISD::FADD) { 13785 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 13786 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 13787 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 13788 N1.getOperand(0) == N0) { 13789 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13790 DAG.getConstantFP(3.0, DL, VT)); 13791 } 13792 } 13793 13794 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 13795 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 13796 N0.getOperand(0) == N0.getOperand(1) && 13797 N1.getOperand(0) == N1.getOperand(1) && 13798 N0.getOperand(0) == N1.getOperand(0)) { 13799 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 13800 DAG.getConstantFP(4.0, DL, VT)); 13801 } 13802 } 13803 } // enable-unsafe-fp-math 13804 13805 // FADD -> FMA combines: 13806 if (SDValue Fused = visitFADDForFMACombine(N)) { 13807 AddToWorklist(Fused.getNode()); 13808 return Fused; 13809 } 13810 return SDValue(); 13811 } 13812 13813 SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { 13814 SDValue Chain = N->getOperand(0); 13815 SDValue N0 = N->getOperand(1); 13816 SDValue N1 = N->getOperand(2); 13817 EVT VT = N->getValueType(0); 13818 EVT ChainVT = N->getValueType(1); 13819 SDLoc DL(N); 13820 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13821 13822 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) 13823 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 13824 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13825 N1, DAG, LegalOperations, ForCodeSize)) { 13826 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 13827 {Chain, N0, NegN1}); 13828 } 13829 13830 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) 13831 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 13832 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13833 N0, DAG, LegalOperations, ForCodeSize)) { 13834 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 13835 {Chain, N1, NegN0}); 13836 } 13837 return SDValue(); 13838 } 13839 13840 SDValue DAGCombiner::visitFSUB(SDNode *N) { 13841 SDValue N0 = N->getOperand(0); 13842 SDValue N1 = N->getOperand(1); 13843 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 13844 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 13845 EVT VT = N->getValueType(0); 13846 SDLoc DL(N); 13847 const TargetOptions &Options = DAG.getTarget().Options; 13848 const SDNodeFlags Flags = N->getFlags(); 13849 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13850 13851 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13852 return R; 13853 13854 // fold vector ops 13855 if (VT.isVector()) 13856 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13857 return FoldedVOp; 13858 13859 // fold (fsub c1, c2) -> c1-c2 13860 if (N0CFP && N1CFP) 13861 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1); 13862 13863 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13864 return NewSel; 13865 13866 // (fsub A, 0) -> A 13867 if (N1CFP && N1CFP->isZero()) { 13868 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || 13869 Flags.hasNoSignedZeros()) { 13870 return N0; 13871 } 13872 } 13873 13874 if (N0 == N1) { 13875 // (fsub x, x) -> 0.0 13876 if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) 13877 return DAG.getConstantFP(0.0f, DL, VT); 13878 } 13879 13880 // (fsub -0.0, N1) -> -N1 13881 if (N0CFP && N0CFP->isZero()) { 13882 if (N0CFP->isNegative() || 13883 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 13884 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are 13885 // flushed to zero, unless all users treat denorms as zero (DAZ). 13886 // FIXME: This transform will change the sign of a NaN and the behavior 13887 // of a signaling NaN. It is only valid when a NoNaN flag is present. 13888 DenormalMode DenormMode = DAG.getDenormalMode(VT); 13889 if (DenormMode == DenormalMode::getIEEE()) { 13890 if (SDValue NegN1 = 13891 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 13892 return NegN1; 13893 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13894 return DAG.getNode(ISD::FNEG, DL, VT, N1); 13895 } 13896 } 13897 } 13898 13899 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 13900 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 13901 N1.getOpcode() == ISD::FADD) { 13902 // X - (X + Y) -> -Y 13903 if (N0 == N1->getOperand(0)) 13904 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); 13905 // X - (Y + X) -> -Y 13906 if (N0 == N1->getOperand(1)) 13907 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); 13908 } 13909 13910 // fold (fsub A, (fneg B)) -> (fadd A, B) 13911 if (SDValue NegN1 = 13912 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 13913 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); 13914 13915 // FSUB -> FMA combines: 13916 if (SDValue Fused = visitFSUBForFMACombine(N)) { 13917 AddToWorklist(Fused.getNode()); 13918 return Fused; 13919 } 13920 13921 return SDValue(); 13922 } 13923 13924 SDValue DAGCombiner::visitFMUL(SDNode *N) { 13925 SDValue N0 = N->getOperand(0); 13926 SDValue N1 = N->getOperand(1); 13927 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 13928 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 13929 EVT VT = N->getValueType(0); 13930 SDLoc DL(N); 13931 const TargetOptions &Options = DAG.getTarget().Options; 13932 const SDNodeFlags Flags = N->getFlags(); 13933 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13934 13935 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13936 return R; 13937 13938 // fold vector ops 13939 if (VT.isVector()) { 13940 // This just handles C1 * C2 for vectors. Other vector folds are below. 13941 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13942 return FoldedVOp; 13943 } 13944 13945 // fold (fmul c1, c2) -> c1*c2 13946 if (N0CFP && N1CFP) 13947 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1); 13948 13949 // canonicalize constant to RHS 13950 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 13951 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 13952 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); 13953 13954 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13955 return NewSel; 13956 13957 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 13958 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 13959 if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && 13960 N0.getOpcode() == ISD::FMUL) { 13961 SDValue N00 = N0.getOperand(0); 13962 SDValue N01 = N0.getOperand(1); 13963 // Avoid an infinite loop by making sure that N00 is not a constant 13964 // (the inner multiply has not been constant folded yet). 13965 if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && 13966 !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { 13967 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); 13968 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); 13969 } 13970 } 13971 13972 // Match a special-case: we convert X * 2.0 into fadd. 13973 // fmul (fadd X, X), C -> fmul X, 2.0 * C 13974 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 13975 N0.getOperand(0) == N0.getOperand(1)) { 13976 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 13977 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); 13978 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); 13979 } 13980 } 13981 13982 // fold (fmul X, 2.0) -> (fadd X, X) 13983 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 13984 return DAG.getNode(ISD::FADD, DL, VT, N0, N0); 13985 13986 // fold (fmul X, -1.0) -> (fneg X) 13987 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 13988 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13989 return DAG.getNode(ISD::FNEG, DL, VT, N0); 13990 13991 // -N0 * -N1 --> N0 * N1 13992 TargetLowering::NegatibleCost CostN0 = 13993 TargetLowering::NegatibleCost::Expensive; 13994 TargetLowering::NegatibleCost CostN1 = 13995 TargetLowering::NegatibleCost::Expensive; 13996 SDValue NegN0 = 13997 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 13998 SDValue NegN1 = 13999 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14000 if (NegN0 && NegN1 && 14001 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14002 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14003 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); 14004 14005 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 14006 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 14007 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 14008 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 14009 TLI.isOperationLegal(ISD::FABS, VT)) { 14010 SDValue Select = N0, X = N1; 14011 if (Select.getOpcode() != ISD::SELECT) 14012 std::swap(Select, X); 14013 14014 SDValue Cond = Select.getOperand(0); 14015 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 14016 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 14017 14018 if (TrueOpnd && FalseOpnd && 14019 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 14020 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 14021 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 14022 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 14023 switch (CC) { 14024 default: break; 14025 case ISD::SETOLT: 14026 case ISD::SETULT: 14027 case ISD::SETOLE: 14028 case ISD::SETULE: 14029 case ISD::SETLT: 14030 case ISD::SETLE: 14031 std::swap(TrueOpnd, FalseOpnd); 14032 LLVM_FALLTHROUGH; 14033 case ISD::SETOGT: 14034 case ISD::SETUGT: 14035 case ISD::SETOGE: 14036 case ISD::SETUGE: 14037 case ISD::SETGT: 14038 case ISD::SETGE: 14039 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 14040 TLI.isOperationLegal(ISD::FNEG, VT)) 14041 return DAG.getNode(ISD::FNEG, DL, VT, 14042 DAG.getNode(ISD::FABS, DL, VT, X)); 14043 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 14044 return DAG.getNode(ISD::FABS, DL, VT, X); 14045 14046 break; 14047 } 14048 } 14049 } 14050 14051 // FMUL -> FMA combines: 14052 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 14053 AddToWorklist(Fused.getNode()); 14054 return Fused; 14055 } 14056 14057 return SDValue(); 14058 } 14059 14060 SDValue DAGCombiner::visitFMA(SDNode *N) { 14061 SDValue N0 = N->getOperand(0); 14062 SDValue N1 = N->getOperand(1); 14063 SDValue N2 = N->getOperand(2); 14064 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14065 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14066 EVT VT = N->getValueType(0); 14067 SDLoc DL(N); 14068 const TargetOptions &Options = DAG.getTarget().Options; 14069 // FMA nodes have flags that propagate to the created nodes. 14070 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14071 14072 bool UnsafeFPMath = 14073 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 14074 14075 // Constant fold FMA. 14076 if (isa<ConstantFPSDNode>(N0) && 14077 isa<ConstantFPSDNode>(N1) && 14078 isa<ConstantFPSDNode>(N2)) { 14079 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 14080 } 14081 14082 // (-N0 * -N1) + N2 --> (N0 * N1) + N2 14083 TargetLowering::NegatibleCost CostN0 = 14084 TargetLowering::NegatibleCost::Expensive; 14085 TargetLowering::NegatibleCost CostN1 = 14086 TargetLowering::NegatibleCost::Expensive; 14087 SDValue NegN0 = 14088 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14089 SDValue NegN1 = 14090 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14091 if (NegN0 && NegN1 && 14092 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14093 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14094 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); 14095 14096 if (UnsafeFPMath) { 14097 if (N0CFP && N0CFP->isZero()) 14098 return N2; 14099 if (N1CFP && N1CFP->isZero()) 14100 return N2; 14101 } 14102 14103 if (N0CFP && N0CFP->isExactlyValue(1.0)) 14104 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 14105 if (N1CFP && N1CFP->isExactlyValue(1.0)) 14106 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 14107 14108 // Canonicalize (fma c, x, y) -> (fma x, c, y) 14109 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 14110 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 14111 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 14112 14113 if (UnsafeFPMath) { 14114 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 14115 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 14116 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14117 DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 14118 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14119 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); 14120 } 14121 14122 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 14123 if (N0.getOpcode() == ISD::FMUL && 14124 DAG.isConstantFPBuildVectorOrConstantFP(N1) && 14125 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 14126 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14127 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), 14128 N2); 14129 } 14130 } 14131 14132 // (fma x, -1, y) -> (fadd (fneg x), y) 14133 if (N1CFP) { 14134 if (N1CFP->isExactlyValue(1.0)) 14135 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 14136 14137 if (N1CFP->isExactlyValue(-1.0) && 14138 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 14139 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 14140 AddToWorklist(RHSNeg.getNode()); 14141 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 14142 } 14143 14144 // fma (fneg x), K, y -> fma x -K, y 14145 if (N0.getOpcode() == ISD::FNEG && 14146 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 14147 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 14148 ForCodeSize)))) { 14149 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 14150 DAG.getNode(ISD::FNEG, DL, VT, N1), N2); 14151 } 14152 } 14153 14154 if (UnsafeFPMath) { 14155 // (fma x, c, x) -> (fmul x, (c+1)) 14156 if (N1CFP && N0 == N2) { 14157 return DAG.getNode( 14158 ISD::FMUL, DL, VT, N0, 14159 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); 14160 } 14161 14162 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 14163 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 14164 return DAG.getNode( 14165 ISD::FMUL, DL, VT, N0, 14166 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); 14167 } 14168 } 14169 14170 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) 14171 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) 14172 if (!TLI.isFNegFree(VT)) 14173 if (SDValue Neg = TLI.getCheaperNegatedExpression( 14174 SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) 14175 return DAG.getNode(ISD::FNEG, DL, VT, Neg); 14176 return SDValue(); 14177 } 14178 14179 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 14180 // reciprocal. 14181 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 14182 // Notice that this is not always beneficial. One reason is different targets 14183 // may have different costs for FDIV and FMUL, so sometimes the cost of two 14184 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 14185 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 14186 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 14187 // TODO: Limit this transform based on optsize/minsize - it always creates at 14188 // least 1 extra instruction. But the perf win may be substantial enough 14189 // that only minsize should restrict this. 14190 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 14191 const SDNodeFlags Flags = N->getFlags(); 14192 if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) 14193 return SDValue(); 14194 14195 // Skip if current node is a reciprocal/fneg-reciprocal. 14196 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 14197 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 14198 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) 14199 return SDValue(); 14200 14201 // Exit early if the target does not want this transform or if there can't 14202 // possibly be enough uses of the divisor to make the transform worthwhile. 14203 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 14204 14205 // For splat vectors, scale the number of uses by the splat factor. If we can 14206 // convert the division into a scalar op, that will likely be much faster. 14207 unsigned NumElts = 1; 14208 EVT VT = N->getValueType(0); 14209 if (VT.isVector() && DAG.isSplatValue(N1)) 14210 NumElts = VT.getVectorNumElements(); 14211 14212 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 14213 return SDValue(); 14214 14215 // Find all FDIV users of the same divisor. 14216 // Use a set because duplicates may be present in the user list. 14217 SetVector<SDNode *> Users; 14218 for (auto *U : N1->uses()) { 14219 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 14220 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. 14221 if (U->getOperand(1).getOpcode() == ISD::FSQRT && 14222 U->getOperand(0) == U->getOperand(1).getOperand(0) && 14223 U->getFlags().hasAllowReassociation() && 14224 U->getFlags().hasNoSignedZeros()) 14225 continue; 14226 14227 // This division is eligible for optimization only if global unsafe math 14228 // is enabled or if this division allows reciprocal formation. 14229 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 14230 Users.insert(U); 14231 } 14232 } 14233 14234 // Now that we have the actual number of divisor uses, make sure it meets 14235 // the minimum threshold specified by the target. 14236 if ((Users.size() * NumElts) < MinUses) 14237 return SDValue(); 14238 14239 SDLoc DL(N); 14240 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14241 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 14242 14243 // Dividend / Divisor -> Dividend * Reciprocal 14244 for (auto *U : Users) { 14245 SDValue Dividend = U->getOperand(0); 14246 if (Dividend != FPOne) { 14247 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 14248 Reciprocal, Flags); 14249 CombineTo(U, NewNode); 14250 } else if (U != Reciprocal.getNode()) { 14251 // In the absence of fast-math-flags, this user node is always the 14252 // same node as Reciprocal, but with FMF they may be different nodes. 14253 CombineTo(U, Reciprocal); 14254 } 14255 } 14256 return SDValue(N, 0); // N was replaced. 14257 } 14258 14259 SDValue DAGCombiner::visitFDIV(SDNode *N) { 14260 SDValue N0 = N->getOperand(0); 14261 SDValue N1 = N->getOperand(1); 14262 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14263 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14264 EVT VT = N->getValueType(0); 14265 SDLoc DL(N); 14266 const TargetOptions &Options = DAG.getTarget().Options; 14267 SDNodeFlags Flags = N->getFlags(); 14268 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14269 14270 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14271 return R; 14272 14273 // fold vector ops 14274 if (VT.isVector()) 14275 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 14276 return FoldedVOp; 14277 14278 // fold (fdiv c1, c2) -> c1/c2 14279 if (N0CFP && N1CFP) 14280 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1); 14281 14282 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14283 return NewSel; 14284 14285 if (SDValue V = combineRepeatedFPDivisors(N)) 14286 return V; 14287 14288 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 14289 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 14290 if (N1CFP) { 14291 // Compute the reciprocal 1.0 / c2. 14292 const APFloat &N1APF = N1CFP->getValueAPF(); 14293 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 14294 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 14295 // Only do the transform if the reciprocal is a legal fp immediate that 14296 // isn't too nasty (eg NaN, denormal, ...). 14297 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 14298 (!LegalOperations || 14299 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 14300 // backend)... we should handle this gracefully after Legalize. 14301 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 14302 TLI.isOperationLegal(ISD::ConstantFP, VT) || 14303 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 14304 return DAG.getNode(ISD::FMUL, DL, VT, N0, 14305 DAG.getConstantFP(Recip, DL, VT)); 14306 } 14307 14308 // If this FDIV is part of a reciprocal square root, it may be folded 14309 // into a target-specific square root estimate instruction. 14310 if (N1.getOpcode() == ISD::FSQRT) { 14311 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) 14312 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14313 } else if (N1.getOpcode() == ISD::FP_EXTEND && 14314 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14315 if (SDValue RV = 14316 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 14317 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 14318 AddToWorklist(RV.getNode()); 14319 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14320 } 14321 } else if (N1.getOpcode() == ISD::FP_ROUND && 14322 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14323 if (SDValue RV = 14324 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 14325 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 14326 AddToWorklist(RV.getNode()); 14327 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 14328 } 14329 } else if (N1.getOpcode() == ISD::FMUL) { 14330 // Look through an FMUL. Even though this won't remove the FDIV directly, 14331 // it's still worthwhile to get rid of the FSQRT if possible. 14332 SDValue Sqrt, Y; 14333 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 14334 Sqrt = N1.getOperand(0); 14335 Y = N1.getOperand(1); 14336 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 14337 Sqrt = N1.getOperand(1); 14338 Y = N1.getOperand(0); 14339 } 14340 if (Sqrt.getNode()) { 14341 // If the other multiply operand is known positive, pull it into the 14342 // sqrt. That will eliminate the division if we convert to an estimate. 14343 if (Flags.hasAllowReassociation() && N1.hasOneUse() && 14344 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { 14345 SDValue A; 14346 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) 14347 A = Y.getOperand(0); 14348 else if (Y == Sqrt.getOperand(0)) 14349 A = Y; 14350 if (A) { 14351 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) 14352 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) 14353 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); 14354 SDValue AAZ = 14355 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); 14356 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) 14357 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); 14358 14359 // Estimate creation failed. Clean up speculatively created nodes. 14360 recursivelyDeleteUnusedNodes(AAZ.getNode()); 14361 } 14362 } 14363 14364 // We found a FSQRT, so try to make this fold: 14365 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) 14366 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { 14367 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); 14368 AddToWorklist(Div.getNode()); 14369 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); 14370 } 14371 } 14372 } 14373 14374 // Fold into a reciprocal estimate and multiply instead of a real divide. 14375 if (Options.NoInfsFPMath || Flags.hasNoInfs()) 14376 if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) 14377 return RV; 14378 } 14379 14380 // Fold X/Sqrt(X) -> Sqrt(X) 14381 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 14382 (Options.UnsafeFPMath || Flags.hasAllowReassociation())) 14383 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) 14384 return N1; 14385 14386 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 14387 TargetLowering::NegatibleCost CostN0 = 14388 TargetLowering::NegatibleCost::Expensive; 14389 TargetLowering::NegatibleCost CostN1 = 14390 TargetLowering::NegatibleCost::Expensive; 14391 SDValue NegN0 = 14392 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 14393 SDValue NegN1 = 14394 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 14395 if (NegN0 && NegN1 && 14396 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 14397 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 14398 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); 14399 14400 return SDValue(); 14401 } 14402 14403 SDValue DAGCombiner::visitFREM(SDNode *N) { 14404 SDValue N0 = N->getOperand(0); 14405 SDValue N1 = N->getOperand(1); 14406 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14407 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 14408 EVT VT = N->getValueType(0); 14409 SDNodeFlags Flags = N->getFlags(); 14410 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14411 14412 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 14413 return R; 14414 14415 // fold (frem c1, c2) -> fmod(c1,c2) 14416 if (N0CFP && N1CFP) 14417 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1); 14418 14419 if (SDValue NewSel = foldBinOpIntoSelect(N)) 14420 return NewSel; 14421 14422 return SDValue(); 14423 } 14424 14425 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 14426 SDNodeFlags Flags = N->getFlags(); 14427 const TargetOptions &Options = DAG.getTarget().Options; 14428 14429 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: 14430 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN 14431 if (!Flags.hasApproximateFuncs() || 14432 (!Options.NoInfsFPMath && !Flags.hasNoInfs())) 14433 return SDValue(); 14434 14435 SDValue N0 = N->getOperand(0); 14436 if (TLI.isFsqrtCheap(N0, DAG)) 14437 return SDValue(); 14438 14439 // FSQRT nodes have flags that propagate to the created nodes. 14440 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to 14441 // transform the fdiv, we may produce a sub-optimal estimate sequence 14442 // because the reciprocal calculation may not have to filter out a 14443 // 0.0 input. 14444 return buildSqrtEstimate(N0, Flags); 14445 } 14446 14447 /// copysign(x, fp_extend(y)) -> copysign(x, y) 14448 /// copysign(x, fp_round(y)) -> copysign(x, y) 14449 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 14450 SDValue N1 = N->getOperand(1); 14451 if ((N1.getOpcode() == ISD::FP_EXTEND || 14452 N1.getOpcode() == ISD::FP_ROUND)) { 14453 EVT N1VT = N1->getValueType(0); 14454 EVT N1Op0VT = N1->getOperand(0).getValueType(); 14455 14456 // Always fold no-op FP casts. 14457 if (N1VT == N1Op0VT) 14458 return true; 14459 14460 // Do not optimize out type conversion of f128 type yet. 14461 // For some targets like x86_64, configuration is changed to keep one f128 14462 // value in one SSE register, but instruction selection cannot handle 14463 // FCOPYSIGN on SSE registers yet. 14464 if (N1Op0VT == MVT::f128) 14465 return false; 14466 14467 // Avoid mismatched vector operand types, for better instruction selection. 14468 if (N1Op0VT.isVector()) 14469 return false; 14470 14471 return true; 14472 } 14473 return false; 14474 } 14475 14476 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 14477 SDValue N0 = N->getOperand(0); 14478 SDValue N1 = N->getOperand(1); 14479 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); 14480 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); 14481 EVT VT = N->getValueType(0); 14482 14483 if (N0CFP && N1CFP) // Constant fold 14484 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 14485 14486 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 14487 const APFloat &V = N1C->getValueAPF(); 14488 // copysign(x, c1) -> fabs(x) iff ispos(c1) 14489 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 14490 if (!V.isNegative()) { 14491 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 14492 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14493 } else { 14494 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 14495 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 14496 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 14497 } 14498 } 14499 14500 // copysign(fabs(x), y) -> copysign(x, y) 14501 // copysign(fneg(x), y) -> copysign(x, y) 14502 // copysign(copysign(x,z), y) -> copysign(x, y) 14503 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 14504 N0.getOpcode() == ISD::FCOPYSIGN) 14505 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 14506 14507 // copysign(x, abs(y)) -> abs(x) 14508 if (N1.getOpcode() == ISD::FABS) 14509 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14510 14511 // copysign(x, copysign(y,z)) -> copysign(x, z) 14512 if (N1.getOpcode() == ISD::FCOPYSIGN) 14513 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 14514 14515 // copysign(x, fp_extend(y)) -> copysign(x, y) 14516 // copysign(x, fp_round(y)) -> copysign(x, y) 14517 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 14518 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 14519 14520 return SDValue(); 14521 } 14522 14523 SDValue DAGCombiner::visitFPOW(SDNode *N) { 14524 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 14525 if (!ExponentC) 14526 return SDValue(); 14527 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14528 14529 // Try to convert x ** (1/3) into cube root. 14530 // TODO: Handle the various flavors of long double. 14531 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 14532 // Some range near 1/3 should be fine. 14533 EVT VT = N->getValueType(0); 14534 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 14535 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 14536 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 14537 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 14538 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 14539 // For regular numbers, rounding may cause the results to differ. 14540 // Therefore, we require { nsz ninf nnan afn } for this transform. 14541 // TODO: We could select out the special cases if we don't have nsz/ninf. 14542 SDNodeFlags Flags = N->getFlags(); 14543 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 14544 !Flags.hasApproximateFuncs()) 14545 return SDValue(); 14546 14547 // Do not create a cbrt() libcall if the target does not have it, and do not 14548 // turn a pow that has lowering support into a cbrt() libcall. 14549 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 14550 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 14551 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 14552 return SDValue(); 14553 14554 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); 14555 } 14556 14557 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 14558 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 14559 // TODO: This could be extended (using a target hook) to handle smaller 14560 // power-of-2 fractional exponents. 14561 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 14562 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 14563 if (ExponentIs025 || ExponentIs075) { 14564 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 14565 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 14566 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 14567 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 14568 // For regular numbers, rounding may cause the results to differ. 14569 // Therefore, we require { nsz ninf afn } for this transform. 14570 // TODO: We could select out the special cases if we don't have nsz/ninf. 14571 SDNodeFlags Flags = N->getFlags(); 14572 14573 // We only need no signed zeros for the 0.25 case. 14574 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 14575 !Flags.hasApproximateFuncs()) 14576 return SDValue(); 14577 14578 // Don't double the number of libcalls. We are trying to inline fast code. 14579 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 14580 return SDValue(); 14581 14582 // Assume that libcalls are the smallest code. 14583 // TODO: This restriction should probably be lifted for vectors. 14584 if (ForCodeSize) 14585 return SDValue(); 14586 14587 // pow(X, 0.25) --> sqrt(sqrt(X)) 14588 SDLoc DL(N); 14589 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); 14590 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); 14591 if (ExponentIs025) 14592 return SqrtSqrt; 14593 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 14594 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); 14595 } 14596 14597 return SDValue(); 14598 } 14599 14600 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 14601 const TargetLowering &TLI) { 14602 // This optimization is guarded by a function attribute because it may produce 14603 // unexpected results. Ie, programs may be relying on the platform-specific 14604 // undefined behavior when the float-to-int conversion overflows. 14605 const Function &F = DAG.getMachineFunction().getFunction(); 14606 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); 14607 if (StrictOverflow.getValueAsString().equals("false")) 14608 return SDValue(); 14609 14610 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 14611 // replacing casts with a libcall. We also must be allowed to ignore -0.0 14612 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 14613 // conversions would return +0.0. 14614 // FIXME: We should be able to use node-level FMF here. 14615 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 14616 EVT VT = N->getValueType(0); 14617 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 14618 !DAG.getTarget().Options.NoSignedZerosFPMath) 14619 return SDValue(); 14620 14621 // fptosi/fptoui round towards zero, so converting from FP to integer and 14622 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 14623 SDValue N0 = N->getOperand(0); 14624 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 14625 N0.getOperand(0).getValueType() == VT) 14626 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14627 14628 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 14629 N0.getOperand(0).getValueType() == VT) 14630 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14631 14632 return SDValue(); 14633 } 14634 14635 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 14636 SDValue N0 = N->getOperand(0); 14637 EVT VT = N->getValueType(0); 14638 EVT OpVT = N0.getValueType(); 14639 14640 // [us]itofp(undef) = 0, because the result value is bounded. 14641 if (N0.isUndef()) 14642 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14643 14644 // fold (sint_to_fp c1) -> c1fp 14645 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14646 // ...but only if the target supports immediate floating-point values 14647 (!LegalOperations || 14648 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14649 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14650 14651 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 14652 // but UINT_TO_FP is legal on this target, try to convert. 14653 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 14654 hasOperation(ISD::UINT_TO_FP, OpVT)) { 14655 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 14656 if (DAG.SignBitIsZero(N0)) 14657 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14658 } 14659 14660 // The next optimizations are desirable only if SELECT_CC can be lowered. 14661 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) 14662 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 14663 !VT.isVector() && 14664 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14665 SDLoc DL(N); 14666 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), 14667 DAG.getConstantFP(0.0, DL, VT)); 14668 } 14669 14670 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 14671 // (select (setcc x, y, cc), 1.0, 0.0) 14672 if (N0.getOpcode() == ISD::ZERO_EXTEND && 14673 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && 14674 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14675 SDLoc DL(N); 14676 return DAG.getSelect(DL, VT, N0.getOperand(0), 14677 DAG.getConstantFP(1.0, DL, VT), 14678 DAG.getConstantFP(0.0, DL, VT)); 14679 } 14680 14681 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14682 return FTrunc; 14683 14684 return SDValue(); 14685 } 14686 14687 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 14688 SDValue N0 = N->getOperand(0); 14689 EVT VT = N->getValueType(0); 14690 EVT OpVT = N0.getValueType(); 14691 14692 // [us]itofp(undef) = 0, because the result value is bounded. 14693 if (N0.isUndef()) 14694 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14695 14696 // fold (uint_to_fp c1) -> c1fp 14697 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14698 // ...but only if the target supports immediate floating-point values 14699 (!LegalOperations || 14700 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14701 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14702 14703 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 14704 // but SINT_TO_FP is legal on this target, try to convert. 14705 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 14706 hasOperation(ISD::SINT_TO_FP, OpVT)) { 14707 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 14708 if (DAG.SignBitIsZero(N0)) 14709 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14710 } 14711 14712 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) 14713 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 14714 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14715 SDLoc DL(N); 14716 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), 14717 DAG.getConstantFP(0.0, DL, VT)); 14718 } 14719 14720 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14721 return FTrunc; 14722 14723 return SDValue(); 14724 } 14725 14726 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 14727 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 14728 SDValue N0 = N->getOperand(0); 14729 EVT VT = N->getValueType(0); 14730 14731 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 14732 return SDValue(); 14733 14734 SDValue Src = N0.getOperand(0); 14735 EVT SrcVT = Src.getValueType(); 14736 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 14737 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 14738 14739 // We can safely assume the conversion won't overflow the output range, 14740 // because (for example) (uint8_t)18293.f is undefined behavior. 14741 14742 // Since we can assume the conversion won't overflow, our decision as to 14743 // whether the input will fit in the float should depend on the minimum 14744 // of the input range and output range. 14745 14746 // This means this is also safe for a signed input and unsigned output, since 14747 // a negative input would lead to undefined behavior. 14748 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 14749 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 14750 unsigned ActualSize = std::min(InputSize, OutputSize); 14751 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 14752 14753 // We can only fold away the float conversion if the input range can be 14754 // represented exactly in the float range. 14755 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 14756 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 14757 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 14758 : ISD::ZERO_EXTEND; 14759 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 14760 } 14761 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 14762 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 14763 return DAG.getBitcast(VT, Src); 14764 } 14765 return SDValue(); 14766 } 14767 14768 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 14769 SDValue N0 = N->getOperand(0); 14770 EVT VT = N->getValueType(0); 14771 14772 // fold (fp_to_sint undef) -> undef 14773 if (N0.isUndef()) 14774 return DAG.getUNDEF(VT); 14775 14776 // fold (fp_to_sint c1fp) -> c1 14777 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14778 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 14779 14780 return FoldIntToFPToInt(N, DAG); 14781 } 14782 14783 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 14784 SDValue N0 = N->getOperand(0); 14785 EVT VT = N->getValueType(0); 14786 14787 // fold (fp_to_uint undef) -> undef 14788 if (N0.isUndef()) 14789 return DAG.getUNDEF(VT); 14790 14791 // fold (fp_to_uint c1fp) -> c1 14792 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14793 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 14794 14795 return FoldIntToFPToInt(N, DAG); 14796 } 14797 14798 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 14799 SDValue N0 = N->getOperand(0); 14800 SDValue N1 = N->getOperand(1); 14801 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14802 EVT VT = N->getValueType(0); 14803 14804 // fold (fp_round c1fp) -> c1fp 14805 if (N0CFP) 14806 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 14807 14808 // fold (fp_round (fp_extend x)) -> x 14809 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 14810 return N0.getOperand(0); 14811 14812 // fold (fp_round (fp_round x)) -> (fp_round x) 14813 if (N0.getOpcode() == ISD::FP_ROUND) { 14814 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 14815 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 14816 14817 // Skip this folding if it results in an fp_round from f80 to f16. 14818 // 14819 // f80 to f16 always generates an expensive (and as yet, unimplemented) 14820 // libcall to __truncxfhf2 instead of selecting native f16 conversion 14821 // instructions from f32 or f64. Moreover, the first (value-preserving) 14822 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 14823 // x86. 14824 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 14825 return SDValue(); 14826 14827 // If the first fp_round isn't a value preserving truncation, it might 14828 // introduce a tie in the second fp_round, that wouldn't occur in the 14829 // single-step fp_round we want to fold to. 14830 // In other words, double rounding isn't the same as rounding. 14831 // Also, this is a value preserving truncation iff both fp_round's are. 14832 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 14833 SDLoc DL(N); 14834 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 14835 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 14836 } 14837 } 14838 14839 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 14840 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 14841 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 14842 N0.getOperand(0), N1); 14843 AddToWorklist(Tmp.getNode()); 14844 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 14845 Tmp, N0.getOperand(1)); 14846 } 14847 14848 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 14849 return NewVSel; 14850 14851 return SDValue(); 14852 } 14853 14854 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 14855 SDValue N0 = N->getOperand(0); 14856 EVT VT = N->getValueType(0); 14857 14858 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 14859 if (N->hasOneUse() && 14860 N->use_begin()->getOpcode() == ISD::FP_ROUND) 14861 return SDValue(); 14862 14863 // fold (fp_extend c1fp) -> c1fp 14864 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14865 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 14866 14867 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 14868 if (N0.getOpcode() == ISD::FP16_TO_FP && 14869 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 14870 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 14871 14872 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 14873 // value of X. 14874 if (N0.getOpcode() == ISD::FP_ROUND 14875 && N0.getConstantOperandVal(1) == 1) { 14876 SDValue In = N0.getOperand(0); 14877 if (In.getValueType() == VT) return In; 14878 if (VT.bitsLT(In.getValueType())) 14879 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 14880 In, N0.getOperand(1)); 14881 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 14882 } 14883 14884 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 14885 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 14886 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 14887 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 14888 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 14889 LN0->getChain(), 14890 LN0->getBasePtr(), N0.getValueType(), 14891 LN0->getMemOperand()); 14892 CombineTo(N, ExtLoad); 14893 CombineTo(N0.getNode(), 14894 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 14895 N0.getValueType(), ExtLoad, 14896 DAG.getIntPtrConstant(1, SDLoc(N0))), 14897 ExtLoad.getValue(1)); 14898 return SDValue(N, 0); // Return N so it doesn't get rechecked! 14899 } 14900 14901 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 14902 return NewVSel; 14903 14904 return SDValue(); 14905 } 14906 14907 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 14908 SDValue N0 = N->getOperand(0); 14909 EVT VT = N->getValueType(0); 14910 14911 // fold (fceil c1) -> fceil(c1) 14912 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14913 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 14914 14915 return SDValue(); 14916 } 14917 14918 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 14919 SDValue N0 = N->getOperand(0); 14920 EVT VT = N->getValueType(0); 14921 14922 // fold (ftrunc c1) -> ftrunc(c1) 14923 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14924 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 14925 14926 // fold ftrunc (known rounded int x) -> x 14927 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 14928 // likely to be generated to extract integer from a rounded floating value. 14929 switch (N0.getOpcode()) { 14930 default: break; 14931 case ISD::FRINT: 14932 case ISD::FTRUNC: 14933 case ISD::FNEARBYINT: 14934 case ISD::FFLOOR: 14935 case ISD::FCEIL: 14936 return N0; 14937 } 14938 14939 return SDValue(); 14940 } 14941 14942 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 14943 SDValue N0 = N->getOperand(0); 14944 EVT VT = N->getValueType(0); 14945 14946 // fold (ffloor c1) -> ffloor(c1) 14947 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14948 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 14949 14950 return SDValue(); 14951 } 14952 14953 SDValue DAGCombiner::visitFNEG(SDNode *N) { 14954 SDValue N0 = N->getOperand(0); 14955 EVT VT = N->getValueType(0); 14956 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14957 14958 // Constant fold FNEG. 14959 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 14960 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 14961 14962 if (SDValue NegN0 = 14963 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) 14964 return NegN0; 14965 14966 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 14967 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't 14968 // know it was called from a context with a nsz flag if the input fsub does 14969 // not. 14970 if (N0.getOpcode() == ISD::FSUB && 14971 (DAG.getTarget().Options.NoSignedZerosFPMath || 14972 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { 14973 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), 14974 N0.getOperand(0)); 14975 } 14976 14977 if (SDValue Cast = foldSignChangeInBitcast(N)) 14978 return Cast; 14979 14980 return SDValue(); 14981 } 14982 14983 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, 14984 APFloat (*Op)(const APFloat &, const APFloat &)) { 14985 SDValue N0 = N->getOperand(0); 14986 SDValue N1 = N->getOperand(1); 14987 EVT VT = N->getValueType(0); 14988 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 14989 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 14990 const SDNodeFlags Flags = N->getFlags(); 14991 unsigned Opc = N->getOpcode(); 14992 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; 14993 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; 14994 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14995 14996 if (N0CFP && N1CFP) { 14997 const APFloat &C0 = N0CFP->getValueAPF(); 14998 const APFloat &C1 = N1CFP->getValueAPF(); 14999 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); 15000 } 15001 15002 // Canonicalize to constant on RHS. 15003 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && 15004 !DAG.isConstantFPBuildVectorOrConstantFP(N1)) 15005 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 15006 15007 if (N1CFP) { 15008 const APFloat &AF = N1CFP->getValueAPF(); 15009 15010 // minnum(X, nan) -> X 15011 // maxnum(X, nan) -> X 15012 // minimum(X, nan) -> nan 15013 // maximum(X, nan) -> nan 15014 if (AF.isNaN()) 15015 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); 15016 15017 // In the following folds, inf can be replaced with the largest finite 15018 // float, if the ninf flag is set. 15019 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { 15020 // minnum(X, -inf) -> -inf 15021 // maxnum(X, +inf) -> +inf 15022 // minimum(X, -inf) -> -inf if nnan 15023 // maximum(X, +inf) -> +inf if nnan 15024 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) 15025 return N->getOperand(1); 15026 15027 // minnum(X, +inf) -> X if nnan 15028 // maxnum(X, -inf) -> X if nnan 15029 // minimum(X, +inf) -> X 15030 // maximum(X, -inf) -> X 15031 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) 15032 return N->getOperand(0); 15033 } 15034 } 15035 15036 return SDValue(); 15037 } 15038 15039 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 15040 return visitFMinMax(DAG, N, minnum); 15041 } 15042 15043 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 15044 return visitFMinMax(DAG, N, maxnum); 15045 } 15046 15047 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { 15048 return visitFMinMax(DAG, N, minimum); 15049 } 15050 15051 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { 15052 return visitFMinMax(DAG, N, maximum); 15053 } 15054 15055 SDValue DAGCombiner::visitFABS(SDNode *N) { 15056 SDValue N0 = N->getOperand(0); 15057 EVT VT = N->getValueType(0); 15058 15059 // fold (fabs c1) -> fabs(c1) 15060 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) 15061 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 15062 15063 // fold (fabs (fabs x)) -> (fabs x) 15064 if (N0.getOpcode() == ISD::FABS) 15065 return N->getOperand(0); 15066 15067 // fold (fabs (fneg x)) -> (fabs x) 15068 // fold (fabs (fcopysign x, y)) -> (fabs x) 15069 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 15070 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 15071 15072 if (SDValue Cast = foldSignChangeInBitcast(N)) 15073 return Cast; 15074 15075 return SDValue(); 15076 } 15077 15078 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 15079 SDValue Chain = N->getOperand(0); 15080 SDValue N1 = N->getOperand(1); 15081 SDValue N2 = N->getOperand(2); 15082 15083 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are 15084 // nondeterministic jumps). 15085 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { 15086 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, 15087 N1->getOperand(0), N2); 15088 } 15089 15090 // If N is a constant we could fold this into a fallthrough or unconditional 15091 // branch. However that doesn't happen very often in normal code, because 15092 // Instcombine/SimplifyCFG should have handled the available opportunities. 15093 // If we did this folding here, it would be necessary to update the 15094 // MachineBasicBlock CFG, which is awkward. 15095 15096 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 15097 // on the target. 15098 if (N1.getOpcode() == ISD::SETCC && 15099 TLI.isOperationLegalOrCustom(ISD::BR_CC, 15100 N1.getOperand(0).getValueType())) { 15101 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15102 Chain, N1.getOperand(2), 15103 N1.getOperand(0), N1.getOperand(1), N2); 15104 } 15105 15106 if (N1.hasOneUse()) { 15107 // rebuildSetCC calls visitXor which may change the Chain when there is a 15108 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. 15109 HandleSDNode ChainHandle(Chain); 15110 if (SDValue NewN1 = rebuildSetCC(N1)) 15111 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, 15112 ChainHandle.getValue(), NewN1, N2); 15113 } 15114 15115 return SDValue(); 15116 } 15117 15118 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 15119 if (N.getOpcode() == ISD::SRL || 15120 (N.getOpcode() == ISD::TRUNCATE && 15121 (N.getOperand(0).hasOneUse() && 15122 N.getOperand(0).getOpcode() == ISD::SRL))) { 15123 // Look pass the truncate. 15124 if (N.getOpcode() == ISD::TRUNCATE) 15125 N = N.getOperand(0); 15126 15127 // Match this pattern so that we can generate simpler code: 15128 // 15129 // %a = ... 15130 // %b = and i32 %a, 2 15131 // %c = srl i32 %b, 1 15132 // brcond i32 %c ... 15133 // 15134 // into 15135 // 15136 // %a = ... 15137 // %b = and i32 %a, 2 15138 // %c = setcc eq %b, 0 15139 // brcond %c ... 15140 // 15141 // This applies only when the AND constant value has one bit set and the 15142 // SRL constant is equal to the log2 of the AND constant. The back-end is 15143 // smart enough to convert the result into a TEST/JMP sequence. 15144 SDValue Op0 = N.getOperand(0); 15145 SDValue Op1 = N.getOperand(1); 15146 15147 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 15148 SDValue AndOp1 = Op0.getOperand(1); 15149 15150 if (AndOp1.getOpcode() == ISD::Constant) { 15151 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 15152 15153 if (AndConst.isPowerOf2() && 15154 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 15155 SDLoc DL(N); 15156 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 15157 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 15158 ISD::SETNE); 15159 } 15160 } 15161 } 15162 } 15163 15164 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) 15165 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) 15166 if (N.getOpcode() == ISD::XOR) { 15167 // Because we may call this on a speculatively constructed 15168 // SimplifiedSetCC Node, we need to simplify this node first. 15169 // Ideally this should be folded into SimplifySetCC and not 15170 // here. For now, grab a handle to N so we don't lose it from 15171 // replacements interal to the visit. 15172 HandleSDNode XORHandle(N); 15173 while (N.getOpcode() == ISD::XOR) { 15174 SDValue Tmp = visitXOR(N.getNode()); 15175 // No simplification done. 15176 if (!Tmp.getNode()) 15177 break; 15178 // Returning N is form in-visit replacement that may invalidated 15179 // N. Grab value from Handle. 15180 if (Tmp.getNode() == N.getNode()) 15181 N = XORHandle.getValue(); 15182 else // Node simplified. Try simplifying again. 15183 N = Tmp; 15184 } 15185 15186 if (N.getOpcode() != ISD::XOR) 15187 return N; 15188 15189 SDValue Op0 = N->getOperand(0); 15190 SDValue Op1 = N->getOperand(1); 15191 15192 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 15193 bool Equal = false; 15194 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) 15195 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && 15196 Op0.getValueType() == MVT::i1) { 15197 N = Op0; 15198 Op0 = N->getOperand(0); 15199 Op1 = N->getOperand(1); 15200 Equal = true; 15201 } 15202 15203 EVT SetCCVT = N.getValueType(); 15204 if (LegalTypes) 15205 SetCCVT = getSetCCResultType(SetCCVT); 15206 // Replace the uses of XOR with SETCC 15207 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, 15208 Equal ? ISD::SETEQ : ISD::SETNE); 15209 } 15210 } 15211 15212 return SDValue(); 15213 } 15214 15215 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 15216 // 15217 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 15218 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 15219 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 15220 15221 // If N is a constant we could fold this into a fallthrough or unconditional 15222 // branch. However that doesn't happen very often in normal code, because 15223 // Instcombine/SimplifyCFG should have handled the available opportunities. 15224 // If we did this folding here, it would be necessary to update the 15225 // MachineBasicBlock CFG, which is awkward. 15226 15227 // Use SimplifySetCC to simplify SETCC's. 15228 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 15229 CondLHS, CondRHS, CC->get(), SDLoc(N), 15230 false); 15231 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 15232 15233 // fold to a simpler setcc 15234 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 15235 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 15236 N->getOperand(0), Simp.getOperand(2), 15237 Simp.getOperand(0), Simp.getOperand(1), 15238 N->getOperand(4)); 15239 15240 return SDValue(); 15241 } 15242 15243 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, 15244 bool &IsLoad, bool &IsMasked, SDValue &Ptr, 15245 const TargetLowering &TLI) { 15246 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 15247 if (LD->isIndexed()) 15248 return false; 15249 EVT VT = LD->getMemoryVT(); 15250 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) 15251 return false; 15252 Ptr = LD->getBasePtr(); 15253 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 15254 if (ST->isIndexed()) 15255 return false; 15256 EVT VT = ST->getMemoryVT(); 15257 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) 15258 return false; 15259 Ptr = ST->getBasePtr(); 15260 IsLoad = false; 15261 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 15262 if (LD->isIndexed()) 15263 return false; 15264 EVT VT = LD->getMemoryVT(); 15265 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && 15266 !TLI.isIndexedMaskedLoadLegal(Dec, VT)) 15267 return false; 15268 Ptr = LD->getBasePtr(); 15269 IsMasked = true; 15270 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 15271 if (ST->isIndexed()) 15272 return false; 15273 EVT VT = ST->getMemoryVT(); 15274 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && 15275 !TLI.isIndexedMaskedStoreLegal(Dec, VT)) 15276 return false; 15277 Ptr = ST->getBasePtr(); 15278 IsLoad = false; 15279 IsMasked = true; 15280 } else { 15281 return false; 15282 } 15283 return true; 15284 } 15285 15286 /// Try turning a load/store into a pre-indexed load/store when the base 15287 /// pointer is an add or subtract and it has other uses besides the load/store. 15288 /// After the transformation, the new indexed load/store has effectively folded 15289 /// the add/subtract in and all of its other uses are redirected to the 15290 /// new load/store. 15291 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 15292 if (Level < AfterLegalizeDAG) 15293 return false; 15294 15295 bool IsLoad = true; 15296 bool IsMasked = false; 15297 SDValue Ptr; 15298 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, 15299 Ptr, TLI)) 15300 return false; 15301 15302 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 15303 // out. There is no reason to make this a preinc/predec. 15304 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 15305 Ptr.getNode()->hasOneUse()) 15306 return false; 15307 15308 // Ask the target to do addressing mode selection. 15309 SDValue BasePtr; 15310 SDValue Offset; 15311 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15312 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 15313 return false; 15314 15315 // Backends without true r+i pre-indexed forms may need to pass a 15316 // constant base with a variable offset so that constant coercion 15317 // will work with the patterns in canonical form. 15318 bool Swapped = false; 15319 if (isa<ConstantSDNode>(BasePtr)) { 15320 std::swap(BasePtr, Offset); 15321 Swapped = true; 15322 } 15323 15324 // Don't create a indexed load / store with zero offset. 15325 if (isNullConstant(Offset)) 15326 return false; 15327 15328 // Try turning it into a pre-indexed load / store except when: 15329 // 1) The new base ptr is a frame index. 15330 // 2) If N is a store and the new base ptr is either the same as or is a 15331 // predecessor of the value being stored. 15332 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 15333 // that would create a cycle. 15334 // 4) All uses are load / store ops that use it as old base ptr. 15335 15336 // Check #1. Preinc'ing a frame index would require copying the stack pointer 15337 // (plus the implicit offset) to a register to preinc anyway. 15338 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15339 return false; 15340 15341 // Check #2. 15342 if (!IsLoad) { 15343 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() 15344 : cast<StoreSDNode>(N)->getValue(); 15345 15346 // Would require a copy. 15347 if (Val == BasePtr) 15348 return false; 15349 15350 // Would create a cycle. 15351 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 15352 return false; 15353 } 15354 15355 // Caches for hasPredecessorHelper. 15356 SmallPtrSet<const SDNode *, 32> Visited; 15357 SmallVector<const SDNode *, 16> Worklist; 15358 Worklist.push_back(N); 15359 15360 // If the offset is a constant, there may be other adds of constants that 15361 // can be folded with this one. We should do this to avoid having to keep 15362 // a copy of the original base pointer. 15363 SmallVector<SDNode *, 16> OtherUses; 15364 if (isa<ConstantSDNode>(Offset)) 15365 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 15366 UE = BasePtr.getNode()->use_end(); 15367 UI != UE; ++UI) { 15368 SDUse &Use = UI.getUse(); 15369 // Skip the use that is Ptr and uses of other results from BasePtr's 15370 // node (important for nodes that return multiple results). 15371 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 15372 continue; 15373 15374 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 15375 continue; 15376 15377 if (Use.getUser()->getOpcode() != ISD::ADD && 15378 Use.getUser()->getOpcode() != ISD::SUB) { 15379 OtherUses.clear(); 15380 break; 15381 } 15382 15383 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 15384 if (!isa<ConstantSDNode>(Op1)) { 15385 OtherUses.clear(); 15386 break; 15387 } 15388 15389 // FIXME: In some cases, we can be smarter about this. 15390 if (Op1.getValueType() != Offset.getValueType()) { 15391 OtherUses.clear(); 15392 break; 15393 } 15394 15395 OtherUses.push_back(Use.getUser()); 15396 } 15397 15398 if (Swapped) 15399 std::swap(BasePtr, Offset); 15400 15401 // Now check for #3 and #4. 15402 bool RealUse = false; 15403 15404 for (SDNode *Use : Ptr.getNode()->uses()) { 15405 if (Use == N) 15406 continue; 15407 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 15408 return false; 15409 15410 // If Ptr may be folded in addressing mode of other use, then it's 15411 // not profitable to do this transformation. 15412 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 15413 RealUse = true; 15414 } 15415 15416 if (!RealUse) 15417 return false; 15418 15419 SDValue Result; 15420 if (!IsMasked) { 15421 if (IsLoad) 15422 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 15423 else 15424 Result = 15425 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 15426 } else { 15427 if (IsLoad) 15428 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15429 Offset, AM); 15430 else 15431 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, 15432 Offset, AM); 15433 } 15434 ++PreIndexedNodes; 15435 ++NodesCombined; 15436 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 15437 Result.getNode()->dump(&DAG); dbgs() << '\n'); 15438 WorklistRemover DeadNodes(*this); 15439 if (IsLoad) { 15440 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15441 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15442 } else { 15443 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15444 } 15445 15446 // Finally, since the node is now dead, remove it from the graph. 15447 deleteAndRecombine(N); 15448 15449 if (Swapped) 15450 std::swap(BasePtr, Offset); 15451 15452 // Replace other uses of BasePtr that can be updated to use Ptr 15453 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 15454 unsigned OffsetIdx = 1; 15455 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 15456 OffsetIdx = 0; 15457 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 15458 BasePtr.getNode() && "Expected BasePtr operand"); 15459 15460 // We need to replace ptr0 in the following expression: 15461 // x0 * offset0 + y0 * ptr0 = t0 15462 // knowing that 15463 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 15464 // 15465 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 15466 // indexed load/store and the expression that needs to be re-written. 15467 // 15468 // Therefore, we have: 15469 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 15470 15471 auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 15472 const APInt &Offset0 = CN->getAPIntValue(); 15473 const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 15474 int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 15475 int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 15476 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 15477 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 15478 15479 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 15480 15481 APInt CNV = Offset0; 15482 if (X0 < 0) CNV = -CNV; 15483 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 15484 else CNV = CNV - Offset1; 15485 15486 SDLoc DL(OtherUses[i]); 15487 15488 // We can now generate the new expression. 15489 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 15490 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); 15491 15492 SDValue NewUse = DAG.getNode(Opcode, 15493 DL, 15494 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 15495 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 15496 deleteAndRecombine(OtherUses[i]); 15497 } 15498 15499 // Replace the uses of Ptr with uses of the updated base value. 15500 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); 15501 deleteAndRecombine(Ptr.getNode()); 15502 AddToWorklist(Result.getNode()); 15503 15504 return true; 15505 } 15506 15507 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, 15508 SDValue &BasePtr, SDValue &Offset, 15509 ISD::MemIndexedMode &AM, 15510 SelectionDAG &DAG, 15511 const TargetLowering &TLI) { 15512 if (PtrUse == N || 15513 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) 15514 return false; 15515 15516 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) 15517 return false; 15518 15519 // Don't create a indexed load / store with zero offset. 15520 if (isNullConstant(Offset)) 15521 return false; 15522 15523 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 15524 return false; 15525 15526 SmallPtrSet<const SDNode *, 32> Visited; 15527 for (SDNode *Use : BasePtr.getNode()->uses()) { 15528 if (Use == Ptr.getNode()) 15529 continue; 15530 15531 // No if there's a later user which could perform the index instead. 15532 if (isa<MemSDNode>(Use)) { 15533 bool IsLoad = true; 15534 bool IsMasked = false; 15535 SDValue OtherPtr; 15536 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15537 IsMasked, OtherPtr, TLI)) { 15538 SmallVector<const SDNode *, 2> Worklist; 15539 Worklist.push_back(Use); 15540 if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) 15541 return false; 15542 } 15543 } 15544 15545 // If all the uses are load / store addresses, then don't do the 15546 // transformation. 15547 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { 15548 for (SDNode *UseUse : Use->uses()) 15549 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 15550 return false; 15551 } 15552 } 15553 return true; 15554 } 15555 15556 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, 15557 bool &IsMasked, SDValue &Ptr, 15558 SDValue &BasePtr, SDValue &Offset, 15559 ISD::MemIndexedMode &AM, 15560 SelectionDAG &DAG, 15561 const TargetLowering &TLI) { 15562 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15563 IsMasked, Ptr, TLI) || 15564 Ptr.getNode()->hasOneUse()) 15565 return nullptr; 15566 15567 // Try turning it into a post-indexed load / store except when 15568 // 1) All uses are load / store ops that use it as base ptr (and 15569 // it may be folded as addressing mmode). 15570 // 2) Op must be independent of N, i.e. Op is neither a predecessor 15571 // nor a successor of N. Otherwise, if Op is folded that would 15572 // create a cycle. 15573 for (SDNode *Op : Ptr->uses()) { 15574 // Check for #1. 15575 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) 15576 continue; 15577 15578 // Check for #2. 15579 SmallPtrSet<const SDNode *, 32> Visited; 15580 SmallVector<const SDNode *, 8> Worklist; 15581 // Ptr is predecessor to both N and Op. 15582 Visited.insert(Ptr.getNode()); 15583 Worklist.push_back(N); 15584 Worklist.push_back(Op); 15585 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 15586 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) 15587 return Op; 15588 } 15589 return nullptr; 15590 } 15591 15592 /// Try to combine a load/store with a add/sub of the base pointer node into a 15593 /// post-indexed load/store. The transformation folded the add/subtract into the 15594 /// new indexed load/store effectively and all of its uses are redirected to the 15595 /// new load/store. 15596 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 15597 if (Level < AfterLegalizeDAG) 15598 return false; 15599 15600 bool IsLoad = true; 15601 bool IsMasked = false; 15602 SDValue Ptr; 15603 SDValue BasePtr; 15604 SDValue Offset; 15605 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15606 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, 15607 Offset, AM, DAG, TLI); 15608 if (!Op) 15609 return false; 15610 15611 SDValue Result; 15612 if (!IsMasked) 15613 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15614 Offset, AM) 15615 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), 15616 BasePtr, Offset, AM); 15617 else 15618 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), 15619 BasePtr, Offset, AM) 15620 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), 15621 BasePtr, Offset, AM); 15622 ++PostIndexedNodes; 15623 ++NodesCombined; 15624 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); 15625 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); 15626 dbgs() << '\n'); 15627 WorklistRemover DeadNodes(*this); 15628 if (IsLoad) { 15629 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15630 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15631 } else { 15632 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15633 } 15634 15635 // Finally, since the node is now dead, remove it from the graph. 15636 deleteAndRecombine(N); 15637 15638 // Replace the uses of Use with uses of the updated base value. 15639 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 15640 Result.getValue(IsLoad ? 1 : 0)); 15641 deleteAndRecombine(Op); 15642 return true; 15643 } 15644 15645 /// Return the base-pointer arithmetic from an indexed \p LD. 15646 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 15647 ISD::MemIndexedMode AM = LD->getAddressingMode(); 15648 assert(AM != ISD::UNINDEXED); 15649 SDValue BP = LD->getOperand(1); 15650 SDValue Inc = LD->getOperand(2); 15651 15652 // Some backends use TargetConstants for load offsets, but don't expect 15653 // TargetConstants in general ADD nodes. We can convert these constants into 15654 // regular Constants (if the constant is not opaque). 15655 assert((Inc.getOpcode() != ISD::TargetConstant || 15656 !cast<ConstantSDNode>(Inc)->isOpaque()) && 15657 "Cannot split out indexing using opaque target constants"); 15658 if (Inc.getOpcode() == ISD::TargetConstant) { 15659 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 15660 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 15661 ConstInc->getValueType(0)); 15662 } 15663 15664 unsigned Opc = 15665 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 15666 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 15667 } 15668 15669 static inline ElementCount numVectorEltsOrZero(EVT T) { 15670 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); 15671 } 15672 15673 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 15674 Val = ST->getValue(); 15675 EVT STType = Val.getValueType(); 15676 EVT STMemType = ST->getMemoryVT(); 15677 if (STType == STMemType) 15678 return true; 15679 if (isTypeLegal(STMemType)) 15680 return false; // fail. 15681 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 15682 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 15683 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 15684 return true; 15685 } 15686 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 15687 STType.isInteger() && STMemType.isInteger()) { 15688 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 15689 return true; 15690 } 15691 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 15692 Val = DAG.getBitcast(STMemType, Val); 15693 return true; 15694 } 15695 return false; // fail. 15696 } 15697 15698 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 15699 EVT LDMemType = LD->getMemoryVT(); 15700 EVT LDType = LD->getValueType(0); 15701 assert(Val.getValueType() == LDMemType && 15702 "Attempting to extend value of non-matching type"); 15703 if (LDType == LDMemType) 15704 return true; 15705 if (LDMemType.isInteger() && LDType.isInteger()) { 15706 switch (LD->getExtensionType()) { 15707 case ISD::NON_EXTLOAD: 15708 Val = DAG.getBitcast(LDType, Val); 15709 return true; 15710 case ISD::EXTLOAD: 15711 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 15712 return true; 15713 case ISD::SEXTLOAD: 15714 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 15715 return true; 15716 case ISD::ZEXTLOAD: 15717 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 15718 return true; 15719 } 15720 } 15721 return false; 15722 } 15723 15724 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 15725 if (OptLevel == CodeGenOpt::None || !LD->isSimple()) 15726 return SDValue(); 15727 SDValue Chain = LD->getOperand(0); 15728 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 15729 // TODO: Relax this restriction for unordered atomics (see D66309) 15730 if (!ST || !ST->isSimple()) 15731 return SDValue(); 15732 15733 EVT LDType = LD->getValueType(0); 15734 EVT LDMemType = LD->getMemoryVT(); 15735 EVT STMemType = ST->getMemoryVT(); 15736 EVT STType = ST->getValue().getValueType(); 15737 15738 // There are two cases to consider here: 15739 // 1. The store is fixed width and the load is scalable. In this case we 15740 // don't know at compile time if the store completely envelops the load 15741 // so we abandon the optimisation. 15742 // 2. The store is scalable and the load is fixed width. We could 15743 // potentially support a limited number of cases here, but there has been 15744 // no cost-benefit analysis to prove it's worth it. 15745 bool LdStScalable = LDMemType.isScalableVector(); 15746 if (LdStScalable != STMemType.isScalableVector()) 15747 return SDValue(); 15748 15749 // If we are dealing with scalable vectors on a big endian platform the 15750 // calculation of offsets below becomes trickier, since we do not know at 15751 // compile time the absolute size of the vector. Until we've done more 15752 // analysis on big-endian platforms it seems better to bail out for now. 15753 if (LdStScalable && DAG.getDataLayout().isBigEndian()) 15754 return SDValue(); 15755 15756 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 15757 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 15758 int64_t Offset; 15759 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 15760 return SDValue(); 15761 15762 // Normalize for Endianness. After this Offset=0 will denote that the least 15763 // significant bit in the loaded value maps to the least significant bit in 15764 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 15765 // n:th least significant byte of the stored value. 15766 if (DAG.getDataLayout().isBigEndian()) 15767 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() - 15768 (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) / 15769 8 - 15770 Offset; 15771 15772 // Check that the stored value cover all bits that are loaded. 15773 bool STCoversLD; 15774 15775 TypeSize LdMemSize = LDMemType.getSizeInBits(); 15776 TypeSize StMemSize = STMemType.getSizeInBits(); 15777 if (LdStScalable) 15778 STCoversLD = (Offset == 0) && LdMemSize == StMemSize; 15779 else 15780 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <= 15781 StMemSize.getFixedSize()); 15782 15783 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 15784 if (LD->isIndexed()) { 15785 // Cannot handle opaque target constants and we must respect the user's 15786 // request not to split indexes from loads. 15787 if (!canSplitIdx(LD)) 15788 return SDValue(); 15789 SDValue Idx = SplitIndexingFromLoad(LD); 15790 SDValue Ops[] = {Val, Idx, Chain}; 15791 return CombineTo(LD, Ops, 3); 15792 } 15793 return CombineTo(LD, Val, Chain); 15794 }; 15795 15796 if (!STCoversLD) 15797 return SDValue(); 15798 15799 // Memory as copy space (potentially masked). 15800 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 15801 // Simple case: Direct non-truncating forwarding 15802 if (LDType.getSizeInBits() == LdMemSize) 15803 return ReplaceLd(LD, ST->getValue(), Chain); 15804 // Can we model the truncate and extension with an and mask? 15805 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 15806 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 15807 // Mask to size of LDMemType 15808 auto Mask = 15809 DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), 15810 StMemSize.getFixedSize()), 15811 SDLoc(ST), STType); 15812 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 15813 return ReplaceLd(LD, Val, Chain); 15814 } 15815 } 15816 15817 // TODO: Deal with nonzero offset. 15818 if (LD->getBasePtr().isUndef() || Offset != 0) 15819 return SDValue(); 15820 // Model necessary truncations / extenstions. 15821 SDValue Val; 15822 // Truncate Value To Stored Memory Size. 15823 do { 15824 if (!getTruncatedStoreValue(ST, Val)) 15825 continue; 15826 if (!isTypeLegal(LDMemType)) 15827 continue; 15828 if (STMemType != LDMemType) { 15829 // TODO: Support vectors? This requires extract_subvector/bitcast. 15830 if (!STMemType.isVector() && !LDMemType.isVector() && 15831 STMemType.isInteger() && LDMemType.isInteger()) 15832 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 15833 else 15834 continue; 15835 } 15836 if (!extendLoadedValueToExtension(LD, Val)) 15837 continue; 15838 return ReplaceLd(LD, Val, Chain); 15839 } while (false); 15840 15841 // On failure, cleanup dead nodes we may have created. 15842 if (Val->use_empty()) 15843 deleteAndRecombine(Val.getNode()); 15844 return SDValue(); 15845 } 15846 15847 SDValue DAGCombiner::visitLOAD(SDNode *N) { 15848 LoadSDNode *LD = cast<LoadSDNode>(N); 15849 SDValue Chain = LD->getChain(); 15850 SDValue Ptr = LD->getBasePtr(); 15851 15852 // If load is not volatile and there are no uses of the loaded value (and 15853 // the updated indexed value in case of indexed loads), change uses of the 15854 // chain value into uses of the chain input (i.e. delete the dead load). 15855 // TODO: Allow this for unordered atomics (see D66309) 15856 if (LD->isSimple()) { 15857 if (N->getValueType(1) == MVT::Other) { 15858 // Unindexed loads. 15859 if (!N->hasAnyUseOfValue(0)) { 15860 // It's not safe to use the two value CombineTo variant here. e.g. 15861 // v1, chain2 = load chain1, loc 15862 // v2, chain3 = load chain2, loc 15863 // v3 = add v2, c 15864 // Now we replace use of chain2 with chain1. This makes the second load 15865 // isomorphic to the one we are deleting, and thus makes this load live. 15866 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 15867 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); 15868 dbgs() << "\n"); 15869 WorklistRemover DeadNodes(*this); 15870 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 15871 AddUsersToWorklist(Chain.getNode()); 15872 if (N->use_empty()) 15873 deleteAndRecombine(N); 15874 15875 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15876 } 15877 } else { 15878 // Indexed loads. 15879 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 15880 15881 // If this load has an opaque TargetConstant offset, then we cannot split 15882 // the indexing into an add/sub directly (that TargetConstant may not be 15883 // valid for a different type of node, and we cannot convert an opaque 15884 // target constant into a regular constant). 15885 bool CanSplitIdx = canSplitIdx(LD); 15886 15887 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { 15888 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 15889 SDValue Index; 15890 if (N->hasAnyUseOfValue(1) && CanSplitIdx) { 15891 Index = SplitIndexingFromLoad(LD); 15892 // Try to fold the base pointer arithmetic into subsequent loads and 15893 // stores. 15894 AddUsersToWorklist(N); 15895 } else 15896 Index = DAG.getUNDEF(N->getValueType(1)); 15897 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 15898 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); 15899 dbgs() << " and 2 other values\n"); 15900 WorklistRemover DeadNodes(*this); 15901 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 15902 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 15903 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 15904 deleteAndRecombine(N); 15905 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15906 } 15907 } 15908 } 15909 15910 // If this load is directly stored, replace the load value with the stored 15911 // value. 15912 if (auto V = ForwardStoreValueToDirectLoad(LD)) 15913 return V; 15914 15915 // Try to infer better alignment information than the load already has. 15916 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { 15917 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 15918 if (*Alignment > LD->getAlign() && 15919 isAligned(*Alignment, LD->getSrcValueOffset())) { 15920 SDValue NewLoad = DAG.getExtLoad( 15921 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 15922 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, 15923 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 15924 // NewLoad will always be N as we are only refining the alignment 15925 assert(NewLoad.getNode() == N); 15926 (void)NewLoad; 15927 } 15928 } 15929 } 15930 15931 if (LD->isUnindexed()) { 15932 // Walk up chain skipping non-aliasing memory nodes. 15933 SDValue BetterChain = FindBetterChain(LD, Chain); 15934 15935 // If there is a better chain. 15936 if (Chain != BetterChain) { 15937 SDValue ReplLoad; 15938 15939 // Replace the chain to void dependency. 15940 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 15941 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 15942 BetterChain, Ptr, LD->getMemOperand()); 15943 } else { 15944 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 15945 LD->getValueType(0), 15946 BetterChain, Ptr, LD->getMemoryVT(), 15947 LD->getMemOperand()); 15948 } 15949 15950 // Create token factor to keep old chain connected. 15951 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 15952 MVT::Other, Chain, ReplLoad.getValue(1)); 15953 15954 // Replace uses with load result and token factor 15955 return CombineTo(N, ReplLoad.getValue(0), Token); 15956 } 15957 } 15958 15959 // Try transforming N to an indexed load. 15960 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 15961 return SDValue(N, 0); 15962 15963 // Try to slice up N to more direct loads if the slices are mapped to 15964 // different register banks or pairing can take place. 15965 if (SliceUpLoad(N)) 15966 return SDValue(N, 0); 15967 15968 return SDValue(); 15969 } 15970 15971 namespace { 15972 15973 /// Helper structure used to slice a load in smaller loads. 15974 /// Basically a slice is obtained from the following sequence: 15975 /// Origin = load Ty1, Base 15976 /// Shift = srl Ty1 Origin, CstTy Amount 15977 /// Inst = trunc Shift to Ty2 15978 /// 15979 /// Then, it will be rewritten into: 15980 /// Slice = load SliceTy, Base + SliceOffset 15981 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 15982 /// 15983 /// SliceTy is deduced from the number of bits that are actually used to 15984 /// build Inst. 15985 struct LoadedSlice { 15986 /// Helper structure used to compute the cost of a slice. 15987 struct Cost { 15988 /// Are we optimizing for code size. 15989 bool ForCodeSize = false; 15990 15991 /// Various cost. 15992 unsigned Loads = 0; 15993 unsigned Truncates = 0; 15994 unsigned CrossRegisterBanksCopies = 0; 15995 unsigned ZExts = 0; 15996 unsigned Shift = 0; 15997 15998 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} 15999 16000 /// Get the cost of one isolated slice. 16001 Cost(const LoadedSlice &LS, bool ForCodeSize) 16002 : ForCodeSize(ForCodeSize), Loads(1) { 16003 EVT TruncType = LS.Inst->getValueType(0); 16004 EVT LoadedType = LS.getLoadedType(); 16005 if (TruncType != LoadedType && 16006 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 16007 ZExts = 1; 16008 } 16009 16010 /// Account for slicing gain in the current cost. 16011 /// Slicing provide a few gains like removing a shift or a 16012 /// truncate. This method allows to grow the cost of the original 16013 /// load with the gain from this slice. 16014 void addSliceGain(const LoadedSlice &LS) { 16015 // Each slice saves a truncate. 16016 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 16017 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 16018 LS.Inst->getValueType(0))) 16019 ++Truncates; 16020 // If there is a shift amount, this slice gets rid of it. 16021 if (LS.Shift) 16022 ++Shift; 16023 // If this slice can merge a cross register bank copy, account for it. 16024 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 16025 ++CrossRegisterBanksCopies; 16026 } 16027 16028 Cost &operator+=(const Cost &RHS) { 16029 Loads += RHS.Loads; 16030 Truncates += RHS.Truncates; 16031 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 16032 ZExts += RHS.ZExts; 16033 Shift += RHS.Shift; 16034 return *this; 16035 } 16036 16037 bool operator==(const Cost &RHS) const { 16038 return Loads == RHS.Loads && Truncates == RHS.Truncates && 16039 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 16040 ZExts == RHS.ZExts && Shift == RHS.Shift; 16041 } 16042 16043 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 16044 16045 bool operator<(const Cost &RHS) const { 16046 // Assume cross register banks copies are as expensive as loads. 16047 // FIXME: Do we want some more target hooks? 16048 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 16049 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 16050 // Unless we are optimizing for code size, consider the 16051 // expensive operation first. 16052 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 16053 return ExpensiveOpsLHS < ExpensiveOpsRHS; 16054 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 16055 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 16056 } 16057 16058 bool operator>(const Cost &RHS) const { return RHS < *this; } 16059 16060 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 16061 16062 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 16063 }; 16064 16065 // The last instruction that represent the slice. This should be a 16066 // truncate instruction. 16067 SDNode *Inst; 16068 16069 // The original load instruction. 16070 LoadSDNode *Origin; 16071 16072 // The right shift amount in bits from the original load. 16073 unsigned Shift; 16074 16075 // The DAG from which Origin came from. 16076 // This is used to get some contextual information about legal types, etc. 16077 SelectionDAG *DAG; 16078 16079 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 16080 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 16081 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 16082 16083 /// Get the bits used in a chunk of bits \p BitWidth large. 16084 /// \return Result is \p BitWidth and has used bits set to 1 and 16085 /// not used bits set to 0. 16086 APInt getUsedBits() const { 16087 // Reproduce the trunc(lshr) sequence: 16088 // - Start from the truncated value. 16089 // - Zero extend to the desired bit width. 16090 // - Shift left. 16091 assert(Origin && "No original load to compare against."); 16092 unsigned BitWidth = Origin->getValueSizeInBits(0); 16093 assert(Inst && "This slice is not bound to an instruction"); 16094 assert(Inst->getValueSizeInBits(0) <= BitWidth && 16095 "Extracted slice is bigger than the whole type!"); 16096 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 16097 UsedBits.setAllBits(); 16098 UsedBits = UsedBits.zext(BitWidth); 16099 UsedBits <<= Shift; 16100 return UsedBits; 16101 } 16102 16103 /// Get the size of the slice to be loaded in bytes. 16104 unsigned getLoadedSize() const { 16105 unsigned SliceSize = getUsedBits().countPopulation(); 16106 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 16107 return SliceSize / 8; 16108 } 16109 16110 /// Get the type that will be loaded for this slice. 16111 /// Note: This may not be the final type for the slice. 16112 EVT getLoadedType() const { 16113 assert(DAG && "Missing context"); 16114 LLVMContext &Ctxt = *DAG->getContext(); 16115 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 16116 } 16117 16118 /// Get the alignment of the load used for this slice. 16119 Align getAlign() const { 16120 Align Alignment = Origin->getAlign(); 16121 uint64_t Offset = getOffsetFromBase(); 16122 if (Offset != 0) 16123 Alignment = commonAlignment(Alignment, Alignment.value() + Offset); 16124 return Alignment; 16125 } 16126 16127 /// Check if this slice can be rewritten with legal operations. 16128 bool isLegal() const { 16129 // An invalid slice is not legal. 16130 if (!Origin || !Inst || !DAG) 16131 return false; 16132 16133 // Offsets are for indexed load only, we do not handle that. 16134 if (!Origin->getOffset().isUndef()) 16135 return false; 16136 16137 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16138 16139 // Check that the type is legal. 16140 EVT SliceType = getLoadedType(); 16141 if (!TLI.isTypeLegal(SliceType)) 16142 return false; 16143 16144 // Check that the load is legal for this type. 16145 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 16146 return false; 16147 16148 // Check that the offset can be computed. 16149 // 1. Check its type. 16150 EVT PtrType = Origin->getBasePtr().getValueType(); 16151 if (PtrType == MVT::Untyped || PtrType.isExtended()) 16152 return false; 16153 16154 // 2. Check that it fits in the immediate. 16155 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 16156 return false; 16157 16158 // 3. Check that the computation is legal. 16159 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 16160 return false; 16161 16162 // Check that the zext is legal if it needs one. 16163 EVT TruncateType = Inst->getValueType(0); 16164 if (TruncateType != SliceType && 16165 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 16166 return false; 16167 16168 return true; 16169 } 16170 16171 /// Get the offset in bytes of this slice in the original chunk of 16172 /// bits. 16173 /// \pre DAG != nullptr. 16174 uint64_t getOffsetFromBase() const { 16175 assert(DAG && "Missing context."); 16176 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 16177 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 16178 uint64_t Offset = Shift / 8; 16179 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 16180 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 16181 "The size of the original loaded type is not a multiple of a" 16182 " byte."); 16183 // If Offset is bigger than TySizeInBytes, it means we are loading all 16184 // zeros. This should have been optimized before in the process. 16185 assert(TySizeInBytes > Offset && 16186 "Invalid shift amount for given loaded size"); 16187 if (IsBigEndian) 16188 Offset = TySizeInBytes - Offset - getLoadedSize(); 16189 return Offset; 16190 } 16191 16192 /// Generate the sequence of instructions to load the slice 16193 /// represented by this object and redirect the uses of this slice to 16194 /// this new sequence of instructions. 16195 /// \pre this->Inst && this->Origin are valid Instructions and this 16196 /// object passed the legal check: LoadedSlice::isLegal returned true. 16197 /// \return The last instruction of the sequence used to load the slice. 16198 SDValue loadSlice() const { 16199 assert(Inst && Origin && "Unable to replace a non-existing slice."); 16200 const SDValue &OldBaseAddr = Origin->getBasePtr(); 16201 SDValue BaseAddr = OldBaseAddr; 16202 // Get the offset in that chunk of bytes w.r.t. the endianness. 16203 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 16204 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 16205 if (Offset) { 16206 // BaseAddr = BaseAddr + Offset. 16207 EVT ArithType = BaseAddr.getValueType(); 16208 SDLoc DL(Origin); 16209 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 16210 DAG->getConstant(Offset, DL, ArithType)); 16211 } 16212 16213 // Create the type of the loaded slice according to its size. 16214 EVT SliceType = getLoadedType(); 16215 16216 // Create the load for the slice. 16217 SDValue LastInst = 16218 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 16219 Origin->getPointerInfo().getWithOffset(Offset), getAlign(), 16220 Origin->getMemOperand()->getFlags()); 16221 // If the final type is not the same as the loaded type, this means that 16222 // we have to pad with zero. Create a zero extend for that. 16223 EVT FinalType = Inst->getValueType(0); 16224 if (SliceType != FinalType) 16225 LastInst = 16226 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 16227 return LastInst; 16228 } 16229 16230 /// Check if this slice can be merged with an expensive cross register 16231 /// bank copy. E.g., 16232 /// i = load i32 16233 /// f = bitcast i32 i to float 16234 bool canMergeExpensiveCrossRegisterBankCopy() const { 16235 if (!Inst || !Inst->hasOneUse()) 16236 return false; 16237 SDNode *Use = *Inst->use_begin(); 16238 if (Use->getOpcode() != ISD::BITCAST) 16239 return false; 16240 assert(DAG && "Missing context"); 16241 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 16242 EVT ResVT = Use->getValueType(0); 16243 const TargetRegisterClass *ResRC = 16244 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 16245 const TargetRegisterClass *ArgRC = 16246 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 16247 Use->getOperand(0)->isDivergent()); 16248 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 16249 return false; 16250 16251 // At this point, we know that we perform a cross-register-bank copy. 16252 // Check if it is expensive. 16253 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 16254 // Assume bitcasts are cheap, unless both register classes do not 16255 // explicitly share a common sub class. 16256 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 16257 return false; 16258 16259 // Check if it will be merged with the load. 16260 // 1. Check the alignment / fast memory access constraint. 16261 bool IsFast = false; 16262 if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT, 16263 Origin->getAddressSpace(), getAlign(), 16264 Origin->getMemOperand()->getFlags(), &IsFast) || 16265 !IsFast) 16266 return false; 16267 16268 // 2. Check that the load is a legal operation for that type. 16269 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 16270 return false; 16271 16272 // 3. Check that we do not have a zext in the way. 16273 if (Inst->getValueType(0) != getLoadedType()) 16274 return false; 16275 16276 return true; 16277 } 16278 }; 16279 16280 } // end anonymous namespace 16281 16282 /// Check that all bits set in \p UsedBits form a dense region, i.e., 16283 /// \p UsedBits looks like 0..0 1..1 0..0. 16284 static bool areUsedBitsDense(const APInt &UsedBits) { 16285 // If all the bits are one, this is dense! 16286 if (UsedBits.isAllOnesValue()) 16287 return true; 16288 16289 // Get rid of the unused bits on the right. 16290 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 16291 // Get rid of the unused bits on the left. 16292 if (NarrowedUsedBits.countLeadingZeros()) 16293 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 16294 // Check that the chunk of bits is completely used. 16295 return NarrowedUsedBits.isAllOnesValue(); 16296 } 16297 16298 /// Check whether or not \p First and \p Second are next to each other 16299 /// in memory. This means that there is no hole between the bits loaded 16300 /// by \p First and the bits loaded by \p Second. 16301 static bool areSlicesNextToEachOther(const LoadedSlice &First, 16302 const LoadedSlice &Second) { 16303 assert(First.Origin == Second.Origin && First.Origin && 16304 "Unable to match different memory origins."); 16305 APInt UsedBits = First.getUsedBits(); 16306 assert((UsedBits & Second.getUsedBits()) == 0 && 16307 "Slices are not supposed to overlap."); 16308 UsedBits |= Second.getUsedBits(); 16309 return areUsedBitsDense(UsedBits); 16310 } 16311 16312 /// Adjust the \p GlobalLSCost according to the target 16313 /// paring capabilities and the layout of the slices. 16314 /// \pre \p GlobalLSCost should account for at least as many loads as 16315 /// there is in the slices in \p LoadedSlices. 16316 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16317 LoadedSlice::Cost &GlobalLSCost) { 16318 unsigned NumberOfSlices = LoadedSlices.size(); 16319 // If there is less than 2 elements, no pairing is possible. 16320 if (NumberOfSlices < 2) 16321 return; 16322 16323 // Sort the slices so that elements that are likely to be next to each 16324 // other in memory are next to each other in the list. 16325 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 16326 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 16327 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 16328 }); 16329 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 16330 // First (resp. Second) is the first (resp. Second) potentially candidate 16331 // to be placed in a paired load. 16332 const LoadedSlice *First = nullptr; 16333 const LoadedSlice *Second = nullptr; 16334 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 16335 // Set the beginning of the pair. 16336 First = Second) { 16337 Second = &LoadedSlices[CurrSlice]; 16338 16339 // If First is NULL, it means we start a new pair. 16340 // Get to the next slice. 16341 if (!First) 16342 continue; 16343 16344 EVT LoadedType = First->getLoadedType(); 16345 16346 // If the types of the slices are different, we cannot pair them. 16347 if (LoadedType != Second->getLoadedType()) 16348 continue; 16349 16350 // Check if the target supplies paired loads for this type. 16351 Align RequiredAlignment; 16352 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 16353 // move to the next pair, this type is hopeless. 16354 Second = nullptr; 16355 continue; 16356 } 16357 // Check if we meet the alignment requirement. 16358 if (First->getAlign() < RequiredAlignment) 16359 continue; 16360 16361 // Check that both loads are next to each other in memory. 16362 if (!areSlicesNextToEachOther(*First, *Second)) 16363 continue; 16364 16365 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 16366 --GlobalLSCost.Loads; 16367 // Move to the next pair. 16368 Second = nullptr; 16369 } 16370 } 16371 16372 /// Check the profitability of all involved LoadedSlice. 16373 /// Currently, it is considered profitable if there is exactly two 16374 /// involved slices (1) which are (2) next to each other in memory, and 16375 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 16376 /// 16377 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 16378 /// the elements themselves. 16379 /// 16380 /// FIXME: When the cost model will be mature enough, we can relax 16381 /// constraints (1) and (2). 16382 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 16383 const APInt &UsedBits, bool ForCodeSize) { 16384 unsigned NumberOfSlices = LoadedSlices.size(); 16385 if (StressLoadSlicing) 16386 return NumberOfSlices > 1; 16387 16388 // Check (1). 16389 if (NumberOfSlices != 2) 16390 return false; 16391 16392 // Check (2). 16393 if (!areUsedBitsDense(UsedBits)) 16394 return false; 16395 16396 // Check (3). 16397 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 16398 // The original code has one big load. 16399 OrigCost.Loads = 1; 16400 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 16401 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 16402 // Accumulate the cost of all the slices. 16403 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 16404 GlobalSlicingCost += SliceCost; 16405 16406 // Account as cost in the original configuration the gain obtained 16407 // with the current slices. 16408 OrigCost.addSliceGain(LS); 16409 } 16410 16411 // If the target supports paired load, adjust the cost accordingly. 16412 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 16413 return OrigCost > GlobalSlicingCost; 16414 } 16415 16416 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 16417 /// operations, split it in the various pieces being extracted. 16418 /// 16419 /// This sort of thing is introduced by SROA. 16420 /// This slicing takes care not to insert overlapping loads. 16421 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 16422 bool DAGCombiner::SliceUpLoad(SDNode *N) { 16423 if (Level < AfterLegalizeDAG) 16424 return false; 16425 16426 LoadSDNode *LD = cast<LoadSDNode>(N); 16427 if (!LD->isSimple() || !ISD::isNormalLoad(LD) || 16428 !LD->getValueType(0).isInteger()) 16429 return false; 16430 16431 // The algorithm to split up a load of a scalable vector into individual 16432 // elements currently requires knowing the length of the loaded type, 16433 // so will need adjusting to work on scalable vectors. 16434 if (LD->getValueType(0).isScalableVector()) 16435 return false; 16436 16437 // Keep track of already used bits to detect overlapping values. 16438 // In that case, we will just abort the transformation. 16439 APInt UsedBits(LD->getValueSizeInBits(0), 0); 16440 16441 SmallVector<LoadedSlice, 4> LoadedSlices; 16442 16443 // Check if this load is used as several smaller chunks of bits. 16444 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 16445 // of computation for each trunc. 16446 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 16447 UI != UIEnd; ++UI) { 16448 // Skip the uses of the chain. 16449 if (UI.getUse().getResNo() != 0) 16450 continue; 16451 16452 SDNode *User = *UI; 16453 unsigned Shift = 0; 16454 16455 // Check if this is a trunc(lshr). 16456 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 16457 isa<ConstantSDNode>(User->getOperand(1))) { 16458 Shift = User->getConstantOperandVal(1); 16459 User = *User->use_begin(); 16460 } 16461 16462 // At this point, User is a Truncate, iff we encountered, trunc or 16463 // trunc(lshr). 16464 if (User->getOpcode() != ISD::TRUNCATE) 16465 return false; 16466 16467 // The width of the type must be a power of 2 and greater than 8-bits. 16468 // Otherwise the load cannot be represented in LLVM IR. 16469 // Moreover, if we shifted with a non-8-bits multiple, the slice 16470 // will be across several bytes. We do not support that. 16471 unsigned Width = User->getValueSizeInBits(0); 16472 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 16473 return false; 16474 16475 // Build the slice for this chain of computations. 16476 LoadedSlice LS(User, LD, Shift, &DAG); 16477 APInt CurrentUsedBits = LS.getUsedBits(); 16478 16479 // Check if this slice overlaps with another. 16480 if ((CurrentUsedBits & UsedBits) != 0) 16481 return false; 16482 // Update the bits used globally. 16483 UsedBits |= CurrentUsedBits; 16484 16485 // Check if the new slice would be legal. 16486 if (!LS.isLegal()) 16487 return false; 16488 16489 // Record the slice. 16490 LoadedSlices.push_back(LS); 16491 } 16492 16493 // Abort slicing if it does not seem to be profitable. 16494 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 16495 return false; 16496 16497 ++SlicedLoads; 16498 16499 // Rewrite each chain to use an independent load. 16500 // By construction, each chain can be represented by a unique load. 16501 16502 // Prepare the argument for the new token factor for all the slices. 16503 SmallVector<SDValue, 8> ArgChains; 16504 for (const LoadedSlice &LS : LoadedSlices) { 16505 SDValue SliceInst = LS.loadSlice(); 16506 CombineTo(LS.Inst, SliceInst, true); 16507 if (SliceInst.getOpcode() != ISD::LOAD) 16508 SliceInst = SliceInst.getOperand(0); 16509 assert(SliceInst->getOpcode() == ISD::LOAD && 16510 "It takes more than a zext to get to the loaded slice!!"); 16511 ArgChains.push_back(SliceInst.getValue(1)); 16512 } 16513 16514 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 16515 ArgChains); 16516 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 16517 AddToWorklist(Chain.getNode()); 16518 return true; 16519 } 16520 16521 /// Check to see if V is (and load (ptr), imm), where the load is having 16522 /// specific bytes cleared out. If so, return the byte size being masked out 16523 /// and the shift amount. 16524 static std::pair<unsigned, unsigned> 16525 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 16526 std::pair<unsigned, unsigned> Result(0, 0); 16527 16528 // Check for the structure we're looking for. 16529 if (V->getOpcode() != ISD::AND || 16530 !isa<ConstantSDNode>(V->getOperand(1)) || 16531 !ISD::isNormalLoad(V->getOperand(0).getNode())) 16532 return Result; 16533 16534 // Check the chain and pointer. 16535 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 16536 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 16537 16538 // This only handles simple types. 16539 if (V.getValueType() != MVT::i16 && 16540 V.getValueType() != MVT::i32 && 16541 V.getValueType() != MVT::i64) 16542 return Result; 16543 16544 // Check the constant mask. Invert it so that the bits being masked out are 16545 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 16546 // follow the sign bit for uniformity. 16547 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 16548 unsigned NotMaskLZ = countLeadingZeros(NotMask); 16549 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 16550 unsigned NotMaskTZ = countTrailingZeros(NotMask); 16551 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 16552 if (NotMaskLZ == 64) return Result; // All zero mask. 16553 16554 // See if we have a continuous run of bits. If so, we have 0*1+0* 16555 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 16556 return Result; 16557 16558 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 16559 if (V.getValueType() != MVT::i64 && NotMaskLZ) 16560 NotMaskLZ -= 64-V.getValueSizeInBits(); 16561 16562 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 16563 switch (MaskedBytes) { 16564 case 1: 16565 case 2: 16566 case 4: break; 16567 default: return Result; // All one mask, or 5-byte mask. 16568 } 16569 16570 // Verify that the first bit starts at a multiple of mask so that the access 16571 // is aligned the same as the access width. 16572 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 16573 16574 // For narrowing to be valid, it must be the case that the load the 16575 // immediately preceding memory operation before the store. 16576 if (LD == Chain.getNode()) 16577 ; // ok. 16578 else if (Chain->getOpcode() == ISD::TokenFactor && 16579 SDValue(LD, 1).hasOneUse()) { 16580 // LD has only 1 chain use so they are no indirect dependencies. 16581 if (!LD->isOperandOf(Chain.getNode())) 16582 return Result; 16583 } else 16584 return Result; // Fail. 16585 16586 Result.first = MaskedBytes; 16587 Result.second = NotMaskTZ/8; 16588 return Result; 16589 } 16590 16591 /// Check to see if IVal is something that provides a value as specified by 16592 /// MaskInfo. If so, replace the specified store with a narrower store of 16593 /// truncated IVal. 16594 static SDValue 16595 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 16596 SDValue IVal, StoreSDNode *St, 16597 DAGCombiner *DC) { 16598 unsigned NumBytes = MaskInfo.first; 16599 unsigned ByteShift = MaskInfo.second; 16600 SelectionDAG &DAG = DC->getDAG(); 16601 16602 // Check to see if IVal is all zeros in the part being masked in by the 'or' 16603 // that uses this. If not, this is not a replacement. 16604 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 16605 ByteShift*8, (ByteShift+NumBytes)*8); 16606 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); 16607 16608 // Check that it is legal on the target to do this. It is legal if the new 16609 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 16610 // legalization (and the target doesn't explicitly think this is a bad idea). 16611 MVT VT = MVT::getIntegerVT(NumBytes * 8); 16612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 16613 if (!DC->isTypeLegal(VT)) 16614 return SDValue(); 16615 if (St->getMemOperand() && 16616 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 16617 *St->getMemOperand())) 16618 return SDValue(); 16619 16620 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 16621 // shifted by ByteShift and truncated down to NumBytes. 16622 if (ByteShift) { 16623 SDLoc DL(IVal); 16624 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 16625 DAG.getConstant(ByteShift*8, DL, 16626 DC->getShiftAmountTy(IVal.getValueType()))); 16627 } 16628 16629 // Figure out the offset for the store and the alignment of the access. 16630 unsigned StOffset; 16631 if (DAG.getDataLayout().isLittleEndian()) 16632 StOffset = ByteShift; 16633 else 16634 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 16635 16636 SDValue Ptr = St->getBasePtr(); 16637 if (StOffset) { 16638 SDLoc DL(IVal); 16639 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); 16640 } 16641 16642 // Truncate down to the new size. 16643 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 16644 16645 ++OpsNarrowed; 16646 return DAG 16647 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 16648 St->getPointerInfo().getWithOffset(StOffset), 16649 St->getOriginalAlign()); 16650 } 16651 16652 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 16653 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 16654 /// narrowing the load and store if it would end up being a win for performance 16655 /// or code size. 16656 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 16657 StoreSDNode *ST = cast<StoreSDNode>(N); 16658 if (!ST->isSimple()) 16659 return SDValue(); 16660 16661 SDValue Chain = ST->getChain(); 16662 SDValue Value = ST->getValue(); 16663 SDValue Ptr = ST->getBasePtr(); 16664 EVT VT = Value.getValueType(); 16665 16666 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 16667 return SDValue(); 16668 16669 unsigned Opc = Value.getOpcode(); 16670 16671 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 16672 // is a byte mask indicating a consecutive number of bytes, check to see if 16673 // Y is known to provide just those bytes. If so, we try to replace the 16674 // load + replace + store sequence with a single (narrower) store, which makes 16675 // the load dead. 16676 if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { 16677 std::pair<unsigned, unsigned> MaskedLoad; 16678 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 16679 if (MaskedLoad.first) 16680 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16681 Value.getOperand(1), ST,this)) 16682 return NewST; 16683 16684 // Or is commutative, so try swapping X and Y. 16685 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 16686 if (MaskedLoad.first) 16687 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16688 Value.getOperand(0), ST,this)) 16689 return NewST; 16690 } 16691 16692 if (!EnableReduceLoadOpStoreWidth) 16693 return SDValue(); 16694 16695 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 16696 Value.getOperand(1).getOpcode() != ISD::Constant) 16697 return SDValue(); 16698 16699 SDValue N0 = Value.getOperand(0); 16700 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 16701 Chain == SDValue(N0.getNode(), 1)) { 16702 LoadSDNode *LD = cast<LoadSDNode>(N0); 16703 if (LD->getBasePtr() != Ptr || 16704 LD->getPointerInfo().getAddrSpace() != 16705 ST->getPointerInfo().getAddrSpace()) 16706 return SDValue(); 16707 16708 // Find the type to narrow it the load / op / store to. 16709 SDValue N1 = Value.getOperand(1); 16710 unsigned BitWidth = N1.getValueSizeInBits(); 16711 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 16712 if (Opc == ISD::AND) 16713 Imm ^= APInt::getAllOnesValue(BitWidth); 16714 if (Imm == 0 || Imm.isAllOnesValue()) 16715 return SDValue(); 16716 unsigned ShAmt = Imm.countTrailingZeros(); 16717 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 16718 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 16719 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 16720 // The narrowing should be profitable, the load/store operation should be 16721 // legal (or custom) and the store size should be equal to the NewVT width. 16722 while (NewBW < BitWidth && 16723 (NewVT.getStoreSizeInBits() != NewBW || 16724 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 16725 !TLI.isNarrowingProfitable(VT, NewVT))) { 16726 NewBW = NextPowerOf2(NewBW); 16727 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 16728 } 16729 if (NewBW >= BitWidth) 16730 return SDValue(); 16731 16732 // If the lsb changed does not start at the type bitwidth boundary, 16733 // start at the previous one. 16734 if (ShAmt % NewBW) 16735 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 16736 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 16737 std::min(BitWidth, ShAmt + NewBW)); 16738 if ((Imm & Mask) == Imm) { 16739 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 16740 if (Opc == ISD::AND) 16741 NewImm ^= APInt::getAllOnesValue(NewBW); 16742 uint64_t PtrOff = ShAmt / 8; 16743 // For big endian targets, we need to adjust the offset to the pointer to 16744 // load the correct bytes. 16745 if (DAG.getDataLayout().isBigEndian()) 16746 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 16747 16748 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); 16749 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 16750 if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy)) 16751 return SDValue(); 16752 16753 SDValue NewPtr = 16754 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); 16755 SDValue NewLD = 16756 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 16757 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 16758 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 16759 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 16760 DAG.getConstant(NewImm, SDLoc(Value), 16761 NewVT)); 16762 SDValue NewST = 16763 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 16764 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 16765 16766 AddToWorklist(NewPtr.getNode()); 16767 AddToWorklist(NewLD.getNode()); 16768 AddToWorklist(NewVal.getNode()); 16769 WorklistRemover DeadNodes(*this); 16770 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 16771 ++OpsNarrowed; 16772 return NewST; 16773 } 16774 } 16775 16776 return SDValue(); 16777 } 16778 16779 /// For a given floating point load / store pair, if the load value isn't used 16780 /// by any other operations, then consider transforming the pair to integer 16781 /// load / store operations if the target deems the transformation profitable. 16782 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 16783 StoreSDNode *ST = cast<StoreSDNode>(N); 16784 SDValue Value = ST->getValue(); 16785 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 16786 Value.hasOneUse()) { 16787 LoadSDNode *LD = cast<LoadSDNode>(Value); 16788 EVT VT = LD->getMemoryVT(); 16789 if (!VT.isFloatingPoint() || 16790 VT != ST->getMemoryVT() || 16791 LD->isNonTemporal() || 16792 ST->isNonTemporal() || 16793 LD->getPointerInfo().getAddrSpace() != 0 || 16794 ST->getPointerInfo().getAddrSpace() != 0) 16795 return SDValue(); 16796 16797 TypeSize VTSize = VT.getSizeInBits(); 16798 16799 // We don't know the size of scalable types at compile time so we cannot 16800 // create an integer of the equivalent size. 16801 if (VTSize.isScalable()) 16802 return SDValue(); 16803 16804 bool FastLD = false, FastST = false; 16805 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); 16806 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 16807 !TLI.isOperationLegal(ISD::STORE, IntVT) || 16808 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 16809 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) || 16810 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 16811 *LD->getMemOperand(), &FastLD) || 16812 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, 16813 *ST->getMemOperand(), &FastST) || 16814 !FastLD || !FastST) 16815 return SDValue(); 16816 16817 SDValue NewLD = 16818 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 16819 LD->getPointerInfo(), LD->getAlign()); 16820 16821 SDValue NewST = 16822 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), 16823 ST->getPointerInfo(), ST->getAlign()); 16824 16825 AddToWorklist(NewLD.getNode()); 16826 AddToWorklist(NewST.getNode()); 16827 WorklistRemover DeadNodes(*this); 16828 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 16829 ++LdStFP2Int; 16830 return NewST; 16831 } 16832 16833 return SDValue(); 16834 } 16835 16836 // This is a helper function for visitMUL to check the profitability 16837 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 16838 // MulNode is the original multiply, AddNode is (add x, c1), 16839 // and ConstNode is c2. 16840 // 16841 // If the (add x, c1) has multiple uses, we could increase 16842 // the number of adds if we make this transformation. 16843 // It would only be worth doing this if we can remove a 16844 // multiply in the process. Check for that here. 16845 // To illustrate: 16846 // (A + c1) * c3 16847 // (A + c2) * c3 16848 // We're checking for cases where we have common "c3 * A" expressions. 16849 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 16850 SDValue &AddNode, 16851 SDValue &ConstNode) { 16852 APInt Val; 16853 16854 // If the add only has one use, and the target thinks the folding is 16855 // profitable or does not lead to worse code, this would be OK to do. 16856 if (AddNode.getNode()->hasOneUse() && 16857 TLI.isMulAddWithConstProfitable(AddNode, ConstNode)) 16858 return true; 16859 16860 // Walk all the users of the constant with which we're multiplying. 16861 for (SDNode *Use : ConstNode->uses()) { 16862 if (Use == MulNode) // This use is the one we're on right now. Skip it. 16863 continue; 16864 16865 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 16866 SDNode *OtherOp; 16867 SDNode *MulVar = AddNode.getOperand(0).getNode(); 16868 16869 // OtherOp is what we're multiplying against the constant. 16870 if (Use->getOperand(0) == ConstNode) 16871 OtherOp = Use->getOperand(1).getNode(); 16872 else 16873 OtherOp = Use->getOperand(0).getNode(); 16874 16875 // Check to see if multiply is with the same operand of our "add". 16876 // 16877 // ConstNode = CONST 16878 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 16879 // ... 16880 // AddNode = (A + c1) <-- MulVar is A. 16881 // = AddNode * ConstNode <-- current visiting instruction. 16882 // 16883 // If we make this transformation, we will have a common 16884 // multiply (ConstNode * A) that we can save. 16885 if (OtherOp == MulVar) 16886 return true; 16887 16888 // Now check to see if a future expansion will give us a common 16889 // multiply. 16890 // 16891 // ConstNode = CONST 16892 // AddNode = (A + c1) 16893 // ... = AddNode * ConstNode <-- current visiting instruction. 16894 // ... 16895 // OtherOp = (A + c2) 16896 // Use = OtherOp * ConstNode <-- visiting Use. 16897 // 16898 // If we make this transformation, we will have a common 16899 // multiply (CONST * A) after we also do the same transformation 16900 // to the "t2" instruction. 16901 if (OtherOp->getOpcode() == ISD::ADD && 16902 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 16903 OtherOp->getOperand(0).getNode() == MulVar) 16904 return true; 16905 } 16906 } 16907 16908 // Didn't find a case where this would be profitable. 16909 return false; 16910 } 16911 16912 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 16913 unsigned NumStores) { 16914 SmallVector<SDValue, 8> Chains; 16915 SmallPtrSet<const SDNode *, 8> Visited; 16916 SDLoc StoreDL(StoreNodes[0].MemNode); 16917 16918 for (unsigned i = 0; i < NumStores; ++i) { 16919 Visited.insert(StoreNodes[i].MemNode); 16920 } 16921 16922 // don't include nodes that are children or repeated nodes. 16923 for (unsigned i = 0; i < NumStores; ++i) { 16924 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 16925 Chains.push_back(StoreNodes[i].MemNode->getChain()); 16926 } 16927 16928 assert(Chains.size() > 0 && "Chain should have generated a chain"); 16929 return DAG.getTokenFactor(StoreDL, Chains); 16930 } 16931 16932 bool DAGCombiner::mergeStoresOfConstantsOrVecElts( 16933 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 16934 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 16935 // Make sure we have something to merge. 16936 if (NumStores < 2) 16937 return false; 16938 16939 assert((!UseTrunc || !UseVector) && 16940 "This optimization cannot emit a vector truncating store"); 16941 16942 // The latest Node in the DAG. 16943 SDLoc DL(StoreNodes[0].MemNode); 16944 16945 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); 16946 unsigned SizeInBits = NumStores * ElementSizeBits; 16947 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16948 16949 EVT StoreTy; 16950 if (UseVector) { 16951 unsigned Elts = NumStores * NumMemElts; 16952 // Get the type for the merged vector store. 16953 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 16954 } else 16955 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 16956 16957 SDValue StoredVal; 16958 if (UseVector) { 16959 if (IsConstantSrc) { 16960 SmallVector<SDValue, 8> BuildVector; 16961 for (unsigned I = 0; I != NumStores; ++I) { 16962 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 16963 SDValue Val = St->getValue(); 16964 // If constant is of the wrong type, convert it now. 16965 if (MemVT != Val.getValueType()) { 16966 Val = peekThroughBitcasts(Val); 16967 // Deal with constants of wrong size. 16968 if (ElementSizeBits != Val.getValueSizeInBits()) { 16969 EVT IntMemVT = 16970 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 16971 if (isa<ConstantFPSDNode>(Val)) { 16972 // Not clear how to truncate FP values. 16973 return false; 16974 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 16975 Val = DAG.getConstant(C->getAPIntValue() 16976 .zextOrTrunc(Val.getValueSizeInBits()) 16977 .zextOrTrunc(ElementSizeBits), 16978 SDLoc(C), IntMemVT); 16979 } 16980 // Make sure correctly size type is the correct type. 16981 Val = DAG.getBitcast(MemVT, Val); 16982 } 16983 BuildVector.push_back(Val); 16984 } 16985 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 16986 : ISD::BUILD_VECTOR, 16987 DL, StoreTy, BuildVector); 16988 } else { 16989 SmallVector<SDValue, 8> Ops; 16990 for (unsigned i = 0; i < NumStores; ++i) { 16991 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 16992 SDValue Val = peekThroughBitcasts(St->getValue()); 16993 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 16994 // type MemVT. If the underlying value is not the correct 16995 // type, but it is an extraction of an appropriate vector we 16996 // can recast Val to be of the correct type. This may require 16997 // converting between EXTRACT_VECTOR_ELT and 16998 // EXTRACT_SUBVECTOR. 16999 if ((MemVT != Val.getValueType()) && 17000 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 17001 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 17002 EVT MemVTScalarTy = MemVT.getScalarType(); 17003 // We may need to add a bitcast here to get types to line up. 17004 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 17005 Val = DAG.getBitcast(MemVT, Val); 17006 } else { 17007 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 17008 : ISD::EXTRACT_VECTOR_ELT; 17009 SDValue Vec = Val.getOperand(0); 17010 SDValue Idx = Val.getOperand(1); 17011 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 17012 } 17013 } 17014 Ops.push_back(Val); 17015 } 17016 17017 // Build the extracted vector elements back into a vector. 17018 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 17019 : ISD::BUILD_VECTOR, 17020 DL, StoreTy, Ops); 17021 } 17022 } else { 17023 // We should always use a vector store when merging extracted vector 17024 // elements, so this path implies a store of constants. 17025 assert(IsConstantSrc && "Merged vector elements should use vector store"); 17026 17027 APInt StoreInt(SizeInBits, 0); 17028 17029 // Construct a single integer constant which is made of the smaller 17030 // constant inputs. 17031 bool IsLE = DAG.getDataLayout().isLittleEndian(); 17032 for (unsigned i = 0; i < NumStores; ++i) { 17033 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 17034 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 17035 17036 SDValue Val = St->getValue(); 17037 Val = peekThroughBitcasts(Val); 17038 StoreInt <<= ElementSizeBits; 17039 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 17040 StoreInt |= C->getAPIntValue() 17041 .zextOrTrunc(ElementSizeBits) 17042 .zextOrTrunc(SizeInBits); 17043 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 17044 StoreInt |= C->getValueAPF() 17045 .bitcastToAPInt() 17046 .zextOrTrunc(ElementSizeBits) 17047 .zextOrTrunc(SizeInBits); 17048 // If fp truncation is necessary give up for now. 17049 if (MemVT.getSizeInBits() != ElementSizeBits) 17050 return false; 17051 } else { 17052 llvm_unreachable("Invalid constant element type"); 17053 } 17054 } 17055 17056 // Create the new Load and Store operations. 17057 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 17058 } 17059 17060 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17061 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 17062 17063 // make sure we use trunc store if it's necessary to be legal. 17064 SDValue NewStore; 17065 if (!UseTrunc) { 17066 NewStore = 17067 DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 17068 FirstInChain->getPointerInfo(), FirstInChain->getAlign()); 17069 } else { // Must be realized as a trunc store 17070 EVT LegalizedStoredValTy = 17071 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 17072 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 17073 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 17074 SDValue ExtendedStoreVal = 17075 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 17076 LegalizedStoredValTy); 17077 NewStore = DAG.getTruncStore( 17078 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 17079 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 17080 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 17081 } 17082 17083 // Replace all merged stores with the new store. 17084 for (unsigned i = 0; i < NumStores; ++i) 17085 CombineTo(StoreNodes[i].MemNode, NewStore); 17086 17087 AddToWorklist(NewChain.getNode()); 17088 return true; 17089 } 17090 17091 void DAGCombiner::getStoreMergeCandidates( 17092 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 17093 SDNode *&RootNode) { 17094 // This holds the base pointer, index, and the offset in bytes from the base 17095 // pointer. We must have a base and an offset. Do not handle stores to undef 17096 // base pointers. 17097 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 17098 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) 17099 return; 17100 17101 SDValue Val = peekThroughBitcasts(St->getValue()); 17102 StoreSource StoreSrc = getStoreSource(Val); 17103 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); 17104 17105 // Match on loadbaseptr if relevant. 17106 EVT MemVT = St->getMemoryVT(); 17107 BaseIndexOffset LBasePtr; 17108 EVT LoadVT; 17109 if (StoreSrc == StoreSource::Load) { 17110 auto *Ld = cast<LoadSDNode>(Val); 17111 LBasePtr = BaseIndexOffset::match(Ld, DAG); 17112 LoadVT = Ld->getMemoryVT(); 17113 // Load and store should be the same type. 17114 if (MemVT != LoadVT) 17115 return; 17116 // Loads must only have one use. 17117 if (!Ld->hasNUsesOfValue(1, 0)) 17118 return; 17119 // The memory operands must not be volatile/indexed/atomic. 17120 // TODO: May be able to relax for unordered atomics (see D66309) 17121 if (!Ld->isSimple() || Ld->isIndexed()) 17122 return; 17123 } 17124 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 17125 int64_t &Offset) -> bool { 17126 // The memory operands must not be volatile/indexed/atomic. 17127 // TODO: May be able to relax for unordered atomics (see D66309) 17128 if (!Other->isSimple() || Other->isIndexed()) 17129 return false; 17130 // Don't mix temporal stores with non-temporal stores. 17131 if (St->isNonTemporal() != Other->isNonTemporal()) 17132 return false; 17133 SDValue OtherBC = peekThroughBitcasts(Other->getValue()); 17134 // Allow merging constants of different types as integers. 17135 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 17136 : Other->getMemoryVT() != MemVT; 17137 switch (StoreSrc) { 17138 case StoreSource::Load: { 17139 if (NoTypeMatch) 17140 return false; 17141 // The Load's Base Ptr must also match. 17142 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); 17143 if (!OtherLd) 17144 return false; 17145 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); 17146 if (LoadVT != OtherLd->getMemoryVT()) 17147 return false; 17148 // Loads must only have one use. 17149 if (!OtherLd->hasNUsesOfValue(1, 0)) 17150 return false; 17151 // The memory operands must not be volatile/indexed/atomic. 17152 // TODO: May be able to relax for unordered atomics (see D66309) 17153 if (!OtherLd->isSimple() || OtherLd->isIndexed()) 17154 return false; 17155 // Don't mix temporal loads with non-temporal loads. 17156 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) 17157 return false; 17158 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 17159 return false; 17160 break; 17161 } 17162 case StoreSource::Constant: 17163 if (NoTypeMatch) 17164 return false; 17165 if (!isIntOrFPConstant(OtherBC)) 17166 return false; 17167 break; 17168 case StoreSource::Extract: 17169 // Do not merge truncated stores here. 17170 if (Other->isTruncatingStore()) 17171 return false; 17172 if (!MemVT.bitsEq(OtherBC.getValueType())) 17173 return false; 17174 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 17175 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) 17176 return false; 17177 break; 17178 default: 17179 llvm_unreachable("Unhandled store source for merging"); 17180 } 17181 Ptr = BaseIndexOffset::match(Other, DAG); 17182 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 17183 }; 17184 17185 // Check if the pair of StoreNode and the RootNode already bail out many 17186 // times which is over the limit in dependence check. 17187 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, 17188 SDNode *RootNode) -> bool { 17189 auto RootCount = StoreRootCountMap.find(StoreNode); 17190 return RootCount != StoreRootCountMap.end() && 17191 RootCount->second.first == RootNode && 17192 RootCount->second.second > StoreMergeDependenceLimit; 17193 }; 17194 17195 auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { 17196 // This must be a chain use. 17197 if (UseIter.getOperandNo() != 0) 17198 return; 17199 if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) { 17200 BaseIndexOffset Ptr; 17201 int64_t PtrDiff; 17202 if (CandidateMatch(OtherStore, Ptr, PtrDiff) && 17203 !OverLimitInDependenceCheck(OtherStore, RootNode)) 17204 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); 17205 } 17206 }; 17207 17208 // We looking for a root node which is an ancestor to all mergable 17209 // stores. We search up through a load, to our root and then down 17210 // through all children. For instance we will find Store{1,2,3} if 17211 // St is Store1, Store2. or Store3 where the root is not a load 17212 // which always true for nonvolatile ops. TODO: Expand 17213 // the search to find all valid candidates through multiple layers of loads. 17214 // 17215 // Root 17216 // |-------|-------| 17217 // Load Load Store3 17218 // | | 17219 // Store1 Store2 17220 // 17221 // FIXME: We should be able to climb and 17222 // descend TokenFactors to find candidates as well. 17223 17224 RootNode = St->getChain().getNode(); 17225 17226 unsigned NumNodesExplored = 0; 17227 const unsigned MaxSearchNodes = 1024; 17228 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 17229 RootNode = Ldn->getChain().getNode(); 17230 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17231 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { 17232 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain 17233 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 17234 TryToAddCandidate(I2); 17235 } 17236 } 17237 } else { 17238 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 17239 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) 17240 TryToAddCandidate(I); 17241 } 17242 } 17243 17244 // We need to check that merging these stores does not cause a loop in 17245 // the DAG. Any store candidate may depend on another candidate 17246 // indirectly through its operand (we already consider dependencies 17247 // through the chain). Check in parallel by searching up from 17248 // non-chain operands of candidates. 17249 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 17250 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 17251 SDNode *RootNode) { 17252 // FIXME: We should be able to truncate a full search of 17253 // predecessors by doing a BFS and keeping tabs the originating 17254 // stores from which worklist nodes come from in a similar way to 17255 // TokenFactor simplfication. 17256 17257 SmallPtrSet<const SDNode *, 32> Visited; 17258 SmallVector<const SDNode *, 8> Worklist; 17259 17260 // RootNode is a predecessor to all candidates so we need not search 17261 // past it. Add RootNode (peeking through TokenFactors). Do not count 17262 // these towards size check. 17263 17264 Worklist.push_back(RootNode); 17265 while (!Worklist.empty()) { 17266 auto N = Worklist.pop_back_val(); 17267 if (!Visited.insert(N).second) 17268 continue; // Already present in Visited. 17269 if (N->getOpcode() == ISD::TokenFactor) { 17270 for (SDValue Op : N->ops()) 17271 Worklist.push_back(Op.getNode()); 17272 } 17273 } 17274 17275 // Don't count pruning nodes towards max. 17276 unsigned int Max = 1024 + Visited.size(); 17277 // Search Ops of store candidates. 17278 for (unsigned i = 0; i < NumStores; ++i) { 17279 SDNode *N = StoreNodes[i].MemNode; 17280 // Of the 4 Store Operands: 17281 // * Chain (Op 0) -> We have already considered these 17282 // in candidate selection and can be 17283 // safely ignored 17284 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 17285 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 17286 // but aren't necessarily fromt the same base node, so 17287 // cycles possible (e.g. via indexed store). 17288 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 17289 // non-indexed stores). Not constant on all targets (e.g. ARM) 17290 // and so can participate in a cycle. 17291 for (unsigned j = 1; j < N->getNumOperands(); ++j) 17292 Worklist.push_back(N->getOperand(j).getNode()); 17293 } 17294 // Search through DAG. We can stop early if we find a store node. 17295 for (unsigned i = 0; i < NumStores; ++i) 17296 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 17297 Max)) { 17298 // If the searching bail out, record the StoreNode and RootNode in the 17299 // StoreRootCountMap. If we have seen the pair many times over a limit, 17300 // we won't add the StoreNode into StoreNodes set again. 17301 if (Visited.size() >= Max) { 17302 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; 17303 if (RootCount.first == RootNode) 17304 RootCount.second++; 17305 else 17306 RootCount = {RootNode, 1}; 17307 } 17308 return false; 17309 } 17310 return true; 17311 } 17312 17313 unsigned 17314 DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 17315 int64_t ElementSizeBytes) const { 17316 while (true) { 17317 // Find a store past the width of the first store. 17318 size_t StartIdx = 0; 17319 while ((StartIdx + 1 < StoreNodes.size()) && 17320 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 17321 StoreNodes[StartIdx + 1].OffsetFromBase) 17322 ++StartIdx; 17323 17324 // Bail if we don't have enough candidates to merge. 17325 if (StartIdx + 1 >= StoreNodes.size()) 17326 return 0; 17327 17328 // Trim stores that overlapped with the first store. 17329 if (StartIdx) 17330 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 17331 17332 // Scan the memory operations on the chain and find the first 17333 // non-consecutive store memory address. 17334 unsigned NumConsecutiveStores = 1; 17335 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 17336 // Check that the addresses are consecutive starting from the second 17337 // element in the list of stores. 17338 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 17339 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 17340 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17341 break; 17342 NumConsecutiveStores = i + 1; 17343 } 17344 if (NumConsecutiveStores > 1) 17345 return NumConsecutiveStores; 17346 17347 // There are no consecutive stores at the start of the list. 17348 // Remove the first store and try again. 17349 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); 17350 } 17351 } 17352 17353 bool DAGCombiner::tryStoreMergeOfConstants( 17354 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 17355 EVT MemVT, SDNode *RootNode, bool AllowVectors) { 17356 LLVMContext &Context = *DAG.getContext(); 17357 const DataLayout &DL = DAG.getDataLayout(); 17358 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17359 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17360 bool MadeChange = false; 17361 17362 // Store the constants into memory as one consecutive store. 17363 while (NumConsecutiveStores >= 2) { 17364 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17365 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17366 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 17367 unsigned LastLegalType = 1; 17368 unsigned LastLegalVectorType = 1; 17369 bool LastIntegerTrunc = false; 17370 bool NonZero = false; 17371 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 17372 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17373 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 17374 SDValue StoredVal = ST->getValue(); 17375 bool IsElementZero = false; 17376 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 17377 IsElementZero = C->isNullValue(); 17378 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 17379 IsElementZero = C->getConstantFPValue()->isNullValue(); 17380 if (IsElementZero) { 17381 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 17382 FirstZeroAfterNonZero = i; 17383 } 17384 NonZero |= !IsElementZero; 17385 17386 // Find a legal type for the constant store. 17387 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17388 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17389 bool IsFast = false; 17390 17391 // Break early when size is too large to be legal. 17392 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17393 break; 17394 17395 if (TLI.isTypeLegal(StoreTy) && 17396 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17397 DAG.getMachineFunction()) && 17398 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17399 *FirstInChain->getMemOperand(), &IsFast) && 17400 IsFast) { 17401 LastIntegerTrunc = false; 17402 LastLegalType = i + 1; 17403 // Or check whether a truncstore is legal. 17404 } else if (TLI.getTypeAction(Context, StoreTy) == 17405 TargetLowering::TypePromoteInteger) { 17406 EVT LegalizedStoredValTy = 17407 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 17408 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17409 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 17410 DAG.getMachineFunction()) && 17411 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17412 *FirstInChain->getMemOperand(), &IsFast) && 17413 IsFast) { 17414 LastIntegerTrunc = true; 17415 LastLegalType = i + 1; 17416 } 17417 } 17418 17419 // We only use vectors if the constant is known to be zero or the 17420 // target allows it and the function is not marked with the 17421 // noimplicitfloat attribute. 17422 if ((!NonZero || 17423 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 17424 AllowVectors) { 17425 // Find a legal type for the vector store. 17426 unsigned Elts = (i + 1) * NumMemElts; 17427 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17428 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 17429 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 17430 TLI.allowsMemoryAccess(Context, DL, Ty, 17431 *FirstInChain->getMemOperand(), &IsFast) && 17432 IsFast) 17433 LastLegalVectorType = i + 1; 17434 } 17435 } 17436 17437 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; 17438 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 17439 bool UseTrunc = LastIntegerTrunc && !UseVector; 17440 17441 // Check if we found a legal integer type that creates a meaningful 17442 // merge. 17443 if (NumElem < 2) { 17444 // We know that candidate stores are in order and of correct 17445 // shape. While there is no mergeable sequence from the 17446 // beginning one may start later in the sequence. The only 17447 // reason a merge of size N could have failed where another of 17448 // the same size would not have, is if the alignment has 17449 // improved or we've dropped a non-zero value. Drop as many 17450 // candidates as we can here. 17451 unsigned NumSkip = 1; 17452 while ((NumSkip < NumConsecutiveStores) && 17453 (NumSkip < FirstZeroAfterNonZero) && 17454 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17455 NumSkip++; 17456 17457 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17458 NumConsecutiveStores -= NumSkip; 17459 continue; 17460 } 17461 17462 // Check that we can merge these candidates without causing a cycle. 17463 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 17464 RootNode)) { 17465 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17466 NumConsecutiveStores -= NumElem; 17467 continue; 17468 } 17469 17470 MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 17471 /*IsConstantSrc*/ true, 17472 UseVector, UseTrunc); 17473 17474 // Remove merged stores for next iteration. 17475 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17476 NumConsecutiveStores -= NumElem; 17477 } 17478 return MadeChange; 17479 } 17480 17481 bool DAGCombiner::tryStoreMergeOfExtracts( 17482 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 17483 EVT MemVT, SDNode *RootNode) { 17484 LLVMContext &Context = *DAG.getContext(); 17485 const DataLayout &DL = DAG.getDataLayout(); 17486 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17487 bool MadeChange = false; 17488 17489 // Loop on Consecutive Stores on success. 17490 while (NumConsecutiveStores >= 2) { 17491 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17492 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17493 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 17494 unsigned NumStoresToMerge = 1; 17495 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17496 // Find a legal type for the vector store. 17497 unsigned Elts = (i + 1) * NumMemElts; 17498 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 17499 bool IsFast = false; 17500 17501 // Break early when size is too large to be legal. 17502 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 17503 break; 17504 17505 if (TLI.isTypeLegal(Ty) && 17506 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && 17507 TLI.allowsMemoryAccess(Context, DL, Ty, 17508 *FirstInChain->getMemOperand(), &IsFast) && 17509 IsFast) 17510 NumStoresToMerge = i + 1; 17511 } 17512 17513 // Check if we found a legal integer type creating a meaningful 17514 // merge. 17515 if (NumStoresToMerge < 2) { 17516 // We know that candidate stores are in order and of correct 17517 // shape. While there is no mergeable sequence from the 17518 // beginning one may start later in the sequence. The only 17519 // reason a merge of size N could have failed where another of 17520 // the same size would not have, is if the alignment has 17521 // improved. Drop as many candidates as we can here. 17522 unsigned NumSkip = 1; 17523 while ((NumSkip < NumConsecutiveStores) && 17524 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 17525 NumSkip++; 17526 17527 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17528 NumConsecutiveStores -= NumSkip; 17529 continue; 17530 } 17531 17532 // Check that we can merge these candidates without causing a cycle. 17533 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, 17534 RootNode)) { 17535 StoreNodes.erase(StoreNodes.begin(), 17536 StoreNodes.begin() + NumStoresToMerge); 17537 NumConsecutiveStores -= NumStoresToMerge; 17538 continue; 17539 } 17540 17541 MadeChange |= mergeStoresOfConstantsOrVecElts( 17542 StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false, 17543 /*UseVector*/ true, /*UseTrunc*/ false); 17544 17545 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); 17546 NumConsecutiveStores -= NumStoresToMerge; 17547 } 17548 return MadeChange; 17549 } 17550 17551 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 17552 unsigned NumConsecutiveStores, EVT MemVT, 17553 SDNode *RootNode, bool AllowVectors, 17554 bool IsNonTemporalStore, 17555 bool IsNonTemporalLoad) { 17556 LLVMContext &Context = *DAG.getContext(); 17557 const DataLayout &DL = DAG.getDataLayout(); 17558 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17559 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17560 bool MadeChange = false; 17561 17562 // Look for load nodes which are used by the stored values. 17563 SmallVector<MemOpLink, 8> LoadNodes; 17564 17565 // Find acceptable loads. Loads need to have the same chain (token factor), 17566 // must not be zext, volatile, indexed, and they must be consecutive. 17567 BaseIndexOffset LdBasePtr; 17568 17569 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17570 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17571 SDValue Val = peekThroughBitcasts(St->getValue()); 17572 LoadSDNode *Ld = cast<LoadSDNode>(Val); 17573 17574 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 17575 // If this is not the first ptr that we check. 17576 int64_t LdOffset = 0; 17577 if (LdBasePtr.getBase().getNode()) { 17578 // The base ptr must be the same. 17579 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 17580 break; 17581 } else { 17582 // Check that all other base pointers are the same as this one. 17583 LdBasePtr = LdPtr; 17584 } 17585 17586 // We found a potential memory operand to merge. 17587 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 17588 } 17589 17590 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 17591 Align RequiredAlignment; 17592 bool NeedRotate = false; 17593 if (LoadNodes.size() == 2) { 17594 // If we have load/store pair instructions and we only have two values, 17595 // don't bother merging. 17596 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && 17597 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { 17598 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 17599 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 17600 break; 17601 } 17602 // If the loads are reversed, see if we can rotate the halves into place. 17603 int64_t Offset0 = LoadNodes[0].OffsetFromBase; 17604 int64_t Offset1 = LoadNodes[1].OffsetFromBase; 17605 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); 17606 if (Offset0 - Offset1 == ElementSizeBytes && 17607 (hasOperation(ISD::ROTL, PairVT) || 17608 hasOperation(ISD::ROTR, PairVT))) { 17609 std::swap(LoadNodes[0], LoadNodes[1]); 17610 NeedRotate = true; 17611 } 17612 } 17613 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17614 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17615 Align FirstStoreAlign = FirstInChain->getAlign(); 17616 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 17617 17618 // Scan the memory operations on the chain and find the first 17619 // non-consecutive load memory address. These variables hold the index in 17620 // the store node array. 17621 17622 unsigned LastConsecutiveLoad = 1; 17623 17624 // This variable refers to the size and not index in the array. 17625 unsigned LastLegalVectorType = 1; 17626 unsigned LastLegalIntegerType = 1; 17627 bool isDereferenceable = true; 17628 bool DoIntegerTruncate = false; 17629 int64_t StartAddress = LoadNodes[0].OffsetFromBase; 17630 SDValue LoadChain = FirstLoad->getChain(); 17631 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 17632 // All loads must share the same chain. 17633 if (LoadNodes[i].MemNode->getChain() != LoadChain) 17634 break; 17635 17636 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 17637 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17638 break; 17639 LastConsecutiveLoad = i; 17640 17641 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 17642 isDereferenceable = false; 17643 17644 // Find a legal type for the vector store. 17645 unsigned Elts = (i + 1) * NumMemElts; 17646 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17647 17648 // Break early when size is too large to be legal. 17649 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17650 break; 17651 17652 bool IsFastSt = false; 17653 bool IsFastLd = false; 17654 if (TLI.isTypeLegal(StoreTy) && 17655 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17656 DAG.getMachineFunction()) && 17657 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17658 *FirstInChain->getMemOperand(), &IsFastSt) && 17659 IsFastSt && 17660 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17661 *FirstLoad->getMemOperand(), &IsFastLd) && 17662 IsFastLd) { 17663 LastLegalVectorType = i + 1; 17664 } 17665 17666 // Find a legal type for the integer store. 17667 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17668 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17669 if (TLI.isTypeLegal(StoreTy) && 17670 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, 17671 DAG.getMachineFunction()) && 17672 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17673 *FirstInChain->getMemOperand(), &IsFastSt) && 17674 IsFastSt && 17675 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17676 *FirstLoad->getMemOperand(), &IsFastLd) && 17677 IsFastLd) { 17678 LastLegalIntegerType = i + 1; 17679 DoIntegerTruncate = false; 17680 // Or check whether a truncstore and extload is legal. 17681 } else if (TLI.getTypeAction(Context, StoreTy) == 17682 TargetLowering::TypePromoteInteger) { 17683 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 17684 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17685 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, 17686 DAG.getMachineFunction()) && 17687 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && 17688 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && 17689 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 17690 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17691 *FirstInChain->getMemOperand(), &IsFastSt) && 17692 IsFastSt && 17693 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17694 *FirstLoad->getMemOperand(), &IsFastLd) && 17695 IsFastLd) { 17696 LastLegalIntegerType = i + 1; 17697 DoIntegerTruncate = true; 17698 } 17699 } 17700 } 17701 17702 // Only use vector types if the vector type is larger than the integer 17703 // type. If they are the same, use integers. 17704 bool UseVectorTy = 17705 LastLegalVectorType > LastLegalIntegerType && AllowVectors; 17706 unsigned LastLegalType = 17707 std::max(LastLegalVectorType, LastLegalIntegerType); 17708 17709 // We add +1 here because the LastXXX variables refer to location while 17710 // the NumElem refers to array/index size. 17711 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 17712 NumElem = std::min(LastLegalType, NumElem); 17713 Align FirstLoadAlign = FirstLoad->getAlign(); 17714 17715 if (NumElem < 2) { 17716 // We know that candidate stores are in order and of correct 17717 // shape. While there is no mergeable sequence from the 17718 // beginning one may start later in the sequence. The only 17719 // reason a merge of size N could have failed where another of 17720 // the same size would not have is if the alignment or either 17721 // the load or store has improved. Drop as many candidates as we 17722 // can here. 17723 unsigned NumSkip = 1; 17724 while ((NumSkip < LoadNodes.size()) && 17725 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && 17726 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) 17727 NumSkip++; 17728 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17729 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 17730 NumConsecutiveStores -= NumSkip; 17731 continue; 17732 } 17733 17734 // Check that we can merge these candidates without causing a cycle. 17735 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 17736 RootNode)) { 17737 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17738 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 17739 NumConsecutiveStores -= NumElem; 17740 continue; 17741 } 17742 17743 // Find if it is better to use vectors or integers to load and store 17744 // to memory. 17745 EVT JointMemOpVT; 17746 if (UseVectorTy) { 17747 // Find a legal type for the vector store. 17748 unsigned Elts = NumElem * NumMemElts; 17749 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17750 } else { 17751 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 17752 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 17753 } 17754 17755 SDLoc LoadDL(LoadNodes[0].MemNode); 17756 SDLoc StoreDL(StoreNodes[0].MemNode); 17757 17758 // The merged loads are required to have the same incoming chain, so 17759 // using the first's chain is acceptable. 17760 17761 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 17762 AddToWorklist(NewStoreChain.getNode()); 17763 17764 MachineMemOperand::Flags LdMMOFlags = 17765 isDereferenceable ? MachineMemOperand::MODereferenceable 17766 : MachineMemOperand::MONone; 17767 if (IsNonTemporalLoad) 17768 LdMMOFlags |= MachineMemOperand::MONonTemporal; 17769 17770 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore 17771 ? MachineMemOperand::MONonTemporal 17772 : MachineMemOperand::MONone; 17773 17774 SDValue NewLoad, NewStore; 17775 if (UseVectorTy || !DoIntegerTruncate) { 17776 NewLoad = DAG.getLoad( 17777 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 17778 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); 17779 SDValue StoreOp = NewLoad; 17780 if (NeedRotate) { 17781 unsigned LoadWidth = ElementSizeBytes * 8 * 2; 17782 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && 17783 "Unexpected type for rotate-able load pair"); 17784 SDValue RotAmt = 17785 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); 17786 // Target can convert to the identical ROTR if it does not have ROTL. 17787 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); 17788 } 17789 NewStore = DAG.getStore( 17790 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), 17791 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); 17792 } else { // This must be the truncstore/extload case 17793 EVT ExtendedTy = 17794 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 17795 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 17796 FirstLoad->getChain(), FirstLoad->getBasePtr(), 17797 FirstLoad->getPointerInfo(), JointMemOpVT, 17798 FirstLoadAlign, LdMMOFlags); 17799 NewStore = DAG.getTruncStore( 17800 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 17801 FirstInChain->getPointerInfo(), JointMemOpVT, 17802 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 17803 } 17804 17805 // Transfer chain users from old loads to the new load. 17806 for (unsigned i = 0; i < NumElem; ++i) { 17807 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 17808 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 17809 SDValue(NewLoad.getNode(), 1)); 17810 } 17811 17812 // Replace all stores with the new store. Recursively remove corresponding 17813 // values if they are no longer used. 17814 for (unsigned i = 0; i < NumElem; ++i) { 17815 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 17816 CombineTo(StoreNodes[i].MemNode, NewStore); 17817 if (Val.getNode()->use_empty()) 17818 recursivelyDeleteUnusedNodes(Val.getNode()); 17819 } 17820 17821 MadeChange = true; 17822 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17823 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 17824 NumConsecutiveStores -= NumElem; 17825 } 17826 return MadeChange; 17827 } 17828 17829 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { 17830 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) 17831 return false; 17832 17833 // TODO: Extend this function to merge stores of scalable vectors. 17834 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> 17835 // store since we know <vscale x 16 x i8> is exactly twice as large as 17836 // <vscale x 8 x i8>). Until then, bail out for scalable vectors. 17837 EVT MemVT = St->getMemoryVT(); 17838 if (MemVT.isScalableVector()) 17839 return false; 17840 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 17841 return false; 17842 17843 // This function cannot currently deal with non-byte-sized memory sizes. 17844 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17845 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) 17846 return false; 17847 17848 // Do not bother looking at stored values that are not constants, loads, or 17849 // extracted vector elements. 17850 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 17851 const StoreSource StoreSrc = getStoreSource(StoredVal); 17852 if (StoreSrc == StoreSource::Unknown) 17853 return false; 17854 17855 SmallVector<MemOpLink, 8> StoreNodes; 17856 SDNode *RootNode; 17857 // Find potential store merge candidates by searching through chain sub-DAG 17858 getStoreMergeCandidates(St, StoreNodes, RootNode); 17859 17860 // Check if there is anything to merge. 17861 if (StoreNodes.size() < 2) 17862 return false; 17863 17864 // Sort the memory operands according to their distance from the 17865 // base pointer. 17866 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 17867 return LHS.OffsetFromBase < RHS.OffsetFromBase; 17868 }); 17869 17870 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( 17871 Attribute::NoImplicitFloat); 17872 bool IsNonTemporalStore = St->isNonTemporal(); 17873 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && 17874 cast<LoadSDNode>(StoredVal)->isNonTemporal(); 17875 17876 // Store Merge attempts to merge the lowest stores. This generally 17877 // works out as if successful, as the remaining stores are checked 17878 // after the first collection of stores is merged. However, in the 17879 // case that a non-mergeable store is found first, e.g., {p[-2], 17880 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 17881 // mergeable cases. To prevent this, we prune such stores from the 17882 // front of StoreNodes here. 17883 bool MadeChange = false; 17884 while (StoreNodes.size() > 1) { 17885 unsigned NumConsecutiveStores = 17886 getConsecutiveStores(StoreNodes, ElementSizeBytes); 17887 // There are no more stores in the list to examine. 17888 if (NumConsecutiveStores == 0) 17889 return MadeChange; 17890 17891 // We have at least 2 consecutive stores. Try to merge them. 17892 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); 17893 switch (StoreSrc) { 17894 case StoreSource::Constant: 17895 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, 17896 MemVT, RootNode, AllowVectors); 17897 break; 17898 17899 case StoreSource::Extract: 17900 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, 17901 MemVT, RootNode); 17902 break; 17903 17904 case StoreSource::Load: 17905 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, 17906 MemVT, RootNode, AllowVectors, 17907 IsNonTemporalStore, IsNonTemporalLoad); 17908 break; 17909 17910 default: 17911 llvm_unreachable("Unhandled store source type"); 17912 } 17913 } 17914 return MadeChange; 17915 } 17916 17917 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 17918 SDLoc SL(ST); 17919 SDValue ReplStore; 17920 17921 // Replace the chain to avoid dependency. 17922 if (ST->isTruncatingStore()) { 17923 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 17924 ST->getBasePtr(), ST->getMemoryVT(), 17925 ST->getMemOperand()); 17926 } else { 17927 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 17928 ST->getMemOperand()); 17929 } 17930 17931 // Create token to keep both nodes around. 17932 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 17933 MVT::Other, ST->getChain(), ReplStore); 17934 17935 // Make sure the new and old chains are cleaned up. 17936 AddToWorklist(Token.getNode()); 17937 17938 // Don't add users to work list. 17939 return CombineTo(ST, Token, false); 17940 } 17941 17942 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 17943 SDValue Value = ST->getValue(); 17944 if (Value.getOpcode() == ISD::TargetConstantFP) 17945 return SDValue(); 17946 17947 if (!ISD::isNormalStore(ST)) 17948 return SDValue(); 17949 17950 SDLoc DL(ST); 17951 17952 SDValue Chain = ST->getChain(); 17953 SDValue Ptr = ST->getBasePtr(); 17954 17955 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 17956 17957 // NOTE: If the original store is volatile, this transform must not increase 17958 // the number of stores. For example, on x86-32 an f64 can be stored in one 17959 // processor operation but an i64 (which is not legal) requires two. So the 17960 // transform should not be done in this case. 17961 17962 SDValue Tmp; 17963 switch (CFP->getSimpleValueType(0).SimpleTy) { 17964 default: 17965 llvm_unreachable("Unknown FP type"); 17966 case MVT::f16: // We don't do this for these yet. 17967 case MVT::f80: 17968 case MVT::f128: 17969 case MVT::ppcf128: 17970 return SDValue(); 17971 case MVT::f32: 17972 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || 17973 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 17974 ; 17975 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 17976 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 17977 MVT::i32); 17978 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 17979 } 17980 17981 return SDValue(); 17982 case MVT::f64: 17983 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 17984 ST->isSimple()) || 17985 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 17986 ; 17987 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 17988 getZExtValue(), SDLoc(CFP), MVT::i64); 17989 return DAG.getStore(Chain, DL, Tmp, 17990 Ptr, ST->getMemOperand()); 17991 } 17992 17993 if (ST->isSimple() && 17994 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 17995 // Many FP stores are not made apparent until after legalize, e.g. for 17996 // argument passing. Since this is so common, custom legalize the 17997 // 64-bit integer store into two 32-bit stores. 17998 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 17999 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 18000 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 18001 if (DAG.getDataLayout().isBigEndian()) 18002 std::swap(Lo, Hi); 18003 18004 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18005 AAMDNodes AAInfo = ST->getAAInfo(); 18006 18007 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18008 ST->getOriginalAlign(), MMOFlags, AAInfo); 18009 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); 18010 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 18011 ST->getPointerInfo().getWithOffset(4), 18012 ST->getOriginalAlign(), MMOFlags, AAInfo); 18013 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 18014 St0, St1); 18015 } 18016 18017 return SDValue(); 18018 } 18019 } 18020 18021 SDValue DAGCombiner::visitSTORE(SDNode *N) { 18022 StoreSDNode *ST = cast<StoreSDNode>(N); 18023 SDValue Chain = ST->getChain(); 18024 SDValue Value = ST->getValue(); 18025 SDValue Ptr = ST->getBasePtr(); 18026 18027 // If this is a store of a bit convert, store the input value if the 18028 // resultant store does not need a higher alignment than the original. 18029 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 18030 ST->isUnindexed()) { 18031 EVT SVT = Value.getOperand(0).getValueType(); 18032 // If the store is volatile, we only want to change the store type if the 18033 // resulting store is legal. Otherwise we might increase the number of 18034 // memory accesses. We don't care if the original type was legal or not 18035 // as we assume software couldn't rely on the number of accesses of an 18036 // illegal type. 18037 // TODO: May be able to relax for unordered atomics (see D66309) 18038 if (((!LegalOperations && ST->isSimple()) || 18039 TLI.isOperationLegal(ISD::STORE, SVT)) && 18040 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, 18041 DAG, *ST->getMemOperand())) { 18042 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 18043 ST->getMemOperand()); 18044 } 18045 } 18046 18047 // Turn 'store undef, Ptr' -> nothing. 18048 if (Value.isUndef() && ST->isUnindexed()) 18049 return Chain; 18050 18051 // Try to infer better alignment information than the store already has. 18052 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { 18053 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 18054 if (*Alignment > ST->getAlign() && 18055 isAligned(*Alignment, ST->getSrcValueOffset())) { 18056 SDValue NewStore = 18057 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 18058 ST->getMemoryVT(), *Alignment, 18059 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 18060 // NewStore will always be N as we are only refining the alignment 18061 assert(NewStore.getNode() == N); 18062 (void)NewStore; 18063 } 18064 } 18065 } 18066 18067 // Try transforming a pair floating point load / store ops to integer 18068 // load / store ops. 18069 if (SDValue NewST = TransformFPLoadStorePair(N)) 18070 return NewST; 18071 18072 // Try transforming several stores into STORE (BSWAP). 18073 if (SDValue Store = mergeTruncStores(ST)) 18074 return Store; 18075 18076 if (ST->isUnindexed()) { 18077 // Walk up chain skipping non-aliasing memory nodes, on this store and any 18078 // adjacent stores. 18079 if (findBetterNeighborChains(ST)) { 18080 // replaceStoreChain uses CombineTo, which handled all of the worklist 18081 // manipulation. Return the original node to not do anything else. 18082 return SDValue(ST, 0); 18083 } 18084 Chain = ST->getChain(); 18085 } 18086 18087 // FIXME: is there such a thing as a truncating indexed store? 18088 if (ST->isTruncatingStore() && ST->isUnindexed() && 18089 Value.getValueType().isInteger() && 18090 (!isa<ConstantSDNode>(Value) || 18091 !cast<ConstantSDNode>(Value)->isOpaque())) { 18092 APInt TruncDemandedBits = 18093 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 18094 ST->getMemoryVT().getScalarSizeInBits()); 18095 18096 // See if we can simplify the input to this truncstore with knowledge that 18097 // only the low bits are being used. For example: 18098 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 18099 AddToWorklist(Value.getNode()); 18100 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) 18101 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 18102 ST->getMemOperand()); 18103 18104 // Otherwise, see if we can simplify the operation with 18105 // SimplifyDemandedBits, which only works if the value has a single use. 18106 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 18107 // Re-visit the store if anything changed and the store hasn't been merged 18108 // with another node (N is deleted) SimplifyDemandedBits will add Value's 18109 // node back to the worklist if necessary, but we also need to re-visit 18110 // the Store node itself. 18111 if (N->getOpcode() != ISD::DELETED_NODE) 18112 AddToWorklist(N); 18113 return SDValue(N, 0); 18114 } 18115 } 18116 18117 // If this is a load followed by a store to the same location, then the store 18118 // is dead/noop. 18119 // TODO: Can relax for unordered atomics (see D66309) 18120 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 18121 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 18122 ST->isUnindexed() && ST->isSimple() && 18123 Ld->getAddressSpace() == ST->getAddressSpace() && 18124 // There can't be any side effects between the load and store, such as 18125 // a call or store. 18126 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 18127 // The store is dead, remove it. 18128 return Chain; 18129 } 18130 } 18131 18132 // TODO: Can relax for unordered atomics (see D66309) 18133 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 18134 if (ST->isUnindexed() && ST->isSimple() && 18135 ST1->isUnindexed() && ST1->isSimple()) { 18136 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && 18137 ST->getMemoryVT() == ST1->getMemoryVT() && 18138 ST->getAddressSpace() == ST1->getAddressSpace()) { 18139 // If this is a store followed by a store with the same value to the 18140 // same location, then the store is dead/noop. 18141 return Chain; 18142 } 18143 18144 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 18145 !ST1->getBasePtr().isUndef() && 18146 // BaseIndexOffset and the code below requires knowing the size 18147 // of a vector, so bail out if MemoryVT is scalable. 18148 !ST->getMemoryVT().isScalableVector() && 18149 !ST1->getMemoryVT().isScalableVector() && 18150 ST->getAddressSpace() == ST1->getAddressSpace()) { 18151 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 18152 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 18153 unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); 18154 unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); 18155 // If this is a store who's preceding store to a subset of the current 18156 // location and no one other node is chained to that store we can 18157 // effectively drop the store. Do not remove stores to undef as they may 18158 // be used as data sinks. 18159 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 18160 CombineTo(ST1, ST1->getChain()); 18161 return SDValue(); 18162 } 18163 } 18164 } 18165 } 18166 18167 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 18168 // truncating store. We can do this even if this is already a truncstore. 18169 if ((Value.getOpcode() == ISD::FP_ROUND || 18170 Value.getOpcode() == ISD::TRUNCATE) && 18171 Value.getNode()->hasOneUse() && ST->isUnindexed() && 18172 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), 18173 ST->getMemoryVT(), LegalOperations)) { 18174 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 18175 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 18176 } 18177 18178 // Always perform this optimization before types are legal. If the target 18179 // prefers, also try this after legalization to catch stores that were created 18180 // by intrinsics or other nodes. 18181 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { 18182 while (true) { 18183 // There can be multiple store sequences on the same chain. 18184 // Keep trying to merge store sequences until we are unable to do so 18185 // or until we merge the last store on the chain. 18186 bool Changed = mergeConsecutiveStores(ST); 18187 if (!Changed) break; 18188 // Return N as merge only uses CombineTo and no worklist clean 18189 // up is necessary. 18190 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 18191 return SDValue(N, 0); 18192 } 18193 } 18194 18195 // Try transforming N to an indexed store. 18196 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 18197 return SDValue(N, 0); 18198 18199 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 18200 // 18201 // Make sure to do this only after attempting to merge stores in order to 18202 // avoid changing the types of some subset of stores due to visit order, 18203 // preventing their merging. 18204 if (isa<ConstantFPSDNode>(ST->getValue())) { 18205 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 18206 return NewSt; 18207 } 18208 18209 if (SDValue NewSt = splitMergedValStore(ST)) 18210 return NewSt; 18211 18212 return ReduceLoadOpStoreWidth(N); 18213 } 18214 18215 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 18216 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 18217 if (!LifetimeEnd->hasOffset()) 18218 return SDValue(); 18219 18220 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 18221 LifetimeEnd->getOffset(), false); 18222 18223 // We walk up the chains to find stores. 18224 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 18225 while (!Chains.empty()) { 18226 SDValue Chain = Chains.pop_back_val(); 18227 if (!Chain.hasOneUse()) 18228 continue; 18229 switch (Chain.getOpcode()) { 18230 case ISD::TokenFactor: 18231 for (unsigned Nops = Chain.getNumOperands(); Nops;) 18232 Chains.push_back(Chain.getOperand(--Nops)); 18233 break; 18234 case ISD::LIFETIME_START: 18235 case ISD::LIFETIME_END: 18236 // We can forward past any lifetime start/end that can be proven not to 18237 // alias the node. 18238 if (!isAlias(Chain.getNode(), N)) 18239 Chains.push_back(Chain.getOperand(0)); 18240 break; 18241 case ISD::STORE: { 18242 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 18243 // TODO: Can relax for unordered atomics (see D66309) 18244 if (!ST->isSimple() || ST->isIndexed()) 18245 continue; 18246 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); 18247 // The bounds of a scalable store are not known until runtime, so this 18248 // store cannot be elided. 18249 if (StoreSize.isScalable()) 18250 continue; 18251 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 18252 // If we store purely within object bounds just before its lifetime ends, 18253 // we can remove the store. 18254 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 18255 StoreSize.getFixedSize() * 8)) { 18256 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 18257 dbgs() << "\nwithin LIFETIME_END of : "; 18258 LifetimeEndBase.dump(); dbgs() << "\n"); 18259 CombineTo(ST, ST->getChain()); 18260 return SDValue(N, 0); 18261 } 18262 } 18263 } 18264 } 18265 return SDValue(); 18266 } 18267 18268 /// For the instruction sequence of store below, F and I values 18269 /// are bundled together as an i64 value before being stored into memory. 18270 /// Sometimes it is more efficent to generate separate stores for F and I, 18271 /// which can remove the bitwise instructions or sink them to colder places. 18272 /// 18273 /// (store (or (zext (bitcast F to i32) to i64), 18274 /// (shl (zext I to i64), 32)), addr) --> 18275 /// (store F, addr) and (store I, addr+4) 18276 /// 18277 /// Similarly, splitting for other merged store can also be beneficial, like: 18278 /// For pair of {i32, i32}, i64 store --> two i32 stores. 18279 /// For pair of {i32, i16}, i64 store --> two i32 stores. 18280 /// For pair of {i16, i16}, i32 store --> two i16 stores. 18281 /// For pair of {i16, i8}, i32 store --> two i16 stores. 18282 /// For pair of {i8, i8}, i16 store --> two i8 stores. 18283 /// 18284 /// We allow each target to determine specifically which kind of splitting is 18285 /// supported. 18286 /// 18287 /// The store patterns are commonly seen from the simple code snippet below 18288 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 18289 /// void goo(const std::pair<int, float> &); 18290 /// hoo() { 18291 /// ... 18292 /// goo(std::make_pair(tmp, ftmp)); 18293 /// ... 18294 /// } 18295 /// 18296 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 18297 if (OptLevel == CodeGenOpt::None) 18298 return SDValue(); 18299 18300 // Can't change the number of memory accesses for a volatile store or break 18301 // atomicity for an atomic one. 18302 if (!ST->isSimple()) 18303 return SDValue(); 18304 18305 SDValue Val = ST->getValue(); 18306 SDLoc DL(ST); 18307 18308 // Match OR operand. 18309 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 18310 return SDValue(); 18311 18312 // Match SHL operand and get Lower and Higher parts of Val. 18313 SDValue Op1 = Val.getOperand(0); 18314 SDValue Op2 = Val.getOperand(1); 18315 SDValue Lo, Hi; 18316 if (Op1.getOpcode() != ISD::SHL) { 18317 std::swap(Op1, Op2); 18318 if (Op1.getOpcode() != ISD::SHL) 18319 return SDValue(); 18320 } 18321 Lo = Op2; 18322 Hi = Op1.getOperand(0); 18323 if (!Op1.hasOneUse()) 18324 return SDValue(); 18325 18326 // Match shift amount to HalfValBitSize. 18327 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 18328 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 18329 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 18330 return SDValue(); 18331 18332 // Lo and Hi are zero-extended from int with size less equal than 32 18333 // to i64. 18334 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 18335 !Lo.getOperand(0).getValueType().isScalarInteger() || 18336 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 18337 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 18338 !Hi.getOperand(0).getValueType().isScalarInteger() || 18339 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 18340 return SDValue(); 18341 18342 // Use the EVT of low and high parts before bitcast as the input 18343 // of target query. 18344 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 18345 ? Lo.getOperand(0).getValueType() 18346 : Lo.getValueType(); 18347 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 18348 ? Hi.getOperand(0).getValueType() 18349 : Hi.getValueType(); 18350 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 18351 return SDValue(); 18352 18353 // Start to split store. 18354 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 18355 AAMDNodes AAInfo = ST->getAAInfo(); 18356 18357 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 18358 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 18359 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 18360 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 18361 18362 SDValue Chain = ST->getChain(); 18363 SDValue Ptr = ST->getBasePtr(); 18364 // Lower value store. 18365 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 18366 ST->getOriginalAlign(), MMOFlags, AAInfo); 18367 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); 18368 // Higher value store. 18369 SDValue St1 = DAG.getStore( 18370 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 18371 ST->getOriginalAlign(), MMOFlags, AAInfo); 18372 return St1; 18373 } 18374 18375 /// Convert a disguised subvector insertion into a shuffle: 18376 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 18377 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && 18378 "Expected extract_vector_elt"); 18379 SDValue InsertVal = N->getOperand(1); 18380 SDValue Vec = N->getOperand(0); 18381 18382 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), 18383 // InsIndex) 18384 // --> (vector_shuffle X, Y) and variations where shuffle operands may be 18385 // CONCAT_VECTORS. 18386 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && 18387 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18388 isa<ConstantSDNode>(InsertVal.getOperand(1))) { 18389 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); 18390 ArrayRef<int> Mask = SVN->getMask(); 18391 18392 SDValue X = Vec.getOperand(0); 18393 SDValue Y = Vec.getOperand(1); 18394 18395 // Vec's operand 0 is using indices from 0 to N-1 and 18396 // operand 1 from N to 2N - 1, where N is the number of 18397 // elements in the vectors. 18398 SDValue InsertVal0 = InsertVal.getOperand(0); 18399 int ElementOffset = -1; 18400 18401 // We explore the inputs of the shuffle in order to see if we find the 18402 // source of the extract_vector_elt. If so, we can use it to modify the 18403 // shuffle rather than perform an insert_vector_elt. 18404 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; 18405 ArgWorkList.emplace_back(Mask.size(), Y); 18406 ArgWorkList.emplace_back(0, X); 18407 18408 while (!ArgWorkList.empty()) { 18409 int ArgOffset; 18410 SDValue ArgVal; 18411 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); 18412 18413 if (ArgVal == InsertVal0) { 18414 ElementOffset = ArgOffset; 18415 break; 18416 } 18417 18418 // Peek through concat_vector. 18419 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { 18420 int CurrentArgOffset = 18421 ArgOffset + ArgVal.getValueType().getVectorNumElements(); 18422 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); 18423 for (SDValue Op : reverse(ArgVal->ops())) { 18424 CurrentArgOffset -= Step; 18425 ArgWorkList.emplace_back(CurrentArgOffset, Op); 18426 } 18427 18428 // Make sure we went through all the elements and did not screw up index 18429 // computation. 18430 assert(CurrentArgOffset == ArgOffset); 18431 } 18432 } 18433 18434 if (ElementOffset != -1) { 18435 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); 18436 18437 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); 18438 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); 18439 assert(NewMask[InsIndex] < 18440 (int)(2 * Vec.getValueType().getVectorNumElements()) && 18441 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); 18442 18443 SDValue LegalShuffle = 18444 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, 18445 Y, NewMask, DAG); 18446 if (LegalShuffle) 18447 return LegalShuffle; 18448 } 18449 } 18450 18451 // insert_vector_elt V, (bitcast X from vector type), IdxC --> 18452 // bitcast(shuffle (bitcast V), (extended X), Mask) 18453 // Note: We do not use an insert_subvector node because that requires a 18454 // legal subvector type. 18455 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 18456 !InsertVal.getOperand(0).getValueType().isVector()) 18457 return SDValue(); 18458 18459 SDValue SubVec = InsertVal.getOperand(0); 18460 SDValue DestVec = N->getOperand(0); 18461 EVT SubVecVT = SubVec.getValueType(); 18462 EVT VT = DestVec.getValueType(); 18463 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 18464 // If the source only has a single vector element, the cost of creating adding 18465 // it to a vector is likely to exceed the cost of a insert_vector_elt. 18466 if (NumSrcElts == 1) 18467 return SDValue(); 18468 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 18469 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 18470 18471 // Step 1: Create a shuffle mask that implements this insert operation. The 18472 // vector that we are inserting into will be operand 0 of the shuffle, so 18473 // those elements are just 'i'. The inserted subvector is in the first 18474 // positions of operand 1 of the shuffle. Example: 18475 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 18476 SmallVector<int, 16> Mask(NumMaskVals); 18477 for (unsigned i = 0; i != NumMaskVals; ++i) { 18478 if (i / NumSrcElts == InsIndex) 18479 Mask[i] = (i % NumSrcElts) + NumMaskVals; 18480 else 18481 Mask[i] = i; 18482 } 18483 18484 // Bail out if the target can not handle the shuffle we want to create. 18485 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 18486 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 18487 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 18488 return SDValue(); 18489 18490 // Step 2: Create a wide vector from the inserted source vector by appending 18491 // undefined elements. This is the same size as our destination vector. 18492 SDLoc DL(N); 18493 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 18494 ConcatOps[0] = SubVec; 18495 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 18496 18497 // Step 3: Shuffle in the padded subvector. 18498 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 18499 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 18500 AddToWorklist(PaddedSubV.getNode()); 18501 AddToWorklist(DestVecBC.getNode()); 18502 AddToWorklist(Shuf.getNode()); 18503 return DAG.getBitcast(VT, Shuf); 18504 } 18505 18506 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 18507 SDValue InVec = N->getOperand(0); 18508 SDValue InVal = N->getOperand(1); 18509 SDValue EltNo = N->getOperand(2); 18510 SDLoc DL(N); 18511 18512 EVT VT = InVec.getValueType(); 18513 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 18514 18515 // Insert into out-of-bounds element is undefined. 18516 if (IndexC && VT.isFixedLengthVector() && 18517 IndexC->getZExtValue() >= VT.getVectorNumElements()) 18518 return DAG.getUNDEF(VT); 18519 18520 // Remove redundant insertions: 18521 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 18522 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18523 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 18524 return InVec; 18525 18526 if (!IndexC) { 18527 // If this is variable insert to undef vector, it might be better to splat: 18528 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 18529 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 18530 if (VT.isScalableVector()) 18531 return DAG.getSplatVector(VT, DL, InVal); 18532 else { 18533 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); 18534 return DAG.getBuildVector(VT, DL, Ops); 18535 } 18536 } 18537 return SDValue(); 18538 } 18539 18540 if (VT.isScalableVector()) 18541 return SDValue(); 18542 18543 unsigned NumElts = VT.getVectorNumElements(); 18544 18545 // We must know which element is being inserted for folds below here. 18546 unsigned Elt = IndexC->getZExtValue(); 18547 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 18548 return Shuf; 18549 18550 // Canonicalize insert_vector_elt dag nodes. 18551 // Example: 18552 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 18553 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 18554 // 18555 // Do this only if the child insert_vector node has one use; also 18556 // do this only if indices are both constants and Idx1 < Idx0. 18557 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 18558 && isa<ConstantSDNode>(InVec.getOperand(2))) { 18559 unsigned OtherElt = InVec.getConstantOperandVal(2); 18560 if (Elt < OtherElt) { 18561 // Swap nodes. 18562 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 18563 InVec.getOperand(0), InVal, EltNo); 18564 AddToWorklist(NewOp.getNode()); 18565 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 18566 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 18567 } 18568 } 18569 18570 // If we can't generate a legal BUILD_VECTOR, exit 18571 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 18572 return SDValue(); 18573 18574 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 18575 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 18576 // vector elements. 18577 SmallVector<SDValue, 8> Ops; 18578 // Do not combine these two vectors if the output vector will not replace 18579 // the input vector. 18580 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 18581 Ops.append(InVec.getNode()->op_begin(), 18582 InVec.getNode()->op_end()); 18583 } else if (InVec.isUndef()) { 18584 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 18585 } else { 18586 return SDValue(); 18587 } 18588 assert(Ops.size() == NumElts && "Unexpected vector size"); 18589 18590 // Insert the element 18591 if (Elt < Ops.size()) { 18592 // All the operands of BUILD_VECTOR must have the same type; 18593 // we enforce that here. 18594 EVT OpVT = Ops[0].getValueType(); 18595 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 18596 } 18597 18598 // Return the new vector 18599 return DAG.getBuildVector(VT, DL, Ops); 18600 } 18601 18602 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 18603 SDValue EltNo, 18604 LoadSDNode *OriginalLoad) { 18605 assert(OriginalLoad->isSimple()); 18606 18607 EVT ResultVT = EVE->getValueType(0); 18608 EVT VecEltVT = InVecVT.getVectorElementType(); 18609 18610 // If the vector element type is not a multiple of a byte then we are unable 18611 // to correctly compute an address to load only the extracted element as a 18612 // scalar. 18613 if (!VecEltVT.isByteSized()) 18614 return SDValue(); 18615 18616 Align Alignment = OriginalLoad->getAlign(); 18617 Align NewAlign = DAG.getDataLayout().getABITypeAlign( 18618 VecEltVT.getTypeForEVT(*DAG.getContext())); 18619 18620 if (NewAlign > Alignment || 18621 !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 18622 return SDValue(); 18623 18624 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? 18625 ISD::NON_EXTLOAD : ISD::EXTLOAD; 18626 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 18627 return SDValue(); 18628 18629 Alignment = NewAlign; 18630 18631 MachinePointerInfo MPI; 18632 SDLoc DL(EVE); 18633 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 18634 int Elt = ConstEltNo->getZExtValue(); 18635 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 18636 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 18637 } else { 18638 // Discard the pointer info except the address space because the memory 18639 // operand can't represent this new access since the offset is variable. 18640 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 18641 } 18642 SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(), 18643 InVecVT, EltNo); 18644 18645 // The replacement we need to do here is a little tricky: we need to 18646 // replace an extractelement of a load with a load. 18647 // Use ReplaceAllUsesOfValuesWith to do the replacement. 18648 // Note that this replacement assumes that the extractvalue is the only 18649 // use of the load; that's okay because we don't want to perform this 18650 // transformation in other cases anyway. 18651 SDValue Load; 18652 SDValue Chain; 18653 if (ResultVT.bitsGT(VecEltVT)) { 18654 // If the result type of vextract is wider than the load, then issue an 18655 // extending load instead. 18656 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 18657 VecEltVT) 18658 ? ISD::ZEXTLOAD 18659 : ISD::EXTLOAD; 18660 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 18661 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 18662 Alignment, OriginalLoad->getMemOperand()->getFlags(), 18663 OriginalLoad->getAAInfo()); 18664 Chain = Load.getValue(1); 18665 } else { 18666 Load = DAG.getLoad( 18667 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment, 18668 OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo()); 18669 Chain = Load.getValue(1); 18670 if (ResultVT.bitsLT(VecEltVT)) 18671 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 18672 else 18673 Load = DAG.getBitcast(ResultVT, Load); 18674 } 18675 WorklistRemover DeadNodes(*this); 18676 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 18677 SDValue To[] = { Load, Chain }; 18678 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 18679 // Make sure to revisit this node to clean it up; it will usually be dead. 18680 AddToWorklist(EVE); 18681 // Since we're explicitly calling ReplaceAllUses, add the new node to the 18682 // worklist explicitly as well. 18683 AddToWorklistWithUsers(Load.getNode()); 18684 ++OpsNarrowed; 18685 return SDValue(EVE, 0); 18686 } 18687 18688 /// Transform a vector binary operation into a scalar binary operation by moving 18689 /// the math/logic after an extract element of a vector. 18690 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 18691 bool LegalOperations) { 18692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18693 SDValue Vec = ExtElt->getOperand(0); 18694 SDValue Index = ExtElt->getOperand(1); 18695 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18696 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 18697 Vec.getNode()->getNumValues() != 1) 18698 return SDValue(); 18699 18700 // Targets may want to avoid this to prevent an expensive register transfer. 18701 if (!TLI.shouldScalarizeBinop(Vec)) 18702 return SDValue(); 18703 18704 // Extracting an element of a vector constant is constant-folded, so this 18705 // transform is just replacing a vector op with a scalar op while moving the 18706 // extract. 18707 SDValue Op0 = Vec.getOperand(0); 18708 SDValue Op1 = Vec.getOperand(1); 18709 if (isAnyConstantBuildVector(Op0, true) || 18710 isAnyConstantBuildVector(Op1, true)) { 18711 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 18712 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 18713 SDLoc DL(ExtElt); 18714 EVT VT = ExtElt->getValueType(0); 18715 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 18716 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 18717 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 18718 } 18719 18720 return SDValue(); 18721 } 18722 18723 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 18724 SDValue VecOp = N->getOperand(0); 18725 SDValue Index = N->getOperand(1); 18726 EVT ScalarVT = N->getValueType(0); 18727 EVT VecVT = VecOp.getValueType(); 18728 if (VecOp.isUndef()) 18729 return DAG.getUNDEF(ScalarVT); 18730 18731 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 18732 // 18733 // This only really matters if the index is non-constant since other combines 18734 // on the constant elements already work. 18735 SDLoc DL(N); 18736 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 18737 Index == VecOp.getOperand(2)) { 18738 SDValue Elt = VecOp.getOperand(1); 18739 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 18740 } 18741 18742 // (vextract (scalar_to_vector val, 0) -> val 18743 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 18744 // Only 0'th element of SCALAR_TO_VECTOR is defined. 18745 if (DAG.isKnownNeverZero(Index)) 18746 return DAG.getUNDEF(ScalarVT); 18747 18748 // Check if the result type doesn't match the inserted element type. A 18749 // SCALAR_TO_VECTOR may truncate the inserted element and the 18750 // EXTRACT_VECTOR_ELT may widen the extracted vector. 18751 SDValue InOp = VecOp.getOperand(0); 18752 if (InOp.getValueType() != ScalarVT) { 18753 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 18754 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 18755 } 18756 return InOp; 18757 } 18758 18759 // extract_vector_elt of out-of-bounds element -> UNDEF 18760 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18761 if (IndexC && VecVT.isFixedLengthVector() && 18762 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) 18763 return DAG.getUNDEF(ScalarVT); 18764 18765 // extract_vector_elt (build_vector x, y), 1 -> y 18766 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || 18767 VecOp.getOpcode() == ISD::SPLAT_VECTOR) && 18768 TLI.isTypeLegal(VecVT) && 18769 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 18770 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || 18771 VecVT.isFixedLengthVector()) && 18772 "BUILD_VECTOR used for scalable vectors"); 18773 unsigned IndexVal = 18774 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; 18775 SDValue Elt = VecOp.getOperand(IndexVal); 18776 EVT InEltVT = Elt.getValueType(); 18777 18778 // Sometimes build_vector's scalar input types do not match result type. 18779 if (ScalarVT == InEltVT) 18780 return Elt; 18781 18782 // TODO: It may be useful to truncate if free if the build_vector implicitly 18783 // converts. 18784 } 18785 18786 if (VecVT.isScalableVector()) 18787 return SDValue(); 18788 18789 // All the code from this point onwards assumes fixed width vectors, but it's 18790 // possible that some of the combinations could be made to work for scalable 18791 // vectors too. 18792 unsigned NumElts = VecVT.getVectorNumElements(); 18793 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 18794 18795 // TODO: These transforms should not require the 'hasOneUse' restriction, but 18796 // there are regressions on multiple targets without it. We can end up with a 18797 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 18798 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 18799 VecOp.hasOneUse()) { 18800 // The vector index of the LSBs of the source depend on the endian-ness. 18801 bool IsLE = DAG.getDataLayout().isLittleEndian(); 18802 unsigned ExtractIndex = IndexC->getZExtValue(); 18803 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 18804 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 18805 SDValue BCSrc = VecOp.getOperand(0); 18806 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 18807 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 18808 18809 if (LegalTypes && BCSrc.getValueType().isInteger() && 18810 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 18811 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 18812 // trunc i64 X to i32 18813 SDValue X = BCSrc.getOperand(0); 18814 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 18815 "Extract element and scalar to vector can't change element type " 18816 "from FP to integer."); 18817 unsigned XBitWidth = X.getValueSizeInBits(); 18818 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 18819 18820 // An extract element return value type can be wider than its vector 18821 // operand element type. In that case, the high bits are undefined, so 18822 // it's possible that we may need to extend rather than truncate. 18823 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 18824 assert(XBitWidth % VecEltBitWidth == 0 && 18825 "Scalar bitwidth must be a multiple of vector element bitwidth"); 18826 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 18827 } 18828 } 18829 } 18830 18831 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 18832 return BO; 18833 18834 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 18835 // We only perform this optimization before the op legalization phase because 18836 // we may introduce new vector instructions which are not backed by TD 18837 // patterns. For example on AVX, extracting elements from a wide vector 18838 // without using extract_subvector. However, if we can find an underlying 18839 // scalar value, then we can always use that. 18840 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 18841 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 18842 // Find the new index to extract from. 18843 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 18844 18845 // Extracting an undef index is undef. 18846 if (OrigElt == -1) 18847 return DAG.getUNDEF(ScalarVT); 18848 18849 // Select the right vector half to extract from. 18850 SDValue SVInVec; 18851 if (OrigElt < (int)NumElts) { 18852 SVInVec = VecOp.getOperand(0); 18853 } else { 18854 SVInVec = VecOp.getOperand(1); 18855 OrigElt -= NumElts; 18856 } 18857 18858 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 18859 SDValue InOp = SVInVec.getOperand(OrigElt); 18860 if (InOp.getValueType() != ScalarVT) { 18861 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 18862 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 18863 } 18864 18865 return InOp; 18866 } 18867 18868 // FIXME: We should handle recursing on other vector shuffles and 18869 // scalar_to_vector here as well. 18870 18871 if (!LegalOperations || 18872 // FIXME: Should really be just isOperationLegalOrCustom. 18873 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 18874 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 18875 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 18876 DAG.getVectorIdxConstant(OrigElt, DL)); 18877 } 18878 } 18879 18880 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 18881 // simplify it based on the (valid) extraction indices. 18882 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 18883 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18884 Use->getOperand(0) == VecOp && 18885 isa<ConstantSDNode>(Use->getOperand(1)); 18886 })) { 18887 APInt DemandedElts = APInt::getNullValue(NumElts); 18888 for (SDNode *Use : VecOp->uses()) { 18889 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 18890 if (CstElt->getAPIntValue().ult(NumElts)) 18891 DemandedElts.setBit(CstElt->getZExtValue()); 18892 } 18893 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 18894 // We simplified the vector operand of this extract element. If this 18895 // extract is not dead, visit it again so it is folded properly. 18896 if (N->getOpcode() != ISD::DELETED_NODE) 18897 AddToWorklist(N); 18898 return SDValue(N, 0); 18899 } 18900 APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth); 18901 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { 18902 // We simplified the vector operand of this extract element. If this 18903 // extract is not dead, visit it again so it is folded properly. 18904 if (N->getOpcode() != ISD::DELETED_NODE) 18905 AddToWorklist(N); 18906 return SDValue(N, 0); 18907 } 18908 } 18909 18910 // Everything under here is trying to match an extract of a loaded value. 18911 // If the result of load has to be truncated, then it's not necessarily 18912 // profitable. 18913 bool BCNumEltsChanged = false; 18914 EVT ExtVT = VecVT.getVectorElementType(); 18915 EVT LVT = ExtVT; 18916 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 18917 return SDValue(); 18918 18919 if (VecOp.getOpcode() == ISD::BITCAST) { 18920 // Don't duplicate a load with other uses. 18921 if (!VecOp.hasOneUse()) 18922 return SDValue(); 18923 18924 EVT BCVT = VecOp.getOperand(0).getValueType(); 18925 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 18926 return SDValue(); 18927 if (NumElts != BCVT.getVectorNumElements()) 18928 BCNumEltsChanged = true; 18929 VecOp = VecOp.getOperand(0); 18930 ExtVT = BCVT.getVectorElementType(); 18931 } 18932 18933 // extract (vector load $addr), i --> load $addr + i * size 18934 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 18935 ISD::isNormalLoad(VecOp.getNode()) && 18936 !Index->hasPredecessor(VecOp.getNode())) { 18937 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 18938 if (VecLoad && VecLoad->isSimple()) 18939 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 18940 } 18941 18942 // Perform only after legalization to ensure build_vector / vector_shuffle 18943 // optimizations have already been done. 18944 if (!LegalOperations || !IndexC) 18945 return SDValue(); 18946 18947 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 18948 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 18949 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 18950 int Elt = IndexC->getZExtValue(); 18951 LoadSDNode *LN0 = nullptr; 18952 if (ISD::isNormalLoad(VecOp.getNode())) { 18953 LN0 = cast<LoadSDNode>(VecOp); 18954 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 18955 VecOp.getOperand(0).getValueType() == ExtVT && 18956 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 18957 // Don't duplicate a load with other uses. 18958 if (!VecOp.hasOneUse()) 18959 return SDValue(); 18960 18961 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 18962 } 18963 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 18964 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 18965 // => 18966 // (load $addr+1*size) 18967 18968 // Don't duplicate a load with other uses. 18969 if (!VecOp.hasOneUse()) 18970 return SDValue(); 18971 18972 // If the bit convert changed the number of elements, it is unsafe 18973 // to examine the mask. 18974 if (BCNumEltsChanged) 18975 return SDValue(); 18976 18977 // Select the input vector, guarding against out of range extract vector. 18978 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 18979 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 18980 18981 if (VecOp.getOpcode() == ISD::BITCAST) { 18982 // Don't duplicate a load with other uses. 18983 if (!VecOp.hasOneUse()) 18984 return SDValue(); 18985 18986 VecOp = VecOp.getOperand(0); 18987 } 18988 if (ISD::isNormalLoad(VecOp.getNode())) { 18989 LN0 = cast<LoadSDNode>(VecOp); 18990 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 18991 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 18992 } 18993 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && 18994 VecVT.getVectorElementType() == ScalarVT && 18995 (!LegalTypes || 18996 TLI.isTypeLegal( 18997 VecOp.getOperand(0).getValueType().getVectorElementType()))) { 18998 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 18999 // -> extract_vector_elt a, 0 19000 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 19001 // -> extract_vector_elt a, 1 19002 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 19003 // -> extract_vector_elt b, 0 19004 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 19005 // -> extract_vector_elt b, 1 19006 SDLoc SL(N); 19007 EVT ConcatVT = VecOp.getOperand(0).getValueType(); 19008 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 19009 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, 19010 Index.getValueType()); 19011 19012 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); 19013 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, 19014 ConcatVT.getVectorElementType(), 19015 ConcatOp, NewIdx); 19016 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); 19017 } 19018 19019 // Make sure we found a non-volatile load and the extractelement is 19020 // the only use. 19021 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) 19022 return SDValue(); 19023 19024 // If Idx was -1 above, Elt is going to be -1, so just return undef. 19025 if (Elt == -1) 19026 return DAG.getUNDEF(LVT); 19027 19028 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 19029 } 19030 19031 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 19032 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 19033 // We perform this optimization post type-legalization because 19034 // the type-legalizer often scalarizes integer-promoted vectors. 19035 // Performing this optimization before may create bit-casts which 19036 // will be type-legalized to complex code sequences. 19037 // We perform this optimization only before the operation legalizer because we 19038 // may introduce illegal operations. 19039 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 19040 return SDValue(); 19041 19042 unsigned NumInScalars = N->getNumOperands(); 19043 SDLoc DL(N); 19044 EVT VT = N->getValueType(0); 19045 19046 // Check to see if this is a BUILD_VECTOR of a bunch of values 19047 // which come from any_extend or zero_extend nodes. If so, we can create 19048 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 19049 // optimizations. We do not handle sign-extend because we can't fill the sign 19050 // using shuffles. 19051 EVT SourceType = MVT::Other; 19052 bool AllAnyExt = true; 19053 19054 for (unsigned i = 0; i != NumInScalars; ++i) { 19055 SDValue In = N->getOperand(i); 19056 // Ignore undef inputs. 19057 if (In.isUndef()) continue; 19058 19059 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 19060 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 19061 19062 // Abort if the element is not an extension. 19063 if (!ZeroExt && !AnyExt) { 19064 SourceType = MVT::Other; 19065 break; 19066 } 19067 19068 // The input is a ZeroExt or AnyExt. Check the original type. 19069 EVT InTy = In.getOperand(0).getValueType(); 19070 19071 // Check that all of the widened source types are the same. 19072 if (SourceType == MVT::Other) 19073 // First time. 19074 SourceType = InTy; 19075 else if (InTy != SourceType) { 19076 // Multiple income types. Abort. 19077 SourceType = MVT::Other; 19078 break; 19079 } 19080 19081 // Check if all of the extends are ANY_EXTENDs. 19082 AllAnyExt &= AnyExt; 19083 } 19084 19085 // In order to have valid types, all of the inputs must be extended from the 19086 // same source type and all of the inputs must be any or zero extend. 19087 // Scalar sizes must be a power of two. 19088 EVT OutScalarTy = VT.getScalarType(); 19089 bool ValidTypes = SourceType != MVT::Other && 19090 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 19091 isPowerOf2_32(SourceType.getSizeInBits()); 19092 19093 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 19094 // turn into a single shuffle instruction. 19095 if (!ValidTypes) 19096 return SDValue(); 19097 19098 // If we already have a splat buildvector, then don't fold it if it means 19099 // introducing zeros. 19100 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) 19101 return SDValue(); 19102 19103 bool isLE = DAG.getDataLayout().isLittleEndian(); 19104 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 19105 assert(ElemRatio > 1 && "Invalid element size ratio"); 19106 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 19107 DAG.getConstant(0, DL, SourceType); 19108 19109 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 19110 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 19111 19112 // Populate the new build_vector 19113 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 19114 SDValue Cast = N->getOperand(i); 19115 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 19116 Cast.getOpcode() == ISD::ZERO_EXTEND || 19117 Cast.isUndef()) && "Invalid cast opcode"); 19118 SDValue In; 19119 if (Cast.isUndef()) 19120 In = DAG.getUNDEF(SourceType); 19121 else 19122 In = Cast->getOperand(0); 19123 unsigned Index = isLE ? (i * ElemRatio) : 19124 (i * ElemRatio + (ElemRatio - 1)); 19125 19126 assert(Index < Ops.size() && "Invalid index"); 19127 Ops[Index] = In; 19128 } 19129 19130 // The type of the new BUILD_VECTOR node. 19131 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 19132 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 19133 "Invalid vector size"); 19134 // Check if the new vector type is legal. 19135 if (!isTypeLegal(VecVT) || 19136 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 19137 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 19138 return SDValue(); 19139 19140 // Make the new BUILD_VECTOR. 19141 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 19142 19143 // The new BUILD_VECTOR node has the potential to be further optimized. 19144 AddToWorklist(BV.getNode()); 19145 // Bitcast to the desired type. 19146 return DAG.getBitcast(VT, BV); 19147 } 19148 19149 // Simplify (build_vec (trunc $1) 19150 // (trunc (srl $1 half-width)) 19151 // (trunc (srl $1 (2 * half-width))) …) 19152 // to (bitcast $1) 19153 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { 19154 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19155 19156 // Only for little endian 19157 if (!DAG.getDataLayout().isLittleEndian()) 19158 return SDValue(); 19159 19160 SDLoc DL(N); 19161 EVT VT = N->getValueType(0); 19162 EVT OutScalarTy = VT.getScalarType(); 19163 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); 19164 19165 // Only for power of two types to be sure that bitcast works well 19166 if (!isPowerOf2_64(ScalarTypeBitsize)) 19167 return SDValue(); 19168 19169 unsigned NumInScalars = N->getNumOperands(); 19170 19171 // Look through bitcasts 19172 auto PeekThroughBitcast = [](SDValue Op) { 19173 if (Op.getOpcode() == ISD::BITCAST) 19174 return Op.getOperand(0); 19175 return Op; 19176 }; 19177 19178 // The source value where all the parts are extracted. 19179 SDValue Src; 19180 for (unsigned i = 0; i != NumInScalars; ++i) { 19181 SDValue In = PeekThroughBitcast(N->getOperand(i)); 19182 // Ignore undef inputs. 19183 if (In.isUndef()) continue; 19184 19185 if (In.getOpcode() != ISD::TRUNCATE) 19186 return SDValue(); 19187 19188 In = PeekThroughBitcast(In.getOperand(0)); 19189 19190 if (In.getOpcode() != ISD::SRL) { 19191 // For now only build_vec without shuffling, handle shifts here in the 19192 // future. 19193 if (i != 0) 19194 return SDValue(); 19195 19196 Src = In; 19197 } else { 19198 // In is SRL 19199 SDValue part = PeekThroughBitcast(In.getOperand(0)); 19200 19201 if (!Src) { 19202 Src = part; 19203 } else if (Src != part) { 19204 // Vector parts do not stem from the same variable 19205 return SDValue(); 19206 } 19207 19208 SDValue ShiftAmtVal = In.getOperand(1); 19209 if (!isa<ConstantSDNode>(ShiftAmtVal)) 19210 return SDValue(); 19211 19212 uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); 19213 19214 // The extracted value is not extracted at the right position 19215 if (ShiftAmt != i * ScalarTypeBitsize) 19216 return SDValue(); 19217 } 19218 } 19219 19220 // Only cast if the size is the same 19221 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) 19222 return SDValue(); 19223 19224 return DAG.getBitcast(VT, Src); 19225 } 19226 19227 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 19228 ArrayRef<int> VectorMask, 19229 SDValue VecIn1, SDValue VecIn2, 19230 unsigned LeftIdx, bool DidSplitVec) { 19231 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 19232 19233 EVT VT = N->getValueType(0); 19234 EVT InVT1 = VecIn1.getValueType(); 19235 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 19236 19237 unsigned NumElems = VT.getVectorNumElements(); 19238 unsigned ShuffleNumElems = NumElems; 19239 19240 // If we artificially split a vector in two already, then the offsets in the 19241 // operands will all be based off of VecIn1, even those in VecIn2. 19242 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 19243 19244 uint64_t VTSize = VT.getFixedSizeInBits(); 19245 uint64_t InVT1Size = InVT1.getFixedSizeInBits(); 19246 uint64_t InVT2Size = InVT2.getFixedSizeInBits(); 19247 19248 assert(InVT2Size <= InVT1Size && 19249 "Inputs must be sorted to be in non-increasing vector size order."); 19250 19251 // We can't generate a shuffle node with mismatched input and output types. 19252 // Try to make the types match the type of the output. 19253 if (InVT1 != VT || InVT2 != VT) { 19254 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { 19255 // If the output vector length is a multiple of both input lengths, 19256 // we can concatenate them and pad the rest with undefs. 19257 unsigned NumConcats = VTSize / InVT1Size; 19258 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 19259 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 19260 ConcatOps[0] = VecIn1; 19261 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 19262 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19263 VecIn2 = SDValue(); 19264 } else if (InVT1Size == VTSize * 2) { 19265 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 19266 return SDValue(); 19267 19268 if (!VecIn2.getNode()) { 19269 // If we only have one input vector, and it's twice the size of the 19270 // output, split it in two. 19271 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 19272 DAG.getVectorIdxConstant(NumElems, DL)); 19273 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 19274 // Since we now have shorter input vectors, adjust the offset of the 19275 // second vector's start. 19276 Vec2Offset = NumElems; 19277 } else { 19278 assert(InVT2Size <= InVT1Size && 19279 "Second input is not going to be larger than the first one."); 19280 19281 // VecIn1 is wider than the output, and we have another, possibly 19282 // smaller input. Pad the smaller input with undefs, shuffle at the 19283 // input vector width, and extract the output. 19284 // The shuffle type is different than VT, so check legality again. 19285 if (LegalOperations && 19286 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 19287 return SDValue(); 19288 19289 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 19290 // lower it back into a BUILD_VECTOR. So if the inserted type is 19291 // illegal, don't even try. 19292 if (InVT1 != InVT2) { 19293 if (!TLI.isTypeLegal(InVT2)) 19294 return SDValue(); 19295 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 19296 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 19297 } 19298 ShuffleNumElems = NumElems * 2; 19299 } 19300 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { 19301 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 19302 ConcatOps[0] = VecIn2; 19303 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 19304 } else { 19305 // TODO: Support cases where the length mismatch isn't exactly by a 19306 // factor of 2. 19307 // TODO: Move this check upwards, so that if we have bad type 19308 // mismatches, we don't create any DAG nodes. 19309 return SDValue(); 19310 } 19311 } 19312 19313 // Initialize mask to undef. 19314 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 19315 19316 // Only need to run up to the number of elements actually used, not the 19317 // total number of elements in the shuffle - if we are shuffling a wider 19318 // vector, the high lanes should be set to undef. 19319 for (unsigned i = 0; i != NumElems; ++i) { 19320 if (VectorMask[i] <= 0) 19321 continue; 19322 19323 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 19324 if (VectorMask[i] == (int)LeftIdx) { 19325 Mask[i] = ExtIndex; 19326 } else if (VectorMask[i] == (int)LeftIdx + 1) { 19327 Mask[i] = Vec2Offset + ExtIndex; 19328 } 19329 } 19330 19331 // The type the input vectors may have changed above. 19332 InVT1 = VecIn1.getValueType(); 19333 19334 // If we already have a VecIn2, it should have the same type as VecIn1. 19335 // If we don't, get an undef/zero vector of the appropriate type. 19336 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 19337 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 19338 19339 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 19340 if (ShuffleNumElems > NumElems) 19341 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 19342 19343 return Shuffle; 19344 } 19345 19346 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 19347 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 19348 19349 // First, determine where the build vector is not undef. 19350 // TODO: We could extend this to handle zero elements as well as undefs. 19351 int NumBVOps = BV->getNumOperands(); 19352 int ZextElt = -1; 19353 for (int i = 0; i != NumBVOps; ++i) { 19354 SDValue Op = BV->getOperand(i); 19355 if (Op.isUndef()) 19356 continue; 19357 if (ZextElt == -1) 19358 ZextElt = i; 19359 else 19360 return SDValue(); 19361 } 19362 // Bail out if there's no non-undef element. 19363 if (ZextElt == -1) 19364 return SDValue(); 19365 19366 // The build vector contains some number of undef elements and exactly 19367 // one other element. That other element must be a zero-extended scalar 19368 // extracted from a vector at a constant index to turn this into a shuffle. 19369 // Also, require that the build vector does not implicitly truncate/extend 19370 // its elements. 19371 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 19372 EVT VT = BV->getValueType(0); 19373 SDValue Zext = BV->getOperand(ZextElt); 19374 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 19375 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 19376 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 19377 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 19378 return SDValue(); 19379 19380 // The zero-extend must be a multiple of the source size, and we must be 19381 // building a vector of the same size as the source of the extract element. 19382 SDValue Extract = Zext.getOperand(0); 19383 unsigned DestSize = Zext.getValueSizeInBits(); 19384 unsigned SrcSize = Extract.getValueSizeInBits(); 19385 if (DestSize % SrcSize != 0 || 19386 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 19387 return SDValue(); 19388 19389 // Create a shuffle mask that will combine the extracted element with zeros 19390 // and undefs. 19391 int ZextRatio = DestSize / SrcSize; 19392 int NumMaskElts = NumBVOps * ZextRatio; 19393 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 19394 for (int i = 0; i != NumMaskElts; ++i) { 19395 if (i / ZextRatio == ZextElt) { 19396 // The low bits of the (potentially translated) extracted element map to 19397 // the source vector. The high bits map to zero. We will use a zero vector 19398 // as the 2nd source operand of the shuffle, so use the 1st element of 19399 // that vector (mask value is number-of-elements) for the high bits. 19400 if (i % ZextRatio == 0) 19401 ShufMask[i] = Extract.getConstantOperandVal(1); 19402 else 19403 ShufMask[i] = NumMaskElts; 19404 } 19405 19406 // Undef elements of the build vector remain undef because we initialize 19407 // the shuffle mask with -1. 19408 } 19409 19410 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 19411 // bitcast (shuffle V, ZeroVec, VectorMask) 19412 SDLoc DL(BV); 19413 EVT VecVT = Extract.getOperand(0).getValueType(); 19414 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 19415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19416 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), 19417 ZeroVec, ShufMask, DAG); 19418 if (!Shuf) 19419 return SDValue(); 19420 return DAG.getBitcast(VT, Shuf); 19421 } 19422 19423 // FIXME: promote to STLExtras. 19424 template <typename R, typename T> 19425 static auto getFirstIndexOf(R &&Range, const T &Val) { 19426 auto I = find(Range, Val); 19427 if (I == Range.end()) 19428 return static_cast<decltype(std::distance(Range.begin(), I))>(-1); 19429 return std::distance(Range.begin(), I); 19430 } 19431 19432 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 19433 // operations. If the types of the vectors we're extracting from allow it, 19434 // turn this into a vector_shuffle node. 19435 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 19436 SDLoc DL(N); 19437 EVT VT = N->getValueType(0); 19438 19439 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 19440 if (!isTypeLegal(VT)) 19441 return SDValue(); 19442 19443 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 19444 return V; 19445 19446 // May only combine to shuffle after legalize if shuffle is legal. 19447 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 19448 return SDValue(); 19449 19450 bool UsesZeroVector = false; 19451 unsigned NumElems = N->getNumOperands(); 19452 19453 // Record, for each element of the newly built vector, which input vector 19454 // that element comes from. -1 stands for undef, 0 for the zero vector, 19455 // and positive values for the input vectors. 19456 // VectorMask maps each element to its vector number, and VecIn maps vector 19457 // numbers to their initial SDValues. 19458 19459 SmallVector<int, 8> VectorMask(NumElems, -1); 19460 SmallVector<SDValue, 8> VecIn; 19461 VecIn.push_back(SDValue()); 19462 19463 for (unsigned i = 0; i != NumElems; ++i) { 19464 SDValue Op = N->getOperand(i); 19465 19466 if (Op.isUndef()) 19467 continue; 19468 19469 // See if we can use a blend with a zero vector. 19470 // TODO: Should we generalize this to a blend with an arbitrary constant 19471 // vector? 19472 if (isNullConstant(Op) || isNullFPConstant(Op)) { 19473 UsesZeroVector = true; 19474 VectorMask[i] = 0; 19475 continue; 19476 } 19477 19478 // Not an undef or zero. If the input is something other than an 19479 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 19480 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 19481 !isa<ConstantSDNode>(Op.getOperand(1))) 19482 return SDValue(); 19483 SDValue ExtractedFromVec = Op.getOperand(0); 19484 19485 if (ExtractedFromVec.getValueType().isScalableVector()) 19486 return SDValue(); 19487 19488 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 19489 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 19490 return SDValue(); 19491 19492 // All inputs must have the same element type as the output. 19493 if (VT.getVectorElementType() != 19494 ExtractedFromVec.getValueType().getVectorElementType()) 19495 return SDValue(); 19496 19497 // Have we seen this input vector before? 19498 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 19499 // a map back from SDValues to numbers isn't worth it. 19500 int Idx = getFirstIndexOf(VecIn, ExtractedFromVec); 19501 if (Idx == -1) { // A new source vector? 19502 Idx = VecIn.size(); 19503 VecIn.push_back(ExtractedFromVec); 19504 } 19505 19506 VectorMask[i] = Idx; 19507 } 19508 19509 // If we didn't find at least one input vector, bail out. 19510 if (VecIn.size() < 2) 19511 return SDValue(); 19512 19513 // If all the Operands of BUILD_VECTOR extract from same 19514 // vector, then split the vector efficiently based on the maximum 19515 // vector access index and adjust the VectorMask and 19516 // VecIn accordingly. 19517 bool DidSplitVec = false; 19518 if (VecIn.size() == 2) { 19519 unsigned MaxIndex = 0; 19520 unsigned NearestPow2 = 0; 19521 SDValue Vec = VecIn.back(); 19522 EVT InVT = Vec.getValueType(); 19523 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 19524 19525 for (unsigned i = 0; i < NumElems; i++) { 19526 if (VectorMask[i] <= 0) 19527 continue; 19528 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 19529 IndexVec[i] = Index; 19530 MaxIndex = std::max(MaxIndex, Index); 19531 } 19532 19533 NearestPow2 = PowerOf2Ceil(MaxIndex); 19534 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 19535 NumElems * 2 < NearestPow2) { 19536 unsigned SplitSize = NearestPow2 / 2; 19537 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 19538 InVT.getVectorElementType(), SplitSize); 19539 if (TLI.isTypeLegal(SplitVT) && 19540 SplitSize + SplitVT.getVectorNumElements() <= 19541 InVT.getVectorNumElements()) { 19542 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19543 DAG.getVectorIdxConstant(SplitSize, DL)); 19544 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 19545 DAG.getVectorIdxConstant(0, DL)); 19546 VecIn.pop_back(); 19547 VecIn.push_back(VecIn1); 19548 VecIn.push_back(VecIn2); 19549 DidSplitVec = true; 19550 19551 for (unsigned i = 0; i < NumElems; i++) { 19552 if (VectorMask[i] <= 0) 19553 continue; 19554 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 19555 } 19556 } 19557 } 19558 } 19559 19560 // Sort input vectors by decreasing vector element count, 19561 // while preserving the relative order of equally-sized vectors. 19562 // Note that we keep the first "implicit zero vector as-is. 19563 SmallVector<SDValue, 8> SortedVecIn(VecIn); 19564 llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(), 19565 [](const SDValue &a, const SDValue &b) { 19566 return a.getValueType().getVectorNumElements() > 19567 b.getValueType().getVectorNumElements(); 19568 }); 19569 19570 // We now also need to rebuild the VectorMask, because it referenced element 19571 // order in VecIn, and we just sorted them. 19572 for (int &SourceVectorIndex : VectorMask) { 19573 if (SourceVectorIndex <= 0) 19574 continue; 19575 unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]); 19576 assert(Idx > 0 && Idx < SortedVecIn.size() && 19577 VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure"); 19578 SourceVectorIndex = Idx; 19579 } 19580 19581 VecIn = std::move(SortedVecIn); 19582 19583 // TODO: Should this fire if some of the input vectors has illegal type (like 19584 // it does now), or should we let legalization run its course first? 19585 19586 // Shuffle phase: 19587 // Take pairs of vectors, and shuffle them so that the result has elements 19588 // from these vectors in the correct places. 19589 // For example, given: 19590 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 19591 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 19592 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 19593 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 19594 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 19595 // We will generate: 19596 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 19597 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 19598 SmallVector<SDValue, 4> Shuffles; 19599 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 19600 unsigned LeftIdx = 2 * In + 1; 19601 SDValue VecLeft = VecIn[LeftIdx]; 19602 SDValue VecRight = 19603 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 19604 19605 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 19606 VecRight, LeftIdx, DidSplitVec)) 19607 Shuffles.push_back(Shuffle); 19608 else 19609 return SDValue(); 19610 } 19611 19612 // If we need the zero vector as an "ingredient" in the blend tree, add it 19613 // to the list of shuffles. 19614 if (UsesZeroVector) 19615 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 19616 : DAG.getConstantFP(0.0, DL, VT)); 19617 19618 // If we only have one shuffle, we're done. 19619 if (Shuffles.size() == 1) 19620 return Shuffles[0]; 19621 19622 // Update the vector mask to point to the post-shuffle vectors. 19623 for (int &Vec : VectorMask) 19624 if (Vec == 0) 19625 Vec = Shuffles.size() - 1; 19626 else 19627 Vec = (Vec - 1) / 2; 19628 19629 // More than one shuffle. Generate a binary tree of blends, e.g. if from 19630 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 19631 // generate: 19632 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 19633 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 19634 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 19635 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 19636 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 19637 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 19638 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 19639 19640 // Make sure the initial size of the shuffle list is even. 19641 if (Shuffles.size() % 2) 19642 Shuffles.push_back(DAG.getUNDEF(VT)); 19643 19644 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 19645 if (CurSize % 2) { 19646 Shuffles[CurSize] = DAG.getUNDEF(VT); 19647 CurSize++; 19648 } 19649 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 19650 int Left = 2 * In; 19651 int Right = 2 * In + 1; 19652 SmallVector<int, 8> Mask(NumElems, -1); 19653 for (unsigned i = 0; i != NumElems; ++i) { 19654 if (VectorMask[i] == Left) { 19655 Mask[i] = i; 19656 VectorMask[i] = In; 19657 } else if (VectorMask[i] == Right) { 19658 Mask[i] = i + NumElems; 19659 VectorMask[i] = In; 19660 } 19661 } 19662 19663 Shuffles[In] = 19664 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 19665 } 19666 } 19667 return Shuffles[0]; 19668 } 19669 19670 // Try to turn a build vector of zero extends of extract vector elts into a 19671 // a vector zero extend and possibly an extract subvector. 19672 // TODO: Support sign extend? 19673 // TODO: Allow undef elements? 19674 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 19675 if (LegalOperations) 19676 return SDValue(); 19677 19678 EVT VT = N->getValueType(0); 19679 19680 bool FoundZeroExtend = false; 19681 SDValue Op0 = N->getOperand(0); 19682 auto checkElem = [&](SDValue Op) -> int64_t { 19683 unsigned Opc = Op.getOpcode(); 19684 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 19685 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 19686 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19687 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 19688 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 19689 return C->getZExtValue(); 19690 return -1; 19691 }; 19692 19693 // Make sure the first element matches 19694 // (zext (extract_vector_elt X, C)) 19695 // Offset must be a constant multiple of the 19696 // known-minimum vector length of the result type. 19697 int64_t Offset = checkElem(Op0); 19698 if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0) 19699 return SDValue(); 19700 19701 unsigned NumElems = N->getNumOperands(); 19702 SDValue In = Op0.getOperand(0).getOperand(0); 19703 EVT InSVT = In.getValueType().getScalarType(); 19704 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 19705 19706 // Don't create an illegal input type after type legalization. 19707 if (LegalTypes && !TLI.isTypeLegal(InVT)) 19708 return SDValue(); 19709 19710 // Ensure all the elements come from the same vector and are adjacent. 19711 for (unsigned i = 1; i != NumElems; ++i) { 19712 if ((Offset + i) != checkElem(N->getOperand(i))) 19713 return SDValue(); 19714 } 19715 19716 SDLoc DL(N); 19717 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 19718 Op0.getOperand(0).getOperand(1)); 19719 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 19720 VT, In); 19721 } 19722 19723 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 19724 EVT VT = N->getValueType(0); 19725 19726 // A vector built entirely of undefs is undef. 19727 if (ISD::allOperandsUndef(N)) 19728 return DAG.getUNDEF(VT); 19729 19730 // If this is a splat of a bitcast from another vector, change to a 19731 // concat_vector. 19732 // For example: 19733 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 19734 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 19735 // 19736 // If X is a build_vector itself, the concat can become a larger build_vector. 19737 // TODO: Maybe this is useful for non-splat too? 19738 if (!LegalOperations) { 19739 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 19740 Splat = peekThroughBitcasts(Splat); 19741 EVT SrcVT = Splat.getValueType(); 19742 if (SrcVT.isVector()) { 19743 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 19744 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 19745 SrcVT.getVectorElementType(), NumElts); 19746 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 19747 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 19748 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 19749 NewVT, Ops); 19750 return DAG.getBitcast(VT, Concat); 19751 } 19752 } 19753 } 19754 } 19755 19756 // Check if we can express BUILD VECTOR via subvector extract. 19757 if (!LegalTypes && (N->getNumOperands() > 1)) { 19758 SDValue Op0 = N->getOperand(0); 19759 auto checkElem = [&](SDValue Op) -> uint64_t { 19760 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 19761 (Op0.getOperand(0) == Op.getOperand(0))) 19762 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 19763 return CNode->getZExtValue(); 19764 return -1; 19765 }; 19766 19767 int Offset = checkElem(Op0); 19768 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 19769 if (Offset + i != checkElem(N->getOperand(i))) { 19770 Offset = -1; 19771 break; 19772 } 19773 } 19774 19775 if ((Offset == 0) && 19776 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 19777 return Op0.getOperand(0); 19778 if ((Offset != -1) && 19779 ((Offset % N->getValueType(0).getVectorNumElements()) == 19780 0)) // IDX must be multiple of output size. 19781 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 19782 Op0.getOperand(0), Op0.getOperand(1)); 19783 } 19784 19785 if (SDValue V = convertBuildVecZextToZext(N)) 19786 return V; 19787 19788 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 19789 return V; 19790 19791 if (SDValue V = reduceBuildVecTruncToBitCast(N)) 19792 return V; 19793 19794 if (SDValue V = reduceBuildVecToShuffle(N)) 19795 return V; 19796 19797 // A splat of a single element is a SPLAT_VECTOR if supported on the target. 19798 // Do this late as some of the above may replace the splat. 19799 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) 19800 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { 19801 assert(!V.isUndef() && "Splat of undef should have been handled earlier"); 19802 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); 19803 } 19804 19805 return SDValue(); 19806 } 19807 19808 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 19809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19810 EVT OpVT = N->getOperand(0).getValueType(); 19811 19812 // If the operands are legal vectors, leave them alone. 19813 if (TLI.isTypeLegal(OpVT)) 19814 return SDValue(); 19815 19816 SDLoc DL(N); 19817 EVT VT = N->getValueType(0); 19818 SmallVector<SDValue, 8> Ops; 19819 19820 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 19821 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 19822 19823 // Keep track of what we encounter. 19824 bool AnyInteger = false; 19825 bool AnyFP = false; 19826 for (const SDValue &Op : N->ops()) { 19827 if (ISD::BITCAST == Op.getOpcode() && 19828 !Op.getOperand(0).getValueType().isVector()) 19829 Ops.push_back(Op.getOperand(0)); 19830 else if (ISD::UNDEF == Op.getOpcode()) 19831 Ops.push_back(ScalarUndef); 19832 else 19833 return SDValue(); 19834 19835 // Note whether we encounter an integer or floating point scalar. 19836 // If it's neither, bail out, it could be something weird like x86mmx. 19837 EVT LastOpVT = Ops.back().getValueType(); 19838 if (LastOpVT.isFloatingPoint()) 19839 AnyFP = true; 19840 else if (LastOpVT.isInteger()) 19841 AnyInteger = true; 19842 else 19843 return SDValue(); 19844 } 19845 19846 // If any of the operands is a floating point scalar bitcast to a vector, 19847 // use floating point types throughout, and bitcast everything. 19848 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 19849 if (AnyFP) { 19850 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 19851 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 19852 if (AnyInteger) { 19853 for (SDValue &Op : Ops) { 19854 if (Op.getValueType() == SVT) 19855 continue; 19856 if (Op.isUndef()) 19857 Op = ScalarUndef; 19858 else 19859 Op = DAG.getBitcast(SVT, Op); 19860 } 19861 } 19862 } 19863 19864 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 19865 VT.getSizeInBits() / SVT.getSizeInBits()); 19866 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 19867 } 19868 19869 // Attempt to merge nested concat_vectors/undefs. 19870 // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d)) 19871 // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d) 19872 static SDValue combineConcatVectorOfConcatVectors(SDNode *N, 19873 SelectionDAG &DAG) { 19874 EVT VT = N->getValueType(0); 19875 19876 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types. 19877 EVT SubVT; 19878 SDValue FirstConcat; 19879 for (const SDValue &Op : N->ops()) { 19880 if (Op.isUndef()) 19881 continue; 19882 if (Op.getOpcode() != ISD::CONCAT_VECTORS) 19883 return SDValue(); 19884 if (!FirstConcat) { 19885 SubVT = Op.getOperand(0).getValueType(); 19886 if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) 19887 return SDValue(); 19888 FirstConcat = Op; 19889 continue; 19890 } 19891 if (SubVT != Op.getOperand(0).getValueType()) 19892 return SDValue(); 19893 } 19894 assert(FirstConcat && "Concat of all-undefs found"); 19895 19896 SmallVector<SDValue> ConcatOps; 19897 for (const SDValue &Op : N->ops()) { 19898 if (Op.isUndef()) { 19899 ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT)); 19900 continue; 19901 } 19902 ConcatOps.append(Op->op_begin(), Op->op_end()); 19903 } 19904 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps); 19905 } 19906 19907 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 19908 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 19909 // most two distinct vectors the same size as the result, attempt to turn this 19910 // into a legal shuffle. 19911 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 19912 EVT VT = N->getValueType(0); 19913 EVT OpVT = N->getOperand(0).getValueType(); 19914 19915 // We currently can't generate an appropriate shuffle for a scalable vector. 19916 if (VT.isScalableVector()) 19917 return SDValue(); 19918 19919 int NumElts = VT.getVectorNumElements(); 19920 int NumOpElts = OpVT.getVectorNumElements(); 19921 19922 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 19923 SmallVector<int, 8> Mask; 19924 19925 for (SDValue Op : N->ops()) { 19926 Op = peekThroughBitcasts(Op); 19927 19928 // UNDEF nodes convert to UNDEF shuffle mask values. 19929 if (Op.isUndef()) { 19930 Mask.append((unsigned)NumOpElts, -1); 19931 continue; 19932 } 19933 19934 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 19935 return SDValue(); 19936 19937 // What vector are we extracting the subvector from and at what index? 19938 SDValue ExtVec = Op.getOperand(0); 19939 int ExtIdx = Op.getConstantOperandVal(1); 19940 19941 // We want the EVT of the original extraction to correctly scale the 19942 // extraction index. 19943 EVT ExtVT = ExtVec.getValueType(); 19944 ExtVec = peekThroughBitcasts(ExtVec); 19945 19946 // UNDEF nodes convert to UNDEF shuffle mask values. 19947 if (ExtVec.isUndef()) { 19948 Mask.append((unsigned)NumOpElts, -1); 19949 continue; 19950 } 19951 19952 // Ensure that we are extracting a subvector from a vector the same 19953 // size as the result. 19954 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 19955 return SDValue(); 19956 19957 // Scale the subvector index to account for any bitcast. 19958 int NumExtElts = ExtVT.getVectorNumElements(); 19959 if (0 == (NumExtElts % NumElts)) 19960 ExtIdx /= (NumExtElts / NumElts); 19961 else if (0 == (NumElts % NumExtElts)) 19962 ExtIdx *= (NumElts / NumExtElts); 19963 else 19964 return SDValue(); 19965 19966 // At most we can reference 2 inputs in the final shuffle. 19967 if (SV0.isUndef() || SV0 == ExtVec) { 19968 SV0 = ExtVec; 19969 for (int i = 0; i != NumOpElts; ++i) 19970 Mask.push_back(i + ExtIdx); 19971 } else if (SV1.isUndef() || SV1 == ExtVec) { 19972 SV1 = ExtVec; 19973 for (int i = 0; i != NumOpElts; ++i) 19974 Mask.push_back(i + ExtIdx + NumElts); 19975 } else { 19976 return SDValue(); 19977 } 19978 } 19979 19980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19981 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 19982 DAG.getBitcast(VT, SV1), Mask, DAG); 19983 } 19984 19985 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { 19986 unsigned CastOpcode = N->getOperand(0).getOpcode(); 19987 switch (CastOpcode) { 19988 case ISD::SINT_TO_FP: 19989 case ISD::UINT_TO_FP: 19990 case ISD::FP_TO_SINT: 19991 case ISD::FP_TO_UINT: 19992 // TODO: Allow more opcodes? 19993 // case ISD::BITCAST: 19994 // case ISD::TRUNCATE: 19995 // case ISD::ZERO_EXTEND: 19996 // case ISD::SIGN_EXTEND: 19997 // case ISD::FP_EXTEND: 19998 break; 19999 default: 20000 return SDValue(); 20001 } 20002 20003 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); 20004 if (!SrcVT.isVector()) 20005 return SDValue(); 20006 20007 // All operands of the concat must be the same kind of cast from the same 20008 // source type. 20009 SmallVector<SDValue, 4> SrcOps; 20010 for (SDValue Op : N->ops()) { 20011 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || 20012 Op.getOperand(0).getValueType() != SrcVT) 20013 return SDValue(); 20014 SrcOps.push_back(Op.getOperand(0)); 20015 } 20016 20017 // The wider cast must be supported by the target. This is unusual because 20018 // the operation support type parameter depends on the opcode. In addition, 20019 // check the other type in the cast to make sure this is really legal. 20020 EVT VT = N->getValueType(0); 20021 EVT SrcEltVT = SrcVT.getVectorElementType(); 20022 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); 20023 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); 20024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20025 switch (CastOpcode) { 20026 case ISD::SINT_TO_FP: 20027 case ISD::UINT_TO_FP: 20028 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || 20029 !TLI.isTypeLegal(VT)) 20030 return SDValue(); 20031 break; 20032 case ISD::FP_TO_SINT: 20033 case ISD::FP_TO_UINT: 20034 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || 20035 !TLI.isTypeLegal(ConcatSrcVT)) 20036 return SDValue(); 20037 break; 20038 default: 20039 llvm_unreachable("Unexpected cast opcode"); 20040 } 20041 20042 // concat (cast X), (cast Y)... -> cast (concat X, Y...) 20043 SDLoc DL(N); 20044 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); 20045 return DAG.getNode(CastOpcode, DL, VT, NewConcat); 20046 } 20047 20048 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 20049 // If we only have one input vector, we don't need to do any concatenation. 20050 if (N->getNumOperands() == 1) 20051 return N->getOperand(0); 20052 20053 // Check if all of the operands are undefs. 20054 EVT VT = N->getValueType(0); 20055 if (ISD::allOperandsUndef(N)) 20056 return DAG.getUNDEF(VT); 20057 20058 // Optimize concat_vectors where all but the first of the vectors are undef. 20059 if (all_of(drop_begin(N->ops()), 20060 [](const SDValue &Op) { return Op.isUndef(); })) { 20061 SDValue In = N->getOperand(0); 20062 assert(In.getValueType().isVector() && "Must concat vectors"); 20063 20064 // If the input is a concat_vectors, just make a larger concat by padding 20065 // with smaller undefs. 20066 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { 20067 unsigned NumOps = N->getNumOperands() * In.getNumOperands(); 20068 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); 20069 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); 20070 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20071 } 20072 20073 SDValue Scalar = peekThroughOneUseBitcasts(In); 20074 20075 // concat_vectors(scalar_to_vector(scalar), undef) -> 20076 // scalar_to_vector(scalar) 20077 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 20078 Scalar.hasOneUse()) { 20079 EVT SVT = Scalar.getValueType().getVectorElementType(); 20080 if (SVT == Scalar.getOperand(0).getValueType()) 20081 Scalar = Scalar.getOperand(0); 20082 } 20083 20084 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 20085 if (!Scalar.getValueType().isVector()) { 20086 // If the bitcast type isn't legal, it might be a trunc of a legal type; 20087 // look through the trunc so we can still do the transform: 20088 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 20089 if (Scalar->getOpcode() == ISD::TRUNCATE && 20090 !TLI.isTypeLegal(Scalar.getValueType()) && 20091 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 20092 Scalar = Scalar->getOperand(0); 20093 20094 EVT SclTy = Scalar.getValueType(); 20095 20096 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 20097 return SDValue(); 20098 20099 // Bail out if the vector size is not a multiple of the scalar size. 20100 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 20101 return SDValue(); 20102 20103 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 20104 if (VNTNumElms < 2) 20105 return SDValue(); 20106 20107 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 20108 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 20109 return SDValue(); 20110 20111 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 20112 return DAG.getBitcast(VT, Res); 20113 } 20114 } 20115 20116 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 20117 // We have already tested above for an UNDEF only concatenation. 20118 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 20119 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 20120 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 20121 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 20122 }; 20123 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 20124 SmallVector<SDValue, 8> Opnds; 20125 EVT SVT = VT.getScalarType(); 20126 20127 EVT MinVT = SVT; 20128 if (!SVT.isFloatingPoint()) { 20129 // If BUILD_VECTOR are from built from integer, they may have different 20130 // operand types. Get the smallest type and truncate all operands to it. 20131 bool FoundMinVT = false; 20132 for (const SDValue &Op : N->ops()) 20133 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20134 EVT OpSVT = Op.getOperand(0).getValueType(); 20135 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 20136 FoundMinVT = true; 20137 } 20138 assert(FoundMinVT && "Concat vector type mismatch"); 20139 } 20140 20141 for (const SDValue &Op : N->ops()) { 20142 EVT OpVT = Op.getValueType(); 20143 unsigned NumElts = OpVT.getVectorNumElements(); 20144 20145 if (ISD::UNDEF == Op.getOpcode()) 20146 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 20147 20148 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 20149 if (SVT.isFloatingPoint()) { 20150 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 20151 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 20152 } else { 20153 for (unsigned i = 0; i != NumElts; ++i) 20154 Opnds.push_back( 20155 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 20156 } 20157 } 20158 } 20159 20160 assert(VT.getVectorNumElements() == Opnds.size() && 20161 "Concat vector type mismatch"); 20162 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 20163 } 20164 20165 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 20166 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...). 20167 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 20168 return V; 20169 20170 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 20171 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE. 20172 if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG)) 20173 return V; 20174 20175 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 20176 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 20177 return V; 20178 } 20179 20180 if (SDValue V = combineConcatVectorOfCasts(N, DAG)) 20181 return V; 20182 20183 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 20184 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR 20185 // operands and look for a CONCAT operations that place the incoming vectors 20186 // at the exact same location. 20187 // 20188 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. 20189 SDValue SingleSource = SDValue(); 20190 unsigned PartNumElem = 20191 N->getOperand(0).getValueType().getVectorMinNumElements(); 20192 20193 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 20194 SDValue Op = N->getOperand(i); 20195 20196 if (Op.isUndef()) 20197 continue; 20198 20199 // Check if this is the identity extract: 20200 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 20201 return SDValue(); 20202 20203 // Find the single incoming vector for the extract_subvector. 20204 if (SingleSource.getNode()) { 20205 if (Op.getOperand(0) != SingleSource) 20206 return SDValue(); 20207 } else { 20208 SingleSource = Op.getOperand(0); 20209 20210 // Check the source type is the same as the type of the result. 20211 // If not, this concat may extend the vector, so we can not 20212 // optimize it away. 20213 if (SingleSource.getValueType() != N->getValueType(0)) 20214 return SDValue(); 20215 } 20216 20217 // Check that we are reading from the identity index. 20218 unsigned IdentityIndex = i * PartNumElem; 20219 if (Op.getConstantOperandAPInt(1) != IdentityIndex) 20220 return SDValue(); 20221 } 20222 20223 if (SingleSource.getNode()) 20224 return SingleSource; 20225 20226 return SDValue(); 20227 } 20228 20229 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find 20230 // if the subvector can be sourced for free. 20231 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { 20232 if (V.getOpcode() == ISD::INSERT_SUBVECTOR && 20233 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { 20234 return V.getOperand(1); 20235 } 20236 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 20237 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && 20238 V.getOperand(0).getValueType() == SubVT && 20239 (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { 20240 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); 20241 return V.getOperand(SubIdx); 20242 } 20243 return SDValue(); 20244 } 20245 20246 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 20247 SelectionDAG &DAG, 20248 bool LegalOperations) { 20249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20250 SDValue BinOp = Extract->getOperand(0); 20251 unsigned BinOpcode = BinOp.getOpcode(); 20252 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) 20253 return SDValue(); 20254 20255 EVT VecVT = BinOp.getValueType(); 20256 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 20257 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) 20258 return SDValue(); 20259 20260 SDValue Index = Extract->getOperand(1); 20261 EVT SubVT = Extract->getValueType(0); 20262 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) 20263 return SDValue(); 20264 20265 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); 20266 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); 20267 20268 // TODO: We could handle the case where only 1 operand is being inserted by 20269 // creating an extract of the other operand, but that requires checking 20270 // number of uses and/or costs. 20271 if (!Sub0 || !Sub1) 20272 return SDValue(); 20273 20274 // We are inserting both operands of the wide binop only to extract back 20275 // to the narrow vector size. Eliminate all of the insert/extract: 20276 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 20277 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, 20278 BinOp->getFlags()); 20279 } 20280 20281 /// If we are extracting a subvector produced by a wide binary operator try 20282 /// to use a narrow binary operator and/or avoid concatenation and extraction. 20283 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, 20284 bool LegalOperations) { 20285 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 20286 // some of these bailouts with other transforms. 20287 20288 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) 20289 return V; 20290 20291 // The extract index must be a constant, so we can map it to a concat operand. 20292 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 20293 if (!ExtractIndexC) 20294 return SDValue(); 20295 20296 // We are looking for an optionally bitcasted wide vector binary operator 20297 // feeding an extract subvector. 20298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20299 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 20300 unsigned BOpcode = BinOp.getOpcode(); 20301 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) 20302 return SDValue(); 20303 20304 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be 20305 // reduced to the unary fneg when it is visited, and we probably want to deal 20306 // with fneg in a target-specific way. 20307 if (BOpcode == ISD::FSUB) { 20308 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); 20309 if (C && C->getValueAPF().isNegZero()) 20310 return SDValue(); 20311 } 20312 20313 // The binop must be a vector type, so we can extract some fraction of it. 20314 EVT WideBVT = BinOp.getValueType(); 20315 // The optimisations below currently assume we are dealing with fixed length 20316 // vectors. It is possible to add support for scalable vectors, but at the 20317 // moment we've done no analysis to prove whether they are profitable or not. 20318 if (!WideBVT.isFixedLengthVector()) 20319 return SDValue(); 20320 20321 EVT VT = Extract->getValueType(0); 20322 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 20323 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 20324 "Extract index is not a multiple of the vector length."); 20325 20326 // Bail out if this is not a proper multiple width extraction. 20327 unsigned WideWidth = WideBVT.getSizeInBits(); 20328 unsigned NarrowWidth = VT.getSizeInBits(); 20329 if (WideWidth % NarrowWidth != 0) 20330 return SDValue(); 20331 20332 // Bail out if we are extracting a fraction of a single operation. This can 20333 // occur because we potentially looked through a bitcast of the binop. 20334 unsigned NarrowingRatio = WideWidth / NarrowWidth; 20335 unsigned WideNumElts = WideBVT.getVectorNumElements(); 20336 if (WideNumElts % NarrowingRatio != 0) 20337 return SDValue(); 20338 20339 // Bail out if the target does not support a narrower version of the binop. 20340 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 20341 WideNumElts / NarrowingRatio); 20342 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 20343 return SDValue(); 20344 20345 // If extraction is cheap, we don't need to look at the binop operands 20346 // for concat ops. The narrow binop alone makes this transform profitable. 20347 // We can't just reuse the original extract index operand because we may have 20348 // bitcasted. 20349 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 20350 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 20351 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 20352 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 20353 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 20354 SDLoc DL(Extract); 20355 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); 20356 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20357 BinOp.getOperand(0), NewExtIndex); 20358 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20359 BinOp.getOperand(1), NewExtIndex); 20360 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, 20361 BinOp.getNode()->getFlags()); 20362 return DAG.getBitcast(VT, NarrowBinOp); 20363 } 20364 20365 // Only handle the case where we are doubling and then halving. A larger ratio 20366 // may require more than two narrow binops to replace the wide binop. 20367 if (NarrowingRatio != 2) 20368 return SDValue(); 20369 20370 // TODO: The motivating case for this transform is an x86 AVX1 target. That 20371 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 20372 // flavors, but no other 256-bit integer support. This could be extended to 20373 // handle any binop, but that may require fixing/adding other folds to avoid 20374 // codegen regressions. 20375 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 20376 return SDValue(); 20377 20378 // We need at least one concatenation operation of a binop operand to make 20379 // this transform worthwhile. The concat must double the input vector sizes. 20380 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { 20381 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) 20382 return V.getOperand(ConcatOpNum); 20383 return SDValue(); 20384 }; 20385 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); 20386 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); 20387 20388 if (SubVecL || SubVecR) { 20389 // If a binop operand was not the result of a concat, we must extract a 20390 // half-sized operand for our new narrow binop: 20391 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 20392 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 20393 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 20394 SDLoc DL(Extract); 20395 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); 20396 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) 20397 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20398 BinOp.getOperand(0), IndexC); 20399 20400 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) 20401 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 20402 BinOp.getOperand(1), IndexC); 20403 20404 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 20405 return DAG.getBitcast(VT, NarrowBinOp); 20406 } 20407 20408 return SDValue(); 20409 } 20410 20411 /// If we are extracting a subvector from a wide vector load, convert to a 20412 /// narrow load to eliminate the extraction: 20413 /// (extract_subvector (load wide vector)) --> (load narrow vector) 20414 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 20415 // TODO: Add support for big-endian. The offset calculation must be adjusted. 20416 if (DAG.getDataLayout().isBigEndian()) 20417 return SDValue(); 20418 20419 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 20420 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 20421 if (!Ld || Ld->getExtensionType() || !Ld->isSimple() || 20422 !ExtIdx) 20423 return SDValue(); 20424 20425 // Allow targets to opt-out. 20426 EVT VT = Extract->getValueType(0); 20427 20428 // We can only create byte sized loads. 20429 if (!VT.isByteSized()) 20430 return SDValue(); 20431 20432 unsigned Index = ExtIdx->getZExtValue(); 20433 unsigned NumElts = VT.getVectorMinNumElements(); 20434 20435 // The definition of EXTRACT_SUBVECTOR states that the index must be a 20436 // multiple of the minimum number of elements in the result type. 20437 assert(Index % NumElts == 0 && "The extract subvector index is not a " 20438 "multiple of the result's element count"); 20439 20440 // It's fine to use TypeSize here as we know the offset will not be negative. 20441 TypeSize Offset = VT.getStoreSize() * (Index / NumElts); 20442 20443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20444 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 20445 return SDValue(); 20446 20447 // The narrow load will be offset from the base address of the old load if 20448 // we are extracting from something besides index 0 (little-endian). 20449 SDLoc DL(Extract); 20450 20451 // TODO: Use "BaseIndexOffset" to make this more effective. 20452 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); 20453 20454 uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); 20455 MachineFunction &MF = DAG.getMachineFunction(); 20456 MachineMemOperand *MMO; 20457 if (Offset.isScalable()) { 20458 MachinePointerInfo MPI = 20459 MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); 20460 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize); 20461 } else 20462 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(), 20463 StoreSize); 20464 20465 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 20466 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 20467 return NewLd; 20468 } 20469 20470 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 20471 EVT NVT = N->getValueType(0); 20472 SDValue V = N->getOperand(0); 20473 uint64_t ExtIdx = N->getConstantOperandVal(1); 20474 20475 // Extract from UNDEF is UNDEF. 20476 if (V.isUndef()) 20477 return DAG.getUNDEF(NVT); 20478 20479 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 20480 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 20481 return NarrowLoad; 20482 20483 // Combine an extract of an extract into a single extract_subvector. 20484 // ext (ext X, C), 0 --> ext X, C 20485 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { 20486 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 20487 V.getConstantOperandVal(1)) && 20488 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 20489 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 20490 V.getOperand(1)); 20491 } 20492 } 20493 20494 // Try to move vector bitcast after extract_subv by scaling extraction index: 20495 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 20496 if (V.getOpcode() == ISD::BITCAST && 20497 V.getOperand(0).getValueType().isVector() && 20498 (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) { 20499 SDValue SrcOp = V.getOperand(0); 20500 EVT SrcVT = SrcOp.getValueType(); 20501 unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); 20502 unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); 20503 if ((SrcNumElts % DestNumElts) == 0) { 20504 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 20505 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; 20506 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 20507 NewExtEC); 20508 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 20509 SDLoc DL(N); 20510 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); 20511 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 20512 V.getOperand(0), NewIndex); 20513 return DAG.getBitcast(NVT, NewExtract); 20514 } 20515 } 20516 if ((DestNumElts % SrcNumElts) == 0) { 20517 unsigned DestSrcRatio = DestNumElts / SrcNumElts; 20518 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { 20519 ElementCount NewExtEC = 20520 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); 20521 EVT ScalarVT = SrcVT.getScalarType(); 20522 if ((ExtIdx % DestSrcRatio) == 0) { 20523 SDLoc DL(N); 20524 unsigned IndexValScaled = ExtIdx / DestSrcRatio; 20525 EVT NewExtVT = 20526 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); 20527 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 20528 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 20529 SDValue NewExtract = 20530 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 20531 V.getOperand(0), NewIndex); 20532 return DAG.getBitcast(NVT, NewExtract); 20533 } 20534 if (NewExtEC.isScalar() && 20535 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { 20536 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 20537 SDValue NewExtract = 20538 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, 20539 V.getOperand(0), NewIndex); 20540 return DAG.getBitcast(NVT, NewExtract); 20541 } 20542 } 20543 } 20544 } 20545 } 20546 20547 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 20548 unsigned ExtNumElts = NVT.getVectorMinNumElements(); 20549 EVT ConcatSrcVT = V.getOperand(0).getValueType(); 20550 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && 20551 "Concat and extract subvector do not change element type"); 20552 assert((ExtIdx % ExtNumElts) == 0 && 20553 "Extract index is not a multiple of the input vector length."); 20554 20555 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); 20556 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; 20557 20558 // If the concatenated source types match this extract, it's a direct 20559 // simplification: 20560 // extract_subvec (concat V1, V2, ...), i --> Vi 20561 if (ConcatSrcNumElts == ExtNumElts) 20562 return V.getOperand(ConcatOpIdx); 20563 20564 // If the concatenated source vectors are a multiple length of this extract, 20565 // then extract a fraction of one of those source vectors directly from a 20566 // concat operand. Example: 20567 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> 20568 // v2i8 extract_subvec v8i8 Y, 6 20569 if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) { 20570 SDLoc DL(N); 20571 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; 20572 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && 20573 "Trying to extract from >1 concat operand?"); 20574 assert(NewExtIdx % ExtNumElts == 0 && 20575 "Extract index is not a multiple of the input vector length."); 20576 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); 20577 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, 20578 V.getOperand(ConcatOpIdx), NewIndexC); 20579 } 20580 } 20581 20582 V = peekThroughBitcasts(V); 20583 20584 // If the input is a build vector. Try to make a smaller build vector. 20585 if (V.getOpcode() == ISD::BUILD_VECTOR) { 20586 EVT InVT = V.getValueType(); 20587 unsigned ExtractSize = NVT.getSizeInBits(); 20588 unsigned EltSize = InVT.getScalarSizeInBits(); 20589 // Only do this if we won't split any elements. 20590 if (ExtractSize % EltSize == 0) { 20591 unsigned NumElems = ExtractSize / EltSize; 20592 EVT EltVT = InVT.getVectorElementType(); 20593 EVT ExtractVT = 20594 NumElems == 1 ? EltVT 20595 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); 20596 if ((Level < AfterLegalizeDAG || 20597 (NumElems == 1 || 20598 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 20599 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 20600 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; 20601 20602 if (NumElems == 1) { 20603 SDValue Src = V->getOperand(IdxVal); 20604 if (EltVT != Src.getValueType()) 20605 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 20606 return DAG.getBitcast(NVT, Src); 20607 } 20608 20609 // Extract the pieces from the original build_vector. 20610 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), 20611 V->ops().slice(IdxVal, NumElems)); 20612 return DAG.getBitcast(NVT, BuildVec); 20613 } 20614 } 20615 } 20616 20617 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 20618 // Handle only simple case where vector being inserted and vector 20619 // being extracted are of same size. 20620 EVT SmallVT = V.getOperand(1).getValueType(); 20621 if (!NVT.bitsEq(SmallVT)) 20622 return SDValue(); 20623 20624 // Combine: 20625 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 20626 // Into: 20627 // indices are equal or bit offsets are equal => V1 20628 // otherwise => (extract_subvec V1, ExtIdx) 20629 uint64_t InsIdx = V.getConstantOperandVal(2); 20630 if (InsIdx * SmallVT.getScalarSizeInBits() == 20631 ExtIdx * NVT.getScalarSizeInBits()) { 20632 if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT)) 20633 return SDValue(); 20634 20635 return DAG.getBitcast(NVT, V.getOperand(1)); 20636 } 20637 return DAG.getNode( 20638 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 20639 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 20640 N->getOperand(1)); 20641 } 20642 20643 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) 20644 return NarrowBOp; 20645 20646 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 20647 return SDValue(N, 0); 20648 20649 return SDValue(); 20650 } 20651 20652 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 20653 /// followed by concatenation. Narrow vector ops may have better performance 20654 /// than wide ops, and this can unlock further narrowing of other vector ops. 20655 /// Targets can invert this transform later if it is not profitable. 20656 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 20657 SelectionDAG &DAG) { 20658 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 20659 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 20660 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 20661 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 20662 return SDValue(); 20663 20664 // Split the wide shuffle mask into halves. Any mask element that is accessing 20665 // operand 1 is offset down to account for narrowing of the vectors. 20666 ArrayRef<int> Mask = Shuf->getMask(); 20667 EVT VT = Shuf->getValueType(0); 20668 unsigned NumElts = VT.getVectorNumElements(); 20669 unsigned HalfNumElts = NumElts / 2; 20670 SmallVector<int, 16> Mask0(HalfNumElts, -1); 20671 SmallVector<int, 16> Mask1(HalfNumElts, -1); 20672 for (unsigned i = 0; i != NumElts; ++i) { 20673 if (Mask[i] == -1) 20674 continue; 20675 // If we reference the upper (undef) subvector then the element is undef. 20676 if ((Mask[i] % NumElts) >= HalfNumElts) 20677 continue; 20678 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 20679 if (i < HalfNumElts) 20680 Mask0[i] = M; 20681 else 20682 Mask1[i - HalfNumElts] = M; 20683 } 20684 20685 // Ask the target if this is a valid transform. 20686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20687 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 20688 HalfNumElts); 20689 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 20690 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 20691 return SDValue(); 20692 20693 // shuffle (concat X, undef), (concat Y, undef), Mask --> 20694 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 20695 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 20696 SDLoc DL(Shuf); 20697 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 20698 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 20699 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 20700 } 20701 20702 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 20703 // or turn a shuffle of a single concat into simpler shuffle then concat. 20704 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 20705 EVT VT = N->getValueType(0); 20706 unsigned NumElts = VT.getVectorNumElements(); 20707 20708 SDValue N0 = N->getOperand(0); 20709 SDValue N1 = N->getOperand(1); 20710 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 20711 ArrayRef<int> Mask = SVN->getMask(); 20712 20713 SmallVector<SDValue, 4> Ops; 20714 EVT ConcatVT = N0.getOperand(0).getValueType(); 20715 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 20716 unsigned NumConcats = NumElts / NumElemsPerConcat; 20717 20718 auto IsUndefMaskElt = [](int i) { return i == -1; }; 20719 20720 // Special case: shuffle(concat(A,B)) can be more efficiently represented 20721 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 20722 // half vector elements. 20723 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 20724 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 20725 IsUndefMaskElt)) { 20726 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 20727 N0.getOperand(1), 20728 Mask.slice(0, NumElemsPerConcat)); 20729 N1 = DAG.getUNDEF(ConcatVT); 20730 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 20731 } 20732 20733 // Look at every vector that's inserted. We're looking for exact 20734 // subvector-sized copies from a concatenated vector 20735 for (unsigned I = 0; I != NumConcats; ++I) { 20736 unsigned Begin = I * NumElemsPerConcat; 20737 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 20738 20739 // Make sure we're dealing with a copy. 20740 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 20741 Ops.push_back(DAG.getUNDEF(ConcatVT)); 20742 continue; 20743 } 20744 20745 int OpIdx = -1; 20746 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 20747 if (IsUndefMaskElt(SubMask[i])) 20748 continue; 20749 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 20750 return SDValue(); 20751 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 20752 if (0 <= OpIdx && EltOpIdx != OpIdx) 20753 return SDValue(); 20754 OpIdx = EltOpIdx; 20755 } 20756 assert(0 <= OpIdx && "Unknown concat_vectors op"); 20757 20758 if (OpIdx < (int)N0.getNumOperands()) 20759 Ops.push_back(N0.getOperand(OpIdx)); 20760 else 20761 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 20762 } 20763 20764 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20765 } 20766 20767 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 20768 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 20769 // 20770 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 20771 // a simplification in some sense, but it isn't appropriate in general: some 20772 // BUILD_VECTORs are substantially cheaper than others. The general case 20773 // of a BUILD_VECTOR requires inserting each element individually (or 20774 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 20775 // all constants is a single constant pool load. A BUILD_VECTOR where each 20776 // element is identical is a splat. A BUILD_VECTOR where most of the operands 20777 // are undef lowers to a small number of element insertions. 20778 // 20779 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 20780 // We don't fold shuffles where one side is a non-zero constant, and we don't 20781 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 20782 // non-constant operands. This seems to work out reasonably well in practice. 20783 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 20784 SelectionDAG &DAG, 20785 const TargetLowering &TLI) { 20786 EVT VT = SVN->getValueType(0); 20787 unsigned NumElts = VT.getVectorNumElements(); 20788 SDValue N0 = SVN->getOperand(0); 20789 SDValue N1 = SVN->getOperand(1); 20790 20791 if (!N0->hasOneUse()) 20792 return SDValue(); 20793 20794 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 20795 // discussed above. 20796 if (!N1.isUndef()) { 20797 if (!N1->hasOneUse()) 20798 return SDValue(); 20799 20800 bool N0AnyConst = isAnyConstantBuildVector(N0); 20801 bool N1AnyConst = isAnyConstantBuildVector(N1); 20802 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 20803 return SDValue(); 20804 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 20805 return SDValue(); 20806 } 20807 20808 // If both inputs are splats of the same value then we can safely merge this 20809 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 20810 bool IsSplat = false; 20811 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 20812 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 20813 if (BV0 && BV1) 20814 if (SDValue Splat0 = BV0->getSplatValue()) 20815 IsSplat = (Splat0 == BV1->getSplatValue()); 20816 20817 SmallVector<SDValue, 8> Ops; 20818 SmallSet<SDValue, 16> DuplicateOps; 20819 for (int M : SVN->getMask()) { 20820 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 20821 if (M >= 0) { 20822 int Idx = M < (int)NumElts ? M : M - NumElts; 20823 SDValue &S = (M < (int)NumElts ? N0 : N1); 20824 if (S.getOpcode() == ISD::BUILD_VECTOR) { 20825 Op = S.getOperand(Idx); 20826 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 20827 SDValue Op0 = S.getOperand(0); 20828 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 20829 } else { 20830 // Operand can't be combined - bail out. 20831 return SDValue(); 20832 } 20833 } 20834 20835 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 20836 // generating a splat; semantically, this is fine, but it's likely to 20837 // generate low-quality code if the target can't reconstruct an appropriate 20838 // shuffle. 20839 if (!Op.isUndef() && !isIntOrFPConstant(Op)) 20840 if (!IsSplat && !DuplicateOps.insert(Op).second) 20841 return SDValue(); 20842 20843 Ops.push_back(Op); 20844 } 20845 20846 // BUILD_VECTOR requires all inputs to be of the same type, find the 20847 // maximum type and extend them all. 20848 EVT SVT = VT.getScalarType(); 20849 if (SVT.isInteger()) 20850 for (SDValue &Op : Ops) 20851 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 20852 if (SVT != VT.getScalarType()) 20853 for (SDValue &Op : Ops) 20854 Op = TLI.isZExtFree(Op.getValueType(), SVT) 20855 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 20856 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); 20857 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 20858 } 20859 20860 // Match shuffles that can be converted to any_vector_extend_in_reg. 20861 // This is often generated during legalization. 20862 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 20863 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 20864 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 20865 SelectionDAG &DAG, 20866 const TargetLowering &TLI, 20867 bool LegalOperations) { 20868 EVT VT = SVN->getValueType(0); 20869 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 20870 20871 // TODO Add support for big-endian when we have a test case. 20872 if (!VT.isInteger() || IsBigEndian) 20873 return SDValue(); 20874 20875 unsigned NumElts = VT.getVectorNumElements(); 20876 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20877 ArrayRef<int> Mask = SVN->getMask(); 20878 SDValue N0 = SVN->getOperand(0); 20879 20880 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 20881 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 20882 for (unsigned i = 0; i != NumElts; ++i) { 20883 if (Mask[i] < 0) 20884 continue; 20885 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 20886 continue; 20887 return false; 20888 } 20889 return true; 20890 }; 20891 20892 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 20893 // power-of-2 extensions as they are the most likely. 20894 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 20895 // Check for non power of 2 vector sizes 20896 if (NumElts % Scale != 0) 20897 continue; 20898 if (!isAnyExtend(Scale)) 20899 continue; 20900 20901 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 20902 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 20903 // Never create an illegal type. Only create unsupported operations if we 20904 // are pre-legalization. 20905 if (TLI.isTypeLegal(OutVT)) 20906 if (!LegalOperations || 20907 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 20908 return DAG.getBitcast(VT, 20909 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 20910 SDLoc(SVN), OutVT, N0)); 20911 } 20912 20913 return SDValue(); 20914 } 20915 20916 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 20917 // each source element of a large type into the lowest elements of a smaller 20918 // destination type. This is often generated during legalization. 20919 // If the source node itself was a '*_extend_vector_inreg' node then we should 20920 // then be able to remove it. 20921 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 20922 SelectionDAG &DAG) { 20923 EVT VT = SVN->getValueType(0); 20924 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 20925 20926 // TODO Add support for big-endian when we have a test case. 20927 if (!VT.isInteger() || IsBigEndian) 20928 return SDValue(); 20929 20930 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 20931 20932 unsigned Opcode = N0.getOpcode(); 20933 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 20934 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 20935 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 20936 return SDValue(); 20937 20938 SDValue N00 = N0.getOperand(0); 20939 ArrayRef<int> Mask = SVN->getMask(); 20940 unsigned NumElts = VT.getVectorNumElements(); 20941 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20942 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 20943 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 20944 20945 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 20946 return SDValue(); 20947 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 20948 20949 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 20950 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 20951 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 20952 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 20953 for (unsigned i = 0; i != NumElts; ++i) { 20954 if (Mask[i] < 0) 20955 continue; 20956 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 20957 continue; 20958 return false; 20959 } 20960 return true; 20961 }; 20962 20963 // At the moment we just handle the case where we've truncated back to the 20964 // same size as before the extension. 20965 // TODO: handle more extension/truncation cases as cases arise. 20966 if (EltSizeInBits != ExtSrcSizeInBits) 20967 return SDValue(); 20968 20969 // We can remove *extend_vector_inreg only if the truncation happens at 20970 // the same scale as the extension. 20971 if (isTruncate(ExtScale)) 20972 return DAG.getBitcast(VT, N00); 20973 20974 return SDValue(); 20975 } 20976 20977 // Combine shuffles of splat-shuffles of the form: 20978 // shuffle (shuffle V, undef, splat-mask), undef, M 20979 // If splat-mask contains undef elements, we need to be careful about 20980 // introducing undef's in the folded mask which are not the result of composing 20981 // the masks of the shuffles. 20982 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 20983 SelectionDAG &DAG) { 20984 if (!Shuf->getOperand(1).isUndef()) 20985 return SDValue(); 20986 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 20987 if (!Splat || !Splat->isSplat()) 20988 return SDValue(); 20989 20990 ArrayRef<int> ShufMask = Shuf->getMask(); 20991 ArrayRef<int> SplatMask = Splat->getMask(); 20992 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 20993 20994 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 20995 // every undef mask element in the splat-shuffle has a corresponding undef 20996 // element in the user-shuffle's mask or if the composition of mask elements 20997 // would result in undef. 20998 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 20999 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 21000 // In this case it is not legal to simplify to the splat-shuffle because we 21001 // may be exposing the users of the shuffle an undef element at index 1 21002 // which was not there before the combine. 21003 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 21004 // In this case the composition of masks yields SplatMask, so it's ok to 21005 // simplify to the splat-shuffle. 21006 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 21007 // In this case the composed mask includes all undef elements of SplatMask 21008 // and in addition sets element zero to undef. It is safe to simplify to 21009 // the splat-shuffle. 21010 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 21011 ArrayRef<int> SplatMask) { 21012 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 21013 if (UserMask[i] != -1 && SplatMask[i] == -1 && 21014 SplatMask[UserMask[i]] != -1) 21015 return false; 21016 return true; 21017 }; 21018 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 21019 return Shuf->getOperand(0); 21020 21021 // Create a new shuffle with a mask that is composed of the two shuffles' 21022 // masks. 21023 SmallVector<int, 32> NewMask; 21024 for (int Idx : ShufMask) 21025 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 21026 21027 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 21028 Splat->getOperand(0), Splat->getOperand(1), 21029 NewMask); 21030 } 21031 21032 /// Combine shuffle of shuffle of the form: 21033 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X 21034 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, 21035 SelectionDAG &DAG) { 21036 if (!OuterShuf->getOperand(1).isUndef()) 21037 return SDValue(); 21038 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); 21039 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) 21040 return SDValue(); 21041 21042 ArrayRef<int> OuterMask = OuterShuf->getMask(); 21043 ArrayRef<int> InnerMask = InnerShuf->getMask(); 21044 unsigned NumElts = OuterMask.size(); 21045 assert(NumElts == InnerMask.size() && "Mask length mismatch"); 21046 SmallVector<int, 32> CombinedMask(NumElts, -1); 21047 int SplatIndex = -1; 21048 for (unsigned i = 0; i != NumElts; ++i) { 21049 // Undef lanes remain undef. 21050 int OuterMaskElt = OuterMask[i]; 21051 if (OuterMaskElt == -1) 21052 continue; 21053 21054 // Peek through the shuffle masks to get the underlying source element. 21055 int InnerMaskElt = InnerMask[OuterMaskElt]; 21056 if (InnerMaskElt == -1) 21057 continue; 21058 21059 // Initialize the splatted element. 21060 if (SplatIndex == -1) 21061 SplatIndex = InnerMaskElt; 21062 21063 // Non-matching index - this is not a splat. 21064 if (SplatIndex != InnerMaskElt) 21065 return SDValue(); 21066 21067 CombinedMask[i] = InnerMaskElt; 21068 } 21069 assert((all_of(CombinedMask, [](int M) { return M == -1; }) || 21070 getSplatIndex(CombinedMask) != -1) && 21071 "Expected a splat mask"); 21072 21073 // TODO: The transform may be a win even if the mask is not legal. 21074 EVT VT = OuterShuf->getValueType(0); 21075 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); 21076 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) 21077 return SDValue(); 21078 21079 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), 21080 InnerShuf->getOperand(1), CombinedMask); 21081 } 21082 21083 /// If the shuffle mask is taking exactly one element from the first vector 21084 /// operand and passing through all other elements from the second vector 21085 /// operand, return the index of the mask element that is choosing an element 21086 /// from the first operand. Otherwise, return -1. 21087 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 21088 int MaskSize = Mask.size(); 21089 int EltFromOp0 = -1; 21090 // TODO: This does not match if there are undef elements in the shuffle mask. 21091 // Should we ignore undefs in the shuffle mask instead? The trade-off is 21092 // removing an instruction (a shuffle), but losing the knowledge that some 21093 // vector lanes are not needed. 21094 for (int i = 0; i != MaskSize; ++i) { 21095 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 21096 // We're looking for a shuffle of exactly one element from operand 0. 21097 if (EltFromOp0 != -1) 21098 return -1; 21099 EltFromOp0 = i; 21100 } else if (Mask[i] != i + MaskSize) { 21101 // Nothing from operand 1 can change lanes. 21102 return -1; 21103 } 21104 } 21105 return EltFromOp0; 21106 } 21107 21108 /// If a shuffle inserts exactly one element from a source vector operand into 21109 /// another vector operand and we can access the specified element as a scalar, 21110 /// then we can eliminate the shuffle. 21111 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 21112 SelectionDAG &DAG) { 21113 // First, check if we are taking one element of a vector and shuffling that 21114 // element into another vector. 21115 ArrayRef<int> Mask = Shuf->getMask(); 21116 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 21117 SDValue Op0 = Shuf->getOperand(0); 21118 SDValue Op1 = Shuf->getOperand(1); 21119 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 21120 if (ShufOp0Index == -1) { 21121 // Commute mask and check again. 21122 ShuffleVectorSDNode::commuteMask(CommutedMask); 21123 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 21124 if (ShufOp0Index == -1) 21125 return SDValue(); 21126 // Commute operands to match the commuted shuffle mask. 21127 std::swap(Op0, Op1); 21128 Mask = CommutedMask; 21129 } 21130 21131 // The shuffle inserts exactly one element from operand 0 into operand 1. 21132 // Now see if we can access that element as a scalar via a real insert element 21133 // instruction. 21134 // TODO: We can try harder to locate the element as a scalar. Examples: it 21135 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 21136 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 21137 "Shuffle mask value must be from operand 0"); 21138 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 21139 return SDValue(); 21140 21141 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 21142 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 21143 return SDValue(); 21144 21145 // There's an existing insertelement with constant insertion index, so we 21146 // don't need to check the legality/profitability of a replacement operation 21147 // that differs at most in the constant value. The target should be able to 21148 // lower any of those in a similar way. If not, legalization will expand this 21149 // to a scalar-to-vector plus shuffle. 21150 // 21151 // Note that the shuffle may move the scalar from the position that the insert 21152 // element used. Therefore, our new insert element occurs at the shuffle's 21153 // mask index value, not the insert's index value. 21154 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 21155 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); 21156 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 21157 Op1, Op0.getOperand(1), NewInsIndex); 21158 } 21159 21160 /// If we have a unary shuffle of a shuffle, see if it can be folded away 21161 /// completely. This has the potential to lose undef knowledge because the first 21162 /// shuffle may not have an undef mask element where the second one does. So 21163 /// only call this after doing simplifications based on demanded elements. 21164 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 21165 // shuf (shuf0 X, Y, Mask0), undef, Mask 21166 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 21167 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 21168 return SDValue(); 21169 21170 ArrayRef<int> Mask = Shuf->getMask(); 21171 ArrayRef<int> Mask0 = Shuf0->getMask(); 21172 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 21173 // Ignore undef elements. 21174 if (Mask[i] == -1) 21175 continue; 21176 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 21177 21178 // Is the element of the shuffle operand chosen by this shuffle the same as 21179 // the element chosen by the shuffle operand itself? 21180 if (Mask0[Mask[i]] != Mask0[i]) 21181 return SDValue(); 21182 } 21183 // Every element of this shuffle is identical to the result of the previous 21184 // shuffle, so we can replace this value. 21185 return Shuf->getOperand(0); 21186 } 21187 21188 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 21189 EVT VT = N->getValueType(0); 21190 unsigned NumElts = VT.getVectorNumElements(); 21191 21192 SDValue N0 = N->getOperand(0); 21193 SDValue N1 = N->getOperand(1); 21194 21195 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 21196 21197 // Canonicalize shuffle undef, undef -> undef 21198 if (N0.isUndef() && N1.isUndef()) 21199 return DAG.getUNDEF(VT); 21200 21201 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 21202 21203 // Canonicalize shuffle v, v -> v, undef 21204 if (N0 == N1) { 21205 SmallVector<int, 8> NewMask; 21206 for (unsigned i = 0; i != NumElts; ++i) { 21207 int Idx = SVN->getMaskElt(i); 21208 if (Idx >= (int)NumElts) Idx -= NumElts; 21209 NewMask.push_back(Idx); 21210 } 21211 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 21212 } 21213 21214 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 21215 if (N0.isUndef()) 21216 return DAG.getCommutedVectorShuffle(*SVN); 21217 21218 // Remove references to rhs if it is undef 21219 if (N1.isUndef()) { 21220 bool Changed = false; 21221 SmallVector<int, 8> NewMask; 21222 for (unsigned i = 0; i != NumElts; ++i) { 21223 int Idx = SVN->getMaskElt(i); 21224 if (Idx >= (int)NumElts) { 21225 Idx = -1; 21226 Changed = true; 21227 } 21228 NewMask.push_back(Idx); 21229 } 21230 if (Changed) 21231 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 21232 } 21233 21234 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 21235 return InsElt; 21236 21237 // A shuffle of a single vector that is a splatted value can always be folded. 21238 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 21239 return V; 21240 21241 if (SDValue V = formSplatFromShuffles(SVN, DAG)) 21242 return V; 21243 21244 // If it is a splat, check if the argument vector is another splat or a 21245 // build_vector. 21246 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 21247 int SplatIndex = SVN->getSplatIndex(); 21248 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && 21249 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { 21250 // splat (vector_bo L, R), Index --> 21251 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 21252 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 21253 SDLoc DL(N); 21254 EVT EltVT = VT.getScalarType(); 21255 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); 21256 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 21257 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 21258 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, 21259 N0.getNode()->getFlags()); 21260 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 21261 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 21262 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 21263 } 21264 21265 // If this is a bit convert that changes the element type of the vector but 21266 // not the number of vector elements, look through it. Be careful not to 21267 // look though conversions that change things like v4f32 to v2f64. 21268 SDNode *V = N0.getNode(); 21269 if (V->getOpcode() == ISD::BITCAST) { 21270 SDValue ConvInput = V->getOperand(0); 21271 if (ConvInput.getValueType().isVector() && 21272 ConvInput.getValueType().getVectorNumElements() == NumElts) 21273 V = ConvInput.getNode(); 21274 } 21275 21276 if (V->getOpcode() == ISD::BUILD_VECTOR) { 21277 assert(V->getNumOperands() == NumElts && 21278 "BUILD_VECTOR has wrong number of operands"); 21279 SDValue Base; 21280 bool AllSame = true; 21281 for (unsigned i = 0; i != NumElts; ++i) { 21282 if (!V->getOperand(i).isUndef()) { 21283 Base = V->getOperand(i); 21284 break; 21285 } 21286 } 21287 // Splat of <u, u, u, u>, return <u, u, u, u> 21288 if (!Base.getNode()) 21289 return N0; 21290 for (unsigned i = 0; i != NumElts; ++i) { 21291 if (V->getOperand(i) != Base) { 21292 AllSame = false; 21293 break; 21294 } 21295 } 21296 // Splat of <x, x, x, x>, return <x, x, x, x> 21297 if (AllSame) 21298 return N0; 21299 21300 // Canonicalize any other splat as a build_vector. 21301 SDValue Splatted = V->getOperand(SplatIndex); 21302 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 21303 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 21304 21305 // We may have jumped through bitcasts, so the type of the 21306 // BUILD_VECTOR may not match the type of the shuffle. 21307 if (V->getValueType(0) != VT) 21308 NewBV = DAG.getBitcast(VT, NewBV); 21309 return NewBV; 21310 } 21311 } 21312 21313 // Simplify source operands based on shuffle mask. 21314 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21315 return SDValue(N, 0); 21316 21317 // This is intentionally placed after demanded elements simplification because 21318 // it could eliminate knowledge of undef elements created by this shuffle. 21319 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 21320 return ShufOp; 21321 21322 // Match shuffles that can be converted to any_vector_extend_in_reg. 21323 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 21324 return V; 21325 21326 // Combine "truncate_vector_in_reg" style shuffles. 21327 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 21328 return V; 21329 21330 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 21331 Level < AfterLegalizeVectorOps && 21332 (N1.isUndef() || 21333 (N1.getOpcode() == ISD::CONCAT_VECTORS && 21334 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 21335 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 21336 return V; 21337 } 21338 21339 // A shuffle of a concat of the same narrow vector can be reduced to use 21340 // only low-half elements of a concat with undef: 21341 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' 21342 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && 21343 N0.getNumOperands() == 2 && 21344 N0.getOperand(0) == N0.getOperand(1)) { 21345 int HalfNumElts = (int)NumElts / 2; 21346 SmallVector<int, 8> NewMask; 21347 for (unsigned i = 0; i != NumElts; ++i) { 21348 int Idx = SVN->getMaskElt(i); 21349 if (Idx >= HalfNumElts) { 21350 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); 21351 Idx -= HalfNumElts; 21352 } 21353 NewMask.push_back(Idx); 21354 } 21355 if (TLI.isShuffleMaskLegal(NewMask, VT)) { 21356 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); 21357 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 21358 N0.getOperand(0), UndefVec); 21359 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); 21360 } 21361 } 21362 21363 // See if we can replace a shuffle with an insert_subvector. 21364 // e.g. v2i32 into v8i32: 21365 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7). 21366 // --> insert_subvector(lhs,rhs1,4). 21367 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) && 21368 TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) { 21369 auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) { 21370 // Ensure RHS subvectors are legal. 21371 assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors"); 21372 EVT SubVT = RHS.getOperand(0).getValueType(); 21373 int NumSubVecs = RHS.getNumOperands(); 21374 int NumSubElts = SubVT.getVectorNumElements(); 21375 assert((NumElts % NumSubElts) == 0 && "Subvector mismatch"); 21376 if (!TLI.isTypeLegal(SubVT)) 21377 return SDValue(); 21378 21379 // Don't bother if we have an unary shuffle (matches undef + LHS elts). 21380 if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; })) 21381 return SDValue(); 21382 21383 // Search [NumSubElts] spans for RHS sequence. 21384 // TODO: Can we avoid nested loops to increase performance? 21385 SmallVector<int> InsertionMask(NumElts); 21386 for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) { 21387 for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) { 21388 // Reset mask to identity. 21389 std::iota(InsertionMask.begin(), InsertionMask.end(), 0); 21390 21391 // Add subvector insertion. 21392 std::iota(InsertionMask.begin() + SubIdx, 21393 InsertionMask.begin() + SubIdx + NumSubElts, 21394 NumElts + (SubVec * NumSubElts)); 21395 21396 // See if the shuffle mask matches the reference insertion mask. 21397 bool MatchingShuffle = true; 21398 for (int i = 0; i != (int)NumElts; ++i) { 21399 int ExpectIdx = InsertionMask[i]; 21400 int ActualIdx = Mask[i]; 21401 if (0 <= ActualIdx && ExpectIdx != ActualIdx) { 21402 MatchingShuffle = false; 21403 break; 21404 } 21405 } 21406 21407 if (MatchingShuffle) 21408 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS, 21409 RHS.getOperand(SubVec), 21410 DAG.getVectorIdxConstant(SubIdx, SDLoc(N))); 21411 } 21412 } 21413 return SDValue(); 21414 }; 21415 ArrayRef<int> Mask = SVN->getMask(); 21416 if (N1.getOpcode() == ISD::CONCAT_VECTORS) 21417 if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask)) 21418 return InsertN1; 21419 if (N0.getOpcode() == ISD::CONCAT_VECTORS) { 21420 SmallVector<int> CommuteMask(Mask.begin(), Mask.end()); 21421 ShuffleVectorSDNode::commuteMask(CommuteMask); 21422 if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask)) 21423 return InsertN0; 21424 } 21425 } 21426 21427 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 21428 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 21429 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 21430 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 21431 return Res; 21432 21433 // If this shuffle only has a single input that is a bitcasted shuffle, 21434 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 21435 // back to their original types. 21436 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 21437 N1.isUndef() && Level < AfterLegalizeVectorOps && 21438 TLI.isTypeLegal(VT)) { 21439 21440 SDValue BC0 = peekThroughOneUseBitcasts(N0); 21441 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 21442 EVT SVT = VT.getScalarType(); 21443 EVT InnerVT = BC0->getValueType(0); 21444 EVT InnerSVT = InnerVT.getScalarType(); 21445 21446 // Determine which shuffle works with the smaller scalar type. 21447 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 21448 EVT ScaleSVT = ScaleVT.getScalarType(); 21449 21450 if (TLI.isTypeLegal(ScaleVT) && 21451 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 21452 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 21453 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 21454 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 21455 21456 // Scale the shuffle masks to the smaller scalar type. 21457 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 21458 SmallVector<int, 8> InnerMask; 21459 SmallVector<int, 8> OuterMask; 21460 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); 21461 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); 21462 21463 // Merge the shuffle masks. 21464 SmallVector<int, 8> NewMask; 21465 for (int M : OuterMask) 21466 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 21467 21468 // Test for shuffle mask legality over both commutations. 21469 SDValue SV0 = BC0->getOperand(0); 21470 SDValue SV1 = BC0->getOperand(1); 21471 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 21472 if (!LegalMask) { 21473 std::swap(SV0, SV1); 21474 ShuffleVectorSDNode::commuteMask(NewMask); 21475 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 21476 } 21477 21478 if (LegalMask) { 21479 SV0 = DAG.getBitcast(ScaleVT, SV0); 21480 SV1 = DAG.getBitcast(ScaleVT, SV1); 21481 return DAG.getBitcast( 21482 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 21483 } 21484 } 21485 } 21486 } 21487 21488 // Compute the combined shuffle mask for a shuffle with SV0 as the first 21489 // operand, and SV1 as the second operand. 21490 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false 21491 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true 21492 auto MergeInnerShuffle = 21493 [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN, 21494 ShuffleVectorSDNode *OtherSVN, SDValue N1, 21495 const TargetLowering &TLI, SDValue &SV0, SDValue &SV1, 21496 SmallVectorImpl<int> &Mask) -> bool { 21497 // Don't try to fold splats; they're likely to simplify somehow, or they 21498 // might be free. 21499 if (OtherSVN->isSplat()) 21500 return false; 21501 21502 SV0 = SV1 = SDValue(); 21503 Mask.clear(); 21504 21505 for (unsigned i = 0; i != NumElts; ++i) { 21506 int Idx = SVN->getMaskElt(i); 21507 if (Idx < 0) { 21508 // Propagate Undef. 21509 Mask.push_back(Idx); 21510 continue; 21511 } 21512 21513 if (Commute) 21514 Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts); 21515 21516 SDValue CurrentVec; 21517 if (Idx < (int)NumElts) { 21518 // This shuffle index refers to the inner shuffle N0. Lookup the inner 21519 // shuffle mask to identify which vector is actually referenced. 21520 Idx = OtherSVN->getMaskElt(Idx); 21521 if (Idx < 0) { 21522 // Propagate Undef. 21523 Mask.push_back(Idx); 21524 continue; 21525 } 21526 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) 21527 : OtherSVN->getOperand(1); 21528 } else { 21529 // This shuffle index references an element within N1. 21530 CurrentVec = N1; 21531 } 21532 21533 // Simple case where 'CurrentVec' is UNDEF. 21534 if (CurrentVec.isUndef()) { 21535 Mask.push_back(-1); 21536 continue; 21537 } 21538 21539 // Canonicalize the shuffle index. We don't know yet if CurrentVec 21540 // will be the first or second operand of the combined shuffle. 21541 Idx = Idx % NumElts; 21542 if (!SV0.getNode() || SV0 == CurrentVec) { 21543 // Ok. CurrentVec is the left hand side. 21544 // Update the mask accordingly. 21545 SV0 = CurrentVec; 21546 Mask.push_back(Idx); 21547 continue; 21548 } 21549 if (!SV1.getNode() || SV1 == CurrentVec) { 21550 // Ok. CurrentVec is the right hand side. 21551 // Update the mask accordingly. 21552 SV1 = CurrentVec; 21553 Mask.push_back(Idx + NumElts); 21554 continue; 21555 } 21556 21557 // Last chance - see if the vector is another shuffle and if it 21558 // uses one of the existing candidate shuffle ops. 21559 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { 21560 int InnerIdx = CurrentSVN->getMaskElt(Idx); 21561 if (InnerIdx < 0) { 21562 Mask.push_back(-1); 21563 continue; 21564 } 21565 SDValue InnerVec = (InnerIdx < (int)NumElts) 21566 ? CurrentSVN->getOperand(0) 21567 : CurrentSVN->getOperand(1); 21568 if (InnerVec.isUndef()) { 21569 Mask.push_back(-1); 21570 continue; 21571 } 21572 InnerIdx %= NumElts; 21573 if (InnerVec == SV0) { 21574 Mask.push_back(InnerIdx); 21575 continue; 21576 } 21577 if (InnerVec == SV1) { 21578 Mask.push_back(InnerIdx + NumElts); 21579 continue; 21580 } 21581 } 21582 21583 // Bail out if we cannot convert the shuffle pair into a single shuffle. 21584 return false; 21585 } 21586 21587 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 21588 return true; 21589 21590 // Avoid introducing shuffles with illegal mask. 21591 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 21592 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 21593 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 21594 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 21595 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 21596 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 21597 if (TLI.isShuffleMaskLegal(Mask, VT)) 21598 return true; 21599 21600 std::swap(SV0, SV1); 21601 ShuffleVectorSDNode::commuteMask(Mask); 21602 return TLI.isShuffleMaskLegal(Mask, VT); 21603 }; 21604 21605 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 21606 // Canonicalize shuffles according to rules: 21607 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 21608 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 21609 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 21610 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 21611 N0.getOpcode() != ISD::VECTOR_SHUFFLE) { 21612 // The incoming shuffle must be of the same type as the result of the 21613 // current shuffle. 21614 assert(N1->getOperand(0).getValueType() == VT && 21615 "Shuffle types don't match"); 21616 21617 SDValue SV0 = N1->getOperand(0); 21618 SDValue SV1 = N1->getOperand(1); 21619 bool HasSameOp0 = N0 == SV0; 21620 bool IsSV1Undef = SV1.isUndef(); 21621 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 21622 // Commute the operands of this shuffle so merging below will trigger. 21623 return DAG.getCommutedVectorShuffle(*SVN); 21624 } 21625 21626 // Canonicalize splat shuffles to the RHS to improve merging below. 21627 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u)) 21628 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && 21629 N1.getOpcode() == ISD::VECTOR_SHUFFLE && 21630 cast<ShuffleVectorSDNode>(N0)->isSplat() && 21631 !cast<ShuffleVectorSDNode>(N1)->isSplat()) { 21632 return DAG.getCommutedVectorShuffle(*SVN); 21633 } 21634 21635 // Try to fold according to rules: 21636 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 21637 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 21638 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 21639 // Don't try to fold shuffles with illegal type. 21640 // Only fold if this shuffle is the only user of the other shuffle. 21641 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well. 21642 for (int i = 0; i != 2; ++i) { 21643 if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE && 21644 N->isOnlyUserOf(N->getOperand(i).getNode())) { 21645 // The incoming shuffle must be of the same type as the result of the 21646 // current shuffle. 21647 auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i)); 21648 assert(OtherSV->getOperand(0).getValueType() == VT && 21649 "Shuffle types don't match"); 21650 21651 SDValue SV0, SV1; 21652 SmallVector<int, 4> Mask; 21653 if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI, 21654 SV0, SV1, Mask)) { 21655 // Check if all indices in Mask are Undef. In case, propagate Undef. 21656 if (llvm::all_of(Mask, [](int M) { return M < 0; })) 21657 return DAG.getUNDEF(VT); 21658 21659 return DAG.getVectorShuffle(VT, SDLoc(N), 21660 SV0 ? SV0 : DAG.getUNDEF(VT), 21661 SV1 ? SV1 : DAG.getUNDEF(VT), Mask); 21662 } 21663 } 21664 } 21665 21666 // Merge shuffles through binops if we are able to merge it with at least 21667 // one other shuffles. 21668 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef) 21669 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) 21670 unsigned SrcOpcode = N0.getOpcode(); 21671 if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) && 21672 (N1.isUndef() || 21673 (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) { 21674 // Get binop source ops, or just pass on the undef. 21675 SDValue Op00 = N0.getOperand(0); 21676 SDValue Op01 = N0.getOperand(1); 21677 SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0); 21678 SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1); 21679 // TODO: We might be able to relax the VT check but we don't currently 21680 // have any isBinOp() that has different result/ops VTs so play safe until 21681 // we have test coverage. 21682 if (Op00.getValueType() == VT && Op10.getValueType() == VT && 21683 Op01.getValueType() == VT && Op11.getValueType() == VT && 21684 (Op00.getOpcode() == ISD::VECTOR_SHUFFLE || 21685 Op10.getOpcode() == ISD::VECTOR_SHUFFLE || 21686 Op01.getOpcode() == ISD::VECTOR_SHUFFLE || 21687 Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) { 21688 auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1, 21689 SmallVectorImpl<int> &Mask, bool LeftOp, 21690 bool Commute) { 21691 SDValue InnerN = Commute ? N1 : N0; 21692 SDValue Op0 = LeftOp ? Op00 : Op01; 21693 SDValue Op1 = LeftOp ? Op10 : Op11; 21694 if (Commute) 21695 std::swap(Op0, Op1); 21696 // Only accept the merged shuffle if we don't introduce undef elements, 21697 // or the inner shuffle already contained undef elements. 21698 auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0); 21699 return SVN0 && InnerN->isOnlyUserOf(SVN0) && 21700 MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1, 21701 Mask) && 21702 (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) || 21703 llvm::none_of(Mask, [](int M) { return M < 0; })); 21704 }; 21705 21706 // Ensure we don't increase the number of shuffles - we must merge a 21707 // shuffle from at least one of the LHS and RHS ops. 21708 bool MergedLeft = false; 21709 SDValue LeftSV0, LeftSV1; 21710 SmallVector<int, 4> LeftMask; 21711 if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) || 21712 CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) { 21713 MergedLeft = true; 21714 } else { 21715 LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 21716 LeftSV0 = Op00, LeftSV1 = Op10; 21717 } 21718 21719 bool MergedRight = false; 21720 SDValue RightSV0, RightSV1; 21721 SmallVector<int, 4> RightMask; 21722 if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) || 21723 CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) { 21724 MergedRight = true; 21725 } else { 21726 RightMask.assign(SVN->getMask().begin(), SVN->getMask().end()); 21727 RightSV0 = Op01, RightSV1 = Op11; 21728 } 21729 21730 if (MergedLeft || MergedRight) { 21731 SDLoc DL(N); 21732 SDValue LHS = DAG.getVectorShuffle( 21733 VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT), 21734 LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask); 21735 SDValue RHS = DAG.getVectorShuffle( 21736 VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT), 21737 RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask); 21738 return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS); 21739 } 21740 } 21741 } 21742 } 21743 21744 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 21745 return V; 21746 21747 return SDValue(); 21748 } 21749 21750 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 21751 SDValue InVal = N->getOperand(0); 21752 EVT VT = N->getValueType(0); 21753 21754 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 21755 // with a VECTOR_SHUFFLE and possible truncate. 21756 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 21757 VT.isFixedLengthVector() && 21758 InVal->getOperand(0).getValueType().isFixedLengthVector()) { 21759 SDValue InVec = InVal->getOperand(0); 21760 SDValue EltNo = InVal->getOperand(1); 21761 auto InVecT = InVec.getValueType(); 21762 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 21763 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 21764 int Elt = C0->getZExtValue(); 21765 NewMask[0] = Elt; 21766 // If we have an implict truncate do truncate here as long as it's legal. 21767 // if it's not legal, this should 21768 if (VT.getScalarType() != InVal.getValueType() && 21769 InVal.getValueType().isScalarInteger() && 21770 isTypeLegal(VT.getScalarType())) { 21771 SDValue Val = 21772 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 21773 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 21774 } 21775 if (VT.getScalarType() == InVecT.getScalarType() && 21776 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { 21777 SDValue LegalShuffle = 21778 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, 21779 DAG.getUNDEF(InVecT), NewMask, DAG); 21780 if (LegalShuffle) { 21781 // If the initial vector is the correct size this shuffle is a 21782 // valid result. 21783 if (VT == InVecT) 21784 return LegalShuffle; 21785 // If not we must truncate the vector. 21786 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 21787 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); 21788 EVT SubVT = EVT::getVectorVT(*DAG.getContext(), 21789 InVecT.getVectorElementType(), 21790 VT.getVectorNumElements()); 21791 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, 21792 LegalShuffle, ZeroIdx); 21793 } 21794 } 21795 } 21796 } 21797 } 21798 21799 return SDValue(); 21800 } 21801 21802 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 21803 EVT VT = N->getValueType(0); 21804 SDValue N0 = N->getOperand(0); 21805 SDValue N1 = N->getOperand(1); 21806 SDValue N2 = N->getOperand(2); 21807 uint64_t InsIdx = N->getConstantOperandVal(2); 21808 21809 // If inserting an UNDEF, just return the original vector. 21810 if (N1.isUndef()) 21811 return N0; 21812 21813 // If this is an insert of an extracted vector into an undef vector, we can 21814 // just use the input to the extract. 21815 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 21816 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 21817 return N1.getOperand(0); 21818 21819 // If we are inserting a bitcast value into an undef, with the same 21820 // number of elements, just use the bitcast input of the extract. 21821 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 21822 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 21823 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 21824 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 21825 N1.getOperand(0).getOperand(1) == N2 && 21826 N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == 21827 VT.getVectorElementCount() && 21828 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 21829 VT.getSizeInBits()) { 21830 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 21831 } 21832 21833 // If both N1 and N2 are bitcast values on which insert_subvector 21834 // would makes sense, pull the bitcast through. 21835 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 21836 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 21837 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 21838 SDValue CN0 = N0.getOperand(0); 21839 SDValue CN1 = N1.getOperand(0); 21840 EVT CN0VT = CN0.getValueType(); 21841 EVT CN1VT = CN1.getValueType(); 21842 if (CN0VT.isVector() && CN1VT.isVector() && 21843 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 21844 CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { 21845 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 21846 CN0.getValueType(), CN0, CN1, N2); 21847 return DAG.getBitcast(VT, NewINSERT); 21848 } 21849 } 21850 21851 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 21852 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 21853 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 21854 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 21855 N0.getOperand(1).getValueType() == N1.getValueType() && 21856 N0.getOperand(2) == N2) 21857 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 21858 N1, N2); 21859 21860 // Eliminate an intermediate insert into an undef vector: 21861 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 21862 // insert_subvector undef, X, N2 21863 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 21864 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 21865 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 21866 N1.getOperand(1), N2); 21867 21868 // Push subvector bitcasts to the output, adjusting the index as we go. 21869 // insert_subvector(bitcast(v), bitcast(s), c1) 21870 // -> bitcast(insert_subvector(v, s, c2)) 21871 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 21872 N1.getOpcode() == ISD::BITCAST) { 21873 SDValue N0Src = peekThroughBitcasts(N0); 21874 SDValue N1Src = peekThroughBitcasts(N1); 21875 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 21876 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 21877 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 21878 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 21879 EVT NewVT; 21880 SDLoc DL(N); 21881 SDValue NewIdx; 21882 LLVMContext &Ctx = *DAG.getContext(); 21883 ElementCount NumElts = VT.getVectorElementCount(); 21884 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21885 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 21886 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 21887 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 21888 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); 21889 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 21890 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 21891 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { 21892 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, 21893 NumElts.divideCoefficientBy(Scale)); 21894 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); 21895 } 21896 } 21897 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 21898 SDValue Res = DAG.getBitcast(NewVT, N0Src); 21899 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 21900 return DAG.getBitcast(VT, Res); 21901 } 21902 } 21903 } 21904 21905 // Canonicalize insert_subvector dag nodes. 21906 // Example: 21907 // (insert_subvector (insert_subvector A, Idx0), Idx1) 21908 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 21909 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 21910 N1.getValueType() == N0.getOperand(1).getValueType()) { 21911 unsigned OtherIdx = N0.getConstantOperandVal(2); 21912 if (InsIdx < OtherIdx) { 21913 // Swap nodes. 21914 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 21915 N0.getOperand(0), N1, N2); 21916 AddToWorklist(NewOp.getNode()); 21917 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 21918 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 21919 } 21920 } 21921 21922 // If the input vector is a concatenation, and the insert replaces 21923 // one of the pieces, we can optimize into a single concat_vectors. 21924 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 21925 N0.getOperand(0).getValueType() == N1.getValueType() && 21926 N0.getOperand(0).getValueType().isScalableVector() == 21927 N1.getValueType().isScalableVector()) { 21928 unsigned Factor = N1.getValueType().getVectorMinNumElements(); 21929 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 21930 Ops[InsIdx / Factor] = N1; 21931 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 21932 } 21933 21934 // Simplify source operands based on insertion. 21935 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21936 return SDValue(N, 0); 21937 21938 return SDValue(); 21939 } 21940 21941 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 21942 SDValue N0 = N->getOperand(0); 21943 21944 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 21945 if (N0->getOpcode() == ISD::FP16_TO_FP) 21946 return N0->getOperand(0); 21947 21948 return SDValue(); 21949 } 21950 21951 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 21952 SDValue N0 = N->getOperand(0); 21953 21954 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 21955 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { 21956 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 21957 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 21958 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 21959 N0.getOperand(0)); 21960 } 21961 } 21962 21963 return SDValue(); 21964 } 21965 21966 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 21967 SDValue N0 = N->getOperand(0); 21968 EVT VT = N0.getValueType(); 21969 unsigned Opcode = N->getOpcode(); 21970 21971 // VECREDUCE over 1-element vector is just an extract. 21972 if (VT.getVectorElementCount().isScalar()) { 21973 SDLoc dl(N); 21974 SDValue Res = 21975 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 21976 DAG.getVectorIdxConstant(0, dl)); 21977 if (Res.getValueType() != N->getValueType(0)) 21978 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 21979 return Res; 21980 } 21981 21982 // On an boolean vector an and/or reduction is the same as a umin/umax 21983 // reduction. Convert them if the latter is legal while the former isn't. 21984 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 21985 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 21986 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 21987 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 21988 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 21989 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 21990 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 21991 } 21992 21993 return SDValue(); 21994 } 21995 21996 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 21997 /// with the destination vector and a zero vector. 21998 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 21999 /// vector_shuffle V, Zero, <0, 4, 2, 4> 22000 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 22001 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 22002 22003 EVT VT = N->getValueType(0); 22004 SDValue LHS = N->getOperand(0); 22005 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 22006 SDLoc DL(N); 22007 22008 // Make sure we're not running after operation legalization where it 22009 // may have custom lowered the vector shuffles. 22010 if (LegalOperations) 22011 return SDValue(); 22012 22013 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 22014 return SDValue(); 22015 22016 EVT RVT = RHS.getValueType(); 22017 unsigned NumElts = RHS.getNumOperands(); 22018 22019 // Attempt to create a valid clear mask, splitting the mask into 22020 // sub elements and checking to see if each is 22021 // all zeros or all ones - suitable for shuffle masking. 22022 auto BuildClearMask = [&](int Split) { 22023 int NumSubElts = NumElts * Split; 22024 int NumSubBits = RVT.getScalarSizeInBits() / Split; 22025 22026 SmallVector<int, 8> Indices; 22027 for (int i = 0; i != NumSubElts; ++i) { 22028 int EltIdx = i / Split; 22029 int SubIdx = i % Split; 22030 SDValue Elt = RHS.getOperand(EltIdx); 22031 // X & undef --> 0 (not undef). So this lane must be converted to choose 22032 // from the zero constant vector (same as if the element had all 0-bits). 22033 if (Elt.isUndef()) { 22034 Indices.push_back(i + NumSubElts); 22035 continue; 22036 } 22037 22038 APInt Bits; 22039 if (isa<ConstantSDNode>(Elt)) 22040 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 22041 else if (isa<ConstantFPSDNode>(Elt)) 22042 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 22043 else 22044 return SDValue(); 22045 22046 // Extract the sub element from the constant bit mask. 22047 if (DAG.getDataLayout().isBigEndian()) 22048 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); 22049 else 22050 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); 22051 22052 if (Bits.isAllOnesValue()) 22053 Indices.push_back(i); 22054 else if (Bits == 0) 22055 Indices.push_back(i + NumSubElts); 22056 else 22057 return SDValue(); 22058 } 22059 22060 // Let's see if the target supports this vector_shuffle. 22061 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 22062 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 22063 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 22064 return SDValue(); 22065 22066 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 22067 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 22068 DAG.getBitcast(ClearVT, LHS), 22069 Zero, Indices)); 22070 }; 22071 22072 // Determine maximum split level (byte level masking). 22073 int MaxSplit = 1; 22074 if (RVT.getScalarSizeInBits() % 8 == 0) 22075 MaxSplit = RVT.getScalarSizeInBits() / 8; 22076 22077 for (int Split = 1; Split <= MaxSplit; ++Split) 22078 if (RVT.getScalarSizeInBits() % Split == 0) 22079 if (SDValue S = BuildClearMask(Split)) 22080 return S; 22081 22082 return SDValue(); 22083 } 22084 22085 /// If a vector binop is performed on splat values, it may be profitable to 22086 /// extract, scalarize, and insert/splat. 22087 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { 22088 SDValue N0 = N->getOperand(0); 22089 SDValue N1 = N->getOperand(1); 22090 unsigned Opcode = N->getOpcode(); 22091 EVT VT = N->getValueType(0); 22092 EVT EltVT = VT.getVectorElementType(); 22093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 22094 22095 // TODO: Remove/replace the extract cost check? If the elements are available 22096 // as scalars, then there may be no extract cost. Should we ask if 22097 // inserting a scalar back into a vector is cheap instead? 22098 int Index0, Index1; 22099 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 22100 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 22101 if (!Src0 || !Src1 || Index0 != Index1 || 22102 Src0.getValueType().getVectorElementType() != EltVT || 22103 Src1.getValueType().getVectorElementType() != EltVT || 22104 !TLI.isExtractVecEltCheap(VT, Index0) || 22105 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 22106 return SDValue(); 22107 22108 SDLoc DL(N); 22109 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); 22110 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); 22111 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); 22112 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 22113 22114 // If all lanes but 1 are undefined, no need to splat the scalar result. 22115 // TODO: Keep track of undefs and use that info in the general case. 22116 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 22117 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 22118 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 22119 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 22120 // build_vec ..undef, (bo X, Y), undef... 22121 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 22122 Ops[Index0] = ScalarBO; 22123 return DAG.getBuildVector(VT, DL, Ops); 22124 } 22125 22126 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 22127 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 22128 return DAG.getBuildVector(VT, DL, Ops); 22129 } 22130 22131 /// Visit a binary vector operation, like ADD. 22132 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 22133 assert(N->getValueType(0).isVector() && 22134 "SimplifyVBinOp only works on vectors!"); 22135 22136 SDValue LHS = N->getOperand(0); 22137 SDValue RHS = N->getOperand(1); 22138 SDValue Ops[] = {LHS, RHS}; 22139 EVT VT = N->getValueType(0); 22140 unsigned Opcode = N->getOpcode(); 22141 SDNodeFlags Flags = N->getFlags(); 22142 22143 // See if we can constant fold the vector operation. 22144 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 22145 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 22146 return Fold; 22147 22148 // Move unary shuffles with identical masks after a vector binop: 22149 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 22150 // --> shuffle (VBinOp A, B), Undef, Mask 22151 // This does not require type legality checks because we are creating the 22152 // same types of operations that are in the original sequence. We do have to 22153 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 22154 // though. This code is adapted from the identical transform in instcombine. 22155 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 22156 Opcode != ISD::UREM && Opcode != ISD::SREM && 22157 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 22158 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 22159 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 22160 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 22161 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 22162 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 22163 SDLoc DL(N); 22164 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 22165 RHS.getOperand(0), Flags); 22166 SDValue UndefV = LHS.getOperand(1); 22167 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 22168 } 22169 22170 // Try to sink a splat shuffle after a binop with a uniform constant. 22171 // This is limited to cases where neither the shuffle nor the constant have 22172 // undefined elements because that could be poison-unsafe or inhibit 22173 // demanded elements analysis. It is further limited to not change a splat 22174 // of an inserted scalar because that may be optimized better by 22175 // load-folding or other target-specific behaviors. 22176 if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && 22177 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && 22178 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 22179 // binop (splat X), (splat C) --> splat (binop X, C) 22180 SDLoc DL(N); 22181 SDValue X = Shuf0->getOperand(0); 22182 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); 22183 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 22184 Shuf0->getMask()); 22185 } 22186 if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && 22187 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && 22188 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 22189 // binop (splat C), (splat X) --> splat (binop C, X) 22190 SDLoc DL(N); 22191 SDValue X = Shuf1->getOperand(0); 22192 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); 22193 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 22194 Shuf1->getMask()); 22195 } 22196 } 22197 22198 // The following pattern is likely to emerge with vector reduction ops. Moving 22199 // the binary operation ahead of insertion may allow using a narrower vector 22200 // instruction that has better performance than the wide version of the op: 22201 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 22202 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 22203 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 22204 LHS.getOperand(2) == RHS.getOperand(2) && 22205 (LHS.hasOneUse() || RHS.hasOneUse())) { 22206 SDValue X = LHS.getOperand(1); 22207 SDValue Y = RHS.getOperand(1); 22208 SDValue Z = LHS.getOperand(2); 22209 EVT NarrowVT = X.getValueType(); 22210 if (NarrowVT == Y.getValueType() && 22211 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, 22212 LegalOperations)) { 22213 // (binop undef, undef) may not return undef, so compute that result. 22214 SDLoc DL(N); 22215 SDValue VecC = 22216 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 22217 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 22218 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 22219 } 22220 } 22221 22222 // Make sure all but the first op are undef or constant. 22223 auto ConcatWithConstantOrUndef = [](SDValue Concat) { 22224 return Concat.getOpcode() == ISD::CONCAT_VECTORS && 22225 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { 22226 return Op.isUndef() || 22227 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); 22228 }); 22229 }; 22230 22231 // The following pattern is likely to emerge with vector reduction ops. Moving 22232 // the binary operation ahead of the concat may allow using a narrower vector 22233 // instruction that has better performance than the wide version of the op: 22234 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> 22235 // concat (VBinOp X, Y), VecC 22236 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && 22237 (LHS.hasOneUse() || RHS.hasOneUse())) { 22238 EVT NarrowVT = LHS.getOperand(0).getValueType(); 22239 if (NarrowVT == RHS.getOperand(0).getValueType() && 22240 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 22241 SDLoc DL(N); 22242 unsigned NumOperands = LHS.getNumOperands(); 22243 SmallVector<SDValue, 4> ConcatOps; 22244 for (unsigned i = 0; i != NumOperands; ++i) { 22245 // This constant fold for operands 1 and up. 22246 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), 22247 RHS.getOperand(i))); 22248 } 22249 22250 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 22251 } 22252 } 22253 22254 if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) 22255 return V; 22256 22257 return SDValue(); 22258 } 22259 22260 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 22261 SDValue N2) { 22262 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 22263 22264 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 22265 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 22266 22267 // If we got a simplified select_cc node back from SimplifySelectCC, then 22268 // break it down into a new SETCC node, and a new SELECT node, and then return 22269 // the SELECT node, since we were called with a SELECT node. 22270 if (SCC.getNode()) { 22271 // Check to see if we got a select_cc back (to turn into setcc/select). 22272 // Otherwise, just return whatever node we got back, like fabs. 22273 if (SCC.getOpcode() == ISD::SELECT_CC) { 22274 const SDNodeFlags Flags = N0.getNode()->getFlags(); 22275 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 22276 N0.getValueType(), 22277 SCC.getOperand(0), SCC.getOperand(1), 22278 SCC.getOperand(4), Flags); 22279 AddToWorklist(SETCC.getNode()); 22280 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 22281 SCC.getOperand(2), SCC.getOperand(3)); 22282 SelectNode->setFlags(Flags); 22283 return SelectNode; 22284 } 22285 22286 return SCC; 22287 } 22288 return SDValue(); 22289 } 22290 22291 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 22292 /// being selected between, see if we can simplify the select. Callers of this 22293 /// should assume that TheSelect is deleted if this returns true. As such, they 22294 /// should return the appropriate thing (e.g. the node) back to the top-level of 22295 /// the DAG combiner loop to avoid it being looked at. 22296 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 22297 SDValue RHS) { 22298 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 22299 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 22300 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 22301 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 22302 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 22303 SDValue Sqrt = RHS; 22304 ISD::CondCode CC; 22305 SDValue CmpLHS; 22306 const ConstantFPSDNode *Zero = nullptr; 22307 22308 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 22309 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 22310 CmpLHS = TheSelect->getOperand(0); 22311 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 22312 } else { 22313 // SELECT or VSELECT 22314 SDValue Cmp = TheSelect->getOperand(0); 22315 if (Cmp.getOpcode() == ISD::SETCC) { 22316 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 22317 CmpLHS = Cmp.getOperand(0); 22318 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 22319 } 22320 } 22321 if (Zero && Zero->isZero() && 22322 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 22323 CC == ISD::SETULT || CC == ISD::SETLT)) { 22324 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 22325 CombineTo(TheSelect, Sqrt); 22326 return true; 22327 } 22328 } 22329 } 22330 // Cannot simplify select with vector condition 22331 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 22332 22333 // If this is a select from two identical things, try to pull the operation 22334 // through the select. 22335 if (LHS.getOpcode() != RHS.getOpcode() || 22336 !LHS.hasOneUse() || !RHS.hasOneUse()) 22337 return false; 22338 22339 // If this is a load and the token chain is identical, replace the select 22340 // of two loads with a load through a select of the address to load from. 22341 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 22342 // constants have been dropped into the constant pool. 22343 if (LHS.getOpcode() == ISD::LOAD) { 22344 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 22345 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 22346 22347 // Token chains must be identical. 22348 if (LHS.getOperand(0) != RHS.getOperand(0) || 22349 // Do not let this transformation reduce the number of volatile loads. 22350 // Be conservative for atomics for the moment 22351 // TODO: This does appear to be legal for unordered atomics (see D66309) 22352 !LLD->isSimple() || !RLD->isSimple() || 22353 // FIXME: If either is a pre/post inc/dec load, 22354 // we'd need to split out the address adjustment. 22355 LLD->isIndexed() || RLD->isIndexed() || 22356 // If this is an EXTLOAD, the VT's must match. 22357 LLD->getMemoryVT() != RLD->getMemoryVT() || 22358 // If this is an EXTLOAD, the kind of extension must match. 22359 (LLD->getExtensionType() != RLD->getExtensionType() && 22360 // The only exception is if one of the extensions is anyext. 22361 LLD->getExtensionType() != ISD::EXTLOAD && 22362 RLD->getExtensionType() != ISD::EXTLOAD) || 22363 // FIXME: this discards src value information. This is 22364 // over-conservative. It would be beneficial to be able to remember 22365 // both potential memory locations. Since we are discarding 22366 // src value info, don't do the transformation if the memory 22367 // locations are not in the default address space. 22368 LLD->getPointerInfo().getAddrSpace() != 0 || 22369 RLD->getPointerInfo().getAddrSpace() != 0 || 22370 // We can't produce a CMOV of a TargetFrameIndex since we won't 22371 // generate the address generation required. 22372 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 22373 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 22374 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 22375 LLD->getBasePtr().getValueType())) 22376 return false; 22377 22378 // The loads must not depend on one another. 22379 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 22380 return false; 22381 22382 // Check that the select condition doesn't reach either load. If so, 22383 // folding this will induce a cycle into the DAG. If not, this is safe to 22384 // xform, so create a select of the addresses. 22385 22386 SmallPtrSet<const SDNode *, 32> Visited; 22387 SmallVector<const SDNode *, 16> Worklist; 22388 22389 // Always fail if LLD and RLD are not independent. TheSelect is a 22390 // predecessor to all Nodes in question so we need not search past it. 22391 22392 Visited.insert(TheSelect); 22393 Worklist.push_back(LLD); 22394 Worklist.push_back(RLD); 22395 22396 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 22397 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 22398 return false; 22399 22400 SDValue Addr; 22401 if (TheSelect->getOpcode() == ISD::SELECT) { 22402 // We cannot do this optimization if any pair of {RLD, LLD} is a 22403 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 22404 // Loads, we only need to check if CondNode is a successor to one of the 22405 // loads. We can further avoid this if there's no use of their chain 22406 // value. 22407 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 22408 Worklist.push_back(CondNode); 22409 22410 if ((LLD->hasAnyUseOfValue(1) && 22411 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 22412 (RLD->hasAnyUseOfValue(1) && 22413 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 22414 return false; 22415 22416 Addr = DAG.getSelect(SDLoc(TheSelect), 22417 LLD->getBasePtr().getValueType(), 22418 TheSelect->getOperand(0), LLD->getBasePtr(), 22419 RLD->getBasePtr()); 22420 } else { // Otherwise SELECT_CC 22421 // We cannot do this optimization if any pair of {RLD, LLD} is a 22422 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 22423 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 22424 // one of the loads. We can further avoid this if there's no use of their 22425 // chain value. 22426 22427 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 22428 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 22429 Worklist.push_back(CondLHS); 22430 Worklist.push_back(CondRHS); 22431 22432 if ((LLD->hasAnyUseOfValue(1) && 22433 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 22434 (RLD->hasAnyUseOfValue(1) && 22435 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 22436 return false; 22437 22438 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 22439 LLD->getBasePtr().getValueType(), 22440 TheSelect->getOperand(0), 22441 TheSelect->getOperand(1), 22442 LLD->getBasePtr(), RLD->getBasePtr(), 22443 TheSelect->getOperand(4)); 22444 } 22445 22446 SDValue Load; 22447 // It is safe to replace the two loads if they have different alignments, 22448 // but the new load must be the minimum (most restrictive) alignment of the 22449 // inputs. 22450 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); 22451 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 22452 if (!RLD->isInvariant()) 22453 MMOFlags &= ~MachineMemOperand::MOInvariant; 22454 if (!RLD->isDereferenceable()) 22455 MMOFlags &= ~MachineMemOperand::MODereferenceable; 22456 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 22457 // FIXME: Discards pointer and AA info. 22458 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 22459 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 22460 MMOFlags); 22461 } else { 22462 // FIXME: Discards pointer and AA info. 22463 Load = DAG.getExtLoad( 22464 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 22465 : LLD->getExtensionType(), 22466 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 22467 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 22468 } 22469 22470 // Users of the select now use the result of the load. 22471 CombineTo(TheSelect, Load); 22472 22473 // Users of the old loads now use the new load's chain. We know the 22474 // old-load value is dead now. 22475 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 22476 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 22477 return true; 22478 } 22479 22480 return false; 22481 } 22482 22483 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 22484 /// bitwise 'and'. 22485 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 22486 SDValue N1, SDValue N2, SDValue N3, 22487 ISD::CondCode CC) { 22488 // If this is a select where the false operand is zero and the compare is a 22489 // check of the sign bit, see if we can perform the "gzip trick": 22490 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 22491 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 22492 EVT XType = N0.getValueType(); 22493 EVT AType = N2.getValueType(); 22494 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 22495 return SDValue(); 22496 22497 // If the comparison is testing for a positive value, we have to invert 22498 // the sign bit mask, so only do that transform if the target has a bitwise 22499 // 'and not' instruction (the invert is free). 22500 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 22501 // (X > -1) ? A : 0 22502 // (X > 0) ? X : 0 <-- This is canonical signed max. 22503 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 22504 return SDValue(); 22505 } else if (CC == ISD::SETLT) { 22506 // (X < 0) ? A : 0 22507 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 22508 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 22509 return SDValue(); 22510 } else { 22511 return SDValue(); 22512 } 22513 22514 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 22515 // constant. 22516 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 22517 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 22518 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 22519 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 22520 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { 22521 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 22522 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 22523 AddToWorklist(Shift.getNode()); 22524 22525 if (XType.bitsGT(AType)) { 22526 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 22527 AddToWorklist(Shift.getNode()); 22528 } 22529 22530 if (CC == ISD::SETGT) 22531 Shift = DAG.getNOT(DL, Shift, AType); 22532 22533 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 22534 } 22535 } 22536 22537 unsigned ShCt = XType.getSizeInBits() - 1; 22538 if (TLI.shouldAvoidTransformToShift(XType, ShCt)) 22539 return SDValue(); 22540 22541 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 22542 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 22543 AddToWorklist(Shift.getNode()); 22544 22545 if (XType.bitsGT(AType)) { 22546 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 22547 AddToWorklist(Shift.getNode()); 22548 } 22549 22550 if (CC == ISD::SETGT) 22551 Shift = DAG.getNOT(DL, Shift, AType); 22552 22553 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 22554 } 22555 22556 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc. 22557 SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) { 22558 SDValue N0 = N->getOperand(0); 22559 SDValue N1 = N->getOperand(1); 22560 SDValue N2 = N->getOperand(2); 22561 EVT VT = N->getValueType(0); 22562 SDLoc DL(N); 22563 22564 unsigned BinOpc = N1.getOpcode(); 22565 if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc)) 22566 return SDValue(); 22567 22568 // The use checks are intentionally on SDNode because we may be dealing 22569 // with opcodes that produce more than one SDValue. 22570 // TODO: Do we really need to check N0 (the condition operand of the select)? 22571 // But removing that clause could cause an infinite loop... 22572 if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse()) 22573 return SDValue(); 22574 22575 // Binops may include opcodes that return multiple values, so all values 22576 // must be created/propagated from the newly created binops below. 22577 SDVTList OpVTs = N1->getVTList(); 22578 22579 // Fold select(cond, binop(x, y), binop(z, y)) 22580 // --> binop(select(cond, x, z), y) 22581 if (N1.getOperand(1) == N2.getOperand(1)) { 22582 SDValue NewSel = 22583 DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0)); 22584 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, NewSel, N1.getOperand(1)); 22585 NewBinOp->setFlags(N1->getFlags()); 22586 NewBinOp->intersectFlagsWith(N2->getFlags()); 22587 return NewBinOp; 22588 } 22589 22590 // Fold select(cond, binop(x, y), binop(x, z)) 22591 // --> binop(x, select(cond, y, z)) 22592 // Second op VT might be different (e.g. shift amount type) 22593 if (N1.getOperand(0) == N2.getOperand(0) && 22594 VT == N1.getOperand(1).getValueType() && 22595 VT == N2.getOperand(1).getValueType()) { 22596 SDValue NewSel = 22597 DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1)); 22598 SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, N1.getOperand(0), NewSel); 22599 NewBinOp->setFlags(N1->getFlags()); 22600 NewBinOp->intersectFlagsWith(N2->getFlags()); 22601 return NewBinOp; 22602 } 22603 22604 // TODO: Handle isCommutativeBinOp patterns as well? 22605 return SDValue(); 22606 } 22607 22608 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. 22609 SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { 22610 SDValue N0 = N->getOperand(0); 22611 EVT VT = N->getValueType(0); 22612 bool IsFabs = N->getOpcode() == ISD::FABS; 22613 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); 22614 22615 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) 22616 return SDValue(); 22617 22618 SDValue Int = N0.getOperand(0); 22619 EVT IntVT = Int.getValueType(); 22620 22621 // The operand to cast should be integer. 22622 if (!IntVT.isInteger() || IntVT.isVector()) 22623 return SDValue(); 22624 22625 // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) 22626 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) 22627 APInt SignMask; 22628 if (N0.getValueType().isVector()) { 22629 // For vector, create a sign mask (0x80...) or its inverse (for fabs, 22630 // 0x7f...) per element and splat it. 22631 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 22632 if (IsFabs) 22633 SignMask = ~SignMask; 22634 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 22635 } else { 22636 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) 22637 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 22638 if (IsFabs) 22639 SignMask = ~SignMask; 22640 } 22641 SDLoc DL(N0); 22642 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, 22643 DAG.getConstant(SignMask, DL, IntVT)); 22644 AddToWorklist(Int.getNode()); 22645 return DAG.getBitcast(VT, Int); 22646 } 22647 22648 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 22649 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 22650 /// in it. This may be a win when the constant is not otherwise available 22651 /// because it replaces two constant pool loads with one. 22652 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 22653 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 22654 ISD::CondCode CC) { 22655 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) 22656 return SDValue(); 22657 22658 // If we are before legalize types, we want the other legalization to happen 22659 // first (for example, to avoid messing with soft float). 22660 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 22661 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 22662 EVT VT = N2.getValueType(); 22663 if (!TV || !FV || !TLI.isTypeLegal(VT)) 22664 return SDValue(); 22665 22666 // If a constant can be materialized without loads, this does not make sense. 22667 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 22668 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 22669 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 22670 return SDValue(); 22671 22672 // If both constants have multiple uses, then we won't need to do an extra 22673 // load. The values are likely around in registers for other users. 22674 if (!TV->hasOneUse() && !FV->hasOneUse()) 22675 return SDValue(); 22676 22677 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 22678 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 22679 Type *FPTy = Elts[0]->getType(); 22680 const DataLayout &TD = DAG.getDataLayout(); 22681 22682 // Create a ConstantArray of the two constants. 22683 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 22684 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 22685 TD.getPrefTypeAlign(FPTy)); 22686 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 22687 22688 // Get offsets to the 0 and 1 elements of the array, so we can select between 22689 // them. 22690 SDValue Zero = DAG.getIntPtrConstant(0, DL); 22691 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 22692 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 22693 SDValue Cond = 22694 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 22695 AddToWorklist(Cond.getNode()); 22696 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 22697 AddToWorklist(CstOffset.getNode()); 22698 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 22699 AddToWorklist(CPIdx.getNode()); 22700 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 22701 MachinePointerInfo::getConstantPool( 22702 DAG.getMachineFunction()), Alignment); 22703 } 22704 22705 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 22706 /// where 'cond' is the comparison specified by CC. 22707 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 22708 SDValue N2, SDValue N3, ISD::CondCode CC, 22709 bool NotExtCompare) { 22710 // (x ? y : y) -> y. 22711 if (N2 == N3) return N2; 22712 22713 EVT CmpOpVT = N0.getValueType(); 22714 EVT CmpResVT = getSetCCResultType(CmpOpVT); 22715 EVT VT = N2.getValueType(); 22716 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 22717 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 22718 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 22719 22720 // Determine if the condition we're dealing with is constant. 22721 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 22722 AddToWorklist(SCC.getNode()); 22723 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 22724 // fold select_cc true, x, y -> x 22725 // fold select_cc false, x, y -> y 22726 return !(SCCC->isNullValue()) ? N2 : N3; 22727 } 22728 } 22729 22730 if (SDValue V = 22731 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 22732 return V; 22733 22734 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 22735 return V; 22736 22737 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 22738 // where y is has a single bit set. 22739 // A plaintext description would be, we can turn the SELECT_CC into an AND 22740 // when the condition can be materialized as an all-ones register. Any 22741 // single bit-test can be materialized as an all-ones register with 22742 // shift-left and shift-right-arith. 22743 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 22744 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 22745 SDValue AndLHS = N0->getOperand(0); 22746 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 22747 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 22748 // Shift the tested bit over the sign bit. 22749 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 22750 unsigned ShCt = AndMask.getBitWidth() - 1; 22751 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 22752 SDValue ShlAmt = 22753 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 22754 getShiftAmountTy(AndLHS.getValueType())); 22755 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 22756 22757 // Now arithmetic right shift it all the way over, so the result is 22758 // either all-ones, or zero. 22759 SDValue ShrAmt = 22760 DAG.getConstant(ShCt, SDLoc(Shl), 22761 getShiftAmountTy(Shl.getValueType())); 22762 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 22763 22764 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 22765 } 22766 } 22767 } 22768 22769 // fold select C, 16, 0 -> shl C, 4 22770 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 22771 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 22772 22773 if ((Fold || Swap) && 22774 TLI.getBooleanContents(CmpOpVT) == 22775 TargetLowering::ZeroOrOneBooleanContent && 22776 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 22777 22778 if (Swap) { 22779 CC = ISD::getSetCCInverse(CC, CmpOpVT); 22780 std::swap(N2C, N3C); 22781 } 22782 22783 // If the caller doesn't want us to simplify this into a zext of a compare, 22784 // don't do it. 22785 if (NotExtCompare && N2C->isOne()) 22786 return SDValue(); 22787 22788 SDValue Temp, SCC; 22789 // zext (setcc n0, n1) 22790 if (LegalTypes) { 22791 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 22792 if (VT.bitsLT(SCC.getValueType())) 22793 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 22794 else 22795 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 22796 } else { 22797 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 22798 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 22799 } 22800 22801 AddToWorklist(SCC.getNode()); 22802 AddToWorklist(Temp.getNode()); 22803 22804 if (N2C->isOne()) 22805 return Temp; 22806 22807 unsigned ShCt = N2C->getAPIntValue().logBase2(); 22808 if (TLI.shouldAvoidTransformToShift(VT, ShCt)) 22809 return SDValue(); 22810 22811 // shl setcc result by log2 n2c 22812 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 22813 DAG.getConstant(ShCt, SDLoc(Temp), 22814 getShiftAmountTy(Temp.getValueType()))); 22815 } 22816 22817 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 22818 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 22819 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 22820 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 22821 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 22822 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 22823 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 22824 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 22825 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 22826 SDValue ValueOnZero = N2; 22827 SDValue Count = N3; 22828 // If the condition is NE instead of E, swap the operands. 22829 if (CC == ISD::SETNE) 22830 std::swap(ValueOnZero, Count); 22831 // Check if the value on zero is a constant equal to the bits in the type. 22832 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 22833 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 22834 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 22835 // legal, combine to just cttz. 22836 if ((Count.getOpcode() == ISD::CTTZ || 22837 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 22838 N0 == Count.getOperand(0) && 22839 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 22840 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 22841 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 22842 // legal, combine to just ctlz. 22843 if ((Count.getOpcode() == ISD::CTLZ || 22844 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 22845 N0 == Count.getOperand(0) && 22846 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 22847 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 22848 } 22849 } 22850 } 22851 22852 return SDValue(); 22853 } 22854 22855 /// This is a stub for TargetLowering::SimplifySetCC. 22856 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 22857 ISD::CondCode Cond, const SDLoc &DL, 22858 bool foldBooleans) { 22859 TargetLowering::DAGCombinerInfo 22860 DagCombineInfo(DAG, Level, false, this); 22861 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 22862 } 22863 22864 /// Given an ISD::SDIV node expressing a divide by constant, return 22865 /// a DAG expression to select that will generate the same value by multiplying 22866 /// by a magic number. 22867 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 22868 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 22869 // when optimising for minimum size, we don't want to expand a div to a mul 22870 // and a shift. 22871 if (DAG.getMachineFunction().getFunction().hasMinSize()) 22872 return SDValue(); 22873 22874 SmallVector<SDNode *, 8> Built; 22875 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 22876 for (SDNode *N : Built) 22877 AddToWorklist(N); 22878 return S; 22879 } 22880 22881 return SDValue(); 22882 } 22883 22884 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 22885 /// DAG expression that will generate the same value by right shifting. 22886 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 22887 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 22888 if (!C) 22889 return SDValue(); 22890 22891 // Avoid division by zero. 22892 if (C->isNullValue()) 22893 return SDValue(); 22894 22895 SmallVector<SDNode *, 8> Built; 22896 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 22897 for (SDNode *N : Built) 22898 AddToWorklist(N); 22899 return S; 22900 } 22901 22902 return SDValue(); 22903 } 22904 22905 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 22906 /// expression that will generate the same value by multiplying by a magic 22907 /// number. 22908 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 22909 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 22910 // when optimising for minimum size, we don't want to expand a div to a mul 22911 // and a shift. 22912 if (DAG.getMachineFunction().getFunction().hasMinSize()) 22913 return SDValue(); 22914 22915 SmallVector<SDNode *, 8> Built; 22916 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 22917 for (SDNode *N : Built) 22918 AddToWorklist(N); 22919 return S; 22920 } 22921 22922 return SDValue(); 22923 } 22924 22925 /// Determines the LogBase2 value for a non-null input value using the 22926 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 22927 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 22928 EVT VT = V.getValueType(); 22929 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 22930 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 22931 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 22932 return LogBase2; 22933 } 22934 22935 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 22936 /// For the reciprocal, we need to find the zero of the function: 22937 /// F(X) = 1/X - A [which has a zero at X = 1/A] 22938 /// => 22939 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 22940 /// does not require additional intermediate precision] 22941 /// For the last iteration, put numerator N into it to gain more precision: 22942 /// Result = N X_i + X_i (N - N A X_i) 22943 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, 22944 SDNodeFlags Flags) { 22945 if (LegalDAG) 22946 return SDValue(); 22947 22948 // TODO: Handle half and/or extended types? 22949 EVT VT = Op.getValueType(); 22950 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 22951 return SDValue(); 22952 22953 // If estimates are explicitly disabled for this function, we're done. 22954 MachineFunction &MF = DAG.getMachineFunction(); 22955 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 22956 if (Enabled == TLI.ReciprocalEstimate::Disabled) 22957 return SDValue(); 22958 22959 // Estimates may be explicitly enabled for this type with a custom number of 22960 // refinement steps. 22961 int Iterations = TLI.getDivRefinementSteps(VT, MF); 22962 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 22963 AddToWorklist(Est.getNode()); 22964 22965 SDLoc DL(Op); 22966 if (Iterations) { 22967 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 22968 22969 // Newton iterations: Est = Est + Est (N - Arg * Est) 22970 // If this is the last iteration, also multiply by the numerator. 22971 for (int i = 0; i < Iterations; ++i) { 22972 SDValue MulEst = Est; 22973 22974 if (i == Iterations - 1) { 22975 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); 22976 AddToWorklist(MulEst.getNode()); 22977 } 22978 22979 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); 22980 AddToWorklist(NewEst.getNode()); 22981 22982 NewEst = DAG.getNode(ISD::FSUB, DL, VT, 22983 (i == Iterations - 1 ? N : FPOne), NewEst, Flags); 22984 AddToWorklist(NewEst.getNode()); 22985 22986 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 22987 AddToWorklist(NewEst.getNode()); 22988 22989 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); 22990 AddToWorklist(Est.getNode()); 22991 } 22992 } else { 22993 // If no iterations are available, multiply with N. 22994 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); 22995 AddToWorklist(Est.getNode()); 22996 } 22997 22998 return Est; 22999 } 23000 23001 return SDValue(); 23002 } 23003 23004 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23005 /// For the reciprocal sqrt, we need to find the zero of the function: 23006 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23007 /// => 23008 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 23009 /// As a result, we precompute A/2 prior to the iteration loop. 23010 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 23011 unsigned Iterations, 23012 SDNodeFlags Flags, bool Reciprocal) { 23013 EVT VT = Arg.getValueType(); 23014 SDLoc DL(Arg); 23015 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 23016 23017 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 23018 // this entire sequence requires only one FP constant. 23019 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 23020 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 23021 23022 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 23023 for (unsigned i = 0; i < Iterations; ++i) { 23024 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 23025 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 23026 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 23027 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 23028 } 23029 23030 // If non-reciprocal square root is requested, multiply the result by Arg. 23031 if (!Reciprocal) 23032 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 23033 23034 return Est; 23035 } 23036 23037 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 23038 /// For the reciprocal sqrt, we need to find the zero of the function: 23039 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 23040 /// => 23041 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 23042 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 23043 unsigned Iterations, 23044 SDNodeFlags Flags, bool Reciprocal) { 23045 EVT VT = Arg.getValueType(); 23046 SDLoc DL(Arg); 23047 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 23048 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 23049 23050 // This routine must enter the loop below to work correctly 23051 // when (Reciprocal == false). 23052 assert(Iterations > 0); 23053 23054 // Newton iterations for reciprocal square root: 23055 // E = (E * -0.5) * ((A * E) * E + -3.0) 23056 for (unsigned i = 0; i < Iterations; ++i) { 23057 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 23058 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 23059 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 23060 23061 // When calculating a square root at the last iteration build: 23062 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 23063 // (notice a common subexpression) 23064 SDValue LHS; 23065 if (Reciprocal || (i + 1) < Iterations) { 23066 // RSQRT: LHS = (E * -0.5) 23067 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 23068 } else { 23069 // SQRT: LHS = (A * E) * -0.5 23070 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 23071 } 23072 23073 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 23074 } 23075 23076 return Est; 23077 } 23078 23079 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 23080 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 23081 /// Op can be zero. 23082 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 23083 bool Reciprocal) { 23084 if (LegalDAG) 23085 return SDValue(); 23086 23087 // TODO: Handle half and/or extended types? 23088 EVT VT = Op.getValueType(); 23089 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 23090 return SDValue(); 23091 23092 // If estimates are explicitly disabled for this function, we're done. 23093 MachineFunction &MF = DAG.getMachineFunction(); 23094 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 23095 if (Enabled == TLI.ReciprocalEstimate::Disabled) 23096 return SDValue(); 23097 23098 // Estimates may be explicitly enabled for this type with a custom number of 23099 // refinement steps. 23100 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 23101 23102 bool UseOneConstNR = false; 23103 if (SDValue Est = 23104 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 23105 Reciprocal)) { 23106 AddToWorklist(Est.getNode()); 23107 23108 if (Iterations) 23109 Est = UseOneConstNR 23110 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 23111 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 23112 if (!Reciprocal) { 23113 SDLoc DL(Op); 23114 // Try the target specific test first. 23115 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); 23116 23117 // The estimate is now completely wrong if the input was exactly 0.0 or 23118 // possibly a denormal. Force the answer to 0.0 or value provided by 23119 // target for those cases. 23120 Est = DAG.getNode( 23121 Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 23122 Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); 23123 } 23124 return Est; 23125 } 23126 23127 return SDValue(); 23128 } 23129 23130 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 23131 return buildSqrtEstimateImpl(Op, Flags, true); 23132 } 23133 23134 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 23135 return buildSqrtEstimateImpl(Op, Flags, false); 23136 } 23137 23138 /// Return true if there is any possibility that the two addresses overlap. 23139 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { 23140 23141 struct MemUseCharacteristics { 23142 bool IsVolatile; 23143 bool IsAtomic; 23144 SDValue BasePtr; 23145 int64_t Offset; 23146 Optional<int64_t> NumBytes; 23147 MachineMemOperand *MMO; 23148 }; 23149 23150 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 23151 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 23152 int64_t Offset = 0; 23153 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 23154 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 23155 ? C->getSExtValue() 23156 : (LSN->getAddressingMode() == ISD::PRE_DEC) 23157 ? -1 * C->getSExtValue() 23158 : 0; 23159 uint64_t Size = 23160 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); 23161 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), 23162 Offset /*base offset*/, 23163 Optional<int64_t>(Size), 23164 LSN->getMemOperand()}; 23165 } 23166 if (const auto *LN = cast<LifetimeSDNode>(N)) 23167 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), 23168 (LN->hasOffset()) ? LN->getOffset() : 0, 23169 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 23170 : Optional<int64_t>(), 23171 (MachineMemOperand *)nullptr}; 23172 // Default. 23173 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), 23174 (int64_t)0 /*offset*/, 23175 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 23176 }; 23177 23178 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 23179 MUC1 = getCharacteristics(Op1); 23180 23181 // If they are to the same address, then they must be aliases. 23182 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 23183 MUC0.Offset == MUC1.Offset) 23184 return true; 23185 23186 // If they are both volatile then they cannot be reordered. 23187 if (MUC0.IsVolatile && MUC1.IsVolatile) 23188 return true; 23189 23190 // Be conservative about atomics for the moment 23191 // TODO: This is way overconservative for unordered atomics (see D66309) 23192 if (MUC0.IsAtomic && MUC1.IsAtomic) 23193 return true; 23194 23195 if (MUC0.MMO && MUC1.MMO) { 23196 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 23197 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 23198 return false; 23199 } 23200 23201 // Try to prove that there is aliasing, or that there is no aliasing. Either 23202 // way, we can return now. If nothing can be proved, proceed with more tests. 23203 bool IsAlias; 23204 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 23205 DAG, IsAlias)) 23206 return IsAlias; 23207 23208 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 23209 // either are not known. 23210 if (!MUC0.MMO || !MUC1.MMO) 23211 return true; 23212 23213 // If one operation reads from invariant memory, and the other may store, they 23214 // cannot alias. These should really be checking the equivalent of mayWrite, 23215 // but it only matters for memory nodes other than load /store. 23216 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 23217 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 23218 return false; 23219 23220 // If we know required SrcValue1 and SrcValue2 have relatively large 23221 // alignment compared to the size and offset of the access, we may be able 23222 // to prove they do not alias. This check is conservative for now to catch 23223 // cases created by splitting vector types, it only works when the offsets are 23224 // multiples of the size of the data. 23225 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 23226 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 23227 Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); 23228 Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); 23229 auto &Size0 = MUC0.NumBytes; 23230 auto &Size1 = MUC1.NumBytes; 23231 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 23232 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && 23233 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && 23234 SrcValOffset1 % *Size1 == 0) { 23235 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); 23236 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); 23237 23238 // There is no overlap between these relatively aligned accesses of 23239 // similar size. Return no alias. 23240 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) 23241 return false; 23242 } 23243 23244 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 23245 ? CombinerGlobalAA 23246 : DAG.getSubtarget().useAA(); 23247 #ifndef NDEBUG 23248 if (CombinerAAOnlyFunc.getNumOccurrences() && 23249 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 23250 UseAA = false; 23251 #endif 23252 23253 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 23254 Size0.hasValue() && Size1.hasValue()) { 23255 // Use alias analysis information. 23256 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 23257 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; 23258 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; 23259 if (AA->isNoAlias( 23260 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 23261 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 23262 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 23263 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()))) 23264 return false; 23265 } 23266 23267 // Otherwise we have to assume they alias. 23268 return true; 23269 } 23270 23271 /// Walk up chain skipping non-aliasing memory nodes, 23272 /// looking for aliasing nodes and adding them to the Aliases vector. 23273 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 23274 SmallVectorImpl<SDValue> &Aliases) { 23275 SmallVector<SDValue, 8> Chains; // List of chains to visit. 23276 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 23277 23278 // Get alias information for node. 23279 // TODO: relax aliasing for unordered atomics (see D66309) 23280 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); 23281 23282 // Starting off. 23283 Chains.push_back(OriginalChain); 23284 unsigned Depth = 0; 23285 23286 // Attempt to improve chain by a single step 23287 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { 23288 switch (C.getOpcode()) { 23289 case ISD::EntryToken: 23290 // No need to mark EntryToken. 23291 C = SDValue(); 23292 return true; 23293 case ISD::LOAD: 23294 case ISD::STORE: { 23295 // Get alias information for C. 23296 // TODO: Relax aliasing for unordered atomics (see D66309) 23297 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 23298 cast<LSBaseSDNode>(C.getNode())->isSimple(); 23299 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { 23300 // Look further up the chain. 23301 C = C.getOperand(0); 23302 return true; 23303 } 23304 // Alias, so stop here. 23305 return false; 23306 } 23307 23308 case ISD::CopyFromReg: 23309 // Always forward past past CopyFromReg. 23310 C = C.getOperand(0); 23311 return true; 23312 23313 case ISD::LIFETIME_START: 23314 case ISD::LIFETIME_END: { 23315 // We can forward past any lifetime start/end that can be proven not to 23316 // alias the memory access. 23317 if (!isAlias(N, C.getNode())) { 23318 // Look further up the chain. 23319 C = C.getOperand(0); 23320 return true; 23321 } 23322 return false; 23323 } 23324 default: 23325 return false; 23326 } 23327 }; 23328 23329 // Look at each chain and determine if it is an alias. If so, add it to the 23330 // aliases list. If not, then continue up the chain looking for the next 23331 // candidate. 23332 while (!Chains.empty()) { 23333 SDValue Chain = Chains.pop_back_val(); 23334 23335 // Don't bother if we've seen Chain before. 23336 if (!Visited.insert(Chain.getNode()).second) 23337 continue; 23338 23339 // For TokenFactor nodes, look at each operand and only continue up the 23340 // chain until we reach the depth limit. 23341 // 23342 // FIXME: The depth check could be made to return the last non-aliasing 23343 // chain we found before we hit a tokenfactor rather than the original 23344 // chain. 23345 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 23346 Aliases.clear(); 23347 Aliases.push_back(OriginalChain); 23348 return; 23349 } 23350 23351 if (Chain.getOpcode() == ISD::TokenFactor) { 23352 // We have to check each of the operands of the token factor for "small" 23353 // token factors, so we queue them up. Adding the operands to the queue 23354 // (stack) in reverse order maintains the original order and increases the 23355 // likelihood that getNode will find a matching token factor (CSE.) 23356 if (Chain.getNumOperands() > 16) { 23357 Aliases.push_back(Chain); 23358 continue; 23359 } 23360 for (unsigned n = Chain.getNumOperands(); n;) 23361 Chains.push_back(Chain.getOperand(--n)); 23362 ++Depth; 23363 continue; 23364 } 23365 // Everything else 23366 if (ImproveChain(Chain)) { 23367 // Updated Chain Found, Consider new chain if one exists. 23368 if (Chain.getNode()) 23369 Chains.push_back(Chain); 23370 ++Depth; 23371 continue; 23372 } 23373 // No Improved Chain Possible, treat as Alias. 23374 Aliases.push_back(Chain); 23375 } 23376 } 23377 23378 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 23379 /// (aliasing node.) 23380 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 23381 if (OptLevel == CodeGenOpt::None) 23382 return OldChain; 23383 23384 // Ops for replacing token factor. 23385 SmallVector<SDValue, 8> Aliases; 23386 23387 // Accumulate all the aliases to this node. 23388 GatherAllAliases(N, OldChain, Aliases); 23389 23390 // If no operands then chain to entry token. 23391 if (Aliases.size() == 0) 23392 return DAG.getEntryNode(); 23393 23394 // If a single operand then chain to it. We don't need to revisit it. 23395 if (Aliases.size() == 1) 23396 return Aliases[0]; 23397 23398 // Construct a custom tailored token factor. 23399 return DAG.getTokenFactor(SDLoc(N), Aliases); 23400 } 23401 23402 namespace { 23403 // TODO: Replace with with std::monostate when we move to C++17. 23404 struct UnitT { } Unit; 23405 bool operator==(const UnitT &, const UnitT &) { return true; } 23406 bool operator!=(const UnitT &, const UnitT &) { return false; } 23407 } // namespace 23408 23409 // This function tries to collect a bunch of potentially interesting 23410 // nodes to improve the chains of, all at once. This might seem 23411 // redundant, as this function gets called when visiting every store 23412 // node, so why not let the work be done on each store as it's visited? 23413 // 23414 // I believe this is mainly important because mergeConsecutiveStores 23415 // is unable to deal with merging stores of different sizes, so unless 23416 // we improve the chains of all the potential candidates up-front 23417 // before running mergeConsecutiveStores, it might only see some of 23418 // the nodes that will eventually be candidates, and then not be able 23419 // to go from a partially-merged state to the desired final 23420 // fully-merged state. 23421 23422 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 23423 SmallVector<StoreSDNode *, 8> ChainedStores; 23424 StoreSDNode *STChain = St; 23425 // Intervals records which offsets from BaseIndex have been covered. In 23426 // the common case, every store writes to the immediately previous address 23427 // space and thus merged with the previous interval at insertion time. 23428 23429 using IMap = 23430 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 23431 IMap::Allocator A; 23432 IMap Intervals(A); 23433 23434 // This holds the base pointer, index, and the offset in bytes from the base 23435 // pointer. 23436 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 23437 23438 // We must have a base and an offset. 23439 if (!BasePtr.getBase().getNode()) 23440 return false; 23441 23442 // Do not handle stores to undef base pointers. 23443 if (BasePtr.getBase().isUndef()) 23444 return false; 23445 23446 // Do not handle stores to opaque types 23447 if (St->getMemoryVT().isZeroSized()) 23448 return false; 23449 23450 // BaseIndexOffset assumes that offsets are fixed-size, which 23451 // is not valid for scalable vectors where the offsets are 23452 // scaled by `vscale`, so bail out early. 23453 if (St->getMemoryVT().isScalableVector()) 23454 return false; 23455 23456 // Add ST's interval. 23457 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 23458 23459 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 23460 if (Chain->getMemoryVT().isScalableVector()) 23461 return false; 23462 23463 // If the chain has more than one use, then we can't reorder the mem ops. 23464 if (!SDValue(Chain, 0)->hasOneUse()) 23465 break; 23466 // TODO: Relax for unordered atomics (see D66309) 23467 if (!Chain->isSimple() || Chain->isIndexed()) 23468 break; 23469 23470 // Find the base pointer and offset for this memory node. 23471 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 23472 // Check that the base pointer is the same as the original one. 23473 int64_t Offset; 23474 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 23475 break; 23476 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 23477 // Make sure we don't overlap with other intervals by checking the ones to 23478 // the left or right before inserting. 23479 auto I = Intervals.find(Offset); 23480 // If there's a next interval, we should end before it. 23481 if (I != Intervals.end() && I.start() < (Offset + Length)) 23482 break; 23483 // If there's a previous interval, we should start after it. 23484 if (I != Intervals.begin() && (--I).stop() <= Offset) 23485 break; 23486 Intervals.insert(Offset, Offset + Length, Unit); 23487 23488 ChainedStores.push_back(Chain); 23489 STChain = Chain; 23490 } 23491 23492 // If we didn't find a chained store, exit. 23493 if (ChainedStores.size() == 0) 23494 return false; 23495 23496 // Improve all chained stores (St and ChainedStores members) starting from 23497 // where the store chain ended and return single TokenFactor. 23498 SDValue NewChain = STChain->getChain(); 23499 SmallVector<SDValue, 8> TFOps; 23500 for (unsigned I = ChainedStores.size(); I;) { 23501 StoreSDNode *S = ChainedStores[--I]; 23502 SDValue BetterChain = FindBetterChain(S, NewChain); 23503 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 23504 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 23505 TFOps.push_back(SDValue(S, 0)); 23506 ChainedStores[I] = S; 23507 } 23508 23509 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 23510 SDValue BetterChain = FindBetterChain(St, NewChain); 23511 SDValue NewST; 23512 if (St->isTruncatingStore()) 23513 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 23514 St->getBasePtr(), St->getMemoryVT(), 23515 St->getMemOperand()); 23516 else 23517 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 23518 St->getBasePtr(), St->getMemOperand()); 23519 23520 TFOps.push_back(NewST); 23521 23522 // If we improved every element of TFOps, then we've lost the dependence on 23523 // NewChain to successors of St and we need to add it back to TFOps. Do so at 23524 // the beginning to keep relative order consistent with FindBetterChains. 23525 auto hasImprovedChain = [&](SDValue ST) -> bool { 23526 return ST->getOperand(0) != NewChain; 23527 }; 23528 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 23529 if (AddNewChain) 23530 TFOps.insert(TFOps.begin(), NewChain); 23531 23532 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 23533 CombineTo(St, TF); 23534 23535 // Add TF and its operands to the worklist. 23536 AddToWorklist(TF.getNode()); 23537 for (const SDValue &Op : TF->ops()) 23538 AddToWorklist(Op.getNode()); 23539 AddToWorklist(STChain); 23540 return true; 23541 } 23542 23543 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 23544 if (OptLevel == CodeGenOpt::None) 23545 return false; 23546 23547 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 23548 23549 // We must have a base and an offset. 23550 if (!BasePtr.getBase().getNode()) 23551 return false; 23552 23553 // Do not handle stores to undef base pointers. 23554 if (BasePtr.getBase().isUndef()) 23555 return false; 23556 23557 // Directly improve a chain of disjoint stores starting at St. 23558 if (parallelizeChainedStores(St)) 23559 return true; 23560 23561 // Improve St's Chain.. 23562 SDValue BetterChain = FindBetterChain(St, St->getChain()); 23563 if (St->getChain() != BetterChain) { 23564 replaceStoreChain(St, BetterChain); 23565 return true; 23566 } 23567 return false; 23568 } 23569 23570 /// This is the entry point for the file. 23571 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 23572 CodeGenOpt::Level OptLevel) { 23573 /// This is the main entry point to this class. 23574 DAGCombiner(*this, AA, OptLevel).Run(Level); 23575 } 23576