1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 11 // both before and after the DAG is legalized. 12 // 13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 14 // primarily intended to handle simplification opportunities that are implicit 15 // in the LLVM IR and exposed by the various codegen lowering phases. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "dagcombine" 44 45 STATISTIC(NodesCombined , "Number of dag nodes combined"); 46 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 47 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 48 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 49 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 50 STATISTIC(SlicedLoads, "Number of load sliced"); 51 52 namespace { 53 static cl::opt<bool> 54 CombinerAA("combiner-alias-analysis", cl::Hidden, 55 cl::desc("Enable DAG combiner alias-analysis heuristics")); 56 57 static cl::opt<bool> 58 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 59 cl::desc("Enable DAG combiner's use of IR alias analysis")); 60 61 static cl::opt<bool> 62 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 63 cl::desc("Enable DAG combiner's use of TBAA")); 64 65 #ifndef NDEBUG 66 static cl::opt<std::string> 67 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 68 cl::desc("Only use DAG-combiner alias analysis in this" 69 " function")); 70 #endif 71 72 /// Hidden option to stress test load slicing, i.e., when this option 73 /// is enabled, load slicing bypasses most of its profitability guards. 74 static cl::opt<bool> 75 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 76 cl::desc("Bypass the profitability model of load " 77 "slicing"), 78 cl::init(false)); 79 80 static cl::opt<bool> 81 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 82 cl::desc("DAG combiner may split indexing from loads")); 83 84 //------------------------------ DAGCombiner ---------------------------------// 85 86 class DAGCombiner { 87 SelectionDAG &DAG; 88 const TargetLowering &TLI; 89 CombineLevel Level; 90 CodeGenOpt::Level OptLevel; 91 bool LegalOperations; 92 bool LegalTypes; 93 bool ForCodeSize; 94 95 /// \brief Worklist of all of the nodes that need to be simplified. 96 /// 97 /// This must behave as a stack -- new nodes to process are pushed onto the 98 /// back and when processing we pop off of the back. 99 /// 100 /// The worklist will not contain duplicates but may contain null entries 101 /// due to nodes being deleted from the underlying DAG. 102 SmallVector<SDNode *, 64> Worklist; 103 104 /// \brief Mapping from an SDNode to its position on the worklist. 105 /// 106 /// This is used to find and remove nodes from the worklist (by nulling 107 /// them) when they are deleted from the underlying DAG. It relies on 108 /// stable indices of nodes within the worklist. 109 DenseMap<SDNode *, unsigned> WorklistMap; 110 111 /// \brief Set of nodes which have been combined (at least once). 112 /// 113 /// This is used to allow us to reliably add any operands of a DAG node 114 /// which have not yet been combined to the worklist. 115 SmallPtrSet<SDNode *, 64> CombinedNodes; 116 117 // AA - Used for DAG load/store alias analysis. 118 AliasAnalysis &AA; 119 120 /// When an instruction is simplified, add all users of the instruction to 121 /// the work lists because they might get more simplified now. 122 void AddUsersToWorklist(SDNode *N) { 123 for (SDNode *Node : N->uses()) 124 AddToWorklist(Node); 125 } 126 127 /// Call the node-specific routine that folds each particular type of node. 128 SDValue visit(SDNode *N); 129 130 public: 131 /// Add to the worklist making sure its instance is at the back (next to be 132 /// processed.) 133 void AddToWorklist(SDNode *N) { 134 // Skip handle nodes as they can't usefully be combined and confuse the 135 // zero-use deletion strategy. 136 if (N->getOpcode() == ISD::HANDLENODE) 137 return; 138 139 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 140 Worklist.push_back(N); 141 } 142 143 /// Remove all instances of N from the worklist. 144 void removeFromWorklist(SDNode *N) { 145 CombinedNodes.erase(N); 146 147 auto It = WorklistMap.find(N); 148 if (It == WorklistMap.end()) 149 return; // Not in the worklist. 150 151 // Null out the entry rather than erasing it to avoid a linear operation. 152 Worklist[It->second] = nullptr; 153 WorklistMap.erase(It); 154 } 155 156 void deleteAndRecombine(SDNode *N); 157 bool recursivelyDeleteUnusedNodes(SDNode *N); 158 159 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 160 bool AddTo = true); 161 162 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 163 return CombineTo(N, &Res, 1, AddTo); 164 } 165 166 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 167 bool AddTo = true) { 168 SDValue To[] = { Res0, Res1 }; 169 return CombineTo(N, To, 2, AddTo); 170 } 171 172 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 173 174 private: 175 176 /// Check the specified integer node value to see if it can be simplified or 177 /// if things it uses can be simplified by bit propagation. 178 /// If so, return true. 179 bool SimplifyDemandedBits(SDValue Op) { 180 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 181 APInt Demanded = APInt::getAllOnesValue(BitWidth); 182 return SimplifyDemandedBits(Op, Demanded); 183 } 184 185 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 186 187 bool CombineToPreIndexedLoadStore(SDNode *N); 188 bool CombineToPostIndexedLoadStore(SDNode *N); 189 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 190 bool SliceUpLoad(SDNode *N); 191 192 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 193 /// load. 194 /// 195 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 196 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 197 /// \param EltNo index of the vector element to load. 198 /// \param OriginalLoad load that EVE came from to be replaced. 199 /// \returns EVE on success SDValue() on failure. 200 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 201 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 202 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 203 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 204 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 205 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 206 SDValue PromoteIntBinOp(SDValue Op); 207 SDValue PromoteIntShiftOp(SDValue Op); 208 SDValue PromoteExtend(SDValue Op); 209 bool PromoteLoad(SDValue Op); 210 211 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 212 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 213 ISD::NodeType ExtType); 214 215 /// Call the node-specific routine that knows how to fold each 216 /// particular type of node. If that doesn't do anything, try the 217 /// target-specific DAG combines. 218 SDValue combine(SDNode *N); 219 220 // Visitation implementation - Implement dag node combining for different 221 // node types. The semantics are as follows: 222 // Return Value: 223 // SDValue.getNode() == 0 - No change was made 224 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 225 // otherwise - N should be replaced by the returned Operand. 226 // 227 SDValue visitTokenFactor(SDNode *N); 228 SDValue visitMERGE_VALUES(SDNode *N); 229 SDValue visitADD(SDNode *N); 230 SDValue visitSUB(SDNode *N); 231 SDValue visitADDC(SDNode *N); 232 SDValue visitSUBC(SDNode *N); 233 SDValue visitADDE(SDNode *N); 234 SDValue visitSUBE(SDNode *N); 235 SDValue visitMUL(SDNode *N); 236 SDValue visitSDIV(SDNode *N); 237 SDValue visitUDIV(SDNode *N); 238 SDValue visitSREM(SDNode *N); 239 SDValue visitUREM(SDNode *N); 240 SDValue visitMULHU(SDNode *N); 241 SDValue visitMULHS(SDNode *N); 242 SDValue visitSMUL_LOHI(SDNode *N); 243 SDValue visitUMUL_LOHI(SDNode *N); 244 SDValue visitSMULO(SDNode *N); 245 SDValue visitUMULO(SDNode *N); 246 SDValue visitSDIVREM(SDNode *N); 247 SDValue visitUDIVREM(SDNode *N); 248 SDValue visitIMINMAX(SDNode *N); 249 SDValue visitAND(SDNode *N); 250 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); 251 SDValue visitOR(SDNode *N); 252 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); 253 SDValue visitXOR(SDNode *N); 254 SDValue SimplifyVBinOp(SDNode *N); 255 SDValue visitSHL(SDNode *N); 256 SDValue visitSRA(SDNode *N); 257 SDValue visitSRL(SDNode *N); 258 SDValue visitRotate(SDNode *N); 259 SDValue visitBSWAP(SDNode *N); 260 SDValue visitCTLZ(SDNode *N); 261 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 262 SDValue visitCTTZ(SDNode *N); 263 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 264 SDValue visitCTPOP(SDNode *N); 265 SDValue visitSELECT(SDNode *N); 266 SDValue visitVSELECT(SDNode *N); 267 SDValue visitSELECT_CC(SDNode *N); 268 SDValue visitSETCC(SDNode *N); 269 SDValue visitSIGN_EXTEND(SDNode *N); 270 SDValue visitZERO_EXTEND(SDNode *N); 271 SDValue visitANY_EXTEND(SDNode *N); 272 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 273 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 274 SDValue visitTRUNCATE(SDNode *N); 275 SDValue visitBITCAST(SDNode *N); 276 SDValue visitBUILD_PAIR(SDNode *N); 277 SDValue visitFADD(SDNode *N); 278 SDValue visitFSUB(SDNode *N); 279 SDValue visitFMUL(SDNode *N); 280 SDValue visitFMA(SDNode *N); 281 SDValue visitFDIV(SDNode *N); 282 SDValue visitFREM(SDNode *N); 283 SDValue visitFSQRT(SDNode *N); 284 SDValue visitFCOPYSIGN(SDNode *N); 285 SDValue visitSINT_TO_FP(SDNode *N); 286 SDValue visitUINT_TO_FP(SDNode *N); 287 SDValue visitFP_TO_SINT(SDNode *N); 288 SDValue visitFP_TO_UINT(SDNode *N); 289 SDValue visitFP_ROUND(SDNode *N); 290 SDValue visitFP_ROUND_INREG(SDNode *N); 291 SDValue visitFP_EXTEND(SDNode *N); 292 SDValue visitFNEG(SDNode *N); 293 SDValue visitFABS(SDNode *N); 294 SDValue visitFCEIL(SDNode *N); 295 SDValue visitFTRUNC(SDNode *N); 296 SDValue visitFFLOOR(SDNode *N); 297 SDValue visitFMINNUM(SDNode *N); 298 SDValue visitFMAXNUM(SDNode *N); 299 SDValue visitBRCOND(SDNode *N); 300 SDValue visitBR_CC(SDNode *N); 301 SDValue visitLOAD(SDNode *N); 302 303 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 304 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 305 306 SDValue visitSTORE(SDNode *N); 307 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 308 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 309 SDValue visitBUILD_VECTOR(SDNode *N); 310 SDValue visitCONCAT_VECTORS(SDNode *N); 311 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 312 SDValue visitVECTOR_SHUFFLE(SDNode *N); 313 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 314 SDValue visitINSERT_SUBVECTOR(SDNode *N); 315 SDValue visitMLOAD(SDNode *N); 316 SDValue visitMSTORE(SDNode *N); 317 SDValue visitMGATHER(SDNode *N); 318 SDValue visitMSCATTER(SDNode *N); 319 SDValue visitFP_TO_FP16(SDNode *N); 320 SDValue visitFP16_TO_FP(SDNode *N); 321 322 SDValue visitFADDForFMACombine(SDNode *N); 323 SDValue visitFSUBForFMACombine(SDNode *N); 324 SDValue visitFMULForFMACombine(SDNode *N); 325 326 SDValue XformToShuffleWithZero(SDNode *N); 327 SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); 328 329 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 330 331 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 332 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 333 SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2); 334 SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2, 335 SDValue N3, ISD::CondCode CC, 336 bool NotExtCompare = false); 337 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 338 SDLoc DL, bool foldBooleans = true); 339 340 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 341 SDValue &CC) const; 342 bool isOneUseSetCC(SDValue N) const; 343 344 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 345 unsigned HiOp); 346 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 347 SDValue CombineExtLoad(SDNode *N); 348 SDValue combineRepeatedFPDivisors(SDNode *N); 349 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 350 SDValue BuildSDIV(SDNode *N); 351 SDValue BuildSDIVPow2(SDNode *N); 352 SDValue BuildUDIV(SDNode *N); 353 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); 354 SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); 355 SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, 356 SDNodeFlags *Flags); 357 SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, 358 SDNodeFlags *Flags); 359 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 360 bool DemandHighBits = true); 361 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 362 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 363 SDValue InnerPos, SDValue InnerNeg, 364 unsigned PosOpcode, unsigned NegOpcode, 365 SDLoc DL); 366 SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL); 367 SDValue ReduceLoadWidth(SDNode *N); 368 SDValue ReduceLoadOpStoreWidth(SDNode *N); 369 SDValue TransformFPLoadStorePair(SDNode *N); 370 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 371 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 372 373 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 374 375 /// Walk up chain skipping non-aliasing memory nodes, 376 /// looking for aliasing nodes and adding them to the Aliases vector. 377 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 378 SmallVectorImpl<SDValue> &Aliases); 379 380 /// Return true if there is any possibility that the two addresses overlap. 381 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 382 383 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 384 /// chain (aliasing node.) 385 SDValue FindBetterChain(SDNode *N, SDValue Chain); 386 387 /// Do FindBetterChain for a store and any possibly adjacent stores on 388 /// consecutive chains. 389 bool findBetterNeighborChains(StoreSDNode *St); 390 391 /// Holds a pointer to an LSBaseSDNode as well as information on where it 392 /// is located in a sequence of memory operations connected by a chain. 393 struct MemOpLink { 394 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 395 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 396 // Ptr to the mem node. 397 LSBaseSDNode *MemNode; 398 // Offset from the base ptr. 399 int64_t OffsetFromBase; 400 // What is the sequence number of this mem node. 401 // Lowest mem operand in the DAG starts at zero. 402 unsigned SequenceNum; 403 }; 404 405 /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a 406 /// constant build_vector of the stored constant values in Stores. 407 SDValue getMergedConstantVectorStore(SelectionDAG &DAG, 408 SDLoc SL, 409 ArrayRef<MemOpLink> Stores, 410 SmallVectorImpl<SDValue> &Chains, 411 EVT Ty) const; 412 413 /// This is a helper function for MergeConsecutiveStores. When the source 414 /// elements of the consecutive stores are all constants or all extracted 415 /// vector elements, try to merge them into one larger store. 416 /// \return True if a merged store was created. 417 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 418 EVT MemVT, unsigned NumStores, 419 bool IsConstantSrc, bool UseVector); 420 421 /// This is a helper function for MergeConsecutiveStores. 422 /// Stores that may be merged are placed in StoreNodes. 423 /// Loads that may alias with those stores are placed in AliasLoadNodes. 424 void getStoreMergeAndAliasCandidates( 425 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 426 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); 427 428 /// Merge consecutive store operations into a wide store. 429 /// This optimization uses wide integers or vectors when possible. 430 /// \return True if some memory operations were changed. 431 bool MergeConsecutiveStores(StoreSDNode *N); 432 433 /// \brief Try to transform a truncation where C is a constant: 434 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 435 /// 436 /// \p N needs to be a truncation and its first operand an AND. Other 437 /// requirements are checked by the function (e.g. that trunc is 438 /// single-use) and if missed an empty SDValue is returned. 439 SDValue distributeTruncateThroughAnd(SDNode *N); 440 441 public: 442 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 443 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 444 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 445 ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); 446 } 447 448 /// Runs the dag combiner on all nodes in the work list 449 void Run(CombineLevel AtLevel); 450 451 SelectionDAG &getDAG() const { return DAG; } 452 453 /// Returns a type large enough to hold any valid shift amount - before type 454 /// legalization these can be huge. 455 EVT getShiftAmountTy(EVT LHSTy) { 456 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 457 if (LHSTy.isVector()) 458 return LHSTy; 459 auto &DL = DAG.getDataLayout(); 460 return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) 461 : TLI.getPointerTy(DL); 462 } 463 464 /// This method returns true if we are running before type legalization or 465 /// if the specified VT is legal. 466 bool isTypeLegal(const EVT &VT) { 467 if (!LegalTypes) return true; 468 return TLI.isTypeLegal(VT); 469 } 470 471 /// Convenience wrapper around TargetLowering::getSetCCResultType 472 EVT getSetCCResultType(EVT VT) const { 473 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 474 } 475 }; 476 } 477 478 479 namespace { 480 /// This class is a DAGUpdateListener that removes any deleted 481 /// nodes from the worklist. 482 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 483 DAGCombiner &DC; 484 public: 485 explicit WorklistRemover(DAGCombiner &dc) 486 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 487 488 void NodeDeleted(SDNode *N, SDNode *E) override { 489 DC.removeFromWorklist(N); 490 } 491 }; 492 } 493 494 //===----------------------------------------------------------------------===// 495 // TargetLowering::DAGCombinerInfo implementation 496 //===----------------------------------------------------------------------===// 497 498 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 499 ((DAGCombiner*)DC)->AddToWorklist(N); 500 } 501 502 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { 503 ((DAGCombiner*)DC)->removeFromWorklist(N); 504 } 505 506 SDValue TargetLowering::DAGCombinerInfo:: 507 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 508 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 509 } 510 511 SDValue TargetLowering::DAGCombinerInfo:: 512 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 513 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 514 } 515 516 517 SDValue TargetLowering::DAGCombinerInfo:: 518 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 519 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 520 } 521 522 void TargetLowering::DAGCombinerInfo:: 523 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 524 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // Helper Functions 529 //===----------------------------------------------------------------------===// 530 531 void DAGCombiner::deleteAndRecombine(SDNode *N) { 532 removeFromWorklist(N); 533 534 // If the operands of this node are only used by the node, they will now be 535 // dead. Make sure to re-visit them and recursively delete dead nodes. 536 for (const SDValue &Op : N->ops()) 537 // For an operand generating multiple values, one of the values may 538 // become dead allowing further simplification (e.g. split index 539 // arithmetic from an indexed load). 540 if (Op->hasOneUse() || Op->getNumValues() > 1) 541 AddToWorklist(Op.getNode()); 542 543 DAG.DeleteNode(N); 544 } 545 546 /// Return 1 if we can compute the negated form of the specified expression for 547 /// the same cost as the expression itself, or 2 if we can compute the negated 548 /// form more cheaply than the expression itself. 549 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 550 const TargetLowering &TLI, 551 const TargetOptions *Options, 552 unsigned Depth = 0) { 553 // fneg is removable even if it has multiple uses. 554 if (Op.getOpcode() == ISD::FNEG) return 2; 555 556 // Don't allow anything with multiple uses. 557 if (!Op.hasOneUse()) return 0; 558 559 // Don't recurse exponentially. 560 if (Depth > 6) return 0; 561 562 switch (Op.getOpcode()) { 563 default: return false; 564 case ISD::ConstantFP: 565 // Don't invert constant FP values after legalize. The negated constant 566 // isn't necessarily legal. 567 return LegalOperations ? 0 : 1; 568 case ISD::FADD: 569 // FIXME: determine better conditions for this xform. 570 if (!Options->UnsafeFPMath) return 0; 571 572 // After operation legalization, it might not be legal to create new FSUBs. 573 if (LegalOperations && 574 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 575 return 0; 576 577 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 578 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 579 Options, Depth + 1)) 580 return V; 581 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 582 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 583 Depth + 1); 584 case ISD::FSUB: 585 // We can't turn -(A-B) into B-A when we honor signed zeros. 586 if (!Options->UnsafeFPMath) return 0; 587 588 // fold (fneg (fsub A, B)) -> (fsub B, A) 589 return 1; 590 591 case ISD::FMUL: 592 case ISD::FDIV: 593 if (Options->HonorSignDependentRoundingFPMath()) return 0; 594 595 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 596 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 597 Options, Depth + 1)) 598 return V; 599 600 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 601 Depth + 1); 602 603 case ISD::FP_EXTEND: 604 case ISD::FP_ROUND: 605 case ISD::FSIN: 606 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 607 Depth + 1); 608 } 609 } 610 611 /// If isNegatibleForFree returns true, return the newly negated expression. 612 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 613 bool LegalOperations, unsigned Depth = 0) { 614 const TargetOptions &Options = DAG.getTarget().Options; 615 // fneg is removable even if it has multiple uses. 616 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 617 618 // Don't allow anything with multiple uses. 619 assert(Op.hasOneUse() && "Unknown reuse!"); 620 621 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 622 623 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 624 625 switch (Op.getOpcode()) { 626 default: llvm_unreachable("Unknown code"); 627 case ISD::ConstantFP: { 628 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 629 V.changeSign(); 630 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 631 } 632 case ISD::FADD: 633 // FIXME: determine better conditions for this xform. 634 assert(Options.UnsafeFPMath); 635 636 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 637 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 638 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 639 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 640 GetNegatedExpression(Op.getOperand(0), DAG, 641 LegalOperations, Depth+1), 642 Op.getOperand(1), Flags); 643 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 644 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 645 GetNegatedExpression(Op.getOperand(1), DAG, 646 LegalOperations, Depth+1), 647 Op.getOperand(0), Flags); 648 case ISD::FSUB: 649 // We can't turn -(A-B) into B-A when we honor signed zeros. 650 assert(Options.UnsafeFPMath); 651 652 // fold (fneg (fsub 0, B)) -> B 653 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 654 if (N0CFP->isZero()) 655 return Op.getOperand(1); 656 657 // fold (fneg (fsub A, B)) -> (fsub B, A) 658 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 659 Op.getOperand(1), Op.getOperand(0), Flags); 660 661 case ISD::FMUL: 662 case ISD::FDIV: 663 assert(!Options.HonorSignDependentRoundingFPMath()); 664 665 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 666 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 667 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 668 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 669 GetNegatedExpression(Op.getOperand(0), DAG, 670 LegalOperations, Depth+1), 671 Op.getOperand(1), Flags); 672 673 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 674 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 675 Op.getOperand(0), 676 GetNegatedExpression(Op.getOperand(1), DAG, 677 LegalOperations, Depth+1), Flags); 678 679 case ISD::FP_EXTEND: 680 case ISD::FSIN: 681 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 682 GetNegatedExpression(Op.getOperand(0), DAG, 683 LegalOperations, Depth+1)); 684 case ISD::FP_ROUND: 685 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 686 GetNegatedExpression(Op.getOperand(0), DAG, 687 LegalOperations, Depth+1), 688 Op.getOperand(1)); 689 } 690 } 691 692 // Return true if this node is a setcc, or is a select_cc 693 // that selects between the target values used for true and false, making it 694 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 695 // the appropriate nodes based on the type of node we are checking. This 696 // simplifies life a bit for the callers. 697 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 698 SDValue &CC) const { 699 if (N.getOpcode() == ISD::SETCC) { 700 LHS = N.getOperand(0); 701 RHS = N.getOperand(1); 702 CC = N.getOperand(2); 703 return true; 704 } 705 706 if (N.getOpcode() != ISD::SELECT_CC || 707 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 708 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 709 return false; 710 711 if (TLI.getBooleanContents(N.getValueType()) == 712 TargetLowering::UndefinedBooleanContent) 713 return false; 714 715 LHS = N.getOperand(0); 716 RHS = N.getOperand(1); 717 CC = N.getOperand(4); 718 return true; 719 } 720 721 /// Return true if this is a SetCC-equivalent operation with only one use. 722 /// If this is true, it allows the users to invert the operation for free when 723 /// it is profitable to do so. 724 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 725 SDValue N0, N1, N2; 726 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 727 return true; 728 return false; 729 } 730 731 /// Returns true if N is a BUILD_VECTOR node whose 732 /// elements are all the same constant or undefined. 733 static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) { 734 BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N); 735 if (!C) 736 return false; 737 738 APInt SplatUndef; 739 unsigned SplatBitSize; 740 bool HasAnyUndefs; 741 EVT EltVT = N->getValueType(0).getVectorElementType(); 742 return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 743 HasAnyUndefs) && 744 EltVT.getSizeInBits() >= SplatBitSize); 745 } 746 747 // \brief Returns the SDNode if it is a constant integer BuildVector 748 // or constant integer. 749 static SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) { 750 if (isa<ConstantSDNode>(N)) 751 return N.getNode(); 752 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 753 return N.getNode(); 754 return nullptr; 755 } 756 757 // \brief Returns the SDNode if it is a constant float BuildVector 758 // or constant float. 759 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 760 if (isa<ConstantFPSDNode>(N)) 761 return N.getNode(); 762 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 763 return N.getNode(); 764 return nullptr; 765 } 766 767 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 768 // int. 769 static ConstantSDNode *isConstOrConstSplat(SDValue N) { 770 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 771 return CN; 772 773 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 774 BitVector UndefElements; 775 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 776 777 // BuildVectors can truncate their operands. Ignore that case here. 778 // FIXME: We blindly ignore splats which include undef which is overly 779 // pessimistic. 780 if (CN && UndefElements.none() && 781 CN->getValueType(0) == N.getValueType().getScalarType()) 782 return CN; 783 } 784 785 return nullptr; 786 } 787 788 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 789 // float. 790 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { 791 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 792 return CN; 793 794 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 795 BitVector UndefElements; 796 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 797 798 if (CN && UndefElements.none()) 799 return CN; 800 } 801 802 return nullptr; 803 } 804 805 SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL, 806 SDValue N0, SDValue N1) { 807 EVT VT = N0.getValueType(); 808 if (N0.getOpcode() == Opc) { 809 if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 810 if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1)) { 811 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 812 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) 813 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 814 return SDValue(); 815 } 816 if (N0.hasOneUse()) { 817 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 818 // use 819 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 820 if (!OpNode.getNode()) 821 return SDValue(); 822 AddToWorklist(OpNode.getNode()); 823 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 824 } 825 } 826 } 827 828 if (N1.getOpcode() == Opc) { 829 if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { 830 if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0)) { 831 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 832 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) 833 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 834 return SDValue(); 835 } 836 if (N1.hasOneUse()) { 837 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one 838 // use 839 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0); 840 if (!OpNode.getNode()) 841 return SDValue(); 842 AddToWorklist(OpNode.getNode()); 843 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 844 } 845 } 846 } 847 848 return SDValue(); 849 } 850 851 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 852 bool AddTo) { 853 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 854 ++NodesCombined; 855 DEBUG(dbgs() << "\nReplacing.1 "; 856 N->dump(&DAG); 857 dbgs() << "\nWith: "; 858 To[0].getNode()->dump(&DAG); 859 dbgs() << " and " << NumTo-1 << " other values\n"); 860 for (unsigned i = 0, e = NumTo; i != e; ++i) 861 assert((!To[i].getNode() || 862 N->getValueType(i) == To[i].getValueType()) && 863 "Cannot combine value to value of different type!"); 864 865 WorklistRemover DeadNodes(*this); 866 DAG.ReplaceAllUsesWith(N, To); 867 if (AddTo) { 868 // Push the new nodes and any users onto the worklist 869 for (unsigned i = 0, e = NumTo; i != e; ++i) { 870 if (To[i].getNode()) { 871 AddToWorklist(To[i].getNode()); 872 AddUsersToWorklist(To[i].getNode()); 873 } 874 } 875 } 876 877 // Finally, if the node is now dead, remove it from the graph. The node 878 // may not be dead if the replacement process recursively simplified to 879 // something else needing this node. 880 if (N->use_empty()) 881 deleteAndRecombine(N); 882 return SDValue(N, 0); 883 } 884 885 void DAGCombiner:: 886 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 887 // Replace all uses. If any nodes become isomorphic to other nodes and 888 // are deleted, make sure to remove them from our worklist. 889 WorklistRemover DeadNodes(*this); 890 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 891 892 // Push the new node and any (possibly new) users onto the worklist. 893 AddToWorklist(TLO.New.getNode()); 894 AddUsersToWorklist(TLO.New.getNode()); 895 896 // Finally, if the node is now dead, remove it from the graph. The node 897 // may not be dead if the replacement process recursively simplified to 898 // something else needing this node. 899 if (TLO.Old.getNode()->use_empty()) 900 deleteAndRecombine(TLO.Old.getNode()); 901 } 902 903 /// Check the specified integer node value to see if it can be simplified or if 904 /// things it uses can be simplified by bit propagation. If so, return true. 905 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 906 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 907 APInt KnownZero, KnownOne; 908 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 909 return false; 910 911 // Revisit the node. 912 AddToWorklist(Op.getNode()); 913 914 // Replace the old value with the new one. 915 ++NodesCombined; 916 DEBUG(dbgs() << "\nReplacing.2 "; 917 TLO.Old.getNode()->dump(&DAG); 918 dbgs() << "\nWith: "; 919 TLO.New.getNode()->dump(&DAG); 920 dbgs() << '\n'); 921 922 CommitTargetLoweringOpt(TLO); 923 return true; 924 } 925 926 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 927 SDLoc dl(Load); 928 EVT VT = Load->getValueType(0); 929 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); 930 931 DEBUG(dbgs() << "\nReplacing.9 "; 932 Load->dump(&DAG); 933 dbgs() << "\nWith: "; 934 Trunc.getNode()->dump(&DAG); 935 dbgs() << '\n'); 936 WorklistRemover DeadNodes(*this); 937 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 938 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 939 deleteAndRecombine(Load); 940 AddToWorklist(Trunc.getNode()); 941 } 942 943 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 944 Replace = false; 945 SDLoc dl(Op); 946 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 947 EVT MemVT = LD->getMemoryVT(); 948 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 949 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 950 : ISD::EXTLOAD) 951 : LD->getExtensionType(); 952 Replace = true; 953 return DAG.getExtLoad(ExtType, dl, PVT, 954 LD->getChain(), LD->getBasePtr(), 955 MemVT, LD->getMemOperand()); 956 } 957 958 unsigned Opc = Op.getOpcode(); 959 switch (Opc) { 960 default: break; 961 case ISD::AssertSext: 962 return DAG.getNode(ISD::AssertSext, dl, PVT, 963 SExtPromoteOperand(Op.getOperand(0), PVT), 964 Op.getOperand(1)); 965 case ISD::AssertZext: 966 return DAG.getNode(ISD::AssertZext, dl, PVT, 967 ZExtPromoteOperand(Op.getOperand(0), PVT), 968 Op.getOperand(1)); 969 case ISD::Constant: { 970 unsigned ExtOpc = 971 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 972 return DAG.getNode(ExtOpc, dl, PVT, Op); 973 } 974 } 975 976 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 977 return SDValue(); 978 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); 979 } 980 981 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 982 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 983 return SDValue(); 984 EVT OldVT = Op.getValueType(); 985 SDLoc dl(Op); 986 bool Replace = false; 987 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 988 if (!NewOp.getNode()) 989 return SDValue(); 990 AddToWorklist(NewOp.getNode()); 991 992 if (Replace) 993 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 994 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, 995 DAG.getValueType(OldVT)); 996 } 997 998 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 999 EVT OldVT = Op.getValueType(); 1000 SDLoc dl(Op); 1001 bool Replace = false; 1002 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1003 if (!NewOp.getNode()) 1004 return SDValue(); 1005 AddToWorklist(NewOp.getNode()); 1006 1007 if (Replace) 1008 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1009 return DAG.getZeroExtendInReg(NewOp, dl, OldVT); 1010 } 1011 1012 /// Promote the specified integer binary operation if the target indicates it is 1013 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1014 /// i32 since i16 instructions are longer. 1015 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1016 if (!LegalOperations) 1017 return SDValue(); 1018 1019 EVT VT = Op.getValueType(); 1020 if (VT.isVector() || !VT.isInteger()) 1021 return SDValue(); 1022 1023 // If operation type is 'undesirable', e.g. i16 on x86, consider 1024 // promoting it. 1025 unsigned Opc = Op.getOpcode(); 1026 if (TLI.isTypeDesirableForOp(Opc, VT)) 1027 return SDValue(); 1028 1029 EVT PVT = VT; 1030 // Consult target whether it is a good idea to promote this operation and 1031 // what's the right type to promote it to. 1032 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1033 assert(PVT != VT && "Don't know what type to promote to!"); 1034 1035 bool Replace0 = false; 1036 SDValue N0 = Op.getOperand(0); 1037 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1038 if (!NN0.getNode()) 1039 return SDValue(); 1040 1041 bool Replace1 = false; 1042 SDValue N1 = Op.getOperand(1); 1043 SDValue NN1; 1044 if (N0 == N1) 1045 NN1 = NN0; 1046 else { 1047 NN1 = PromoteOperand(N1, PVT, Replace1); 1048 if (!NN1.getNode()) 1049 return SDValue(); 1050 } 1051 1052 AddToWorklist(NN0.getNode()); 1053 if (NN1.getNode()) 1054 AddToWorklist(NN1.getNode()); 1055 1056 if (Replace0) 1057 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1058 if (Replace1) 1059 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1060 1061 DEBUG(dbgs() << "\nPromoting "; 1062 Op.getNode()->dump(&DAG)); 1063 SDLoc dl(Op); 1064 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1065 DAG.getNode(Opc, dl, PVT, NN0, NN1)); 1066 } 1067 return SDValue(); 1068 } 1069 1070 /// Promote the specified integer shift operation if the target indicates it is 1071 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1072 /// i32 since i16 instructions are longer. 1073 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1074 if (!LegalOperations) 1075 return SDValue(); 1076 1077 EVT VT = Op.getValueType(); 1078 if (VT.isVector() || !VT.isInteger()) 1079 return SDValue(); 1080 1081 // If operation type is 'undesirable', e.g. i16 on x86, consider 1082 // promoting it. 1083 unsigned Opc = Op.getOpcode(); 1084 if (TLI.isTypeDesirableForOp(Opc, VT)) 1085 return SDValue(); 1086 1087 EVT PVT = VT; 1088 // Consult target whether it is a good idea to promote this operation and 1089 // what's the right type to promote it to. 1090 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1091 assert(PVT != VT && "Don't know what type to promote to!"); 1092 1093 bool Replace = false; 1094 SDValue N0 = Op.getOperand(0); 1095 if (Opc == ISD::SRA) 1096 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 1097 else if (Opc == ISD::SRL) 1098 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 1099 else 1100 N0 = PromoteOperand(N0, PVT, Replace); 1101 if (!N0.getNode()) 1102 return SDValue(); 1103 1104 AddToWorklist(N0.getNode()); 1105 if (Replace) 1106 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1107 1108 DEBUG(dbgs() << "\nPromoting "; 1109 Op.getNode()->dump(&DAG)); 1110 SDLoc dl(Op); 1111 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1112 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); 1113 } 1114 return SDValue(); 1115 } 1116 1117 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1118 if (!LegalOperations) 1119 return SDValue(); 1120 1121 EVT VT = Op.getValueType(); 1122 if (VT.isVector() || !VT.isInteger()) 1123 return SDValue(); 1124 1125 // If operation type is 'undesirable', e.g. i16 on x86, consider 1126 // promoting it. 1127 unsigned Opc = Op.getOpcode(); 1128 if (TLI.isTypeDesirableForOp(Opc, VT)) 1129 return SDValue(); 1130 1131 EVT PVT = VT; 1132 // Consult target whether it is a good idea to promote this operation and 1133 // what's the right type to promote it to. 1134 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1135 assert(PVT != VT && "Don't know what type to promote to!"); 1136 // fold (aext (aext x)) -> (aext x) 1137 // fold (aext (zext x)) -> (zext x) 1138 // fold (aext (sext x)) -> (sext x) 1139 DEBUG(dbgs() << "\nPromoting "; 1140 Op.getNode()->dump(&DAG)); 1141 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1142 } 1143 return SDValue(); 1144 } 1145 1146 bool DAGCombiner::PromoteLoad(SDValue Op) { 1147 if (!LegalOperations) 1148 return false; 1149 1150 EVT VT = Op.getValueType(); 1151 if (VT.isVector() || !VT.isInteger()) 1152 return false; 1153 1154 // If operation type is 'undesirable', e.g. i16 on x86, consider 1155 // promoting it. 1156 unsigned Opc = Op.getOpcode(); 1157 if (TLI.isTypeDesirableForOp(Opc, VT)) 1158 return false; 1159 1160 EVT PVT = VT; 1161 // Consult target whether it is a good idea to promote this operation and 1162 // what's the right type to promote it to. 1163 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1164 assert(PVT != VT && "Don't know what type to promote to!"); 1165 1166 SDLoc dl(Op); 1167 SDNode *N = Op.getNode(); 1168 LoadSDNode *LD = cast<LoadSDNode>(N); 1169 EVT MemVT = LD->getMemoryVT(); 1170 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1171 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1172 : ISD::EXTLOAD) 1173 : LD->getExtensionType(); 1174 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, 1175 LD->getChain(), LD->getBasePtr(), 1176 MemVT, LD->getMemOperand()); 1177 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); 1178 1179 DEBUG(dbgs() << "\nPromoting "; 1180 N->dump(&DAG); 1181 dbgs() << "\nTo: "; 1182 Result.getNode()->dump(&DAG); 1183 dbgs() << '\n'); 1184 WorklistRemover DeadNodes(*this); 1185 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1186 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1187 deleteAndRecombine(N); 1188 AddToWorklist(Result.getNode()); 1189 return true; 1190 } 1191 return false; 1192 } 1193 1194 /// \brief Recursively delete a node which has no uses and any operands for 1195 /// which it is the only use. 1196 /// 1197 /// Note that this both deletes the nodes and removes them from the worklist. 1198 /// It also adds any nodes who have had a user deleted to the worklist as they 1199 /// may now have only one use and subject to other combines. 1200 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1201 if (!N->use_empty()) 1202 return false; 1203 1204 SmallSetVector<SDNode *, 16> Nodes; 1205 Nodes.insert(N); 1206 do { 1207 N = Nodes.pop_back_val(); 1208 if (!N) 1209 continue; 1210 1211 if (N->use_empty()) { 1212 for (const SDValue &ChildN : N->op_values()) 1213 Nodes.insert(ChildN.getNode()); 1214 1215 removeFromWorklist(N); 1216 DAG.DeleteNode(N); 1217 } else { 1218 AddToWorklist(N); 1219 } 1220 } while (!Nodes.empty()); 1221 return true; 1222 } 1223 1224 //===----------------------------------------------------------------------===// 1225 // Main DAG Combiner implementation 1226 //===----------------------------------------------------------------------===// 1227 1228 void DAGCombiner::Run(CombineLevel AtLevel) { 1229 // set the instance variables, so that the various visit routines may use it. 1230 Level = AtLevel; 1231 LegalOperations = Level >= AfterLegalizeVectorOps; 1232 LegalTypes = Level >= AfterLegalizeTypes; 1233 1234 // Add all the dag nodes to the worklist. 1235 for (SDNode &Node : DAG.allnodes()) 1236 AddToWorklist(&Node); 1237 1238 // Create a dummy node (which is not added to allnodes), that adds a reference 1239 // to the root node, preventing it from being deleted, and tracking any 1240 // changes of the root. 1241 HandleSDNode Dummy(DAG.getRoot()); 1242 1243 // while the worklist isn't empty, find a node and 1244 // try and combine it. 1245 while (!WorklistMap.empty()) { 1246 SDNode *N; 1247 // The Worklist holds the SDNodes in order, but it may contain null entries. 1248 do { 1249 N = Worklist.pop_back_val(); 1250 } while (!N); 1251 1252 bool GoodWorklistEntry = WorklistMap.erase(N); 1253 (void)GoodWorklistEntry; 1254 assert(GoodWorklistEntry && 1255 "Found a worklist entry without a corresponding map entry!"); 1256 1257 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1258 // N is deleted from the DAG, since they too may now be dead or may have a 1259 // reduced number of uses, allowing other xforms. 1260 if (recursivelyDeleteUnusedNodes(N)) 1261 continue; 1262 1263 WorklistRemover DeadNodes(*this); 1264 1265 // If this combine is running after legalizing the DAG, re-legalize any 1266 // nodes pulled off the worklist. 1267 if (Level == AfterLegalizeDAG) { 1268 SmallSetVector<SDNode *, 16> UpdatedNodes; 1269 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1270 1271 for (SDNode *LN : UpdatedNodes) { 1272 AddToWorklist(LN); 1273 AddUsersToWorklist(LN); 1274 } 1275 if (!NIsValid) 1276 continue; 1277 } 1278 1279 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1280 1281 // Add any operands of the new node which have not yet been combined to the 1282 // worklist as well. Because the worklist uniques things already, this 1283 // won't repeatedly process the same operand. 1284 CombinedNodes.insert(N); 1285 for (const SDValue &ChildN : N->op_values()) 1286 if (!CombinedNodes.count(ChildN.getNode())) 1287 AddToWorklist(ChildN.getNode()); 1288 1289 SDValue RV = combine(N); 1290 1291 if (!RV.getNode()) 1292 continue; 1293 1294 ++NodesCombined; 1295 1296 // If we get back the same node we passed in, rather than a new node or 1297 // zero, we know that the node must have defined multiple values and 1298 // CombineTo was used. Since CombineTo takes care of the worklist 1299 // mechanics for us, we have no work to do in this case. 1300 if (RV.getNode() == N) 1301 continue; 1302 1303 assert(N->getOpcode() != ISD::DELETED_NODE && 1304 RV.getNode()->getOpcode() != ISD::DELETED_NODE && 1305 "Node was deleted but visit returned new node!"); 1306 1307 DEBUG(dbgs() << " ... into: "; 1308 RV.getNode()->dump(&DAG)); 1309 1310 // Transfer debug value. 1311 DAG.TransferDbgValues(SDValue(N, 0), RV); 1312 if (N->getNumValues() == RV.getNode()->getNumValues()) 1313 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1314 else { 1315 assert(N->getValueType(0) == RV.getValueType() && 1316 N->getNumValues() == 1 && "Type mismatch"); 1317 SDValue OpV = RV; 1318 DAG.ReplaceAllUsesWith(N, &OpV); 1319 } 1320 1321 // Push the new node and any users onto the worklist 1322 AddToWorklist(RV.getNode()); 1323 AddUsersToWorklist(RV.getNode()); 1324 1325 // Finally, if the node is now dead, remove it from the graph. The node 1326 // may not be dead if the replacement process recursively simplified to 1327 // something else needing this node. This will also take care of adding any 1328 // operands which have lost a user to the worklist. 1329 recursivelyDeleteUnusedNodes(N); 1330 } 1331 1332 // If the root changed (e.g. it was a dead load, update the root). 1333 DAG.setRoot(Dummy.getValue()); 1334 DAG.RemoveDeadNodes(); 1335 } 1336 1337 SDValue DAGCombiner::visit(SDNode *N) { 1338 switch (N->getOpcode()) { 1339 default: break; 1340 case ISD::TokenFactor: return visitTokenFactor(N); 1341 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1342 case ISD::ADD: return visitADD(N); 1343 case ISD::SUB: return visitSUB(N); 1344 case ISD::ADDC: return visitADDC(N); 1345 case ISD::SUBC: return visitSUBC(N); 1346 case ISD::ADDE: return visitADDE(N); 1347 case ISD::SUBE: return visitSUBE(N); 1348 case ISD::MUL: return visitMUL(N); 1349 case ISD::SDIV: return visitSDIV(N); 1350 case ISD::UDIV: return visitUDIV(N); 1351 case ISD::SREM: return visitSREM(N); 1352 case ISD::UREM: return visitUREM(N); 1353 case ISD::MULHU: return visitMULHU(N); 1354 case ISD::MULHS: return visitMULHS(N); 1355 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1356 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1357 case ISD::SMULO: return visitSMULO(N); 1358 case ISD::UMULO: return visitUMULO(N); 1359 case ISD::SDIVREM: return visitSDIVREM(N); 1360 case ISD::UDIVREM: return visitUDIVREM(N); 1361 case ISD::SMIN: 1362 case ISD::SMAX: 1363 case ISD::UMIN: 1364 case ISD::UMAX: return visitIMINMAX(N); 1365 case ISD::AND: return visitAND(N); 1366 case ISD::OR: return visitOR(N); 1367 case ISD::XOR: return visitXOR(N); 1368 case ISD::SHL: return visitSHL(N); 1369 case ISD::SRA: return visitSRA(N); 1370 case ISD::SRL: return visitSRL(N); 1371 case ISD::ROTR: 1372 case ISD::ROTL: return visitRotate(N); 1373 case ISD::BSWAP: return visitBSWAP(N); 1374 case ISD::CTLZ: return visitCTLZ(N); 1375 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1376 case ISD::CTTZ: return visitCTTZ(N); 1377 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1378 case ISD::CTPOP: return visitCTPOP(N); 1379 case ISD::SELECT: return visitSELECT(N); 1380 case ISD::VSELECT: return visitVSELECT(N); 1381 case ISD::SELECT_CC: return visitSELECT_CC(N); 1382 case ISD::SETCC: return visitSETCC(N); 1383 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1384 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1385 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1386 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1387 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1388 case ISD::TRUNCATE: return visitTRUNCATE(N); 1389 case ISD::BITCAST: return visitBITCAST(N); 1390 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1391 case ISD::FADD: return visitFADD(N); 1392 case ISD::FSUB: return visitFSUB(N); 1393 case ISD::FMUL: return visitFMUL(N); 1394 case ISD::FMA: return visitFMA(N); 1395 case ISD::FDIV: return visitFDIV(N); 1396 case ISD::FREM: return visitFREM(N); 1397 case ISD::FSQRT: return visitFSQRT(N); 1398 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1399 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1400 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1401 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1402 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1403 case ISD::FP_ROUND: return visitFP_ROUND(N); 1404 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1405 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1406 case ISD::FNEG: return visitFNEG(N); 1407 case ISD::FABS: return visitFABS(N); 1408 case ISD::FFLOOR: return visitFFLOOR(N); 1409 case ISD::FMINNUM: return visitFMINNUM(N); 1410 case ISD::FMAXNUM: return visitFMAXNUM(N); 1411 case ISD::FCEIL: return visitFCEIL(N); 1412 case ISD::FTRUNC: return visitFTRUNC(N); 1413 case ISD::BRCOND: return visitBRCOND(N); 1414 case ISD::BR_CC: return visitBR_CC(N); 1415 case ISD::LOAD: return visitLOAD(N); 1416 case ISD::STORE: return visitSTORE(N); 1417 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1418 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1419 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1420 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1421 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1422 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1423 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1424 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1425 case ISD::MGATHER: return visitMGATHER(N); 1426 case ISD::MLOAD: return visitMLOAD(N); 1427 case ISD::MSCATTER: return visitMSCATTER(N); 1428 case ISD::MSTORE: return visitMSTORE(N); 1429 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1430 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1431 } 1432 return SDValue(); 1433 } 1434 1435 SDValue DAGCombiner::combine(SDNode *N) { 1436 SDValue RV = visit(N); 1437 1438 // If nothing happened, try a target-specific DAG combine. 1439 if (!RV.getNode()) { 1440 assert(N->getOpcode() != ISD::DELETED_NODE && 1441 "Node was deleted but visit returned NULL!"); 1442 1443 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1444 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1445 1446 // Expose the DAG combiner to the target combiner impls. 1447 TargetLowering::DAGCombinerInfo 1448 DagCombineInfo(DAG, Level, false, this); 1449 1450 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1451 } 1452 } 1453 1454 // If nothing happened still, try promoting the operation. 1455 if (!RV.getNode()) { 1456 switch (N->getOpcode()) { 1457 default: break; 1458 case ISD::ADD: 1459 case ISD::SUB: 1460 case ISD::MUL: 1461 case ISD::AND: 1462 case ISD::OR: 1463 case ISD::XOR: 1464 RV = PromoteIntBinOp(SDValue(N, 0)); 1465 break; 1466 case ISD::SHL: 1467 case ISD::SRA: 1468 case ISD::SRL: 1469 RV = PromoteIntShiftOp(SDValue(N, 0)); 1470 break; 1471 case ISD::SIGN_EXTEND: 1472 case ISD::ZERO_EXTEND: 1473 case ISD::ANY_EXTEND: 1474 RV = PromoteExtend(SDValue(N, 0)); 1475 break; 1476 case ISD::LOAD: 1477 if (PromoteLoad(SDValue(N, 0))) 1478 RV = SDValue(N, 0); 1479 break; 1480 } 1481 } 1482 1483 // If N is a commutative binary node, try commuting it to enable more 1484 // sdisel CSE. 1485 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 1486 N->getNumValues() == 1) { 1487 SDValue N0 = N->getOperand(0); 1488 SDValue N1 = N->getOperand(1); 1489 1490 // Constant operands are canonicalized to RHS. 1491 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 1492 SDValue Ops[] = {N1, N0}; 1493 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1494 N->getFlags()); 1495 if (CSENode) 1496 return SDValue(CSENode, 0); 1497 } 1498 } 1499 1500 return RV; 1501 } 1502 1503 /// Given a node, return its input chain if it has one, otherwise return a null 1504 /// sd operand. 1505 static SDValue getInputChainForNode(SDNode *N) { 1506 if (unsigned NumOps = N->getNumOperands()) { 1507 if (N->getOperand(0).getValueType() == MVT::Other) 1508 return N->getOperand(0); 1509 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1510 return N->getOperand(NumOps-1); 1511 for (unsigned i = 1; i < NumOps-1; ++i) 1512 if (N->getOperand(i).getValueType() == MVT::Other) 1513 return N->getOperand(i); 1514 } 1515 return SDValue(); 1516 } 1517 1518 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1519 // If N has two operands, where one has an input chain equal to the other, 1520 // the 'other' chain is redundant. 1521 if (N->getNumOperands() == 2) { 1522 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1523 return N->getOperand(0); 1524 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1525 return N->getOperand(1); 1526 } 1527 1528 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1529 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1530 SmallPtrSet<SDNode*, 16> SeenOps; 1531 bool Changed = false; // If we should replace this token factor. 1532 1533 // Start out with this token factor. 1534 TFs.push_back(N); 1535 1536 // Iterate through token factors. The TFs grows when new token factors are 1537 // encountered. 1538 for (unsigned i = 0; i < TFs.size(); ++i) { 1539 SDNode *TF = TFs[i]; 1540 1541 // Check each of the operands. 1542 for (const SDValue &Op : TF->op_values()) { 1543 1544 switch (Op.getOpcode()) { 1545 case ISD::EntryToken: 1546 // Entry tokens don't need to be added to the list. They are 1547 // redundant. 1548 Changed = true; 1549 break; 1550 1551 case ISD::TokenFactor: 1552 if (Op.hasOneUse() && 1553 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { 1554 // Queue up for processing. 1555 TFs.push_back(Op.getNode()); 1556 // Clean up in case the token factor is removed. 1557 AddToWorklist(Op.getNode()); 1558 Changed = true; 1559 break; 1560 } 1561 // Fall thru 1562 1563 default: 1564 // Only add if it isn't already in the list. 1565 if (SeenOps.insert(Op.getNode()).second) 1566 Ops.push_back(Op); 1567 else 1568 Changed = true; 1569 break; 1570 } 1571 } 1572 } 1573 1574 SDValue Result; 1575 1576 // If we've changed things around then replace token factor. 1577 if (Changed) { 1578 if (Ops.empty()) { 1579 // The entry token is the only possible outcome. 1580 Result = DAG.getEntryNode(); 1581 } else { 1582 // New and improved token factor. 1583 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 1584 } 1585 1586 // Add users to worklist if AA is enabled, since it may introduce 1587 // a lot of new chained token factors while removing memory deps. 1588 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 1589 : DAG.getSubtarget().useAA(); 1590 return CombineTo(N, Result, UseAA /*add to worklist*/); 1591 } 1592 1593 return Result; 1594 } 1595 1596 /// MERGE_VALUES can always be eliminated. 1597 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1598 WorklistRemover DeadNodes(*this); 1599 // Replacing results may cause a different MERGE_VALUES to suddenly 1600 // be CSE'd with N, and carry its uses with it. Iterate until no 1601 // uses remain, to ensure that the node can be safely deleted. 1602 // First add the users of this node to the work list so that they 1603 // can be tried again once they have new operands. 1604 AddUsersToWorklist(N); 1605 do { 1606 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1607 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 1608 } while (!N->use_empty()); 1609 deleteAndRecombine(N); 1610 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1611 } 1612 1613 static bool isNullConstant(SDValue V) { 1614 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 1615 return Const != nullptr && Const->isNullValue(); 1616 } 1617 1618 static bool isNullFPConstant(SDValue V) { 1619 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 1620 return Const != nullptr && Const->isZero() && !Const->isNegative(); 1621 } 1622 1623 static bool isAllOnesConstant(SDValue V) { 1624 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 1625 return Const != nullptr && Const->isAllOnesValue(); 1626 } 1627 1628 static bool isOneConstant(SDValue V) { 1629 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 1630 return Const != nullptr && Const->isOne(); 1631 } 1632 1633 /// If \p N is a ContantSDNode with isOpaque() == false return it casted to a 1634 /// ContantSDNode pointer else nullptr. 1635 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1636 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1637 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1638 } 1639 1640 SDValue DAGCombiner::visitADD(SDNode *N) { 1641 SDValue N0 = N->getOperand(0); 1642 SDValue N1 = N->getOperand(1); 1643 EVT VT = N0.getValueType(); 1644 1645 // fold vector ops 1646 if (VT.isVector()) { 1647 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1648 return FoldedVOp; 1649 1650 // fold (add x, 0) -> x, vector edition 1651 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1652 return N0; 1653 if (ISD::isBuildVectorAllZeros(N0.getNode())) 1654 return N1; 1655 } 1656 1657 // fold (add x, undef) -> undef 1658 if (N0.getOpcode() == ISD::UNDEF) 1659 return N0; 1660 if (N1.getOpcode() == ISD::UNDEF) 1661 return N1; 1662 // fold (add c1, c2) -> c1+c2 1663 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1664 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1665 if (N0C && N1C) 1666 return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, N0C, N1C); 1667 // canonicalize constant to RHS 1668 if (isConstantIntBuildVectorOrConstantInt(N0) && 1669 !isConstantIntBuildVectorOrConstantInt(N1)) 1670 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); 1671 // fold (add x, 0) -> x 1672 if (isNullConstant(N1)) 1673 return N0; 1674 // fold (add Sym, c) -> Sym+c 1675 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1676 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C && 1677 GA->getOpcode() == ISD::GlobalAddress) 1678 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1679 GA->getOffset() + 1680 (uint64_t)N1C->getSExtValue()); 1681 // fold ((c1-A)+c2) -> (c1+c2)-A 1682 if (N1C && N0.getOpcode() == ISD::SUB) 1683 if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) { 1684 SDLoc DL(N); 1685 return DAG.getNode(ISD::SUB, DL, VT, 1686 DAG.getConstant(N1C->getAPIntValue()+ 1687 N0C->getAPIntValue(), DL, VT), 1688 N0.getOperand(1)); 1689 } 1690 // reassociate add 1691 if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1)) 1692 return RADD; 1693 // fold ((0-A) + B) -> B-A 1694 if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0))) 1695 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); 1696 // fold (A + (0-B)) -> A-B 1697 if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0))) 1698 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); 1699 // fold (A+(B-A)) -> B 1700 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 1701 return N1.getOperand(0); 1702 // fold ((B-A)+A) -> B 1703 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 1704 return N0.getOperand(0); 1705 // fold (A+(B-(A+C))) to (B-C) 1706 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1707 N0 == N1.getOperand(1).getOperand(0)) 1708 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1709 N1.getOperand(1).getOperand(1)); 1710 // fold (A+(B-(C+A))) to (B-C) 1711 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1712 N0 == N1.getOperand(1).getOperand(1)) 1713 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1714 N1.getOperand(1).getOperand(0)); 1715 // fold (A+((B-A)+or-C)) to (B+or-C) 1716 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 1717 N1.getOperand(0).getOpcode() == ISD::SUB && 1718 N0 == N1.getOperand(0).getOperand(1)) 1719 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, 1720 N1.getOperand(0).getOperand(0), N1.getOperand(1)); 1721 1722 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 1723 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 1724 SDValue N00 = N0.getOperand(0); 1725 SDValue N01 = N0.getOperand(1); 1726 SDValue N10 = N1.getOperand(0); 1727 SDValue N11 = N1.getOperand(1); 1728 1729 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) 1730 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1731 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 1732 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 1733 } 1734 1735 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 1736 return SDValue(N, 0); 1737 1738 // fold (a+b) -> (a|b) iff a and b share no bits. 1739 if (VT.isInteger() && !VT.isVector()) { 1740 APInt LHSZero, LHSOne; 1741 APInt RHSZero, RHSOne; 1742 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1743 1744 if (LHSZero.getBoolValue()) { 1745 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1746 1747 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1748 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1749 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero){ 1750 if (!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) 1751 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); 1752 } 1753 } 1754 } 1755 1756 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 1757 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 1758 isNullConstant(N1.getOperand(0).getOperand(0))) 1759 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, 1760 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1761 N1.getOperand(0).getOperand(1), 1762 N1.getOperand(1))); 1763 if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && 1764 isNullConstant(N0.getOperand(0).getOperand(0))) 1765 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, 1766 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1767 N0.getOperand(0).getOperand(1), 1768 N0.getOperand(1))); 1769 1770 if (N1.getOpcode() == ISD::AND) { 1771 SDValue AndOp0 = N1.getOperand(0); 1772 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 1773 unsigned DestBits = VT.getScalarType().getSizeInBits(); 1774 1775 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 1776 // and similar xforms where the inner op is either ~0 or 0. 1777 if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) { 1778 SDLoc DL(N); 1779 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 1780 } 1781 } 1782 1783 // add (sext i1), X -> sub X, (zext i1) 1784 if (N0.getOpcode() == ISD::SIGN_EXTEND && 1785 N0.getOperand(0).getValueType() == MVT::i1 && 1786 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 1787 SDLoc DL(N); 1788 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 1789 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 1790 } 1791 1792 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 1793 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1794 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1795 if (TN->getVT() == MVT::i1) { 1796 SDLoc DL(N); 1797 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1798 DAG.getConstant(1, DL, VT)); 1799 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 1800 } 1801 } 1802 1803 return SDValue(); 1804 } 1805 1806 SDValue DAGCombiner::visitADDC(SDNode *N) { 1807 SDValue N0 = N->getOperand(0); 1808 SDValue N1 = N->getOperand(1); 1809 EVT VT = N0.getValueType(); 1810 1811 // If the flag result is dead, turn this into an ADD. 1812 if (!N->hasAnyUseOfValue(1)) 1813 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 1814 DAG.getNode(ISD::CARRY_FALSE, 1815 SDLoc(N), MVT::Glue)); 1816 1817 // canonicalize constant to RHS. 1818 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1819 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1820 if (N0C && !N1C) 1821 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 1822 1823 // fold (addc x, 0) -> x + no carry out 1824 if (isNullConstant(N1)) 1825 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 1826 SDLoc(N), MVT::Glue)); 1827 1828 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 1829 APInt LHSZero, LHSOne; 1830 APInt RHSZero, RHSOne; 1831 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1832 1833 if (LHSZero.getBoolValue()) { 1834 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1835 1836 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1837 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1838 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 1839 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 1840 DAG.getNode(ISD::CARRY_FALSE, 1841 SDLoc(N), MVT::Glue)); 1842 } 1843 1844 return SDValue(); 1845 } 1846 1847 SDValue DAGCombiner::visitADDE(SDNode *N) { 1848 SDValue N0 = N->getOperand(0); 1849 SDValue N1 = N->getOperand(1); 1850 SDValue CarryIn = N->getOperand(2); 1851 1852 // canonicalize constant to RHS 1853 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1854 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1855 if (N0C && !N1C) 1856 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 1857 N1, N0, CarryIn); 1858 1859 // fold (adde x, y, false) -> (addc x, y) 1860 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1861 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 1862 1863 return SDValue(); 1864 } 1865 1866 // Since it may not be valid to emit a fold to zero for vector initializers 1867 // check if we can before folding. 1868 static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT, 1869 SelectionDAG &DAG, 1870 bool LegalOperations, bool LegalTypes) { 1871 if (!VT.isVector()) 1872 return DAG.getConstant(0, DL, VT); 1873 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 1874 return DAG.getConstant(0, DL, VT); 1875 return SDValue(); 1876 } 1877 1878 SDValue DAGCombiner::visitSUB(SDNode *N) { 1879 SDValue N0 = N->getOperand(0); 1880 SDValue N1 = N->getOperand(1); 1881 EVT VT = N0.getValueType(); 1882 1883 // fold vector ops 1884 if (VT.isVector()) { 1885 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1886 return FoldedVOp; 1887 1888 // fold (sub x, 0) -> x, vector edition 1889 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1890 return N0; 1891 } 1892 1893 // fold (sub x, x) -> 0 1894 // FIXME: Refactor this and xor and other similar operations together. 1895 if (N0 == N1) 1896 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 1897 // fold (sub c1, c2) -> c1-c2 1898 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1899 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1900 if (N0C && N1C) 1901 return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, N0C, N1C); 1902 // fold (sub x, c) -> (add x, -c) 1903 if (N1C) { 1904 SDLoc DL(N); 1905 return DAG.getNode(ISD::ADD, DL, VT, N0, 1906 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 1907 } 1908 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 1909 if (isAllOnesConstant(N0)) 1910 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 1911 // fold A-(A-B) -> B 1912 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 1913 return N1.getOperand(1); 1914 // fold (A+B)-A -> B 1915 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 1916 return N0.getOperand(1); 1917 // fold (A+B)-B -> A 1918 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 1919 return N0.getOperand(0); 1920 // fold C2-(A+C1) -> (C2-C1)-A 1921 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : 1922 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); 1923 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { 1924 SDLoc DL(N); 1925 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), 1926 DL, VT); 1927 return DAG.getNode(ISD::SUB, DL, VT, NewC, 1928 N1.getOperand(0)); 1929 } 1930 // fold ((A+(B+or-C))-B) -> A+or-C 1931 if (N0.getOpcode() == ISD::ADD && 1932 (N0.getOperand(1).getOpcode() == ISD::SUB || 1933 N0.getOperand(1).getOpcode() == ISD::ADD) && 1934 N0.getOperand(1).getOperand(0) == N1) 1935 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, 1936 N0.getOperand(0), N0.getOperand(1).getOperand(1)); 1937 // fold ((A+(C+B))-B) -> A+C 1938 if (N0.getOpcode() == ISD::ADD && 1939 N0.getOperand(1).getOpcode() == ISD::ADD && 1940 N0.getOperand(1).getOperand(1) == N1) 1941 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 1942 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1943 // fold ((A-(B-C))-C) -> A-B 1944 if (N0.getOpcode() == ISD::SUB && 1945 N0.getOperand(1).getOpcode() == ISD::SUB && 1946 N0.getOperand(1).getOperand(1) == N1) 1947 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1948 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1949 1950 // If either operand of a sub is undef, the result is undef 1951 if (N0.getOpcode() == ISD::UNDEF) 1952 return N0; 1953 if (N1.getOpcode() == ISD::UNDEF) 1954 return N1; 1955 1956 // If the relocation model supports it, consider symbol offsets. 1957 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1958 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 1959 // fold (sub Sym, c) -> Sym-c 1960 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 1961 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1962 GA->getOffset() - 1963 (uint64_t)N1C->getSExtValue()); 1964 // fold (sub Sym+c1, Sym+c2) -> c1-c2 1965 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 1966 if (GA->getGlobal() == GB->getGlobal()) 1967 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 1968 SDLoc(N), VT); 1969 } 1970 1971 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 1972 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1973 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1974 if (TN->getVT() == MVT::i1) { 1975 SDLoc DL(N); 1976 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1977 DAG.getConstant(1, DL, VT)); 1978 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 1979 } 1980 } 1981 1982 return SDValue(); 1983 } 1984 1985 SDValue DAGCombiner::visitSUBC(SDNode *N) { 1986 SDValue N0 = N->getOperand(0); 1987 SDValue N1 = N->getOperand(1); 1988 EVT VT = N0.getValueType(); 1989 1990 // If the flag result is dead, turn this into an SUB. 1991 if (!N->hasAnyUseOfValue(1)) 1992 return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1), 1993 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), 1994 MVT::Glue)); 1995 1996 // fold (subc x, x) -> 0 + no borrow 1997 if (N0 == N1) { 1998 SDLoc DL(N); 1999 return CombineTo(N, DAG.getConstant(0, DL, VT), 2000 DAG.getNode(ISD::CARRY_FALSE, DL, 2001 MVT::Glue)); 2002 } 2003 2004 // fold (subc x, 0) -> x + no borrow 2005 if (isNullConstant(N1)) 2006 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), 2007 MVT::Glue)); 2008 2009 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 2010 if (isAllOnesConstant(N0)) 2011 return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0), 2012 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), 2013 MVT::Glue)); 2014 2015 return SDValue(); 2016 } 2017 2018 SDValue DAGCombiner::visitSUBE(SDNode *N) { 2019 SDValue N0 = N->getOperand(0); 2020 SDValue N1 = N->getOperand(1); 2021 SDValue CarryIn = N->getOperand(2); 2022 2023 // fold (sube x, y, false) -> (subc x, y) 2024 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2025 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 2026 2027 return SDValue(); 2028 } 2029 2030 SDValue DAGCombiner::visitMUL(SDNode *N) { 2031 SDValue N0 = N->getOperand(0); 2032 SDValue N1 = N->getOperand(1); 2033 EVT VT = N0.getValueType(); 2034 2035 // fold (mul x, undef) -> 0 2036 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2037 return DAG.getConstant(0, SDLoc(N), VT); 2038 2039 bool N0IsConst = false; 2040 bool N1IsConst = false; 2041 bool N1IsOpaqueConst = false; 2042 bool N0IsOpaqueConst = false; 2043 APInt ConstValue0, ConstValue1; 2044 // fold vector ops 2045 if (VT.isVector()) { 2046 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2047 return FoldedVOp; 2048 2049 N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0); 2050 N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1); 2051 } else { 2052 N0IsConst = isa<ConstantSDNode>(N0); 2053 if (N0IsConst) { 2054 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 2055 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 2056 } 2057 N1IsConst = isa<ConstantSDNode>(N1); 2058 if (N1IsConst) { 2059 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 2060 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 2061 } 2062 } 2063 2064 // fold (mul c1, c2) -> c1*c2 2065 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 2066 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 2067 N0.getNode(), N1.getNode()); 2068 2069 // canonicalize constant to RHS (vector doesn't have to splat) 2070 if (isConstantIntBuildVectorOrConstantInt(N0) && 2071 !isConstantIntBuildVectorOrConstantInt(N1)) 2072 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 2073 // fold (mul x, 0) -> 0 2074 if (N1IsConst && ConstValue1 == 0) 2075 return N1; 2076 // We require a splat of the entire scalar bit width for non-contiguous 2077 // bit patterns. 2078 bool IsFullSplat = 2079 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); 2080 // fold (mul x, 1) -> x 2081 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 2082 return N0; 2083 // fold (mul x, -1) -> 0-x 2084 if (N1IsConst && ConstValue1.isAllOnesValue()) { 2085 SDLoc DL(N); 2086 return DAG.getNode(ISD::SUB, DL, VT, 2087 DAG.getConstant(0, DL, VT), N0); 2088 } 2089 // fold (mul x, (1 << c)) -> x << c 2090 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && 2091 IsFullSplat) { 2092 SDLoc DL(N); 2093 return DAG.getNode(ISD::SHL, DL, VT, N0, 2094 DAG.getConstant(ConstValue1.logBase2(), DL, 2095 getShiftAmountTy(N0.getValueType()))); 2096 } 2097 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 2098 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && 2099 IsFullSplat) { 2100 unsigned Log2Val = (-ConstValue1).logBase2(); 2101 SDLoc DL(N); 2102 // FIXME: If the input is something that is easily negated (e.g. a 2103 // single-use add), we should put the negate there. 2104 return DAG.getNode(ISD::SUB, DL, VT, 2105 DAG.getConstant(0, DL, VT), 2106 DAG.getNode(ISD::SHL, DL, VT, N0, 2107 DAG.getConstant(Log2Val, DL, 2108 getShiftAmountTy(N0.getValueType())))); 2109 } 2110 2111 APInt Val; 2112 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 2113 if (N1IsConst && N0.getOpcode() == ISD::SHL && 2114 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2115 isa<ConstantSDNode>(N0.getOperand(1)))) { 2116 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, 2117 N1, N0.getOperand(1)); 2118 AddToWorklist(C3.getNode()); 2119 return DAG.getNode(ISD::MUL, SDLoc(N), VT, 2120 N0.getOperand(0), C3); 2121 } 2122 2123 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 2124 // use. 2125 { 2126 SDValue Sh(nullptr,0), Y(nullptr,0); 2127 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 2128 if (N0.getOpcode() == ISD::SHL && 2129 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2130 isa<ConstantSDNode>(N0.getOperand(1))) && 2131 N0.getNode()->hasOneUse()) { 2132 Sh = N0; Y = N1; 2133 } else if (N1.getOpcode() == ISD::SHL && 2134 isa<ConstantSDNode>(N1.getOperand(1)) && 2135 N1.getNode()->hasOneUse()) { 2136 Sh = N1; Y = N0; 2137 } 2138 2139 if (Sh.getNode()) { 2140 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 2141 Sh.getOperand(0), Y); 2142 return DAG.getNode(ISD::SHL, SDLoc(N), VT, 2143 Mul, Sh.getOperand(1)); 2144 } 2145 } 2146 2147 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 2148 if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 2149 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2150 isa<ConstantSDNode>(N0.getOperand(1)))) 2151 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 2152 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 2153 N0.getOperand(0), N1), 2154 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 2155 N0.getOperand(1), N1)); 2156 2157 // reassociate mul 2158 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) 2159 return RMUL; 2160 2161 return SDValue(); 2162 } 2163 2164 SDValue DAGCombiner::visitSDIV(SDNode *N) { 2165 SDValue N0 = N->getOperand(0); 2166 SDValue N1 = N->getOperand(1); 2167 EVT VT = N->getValueType(0); 2168 2169 // fold vector ops 2170 if (VT.isVector()) 2171 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2172 return FoldedVOp; 2173 2174 // fold (sdiv c1, c2) -> c1/c2 2175 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2176 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2177 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 2178 return DAG.FoldConstantArithmetic(ISD::SDIV, SDLoc(N), VT, N0C, N1C); 2179 // fold (sdiv X, 1) -> X 2180 if (N1C && N1C->isOne()) 2181 return N0; 2182 // fold (sdiv X, -1) -> 0-X 2183 if (N1C && N1C->isAllOnesValue()) { 2184 SDLoc DL(N); 2185 return DAG.getNode(ISD::SUB, DL, VT, 2186 DAG.getConstant(0, DL, VT), N0); 2187 } 2188 // If we know the sign bits of both operands are zero, strength reduce to a 2189 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 2190 if (!VT.isVector()) { 2191 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2192 return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(), 2193 N0, N1); 2194 } 2195 2196 // fold (sdiv X, pow2) -> simple ops after legalize 2197 // FIXME: We check for the exact bit here because the generic lowering gives 2198 // better results in that case. The target-specific lowering should learn how 2199 // to handle exact sdivs efficiently. 2200 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2201 !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && 2202 (N1C->getAPIntValue().isPowerOf2() || 2203 (-N1C->getAPIntValue()).isPowerOf2())) { 2204 // Target-specific implementation of sdiv x, pow2. 2205 if (SDValue Res = BuildSDIVPow2(N)) 2206 return Res; 2207 2208 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 2209 SDLoc DL(N); 2210 2211 // Splat the sign bit into the register 2212 SDValue SGN = 2213 DAG.getNode(ISD::SRA, DL, VT, N0, 2214 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, 2215 getShiftAmountTy(N0.getValueType()))); 2216 AddToWorklist(SGN.getNode()); 2217 2218 // Add (N0 < 0) ? abs2 - 1 : 0; 2219 SDValue SRL = 2220 DAG.getNode(ISD::SRL, DL, VT, SGN, 2221 DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, 2222 getShiftAmountTy(SGN.getValueType()))); 2223 SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); 2224 AddToWorklist(SRL.getNode()); 2225 AddToWorklist(ADD.getNode()); // Divide by pow2 2226 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, 2227 DAG.getConstant(lg2, DL, 2228 getShiftAmountTy(ADD.getValueType()))); 2229 2230 // If we're dividing by a positive value, we're done. Otherwise, we must 2231 // negate the result. 2232 if (N1C->getAPIntValue().isNonNegative()) 2233 return SRA; 2234 2235 AddToWorklist(SRA.getNode()); 2236 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 2237 } 2238 2239 // If integer divide is expensive and we satisfy the requirements, emit an 2240 // alternate sequence. Targets may check function attributes for size/speed 2241 // trade-offs. 2242 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2243 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2244 if (SDValue Op = BuildSDIV(N)) 2245 return Op; 2246 2247 // undef / X -> 0 2248 if (N0.getOpcode() == ISD::UNDEF) 2249 return DAG.getConstant(0, SDLoc(N), VT); 2250 // X / undef -> undef 2251 if (N1.getOpcode() == ISD::UNDEF) 2252 return N1; 2253 2254 return SDValue(); 2255 } 2256 2257 SDValue DAGCombiner::visitUDIV(SDNode *N) { 2258 SDValue N0 = N->getOperand(0); 2259 SDValue N1 = N->getOperand(1); 2260 EVT VT = N->getValueType(0); 2261 2262 // fold vector ops 2263 if (VT.isVector()) 2264 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2265 return FoldedVOp; 2266 2267 // fold (udiv c1, c2) -> c1/c2 2268 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2269 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2270 if (N0C && N1C) 2271 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, SDLoc(N), VT, 2272 N0C, N1C)) 2273 return Folded; 2274 // fold (udiv x, (1 << c)) -> x >>u c 2275 if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) { 2276 SDLoc DL(N); 2277 return DAG.getNode(ISD::SRL, DL, VT, N0, 2278 DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, 2279 getShiftAmountTy(N0.getValueType()))); 2280 } 2281 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 2282 if (N1.getOpcode() == ISD::SHL) { 2283 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2284 if (SHC->getAPIntValue().isPowerOf2()) { 2285 EVT ADDVT = N1.getOperand(1).getValueType(); 2286 SDLoc DL(N); 2287 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, 2288 N1.getOperand(1), 2289 DAG.getConstant(SHC->getAPIntValue() 2290 .logBase2(), 2291 DL, ADDVT)); 2292 AddToWorklist(Add.getNode()); 2293 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 2294 } 2295 } 2296 } 2297 2298 // fold (udiv x, c) -> alternate 2299 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2300 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2301 if (SDValue Op = BuildUDIV(N)) 2302 return Op; 2303 2304 // undef / X -> 0 2305 if (N0.getOpcode() == ISD::UNDEF) 2306 return DAG.getConstant(0, SDLoc(N), VT); 2307 // X / undef -> undef 2308 if (N1.getOpcode() == ISD::UNDEF) 2309 return N1; 2310 2311 return SDValue(); 2312 } 2313 2314 SDValue DAGCombiner::visitSREM(SDNode *N) { 2315 SDValue N0 = N->getOperand(0); 2316 SDValue N1 = N->getOperand(1); 2317 EVT VT = N->getValueType(0); 2318 2319 // fold (srem c1, c2) -> c1%c2 2320 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2321 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2322 if (N0C && N1C) 2323 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::SREM, SDLoc(N), VT, 2324 N0C, N1C)) 2325 return Folded; 2326 // If we know the sign bits of both operands are zero, strength reduce to a 2327 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 2328 if (!VT.isVector()) { 2329 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2330 return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1); 2331 } 2332 2333 // If X/C can be simplified by the division-by-constant logic, lower 2334 // X%C to the equivalent of X-X/C*C. 2335 if (N1C && !N1C->isNullValue()) { 2336 SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1); 2337 AddToWorklist(Div.getNode()); 2338 SDValue OptimizedDiv = combine(Div.getNode()); 2339 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2340 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 2341 OptimizedDiv, N1); 2342 SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul); 2343 AddToWorklist(Mul.getNode()); 2344 return Sub; 2345 } 2346 } 2347 2348 // undef % X -> 0 2349 if (N0.getOpcode() == ISD::UNDEF) 2350 return DAG.getConstant(0, SDLoc(N), VT); 2351 // X % undef -> undef 2352 if (N1.getOpcode() == ISD::UNDEF) 2353 return N1; 2354 2355 return SDValue(); 2356 } 2357 2358 SDValue DAGCombiner::visitUREM(SDNode *N) { 2359 SDValue N0 = N->getOperand(0); 2360 SDValue N1 = N->getOperand(1); 2361 EVT VT = N->getValueType(0); 2362 2363 // fold (urem c1, c2) -> c1%c2 2364 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2365 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2366 if (N0C && N1C) 2367 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UREM, SDLoc(N), VT, 2368 N0C, N1C)) 2369 return Folded; 2370 // fold (urem x, pow2) -> (and x, pow2-1) 2371 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2372 N1C->getAPIntValue().isPowerOf2()) { 2373 SDLoc DL(N); 2374 return DAG.getNode(ISD::AND, DL, VT, N0, 2375 DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); 2376 } 2377 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 2378 if (N1.getOpcode() == ISD::SHL) { 2379 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2380 if (SHC->getAPIntValue().isPowerOf2()) { 2381 SDLoc DL(N); 2382 SDValue Add = 2383 DAG.getNode(ISD::ADD, DL, VT, N1, 2384 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, 2385 VT)); 2386 AddToWorklist(Add.getNode()); 2387 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 2388 } 2389 } 2390 } 2391 2392 // If X/C can be simplified by the division-by-constant logic, lower 2393 // X%C to the equivalent of X-X/C*C. 2394 if (N1C && !N1C->isNullValue()) { 2395 SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1); 2396 AddToWorklist(Div.getNode()); 2397 SDValue OptimizedDiv = combine(Div.getNode()); 2398 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2399 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 2400 OptimizedDiv, N1); 2401 SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul); 2402 AddToWorklist(Mul.getNode()); 2403 return Sub; 2404 } 2405 } 2406 2407 // undef % X -> 0 2408 if (N0.getOpcode() == ISD::UNDEF) 2409 return DAG.getConstant(0, SDLoc(N), VT); 2410 // X % undef -> undef 2411 if (N1.getOpcode() == ISD::UNDEF) 2412 return N1; 2413 2414 return SDValue(); 2415 } 2416 2417 SDValue DAGCombiner::visitMULHS(SDNode *N) { 2418 SDValue N0 = N->getOperand(0); 2419 SDValue N1 = N->getOperand(1); 2420 EVT VT = N->getValueType(0); 2421 SDLoc DL(N); 2422 2423 // fold (mulhs x, 0) -> 0 2424 if (isNullConstant(N1)) 2425 return N1; 2426 // fold (mulhs x, 1) -> (sra x, size(x)-1) 2427 if (isOneConstant(N1)) { 2428 SDLoc DL(N); 2429 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 2430 DAG.getConstant(N0.getValueType().getSizeInBits() - 1, 2431 DL, 2432 getShiftAmountTy(N0.getValueType()))); 2433 } 2434 // fold (mulhs x, undef) -> 0 2435 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2436 return DAG.getConstant(0, SDLoc(N), VT); 2437 2438 // If the type twice as wide is legal, transform the mulhs to a wider multiply 2439 // plus a shift. 2440 if (VT.isSimple() && !VT.isVector()) { 2441 MVT Simple = VT.getSimpleVT(); 2442 unsigned SimpleSize = Simple.getSizeInBits(); 2443 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2444 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2445 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 2446 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 2447 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2448 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2449 DAG.getConstant(SimpleSize, DL, 2450 getShiftAmountTy(N1.getValueType()))); 2451 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2452 } 2453 } 2454 2455 return SDValue(); 2456 } 2457 2458 SDValue DAGCombiner::visitMULHU(SDNode *N) { 2459 SDValue N0 = N->getOperand(0); 2460 SDValue N1 = N->getOperand(1); 2461 EVT VT = N->getValueType(0); 2462 SDLoc DL(N); 2463 2464 // fold (mulhu x, 0) -> 0 2465 if (isNullConstant(N1)) 2466 return N1; 2467 // fold (mulhu x, 1) -> 0 2468 if (isOneConstant(N1)) 2469 return DAG.getConstant(0, DL, N0.getValueType()); 2470 // fold (mulhu x, undef) -> 0 2471 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2472 return DAG.getConstant(0, DL, VT); 2473 2474 // If the type twice as wide is legal, transform the mulhu to a wider multiply 2475 // plus a shift. 2476 if (VT.isSimple() && !VT.isVector()) { 2477 MVT Simple = VT.getSimpleVT(); 2478 unsigned SimpleSize = Simple.getSizeInBits(); 2479 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2480 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2481 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 2482 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 2483 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2484 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2485 DAG.getConstant(SimpleSize, DL, 2486 getShiftAmountTy(N1.getValueType()))); 2487 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2488 } 2489 } 2490 2491 return SDValue(); 2492 } 2493 2494 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 2495 /// give the opcodes for the two computations that are being performed. Return 2496 /// true if a simplification was made. 2497 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 2498 unsigned HiOp) { 2499 // If the high half is not needed, just compute the low half. 2500 bool HiExists = N->hasAnyUseOfValue(1); 2501 if (!HiExists && 2502 (!LegalOperations || 2503 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 2504 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2505 return CombineTo(N, Res, Res); 2506 } 2507 2508 // If the low half is not needed, just compute the high half. 2509 bool LoExists = N->hasAnyUseOfValue(0); 2510 if (!LoExists && 2511 (!LegalOperations || 2512 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 2513 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2514 return CombineTo(N, Res, Res); 2515 } 2516 2517 // If both halves are used, return as it is. 2518 if (LoExists && HiExists) 2519 return SDValue(); 2520 2521 // If the two computed results can be simplified separately, separate them. 2522 if (LoExists) { 2523 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2524 AddToWorklist(Lo.getNode()); 2525 SDValue LoOpt = combine(Lo.getNode()); 2526 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 2527 (!LegalOperations || 2528 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 2529 return CombineTo(N, LoOpt, LoOpt); 2530 } 2531 2532 if (HiExists) { 2533 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2534 AddToWorklist(Hi.getNode()); 2535 SDValue HiOpt = combine(Hi.getNode()); 2536 if (HiOpt.getNode() && HiOpt != Hi && 2537 (!LegalOperations || 2538 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 2539 return CombineTo(N, HiOpt, HiOpt); 2540 } 2541 2542 return SDValue(); 2543 } 2544 2545 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 2546 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 2547 return Res; 2548 2549 EVT VT = N->getValueType(0); 2550 SDLoc DL(N); 2551 2552 // If the type is twice as wide is legal, transform the mulhu to a wider 2553 // multiply plus a shift. 2554 if (VT.isSimple() && !VT.isVector()) { 2555 MVT Simple = VT.getSimpleVT(); 2556 unsigned SimpleSize = Simple.getSizeInBits(); 2557 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2558 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2559 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 2560 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 2561 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2562 // Compute the high part as N1. 2563 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2564 DAG.getConstant(SimpleSize, DL, 2565 getShiftAmountTy(Lo.getValueType()))); 2566 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2567 // Compute the low part as N0. 2568 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2569 return CombineTo(N, Lo, Hi); 2570 } 2571 } 2572 2573 return SDValue(); 2574 } 2575 2576 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 2577 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 2578 return Res; 2579 2580 EVT VT = N->getValueType(0); 2581 SDLoc DL(N); 2582 2583 // If the type is twice as wide is legal, transform the mulhu to a wider 2584 // multiply plus a shift. 2585 if (VT.isSimple() && !VT.isVector()) { 2586 MVT Simple = VT.getSimpleVT(); 2587 unsigned SimpleSize = Simple.getSizeInBits(); 2588 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2589 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2590 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 2591 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 2592 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2593 // Compute the high part as N1. 2594 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2595 DAG.getConstant(SimpleSize, DL, 2596 getShiftAmountTy(Lo.getValueType()))); 2597 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2598 // Compute the low part as N0. 2599 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2600 return CombineTo(N, Lo, Hi); 2601 } 2602 } 2603 2604 return SDValue(); 2605 } 2606 2607 SDValue DAGCombiner::visitSMULO(SDNode *N) { 2608 // (smulo x, 2) -> (saddo x, x) 2609 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2610 if (C2->getAPIntValue() == 2) 2611 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 2612 N->getOperand(0), N->getOperand(0)); 2613 2614 return SDValue(); 2615 } 2616 2617 SDValue DAGCombiner::visitUMULO(SDNode *N) { 2618 // (umulo x, 2) -> (uaddo x, x) 2619 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2620 if (C2->getAPIntValue() == 2) 2621 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 2622 N->getOperand(0), N->getOperand(0)); 2623 2624 return SDValue(); 2625 } 2626 2627 SDValue DAGCombiner::visitSDIVREM(SDNode *N) { 2628 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM)) 2629 return Res; 2630 2631 return SDValue(); 2632 } 2633 2634 SDValue DAGCombiner::visitUDIVREM(SDNode *N) { 2635 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM)) 2636 return Res; 2637 2638 return SDValue(); 2639 } 2640 2641 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 2642 SDValue N0 = N->getOperand(0); 2643 SDValue N1 = N->getOperand(1); 2644 EVT VT = N0.getValueType(); 2645 2646 // fold vector ops 2647 if (VT.isVector()) 2648 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2649 return FoldedVOp; 2650 2651 // fold (add c1, c2) -> c1+c2 2652 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2653 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2654 if (N0C && N1C) 2655 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 2656 2657 // canonicalize constant to RHS 2658 if (isConstantIntBuildVectorOrConstantInt(N0) && 2659 !isConstantIntBuildVectorOrConstantInt(N1)) 2660 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 2661 2662 return SDValue(); 2663 } 2664 2665 /// If this is a binary operator with two operands of the same opcode, try to 2666 /// simplify it. 2667 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 2668 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 2669 EVT VT = N0.getValueType(); 2670 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 2671 2672 // Bail early if none of these transforms apply. 2673 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 2674 2675 // For each of OP in AND/OR/XOR: 2676 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 2677 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 2678 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 2679 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) 2680 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 2681 // 2682 // do not sink logical op inside of a vector extend, since it may combine 2683 // into a vsetcc. 2684 EVT Op0VT = N0.getOperand(0).getValueType(); 2685 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 2686 N0.getOpcode() == ISD::SIGN_EXTEND || 2687 N0.getOpcode() == ISD::BSWAP || 2688 // Avoid infinite looping with PromoteIntBinOp. 2689 (N0.getOpcode() == ISD::ANY_EXTEND && 2690 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 2691 (N0.getOpcode() == ISD::TRUNCATE && 2692 (!TLI.isZExtFree(VT, Op0VT) || 2693 !TLI.isTruncateFree(Op0VT, VT)) && 2694 TLI.isTypeLegal(Op0VT))) && 2695 !VT.isVector() && 2696 Op0VT == N1.getOperand(0).getValueType() && 2697 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 2698 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2699 N0.getOperand(0).getValueType(), 2700 N0.getOperand(0), N1.getOperand(0)); 2701 AddToWorklist(ORNode.getNode()); 2702 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 2703 } 2704 2705 // For each of OP in SHL/SRL/SRA/AND... 2706 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 2707 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 2708 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 2709 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 2710 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 2711 N0.getOperand(1) == N1.getOperand(1)) { 2712 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2713 N0.getOperand(0).getValueType(), 2714 N0.getOperand(0), N1.getOperand(0)); 2715 AddToWorklist(ORNode.getNode()); 2716 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 2717 ORNode, N0.getOperand(1)); 2718 } 2719 2720 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 2721 // Only perform this optimization after type legalization and before 2722 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 2723 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 2724 // we don't want to undo this promotion. 2725 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 2726 // on scalars. 2727 if ((N0.getOpcode() == ISD::BITCAST || 2728 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 2729 Level == AfterLegalizeTypes) { 2730 SDValue In0 = N0.getOperand(0); 2731 SDValue In1 = N1.getOperand(0); 2732 EVT In0Ty = In0.getValueType(); 2733 EVT In1Ty = In1.getValueType(); 2734 SDLoc DL(N); 2735 // If both incoming values are integers, and the original types are the 2736 // same. 2737 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 2738 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 2739 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 2740 AddToWorklist(Op.getNode()); 2741 return BC; 2742 } 2743 } 2744 2745 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 2746 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 2747 // If both shuffles use the same mask, and both shuffle within a single 2748 // vector, then it is worthwhile to move the swizzle after the operation. 2749 // The type-legalizer generates this pattern when loading illegal 2750 // vector types from memory. In many cases this allows additional shuffle 2751 // optimizations. 2752 // There are other cases where moving the shuffle after the xor/and/or 2753 // is profitable even if shuffles don't perform a swizzle. 2754 // If both shuffles use the same mask, and both shuffles have the same first 2755 // or second operand, then it might still be profitable to move the shuffle 2756 // after the xor/and/or operation. 2757 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 2758 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 2759 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 2760 2761 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 2762 "Inputs to shuffles are not the same type"); 2763 2764 // Check that both shuffles use the same mask. The masks are known to be of 2765 // the same length because the result vector type is the same. 2766 // Check also that shuffles have only one use to avoid introducing extra 2767 // instructions. 2768 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 2769 SVN0->getMask().equals(SVN1->getMask())) { 2770 SDValue ShOp = N0->getOperand(1); 2771 2772 // Don't try to fold this node if it requires introducing a 2773 // build vector of all zeros that might be illegal at this stage. 2774 if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { 2775 if (!LegalTypes) 2776 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2777 else 2778 ShOp = SDValue(); 2779 } 2780 2781 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 2782 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 2783 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 2784 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 2785 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2786 N0->getOperand(0), N1->getOperand(0)); 2787 AddToWorklist(NewNode.getNode()); 2788 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 2789 &SVN0->getMask()[0]); 2790 } 2791 2792 // Don't try to fold this node if it requires introducing a 2793 // build vector of all zeros that might be illegal at this stage. 2794 ShOp = N0->getOperand(0); 2795 if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { 2796 if (!LegalTypes) 2797 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2798 else 2799 ShOp = SDValue(); 2800 } 2801 2802 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 2803 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 2804 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 2805 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 2806 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2807 N0->getOperand(1), N1->getOperand(1)); 2808 AddToWorklist(NewNode.getNode()); 2809 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 2810 &SVN0->getMask()[0]); 2811 } 2812 } 2813 } 2814 2815 return SDValue(); 2816 } 2817 2818 /// This contains all DAGCombine rules which reduce two values combined by 2819 /// an And operation to a single value. This makes them reusable in the context 2820 /// of visitSELECT(). Rules involving constants are not included as 2821 /// visitSELECT() already handles those cases. 2822 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, 2823 SDNode *LocReference) { 2824 EVT VT = N1.getValueType(); 2825 2826 // fold (and x, undef) -> 0 2827 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 2828 return DAG.getConstant(0, SDLoc(LocReference), VT); 2829 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 2830 SDValue LL, LR, RL, RR, CC0, CC1; 2831 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 2832 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 2833 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 2834 2835 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 2836 LL.getValueType().isInteger()) { 2837 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 2838 if (isNullConstant(LR) && Op1 == ISD::SETEQ) { 2839 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2840 LR.getValueType(), LL, RL); 2841 AddToWorklist(ORNode.getNode()); 2842 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2843 } 2844 if (isAllOnesConstant(LR)) { 2845 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 2846 if (Op1 == ISD::SETEQ) { 2847 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 2848 LR.getValueType(), LL, RL); 2849 AddToWorklist(ANDNode.getNode()); 2850 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 2851 } 2852 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 2853 if (Op1 == ISD::SETGT) { 2854 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2855 LR.getValueType(), LL, RL); 2856 AddToWorklist(ORNode.getNode()); 2857 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2858 } 2859 } 2860 } 2861 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 2862 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 2863 Op0 == Op1 && LL.getValueType().isInteger() && 2864 Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || 2865 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 2866 SDLoc DL(N0); 2867 SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), 2868 LL, DAG.getConstant(1, DL, 2869 LL.getValueType())); 2870 AddToWorklist(ADDNode.getNode()); 2871 return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, 2872 DAG.getConstant(2, DL, LL.getValueType()), 2873 ISD::SETUGE); 2874 } 2875 // canonicalize equivalent to ll == rl 2876 if (LL == RR && LR == RL) { 2877 Op1 = ISD::getSetCCSwappedOperands(Op1); 2878 std::swap(RL, RR); 2879 } 2880 if (LL == RL && LR == RR) { 2881 bool isInteger = LL.getValueType().isInteger(); 2882 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 2883 if (Result != ISD::SETCC_INVALID && 2884 (!LegalOperations || 2885 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 2886 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 2887 EVT CCVT = getSetCCResultType(LL.getValueType()); 2888 if (N0.getValueType() == CCVT || 2889 (!LegalOperations && N0.getValueType() == MVT::i1)) 2890 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 2891 LL, LR, Result); 2892 } 2893 } 2894 } 2895 2896 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 2897 VT.getSizeInBits() <= 64) { 2898 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2899 APInt ADDC = ADDI->getAPIntValue(); 2900 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2901 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 2902 // immediate for an add, but it is legal if its top c2 bits are set, 2903 // transform the ADD so the immediate doesn't need to be materialized 2904 // in a register. 2905 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 2906 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 2907 SRLI->getZExtValue()); 2908 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 2909 ADDC |= Mask; 2910 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2911 SDLoc DL(N0); 2912 SDValue NewAdd = 2913 DAG.getNode(ISD::ADD, DL, VT, 2914 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 2915 CombineTo(N0.getNode(), NewAdd); 2916 // Return N so it doesn't get rechecked! 2917 return SDValue(LocReference, 0); 2918 } 2919 } 2920 } 2921 } 2922 } 2923 } 2924 2925 return SDValue(); 2926 } 2927 2928 SDValue DAGCombiner::visitAND(SDNode *N) { 2929 SDValue N0 = N->getOperand(0); 2930 SDValue N1 = N->getOperand(1); 2931 EVT VT = N1.getValueType(); 2932 2933 // fold vector ops 2934 if (VT.isVector()) { 2935 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2936 return FoldedVOp; 2937 2938 // fold (and x, 0) -> 0, vector edition 2939 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2940 // do not return N0, because undef node may exist in N0 2941 return DAG.getConstant( 2942 APInt::getNullValue( 2943 N0.getValueType().getScalarType().getSizeInBits()), 2944 SDLoc(N), N0.getValueType()); 2945 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2946 // do not return N1, because undef node may exist in N1 2947 return DAG.getConstant( 2948 APInt::getNullValue( 2949 N1.getValueType().getScalarType().getSizeInBits()), 2950 SDLoc(N), N1.getValueType()); 2951 2952 // fold (and x, -1) -> x, vector edition 2953 if (ISD::isBuildVectorAllOnes(N0.getNode())) 2954 return N1; 2955 if (ISD::isBuildVectorAllOnes(N1.getNode())) 2956 return N0; 2957 } 2958 2959 // fold (and c1, c2) -> c1&c2 2960 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2961 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2962 if (N0C && N1C && !N1C->isOpaque()) 2963 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 2964 // canonicalize constant to RHS 2965 if (isConstantIntBuildVectorOrConstantInt(N0) && 2966 !isConstantIntBuildVectorOrConstantInt(N1)) 2967 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 2968 // fold (and x, -1) -> x 2969 if (isAllOnesConstant(N1)) 2970 return N0; 2971 // if (and x, c) is known to be zero, return 0 2972 unsigned BitWidth = VT.getScalarType().getSizeInBits(); 2973 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 2974 APInt::getAllOnesValue(BitWidth))) 2975 return DAG.getConstant(0, SDLoc(N), VT); 2976 // reassociate and 2977 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) 2978 return RAND; 2979 // fold (and (or x, C), D) -> D if (C & D) == D 2980 if (N1C && N0.getOpcode() == ISD::OR) 2981 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 2982 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 2983 return N1; 2984 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 2985 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 2986 SDValue N0Op0 = N0.getOperand(0); 2987 APInt Mask = ~N1C->getAPIntValue(); 2988 Mask = Mask.trunc(N0Op0.getValueSizeInBits()); 2989 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 2990 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 2991 N0.getValueType(), N0Op0); 2992 2993 // Replace uses of the AND with uses of the Zero extend node. 2994 CombineTo(N, Zext); 2995 2996 // We actually want to replace all uses of the any_extend with the 2997 // zero_extend, to avoid duplicating things. This will later cause this 2998 // AND to be folded. 2999 CombineTo(N0.getNode(), Zext); 3000 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3001 } 3002 } 3003 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 3004 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 3005 // already be zero by virtue of the width of the base type of the load. 3006 // 3007 // the 'X' node here can either be nothing or an extract_vector_elt to catch 3008 // more cases. 3009 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3010 N0.getOperand(0).getOpcode() == ISD::LOAD) || 3011 N0.getOpcode() == ISD::LOAD) { 3012 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 3013 N0 : N0.getOperand(0) ); 3014 3015 // Get the constant (if applicable) the zero'th operand is being ANDed with. 3016 // This can be a pure constant or a vector splat, in which case we treat the 3017 // vector as a scalar and use the splat value. 3018 APInt Constant = APInt::getNullValue(1); 3019 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 3020 Constant = C->getAPIntValue(); 3021 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 3022 APInt SplatValue, SplatUndef; 3023 unsigned SplatBitSize; 3024 bool HasAnyUndefs; 3025 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 3026 SplatBitSize, HasAnyUndefs); 3027 if (IsSplat) { 3028 // Undef bits can contribute to a possible optimisation if set, so 3029 // set them. 3030 SplatValue |= SplatUndef; 3031 3032 // The splat value may be something like "0x00FFFFFF", which means 0 for 3033 // the first vector value and FF for the rest, repeating. We need a mask 3034 // that will apply equally to all members of the vector, so AND all the 3035 // lanes of the constant together. 3036 EVT VT = Vector->getValueType(0); 3037 unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); 3038 3039 // If the splat value has been compressed to a bitlength lower 3040 // than the size of the vector lane, we need to re-expand it to 3041 // the lane size. 3042 if (BitWidth > SplatBitSize) 3043 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 3044 SplatBitSize < BitWidth; 3045 SplatBitSize = SplatBitSize * 2) 3046 SplatValue |= SplatValue.shl(SplatBitSize); 3047 3048 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 3049 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 3050 if (SplatBitSize % BitWidth == 0) { 3051 Constant = APInt::getAllOnesValue(BitWidth); 3052 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 3053 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 3054 } 3055 } 3056 } 3057 3058 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 3059 // actually legal and isn't going to get expanded, else this is a false 3060 // optimisation. 3061 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 3062 Load->getValueType(0), 3063 Load->getMemoryVT()); 3064 3065 // Resize the constant to the same size as the original memory access before 3066 // extension. If it is still the AllOnesValue then this AND is completely 3067 // unneeded. 3068 Constant = 3069 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); 3070 3071 bool B; 3072 switch (Load->getExtensionType()) { 3073 default: B = false; break; 3074 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 3075 case ISD::ZEXTLOAD: 3076 case ISD::NON_EXTLOAD: B = true; break; 3077 } 3078 3079 if (B && Constant.isAllOnesValue()) { 3080 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 3081 // preserve semantics once we get rid of the AND. 3082 SDValue NewLoad(Load, 0); 3083 if (Load->getExtensionType() == ISD::EXTLOAD) { 3084 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 3085 Load->getValueType(0), SDLoc(Load), 3086 Load->getChain(), Load->getBasePtr(), 3087 Load->getOffset(), Load->getMemoryVT(), 3088 Load->getMemOperand()); 3089 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 3090 if (Load->getNumValues() == 3) { 3091 // PRE/POST_INC loads have 3 values. 3092 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 3093 NewLoad.getValue(2) }; 3094 CombineTo(Load, To, 3, true); 3095 } else { 3096 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 3097 } 3098 } 3099 3100 // Fold the AND away, taking care not to fold to the old load node if we 3101 // replaced it. 3102 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 3103 3104 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3105 } 3106 } 3107 3108 // fold (and (load x), 255) -> (zextload x, i8) 3109 // fold (and (extload x, i16), 255) -> (zextload x, i8) 3110 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 3111 if (N1C && (N0.getOpcode() == ISD::LOAD || 3112 (N0.getOpcode() == ISD::ANY_EXTEND && 3113 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 3114 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 3115 LoadSDNode *LN0 = HasAnyExt 3116 ? cast<LoadSDNode>(N0.getOperand(0)) 3117 : cast<LoadSDNode>(N0); 3118 if (LN0->getExtensionType() != ISD::SEXTLOAD && 3119 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 3120 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits(); 3121 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){ 3122 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 3123 EVT LoadedVT = LN0->getMemoryVT(); 3124 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 3125 3126 if (ExtVT == LoadedVT && 3127 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, 3128 ExtVT))) { 3129 3130 SDValue NewLoad = 3131 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3132 LN0->getChain(), LN0->getBasePtr(), ExtVT, 3133 LN0->getMemOperand()); 3134 AddToWorklist(N); 3135 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 3136 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3137 } 3138 3139 // Do not change the width of a volatile load. 3140 // Do not generate loads of non-round integer types since these can 3141 // be expensive (and would be wrong if the type is not byte sized). 3142 if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() && 3143 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, 3144 ExtVT))) { 3145 EVT PtrType = LN0->getOperand(1).getValueType(); 3146 3147 unsigned Alignment = LN0->getAlignment(); 3148 SDValue NewPtr = LN0->getBasePtr(); 3149 3150 // For big endian targets, we need to add an offset to the pointer 3151 // to load the correct bytes. For little endian systems, we merely 3152 // need to read fewer bytes from the same pointer. 3153 if (DAG.getDataLayout().isBigEndian()) { 3154 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 3155 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 3156 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 3157 SDLoc DL(LN0); 3158 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, 3159 NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); 3160 Alignment = MinAlign(Alignment, PtrOff); 3161 } 3162 3163 AddToWorklist(NewPtr.getNode()); 3164 3165 SDValue Load = 3166 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3167 LN0->getChain(), NewPtr, 3168 LN0->getPointerInfo(), 3169 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 3170 LN0->isInvariant(), Alignment, LN0->getAAInfo()); 3171 AddToWorklist(N); 3172 CombineTo(LN0, Load, Load.getValue(1)); 3173 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3174 } 3175 } 3176 } 3177 } 3178 3179 if (SDValue Combined = visitANDLike(N0, N1, N)) 3180 return Combined; 3181 3182 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 3183 if (N0.getOpcode() == N1.getOpcode()) 3184 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3185 return Tmp; 3186 3187 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 3188 // fold (and (sra)) -> (and (srl)) when possible. 3189 if (!VT.isVector() && 3190 SimplifyDemandedBits(SDValue(N, 0))) 3191 return SDValue(N, 0); 3192 3193 // fold (zext_inreg (extload x)) -> (zextload x) 3194 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 3195 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3196 EVT MemVT = LN0->getMemoryVT(); 3197 // If we zero all the possible extended bits, then we can turn this into 3198 // a zextload if we are running before legalize or the operation is legal. 3199 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3200 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3201 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3202 ((!LegalOperations && !LN0->isVolatile()) || 3203 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3204 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3205 LN0->getChain(), LN0->getBasePtr(), 3206 MemVT, LN0->getMemOperand()); 3207 AddToWorklist(N); 3208 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3209 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3210 } 3211 } 3212 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 3213 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 3214 N0.hasOneUse()) { 3215 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3216 EVT MemVT = LN0->getMemoryVT(); 3217 // If we zero all the possible extended bits, then we can turn this into 3218 // a zextload if we are running before legalize or the operation is legal. 3219 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3220 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3221 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3222 ((!LegalOperations && !LN0->isVolatile()) || 3223 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3224 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3225 LN0->getChain(), LN0->getBasePtr(), 3226 MemVT, LN0->getMemOperand()); 3227 AddToWorklist(N); 3228 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3229 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3230 } 3231 } 3232 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 3233 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 3234 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 3235 N0.getOperand(1), false); 3236 if (BSwap.getNode()) 3237 return BSwap; 3238 } 3239 3240 return SDValue(); 3241 } 3242 3243 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 3244 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 3245 bool DemandHighBits) { 3246 if (!LegalOperations) 3247 return SDValue(); 3248 3249 EVT VT = N->getValueType(0); 3250 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 3251 return SDValue(); 3252 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3253 return SDValue(); 3254 3255 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 3256 bool LookPassAnd0 = false; 3257 bool LookPassAnd1 = false; 3258 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 3259 std::swap(N0, N1); 3260 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 3261 std::swap(N0, N1); 3262 if (N0.getOpcode() == ISD::AND) { 3263 if (!N0.getNode()->hasOneUse()) 3264 return SDValue(); 3265 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3266 if (!N01C || N01C->getZExtValue() != 0xFF00) 3267 return SDValue(); 3268 N0 = N0.getOperand(0); 3269 LookPassAnd0 = true; 3270 } 3271 3272 if (N1.getOpcode() == ISD::AND) { 3273 if (!N1.getNode()->hasOneUse()) 3274 return SDValue(); 3275 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3276 if (!N11C || N11C->getZExtValue() != 0xFF) 3277 return SDValue(); 3278 N1 = N1.getOperand(0); 3279 LookPassAnd1 = true; 3280 } 3281 3282 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 3283 std::swap(N0, N1); 3284 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 3285 return SDValue(); 3286 if (!N0.getNode()->hasOneUse() || 3287 !N1.getNode()->hasOneUse()) 3288 return SDValue(); 3289 3290 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3291 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3292 if (!N01C || !N11C) 3293 return SDValue(); 3294 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 3295 return SDValue(); 3296 3297 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 3298 SDValue N00 = N0->getOperand(0); 3299 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 3300 if (!N00.getNode()->hasOneUse()) 3301 return SDValue(); 3302 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 3303 if (!N001C || N001C->getZExtValue() != 0xFF) 3304 return SDValue(); 3305 N00 = N00.getOperand(0); 3306 LookPassAnd0 = true; 3307 } 3308 3309 SDValue N10 = N1->getOperand(0); 3310 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 3311 if (!N10.getNode()->hasOneUse()) 3312 return SDValue(); 3313 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 3314 if (!N101C || N101C->getZExtValue() != 0xFF00) 3315 return SDValue(); 3316 N10 = N10.getOperand(0); 3317 LookPassAnd1 = true; 3318 } 3319 3320 if (N00 != N10) 3321 return SDValue(); 3322 3323 // Make sure everything beyond the low halfword gets set to zero since the SRL 3324 // 16 will clear the top bits. 3325 unsigned OpSizeInBits = VT.getSizeInBits(); 3326 if (DemandHighBits && OpSizeInBits > 16) { 3327 // If the left-shift isn't masked out then the only way this is a bswap is 3328 // if all bits beyond the low 8 are 0. In that case the entire pattern 3329 // reduces to a left shift anyway: leave it for other parts of the combiner. 3330 if (!LookPassAnd0) 3331 return SDValue(); 3332 3333 // However, if the right shift isn't masked out then it might be because 3334 // it's not needed. See if we can spot that too. 3335 if (!LookPassAnd1 && 3336 !DAG.MaskedValueIsZero( 3337 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 3338 return SDValue(); 3339 } 3340 3341 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 3342 if (OpSizeInBits > 16) { 3343 SDLoc DL(N); 3344 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 3345 DAG.getConstant(OpSizeInBits - 16, DL, 3346 getShiftAmountTy(VT))); 3347 } 3348 return Res; 3349 } 3350 3351 /// Return true if the specified node is an element that makes up a 32-bit 3352 /// packed halfword byteswap. 3353 /// ((x & 0x000000ff) << 8) | 3354 /// ((x & 0x0000ff00) >> 8) | 3355 /// ((x & 0x00ff0000) << 8) | 3356 /// ((x & 0xff000000) >> 8) 3357 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 3358 if (!N.getNode()->hasOneUse()) 3359 return false; 3360 3361 unsigned Opc = N.getOpcode(); 3362 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 3363 return false; 3364 3365 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3366 if (!N1C) 3367 return false; 3368 3369 unsigned Num; 3370 switch (N1C->getZExtValue()) { 3371 default: 3372 return false; 3373 case 0xFF: Num = 0; break; 3374 case 0xFF00: Num = 1; break; 3375 case 0xFF0000: Num = 2; break; 3376 case 0xFF000000: Num = 3; break; 3377 } 3378 3379 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 3380 SDValue N0 = N.getOperand(0); 3381 if (Opc == ISD::AND) { 3382 if (Num == 0 || Num == 2) { 3383 // (x >> 8) & 0xff 3384 // (x >> 8) & 0xff0000 3385 if (N0.getOpcode() != ISD::SRL) 3386 return false; 3387 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3388 if (!C || C->getZExtValue() != 8) 3389 return false; 3390 } else { 3391 // (x << 8) & 0xff00 3392 // (x << 8) & 0xff000000 3393 if (N0.getOpcode() != ISD::SHL) 3394 return false; 3395 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3396 if (!C || C->getZExtValue() != 8) 3397 return false; 3398 } 3399 } else if (Opc == ISD::SHL) { 3400 // (x & 0xff) << 8 3401 // (x & 0xff0000) << 8 3402 if (Num != 0 && Num != 2) 3403 return false; 3404 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3405 if (!C || C->getZExtValue() != 8) 3406 return false; 3407 } else { // Opc == ISD::SRL 3408 // (x & 0xff00) >> 8 3409 // (x & 0xff000000) >> 8 3410 if (Num != 1 && Num != 3) 3411 return false; 3412 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3413 if (!C || C->getZExtValue() != 8) 3414 return false; 3415 } 3416 3417 if (Parts[Num]) 3418 return false; 3419 3420 Parts[Num] = N0.getOperand(0).getNode(); 3421 return true; 3422 } 3423 3424 /// Match a 32-bit packed halfword bswap. That is 3425 /// ((x & 0x000000ff) << 8) | 3426 /// ((x & 0x0000ff00) >> 8) | 3427 /// ((x & 0x00ff0000) << 8) | 3428 /// ((x & 0xff000000) >> 8) 3429 /// => (rotl (bswap x), 16) 3430 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 3431 if (!LegalOperations) 3432 return SDValue(); 3433 3434 EVT VT = N->getValueType(0); 3435 if (VT != MVT::i32) 3436 return SDValue(); 3437 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3438 return SDValue(); 3439 3440 // Look for either 3441 // (or (or (and), (and)), (or (and), (and))) 3442 // (or (or (or (and), (and)), (and)), (and)) 3443 if (N0.getOpcode() != ISD::OR) 3444 return SDValue(); 3445 SDValue N00 = N0.getOperand(0); 3446 SDValue N01 = N0.getOperand(1); 3447 SDNode *Parts[4] = {}; 3448 3449 if (N1.getOpcode() == ISD::OR && 3450 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 3451 // (or (or (and), (and)), (or (and), (and))) 3452 SDValue N000 = N00.getOperand(0); 3453 if (!isBSwapHWordElement(N000, Parts)) 3454 return SDValue(); 3455 3456 SDValue N001 = N00.getOperand(1); 3457 if (!isBSwapHWordElement(N001, Parts)) 3458 return SDValue(); 3459 SDValue N010 = N01.getOperand(0); 3460 if (!isBSwapHWordElement(N010, Parts)) 3461 return SDValue(); 3462 SDValue N011 = N01.getOperand(1); 3463 if (!isBSwapHWordElement(N011, Parts)) 3464 return SDValue(); 3465 } else { 3466 // (or (or (or (and), (and)), (and)), (and)) 3467 if (!isBSwapHWordElement(N1, Parts)) 3468 return SDValue(); 3469 if (!isBSwapHWordElement(N01, Parts)) 3470 return SDValue(); 3471 if (N00.getOpcode() != ISD::OR) 3472 return SDValue(); 3473 SDValue N000 = N00.getOperand(0); 3474 if (!isBSwapHWordElement(N000, Parts)) 3475 return SDValue(); 3476 SDValue N001 = N00.getOperand(1); 3477 if (!isBSwapHWordElement(N001, Parts)) 3478 return SDValue(); 3479 } 3480 3481 // Make sure the parts are all coming from the same node. 3482 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 3483 return SDValue(); 3484 3485 SDLoc DL(N); 3486 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 3487 SDValue(Parts[0], 0)); 3488 3489 // Result of the bswap should be rotated by 16. If it's not legal, then 3490 // do (x << 16) | (x >> 16). 3491 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 3492 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 3493 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 3494 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 3495 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 3496 return DAG.getNode(ISD::OR, DL, VT, 3497 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 3498 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 3499 } 3500 3501 /// This contains all DAGCombine rules which reduce two values combined by 3502 /// an Or operation to a single value \see visitANDLike(). 3503 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { 3504 EVT VT = N1.getValueType(); 3505 // fold (or x, undef) -> -1 3506 if (!LegalOperations && 3507 (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { 3508 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 3509 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), 3510 SDLoc(LocReference), VT); 3511 } 3512 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 3513 SDValue LL, LR, RL, RR, CC0, CC1; 3514 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 3515 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 3516 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 3517 3518 if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { 3519 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 3520 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 3521 if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 3522 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 3523 LR.getValueType(), LL, RL); 3524 AddToWorklist(ORNode.getNode()); 3525 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 3526 } 3527 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 3528 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 3529 if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 3530 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 3531 LR.getValueType(), LL, RL); 3532 AddToWorklist(ANDNode.getNode()); 3533 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 3534 } 3535 } 3536 // canonicalize equivalent to ll == rl 3537 if (LL == RR && LR == RL) { 3538 Op1 = ISD::getSetCCSwappedOperands(Op1); 3539 std::swap(RL, RR); 3540 } 3541 if (LL == RL && LR == RR) { 3542 bool isInteger = LL.getValueType().isInteger(); 3543 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 3544 if (Result != ISD::SETCC_INVALID && 3545 (!LegalOperations || 3546 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3547 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3548 EVT CCVT = getSetCCResultType(LL.getValueType()); 3549 if (N0.getValueType() == CCVT || 3550 (!LegalOperations && N0.getValueType() == MVT::i1)) 3551 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3552 LL, LR, Result); 3553 } 3554 } 3555 } 3556 3557 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 3558 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 3559 // Don't increase # computations. 3560 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3561 // We can only do this xform if we know that bits from X that are set in C2 3562 // but not in C1 are already zero. Likewise for Y. 3563 if (const ConstantSDNode *N0O1C = 3564 getAsNonOpaqueConstant(N0.getOperand(1))) { 3565 if (const ConstantSDNode *N1O1C = 3566 getAsNonOpaqueConstant(N1.getOperand(1))) { 3567 // We can only do this xform if we know that bits from X that are set in 3568 // C2 but not in C1 are already zero. Likewise for Y. 3569 const APInt &LHSMask = N0O1C->getAPIntValue(); 3570 const APInt &RHSMask = N1O1C->getAPIntValue(); 3571 3572 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 3573 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 3574 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3575 N0.getOperand(0), N1.getOperand(0)); 3576 SDLoc DL(LocReference); 3577 return DAG.getNode(ISD::AND, DL, VT, X, 3578 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 3579 } 3580 } 3581 } 3582 } 3583 3584 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 3585 if (N0.getOpcode() == ISD::AND && 3586 N1.getOpcode() == ISD::AND && 3587 N0.getOperand(0) == N1.getOperand(0) && 3588 // Don't increase # computations. 3589 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3590 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3591 N0.getOperand(1), N1.getOperand(1)); 3592 return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); 3593 } 3594 3595 return SDValue(); 3596 } 3597 3598 SDValue DAGCombiner::visitOR(SDNode *N) { 3599 SDValue N0 = N->getOperand(0); 3600 SDValue N1 = N->getOperand(1); 3601 EVT VT = N1.getValueType(); 3602 3603 // fold vector ops 3604 if (VT.isVector()) { 3605 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3606 return FoldedVOp; 3607 3608 // fold (or x, 0) -> x, vector edition 3609 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3610 return N1; 3611 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3612 return N0; 3613 3614 // fold (or x, -1) -> -1, vector edition 3615 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3616 // do not return N0, because undef node may exist in N0 3617 return DAG.getConstant( 3618 APInt::getAllOnesValue( 3619 N0.getValueType().getScalarType().getSizeInBits()), 3620 SDLoc(N), N0.getValueType()); 3621 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3622 // do not return N1, because undef node may exist in N1 3623 return DAG.getConstant( 3624 APInt::getAllOnesValue( 3625 N1.getValueType().getScalarType().getSizeInBits()), 3626 SDLoc(N), N1.getValueType()); 3627 3628 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1) 3629 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2) 3630 // Do this only if the resulting shuffle is legal. 3631 if (isa<ShuffleVectorSDNode>(N0) && 3632 isa<ShuffleVectorSDNode>(N1) && 3633 // Avoid folding a node with illegal type. 3634 TLI.isTypeLegal(VT) && 3635 N0->getOperand(1) == N1->getOperand(1) && 3636 ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) { 3637 bool CanFold = true; 3638 unsigned NumElts = VT.getVectorNumElements(); 3639 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 3640 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 3641 // We construct two shuffle masks: 3642 // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand 3643 // and N1 as the second operand. 3644 // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand 3645 // and N0 as the second operand. 3646 // We do this because OR is commutable and therefore there might be 3647 // two ways to fold this node into a shuffle. 3648 SmallVector<int,4> Mask1; 3649 SmallVector<int,4> Mask2; 3650 3651 for (unsigned i = 0; i != NumElts && CanFold; ++i) { 3652 int M0 = SV0->getMaskElt(i); 3653 int M1 = SV1->getMaskElt(i); 3654 3655 // Both shuffle indexes are undef. Propagate Undef. 3656 if (M0 < 0 && M1 < 0) { 3657 Mask1.push_back(M0); 3658 Mask2.push_back(M0); 3659 continue; 3660 } 3661 3662 if (M0 < 0 || M1 < 0 || 3663 (M0 < (int)NumElts && M1 < (int)NumElts) || 3664 (M0 >= (int)NumElts && M1 >= (int)NumElts)) { 3665 CanFold = false; 3666 break; 3667 } 3668 3669 Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts); 3670 Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts); 3671 } 3672 3673 if (CanFold) { 3674 // Fold this sequence only if the resulting shuffle is 'legal'. 3675 if (TLI.isShuffleMaskLegal(Mask1, VT)) 3676 return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), 3677 N1->getOperand(0), &Mask1[0]); 3678 if (TLI.isShuffleMaskLegal(Mask2, VT)) 3679 return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0), 3680 N0->getOperand(0), &Mask2[0]); 3681 } 3682 } 3683 } 3684 3685 // fold (or c1, c2) -> c1|c2 3686 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3687 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3688 if (N0C && N1C && !N1C->isOpaque()) 3689 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 3690 // canonicalize constant to RHS 3691 if (isConstantIntBuildVectorOrConstantInt(N0) && 3692 !isConstantIntBuildVectorOrConstantInt(N1)) 3693 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 3694 // fold (or x, 0) -> x 3695 if (isNullConstant(N1)) 3696 return N0; 3697 // fold (or x, -1) -> -1 3698 if (isAllOnesConstant(N1)) 3699 return N1; 3700 // fold (or x, c) -> c iff (x & ~c) == 0 3701 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 3702 return N1; 3703 3704 if (SDValue Combined = visitORLike(N0, N1, N)) 3705 return Combined; 3706 3707 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 3708 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 3709 return BSwap; 3710 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 3711 return BSwap; 3712 3713 // reassociate or 3714 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) 3715 return ROR; 3716 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 3717 // iff (c1 & c2) == 0. 3718 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 3719 isa<ConstantSDNode>(N0.getOperand(1))) { 3720 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 3721 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 3722 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 3723 N1C, C1)) 3724 return DAG.getNode( 3725 ISD::AND, SDLoc(N), VT, 3726 DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); 3727 return SDValue(); 3728 } 3729 } 3730 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 3731 if (N0.getOpcode() == N1.getOpcode()) 3732 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3733 return Tmp; 3734 3735 // See if this is some rotate idiom. 3736 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 3737 return SDValue(Rot, 0); 3738 3739 // Simplify the operands using demanded-bits information. 3740 if (!VT.isVector() && 3741 SimplifyDemandedBits(SDValue(N, 0))) 3742 return SDValue(N, 0); 3743 3744 return SDValue(); 3745 } 3746 3747 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 3748 static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 3749 if (Op.getOpcode() == ISD::AND) { 3750 if (isa<ConstantSDNode>(Op.getOperand(1))) { 3751 Mask = Op.getOperand(1); 3752 Op = Op.getOperand(0); 3753 } else { 3754 return false; 3755 } 3756 } 3757 3758 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 3759 Shift = Op; 3760 return true; 3761 } 3762 3763 return false; 3764 } 3765 3766 // Return true if we can prove that, whenever Neg and Pos are both in the 3767 // range [0, OpSize), Neg == (Pos == 0 ? 0 : OpSize - Pos). This means that 3768 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 3769 // 3770 // (or (shift1 X, Neg), (shift2 X, Pos)) 3771 // 3772 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 3773 // in direction shift1 by Neg. The range [0, OpSize) means that we only need 3774 // to consider shift amounts with defined behavior. 3775 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned OpSize) { 3776 // If OpSize is a power of 2 then: 3777 // 3778 // (a) (Pos == 0 ? 0 : OpSize - Pos) == (OpSize - Pos) & (OpSize - 1) 3779 // (b) Neg == Neg & (OpSize - 1) whenever Neg is in [0, OpSize). 3780 // 3781 // So if OpSize is a power of 2 and Neg is (and Neg', OpSize-1), we check 3782 // for the stronger condition: 3783 // 3784 // Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1) [A] 3785 // 3786 // for all Neg and Pos. Since Neg & (OpSize - 1) == Neg' & (OpSize - 1) 3787 // we can just replace Neg with Neg' for the rest of the function. 3788 // 3789 // In other cases we check for the even stronger condition: 3790 // 3791 // Neg == OpSize - Pos [B] 3792 // 3793 // for all Neg and Pos. Note that the (or ...) then invokes undefined 3794 // behavior if Pos == 0 (and consequently Neg == OpSize). 3795 // 3796 // We could actually use [A] whenever OpSize is a power of 2, but the 3797 // only extra cases that it would match are those uninteresting ones 3798 // where Neg and Pos are never in range at the same time. E.g. for 3799 // OpSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 3800 // as well as (sub 32, Pos), but: 3801 // 3802 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 3803 // 3804 // always invokes undefined behavior for 32-bit X. 3805 // 3806 // Below, Mask == OpSize - 1 when using [A] and is all-ones otherwise. 3807 unsigned MaskLoBits = 0; 3808 if (Neg.getOpcode() == ISD::AND && 3809 isPowerOf2_64(OpSize) && 3810 Neg.getOperand(1).getOpcode() == ISD::Constant && 3811 cast<ConstantSDNode>(Neg.getOperand(1))->getAPIntValue() == OpSize - 1) { 3812 Neg = Neg.getOperand(0); 3813 MaskLoBits = Log2_64(OpSize); 3814 } 3815 3816 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 3817 if (Neg.getOpcode() != ISD::SUB) 3818 return 0; 3819 ConstantSDNode *NegC = dyn_cast<ConstantSDNode>(Neg.getOperand(0)); 3820 if (!NegC) 3821 return 0; 3822 SDValue NegOp1 = Neg.getOperand(1); 3823 3824 // On the RHS of [A], if Pos is Pos' & (OpSize - 1), just replace Pos with 3825 // Pos'. The truncation is redundant for the purpose of the equality. 3826 if (MaskLoBits && 3827 Pos.getOpcode() == ISD::AND && 3828 Pos.getOperand(1).getOpcode() == ISD::Constant && 3829 cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() == OpSize - 1) 3830 Pos = Pos.getOperand(0); 3831 3832 // The condition we need is now: 3833 // 3834 // (NegC - NegOp1) & Mask == (OpSize - Pos) & Mask 3835 // 3836 // If NegOp1 == Pos then we need: 3837 // 3838 // OpSize & Mask == NegC & Mask 3839 // 3840 // (because "x & Mask" is a truncation and distributes through subtraction). 3841 APInt Width; 3842 if (Pos == NegOp1) 3843 Width = NegC->getAPIntValue(); 3844 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 3845 // Then the condition we want to prove becomes: 3846 // 3847 // (NegC - NegOp1) & Mask == (OpSize - (NegOp1 + PosC)) & Mask 3848 // 3849 // which, again because "x & Mask" is a truncation, becomes: 3850 // 3851 // NegC & Mask == (OpSize - PosC) & Mask 3852 // OpSize & Mask == (NegC + PosC) & Mask 3853 else if (Pos.getOpcode() == ISD::ADD && 3854 Pos.getOperand(0) == NegOp1 && 3855 Pos.getOperand(1).getOpcode() == ISD::Constant) 3856 Width = (cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() + 3857 NegC->getAPIntValue()); 3858 else 3859 return false; 3860 3861 // Now we just need to check that OpSize & Mask == Width & Mask. 3862 if (MaskLoBits) 3863 // Opsize & Mask is 0 since Mask is Opsize - 1. 3864 return Width.getLoBits(MaskLoBits) == 0; 3865 return Width == OpSize; 3866 } 3867 3868 // A subroutine of MatchRotate used once we have found an OR of two opposite 3869 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 3870 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 3871 // former being preferred if supported. InnerPos and InnerNeg are Pos and 3872 // Neg with outer conversions stripped away. 3873 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 3874 SDValue Neg, SDValue InnerPos, 3875 SDValue InnerNeg, unsigned PosOpcode, 3876 unsigned NegOpcode, SDLoc DL) { 3877 // fold (or (shl x, (*ext y)), 3878 // (srl x, (*ext (sub 32, y)))) -> 3879 // (rotl x, y) or (rotr x, (sub 32, y)) 3880 // 3881 // fold (or (shl x, (*ext (sub 32, y))), 3882 // (srl x, (*ext y))) -> 3883 // (rotr x, y) or (rotl x, (sub 32, y)) 3884 EVT VT = Shifted.getValueType(); 3885 if (matchRotateSub(InnerPos, InnerNeg, VT.getSizeInBits())) { 3886 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 3887 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 3888 HasPos ? Pos : Neg).getNode(); 3889 } 3890 3891 return nullptr; 3892 } 3893 3894 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 3895 // idioms for rotate, and if the target supports rotation instructions, generate 3896 // a rot[lr]. 3897 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) { 3898 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 3899 EVT VT = LHS.getValueType(); 3900 if (!TLI.isTypeLegal(VT)) return nullptr; 3901 3902 // The target must have at least one rotate flavor. 3903 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 3904 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 3905 if (!HasROTL && !HasROTR) return nullptr; 3906 3907 // Match "(X shl/srl V1) & V2" where V2 may not be present. 3908 SDValue LHSShift; // The shift. 3909 SDValue LHSMask; // AND value if any. 3910 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 3911 return nullptr; // Not part of a rotate. 3912 3913 SDValue RHSShift; // The shift. 3914 SDValue RHSMask; // AND value if any. 3915 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 3916 return nullptr; // Not part of a rotate. 3917 3918 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 3919 return nullptr; // Not shifting the same value. 3920 3921 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 3922 return nullptr; // Shifts must disagree. 3923 3924 // Canonicalize shl to left side in a shl/srl pair. 3925 if (RHSShift.getOpcode() == ISD::SHL) { 3926 std::swap(LHS, RHS); 3927 std::swap(LHSShift, RHSShift); 3928 std::swap(LHSMask , RHSMask ); 3929 } 3930 3931 unsigned OpSizeInBits = VT.getSizeInBits(); 3932 SDValue LHSShiftArg = LHSShift.getOperand(0); 3933 SDValue LHSShiftAmt = LHSShift.getOperand(1); 3934 SDValue RHSShiftArg = RHSShift.getOperand(0); 3935 SDValue RHSShiftAmt = RHSShift.getOperand(1); 3936 3937 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 3938 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 3939 if (LHSShiftAmt.getOpcode() == ISD::Constant && 3940 RHSShiftAmt.getOpcode() == ISD::Constant) { 3941 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue(); 3942 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue(); 3943 if ((LShVal + RShVal) != OpSizeInBits) 3944 return nullptr; 3945 3946 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 3947 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 3948 3949 // If there is an AND of either shifted operand, apply it to the result. 3950 if (LHSMask.getNode() || RHSMask.getNode()) { 3951 APInt Mask = APInt::getAllOnesValue(OpSizeInBits); 3952 3953 if (LHSMask.getNode()) { 3954 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal); 3955 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits; 3956 } 3957 if (RHSMask.getNode()) { 3958 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal); 3959 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits; 3960 } 3961 3962 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, DL, VT)); 3963 } 3964 3965 return Rot.getNode(); 3966 } 3967 3968 // If there is a mask here, and we have a variable shift, we can't be sure 3969 // that we're masking out the right stuff. 3970 if (LHSMask.getNode() || RHSMask.getNode()) 3971 return nullptr; 3972 3973 // If the shift amount is sign/zext/any-extended just peel it off. 3974 SDValue LExtOp0 = LHSShiftAmt; 3975 SDValue RExtOp0 = RHSShiftAmt; 3976 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 3977 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 3978 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 3979 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 3980 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 3981 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 3982 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 3983 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 3984 LExtOp0 = LHSShiftAmt.getOperand(0); 3985 RExtOp0 = RHSShiftAmt.getOperand(0); 3986 } 3987 3988 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 3989 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 3990 if (TryL) 3991 return TryL; 3992 3993 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 3994 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 3995 if (TryR) 3996 return TryR; 3997 3998 return nullptr; 3999 } 4000 4001 SDValue DAGCombiner::visitXOR(SDNode *N) { 4002 SDValue N0 = N->getOperand(0); 4003 SDValue N1 = N->getOperand(1); 4004 EVT VT = N0.getValueType(); 4005 4006 // fold vector ops 4007 if (VT.isVector()) { 4008 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4009 return FoldedVOp; 4010 4011 // fold (xor x, 0) -> x, vector edition 4012 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4013 return N1; 4014 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4015 return N0; 4016 } 4017 4018 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 4019 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) 4020 return DAG.getConstant(0, SDLoc(N), VT); 4021 // fold (xor x, undef) -> undef 4022 if (N0.getOpcode() == ISD::UNDEF) 4023 return N0; 4024 if (N1.getOpcode() == ISD::UNDEF) 4025 return N1; 4026 // fold (xor c1, c2) -> c1^c2 4027 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4028 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4029 if (N0C && N1C) 4030 return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); 4031 // canonicalize constant to RHS 4032 if (isConstantIntBuildVectorOrConstantInt(N0) && 4033 !isConstantIntBuildVectorOrConstantInt(N1)) 4034 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 4035 // fold (xor x, 0) -> x 4036 if (isNullConstant(N1)) 4037 return N0; 4038 // reassociate xor 4039 if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) 4040 return RXOR; 4041 4042 // fold !(x cc y) -> (x !cc y) 4043 SDValue LHS, RHS, CC; 4044 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 4045 bool isInt = LHS.getValueType().isInteger(); 4046 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 4047 isInt); 4048 4049 if (!LegalOperations || 4050 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 4051 switch (N0.getOpcode()) { 4052 default: 4053 llvm_unreachable("Unhandled SetCC Equivalent!"); 4054 case ISD::SETCC: 4055 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 4056 case ISD::SELECT_CC: 4057 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 4058 N0.getOperand(3), NotCC); 4059 } 4060 } 4061 } 4062 4063 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 4064 if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && 4065 N0.getNode()->hasOneUse() && 4066 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 4067 SDValue V = N0.getOperand(0); 4068 SDLoc DL(N0); 4069 V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, 4070 DAG.getConstant(1, DL, V.getValueType())); 4071 AddToWorklist(V.getNode()); 4072 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 4073 } 4074 4075 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 4076 if (isOneConstant(N1) && VT == MVT::i1 && 4077 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4078 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4079 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 4080 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4081 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4082 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4083 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4084 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4085 } 4086 } 4087 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 4088 if (isAllOnesConstant(N1) && 4089 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4090 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4091 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 4092 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4093 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4094 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4095 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4096 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4097 } 4098 } 4099 // fold (xor (and x, y), y) -> (and (not x), y) 4100 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 4101 N0->getOperand(1) == N1) { 4102 SDValue X = N0->getOperand(0); 4103 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 4104 AddToWorklist(NotX.getNode()); 4105 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 4106 } 4107 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 4108 if (N1C && N0.getOpcode() == ISD::XOR) { 4109 if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { 4110 SDLoc DL(N); 4111 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 4112 DAG.getConstant(N1C->getAPIntValue() ^ 4113 N00C->getAPIntValue(), DL, VT)); 4114 } 4115 if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { 4116 SDLoc DL(N); 4117 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 4118 DAG.getConstant(N1C->getAPIntValue() ^ 4119 N01C->getAPIntValue(), DL, VT)); 4120 } 4121 } 4122 // fold (xor x, x) -> 0 4123 if (N0 == N1) 4124 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 4125 4126 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 4127 // Here is a concrete example of this equivalence: 4128 // i16 x == 14 4129 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 4130 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 4131 // 4132 // => 4133 // 4134 // i16 ~1 == 0b1111111111111110 4135 // i16 rol(~1, 14) == 0b1011111111111111 4136 // 4137 // Some additional tips to help conceptualize this transform: 4138 // - Try to see the operation as placing a single zero in a value of all ones. 4139 // - There exists no value for x which would allow the result to contain zero. 4140 // - Values of x larger than the bitwidth are undefined and do not require a 4141 // consistent result. 4142 // - Pushing the zero left requires shifting one bits in from the right. 4143 // A rotate left of ~1 is a nice way of achieving the desired result. 4144 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL 4145 && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 4146 SDLoc DL(N); 4147 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 4148 N0.getOperand(1)); 4149 } 4150 4151 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 4152 if (N0.getOpcode() == N1.getOpcode()) 4153 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 4154 return Tmp; 4155 4156 // Simplify the expression using non-local knowledge. 4157 if (!VT.isVector() && 4158 SimplifyDemandedBits(SDValue(N, 0))) 4159 return SDValue(N, 0); 4160 4161 return SDValue(); 4162 } 4163 4164 /// Handle transforms common to the three shifts, when the shift amount is a 4165 /// constant. 4166 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 4167 SDNode *LHS = N->getOperand(0).getNode(); 4168 if (!LHS->hasOneUse()) return SDValue(); 4169 4170 // We want to pull some binops through shifts, so that we have (and (shift)) 4171 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 4172 // thing happens with address calculations, so it's important to canonicalize 4173 // it. 4174 bool HighBitSet = false; // Can we transform this if the high bit is set? 4175 4176 switch (LHS->getOpcode()) { 4177 default: return SDValue(); 4178 case ISD::OR: 4179 case ISD::XOR: 4180 HighBitSet = false; // We can only transform sra if the high bit is clear. 4181 break; 4182 case ISD::AND: 4183 HighBitSet = true; // We can only transform sra if the high bit is set. 4184 break; 4185 case ISD::ADD: 4186 if (N->getOpcode() != ISD::SHL) 4187 return SDValue(); // only shl(add) not sr[al](add). 4188 HighBitSet = false; // We can only transform sra if the high bit is clear. 4189 break; 4190 } 4191 4192 // We require the RHS of the binop to be a constant and not opaque as well. 4193 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 4194 if (!BinOpCst) return SDValue(); 4195 4196 // FIXME: disable this unless the input to the binop is a shift by a constant. 4197 // If it is not a shift, it pessimizes some common cases like: 4198 // 4199 // void foo(int *X, int i) { X[i & 1235] = 1; } 4200 // int bar(int *X, int i) { return X[i & 255]; } 4201 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 4202 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 4203 BinOpLHSVal->getOpcode() != ISD::SRA && 4204 BinOpLHSVal->getOpcode() != ISD::SRL) || 4205 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 4206 return SDValue(); 4207 4208 EVT VT = N->getValueType(0); 4209 4210 // If this is a signed shift right, and the high bit is modified by the 4211 // logical operation, do not perform the transformation. The highBitSet 4212 // boolean indicates the value of the high bit of the constant which would 4213 // cause it to be modified for this operation. 4214 if (N->getOpcode() == ISD::SRA) { 4215 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 4216 if (BinOpRHSSignSet != HighBitSet) 4217 return SDValue(); 4218 } 4219 4220 if (!TLI.isDesirableToCommuteWithShift(LHS)) 4221 return SDValue(); 4222 4223 // Fold the constants, shifting the binop RHS by the shift amount. 4224 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 4225 N->getValueType(0), 4226 LHS->getOperand(1), N->getOperand(1)); 4227 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 4228 4229 // Create the new shift. 4230 SDValue NewShift = DAG.getNode(N->getOpcode(), 4231 SDLoc(LHS->getOperand(0)), 4232 VT, LHS->getOperand(0), N->getOperand(1)); 4233 4234 // Create the new binop. 4235 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 4236 } 4237 4238 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 4239 assert(N->getOpcode() == ISD::TRUNCATE); 4240 assert(N->getOperand(0).getOpcode() == ISD::AND); 4241 4242 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 4243 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 4244 SDValue N01 = N->getOperand(0).getOperand(1); 4245 4246 if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { 4247 if (!N01C->isOpaque()) { 4248 EVT TruncVT = N->getValueType(0); 4249 SDValue N00 = N->getOperand(0).getOperand(0); 4250 APInt TruncC = N01C->getAPIntValue(); 4251 TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); 4252 SDLoc DL(N); 4253 4254 return DAG.getNode(ISD::AND, DL, TruncVT, 4255 DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), 4256 DAG.getConstant(TruncC, DL, TruncVT)); 4257 } 4258 } 4259 } 4260 4261 return SDValue(); 4262 } 4263 4264 SDValue DAGCombiner::visitRotate(SDNode *N) { 4265 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 4266 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 4267 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 4268 SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode()); 4269 if (NewOp1.getNode()) 4270 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 4271 N->getOperand(0), NewOp1); 4272 } 4273 return SDValue(); 4274 } 4275 4276 SDValue DAGCombiner::visitSHL(SDNode *N) { 4277 SDValue N0 = N->getOperand(0); 4278 SDValue N1 = N->getOperand(1); 4279 EVT VT = N0.getValueType(); 4280 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4281 4282 // fold vector ops 4283 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4284 if (VT.isVector()) { 4285 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4286 return FoldedVOp; 4287 4288 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 4289 // If setcc produces all-one true value then: 4290 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 4291 if (N1CV && N1CV->isConstant()) { 4292 if (N0.getOpcode() == ISD::AND) { 4293 SDValue N00 = N0->getOperand(0); 4294 SDValue N01 = N0->getOperand(1); 4295 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 4296 4297 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 4298 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 4299 TargetLowering::ZeroOrNegativeOneBooleanContent) { 4300 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 4301 N01CV, N1CV)) 4302 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 4303 } 4304 } else { 4305 N1C = isConstOrConstSplat(N1); 4306 } 4307 } 4308 } 4309 4310 // fold (shl c1, c2) -> c1<<c2 4311 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4312 if (N0C && N1C && !N1C->isOpaque()) 4313 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 4314 // fold (shl 0, x) -> 0 4315 if (isNullConstant(N0)) 4316 return N0; 4317 // fold (shl x, c >= size(x)) -> undef 4318 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4319 return DAG.getUNDEF(VT); 4320 // fold (shl x, 0) -> x 4321 if (N1C && N1C->isNullValue()) 4322 return N0; 4323 // fold (shl undef, x) -> 0 4324 if (N0.getOpcode() == ISD::UNDEF) 4325 return DAG.getConstant(0, SDLoc(N), VT); 4326 // if (shl x, c) is known to be zero, return 0 4327 if (DAG.MaskedValueIsZero(SDValue(N, 0), 4328 APInt::getAllOnesValue(OpSizeInBits))) 4329 return DAG.getConstant(0, SDLoc(N), VT); 4330 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 4331 if (N1.getOpcode() == ISD::TRUNCATE && 4332 N1.getOperand(0).getOpcode() == ISD::AND) { 4333 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 4334 if (NewOp1.getNode()) 4335 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 4336 } 4337 4338 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4339 return SDValue(N, 0); 4340 4341 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 4342 if (N1C && N0.getOpcode() == ISD::SHL) { 4343 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4344 uint64_t c1 = N0C1->getZExtValue(); 4345 uint64_t c2 = N1C->getZExtValue(); 4346 SDLoc DL(N); 4347 if (c1 + c2 >= OpSizeInBits) 4348 return DAG.getConstant(0, DL, VT); 4349 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4350 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4351 } 4352 } 4353 4354 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 4355 // For this to be valid, the second form must not preserve any of the bits 4356 // that are shifted out by the inner shift in the first form. This means 4357 // the outer shift size must be >= the number of bits added by the ext. 4358 // As a corollary, we don't care what kind of ext it is. 4359 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 4360 N0.getOpcode() == ISD::ANY_EXTEND || 4361 N0.getOpcode() == ISD::SIGN_EXTEND) && 4362 N0.getOperand(0).getOpcode() == ISD::SHL) { 4363 SDValue N0Op0 = N0.getOperand(0); 4364 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4365 uint64_t c1 = N0Op0C1->getZExtValue(); 4366 uint64_t c2 = N1C->getZExtValue(); 4367 EVT InnerShiftVT = N0Op0.getValueType(); 4368 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4369 if (c2 >= OpSizeInBits - InnerShiftSize) { 4370 SDLoc DL(N0); 4371 if (c1 + c2 >= OpSizeInBits) 4372 return DAG.getConstant(0, DL, VT); 4373 return DAG.getNode(ISD::SHL, DL, VT, 4374 DAG.getNode(N0.getOpcode(), DL, VT, 4375 N0Op0->getOperand(0)), 4376 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4377 } 4378 } 4379 } 4380 4381 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 4382 // Only fold this if the inner zext has no other uses to avoid increasing 4383 // the total number of instructions. 4384 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 4385 N0.getOperand(0).getOpcode() == ISD::SRL) { 4386 SDValue N0Op0 = N0.getOperand(0); 4387 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4388 uint64_t c1 = N0Op0C1->getZExtValue(); 4389 if (c1 < VT.getScalarSizeInBits()) { 4390 uint64_t c2 = N1C->getZExtValue(); 4391 if (c1 == c2) { 4392 SDValue NewOp0 = N0.getOperand(0); 4393 EVT CountVT = NewOp0.getOperand(1).getValueType(); 4394 SDLoc DL(N); 4395 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 4396 NewOp0, 4397 DAG.getConstant(c2, DL, CountVT)); 4398 AddToWorklist(NewSHL.getNode()); 4399 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 4400 } 4401 } 4402 } 4403 } 4404 4405 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 4406 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 4407 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 4408 cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { 4409 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4410 uint64_t C1 = N0C1->getZExtValue(); 4411 uint64_t C2 = N1C->getZExtValue(); 4412 SDLoc DL(N); 4413 if (C1 <= C2) 4414 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4415 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 4416 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 4417 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 4418 } 4419 } 4420 4421 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 4422 // (and (srl x, (sub c1, c2), MASK) 4423 // Only fold this if the inner shift has no other uses -- if it does, folding 4424 // this will increase the total number of instructions. 4425 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4426 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4427 uint64_t c1 = N0C1->getZExtValue(); 4428 if (c1 < OpSizeInBits) { 4429 uint64_t c2 = N1C->getZExtValue(); 4430 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 4431 SDValue Shift; 4432 if (c2 > c1) { 4433 Mask = Mask.shl(c2 - c1); 4434 SDLoc DL(N); 4435 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4436 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 4437 } else { 4438 Mask = Mask.lshr(c1 - c2); 4439 SDLoc DL(N); 4440 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4441 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 4442 } 4443 SDLoc DL(N0); 4444 return DAG.getNode(ISD::AND, DL, VT, Shift, 4445 DAG.getConstant(Mask, DL, VT)); 4446 } 4447 } 4448 } 4449 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 4450 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { 4451 unsigned BitSize = VT.getScalarSizeInBits(); 4452 SDLoc DL(N); 4453 SDValue HiBitsMask = 4454 DAG.getConstant(APInt::getHighBitsSet(BitSize, 4455 BitSize - N1C->getZExtValue()), 4456 DL, VT); 4457 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4458 HiBitsMask); 4459 } 4460 4461 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4462 // Variant of version done on multiply, except mul by a power of 2 is turned 4463 // into a shift. 4464 APInt Val; 4465 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 4466 (isa<ConstantSDNode>(N0.getOperand(1)) || 4467 isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { 4468 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 4469 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4470 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 4471 } 4472 4473 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 4474 if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { 4475 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4476 if (SDValue Folded = 4477 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) 4478 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); 4479 } 4480 } 4481 4482 if (N1C && !N1C->isOpaque()) 4483 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 4484 return NewSHL; 4485 4486 return SDValue(); 4487 } 4488 4489 SDValue DAGCombiner::visitSRA(SDNode *N) { 4490 SDValue N0 = N->getOperand(0); 4491 SDValue N1 = N->getOperand(1); 4492 EVT VT = N0.getValueType(); 4493 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4494 4495 // fold vector ops 4496 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4497 if (VT.isVector()) { 4498 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4499 return FoldedVOp; 4500 4501 N1C = isConstOrConstSplat(N1); 4502 } 4503 4504 // fold (sra c1, c2) -> (sra c1, c2) 4505 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4506 if (N0C && N1C && !N1C->isOpaque()) 4507 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 4508 // fold (sra 0, x) -> 0 4509 if (isNullConstant(N0)) 4510 return N0; 4511 // fold (sra -1, x) -> -1 4512 if (isAllOnesConstant(N0)) 4513 return N0; 4514 // fold (sra x, (setge c, size(x))) -> undef 4515 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4516 return DAG.getUNDEF(VT); 4517 // fold (sra x, 0) -> x 4518 if (N1C && N1C->isNullValue()) 4519 return N0; 4520 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 4521 // sext_inreg. 4522 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 4523 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 4524 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 4525 if (VT.isVector()) 4526 ExtVT = EVT::getVectorVT(*DAG.getContext(), 4527 ExtVT, VT.getVectorNumElements()); 4528 if ((!LegalOperations || 4529 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 4530 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 4531 N0.getOperand(0), DAG.getValueType(ExtVT)); 4532 } 4533 4534 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 4535 if (N1C && N0.getOpcode() == ISD::SRA) { 4536 if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { 4537 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); 4538 if (Sum >= OpSizeInBits) 4539 Sum = OpSizeInBits - 1; 4540 SDLoc DL(N); 4541 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), 4542 DAG.getConstant(Sum, DL, N1.getValueType())); 4543 } 4544 } 4545 4546 // fold (sra (shl X, m), (sub result_size, n)) 4547 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 4548 // result_size - n != m. 4549 // If truncate is free for the target sext(shl) is likely to result in better 4550 // code. 4551 if (N0.getOpcode() == ISD::SHL && N1C) { 4552 // Get the two constanst of the shifts, CN0 = m, CN = n. 4553 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 4554 if (N01C) { 4555 LLVMContext &Ctx = *DAG.getContext(); 4556 // Determine what the truncate's result bitsize and type would be. 4557 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 4558 4559 if (VT.isVector()) 4560 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 4561 4562 // Determine the residual right-shift amount. 4563 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 4564 4565 // If the shift is not a no-op (in which case this should be just a sign 4566 // extend already), the truncated to type is legal, sign_extend is legal 4567 // on that type, and the truncate to that type is both legal and free, 4568 // perform the transform. 4569 if ((ShiftAmt > 0) && 4570 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 4571 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 4572 TLI.isTruncateFree(VT, TruncVT)) { 4573 4574 SDLoc DL(N); 4575 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 4576 getShiftAmountTy(N0.getOperand(0).getValueType())); 4577 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 4578 N0.getOperand(0), Amt); 4579 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 4580 Shift); 4581 return DAG.getNode(ISD::SIGN_EXTEND, DL, 4582 N->getValueType(0), Trunc); 4583 } 4584 } 4585 } 4586 4587 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 4588 if (N1.getOpcode() == ISD::TRUNCATE && 4589 N1.getOperand(0).getOpcode() == ISD::AND) { 4590 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 4591 if (NewOp1.getNode()) 4592 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 4593 } 4594 4595 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 4596 // if c1 is equal to the number of bits the trunc removes 4597 if (N0.getOpcode() == ISD::TRUNCATE && 4598 (N0.getOperand(0).getOpcode() == ISD::SRL || 4599 N0.getOperand(0).getOpcode() == ISD::SRA) && 4600 N0.getOperand(0).hasOneUse() && 4601 N0.getOperand(0).getOperand(1).hasOneUse() && 4602 N1C) { 4603 SDValue N0Op0 = N0.getOperand(0); 4604 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 4605 unsigned LargeShiftVal = LargeShift->getZExtValue(); 4606 EVT LargeVT = N0Op0.getValueType(); 4607 4608 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 4609 SDLoc DL(N); 4610 SDValue Amt = 4611 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 4612 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 4613 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 4614 N0Op0.getOperand(0), Amt); 4615 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 4616 } 4617 } 4618 } 4619 4620 // Simplify, based on bits shifted out of the LHS. 4621 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4622 return SDValue(N, 0); 4623 4624 4625 // If the sign bit is known to be zero, switch this to a SRL. 4626 if (DAG.SignBitIsZero(N0)) 4627 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 4628 4629 if (N1C && !N1C->isOpaque()) 4630 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 4631 return NewSRA; 4632 4633 return SDValue(); 4634 } 4635 4636 SDValue DAGCombiner::visitSRL(SDNode *N) { 4637 SDValue N0 = N->getOperand(0); 4638 SDValue N1 = N->getOperand(1); 4639 EVT VT = N0.getValueType(); 4640 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4641 4642 // fold vector ops 4643 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4644 if (VT.isVector()) { 4645 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4646 return FoldedVOp; 4647 4648 N1C = isConstOrConstSplat(N1); 4649 } 4650 4651 // fold (srl c1, c2) -> c1 >>u c2 4652 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4653 if (N0C && N1C && !N1C->isOpaque()) 4654 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 4655 // fold (srl 0, x) -> 0 4656 if (isNullConstant(N0)) 4657 return N0; 4658 // fold (srl x, c >= size(x)) -> undef 4659 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4660 return DAG.getUNDEF(VT); 4661 // fold (srl x, 0) -> x 4662 if (N1C && N1C->isNullValue()) 4663 return N0; 4664 // if (srl x, c) is known to be zero, return 0 4665 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4666 APInt::getAllOnesValue(OpSizeInBits))) 4667 return DAG.getConstant(0, SDLoc(N), VT); 4668 4669 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 4670 if (N1C && N0.getOpcode() == ISD::SRL) { 4671 if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { 4672 uint64_t c1 = N01C->getZExtValue(); 4673 uint64_t c2 = N1C->getZExtValue(); 4674 SDLoc DL(N); 4675 if (c1 + c2 >= OpSizeInBits) 4676 return DAG.getConstant(0, DL, VT); 4677 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4678 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4679 } 4680 } 4681 4682 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 4683 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 4684 N0.getOperand(0).getOpcode() == ISD::SRL && 4685 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 4686 uint64_t c1 = 4687 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 4688 uint64_t c2 = N1C->getZExtValue(); 4689 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 4690 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 4691 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); 4692 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 4693 if (c1 + OpSizeInBits == InnerShiftSize) { 4694 SDLoc DL(N0); 4695 if (c1 + c2 >= InnerShiftSize) 4696 return DAG.getConstant(0, DL, VT); 4697 return DAG.getNode(ISD::TRUNCATE, DL, VT, 4698 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 4699 N0.getOperand(0)->getOperand(0), 4700 DAG.getConstant(c1 + c2, DL, 4701 ShiftCountVT))); 4702 } 4703 } 4704 4705 // fold (srl (shl x, c), c) -> (and x, cst2) 4706 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { 4707 unsigned BitSize = N0.getScalarValueSizeInBits(); 4708 if (BitSize <= 64) { 4709 uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; 4710 SDLoc DL(N); 4711 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4712 DAG.getConstant(~0ULL >> ShAmt, DL, VT)); 4713 } 4714 } 4715 4716 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 4717 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4718 // Shifting in all undef bits? 4719 EVT SmallVT = N0.getOperand(0).getValueType(); 4720 unsigned BitSize = SmallVT.getScalarSizeInBits(); 4721 if (N1C->getZExtValue() >= BitSize) 4722 return DAG.getUNDEF(VT); 4723 4724 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 4725 uint64_t ShiftAmt = N1C->getZExtValue(); 4726 SDLoc DL0(N0); 4727 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 4728 N0.getOperand(0), 4729 DAG.getConstant(ShiftAmt, DL0, 4730 getShiftAmountTy(SmallVT))); 4731 AddToWorklist(SmallShift.getNode()); 4732 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 4733 SDLoc DL(N); 4734 return DAG.getNode(ISD::AND, DL, VT, 4735 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 4736 DAG.getConstant(Mask, DL, VT)); 4737 } 4738 } 4739 4740 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 4741 // bit, which is unmodified by sra. 4742 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 4743 if (N0.getOpcode() == ISD::SRA) 4744 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 4745 } 4746 4747 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 4748 if (N1C && N0.getOpcode() == ISD::CTLZ && 4749 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 4750 APInt KnownZero, KnownOne; 4751 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 4752 4753 // If any of the input bits are KnownOne, then the input couldn't be all 4754 // zeros, thus the result of the srl will always be zero. 4755 if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 4756 4757 // If all of the bits input the to ctlz node are known to be zero, then 4758 // the result of the ctlz is "32" and the result of the shift is one. 4759 APInt UnknownBits = ~KnownZero; 4760 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 4761 4762 // Otherwise, check to see if there is exactly one bit input to the ctlz. 4763 if ((UnknownBits & (UnknownBits - 1)) == 0) { 4764 // Okay, we know that only that the single bit specified by UnknownBits 4765 // could be set on input to the CTLZ node. If this bit is set, the SRL 4766 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 4767 // to an SRL/XOR pair, which is likely to simplify more. 4768 unsigned ShAmt = UnknownBits.countTrailingZeros(); 4769 SDValue Op = N0.getOperand(0); 4770 4771 if (ShAmt) { 4772 SDLoc DL(N0); 4773 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4774 DAG.getConstant(ShAmt, DL, 4775 getShiftAmountTy(Op.getValueType()))); 4776 AddToWorklist(Op.getNode()); 4777 } 4778 4779 SDLoc DL(N); 4780 return DAG.getNode(ISD::XOR, DL, VT, 4781 Op, DAG.getConstant(1, DL, VT)); 4782 } 4783 } 4784 4785 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 4786 if (N1.getOpcode() == ISD::TRUNCATE && 4787 N1.getOperand(0).getOpcode() == ISD::AND) { 4788 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4789 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 4790 } 4791 4792 // fold operands of srl based on knowledge that the low bits are not 4793 // demanded. 4794 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4795 return SDValue(N, 0); 4796 4797 if (N1C && !N1C->isOpaque()) 4798 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 4799 return NewSRL; 4800 4801 // Attempt to convert a srl of a load into a narrower zero-extending load. 4802 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 4803 return NarrowLoad; 4804 4805 // Here is a common situation. We want to optimize: 4806 // 4807 // %a = ... 4808 // %b = and i32 %a, 2 4809 // %c = srl i32 %b, 1 4810 // brcond i32 %c ... 4811 // 4812 // into 4813 // 4814 // %a = ... 4815 // %b = and %a, 2 4816 // %c = setcc eq %b, 0 4817 // brcond %c ... 4818 // 4819 // However when after the source operand of SRL is optimized into AND, the SRL 4820 // itself may not be optimized further. Look for it and add the BRCOND into 4821 // the worklist. 4822 if (N->hasOneUse()) { 4823 SDNode *Use = *N->use_begin(); 4824 if (Use->getOpcode() == ISD::BRCOND) 4825 AddToWorklist(Use); 4826 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 4827 // Also look pass the truncate. 4828 Use = *Use->use_begin(); 4829 if (Use->getOpcode() == ISD::BRCOND) 4830 AddToWorklist(Use); 4831 } 4832 } 4833 4834 return SDValue(); 4835 } 4836 4837 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 4838 SDValue N0 = N->getOperand(0); 4839 EVT VT = N->getValueType(0); 4840 4841 // fold (bswap c1) -> c2 4842 if (isConstantIntBuildVectorOrConstantInt(N0)) 4843 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 4844 // fold (bswap (bswap x)) -> x 4845 if (N0.getOpcode() == ISD::BSWAP) 4846 return N0->getOperand(0); 4847 return SDValue(); 4848 } 4849 4850 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 4851 SDValue N0 = N->getOperand(0); 4852 EVT VT = N->getValueType(0); 4853 4854 // fold (ctlz c1) -> c2 4855 if (isConstantIntBuildVectorOrConstantInt(N0)) 4856 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 4857 return SDValue(); 4858 } 4859 4860 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 4861 SDValue N0 = N->getOperand(0); 4862 EVT VT = N->getValueType(0); 4863 4864 // fold (ctlz_zero_undef c1) -> c2 4865 if (isConstantIntBuildVectorOrConstantInt(N0)) 4866 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 4867 return SDValue(); 4868 } 4869 4870 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 4871 SDValue N0 = N->getOperand(0); 4872 EVT VT = N->getValueType(0); 4873 4874 // fold (cttz c1) -> c2 4875 if (isConstantIntBuildVectorOrConstantInt(N0)) 4876 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 4877 return SDValue(); 4878 } 4879 4880 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 4881 SDValue N0 = N->getOperand(0); 4882 EVT VT = N->getValueType(0); 4883 4884 // fold (cttz_zero_undef c1) -> c2 4885 if (isConstantIntBuildVectorOrConstantInt(N0)) 4886 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 4887 return SDValue(); 4888 } 4889 4890 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 4891 SDValue N0 = N->getOperand(0); 4892 EVT VT = N->getValueType(0); 4893 4894 // fold (ctpop c1) -> c2 4895 if (isConstantIntBuildVectorOrConstantInt(N0)) 4896 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 4897 return SDValue(); 4898 } 4899 4900 4901 /// \brief Generate Min/Max node 4902 static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS, 4903 SDValue True, SDValue False, 4904 ISD::CondCode CC, const TargetLowering &TLI, 4905 SelectionDAG &DAG) { 4906 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 4907 return SDValue(); 4908 4909 switch (CC) { 4910 case ISD::SETOLT: 4911 case ISD::SETOLE: 4912 case ISD::SETLT: 4913 case ISD::SETLE: 4914 case ISD::SETULT: 4915 case ISD::SETULE: { 4916 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 4917 if (TLI.isOperationLegal(Opcode, VT)) 4918 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 4919 return SDValue(); 4920 } 4921 case ISD::SETOGT: 4922 case ISD::SETOGE: 4923 case ISD::SETGT: 4924 case ISD::SETGE: 4925 case ISD::SETUGT: 4926 case ISD::SETUGE: { 4927 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 4928 if (TLI.isOperationLegal(Opcode, VT)) 4929 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 4930 return SDValue(); 4931 } 4932 default: 4933 return SDValue(); 4934 } 4935 } 4936 4937 SDValue DAGCombiner::visitSELECT(SDNode *N) { 4938 SDValue N0 = N->getOperand(0); 4939 SDValue N1 = N->getOperand(1); 4940 SDValue N2 = N->getOperand(2); 4941 EVT VT = N->getValueType(0); 4942 EVT VT0 = N0.getValueType(); 4943 4944 // fold (select C, X, X) -> X 4945 if (N1 == N2) 4946 return N1; 4947 if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { 4948 // fold (select true, X, Y) -> X 4949 // fold (select false, X, Y) -> Y 4950 return !N0C->isNullValue() ? N1 : N2; 4951 } 4952 // fold (select C, 1, X) -> (or C, X) 4953 if (VT == MVT::i1 && isOneConstant(N1)) 4954 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 4955 // fold (select C, 0, 1) -> (xor C, 1) 4956 // We can't do this reliably if integer based booleans have different contents 4957 // to floating point based booleans. This is because we can't tell whether we 4958 // have an integer-based boolean or a floating-point-based boolean unless we 4959 // can find the SETCC that produced it and inspect its operands. This is 4960 // fairly easy if C is the SETCC node, but it can potentially be 4961 // undiscoverable (or not reasonably discoverable). For example, it could be 4962 // in another basic block or it could require searching a complicated 4963 // expression. 4964 if (VT.isInteger() && 4965 (VT0 == MVT::i1 || (VT0.isInteger() && 4966 TLI.getBooleanContents(false, false) == 4967 TLI.getBooleanContents(false, true) && 4968 TLI.getBooleanContents(false, false) == 4969 TargetLowering::ZeroOrOneBooleanContent)) && 4970 isNullConstant(N1) && isOneConstant(N2)) { 4971 SDValue XORNode; 4972 if (VT == VT0) { 4973 SDLoc DL(N); 4974 return DAG.getNode(ISD::XOR, DL, VT0, 4975 N0, DAG.getConstant(1, DL, VT0)); 4976 } 4977 SDLoc DL0(N0); 4978 XORNode = DAG.getNode(ISD::XOR, DL0, VT0, 4979 N0, DAG.getConstant(1, DL0, VT0)); 4980 AddToWorklist(XORNode.getNode()); 4981 if (VT.bitsGT(VT0)) 4982 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); 4983 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); 4984 } 4985 // fold (select C, 0, X) -> (and (not C), X) 4986 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 4987 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 4988 AddToWorklist(NOTNode.getNode()); 4989 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 4990 } 4991 // fold (select C, X, 1) -> (or (not C), X) 4992 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 4993 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 4994 AddToWorklist(NOTNode.getNode()); 4995 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 4996 } 4997 // fold (select C, X, 0) -> (and C, X) 4998 if (VT == MVT::i1 && isNullConstant(N2)) 4999 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5000 // fold (select X, X, Y) -> (or X, Y) 5001 // fold (select X, 1, Y) -> (or X, Y) 5002 if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 5003 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5004 // fold (select X, Y, X) -> (and X, Y) 5005 // fold (select X, Y, 0) -> (and X, Y) 5006 if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 5007 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5008 5009 // If we can fold this based on the true/false value, do so. 5010 if (SimplifySelectOps(N, N1, N2)) 5011 return SDValue(N, 0); // Don't revisit N. 5012 5013 if (VT0 == MVT::i1) { 5014 // The code in this block deals with the following 2 equivalences: 5015 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 5016 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 5017 // The target can specify its prefered form with the 5018 // shouldNormalizeToSelectSequence() callback. However we always transform 5019 // to the right anyway if we find the inner select exists in the DAG anyway 5020 // and we always transform to the left side if we know that we can further 5021 // optimize the combination of the conditions. 5022 bool normalizeToSequence 5023 = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 5024 // select (and Cond0, Cond1), X, Y 5025 // -> select Cond0, (select Cond1, X, Y), Y 5026 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 5027 SDValue Cond0 = N0->getOperand(0); 5028 SDValue Cond1 = N0->getOperand(1); 5029 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5030 N1.getValueType(), Cond1, N1, N2); 5031 if (normalizeToSequence || !InnerSelect.use_empty()) 5032 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, 5033 InnerSelect, N2); 5034 } 5035 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 5036 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 5037 SDValue Cond0 = N0->getOperand(0); 5038 SDValue Cond1 = N0->getOperand(1); 5039 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5040 N1.getValueType(), Cond1, N1, N2); 5041 if (normalizeToSequence || !InnerSelect.use_empty()) 5042 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, 5043 InnerSelect); 5044 } 5045 5046 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 5047 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 5048 SDValue N1_0 = N1->getOperand(0); 5049 SDValue N1_1 = N1->getOperand(1); 5050 SDValue N1_2 = N1->getOperand(2); 5051 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 5052 // Create the actual and node if we can generate good code for it. 5053 if (!normalizeToSequence) { 5054 SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), 5055 N0, N1_0); 5056 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, 5057 N1_1, N2); 5058 } 5059 // Otherwise see if we can optimize the "and" to a better pattern. 5060 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 5061 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5062 N1_1, N2); 5063 } 5064 } 5065 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 5066 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 5067 SDValue N2_0 = N2->getOperand(0); 5068 SDValue N2_1 = N2->getOperand(1); 5069 SDValue N2_2 = N2->getOperand(2); 5070 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 5071 // Create the actual or node if we can generate good code for it. 5072 if (!normalizeToSequence) { 5073 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), 5074 N0, N2_0); 5075 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, 5076 N1, N2_2); 5077 } 5078 // Otherwise see if we can optimize to a better pattern. 5079 if (SDValue Combined = visitORLike(N0, N2_0, N)) 5080 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5081 N1, N2_2); 5082 } 5083 } 5084 } 5085 5086 // fold selects based on a setcc into other things, such as min/max/abs 5087 if (N0.getOpcode() == ISD::SETCC) { 5088 // select x, y (fcmp lt x, y) -> fminnum x, y 5089 // select x, y (fcmp gt x, y) -> fmaxnum x, y 5090 // 5091 // This is OK if we don't care about what happens if either operand is a 5092 // NaN. 5093 // 5094 5095 // FIXME: Instead of testing for UnsafeFPMath, this should be checking for 5096 // no signed zeros as well as no nans. 5097 const TargetOptions &Options = DAG.getTarget().Options; 5098 if (Options.UnsafeFPMath && 5099 VT.isFloatingPoint() && N0.hasOneUse() && 5100 DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { 5101 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5102 5103 if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), 5104 N0.getOperand(1), N1, N2, CC, 5105 TLI, DAG)) 5106 return FMinMax; 5107 } 5108 5109 if ((!LegalOperations && 5110 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 5111 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 5112 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 5113 N0.getOperand(0), N0.getOperand(1), 5114 N1, N2, N0.getOperand(2)); 5115 return SimplifySelect(SDLoc(N), N0, N1, N2); 5116 } 5117 5118 return SDValue(); 5119 } 5120 5121 static 5122 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 5123 SDLoc DL(N); 5124 EVT LoVT, HiVT; 5125 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 5126 5127 // Split the inputs. 5128 SDValue Lo, Hi, LL, LH, RL, RH; 5129 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 5130 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 5131 5132 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 5133 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 5134 5135 return std::make_pair(Lo, Hi); 5136 } 5137 5138 // This function assumes all the vselect's arguments are CONCAT_VECTOR 5139 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 5140 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 5141 SDLoc dl(N); 5142 SDValue Cond = N->getOperand(0); 5143 SDValue LHS = N->getOperand(1); 5144 SDValue RHS = N->getOperand(2); 5145 EVT VT = N->getValueType(0); 5146 int NumElems = VT.getVectorNumElements(); 5147 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 5148 RHS.getOpcode() == ISD::CONCAT_VECTORS && 5149 Cond.getOpcode() == ISD::BUILD_VECTOR); 5150 5151 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 5152 // binary ones here. 5153 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 5154 return SDValue(); 5155 5156 // We're sure we have an even number of elements due to the 5157 // concat_vectors we have as arguments to vselect. 5158 // Skip BV elements until we find one that's not an UNDEF 5159 // After we find an UNDEF element, keep looping until we get to half the 5160 // length of the BV and see if all the non-undef nodes are the same. 5161 ConstantSDNode *BottomHalf = nullptr; 5162 for (int i = 0; i < NumElems / 2; ++i) { 5163 if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) 5164 continue; 5165 5166 if (BottomHalf == nullptr) 5167 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5168 else if (Cond->getOperand(i).getNode() != BottomHalf) 5169 return SDValue(); 5170 } 5171 5172 // Do the same for the second half of the BuildVector 5173 ConstantSDNode *TopHalf = nullptr; 5174 for (int i = NumElems / 2; i < NumElems; ++i) { 5175 if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) 5176 continue; 5177 5178 if (TopHalf == nullptr) 5179 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5180 else if (Cond->getOperand(i).getNode() != TopHalf) 5181 return SDValue(); 5182 } 5183 5184 assert(TopHalf && BottomHalf && 5185 "One half of the selector was all UNDEFs and the other was all the " 5186 "same value. This should have been addressed before this function."); 5187 return DAG.getNode( 5188 ISD::CONCAT_VECTORS, dl, VT, 5189 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 5190 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 5191 } 5192 5193 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 5194 5195 if (Level >= AfterLegalizeTypes) 5196 return SDValue(); 5197 5198 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 5199 SDValue Mask = MSC->getMask(); 5200 SDValue Data = MSC->getValue(); 5201 SDLoc DL(N); 5202 5203 // If the MSCATTER data type requires splitting and the mask is provided by a 5204 // SETCC, then split both nodes and its operands before legalization. This 5205 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5206 // and enables future optimizations (e.g. min/max pattern matching on X86). 5207 if (Mask.getOpcode() != ISD::SETCC) 5208 return SDValue(); 5209 5210 // Check if any splitting is required. 5211 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5212 TargetLowering::TypeSplitVector) 5213 return SDValue(); 5214 SDValue MaskLo, MaskHi, Lo, Hi; 5215 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5216 5217 EVT LoVT, HiVT; 5218 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 5219 5220 SDValue Chain = MSC->getChain(); 5221 5222 EVT MemoryVT = MSC->getMemoryVT(); 5223 unsigned Alignment = MSC->getOriginalAlignment(); 5224 5225 EVT LoMemVT, HiMemVT; 5226 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5227 5228 SDValue DataLo, DataHi; 5229 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5230 5231 SDValue BasePtr = MSC->getBasePtr(); 5232 SDValue IndexLo, IndexHi; 5233 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 5234 5235 MachineMemOperand *MMO = DAG.getMachineFunction(). 5236 getMachineMemOperand(MSC->getPointerInfo(), 5237 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5238 Alignment, MSC->getAAInfo(), MSC->getRanges()); 5239 5240 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; 5241 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), 5242 DL, OpsLo, MMO); 5243 5244 SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; 5245 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 5246 DL, OpsHi, MMO); 5247 5248 AddToWorklist(Lo.getNode()); 5249 AddToWorklist(Hi.getNode()); 5250 5251 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5252 } 5253 5254 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 5255 5256 if (Level >= AfterLegalizeTypes) 5257 return SDValue(); 5258 5259 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); 5260 SDValue Mask = MST->getMask(); 5261 SDValue Data = MST->getValue(); 5262 SDLoc DL(N); 5263 5264 // If the MSTORE data type requires splitting and the mask is provided by a 5265 // SETCC, then split both nodes and its operands before legalization. This 5266 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5267 // and enables future optimizations (e.g. min/max pattern matching on X86). 5268 if (Mask.getOpcode() == ISD::SETCC) { 5269 5270 // Check if any splitting is required. 5271 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5272 TargetLowering::TypeSplitVector) 5273 return SDValue(); 5274 5275 SDValue MaskLo, MaskHi, Lo, Hi; 5276 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5277 5278 EVT LoVT, HiVT; 5279 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); 5280 5281 SDValue Chain = MST->getChain(); 5282 SDValue Ptr = MST->getBasePtr(); 5283 5284 EVT MemoryVT = MST->getMemoryVT(); 5285 unsigned Alignment = MST->getOriginalAlignment(); 5286 5287 // if Alignment is equal to the vector size, 5288 // take the half of it for the second part 5289 unsigned SecondHalfAlignment = 5290 (Alignment == Data->getValueType(0).getSizeInBits()/8) ? 5291 Alignment/2 : Alignment; 5292 5293 EVT LoMemVT, HiMemVT; 5294 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5295 5296 SDValue DataLo, DataHi; 5297 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5298 5299 MachineMemOperand *MMO = DAG.getMachineFunction(). 5300 getMachineMemOperand(MST->getPointerInfo(), 5301 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5302 Alignment, MST->getAAInfo(), MST->getRanges()); 5303 5304 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 5305 MST->isTruncatingStore()); 5306 5307 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5308 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5309 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5310 5311 MMO = DAG.getMachineFunction(). 5312 getMachineMemOperand(MST->getPointerInfo(), 5313 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), 5314 SecondHalfAlignment, MST->getAAInfo(), 5315 MST->getRanges()); 5316 5317 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 5318 MST->isTruncatingStore()); 5319 5320 AddToWorklist(Lo.getNode()); 5321 AddToWorklist(Hi.getNode()); 5322 5323 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5324 } 5325 return SDValue(); 5326 } 5327 5328 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 5329 5330 if (Level >= AfterLegalizeTypes) 5331 return SDValue(); 5332 5333 MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); 5334 SDValue Mask = MGT->getMask(); 5335 SDLoc DL(N); 5336 5337 // If the MGATHER result requires splitting and the mask is provided by a 5338 // SETCC, then split both nodes and its operands before legalization. This 5339 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5340 // and enables future optimizations (e.g. min/max pattern matching on X86). 5341 5342 if (Mask.getOpcode() != ISD::SETCC) 5343 return SDValue(); 5344 5345 EVT VT = N->getValueType(0); 5346 5347 // Check if any splitting is required. 5348 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5349 TargetLowering::TypeSplitVector) 5350 return SDValue(); 5351 5352 SDValue MaskLo, MaskHi, Lo, Hi; 5353 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5354 5355 SDValue Src0 = MGT->getValue(); 5356 SDValue Src0Lo, Src0Hi; 5357 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5358 5359 EVT LoVT, HiVT; 5360 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 5361 5362 SDValue Chain = MGT->getChain(); 5363 EVT MemoryVT = MGT->getMemoryVT(); 5364 unsigned Alignment = MGT->getOriginalAlignment(); 5365 5366 EVT LoMemVT, HiMemVT; 5367 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5368 5369 SDValue BasePtr = MGT->getBasePtr(); 5370 SDValue Index = MGT->getIndex(); 5371 SDValue IndexLo, IndexHi; 5372 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 5373 5374 MachineMemOperand *MMO = DAG.getMachineFunction(). 5375 getMachineMemOperand(MGT->getPointerInfo(), 5376 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5377 Alignment, MGT->getAAInfo(), MGT->getRanges()); 5378 5379 SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; 5380 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 5381 MMO); 5382 5383 SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; 5384 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 5385 MMO); 5386 5387 AddToWorklist(Lo.getNode()); 5388 AddToWorklist(Hi.getNode()); 5389 5390 // Build a factor node to remember that this load is independent of the 5391 // other one. 5392 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5393 Hi.getValue(1)); 5394 5395 // Legalized the chain result - switch anything that used the old chain to 5396 // use the new one. 5397 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 5398 5399 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5400 5401 SDValue RetOps[] = { GatherRes, Chain }; 5402 return DAG.getMergeValues(RetOps, DL); 5403 } 5404 5405 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 5406 5407 if (Level >= AfterLegalizeTypes) 5408 return SDValue(); 5409 5410 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); 5411 SDValue Mask = MLD->getMask(); 5412 SDLoc DL(N); 5413 5414 // If the MLOAD result requires splitting and the mask is provided by a 5415 // SETCC, then split both nodes and its operands before legalization. This 5416 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5417 // and enables future optimizations (e.g. min/max pattern matching on X86). 5418 5419 if (Mask.getOpcode() == ISD::SETCC) { 5420 EVT VT = N->getValueType(0); 5421 5422 // Check if any splitting is required. 5423 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5424 TargetLowering::TypeSplitVector) 5425 return SDValue(); 5426 5427 SDValue MaskLo, MaskHi, Lo, Hi; 5428 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5429 5430 SDValue Src0 = MLD->getSrc0(); 5431 SDValue Src0Lo, Src0Hi; 5432 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5433 5434 EVT LoVT, HiVT; 5435 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 5436 5437 SDValue Chain = MLD->getChain(); 5438 SDValue Ptr = MLD->getBasePtr(); 5439 EVT MemoryVT = MLD->getMemoryVT(); 5440 unsigned Alignment = MLD->getOriginalAlignment(); 5441 5442 // if Alignment is equal to the vector size, 5443 // take the half of it for the second part 5444 unsigned SecondHalfAlignment = 5445 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 5446 Alignment/2 : Alignment; 5447 5448 EVT LoMemVT, HiMemVT; 5449 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5450 5451 MachineMemOperand *MMO = DAG.getMachineFunction(). 5452 getMachineMemOperand(MLD->getPointerInfo(), 5453 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5454 Alignment, MLD->getAAInfo(), MLD->getRanges()); 5455 5456 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, 5457 ISD::NON_EXTLOAD); 5458 5459 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5460 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5461 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5462 5463 MMO = DAG.getMachineFunction(). 5464 getMachineMemOperand(MLD->getPointerInfo(), 5465 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), 5466 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); 5467 5468 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, 5469 ISD::NON_EXTLOAD); 5470 5471 AddToWorklist(Lo.getNode()); 5472 AddToWorklist(Hi.getNode()); 5473 5474 // Build a factor node to remember that this load is independent of the 5475 // other one. 5476 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5477 Hi.getValue(1)); 5478 5479 // Legalized the chain result - switch anything that used the old chain to 5480 // use the new one. 5481 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 5482 5483 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5484 5485 SDValue RetOps[] = { LoadRes, Chain }; 5486 return DAG.getMergeValues(RetOps, DL); 5487 } 5488 return SDValue(); 5489 } 5490 5491 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 5492 SDValue N0 = N->getOperand(0); 5493 SDValue N1 = N->getOperand(1); 5494 SDValue N2 = N->getOperand(2); 5495 SDLoc DL(N); 5496 5497 // Canonicalize integer abs. 5498 // vselect (setg[te] X, 0), X, -X -> 5499 // vselect (setgt X, -1), X, -X -> 5500 // vselect (setl[te] X, 0), -X, X -> 5501 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 5502 if (N0.getOpcode() == ISD::SETCC) { 5503 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 5504 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5505 bool isAbs = false; 5506 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 5507 5508 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 5509 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 5510 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 5511 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 5512 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 5513 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 5514 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5515 5516 if (isAbs) { 5517 EVT VT = LHS.getValueType(); 5518 SDValue Shift = DAG.getNode( 5519 ISD::SRA, DL, VT, LHS, 5520 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT)); 5521 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 5522 AddToWorklist(Shift.getNode()); 5523 AddToWorklist(Add.getNode()); 5524 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 5525 } 5526 } 5527 5528 if (SimplifySelectOps(N, N1, N2)) 5529 return SDValue(N, 0); // Don't revisit N. 5530 5531 // If the VSELECT result requires splitting and the mask is provided by a 5532 // SETCC, then split both nodes and its operands before legalization. This 5533 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5534 // and enables future optimizations (e.g. min/max pattern matching on X86). 5535 if (N0.getOpcode() == ISD::SETCC) { 5536 EVT VT = N->getValueType(0); 5537 5538 // Check if any splitting is required. 5539 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5540 TargetLowering::TypeSplitVector) 5541 return SDValue(); 5542 5543 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 5544 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 5545 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 5546 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 5547 5548 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 5549 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 5550 5551 // Add the new VSELECT nodes to the work list in case they need to be split 5552 // again. 5553 AddToWorklist(Lo.getNode()); 5554 AddToWorklist(Hi.getNode()); 5555 5556 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5557 } 5558 5559 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 5560 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5561 return N1; 5562 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 5563 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5564 return N2; 5565 5566 // The ConvertSelectToConcatVector function is assuming both the above 5567 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 5568 // and addressed. 5569 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 5570 N2.getOpcode() == ISD::CONCAT_VECTORS && 5571 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 5572 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 5573 return CV; 5574 } 5575 5576 return SDValue(); 5577 } 5578 5579 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 5580 SDValue N0 = N->getOperand(0); 5581 SDValue N1 = N->getOperand(1); 5582 SDValue N2 = N->getOperand(2); 5583 SDValue N3 = N->getOperand(3); 5584 SDValue N4 = N->getOperand(4); 5585 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 5586 5587 // fold select_cc lhs, rhs, x, x, cc -> x 5588 if (N2 == N3) 5589 return N2; 5590 5591 // Determine if the condition we're dealing with is constant 5592 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 5593 N0, N1, CC, SDLoc(N), false); 5594 if (SCC.getNode()) { 5595 AddToWorklist(SCC.getNode()); 5596 5597 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 5598 if (!SCCC->isNullValue()) 5599 return N2; // cond always true -> true val 5600 else 5601 return N3; // cond always false -> false val 5602 } else if (SCC->getOpcode() == ISD::UNDEF) { 5603 // When the condition is UNDEF, just return the first operand. This is 5604 // coherent the DAG creation, no setcc node is created in this case 5605 return N2; 5606 } else if (SCC.getOpcode() == ISD::SETCC) { 5607 // Fold to a simpler select_cc 5608 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 5609 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 5610 SCC.getOperand(2)); 5611 } 5612 } 5613 5614 // If we can fold this based on the true/false value, do so. 5615 if (SimplifySelectOps(N, N2, N3)) 5616 return SDValue(N, 0); // Don't revisit N. 5617 5618 // fold select_cc into other things, such as min/max/abs 5619 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 5620 } 5621 5622 SDValue DAGCombiner::visitSETCC(SDNode *N) { 5623 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 5624 cast<CondCodeSDNode>(N->getOperand(2))->get(), 5625 SDLoc(N)); 5626 } 5627 5628 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 5629 /// a build_vector of constants. 5630 /// This function is called by the DAGCombiner when visiting sext/zext/aext 5631 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 5632 /// Vector extends are not folded if operations are legal; this is to 5633 /// avoid introducing illegal build_vector dag nodes. 5634 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 5635 SelectionDAG &DAG, bool LegalTypes, 5636 bool LegalOperations) { 5637 unsigned Opcode = N->getOpcode(); 5638 SDValue N0 = N->getOperand(0); 5639 EVT VT = N->getValueType(0); 5640 5641 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 5642 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5643 && "Expected EXTEND dag node in input!"); 5644 5645 // fold (sext c1) -> c1 5646 // fold (zext c1) -> c1 5647 // fold (aext c1) -> c1 5648 if (isa<ConstantSDNode>(N0)) 5649 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 5650 5651 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 5652 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 5653 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 5654 EVT SVT = VT.getScalarType(); 5655 if (!(VT.isVector() && 5656 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 5657 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 5658 return nullptr; 5659 5660 // We can fold this node into a build_vector. 5661 unsigned VTBits = SVT.getSizeInBits(); 5662 unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); 5663 SmallVector<SDValue, 8> Elts; 5664 unsigned NumElts = VT.getVectorNumElements(); 5665 SDLoc DL(N); 5666 5667 for (unsigned i=0; i != NumElts; ++i) { 5668 SDValue Op = N0->getOperand(i); 5669 if (Op->getOpcode() == ISD::UNDEF) { 5670 Elts.push_back(DAG.getUNDEF(SVT)); 5671 continue; 5672 } 5673 5674 SDLoc DL(Op); 5675 // Get the constant value and if needed trunc it to the size of the type. 5676 // Nodes like build_vector might have constants wider than the scalar type. 5677 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 5678 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5679 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 5680 else 5681 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 5682 } 5683 5684 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode(); 5685 } 5686 5687 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 5688 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 5689 // transformation. Returns true if extension are possible and the above 5690 // mentioned transformation is profitable. 5691 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 5692 unsigned ExtOpc, 5693 SmallVectorImpl<SDNode *> &ExtendNodes, 5694 const TargetLowering &TLI) { 5695 bool HasCopyToRegUses = false; 5696 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 5697 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 5698 UE = N0.getNode()->use_end(); 5699 UI != UE; ++UI) { 5700 SDNode *User = *UI; 5701 if (User == N) 5702 continue; 5703 if (UI.getUse().getResNo() != N0.getResNo()) 5704 continue; 5705 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 5706 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 5707 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 5708 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 5709 // Sign bits will be lost after a zext. 5710 return false; 5711 bool Add = false; 5712 for (unsigned i = 0; i != 2; ++i) { 5713 SDValue UseOp = User->getOperand(i); 5714 if (UseOp == N0) 5715 continue; 5716 if (!isa<ConstantSDNode>(UseOp)) 5717 return false; 5718 Add = true; 5719 } 5720 if (Add) 5721 ExtendNodes.push_back(User); 5722 continue; 5723 } 5724 // If truncates aren't free and there are users we can't 5725 // extend, it isn't worthwhile. 5726 if (!isTruncFree) 5727 return false; 5728 // Remember if this value is live-out. 5729 if (User->getOpcode() == ISD::CopyToReg) 5730 HasCopyToRegUses = true; 5731 } 5732 5733 if (HasCopyToRegUses) { 5734 bool BothLiveOut = false; 5735 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5736 UI != UE; ++UI) { 5737 SDUse &Use = UI.getUse(); 5738 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 5739 BothLiveOut = true; 5740 break; 5741 } 5742 } 5743 if (BothLiveOut) 5744 // Both unextended and extended values are live out. There had better be 5745 // a good reason for the transformation. 5746 return ExtendNodes.size(); 5747 } 5748 return true; 5749 } 5750 5751 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 5752 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 5753 ISD::NodeType ExtType) { 5754 // Extend SetCC uses if necessary. 5755 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 5756 SDNode *SetCC = SetCCs[i]; 5757 SmallVector<SDValue, 4> Ops; 5758 5759 for (unsigned j = 0; j != 2; ++j) { 5760 SDValue SOp = SetCC->getOperand(j); 5761 if (SOp == Trunc) 5762 Ops.push_back(ExtLoad); 5763 else 5764 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 5765 } 5766 5767 Ops.push_back(SetCC->getOperand(2)); 5768 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5769 } 5770 } 5771 5772 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 5773 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 5774 SDValue N0 = N->getOperand(0); 5775 EVT DstVT = N->getValueType(0); 5776 EVT SrcVT = N0.getValueType(); 5777 5778 assert((N->getOpcode() == ISD::SIGN_EXTEND || 5779 N->getOpcode() == ISD::ZERO_EXTEND) && 5780 "Unexpected node type (not an extend)!"); 5781 5782 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 5783 // For example, on a target with legal v4i32, but illegal v8i32, turn: 5784 // (v8i32 (sext (v8i16 (load x)))) 5785 // into: 5786 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5787 // (v4i32 (sextload (x + 16))))) 5788 // Where uses of the original load, i.e.: 5789 // (v8i16 (load x)) 5790 // are replaced with: 5791 // (v8i16 (truncate 5792 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5793 // (v4i32 (sextload (x + 16))))))) 5794 // 5795 // This combine is only applicable to illegal, but splittable, vectors. 5796 // All legal types, and illegal non-vector types, are handled elsewhere. 5797 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 5798 // 5799 if (N0->getOpcode() != ISD::LOAD) 5800 return SDValue(); 5801 5802 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5803 5804 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 5805 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 5806 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 5807 return SDValue(); 5808 5809 SmallVector<SDNode *, 4> SetCCs; 5810 if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) 5811 return SDValue(); 5812 5813 ISD::LoadExtType ExtType = 5814 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 5815 5816 // Try to split the vector types to get down to legal types. 5817 EVT SplitSrcVT = SrcVT; 5818 EVT SplitDstVT = DstVT; 5819 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 5820 SplitSrcVT.getVectorNumElements() > 1) { 5821 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 5822 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 5823 } 5824 5825 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 5826 return SDValue(); 5827 5828 SDLoc DL(N); 5829 const unsigned NumSplits = 5830 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 5831 const unsigned Stride = SplitSrcVT.getStoreSize(); 5832 SmallVector<SDValue, 4> Loads; 5833 SmallVector<SDValue, 4> Chains; 5834 5835 SDValue BasePtr = LN0->getBasePtr(); 5836 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 5837 const unsigned Offset = Idx * Stride; 5838 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 5839 5840 SDValue SplitLoad = DAG.getExtLoad( 5841 ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, 5842 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, 5843 LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), 5844 Align, LN0->getAAInfo()); 5845 5846 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 5847 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 5848 5849 Loads.push_back(SplitLoad.getValue(0)); 5850 Chains.push_back(SplitLoad.getValue(1)); 5851 } 5852 5853 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 5854 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 5855 5856 CombineTo(N, NewValue); 5857 5858 // Replace uses of the original load (before extension) 5859 // with a truncate of the concatenated sextloaded vectors. 5860 SDValue Trunc = 5861 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 5862 CombineTo(N0.getNode(), Trunc, NewChain); 5863 ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, 5864 (ISD::NodeType)N->getOpcode()); 5865 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5866 } 5867 5868 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 5869 SDValue N0 = N->getOperand(0); 5870 EVT VT = N->getValueType(0); 5871 5872 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 5873 LegalOperations)) 5874 return SDValue(Res, 0); 5875 5876 // fold (sext (sext x)) -> (sext x) 5877 // fold (sext (aext x)) -> (sext x) 5878 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 5879 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 5880 N0.getOperand(0)); 5881 5882 if (N0.getOpcode() == ISD::TRUNCATE) { 5883 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 5884 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 5885 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 5886 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 5887 if (NarrowLoad.getNode() != N0.getNode()) { 5888 CombineTo(N0.getNode(), NarrowLoad); 5889 // CombineTo deleted the truncate, if needed, but not what's under it. 5890 AddToWorklist(oye); 5891 } 5892 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5893 } 5894 5895 // See if the value being truncated is already sign extended. If so, just 5896 // eliminate the trunc/sext pair. 5897 SDValue Op = N0.getOperand(0); 5898 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); 5899 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); 5900 unsigned DestBits = VT.getScalarType().getSizeInBits(); 5901 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 5902 5903 if (OpBits == DestBits) { 5904 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 5905 // bits, it is already ready. 5906 if (NumSignBits > DestBits-MidBits) 5907 return Op; 5908 } else if (OpBits < DestBits) { 5909 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 5910 // bits, just sext from i32. 5911 if (NumSignBits > OpBits-MidBits) 5912 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 5913 } else { 5914 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 5915 // bits, just truncate to i32. 5916 if (NumSignBits > OpBits-MidBits) 5917 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 5918 } 5919 5920 // fold (sext (truncate x)) -> (sextinreg x). 5921 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 5922 N0.getValueType())) { 5923 if (OpBits < DestBits) 5924 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 5925 else if (OpBits > DestBits) 5926 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 5927 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 5928 DAG.getValueType(N0.getValueType())); 5929 } 5930 } 5931 5932 // fold (sext (load x)) -> (sext (truncate (sextload x))) 5933 // Only generate vector extloads when 1) they're legal, and 2) they are 5934 // deemed desirable by the target. 5935 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 5936 ((!LegalOperations && !VT.isVector() && 5937 !cast<LoadSDNode>(N0)->isVolatile()) || 5938 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { 5939 bool DoXform = true; 5940 SmallVector<SDNode*, 4> SetCCs; 5941 if (!N0.hasOneUse()) 5942 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 5943 if (VT.isVector()) 5944 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 5945 if (DoXform) { 5946 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5947 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 5948 LN0->getChain(), 5949 LN0->getBasePtr(), N0.getValueType(), 5950 LN0->getMemOperand()); 5951 CombineTo(N, ExtLoad); 5952 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 5953 N0.getValueType(), ExtLoad); 5954 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 5955 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 5956 ISD::SIGN_EXTEND); 5957 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5958 } 5959 } 5960 5961 // fold (sext (load x)) to multiple smaller sextloads. 5962 // Only on illegal but splittable vectors. 5963 if (SDValue ExtLoad = CombineExtLoad(N)) 5964 return ExtLoad; 5965 5966 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 5967 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 5968 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 5969 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 5970 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5971 EVT MemVT = LN0->getMemoryVT(); 5972 if ((!LegalOperations && !LN0->isVolatile()) || 5973 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { 5974 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 5975 LN0->getChain(), 5976 LN0->getBasePtr(), MemVT, 5977 LN0->getMemOperand()); 5978 CombineTo(N, ExtLoad); 5979 CombineTo(N0.getNode(), 5980 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 5981 N0.getValueType(), ExtLoad), 5982 ExtLoad.getValue(1)); 5983 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5984 } 5985 } 5986 5987 // fold (sext (and/or/xor (load x), cst)) -> 5988 // (and/or/xor (sextload x), (sext cst)) 5989 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 5990 N0.getOpcode() == ISD::XOR) && 5991 isa<LoadSDNode>(N0.getOperand(0)) && 5992 N0.getOperand(1).getOpcode() == ISD::Constant && 5993 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && 5994 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 5995 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 5996 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 5997 bool DoXform = true; 5998 SmallVector<SDNode*, 4> SetCCs; 5999 if (!N0.hasOneUse()) 6000 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 6001 SetCCs, TLI); 6002 if (DoXform) { 6003 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 6004 LN0->getChain(), LN0->getBasePtr(), 6005 LN0->getMemoryVT(), 6006 LN0->getMemOperand()); 6007 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6008 Mask = Mask.sext(VT.getSizeInBits()); 6009 SDLoc DL(N); 6010 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6011 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6012 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6013 SDLoc(N0.getOperand(0)), 6014 N0.getOperand(0).getValueType(), ExtLoad); 6015 CombineTo(N, And); 6016 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6017 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6018 ISD::SIGN_EXTEND); 6019 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6020 } 6021 } 6022 } 6023 6024 if (N0.getOpcode() == ISD::SETCC) { 6025 EVT N0VT = N0.getOperand(0).getValueType(); 6026 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 6027 // Only do this before legalize for now. 6028 if (VT.isVector() && !LegalOperations && 6029 TLI.getBooleanContents(N0VT) == 6030 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6031 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 6032 // of the same size as the compared operands. Only optimize sext(setcc()) 6033 // if this is the case. 6034 EVT SVT = getSetCCResultType(N0VT); 6035 6036 // We know that the # elements of the results is the same as the 6037 // # elements of the compare (and the # elements of the compare result 6038 // for that matter). Check to see that they are the same size. If so, 6039 // we know that the element size of the sext'd result matches the 6040 // element size of the compare operands. 6041 if (VT.getSizeInBits() == SVT.getSizeInBits()) 6042 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6043 N0.getOperand(1), 6044 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6045 6046 // If the desired elements are smaller or larger than the source 6047 // elements we can use a matching integer vector type and then 6048 // truncate/sign extend 6049 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6050 if (SVT == MatchingVectorType) { 6051 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 6052 N0.getOperand(0), N0.getOperand(1), 6053 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6054 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 6055 } 6056 } 6057 6058 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) 6059 unsigned ElementWidth = VT.getScalarType().getSizeInBits(); 6060 SDLoc DL(N); 6061 SDValue NegOne = 6062 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT); 6063 SDValue SCC = 6064 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6065 NegOne, DAG.getConstant(0, DL, VT), 6066 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6067 if (SCC.getNode()) return SCC; 6068 6069 if (!VT.isVector()) { 6070 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 6071 if (!LegalOperations || 6072 TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { 6073 SDLoc DL(N); 6074 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 6075 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, 6076 N0.getOperand(0), N0.getOperand(1), CC); 6077 return DAG.getSelect(DL, VT, SetCC, 6078 NegOne, DAG.getConstant(0, DL, VT)); 6079 } 6080 } 6081 } 6082 6083 // fold (sext x) -> (zext x) if the sign bit is known zero. 6084 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 6085 DAG.SignBitIsZero(N0)) 6086 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 6087 6088 return SDValue(); 6089 } 6090 6091 // isTruncateOf - If N is a truncate of some other value, return true, record 6092 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 6093 // This function computes KnownZero to avoid a duplicated call to 6094 // computeKnownBits in the caller. 6095 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 6096 APInt &KnownZero) { 6097 APInt KnownOne; 6098 if (N->getOpcode() == ISD::TRUNCATE) { 6099 Op = N->getOperand(0); 6100 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6101 return true; 6102 } 6103 6104 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 6105 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 6106 return false; 6107 6108 SDValue Op0 = N->getOperand(0); 6109 SDValue Op1 = N->getOperand(1); 6110 assert(Op0.getValueType() == Op1.getValueType()); 6111 6112 if (isNullConstant(Op0)) 6113 Op = Op1; 6114 else if (isNullConstant(Op1)) 6115 Op = Op0; 6116 else 6117 return false; 6118 6119 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6120 6121 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 6122 return false; 6123 6124 return true; 6125 } 6126 6127 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 6128 SDValue N0 = N->getOperand(0); 6129 EVT VT = N->getValueType(0); 6130 6131 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6132 LegalOperations)) 6133 return SDValue(Res, 0); 6134 6135 // fold (zext (zext x)) -> (zext x) 6136 // fold (zext (aext x)) -> (zext x) 6137 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6138 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 6139 N0.getOperand(0)); 6140 6141 // fold (zext (truncate x)) -> (zext x) or 6142 // (zext (truncate x)) -> (truncate x) 6143 // This is valid when the truncated bits of x are already zero. 6144 // FIXME: We should extend this to work for vectors too. 6145 SDValue Op; 6146 APInt KnownZero; 6147 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 6148 APInt TruncatedBits = 6149 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 6150 APInt(Op.getValueSizeInBits(), 0) : 6151 APInt::getBitsSet(Op.getValueSizeInBits(), 6152 N0.getValueSizeInBits(), 6153 std::min(Op.getValueSizeInBits(), 6154 VT.getSizeInBits())); 6155 if (TruncatedBits == (KnownZero & TruncatedBits)) { 6156 if (VT.bitsGT(Op.getValueType())) 6157 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 6158 if (VT.bitsLT(Op.getValueType())) 6159 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6160 6161 return Op; 6162 } 6163 } 6164 6165 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6166 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 6167 if (N0.getOpcode() == ISD::TRUNCATE) { 6168 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6169 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6170 if (NarrowLoad.getNode() != N0.getNode()) { 6171 CombineTo(N0.getNode(), NarrowLoad); 6172 // CombineTo deleted the truncate, if needed, but not what's under it. 6173 AddToWorklist(oye); 6174 } 6175 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6176 } 6177 } 6178 6179 // fold (zext (truncate x)) -> (and x, mask) 6180 if (N0.getOpcode() == ISD::TRUNCATE) { 6181 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6182 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 6183 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6184 SDNode *oye = N0.getNode()->getOperand(0).getNode(); 6185 if (NarrowLoad.getNode() != N0.getNode()) { 6186 CombineTo(N0.getNode(), NarrowLoad); 6187 // CombineTo deleted the truncate, if needed, but not what's under it. 6188 AddToWorklist(oye); 6189 } 6190 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6191 } 6192 6193 EVT SrcVT = N0.getOperand(0).getValueType(); 6194 EVT MinVT = N0.getValueType(); 6195 6196 // Try to mask before the extension to avoid having to generate a larger mask, 6197 // possibly over several sub-vectors. 6198 if (SrcVT.bitsLT(VT)) { 6199 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 6200 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 6201 SDValue Op = N0.getOperand(0); 6202 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6203 AddToWorklist(Op.getNode()); 6204 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 6205 } 6206 } 6207 6208 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 6209 SDValue Op = N0.getOperand(0); 6210 if (SrcVT.bitsLT(VT)) { 6211 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 6212 AddToWorklist(Op.getNode()); 6213 } else if (SrcVT.bitsGT(VT)) { 6214 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6215 AddToWorklist(Op.getNode()); 6216 } 6217 return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6218 } 6219 } 6220 6221 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 6222 // if either of the casts is not free. 6223 if (N0.getOpcode() == ISD::AND && 6224 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6225 N0.getOperand(1).getOpcode() == ISD::Constant && 6226 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6227 N0.getValueType()) || 6228 !TLI.isZExtFree(N0.getValueType(), VT))) { 6229 SDValue X = N0.getOperand(0).getOperand(0); 6230 if (X.getValueType().bitsLT(VT)) { 6231 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 6232 } else if (X.getValueType().bitsGT(VT)) { 6233 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6234 } 6235 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6236 Mask = Mask.zext(VT.getSizeInBits()); 6237 SDLoc DL(N); 6238 return DAG.getNode(ISD::AND, DL, VT, 6239 X, DAG.getConstant(Mask, DL, VT)); 6240 } 6241 6242 // fold (zext (load x)) -> (zext (truncate (zextload x))) 6243 // Only generate vector extloads when 1) they're legal, and 2) they are 6244 // deemed desirable by the target. 6245 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6246 ((!LegalOperations && !VT.isVector() && 6247 !cast<LoadSDNode>(N0)->isVolatile()) || 6248 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { 6249 bool DoXform = true; 6250 SmallVector<SDNode*, 4> SetCCs; 6251 if (!N0.hasOneUse()) 6252 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 6253 if (VT.isVector()) 6254 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6255 if (DoXform) { 6256 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6257 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6258 LN0->getChain(), 6259 LN0->getBasePtr(), N0.getValueType(), 6260 LN0->getMemOperand()); 6261 CombineTo(N, ExtLoad); 6262 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6263 N0.getValueType(), ExtLoad); 6264 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6265 6266 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6267 ISD::ZERO_EXTEND); 6268 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6269 } 6270 } 6271 6272 // fold (zext (load x)) to multiple smaller zextloads. 6273 // Only on illegal but splittable vectors. 6274 if (SDValue ExtLoad = CombineExtLoad(N)) 6275 return ExtLoad; 6276 6277 // fold (zext (and/or/xor (load x), cst)) -> 6278 // (and/or/xor (zextload x), (zext cst)) 6279 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6280 N0.getOpcode() == ISD::XOR) && 6281 isa<LoadSDNode>(N0.getOperand(0)) && 6282 N0.getOperand(1).getOpcode() == ISD::Constant && 6283 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && 6284 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6285 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6286 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 6287 bool DoXform = true; 6288 SmallVector<SDNode*, 4> SetCCs; 6289 if (!N0.hasOneUse()) 6290 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND, 6291 SetCCs, TLI); 6292 if (DoXform) { 6293 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 6294 LN0->getChain(), LN0->getBasePtr(), 6295 LN0->getMemoryVT(), 6296 LN0->getMemOperand()); 6297 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6298 Mask = Mask.zext(VT.getSizeInBits()); 6299 SDLoc DL(N); 6300 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6301 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6302 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6303 SDLoc(N0.getOperand(0)), 6304 N0.getOperand(0).getValueType(), ExtLoad); 6305 CombineTo(N, And); 6306 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6307 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6308 ISD::ZERO_EXTEND); 6309 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6310 } 6311 } 6312 } 6313 6314 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 6315 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 6316 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6317 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6318 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6319 EVT MemVT = LN0->getMemoryVT(); 6320 if ((!LegalOperations && !LN0->isVolatile()) || 6321 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { 6322 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6323 LN0->getChain(), 6324 LN0->getBasePtr(), MemVT, 6325 LN0->getMemOperand()); 6326 CombineTo(N, ExtLoad); 6327 CombineTo(N0.getNode(), 6328 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 6329 ExtLoad), 6330 ExtLoad.getValue(1)); 6331 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6332 } 6333 } 6334 6335 if (N0.getOpcode() == ISD::SETCC) { 6336 if (!LegalOperations && VT.isVector() && 6337 N0.getValueType().getVectorElementType() == MVT::i1) { 6338 EVT N0VT = N0.getOperand(0).getValueType(); 6339 if (getSetCCResultType(N0VT) == N0.getValueType()) 6340 return SDValue(); 6341 6342 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 6343 // Only do this before legalize for now. 6344 EVT EltVT = VT.getVectorElementType(); 6345 SDLoc DL(N); 6346 SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(), 6347 DAG.getConstant(1, DL, EltVT)); 6348 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6349 // We know that the # elements of the results is the same as the 6350 // # elements of the compare (and the # elements of the compare result 6351 // for that matter). Check to see that they are the same size. If so, 6352 // we know that the element size of the sext'd result matches the 6353 // element size of the compare operands. 6354 return DAG.getNode(ISD::AND, DL, VT, 6355 DAG.getSetCC(DL, VT, N0.getOperand(0), 6356 N0.getOperand(1), 6357 cast<CondCodeSDNode>(N0.getOperand(2))->get()), 6358 DAG.getNode(ISD::BUILD_VECTOR, DL, VT, 6359 OneOps)); 6360 6361 // If the desired elements are smaller or larger than the source 6362 // elements we can use a matching integer vector type and then 6363 // truncate/sign extend 6364 EVT MatchingElementType = 6365 EVT::getIntegerVT(*DAG.getContext(), 6366 N0VT.getScalarType().getSizeInBits()); 6367 EVT MatchingVectorType = 6368 EVT::getVectorVT(*DAG.getContext(), MatchingElementType, 6369 N0VT.getVectorNumElements()); 6370 SDValue VsetCC = 6371 DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0), 6372 N0.getOperand(1), 6373 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6374 return DAG.getNode(ISD::AND, DL, VT, 6375 DAG.getSExtOrTrunc(VsetCC, DL, VT), 6376 DAG.getNode(ISD::BUILD_VECTOR, DL, VT, OneOps)); 6377 } 6378 6379 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6380 SDLoc DL(N); 6381 SDValue SCC = 6382 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6383 DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT), 6384 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6385 if (SCC.getNode()) return SCC; 6386 } 6387 6388 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 6389 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 6390 isa<ConstantSDNode>(N0.getOperand(1)) && 6391 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 6392 N0.hasOneUse()) { 6393 SDValue ShAmt = N0.getOperand(1); 6394 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 6395 if (N0.getOpcode() == ISD::SHL) { 6396 SDValue InnerZExt = N0.getOperand(0); 6397 // If the original shl may be shifting out bits, do not perform this 6398 // transformation. 6399 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - 6400 InnerZExt.getOperand(0).getValueType().getSizeInBits(); 6401 if (ShAmtVal > KnownZeroBits) 6402 return SDValue(); 6403 } 6404 6405 SDLoc DL(N); 6406 6407 // Ensure that the shift amount is wide enough for the shifted value. 6408 if (VT.getSizeInBits() >= 256) 6409 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 6410 6411 return DAG.getNode(N0.getOpcode(), DL, VT, 6412 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 6413 ShAmt); 6414 } 6415 6416 return SDValue(); 6417 } 6418 6419 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 6420 SDValue N0 = N->getOperand(0); 6421 EVT VT = N->getValueType(0); 6422 6423 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6424 LegalOperations)) 6425 return SDValue(Res, 0); 6426 6427 // fold (aext (aext x)) -> (aext x) 6428 // fold (aext (zext x)) -> (zext x) 6429 // fold (aext (sext x)) -> (sext x) 6430 if (N0.getOpcode() == ISD::ANY_EXTEND || 6431 N0.getOpcode() == ISD::ZERO_EXTEND || 6432 N0.getOpcode() == ISD::SIGN_EXTEND) 6433 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 6434 6435 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 6436 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 6437 if (N0.getOpcode() == ISD::TRUNCATE) { 6438 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6439 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6440 if (NarrowLoad.getNode() != N0.getNode()) { 6441 CombineTo(N0.getNode(), NarrowLoad); 6442 // CombineTo deleted the truncate, if needed, but not what's under it. 6443 AddToWorklist(oye); 6444 } 6445 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6446 } 6447 } 6448 6449 // fold (aext (truncate x)) 6450 if (N0.getOpcode() == ISD::TRUNCATE) { 6451 SDValue TruncOp = N0.getOperand(0); 6452 if (TruncOp.getValueType() == VT) 6453 return TruncOp; // x iff x size == zext size. 6454 if (TruncOp.getValueType().bitsGT(VT)) 6455 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 6456 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 6457 } 6458 6459 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 6460 // if the trunc is not free. 6461 if (N0.getOpcode() == ISD::AND && 6462 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6463 N0.getOperand(1).getOpcode() == ISD::Constant && 6464 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6465 N0.getValueType())) { 6466 SDValue X = N0.getOperand(0).getOperand(0); 6467 if (X.getValueType().bitsLT(VT)) { 6468 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 6469 } else if (X.getValueType().bitsGT(VT)) { 6470 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 6471 } 6472 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6473 Mask = Mask.zext(VT.getSizeInBits()); 6474 SDLoc DL(N); 6475 return DAG.getNode(ISD::AND, DL, VT, 6476 X, DAG.getConstant(Mask, DL, VT)); 6477 } 6478 6479 // fold (aext (load x)) -> (aext (truncate (extload x))) 6480 // None of the supported targets knows how to perform load and any_ext 6481 // on vectors in one instruction. We only perform this transformation on 6482 // scalars. 6483 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 6484 ISD::isUNINDEXEDLoad(N0.getNode()) && 6485 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 6486 bool DoXform = true; 6487 SmallVector<SDNode*, 4> SetCCs; 6488 if (!N0.hasOneUse()) 6489 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 6490 if (DoXform) { 6491 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6492 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 6493 LN0->getChain(), 6494 LN0->getBasePtr(), N0.getValueType(), 6495 LN0->getMemOperand()); 6496 CombineTo(N, ExtLoad); 6497 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6498 N0.getValueType(), ExtLoad); 6499 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6500 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6501 ISD::ANY_EXTEND); 6502 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6503 } 6504 } 6505 6506 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 6507 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 6508 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 6509 if (N0.getOpcode() == ISD::LOAD && 6510 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6511 N0.hasOneUse()) { 6512 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6513 ISD::LoadExtType ExtType = LN0->getExtensionType(); 6514 EVT MemVT = LN0->getMemoryVT(); 6515 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 6516 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 6517 VT, LN0->getChain(), LN0->getBasePtr(), 6518 MemVT, LN0->getMemOperand()); 6519 CombineTo(N, ExtLoad); 6520 CombineTo(N0.getNode(), 6521 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6522 N0.getValueType(), ExtLoad), 6523 ExtLoad.getValue(1)); 6524 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6525 } 6526 } 6527 6528 if (N0.getOpcode() == ISD::SETCC) { 6529 // For vectors: 6530 // aext(setcc) -> vsetcc 6531 // aext(setcc) -> truncate(vsetcc) 6532 // aext(setcc) -> aext(vsetcc) 6533 // Only do this before legalize for now. 6534 if (VT.isVector() && !LegalOperations) { 6535 EVT N0VT = N0.getOperand(0).getValueType(); 6536 // We know that the # elements of the results is the same as the 6537 // # elements of the compare (and the # elements of the compare result 6538 // for that matter). Check to see that they are the same size. If so, 6539 // we know that the element size of the sext'd result matches the 6540 // element size of the compare operands. 6541 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6542 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6543 N0.getOperand(1), 6544 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6545 // If the desired elements are smaller or larger than the source 6546 // elements we can use a matching integer vector type and then 6547 // truncate/any extend 6548 else { 6549 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6550 SDValue VsetCC = 6551 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 6552 N0.getOperand(1), 6553 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6554 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 6555 } 6556 } 6557 6558 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6559 SDLoc DL(N); 6560 SDValue SCC = 6561 SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), 6562 DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT), 6563 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 6564 if (SCC.getNode()) 6565 return SCC; 6566 } 6567 6568 return SDValue(); 6569 } 6570 6571 /// See if the specified operand can be simplified with the knowledge that only 6572 /// the bits specified by Mask are used. If so, return the simpler operand, 6573 /// otherwise return a null SDValue. 6574 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 6575 switch (V.getOpcode()) { 6576 default: break; 6577 case ISD::Constant: { 6578 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 6579 assert(CV && "Const value should be ConstSDNode."); 6580 const APInt &CVal = CV->getAPIntValue(); 6581 APInt NewVal = CVal & Mask; 6582 if (NewVal != CVal) 6583 return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); 6584 break; 6585 } 6586 case ISD::OR: 6587 case ISD::XOR: 6588 // If the LHS or RHS don't contribute bits to the or, drop them. 6589 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 6590 return V.getOperand(1); 6591 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 6592 return V.getOperand(0); 6593 break; 6594 case ISD::SRL: 6595 // Only look at single-use SRLs. 6596 if (!V.getNode()->hasOneUse()) 6597 break; 6598 if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { 6599 // See if we can recursively simplify the LHS. 6600 unsigned Amt = RHSC->getZExtValue(); 6601 6602 // Watch out for shift count overflow though. 6603 if (Amt >= Mask.getBitWidth()) break; 6604 APInt NewMask = Mask << Amt; 6605 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 6606 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 6607 SimplifyLHS, V.getOperand(1)); 6608 } 6609 } 6610 return SDValue(); 6611 } 6612 6613 /// If the result of a wider load is shifted to right of N bits and then 6614 /// truncated to a narrower type and where N is a multiple of number of bits of 6615 /// the narrower type, transform it to a narrower load from address + N / num of 6616 /// bits of new type. If the result is to be extended, also fold the extension 6617 /// to form a extending load. 6618 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 6619 unsigned Opc = N->getOpcode(); 6620 6621 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 6622 SDValue N0 = N->getOperand(0); 6623 EVT VT = N->getValueType(0); 6624 EVT ExtVT = VT; 6625 6626 // This transformation isn't valid for vector loads. 6627 if (VT.isVector()) 6628 return SDValue(); 6629 6630 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 6631 // extended to VT. 6632 if (Opc == ISD::SIGN_EXTEND_INREG) { 6633 ExtType = ISD::SEXTLOAD; 6634 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6635 } else if (Opc == ISD::SRL) { 6636 // Another special-case: SRL is basically zero-extending a narrower value. 6637 ExtType = ISD::ZEXTLOAD; 6638 N0 = SDValue(N, 0); 6639 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6640 if (!N01) return SDValue(); 6641 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 6642 VT.getSizeInBits() - N01->getZExtValue()); 6643 } 6644 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) 6645 return SDValue(); 6646 6647 unsigned EVTBits = ExtVT.getSizeInBits(); 6648 6649 // Do not generate loads of non-round integer types since these can 6650 // be expensive (and would be wrong if the type is not byte sized). 6651 if (!ExtVT.isRound()) 6652 return SDValue(); 6653 6654 unsigned ShAmt = 0; 6655 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 6656 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6657 ShAmt = N01->getZExtValue(); 6658 // Is the shift amount a multiple of size of VT? 6659 if ((ShAmt & (EVTBits-1)) == 0) { 6660 N0 = N0.getOperand(0); 6661 // Is the load width a multiple of size of VT? 6662 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) 6663 return SDValue(); 6664 } 6665 6666 // At this point, we must have a load or else we can't do the transform. 6667 if (!isa<LoadSDNode>(N0)) return SDValue(); 6668 6669 // Because a SRL must be assumed to *need* to zero-extend the high bits 6670 // (as opposed to anyext the high bits), we can't combine the zextload 6671 // lowering of SRL and an sextload. 6672 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 6673 return SDValue(); 6674 6675 // If the shift amount is larger than the input type then we're not 6676 // accessing any of the loaded bytes. If the load was a zextload/extload 6677 // then the result of the shift+trunc is zero/undef (handled elsewhere). 6678 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 6679 return SDValue(); 6680 } 6681 } 6682 6683 // If the load is shifted left (and the result isn't shifted back right), 6684 // we can fold the truncate through the shift. 6685 unsigned ShLeftAmt = 0; 6686 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 6687 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 6688 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6689 ShLeftAmt = N01->getZExtValue(); 6690 N0 = N0.getOperand(0); 6691 } 6692 } 6693 6694 // If we haven't found a load, we can't narrow it. Don't transform one with 6695 // multiple uses, this would require adding a new load. 6696 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 6697 return SDValue(); 6698 6699 // Don't change the width of a volatile load. 6700 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6701 if (LN0->isVolatile()) 6702 return SDValue(); 6703 6704 // Verify that we are actually reducing a load width here. 6705 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 6706 return SDValue(); 6707 6708 // For the transform to be legal, the load must produce only two values 6709 // (the value loaded and the chain). Don't transform a pre-increment 6710 // load, for example, which produces an extra value. Otherwise the 6711 // transformation is not equivalent, and the downstream logic to replace 6712 // uses gets things wrong. 6713 if (LN0->getNumValues() > 2) 6714 return SDValue(); 6715 6716 // If the load that we're shrinking is an extload and we're not just 6717 // discarding the extension we can't simply shrink the load. Bail. 6718 // TODO: It would be possible to merge the extensions in some cases. 6719 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 6720 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 6721 return SDValue(); 6722 6723 if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) 6724 return SDValue(); 6725 6726 EVT PtrType = N0.getOperand(1).getValueType(); 6727 6728 if (PtrType == MVT::Untyped || PtrType.isExtended()) 6729 // It's not possible to generate a constant of extended or untyped type. 6730 return SDValue(); 6731 6732 // For big endian targets, we need to adjust the offset to the pointer to 6733 // load the correct bytes. 6734 if (DAG.getDataLayout().isBigEndian()) { 6735 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 6736 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 6737 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 6738 } 6739 6740 uint64_t PtrOff = ShAmt / 8; 6741 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 6742 SDLoc DL(LN0); 6743 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 6744 PtrType, LN0->getBasePtr(), 6745 DAG.getConstant(PtrOff, DL, PtrType)); 6746 AddToWorklist(NewPtr.getNode()); 6747 6748 SDValue Load; 6749 if (ExtType == ISD::NON_EXTLOAD) 6750 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 6751 LN0->getPointerInfo().getWithOffset(PtrOff), 6752 LN0->isVolatile(), LN0->isNonTemporal(), 6753 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6754 else 6755 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, 6756 LN0->getPointerInfo().getWithOffset(PtrOff), 6757 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 6758 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6759 6760 // Replace the old load's chain with the new load's chain. 6761 WorklistRemover DeadNodes(*this); 6762 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 6763 6764 // Shift the result left, if we've swallowed a left shift. 6765 SDValue Result = Load; 6766 if (ShLeftAmt != 0) { 6767 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 6768 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 6769 ShImmTy = VT; 6770 // If the shift amount is as large as the result size (but, presumably, 6771 // no larger than the source) then the useful bits of the result are 6772 // zero; we can't simply return the shortened shift, because the result 6773 // of that operation is undefined. 6774 SDLoc DL(N0); 6775 if (ShLeftAmt >= VT.getSizeInBits()) 6776 Result = DAG.getConstant(0, DL, VT); 6777 else 6778 Result = DAG.getNode(ISD::SHL, DL, VT, 6779 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 6780 } 6781 6782 // Return the new loaded value. 6783 return Result; 6784 } 6785 6786 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 6787 SDValue N0 = N->getOperand(0); 6788 SDValue N1 = N->getOperand(1); 6789 EVT VT = N->getValueType(0); 6790 EVT EVT = cast<VTSDNode>(N1)->getVT(); 6791 unsigned VTBits = VT.getScalarType().getSizeInBits(); 6792 unsigned EVTBits = EVT.getScalarType().getSizeInBits(); 6793 6794 // fold (sext_in_reg c1) -> c1 6795 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF) 6796 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 6797 6798 // If the input is already sign extended, just drop the extension. 6799 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 6800 return N0; 6801 6802 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 6803 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 6804 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 6805 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6806 N0.getOperand(0), N1); 6807 6808 // fold (sext_in_reg (sext x)) -> (sext x) 6809 // fold (sext_in_reg (aext x)) -> (sext x) 6810 // if x is small enough. 6811 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 6812 SDValue N00 = N0.getOperand(0); 6813 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && 6814 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 6815 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 6816 } 6817 6818 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 6819 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 6820 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); 6821 6822 // fold operands of sext_in_reg based on knowledge that the top bits are not 6823 // demanded. 6824 if (SimplifyDemandedBits(SDValue(N, 0))) 6825 return SDValue(N, 0); 6826 6827 // fold (sext_in_reg (load x)) -> (smaller sextload x) 6828 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 6829 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 6830 return NarrowLoad; 6831 6832 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 6833 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 6834 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 6835 if (N0.getOpcode() == ISD::SRL) { 6836 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 6837 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 6838 // We can turn this into an SRA iff the input to the SRL is already sign 6839 // extended enough. 6840 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 6841 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 6842 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 6843 N0.getOperand(0), N0.getOperand(1)); 6844 } 6845 } 6846 6847 // fold (sext_inreg (extload x)) -> (sextload x) 6848 if (ISD::isEXTLoad(N0.getNode()) && 6849 ISD::isUNINDEXEDLoad(N0.getNode()) && 6850 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 6851 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 6852 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 6853 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6854 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6855 LN0->getChain(), 6856 LN0->getBasePtr(), EVT, 6857 LN0->getMemOperand()); 6858 CombineTo(N, ExtLoad); 6859 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6860 AddToWorklist(ExtLoad.getNode()); 6861 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6862 } 6863 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 6864 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6865 N0.hasOneUse() && 6866 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 6867 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 6868 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 6869 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6870 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6871 LN0->getChain(), 6872 LN0->getBasePtr(), EVT, 6873 LN0->getMemOperand()); 6874 CombineTo(N, ExtLoad); 6875 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 6876 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6877 } 6878 6879 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 6880 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 6881 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 6882 N0.getOperand(1), false); 6883 if (BSwap.getNode()) 6884 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6885 BSwap, N1); 6886 } 6887 6888 // Fold a sext_inreg of a build_vector of ConstantSDNodes or undefs 6889 // into a build_vector. 6890 if (ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 6891 SmallVector<SDValue, 8> Elts; 6892 unsigned NumElts = N0->getNumOperands(); 6893 unsigned ShAmt = VTBits - EVTBits; 6894 6895 for (unsigned i = 0; i != NumElts; ++i) { 6896 SDValue Op = N0->getOperand(i); 6897 if (Op->getOpcode() == ISD::UNDEF) { 6898 Elts.push_back(Op); 6899 continue; 6900 } 6901 6902 ConstantSDNode *CurrentND = cast<ConstantSDNode>(Op); 6903 const APInt &C = APInt(VTBits, CurrentND->getAPIntValue().getZExtValue()); 6904 Elts.push_back(DAG.getConstant(C.shl(ShAmt).ashr(ShAmt).getZExtValue(), 6905 SDLoc(Op), Op.getValueType())); 6906 } 6907 6908 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Elts); 6909 } 6910 6911 return SDValue(); 6912 } 6913 6914 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 6915 SDValue N0 = N->getOperand(0); 6916 EVT VT = N->getValueType(0); 6917 6918 if (N0.getOpcode() == ISD::UNDEF) 6919 return DAG.getUNDEF(VT); 6920 6921 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6922 LegalOperations)) 6923 return SDValue(Res, 0); 6924 6925 return SDValue(); 6926 } 6927 6928 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 6929 SDValue N0 = N->getOperand(0); 6930 EVT VT = N->getValueType(0); 6931 bool isLE = DAG.getDataLayout().isLittleEndian(); 6932 6933 // noop truncate 6934 if (N0.getValueType() == N->getValueType(0)) 6935 return N0; 6936 // fold (truncate c1) -> c1 6937 if (isConstantIntBuildVectorOrConstantInt(N0)) 6938 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 6939 // fold (truncate (truncate x)) -> (truncate x) 6940 if (N0.getOpcode() == ISD::TRUNCATE) 6941 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 6942 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 6943 if (N0.getOpcode() == ISD::ZERO_EXTEND || 6944 N0.getOpcode() == ISD::SIGN_EXTEND || 6945 N0.getOpcode() == ISD::ANY_EXTEND) { 6946 if (N0.getOperand(0).getValueType().bitsLT(VT)) 6947 // if the source is smaller than the dest, we still need an extend 6948 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 6949 N0.getOperand(0)); 6950 if (N0.getOperand(0).getValueType().bitsGT(VT)) 6951 // if the source is larger than the dest, than we just need the truncate 6952 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 6953 // if the source and dest are the same type, we can drop both the extend 6954 // and the truncate. 6955 return N0.getOperand(0); 6956 } 6957 6958 // Fold extract-and-trunc into a narrow extract. For example: 6959 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 6960 // i32 y = TRUNCATE(i64 x) 6961 // -- becomes -- 6962 // v16i8 b = BITCAST (v2i64 val) 6963 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 6964 // 6965 // Note: We only run this optimization after type legalization (which often 6966 // creates this pattern) and before operation legalization after which 6967 // we need to be more careful about the vector instructions that we generate. 6968 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6969 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 6970 6971 EVT VecTy = N0.getOperand(0).getValueType(); 6972 EVT ExTy = N0.getValueType(); 6973 EVT TrTy = N->getValueType(0); 6974 6975 unsigned NumElem = VecTy.getVectorNumElements(); 6976 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 6977 6978 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 6979 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 6980 6981 SDValue EltNo = N0->getOperand(1); 6982 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 6983 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 6984 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 6985 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 6986 6987 SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N), 6988 NVT, N0.getOperand(0)); 6989 6990 SDLoc DL(N); 6991 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 6992 DL, TrTy, V, 6993 DAG.getConstant(Index, DL, IndexTy)); 6994 } 6995 } 6996 6997 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 6998 if (N0.getOpcode() == ISD::SELECT) { 6999 EVT SrcVT = N0.getValueType(); 7000 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 7001 TLI.isTruncateFree(SrcVT, VT)) { 7002 SDLoc SL(N0); 7003 SDValue Cond = N0.getOperand(0); 7004 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 7005 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 7006 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 7007 } 7008 } 7009 7010 // Fold a series of buildvector, bitcast, and truncate if possible. 7011 // For example fold 7012 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 7013 // (2xi32 (buildvector x, y)). 7014 if (Level == AfterLegalizeVectorOps && VT.isVector() && 7015 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 7016 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 7017 N0.getOperand(0).hasOneUse()) { 7018 7019 SDValue BuildVect = N0.getOperand(0); 7020 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 7021 EVT TruncVecEltTy = VT.getVectorElementType(); 7022 7023 // Check that the element types match. 7024 if (BuildVectEltTy == TruncVecEltTy) { 7025 // Now we only need to compute the offset of the truncated elements. 7026 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 7027 unsigned TruncVecNumElts = VT.getVectorNumElements(); 7028 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 7029 7030 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 7031 "Invalid number of elements"); 7032 7033 SmallVector<SDValue, 8> Opnds; 7034 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 7035 Opnds.push_back(BuildVect.getOperand(i)); 7036 7037 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); 7038 } 7039 } 7040 7041 // See if we can simplify the input to this truncate through knowledge that 7042 // only the low bits are being used. 7043 // For example "trunc (or (shl x, 8), y)" // -> trunc y 7044 // Currently we only perform this optimization on scalars because vectors 7045 // may have different active low bits. 7046 if (!VT.isVector()) { 7047 SDValue Shorter = 7048 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 7049 VT.getSizeInBits())); 7050 if (Shorter.getNode()) 7051 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 7052 } 7053 // fold (truncate (load x)) -> (smaller load x) 7054 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 7055 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 7056 if (SDValue Reduced = ReduceLoadWidth(N)) 7057 return Reduced; 7058 7059 // Handle the case where the load remains an extending load even 7060 // after truncation. 7061 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 7062 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7063 if (!LN0->isVolatile() && 7064 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 7065 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 7066 VT, LN0->getChain(), LN0->getBasePtr(), 7067 LN0->getMemoryVT(), 7068 LN0->getMemOperand()); 7069 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 7070 return NewLoad; 7071 } 7072 } 7073 } 7074 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 7075 // where ... are all 'undef'. 7076 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 7077 SmallVector<EVT, 8> VTs; 7078 SDValue V; 7079 unsigned Idx = 0; 7080 unsigned NumDefs = 0; 7081 7082 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 7083 SDValue X = N0.getOperand(i); 7084 if (X.getOpcode() != ISD::UNDEF) { 7085 V = X; 7086 Idx = i; 7087 NumDefs++; 7088 } 7089 // Stop if more than one members are non-undef. 7090 if (NumDefs > 1) 7091 break; 7092 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 7093 VT.getVectorElementType(), 7094 X.getValueType().getVectorNumElements())); 7095 } 7096 7097 if (NumDefs == 0) 7098 return DAG.getUNDEF(VT); 7099 7100 if (NumDefs == 1) { 7101 assert(V.getNode() && "The single defined operand is empty!"); 7102 SmallVector<SDValue, 8> Opnds; 7103 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 7104 if (i != Idx) { 7105 Opnds.push_back(DAG.getUNDEF(VTs[i])); 7106 continue; 7107 } 7108 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 7109 AddToWorklist(NV.getNode()); 7110 Opnds.push_back(NV); 7111 } 7112 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 7113 } 7114 } 7115 7116 // Simplify the operands using demanded-bits information. 7117 if (!VT.isVector() && 7118 SimplifyDemandedBits(SDValue(N, 0))) 7119 return SDValue(N, 0); 7120 7121 return SDValue(); 7122 } 7123 7124 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 7125 SDValue Elt = N->getOperand(i); 7126 if (Elt.getOpcode() != ISD::MERGE_VALUES) 7127 return Elt.getNode(); 7128 return Elt.getOperand(Elt.getResNo()).getNode(); 7129 } 7130 7131 /// build_pair (load, load) -> load 7132 /// if load locations are consecutive. 7133 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 7134 assert(N->getOpcode() == ISD::BUILD_PAIR); 7135 7136 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 7137 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 7138 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 7139 LD1->getAddressSpace() != LD2->getAddressSpace()) 7140 return SDValue(); 7141 EVT LD1VT = LD1->getValueType(0); 7142 7143 if (ISD::isNON_EXTLoad(LD2) && 7144 LD2->hasOneUse() && 7145 // If both are volatile this would reduce the number of volatile loads. 7146 // If one is volatile it might be ok, but play conservative and bail out. 7147 !LD1->isVolatile() && 7148 !LD2->isVolatile() && 7149 DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { 7150 unsigned Align = LD1->getAlignment(); 7151 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 7152 VT.getTypeForEVT(*DAG.getContext())); 7153 7154 if (NewAlign <= Align && 7155 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 7156 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), 7157 LD1->getBasePtr(), LD1->getPointerInfo(), 7158 false, false, false, Align); 7159 } 7160 7161 return SDValue(); 7162 } 7163 7164 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 7165 SDValue N0 = N->getOperand(0); 7166 EVT VT = N->getValueType(0); 7167 7168 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 7169 // Only do this before legalize, since afterward the target may be depending 7170 // on the bitconvert. 7171 // First check to see if this is all constant. 7172 if (!LegalTypes && 7173 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 7174 VT.isVector()) { 7175 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 7176 7177 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 7178 assert(!DestEltVT.isVector() && 7179 "Element type of vector ValueType must not be vector!"); 7180 if (isSimple) 7181 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 7182 } 7183 7184 // If the input is a constant, let getNode fold it. 7185 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 7186 // If we can't allow illegal operations, we need to check that this is just 7187 // a fp -> int or int -> conversion and that the resulting operation will 7188 // be legal. 7189 if (!LegalOperations || 7190 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 7191 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 7192 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 7193 TLI.isOperationLegal(ISD::Constant, VT))) 7194 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0); 7195 } 7196 7197 // (conv (conv x, t1), t2) -> (conv x, t2) 7198 if (N0.getOpcode() == ISD::BITCAST) 7199 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, 7200 N0.getOperand(0)); 7201 7202 // fold (conv (load x)) -> (load (conv*)x) 7203 // If the resultant load doesn't need a higher alignment than the original! 7204 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 7205 // Do not change the width of a volatile load. 7206 !cast<LoadSDNode>(N0)->isVolatile() && 7207 // Do not remove the cast if the types differ in endian layout. 7208 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 7209 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 7210 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 7211 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 7212 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7213 unsigned Align = DAG.getDataLayout().getABITypeAlignment( 7214 VT.getTypeForEVT(*DAG.getContext())); 7215 unsigned OrigAlign = LN0->getAlignment(); 7216 7217 if (Align <= OrigAlign) { 7218 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), 7219 LN0->getBasePtr(), LN0->getPointerInfo(), 7220 LN0->isVolatile(), LN0->isNonTemporal(), 7221 LN0->isInvariant(), OrigAlign, 7222 LN0->getAAInfo()); 7223 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7224 return Load; 7225 } 7226 } 7227 7228 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7229 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7230 // This often reduces constant pool loads. 7231 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 7232 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 7233 N0.getNode()->hasOneUse() && VT.isInteger() && 7234 !VT.isVector() && !N0.getValueType().isVector()) { 7235 SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT, 7236 N0.getOperand(0)); 7237 AddToWorklist(NewConv.getNode()); 7238 7239 SDLoc DL(N); 7240 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7241 if (N0.getOpcode() == ISD::FNEG) 7242 return DAG.getNode(ISD::XOR, DL, VT, 7243 NewConv, DAG.getConstant(SignBit, DL, VT)); 7244 assert(N0.getOpcode() == ISD::FABS); 7245 return DAG.getNode(ISD::AND, DL, VT, 7246 NewConv, DAG.getConstant(~SignBit, DL, VT)); 7247 } 7248 7249 // fold (bitconvert (fcopysign cst, x)) -> 7250 // (or (and (bitconvert x), sign), (and cst, (not sign))) 7251 // Note that we don't handle (copysign x, cst) because this can always be 7252 // folded to an fneg or fabs. 7253 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 7254 isa<ConstantFPSDNode>(N0.getOperand(0)) && 7255 VT.isInteger() && !VT.isVector()) { 7256 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); 7257 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 7258 if (isTypeLegal(IntXVT)) { 7259 SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0), 7260 IntXVT, N0.getOperand(1)); 7261 AddToWorklist(X.getNode()); 7262 7263 // If X has a different width than the result/lhs, sext it or truncate it. 7264 unsigned VTWidth = VT.getSizeInBits(); 7265 if (OrigXWidth < VTWidth) { 7266 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 7267 AddToWorklist(X.getNode()); 7268 } else if (OrigXWidth > VTWidth) { 7269 // To get the sign bit in the right place, we have to shift it right 7270 // before truncating. 7271 SDLoc DL(X); 7272 X = DAG.getNode(ISD::SRL, DL, 7273 X.getValueType(), X, 7274 DAG.getConstant(OrigXWidth-VTWidth, DL, 7275 X.getValueType())); 7276 AddToWorklist(X.getNode()); 7277 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 7278 AddToWorklist(X.getNode()); 7279 } 7280 7281 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7282 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 7283 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 7284 AddToWorklist(X.getNode()); 7285 7286 SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0), 7287 VT, N0.getOperand(0)); 7288 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 7289 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 7290 AddToWorklist(Cst.getNode()); 7291 7292 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 7293 } 7294 } 7295 7296 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 7297 if (N0.getOpcode() == ISD::BUILD_PAIR) 7298 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 7299 return CombineLD; 7300 7301 // Remove double bitcasts from shuffles - this is often a legacy of 7302 // XformToShuffleWithZero being used to combine bitmaskings (of 7303 // float vectors bitcast to integer vectors) into shuffles. 7304 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 7305 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 7306 N0->getOpcode() == ISD::VECTOR_SHUFFLE && 7307 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 7308 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 7309 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 7310 7311 // If operands are a bitcast, peek through if it casts the original VT. 7312 // If operands are a constant, just bitcast back to original VT. 7313 auto PeekThroughBitcast = [&](SDValue Op) { 7314 if (Op.getOpcode() == ISD::BITCAST && 7315 Op.getOperand(0).getValueType() == VT) 7316 return SDValue(Op.getOperand(0)); 7317 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 7318 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 7319 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 7320 return SDValue(); 7321 }; 7322 7323 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 7324 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 7325 if (!(SV0 && SV1)) 7326 return SDValue(); 7327 7328 int MaskScale = 7329 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 7330 SmallVector<int, 8> NewMask; 7331 for (int M : SVN->getMask()) 7332 for (int i = 0; i != MaskScale; ++i) 7333 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 7334 7335 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7336 if (!LegalMask) { 7337 std::swap(SV0, SV1); 7338 ShuffleVectorSDNode::commuteMask(NewMask); 7339 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7340 } 7341 7342 if (LegalMask) 7343 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 7344 } 7345 7346 return SDValue(); 7347 } 7348 7349 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 7350 EVT VT = N->getValueType(0); 7351 return CombineConsecutiveLoads(N, VT); 7352 } 7353 7354 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 7355 /// operands. DstEltVT indicates the destination element value type. 7356 SDValue DAGCombiner:: 7357 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 7358 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 7359 7360 // If this is already the right type, we're done. 7361 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 7362 7363 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 7364 unsigned DstBitSize = DstEltVT.getSizeInBits(); 7365 7366 // If this is a conversion of N elements of one type to N elements of another 7367 // type, convert each element. This handles FP<->INT cases. 7368 if (SrcBitSize == DstBitSize) { 7369 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7370 BV->getValueType(0).getVectorNumElements()); 7371 7372 // Due to the FP element handling below calling this routine recursively, 7373 // we can end up with a scalar-to-vector node here. 7374 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 7375 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 7376 DAG.getNode(ISD::BITCAST, SDLoc(BV), 7377 DstEltVT, BV->getOperand(0))); 7378 7379 SmallVector<SDValue, 8> Ops; 7380 for (SDValue Op : BV->op_values()) { 7381 // If the vector element type is not legal, the BUILD_VECTOR operands 7382 // are promoted and implicitly truncated. Make that explicit here. 7383 if (Op.getValueType() != SrcEltVT) 7384 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 7385 Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV), 7386 DstEltVT, Op)); 7387 AddToWorklist(Ops.back().getNode()); 7388 } 7389 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops); 7390 } 7391 7392 // Otherwise, we're growing or shrinking the elements. To avoid having to 7393 // handle annoying details of growing/shrinking FP values, we convert them to 7394 // int first. 7395 if (SrcEltVT.isFloatingPoint()) { 7396 // Convert the input float vector to a int vector where the elements are the 7397 // same sizes. 7398 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 7399 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 7400 SrcEltVT = IntVT; 7401 } 7402 7403 // Now we know the input is an integer vector. If the output is a FP type, 7404 // convert to integer first, then to FP of the right size. 7405 if (DstEltVT.isFloatingPoint()) { 7406 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 7407 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 7408 7409 // Next, convert to FP elements of the same size. 7410 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 7411 } 7412 7413 SDLoc DL(BV); 7414 7415 // Okay, we know the src/dst types are both integers of differing types. 7416 // Handling growing first. 7417 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 7418 if (SrcBitSize < DstBitSize) { 7419 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 7420 7421 SmallVector<SDValue, 8> Ops; 7422 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 7423 i += NumInputsPerOutput) { 7424 bool isLE = DAG.getDataLayout().isLittleEndian(); 7425 APInt NewBits = APInt(DstBitSize, 0); 7426 bool EltIsUndef = true; 7427 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 7428 // Shift the previously computed bits over. 7429 NewBits <<= SrcBitSize; 7430 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 7431 if (Op.getOpcode() == ISD::UNDEF) continue; 7432 EltIsUndef = false; 7433 7434 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 7435 zextOrTrunc(SrcBitSize).zext(DstBitSize); 7436 } 7437 7438 if (EltIsUndef) 7439 Ops.push_back(DAG.getUNDEF(DstEltVT)); 7440 else 7441 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 7442 } 7443 7444 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 7445 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 7446 } 7447 7448 // Finally, this must be the case where we are shrinking elements: each input 7449 // turns into multiple outputs. 7450 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 7451 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7452 NumOutputsPerInput*BV->getNumOperands()); 7453 SmallVector<SDValue, 8> Ops; 7454 7455 for (const SDValue &Op : BV->op_values()) { 7456 if (Op.getOpcode() == ISD::UNDEF) { 7457 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 7458 continue; 7459 } 7460 7461 APInt OpVal = cast<ConstantSDNode>(Op)-> 7462 getAPIntValue().zextOrTrunc(SrcBitSize); 7463 7464 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 7465 APInt ThisVal = OpVal.trunc(DstBitSize); 7466 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 7467 OpVal = OpVal.lshr(DstBitSize); 7468 } 7469 7470 // For big endian targets, swap the order of the pieces of each element. 7471 if (DAG.getDataLayout().isBigEndian()) 7472 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 7473 } 7474 7475 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 7476 } 7477 7478 /// Try to perform FMA combining on a given FADD node. 7479 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 7480 SDValue N0 = N->getOperand(0); 7481 SDValue N1 = N->getOperand(1); 7482 EVT VT = N->getValueType(0); 7483 SDLoc SL(N); 7484 7485 const TargetOptions &Options = DAG.getTarget().Options; 7486 bool AllowFusion = 7487 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7488 7489 // Floating-point multiply-add with intermediate rounding. 7490 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7491 7492 // Floating-point multiply-add without intermediate rounding. 7493 bool HasFMA = 7494 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7495 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7496 7497 // No valid opcode, do not combine. 7498 if (!HasFMAD && !HasFMA) 7499 return SDValue(); 7500 7501 // Always prefer FMAD to FMA for precision. 7502 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7503 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7504 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7505 7506 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 7507 // prefer to fold the multiply with fewer uses. 7508 if (Aggressive && N0.getOpcode() == ISD::FMUL && 7509 N1.getOpcode() == ISD::FMUL) { 7510 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 7511 std::swap(N0, N1); 7512 } 7513 7514 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 7515 if (N0.getOpcode() == ISD::FMUL && 7516 (Aggressive || N0->hasOneUse())) { 7517 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7518 N0.getOperand(0), N0.getOperand(1), N1); 7519 } 7520 7521 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 7522 // Note: Commutes FADD operands. 7523 if (N1.getOpcode() == ISD::FMUL && 7524 (Aggressive || N1->hasOneUse())) { 7525 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7526 N1.getOperand(0), N1.getOperand(1), N0); 7527 } 7528 7529 // Look through FP_EXTEND nodes to do more combining. 7530 if (AllowFusion && LookThroughFPExt) { 7531 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 7532 if (N0.getOpcode() == ISD::FP_EXTEND) { 7533 SDValue N00 = N0.getOperand(0); 7534 if (N00.getOpcode() == ISD::FMUL) 7535 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7536 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7537 N00.getOperand(0)), 7538 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7539 N00.getOperand(1)), N1); 7540 } 7541 7542 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 7543 // Note: Commutes FADD operands. 7544 if (N1.getOpcode() == ISD::FP_EXTEND) { 7545 SDValue N10 = N1.getOperand(0); 7546 if (N10.getOpcode() == ISD::FMUL) 7547 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7548 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7549 N10.getOperand(0)), 7550 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7551 N10.getOperand(1)), N0); 7552 } 7553 } 7554 7555 // More folding opportunities when target permits. 7556 if ((AllowFusion || HasFMAD) && Aggressive) { 7557 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 7558 if (N0.getOpcode() == PreferredFusedOpcode && 7559 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7560 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7561 N0.getOperand(0), N0.getOperand(1), 7562 DAG.getNode(PreferredFusedOpcode, SL, VT, 7563 N0.getOperand(2).getOperand(0), 7564 N0.getOperand(2).getOperand(1), 7565 N1)); 7566 } 7567 7568 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 7569 if (N1->getOpcode() == PreferredFusedOpcode && 7570 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7571 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7572 N1.getOperand(0), N1.getOperand(1), 7573 DAG.getNode(PreferredFusedOpcode, SL, VT, 7574 N1.getOperand(2).getOperand(0), 7575 N1.getOperand(2).getOperand(1), 7576 N0)); 7577 } 7578 7579 if (AllowFusion && LookThroughFPExt) { 7580 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 7581 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 7582 auto FoldFAddFMAFPExtFMul = [&] ( 7583 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7584 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 7585 DAG.getNode(PreferredFusedOpcode, SL, VT, 7586 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7587 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7588 Z)); 7589 }; 7590 if (N0.getOpcode() == PreferredFusedOpcode) { 7591 SDValue N02 = N0.getOperand(2); 7592 if (N02.getOpcode() == ISD::FP_EXTEND) { 7593 SDValue N020 = N02.getOperand(0); 7594 if (N020.getOpcode() == ISD::FMUL) 7595 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 7596 N020.getOperand(0), N020.getOperand(1), 7597 N1); 7598 } 7599 } 7600 7601 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 7602 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 7603 // FIXME: This turns two single-precision and one double-precision 7604 // operation into two double-precision operations, which might not be 7605 // interesting for all targets, especially GPUs. 7606 auto FoldFAddFPExtFMAFMul = [&] ( 7607 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7608 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7609 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 7610 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 7611 DAG.getNode(PreferredFusedOpcode, SL, VT, 7612 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7613 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7614 Z)); 7615 }; 7616 if (N0.getOpcode() == ISD::FP_EXTEND) { 7617 SDValue N00 = N0.getOperand(0); 7618 if (N00.getOpcode() == PreferredFusedOpcode) { 7619 SDValue N002 = N00.getOperand(2); 7620 if (N002.getOpcode() == ISD::FMUL) 7621 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 7622 N002.getOperand(0), N002.getOperand(1), 7623 N1); 7624 } 7625 } 7626 7627 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 7628 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 7629 if (N1.getOpcode() == PreferredFusedOpcode) { 7630 SDValue N12 = N1.getOperand(2); 7631 if (N12.getOpcode() == ISD::FP_EXTEND) { 7632 SDValue N120 = N12.getOperand(0); 7633 if (N120.getOpcode() == ISD::FMUL) 7634 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 7635 N120.getOperand(0), N120.getOperand(1), 7636 N0); 7637 } 7638 } 7639 7640 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 7641 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 7642 // FIXME: This turns two single-precision and one double-precision 7643 // operation into two double-precision operations, which might not be 7644 // interesting for all targets, especially GPUs. 7645 if (N1.getOpcode() == ISD::FP_EXTEND) { 7646 SDValue N10 = N1.getOperand(0); 7647 if (N10.getOpcode() == PreferredFusedOpcode) { 7648 SDValue N102 = N10.getOperand(2); 7649 if (N102.getOpcode() == ISD::FMUL) 7650 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 7651 N102.getOperand(0), N102.getOperand(1), 7652 N0); 7653 } 7654 } 7655 } 7656 } 7657 7658 return SDValue(); 7659 } 7660 7661 /// Try to perform FMA combining on a given FSUB node. 7662 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 7663 SDValue N0 = N->getOperand(0); 7664 SDValue N1 = N->getOperand(1); 7665 EVT VT = N->getValueType(0); 7666 SDLoc SL(N); 7667 7668 const TargetOptions &Options = DAG.getTarget().Options; 7669 bool AllowFusion = 7670 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7671 7672 // Floating-point multiply-add with intermediate rounding. 7673 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7674 7675 // Floating-point multiply-add without intermediate rounding. 7676 bool HasFMA = 7677 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7678 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7679 7680 // No valid opcode, do not combine. 7681 if (!HasFMAD && !HasFMA) 7682 return SDValue(); 7683 7684 // Always prefer FMAD to FMA for precision. 7685 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7686 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7687 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7688 7689 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 7690 if (N0.getOpcode() == ISD::FMUL && 7691 (Aggressive || N0->hasOneUse())) { 7692 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7693 N0.getOperand(0), N0.getOperand(1), 7694 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7695 } 7696 7697 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 7698 // Note: Commutes FSUB operands. 7699 if (N1.getOpcode() == ISD::FMUL && 7700 (Aggressive || N1->hasOneUse())) 7701 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7702 DAG.getNode(ISD::FNEG, SL, VT, 7703 N1.getOperand(0)), 7704 N1.getOperand(1), N0); 7705 7706 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 7707 if (N0.getOpcode() == ISD::FNEG && 7708 N0.getOperand(0).getOpcode() == ISD::FMUL && 7709 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 7710 SDValue N00 = N0.getOperand(0).getOperand(0); 7711 SDValue N01 = N0.getOperand(0).getOperand(1); 7712 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7713 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 7714 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7715 } 7716 7717 // Look through FP_EXTEND nodes to do more combining. 7718 if (AllowFusion && LookThroughFPExt) { 7719 // fold (fsub (fpext (fmul x, y)), z) 7720 // -> (fma (fpext x), (fpext y), (fneg z)) 7721 if (N0.getOpcode() == ISD::FP_EXTEND) { 7722 SDValue N00 = N0.getOperand(0); 7723 if (N00.getOpcode() == ISD::FMUL) 7724 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7725 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7726 N00.getOperand(0)), 7727 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7728 N00.getOperand(1)), 7729 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7730 } 7731 7732 // fold (fsub x, (fpext (fmul y, z))) 7733 // -> (fma (fneg (fpext y)), (fpext z), x) 7734 // Note: Commutes FSUB operands. 7735 if (N1.getOpcode() == ISD::FP_EXTEND) { 7736 SDValue N10 = N1.getOperand(0); 7737 if (N10.getOpcode() == ISD::FMUL) 7738 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7739 DAG.getNode(ISD::FNEG, SL, VT, 7740 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7741 N10.getOperand(0))), 7742 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7743 N10.getOperand(1)), 7744 N0); 7745 } 7746 7747 // fold (fsub (fpext (fneg (fmul, x, y))), z) 7748 // -> (fneg (fma (fpext x), (fpext y), z)) 7749 // Note: This could be removed with appropriate canonicalization of the 7750 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 7751 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 7752 // from implementing the canonicalization in visitFSUB. 7753 if (N0.getOpcode() == ISD::FP_EXTEND) { 7754 SDValue N00 = N0.getOperand(0); 7755 if (N00.getOpcode() == ISD::FNEG) { 7756 SDValue N000 = N00.getOperand(0); 7757 if (N000.getOpcode() == ISD::FMUL) { 7758 return DAG.getNode(ISD::FNEG, SL, VT, 7759 DAG.getNode(PreferredFusedOpcode, SL, VT, 7760 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7761 N000.getOperand(0)), 7762 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7763 N000.getOperand(1)), 7764 N1)); 7765 } 7766 } 7767 } 7768 7769 // fold (fsub (fneg (fpext (fmul, x, y))), z) 7770 // -> (fneg (fma (fpext x)), (fpext y), z) 7771 // Note: This could be removed with appropriate canonicalization of the 7772 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 7773 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 7774 // from implementing the canonicalization in visitFSUB. 7775 if (N0.getOpcode() == ISD::FNEG) { 7776 SDValue N00 = N0.getOperand(0); 7777 if (N00.getOpcode() == ISD::FP_EXTEND) { 7778 SDValue N000 = N00.getOperand(0); 7779 if (N000.getOpcode() == ISD::FMUL) { 7780 return DAG.getNode(ISD::FNEG, SL, VT, 7781 DAG.getNode(PreferredFusedOpcode, SL, VT, 7782 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7783 N000.getOperand(0)), 7784 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7785 N000.getOperand(1)), 7786 N1)); 7787 } 7788 } 7789 } 7790 7791 } 7792 7793 // More folding opportunities when target permits. 7794 if ((AllowFusion || HasFMAD) && Aggressive) { 7795 // fold (fsub (fma x, y, (fmul u, v)), z) 7796 // -> (fma x, y (fma u, v, (fneg z))) 7797 if (N0.getOpcode() == PreferredFusedOpcode && 7798 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7799 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7800 N0.getOperand(0), N0.getOperand(1), 7801 DAG.getNode(PreferredFusedOpcode, SL, VT, 7802 N0.getOperand(2).getOperand(0), 7803 N0.getOperand(2).getOperand(1), 7804 DAG.getNode(ISD::FNEG, SL, VT, 7805 N1))); 7806 } 7807 7808 // fold (fsub x, (fma y, z, (fmul u, v))) 7809 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 7810 if (N1.getOpcode() == PreferredFusedOpcode && 7811 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7812 SDValue N20 = N1.getOperand(2).getOperand(0); 7813 SDValue N21 = N1.getOperand(2).getOperand(1); 7814 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7815 DAG.getNode(ISD::FNEG, SL, VT, 7816 N1.getOperand(0)), 7817 N1.getOperand(1), 7818 DAG.getNode(PreferredFusedOpcode, SL, VT, 7819 DAG.getNode(ISD::FNEG, SL, VT, N20), 7820 7821 N21, N0)); 7822 } 7823 7824 if (AllowFusion && LookThroughFPExt) { 7825 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 7826 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 7827 if (N0.getOpcode() == PreferredFusedOpcode) { 7828 SDValue N02 = N0.getOperand(2); 7829 if (N02.getOpcode() == ISD::FP_EXTEND) { 7830 SDValue N020 = N02.getOperand(0); 7831 if (N020.getOpcode() == ISD::FMUL) 7832 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7833 N0.getOperand(0), N0.getOperand(1), 7834 DAG.getNode(PreferredFusedOpcode, SL, VT, 7835 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7836 N020.getOperand(0)), 7837 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7838 N020.getOperand(1)), 7839 DAG.getNode(ISD::FNEG, SL, VT, 7840 N1))); 7841 } 7842 } 7843 7844 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 7845 // -> (fma (fpext x), (fpext y), 7846 // (fma (fpext u), (fpext v), (fneg z))) 7847 // FIXME: This turns two single-precision and one double-precision 7848 // operation into two double-precision operations, which might not be 7849 // interesting for all targets, especially GPUs. 7850 if (N0.getOpcode() == ISD::FP_EXTEND) { 7851 SDValue N00 = N0.getOperand(0); 7852 if (N00.getOpcode() == PreferredFusedOpcode) { 7853 SDValue N002 = N00.getOperand(2); 7854 if (N002.getOpcode() == ISD::FMUL) 7855 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7856 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7857 N00.getOperand(0)), 7858 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7859 N00.getOperand(1)), 7860 DAG.getNode(PreferredFusedOpcode, SL, VT, 7861 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7862 N002.getOperand(0)), 7863 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7864 N002.getOperand(1)), 7865 DAG.getNode(ISD::FNEG, SL, VT, 7866 N1))); 7867 } 7868 } 7869 7870 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 7871 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 7872 if (N1.getOpcode() == PreferredFusedOpcode && 7873 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 7874 SDValue N120 = N1.getOperand(2).getOperand(0); 7875 if (N120.getOpcode() == ISD::FMUL) { 7876 SDValue N1200 = N120.getOperand(0); 7877 SDValue N1201 = N120.getOperand(1); 7878 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7879 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 7880 N1.getOperand(1), 7881 DAG.getNode(PreferredFusedOpcode, SL, VT, 7882 DAG.getNode(ISD::FNEG, SL, VT, 7883 DAG.getNode(ISD::FP_EXTEND, SL, 7884 VT, N1200)), 7885 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7886 N1201), 7887 N0)); 7888 } 7889 } 7890 7891 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 7892 // -> (fma (fneg (fpext y)), (fpext z), 7893 // (fma (fneg (fpext u)), (fpext v), x)) 7894 // FIXME: This turns two single-precision and one double-precision 7895 // operation into two double-precision operations, which might not be 7896 // interesting for all targets, especially GPUs. 7897 if (N1.getOpcode() == ISD::FP_EXTEND && 7898 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 7899 SDValue N100 = N1.getOperand(0).getOperand(0); 7900 SDValue N101 = N1.getOperand(0).getOperand(1); 7901 SDValue N102 = N1.getOperand(0).getOperand(2); 7902 if (N102.getOpcode() == ISD::FMUL) { 7903 SDValue N1020 = N102.getOperand(0); 7904 SDValue N1021 = N102.getOperand(1); 7905 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7906 DAG.getNode(ISD::FNEG, SL, VT, 7907 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7908 N100)), 7909 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 7910 DAG.getNode(PreferredFusedOpcode, SL, VT, 7911 DAG.getNode(ISD::FNEG, SL, VT, 7912 DAG.getNode(ISD::FP_EXTEND, SL, 7913 VT, N1020)), 7914 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7915 N1021), 7916 N0)); 7917 } 7918 } 7919 } 7920 } 7921 7922 return SDValue(); 7923 } 7924 7925 /// Try to perform FMA combining on a given FMUL node. 7926 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { 7927 SDValue N0 = N->getOperand(0); 7928 SDValue N1 = N->getOperand(1); 7929 EVT VT = N->getValueType(0); 7930 SDLoc SL(N); 7931 7932 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 7933 7934 const TargetOptions &Options = DAG.getTarget().Options; 7935 bool AllowFusion = 7936 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7937 7938 // Floating-point multiply-add with intermediate rounding. 7939 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7940 7941 // Floating-point multiply-add without intermediate rounding. 7942 bool HasFMA = 7943 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7944 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7945 7946 // No valid opcode, do not combine. 7947 if (!HasFMAD && !HasFMA) 7948 return SDValue(); 7949 7950 // Always prefer FMAD to FMA for precision. 7951 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7952 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7953 7954 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) 7955 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) 7956 auto FuseFADD = [&](SDValue X, SDValue Y) { 7957 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 7958 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 7959 if (XC1 && XC1->isExactlyValue(+1.0)) 7960 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 7961 if (XC1 && XC1->isExactlyValue(-1.0)) 7962 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 7963 DAG.getNode(ISD::FNEG, SL, VT, Y)); 7964 } 7965 return SDValue(); 7966 }; 7967 7968 if (SDValue FMA = FuseFADD(N0, N1)) 7969 return FMA; 7970 if (SDValue FMA = FuseFADD(N1, N0)) 7971 return FMA; 7972 7973 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) 7974 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) 7975 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) 7976 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) 7977 auto FuseFSUB = [&](SDValue X, SDValue Y) { 7978 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 7979 auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); 7980 if (XC0 && XC0->isExactlyValue(+1.0)) 7981 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7982 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 7983 Y); 7984 if (XC0 && XC0->isExactlyValue(-1.0)) 7985 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7986 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 7987 DAG.getNode(ISD::FNEG, SL, VT, Y)); 7988 7989 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 7990 if (XC1 && XC1->isExactlyValue(+1.0)) 7991 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 7992 DAG.getNode(ISD::FNEG, SL, VT, Y)); 7993 if (XC1 && XC1->isExactlyValue(-1.0)) 7994 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 7995 } 7996 return SDValue(); 7997 }; 7998 7999 if (SDValue FMA = FuseFSUB(N0, N1)) 8000 return FMA; 8001 if (SDValue FMA = FuseFSUB(N1, N0)) 8002 return FMA; 8003 8004 return SDValue(); 8005 } 8006 8007 SDValue DAGCombiner::visitFADD(SDNode *N) { 8008 SDValue N0 = N->getOperand(0); 8009 SDValue N1 = N->getOperand(1); 8010 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8011 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8012 EVT VT = N->getValueType(0); 8013 SDLoc DL(N); 8014 const TargetOptions &Options = DAG.getTarget().Options; 8015 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8016 8017 // fold vector ops 8018 if (VT.isVector()) 8019 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8020 return FoldedVOp; 8021 8022 // fold (fadd c1, c2) -> c1 + c2 8023 if (N0CFP && N1CFP) 8024 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 8025 8026 // canonicalize constant to RHS 8027 if (N0CFP && !N1CFP) 8028 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 8029 8030 // fold (fadd A, (fneg B)) -> (fsub A, B) 8031 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8032 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 8033 return DAG.getNode(ISD::FSUB, DL, VT, N0, 8034 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8035 8036 // fold (fadd (fneg A), B) -> (fsub B, A) 8037 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8038 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 8039 return DAG.getNode(ISD::FSUB, DL, VT, N1, 8040 GetNegatedExpression(N0, DAG, LegalOperations), Flags); 8041 8042 // If 'unsafe math' is enabled, fold lots of things. 8043 if (Options.UnsafeFPMath) { 8044 // No FP constant should be created after legalization as Instruction 8045 // Selection pass has a hard time dealing with FP constants. 8046 bool AllowNewConst = (Level < AfterLegalizeDAG); 8047 8048 // fold (fadd A, 0) -> A 8049 if (N1CFP && N1CFP->isZero()) 8050 return N0; 8051 8052 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 8053 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 8054 isa<ConstantFPSDNode>(N0.getOperand(1))) 8055 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), 8056 DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, 8057 Flags), 8058 Flags); 8059 8060 // If allowed, fold (fadd (fneg x), x) -> 0.0 8061 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 8062 return DAG.getConstantFP(0.0, DL, VT); 8063 8064 // If allowed, fold (fadd x, (fneg x)) -> 0.0 8065 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 8066 return DAG.getConstantFP(0.0, DL, VT); 8067 8068 // We can fold chains of FADD's of the same value into multiplications. 8069 // This transform is not safe in general because we are reducing the number 8070 // of rounding steps. 8071 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 8072 if (N0.getOpcode() == ISD::FMUL) { 8073 ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0)); 8074 ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 8075 8076 // (fadd (fmul x, c), x) -> (fmul x, c+1) 8077 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 8078 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, SDValue(CFP01, 0), 8079 DAG.getConstantFP(1.0, DL, VT), Flags); 8080 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 8081 } 8082 8083 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 8084 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 8085 N1.getOperand(0) == N1.getOperand(1) && 8086 N0.getOperand(0) == N1.getOperand(0)) { 8087 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, SDValue(CFP01, 0), 8088 DAG.getConstantFP(2.0, DL, VT), Flags); 8089 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 8090 } 8091 } 8092 8093 if (N1.getOpcode() == ISD::FMUL) { 8094 ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0)); 8095 ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1)); 8096 8097 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 8098 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 8099 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, SDValue(CFP11, 0), 8100 DAG.getConstantFP(1.0, DL, VT), Flags); 8101 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 8102 } 8103 8104 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 8105 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 8106 N0.getOperand(0) == N0.getOperand(1) && 8107 N1.getOperand(0) == N0.getOperand(0)) { 8108 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, SDValue(CFP11, 0), 8109 DAG.getConstantFP(2.0, DL, VT), Flags); 8110 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 8111 } 8112 } 8113 8114 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 8115 ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0)); 8116 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 8117 if (!CFP && N0.getOperand(0) == N0.getOperand(1) && 8118 (N0.getOperand(0) == N1)) { 8119 return DAG.getNode(ISD::FMUL, DL, VT, 8120 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 8121 } 8122 } 8123 8124 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 8125 ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0)); 8126 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 8127 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 8128 N1.getOperand(0) == N0) { 8129 return DAG.getNode(ISD::FMUL, DL, VT, 8130 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 8131 } 8132 } 8133 8134 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 8135 if (AllowNewConst && 8136 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 8137 N0.getOperand(0) == N0.getOperand(1) && 8138 N1.getOperand(0) == N1.getOperand(1) && 8139 N0.getOperand(0) == N1.getOperand(0)) { 8140 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 8141 DAG.getConstantFP(4.0, DL, VT), Flags); 8142 } 8143 } 8144 } // enable-unsafe-fp-math 8145 8146 // FADD -> FMA combines: 8147 if (SDValue Fused = visitFADDForFMACombine(N)) { 8148 AddToWorklist(Fused.getNode()); 8149 return Fused; 8150 } 8151 8152 return SDValue(); 8153 } 8154 8155 SDValue DAGCombiner::visitFSUB(SDNode *N) { 8156 SDValue N0 = N->getOperand(0); 8157 SDValue N1 = N->getOperand(1); 8158 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8159 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8160 EVT VT = N->getValueType(0); 8161 SDLoc dl(N); 8162 const TargetOptions &Options = DAG.getTarget().Options; 8163 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8164 8165 // fold vector ops 8166 if (VT.isVector()) 8167 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8168 return FoldedVOp; 8169 8170 // fold (fsub c1, c2) -> c1-c2 8171 if (N0CFP && N1CFP) 8172 return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags); 8173 8174 // fold (fsub A, (fneg B)) -> (fadd A, B) 8175 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8176 return DAG.getNode(ISD::FADD, dl, VT, N0, 8177 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8178 8179 // If 'unsafe math' is enabled, fold lots of things. 8180 if (Options.UnsafeFPMath) { 8181 // (fsub A, 0) -> A 8182 if (N1CFP && N1CFP->isZero()) 8183 return N0; 8184 8185 // (fsub 0, B) -> -B 8186 if (N0CFP && N0CFP->isZero()) { 8187 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8188 return GetNegatedExpression(N1, DAG, LegalOperations); 8189 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8190 return DAG.getNode(ISD::FNEG, dl, VT, N1); 8191 } 8192 8193 // (fsub x, x) -> 0.0 8194 if (N0 == N1) 8195 return DAG.getConstantFP(0.0f, dl, VT); 8196 8197 // (fsub x, (fadd x, y)) -> (fneg y) 8198 // (fsub x, (fadd y, x)) -> (fneg y) 8199 if (N1.getOpcode() == ISD::FADD) { 8200 SDValue N10 = N1->getOperand(0); 8201 SDValue N11 = N1->getOperand(1); 8202 8203 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 8204 return GetNegatedExpression(N11, DAG, LegalOperations); 8205 8206 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 8207 return GetNegatedExpression(N10, DAG, LegalOperations); 8208 } 8209 } 8210 8211 // FSUB -> FMA combines: 8212 if (SDValue Fused = visitFSUBForFMACombine(N)) { 8213 AddToWorklist(Fused.getNode()); 8214 return Fused; 8215 } 8216 8217 return SDValue(); 8218 } 8219 8220 SDValue DAGCombiner::visitFMUL(SDNode *N) { 8221 SDValue N0 = N->getOperand(0); 8222 SDValue N1 = N->getOperand(1); 8223 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8224 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8225 EVT VT = N->getValueType(0); 8226 SDLoc DL(N); 8227 const TargetOptions &Options = DAG.getTarget().Options; 8228 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8229 8230 // fold vector ops 8231 if (VT.isVector()) { 8232 // This just handles C1 * C2 for vectors. Other vector folds are below. 8233 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8234 return FoldedVOp; 8235 } 8236 8237 // fold (fmul c1, c2) -> c1*c2 8238 if (N0CFP && N1CFP) 8239 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 8240 8241 // canonicalize constant to RHS 8242 if (isConstantFPBuildVectorOrConstantFP(N0) && 8243 !isConstantFPBuildVectorOrConstantFP(N1)) 8244 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 8245 8246 // fold (fmul A, 1.0) -> A 8247 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8248 return N0; 8249 8250 if (Options.UnsafeFPMath) { 8251 // fold (fmul A, 0) -> 0 8252 if (N1CFP && N1CFP->isZero()) 8253 return N1; 8254 8255 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 8256 if (N0.getOpcode() == ISD::FMUL) { 8257 // Fold scalars or any vector constants (not just splats). 8258 // This fold is done in general by InstCombine, but extra fmul insts 8259 // may have been generated during lowering. 8260 SDValue N00 = N0.getOperand(0); 8261 SDValue N01 = N0.getOperand(1); 8262 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 8263 auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); 8264 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 8265 8266 // Check 1: Make sure that the first operand of the inner multiply is NOT 8267 // a constant. Otherwise, we may induce infinite looping. 8268 if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { 8269 // Check 2: Make sure that the second operand of the inner multiply and 8270 // the second operand of the outer multiply are constants. 8271 if ((N1CFP && isConstOrConstSplatFP(N01)) || 8272 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 8273 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 8274 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 8275 } 8276 } 8277 } 8278 8279 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 8280 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 8281 // during an early run of DAGCombiner can prevent folding with fmuls 8282 // inserted during lowering. 8283 if (N0.getOpcode() == ISD::FADD && 8284 (N0.getOperand(0) == N0.getOperand(1)) && 8285 N0.hasOneUse()) { 8286 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 8287 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 8288 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 8289 } 8290 } 8291 8292 // fold (fmul X, 2.0) -> (fadd X, X) 8293 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 8294 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 8295 8296 // fold (fmul X, -1.0) -> (fneg X) 8297 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 8298 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8299 return DAG.getNode(ISD::FNEG, DL, VT, N0); 8300 8301 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 8302 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8303 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8304 // Both can be negated for free, check to see if at least one is cheaper 8305 // negated. 8306 if (LHSNeg == 2 || RHSNeg == 2) 8307 return DAG.getNode(ISD::FMUL, DL, VT, 8308 GetNegatedExpression(N0, DAG, LegalOperations), 8309 GetNegatedExpression(N1, DAG, LegalOperations), 8310 Flags); 8311 } 8312 } 8313 8314 // FMUL -> FMA combines: 8315 if (SDValue Fused = visitFMULForFMACombine(N)) { 8316 AddToWorklist(Fused.getNode()); 8317 return Fused; 8318 } 8319 8320 return SDValue(); 8321 } 8322 8323 SDValue DAGCombiner::visitFMA(SDNode *N) { 8324 SDValue N0 = N->getOperand(0); 8325 SDValue N1 = N->getOperand(1); 8326 SDValue N2 = N->getOperand(2); 8327 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8328 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8329 EVT VT = N->getValueType(0); 8330 SDLoc dl(N); 8331 const TargetOptions &Options = DAG.getTarget().Options; 8332 8333 // Constant fold FMA. 8334 if (isa<ConstantFPSDNode>(N0) && 8335 isa<ConstantFPSDNode>(N1) && 8336 isa<ConstantFPSDNode>(N2)) { 8337 return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); 8338 } 8339 8340 if (Options.UnsafeFPMath) { 8341 if (N0CFP && N0CFP->isZero()) 8342 return N2; 8343 if (N1CFP && N1CFP->isZero()) 8344 return N2; 8345 } 8346 // TODO: The FMA node should have flags that propagate to these nodes. 8347 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8348 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 8349 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8350 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 8351 8352 // Canonicalize (fma c, x, y) -> (fma x, c, y) 8353 if (N0CFP && !N1CFP) 8354 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 8355 8356 // TODO: FMA nodes should have flags that propagate to the created nodes. 8357 // For now, create a Flags object for use with all unsafe math transforms. 8358 SDNodeFlags Flags; 8359 Flags.setUnsafeAlgebra(true); 8360 8361 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 8362 if (Options.UnsafeFPMath && N1CFP && 8363 N2.getOpcode() == ISD::FMUL && 8364 N0 == N2.getOperand(0) && 8365 N2.getOperand(1).getOpcode() == ISD::ConstantFP) { 8366 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8367 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1), 8368 &Flags), &Flags); 8369 } 8370 8371 8372 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 8373 if (Options.UnsafeFPMath && 8374 N0.getOpcode() == ISD::FMUL && N1CFP && 8375 N0.getOperand(1).getOpcode() == ISD::ConstantFP) { 8376 return DAG.getNode(ISD::FMA, dl, VT, 8377 N0.getOperand(0), 8378 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1), 8379 &Flags), 8380 N2); 8381 } 8382 8383 // (fma x, 1, y) -> (fadd x, y) 8384 // (fma x, -1, y) -> (fadd (fneg x), y) 8385 if (N1CFP) { 8386 if (N1CFP->isExactlyValue(1.0)) 8387 // TODO: The FMA node should have flags that propagate to this node. 8388 return DAG.getNode(ISD::FADD, dl, VT, N0, N2); 8389 8390 if (N1CFP->isExactlyValue(-1.0) && 8391 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 8392 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); 8393 AddToWorklist(RHSNeg.getNode()); 8394 // TODO: The FMA node should have flags that propagate to this node. 8395 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); 8396 } 8397 } 8398 8399 // (fma x, c, x) -> (fmul x, (c+1)) 8400 if (Options.UnsafeFPMath && N1CFP && N0 == N2) { 8401 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8402 DAG.getNode(ISD::FADD, dl, VT, 8403 N1, DAG.getConstantFP(1.0, dl, VT), 8404 &Flags), &Flags); 8405 } 8406 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 8407 if (Options.UnsafeFPMath && N1CFP && 8408 N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 8409 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8410 DAG.getNode(ISD::FADD, dl, VT, 8411 N1, DAG.getConstantFP(-1.0, dl, VT), 8412 &Flags), &Flags); 8413 } 8414 8415 return SDValue(); 8416 } 8417 8418 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 8419 // reciprocal. 8420 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 8421 // Notice that this is not always beneficial. One reason is different target 8422 // may have different costs for FDIV and FMUL, so sometimes the cost of two 8423 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 8424 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 8425 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 8426 if (!DAG.getTarget().Options.UnsafeFPMath) 8427 return SDValue(); 8428 8429 // Skip if current node is a reciprocal. 8430 SDValue N0 = N->getOperand(0); 8431 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8432 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8433 return SDValue(); 8434 8435 // Exit early if the target does not want this transform or if there can't 8436 // possibly be enough uses of the divisor to make the transform worthwhile. 8437 SDValue N1 = N->getOperand(1); 8438 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 8439 if (!MinUses || N1->use_size() < MinUses) 8440 return SDValue(); 8441 8442 // Find all FDIV users of the same divisor. 8443 // Use a set because duplicates may be present in the user list. 8444 SetVector<SDNode *> Users; 8445 for (auto *U : N1->uses()) 8446 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) 8447 Users.insert(U); 8448 8449 // Now that we have the actual number of divisor uses, make sure it meets 8450 // the minimum threshold specified by the target. 8451 if (Users.size() < MinUses) 8452 return SDValue(); 8453 8454 EVT VT = N->getValueType(0); 8455 SDLoc DL(N); 8456 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 8457 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8458 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 8459 8460 // Dividend / Divisor -> Dividend * Reciprocal 8461 for (auto *U : Users) { 8462 SDValue Dividend = U->getOperand(0); 8463 if (Dividend != FPOne) { 8464 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 8465 Reciprocal, Flags); 8466 CombineTo(U, NewNode); 8467 } else if (U != Reciprocal.getNode()) { 8468 // In the absence of fast-math-flags, this user node is always the 8469 // same node as Reciprocal, but with FMF they may be different nodes. 8470 CombineTo(U, Reciprocal); 8471 } 8472 } 8473 return SDValue(N, 0); // N was replaced. 8474 } 8475 8476 SDValue DAGCombiner::visitFDIV(SDNode *N) { 8477 SDValue N0 = N->getOperand(0); 8478 SDValue N1 = N->getOperand(1); 8479 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8480 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8481 EVT VT = N->getValueType(0); 8482 SDLoc DL(N); 8483 const TargetOptions &Options = DAG.getTarget().Options; 8484 SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8485 8486 // fold vector ops 8487 if (VT.isVector()) 8488 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8489 return FoldedVOp; 8490 8491 // fold (fdiv c1, c2) -> c1/c2 8492 if (N0CFP && N1CFP) 8493 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 8494 8495 if (Options.UnsafeFPMath) { 8496 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 8497 if (N1CFP) { 8498 // Compute the reciprocal 1.0 / c2. 8499 APFloat N1APF = N1CFP->getValueAPF(); 8500 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 8501 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 8502 // Only do the transform if the reciprocal is a legal fp immediate that 8503 // isn't too nasty (eg NaN, denormal, ...). 8504 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 8505 (!LegalOperations || 8506 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 8507 // backend)... we should handle this gracefully after Legalize. 8508 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 8509 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 8510 TLI.isFPImmLegal(Recip, VT))) 8511 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8512 DAG.getConstantFP(Recip, DL, VT), Flags); 8513 } 8514 8515 // If this FDIV is part of a reciprocal square root, it may be folded 8516 // into a target-specific square root estimate instruction. 8517 if (N1.getOpcode() == ISD::FSQRT) { 8518 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) { 8519 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8520 } 8521 } else if (N1.getOpcode() == ISD::FP_EXTEND && 8522 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8523 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8524 Flags)) { 8525 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 8526 AddToWorklist(RV.getNode()); 8527 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8528 } 8529 } else if (N1.getOpcode() == ISD::FP_ROUND && 8530 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8531 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8532 Flags)) { 8533 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 8534 AddToWorklist(RV.getNode()); 8535 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8536 } 8537 } else if (N1.getOpcode() == ISD::FMUL) { 8538 // Look through an FMUL. Even though this won't remove the FDIV directly, 8539 // it's still worthwhile to get rid of the FSQRT if possible. 8540 SDValue SqrtOp; 8541 SDValue OtherOp; 8542 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8543 SqrtOp = N1.getOperand(0); 8544 OtherOp = N1.getOperand(1); 8545 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 8546 SqrtOp = N1.getOperand(1); 8547 OtherOp = N1.getOperand(0); 8548 } 8549 if (SqrtOp.getNode()) { 8550 // We found a FSQRT, so try to make this fold: 8551 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 8552 if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 8553 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 8554 AddToWorklist(RV.getNode()); 8555 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8556 } 8557 } 8558 } 8559 8560 // Fold into a reciprocal estimate and multiply instead of a real divide. 8561 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 8562 AddToWorklist(RV.getNode()); 8563 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8564 } 8565 } 8566 8567 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 8568 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8569 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8570 // Both can be negated for free, check to see if at least one is cheaper 8571 // negated. 8572 if (LHSNeg == 2 || RHSNeg == 2) 8573 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 8574 GetNegatedExpression(N0, DAG, LegalOperations), 8575 GetNegatedExpression(N1, DAG, LegalOperations), 8576 Flags); 8577 } 8578 } 8579 8580 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) 8581 return CombineRepeatedDivisors; 8582 8583 return SDValue(); 8584 } 8585 8586 SDValue DAGCombiner::visitFREM(SDNode *N) { 8587 SDValue N0 = N->getOperand(0); 8588 SDValue N1 = N->getOperand(1); 8589 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8590 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8591 EVT VT = N->getValueType(0); 8592 8593 // fold (frem c1, c2) -> fmod(c1,c2) 8594 if (N0CFP && N1CFP) 8595 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, 8596 &cast<BinaryWithFlagsSDNode>(N)->Flags); 8597 8598 return SDValue(); 8599 } 8600 8601 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 8602 if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap()) 8603 return SDValue(); 8604 8605 // TODO: FSQRT nodes should have flags that propagate to the created nodes. 8606 // For now, create a Flags object for use with all unsafe math transforms. 8607 SDNodeFlags Flags; 8608 Flags.setUnsafeAlgebra(true); 8609 8610 // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5) 8611 SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags); 8612 if (!RV) 8613 return SDValue(); 8614 8615 EVT VT = RV.getValueType(); 8616 SDLoc DL(N); 8617 RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags); 8618 AddToWorklist(RV.getNode()); 8619 8620 // Unfortunately, RV is now NaN if the input was exactly 0. 8621 // Select out this case and force the answer to 0. 8622 SDValue Zero = DAG.getConstantFP(0.0, DL, VT); 8623 EVT CCVT = getSetCCResultType(VT); 8624 SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ); 8625 AddToWorklist(ZeroCmp.getNode()); 8626 AddToWorklist(RV.getNode()); 8627 8628 return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 8629 ZeroCmp, Zero, RV); 8630 } 8631 8632 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 8633 SDValue N0 = N->getOperand(0); 8634 SDValue N1 = N->getOperand(1); 8635 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8636 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8637 EVT VT = N->getValueType(0); 8638 8639 if (N0CFP && N1CFP) // Constant fold 8640 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 8641 8642 if (N1CFP) { 8643 const APFloat& V = N1CFP->getValueAPF(); 8644 // copysign(x, c1) -> fabs(x) iff ispos(c1) 8645 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 8646 if (!V.isNegative()) { 8647 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 8648 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8649 } else { 8650 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8651 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 8652 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 8653 } 8654 } 8655 8656 // copysign(fabs(x), y) -> copysign(x, y) 8657 // copysign(fneg(x), y) -> copysign(x, y) 8658 // copysign(copysign(x,z), y) -> copysign(x, y) 8659 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 8660 N0.getOpcode() == ISD::FCOPYSIGN) 8661 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8662 N0.getOperand(0), N1); 8663 8664 // copysign(x, abs(y)) -> abs(x) 8665 if (N1.getOpcode() == ISD::FABS) 8666 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8667 8668 // copysign(x, copysign(y,z)) -> copysign(x, z) 8669 if (N1.getOpcode() == ISD::FCOPYSIGN) 8670 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8671 N0, N1.getOperand(1)); 8672 8673 // copysign(x, fp_extend(y)) -> copysign(x, y) 8674 // copysign(x, fp_round(y)) -> copysign(x, y) 8675 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) 8676 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8677 N0, N1.getOperand(0)); 8678 8679 return SDValue(); 8680 } 8681 8682 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 8683 SDValue N0 = N->getOperand(0); 8684 EVT VT = N->getValueType(0); 8685 EVT OpVT = N0.getValueType(); 8686 8687 // fold (sint_to_fp c1) -> c1fp 8688 if (isConstantIntBuildVectorOrConstantInt(N0) && 8689 // ...but only if the target supports immediate floating-point values 8690 (!LegalOperations || 8691 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 8692 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 8693 8694 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 8695 // but UINT_TO_FP is legal on this target, try to convert. 8696 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 8697 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 8698 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 8699 if (DAG.SignBitIsZero(N0)) 8700 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 8701 } 8702 8703 // The next optimizations are desirable only if SELECT_CC can be lowered. 8704 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 8705 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 8706 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 8707 !VT.isVector() && 8708 (!LegalOperations || 8709 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8710 SDLoc DL(N); 8711 SDValue Ops[] = 8712 { N0.getOperand(0), N0.getOperand(1), 8713 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8714 N0.getOperand(2) }; 8715 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8716 } 8717 8718 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 8719 // (select_cc x, y, 1.0, 0.0,, cc) 8720 if (N0.getOpcode() == ISD::ZERO_EXTEND && 8721 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 8722 (!LegalOperations || 8723 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8724 SDLoc DL(N); 8725 SDValue Ops[] = 8726 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 8727 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8728 N0.getOperand(0).getOperand(2) }; 8729 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8730 } 8731 } 8732 8733 return SDValue(); 8734 } 8735 8736 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 8737 SDValue N0 = N->getOperand(0); 8738 EVT VT = N->getValueType(0); 8739 EVT OpVT = N0.getValueType(); 8740 8741 // fold (uint_to_fp c1) -> c1fp 8742 if (isConstantIntBuildVectorOrConstantInt(N0) && 8743 // ...but only if the target supports immediate floating-point values 8744 (!LegalOperations || 8745 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 8746 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 8747 8748 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 8749 // but SINT_TO_FP is legal on this target, try to convert. 8750 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 8751 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 8752 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 8753 if (DAG.SignBitIsZero(N0)) 8754 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 8755 } 8756 8757 // The next optimizations are desirable only if SELECT_CC can be lowered. 8758 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 8759 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 8760 8761 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 8762 (!LegalOperations || 8763 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 8764 SDLoc DL(N); 8765 SDValue Ops[] = 8766 { N0.getOperand(0), N0.getOperand(1), 8767 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 8768 N0.getOperand(2) }; 8769 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 8770 } 8771 } 8772 8773 return SDValue(); 8774 } 8775 8776 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 8777 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 8778 SDValue N0 = N->getOperand(0); 8779 EVT VT = N->getValueType(0); 8780 8781 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 8782 return SDValue(); 8783 8784 SDValue Src = N0.getOperand(0); 8785 EVT SrcVT = Src.getValueType(); 8786 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 8787 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 8788 8789 // We can safely assume the conversion won't overflow the output range, 8790 // because (for example) (uint8_t)18293.f is undefined behavior. 8791 8792 // Since we can assume the conversion won't overflow, our decision as to 8793 // whether the input will fit in the float should depend on the minimum 8794 // of the input range and output range. 8795 8796 // This means this is also safe for a signed input and unsigned output, since 8797 // a negative input would lead to undefined behavior. 8798 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 8799 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 8800 unsigned ActualSize = std::min(InputSize, OutputSize); 8801 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 8802 8803 // We can only fold away the float conversion if the input range can be 8804 // represented exactly in the float range. 8805 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 8806 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 8807 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 8808 : ISD::ZERO_EXTEND; 8809 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 8810 } 8811 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 8812 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 8813 if (SrcVT == VT) 8814 return Src; 8815 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Src); 8816 } 8817 return SDValue(); 8818 } 8819 8820 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 8821 SDValue N0 = N->getOperand(0); 8822 EVT VT = N->getValueType(0); 8823 8824 // fold (fp_to_sint c1fp) -> c1 8825 if (isConstantFPBuildVectorOrConstantFP(N0)) 8826 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 8827 8828 return FoldIntToFPToInt(N, DAG); 8829 } 8830 8831 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 8832 SDValue N0 = N->getOperand(0); 8833 EVT VT = N->getValueType(0); 8834 8835 // fold (fp_to_uint c1fp) -> c1 8836 if (isConstantFPBuildVectorOrConstantFP(N0)) 8837 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 8838 8839 return FoldIntToFPToInt(N, DAG); 8840 } 8841 8842 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 8843 SDValue N0 = N->getOperand(0); 8844 SDValue N1 = N->getOperand(1); 8845 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8846 EVT VT = N->getValueType(0); 8847 8848 // fold (fp_round c1fp) -> c1fp 8849 if (N0CFP) 8850 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 8851 8852 // fold (fp_round (fp_extend x)) -> x 8853 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 8854 return N0.getOperand(0); 8855 8856 // fold (fp_round (fp_round x)) -> (fp_round x) 8857 if (N0.getOpcode() == ISD::FP_ROUND) { 8858 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 8859 const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; 8860 // If the first fp_round isn't a value preserving truncation, it might 8861 // introduce a tie in the second fp_round, that wouldn't occur in the 8862 // single-step fp_round we want to fold to. 8863 // In other words, double rounding isn't the same as rounding. 8864 // Also, this is a value preserving truncation iff both fp_round's are. 8865 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 8866 SDLoc DL(N); 8867 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 8868 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 8869 } 8870 } 8871 8872 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 8873 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 8874 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 8875 N0.getOperand(0), N1); 8876 AddToWorklist(Tmp.getNode()); 8877 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8878 Tmp, N0.getOperand(1)); 8879 } 8880 8881 return SDValue(); 8882 } 8883 8884 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 8885 SDValue N0 = N->getOperand(0); 8886 EVT VT = N->getValueType(0); 8887 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8888 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8889 8890 // fold (fp_round_inreg c1fp) -> c1fp 8891 if (N0CFP && isTypeLegal(EVT)) { 8892 SDLoc DL(N); 8893 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 8894 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 8895 } 8896 8897 return SDValue(); 8898 } 8899 8900 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 8901 SDValue N0 = N->getOperand(0); 8902 EVT VT = N->getValueType(0); 8903 8904 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 8905 if (N->hasOneUse() && 8906 N->use_begin()->getOpcode() == ISD::FP_ROUND) 8907 return SDValue(); 8908 8909 // fold (fp_extend c1fp) -> c1fp 8910 if (isConstantFPBuildVectorOrConstantFP(N0)) 8911 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 8912 8913 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 8914 if (N0.getOpcode() == ISD::FP16_TO_FP && 8915 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 8916 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 8917 8918 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 8919 // value of X. 8920 if (N0.getOpcode() == ISD::FP_ROUND 8921 && N0.getNode()->getConstantOperandVal(1) == 1) { 8922 SDValue In = N0.getOperand(0); 8923 if (In.getValueType() == VT) return In; 8924 if (VT.bitsLT(In.getValueType())) 8925 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 8926 In, N0.getOperand(1)); 8927 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 8928 } 8929 8930 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 8931 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 8932 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 8933 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 8934 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 8935 LN0->getChain(), 8936 LN0->getBasePtr(), N0.getValueType(), 8937 LN0->getMemOperand()); 8938 CombineTo(N, ExtLoad); 8939 CombineTo(N0.getNode(), 8940 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 8941 N0.getValueType(), ExtLoad, 8942 DAG.getIntPtrConstant(1, SDLoc(N0))), 8943 ExtLoad.getValue(1)); 8944 return SDValue(N, 0); // Return N so it doesn't get rechecked! 8945 } 8946 8947 return SDValue(); 8948 } 8949 8950 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 8951 SDValue N0 = N->getOperand(0); 8952 EVT VT = N->getValueType(0); 8953 8954 // fold (fceil c1) -> fceil(c1) 8955 if (isConstantFPBuildVectorOrConstantFP(N0)) 8956 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 8957 8958 return SDValue(); 8959 } 8960 8961 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 8962 SDValue N0 = N->getOperand(0); 8963 EVT VT = N->getValueType(0); 8964 8965 // fold (ftrunc c1) -> ftrunc(c1) 8966 if (isConstantFPBuildVectorOrConstantFP(N0)) 8967 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 8968 8969 return SDValue(); 8970 } 8971 8972 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 8973 SDValue N0 = N->getOperand(0); 8974 EVT VT = N->getValueType(0); 8975 8976 // fold (ffloor c1) -> ffloor(c1) 8977 if (isConstantFPBuildVectorOrConstantFP(N0)) 8978 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 8979 8980 return SDValue(); 8981 } 8982 8983 // FIXME: FNEG and FABS have a lot in common; refactor. 8984 SDValue DAGCombiner::visitFNEG(SDNode *N) { 8985 SDValue N0 = N->getOperand(0); 8986 EVT VT = N->getValueType(0); 8987 8988 // Constant fold FNEG. 8989 if (isConstantFPBuildVectorOrConstantFP(N0)) 8990 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 8991 8992 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 8993 &DAG.getTarget().Options)) 8994 return GetNegatedExpression(N0, DAG, LegalOperations); 8995 8996 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 8997 // constant pool values. 8998 if (!TLI.isFNegFree(VT) && 8999 N0.getOpcode() == ISD::BITCAST && 9000 N0.getNode()->hasOneUse()) { 9001 SDValue Int = N0.getOperand(0); 9002 EVT IntVT = Int.getValueType(); 9003 if (IntVT.isInteger() && !IntVT.isVector()) { 9004 APInt SignMask; 9005 if (N0.getValueType().isVector()) { 9006 // For a vector, get a mask such as 0x80... per scalar element 9007 // and splat it. 9008 SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9009 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9010 } else { 9011 // For a scalar, just generate 0x80... 9012 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 9013 } 9014 SDLoc DL0(N0); 9015 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 9016 DAG.getConstant(SignMask, DL0, IntVT)); 9017 AddToWorklist(Int.getNode()); 9018 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int); 9019 } 9020 } 9021 9022 // (fneg (fmul c, x)) -> (fmul -c, x) 9023 if (N0.getOpcode() == ISD::FMUL && 9024 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 9025 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9026 if (CFP1) { 9027 APFloat CVal = CFP1->getValueAPF(); 9028 CVal.changeSign(); 9029 if (Level >= AfterLegalizeDAG && 9030 (TLI.isFPImmLegal(CVal, N->getValueType(0)) || 9031 TLI.isOperationLegal(ISD::ConstantFP, N->getValueType(0)))) 9032 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 9033 DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9034 N0.getOperand(1)), 9035 &cast<BinaryWithFlagsSDNode>(N0)->Flags); 9036 } 9037 } 9038 9039 return SDValue(); 9040 } 9041 9042 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 9043 SDValue N0 = N->getOperand(0); 9044 SDValue N1 = N->getOperand(1); 9045 const ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9046 const ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 9047 9048 if (N0CFP && N1CFP) { 9049 const APFloat &C0 = N0CFP->getValueAPF(); 9050 const APFloat &C1 = N1CFP->getValueAPF(); 9051 return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), N->getValueType(0)); 9052 } 9053 9054 if (N0CFP) { 9055 EVT VT = N->getValueType(0); 9056 // Canonicalize to constant on RHS. 9057 return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); 9058 } 9059 9060 return SDValue(); 9061 } 9062 9063 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 9064 SDValue N0 = N->getOperand(0); 9065 SDValue N1 = N->getOperand(1); 9066 const ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9067 const ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 9068 9069 if (N0CFP && N1CFP) { 9070 const APFloat &C0 = N0CFP->getValueAPF(); 9071 const APFloat &C1 = N1CFP->getValueAPF(); 9072 return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), N->getValueType(0)); 9073 } 9074 9075 if (N0CFP) { 9076 EVT VT = N->getValueType(0); 9077 // Canonicalize to constant on RHS. 9078 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); 9079 } 9080 9081 return SDValue(); 9082 } 9083 9084 SDValue DAGCombiner::visitFABS(SDNode *N) { 9085 SDValue N0 = N->getOperand(0); 9086 EVT VT = N->getValueType(0); 9087 9088 // fold (fabs c1) -> fabs(c1) 9089 if (isConstantFPBuildVectorOrConstantFP(N0)) 9090 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9091 9092 // fold (fabs (fabs x)) -> (fabs x) 9093 if (N0.getOpcode() == ISD::FABS) 9094 return N->getOperand(0); 9095 9096 // fold (fabs (fneg x)) -> (fabs x) 9097 // fold (fabs (fcopysign x, y)) -> (fabs x) 9098 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 9099 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 9100 9101 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 9102 // constant pool values. 9103 if (!TLI.isFAbsFree(VT) && 9104 N0.getOpcode() == ISD::BITCAST && 9105 N0.getNode()->hasOneUse()) { 9106 SDValue Int = N0.getOperand(0); 9107 EVT IntVT = Int.getValueType(); 9108 if (IntVT.isInteger() && !IntVT.isVector()) { 9109 APInt SignMask; 9110 if (N0.getValueType().isVector()) { 9111 // For a vector, get a mask such as 0x7f... per scalar element 9112 // and splat it. 9113 SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9114 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9115 } else { 9116 // For a scalar, just generate 0x7f... 9117 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 9118 } 9119 SDLoc DL(N0); 9120 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 9121 DAG.getConstant(SignMask, DL, IntVT)); 9122 AddToWorklist(Int.getNode()); 9123 return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int); 9124 } 9125 } 9126 9127 return SDValue(); 9128 } 9129 9130 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 9131 SDValue Chain = N->getOperand(0); 9132 SDValue N1 = N->getOperand(1); 9133 SDValue N2 = N->getOperand(2); 9134 9135 // If N is a constant we could fold this into a fallthrough or unconditional 9136 // branch. However that doesn't happen very often in normal code, because 9137 // Instcombine/SimplifyCFG should have handled the available opportunities. 9138 // If we did this folding here, it would be necessary to update the 9139 // MachineBasicBlock CFG, which is awkward. 9140 9141 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 9142 // on the target. 9143 if (N1.getOpcode() == ISD::SETCC && 9144 TLI.isOperationLegalOrCustom(ISD::BR_CC, 9145 N1.getOperand(0).getValueType())) { 9146 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9147 Chain, N1.getOperand(2), 9148 N1.getOperand(0), N1.getOperand(1), N2); 9149 } 9150 9151 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 9152 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 9153 (N1.getOperand(0).hasOneUse() && 9154 N1.getOperand(0).getOpcode() == ISD::SRL))) { 9155 SDNode *Trunc = nullptr; 9156 if (N1.getOpcode() == ISD::TRUNCATE) { 9157 // Look pass the truncate. 9158 Trunc = N1.getNode(); 9159 N1 = N1.getOperand(0); 9160 } 9161 9162 // Match this pattern so that we can generate simpler code: 9163 // 9164 // %a = ... 9165 // %b = and i32 %a, 2 9166 // %c = srl i32 %b, 1 9167 // brcond i32 %c ... 9168 // 9169 // into 9170 // 9171 // %a = ... 9172 // %b = and i32 %a, 2 9173 // %c = setcc eq %b, 0 9174 // brcond %c ... 9175 // 9176 // This applies only when the AND constant value has one bit set and the 9177 // SRL constant is equal to the log2 of the AND constant. The back-end is 9178 // smart enough to convert the result into a TEST/JMP sequence. 9179 SDValue Op0 = N1.getOperand(0); 9180 SDValue Op1 = N1.getOperand(1); 9181 9182 if (Op0.getOpcode() == ISD::AND && 9183 Op1.getOpcode() == ISD::Constant) { 9184 SDValue AndOp1 = Op0.getOperand(1); 9185 9186 if (AndOp1.getOpcode() == ISD::Constant) { 9187 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 9188 9189 if (AndConst.isPowerOf2() && 9190 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 9191 SDLoc DL(N); 9192 SDValue SetCC = 9193 DAG.getSetCC(DL, 9194 getSetCCResultType(Op0.getValueType()), 9195 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 9196 ISD::SETNE); 9197 9198 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, 9199 MVT::Other, Chain, SetCC, N2); 9200 // Don't add the new BRCond into the worklist or else SimplifySelectCC 9201 // will convert it back to (X & C1) >> C2. 9202 CombineTo(N, NewBRCond, false); 9203 // Truncate is dead. 9204 if (Trunc) 9205 deleteAndRecombine(Trunc); 9206 // Replace the uses of SRL with SETCC 9207 WorklistRemover DeadNodes(*this); 9208 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9209 deleteAndRecombine(N1.getNode()); 9210 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9211 } 9212 } 9213 } 9214 9215 if (Trunc) 9216 // Restore N1 if the above transformation doesn't match. 9217 N1 = N->getOperand(1); 9218 } 9219 9220 // Transform br(xor(x, y)) -> br(x != y) 9221 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 9222 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 9223 SDNode *TheXor = N1.getNode(); 9224 SDValue Op0 = TheXor->getOperand(0); 9225 SDValue Op1 = TheXor->getOperand(1); 9226 if (Op0.getOpcode() == Op1.getOpcode()) { 9227 // Avoid missing important xor optimizations. 9228 if (SDValue Tmp = visitXOR(TheXor)) { 9229 if (Tmp.getNode() != TheXor) { 9230 DEBUG(dbgs() << "\nReplacing.8 "; 9231 TheXor->dump(&DAG); 9232 dbgs() << "\nWith: "; 9233 Tmp.getNode()->dump(&DAG); 9234 dbgs() << '\n'); 9235 WorklistRemover DeadNodes(*this); 9236 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 9237 deleteAndRecombine(TheXor); 9238 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9239 MVT::Other, Chain, Tmp, N2); 9240 } 9241 9242 // visitXOR has changed XOR's operands or replaced the XOR completely, 9243 // bail out. 9244 return SDValue(N, 0); 9245 } 9246 } 9247 9248 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 9249 bool Equal = false; 9250 if (isOneConstant(Op0) && Op0.hasOneUse() && 9251 Op0.getOpcode() == ISD::XOR) { 9252 TheXor = Op0.getNode(); 9253 Equal = true; 9254 } 9255 9256 EVT SetCCVT = N1.getValueType(); 9257 if (LegalTypes) 9258 SetCCVT = getSetCCResultType(SetCCVT); 9259 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 9260 SetCCVT, 9261 Op0, Op1, 9262 Equal ? ISD::SETEQ : ISD::SETNE); 9263 // Replace the uses of XOR with SETCC 9264 WorklistRemover DeadNodes(*this); 9265 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9266 deleteAndRecombine(N1.getNode()); 9267 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9268 MVT::Other, Chain, SetCC, N2); 9269 } 9270 } 9271 9272 return SDValue(); 9273 } 9274 9275 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 9276 // 9277 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 9278 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 9279 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 9280 9281 // If N is a constant we could fold this into a fallthrough or unconditional 9282 // branch. However that doesn't happen very often in normal code, because 9283 // Instcombine/SimplifyCFG should have handled the available opportunities. 9284 // If we did this folding here, it would be necessary to update the 9285 // MachineBasicBlock CFG, which is awkward. 9286 9287 // Use SimplifySetCC to simplify SETCC's. 9288 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 9289 CondLHS, CondRHS, CC->get(), SDLoc(N), 9290 false); 9291 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 9292 9293 // fold to a simpler setcc 9294 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 9295 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9296 N->getOperand(0), Simp.getOperand(2), 9297 Simp.getOperand(0), Simp.getOperand(1), 9298 N->getOperand(4)); 9299 9300 return SDValue(); 9301 } 9302 9303 /// Return true if 'Use' is a load or a store that uses N as its base pointer 9304 /// and that N may be folded in the load / store addressing mode. 9305 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 9306 SelectionDAG &DAG, 9307 const TargetLowering &TLI) { 9308 EVT VT; 9309 unsigned AS; 9310 9311 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 9312 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 9313 return false; 9314 VT = LD->getMemoryVT(); 9315 AS = LD->getAddressSpace(); 9316 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 9317 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 9318 return false; 9319 VT = ST->getMemoryVT(); 9320 AS = ST->getAddressSpace(); 9321 } else 9322 return false; 9323 9324 TargetLowering::AddrMode AM; 9325 if (N->getOpcode() == ISD::ADD) { 9326 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9327 if (Offset) 9328 // [reg +/- imm] 9329 AM.BaseOffs = Offset->getSExtValue(); 9330 else 9331 // [reg +/- reg] 9332 AM.Scale = 1; 9333 } else if (N->getOpcode() == ISD::SUB) { 9334 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9335 if (Offset) 9336 // [reg +/- imm] 9337 AM.BaseOffs = -Offset->getSExtValue(); 9338 else 9339 // [reg +/- reg] 9340 AM.Scale = 1; 9341 } else 9342 return false; 9343 9344 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 9345 VT.getTypeForEVT(*DAG.getContext()), AS); 9346 } 9347 9348 /// Try turning a load/store into a pre-indexed load/store when the base 9349 /// pointer is an add or subtract and it has other uses besides the load/store. 9350 /// After the transformation, the new indexed load/store has effectively folded 9351 /// the add/subtract in and all of its other uses are redirected to the 9352 /// new load/store. 9353 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 9354 if (Level < AfterLegalizeDAG) 9355 return false; 9356 9357 bool isLoad = true; 9358 SDValue Ptr; 9359 EVT VT; 9360 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9361 if (LD->isIndexed()) 9362 return false; 9363 VT = LD->getMemoryVT(); 9364 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 9365 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 9366 return false; 9367 Ptr = LD->getBasePtr(); 9368 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9369 if (ST->isIndexed()) 9370 return false; 9371 VT = ST->getMemoryVT(); 9372 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 9373 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 9374 return false; 9375 Ptr = ST->getBasePtr(); 9376 isLoad = false; 9377 } else { 9378 return false; 9379 } 9380 9381 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 9382 // out. There is no reason to make this a preinc/predec. 9383 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 9384 Ptr.getNode()->hasOneUse()) 9385 return false; 9386 9387 // Ask the target to do addressing mode selection. 9388 SDValue BasePtr; 9389 SDValue Offset; 9390 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9391 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 9392 return false; 9393 9394 // Backends without true r+i pre-indexed forms may need to pass a 9395 // constant base with a variable offset so that constant coercion 9396 // will work with the patterns in canonical form. 9397 bool Swapped = false; 9398 if (isa<ConstantSDNode>(BasePtr)) { 9399 std::swap(BasePtr, Offset); 9400 Swapped = true; 9401 } 9402 9403 // Don't create a indexed load / store with zero offset. 9404 if (isNullConstant(Offset)) 9405 return false; 9406 9407 // Try turning it into a pre-indexed load / store except when: 9408 // 1) The new base ptr is a frame index. 9409 // 2) If N is a store and the new base ptr is either the same as or is a 9410 // predecessor of the value being stored. 9411 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 9412 // that would create a cycle. 9413 // 4) All uses are load / store ops that use it as old base ptr. 9414 9415 // Check #1. Preinc'ing a frame index would require copying the stack pointer 9416 // (plus the implicit offset) to a register to preinc anyway. 9417 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9418 return false; 9419 9420 // Check #2. 9421 if (!isLoad) { 9422 SDValue Val = cast<StoreSDNode>(N)->getValue(); 9423 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 9424 return false; 9425 } 9426 9427 // If the offset is a constant, there may be other adds of constants that 9428 // can be folded with this one. We should do this to avoid having to keep 9429 // a copy of the original base pointer. 9430 SmallVector<SDNode *, 16> OtherUses; 9431 if (isa<ConstantSDNode>(Offset)) 9432 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 9433 UE = BasePtr.getNode()->use_end(); 9434 UI != UE; ++UI) { 9435 SDUse &Use = UI.getUse(); 9436 // Skip the use that is Ptr and uses of other results from BasePtr's 9437 // node (important for nodes that return multiple results). 9438 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 9439 continue; 9440 9441 if (Use.getUser()->isPredecessorOf(N)) 9442 continue; 9443 9444 if (Use.getUser()->getOpcode() != ISD::ADD && 9445 Use.getUser()->getOpcode() != ISD::SUB) { 9446 OtherUses.clear(); 9447 break; 9448 } 9449 9450 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 9451 if (!isa<ConstantSDNode>(Op1)) { 9452 OtherUses.clear(); 9453 break; 9454 } 9455 9456 // FIXME: In some cases, we can be smarter about this. 9457 if (Op1.getValueType() != Offset.getValueType()) { 9458 OtherUses.clear(); 9459 break; 9460 } 9461 9462 OtherUses.push_back(Use.getUser()); 9463 } 9464 9465 if (Swapped) 9466 std::swap(BasePtr, Offset); 9467 9468 // Now check for #3 and #4. 9469 bool RealUse = false; 9470 9471 // Caches for hasPredecessorHelper 9472 SmallPtrSet<const SDNode *, 32> Visited; 9473 SmallVector<const SDNode *, 16> Worklist; 9474 9475 for (SDNode *Use : Ptr.getNode()->uses()) { 9476 if (Use == N) 9477 continue; 9478 if (N->hasPredecessorHelper(Use, Visited, Worklist)) 9479 return false; 9480 9481 // If Ptr may be folded in addressing mode of other use, then it's 9482 // not profitable to do this transformation. 9483 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 9484 RealUse = true; 9485 } 9486 9487 if (!RealUse) 9488 return false; 9489 9490 SDValue Result; 9491 if (isLoad) 9492 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9493 BasePtr, Offset, AM); 9494 else 9495 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9496 BasePtr, Offset, AM); 9497 ++PreIndexedNodes; 9498 ++NodesCombined; 9499 DEBUG(dbgs() << "\nReplacing.4 "; 9500 N->dump(&DAG); 9501 dbgs() << "\nWith: "; 9502 Result.getNode()->dump(&DAG); 9503 dbgs() << '\n'); 9504 WorklistRemover DeadNodes(*this); 9505 if (isLoad) { 9506 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9507 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9508 } else { 9509 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9510 } 9511 9512 // Finally, since the node is now dead, remove it from the graph. 9513 deleteAndRecombine(N); 9514 9515 if (Swapped) 9516 std::swap(BasePtr, Offset); 9517 9518 // Replace other uses of BasePtr that can be updated to use Ptr 9519 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 9520 unsigned OffsetIdx = 1; 9521 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 9522 OffsetIdx = 0; 9523 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 9524 BasePtr.getNode() && "Expected BasePtr operand"); 9525 9526 // We need to replace ptr0 in the following expression: 9527 // x0 * offset0 + y0 * ptr0 = t0 9528 // knowing that 9529 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 9530 // 9531 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 9532 // indexed load/store and the expresion that needs to be re-written. 9533 // 9534 // Therefore, we have: 9535 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 9536 9537 ConstantSDNode *CN = 9538 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 9539 int X0, X1, Y0, Y1; 9540 APInt Offset0 = CN->getAPIntValue(); 9541 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 9542 9543 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 9544 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 9545 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 9546 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 9547 9548 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 9549 9550 APInt CNV = Offset0; 9551 if (X0 < 0) CNV = -CNV; 9552 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 9553 else CNV = CNV - Offset1; 9554 9555 SDLoc DL(OtherUses[i]); 9556 9557 // We can now generate the new expression. 9558 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 9559 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 9560 9561 SDValue NewUse = DAG.getNode(Opcode, 9562 DL, 9563 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 9564 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 9565 deleteAndRecombine(OtherUses[i]); 9566 } 9567 9568 // Replace the uses of Ptr with uses of the updated base value. 9569 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 9570 deleteAndRecombine(Ptr.getNode()); 9571 9572 return true; 9573 } 9574 9575 /// Try to combine a load/store with a add/sub of the base pointer node into a 9576 /// post-indexed load/store. The transformation folded the add/subtract into the 9577 /// new indexed load/store effectively and all of its uses are redirected to the 9578 /// new load/store. 9579 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 9580 if (Level < AfterLegalizeDAG) 9581 return false; 9582 9583 bool isLoad = true; 9584 SDValue Ptr; 9585 EVT VT; 9586 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9587 if (LD->isIndexed()) 9588 return false; 9589 VT = LD->getMemoryVT(); 9590 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 9591 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 9592 return false; 9593 Ptr = LD->getBasePtr(); 9594 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9595 if (ST->isIndexed()) 9596 return false; 9597 VT = ST->getMemoryVT(); 9598 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 9599 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 9600 return false; 9601 Ptr = ST->getBasePtr(); 9602 isLoad = false; 9603 } else { 9604 return false; 9605 } 9606 9607 if (Ptr.getNode()->hasOneUse()) 9608 return false; 9609 9610 for (SDNode *Op : Ptr.getNode()->uses()) { 9611 if (Op == N || 9612 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 9613 continue; 9614 9615 SDValue BasePtr; 9616 SDValue Offset; 9617 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9618 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 9619 // Don't create a indexed load / store with zero offset. 9620 if (isNullConstant(Offset)) 9621 continue; 9622 9623 // Try turning it into a post-indexed load / store except when 9624 // 1) All uses are load / store ops that use it as base ptr (and 9625 // it may be folded as addressing mmode). 9626 // 2) Op must be independent of N, i.e. Op is neither a predecessor 9627 // nor a successor of N. Otherwise, if Op is folded that would 9628 // create a cycle. 9629 9630 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9631 continue; 9632 9633 // Check for #1. 9634 bool TryNext = false; 9635 for (SDNode *Use : BasePtr.getNode()->uses()) { 9636 if (Use == Ptr.getNode()) 9637 continue; 9638 9639 // If all the uses are load / store addresses, then don't do the 9640 // transformation. 9641 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 9642 bool RealUse = false; 9643 for (SDNode *UseUse : Use->uses()) { 9644 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 9645 RealUse = true; 9646 } 9647 9648 if (!RealUse) { 9649 TryNext = true; 9650 break; 9651 } 9652 } 9653 } 9654 9655 if (TryNext) 9656 continue; 9657 9658 // Check for #2 9659 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 9660 SDValue Result = isLoad 9661 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9662 BasePtr, Offset, AM) 9663 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9664 BasePtr, Offset, AM); 9665 ++PostIndexedNodes; 9666 ++NodesCombined; 9667 DEBUG(dbgs() << "\nReplacing.5 "; 9668 N->dump(&DAG); 9669 dbgs() << "\nWith: "; 9670 Result.getNode()->dump(&DAG); 9671 dbgs() << '\n'); 9672 WorklistRemover DeadNodes(*this); 9673 if (isLoad) { 9674 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9675 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9676 } else { 9677 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9678 } 9679 9680 // Finally, since the node is now dead, remove it from the graph. 9681 deleteAndRecombine(N); 9682 9683 // Replace the uses of Use with uses of the updated base value. 9684 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 9685 Result.getValue(isLoad ? 1 : 0)); 9686 deleteAndRecombine(Op); 9687 return true; 9688 } 9689 } 9690 } 9691 9692 return false; 9693 } 9694 9695 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 9696 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 9697 ISD::MemIndexedMode AM = LD->getAddressingMode(); 9698 assert(AM != ISD::UNINDEXED); 9699 SDValue BP = LD->getOperand(1); 9700 SDValue Inc = LD->getOperand(2); 9701 9702 // Some backends use TargetConstants for load offsets, but don't expect 9703 // TargetConstants in general ADD nodes. We can convert these constants into 9704 // regular Constants (if the constant is not opaque). 9705 assert((Inc.getOpcode() != ISD::TargetConstant || 9706 !cast<ConstantSDNode>(Inc)->isOpaque()) && 9707 "Cannot split out indexing using opaque target constants"); 9708 if (Inc.getOpcode() == ISD::TargetConstant) { 9709 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 9710 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 9711 ConstInc->getValueType(0)); 9712 } 9713 9714 unsigned Opc = 9715 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 9716 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 9717 } 9718 9719 SDValue DAGCombiner::visitLOAD(SDNode *N) { 9720 LoadSDNode *LD = cast<LoadSDNode>(N); 9721 SDValue Chain = LD->getChain(); 9722 SDValue Ptr = LD->getBasePtr(); 9723 9724 // If load is not volatile and there are no uses of the loaded value (and 9725 // the updated indexed value in case of indexed loads), change uses of the 9726 // chain value into uses of the chain input (i.e. delete the dead load). 9727 if (!LD->isVolatile()) { 9728 if (N->getValueType(1) == MVT::Other) { 9729 // Unindexed loads. 9730 if (!N->hasAnyUseOfValue(0)) { 9731 // It's not safe to use the two value CombineTo variant here. e.g. 9732 // v1, chain2 = load chain1, loc 9733 // v2, chain3 = load chain2, loc 9734 // v3 = add v2, c 9735 // Now we replace use of chain2 with chain1. This makes the second load 9736 // isomorphic to the one we are deleting, and thus makes this load live. 9737 DEBUG(dbgs() << "\nReplacing.6 "; 9738 N->dump(&DAG); 9739 dbgs() << "\nWith chain: "; 9740 Chain.getNode()->dump(&DAG); 9741 dbgs() << "\n"); 9742 WorklistRemover DeadNodes(*this); 9743 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 9744 9745 if (N->use_empty()) 9746 deleteAndRecombine(N); 9747 9748 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9749 } 9750 } else { 9751 // Indexed loads. 9752 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 9753 9754 // If this load has an opaque TargetConstant offset, then we cannot split 9755 // the indexing into an add/sub directly (that TargetConstant may not be 9756 // valid for a different type of node, and we cannot convert an opaque 9757 // target constant into a regular constant). 9758 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 9759 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 9760 9761 if (!N->hasAnyUseOfValue(0) && 9762 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 9763 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 9764 SDValue Index; 9765 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 9766 Index = SplitIndexingFromLoad(LD); 9767 // Try to fold the base pointer arithmetic into subsequent loads and 9768 // stores. 9769 AddUsersToWorklist(N); 9770 } else 9771 Index = DAG.getUNDEF(N->getValueType(1)); 9772 DEBUG(dbgs() << "\nReplacing.7 "; 9773 N->dump(&DAG); 9774 dbgs() << "\nWith: "; 9775 Undef.getNode()->dump(&DAG); 9776 dbgs() << " and 2 other values\n"); 9777 WorklistRemover DeadNodes(*this); 9778 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 9779 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 9780 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 9781 deleteAndRecombine(N); 9782 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9783 } 9784 } 9785 } 9786 9787 // If this load is directly stored, replace the load value with the stored 9788 // value. 9789 // TODO: Handle store large -> read small portion. 9790 // TODO: Handle TRUNCSTORE/LOADEXT 9791 if (ISD::isNormalLoad(N) && !LD->isVolatile()) { 9792 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 9793 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 9794 if (PrevST->getBasePtr() == Ptr && 9795 PrevST->getValue().getValueType() == N->getValueType(0)) 9796 return CombineTo(N, Chain.getOperand(1), Chain); 9797 } 9798 } 9799 9800 // Try to infer better alignment information than the load already has. 9801 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 9802 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 9803 if (Align > LD->getMemOperand()->getBaseAlignment()) { 9804 SDValue NewLoad = 9805 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N), 9806 LD->getValueType(0), 9807 Chain, Ptr, LD->getPointerInfo(), 9808 LD->getMemoryVT(), 9809 LD->isVolatile(), LD->isNonTemporal(), 9810 LD->isInvariant(), Align, LD->getAAInfo()); 9811 if (NewLoad.getNode() != N) 9812 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 9813 } 9814 } 9815 } 9816 9817 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 9818 : DAG.getSubtarget().useAA(); 9819 #ifndef NDEBUG 9820 if (CombinerAAOnlyFunc.getNumOccurrences() && 9821 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 9822 UseAA = false; 9823 #endif 9824 if (UseAA && LD->isUnindexed()) { 9825 // Walk up chain skipping non-aliasing memory nodes. 9826 SDValue BetterChain = FindBetterChain(N, Chain); 9827 9828 // If there is a better chain. 9829 if (Chain != BetterChain) { 9830 SDValue ReplLoad; 9831 9832 // Replace the chain to void dependency. 9833 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 9834 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 9835 BetterChain, Ptr, LD->getMemOperand()); 9836 } else { 9837 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 9838 LD->getValueType(0), 9839 BetterChain, Ptr, LD->getMemoryVT(), 9840 LD->getMemOperand()); 9841 } 9842 9843 // Create token factor to keep old chain connected. 9844 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 9845 MVT::Other, Chain, ReplLoad.getValue(1)); 9846 9847 // Make sure the new and old chains are cleaned up. 9848 AddToWorklist(Token.getNode()); 9849 9850 // Replace uses with load result and token factor. Don't add users 9851 // to work list. 9852 return CombineTo(N, ReplLoad.getValue(0), Token, false); 9853 } 9854 } 9855 9856 // Try transforming N to an indexed load. 9857 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9858 return SDValue(N, 0); 9859 9860 // Try to slice up N to more direct loads if the slices are mapped to 9861 // different register banks or pairing can take place. 9862 if (SliceUpLoad(N)) 9863 return SDValue(N, 0); 9864 9865 return SDValue(); 9866 } 9867 9868 namespace { 9869 /// \brief Helper structure used to slice a load in smaller loads. 9870 /// Basically a slice is obtained from the following sequence: 9871 /// Origin = load Ty1, Base 9872 /// Shift = srl Ty1 Origin, CstTy Amount 9873 /// Inst = trunc Shift to Ty2 9874 /// 9875 /// Then, it will be rewriten into: 9876 /// Slice = load SliceTy, Base + SliceOffset 9877 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 9878 /// 9879 /// SliceTy is deduced from the number of bits that are actually used to 9880 /// build Inst. 9881 struct LoadedSlice { 9882 /// \brief Helper structure used to compute the cost of a slice. 9883 struct Cost { 9884 /// Are we optimizing for code size. 9885 bool ForCodeSize; 9886 /// Various cost. 9887 unsigned Loads; 9888 unsigned Truncates; 9889 unsigned CrossRegisterBanksCopies; 9890 unsigned ZExts; 9891 unsigned Shift; 9892 9893 Cost(bool ForCodeSize = false) 9894 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 9895 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 9896 9897 /// \brief Get the cost of one isolated slice. 9898 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 9899 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 9900 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 9901 EVT TruncType = LS.Inst->getValueType(0); 9902 EVT LoadedType = LS.getLoadedType(); 9903 if (TruncType != LoadedType && 9904 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 9905 ZExts = 1; 9906 } 9907 9908 /// \brief Account for slicing gain in the current cost. 9909 /// Slicing provide a few gains like removing a shift or a 9910 /// truncate. This method allows to grow the cost of the original 9911 /// load with the gain from this slice. 9912 void addSliceGain(const LoadedSlice &LS) { 9913 // Each slice saves a truncate. 9914 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 9915 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 9916 LS.Inst->getValueType(0))) 9917 ++Truncates; 9918 // If there is a shift amount, this slice gets rid of it. 9919 if (LS.Shift) 9920 ++Shift; 9921 // If this slice can merge a cross register bank copy, account for it. 9922 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 9923 ++CrossRegisterBanksCopies; 9924 } 9925 9926 Cost &operator+=(const Cost &RHS) { 9927 Loads += RHS.Loads; 9928 Truncates += RHS.Truncates; 9929 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 9930 ZExts += RHS.ZExts; 9931 Shift += RHS.Shift; 9932 return *this; 9933 } 9934 9935 bool operator==(const Cost &RHS) const { 9936 return Loads == RHS.Loads && Truncates == RHS.Truncates && 9937 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 9938 ZExts == RHS.ZExts && Shift == RHS.Shift; 9939 } 9940 9941 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 9942 9943 bool operator<(const Cost &RHS) const { 9944 // Assume cross register banks copies are as expensive as loads. 9945 // FIXME: Do we want some more target hooks? 9946 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 9947 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 9948 // Unless we are optimizing for code size, consider the 9949 // expensive operation first. 9950 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 9951 return ExpensiveOpsLHS < ExpensiveOpsRHS; 9952 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 9953 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 9954 } 9955 9956 bool operator>(const Cost &RHS) const { return RHS < *this; } 9957 9958 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 9959 9960 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 9961 }; 9962 // The last instruction that represent the slice. This should be a 9963 // truncate instruction. 9964 SDNode *Inst; 9965 // The original load instruction. 9966 LoadSDNode *Origin; 9967 // The right shift amount in bits from the original load. 9968 unsigned Shift; 9969 // The DAG from which Origin came from. 9970 // This is used to get some contextual information about legal types, etc. 9971 SelectionDAG *DAG; 9972 9973 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 9974 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 9975 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 9976 9977 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 9978 /// \return Result is \p BitWidth and has used bits set to 1 and 9979 /// not used bits set to 0. 9980 APInt getUsedBits() const { 9981 // Reproduce the trunc(lshr) sequence: 9982 // - Start from the truncated value. 9983 // - Zero extend to the desired bit width. 9984 // - Shift left. 9985 assert(Origin && "No original load to compare against."); 9986 unsigned BitWidth = Origin->getValueSizeInBits(0); 9987 assert(Inst && "This slice is not bound to an instruction"); 9988 assert(Inst->getValueSizeInBits(0) <= BitWidth && 9989 "Extracted slice is bigger than the whole type!"); 9990 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 9991 UsedBits.setAllBits(); 9992 UsedBits = UsedBits.zext(BitWidth); 9993 UsedBits <<= Shift; 9994 return UsedBits; 9995 } 9996 9997 /// \brief Get the size of the slice to be loaded in bytes. 9998 unsigned getLoadedSize() const { 9999 unsigned SliceSize = getUsedBits().countPopulation(); 10000 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 10001 return SliceSize / 8; 10002 } 10003 10004 /// \brief Get the type that will be loaded for this slice. 10005 /// Note: This may not be the final type for the slice. 10006 EVT getLoadedType() const { 10007 assert(DAG && "Missing context"); 10008 LLVMContext &Ctxt = *DAG->getContext(); 10009 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 10010 } 10011 10012 /// \brief Get the alignment of the load used for this slice. 10013 unsigned getAlignment() const { 10014 unsigned Alignment = Origin->getAlignment(); 10015 unsigned Offset = getOffsetFromBase(); 10016 if (Offset != 0) 10017 Alignment = MinAlign(Alignment, Alignment + Offset); 10018 return Alignment; 10019 } 10020 10021 /// \brief Check if this slice can be rewritten with legal operations. 10022 bool isLegal() const { 10023 // An invalid slice is not legal. 10024 if (!Origin || !Inst || !DAG) 10025 return false; 10026 10027 // Offsets are for indexed load only, we do not handle that. 10028 if (Origin->getOffset().getOpcode() != ISD::UNDEF) 10029 return false; 10030 10031 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10032 10033 // Check that the type is legal. 10034 EVT SliceType = getLoadedType(); 10035 if (!TLI.isTypeLegal(SliceType)) 10036 return false; 10037 10038 // Check that the load is legal for this type. 10039 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 10040 return false; 10041 10042 // Check that the offset can be computed. 10043 // 1. Check its type. 10044 EVT PtrType = Origin->getBasePtr().getValueType(); 10045 if (PtrType == MVT::Untyped || PtrType.isExtended()) 10046 return false; 10047 10048 // 2. Check that it fits in the immediate. 10049 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 10050 return false; 10051 10052 // 3. Check that the computation is legal. 10053 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 10054 return false; 10055 10056 // Check that the zext is legal if it needs one. 10057 EVT TruncateType = Inst->getValueType(0); 10058 if (TruncateType != SliceType && 10059 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 10060 return false; 10061 10062 return true; 10063 } 10064 10065 /// \brief Get the offset in bytes of this slice in the original chunk of 10066 /// bits. 10067 /// \pre DAG != nullptr. 10068 uint64_t getOffsetFromBase() const { 10069 assert(DAG && "Missing context."); 10070 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 10071 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 10072 uint64_t Offset = Shift / 8; 10073 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 10074 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 10075 "The size of the original loaded type is not a multiple of a" 10076 " byte."); 10077 // If Offset is bigger than TySizeInBytes, it means we are loading all 10078 // zeros. This should have been optimized before in the process. 10079 assert(TySizeInBytes > Offset && 10080 "Invalid shift amount for given loaded size"); 10081 if (IsBigEndian) 10082 Offset = TySizeInBytes - Offset - getLoadedSize(); 10083 return Offset; 10084 } 10085 10086 /// \brief Generate the sequence of instructions to load the slice 10087 /// represented by this object and redirect the uses of this slice to 10088 /// this new sequence of instructions. 10089 /// \pre this->Inst && this->Origin are valid Instructions and this 10090 /// object passed the legal check: LoadedSlice::isLegal returned true. 10091 /// \return The last instruction of the sequence used to load the slice. 10092 SDValue loadSlice() const { 10093 assert(Inst && Origin && "Unable to replace a non-existing slice."); 10094 const SDValue &OldBaseAddr = Origin->getBasePtr(); 10095 SDValue BaseAddr = OldBaseAddr; 10096 // Get the offset in that chunk of bytes w.r.t. the endianess. 10097 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 10098 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 10099 if (Offset) { 10100 // BaseAddr = BaseAddr + Offset. 10101 EVT ArithType = BaseAddr.getValueType(); 10102 SDLoc DL(Origin); 10103 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 10104 DAG->getConstant(Offset, DL, ArithType)); 10105 } 10106 10107 // Create the type of the loaded slice according to its size. 10108 EVT SliceType = getLoadedType(); 10109 10110 // Create the load for the slice. 10111 SDValue LastInst = DAG->getLoad( 10112 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 10113 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(), 10114 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment()); 10115 // If the final type is not the same as the loaded type, this means that 10116 // we have to pad with zero. Create a zero extend for that. 10117 EVT FinalType = Inst->getValueType(0); 10118 if (SliceType != FinalType) 10119 LastInst = 10120 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 10121 return LastInst; 10122 } 10123 10124 /// \brief Check if this slice can be merged with an expensive cross register 10125 /// bank copy. E.g., 10126 /// i = load i32 10127 /// f = bitcast i32 i to float 10128 bool canMergeExpensiveCrossRegisterBankCopy() const { 10129 if (!Inst || !Inst->hasOneUse()) 10130 return false; 10131 SDNode *Use = *Inst->use_begin(); 10132 if (Use->getOpcode() != ISD::BITCAST) 10133 return false; 10134 assert(DAG && "Missing context"); 10135 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10136 EVT ResVT = Use->getValueType(0); 10137 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 10138 const TargetRegisterClass *ArgRC = 10139 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 10140 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 10141 return false; 10142 10143 // At this point, we know that we perform a cross-register-bank copy. 10144 // Check if it is expensive. 10145 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 10146 // Assume bitcasts are cheap, unless both register classes do not 10147 // explicitly share a common sub class. 10148 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 10149 return false; 10150 10151 // Check if it will be merged with the load. 10152 // 1. Check the alignment constraint. 10153 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 10154 ResVT.getTypeForEVT(*DAG->getContext())); 10155 10156 if (RequiredAlignment > getAlignment()) 10157 return false; 10158 10159 // 2. Check that the load is a legal operation for that type. 10160 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 10161 return false; 10162 10163 // 3. Check that we do not have a zext in the way. 10164 if (Inst->getValueType(0) != getLoadedType()) 10165 return false; 10166 10167 return true; 10168 } 10169 }; 10170 } 10171 10172 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 10173 /// \p UsedBits looks like 0..0 1..1 0..0. 10174 static bool areUsedBitsDense(const APInt &UsedBits) { 10175 // If all the bits are one, this is dense! 10176 if (UsedBits.isAllOnesValue()) 10177 return true; 10178 10179 // Get rid of the unused bits on the right. 10180 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 10181 // Get rid of the unused bits on the left. 10182 if (NarrowedUsedBits.countLeadingZeros()) 10183 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 10184 // Check that the chunk of bits is completely used. 10185 return NarrowedUsedBits.isAllOnesValue(); 10186 } 10187 10188 /// \brief Check whether or not \p First and \p Second are next to each other 10189 /// in memory. This means that there is no hole between the bits loaded 10190 /// by \p First and the bits loaded by \p Second. 10191 static bool areSlicesNextToEachOther(const LoadedSlice &First, 10192 const LoadedSlice &Second) { 10193 assert(First.Origin == Second.Origin && First.Origin && 10194 "Unable to match different memory origins."); 10195 APInt UsedBits = First.getUsedBits(); 10196 assert((UsedBits & Second.getUsedBits()) == 0 && 10197 "Slices are not supposed to overlap."); 10198 UsedBits |= Second.getUsedBits(); 10199 return areUsedBitsDense(UsedBits); 10200 } 10201 10202 /// \brief Adjust the \p GlobalLSCost according to the target 10203 /// paring capabilities and the layout of the slices. 10204 /// \pre \p GlobalLSCost should account for at least as many loads as 10205 /// there is in the slices in \p LoadedSlices. 10206 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10207 LoadedSlice::Cost &GlobalLSCost) { 10208 unsigned NumberOfSlices = LoadedSlices.size(); 10209 // If there is less than 2 elements, no pairing is possible. 10210 if (NumberOfSlices < 2) 10211 return; 10212 10213 // Sort the slices so that elements that are likely to be next to each 10214 // other in memory are next to each other in the list. 10215 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 10216 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 10217 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 10218 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 10219 }); 10220 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 10221 // First (resp. Second) is the first (resp. Second) potentially candidate 10222 // to be placed in a paired load. 10223 const LoadedSlice *First = nullptr; 10224 const LoadedSlice *Second = nullptr; 10225 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 10226 // Set the beginning of the pair. 10227 First = Second) { 10228 10229 Second = &LoadedSlices[CurrSlice]; 10230 10231 // If First is NULL, it means we start a new pair. 10232 // Get to the next slice. 10233 if (!First) 10234 continue; 10235 10236 EVT LoadedType = First->getLoadedType(); 10237 10238 // If the types of the slices are different, we cannot pair them. 10239 if (LoadedType != Second->getLoadedType()) 10240 continue; 10241 10242 // Check if the target supplies paired loads for this type. 10243 unsigned RequiredAlignment = 0; 10244 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 10245 // move to the next pair, this type is hopeless. 10246 Second = nullptr; 10247 continue; 10248 } 10249 // Check if we meet the alignment requirement. 10250 if (RequiredAlignment > First->getAlignment()) 10251 continue; 10252 10253 // Check that both loads are next to each other in memory. 10254 if (!areSlicesNextToEachOther(*First, *Second)) 10255 continue; 10256 10257 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 10258 --GlobalLSCost.Loads; 10259 // Move to the next pair. 10260 Second = nullptr; 10261 } 10262 } 10263 10264 /// \brief Check the profitability of all involved LoadedSlice. 10265 /// Currently, it is considered profitable if there is exactly two 10266 /// involved slices (1) which are (2) next to each other in memory, and 10267 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 10268 /// 10269 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 10270 /// the elements themselves. 10271 /// 10272 /// FIXME: When the cost model will be mature enough, we can relax 10273 /// constraints (1) and (2). 10274 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10275 const APInt &UsedBits, bool ForCodeSize) { 10276 unsigned NumberOfSlices = LoadedSlices.size(); 10277 if (StressLoadSlicing) 10278 return NumberOfSlices > 1; 10279 10280 // Check (1). 10281 if (NumberOfSlices != 2) 10282 return false; 10283 10284 // Check (2). 10285 if (!areUsedBitsDense(UsedBits)) 10286 return false; 10287 10288 // Check (3). 10289 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 10290 // The original code has one big load. 10291 OrigCost.Loads = 1; 10292 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 10293 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 10294 // Accumulate the cost of all the slices. 10295 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 10296 GlobalSlicingCost += SliceCost; 10297 10298 // Account as cost in the original configuration the gain obtained 10299 // with the current slices. 10300 OrigCost.addSliceGain(LS); 10301 } 10302 10303 // If the target supports paired load, adjust the cost accordingly. 10304 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 10305 return OrigCost > GlobalSlicingCost; 10306 } 10307 10308 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 10309 /// operations, split it in the various pieces being extracted. 10310 /// 10311 /// This sort of thing is introduced by SROA. 10312 /// This slicing takes care not to insert overlapping loads. 10313 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 10314 bool DAGCombiner::SliceUpLoad(SDNode *N) { 10315 if (Level < AfterLegalizeDAG) 10316 return false; 10317 10318 LoadSDNode *LD = cast<LoadSDNode>(N); 10319 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 10320 !LD->getValueType(0).isInteger()) 10321 return false; 10322 10323 // Keep track of already used bits to detect overlapping values. 10324 // In that case, we will just abort the transformation. 10325 APInt UsedBits(LD->getValueSizeInBits(0), 0); 10326 10327 SmallVector<LoadedSlice, 4> LoadedSlices; 10328 10329 // Check if this load is used as several smaller chunks of bits. 10330 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 10331 // of computation for each trunc. 10332 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 10333 UI != UIEnd; ++UI) { 10334 // Skip the uses of the chain. 10335 if (UI.getUse().getResNo() != 0) 10336 continue; 10337 10338 SDNode *User = *UI; 10339 unsigned Shift = 0; 10340 10341 // Check if this is a trunc(lshr). 10342 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 10343 isa<ConstantSDNode>(User->getOperand(1))) { 10344 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 10345 User = *User->use_begin(); 10346 } 10347 10348 // At this point, User is a Truncate, iff we encountered, trunc or 10349 // trunc(lshr). 10350 if (User->getOpcode() != ISD::TRUNCATE) 10351 return false; 10352 10353 // The width of the type must be a power of 2 and greater than 8-bits. 10354 // Otherwise the load cannot be represented in LLVM IR. 10355 // Moreover, if we shifted with a non-8-bits multiple, the slice 10356 // will be across several bytes. We do not support that. 10357 unsigned Width = User->getValueSizeInBits(0); 10358 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 10359 return 0; 10360 10361 // Build the slice for this chain of computations. 10362 LoadedSlice LS(User, LD, Shift, &DAG); 10363 APInt CurrentUsedBits = LS.getUsedBits(); 10364 10365 // Check if this slice overlaps with another. 10366 if ((CurrentUsedBits & UsedBits) != 0) 10367 return false; 10368 // Update the bits used globally. 10369 UsedBits |= CurrentUsedBits; 10370 10371 // Check if the new slice would be legal. 10372 if (!LS.isLegal()) 10373 return false; 10374 10375 // Record the slice. 10376 LoadedSlices.push_back(LS); 10377 } 10378 10379 // Abort slicing if it does not seem to be profitable. 10380 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 10381 return false; 10382 10383 ++SlicedLoads; 10384 10385 // Rewrite each chain to use an independent load. 10386 // By construction, each chain can be represented by a unique load. 10387 10388 // Prepare the argument for the new token factor for all the slices. 10389 SmallVector<SDValue, 8> ArgChains; 10390 for (SmallVectorImpl<LoadedSlice>::const_iterator 10391 LSIt = LoadedSlices.begin(), 10392 LSItEnd = LoadedSlices.end(); 10393 LSIt != LSItEnd; ++LSIt) { 10394 SDValue SliceInst = LSIt->loadSlice(); 10395 CombineTo(LSIt->Inst, SliceInst, true); 10396 if (SliceInst.getNode()->getOpcode() != ISD::LOAD) 10397 SliceInst = SliceInst.getOperand(0); 10398 assert(SliceInst->getOpcode() == ISD::LOAD && 10399 "It takes more than a zext to get to the loaded slice!!"); 10400 ArgChains.push_back(SliceInst.getValue(1)); 10401 } 10402 10403 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 10404 ArgChains); 10405 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10406 return true; 10407 } 10408 10409 /// Check to see if V is (and load (ptr), imm), where the load is having 10410 /// specific bytes cleared out. If so, return the byte size being masked out 10411 /// and the shift amount. 10412 static std::pair<unsigned, unsigned> 10413 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 10414 std::pair<unsigned, unsigned> Result(0, 0); 10415 10416 // Check for the structure we're looking for. 10417 if (V->getOpcode() != ISD::AND || 10418 !isa<ConstantSDNode>(V->getOperand(1)) || 10419 !ISD::isNormalLoad(V->getOperand(0).getNode())) 10420 return Result; 10421 10422 // Check the chain and pointer. 10423 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 10424 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 10425 10426 // The store should be chained directly to the load or be an operand of a 10427 // tokenfactor. 10428 if (LD == Chain.getNode()) 10429 ; // ok. 10430 else if (Chain->getOpcode() != ISD::TokenFactor) 10431 return Result; // Fail. 10432 else { 10433 bool isOk = false; 10434 for (const SDValue &ChainOp : Chain->op_values()) 10435 if (ChainOp.getNode() == LD) { 10436 isOk = true; 10437 break; 10438 } 10439 if (!isOk) return Result; 10440 } 10441 10442 // This only handles simple types. 10443 if (V.getValueType() != MVT::i16 && 10444 V.getValueType() != MVT::i32 && 10445 V.getValueType() != MVT::i64) 10446 return Result; 10447 10448 // Check the constant mask. Invert it so that the bits being masked out are 10449 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 10450 // follow the sign bit for uniformity. 10451 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 10452 unsigned NotMaskLZ = countLeadingZeros(NotMask); 10453 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 10454 unsigned NotMaskTZ = countTrailingZeros(NotMask); 10455 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 10456 if (NotMaskLZ == 64) return Result; // All zero mask. 10457 10458 // See if we have a continuous run of bits. If so, we have 0*1+0* 10459 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 10460 return Result; 10461 10462 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 10463 if (V.getValueType() != MVT::i64 && NotMaskLZ) 10464 NotMaskLZ -= 64-V.getValueSizeInBits(); 10465 10466 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 10467 switch (MaskedBytes) { 10468 case 1: 10469 case 2: 10470 case 4: break; 10471 default: return Result; // All one mask, or 5-byte mask. 10472 } 10473 10474 // Verify that the first bit starts at a multiple of mask so that the access 10475 // is aligned the same as the access width. 10476 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 10477 10478 Result.first = MaskedBytes; 10479 Result.second = NotMaskTZ/8; 10480 return Result; 10481 } 10482 10483 10484 /// Check to see if IVal is something that provides a value as specified by 10485 /// MaskInfo. If so, replace the specified store with a narrower store of 10486 /// truncated IVal. 10487 static SDNode * 10488 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 10489 SDValue IVal, StoreSDNode *St, 10490 DAGCombiner *DC) { 10491 unsigned NumBytes = MaskInfo.first; 10492 unsigned ByteShift = MaskInfo.second; 10493 SelectionDAG &DAG = DC->getDAG(); 10494 10495 // Check to see if IVal is all zeros in the part being masked in by the 'or' 10496 // that uses this. If not, this is not a replacement. 10497 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 10498 ByteShift*8, (ByteShift+NumBytes)*8); 10499 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 10500 10501 // Check that it is legal on the target to do this. It is legal if the new 10502 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 10503 // legalization. 10504 MVT VT = MVT::getIntegerVT(NumBytes*8); 10505 if (!DC->isTypeLegal(VT)) 10506 return nullptr; 10507 10508 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 10509 // shifted by ByteShift and truncated down to NumBytes. 10510 if (ByteShift) { 10511 SDLoc DL(IVal); 10512 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 10513 DAG.getConstant(ByteShift*8, DL, 10514 DC->getShiftAmountTy(IVal.getValueType()))); 10515 } 10516 10517 // Figure out the offset for the store and the alignment of the access. 10518 unsigned StOffset; 10519 unsigned NewAlign = St->getAlignment(); 10520 10521 if (DAG.getDataLayout().isLittleEndian()) 10522 StOffset = ByteShift; 10523 else 10524 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 10525 10526 SDValue Ptr = St->getBasePtr(); 10527 if (StOffset) { 10528 SDLoc DL(IVal); 10529 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 10530 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 10531 NewAlign = MinAlign(NewAlign, StOffset); 10532 } 10533 10534 // Truncate down to the new size. 10535 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 10536 10537 ++OpsNarrowed; 10538 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr, 10539 St->getPointerInfo().getWithOffset(StOffset), 10540 false, false, NewAlign).getNode(); 10541 } 10542 10543 10544 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 10545 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 10546 /// narrowing the load and store if it would end up being a win for performance 10547 /// or code size. 10548 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 10549 StoreSDNode *ST = cast<StoreSDNode>(N); 10550 if (ST->isVolatile()) 10551 return SDValue(); 10552 10553 SDValue Chain = ST->getChain(); 10554 SDValue Value = ST->getValue(); 10555 SDValue Ptr = ST->getBasePtr(); 10556 EVT VT = Value.getValueType(); 10557 10558 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 10559 return SDValue(); 10560 10561 unsigned Opc = Value.getOpcode(); 10562 10563 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 10564 // is a byte mask indicating a consecutive number of bytes, check to see if 10565 // Y is known to provide just those bytes. If so, we try to replace the 10566 // load + replace + store sequence with a single (narrower) store, which makes 10567 // the load dead. 10568 if (Opc == ISD::OR) { 10569 std::pair<unsigned, unsigned> MaskedLoad; 10570 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 10571 if (MaskedLoad.first) 10572 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10573 Value.getOperand(1), ST,this)) 10574 return SDValue(NewST, 0); 10575 10576 // Or is commutative, so try swapping X and Y. 10577 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 10578 if (MaskedLoad.first) 10579 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10580 Value.getOperand(0), ST,this)) 10581 return SDValue(NewST, 0); 10582 } 10583 10584 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 10585 Value.getOperand(1).getOpcode() != ISD::Constant) 10586 return SDValue(); 10587 10588 SDValue N0 = Value.getOperand(0); 10589 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 10590 Chain == SDValue(N0.getNode(), 1)) { 10591 LoadSDNode *LD = cast<LoadSDNode>(N0); 10592 if (LD->getBasePtr() != Ptr || 10593 LD->getPointerInfo().getAddrSpace() != 10594 ST->getPointerInfo().getAddrSpace()) 10595 return SDValue(); 10596 10597 // Find the type to narrow it the load / op / store to. 10598 SDValue N1 = Value.getOperand(1); 10599 unsigned BitWidth = N1.getValueSizeInBits(); 10600 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 10601 if (Opc == ISD::AND) 10602 Imm ^= APInt::getAllOnesValue(BitWidth); 10603 if (Imm == 0 || Imm.isAllOnesValue()) 10604 return SDValue(); 10605 unsigned ShAmt = Imm.countTrailingZeros(); 10606 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 10607 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 10608 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10609 // The narrowing should be profitable, the load/store operation should be 10610 // legal (or custom) and the store size should be equal to the NewVT width. 10611 while (NewBW < BitWidth && 10612 (NewVT.getStoreSizeInBits() != NewBW || 10613 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 10614 !TLI.isNarrowingProfitable(VT, NewVT))) { 10615 NewBW = NextPowerOf2(NewBW); 10616 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10617 } 10618 if (NewBW >= BitWidth) 10619 return SDValue(); 10620 10621 // If the lsb changed does not start at the type bitwidth boundary, 10622 // start at the previous one. 10623 if (ShAmt % NewBW) 10624 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 10625 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 10626 std::min(BitWidth, ShAmt + NewBW)); 10627 if ((Imm & Mask) == Imm) { 10628 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 10629 if (Opc == ISD::AND) 10630 NewImm ^= APInt::getAllOnesValue(NewBW); 10631 uint64_t PtrOff = ShAmt / 8; 10632 // For big endian targets, we need to adjust the offset to the pointer to 10633 // load the correct bytes. 10634 if (DAG.getDataLayout().isBigEndian()) 10635 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 10636 10637 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 10638 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 10639 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 10640 return SDValue(); 10641 10642 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 10643 Ptr.getValueType(), Ptr, 10644 DAG.getConstant(PtrOff, SDLoc(LD), 10645 Ptr.getValueType())); 10646 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0), 10647 LD->getChain(), NewPtr, 10648 LD->getPointerInfo().getWithOffset(PtrOff), 10649 LD->isVolatile(), LD->isNonTemporal(), 10650 LD->isInvariant(), NewAlign, 10651 LD->getAAInfo()); 10652 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 10653 DAG.getConstant(NewImm, SDLoc(Value), 10654 NewVT)); 10655 SDValue NewST = DAG.getStore(Chain, SDLoc(N), 10656 NewVal, NewPtr, 10657 ST->getPointerInfo().getWithOffset(PtrOff), 10658 false, false, NewAlign); 10659 10660 AddToWorklist(NewPtr.getNode()); 10661 AddToWorklist(NewLD.getNode()); 10662 AddToWorklist(NewVal.getNode()); 10663 WorklistRemover DeadNodes(*this); 10664 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 10665 ++OpsNarrowed; 10666 return NewST; 10667 } 10668 } 10669 10670 return SDValue(); 10671 } 10672 10673 /// For a given floating point load / store pair, if the load value isn't used 10674 /// by any other operations, then consider transforming the pair to integer 10675 /// load / store operations if the target deems the transformation profitable. 10676 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 10677 StoreSDNode *ST = cast<StoreSDNode>(N); 10678 SDValue Chain = ST->getChain(); 10679 SDValue Value = ST->getValue(); 10680 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 10681 Value.hasOneUse() && 10682 Chain == SDValue(Value.getNode(), 1)) { 10683 LoadSDNode *LD = cast<LoadSDNode>(Value); 10684 EVT VT = LD->getMemoryVT(); 10685 if (!VT.isFloatingPoint() || 10686 VT != ST->getMemoryVT() || 10687 LD->isNonTemporal() || 10688 ST->isNonTemporal() || 10689 LD->getPointerInfo().getAddrSpace() != 0 || 10690 ST->getPointerInfo().getAddrSpace() != 0) 10691 return SDValue(); 10692 10693 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10694 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 10695 !TLI.isOperationLegal(ISD::STORE, IntVT) || 10696 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 10697 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 10698 return SDValue(); 10699 10700 unsigned LDAlign = LD->getAlignment(); 10701 unsigned STAlign = ST->getAlignment(); 10702 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 10703 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 10704 if (LDAlign < ABIAlign || STAlign < ABIAlign) 10705 return SDValue(); 10706 10707 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), 10708 LD->getChain(), LD->getBasePtr(), 10709 LD->getPointerInfo(), 10710 false, false, false, LDAlign); 10711 10712 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N), 10713 NewLD, ST->getBasePtr(), 10714 ST->getPointerInfo(), 10715 false, false, STAlign); 10716 10717 AddToWorklist(NewLD.getNode()); 10718 AddToWorklist(NewST.getNode()); 10719 WorklistRemover DeadNodes(*this); 10720 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 10721 ++LdStFP2Int; 10722 return NewST; 10723 } 10724 10725 return SDValue(); 10726 } 10727 10728 namespace { 10729 /// Helper struct to parse and store a memory address as base + index + offset. 10730 /// We ignore sign extensions when it is safe to do so. 10731 /// The following two expressions are not equivalent. To differentiate we need 10732 /// to store whether there was a sign extension involved in the index 10733 /// computation. 10734 /// (load (i64 add (i64 copyfromreg %c) 10735 /// (i64 signextend (add (i8 load %index) 10736 /// (i8 1)))) 10737 /// vs 10738 /// 10739 /// (load (i64 add (i64 copyfromreg %c) 10740 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 10741 /// (i32 1))))) 10742 struct BaseIndexOffset { 10743 SDValue Base; 10744 SDValue Index; 10745 int64_t Offset; 10746 bool IsIndexSignExt; 10747 10748 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 10749 10750 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 10751 bool IsIndexSignExt) : 10752 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 10753 10754 bool equalBaseIndex(const BaseIndexOffset &Other) { 10755 return Other.Base == Base && Other.Index == Index && 10756 Other.IsIndexSignExt == IsIndexSignExt; 10757 } 10758 10759 /// Parses tree in Ptr for base, index, offset addresses. 10760 static BaseIndexOffset match(SDValue Ptr) { 10761 bool IsIndexSignExt = false; 10762 10763 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 10764 // instruction, then it could be just the BASE or everything else we don't 10765 // know how to handle. Just use Ptr as BASE and give up. 10766 if (Ptr->getOpcode() != ISD::ADD) 10767 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10768 10769 // We know that we have at least an ADD instruction. Try to pattern match 10770 // the simple case of BASE + OFFSET. 10771 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 10772 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 10773 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 10774 IsIndexSignExt); 10775 } 10776 10777 // Inside a loop the current BASE pointer is calculated using an ADD and a 10778 // MUL instruction. In this case Ptr is the actual BASE pointer. 10779 // (i64 add (i64 %array_ptr) 10780 // (i64 mul (i64 %induction_var) 10781 // (i64 %element_size))) 10782 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 10783 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10784 10785 // Look at Base + Index + Offset cases. 10786 SDValue Base = Ptr->getOperand(0); 10787 SDValue IndexOffset = Ptr->getOperand(1); 10788 10789 // Skip signextends. 10790 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 10791 IndexOffset = IndexOffset->getOperand(0); 10792 IsIndexSignExt = true; 10793 } 10794 10795 // Either the case of Base + Index (no offset) or something else. 10796 if (IndexOffset->getOpcode() != ISD::ADD) 10797 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 10798 10799 // Now we have the case of Base + Index + offset. 10800 SDValue Index = IndexOffset->getOperand(0); 10801 SDValue Offset = IndexOffset->getOperand(1); 10802 10803 if (!isa<ConstantSDNode>(Offset)) 10804 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 10805 10806 // Ignore signextends. 10807 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 10808 Index = Index->getOperand(0); 10809 IsIndexSignExt = true; 10810 } else IsIndexSignExt = false; 10811 10812 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 10813 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 10814 } 10815 }; 10816 } // namespace 10817 10818 SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG, 10819 SDLoc SL, 10820 ArrayRef<MemOpLink> Stores, 10821 SmallVectorImpl<SDValue> &Chains, 10822 EVT Ty) const { 10823 SmallVector<SDValue, 8> BuildVector; 10824 10825 for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { 10826 StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); 10827 Chains.push_back(St->getChain()); 10828 BuildVector.push_back(St->getValue()); 10829 } 10830 10831 return DAG.getNode(ISD::BUILD_VECTOR, SL, Ty, BuildVector); 10832 } 10833 10834 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 10835 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, 10836 unsigned NumStores, bool IsConstantSrc, bool UseVector) { 10837 // Make sure we have something to merge. 10838 if (NumStores < 2) 10839 return false; 10840 10841 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 10842 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 10843 unsigned LatestNodeUsed = 0; 10844 10845 for (unsigned i=0; i < NumStores; ++i) { 10846 // Find a chain for the new wide-store operand. Notice that some 10847 // of the store nodes that we found may not be selected for inclusion 10848 // in the wide store. The chain we use needs to be the chain of the 10849 // latest store node which is *used* and replaced by the wide store. 10850 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 10851 LatestNodeUsed = i; 10852 } 10853 10854 SmallVector<SDValue, 8> Chains; 10855 10856 // The latest Node in the DAG. 10857 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 10858 SDLoc DL(StoreNodes[0].MemNode); 10859 10860 SDValue StoredVal; 10861 if (UseVector) { 10862 bool IsVec = MemVT.isVector(); 10863 unsigned Elts = NumStores; 10864 if (IsVec) { 10865 // When merging vector stores, get the total number of elements. 10866 Elts *= MemVT.getVectorNumElements(); 10867 } 10868 // Get the type for the merged vector store. 10869 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 10870 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 10871 10872 if (IsConstantSrc) { 10873 StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); 10874 } else { 10875 SmallVector<SDValue, 8> Ops; 10876 for (unsigned i = 0; i < NumStores; ++i) { 10877 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 10878 SDValue Val = St->getValue(); 10879 // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. 10880 if (Val.getValueType() != MemVT) 10881 return false; 10882 Ops.push_back(Val); 10883 Chains.push_back(St->getChain()); 10884 } 10885 10886 // Build the extracted vector elements back into a vector. 10887 StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 10888 DL, Ty, Ops); } 10889 } else { 10890 // We should always use a vector store when merging extracted vector 10891 // elements, so this path implies a store of constants. 10892 assert(IsConstantSrc && "Merged vector elements should use vector store"); 10893 10894 unsigned SizeInBits = NumStores * ElementSizeBytes * 8; 10895 APInt StoreInt(SizeInBits, 0); 10896 10897 // Construct a single integer constant which is made of the smaller 10898 // constant inputs. 10899 bool IsLE = DAG.getDataLayout().isLittleEndian(); 10900 for (unsigned i = 0; i < NumStores; ++i) { 10901 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 10902 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 10903 Chains.push_back(St->getChain()); 10904 10905 SDValue Val = St->getValue(); 10906 StoreInt <<= ElementSizeBytes * 8; 10907 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 10908 StoreInt |= C->getAPIntValue().zext(SizeInBits); 10909 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 10910 StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); 10911 } else { 10912 llvm_unreachable("Invalid constant element type"); 10913 } 10914 } 10915 10916 // Create the new Load and Store operations. 10917 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 10918 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 10919 } 10920 10921 assert(!Chains.empty()); 10922 10923 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 10924 SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, 10925 FirstInChain->getBasePtr(), 10926 FirstInChain->getPointerInfo(), 10927 false, false, 10928 FirstInChain->getAlignment()); 10929 10930 // Replace the last store with the new store 10931 CombineTo(LatestOp, NewStore); 10932 // Erase all other stores. 10933 for (unsigned i = 0; i < NumStores; ++i) { 10934 if (StoreNodes[i].MemNode == LatestOp) 10935 continue; 10936 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 10937 // ReplaceAllUsesWith will replace all uses that existed when it was 10938 // called, but graph optimizations may cause new ones to appear. For 10939 // example, the case in pr14333 looks like 10940 // 10941 // St's chain -> St -> another store -> X 10942 // 10943 // And the only difference from St to the other store is the chain. 10944 // When we change it's chain to be St's chain they become identical, 10945 // get CSEed and the net result is that X is now a use of St. 10946 // Since we know that St is redundant, just iterate. 10947 while (!St->use_empty()) 10948 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 10949 deleteAndRecombine(St); 10950 } 10951 10952 return true; 10953 } 10954 10955 void DAGCombiner::getStoreMergeAndAliasCandidates( 10956 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 10957 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { 10958 // This holds the base pointer, index, and the offset in bytes from the base 10959 // pointer. 10960 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr()); 10961 10962 // We must have a base and an offset. 10963 if (!BasePtr.Base.getNode()) 10964 return; 10965 10966 // Do not handle stores to undef base pointers. 10967 if (BasePtr.Base.getOpcode() == ISD::UNDEF) 10968 return; 10969 10970 // Walk up the chain and look for nodes with offsets from the same 10971 // base pointer. Stop when reaching an instruction with a different kind 10972 // or instruction which has a different base pointer. 10973 EVT MemVT = St->getMemoryVT(); 10974 unsigned Seq = 0; 10975 StoreSDNode *Index = St; 10976 10977 10978 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 10979 : DAG.getSubtarget().useAA(); 10980 10981 if (UseAA) { 10982 // Look at other users of the same chain. Stores on the same chain do not 10983 // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized 10984 // to be on the same chain, so don't bother looking at adjacent chains. 10985 10986 SDValue Chain = St->getChain(); 10987 for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { 10988 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 10989 if (I.getOperandNo() != 0) 10990 continue; 10991 10992 if (OtherST->isVolatile() || OtherST->isIndexed()) 10993 continue; 10994 10995 if (OtherST->getMemoryVT() != MemVT) 10996 continue; 10997 10998 BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr()); 10999 11000 if (Ptr.equalBaseIndex(BasePtr)) 11001 StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); 11002 } 11003 } 11004 11005 return; 11006 } 11007 11008 while (Index) { 11009 // If the chain has more than one use, then we can't reorder the mem ops. 11010 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 11011 break; 11012 11013 // Find the base pointer and offset for this memory node. 11014 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr()); 11015 11016 // Check that the base pointer is the same as the original one. 11017 if (!Ptr.equalBaseIndex(BasePtr)) 11018 break; 11019 11020 // The memory operands must not be volatile. 11021 if (Index->isVolatile() || Index->isIndexed()) 11022 break; 11023 11024 // No truncation. 11025 if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index)) 11026 if (St->isTruncatingStore()) 11027 break; 11028 11029 // The stored memory type must be the same. 11030 if (Index->getMemoryVT() != MemVT) 11031 break; 11032 11033 // We found a potential memory operand to merge. 11034 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 11035 11036 // Find the next memory operand in the chain. If the next operand in the 11037 // chain is a store then move up and continue the scan with the next 11038 // memory operand. If the next operand is a load save it and use alias 11039 // information to check if it interferes with anything. 11040 SDNode *NextInChain = Index->getChain().getNode(); 11041 while (1) { 11042 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 11043 // We found a store node. Use it for the next iteration. 11044 Index = STn; 11045 break; 11046 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 11047 if (Ldn->isVolatile()) { 11048 Index = nullptr; 11049 break; 11050 } 11051 11052 // Save the load node for later. Continue the scan. 11053 AliasLoadNodes.push_back(Ldn); 11054 NextInChain = Ldn->getChain().getNode(); 11055 continue; 11056 } else { 11057 Index = nullptr; 11058 break; 11059 } 11060 } 11061 } 11062 } 11063 11064 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 11065 if (OptLevel == CodeGenOpt::None) 11066 return false; 11067 11068 EVT MemVT = St->getMemoryVT(); 11069 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11070 bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( 11071 Attribute::NoImplicitFloat); 11072 11073 // This function cannot currently deal with non-byte-sized memory sizes. 11074 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 11075 return false; 11076 11077 if (!MemVT.isSimple()) 11078 return false; 11079 11080 // Perform an early exit check. Do not bother looking at stored values that 11081 // are not constants, loads, or extracted vector elements. 11082 SDValue StoredVal = St->getValue(); 11083 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 11084 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 11085 isa<ConstantFPSDNode>(StoredVal); 11086 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 11087 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 11088 11089 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 11090 return false; 11091 11092 // Don't merge vectors into wider vectors if the source data comes from loads. 11093 // TODO: This restriction can be lifted by using logic similar to the 11094 // ExtractVecSrc case. 11095 if (MemVT.isVector() && IsLoadSrc) 11096 return false; 11097 11098 // Only look at ends of store sequences. 11099 SDValue Chain = SDValue(St, 0); 11100 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 11101 return false; 11102 11103 // Save the LoadSDNodes that we find in the chain. 11104 // We need to make sure that these nodes do not interfere with 11105 // any of the store nodes. 11106 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 11107 11108 // Save the StoreSDNodes that we find in the chain. 11109 SmallVector<MemOpLink, 8> StoreNodes; 11110 11111 getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); 11112 11113 // Check if there is anything to merge. 11114 if (StoreNodes.size() < 2) 11115 return false; 11116 11117 // Sort the memory operands according to their distance from the base pointer. 11118 std::sort(StoreNodes.begin(), StoreNodes.end(), 11119 [](MemOpLink LHS, MemOpLink RHS) { 11120 return LHS.OffsetFromBase < RHS.OffsetFromBase || 11121 (LHS.OffsetFromBase == RHS.OffsetFromBase && 11122 LHS.SequenceNum > RHS.SequenceNum); 11123 }); 11124 11125 // Scan the memory operations on the chain and find the first non-consecutive 11126 // store memory address. 11127 unsigned LastConsecutiveStore = 0; 11128 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 11129 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 11130 11131 // Check that the addresses are consecutive starting from the second 11132 // element in the list of stores. 11133 if (i > 0) { 11134 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 11135 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11136 break; 11137 } 11138 11139 bool Alias = false; 11140 // Check if this store interferes with any of the loads that we found. 11141 for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld) 11142 if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) { 11143 Alias = true; 11144 break; 11145 } 11146 // We found a load that alias with this store. Stop the sequence. 11147 if (Alias) 11148 break; 11149 11150 // Mark this node as useful. 11151 LastConsecutiveStore = i; 11152 } 11153 11154 // The node with the lowest store address. 11155 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11156 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 11157 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 11158 LLVMContext &Context = *DAG.getContext(); 11159 const DataLayout &DL = DAG.getDataLayout(); 11160 11161 // Store the constants into memory as one consecutive store. 11162 if (IsConstantSrc) { 11163 unsigned LastLegalType = 0; 11164 unsigned LastLegalVectorType = 0; 11165 bool NonZero = false; 11166 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11167 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11168 SDValue StoredVal = St->getValue(); 11169 11170 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 11171 NonZero |= !C->isNullValue(); 11172 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 11173 NonZero |= !C->getConstantFPValue()->isNullValue(); 11174 } else { 11175 // Non-constant. 11176 break; 11177 } 11178 11179 // Find a legal type for the constant store. 11180 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11181 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11182 bool IsFast; 11183 if (TLI.isTypeLegal(StoreTy) && 11184 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11185 FirstStoreAlign, &IsFast) && IsFast) { 11186 LastLegalType = i+1; 11187 // Or check whether a truncstore is legal. 11188 } else if (TLI.getTypeAction(Context, StoreTy) == 11189 TargetLowering::TypePromoteInteger) { 11190 EVT LegalizedStoredValueTy = 11191 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 11192 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11193 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11194 FirstStoreAS, FirstStoreAlign, &IsFast) && 11195 IsFast) { 11196 LastLegalType = i + 1; 11197 } 11198 } 11199 11200 // We only use vectors if the constant is known to be zero or the target 11201 // allows it and the function is not marked with the noimplicitfloat 11202 // attribute. 11203 if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, 11204 FirstStoreAS)) && 11205 !NoVectors) { 11206 // Find a legal type for the vector store. 11207 EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); 11208 if (TLI.isTypeLegal(Ty) && 11209 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11210 FirstStoreAlign, &IsFast) && IsFast) 11211 LastLegalVectorType = i + 1; 11212 } 11213 } 11214 11215 // Check if we found a legal integer type to store. 11216 if (LastLegalType == 0 && LastLegalVectorType == 0) 11217 return false; 11218 11219 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 11220 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 11221 11222 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 11223 true, UseVector); 11224 } 11225 11226 // When extracting multiple vector elements, try to store them 11227 // in one vector store rather than a sequence of scalar stores. 11228 if (IsExtractVecSrc) { 11229 unsigned NumStoresToMerge = 0; 11230 bool IsVec = MemVT.isVector(); 11231 for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { 11232 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11233 unsigned StoreValOpcode = St->getValue().getOpcode(); 11234 // This restriction could be loosened. 11235 // Bail out if any stored values are not elements extracted from a vector. 11236 // It should be possible to handle mixed sources, but load sources need 11237 // more careful handling (see the block of code below that handles 11238 // consecutive loads). 11239 if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && 11240 StoreValOpcode != ISD::EXTRACT_SUBVECTOR) 11241 return false; 11242 11243 // Find a legal type for the vector store. 11244 unsigned Elts = i + 1; 11245 if (IsVec) { 11246 // When merging vector stores, get the total number of elements. 11247 Elts *= MemVT.getVectorNumElements(); 11248 } 11249 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11250 bool IsFast; 11251 if (TLI.isTypeLegal(Ty) && 11252 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11253 FirstStoreAlign, &IsFast) && IsFast) 11254 NumStoresToMerge = i + 1; 11255 } 11256 11257 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, 11258 false, true); 11259 } 11260 11261 // Below we handle the case of multiple consecutive stores that 11262 // come from multiple consecutive loads. We merge them into a single 11263 // wide load and a single wide store. 11264 11265 // Look for load nodes which are used by the stored values. 11266 SmallVector<MemOpLink, 8> LoadNodes; 11267 11268 // Find acceptable loads. Loads need to have the same chain (token factor), 11269 // must not be zext, volatile, indexed, and they must be consecutive. 11270 BaseIndexOffset LdBasePtr; 11271 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11272 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11273 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 11274 if (!Ld) break; 11275 11276 // Loads must only have one use. 11277 if (!Ld->hasNUsesOfValue(1, 0)) 11278 break; 11279 11280 // The memory operands must not be volatile. 11281 if (Ld->isVolatile() || Ld->isIndexed()) 11282 break; 11283 11284 // We do not accept ext loads. 11285 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 11286 break; 11287 11288 // The stored memory type must be the same. 11289 if (Ld->getMemoryVT() != MemVT) 11290 break; 11291 11292 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr()); 11293 // If this is not the first ptr that we check. 11294 if (LdBasePtr.Base.getNode()) { 11295 // The base ptr must be the same. 11296 if (!LdPtr.equalBaseIndex(LdBasePtr)) 11297 break; 11298 } else { 11299 // Check that all other base pointers are the same as this one. 11300 LdBasePtr = LdPtr; 11301 } 11302 11303 // We found a potential memory operand to merge. 11304 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 11305 } 11306 11307 if (LoadNodes.size() < 2) 11308 return false; 11309 11310 // If we have load/store pair instructions and we only have two values, 11311 // don't bother. 11312 unsigned RequiredAlignment; 11313 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 11314 St->getAlignment() >= RequiredAlignment) 11315 return false; 11316 11317 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 11318 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 11319 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 11320 11321 // Scan the memory operations on the chain and find the first non-consecutive 11322 // load memory address. These variables hold the index in the store node 11323 // array. 11324 unsigned LastConsecutiveLoad = 0; 11325 // This variable refers to the size and not index in the array. 11326 unsigned LastLegalVectorType = 0; 11327 unsigned LastLegalIntegerType = 0; 11328 StartAddress = LoadNodes[0].OffsetFromBase; 11329 SDValue FirstChain = FirstLoad->getChain(); 11330 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 11331 // All loads much share the same chain. 11332 if (LoadNodes[i].MemNode->getChain() != FirstChain) 11333 break; 11334 11335 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 11336 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11337 break; 11338 LastConsecutiveLoad = i; 11339 // Find a legal type for the vector store. 11340 EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); 11341 bool IsFastSt, IsFastLd; 11342 if (TLI.isTypeLegal(StoreTy) && 11343 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11344 FirstStoreAlign, &IsFastSt) && IsFastSt && 11345 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11346 FirstLoadAlign, &IsFastLd) && IsFastLd) { 11347 LastLegalVectorType = i + 1; 11348 } 11349 11350 // Find a legal type for the integer store. 11351 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11352 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11353 if (TLI.isTypeLegal(StoreTy) && 11354 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11355 FirstStoreAlign, &IsFastSt) && IsFastSt && 11356 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11357 FirstLoadAlign, &IsFastLd) && IsFastLd) 11358 LastLegalIntegerType = i + 1; 11359 // Or check whether a truncstore and extload is legal. 11360 else if (TLI.getTypeAction(Context, StoreTy) == 11361 TargetLowering::TypePromoteInteger) { 11362 EVT LegalizedStoredValueTy = 11363 TLI.getTypeToTransformTo(Context, StoreTy); 11364 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11365 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11366 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11367 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && 11368 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11369 FirstStoreAS, FirstStoreAlign, &IsFastSt) && 11370 IsFastSt && 11371 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11372 FirstLoadAS, FirstLoadAlign, &IsFastLd) && 11373 IsFastLd) 11374 LastLegalIntegerType = i+1; 11375 } 11376 } 11377 11378 // Only use vector types if the vector type is larger than the integer type. 11379 // If they are the same, use integers. 11380 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 11381 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 11382 11383 // We add +1 here because the LastXXX variables refer to location while 11384 // the NumElem refers to array/index size. 11385 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 11386 NumElem = std::min(LastLegalType, NumElem); 11387 11388 if (NumElem < 2) 11389 return false; 11390 11391 // Collect the chains from all merged stores. 11392 SmallVector<SDValue, 8> MergeStoreChains; 11393 MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); 11394 11395 // The latest Node in the DAG. 11396 unsigned LatestNodeUsed = 0; 11397 for (unsigned i=1; i<NumElem; ++i) { 11398 // Find a chain for the new wide-store operand. Notice that some 11399 // of the store nodes that we found may not be selected for inclusion 11400 // in the wide store. The chain we use needs to be the chain of the 11401 // latest store node which is *used* and replaced by the wide store. 11402 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11403 LatestNodeUsed = i; 11404 11405 MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); 11406 } 11407 11408 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11409 11410 // Find if it is better to use vectors or integers to load and store 11411 // to memory. 11412 EVT JointMemOpVT; 11413 if (UseVectorTy) { 11414 JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); 11415 } else { 11416 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 11417 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 11418 } 11419 11420 SDLoc LoadDL(LoadNodes[0].MemNode); 11421 SDLoc StoreDL(StoreNodes[0].MemNode); 11422 11423 // The merged loads are required to have the same chain, so using the first's 11424 // chain is acceptable. 11425 SDValue NewLoad = DAG.getLoad( 11426 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 11427 FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign); 11428 11429 SDValue NewStoreChain = 11430 DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); 11431 11432 SDValue NewStore = DAG.getStore( 11433 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 11434 FirstInChain->getPointerInfo(), false, false, FirstStoreAlign); 11435 11436 // Replace one of the loads with the new load. 11437 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode); 11438 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 11439 SDValue(NewLoad.getNode(), 1)); 11440 11441 // Remove the rest of the load chains. 11442 for (unsigned i = 1; i < NumElem ; ++i) { 11443 // Replace all chain users of the old load nodes with the chain of the new 11444 // load node. 11445 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 11446 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain()); 11447 } 11448 11449 // Replace the last store with the new store. 11450 CombineTo(LatestOp, NewStore); 11451 // Erase all other stores. 11452 for (unsigned i = 0; i < NumElem ; ++i) { 11453 // Remove all Store nodes. 11454 if (StoreNodes[i].MemNode == LatestOp) 11455 continue; 11456 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11457 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 11458 deleteAndRecombine(St); 11459 } 11460 11461 return true; 11462 } 11463 11464 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 11465 SDLoc SL(ST); 11466 SDValue ReplStore; 11467 11468 // Replace the chain to avoid dependency. 11469 if (ST->isTruncatingStore()) { 11470 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 11471 ST->getBasePtr(), ST->getMemoryVT(), 11472 ST->getMemOperand()); 11473 } else { 11474 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 11475 ST->getMemOperand()); 11476 } 11477 11478 // Create token to keep both nodes around. 11479 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 11480 MVT::Other, ST->getChain(), ReplStore); 11481 11482 // Make sure the new and old chains are cleaned up. 11483 AddToWorklist(Token.getNode()); 11484 11485 // Don't add users to work list. 11486 return CombineTo(ST, Token, false); 11487 } 11488 11489 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 11490 SDValue Value = ST->getValue(); 11491 if (Value.getOpcode() == ISD::TargetConstantFP) 11492 return SDValue(); 11493 11494 SDLoc DL(ST); 11495 11496 SDValue Chain = ST->getChain(); 11497 SDValue Ptr = ST->getBasePtr(); 11498 11499 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 11500 11501 // NOTE: If the original store is volatile, this transform must not increase 11502 // the number of stores. For example, on x86-32 an f64 can be stored in one 11503 // processor operation but an i64 (which is not legal) requires two. So the 11504 // transform should not be done in this case. 11505 11506 SDValue Tmp; 11507 switch (CFP->getSimpleValueType(0).SimpleTy) { 11508 default: 11509 llvm_unreachable("Unknown FP type"); 11510 case MVT::f16: // We don't do this for these yet. 11511 case MVT::f80: 11512 case MVT::f128: 11513 case MVT::ppcf128: 11514 return SDValue(); 11515 case MVT::f32: 11516 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 11517 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11518 ; 11519 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 11520 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 11521 MVT::i32); 11522 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 11523 } 11524 11525 return SDValue(); 11526 case MVT::f64: 11527 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 11528 !ST->isVolatile()) || 11529 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 11530 ; 11531 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 11532 getZExtValue(), SDLoc(CFP), MVT::i64); 11533 return DAG.getStore(Chain, DL, Tmp, 11534 Ptr, ST->getMemOperand()); 11535 } 11536 11537 if (!ST->isVolatile() && 11538 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11539 // Many FP stores are not made apparent until after legalize, e.g. for 11540 // argument passing. Since this is so common, custom legalize the 11541 // 64-bit integer store into two 32-bit stores. 11542 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 11543 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 11544 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 11545 if (DAG.getDataLayout().isBigEndian()) 11546 std::swap(Lo, Hi); 11547 11548 unsigned Alignment = ST->getAlignment(); 11549 bool isVolatile = ST->isVolatile(); 11550 bool isNonTemporal = ST->isNonTemporal(); 11551 AAMDNodes AAInfo = ST->getAAInfo(); 11552 11553 SDValue St0 = DAG.getStore(Chain, DL, Lo, 11554 Ptr, ST->getPointerInfo(), 11555 isVolatile, isNonTemporal, 11556 ST->getAlignment(), AAInfo); 11557 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 11558 DAG.getConstant(4, DL, Ptr.getValueType())); 11559 Alignment = MinAlign(Alignment, 4U); 11560 SDValue St1 = DAG.getStore(Chain, DL, Hi, 11561 Ptr, ST->getPointerInfo().getWithOffset(4), 11562 isVolatile, isNonTemporal, 11563 Alignment, AAInfo); 11564 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 11565 St0, St1); 11566 } 11567 11568 return SDValue(); 11569 } 11570 } 11571 11572 SDValue DAGCombiner::visitSTORE(SDNode *N) { 11573 StoreSDNode *ST = cast<StoreSDNode>(N); 11574 SDValue Chain = ST->getChain(); 11575 SDValue Value = ST->getValue(); 11576 SDValue Ptr = ST->getBasePtr(); 11577 11578 // If this is a store of a bit convert, store the input value if the 11579 // resultant store does not need a higher alignment than the original. 11580 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 11581 ST->isUnindexed()) { 11582 unsigned OrigAlign = ST->getAlignment(); 11583 EVT SVT = Value.getOperand(0).getValueType(); 11584 unsigned Align = DAG.getDataLayout().getABITypeAlignment( 11585 SVT.getTypeForEVT(*DAG.getContext())); 11586 if (Align <= OrigAlign && 11587 ((!LegalOperations && !ST->isVolatile()) || 11588 TLI.isOperationLegalOrCustom(ISD::STORE, SVT))) 11589 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), 11590 Ptr, ST->getPointerInfo(), ST->isVolatile(), 11591 ST->isNonTemporal(), OrigAlign, 11592 ST->getAAInfo()); 11593 } 11594 11595 // Turn 'store undef, Ptr' -> nothing. 11596 if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed()) 11597 return Chain; 11598 11599 // Try to infer better alignment information than the store already has. 11600 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 11601 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 11602 if (Align > ST->getAlignment()) { 11603 SDValue NewStore = 11604 DAG.getTruncStore(Chain, SDLoc(N), Value, 11605 Ptr, ST->getPointerInfo(), ST->getMemoryVT(), 11606 ST->isVolatile(), ST->isNonTemporal(), Align, 11607 ST->getAAInfo()); 11608 if (NewStore.getNode() != N) 11609 return CombineTo(ST, NewStore, true); 11610 } 11611 } 11612 } 11613 11614 // Try transforming a pair floating point load / store ops to integer 11615 // load / store ops. 11616 if (SDValue NewST = TransformFPLoadStorePair(N)) 11617 return NewST; 11618 11619 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11620 : DAG.getSubtarget().useAA(); 11621 #ifndef NDEBUG 11622 if (CombinerAAOnlyFunc.getNumOccurrences() && 11623 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 11624 UseAA = false; 11625 #endif 11626 if (UseAA && ST->isUnindexed()) { 11627 // FIXME: We should do this even without AA enabled. AA will just allow 11628 // FindBetterChain to work in more situations. The problem with this is that 11629 // any combine that expects memory operations to be on consecutive chains 11630 // first needs to be updated to look for users of the same chain. 11631 11632 // Walk up chain skipping non-aliasing memory nodes, on this store and any 11633 // adjacent stores. 11634 if (findBetterNeighborChains(ST)) { 11635 // replaceStoreChain uses CombineTo, which handled all of the worklist 11636 // manipulation. Return the original node to not do anything else. 11637 return SDValue(ST, 0); 11638 } 11639 } 11640 11641 // Try transforming N to an indexed store. 11642 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 11643 return SDValue(N, 0); 11644 11645 // FIXME: is there such a thing as a truncating indexed store? 11646 if (ST->isTruncatingStore() && ST->isUnindexed() && 11647 Value.getValueType().isInteger()) { 11648 // See if we can simplify the input to this truncstore with knowledge that 11649 // only the low bits are being used. For example: 11650 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 11651 SDValue Shorter = 11652 GetDemandedBits(Value, 11653 APInt::getLowBitsSet( 11654 Value.getValueType().getScalarType().getSizeInBits(), 11655 ST->getMemoryVT().getScalarType().getSizeInBits())); 11656 AddToWorklist(Value.getNode()); 11657 if (Shorter.getNode()) 11658 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 11659 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 11660 11661 // Otherwise, see if we can simplify the operation with 11662 // SimplifyDemandedBits, which only works if the value has a single use. 11663 if (SimplifyDemandedBits(Value, 11664 APInt::getLowBitsSet( 11665 Value.getValueType().getScalarType().getSizeInBits(), 11666 ST->getMemoryVT().getScalarType().getSizeInBits()))) 11667 return SDValue(N, 0); 11668 } 11669 11670 // If this is a load followed by a store to the same location, then the store 11671 // is dead/noop. 11672 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 11673 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 11674 ST->isUnindexed() && !ST->isVolatile() && 11675 // There can't be any side effects between the load and store, such as 11676 // a call or store. 11677 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 11678 // The store is dead, remove it. 11679 return Chain; 11680 } 11681 } 11682 11683 // If this is a store followed by a store with the same value to the same 11684 // location, then the store is dead/noop. 11685 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 11686 if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && 11687 ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && 11688 ST1->isUnindexed() && !ST1->isVolatile()) { 11689 // The store is dead, remove it. 11690 return Chain; 11691 } 11692 } 11693 11694 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 11695 // truncating store. We can do this even if this is already a truncstore. 11696 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 11697 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 11698 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 11699 ST->getMemoryVT())) { 11700 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 11701 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 11702 } 11703 11704 // Only perform this optimization before the types are legal, because we 11705 // don't want to perform this optimization on every DAGCombine invocation. 11706 if (!LegalTypes) { 11707 bool EverChanged = false; 11708 11709 do { 11710 // There can be multiple store sequences on the same chain. 11711 // Keep trying to merge store sequences until we are unable to do so 11712 // or until we merge the last store on the chain. 11713 bool Changed = MergeConsecutiveStores(ST); 11714 EverChanged |= Changed; 11715 if (!Changed) break; 11716 } while (ST->getOpcode() != ISD::DELETED_NODE); 11717 11718 if (EverChanged) 11719 return SDValue(N, 0); 11720 } 11721 11722 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 11723 // 11724 // Make sure to do this only after attempting to merge stores in order to 11725 // avoid changing the types of some subset of stores due to visit order, 11726 // preventing their merging. 11727 if (isa<ConstantFPSDNode>(Value)) { 11728 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 11729 return NewSt; 11730 } 11731 11732 return ReduceLoadOpStoreWidth(N); 11733 } 11734 11735 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 11736 SDValue InVec = N->getOperand(0); 11737 SDValue InVal = N->getOperand(1); 11738 SDValue EltNo = N->getOperand(2); 11739 SDLoc dl(N); 11740 11741 // If the inserted element is an UNDEF, just use the input vector. 11742 if (InVal.getOpcode() == ISD::UNDEF) 11743 return InVec; 11744 11745 EVT VT = InVec.getValueType(); 11746 11747 // If we can't generate a legal BUILD_VECTOR, exit 11748 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 11749 return SDValue(); 11750 11751 // Check that we know which element is being inserted 11752 if (!isa<ConstantSDNode>(EltNo)) 11753 return SDValue(); 11754 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 11755 11756 // Canonicalize insert_vector_elt dag nodes. 11757 // Example: 11758 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 11759 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 11760 // 11761 // Do this only if the child insert_vector node has one use; also 11762 // do this only if indices are both constants and Idx1 < Idx0. 11763 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 11764 && isa<ConstantSDNode>(InVec.getOperand(2))) { 11765 unsigned OtherElt = 11766 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 11767 if (Elt < OtherElt) { 11768 // Swap nodes. 11769 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT, 11770 InVec.getOperand(0), InVal, EltNo); 11771 AddToWorklist(NewOp.getNode()); 11772 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 11773 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 11774 } 11775 } 11776 11777 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 11778 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 11779 // vector elements. 11780 SmallVector<SDValue, 8> Ops; 11781 // Do not combine these two vectors if the output vector will not replace 11782 // the input vector. 11783 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 11784 Ops.append(InVec.getNode()->op_begin(), 11785 InVec.getNode()->op_end()); 11786 } else if (InVec.getOpcode() == ISD::UNDEF) { 11787 unsigned NElts = VT.getVectorNumElements(); 11788 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 11789 } else { 11790 return SDValue(); 11791 } 11792 11793 // Insert the element 11794 if (Elt < Ops.size()) { 11795 // All the operands of BUILD_VECTOR must have the same type; 11796 // we enforce that here. 11797 EVT OpVT = Ops[0].getValueType(); 11798 if (InVal.getValueType() != OpVT) 11799 InVal = OpVT.bitsGT(InVal.getValueType()) ? 11800 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : 11801 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); 11802 Ops[Elt] = InVal; 11803 } 11804 11805 // Return the new vector 11806 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 11807 } 11808 11809 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 11810 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 11811 EVT ResultVT = EVE->getValueType(0); 11812 EVT VecEltVT = InVecVT.getVectorElementType(); 11813 unsigned Align = OriginalLoad->getAlignment(); 11814 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 11815 VecEltVT.getTypeForEVT(*DAG.getContext())); 11816 11817 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 11818 return SDValue(); 11819 11820 Align = NewAlign; 11821 11822 SDValue NewPtr = OriginalLoad->getBasePtr(); 11823 SDValue Offset; 11824 EVT PtrType = NewPtr.getValueType(); 11825 MachinePointerInfo MPI; 11826 SDLoc DL(EVE); 11827 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 11828 int Elt = ConstEltNo->getZExtValue(); 11829 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 11830 Offset = DAG.getConstant(PtrOff, DL, PtrType); 11831 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 11832 } else { 11833 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 11834 Offset = DAG.getNode( 11835 ISD::MUL, DL, PtrType, Offset, 11836 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 11837 MPI = OriginalLoad->getPointerInfo(); 11838 } 11839 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 11840 11841 // The replacement we need to do here is a little tricky: we need to 11842 // replace an extractelement of a load with a load. 11843 // Use ReplaceAllUsesOfValuesWith to do the replacement. 11844 // Note that this replacement assumes that the extractvalue is the only 11845 // use of the load; that's okay because we don't want to perform this 11846 // transformation in other cases anyway. 11847 SDValue Load; 11848 SDValue Chain; 11849 if (ResultVT.bitsGT(VecEltVT)) { 11850 // If the result type of vextract is wider than the load, then issue an 11851 // extending load instead. 11852 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 11853 VecEltVT) 11854 ? ISD::ZEXTLOAD 11855 : ISD::EXTLOAD; 11856 Load = DAG.getExtLoad( 11857 ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI, 11858 VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 11859 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 11860 Chain = Load.getValue(1); 11861 } else { 11862 Load = DAG.getLoad( 11863 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, 11864 OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 11865 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 11866 Chain = Load.getValue(1); 11867 if (ResultVT.bitsLT(VecEltVT)) 11868 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 11869 else 11870 Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load); 11871 } 11872 WorklistRemover DeadNodes(*this); 11873 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 11874 SDValue To[] = { Load, Chain }; 11875 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 11876 // Since we're explicitly calling ReplaceAllUses, add the new node to the 11877 // worklist explicitly as well. 11878 AddToWorklist(Load.getNode()); 11879 AddUsersToWorklist(Load.getNode()); // Add users too 11880 // Make sure to revisit this node to clean it up; it will usually be dead. 11881 AddToWorklist(EVE); 11882 ++OpsNarrowed; 11883 return SDValue(EVE, 0); 11884 } 11885 11886 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 11887 // (vextract (scalar_to_vector val, 0) -> val 11888 SDValue InVec = N->getOperand(0); 11889 EVT VT = InVec.getValueType(); 11890 EVT NVT = N->getValueType(0); 11891 11892 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 11893 // Check if the result type doesn't match the inserted element type. A 11894 // SCALAR_TO_VECTOR may truncate the inserted element and the 11895 // EXTRACT_VECTOR_ELT may widen the extracted vector. 11896 SDValue InOp = InVec.getOperand(0); 11897 if (InOp.getValueType() != NVT) { 11898 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 11899 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 11900 } 11901 return InOp; 11902 } 11903 11904 SDValue EltNo = N->getOperand(1); 11905 bool ConstEltNo = isa<ConstantSDNode>(EltNo); 11906 11907 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 11908 // We only perform this optimization before the op legalization phase because 11909 // we may introduce new vector instructions which are not backed by TD 11910 // patterns. For example on AVX, extracting elements from a wide vector 11911 // without using extract_subvector. However, if we can find an underlying 11912 // scalar value, then we can always use that. 11913 if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE 11914 && ConstEltNo) { 11915 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 11916 int NumElem = VT.getVectorNumElements(); 11917 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 11918 // Find the new index to extract from. 11919 int OrigElt = SVOp->getMaskElt(Elt); 11920 11921 // Extracting an undef index is undef. 11922 if (OrigElt == -1) 11923 return DAG.getUNDEF(NVT); 11924 11925 // Select the right vector half to extract from. 11926 SDValue SVInVec; 11927 if (OrigElt < NumElem) { 11928 SVInVec = InVec->getOperand(0); 11929 } else { 11930 SVInVec = InVec->getOperand(1); 11931 OrigElt -= NumElem; 11932 } 11933 11934 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 11935 SDValue InOp = SVInVec.getOperand(OrigElt); 11936 if (InOp.getValueType() != NVT) { 11937 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 11938 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 11939 } 11940 11941 return InOp; 11942 } 11943 11944 // FIXME: We should handle recursing on other vector shuffles and 11945 // scalar_to_vector here as well. 11946 11947 if (!LegalOperations) { 11948 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 11949 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, 11950 DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); 11951 } 11952 } 11953 11954 bool BCNumEltsChanged = false; 11955 EVT ExtVT = VT.getVectorElementType(); 11956 EVT LVT = ExtVT; 11957 11958 // If the result of load has to be truncated, then it's not necessarily 11959 // profitable. 11960 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 11961 return SDValue(); 11962 11963 if (InVec.getOpcode() == ISD::BITCAST) { 11964 // Don't duplicate a load with other uses. 11965 if (!InVec.hasOneUse()) 11966 return SDValue(); 11967 11968 EVT BCVT = InVec.getOperand(0).getValueType(); 11969 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 11970 return SDValue(); 11971 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 11972 BCNumEltsChanged = true; 11973 InVec = InVec.getOperand(0); 11974 ExtVT = BCVT.getVectorElementType(); 11975 } 11976 11977 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 11978 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 11979 ISD::isNormalLoad(InVec.getNode()) && 11980 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 11981 SDValue Index = N->getOperand(1); 11982 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) 11983 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 11984 OrigLoad); 11985 } 11986 11987 // Perform only after legalization to ensure build_vector / vector_shuffle 11988 // optimizations have already been done. 11989 if (!LegalOperations) return SDValue(); 11990 11991 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 11992 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 11993 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 11994 11995 if (ConstEltNo) { 11996 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 11997 11998 LoadSDNode *LN0 = nullptr; 11999 const ShuffleVectorSDNode *SVN = nullptr; 12000 if (ISD::isNormalLoad(InVec.getNode())) { 12001 LN0 = cast<LoadSDNode>(InVec); 12002 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 12003 InVec.getOperand(0).getValueType() == ExtVT && 12004 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 12005 // Don't duplicate a load with other uses. 12006 if (!InVec.hasOneUse()) 12007 return SDValue(); 12008 12009 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 12010 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 12011 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 12012 // => 12013 // (load $addr+1*size) 12014 12015 // Don't duplicate a load with other uses. 12016 if (!InVec.hasOneUse()) 12017 return SDValue(); 12018 12019 // If the bit convert changed the number of elements, it is unsafe 12020 // to examine the mask. 12021 if (BCNumEltsChanged) 12022 return SDValue(); 12023 12024 // Select the input vector, guarding against out of range extract vector. 12025 unsigned NumElems = VT.getVectorNumElements(); 12026 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 12027 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 12028 12029 if (InVec.getOpcode() == ISD::BITCAST) { 12030 // Don't duplicate a load with other uses. 12031 if (!InVec.hasOneUse()) 12032 return SDValue(); 12033 12034 InVec = InVec.getOperand(0); 12035 } 12036 if (ISD::isNormalLoad(InVec.getNode())) { 12037 LN0 = cast<LoadSDNode>(InVec); 12038 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 12039 EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); 12040 } 12041 } 12042 12043 // Make sure we found a non-volatile load and the extractelement is 12044 // the only use. 12045 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 12046 return SDValue(); 12047 12048 // If Idx was -1 above, Elt is going to be -1, so just return undef. 12049 if (Elt == -1) 12050 return DAG.getUNDEF(LVT); 12051 12052 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 12053 } 12054 12055 return SDValue(); 12056 } 12057 12058 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 12059 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 12060 // We perform this optimization post type-legalization because 12061 // the type-legalizer often scalarizes integer-promoted vectors. 12062 // Performing this optimization before may create bit-casts which 12063 // will be type-legalized to complex code sequences. 12064 // We perform this optimization only before the operation legalizer because we 12065 // may introduce illegal operations. 12066 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 12067 return SDValue(); 12068 12069 unsigned NumInScalars = N->getNumOperands(); 12070 SDLoc dl(N); 12071 EVT VT = N->getValueType(0); 12072 12073 // Check to see if this is a BUILD_VECTOR of a bunch of values 12074 // which come from any_extend or zero_extend nodes. If so, we can create 12075 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 12076 // optimizations. We do not handle sign-extend because we can't fill the sign 12077 // using shuffles. 12078 EVT SourceType = MVT::Other; 12079 bool AllAnyExt = true; 12080 12081 for (unsigned i = 0; i != NumInScalars; ++i) { 12082 SDValue In = N->getOperand(i); 12083 // Ignore undef inputs. 12084 if (In.getOpcode() == ISD::UNDEF) continue; 12085 12086 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 12087 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 12088 12089 // Abort if the element is not an extension. 12090 if (!ZeroExt && !AnyExt) { 12091 SourceType = MVT::Other; 12092 break; 12093 } 12094 12095 // The input is a ZeroExt or AnyExt. Check the original type. 12096 EVT InTy = In.getOperand(0).getValueType(); 12097 12098 // Check that all of the widened source types are the same. 12099 if (SourceType == MVT::Other) 12100 // First time. 12101 SourceType = InTy; 12102 else if (InTy != SourceType) { 12103 // Multiple income types. Abort. 12104 SourceType = MVT::Other; 12105 break; 12106 } 12107 12108 // Check if all of the extends are ANY_EXTENDs. 12109 AllAnyExt &= AnyExt; 12110 } 12111 12112 // In order to have valid types, all of the inputs must be extended from the 12113 // same source type and all of the inputs must be any or zero extend. 12114 // Scalar sizes must be a power of two. 12115 EVT OutScalarTy = VT.getScalarType(); 12116 bool ValidTypes = SourceType != MVT::Other && 12117 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 12118 isPowerOf2_32(SourceType.getSizeInBits()); 12119 12120 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 12121 // turn into a single shuffle instruction. 12122 if (!ValidTypes) 12123 return SDValue(); 12124 12125 bool isLE = DAG.getDataLayout().isLittleEndian(); 12126 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 12127 assert(ElemRatio > 1 && "Invalid element size ratio"); 12128 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 12129 DAG.getConstant(0, SDLoc(N), SourceType); 12130 12131 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 12132 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 12133 12134 // Populate the new build_vector 12135 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12136 SDValue Cast = N->getOperand(i); 12137 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 12138 Cast.getOpcode() == ISD::ZERO_EXTEND || 12139 Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode"); 12140 SDValue In; 12141 if (Cast.getOpcode() == ISD::UNDEF) 12142 In = DAG.getUNDEF(SourceType); 12143 else 12144 In = Cast->getOperand(0); 12145 unsigned Index = isLE ? (i * ElemRatio) : 12146 (i * ElemRatio + (ElemRatio - 1)); 12147 12148 assert(Index < Ops.size() && "Invalid index"); 12149 Ops[Index] = In; 12150 } 12151 12152 // The type of the new BUILD_VECTOR node. 12153 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 12154 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 12155 "Invalid vector size"); 12156 // Check if the new vector type is legal. 12157 if (!isTypeLegal(VecVT)) return SDValue(); 12158 12159 // Make the new BUILD_VECTOR. 12160 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); 12161 12162 // The new BUILD_VECTOR node has the potential to be further optimized. 12163 AddToWorklist(BV.getNode()); 12164 // Bitcast to the desired type. 12165 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 12166 } 12167 12168 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 12169 EVT VT = N->getValueType(0); 12170 12171 unsigned NumInScalars = N->getNumOperands(); 12172 SDLoc dl(N); 12173 12174 EVT SrcVT = MVT::Other; 12175 unsigned Opcode = ISD::DELETED_NODE; 12176 unsigned NumDefs = 0; 12177 12178 for (unsigned i = 0; i != NumInScalars; ++i) { 12179 SDValue In = N->getOperand(i); 12180 unsigned Opc = In.getOpcode(); 12181 12182 if (Opc == ISD::UNDEF) 12183 continue; 12184 12185 // If all scalar values are floats and converted from integers. 12186 if (Opcode == ISD::DELETED_NODE && 12187 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 12188 Opcode = Opc; 12189 } 12190 12191 if (Opc != Opcode) 12192 return SDValue(); 12193 12194 EVT InVT = In.getOperand(0).getValueType(); 12195 12196 // If all scalar values are typed differently, bail out. It's chosen to 12197 // simplify BUILD_VECTOR of integer types. 12198 if (SrcVT == MVT::Other) 12199 SrcVT = InVT; 12200 if (SrcVT != InVT) 12201 return SDValue(); 12202 NumDefs++; 12203 } 12204 12205 // If the vector has just one element defined, it's not worth to fold it into 12206 // a vectorized one. 12207 if (NumDefs < 2) 12208 return SDValue(); 12209 12210 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 12211 && "Should only handle conversion from integer to float."); 12212 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 12213 12214 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 12215 12216 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 12217 return SDValue(); 12218 12219 // Just because the floating-point vector type is legal does not necessarily 12220 // mean that the corresponding integer vector type is. 12221 if (!isTypeLegal(NVT)) 12222 return SDValue(); 12223 12224 SmallVector<SDValue, 8> Opnds; 12225 for (unsigned i = 0; i != NumInScalars; ++i) { 12226 SDValue In = N->getOperand(i); 12227 12228 if (In.getOpcode() == ISD::UNDEF) 12229 Opnds.push_back(DAG.getUNDEF(SrcVT)); 12230 else 12231 Opnds.push_back(In.getOperand(0)); 12232 } 12233 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds); 12234 AddToWorklist(BV.getNode()); 12235 12236 return DAG.getNode(Opcode, dl, VT, BV); 12237 } 12238 12239 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 12240 unsigned NumInScalars = N->getNumOperands(); 12241 SDLoc dl(N); 12242 EVT VT = N->getValueType(0); 12243 12244 // A vector built entirely of undefs is undef. 12245 if (ISD::allOperandsUndef(N)) 12246 return DAG.getUNDEF(VT); 12247 12248 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 12249 return V; 12250 12251 if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) 12252 return V; 12253 12254 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 12255 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from 12256 // at most two distinct vectors, turn this into a shuffle node. 12257 12258 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 12259 if (!isTypeLegal(VT)) 12260 return SDValue(); 12261 12262 // May only combine to shuffle after legalize if shuffle is legal. 12263 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 12264 return SDValue(); 12265 12266 SDValue VecIn1, VecIn2; 12267 bool UsesZeroVector = false; 12268 for (unsigned i = 0; i != NumInScalars; ++i) { 12269 SDValue Op = N->getOperand(i); 12270 // Ignore undef inputs. 12271 if (Op.getOpcode() == ISD::UNDEF) continue; 12272 12273 // See if we can combine this build_vector into a blend with a zero vector. 12274 if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) { 12275 UsesZeroVector = true; 12276 continue; 12277 } 12278 12279 // If this input is something other than a EXTRACT_VECTOR_ELT with a 12280 // constant index, bail out. 12281 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12282 !isa<ConstantSDNode>(Op.getOperand(1))) { 12283 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12284 break; 12285 } 12286 12287 // We allow up to two distinct input vectors. 12288 SDValue ExtractedFromVec = Op.getOperand(0); 12289 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) 12290 continue; 12291 12292 if (!VecIn1.getNode()) { 12293 VecIn1 = ExtractedFromVec; 12294 } else if (!VecIn2.getNode() && !UsesZeroVector) { 12295 VecIn2 = ExtractedFromVec; 12296 } else { 12297 // Too many inputs. 12298 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12299 break; 12300 } 12301 } 12302 12303 // If everything is good, we can make a shuffle operation. 12304 if (VecIn1.getNode()) { 12305 unsigned InNumElements = VecIn1.getValueType().getVectorNumElements(); 12306 SmallVector<int, 8> Mask; 12307 for (unsigned i = 0; i != NumInScalars; ++i) { 12308 unsigned Opcode = N->getOperand(i).getOpcode(); 12309 if (Opcode == ISD::UNDEF) { 12310 Mask.push_back(-1); 12311 continue; 12312 } 12313 12314 // Operands can also be zero. 12315 if (Opcode != ISD::EXTRACT_VECTOR_ELT) { 12316 assert(UsesZeroVector && 12317 (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) && 12318 "Unexpected node found!"); 12319 Mask.push_back(NumInScalars+i); 12320 continue; 12321 } 12322 12323 // If extracting from the first vector, just use the index directly. 12324 SDValue Extract = N->getOperand(i); 12325 SDValue ExtVal = Extract.getOperand(1); 12326 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); 12327 if (Extract.getOperand(0) == VecIn1) { 12328 Mask.push_back(ExtIndex); 12329 continue; 12330 } 12331 12332 // Otherwise, use InIdx + InputVecSize 12333 Mask.push_back(InNumElements + ExtIndex); 12334 } 12335 12336 // Avoid introducing illegal shuffles with zero. 12337 if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT)) 12338 return SDValue(); 12339 12340 // We can't generate a shuffle node with mismatched input and output types. 12341 // Attempt to transform a single input vector to the correct type. 12342 if ((VT != VecIn1.getValueType())) { 12343 // If the input vector type has a different base type to the output 12344 // vector type, bail out. 12345 EVT VTElemType = VT.getVectorElementType(); 12346 if ((VecIn1.getValueType().getVectorElementType() != VTElemType) || 12347 (VecIn2.getNode() && 12348 (VecIn2.getValueType().getVectorElementType() != VTElemType))) 12349 return SDValue(); 12350 12351 // If the input vector is too small, widen it. 12352 // We only support widening of vectors which are half the size of the 12353 // output registers. For example XMM->YMM widening on X86 with AVX. 12354 EVT VecInT = VecIn1.getValueType(); 12355 if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) { 12356 // If we only have one small input, widen it by adding undef values. 12357 if (!VecIn2.getNode()) 12358 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, 12359 DAG.getUNDEF(VecIn1.getValueType())); 12360 else if (VecIn1.getValueType() == VecIn2.getValueType()) { 12361 // If we have two small inputs of the same type, try to concat them. 12362 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2); 12363 VecIn2 = SDValue(nullptr, 0); 12364 } else 12365 return SDValue(); 12366 } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) { 12367 // If the input vector is too large, try to split it. 12368 // We don't support having two input vectors that are too large. 12369 // If the zero vector was used, we can not split the vector, 12370 // since we'd need 3 inputs. 12371 if (UsesZeroVector || VecIn2.getNode()) 12372 return SDValue(); 12373 12374 if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements())) 12375 return SDValue(); 12376 12377 // Try to replace VecIn1 with two extract_subvectors 12378 // No need to update the masks, they should still be correct. 12379 VecIn2 = DAG.getNode( 12380 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12381 DAG.getConstant(VT.getVectorNumElements(), dl, 12382 TLI.getVectorIdxTy(DAG.getDataLayout()))); 12383 VecIn1 = DAG.getNode( 12384 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12385 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 12386 } else 12387 return SDValue(); 12388 } 12389 12390 if (UsesZeroVector) 12391 VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) : 12392 DAG.getConstantFP(0.0, dl, VT); 12393 else 12394 // If VecIn2 is unused then change it to undef. 12395 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); 12396 12397 // Check that we were able to transform all incoming values to the same 12398 // type. 12399 if (VecIn2.getValueType() != VecIn1.getValueType() || 12400 VecIn1.getValueType() != VT) 12401 return SDValue(); 12402 12403 // Return the new VECTOR_SHUFFLE node. 12404 SDValue Ops[2]; 12405 Ops[0] = VecIn1; 12406 Ops[1] = VecIn2; 12407 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]); 12408 } 12409 12410 return SDValue(); 12411 } 12412 12413 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 12414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12415 EVT OpVT = N->getOperand(0).getValueType(); 12416 12417 // If the operands are legal vectors, leave them alone. 12418 if (TLI.isTypeLegal(OpVT)) 12419 return SDValue(); 12420 12421 SDLoc DL(N); 12422 EVT VT = N->getValueType(0); 12423 SmallVector<SDValue, 8> Ops; 12424 12425 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 12426 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12427 12428 // Keep track of what we encounter. 12429 bool AnyInteger = false; 12430 bool AnyFP = false; 12431 for (const SDValue &Op : N->ops()) { 12432 if (ISD::BITCAST == Op.getOpcode() && 12433 !Op.getOperand(0).getValueType().isVector()) 12434 Ops.push_back(Op.getOperand(0)); 12435 else if (ISD::UNDEF == Op.getOpcode()) 12436 Ops.push_back(ScalarUndef); 12437 else 12438 return SDValue(); 12439 12440 // Note whether we encounter an integer or floating point scalar. 12441 // If it's neither, bail out, it could be something weird like x86mmx. 12442 EVT LastOpVT = Ops.back().getValueType(); 12443 if (LastOpVT.isFloatingPoint()) 12444 AnyFP = true; 12445 else if (LastOpVT.isInteger()) 12446 AnyInteger = true; 12447 else 12448 return SDValue(); 12449 } 12450 12451 // If any of the operands is a floating point scalar bitcast to a vector, 12452 // use floating point types throughout, and bitcast everything. 12453 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 12454 if (AnyFP) { 12455 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 12456 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12457 if (AnyInteger) { 12458 for (SDValue &Op : Ops) { 12459 if (Op.getValueType() == SVT) 12460 continue; 12461 if (Op.getOpcode() == ISD::UNDEF) 12462 Op = ScalarUndef; 12463 else 12464 Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op); 12465 } 12466 } 12467 } 12468 12469 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 12470 VT.getSizeInBits() / SVT.getSizeInBits()); 12471 return DAG.getNode(ISD::BITCAST, DL, VT, 12472 DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, Ops)); 12473 } 12474 12475 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 12476 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 12477 // most two distinct vectors the same size as the result, attempt to turn this 12478 // into a legal shuffle. 12479 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 12480 EVT VT = N->getValueType(0); 12481 EVT OpVT = N->getOperand(0).getValueType(); 12482 int NumElts = VT.getVectorNumElements(); 12483 int NumOpElts = OpVT.getVectorNumElements(); 12484 12485 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 12486 SmallVector<int, 8> Mask; 12487 12488 for (SDValue Op : N->ops()) { 12489 // Peek through any bitcast. 12490 while (Op.getOpcode() == ISD::BITCAST) 12491 Op = Op.getOperand(0); 12492 12493 // UNDEF nodes convert to UNDEF shuffle mask values. 12494 if (Op.getOpcode() == ISD::UNDEF) { 12495 Mask.append((unsigned)NumOpElts, -1); 12496 continue; 12497 } 12498 12499 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12500 return SDValue(); 12501 12502 // What vector are we extracting the subvector from and at what index? 12503 SDValue ExtVec = Op.getOperand(0); 12504 12505 // We want the EVT of the original extraction to correctly scale the 12506 // extraction index. 12507 EVT ExtVT = ExtVec.getValueType(); 12508 12509 // Peek through any bitcast. 12510 while (ExtVec.getOpcode() == ISD::BITCAST) 12511 ExtVec = ExtVec.getOperand(0); 12512 12513 // UNDEF nodes convert to UNDEF shuffle mask values. 12514 if (ExtVec.getOpcode() == ISD::UNDEF) { 12515 Mask.append((unsigned)NumOpElts, -1); 12516 continue; 12517 } 12518 12519 if (!isa<ConstantSDNode>(Op.getOperand(1))) 12520 return SDValue(); 12521 int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 12522 12523 // Ensure that we are extracting a subvector from a vector the same 12524 // size as the result. 12525 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 12526 return SDValue(); 12527 12528 // Scale the subvector index to account for any bitcast. 12529 int NumExtElts = ExtVT.getVectorNumElements(); 12530 if (0 == (NumExtElts % NumElts)) 12531 ExtIdx /= (NumExtElts / NumElts); 12532 else if (0 == (NumElts % NumExtElts)) 12533 ExtIdx *= (NumElts / NumExtElts); 12534 else 12535 return SDValue(); 12536 12537 // At most we can reference 2 inputs in the final shuffle. 12538 if (SV0.getOpcode() == ISD::UNDEF || SV0 == ExtVec) { 12539 SV0 = ExtVec; 12540 for (int i = 0; i != NumOpElts; ++i) 12541 Mask.push_back(i + ExtIdx); 12542 } else if (SV1.getOpcode() == ISD::UNDEF || SV1 == ExtVec) { 12543 SV1 = ExtVec; 12544 for (int i = 0; i != NumOpElts; ++i) 12545 Mask.push_back(i + ExtIdx + NumElts); 12546 } else { 12547 return SDValue(); 12548 } 12549 } 12550 12551 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 12552 return SDValue(); 12553 12554 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 12555 DAG.getBitcast(VT, SV1), Mask); 12556 } 12557 12558 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 12559 // If we only have one input vector, we don't need to do any concatenation. 12560 if (N->getNumOperands() == 1) 12561 return N->getOperand(0); 12562 12563 // Check if all of the operands are undefs. 12564 EVT VT = N->getValueType(0); 12565 if (ISD::allOperandsUndef(N)) 12566 return DAG.getUNDEF(VT); 12567 12568 // Optimize concat_vectors where all but the first of the vectors are undef. 12569 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 12570 return Op.getOpcode() == ISD::UNDEF; 12571 })) { 12572 SDValue In = N->getOperand(0); 12573 assert(In.getValueType().isVector() && "Must concat vectors"); 12574 12575 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 12576 if (In->getOpcode() == ISD::BITCAST && 12577 !In->getOperand(0)->getValueType(0).isVector()) { 12578 SDValue Scalar = In->getOperand(0); 12579 12580 // If the bitcast type isn't legal, it might be a trunc of a legal type; 12581 // look through the trunc so we can still do the transform: 12582 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 12583 if (Scalar->getOpcode() == ISD::TRUNCATE && 12584 !TLI.isTypeLegal(Scalar.getValueType()) && 12585 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 12586 Scalar = Scalar->getOperand(0); 12587 12588 EVT SclTy = Scalar->getValueType(0); 12589 12590 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 12591 return SDValue(); 12592 12593 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 12594 VT.getSizeInBits() / SclTy.getSizeInBits()); 12595 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 12596 return SDValue(); 12597 12598 SDLoc dl = SDLoc(N); 12599 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar); 12600 return DAG.getNode(ISD::BITCAST, dl, VT, Res); 12601 } 12602 } 12603 12604 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 12605 // We have already tested above for an UNDEF only concatenation. 12606 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 12607 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 12608 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 12609 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 12610 }; 12611 bool AllBuildVectorsOrUndefs = 12612 std::all_of(N->op_begin(), N->op_end(), IsBuildVectorOrUndef); 12613 if (AllBuildVectorsOrUndefs) { 12614 SmallVector<SDValue, 8> Opnds; 12615 EVT SVT = VT.getScalarType(); 12616 12617 EVT MinVT = SVT; 12618 if (!SVT.isFloatingPoint()) { 12619 // If BUILD_VECTOR are from built from integer, they may have different 12620 // operand types. Get the smallest type and truncate all operands to it. 12621 bool FoundMinVT = false; 12622 for (const SDValue &Op : N->ops()) 12623 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 12624 EVT OpSVT = Op.getOperand(0)->getValueType(0); 12625 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 12626 FoundMinVT = true; 12627 } 12628 assert(FoundMinVT && "Concat vector type mismatch"); 12629 } 12630 12631 for (const SDValue &Op : N->ops()) { 12632 EVT OpVT = Op.getValueType(); 12633 unsigned NumElts = OpVT.getVectorNumElements(); 12634 12635 if (ISD::UNDEF == Op.getOpcode()) 12636 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 12637 12638 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 12639 if (SVT.isFloatingPoint()) { 12640 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 12641 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 12642 } else { 12643 for (unsigned i = 0; i != NumElts; ++i) 12644 Opnds.push_back( 12645 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 12646 } 12647 } 12648 } 12649 12650 assert(VT.getVectorNumElements() == Opnds.size() && 12651 "Concat vector type mismatch"); 12652 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); 12653 } 12654 12655 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 12656 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 12657 return V; 12658 12659 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 12660 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 12661 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 12662 return V; 12663 12664 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 12665 // nodes often generate nop CONCAT_VECTOR nodes. 12666 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 12667 // place the incoming vectors at the exact same location. 12668 SDValue SingleSource = SDValue(); 12669 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 12670 12671 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12672 SDValue Op = N->getOperand(i); 12673 12674 if (Op.getOpcode() == ISD::UNDEF) 12675 continue; 12676 12677 // Check if this is the identity extract: 12678 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12679 return SDValue(); 12680 12681 // Find the single incoming vector for the extract_subvector. 12682 if (SingleSource.getNode()) { 12683 if (Op.getOperand(0) != SingleSource) 12684 return SDValue(); 12685 } else { 12686 SingleSource = Op.getOperand(0); 12687 12688 // Check the source type is the same as the type of the result. 12689 // If not, this concat may extend the vector, so we can not 12690 // optimize it away. 12691 if (SingleSource.getValueType() != N->getValueType(0)) 12692 return SDValue(); 12693 } 12694 12695 unsigned IdentityIndex = i * PartNumElem; 12696 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 12697 // The extract index must be constant. 12698 if (!CS) 12699 return SDValue(); 12700 12701 // Check that we are reading from the identity index. 12702 if (CS->getZExtValue() != IdentityIndex) 12703 return SDValue(); 12704 } 12705 12706 if (SingleSource.getNode()) 12707 return SingleSource; 12708 12709 return SDValue(); 12710 } 12711 12712 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 12713 EVT NVT = N->getValueType(0); 12714 SDValue V = N->getOperand(0); 12715 12716 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 12717 // Combine: 12718 // (extract_subvec (concat V1, V2, ...), i) 12719 // Into: 12720 // Vi if possible 12721 // Only operand 0 is checked as 'concat' assumes all inputs of the same 12722 // type. 12723 if (V->getOperand(0).getValueType() != NVT) 12724 return SDValue(); 12725 unsigned Idx = N->getConstantOperandVal(1); 12726 unsigned NumElems = NVT.getVectorNumElements(); 12727 assert((Idx % NumElems) == 0 && 12728 "IDX in concat is not a multiple of the result vector length."); 12729 return V->getOperand(Idx / NumElems); 12730 } 12731 12732 // Skip bitcasting 12733 if (V->getOpcode() == ISD::BITCAST) 12734 V = V.getOperand(0); 12735 12736 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 12737 SDLoc dl(N); 12738 // Handle only simple case where vector being inserted and vector 12739 // being extracted are of same type, and are half size of larger vectors. 12740 EVT BigVT = V->getOperand(0).getValueType(); 12741 EVT SmallVT = V->getOperand(1).getValueType(); 12742 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 12743 return SDValue(); 12744 12745 // Only handle cases where both indexes are constants with the same type. 12746 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12747 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 12748 12749 if (InsIdx && ExtIdx && 12750 InsIdx->getValueType(0).getSizeInBits() <= 64 && 12751 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 12752 // Combine: 12753 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 12754 // Into: 12755 // indices are equal or bit offsets are equal => V1 12756 // otherwise => (extract_subvec V1, ExtIdx) 12757 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() == 12758 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits()) 12759 return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1)); 12760 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, 12761 DAG.getNode(ISD::BITCAST, dl, 12762 N->getOperand(0).getValueType(), 12763 V->getOperand(0)), N->getOperand(1)); 12764 } 12765 } 12766 12767 return SDValue(); 12768 } 12769 12770 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, 12771 SDValue V, SelectionDAG &DAG) { 12772 SDLoc DL(V); 12773 EVT VT = V.getValueType(); 12774 12775 switch (V.getOpcode()) { 12776 default: 12777 return V; 12778 12779 case ISD::CONCAT_VECTORS: { 12780 EVT OpVT = V->getOperand(0).getValueType(); 12781 int OpSize = OpVT.getVectorNumElements(); 12782 SmallBitVector OpUsedElements(OpSize, false); 12783 bool FoundSimplification = false; 12784 SmallVector<SDValue, 4> NewOps; 12785 NewOps.reserve(V->getNumOperands()); 12786 for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { 12787 SDValue Op = V->getOperand(i); 12788 bool OpUsed = false; 12789 for (int j = 0; j < OpSize; ++j) 12790 if (UsedElements[i * OpSize + j]) { 12791 OpUsedElements[j] = true; 12792 OpUsed = true; 12793 } 12794 NewOps.push_back( 12795 OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) 12796 : DAG.getUNDEF(OpVT)); 12797 FoundSimplification |= Op == NewOps.back(); 12798 OpUsedElements.reset(); 12799 } 12800 if (FoundSimplification) 12801 V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); 12802 return V; 12803 } 12804 12805 case ISD::INSERT_SUBVECTOR: { 12806 SDValue BaseV = V->getOperand(0); 12807 SDValue SubV = V->getOperand(1); 12808 auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); 12809 if (!IdxN) 12810 return V; 12811 12812 int SubSize = SubV.getValueType().getVectorNumElements(); 12813 int Idx = IdxN->getZExtValue(); 12814 bool SubVectorUsed = false; 12815 SmallBitVector SubUsedElements(SubSize, false); 12816 for (int i = 0; i < SubSize; ++i) 12817 if (UsedElements[i + Idx]) { 12818 SubVectorUsed = true; 12819 SubUsedElements[i] = true; 12820 UsedElements[i + Idx] = false; 12821 } 12822 12823 // Now recurse on both the base and sub vectors. 12824 SDValue SimplifiedSubV = 12825 SubVectorUsed 12826 ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) 12827 : DAG.getUNDEF(SubV.getValueType()); 12828 SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); 12829 if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) 12830 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 12831 SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); 12832 return V; 12833 } 12834 } 12835 } 12836 12837 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, 12838 SDValue N1, SelectionDAG &DAG) { 12839 EVT VT = SVN->getValueType(0); 12840 int NumElts = VT.getVectorNumElements(); 12841 SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); 12842 for (int M : SVN->getMask()) 12843 if (M >= 0 && M < NumElts) 12844 N0UsedElements[M] = true; 12845 else if (M >= NumElts) 12846 N1UsedElements[M - NumElts] = true; 12847 12848 SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); 12849 SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); 12850 if (S0 == N0 && S1 == N1) 12851 return SDValue(); 12852 12853 return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); 12854 } 12855 12856 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 12857 // or turn a shuffle of a single concat into simpler shuffle then concat. 12858 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 12859 EVT VT = N->getValueType(0); 12860 unsigned NumElts = VT.getVectorNumElements(); 12861 12862 SDValue N0 = N->getOperand(0); 12863 SDValue N1 = N->getOperand(1); 12864 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 12865 12866 SmallVector<SDValue, 4> Ops; 12867 EVT ConcatVT = N0.getOperand(0).getValueType(); 12868 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 12869 unsigned NumConcats = NumElts / NumElemsPerConcat; 12870 12871 // Special case: shuffle(concat(A,B)) can be more efficiently represented 12872 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 12873 // half vector elements. 12874 if (NumElemsPerConcat * 2 == NumElts && N1.getOpcode() == ISD::UNDEF && 12875 std::all_of(SVN->getMask().begin() + NumElemsPerConcat, 12876 SVN->getMask().end(), [](int i) { return i == -1; })) { 12877 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), 12878 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); 12879 N1 = DAG.getUNDEF(ConcatVT); 12880 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 12881 } 12882 12883 // Look at every vector that's inserted. We're looking for exact 12884 // subvector-sized copies from a concatenated vector 12885 for (unsigned I = 0; I != NumConcats; ++I) { 12886 // Make sure we're dealing with a copy. 12887 unsigned Begin = I * NumElemsPerConcat; 12888 bool AllUndef = true, NoUndef = true; 12889 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 12890 if (SVN->getMaskElt(J) >= 0) 12891 AllUndef = false; 12892 else 12893 NoUndef = false; 12894 } 12895 12896 if (NoUndef) { 12897 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 12898 return SDValue(); 12899 12900 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 12901 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 12902 return SDValue(); 12903 12904 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 12905 if (FirstElt < N0.getNumOperands()) 12906 Ops.push_back(N0.getOperand(FirstElt)); 12907 else 12908 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 12909 12910 } else if (AllUndef) { 12911 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 12912 } else { // Mixed with general masks and undefs, can't do optimization. 12913 return SDValue(); 12914 } 12915 } 12916 12917 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 12918 } 12919 12920 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 12921 EVT VT = N->getValueType(0); 12922 unsigned NumElts = VT.getVectorNumElements(); 12923 12924 SDValue N0 = N->getOperand(0); 12925 SDValue N1 = N->getOperand(1); 12926 12927 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 12928 12929 // Canonicalize shuffle undef, undef -> undef 12930 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) 12931 return DAG.getUNDEF(VT); 12932 12933 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 12934 12935 // Canonicalize shuffle v, v -> v, undef 12936 if (N0 == N1) { 12937 SmallVector<int, 8> NewMask; 12938 for (unsigned i = 0; i != NumElts; ++i) { 12939 int Idx = SVN->getMaskElt(i); 12940 if (Idx >= (int)NumElts) Idx -= NumElts; 12941 NewMask.push_back(Idx); 12942 } 12943 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 12944 &NewMask[0]); 12945 } 12946 12947 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 12948 if (N0.getOpcode() == ISD::UNDEF) { 12949 SmallVector<int, 8> NewMask; 12950 for (unsigned i = 0; i != NumElts; ++i) { 12951 int Idx = SVN->getMaskElt(i); 12952 if (Idx >= 0) { 12953 if (Idx >= (int)NumElts) 12954 Idx -= NumElts; 12955 else 12956 Idx = -1; // remove reference to lhs 12957 } 12958 NewMask.push_back(Idx); 12959 } 12960 return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT), 12961 &NewMask[0]); 12962 } 12963 12964 // Remove references to rhs if it is undef 12965 if (N1.getOpcode() == ISD::UNDEF) { 12966 bool Changed = false; 12967 SmallVector<int, 8> NewMask; 12968 for (unsigned i = 0; i != NumElts; ++i) { 12969 int Idx = SVN->getMaskElt(i); 12970 if (Idx >= (int)NumElts) { 12971 Idx = -1; 12972 Changed = true; 12973 } 12974 NewMask.push_back(Idx); 12975 } 12976 if (Changed) 12977 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]); 12978 } 12979 12980 // If it is a splat, check if the argument vector is another splat or a 12981 // build_vector. 12982 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 12983 SDNode *V = N0.getNode(); 12984 12985 // If this is a bit convert that changes the element type of the vector but 12986 // not the number of vector elements, look through it. Be careful not to 12987 // look though conversions that change things like v4f32 to v2f64. 12988 if (V->getOpcode() == ISD::BITCAST) { 12989 SDValue ConvInput = V->getOperand(0); 12990 if (ConvInput.getValueType().isVector() && 12991 ConvInput.getValueType().getVectorNumElements() == NumElts) 12992 V = ConvInput.getNode(); 12993 } 12994 12995 if (V->getOpcode() == ISD::BUILD_VECTOR) { 12996 assert(V->getNumOperands() == NumElts && 12997 "BUILD_VECTOR has wrong number of operands"); 12998 SDValue Base; 12999 bool AllSame = true; 13000 for (unsigned i = 0; i != NumElts; ++i) { 13001 if (V->getOperand(i).getOpcode() != ISD::UNDEF) { 13002 Base = V->getOperand(i); 13003 break; 13004 } 13005 } 13006 // Splat of <u, u, u, u>, return <u, u, u, u> 13007 if (!Base.getNode()) 13008 return N0; 13009 for (unsigned i = 0; i != NumElts; ++i) { 13010 if (V->getOperand(i) != Base) { 13011 AllSame = false; 13012 break; 13013 } 13014 } 13015 // Splat of <x, x, x, x>, return <x, x, x, x> 13016 if (AllSame) 13017 return N0; 13018 13019 // Canonicalize any other splat as a build_vector. 13020 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); 13021 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 13022 SDValue NewBV = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), 13023 V->getValueType(0), Ops); 13024 13025 // We may have jumped through bitcasts, so the type of the 13026 // BUILD_VECTOR may not match the type of the shuffle. 13027 if (V->getValueType(0) != VT) 13028 NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV); 13029 return NewBV; 13030 } 13031 } 13032 13033 // There are various patterns used to build up a vector from smaller vectors, 13034 // subvectors, or elements. Scan chains of these and replace unused insertions 13035 // or components with undef. 13036 if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) 13037 return S; 13038 13039 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13040 Level < AfterLegalizeVectorOps && 13041 (N1.getOpcode() == ISD::UNDEF || 13042 (N1.getOpcode() == ISD::CONCAT_VECTORS && 13043 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 13044 SDValue V = partitionShuffleOfConcats(N, DAG); 13045 13046 if (V.getNode()) 13047 return V; 13048 } 13049 13050 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 13051 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 13052 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 13053 SmallVector<SDValue, 8> Ops; 13054 for (int M : SVN->getMask()) { 13055 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 13056 if (M >= 0) { 13057 int Idx = M % NumElts; 13058 SDValue &S = (M < (int)NumElts ? N0 : N1); 13059 if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { 13060 Op = S.getOperand(Idx); 13061 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { 13062 if (Idx == 0) 13063 Op = S.getOperand(0); 13064 } else { 13065 // Operand can't be combined - bail out. 13066 break; 13067 } 13068 } 13069 Ops.push_back(Op); 13070 } 13071 if (Ops.size() == VT.getVectorNumElements()) { 13072 // BUILD_VECTOR requires all inputs to be of the same type, find the 13073 // maximum type and extend them all. 13074 EVT SVT = VT.getScalarType(); 13075 if (SVT.isInteger()) 13076 for (SDValue &Op : Ops) 13077 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 13078 if (SVT != VT.getScalarType()) 13079 for (SDValue &Op : Ops) 13080 Op = TLI.isZExtFree(Op.getValueType(), SVT) 13081 ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) 13082 : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); 13083 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Ops); 13084 } 13085 } 13086 13087 // If this shuffle only has a single input that is a bitcasted shuffle, 13088 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 13089 // back to their original types. 13090 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13091 N1.getOpcode() == ISD::UNDEF && Level < AfterLegalizeVectorOps && 13092 TLI.isTypeLegal(VT)) { 13093 13094 // Peek through the bitcast only if there is one user. 13095 SDValue BC0 = N0; 13096 while (BC0.getOpcode() == ISD::BITCAST) { 13097 if (!BC0.hasOneUse()) 13098 break; 13099 BC0 = BC0.getOperand(0); 13100 } 13101 13102 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 13103 if (Scale == 1) 13104 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 13105 13106 SmallVector<int, 8> NewMask; 13107 for (int M : Mask) 13108 for (int s = 0; s != Scale; ++s) 13109 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 13110 return NewMask; 13111 }; 13112 13113 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 13114 EVT SVT = VT.getScalarType(); 13115 EVT InnerVT = BC0->getValueType(0); 13116 EVT InnerSVT = InnerVT.getScalarType(); 13117 13118 // Determine which shuffle works with the smaller scalar type. 13119 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 13120 EVT ScaleSVT = ScaleVT.getScalarType(); 13121 13122 if (TLI.isTypeLegal(ScaleVT) && 13123 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 13124 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 13125 13126 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13127 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13128 13129 // Scale the shuffle masks to the smaller scalar type. 13130 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 13131 SmallVector<int, 8> InnerMask = 13132 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 13133 SmallVector<int, 8> OuterMask = 13134 ScaleShuffleMask(SVN->getMask(), OuterScale); 13135 13136 // Merge the shuffle masks. 13137 SmallVector<int, 8> NewMask; 13138 for (int M : OuterMask) 13139 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 13140 13141 // Test for shuffle mask legality over both commutations. 13142 SDValue SV0 = BC0->getOperand(0); 13143 SDValue SV1 = BC0->getOperand(1); 13144 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13145 if (!LegalMask) { 13146 std::swap(SV0, SV1); 13147 ShuffleVectorSDNode::commuteMask(NewMask); 13148 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13149 } 13150 13151 if (LegalMask) { 13152 SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0); 13153 SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1); 13154 return DAG.getNode( 13155 ISD::BITCAST, SDLoc(N), VT, 13156 DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 13157 } 13158 } 13159 } 13160 } 13161 13162 // Canonicalize shuffles according to rules: 13163 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 13164 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 13165 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 13166 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 13167 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 13168 TLI.isTypeLegal(VT)) { 13169 // The incoming shuffle must be of the same type as the result of the 13170 // current shuffle. 13171 assert(N1->getOperand(0).getValueType() == VT && 13172 "Shuffle types don't match"); 13173 13174 SDValue SV0 = N1->getOperand(0); 13175 SDValue SV1 = N1->getOperand(1); 13176 bool HasSameOp0 = N0 == SV0; 13177 bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF; 13178 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 13179 // Commute the operands of this shuffle so that next rule 13180 // will trigger. 13181 return DAG.getCommutedVectorShuffle(*SVN); 13182 } 13183 13184 // Try to fold according to rules: 13185 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13186 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13187 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13188 // Don't try to fold shuffles with illegal type. 13189 // Only fold if this shuffle is the only user of the other shuffle. 13190 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 13191 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 13192 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 13193 13194 // The incoming shuffle must be of the same type as the result of the 13195 // current shuffle. 13196 assert(OtherSV->getOperand(0).getValueType() == VT && 13197 "Shuffle types don't match"); 13198 13199 SDValue SV0, SV1; 13200 SmallVector<int, 4> Mask; 13201 // Compute the combined shuffle mask for a shuffle with SV0 as the first 13202 // operand, and SV1 as the second operand. 13203 for (unsigned i = 0; i != NumElts; ++i) { 13204 int Idx = SVN->getMaskElt(i); 13205 if (Idx < 0) { 13206 // Propagate Undef. 13207 Mask.push_back(Idx); 13208 continue; 13209 } 13210 13211 SDValue CurrentVec; 13212 if (Idx < (int)NumElts) { 13213 // This shuffle index refers to the inner shuffle N0. Lookup the inner 13214 // shuffle mask to identify which vector is actually referenced. 13215 Idx = OtherSV->getMaskElt(Idx); 13216 if (Idx < 0) { 13217 // Propagate Undef. 13218 Mask.push_back(Idx); 13219 continue; 13220 } 13221 13222 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 13223 : OtherSV->getOperand(1); 13224 } else { 13225 // This shuffle index references an element within N1. 13226 CurrentVec = N1; 13227 } 13228 13229 // Simple case where 'CurrentVec' is UNDEF. 13230 if (CurrentVec.getOpcode() == ISD::UNDEF) { 13231 Mask.push_back(-1); 13232 continue; 13233 } 13234 13235 // Canonicalize the shuffle index. We don't know yet if CurrentVec 13236 // will be the first or second operand of the combined shuffle. 13237 Idx = Idx % NumElts; 13238 if (!SV0.getNode() || SV0 == CurrentVec) { 13239 // Ok. CurrentVec is the left hand side. 13240 // Update the mask accordingly. 13241 SV0 = CurrentVec; 13242 Mask.push_back(Idx); 13243 continue; 13244 } 13245 13246 // Bail out if we cannot convert the shuffle pair into a single shuffle. 13247 if (SV1.getNode() && SV1 != CurrentVec) 13248 return SDValue(); 13249 13250 // Ok. CurrentVec is the right hand side. 13251 // Update the mask accordingly. 13252 SV1 = CurrentVec; 13253 Mask.push_back(Idx + NumElts); 13254 } 13255 13256 // Check if all indices in Mask are Undef. In case, propagate Undef. 13257 bool isUndefMask = true; 13258 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 13259 isUndefMask &= Mask[i] < 0; 13260 13261 if (isUndefMask) 13262 return DAG.getUNDEF(VT); 13263 13264 if (!SV0.getNode()) 13265 SV0 = DAG.getUNDEF(VT); 13266 if (!SV1.getNode()) 13267 SV1 = DAG.getUNDEF(VT); 13268 13269 // Avoid introducing shuffles with illegal mask. 13270 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 13271 ShuffleVectorSDNode::commuteMask(Mask); 13272 13273 if (!TLI.isShuffleMaskLegal(Mask, VT)) 13274 return SDValue(); 13275 13276 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 13277 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 13278 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 13279 std::swap(SV0, SV1); 13280 } 13281 13282 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13283 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13284 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13285 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]); 13286 } 13287 13288 return SDValue(); 13289 } 13290 13291 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 13292 SDValue InVal = N->getOperand(0); 13293 EVT VT = N->getValueType(0); 13294 13295 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 13296 // with a VECTOR_SHUFFLE. 13297 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13298 SDValue InVec = InVal->getOperand(0); 13299 SDValue EltNo = InVal->getOperand(1); 13300 13301 // FIXME: We could support implicit truncation if the shuffle can be 13302 // scaled to a smaller vector scalar type. 13303 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); 13304 if (C0 && VT == InVec.getValueType() && 13305 VT.getScalarType() == InVal.getValueType()) { 13306 SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); 13307 int Elt = C0->getZExtValue(); 13308 NewMask[0] = Elt; 13309 13310 if (TLI.isShuffleMaskLegal(NewMask, VT)) 13311 return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), 13312 NewMask); 13313 } 13314 } 13315 13316 return SDValue(); 13317 } 13318 13319 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 13320 SDValue N0 = N->getOperand(0); 13321 SDValue N2 = N->getOperand(2); 13322 13323 // If the input vector is a concatenation, and the insert replaces 13324 // one of the halves, we can optimize into a single concat_vectors. 13325 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13326 N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) { 13327 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 13328 EVT VT = N->getValueType(0); 13329 13330 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13331 // (concat_vectors Z, Y) 13332 if (InsIdx == 0) 13333 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 13334 N->getOperand(1), N0.getOperand(1)); 13335 13336 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13337 // (concat_vectors X, Z) 13338 if (InsIdx == VT.getVectorNumElements()/2) 13339 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 13340 N0.getOperand(0), N->getOperand(1)); 13341 } 13342 13343 return SDValue(); 13344 } 13345 13346 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 13347 SDValue N0 = N->getOperand(0); 13348 13349 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 13350 if (N0->getOpcode() == ISD::FP16_TO_FP) 13351 return N0->getOperand(0); 13352 13353 return SDValue(); 13354 } 13355 13356 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 13357 SDValue N0 = N->getOperand(0); 13358 13359 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 13360 if (N0->getOpcode() == ISD::AND) { 13361 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 13362 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 13363 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 13364 N0.getOperand(0)); 13365 } 13366 } 13367 13368 return SDValue(); 13369 } 13370 13371 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 13372 /// with the destination vector and a zero vector. 13373 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 13374 /// vector_shuffle V, Zero, <0, 4, 2, 4> 13375 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 13376 EVT VT = N->getValueType(0); 13377 SDValue LHS = N->getOperand(0); 13378 SDValue RHS = N->getOperand(1); 13379 SDLoc dl(N); 13380 13381 // Make sure we're not running after operation legalization where it 13382 // may have custom lowered the vector shuffles. 13383 if (LegalOperations) 13384 return SDValue(); 13385 13386 if (N->getOpcode() != ISD::AND) 13387 return SDValue(); 13388 13389 if (RHS.getOpcode() == ISD::BITCAST) 13390 RHS = RHS.getOperand(0); 13391 13392 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 13393 return SDValue(); 13394 13395 EVT RVT = RHS.getValueType(); 13396 unsigned NumElts = RHS.getNumOperands(); 13397 13398 // Attempt to create a valid clear mask, splitting the mask into 13399 // sub elements and checking to see if each is 13400 // all zeros or all ones - suitable for shuffle masking. 13401 auto BuildClearMask = [&](int Split) { 13402 int NumSubElts = NumElts * Split; 13403 int NumSubBits = RVT.getScalarSizeInBits() / Split; 13404 13405 SmallVector<int, 8> Indices; 13406 for (int i = 0; i != NumSubElts; ++i) { 13407 int EltIdx = i / Split; 13408 int SubIdx = i % Split; 13409 SDValue Elt = RHS.getOperand(EltIdx); 13410 if (Elt.getOpcode() == ISD::UNDEF) { 13411 Indices.push_back(-1); 13412 continue; 13413 } 13414 13415 APInt Bits; 13416 if (isa<ConstantSDNode>(Elt)) 13417 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 13418 else if (isa<ConstantFPSDNode>(Elt)) 13419 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 13420 else 13421 return SDValue(); 13422 13423 // Extract the sub element from the constant bit mask. 13424 if (DAG.getDataLayout().isBigEndian()) { 13425 Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); 13426 } else { 13427 Bits = Bits.lshr(SubIdx * NumSubBits); 13428 } 13429 13430 if (Split > 1) 13431 Bits = Bits.trunc(NumSubBits); 13432 13433 if (Bits.isAllOnesValue()) 13434 Indices.push_back(i); 13435 else if (Bits == 0) 13436 Indices.push_back(i + NumSubElts); 13437 else 13438 return SDValue(); 13439 } 13440 13441 // Let's see if the target supports this vector_shuffle. 13442 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 13443 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 13444 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 13445 return SDValue(); 13446 13447 SDValue Zero = DAG.getConstant(0, dl, ClearVT); 13448 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl, 13449 DAG.getBitcast(ClearVT, LHS), 13450 Zero, &Indices[0])); 13451 }; 13452 13453 // Determine maximum split level (byte level masking). 13454 int MaxSplit = 1; 13455 if (RVT.getScalarSizeInBits() % 8 == 0) 13456 MaxSplit = RVT.getScalarSizeInBits() / 8; 13457 13458 for (int Split = 1; Split <= MaxSplit; ++Split) 13459 if (RVT.getScalarSizeInBits() % Split == 0) 13460 if (SDValue S = BuildClearMask(Split)) 13461 return S; 13462 13463 return SDValue(); 13464 } 13465 13466 /// Visit a binary vector operation, like ADD. 13467 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 13468 assert(N->getValueType(0).isVector() && 13469 "SimplifyVBinOp only works on vectors!"); 13470 13471 SDValue LHS = N->getOperand(0); 13472 SDValue RHS = N->getOperand(1); 13473 13474 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold 13475 // this operation. 13476 if (LHS.getOpcode() == ISD::BUILD_VECTOR && 13477 RHS.getOpcode() == ISD::BUILD_VECTOR) { 13478 // Check if both vectors are constants. If not bail out. 13479 if (!(cast<BuildVectorSDNode>(LHS)->isConstant() && 13480 cast<BuildVectorSDNode>(RHS)->isConstant())) 13481 return SDValue(); 13482 13483 SmallVector<SDValue, 8> Ops; 13484 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 13485 SDValue LHSOp = LHS.getOperand(i); 13486 SDValue RHSOp = RHS.getOperand(i); 13487 13488 // Can't fold divide by zero. 13489 if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV || 13490 N->getOpcode() == ISD::FDIV) { 13491 if (isNullConstant(RHSOp) || (RHSOp.getOpcode() == ISD::ConstantFP && 13492 cast<ConstantFPSDNode>(RHSOp.getNode())->isZero())) 13493 break; 13494 } 13495 13496 EVT VT = LHSOp.getValueType(); 13497 EVT RVT = RHSOp.getValueType(); 13498 EVT ST = VT; 13499 13500 if (RVT.getSizeInBits() < VT.getSizeInBits()) 13501 ST = RVT; 13502 13503 // Integer BUILD_VECTOR operands may have types larger than the element 13504 // size (e.g., when the element type is not legal). Prior to type 13505 // legalization, the types may not match between the two BUILD_VECTORS. 13506 // Truncate the operands to make them match. 13507 if (VT.getSizeInBits() != LHS.getValueType().getScalarSizeInBits()) { 13508 EVT ScalarT = LHS.getValueType().getScalarType(); 13509 LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), ScalarT, LHSOp); 13510 VT = LHSOp.getValueType(); 13511 } 13512 if (RVT.getSizeInBits() != RHS.getValueType().getScalarSizeInBits()) { 13513 EVT ScalarT = RHS.getValueType().getScalarType(); 13514 RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), ScalarT, RHSOp); 13515 RVT = RHSOp.getValueType(); 13516 } 13517 13518 SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT, 13519 LHSOp, RHSOp, N->getFlags()); 13520 13521 // We need the resulting constant to be legal if we are in a phase after 13522 // legalization, so zero extend to the smallest operand type if required. 13523 if (ST != VT && Level != BeforeLegalizeTypes) 13524 FoldOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LHS), ST, FoldOp); 13525 13526 if (FoldOp.getOpcode() != ISD::UNDEF && 13527 FoldOp.getOpcode() != ISD::Constant && 13528 FoldOp.getOpcode() != ISD::ConstantFP) 13529 break; 13530 Ops.push_back(FoldOp); 13531 AddToWorklist(FoldOp.getNode()); 13532 } 13533 13534 if (Ops.size() == LHS.getNumOperands()) 13535 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), LHS.getValueType(), Ops); 13536 } 13537 13538 // Try to convert a constant mask AND into a shuffle clear mask. 13539 if (SDValue Shuffle = XformToShuffleWithZero(N)) 13540 return Shuffle; 13541 13542 // Type legalization might introduce new shuffles in the DAG. 13543 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 13544 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 13545 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 13546 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 13547 LHS.getOperand(1).getOpcode() == ISD::UNDEF && 13548 RHS.getOperand(1).getOpcode() == ISD::UNDEF) { 13549 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 13550 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 13551 13552 if (SVN0->getMask().equals(SVN1->getMask())) { 13553 EVT VT = N->getValueType(0); 13554 SDValue UndefVector = LHS.getOperand(1); 13555 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 13556 LHS.getOperand(0), RHS.getOperand(0), 13557 N->getFlags()); 13558 AddUsersToWorklist(N); 13559 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 13560 &SVN0->getMask()[0]); 13561 } 13562 } 13563 13564 return SDValue(); 13565 } 13566 13567 SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0, 13568 SDValue N1, SDValue N2){ 13569 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 13570 13571 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 13572 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 13573 13574 // If we got a simplified select_cc node back from SimplifySelectCC, then 13575 // break it down into a new SETCC node, and a new SELECT node, and then return 13576 // the SELECT node, since we were called with a SELECT node. 13577 if (SCC.getNode()) { 13578 // Check to see if we got a select_cc back (to turn into setcc/select). 13579 // Otherwise, just return whatever node we got back, like fabs. 13580 if (SCC.getOpcode() == ISD::SELECT_CC) { 13581 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 13582 N0.getValueType(), 13583 SCC.getOperand(0), SCC.getOperand(1), 13584 SCC.getOperand(4)); 13585 AddToWorklist(SETCC.getNode()); 13586 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 13587 SCC.getOperand(2), SCC.getOperand(3)); 13588 } 13589 13590 return SCC; 13591 } 13592 return SDValue(); 13593 } 13594 13595 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 13596 /// being selected between, see if we can simplify the select. Callers of this 13597 /// should assume that TheSelect is deleted if this returns true. As such, they 13598 /// should return the appropriate thing (e.g. the node) back to the top-level of 13599 /// the DAG combiner loop to avoid it being looked at. 13600 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 13601 SDValue RHS) { 13602 13603 // fold (select (setcc x, -0.0, *lt), NaN, (fsqrt x)) 13604 // The select + setcc is redundant, because fsqrt returns NaN for X < -0. 13605 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 13606 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 13607 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 13608 SDValue Sqrt = RHS; 13609 ISD::CondCode CC; 13610 SDValue CmpLHS; 13611 const ConstantFPSDNode *NegZero = nullptr; 13612 13613 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 13614 CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 13615 CmpLHS = TheSelect->getOperand(0); 13616 NegZero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 13617 } else { 13618 // SELECT or VSELECT 13619 SDValue Cmp = TheSelect->getOperand(0); 13620 if (Cmp.getOpcode() == ISD::SETCC) { 13621 CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 13622 CmpLHS = Cmp.getOperand(0); 13623 NegZero = isConstOrConstSplatFP(Cmp.getOperand(1)); 13624 } 13625 } 13626 if (NegZero && NegZero->isNegative() && NegZero->isZero() && 13627 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 13628 CC == ISD::SETULT || CC == ISD::SETLT)) { 13629 // We have: (select (setcc x, -0.0, *lt), NaN, (fsqrt x)) 13630 CombineTo(TheSelect, Sqrt); 13631 return true; 13632 } 13633 } 13634 } 13635 // Cannot simplify select with vector condition 13636 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 13637 13638 // If this is a select from two identical things, try to pull the operation 13639 // through the select. 13640 if (LHS.getOpcode() != RHS.getOpcode() || 13641 !LHS.hasOneUse() || !RHS.hasOneUse()) 13642 return false; 13643 13644 // If this is a load and the token chain is identical, replace the select 13645 // of two loads with a load through a select of the address to load from. 13646 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 13647 // constants have been dropped into the constant pool. 13648 if (LHS.getOpcode() == ISD::LOAD) { 13649 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 13650 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 13651 13652 // Token chains must be identical. 13653 if (LHS.getOperand(0) != RHS.getOperand(0) || 13654 // Do not let this transformation reduce the number of volatile loads. 13655 LLD->isVolatile() || RLD->isVolatile() || 13656 // FIXME: If either is a pre/post inc/dec load, 13657 // we'd need to split out the address adjustment. 13658 LLD->isIndexed() || RLD->isIndexed() || 13659 // If this is an EXTLOAD, the VT's must match. 13660 LLD->getMemoryVT() != RLD->getMemoryVT() || 13661 // If this is an EXTLOAD, the kind of extension must match. 13662 (LLD->getExtensionType() != RLD->getExtensionType() && 13663 // The only exception is if one of the extensions is anyext. 13664 LLD->getExtensionType() != ISD::EXTLOAD && 13665 RLD->getExtensionType() != ISD::EXTLOAD) || 13666 // FIXME: this discards src value information. This is 13667 // over-conservative. It would be beneficial to be able to remember 13668 // both potential memory locations. Since we are discarding 13669 // src value info, don't do the transformation if the memory 13670 // locations are not in the default address space. 13671 LLD->getPointerInfo().getAddrSpace() != 0 || 13672 RLD->getPointerInfo().getAddrSpace() != 0 || 13673 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 13674 LLD->getBasePtr().getValueType())) 13675 return false; 13676 13677 // Check that the select condition doesn't reach either load. If so, 13678 // folding this will induce a cycle into the DAG. If not, this is safe to 13679 // xform, so create a select of the addresses. 13680 SDValue Addr; 13681 if (TheSelect->getOpcode() == ISD::SELECT) { 13682 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 13683 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 13684 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 13685 return false; 13686 // The loads must not depend on one another. 13687 if (LLD->isPredecessorOf(RLD) || 13688 RLD->isPredecessorOf(LLD)) 13689 return false; 13690 Addr = DAG.getSelect(SDLoc(TheSelect), 13691 LLD->getBasePtr().getValueType(), 13692 TheSelect->getOperand(0), LLD->getBasePtr(), 13693 RLD->getBasePtr()); 13694 } else { // Otherwise SELECT_CC 13695 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 13696 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 13697 13698 if ((LLD->hasAnyUseOfValue(1) && 13699 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 13700 (RLD->hasAnyUseOfValue(1) && 13701 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 13702 return false; 13703 13704 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 13705 LLD->getBasePtr().getValueType(), 13706 TheSelect->getOperand(0), 13707 TheSelect->getOperand(1), 13708 LLD->getBasePtr(), RLD->getBasePtr(), 13709 TheSelect->getOperand(4)); 13710 } 13711 13712 SDValue Load; 13713 // It is safe to replace the two loads if they have different alignments, 13714 // but the new load must be the minimum (most restrictive) alignment of the 13715 // inputs. 13716 bool isInvariant = LLD->isInvariant() & RLD->isInvariant(); 13717 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 13718 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 13719 Load = DAG.getLoad(TheSelect->getValueType(0), 13720 SDLoc(TheSelect), 13721 // FIXME: Discards pointer and AA info. 13722 LLD->getChain(), Addr, MachinePointerInfo(), 13723 LLD->isVolatile(), LLD->isNonTemporal(), 13724 isInvariant, Alignment); 13725 } else { 13726 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? 13727 RLD->getExtensionType() : LLD->getExtensionType(), 13728 SDLoc(TheSelect), 13729 TheSelect->getValueType(0), 13730 // FIXME: Discards pointer and AA info. 13731 LLD->getChain(), Addr, MachinePointerInfo(), 13732 LLD->getMemoryVT(), LLD->isVolatile(), 13733 LLD->isNonTemporal(), isInvariant, Alignment); 13734 } 13735 13736 // Users of the select now use the result of the load. 13737 CombineTo(TheSelect, Load); 13738 13739 // Users of the old loads now use the new load's chain. We know the 13740 // old-load value is dead now. 13741 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 13742 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 13743 return true; 13744 } 13745 13746 return false; 13747 } 13748 13749 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 13750 /// where 'cond' is the comparison specified by CC. 13751 SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, 13752 SDValue N2, SDValue N3, 13753 ISD::CondCode CC, bool NotExtCompare) { 13754 // (x ? y : y) -> y. 13755 if (N2 == N3) return N2; 13756 13757 EVT VT = N2.getValueType(); 13758 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 13759 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 13760 13761 // Determine if the condition we're dealing with is constant 13762 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 13763 N0, N1, CC, DL, false); 13764 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 13765 13766 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { 13767 // fold select_cc true, x, y -> x 13768 // fold select_cc false, x, y -> y 13769 return !SCCC->isNullValue() ? N2 : N3; 13770 } 13771 13772 // Check to see if we can simplify the select into an fabs node 13773 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 13774 // Allow either -0.0 or 0.0 13775 if (CFP->isZero()) { 13776 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 13777 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 13778 N0 == N2 && N3.getOpcode() == ISD::FNEG && 13779 N2 == N3.getOperand(0)) 13780 return DAG.getNode(ISD::FABS, DL, VT, N0); 13781 13782 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 13783 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 13784 N0 == N3 && N2.getOpcode() == ISD::FNEG && 13785 N2.getOperand(0) == N3) 13786 return DAG.getNode(ISD::FABS, DL, VT, N3); 13787 } 13788 } 13789 13790 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 13791 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 13792 // in it. This is a win when the constant is not otherwise available because 13793 // it replaces two constant pool loads with one. We only do this if the FP 13794 // type is known to be legal, because if it isn't, then we are before legalize 13795 // types an we want the other legalization to happen first (e.g. to avoid 13796 // messing with soft float) and if the ConstantFP is not legal, because if 13797 // it is legal, we may not need to store the FP constant in a constant pool. 13798 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 13799 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 13800 if (TLI.isTypeLegal(N2.getValueType()) && 13801 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 13802 TargetLowering::Legal && 13803 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 13804 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 13805 // If both constants have multiple uses, then we won't need to do an 13806 // extra load, they are likely around in registers for other users. 13807 (TV->hasOneUse() || FV->hasOneUse())) { 13808 Constant *Elts[] = { 13809 const_cast<ConstantFP*>(FV->getConstantFPValue()), 13810 const_cast<ConstantFP*>(TV->getConstantFPValue()) 13811 }; 13812 Type *FPTy = Elts[0]->getType(); 13813 const DataLayout &TD = DAG.getDataLayout(); 13814 13815 // Create a ConstantArray of the two constants. 13816 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 13817 SDValue CPIdx = 13818 DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 13819 TD.getPrefTypeAlignment(FPTy)); 13820 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 13821 13822 // Get the offsets to the 0 and 1 element of the array so that we can 13823 // select between them. 13824 SDValue Zero = DAG.getIntPtrConstant(0, DL); 13825 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 13826 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 13827 13828 SDValue Cond = DAG.getSetCC(DL, 13829 getSetCCResultType(N0.getValueType()), 13830 N0, N1, CC); 13831 AddToWorklist(Cond.getNode()); 13832 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 13833 Cond, One, Zero); 13834 AddToWorklist(CstOffset.getNode()); 13835 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 13836 CstOffset); 13837 AddToWorklist(CPIdx.getNode()); 13838 return DAG.getLoad( 13839 TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 13840 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 13841 false, false, false, Alignment); 13842 } 13843 } 13844 13845 // Check to see if we can perform the "gzip trick", transforming 13846 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 13847 if (isNullConstant(N3) && CC == ISD::SETLT && 13848 (isNullConstant(N1) || // (a < 0) ? b : 0 13849 (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0 13850 EVT XType = N0.getValueType(); 13851 EVT AType = N2.getValueType(); 13852 if (XType.bitsGE(AType)) { 13853 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 13854 // single-bit constant. 13855 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 13856 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 13857 ShCtV = XType.getSizeInBits() - ShCtV - 1; 13858 SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), 13859 getShiftAmountTy(N0.getValueType())); 13860 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 13861 XType, N0, ShCt); 13862 AddToWorklist(Shift.getNode()); 13863 13864 if (XType.bitsGT(AType)) { 13865 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 13866 AddToWorklist(Shift.getNode()); 13867 } 13868 13869 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 13870 } 13871 13872 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 13873 XType, N0, 13874 DAG.getConstant(XType.getSizeInBits() - 1, 13875 SDLoc(N0), 13876 getShiftAmountTy(N0.getValueType()))); 13877 AddToWorklist(Shift.getNode()); 13878 13879 if (XType.bitsGT(AType)) { 13880 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 13881 AddToWorklist(Shift.getNode()); 13882 } 13883 13884 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 13885 } 13886 } 13887 13888 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 13889 // where y is has a single bit set. 13890 // A plaintext description would be, we can turn the SELECT_CC into an AND 13891 // when the condition can be materialized as an all-ones register. Any 13892 // single bit-test can be materialized as an all-ones register with 13893 // shift-left and shift-right-arith. 13894 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 13895 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 13896 SDValue AndLHS = N0->getOperand(0); 13897 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 13898 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 13899 // Shift the tested bit over the sign bit. 13900 APInt AndMask = ConstAndRHS->getAPIntValue(); 13901 SDValue ShlAmt = 13902 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 13903 getShiftAmountTy(AndLHS.getValueType())); 13904 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 13905 13906 // Now arithmetic right shift it all the way over, so the result is either 13907 // all-ones, or zero. 13908 SDValue ShrAmt = 13909 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 13910 getShiftAmountTy(Shl.getValueType())); 13911 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 13912 13913 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 13914 } 13915 } 13916 13917 // fold select C, 16, 0 -> shl C, 4 13918 if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && 13919 TLI.getBooleanContents(N0.getValueType()) == 13920 TargetLowering::ZeroOrOneBooleanContent) { 13921 13922 // If the caller doesn't want us to simplify this into a zext of a compare, 13923 // don't do it. 13924 if (NotExtCompare && N2C->isOne()) 13925 return SDValue(); 13926 13927 // Get a SetCC of the condition 13928 // NOTE: Don't create a SETCC if it's not legal on this target. 13929 if (!LegalOperations || 13930 TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { 13931 SDValue Temp, SCC; 13932 // cast from setcc result type to select result type 13933 if (LegalTypes) { 13934 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 13935 N0, N1, CC); 13936 if (N2.getValueType().bitsLT(SCC.getValueType())) 13937 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 13938 N2.getValueType()); 13939 else 13940 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 13941 N2.getValueType(), SCC); 13942 } else { 13943 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 13944 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 13945 N2.getValueType(), SCC); 13946 } 13947 13948 AddToWorklist(SCC.getNode()); 13949 AddToWorklist(Temp.getNode()); 13950 13951 if (N2C->isOne()) 13952 return Temp; 13953 13954 // shl setcc result by log2 n2c 13955 return DAG.getNode( 13956 ISD::SHL, DL, N2.getValueType(), Temp, 13957 DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), 13958 getShiftAmountTy(Temp.getValueType()))); 13959 } 13960 } 13961 13962 // Check to see if this is an integer abs. 13963 // select_cc setg[te] X, 0, X, -X -> 13964 // select_cc setgt X, -1, X, -X -> 13965 // select_cc setl[te] X, 0, -X, X -> 13966 // select_cc setlt X, 1, -X, X -> 13967 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 13968 if (N1C) { 13969 ConstantSDNode *SubC = nullptr; 13970 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 13971 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 13972 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 13973 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 13974 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 13975 (N1C->isOne() && CC == ISD::SETLT)) && 13976 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 13977 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 13978 13979 EVT XType = N0.getValueType(); 13980 if (SubC && SubC->isNullValue() && XType.isInteger()) { 13981 SDLoc DL(N0); 13982 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, 13983 N0, 13984 DAG.getConstant(XType.getSizeInBits() - 1, DL, 13985 getShiftAmountTy(N0.getValueType()))); 13986 SDValue Add = DAG.getNode(ISD::ADD, DL, 13987 XType, N0, Shift); 13988 AddToWorklist(Shift.getNode()); 13989 AddToWorklist(Add.getNode()); 13990 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 13991 } 13992 } 13993 13994 return SDValue(); 13995 } 13996 13997 /// This is a stub for TargetLowering::SimplifySetCC. 13998 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, 13999 SDValue N1, ISD::CondCode Cond, 14000 SDLoc DL, bool foldBooleans) { 14001 TargetLowering::DAGCombinerInfo 14002 DagCombineInfo(DAG, Level, false, this); 14003 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 14004 } 14005 14006 /// Given an ISD::SDIV node expressing a divide by constant, return 14007 /// a DAG expression to select that will generate the same value by multiplying 14008 /// by a magic number. 14009 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14010 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 14011 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14012 if (!C) 14013 return SDValue(); 14014 14015 // Avoid division by zero. 14016 if (C->isNullValue()) 14017 return SDValue(); 14018 14019 std::vector<SDNode*> Built; 14020 SDValue S = 14021 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14022 14023 for (SDNode *N : Built) 14024 AddToWorklist(N); 14025 return S; 14026 } 14027 14028 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 14029 /// DAG expression that will generate the same value by right shifting. 14030 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 14031 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14032 if (!C) 14033 return SDValue(); 14034 14035 // Avoid division by zero. 14036 if (C->isNullValue()) 14037 return SDValue(); 14038 14039 std::vector<SDNode *> Built; 14040 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 14041 14042 for (SDNode *N : Built) 14043 AddToWorklist(N); 14044 return S; 14045 } 14046 14047 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 14048 /// expression that will generate the same value by multiplying by a magic 14049 /// number. 14050 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14051 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 14052 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14053 if (!C) 14054 return SDValue(); 14055 14056 // Avoid division by zero. 14057 if (C->isNullValue()) 14058 return SDValue(); 14059 14060 std::vector<SDNode*> Built; 14061 SDValue S = 14062 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14063 14064 for (SDNode *N : Built) 14065 AddToWorklist(N); 14066 return S; 14067 } 14068 14069 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { 14070 if (Level >= AfterLegalizeDAG) 14071 return SDValue(); 14072 14073 // Expose the DAG combiner to the target combiner implementations. 14074 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14075 14076 unsigned Iterations = 0; 14077 if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { 14078 if (Iterations) { 14079 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14080 // For the reciprocal, we need to find the zero of the function: 14081 // F(X) = A X - 1 [which has a zero at X = 1/A] 14082 // => 14083 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 14084 // does not require additional intermediate precision] 14085 EVT VT = Op.getValueType(); 14086 SDLoc DL(Op); 14087 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14088 14089 AddToWorklist(Est.getNode()); 14090 14091 // Newton iterations: Est = Est + Est (1 - Arg * Est) 14092 for (unsigned i = 0; i < Iterations; ++i) { 14093 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 14094 AddToWorklist(NewEst.getNode()); 14095 14096 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 14097 AddToWorklist(NewEst.getNode()); 14098 14099 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14100 AddToWorklist(NewEst.getNode()); 14101 14102 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 14103 AddToWorklist(Est.getNode()); 14104 } 14105 } 14106 return Est; 14107 } 14108 14109 return SDValue(); 14110 } 14111 14112 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14113 /// For the reciprocal sqrt, we need to find the zero of the function: 14114 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14115 /// => 14116 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 14117 /// As a result, we precompute A/2 prior to the iteration loop. 14118 SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est, 14119 unsigned Iterations, 14120 SDNodeFlags *Flags) { 14121 EVT VT = Arg.getValueType(); 14122 SDLoc DL(Arg); 14123 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 14124 14125 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 14126 // this entire sequence requires only one FP constant. 14127 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 14128 AddToWorklist(HalfArg.getNode()); 14129 14130 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 14131 AddToWorklist(HalfArg.getNode()); 14132 14133 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 14134 for (unsigned i = 0; i < Iterations; ++i) { 14135 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14136 AddToWorklist(NewEst.getNode()); 14137 14138 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 14139 AddToWorklist(NewEst.getNode()); 14140 14141 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 14142 AddToWorklist(NewEst.getNode()); 14143 14144 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14145 AddToWorklist(Est.getNode()); 14146 } 14147 return Est; 14148 } 14149 14150 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14151 /// For the reciprocal sqrt, we need to find the zero of the function: 14152 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14153 /// => 14154 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 14155 SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est, 14156 unsigned Iterations, 14157 SDNodeFlags *Flags) { 14158 EVT VT = Arg.getValueType(); 14159 SDLoc DL(Arg); 14160 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 14161 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 14162 14163 // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est) 14164 for (unsigned i = 0; i < Iterations; ++i) { 14165 SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 14166 AddToWorklist(HalfEst.getNode()); 14167 14168 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14169 AddToWorklist(Est.getNode()); 14170 14171 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 14172 AddToWorklist(Est.getNode()); 14173 14174 Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags); 14175 AddToWorklist(Est.getNode()); 14176 14177 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags); 14178 AddToWorklist(Est.getNode()); 14179 } 14180 return Est; 14181 } 14182 14183 SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 14184 if (Level >= AfterLegalizeDAG) 14185 return SDValue(); 14186 14187 // Expose the DAG combiner to the target combiner implementations. 14188 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14189 unsigned Iterations = 0; 14190 bool UseOneConstNR = false; 14191 if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { 14192 AddToWorklist(Est.getNode()); 14193 if (Iterations) { 14194 Est = UseOneConstNR ? 14195 BuildRsqrtNROneConst(Op, Est, Iterations, Flags) : 14196 BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags); 14197 } 14198 return Est; 14199 } 14200 14201 return SDValue(); 14202 } 14203 14204 /// Return true if base is a frame index, which is known not to alias with 14205 /// anything but itself. Provides base object and offset as results. 14206 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 14207 const GlobalValue *&GV, const void *&CV) { 14208 // Assume it is a primitive operation. 14209 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 14210 14211 // If it's an adding a simple constant then integrate the offset. 14212 if (Base.getOpcode() == ISD::ADD) { 14213 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 14214 Base = Base.getOperand(0); 14215 Offset += C->getZExtValue(); 14216 } 14217 } 14218 14219 // Return the underlying GlobalValue, and update the Offset. Return false 14220 // for GlobalAddressSDNode since the same GlobalAddress may be represented 14221 // by multiple nodes with different offsets. 14222 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 14223 GV = G->getGlobal(); 14224 Offset += G->getOffset(); 14225 return false; 14226 } 14227 14228 // Return the underlying Constant value, and update the Offset. Return false 14229 // for ConstantSDNodes since the same constant pool entry may be represented 14230 // by multiple nodes with different offsets. 14231 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 14232 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 14233 : (const void *)C->getConstVal(); 14234 Offset += C->getOffset(); 14235 return false; 14236 } 14237 // If it's any of the following then it can't alias with anything but itself. 14238 return isa<FrameIndexSDNode>(Base); 14239 } 14240 14241 /// Return true if there is any possibility that the two addresses overlap. 14242 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 14243 // If they are the same then they must be aliases. 14244 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 14245 14246 // If they are both volatile then they cannot be reordered. 14247 if (Op0->isVolatile() && Op1->isVolatile()) return true; 14248 14249 // If one operation reads from invariant memory, and the other may store, they 14250 // cannot alias. These should really be checking the equivalent of mayWrite, 14251 // but it only matters for memory nodes other than load /store. 14252 if (Op0->isInvariant() && Op1->writeMem()) 14253 return false; 14254 14255 if (Op1->isInvariant() && Op0->writeMem()) 14256 return false; 14257 14258 // Gather base node and offset information. 14259 SDValue Base1, Base2; 14260 int64_t Offset1, Offset2; 14261 const GlobalValue *GV1, *GV2; 14262 const void *CV1, *CV2; 14263 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 14264 Base1, Offset1, GV1, CV1); 14265 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 14266 Base2, Offset2, GV2, CV2); 14267 14268 // If they have a same base address then check to see if they overlap. 14269 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 14270 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14271 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14272 14273 // It is possible for different frame indices to alias each other, mostly 14274 // when tail call optimization reuses return address slots for arguments. 14275 // To catch this case, look up the actual index of frame indices to compute 14276 // the real alias relationship. 14277 if (isFrameIndex1 && isFrameIndex2) { 14278 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 14279 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 14280 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 14281 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14282 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14283 } 14284 14285 // Otherwise, if we know what the bases are, and they aren't identical, then 14286 // we know they cannot alias. 14287 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 14288 return false; 14289 14290 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 14291 // compared to the size and offset of the access, we may be able to prove they 14292 // do not alias. This check is conservative for now to catch cases created by 14293 // splitting vector types. 14294 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 14295 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 14296 (Op0->getMemoryVT().getSizeInBits() >> 3 == 14297 Op1->getMemoryVT().getSizeInBits() >> 3) && 14298 (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) { 14299 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 14300 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 14301 14302 // There is no overlap between these relatively aligned accesses of similar 14303 // size, return no alias. 14304 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 14305 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 14306 return false; 14307 } 14308 14309 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 14310 ? CombinerGlobalAA 14311 : DAG.getSubtarget().useAA(); 14312 #ifndef NDEBUG 14313 if (CombinerAAOnlyFunc.getNumOccurrences() && 14314 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 14315 UseAA = false; 14316 #endif 14317 if (UseAA && 14318 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 14319 // Use alias analysis information. 14320 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 14321 Op1->getSrcValueOffset()); 14322 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 14323 Op0->getSrcValueOffset() - MinOffset; 14324 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 14325 Op1->getSrcValueOffset() - MinOffset; 14326 AliasResult AAResult = 14327 AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, 14328 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 14329 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, 14330 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 14331 if (AAResult == NoAlias) 14332 return false; 14333 } 14334 14335 // Otherwise we have to assume they alias. 14336 return true; 14337 } 14338 14339 /// Walk up chain skipping non-aliasing memory nodes, 14340 /// looking for aliasing nodes and adding them to the Aliases vector. 14341 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 14342 SmallVectorImpl<SDValue> &Aliases) { 14343 SmallVector<SDValue, 8> Chains; // List of chains to visit. 14344 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 14345 14346 // Get alias information for node. 14347 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 14348 14349 // Starting off. 14350 Chains.push_back(OriginalChain); 14351 unsigned Depth = 0; 14352 14353 // Look at each chain and determine if it is an alias. If so, add it to the 14354 // aliases list. If not, then continue up the chain looking for the next 14355 // candidate. 14356 while (!Chains.empty()) { 14357 SDValue Chain = Chains.pop_back_val(); 14358 14359 // For TokenFactor nodes, look at each operand and only continue up the 14360 // chain until we find two aliases. If we've seen two aliases, assume we'll 14361 // find more and revert to original chain since the xform is unlikely to be 14362 // profitable. 14363 // 14364 // FIXME: The depth check could be made to return the last non-aliasing 14365 // chain we found before we hit a tokenfactor rather than the original 14366 // chain. 14367 if (Depth > 6 || Aliases.size() == 2) { 14368 Aliases.clear(); 14369 Aliases.push_back(OriginalChain); 14370 return; 14371 } 14372 14373 // Don't bother if we've been before. 14374 if (!Visited.insert(Chain.getNode()).second) 14375 continue; 14376 14377 switch (Chain.getOpcode()) { 14378 case ISD::EntryToken: 14379 // Entry token is ideal chain operand, but handled in FindBetterChain. 14380 break; 14381 14382 case ISD::LOAD: 14383 case ISD::STORE: { 14384 // Get alias information for Chain. 14385 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 14386 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 14387 14388 // If chain is alias then stop here. 14389 if (!(IsLoad && IsOpLoad) && 14390 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 14391 Aliases.push_back(Chain); 14392 } else { 14393 // Look further up the chain. 14394 Chains.push_back(Chain.getOperand(0)); 14395 ++Depth; 14396 } 14397 break; 14398 } 14399 14400 case ISD::TokenFactor: 14401 // We have to check each of the operands of the token factor for "small" 14402 // token factors, so we queue them up. Adding the operands to the queue 14403 // (stack) in reverse order maintains the original order and increases the 14404 // likelihood that getNode will find a matching token factor (CSE.) 14405 if (Chain.getNumOperands() > 16) { 14406 Aliases.push_back(Chain); 14407 break; 14408 } 14409 for (unsigned n = Chain.getNumOperands(); n;) 14410 Chains.push_back(Chain.getOperand(--n)); 14411 ++Depth; 14412 break; 14413 14414 default: 14415 // For all other instructions we will just have to take what we can get. 14416 Aliases.push_back(Chain); 14417 break; 14418 } 14419 } 14420 14421 // We need to be careful here to also search for aliases through the 14422 // value operand of a store, etc. Consider the following situation: 14423 // Token1 = ... 14424 // L1 = load Token1, %52 14425 // S1 = store Token1, L1, %51 14426 // L2 = load Token1, %52+8 14427 // S2 = store Token1, L2, %51+8 14428 // Token2 = Token(S1, S2) 14429 // L3 = load Token2, %53 14430 // S3 = store Token2, L3, %52 14431 // L4 = load Token2, %53+8 14432 // S4 = store Token2, L4, %52+8 14433 // If we search for aliases of S3 (which loads address %52), and we look 14434 // only through the chain, then we'll miss the trivial dependence on L1 14435 // (which also loads from %52). We then might change all loads and 14436 // stores to use Token1 as their chain operand, which could result in 14437 // copying %53 into %52 before copying %52 into %51 (which should 14438 // happen first). 14439 // 14440 // The problem is, however, that searching for such data dependencies 14441 // can become expensive, and the cost is not directly related to the 14442 // chain depth. Instead, we'll rule out such configurations here by 14443 // insisting that we've visited all chain users (except for users 14444 // of the original chain, which is not necessary). When doing this, 14445 // we need to look through nodes we don't care about (otherwise, things 14446 // like register copies will interfere with trivial cases). 14447 14448 SmallVector<const SDNode *, 16> Worklist; 14449 for (const SDNode *N : Visited) 14450 if (N != OriginalChain.getNode()) 14451 Worklist.push_back(N); 14452 14453 while (!Worklist.empty()) { 14454 const SDNode *M = Worklist.pop_back_val(); 14455 14456 // We have already visited M, and want to make sure we've visited any uses 14457 // of M that we care about. For uses that we've not visisted, and don't 14458 // care about, queue them to the worklist. 14459 14460 for (SDNode::use_iterator UI = M->use_begin(), 14461 UIE = M->use_end(); UI != UIE; ++UI) 14462 if (UI.getUse().getValueType() == MVT::Other && 14463 Visited.insert(*UI).second) { 14464 if (isa<MemSDNode>(*UI)) { 14465 // We've not visited this use, and we care about it (it could have an 14466 // ordering dependency with the original node). 14467 Aliases.clear(); 14468 Aliases.push_back(OriginalChain); 14469 return; 14470 } 14471 14472 // We've not visited this use, but we don't care about it. Mark it as 14473 // visited and enqueue it to the worklist. 14474 Worklist.push_back(*UI); 14475 } 14476 } 14477 } 14478 14479 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 14480 /// (aliasing node.) 14481 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 14482 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 14483 14484 // Accumulate all the aliases to this node. 14485 GatherAllAliases(N, OldChain, Aliases); 14486 14487 // If no operands then chain to entry token. 14488 if (Aliases.size() == 0) 14489 return DAG.getEntryNode(); 14490 14491 // If a single operand then chain to it. We don't need to revisit it. 14492 if (Aliases.size() == 1) 14493 return Aliases[0]; 14494 14495 // Construct a custom tailored token factor. 14496 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 14497 } 14498 14499 bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) { 14500 // This holds the base pointer, index, and the offset in bytes from the base 14501 // pointer. 14502 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr()); 14503 14504 // We must have a base and an offset. 14505 if (!BasePtr.Base.getNode()) 14506 return false; 14507 14508 // Do not handle stores to undef base pointers. 14509 if (BasePtr.Base.getOpcode() == ISD::UNDEF) 14510 return false; 14511 14512 SmallVector<StoreSDNode *, 8> ChainedStores; 14513 ChainedStores.push_back(St); 14514 14515 // Walk up the chain and look for nodes with offsets from the same 14516 // base pointer. Stop when reaching an instruction with a different kind 14517 // or instruction which has a different base pointer. 14518 StoreSDNode *Index = St; 14519 while (Index) { 14520 // If the chain has more than one use, then we can't reorder the mem ops. 14521 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 14522 break; 14523 14524 if (Index->isVolatile() || Index->isIndexed()) 14525 break; 14526 14527 // Find the base pointer and offset for this memory node. 14528 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr()); 14529 14530 // Check that the base pointer is the same as the original one. 14531 if (!Ptr.equalBaseIndex(BasePtr)) 14532 break; 14533 14534 // Find the next memory operand in the chain. If the next operand in the 14535 // chain is a store then move up and continue the scan with the next 14536 // memory operand. If the next operand is a load save it and use alias 14537 // information to check if it interferes with anything. 14538 SDNode *NextInChain = Index->getChain().getNode(); 14539 while (true) { 14540 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 14541 // We found a store node. Use it for the next iteration. 14542 ChainedStores.push_back(STn); 14543 Index = STn; 14544 break; 14545 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 14546 NextInChain = Ldn->getChain().getNode(); 14547 continue; 14548 } else { 14549 Index = nullptr; 14550 break; 14551 } 14552 } 14553 } 14554 14555 bool MadeChange = false; 14556 SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; 14557 14558 for (StoreSDNode *ChainedStore : ChainedStores) { 14559 SDValue Chain = ChainedStore->getChain(); 14560 SDValue BetterChain = FindBetterChain(ChainedStore, Chain); 14561 14562 if (Chain != BetterChain) { 14563 MadeChange = true; 14564 BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); 14565 } 14566 } 14567 14568 // Do all replacements after finding the replacements to make to avoid making 14569 // the chains more complicated by introducing new TokenFactors. 14570 for (auto Replacement : BetterChains) 14571 replaceStoreChain(Replacement.first, Replacement.second); 14572 14573 return MadeChange; 14574 } 14575 14576 /// This is the entry point for the file. 14577 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 14578 CodeGenOpt::Level OptLevel) { 14579 /// This is the main entry point to this class. 14580 DAGCombiner(*this, AA, OptLevel).Run(Level); 14581 } 14582