1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 10 // both before and after the DAG is legalized. 11 // 12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 13 // primarily intended to handle simplification opportunities that are implicit 14 // in the LLVM IR and exposed by the various codegen lowering phases. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/IntervalMap.h" 23 #include "llvm/ADT/None.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/RuntimeLibcalls.h" 42 #include "llvm/CodeGen/SelectionDAG.h" 43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/CodeGen/ValueTypes.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <functional> 73 #include <iterator> 74 #include <string> 75 #include <tuple> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "dagcombine" 81 82 STATISTIC(NodesCombined , "Number of dag nodes combined"); 83 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 84 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 85 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 86 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 87 STATISTIC(SlicedLoads, "Number of load sliced"); 88 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); 89 90 static cl::opt<bool> 91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 92 cl::desc("Enable DAG combiner's use of IR alias analysis")); 93 94 static cl::opt<bool> 95 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 96 cl::desc("Enable DAG combiner's use of TBAA")); 97 98 #ifndef NDEBUG 99 static cl::opt<std::string> 100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 101 cl::desc("Only use DAG-combiner alias analysis in this" 102 " function")); 103 #endif 104 105 /// Hidden option to stress test load slicing, i.e., when this option 106 /// is enabled, load slicing bypasses most of its profitability guards. 107 static cl::opt<bool> 108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 109 cl::desc("Bypass the profitability model of load slicing"), 110 cl::init(false)); 111 112 static cl::opt<bool> 113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 114 cl::desc("DAG combiner may split indexing from loads")); 115 116 static cl::opt<bool> 117 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), 118 cl::desc("DAG combiner enable merging multiple stores " 119 "into a wider store")); 120 121 static cl::opt<unsigned> TokenFactorInlineLimit( 122 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), 123 cl::desc("Limit the number of operands to inline for Token Factors")); 124 125 static cl::opt<unsigned> StoreMergeDependenceLimit( 126 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), 127 cl::desc("Limit the number of times for the same StoreNode and RootNode " 128 "to bail out in store merging dependence check")); 129 130 static cl::opt<bool> EnableReduceLoadOpStoreWidth( 131 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), 132 cl::desc("DAG cominber enable reducing the width of load/op/store " 133 "sequence")); 134 135 static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( 136 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), 137 cl::desc("DAG cominber enable load/<replace bytes>/store with " 138 "a narrower store")); 139 140 namespace { 141 142 class DAGCombiner { 143 SelectionDAG &DAG; 144 const TargetLowering &TLI; 145 const SelectionDAGTargetInfo *STI; 146 CombineLevel Level; 147 CodeGenOpt::Level OptLevel; 148 bool LegalDAG = false; 149 bool LegalOperations = false; 150 bool LegalTypes = false; 151 bool ForCodeSize; 152 bool DisableGenericCombines; 153 154 /// Worklist of all of the nodes that need to be simplified. 155 /// 156 /// This must behave as a stack -- new nodes to process are pushed onto the 157 /// back and when processing we pop off of the back. 158 /// 159 /// The worklist will not contain duplicates but may contain null entries 160 /// due to nodes being deleted from the underlying DAG. 161 SmallVector<SDNode *, 64> Worklist; 162 163 /// Mapping from an SDNode to its position on the worklist. 164 /// 165 /// This is used to find and remove nodes from the worklist (by nulling 166 /// them) when they are deleted from the underlying DAG. It relies on 167 /// stable indices of nodes within the worklist. 168 DenseMap<SDNode *, unsigned> WorklistMap; 169 /// This records all nodes attempted to add to the worklist since we 170 /// considered a new worklist entry. As we keep do not add duplicate nodes 171 /// in the worklist, this is different from the tail of the worklist. 172 SmallSetVector<SDNode *, 32> PruningList; 173 174 /// Set of nodes which have been combined (at least once). 175 /// 176 /// This is used to allow us to reliably add any operands of a DAG node 177 /// which have not yet been combined to the worklist. 178 SmallPtrSet<SDNode *, 32> CombinedNodes; 179 180 /// Map from candidate StoreNode to the pair of RootNode and count. 181 /// The count is used to track how many times we have seen the StoreNode 182 /// with the same RootNode bail out in dependence check. If we have seen 183 /// the bail out for the same pair many times over a limit, we won't 184 /// consider the StoreNode with the same RootNode as store merging 185 /// candidate again. 186 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; 187 188 // AA - Used for DAG load/store alias analysis. 189 AliasAnalysis *AA; 190 191 /// When an instruction is simplified, add all users of the instruction to 192 /// the work lists because they might get more simplified now. 193 void AddUsersToWorklist(SDNode *N) { 194 for (SDNode *Node : N->uses()) 195 AddToWorklist(Node); 196 } 197 198 /// Convenient shorthand to add a node and all of its user to the worklist. 199 void AddToWorklistWithUsers(SDNode *N) { 200 AddUsersToWorklist(N); 201 AddToWorklist(N); 202 } 203 204 // Prune potentially dangling nodes. This is called after 205 // any visit to a node, but should also be called during a visit after any 206 // failed combine which may have created a DAG node. 207 void clearAddedDanglingWorklistEntries() { 208 // Check any nodes added to the worklist to see if they are prunable. 209 while (!PruningList.empty()) { 210 auto *N = PruningList.pop_back_val(); 211 if (N->use_empty()) 212 recursivelyDeleteUnusedNodes(N); 213 } 214 } 215 216 SDNode *getNextWorklistEntry() { 217 // Before we do any work, remove nodes that are not in use. 218 clearAddedDanglingWorklistEntries(); 219 SDNode *N = nullptr; 220 // The Worklist holds the SDNodes in order, but it may contain null 221 // entries. 222 while (!N && !Worklist.empty()) { 223 N = Worklist.pop_back_val(); 224 } 225 226 if (N) { 227 bool GoodWorklistEntry = WorklistMap.erase(N); 228 (void)GoodWorklistEntry; 229 assert(GoodWorklistEntry && 230 "Found a worklist entry without a corresponding map entry!"); 231 } 232 return N; 233 } 234 235 /// Call the node-specific routine that folds each particular type of node. 236 SDValue visit(SDNode *N); 237 238 public: 239 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) 240 : DAG(D), TLI(D.getTargetLoweringInfo()), 241 STI(D.getSubtarget().getSelectionDAGInfo()), 242 Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) { 243 ForCodeSize = DAG.shouldOptForSize(); 244 DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); 245 246 MaximumLegalStoreInBits = 0; 247 // We use the minimum store size here, since that's all we can guarantee 248 // for the scalable vector types. 249 for (MVT VT : MVT::all_valuetypes()) 250 if (EVT(VT).isSimple() && VT != MVT::Other && 251 TLI.isTypeLegal(EVT(VT)) && 252 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) 253 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); 254 } 255 256 void ConsiderForPruning(SDNode *N) { 257 // Mark this for potential pruning. 258 PruningList.insert(N); 259 } 260 261 /// Add to the worklist making sure its instance is at the back (next to be 262 /// processed.) 263 void AddToWorklist(SDNode *N) { 264 assert(N->getOpcode() != ISD::DELETED_NODE && 265 "Deleted Node added to Worklist"); 266 267 // Skip handle nodes as they can't usefully be combined and confuse the 268 // zero-use deletion strategy. 269 if (N->getOpcode() == ISD::HANDLENODE) 270 return; 271 272 ConsiderForPruning(N); 273 274 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 275 Worklist.push_back(N); 276 } 277 278 /// Remove all instances of N from the worklist. 279 void removeFromWorklist(SDNode *N) { 280 CombinedNodes.erase(N); 281 PruningList.remove(N); 282 StoreRootCountMap.erase(N); 283 284 auto It = WorklistMap.find(N); 285 if (It == WorklistMap.end()) 286 return; // Not in the worklist. 287 288 // Null out the entry rather than erasing it to avoid a linear operation. 289 Worklist[It->second] = nullptr; 290 WorklistMap.erase(It); 291 } 292 293 void deleteAndRecombine(SDNode *N); 294 bool recursivelyDeleteUnusedNodes(SDNode *N); 295 296 /// Replaces all uses of the results of one DAG node with new values. 297 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 298 bool AddTo = true); 299 300 /// Replaces all uses of the results of one DAG node with new values. 301 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 302 return CombineTo(N, &Res, 1, AddTo); 303 } 304 305 /// Replaces all uses of the results of one DAG node with new values. 306 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 307 bool AddTo = true) { 308 SDValue To[] = { Res0, Res1 }; 309 return CombineTo(N, To, 2, AddTo); 310 } 311 312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 313 314 private: 315 unsigned MaximumLegalStoreInBits; 316 317 /// Check the specified integer node value to see if it can be simplified or 318 /// if things it uses can be simplified by bit propagation. 319 /// If so, return true. 320 bool SimplifyDemandedBits(SDValue Op) { 321 unsigned BitWidth = Op.getScalarValueSizeInBits(); 322 APInt DemandedBits = APInt::getAllOnesValue(BitWidth); 323 return SimplifyDemandedBits(Op, DemandedBits); 324 } 325 326 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { 327 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 328 KnownBits Known; 329 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) 330 return false; 331 332 // Revisit the node. 333 AddToWorklist(Op.getNode()); 334 335 CommitTargetLoweringOpt(TLO); 336 return true; 337 } 338 339 /// Check the specified vector node value to see if it can be simplified or 340 /// if things it uses can be simplified as it only uses some of the 341 /// elements. If so, return true. 342 bool SimplifyDemandedVectorElts(SDValue Op) { 343 // TODO: For now just pretend it cannot be simplified. 344 if (Op.getValueType().isScalableVector()) 345 return false; 346 347 unsigned NumElts = Op.getValueType().getVectorNumElements(); 348 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 349 return SimplifyDemandedVectorElts(Op, DemandedElts); 350 } 351 352 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 353 const APInt &DemandedElts, 354 bool AssumeSingleUse = false); 355 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, 356 bool AssumeSingleUse = false); 357 358 bool CombineToPreIndexedLoadStore(SDNode *N); 359 bool CombineToPostIndexedLoadStore(SDNode *N); 360 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 361 bool SliceUpLoad(SDNode *N); 362 363 // Scalars have size 0 to distinguish from singleton vectors. 364 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); 365 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); 366 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); 367 368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 369 /// load. 370 /// 371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 373 /// \param EltNo index of the vector element to load. 374 /// \param OriginalLoad load that EVE came from to be replaced. 375 /// \returns EVE on success SDValue() on failure. 376 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 377 SDValue EltNo, 378 LoadSDNode *OriginalLoad); 379 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 380 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 381 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 382 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 383 SDValue PromoteIntBinOp(SDValue Op); 384 SDValue PromoteIntShiftOp(SDValue Op); 385 SDValue PromoteExtend(SDValue Op); 386 bool PromoteLoad(SDValue Op); 387 388 /// Call the node-specific routine that knows how to fold each 389 /// particular type of node. If that doesn't do anything, try the 390 /// target-specific DAG combines. 391 SDValue combine(SDNode *N); 392 393 // Visitation implementation - Implement dag node combining for different 394 // node types. The semantics are as follows: 395 // Return Value: 396 // SDValue.getNode() == 0 - No change was made 397 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 398 // otherwise - N should be replaced by the returned Operand. 399 // 400 SDValue visitTokenFactor(SDNode *N); 401 SDValue visitMERGE_VALUES(SDNode *N); 402 SDValue visitADD(SDNode *N); 403 SDValue visitADDLike(SDNode *N); 404 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); 405 SDValue visitSUB(SDNode *N); 406 SDValue visitADDSAT(SDNode *N); 407 SDValue visitSUBSAT(SDNode *N); 408 SDValue visitADDC(SDNode *N); 409 SDValue visitADDO(SDNode *N); 410 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); 411 SDValue visitSUBC(SDNode *N); 412 SDValue visitSUBO(SDNode *N); 413 SDValue visitADDE(SDNode *N); 414 SDValue visitADDCARRY(SDNode *N); 415 SDValue visitSADDO_CARRY(SDNode *N); 416 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); 417 SDValue visitSUBE(SDNode *N); 418 SDValue visitSUBCARRY(SDNode *N); 419 SDValue visitSSUBO_CARRY(SDNode *N); 420 SDValue visitMUL(SDNode *N); 421 SDValue visitMULFIX(SDNode *N); 422 SDValue useDivRem(SDNode *N); 423 SDValue visitSDIV(SDNode *N); 424 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); 425 SDValue visitUDIV(SDNode *N); 426 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); 427 SDValue visitREM(SDNode *N); 428 SDValue visitMULHU(SDNode *N); 429 SDValue visitMULHS(SDNode *N); 430 SDValue visitSMUL_LOHI(SDNode *N); 431 SDValue visitUMUL_LOHI(SDNode *N); 432 SDValue visitMULO(SDNode *N); 433 SDValue visitIMINMAX(SDNode *N); 434 SDValue visitAND(SDNode *N); 435 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); 436 SDValue visitOR(SDNode *N); 437 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); 438 SDValue visitXOR(SDNode *N); 439 SDValue SimplifyVBinOp(SDNode *N); 440 SDValue visitSHL(SDNode *N); 441 SDValue visitSRA(SDNode *N); 442 SDValue visitSRL(SDNode *N); 443 SDValue visitFunnelShift(SDNode *N); 444 SDValue visitRotate(SDNode *N); 445 SDValue visitABS(SDNode *N); 446 SDValue visitBSWAP(SDNode *N); 447 SDValue visitBITREVERSE(SDNode *N); 448 SDValue visitCTLZ(SDNode *N); 449 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 450 SDValue visitCTTZ(SDNode *N); 451 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 452 SDValue visitCTPOP(SDNode *N); 453 SDValue visitSELECT(SDNode *N); 454 SDValue visitVSELECT(SDNode *N); 455 SDValue visitSELECT_CC(SDNode *N); 456 SDValue visitSETCC(SDNode *N); 457 SDValue visitSETCCCARRY(SDNode *N); 458 SDValue visitSIGN_EXTEND(SDNode *N); 459 SDValue visitZERO_EXTEND(SDNode *N); 460 SDValue visitANY_EXTEND(SDNode *N); 461 SDValue visitAssertExt(SDNode *N); 462 SDValue visitAssertAlign(SDNode *N); 463 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 464 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 465 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 466 SDValue visitTRUNCATE(SDNode *N); 467 SDValue visitBITCAST(SDNode *N); 468 SDValue visitFREEZE(SDNode *N); 469 SDValue visitBUILD_PAIR(SDNode *N); 470 SDValue visitFADD(SDNode *N); 471 SDValue visitSTRICT_FADD(SDNode *N); 472 SDValue visitFSUB(SDNode *N); 473 SDValue visitFMUL(SDNode *N); 474 SDValue visitFMA(SDNode *N); 475 SDValue visitFDIV(SDNode *N); 476 SDValue visitFREM(SDNode *N); 477 SDValue visitFSQRT(SDNode *N); 478 SDValue visitFCOPYSIGN(SDNode *N); 479 SDValue visitFPOW(SDNode *N); 480 SDValue visitSINT_TO_FP(SDNode *N); 481 SDValue visitUINT_TO_FP(SDNode *N); 482 SDValue visitFP_TO_SINT(SDNode *N); 483 SDValue visitFP_TO_UINT(SDNode *N); 484 SDValue visitFP_ROUND(SDNode *N); 485 SDValue visitFP_EXTEND(SDNode *N); 486 SDValue visitFNEG(SDNode *N); 487 SDValue visitFABS(SDNode *N); 488 SDValue visitFCEIL(SDNode *N); 489 SDValue visitFTRUNC(SDNode *N); 490 SDValue visitFFLOOR(SDNode *N); 491 SDValue visitFMINNUM(SDNode *N); 492 SDValue visitFMAXNUM(SDNode *N); 493 SDValue visitFMINIMUM(SDNode *N); 494 SDValue visitFMAXIMUM(SDNode *N); 495 SDValue visitBRCOND(SDNode *N); 496 SDValue visitBR_CC(SDNode *N); 497 SDValue visitLOAD(SDNode *N); 498 499 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 500 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 501 502 SDValue visitSTORE(SDNode *N); 503 SDValue visitLIFETIME_END(SDNode *N); 504 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 505 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 506 SDValue visitBUILD_VECTOR(SDNode *N); 507 SDValue visitCONCAT_VECTORS(SDNode *N); 508 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 509 SDValue visitVECTOR_SHUFFLE(SDNode *N); 510 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 511 SDValue visitINSERT_SUBVECTOR(SDNode *N); 512 SDValue visitMLOAD(SDNode *N); 513 SDValue visitMSTORE(SDNode *N); 514 SDValue visitMGATHER(SDNode *N); 515 SDValue visitMSCATTER(SDNode *N); 516 SDValue visitFP_TO_FP16(SDNode *N); 517 SDValue visitFP16_TO_FP(SDNode *N); 518 SDValue visitVECREDUCE(SDNode *N); 519 520 SDValue visitFADDForFMACombine(SDNode *N); 521 SDValue visitFSUBForFMACombine(SDNode *N); 522 SDValue visitFMULForFMADistributiveCombine(SDNode *N); 523 524 SDValue XformToShuffleWithZero(SDNode *N); 525 bool reassociationCanBreakAddressingModePattern(unsigned Opc, 526 const SDLoc &DL, SDValue N0, 527 SDValue N1); 528 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, 529 SDValue N1); 530 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 531 SDValue N1, SDNodeFlags Flags); 532 533 SDValue visitShiftByConstant(SDNode *N); 534 535 SDValue foldSelectOfConstants(SDNode *N); 536 SDValue foldVSelectOfConstants(SDNode *N); 537 SDValue foldBinOpIntoSelect(SDNode *BO); 538 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 539 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); 540 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 541 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 542 SDValue N2, SDValue N3, ISD::CondCode CC, 543 bool NotExtCompare = false); 544 SDValue convertSelectOfFPConstantsToLoadOffset( 545 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 546 ISD::CondCode CC); 547 SDValue foldSignChangeInBitcast(SDNode *N); 548 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, 549 SDValue N2, SDValue N3, ISD::CondCode CC); 550 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 551 const SDLoc &DL); 552 SDValue unfoldMaskedMerge(SDNode *N); 553 SDValue unfoldExtremeBitClearingToShifts(SDNode *N); 554 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 555 const SDLoc &DL, bool foldBooleans); 556 SDValue rebuildSetCC(SDValue N); 557 558 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 559 SDValue &CC, bool MatchStrict = false) const; 560 bool isOneUseSetCC(SDValue N) const; 561 562 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 563 unsigned HiOp); 564 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 565 SDValue CombineExtLoad(SDNode *N); 566 SDValue CombineZExtLogicopShiftLoad(SDNode *N); 567 SDValue combineRepeatedFPDivisors(SDNode *N); 568 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); 569 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 570 SDValue BuildSDIV(SDNode *N); 571 SDValue BuildSDIVPow2(SDNode *N); 572 SDValue BuildUDIV(SDNode *N); 573 SDValue BuildLogBase2(SDValue V, const SDLoc &DL); 574 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); 575 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); 576 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); 577 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); 578 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, 579 SDNodeFlags Flags, bool Reciprocal); 580 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, 581 SDNodeFlags Flags, bool Reciprocal); 582 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 583 bool DemandHighBits = true); 584 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 585 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 586 SDValue InnerPos, SDValue InnerNeg, 587 unsigned PosOpcode, unsigned NegOpcode, 588 const SDLoc &DL); 589 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, 590 SDValue InnerPos, SDValue InnerNeg, 591 unsigned PosOpcode, unsigned NegOpcode, 592 const SDLoc &DL); 593 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 594 SDValue MatchLoadCombine(SDNode *N); 595 SDValue mergeTruncStores(StoreSDNode *N); 596 SDValue ReduceLoadWidth(SDNode *N); 597 SDValue ReduceLoadOpStoreWidth(SDNode *N); 598 SDValue splitMergedValStore(StoreSDNode *ST); 599 SDValue TransformFPLoadStorePair(SDNode *N); 600 SDValue convertBuildVecZextToZext(SDNode *N); 601 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 602 SDValue reduceBuildVecTruncToBitCast(SDNode *N); 603 SDValue reduceBuildVecToShuffle(SDNode *N); 604 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, 605 ArrayRef<int> VectorMask, SDValue VecIn1, 606 SDValue VecIn2, unsigned LeftIdx, 607 bool DidSplitVec); 608 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); 609 610 /// Walk up chain skipping non-aliasing memory nodes, 611 /// looking for aliasing nodes and adding them to the Aliases vector. 612 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 613 SmallVectorImpl<SDValue> &Aliases); 614 615 /// Return true if there is any possibility that the two addresses overlap. 616 bool isAlias(SDNode *Op0, SDNode *Op1) const; 617 618 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 619 /// chain (aliasing node.) 620 SDValue FindBetterChain(SDNode *N, SDValue Chain); 621 622 /// Try to replace a store and any possibly adjacent stores on 623 /// consecutive chains with better chains. Return true only if St is 624 /// replaced. 625 /// 626 /// Notice that other chains may still be replaced even if the function 627 /// returns false. 628 bool findBetterNeighborChains(StoreSDNode *St); 629 630 // Helper for findBetterNeighborChains. Walk up store chain add additional 631 // chained stores that do not overlap and can be parallelized. 632 bool parallelizeChainedStores(StoreSDNode *St); 633 634 /// Holds a pointer to an LSBaseSDNode as well as information on where it 635 /// is located in a sequence of memory operations connected by a chain. 636 struct MemOpLink { 637 // Ptr to the mem node. 638 LSBaseSDNode *MemNode; 639 640 // Offset from the base ptr. 641 int64_t OffsetFromBase; 642 643 MemOpLink(LSBaseSDNode *N, int64_t Offset) 644 : MemNode(N), OffsetFromBase(Offset) {} 645 }; 646 647 // Classify the origin of a stored value. 648 enum class StoreSource { Unknown, Constant, Extract, Load }; 649 StoreSource getStoreSource(SDValue StoreVal) { 650 switch (StoreVal.getOpcode()) { 651 case ISD::Constant: 652 case ISD::ConstantFP: 653 return StoreSource::Constant; 654 case ISD::EXTRACT_VECTOR_ELT: 655 case ISD::EXTRACT_SUBVECTOR: 656 return StoreSource::Extract; 657 case ISD::LOAD: 658 return StoreSource::Load; 659 default: 660 return StoreSource::Unknown; 661 } 662 } 663 664 /// This is a helper function for visitMUL to check the profitability 665 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 666 /// MulNode is the original multiply, AddNode is (add x, c1), 667 /// and ConstNode is c2. 668 bool isMulAddWithConstProfitable(SDNode *MulNode, 669 SDValue &AddNode, 670 SDValue &ConstNode); 671 672 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 673 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 674 /// the type of the loaded value to be extended. 675 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 676 EVT LoadResultTy, EVT &ExtVT); 677 678 /// Helper function to calculate whether the given Load/Store can have its 679 /// width reduced to ExtVT. 680 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, 681 EVT &MemVT, unsigned ShAmt = 0); 682 683 /// Used by BackwardsPropagateMask to find suitable loads. 684 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, 685 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 686 ConstantSDNode *Mask, SDNode *&NodeToMask); 687 /// Attempt to propagate a given AND node back to load leaves so that they 688 /// can be combined into narrow loads. 689 bool BackwardsPropagateMask(SDNode *N); 690 691 /// Helper function for mergeConsecutiveStores which merges the component 692 /// store chains. 693 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 694 unsigned NumStores); 695 696 /// This is a helper function for mergeConsecutiveStores. When the source 697 /// elements of the consecutive stores are all constants or all extracted 698 /// vector elements, try to merge them into one larger store introducing 699 /// bitcasts if necessary. \return True if a merged store was created. 700 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 701 EVT MemVT, unsigned NumStores, 702 bool IsConstantSrc, bool UseVector, 703 bool UseTrunc); 704 705 /// This is a helper function for mergeConsecutiveStores. Stores that 706 /// potentially may be merged with St are placed in StoreNodes. RootNode is 707 /// a chain predecessor to all store candidates. 708 void getStoreMergeCandidates(StoreSDNode *St, 709 SmallVectorImpl<MemOpLink> &StoreNodes, 710 SDNode *&Root); 711 712 /// Helper function for mergeConsecutiveStores. Checks if candidate stores 713 /// have indirect dependency through their operands. RootNode is the 714 /// predecessor to all stores calculated by getStoreMergeCandidates and is 715 /// used to prune the dependency check. \return True if safe to merge. 716 bool checkMergeStoreCandidatesForDependencies( 717 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 718 SDNode *RootNode); 719 720 /// This is a helper function for mergeConsecutiveStores. Given a list of 721 /// store candidates, find the first N that are consecutive in memory. 722 /// Returns 0 if there are not at least 2 consecutive stores to try merging. 723 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 724 int64_t ElementSizeBytes) const; 725 726 /// This is a helper function for mergeConsecutiveStores. It is used for 727 /// store chains that are composed entirely of constant values. 728 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, 729 unsigned NumConsecutiveStores, 730 EVT MemVT, SDNode *Root, bool AllowVectors); 731 732 /// This is a helper function for mergeConsecutiveStores. It is used for 733 /// store chains that are composed entirely of extracted vector elements. 734 /// When extracting multiple vector elements, try to store them in one 735 /// vector store rather than a sequence of scalar stores. 736 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, 737 unsigned NumConsecutiveStores, EVT MemVT, 738 SDNode *Root); 739 740 /// This is a helper function for mergeConsecutiveStores. It is used for 741 /// store chains that are composed entirely of loaded values. 742 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 743 unsigned NumConsecutiveStores, EVT MemVT, 744 SDNode *Root, bool AllowVectors, 745 bool IsNonTemporalStore, bool IsNonTemporalLoad); 746 747 /// Merge consecutive store operations into a wide store. 748 /// This optimization uses wide integers or vectors when possible. 749 /// \return true if stores were merged. 750 bool mergeConsecutiveStores(StoreSDNode *St); 751 752 /// Try to transform a truncation where C is a constant: 753 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 754 /// 755 /// \p N needs to be a truncation and its first operand an AND. Other 756 /// requirements are checked by the function (e.g. that trunc is 757 /// single-use) and if missed an empty SDValue is returned. 758 SDValue distributeTruncateThroughAnd(SDNode *N); 759 760 /// Helper function to determine whether the target supports operation 761 /// given by \p Opcode for type \p VT, that is, whether the operation 762 /// is legal or custom before legalizing operations, and whether is 763 /// legal (but not custom) after legalization. 764 bool hasOperation(unsigned Opcode, EVT VT) { 765 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); 766 } 767 768 public: 769 /// Runs the dag combiner on all nodes in the work list 770 void Run(CombineLevel AtLevel); 771 772 SelectionDAG &getDAG() const { return DAG; } 773 774 /// Returns a type large enough to hold any valid shift amount - before type 775 /// legalization these can be huge. 776 EVT getShiftAmountTy(EVT LHSTy) { 777 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 778 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); 779 } 780 781 /// This method returns true if we are running before type legalization or 782 /// if the specified VT is legal. 783 bool isTypeLegal(const EVT &VT) { 784 if (!LegalTypes) return true; 785 return TLI.isTypeLegal(VT); 786 } 787 788 /// Convenience wrapper around TargetLowering::getSetCCResultType 789 EVT getSetCCResultType(EVT VT) const { 790 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 791 } 792 793 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 794 SDValue OrigLoad, SDValue ExtLoad, 795 ISD::NodeType ExtType); 796 }; 797 798 /// This class is a DAGUpdateListener that removes any deleted 799 /// nodes from the worklist. 800 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 801 DAGCombiner &DC; 802 803 public: 804 explicit WorklistRemover(DAGCombiner &dc) 805 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 806 807 void NodeDeleted(SDNode *N, SDNode *E) override { 808 DC.removeFromWorklist(N); 809 } 810 }; 811 812 class WorklistInserter : public SelectionDAG::DAGUpdateListener { 813 DAGCombiner &DC; 814 815 public: 816 explicit WorklistInserter(DAGCombiner &dc) 817 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 818 819 // FIXME: Ideally we could add N to the worklist, but this causes exponential 820 // compile time costs in large DAGs, e.g. Halide. 821 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } 822 }; 823 824 } // end anonymous namespace 825 826 //===----------------------------------------------------------------------===// 827 // TargetLowering::DAGCombinerInfo implementation 828 //===----------------------------------------------------------------------===// 829 830 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 831 ((DAGCombiner*)DC)->AddToWorklist(N); 832 } 833 834 SDValue TargetLowering::DAGCombinerInfo:: 835 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 836 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 837 } 838 839 SDValue TargetLowering::DAGCombinerInfo:: 840 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 841 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 842 } 843 844 SDValue TargetLowering::DAGCombinerInfo:: 845 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 846 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 847 } 848 849 bool TargetLowering::DAGCombinerInfo:: 850 recursivelyDeleteUnusedNodes(SDNode *N) { 851 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); 852 } 853 854 void TargetLowering::DAGCombinerInfo:: 855 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 856 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // Helper Functions 861 //===----------------------------------------------------------------------===// 862 863 void DAGCombiner::deleteAndRecombine(SDNode *N) { 864 removeFromWorklist(N); 865 866 // If the operands of this node are only used by the node, they will now be 867 // dead. Make sure to re-visit them and recursively delete dead nodes. 868 for (const SDValue &Op : N->ops()) 869 // For an operand generating multiple values, one of the values may 870 // become dead allowing further simplification (e.g. split index 871 // arithmetic from an indexed load). 872 if (Op->hasOneUse() || Op->getNumValues() > 1) 873 AddToWorklist(Op.getNode()); 874 875 DAG.DeleteNode(N); 876 } 877 878 // APInts must be the same size for most operations, this helper 879 // function zero extends the shorter of the pair so that they match. 880 // We provide an Offset so that we can create bitwidths that won't overflow. 881 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { 882 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); 883 LHS = LHS.zextOrSelf(Bits); 884 RHS = RHS.zextOrSelf(Bits); 885 } 886 887 // Return true if this node is a setcc, or is a select_cc 888 // that selects between the target values used for true and false, making it 889 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 890 // the appropriate nodes based on the type of node we are checking. This 891 // simplifies life a bit for the callers. 892 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 893 SDValue &CC, bool MatchStrict) const { 894 if (N.getOpcode() == ISD::SETCC) { 895 LHS = N.getOperand(0); 896 RHS = N.getOperand(1); 897 CC = N.getOperand(2); 898 return true; 899 } 900 901 if (MatchStrict && 902 (N.getOpcode() == ISD::STRICT_FSETCC || 903 N.getOpcode() == ISD::STRICT_FSETCCS)) { 904 LHS = N.getOperand(1); 905 RHS = N.getOperand(2); 906 CC = N.getOperand(3); 907 return true; 908 } 909 910 if (N.getOpcode() != ISD::SELECT_CC || 911 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 912 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 913 return false; 914 915 if (TLI.getBooleanContents(N.getValueType()) == 916 TargetLowering::UndefinedBooleanContent) 917 return false; 918 919 LHS = N.getOperand(0); 920 RHS = N.getOperand(1); 921 CC = N.getOperand(4); 922 return true; 923 } 924 925 /// Return true if this is a SetCC-equivalent operation with only one use. 926 /// If this is true, it allows the users to invert the operation for free when 927 /// it is profitable to do so. 928 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 929 SDValue N0, N1, N2; 930 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 931 return true; 932 return false; 933 } 934 935 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { 936 if (!ScalarTy.isSimple()) 937 return false; 938 939 uint64_t MaskForTy = 0ULL; 940 switch (ScalarTy.getSimpleVT().SimpleTy) { 941 case MVT::i8: 942 MaskForTy = 0xFFULL; 943 break; 944 case MVT::i16: 945 MaskForTy = 0xFFFFULL; 946 break; 947 case MVT::i32: 948 MaskForTy = 0xFFFFFFFFULL; 949 break; 950 default: 951 return false; 952 break; 953 } 954 955 APInt Val; 956 if (ISD::isConstantSplatVector(N, Val)) 957 return Val.getLimitedValue() == MaskForTy; 958 959 return false; 960 } 961 962 // Returns the SDNode if it is a constant float BuildVector 963 // or constant float. 964 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 965 if (isa<ConstantFPSDNode>(N)) 966 return N.getNode(); 967 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 968 return N.getNode(); 969 return nullptr; 970 } 971 972 // Determines if it is a constant integer or a build vector of constant 973 // integers (and undefs). 974 // Do not permit build vector implicit truncation. 975 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { 976 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) 977 return !(Const->isOpaque() && NoOpaques); 978 if (N.getOpcode() != ISD::BUILD_VECTOR) 979 return false; 980 unsigned BitWidth = N.getScalarValueSizeInBits(); 981 for (const SDValue &Op : N->op_values()) { 982 if (Op.isUndef()) 983 continue; 984 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); 985 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || 986 (Const->isOpaque() && NoOpaques)) 987 return false; 988 } 989 return true; 990 } 991 992 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with 993 // undef's. 994 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { 995 if (V.getOpcode() != ISD::BUILD_VECTOR) 996 return false; 997 return isConstantOrConstantVector(V, NoOpaques) || 998 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); 999 } 1000 1001 // Determine if this an indexed load with an opaque target constant index. 1002 static bool canSplitIdx(LoadSDNode *LD) { 1003 return MaySplitLoadIndex && 1004 (LD->getOperand(2).getOpcode() != ISD::TargetConstant || 1005 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); 1006 } 1007 1008 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, 1009 const SDLoc &DL, 1010 SDValue N0, 1011 SDValue N1) { 1012 // Currently this only tries to ensure we don't undo the GEP splits done by 1013 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, 1014 // we check if the following transformation would be problematic: 1015 // (load/store (add, (add, x, offset1), offset2)) -> 1016 // (load/store (add, x, offset1+offset2)). 1017 1018 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) 1019 return false; 1020 1021 if (N0.hasOneUse()) 1022 return false; 1023 1024 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 1025 auto *C2 = dyn_cast<ConstantSDNode>(N1); 1026 if (!C1 || !C2) 1027 return false; 1028 1029 const APInt &C1APIntVal = C1->getAPIntValue(); 1030 const APInt &C2APIntVal = C2->getAPIntValue(); 1031 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) 1032 return false; 1033 1034 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; 1035 if (CombinedValueIntVal.getBitWidth() > 64) 1036 return false; 1037 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); 1038 1039 for (SDNode *Node : N0->uses()) { 1040 auto LoadStore = dyn_cast<MemSDNode>(Node); 1041 if (LoadStore) { 1042 // Is x[offset2] already not a legal addressing mode? If so then 1043 // reassociating the constants breaks nothing (we test offset2 because 1044 // that's the one we hope to fold into the load or store). 1045 TargetLoweringBase::AddrMode AM; 1046 AM.HasBaseReg = true; 1047 AM.BaseOffs = C2APIntVal.getSExtValue(); 1048 EVT VT = LoadStore->getMemoryVT(); 1049 unsigned AS = LoadStore->getAddressSpace(); 1050 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); 1051 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1052 continue; 1053 1054 // Would x[offset1+offset2] still be a legal addressing mode? 1055 AM.BaseOffs = CombinedValue; 1056 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) 1057 return true; 1058 } 1059 } 1060 1061 return false; 1062 } 1063 1064 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression 1065 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. 1066 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, 1067 SDValue N0, SDValue N1) { 1068 EVT VT = N0.getValueType(); 1069 1070 if (N0.getOpcode() != Opc) 1071 return SDValue(); 1072 1073 if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 1074 if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1075 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) 1076 if (SDValue OpNode = 1077 DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1})) 1078 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 1079 return SDValue(); 1080 } 1081 if (N0.hasOneUse()) { 1082 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 1083 // iff (op x, c1) has one use 1084 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 1085 if (!OpNode.getNode()) 1086 return SDValue(); 1087 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 1088 } 1089 } 1090 return SDValue(); 1091 } 1092 1093 // Try to reassociate commutative binops. 1094 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 1095 SDValue N1, SDNodeFlags Flags) { 1096 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); 1097 1098 // Floating-point reassociation is not allowed without loose FP math. 1099 if (N0.getValueType().isFloatingPoint() || 1100 N1.getValueType().isFloatingPoint()) 1101 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) 1102 return SDValue(); 1103 1104 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) 1105 return Combined; 1106 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) 1107 return Combined; 1108 return SDValue(); 1109 } 1110 1111 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 1112 bool AddTo) { 1113 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 1114 ++NodesCombined; 1115 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; 1116 To[0].getNode()->dump(&DAG); 1117 dbgs() << " and " << NumTo - 1 << " other values\n"); 1118 for (unsigned i = 0, e = NumTo; i != e; ++i) 1119 assert((!To[i].getNode() || 1120 N->getValueType(i) == To[i].getValueType()) && 1121 "Cannot combine value to value of different type!"); 1122 1123 WorklistRemover DeadNodes(*this); 1124 DAG.ReplaceAllUsesWith(N, To); 1125 if (AddTo) { 1126 // Push the new nodes and any users onto the worklist 1127 for (unsigned i = 0, e = NumTo; i != e; ++i) { 1128 if (To[i].getNode()) { 1129 AddToWorklist(To[i].getNode()); 1130 AddUsersToWorklist(To[i].getNode()); 1131 } 1132 } 1133 } 1134 1135 // Finally, if the node is now dead, remove it from the graph. The node 1136 // may not be dead if the replacement process recursively simplified to 1137 // something else needing this node. 1138 if (N->use_empty()) 1139 deleteAndRecombine(N); 1140 return SDValue(N, 0); 1141 } 1142 1143 void DAGCombiner:: 1144 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 1145 // Replace the old value with the new one. 1146 ++NodesCombined; 1147 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); 1148 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); 1149 dbgs() << '\n'); 1150 1151 // Replace all uses. If any nodes become isomorphic to other nodes and 1152 // are deleted, make sure to remove them from our worklist. 1153 WorklistRemover DeadNodes(*this); 1154 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 1155 1156 // Push the new node and any (possibly new) users onto the worklist. 1157 AddToWorklistWithUsers(TLO.New.getNode()); 1158 1159 // Finally, if the node is now dead, remove it from the graph. The node 1160 // may not be dead if the replacement process recursively simplified to 1161 // something else needing this node. 1162 if (TLO.Old.getNode()->use_empty()) 1163 deleteAndRecombine(TLO.Old.getNode()); 1164 } 1165 1166 /// Check the specified integer node value to see if it can be simplified or if 1167 /// things it uses can be simplified by bit propagation. If so, return true. 1168 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 1169 const APInt &DemandedElts, 1170 bool AssumeSingleUse) { 1171 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1172 KnownBits Known; 1173 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, 1174 AssumeSingleUse)) 1175 return false; 1176 1177 // Revisit the node. 1178 AddToWorklist(Op.getNode()); 1179 1180 CommitTargetLoweringOpt(TLO); 1181 return true; 1182 } 1183 1184 /// Check the specified vector node value to see if it can be simplified or 1185 /// if things it uses can be simplified as it only uses some of the elements. 1186 /// If so, return true. 1187 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, 1188 const APInt &DemandedElts, 1189 bool AssumeSingleUse) { 1190 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 1191 APInt KnownUndef, KnownZero; 1192 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, 1193 TLO, 0, AssumeSingleUse)) 1194 return false; 1195 1196 // Revisit the node. 1197 AddToWorklist(Op.getNode()); 1198 1199 CommitTargetLoweringOpt(TLO); 1200 return true; 1201 } 1202 1203 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 1204 SDLoc DL(Load); 1205 EVT VT = Load->getValueType(0); 1206 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); 1207 1208 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; 1209 Trunc.getNode()->dump(&DAG); dbgs() << '\n'); 1210 WorklistRemover DeadNodes(*this); 1211 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 1212 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 1213 deleteAndRecombine(Load); 1214 AddToWorklist(Trunc.getNode()); 1215 } 1216 1217 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 1218 Replace = false; 1219 SDLoc DL(Op); 1220 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 1221 LoadSDNode *LD = cast<LoadSDNode>(Op); 1222 EVT MemVT = LD->getMemoryVT(); 1223 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1224 : LD->getExtensionType(); 1225 Replace = true; 1226 return DAG.getExtLoad(ExtType, DL, PVT, 1227 LD->getChain(), LD->getBasePtr(), 1228 MemVT, LD->getMemOperand()); 1229 } 1230 1231 unsigned Opc = Op.getOpcode(); 1232 switch (Opc) { 1233 default: break; 1234 case ISD::AssertSext: 1235 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) 1236 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); 1237 break; 1238 case ISD::AssertZext: 1239 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) 1240 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); 1241 break; 1242 case ISD::Constant: { 1243 unsigned ExtOpc = 1244 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1245 return DAG.getNode(ExtOpc, DL, PVT, Op); 1246 } 1247 } 1248 1249 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 1250 return SDValue(); 1251 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); 1252 } 1253 1254 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1255 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1256 return SDValue(); 1257 EVT OldVT = Op.getValueType(); 1258 SDLoc DL(Op); 1259 bool Replace = false; 1260 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1261 if (!NewOp.getNode()) 1262 return SDValue(); 1263 AddToWorklist(NewOp.getNode()); 1264 1265 if (Replace) 1266 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1267 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, 1268 DAG.getValueType(OldVT)); 1269 } 1270 1271 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1272 EVT OldVT = Op.getValueType(); 1273 SDLoc DL(Op); 1274 bool Replace = false; 1275 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1276 if (!NewOp.getNode()) 1277 return SDValue(); 1278 AddToWorklist(NewOp.getNode()); 1279 1280 if (Replace) 1281 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1282 return DAG.getZeroExtendInReg(NewOp, DL, OldVT); 1283 } 1284 1285 /// Promote the specified integer binary operation if the target indicates it is 1286 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1287 /// i32 since i16 instructions are longer. 1288 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1289 if (!LegalOperations) 1290 return SDValue(); 1291 1292 EVT VT = Op.getValueType(); 1293 if (VT.isVector() || !VT.isInteger()) 1294 return SDValue(); 1295 1296 // If operation type is 'undesirable', e.g. i16 on x86, consider 1297 // promoting it. 1298 unsigned Opc = Op.getOpcode(); 1299 if (TLI.isTypeDesirableForOp(Opc, VT)) 1300 return SDValue(); 1301 1302 EVT PVT = VT; 1303 // Consult target whether it is a good idea to promote this operation and 1304 // what's the right type to promote it to. 1305 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1306 assert(PVT != VT && "Don't know what type to promote to!"); 1307 1308 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1309 1310 bool Replace0 = false; 1311 SDValue N0 = Op.getOperand(0); 1312 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1313 1314 bool Replace1 = false; 1315 SDValue N1 = Op.getOperand(1); 1316 SDValue NN1 = PromoteOperand(N1, PVT, Replace1); 1317 SDLoc DL(Op); 1318 1319 SDValue RV = 1320 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); 1321 1322 // We are always replacing N0/N1's use in N and only need additional 1323 // replacements if there are additional uses. 1324 // Note: We are checking uses of the *nodes* (SDNode) rather than values 1325 // (SDValue) here because the node may reference multiple values 1326 // (for example, the chain value of a load node). 1327 Replace0 &= !N0->hasOneUse(); 1328 Replace1 &= (N0 != N1) && !N1->hasOneUse(); 1329 1330 // Combine Op here so it is preserved past replacements. 1331 CombineTo(Op.getNode(), RV); 1332 1333 // If operands have a use ordering, make sure we deal with 1334 // predecessor first. 1335 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { 1336 std::swap(N0, N1); 1337 std::swap(NN0, NN1); 1338 } 1339 1340 if (Replace0) { 1341 AddToWorklist(NN0.getNode()); 1342 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1343 } 1344 if (Replace1) { 1345 AddToWorklist(NN1.getNode()); 1346 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1347 } 1348 return Op; 1349 } 1350 return SDValue(); 1351 } 1352 1353 /// Promote the specified integer shift operation if the target indicates it is 1354 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1355 /// i32 since i16 instructions are longer. 1356 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1357 if (!LegalOperations) 1358 return SDValue(); 1359 1360 EVT VT = Op.getValueType(); 1361 if (VT.isVector() || !VT.isInteger()) 1362 return SDValue(); 1363 1364 // If operation type is 'undesirable', e.g. i16 on x86, consider 1365 // promoting it. 1366 unsigned Opc = Op.getOpcode(); 1367 if (TLI.isTypeDesirableForOp(Opc, VT)) 1368 return SDValue(); 1369 1370 EVT PVT = VT; 1371 // Consult target whether it is a good idea to promote this operation and 1372 // what's the right type to promote it to. 1373 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1374 assert(PVT != VT && "Don't know what type to promote to!"); 1375 1376 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1377 1378 bool Replace = false; 1379 SDValue N0 = Op.getOperand(0); 1380 SDValue N1 = Op.getOperand(1); 1381 if (Opc == ISD::SRA) 1382 N0 = SExtPromoteOperand(N0, PVT); 1383 else if (Opc == ISD::SRL) 1384 N0 = ZExtPromoteOperand(N0, PVT); 1385 else 1386 N0 = PromoteOperand(N0, PVT, Replace); 1387 1388 if (!N0.getNode()) 1389 return SDValue(); 1390 1391 SDLoc DL(Op); 1392 SDValue RV = 1393 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); 1394 1395 if (Replace) 1396 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1397 1398 // Deal with Op being deleted. 1399 if (Op && Op.getOpcode() != ISD::DELETED_NODE) 1400 return RV; 1401 } 1402 return SDValue(); 1403 } 1404 1405 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1406 if (!LegalOperations) 1407 return SDValue(); 1408 1409 EVT VT = Op.getValueType(); 1410 if (VT.isVector() || !VT.isInteger()) 1411 return SDValue(); 1412 1413 // If operation type is 'undesirable', e.g. i16 on x86, consider 1414 // promoting it. 1415 unsigned Opc = Op.getOpcode(); 1416 if (TLI.isTypeDesirableForOp(Opc, VT)) 1417 return SDValue(); 1418 1419 EVT PVT = VT; 1420 // Consult target whether it is a good idea to promote this operation and 1421 // what's the right type to promote it to. 1422 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1423 assert(PVT != VT && "Don't know what type to promote to!"); 1424 // fold (aext (aext x)) -> (aext x) 1425 // fold (aext (zext x)) -> (zext x) 1426 // fold (aext (sext x)) -> (sext x) 1427 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); 1428 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1429 } 1430 return SDValue(); 1431 } 1432 1433 bool DAGCombiner::PromoteLoad(SDValue Op) { 1434 if (!LegalOperations) 1435 return false; 1436 1437 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1438 return false; 1439 1440 EVT VT = Op.getValueType(); 1441 if (VT.isVector() || !VT.isInteger()) 1442 return false; 1443 1444 // If operation type is 'undesirable', e.g. i16 on x86, consider 1445 // promoting it. 1446 unsigned Opc = Op.getOpcode(); 1447 if (TLI.isTypeDesirableForOp(Opc, VT)) 1448 return false; 1449 1450 EVT PVT = VT; 1451 // Consult target whether it is a good idea to promote this operation and 1452 // what's the right type to promote it to. 1453 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1454 assert(PVT != VT && "Don't know what type to promote to!"); 1455 1456 SDLoc DL(Op); 1457 SDNode *N = Op.getNode(); 1458 LoadSDNode *LD = cast<LoadSDNode>(N); 1459 EVT MemVT = LD->getMemoryVT(); 1460 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD 1461 : LD->getExtensionType(); 1462 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, 1463 LD->getChain(), LD->getBasePtr(), 1464 MemVT, LD->getMemOperand()); 1465 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); 1466 1467 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; 1468 Result.getNode()->dump(&DAG); dbgs() << '\n'); 1469 WorklistRemover DeadNodes(*this); 1470 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1471 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1472 deleteAndRecombine(N); 1473 AddToWorklist(Result.getNode()); 1474 return true; 1475 } 1476 return false; 1477 } 1478 1479 /// Recursively delete a node which has no uses and any operands for 1480 /// which it is the only use. 1481 /// 1482 /// Note that this both deletes the nodes and removes them from the worklist. 1483 /// It also adds any nodes who have had a user deleted to the worklist as they 1484 /// may now have only one use and subject to other combines. 1485 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1486 if (!N->use_empty()) 1487 return false; 1488 1489 SmallSetVector<SDNode *, 16> Nodes; 1490 Nodes.insert(N); 1491 do { 1492 N = Nodes.pop_back_val(); 1493 if (!N) 1494 continue; 1495 1496 if (N->use_empty()) { 1497 for (const SDValue &ChildN : N->op_values()) 1498 Nodes.insert(ChildN.getNode()); 1499 1500 removeFromWorklist(N); 1501 DAG.DeleteNode(N); 1502 } else { 1503 AddToWorklist(N); 1504 } 1505 } while (!Nodes.empty()); 1506 return true; 1507 } 1508 1509 //===----------------------------------------------------------------------===// 1510 // Main DAG Combiner implementation 1511 //===----------------------------------------------------------------------===// 1512 1513 void DAGCombiner::Run(CombineLevel AtLevel) { 1514 // set the instance variables, so that the various visit routines may use it. 1515 Level = AtLevel; 1516 LegalDAG = Level >= AfterLegalizeDAG; 1517 LegalOperations = Level >= AfterLegalizeVectorOps; 1518 LegalTypes = Level >= AfterLegalizeTypes; 1519 1520 WorklistInserter AddNodes(*this); 1521 1522 // Add all the dag nodes to the worklist. 1523 for (SDNode &Node : DAG.allnodes()) 1524 AddToWorklist(&Node); 1525 1526 // Create a dummy node (which is not added to allnodes), that adds a reference 1527 // to the root node, preventing it from being deleted, and tracking any 1528 // changes of the root. 1529 HandleSDNode Dummy(DAG.getRoot()); 1530 1531 // While we have a valid worklist entry node, try to combine it. 1532 while (SDNode *N = getNextWorklistEntry()) { 1533 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1534 // N is deleted from the DAG, since they too may now be dead or may have a 1535 // reduced number of uses, allowing other xforms. 1536 if (recursivelyDeleteUnusedNodes(N)) 1537 continue; 1538 1539 WorklistRemover DeadNodes(*this); 1540 1541 // If this combine is running after legalizing the DAG, re-legalize any 1542 // nodes pulled off the worklist. 1543 if (LegalDAG) { 1544 SmallSetVector<SDNode *, 16> UpdatedNodes; 1545 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1546 1547 for (SDNode *LN : UpdatedNodes) 1548 AddToWorklistWithUsers(LN); 1549 1550 if (!NIsValid) 1551 continue; 1552 } 1553 1554 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1555 1556 // Add any operands of the new node which have not yet been combined to the 1557 // worklist as well. Because the worklist uniques things already, this 1558 // won't repeatedly process the same operand. 1559 CombinedNodes.insert(N); 1560 for (const SDValue &ChildN : N->op_values()) 1561 if (!CombinedNodes.count(ChildN.getNode())) 1562 AddToWorklist(ChildN.getNode()); 1563 1564 SDValue RV = combine(N); 1565 1566 if (!RV.getNode()) 1567 continue; 1568 1569 ++NodesCombined; 1570 1571 // If we get back the same node we passed in, rather than a new node or 1572 // zero, we know that the node must have defined multiple values and 1573 // CombineTo was used. Since CombineTo takes care of the worklist 1574 // mechanics for us, we have no work to do in this case. 1575 if (RV.getNode() == N) 1576 continue; 1577 1578 assert(N->getOpcode() != ISD::DELETED_NODE && 1579 RV.getOpcode() != ISD::DELETED_NODE && 1580 "Node was deleted but visit returned new node!"); 1581 1582 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); 1583 1584 if (N->getNumValues() == RV.getNode()->getNumValues()) 1585 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1586 else { 1587 assert(N->getValueType(0) == RV.getValueType() && 1588 N->getNumValues() == 1 && "Type mismatch"); 1589 DAG.ReplaceAllUsesWith(N, &RV); 1590 } 1591 1592 // Push the new node and any users onto the worklist. Omit this if the 1593 // new node is the EntryToken (e.g. if a store managed to get optimized 1594 // out), because re-visiting the EntryToken and its users will not uncover 1595 // any additional opportunities, but there may be a large number of such 1596 // users, potentially causing compile time explosion. 1597 if (RV.getOpcode() != ISD::EntryToken) { 1598 AddToWorklist(RV.getNode()); 1599 AddUsersToWorklist(RV.getNode()); 1600 } 1601 1602 // Finally, if the node is now dead, remove it from the graph. The node 1603 // may not be dead if the replacement process recursively simplified to 1604 // something else needing this node. This will also take care of adding any 1605 // operands which have lost a user to the worklist. 1606 recursivelyDeleteUnusedNodes(N); 1607 } 1608 1609 // If the root changed (e.g. it was a dead load, update the root). 1610 DAG.setRoot(Dummy.getValue()); 1611 DAG.RemoveDeadNodes(); 1612 } 1613 1614 SDValue DAGCombiner::visit(SDNode *N) { 1615 switch (N->getOpcode()) { 1616 default: break; 1617 case ISD::TokenFactor: return visitTokenFactor(N); 1618 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1619 case ISD::ADD: return visitADD(N); 1620 case ISD::SUB: return visitSUB(N); 1621 case ISD::SADDSAT: 1622 case ISD::UADDSAT: return visitADDSAT(N); 1623 case ISD::SSUBSAT: 1624 case ISD::USUBSAT: return visitSUBSAT(N); 1625 case ISD::ADDC: return visitADDC(N); 1626 case ISD::SADDO: 1627 case ISD::UADDO: return visitADDO(N); 1628 case ISD::SUBC: return visitSUBC(N); 1629 case ISD::SSUBO: 1630 case ISD::USUBO: return visitSUBO(N); 1631 case ISD::ADDE: return visitADDE(N); 1632 case ISD::ADDCARRY: return visitADDCARRY(N); 1633 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); 1634 case ISD::SUBE: return visitSUBE(N); 1635 case ISD::SUBCARRY: return visitSUBCARRY(N); 1636 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); 1637 case ISD::SMULFIX: 1638 case ISD::SMULFIXSAT: 1639 case ISD::UMULFIX: 1640 case ISD::UMULFIXSAT: return visitMULFIX(N); 1641 case ISD::MUL: return visitMUL(N); 1642 case ISD::SDIV: return visitSDIV(N); 1643 case ISD::UDIV: return visitUDIV(N); 1644 case ISD::SREM: 1645 case ISD::UREM: return visitREM(N); 1646 case ISD::MULHU: return visitMULHU(N); 1647 case ISD::MULHS: return visitMULHS(N); 1648 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1649 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1650 case ISD::SMULO: 1651 case ISD::UMULO: return visitMULO(N); 1652 case ISD::SMIN: 1653 case ISD::SMAX: 1654 case ISD::UMIN: 1655 case ISD::UMAX: return visitIMINMAX(N); 1656 case ISD::AND: return visitAND(N); 1657 case ISD::OR: return visitOR(N); 1658 case ISD::XOR: return visitXOR(N); 1659 case ISD::SHL: return visitSHL(N); 1660 case ISD::SRA: return visitSRA(N); 1661 case ISD::SRL: return visitSRL(N); 1662 case ISD::ROTR: 1663 case ISD::ROTL: return visitRotate(N); 1664 case ISD::FSHL: 1665 case ISD::FSHR: return visitFunnelShift(N); 1666 case ISD::ABS: return visitABS(N); 1667 case ISD::BSWAP: return visitBSWAP(N); 1668 case ISD::BITREVERSE: return visitBITREVERSE(N); 1669 case ISD::CTLZ: return visitCTLZ(N); 1670 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1671 case ISD::CTTZ: return visitCTTZ(N); 1672 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1673 case ISD::CTPOP: return visitCTPOP(N); 1674 case ISD::SELECT: return visitSELECT(N); 1675 case ISD::VSELECT: return visitVSELECT(N); 1676 case ISD::SELECT_CC: return visitSELECT_CC(N); 1677 case ISD::SETCC: return visitSETCC(N); 1678 case ISD::SETCCCARRY: return visitSETCCCARRY(N); 1679 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1680 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1681 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1682 case ISD::AssertSext: 1683 case ISD::AssertZext: return visitAssertExt(N); 1684 case ISD::AssertAlign: return visitAssertAlign(N); 1685 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1686 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1687 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1688 case ISD::TRUNCATE: return visitTRUNCATE(N); 1689 case ISD::BITCAST: return visitBITCAST(N); 1690 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1691 case ISD::FADD: return visitFADD(N); 1692 case ISD::STRICT_FADD: return visitSTRICT_FADD(N); 1693 case ISD::FSUB: return visitFSUB(N); 1694 case ISD::FMUL: return visitFMUL(N); 1695 case ISD::FMA: return visitFMA(N); 1696 case ISD::FDIV: return visitFDIV(N); 1697 case ISD::FREM: return visitFREM(N); 1698 case ISD::FSQRT: return visitFSQRT(N); 1699 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1700 case ISD::FPOW: return visitFPOW(N); 1701 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1702 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1703 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1704 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1705 case ISD::FP_ROUND: return visitFP_ROUND(N); 1706 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1707 case ISD::FNEG: return visitFNEG(N); 1708 case ISD::FABS: return visitFABS(N); 1709 case ISD::FFLOOR: return visitFFLOOR(N); 1710 case ISD::FMINNUM: return visitFMINNUM(N); 1711 case ISD::FMAXNUM: return visitFMAXNUM(N); 1712 case ISD::FMINIMUM: return visitFMINIMUM(N); 1713 case ISD::FMAXIMUM: return visitFMAXIMUM(N); 1714 case ISD::FCEIL: return visitFCEIL(N); 1715 case ISD::FTRUNC: return visitFTRUNC(N); 1716 case ISD::BRCOND: return visitBRCOND(N); 1717 case ISD::BR_CC: return visitBR_CC(N); 1718 case ISD::LOAD: return visitLOAD(N); 1719 case ISD::STORE: return visitSTORE(N); 1720 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1721 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1722 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1723 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1724 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1725 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1726 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1727 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1728 case ISD::MGATHER: return visitMGATHER(N); 1729 case ISD::MLOAD: return visitMLOAD(N); 1730 case ISD::MSCATTER: return visitMSCATTER(N); 1731 case ISD::MSTORE: return visitMSTORE(N); 1732 case ISD::LIFETIME_END: return visitLIFETIME_END(N); 1733 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1734 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1735 case ISD::FREEZE: return visitFREEZE(N); 1736 case ISD::VECREDUCE_FADD: 1737 case ISD::VECREDUCE_FMUL: 1738 case ISD::VECREDUCE_ADD: 1739 case ISD::VECREDUCE_MUL: 1740 case ISD::VECREDUCE_AND: 1741 case ISD::VECREDUCE_OR: 1742 case ISD::VECREDUCE_XOR: 1743 case ISD::VECREDUCE_SMAX: 1744 case ISD::VECREDUCE_SMIN: 1745 case ISD::VECREDUCE_UMAX: 1746 case ISD::VECREDUCE_UMIN: 1747 case ISD::VECREDUCE_FMAX: 1748 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); 1749 } 1750 return SDValue(); 1751 } 1752 1753 SDValue DAGCombiner::combine(SDNode *N) { 1754 SDValue RV; 1755 if (!DisableGenericCombines) 1756 RV = visit(N); 1757 1758 // If nothing happened, try a target-specific DAG combine. 1759 if (!RV.getNode()) { 1760 assert(N->getOpcode() != ISD::DELETED_NODE && 1761 "Node was deleted but visit returned NULL!"); 1762 1763 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1764 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1765 1766 // Expose the DAG combiner to the target combiner impls. 1767 TargetLowering::DAGCombinerInfo 1768 DagCombineInfo(DAG, Level, false, this); 1769 1770 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1771 } 1772 } 1773 1774 // If nothing happened still, try promoting the operation. 1775 if (!RV.getNode()) { 1776 switch (N->getOpcode()) { 1777 default: break; 1778 case ISD::ADD: 1779 case ISD::SUB: 1780 case ISD::MUL: 1781 case ISD::AND: 1782 case ISD::OR: 1783 case ISD::XOR: 1784 RV = PromoteIntBinOp(SDValue(N, 0)); 1785 break; 1786 case ISD::SHL: 1787 case ISD::SRA: 1788 case ISD::SRL: 1789 RV = PromoteIntShiftOp(SDValue(N, 0)); 1790 break; 1791 case ISD::SIGN_EXTEND: 1792 case ISD::ZERO_EXTEND: 1793 case ISD::ANY_EXTEND: 1794 RV = PromoteExtend(SDValue(N, 0)); 1795 break; 1796 case ISD::LOAD: 1797 if (PromoteLoad(SDValue(N, 0))) 1798 RV = SDValue(N, 0); 1799 break; 1800 } 1801 } 1802 1803 // If N is a commutative binary node, try to eliminate it if the commuted 1804 // version is already present in the DAG. 1805 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && 1806 N->getNumValues() == 1) { 1807 SDValue N0 = N->getOperand(0); 1808 SDValue N1 = N->getOperand(1); 1809 1810 // Constant operands are canonicalized to RHS. 1811 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { 1812 SDValue Ops[] = {N1, N0}; 1813 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1814 N->getFlags()); 1815 if (CSENode) 1816 return SDValue(CSENode, 0); 1817 } 1818 } 1819 1820 return RV; 1821 } 1822 1823 /// Given a node, return its input chain if it has one, otherwise return a null 1824 /// sd operand. 1825 static SDValue getInputChainForNode(SDNode *N) { 1826 if (unsigned NumOps = N->getNumOperands()) { 1827 if (N->getOperand(0).getValueType() == MVT::Other) 1828 return N->getOperand(0); 1829 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1830 return N->getOperand(NumOps-1); 1831 for (unsigned i = 1; i < NumOps-1; ++i) 1832 if (N->getOperand(i).getValueType() == MVT::Other) 1833 return N->getOperand(i); 1834 } 1835 return SDValue(); 1836 } 1837 1838 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1839 // If N has two operands, where one has an input chain equal to the other, 1840 // the 'other' chain is redundant. 1841 if (N->getNumOperands() == 2) { 1842 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1843 return N->getOperand(0); 1844 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1845 return N->getOperand(1); 1846 } 1847 1848 // Don't simplify token factors if optnone. 1849 if (OptLevel == CodeGenOpt::None) 1850 return SDValue(); 1851 1852 // Don't simplify the token factor if the node itself has too many operands. 1853 if (N->getNumOperands() > TokenFactorInlineLimit) 1854 return SDValue(); 1855 1856 // If the sole user is a token factor, we should make sure we have a 1857 // chance to merge them together. This prevents TF chains from inhibiting 1858 // optimizations. 1859 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) 1860 AddToWorklist(*(N->use_begin())); 1861 1862 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1863 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1864 SmallPtrSet<SDNode*, 16> SeenOps; 1865 bool Changed = false; // If we should replace this token factor. 1866 1867 // Start out with this token factor. 1868 TFs.push_back(N); 1869 1870 // Iterate through token factors. The TFs grows when new token factors are 1871 // encountered. 1872 for (unsigned i = 0; i < TFs.size(); ++i) { 1873 // Limit number of nodes to inline, to avoid quadratic compile times. 1874 // We have to add the outstanding Token Factors to Ops, otherwise we might 1875 // drop Ops from the resulting Token Factors. 1876 if (Ops.size() > TokenFactorInlineLimit) { 1877 for (unsigned j = i; j < TFs.size(); j++) 1878 Ops.emplace_back(TFs[j], 0); 1879 // Drop unprocessed Token Factors from TFs, so we do not add them to the 1880 // combiner worklist later. 1881 TFs.resize(i); 1882 break; 1883 } 1884 1885 SDNode *TF = TFs[i]; 1886 // Check each of the operands. 1887 for (const SDValue &Op : TF->op_values()) { 1888 switch (Op.getOpcode()) { 1889 case ISD::EntryToken: 1890 // Entry tokens don't need to be added to the list. They are 1891 // redundant. 1892 Changed = true; 1893 break; 1894 1895 case ISD::TokenFactor: 1896 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { 1897 // Queue up for processing. 1898 TFs.push_back(Op.getNode()); 1899 Changed = true; 1900 break; 1901 } 1902 LLVM_FALLTHROUGH; 1903 1904 default: 1905 // Only add if it isn't already in the list. 1906 if (SeenOps.insert(Op.getNode()).second) 1907 Ops.push_back(Op); 1908 else 1909 Changed = true; 1910 break; 1911 } 1912 } 1913 } 1914 1915 // Re-visit inlined Token Factors, to clean them up in case they have been 1916 // removed. Skip the first Token Factor, as this is the current node. 1917 for (unsigned i = 1, e = TFs.size(); i < e; i++) 1918 AddToWorklist(TFs[i]); 1919 1920 // Remove Nodes that are chained to another node in the list. Do so 1921 // by walking up chains breath-first stopping when we've seen 1922 // another operand. In general we must climb to the EntryNode, but we can exit 1923 // early if we find all remaining work is associated with just one operand as 1924 // no further pruning is possible. 1925 1926 // List of nodes to search through and original Ops from which they originate. 1927 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; 1928 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. 1929 SmallPtrSet<SDNode *, 16> SeenChains; 1930 bool DidPruneOps = false; 1931 1932 unsigned NumLeftToConsider = 0; 1933 for (const SDValue &Op : Ops) { 1934 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); 1935 OpWorkCount.push_back(1); 1936 } 1937 1938 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { 1939 // If this is an Op, we can remove the op from the list. Remark any 1940 // search associated with it as from the current OpNumber. 1941 if (SeenOps.count(Op) != 0) { 1942 Changed = true; 1943 DidPruneOps = true; 1944 unsigned OrigOpNumber = 0; 1945 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) 1946 OrigOpNumber++; 1947 assert((OrigOpNumber != Ops.size()) && 1948 "expected to find TokenFactor Operand"); 1949 // Re-mark worklist from OrigOpNumber to OpNumber 1950 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { 1951 if (Worklist[i].second == OrigOpNumber) { 1952 Worklist[i].second = OpNumber; 1953 } 1954 } 1955 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; 1956 OpWorkCount[OrigOpNumber] = 0; 1957 NumLeftToConsider--; 1958 } 1959 // Add if it's a new chain 1960 if (SeenChains.insert(Op).second) { 1961 OpWorkCount[OpNumber]++; 1962 Worklist.push_back(std::make_pair(Op, OpNumber)); 1963 } 1964 }; 1965 1966 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { 1967 // We need at least be consider at least 2 Ops to prune. 1968 if (NumLeftToConsider <= 1) 1969 break; 1970 auto CurNode = Worklist[i].first; 1971 auto CurOpNumber = Worklist[i].second; 1972 assert((OpWorkCount[CurOpNumber] > 0) && 1973 "Node should not appear in worklist"); 1974 switch (CurNode->getOpcode()) { 1975 case ISD::EntryToken: 1976 // Hitting EntryToken is the only way for the search to terminate without 1977 // hitting 1978 // another operand's search. Prevent us from marking this operand 1979 // considered. 1980 NumLeftToConsider++; 1981 break; 1982 case ISD::TokenFactor: 1983 for (const SDValue &Op : CurNode->op_values()) 1984 AddToWorklist(i, Op.getNode(), CurOpNumber); 1985 break; 1986 case ISD::LIFETIME_START: 1987 case ISD::LIFETIME_END: 1988 case ISD::CopyFromReg: 1989 case ISD::CopyToReg: 1990 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); 1991 break; 1992 default: 1993 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) 1994 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); 1995 break; 1996 } 1997 OpWorkCount[CurOpNumber]--; 1998 if (OpWorkCount[CurOpNumber] == 0) 1999 NumLeftToConsider--; 2000 } 2001 2002 // If we've changed things around then replace token factor. 2003 if (Changed) { 2004 SDValue Result; 2005 if (Ops.empty()) { 2006 // The entry token is the only possible outcome. 2007 Result = DAG.getEntryNode(); 2008 } else { 2009 if (DidPruneOps) { 2010 SmallVector<SDValue, 8> PrunedOps; 2011 // 2012 for (const SDValue &Op : Ops) { 2013 if (SeenChains.count(Op.getNode()) == 0) 2014 PrunedOps.push_back(Op); 2015 } 2016 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); 2017 } else { 2018 Result = DAG.getTokenFactor(SDLoc(N), Ops); 2019 } 2020 } 2021 return Result; 2022 } 2023 return SDValue(); 2024 } 2025 2026 /// MERGE_VALUES can always be eliminated. 2027 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 2028 WorklistRemover DeadNodes(*this); 2029 // Replacing results may cause a different MERGE_VALUES to suddenly 2030 // be CSE'd with N, and carry its uses with it. Iterate until no 2031 // uses remain, to ensure that the node can be safely deleted. 2032 // First add the users of this node to the work list so that they 2033 // can be tried again once they have new operands. 2034 AddUsersToWorklist(N); 2035 do { 2036 // Do as a single replacement to avoid rewalking use lists. 2037 SmallVector<SDValue, 8> Ops; 2038 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 2039 Ops.push_back(N->getOperand(i)); 2040 DAG.ReplaceAllUsesWith(N, Ops.data()); 2041 } while (!N->use_empty()); 2042 deleteAndRecombine(N); 2043 return SDValue(N, 0); // Return N so it doesn't get rechecked! 2044 } 2045 2046 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 2047 /// ConstantSDNode pointer else nullptr. 2048 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 2049 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 2050 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 2051 } 2052 2053 /// Return true if 'Use' is a load or a store that uses N as its base pointer 2054 /// and that N may be folded in the load / store addressing mode. 2055 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, 2056 const TargetLowering &TLI) { 2057 EVT VT; 2058 unsigned AS; 2059 2060 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 2061 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2062 return false; 2063 VT = LD->getMemoryVT(); 2064 AS = LD->getAddressSpace(); 2065 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 2066 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2067 return false; 2068 VT = ST->getMemoryVT(); 2069 AS = ST->getAddressSpace(); 2070 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { 2071 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 2072 return false; 2073 VT = LD->getMemoryVT(); 2074 AS = LD->getAddressSpace(); 2075 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { 2076 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 2077 return false; 2078 VT = ST->getMemoryVT(); 2079 AS = ST->getAddressSpace(); 2080 } else 2081 return false; 2082 2083 TargetLowering::AddrMode AM; 2084 if (N->getOpcode() == ISD::ADD) { 2085 AM.HasBaseReg = true; 2086 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2087 if (Offset) 2088 // [reg +/- imm] 2089 AM.BaseOffs = Offset->getSExtValue(); 2090 else 2091 // [reg +/- reg] 2092 AM.Scale = 1; 2093 } else if (N->getOpcode() == ISD::SUB) { 2094 AM.HasBaseReg = true; 2095 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2096 if (Offset) 2097 // [reg +/- imm] 2098 AM.BaseOffs = -Offset->getSExtValue(); 2099 else 2100 // [reg +/- reg] 2101 AM.Scale = 1; 2102 } else 2103 return false; 2104 2105 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 2106 VT.getTypeForEVT(*DAG.getContext()), AS); 2107 } 2108 2109 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { 2110 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && 2111 "Unexpected binary operator"); 2112 2113 // Don't do this unless the old select is going away. We want to eliminate the 2114 // binary operator, not replace a binop with a select. 2115 // TODO: Handle ISD::SELECT_CC. 2116 unsigned SelOpNo = 0; 2117 SDValue Sel = BO->getOperand(0); 2118 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { 2119 SelOpNo = 1; 2120 Sel = BO->getOperand(1); 2121 } 2122 2123 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) 2124 return SDValue(); 2125 2126 SDValue CT = Sel.getOperand(1); 2127 if (!isConstantOrConstantVector(CT, true) && 2128 !isConstantFPBuildVectorOrConstantFP(CT)) 2129 return SDValue(); 2130 2131 SDValue CF = Sel.getOperand(2); 2132 if (!isConstantOrConstantVector(CF, true) && 2133 !isConstantFPBuildVectorOrConstantFP(CF)) 2134 return SDValue(); 2135 2136 // Bail out if any constants are opaque because we can't constant fold those. 2137 // The exception is "and" and "or" with either 0 or -1 in which case we can 2138 // propagate non constant operands into select. I.e.: 2139 // and (select Cond, 0, -1), X --> select Cond, 0, X 2140 // or X, (select Cond, -1, 0) --> select Cond, -1, X 2141 auto BinOpcode = BO->getOpcode(); 2142 bool CanFoldNonConst = 2143 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && 2144 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && 2145 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); 2146 2147 SDValue CBO = BO->getOperand(SelOpNo ^ 1); 2148 if (!CanFoldNonConst && 2149 !isConstantOrConstantVector(CBO, true) && 2150 !isConstantFPBuildVectorOrConstantFP(CBO)) 2151 return SDValue(); 2152 2153 EVT VT = BO->getValueType(0); 2154 2155 // We have a select-of-constants followed by a binary operator with a 2156 // constant. Eliminate the binop by pulling the constant math into the select. 2157 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 2158 SDLoc DL(Sel); 2159 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) 2160 : DAG.getNode(BinOpcode, DL, VT, CT, CBO); 2161 if (!CanFoldNonConst && !NewCT.isUndef() && 2162 !isConstantOrConstantVector(NewCT, true) && 2163 !isConstantFPBuildVectorOrConstantFP(NewCT)) 2164 return SDValue(); 2165 2166 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) 2167 : DAG.getNode(BinOpcode, DL, VT, CF, CBO); 2168 if (!CanFoldNonConst && !NewCF.isUndef() && 2169 !isConstantOrConstantVector(NewCF, true) && 2170 !isConstantFPBuildVectorOrConstantFP(NewCF)) 2171 return SDValue(); 2172 2173 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); 2174 SelectOp->setFlags(BO->getFlags()); 2175 return SelectOp; 2176 } 2177 2178 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { 2179 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2180 "Expecting add or sub"); 2181 2182 // Match a constant operand and a zext operand for the math instruction: 2183 // add Z, C 2184 // sub C, Z 2185 bool IsAdd = N->getOpcode() == ISD::ADD; 2186 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); 2187 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); 2188 auto *CN = dyn_cast<ConstantSDNode>(C); 2189 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) 2190 return SDValue(); 2191 2192 // Match the zext operand as a setcc of a boolean. 2193 if (Z.getOperand(0).getOpcode() != ISD::SETCC || 2194 Z.getOperand(0).getValueType() != MVT::i1) 2195 return SDValue(); 2196 2197 // Match the compare as: setcc (X & 1), 0, eq. 2198 SDValue SetCC = Z.getOperand(0); 2199 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 2200 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || 2201 SetCC.getOperand(0).getOpcode() != ISD::AND || 2202 !isOneConstant(SetCC.getOperand(0).getOperand(1))) 2203 return SDValue(); 2204 2205 // We are adding/subtracting a constant and an inverted low bit. Turn that 2206 // into a subtract/add of the low bit with incremented/decremented constant: 2207 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) 2208 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) 2209 EVT VT = C.getValueType(); 2210 SDLoc DL(N); 2211 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); 2212 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : 2213 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); 2214 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); 2215 } 2216 2217 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into 2218 /// a shift and add with a different constant. 2219 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { 2220 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 2221 "Expecting add or sub"); 2222 2223 // We need a constant operand for the add/sub, and the other operand is a 2224 // logical shift right: add (srl), C or sub C, (srl). 2225 bool IsAdd = N->getOpcode() == ISD::ADD; 2226 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); 2227 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); 2228 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || 2229 ShiftOp.getOpcode() != ISD::SRL) 2230 return SDValue(); 2231 2232 // The shift must be of a 'not' value. 2233 SDValue Not = ShiftOp.getOperand(0); 2234 if (!Not.hasOneUse() || !isBitwiseNot(Not)) 2235 return SDValue(); 2236 2237 // The shift must be moving the sign bit to the least-significant-bit. 2238 EVT VT = ShiftOp.getValueType(); 2239 SDValue ShAmt = ShiftOp.getOperand(1); 2240 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 2241 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) 2242 return SDValue(); 2243 2244 // Eliminate the 'not' by adjusting the shift and add/sub constant: 2245 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) 2246 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) 2247 SDLoc DL(N); 2248 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; 2249 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); 2250 if (SDValue NewC = 2251 DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, 2252 {ConstantOp, DAG.getConstant(1, DL, VT)})) 2253 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); 2254 return SDValue(); 2255 } 2256 2257 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily 2258 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there 2259 /// are no common bits set in the operands). 2260 SDValue DAGCombiner::visitADDLike(SDNode *N) { 2261 SDValue N0 = N->getOperand(0); 2262 SDValue N1 = N->getOperand(1); 2263 EVT VT = N0.getValueType(); 2264 SDLoc DL(N); 2265 2266 // fold vector ops 2267 if (VT.isVector()) { 2268 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2269 return FoldedVOp; 2270 2271 // fold (add x, 0) -> x, vector edition 2272 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2273 return N0; 2274 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2275 return N1; 2276 } 2277 2278 // fold (add x, undef) -> undef 2279 if (N0.isUndef()) 2280 return N0; 2281 2282 if (N1.isUndef()) 2283 return N1; 2284 2285 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2286 // canonicalize constant to RHS 2287 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2288 return DAG.getNode(ISD::ADD, DL, VT, N1, N0); 2289 // fold (add c1, c2) -> c1+c2 2290 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}); 2291 } 2292 2293 // fold (add x, 0) -> x 2294 if (isNullConstant(N1)) 2295 return N0; 2296 2297 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { 2298 // fold ((A-c1)+c2) -> (A+(c2-c1)) 2299 if (N0.getOpcode() == ISD::SUB && 2300 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { 2301 SDValue Sub = 2302 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); 2303 assert(Sub && "Constant folding failed"); 2304 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); 2305 } 2306 2307 // fold ((c1-A)+c2) -> (c1+c2)-A 2308 if (N0.getOpcode() == ISD::SUB && 2309 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { 2310 SDValue Add = 2311 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); 2312 assert(Add && "Constant folding failed"); 2313 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2314 } 2315 2316 // add (sext i1 X), 1 -> zext (not i1 X) 2317 // We don't transform this pattern: 2318 // add (zext i1 X), -1 -> sext (not i1 X) 2319 // because most (?) targets generate better code for the zext form. 2320 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && 2321 isOneOrOneSplat(N1)) { 2322 SDValue X = N0.getOperand(0); 2323 if ((!LegalOperations || 2324 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && 2325 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && 2326 X.getScalarValueSizeInBits() == 1) { 2327 SDValue Not = DAG.getNOT(DL, X, X.getValueType()); 2328 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); 2329 } 2330 } 2331 2332 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is 2333 // equivalent to (add x, c0). 2334 if (N0.getOpcode() == ISD::OR && 2335 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && 2336 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { 2337 if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, 2338 {N1, N0.getOperand(1)})) 2339 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); 2340 } 2341 } 2342 2343 if (SDValue NewSel = foldBinOpIntoSelect(N)) 2344 return NewSel; 2345 2346 // reassociate add 2347 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { 2348 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) 2349 return RADD; 2350 } 2351 // fold ((0-A) + B) -> B-A 2352 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) 2353 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2354 2355 // fold (A + (0-B)) -> A-B 2356 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 2357 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); 2358 2359 // fold (A+(B-A)) -> B 2360 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 2361 return N1.getOperand(0); 2362 2363 // fold ((B-A)+A) -> B 2364 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 2365 return N0.getOperand(0); 2366 2367 // fold ((A-B)+(C-A)) -> (C-B) 2368 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2369 N0.getOperand(0) == N1.getOperand(1)) 2370 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2371 N0.getOperand(1)); 2372 2373 // fold ((A-B)+(B-C)) -> (A-C) 2374 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && 2375 N0.getOperand(1) == N1.getOperand(0)) 2376 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 2377 N1.getOperand(1)); 2378 2379 // fold (A+(B-(A+C))) to (B-C) 2380 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2381 N0 == N1.getOperand(1).getOperand(0)) 2382 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2383 N1.getOperand(1).getOperand(1)); 2384 2385 // fold (A+(B-(C+A))) to (B-C) 2386 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 2387 N0 == N1.getOperand(1).getOperand(1)) 2388 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), 2389 N1.getOperand(1).getOperand(0)); 2390 2391 // fold (A+((B-A)+or-C)) to (B+or-C) 2392 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 2393 N1.getOperand(0).getOpcode() == ISD::SUB && 2394 N0 == N1.getOperand(0).getOperand(1)) 2395 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), 2396 N1.getOperand(1)); 2397 2398 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 2399 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 2400 SDValue N00 = N0.getOperand(0); 2401 SDValue N01 = N0.getOperand(1); 2402 SDValue N10 = N1.getOperand(0); 2403 SDValue N11 = N1.getOperand(1); 2404 2405 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) 2406 return DAG.getNode(ISD::SUB, DL, VT, 2407 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 2408 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 2409 } 2410 2411 // fold (add (umax X, C), -C) --> (usubsat X, C) 2412 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { 2413 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { 2414 return (!Max && !Op) || 2415 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); 2416 }; 2417 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, 2418 /*AllowUndefs*/ true)) 2419 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), 2420 N0.getOperand(1)); 2421 } 2422 2423 if (SimplifyDemandedBits(SDValue(N, 0))) 2424 return SDValue(N, 0); 2425 2426 if (isOneOrOneSplat(N1)) { 2427 // fold (add (xor a, -1), 1) -> (sub 0, a) 2428 if (isBitwiseNot(N0)) 2429 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 2430 N0.getOperand(0)); 2431 2432 // fold (add (add (xor a, -1), b), 1) -> (sub b, a) 2433 if (N0.getOpcode() == ISD::ADD || 2434 N0.getOpcode() == ISD::UADDO || 2435 N0.getOpcode() == ISD::SADDO) { 2436 SDValue A, Xor; 2437 2438 if (isBitwiseNot(N0.getOperand(0))) { 2439 A = N0.getOperand(1); 2440 Xor = N0.getOperand(0); 2441 } else if (isBitwiseNot(N0.getOperand(1))) { 2442 A = N0.getOperand(0); 2443 Xor = N0.getOperand(1); 2444 } 2445 2446 if (Xor) 2447 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); 2448 } 2449 2450 // Look for: 2451 // add (add x, y), 1 2452 // And if the target does not like this form then turn into: 2453 // sub y, (xor x, -1) 2454 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2455 N0.getOpcode() == ISD::ADD) { 2456 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2457 DAG.getAllOnesConstant(DL, VT)); 2458 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); 2459 } 2460 } 2461 2462 // (x - y) + -1 -> add (xor y, -1), x 2463 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2464 isAllOnesOrAllOnesSplat(N1)) { 2465 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); 2466 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 2467 } 2468 2469 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) 2470 return Combined; 2471 2472 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) 2473 return Combined; 2474 2475 return SDValue(); 2476 } 2477 2478 SDValue DAGCombiner::visitADD(SDNode *N) { 2479 SDValue N0 = N->getOperand(0); 2480 SDValue N1 = N->getOperand(1); 2481 EVT VT = N0.getValueType(); 2482 SDLoc DL(N); 2483 2484 if (SDValue Combined = visitADDLike(N)) 2485 return Combined; 2486 2487 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 2488 return V; 2489 2490 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 2491 return V; 2492 2493 // fold (a+b) -> (a|b) iff a and b share no bits. 2494 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 2495 DAG.haveNoCommonBitsSet(N0, N1)) 2496 return DAG.getNode(ISD::OR, DL, VT, N0, N1); 2497 2498 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). 2499 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { 2500 const APInt &C0 = N0->getConstantOperandAPInt(0); 2501 const APInt &C1 = N1->getConstantOperandAPInt(0); 2502 return DAG.getVScale(DL, VT, C0 + C1); 2503 } 2504 2505 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) 2506 if ((N0.getOpcode() == ISD::ADD) && 2507 (N0.getOperand(1).getOpcode() == ISD::VSCALE) && 2508 (N1.getOpcode() == ISD::VSCALE)) { 2509 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); 2510 const APInt &VS1 = N1->getConstantOperandAPInt(0); 2511 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); 2512 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); 2513 } 2514 2515 return SDValue(); 2516 } 2517 2518 SDValue DAGCombiner::visitADDSAT(SDNode *N) { 2519 unsigned Opcode = N->getOpcode(); 2520 SDValue N0 = N->getOperand(0); 2521 SDValue N1 = N->getOperand(1); 2522 EVT VT = N0.getValueType(); 2523 SDLoc DL(N); 2524 2525 // fold vector ops 2526 if (VT.isVector()) { 2527 // TODO SimplifyVBinOp 2528 2529 // fold (add_sat x, 0) -> x, vector edition 2530 if (ISD::isBuildVectorAllZeros(N1.getNode())) 2531 return N0; 2532 if (ISD::isBuildVectorAllZeros(N0.getNode())) 2533 return N1; 2534 } 2535 2536 // fold (add_sat x, undef) -> -1 2537 if (N0.isUndef() || N1.isUndef()) 2538 return DAG.getAllOnesConstant(DL, VT); 2539 2540 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 2541 // canonicalize constant to RHS 2542 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2543 return DAG.getNode(Opcode, DL, VT, N1, N0); 2544 // fold (add_sat c1, c2) -> c3 2545 return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}); 2546 } 2547 2548 // fold (add_sat x, 0) -> x 2549 if (isNullConstant(N1)) 2550 return N0; 2551 2552 // If it cannot overflow, transform into an add. 2553 if (Opcode == ISD::UADDSAT) 2554 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2555 return DAG.getNode(ISD::ADD, DL, VT, N0, N1); 2556 2557 return SDValue(); 2558 } 2559 2560 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { 2561 bool Masked = false; 2562 2563 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. 2564 while (true) { 2565 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { 2566 V = V.getOperand(0); 2567 continue; 2568 } 2569 2570 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { 2571 Masked = true; 2572 V = V.getOperand(0); 2573 continue; 2574 } 2575 2576 break; 2577 } 2578 2579 // If this is not a carry, return. 2580 if (V.getResNo() != 1) 2581 return SDValue(); 2582 2583 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && 2584 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) 2585 return SDValue(); 2586 2587 EVT VT = V.getNode()->getValueType(0); 2588 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) 2589 return SDValue(); 2590 2591 // If the result is masked, then no matter what kind of bool it is we can 2592 // return. If it isn't, then we need to make sure the bool type is either 0 or 2593 // 1 and not other values. 2594 if (Masked || 2595 TLI.getBooleanContents(V.getValueType()) == 2596 TargetLoweringBase::ZeroOrOneBooleanContent) 2597 return V; 2598 2599 return SDValue(); 2600 } 2601 2602 /// Given the operands of an add/sub operation, see if the 2nd operand is a 2603 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert 2604 /// the opcode and bypass the mask operation. 2605 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, 2606 SelectionDAG &DAG, const SDLoc &DL) { 2607 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) 2608 return SDValue(); 2609 2610 EVT VT = N0.getValueType(); 2611 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) 2612 return SDValue(); 2613 2614 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X 2615 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X 2616 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); 2617 } 2618 2619 /// Helper for doing combines based on N0 and N1 being added to each other. 2620 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, 2621 SDNode *LocReference) { 2622 EVT VT = N0.getValueType(); 2623 SDLoc DL(LocReference); 2624 2625 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 2626 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 2627 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) 2628 return DAG.getNode(ISD::SUB, DL, VT, N0, 2629 DAG.getNode(ISD::SHL, DL, VT, 2630 N1.getOperand(0).getOperand(1), 2631 N1.getOperand(1))); 2632 2633 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) 2634 return V; 2635 2636 // Look for: 2637 // add (add x, 1), y 2638 // And if the target does not like this form then turn into: 2639 // sub y, (xor x, -1) 2640 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && 2641 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { 2642 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 2643 DAG.getAllOnesConstant(DL, VT)); 2644 return DAG.getNode(ISD::SUB, DL, VT, N1, Not); 2645 } 2646 2647 // Hoist one-use subtraction by non-opaque constant: 2648 // (x - C) + y -> (x + y) - C 2649 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 2650 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2651 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 2652 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); 2653 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); 2654 } 2655 // Hoist one-use subtraction from non-opaque constant: 2656 // (C - x) + y -> (y - x) + C 2657 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 2658 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 2659 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); 2660 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); 2661 } 2662 2663 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' 2664 // rather than 'add 0/-1' (the zext should get folded). 2665 // add (sext i1 Y), X --> sub X, (zext i1 Y) 2666 if (N0.getOpcode() == ISD::SIGN_EXTEND && 2667 N0.getOperand(0).getScalarValueSizeInBits() == 1 && 2668 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { 2669 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 2670 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 2671 } 2672 2673 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 2674 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 2675 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 2676 if (TN->getVT() == MVT::i1) { 2677 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 2678 DAG.getConstant(1, DL, VT)); 2679 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 2680 } 2681 } 2682 2683 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2684 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && 2685 N1.getResNo() == 0) 2686 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), 2687 N0, N1.getOperand(0), N1.getOperand(2)); 2688 2689 // (add X, Carry) -> (addcarry X, 0, Carry) 2690 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2691 if (SDValue Carry = getAsCarry(TLI, N1)) 2692 return DAG.getNode(ISD::ADDCARRY, DL, 2693 DAG.getVTList(VT, Carry.getValueType()), N0, 2694 DAG.getConstant(0, DL, VT), Carry); 2695 2696 return SDValue(); 2697 } 2698 2699 SDValue DAGCombiner::visitADDC(SDNode *N) { 2700 SDValue N0 = N->getOperand(0); 2701 SDValue N1 = N->getOperand(1); 2702 EVT VT = N0.getValueType(); 2703 SDLoc DL(N); 2704 2705 // If the flag result is dead, turn this into an ADD. 2706 if (!N->hasAnyUseOfValue(1)) 2707 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2708 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2709 2710 // canonicalize constant to RHS. 2711 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2712 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2713 if (N0C && !N1C) 2714 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); 2715 2716 // fold (addc x, 0) -> x + no carry out 2717 if (isNullConstant(N1)) 2718 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 2719 DL, MVT::Glue)); 2720 2721 // If it cannot overflow, transform into an add. 2722 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2723 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2724 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 2725 2726 return SDValue(); 2727 } 2728 2729 /** 2730 * Flips a boolean if it is cheaper to compute. If the Force parameters is set, 2731 * then the flip also occurs if computing the inverse is the same cost. 2732 * This function returns an empty SDValue in case it cannot flip the boolean 2733 * without increasing the cost of the computation. If you want to flip a boolean 2734 * no matter what, use DAG.getLogicalNOT. 2735 */ 2736 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, 2737 const TargetLowering &TLI, 2738 bool Force) { 2739 if (Force && isa<ConstantSDNode>(V)) 2740 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2741 2742 if (V.getOpcode() != ISD::XOR) 2743 return SDValue(); 2744 2745 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); 2746 if (!Const) 2747 return SDValue(); 2748 2749 EVT VT = V.getValueType(); 2750 2751 bool IsFlip = false; 2752 switch(TLI.getBooleanContents(VT)) { 2753 case TargetLowering::ZeroOrOneBooleanContent: 2754 IsFlip = Const->isOne(); 2755 break; 2756 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2757 IsFlip = Const->isAllOnesValue(); 2758 break; 2759 case TargetLowering::UndefinedBooleanContent: 2760 IsFlip = (Const->getAPIntValue() & 0x01) == 1; 2761 break; 2762 } 2763 2764 if (IsFlip) 2765 return V.getOperand(0); 2766 if (Force) 2767 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); 2768 return SDValue(); 2769 } 2770 2771 SDValue DAGCombiner::visitADDO(SDNode *N) { 2772 SDValue N0 = N->getOperand(0); 2773 SDValue N1 = N->getOperand(1); 2774 EVT VT = N0.getValueType(); 2775 bool IsSigned = (ISD::SADDO == N->getOpcode()); 2776 2777 EVT CarryVT = N->getValueType(1); 2778 SDLoc DL(N); 2779 2780 // If the flag result is dead, turn this into an ADD. 2781 if (!N->hasAnyUseOfValue(1)) 2782 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2783 DAG.getUNDEF(CarryVT)); 2784 2785 // canonicalize constant to RHS. 2786 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2787 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2788 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 2789 2790 // fold (addo x, 0) -> x + no carry out 2791 if (isNullOrNullSplat(N1)) 2792 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 2793 2794 if (!IsSigned) { 2795 // If it cannot overflow, transform into an add. 2796 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) 2797 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), 2798 DAG.getConstant(0, DL, CarryVT)); 2799 2800 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. 2801 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { 2802 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), 2803 DAG.getConstant(0, DL, VT), N0.getOperand(0)); 2804 return CombineTo( 2805 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 2806 } 2807 2808 if (SDValue Combined = visitUADDOLike(N0, N1, N)) 2809 return Combined; 2810 2811 if (SDValue Combined = visitUADDOLike(N1, N0, N)) 2812 return Combined; 2813 } 2814 2815 return SDValue(); 2816 } 2817 2818 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { 2819 EVT VT = N0.getValueType(); 2820 if (VT.isVector()) 2821 return SDValue(); 2822 2823 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) 2824 // If Y + 1 cannot overflow. 2825 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { 2826 SDValue Y = N1.getOperand(0); 2827 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); 2828 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) 2829 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, 2830 N1.getOperand(2)); 2831 } 2832 2833 // (uaddo X, Carry) -> (addcarry X, 0, Carry) 2834 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) 2835 if (SDValue Carry = getAsCarry(TLI, N1)) 2836 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, 2837 DAG.getConstant(0, SDLoc(N), VT), Carry); 2838 2839 return SDValue(); 2840 } 2841 2842 SDValue DAGCombiner::visitADDE(SDNode *N) { 2843 SDValue N0 = N->getOperand(0); 2844 SDValue N1 = N->getOperand(1); 2845 SDValue CarryIn = N->getOperand(2); 2846 2847 // canonicalize constant to RHS 2848 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2849 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2850 if (N0C && !N1C) 2851 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 2852 N1, N0, CarryIn); 2853 2854 // fold (adde x, y, false) -> (addc x, y) 2855 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2856 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 2857 2858 return SDValue(); 2859 } 2860 2861 SDValue DAGCombiner::visitADDCARRY(SDNode *N) { 2862 SDValue N0 = N->getOperand(0); 2863 SDValue N1 = N->getOperand(1); 2864 SDValue CarryIn = N->getOperand(2); 2865 SDLoc DL(N); 2866 2867 // canonicalize constant to RHS 2868 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2869 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2870 if (N0C && !N1C) 2871 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); 2872 2873 // fold (addcarry x, y, false) -> (uaddo x, y) 2874 if (isNullConstant(CarryIn)) { 2875 if (!LegalOperations || 2876 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) 2877 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); 2878 } 2879 2880 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. 2881 if (isNullConstant(N0) && isNullConstant(N1)) { 2882 EVT VT = N0.getValueType(); 2883 EVT CarryVT = CarryIn.getValueType(); 2884 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); 2885 AddToWorklist(CarryExt.getNode()); 2886 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, 2887 DAG.getConstant(1, DL, VT)), 2888 DAG.getConstant(0, DL, CarryVT)); 2889 } 2890 2891 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) 2892 return Combined; 2893 2894 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) 2895 return Combined; 2896 2897 return SDValue(); 2898 } 2899 2900 SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { 2901 SDValue N0 = N->getOperand(0); 2902 SDValue N1 = N->getOperand(1); 2903 SDValue CarryIn = N->getOperand(2); 2904 SDLoc DL(N); 2905 2906 // canonicalize constant to RHS 2907 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 2908 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 2909 if (N0C && !N1C) 2910 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); 2911 2912 // fold (saddo_carry x, y, false) -> (saddo x, y) 2913 if (isNullConstant(CarryIn)) { 2914 if (!LegalOperations || 2915 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) 2916 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); 2917 } 2918 2919 return SDValue(); 2920 } 2921 2922 /** 2923 * If we are facing some sort of diamond carry propapagtion pattern try to 2924 * break it up to generate something like: 2925 * (addcarry X, 0, (addcarry A, B, Z):Carry) 2926 * 2927 * The end result is usually an increase in operation required, but because the 2928 * carry is now linearized, other tranforms can kick in and optimize the DAG. 2929 * 2930 * Patterns typically look something like 2931 * (uaddo A, B) 2932 * / \ 2933 * Carry Sum 2934 * | \ 2935 * | (addcarry *, 0, Z) 2936 * | / 2937 * \ Carry 2938 * | / 2939 * (addcarry X, *, *) 2940 * 2941 * But numerous variation exist. Our goal is to identify A, B, X and Z and 2942 * produce a combine with a single path for carry propagation. 2943 */ 2944 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 2945 SDValue X, SDValue Carry0, SDValue Carry1, 2946 SDNode *N) { 2947 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) 2948 return SDValue(); 2949 if (Carry1.getOpcode() != ISD::UADDO) 2950 return SDValue(); 2951 2952 SDValue Z; 2953 2954 /** 2955 * First look for a suitable Z. It will present itself in the form of 2956 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true 2957 */ 2958 if (Carry0.getOpcode() == ISD::ADDCARRY && 2959 isNullConstant(Carry0.getOperand(1))) { 2960 Z = Carry0.getOperand(2); 2961 } else if (Carry0.getOpcode() == ISD::UADDO && 2962 isOneConstant(Carry0.getOperand(1))) { 2963 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); 2964 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); 2965 } else { 2966 // We couldn't find a suitable Z. 2967 return SDValue(); 2968 } 2969 2970 2971 auto cancelDiamond = [&](SDValue A,SDValue B) { 2972 SDLoc DL(N); 2973 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); 2974 Combiner.AddToWorklist(NewY.getNode()); 2975 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, 2976 DAG.getConstant(0, DL, X.getValueType()), 2977 NewY.getValue(1)); 2978 }; 2979 2980 /** 2981 * (uaddo A, B) 2982 * | 2983 * Sum 2984 * | 2985 * (addcarry *, 0, Z) 2986 */ 2987 if (Carry0.getOperand(0) == Carry1.getValue(0)) { 2988 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); 2989 } 2990 2991 /** 2992 * (addcarry A, 0, Z) 2993 * | 2994 * Sum 2995 * | 2996 * (uaddo *, B) 2997 */ 2998 if (Carry1.getOperand(0) == Carry0.getValue(0)) { 2999 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); 3000 } 3001 3002 if (Carry1.getOperand(1) == Carry0.getValue(0)) { 3003 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); 3004 } 3005 3006 return SDValue(); 3007 } 3008 3009 // If we are facing some sort of diamond carry/borrow in/out pattern try to 3010 // match patterns like: 3011 // 3012 // (uaddo A, B) CarryIn 3013 // | \ | 3014 // | \ | 3015 // PartialSum PartialCarryOutX / 3016 // | | / 3017 // | ____|____________/ 3018 // | / | 3019 // (uaddo *, *) \________ 3020 // | \ \ 3021 // | \ | 3022 // | PartialCarryOutY | 3023 // | \ | 3024 // | \ / 3025 // AddCarrySum | ______/ 3026 // | / 3027 // CarryOut = (or *, *) 3028 // 3029 // And generate ADDCARRY (or SUBCARRY) with two result values: 3030 // 3031 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) 3032 // 3033 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with 3034 // a single path for carry/borrow out propagation: 3035 static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, 3036 const TargetLowering &TLI, SDValue Carry0, 3037 SDValue Carry1, SDNode *N) { 3038 if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) 3039 return SDValue(); 3040 unsigned Opcode = Carry0.getOpcode(); 3041 if (Opcode != Carry1.getOpcode()) 3042 return SDValue(); 3043 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) 3044 return SDValue(); 3045 3046 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the 3047 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in 3048 // the above ASCII art.) 3049 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3050 Carry1.getOperand(1) != Carry0.getValue(0)) 3051 std::swap(Carry0, Carry1); 3052 if (Carry1.getOperand(0) != Carry0.getValue(0) && 3053 Carry1.getOperand(1) != Carry0.getValue(0)) 3054 return SDValue(); 3055 3056 // The carry in value must be on the righthand side for subtraction. 3057 unsigned CarryInOperandNum = 3058 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; 3059 if (Opcode == ISD::USUBO && CarryInOperandNum != 1) 3060 return SDValue(); 3061 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); 3062 3063 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; 3064 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) 3065 return SDValue(); 3066 3067 // Verify that the carry/borrow in is plausibly a carry/borrow bit. 3068 // TODO: make getAsCarry() aware of how partial carries are merged. 3069 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) 3070 return SDValue(); 3071 CarryIn = CarryIn.getOperand(0); 3072 if (CarryIn.getValueType() != MVT::i1) 3073 return SDValue(); 3074 3075 SDLoc DL(N); 3076 SDValue Merged = 3077 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), 3078 Carry0.getOperand(1), CarryIn); 3079 3080 // Please note that because we have proven that the result of the UADDO/USUBO 3081 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can 3082 // therefore prove that if the first UADDO/USUBO overflows, the second 3083 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the 3084 // maximum value. 3085 // 3086 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry 3087 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) 3088 // 3089 // This is important because it means that OR and XOR can be used to merge 3090 // carry flags; and that AND can return a constant zero. 3091 // 3092 // TODO: match other operations that can merge flags (ADD, etc) 3093 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); 3094 if (N->getOpcode() == ISD::AND) 3095 return DAG.getConstant(0, DL, MVT::i1); 3096 return Merged.getValue(1); 3097 } 3098 3099 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, 3100 SDNode *N) { 3101 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. 3102 if (isBitwiseNot(N0)) 3103 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { 3104 SDLoc DL(N); 3105 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, 3106 N0.getOperand(0), NotC); 3107 return CombineTo( 3108 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); 3109 } 3110 3111 // Iff the flag result is dead: 3112 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) 3113 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo 3114 // or the dependency between the instructions. 3115 if ((N0.getOpcode() == ISD::ADD || 3116 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && 3117 N0.getValue(1) != CarryIn)) && 3118 isNullConstant(N1) && !N->hasAnyUseOfValue(1)) 3119 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), 3120 N0.getOperand(0), N0.getOperand(1), CarryIn); 3121 3122 /** 3123 * When one of the addcarry argument is itself a carry, we may be facing 3124 * a diamond carry propagation. In which case we try to transform the DAG 3125 * to ensure linear carry propagation if that is possible. 3126 */ 3127 if (auto Y = getAsCarry(TLI, N1)) { 3128 // Because both are carries, Y and Z can be swapped. 3129 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) 3130 return R; 3131 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) 3132 return R; 3133 } 3134 3135 return SDValue(); 3136 } 3137 3138 // Since it may not be valid to emit a fold to zero for vector initializers 3139 // check if we can before folding. 3140 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 3141 SelectionDAG &DAG, bool LegalOperations) { 3142 if (!VT.isVector()) 3143 return DAG.getConstant(0, DL, VT); 3144 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 3145 return DAG.getConstant(0, DL, VT); 3146 return SDValue(); 3147 } 3148 3149 SDValue DAGCombiner::visitSUB(SDNode *N) { 3150 SDValue N0 = N->getOperand(0); 3151 SDValue N1 = N->getOperand(1); 3152 EVT VT = N0.getValueType(); 3153 SDLoc DL(N); 3154 3155 // fold vector ops 3156 if (VT.isVector()) { 3157 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3158 return FoldedVOp; 3159 3160 // fold (sub x, 0) -> x, vector edition 3161 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3162 return N0; 3163 } 3164 3165 // fold (sub x, x) -> 0 3166 // FIXME: Refactor this and xor and other similar operations together. 3167 if (N0 == N1) 3168 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 3169 3170 // fold (sub c1, c2) -> c3 3171 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) 3172 return C; 3173 3174 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3175 return NewSel; 3176 3177 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3178 3179 // fold (sub x, c) -> (add x, -c) 3180 if (N1C) { 3181 return DAG.getNode(ISD::ADD, DL, VT, N0, 3182 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3183 } 3184 3185 if (isNullOrNullSplat(N0)) { 3186 unsigned BitWidth = VT.getScalarSizeInBits(); 3187 // Right-shifting everything out but the sign bit followed by negation is 3188 // the same as flipping arithmetic/logical shift type without the negation: 3189 // -(X >>u 31) -> (X >>s 31) 3190 // -(X >>s 31) -> (X >>u 31) 3191 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { 3192 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); 3193 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { 3194 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; 3195 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) 3196 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); 3197 } 3198 } 3199 3200 // 0 - X --> 0 if the sub is NUW. 3201 if (N->getFlags().hasNoUnsignedWrap()) 3202 return N0; 3203 3204 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { 3205 // N1 is either 0 or the minimum signed value. If the sub is NSW, then 3206 // N1 must be 0 because negating the minimum signed value is undefined. 3207 if (N->getFlags().hasNoSignedWrap()) 3208 return N0; 3209 3210 // 0 - X --> X if X is 0 or the minimum signed value. 3211 return N1; 3212 } 3213 3214 // Convert 0 - abs(x). 3215 SDValue Result; 3216 if (N1->getOpcode() == ISD::ABS && 3217 !TLI.isOperationLegalOrCustom(ISD::ABS, VT) && 3218 TLI.expandABS(N1.getNode(), Result, DAG, true)) 3219 return Result; 3220 } 3221 3222 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 3223 if (isAllOnesOrAllOnesSplat(N0)) 3224 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 3225 3226 // fold (A - (0-B)) -> A+B 3227 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) 3228 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); 3229 3230 // fold A-(A-B) -> B 3231 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 3232 return N1.getOperand(1); 3233 3234 // fold (A+B)-A -> B 3235 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 3236 return N0.getOperand(1); 3237 3238 // fold (A+B)-B -> A 3239 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 3240 return N0.getOperand(0); 3241 3242 // fold (A+C1)-C2 -> A+(C1-C2) 3243 if (N0.getOpcode() == ISD::ADD && 3244 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3245 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3246 SDValue NewC = 3247 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); 3248 assert(NewC && "Constant folding failed"); 3249 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); 3250 } 3251 3252 // fold C2-(A+C1) -> (C2-C1)-A 3253 if (N1.getOpcode() == ISD::ADD) { 3254 SDValue N11 = N1.getOperand(1); 3255 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && 3256 isConstantOrConstantVector(N11, /* NoOpaques */ true)) { 3257 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); 3258 assert(NewC && "Constant folding failed"); 3259 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); 3260 } 3261 } 3262 3263 // fold (A-C1)-C2 -> A-(C1+C2) 3264 if (N0.getOpcode() == ISD::SUB && 3265 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3266 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3267 SDValue NewC = 3268 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); 3269 assert(NewC && "Constant folding failed"); 3270 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); 3271 } 3272 3273 // fold (c1-A)-c2 -> (c1-c2)-A 3274 if (N0.getOpcode() == ISD::SUB && 3275 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3276 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { 3277 SDValue NewC = 3278 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); 3279 assert(NewC && "Constant folding failed"); 3280 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); 3281 } 3282 3283 // fold ((A+(B+or-C))-B) -> A+or-C 3284 if (N0.getOpcode() == ISD::ADD && 3285 (N0.getOperand(1).getOpcode() == ISD::SUB || 3286 N0.getOperand(1).getOpcode() == ISD::ADD) && 3287 N0.getOperand(1).getOperand(0) == N1) 3288 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), 3289 N0.getOperand(1).getOperand(1)); 3290 3291 // fold ((A+(C+B))-B) -> A+C 3292 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && 3293 N0.getOperand(1).getOperand(1) == N1) 3294 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), 3295 N0.getOperand(1).getOperand(0)); 3296 3297 // fold ((A-(B-C))-C) -> A-B 3298 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && 3299 N0.getOperand(1).getOperand(1) == N1) 3300 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), 3301 N0.getOperand(1).getOperand(0)); 3302 3303 // fold (A-(B-C)) -> A+(C-B) 3304 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) 3305 return DAG.getNode(ISD::ADD, DL, VT, N0, 3306 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), 3307 N1.getOperand(0))); 3308 3309 // A - (A & B) -> A & (~B) 3310 if (N1.getOpcode() == ISD::AND) { 3311 SDValue A = N1.getOperand(0); 3312 SDValue B = N1.getOperand(1); 3313 if (A != N0) 3314 std::swap(A, B); 3315 if (A == N0 && 3316 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { 3317 SDValue InvB = 3318 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); 3319 return DAG.getNode(ISD::AND, DL, VT, A, InvB); 3320 } 3321 } 3322 3323 // fold (X - (-Y * Z)) -> (X + (Y * Z)) 3324 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { 3325 if (N1.getOperand(0).getOpcode() == ISD::SUB && 3326 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { 3327 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3328 N1.getOperand(0).getOperand(1), 3329 N1.getOperand(1)); 3330 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3331 } 3332 if (N1.getOperand(1).getOpcode() == ISD::SUB && 3333 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { 3334 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, 3335 N1.getOperand(0), 3336 N1.getOperand(1).getOperand(1)); 3337 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); 3338 } 3339 } 3340 3341 // If either operand of a sub is undef, the result is undef 3342 if (N0.isUndef()) 3343 return N0; 3344 if (N1.isUndef()) 3345 return N1; 3346 3347 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) 3348 return V; 3349 3350 if (SDValue V = foldAddSubOfSignBit(N, DAG)) 3351 return V; 3352 3353 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) 3354 return V; 3355 3356 // (x - y) - 1 -> add (xor y, -1), x 3357 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { 3358 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 3359 DAG.getAllOnesConstant(DL, VT)); 3360 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); 3361 } 3362 3363 // Look for: 3364 // sub y, (xor x, -1) 3365 // And if the target does not like this form then turn into: 3366 // add (add x, y), 1 3367 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { 3368 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); 3369 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); 3370 } 3371 3372 // Hoist one-use addition by non-opaque constant: 3373 // (x + C) - y -> (x - y) + C 3374 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && 3375 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3376 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3377 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); 3378 } 3379 // y - (x + C) -> (y - x) - C 3380 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && 3381 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { 3382 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); 3383 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); 3384 } 3385 // (x - C) - y -> (x - y) - C 3386 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. 3387 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3388 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { 3389 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); 3390 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); 3391 } 3392 // (C - x) - y -> C - (x + y) 3393 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && 3394 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { 3395 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); 3396 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); 3397 } 3398 3399 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' 3400 // rather than 'sub 0/1' (the sext should get folded). 3401 // sub X, (zext i1 Y) --> add X, (sext i1 Y) 3402 if (N1.getOpcode() == ISD::ZERO_EXTEND && 3403 N1.getOperand(0).getScalarValueSizeInBits() == 1 && 3404 TLI.getBooleanContents(VT) == 3405 TargetLowering::ZeroOrNegativeOneBooleanContent) { 3406 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); 3407 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); 3408 } 3409 3410 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) 3411 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 3412 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { 3413 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); 3414 SDValue S0 = N1.getOperand(0); 3415 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) 3416 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) 3417 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 3418 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); 3419 } 3420 } 3421 3422 // If the relocation model supports it, consider symbol offsets. 3423 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 3424 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 3425 // fold (sub Sym, c) -> Sym-c 3426 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 3427 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 3428 GA->getOffset() - 3429 (uint64_t)N1C->getSExtValue()); 3430 // fold (sub Sym+c1, Sym+c2) -> c1-c2 3431 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 3432 if (GA->getGlobal() == GB->getGlobal()) 3433 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 3434 DL, VT); 3435 } 3436 3437 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 3438 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 3439 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 3440 if (TN->getVT() == MVT::i1) { 3441 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 3442 DAG.getConstant(1, DL, VT)); 3443 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 3444 } 3445 } 3446 3447 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) 3448 if (N1.getOpcode() == ISD::VSCALE) { 3449 const APInt &IntVal = N1.getConstantOperandAPInt(0); 3450 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); 3451 } 3452 3453 // Prefer an add for more folding potential and possibly better codegen: 3454 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) 3455 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { 3456 SDValue ShAmt = N1.getOperand(1); 3457 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); 3458 if (ShAmtC && 3459 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { 3460 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); 3461 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); 3462 } 3463 } 3464 3465 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { 3466 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) 3467 if (SDValue Carry = getAsCarry(TLI, N0)) { 3468 SDValue X = N1; 3469 SDValue Zero = DAG.getConstant(0, DL, VT); 3470 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); 3471 return DAG.getNode(ISD::ADDCARRY, DL, 3472 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, 3473 Carry); 3474 } 3475 } 3476 3477 return SDValue(); 3478 } 3479 3480 SDValue DAGCombiner::visitSUBSAT(SDNode *N) { 3481 SDValue N0 = N->getOperand(0); 3482 SDValue N1 = N->getOperand(1); 3483 EVT VT = N0.getValueType(); 3484 SDLoc DL(N); 3485 3486 // fold vector ops 3487 if (VT.isVector()) { 3488 // TODO SimplifyVBinOp 3489 3490 // fold (sub_sat x, 0) -> x, vector edition 3491 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3492 return N0; 3493 } 3494 3495 // fold (sub_sat x, undef) -> 0 3496 if (N0.isUndef() || N1.isUndef()) 3497 return DAG.getConstant(0, DL, VT); 3498 3499 // fold (sub_sat x, x) -> 0 3500 if (N0 == N1) 3501 return DAG.getConstant(0, DL, VT); 3502 3503 // fold (sub_sat c1, c2) -> c3 3504 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) 3505 return C; 3506 3507 // fold (sub_sat x, 0) -> x 3508 if (isNullConstant(N1)) 3509 return N0; 3510 3511 return SDValue(); 3512 } 3513 3514 SDValue DAGCombiner::visitSUBC(SDNode *N) { 3515 SDValue N0 = N->getOperand(0); 3516 SDValue N1 = N->getOperand(1); 3517 EVT VT = N0.getValueType(); 3518 SDLoc DL(N); 3519 3520 // If the flag result is dead, turn this into an SUB. 3521 if (!N->hasAnyUseOfValue(1)) 3522 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3523 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3524 3525 // fold (subc x, x) -> 0 + no borrow 3526 if (N0 == N1) 3527 return CombineTo(N, DAG.getConstant(0, DL, VT), 3528 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3529 3530 // fold (subc x, 0) -> x + no borrow 3531 if (isNullConstant(N1)) 3532 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3533 3534 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3535 if (isAllOnesConstant(N0)) 3536 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3537 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 3538 3539 return SDValue(); 3540 } 3541 3542 SDValue DAGCombiner::visitSUBO(SDNode *N) { 3543 SDValue N0 = N->getOperand(0); 3544 SDValue N1 = N->getOperand(1); 3545 EVT VT = N0.getValueType(); 3546 bool IsSigned = (ISD::SSUBO == N->getOpcode()); 3547 3548 EVT CarryVT = N->getValueType(1); 3549 SDLoc DL(N); 3550 3551 // If the flag result is dead, turn this into an SUB. 3552 if (!N->hasAnyUseOfValue(1)) 3553 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 3554 DAG.getUNDEF(CarryVT)); 3555 3556 // fold (subo x, x) -> 0 + no borrow 3557 if (N0 == N1) 3558 return CombineTo(N, DAG.getConstant(0, DL, VT), 3559 DAG.getConstant(0, DL, CarryVT)); 3560 3561 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 3562 3563 // fold (subox, c) -> (addo x, -c) 3564 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { 3565 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, 3566 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 3567 } 3568 3569 // fold (subo x, 0) -> x + no borrow 3570 if (isNullOrNullSplat(N1)) 3571 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); 3572 3573 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow 3574 if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) 3575 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 3576 DAG.getConstant(0, DL, CarryVT)); 3577 3578 return SDValue(); 3579 } 3580 3581 SDValue DAGCombiner::visitSUBE(SDNode *N) { 3582 SDValue N0 = N->getOperand(0); 3583 SDValue N1 = N->getOperand(1); 3584 SDValue CarryIn = N->getOperand(2); 3585 3586 // fold (sube x, y, false) -> (subc x, y) 3587 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 3588 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 3589 3590 return SDValue(); 3591 } 3592 3593 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { 3594 SDValue N0 = N->getOperand(0); 3595 SDValue N1 = N->getOperand(1); 3596 SDValue CarryIn = N->getOperand(2); 3597 3598 // fold (subcarry x, y, false) -> (usubo x, y) 3599 if (isNullConstant(CarryIn)) { 3600 if (!LegalOperations || 3601 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) 3602 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); 3603 } 3604 3605 return SDValue(); 3606 } 3607 3608 SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { 3609 SDValue N0 = N->getOperand(0); 3610 SDValue N1 = N->getOperand(1); 3611 SDValue CarryIn = N->getOperand(2); 3612 3613 // fold (ssubo_carry x, y, false) -> (ssubo x, y) 3614 if (isNullConstant(CarryIn)) { 3615 if (!LegalOperations || 3616 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) 3617 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); 3618 } 3619 3620 return SDValue(); 3621 } 3622 3623 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and 3624 // UMULFIXSAT here. 3625 SDValue DAGCombiner::visitMULFIX(SDNode *N) { 3626 SDValue N0 = N->getOperand(0); 3627 SDValue N1 = N->getOperand(1); 3628 SDValue Scale = N->getOperand(2); 3629 EVT VT = N0.getValueType(); 3630 3631 // fold (mulfix x, undef, scale) -> 0 3632 if (N0.isUndef() || N1.isUndef()) 3633 return DAG.getConstant(0, SDLoc(N), VT); 3634 3635 // Canonicalize constant to RHS (vector doesn't have to splat) 3636 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3637 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3638 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); 3639 3640 // fold (mulfix x, 0, scale) -> 0 3641 if (isNullConstant(N1)) 3642 return DAG.getConstant(0, SDLoc(N), VT); 3643 3644 return SDValue(); 3645 } 3646 3647 SDValue DAGCombiner::visitMUL(SDNode *N) { 3648 SDValue N0 = N->getOperand(0); 3649 SDValue N1 = N->getOperand(1); 3650 EVT VT = N0.getValueType(); 3651 3652 // fold (mul x, undef) -> 0 3653 if (N0.isUndef() || N1.isUndef()) 3654 return DAG.getConstant(0, SDLoc(N), VT); 3655 3656 bool N1IsConst = false; 3657 bool N1IsOpaqueConst = false; 3658 APInt ConstValue1; 3659 3660 // fold vector ops 3661 if (VT.isVector()) { 3662 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3663 return FoldedVOp; 3664 3665 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 3666 assert((!N1IsConst || 3667 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && 3668 "Splat APInt should be element width"); 3669 } else { 3670 N1IsConst = isa<ConstantSDNode>(N1); 3671 if (N1IsConst) { 3672 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 3673 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 3674 } 3675 } 3676 3677 // fold (mul c1, c2) -> c1*c2 3678 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) 3679 return C; 3680 3681 // canonicalize constant to RHS (vector doesn't have to splat) 3682 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3683 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3684 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 3685 3686 // fold (mul x, 0) -> 0 3687 if (N1IsConst && ConstValue1.isNullValue()) 3688 return N1; 3689 3690 // fold (mul x, 1) -> x 3691 if (N1IsConst && ConstValue1.isOneValue()) 3692 return N0; 3693 3694 if (SDValue NewSel = foldBinOpIntoSelect(N)) 3695 return NewSel; 3696 3697 // fold (mul x, -1) -> 0-x 3698 if (N1IsConst && ConstValue1.isAllOnesValue()) { 3699 SDLoc DL(N); 3700 return DAG.getNode(ISD::SUB, DL, VT, 3701 DAG.getConstant(0, DL, VT), N0); 3702 } 3703 3704 // fold (mul x, (1 << c)) -> x << c 3705 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 3706 DAG.isKnownToBeAPowerOfTwo(N1) && 3707 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { 3708 SDLoc DL(N); 3709 SDValue LogBase2 = BuildLogBase2(N1, DL); 3710 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 3711 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 3712 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); 3713 } 3714 3715 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 3716 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { 3717 unsigned Log2Val = (-ConstValue1).logBase2(); 3718 SDLoc DL(N); 3719 // FIXME: If the input is something that is easily negated (e.g. a 3720 // single-use add), we should put the negate there. 3721 return DAG.getNode(ISD::SUB, DL, VT, 3722 DAG.getConstant(0, DL, VT), 3723 DAG.getNode(ISD::SHL, DL, VT, N0, 3724 DAG.getConstant(Log2Val, DL, 3725 getShiftAmountTy(N0.getValueType())))); 3726 } 3727 3728 // Try to transform: 3729 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. 3730 // mul x, (2^N + 1) --> add (shl x, N), x 3731 // mul x, (2^N - 1) --> sub (shl x, N), x 3732 // Examples: x * 33 --> (x << 5) + x 3733 // x * 15 --> (x << 4) - x 3734 // x * -33 --> -((x << 5) + x) 3735 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) 3736 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. 3737 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) 3738 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) 3739 // Examples: x * 0x8800 --> (x << 15) + (x << 11) 3740 // x * 0xf800 --> (x << 16) - (x << 11) 3741 // x * -0x8800 --> -((x << 15) + (x << 11)) 3742 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) 3743 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { 3744 // TODO: We could handle more general decomposition of any constant by 3745 // having the target set a limit on number of ops and making a 3746 // callback to determine that sequence (similar to sqrt expansion). 3747 unsigned MathOp = ISD::DELETED_NODE; 3748 APInt MulC = ConstValue1.abs(); 3749 // The constant `2` should be treated as (2^0 + 1). 3750 unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); 3751 MulC.lshrInPlace(TZeros); 3752 if ((MulC - 1).isPowerOf2()) 3753 MathOp = ISD::ADD; 3754 else if ((MulC + 1).isPowerOf2()) 3755 MathOp = ISD::SUB; 3756 3757 if (MathOp != ISD::DELETED_NODE) { 3758 unsigned ShAmt = 3759 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); 3760 ShAmt += TZeros; 3761 assert(ShAmt < VT.getScalarSizeInBits() && 3762 "multiply-by-constant generated out of bounds shift"); 3763 SDLoc DL(N); 3764 SDValue Shl = 3765 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); 3766 SDValue R = 3767 TZeros ? DAG.getNode(MathOp, DL, VT, Shl, 3768 DAG.getNode(ISD::SHL, DL, VT, N0, 3769 DAG.getConstant(TZeros, DL, VT))) 3770 : DAG.getNode(MathOp, DL, VT, Shl, N0); 3771 if (ConstValue1.isNegative()) 3772 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); 3773 return R; 3774 } 3775 } 3776 3777 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 3778 if (N0.getOpcode() == ISD::SHL && 3779 isConstantOrConstantVector(N1, /* NoOpaques */ true) && 3780 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { 3781 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 3782 if (isConstantOrConstantVector(C3)) 3783 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 3784 } 3785 3786 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 3787 // use. 3788 { 3789 SDValue Sh(nullptr, 0), Y(nullptr, 0); 3790 3791 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 3792 if (N0.getOpcode() == ISD::SHL && 3793 isConstantOrConstantVector(N0.getOperand(1)) && 3794 N0.getNode()->hasOneUse()) { 3795 Sh = N0; Y = N1; 3796 } else if (N1.getOpcode() == ISD::SHL && 3797 isConstantOrConstantVector(N1.getOperand(1)) && 3798 N1.getNode()->hasOneUse()) { 3799 Sh = N1; Y = N0; 3800 } 3801 3802 if (Sh.getNode()) { 3803 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 3804 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 3805 } 3806 } 3807 3808 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 3809 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 3810 N0.getOpcode() == ISD::ADD && 3811 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 3812 isMulAddWithConstProfitable(N, N0, N1)) 3813 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 3814 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 3815 N0.getOperand(0), N1), 3816 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 3817 N0.getOperand(1), N1)); 3818 3819 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). 3820 if (N0.getOpcode() == ISD::VSCALE) 3821 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { 3822 const APInt &C0 = N0.getConstantOperandAPInt(0); 3823 const APInt &C1 = NC1->getAPIntValue(); 3824 return DAG.getVScale(SDLoc(N), VT, C0 * C1); 3825 } 3826 3827 // Fold ((mul x, 0/undef) -> 0, 3828 // (mul x, 1) -> x) -> x) 3829 // -> and(x, mask) 3830 // We can replace vectors with '0' and '1' factors with a clearing mask. 3831 if (VT.isFixedLengthVector()) { 3832 unsigned NumElts = VT.getVectorNumElements(); 3833 SmallBitVector ClearMask; 3834 ClearMask.reserve(NumElts); 3835 auto IsClearMask = [&ClearMask](ConstantSDNode *V) { 3836 if (!V || V->isNullValue()) { 3837 ClearMask.push_back(true); 3838 return true; 3839 } 3840 ClearMask.push_back(false); 3841 return V->isOne(); 3842 }; 3843 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && 3844 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { 3845 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); 3846 SDLoc DL(N); 3847 EVT LegalSVT = N1.getOperand(0).getValueType(); 3848 SDValue Zero = DAG.getConstant(0, DL, LegalSVT); 3849 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); 3850 SmallVector<SDValue, 16> Mask(NumElts, AllOnes); 3851 for (unsigned I = 0; I != NumElts; ++I) 3852 if (ClearMask[I]) 3853 Mask[I] = Zero; 3854 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); 3855 } 3856 } 3857 3858 // reassociate mul 3859 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) 3860 return RMUL; 3861 3862 return SDValue(); 3863 } 3864 3865 /// Return true if divmod libcall is available. 3866 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 3867 const TargetLowering &TLI) { 3868 RTLIB::Libcall LC; 3869 EVT NodeType = Node->getValueType(0); 3870 if (!NodeType.isSimple()) 3871 return false; 3872 switch (NodeType.getSimpleVT().SimpleTy) { 3873 default: return false; // No libcall for vector types. 3874 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 3875 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 3876 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 3877 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 3878 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 3879 } 3880 3881 return TLI.getLibcallName(LC) != nullptr; 3882 } 3883 3884 /// Issue divrem if both quotient and remainder are needed. 3885 SDValue DAGCombiner::useDivRem(SDNode *Node) { 3886 if (Node->use_empty()) 3887 return SDValue(); // This is a dead node, leave it alone. 3888 3889 unsigned Opcode = Node->getOpcode(); 3890 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 3891 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3892 3893 // DivMod lib calls can still work on non-legal types if using lib-calls. 3894 EVT VT = Node->getValueType(0); 3895 if (VT.isVector() || !VT.isInteger()) 3896 return SDValue(); 3897 3898 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 3899 return SDValue(); 3900 3901 // If DIVREM is going to get expanded into a libcall, 3902 // but there is no libcall available, then don't combine. 3903 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 3904 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 3905 return SDValue(); 3906 3907 // If div is legal, it's better to do the normal expansion 3908 unsigned OtherOpcode = 0; 3909 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 3910 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 3911 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 3912 return SDValue(); 3913 } else { 3914 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 3915 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 3916 return SDValue(); 3917 } 3918 3919 SDValue Op0 = Node->getOperand(0); 3920 SDValue Op1 = Node->getOperand(1); 3921 SDValue combined; 3922 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 3923 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 3924 SDNode *User = *UI; 3925 if (User == Node || User->getOpcode() == ISD::DELETED_NODE || 3926 User->use_empty()) 3927 continue; 3928 // Convert the other matching node(s), too; 3929 // otherwise, the DIVREM may get target-legalized into something 3930 // target-specific that we won't be able to recognize. 3931 unsigned UserOpc = User->getOpcode(); 3932 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 3933 User->getOperand(0) == Op0 && 3934 User->getOperand(1) == Op1) { 3935 if (!combined) { 3936 if (UserOpc == OtherOpcode) { 3937 SDVTList VTs = DAG.getVTList(VT, VT); 3938 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 3939 } else if (UserOpc == DivRemOpc) { 3940 combined = SDValue(User, 0); 3941 } else { 3942 assert(UserOpc == Opcode); 3943 continue; 3944 } 3945 } 3946 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 3947 CombineTo(User, combined); 3948 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 3949 CombineTo(User, combined.getValue(1)); 3950 } 3951 } 3952 return combined; 3953 } 3954 3955 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { 3956 SDValue N0 = N->getOperand(0); 3957 SDValue N1 = N->getOperand(1); 3958 EVT VT = N->getValueType(0); 3959 SDLoc DL(N); 3960 3961 unsigned Opc = N->getOpcode(); 3962 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); 3963 ConstantSDNode *N1C = isConstOrConstSplat(N1); 3964 3965 // X / undef -> undef 3966 // X % undef -> undef 3967 // X / 0 -> undef 3968 // X % 0 -> undef 3969 // NOTE: This includes vectors where any divisor element is zero/undef. 3970 if (DAG.isUndef(Opc, {N0, N1})) 3971 return DAG.getUNDEF(VT); 3972 3973 // undef / X -> 0 3974 // undef % X -> 0 3975 if (N0.isUndef()) 3976 return DAG.getConstant(0, DL, VT); 3977 3978 // 0 / X -> 0 3979 // 0 % X -> 0 3980 ConstantSDNode *N0C = isConstOrConstSplat(N0); 3981 if (N0C && N0C->isNullValue()) 3982 return N0; 3983 3984 // X / X -> 1 3985 // X % X -> 0 3986 if (N0 == N1) 3987 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); 3988 3989 // X / 1 -> X 3990 // X % 1 -> 0 3991 // If this is a boolean op (single-bit element type), we can't have 3992 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 3993 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume 3994 // it's a 1. 3995 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) 3996 return IsDiv ? N0 : DAG.getConstant(0, DL, VT); 3997 3998 return SDValue(); 3999 } 4000 4001 SDValue DAGCombiner::visitSDIV(SDNode *N) { 4002 SDValue N0 = N->getOperand(0); 4003 SDValue N1 = N->getOperand(1); 4004 EVT VT = N->getValueType(0); 4005 EVT CCVT = getSetCCResultType(VT); 4006 4007 // fold vector ops 4008 if (VT.isVector()) 4009 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4010 return FoldedVOp; 4011 4012 SDLoc DL(N); 4013 4014 // fold (sdiv c1, c2) -> c1/c2 4015 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4016 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) 4017 return C; 4018 4019 // fold (sdiv X, -1) -> 0-X 4020 if (N1C && N1C->isAllOnesValue()) 4021 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); 4022 4023 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) 4024 if (N1C && N1C->getAPIntValue().isMinSignedValue()) 4025 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4026 DAG.getConstant(1, DL, VT), 4027 DAG.getConstant(0, DL, VT)); 4028 4029 if (SDValue V = simplifyDivRem(N, DAG)) 4030 return V; 4031 4032 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4033 return NewSel; 4034 4035 // If we know the sign bits of both operands are zero, strength reduce to a 4036 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 4037 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4038 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 4039 4040 if (SDValue V = visitSDIVLike(N0, N1, N)) { 4041 // If the corresponding remainder node exists, update its users with 4042 // (Dividend - (Quotient * Divisor). 4043 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), 4044 { N0, N1 })) { 4045 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4046 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4047 AddToWorklist(Mul.getNode()); 4048 AddToWorklist(Sub.getNode()); 4049 CombineTo(RemNode, Sub); 4050 } 4051 return V; 4052 } 4053 4054 // sdiv, srem -> sdivrem 4055 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4056 // true. Otherwise, we break the simplification logic in visitREM(). 4057 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4058 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4059 if (SDValue DivRem = useDivRem(N)) 4060 return DivRem; 4061 4062 return SDValue(); 4063 } 4064 4065 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4066 SDLoc DL(N); 4067 EVT VT = N->getValueType(0); 4068 EVT CCVT = getSetCCResultType(VT); 4069 unsigned BitWidth = VT.getScalarSizeInBits(); 4070 4071 // Helper for determining whether a value is a power-2 constant scalar or a 4072 // vector of such elements. 4073 auto IsPowerOfTwo = [](ConstantSDNode *C) { 4074 if (C->isNullValue() || C->isOpaque()) 4075 return false; 4076 if (C->getAPIntValue().isPowerOf2()) 4077 return true; 4078 if ((-C->getAPIntValue()).isPowerOf2()) 4079 return true; 4080 return false; 4081 }; 4082 4083 // fold (sdiv X, pow2) -> simple ops after legalize 4084 // FIXME: We check for the exact bit here because the generic lowering gives 4085 // better results in that case. The target-specific lowering should learn how 4086 // to handle exact sdivs efficiently. 4087 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { 4088 // Target-specific implementation of sdiv x, pow2. 4089 if (SDValue Res = BuildSDIVPow2(N)) 4090 return Res; 4091 4092 // Create constants that are functions of the shift amount value. 4093 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 4094 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); 4095 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); 4096 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); 4097 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); 4098 if (!isConstantOrConstantVector(Inexact)) 4099 return SDValue(); 4100 4101 // Splat the sign bit into the register 4102 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, 4103 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); 4104 AddToWorklist(Sign.getNode()); 4105 4106 // Add (N0 < 0) ? abs2 - 1 : 0; 4107 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); 4108 AddToWorklist(Srl.getNode()); 4109 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); 4110 AddToWorklist(Add.getNode()); 4111 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); 4112 AddToWorklist(Sra.getNode()); 4113 4114 // Special case: (sdiv X, 1) -> X 4115 // Special Case: (sdiv X, -1) -> 0-X 4116 SDValue One = DAG.getConstant(1, DL, VT); 4117 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 4118 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); 4119 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); 4120 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); 4121 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); 4122 4123 // If dividing by a positive value, we're done. Otherwise, the result must 4124 // be negated. 4125 SDValue Zero = DAG.getConstant(0, DL, VT); 4126 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); 4127 4128 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. 4129 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); 4130 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); 4131 return Res; 4132 } 4133 4134 // If integer divide is expensive and we satisfy the requirements, emit an 4135 // alternate sequence. Targets may check function attributes for size/speed 4136 // trade-offs. 4137 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4138 if (isConstantOrConstantVector(N1) && 4139 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4140 if (SDValue Op = BuildSDIV(N)) 4141 return Op; 4142 4143 return SDValue(); 4144 } 4145 4146 SDValue DAGCombiner::visitUDIV(SDNode *N) { 4147 SDValue N0 = N->getOperand(0); 4148 SDValue N1 = N->getOperand(1); 4149 EVT VT = N->getValueType(0); 4150 EVT CCVT = getSetCCResultType(VT); 4151 4152 // fold vector ops 4153 if (VT.isVector()) 4154 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4155 return FoldedVOp; 4156 4157 SDLoc DL(N); 4158 4159 // fold (udiv c1, c2) -> c1/c2 4160 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4161 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) 4162 return C; 4163 4164 // fold (udiv X, -1) -> select(X == -1, 1, 0) 4165 if (N1C && N1C->getAPIntValue().isAllOnesValue()) 4166 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4167 DAG.getConstant(1, DL, VT), 4168 DAG.getConstant(0, DL, VT)); 4169 4170 if (SDValue V = simplifyDivRem(N, DAG)) 4171 return V; 4172 4173 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4174 return NewSel; 4175 4176 if (SDValue V = visitUDIVLike(N0, N1, N)) { 4177 // If the corresponding remainder node exists, update its users with 4178 // (Dividend - (Quotient * Divisor). 4179 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), 4180 { N0, N1 })) { 4181 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); 4182 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4183 AddToWorklist(Mul.getNode()); 4184 AddToWorklist(Sub.getNode()); 4185 CombineTo(RemNode, Sub); 4186 } 4187 return V; 4188 } 4189 4190 // sdiv, srem -> sdivrem 4191 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is 4192 // true. Otherwise, we break the simplification logic in visitREM(). 4193 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4194 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 4195 if (SDValue DivRem = useDivRem(N)) 4196 return DivRem; 4197 4198 return SDValue(); 4199 } 4200 4201 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { 4202 SDLoc DL(N); 4203 EVT VT = N->getValueType(0); 4204 4205 // fold (udiv x, (1 << c)) -> x >>u c 4206 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4207 DAG.isKnownToBeAPowerOfTwo(N1)) { 4208 SDValue LogBase2 = BuildLogBase2(N1, DL); 4209 AddToWorklist(LogBase2.getNode()); 4210 4211 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4212 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); 4213 AddToWorklist(Trunc.getNode()); 4214 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4215 } 4216 4217 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 4218 if (N1.getOpcode() == ISD::SHL) { 4219 SDValue N10 = N1.getOperand(0); 4220 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && 4221 DAG.isKnownToBeAPowerOfTwo(N10)) { 4222 SDValue LogBase2 = BuildLogBase2(N10, DL); 4223 AddToWorklist(LogBase2.getNode()); 4224 4225 EVT ADDVT = N1.getOperand(1).getValueType(); 4226 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); 4227 AddToWorklist(Trunc.getNode()); 4228 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); 4229 AddToWorklist(Add.getNode()); 4230 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 4231 } 4232 } 4233 4234 // fold (udiv x, c) -> alternate 4235 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4236 if (isConstantOrConstantVector(N1) && 4237 !TLI.isIntDivCheap(N->getValueType(0), Attr)) 4238 if (SDValue Op = BuildUDIV(N)) 4239 return Op; 4240 4241 return SDValue(); 4242 } 4243 4244 // handles ISD::SREM and ISD::UREM 4245 SDValue DAGCombiner::visitREM(SDNode *N) { 4246 unsigned Opcode = N->getOpcode(); 4247 SDValue N0 = N->getOperand(0); 4248 SDValue N1 = N->getOperand(1); 4249 EVT VT = N->getValueType(0); 4250 EVT CCVT = getSetCCResultType(VT); 4251 4252 bool isSigned = (Opcode == ISD::SREM); 4253 SDLoc DL(N); 4254 4255 // fold (rem c1, c2) -> c1%c2 4256 ConstantSDNode *N1C = isConstOrConstSplat(N1); 4257 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) 4258 return C; 4259 4260 // fold (urem X, -1) -> select(X == -1, 0, x) 4261 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) 4262 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), 4263 DAG.getConstant(0, DL, VT), N0); 4264 4265 if (SDValue V = simplifyDivRem(N, DAG)) 4266 return V; 4267 4268 if (SDValue NewSel = foldBinOpIntoSelect(N)) 4269 return NewSel; 4270 4271 if (isSigned) { 4272 // If we know the sign bits of both operands are zero, strength reduce to a 4273 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 4274 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 4275 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 4276 } else { 4277 SDValue NegOne = DAG.getAllOnesConstant(DL, VT); 4278 if (DAG.isKnownToBeAPowerOfTwo(N1)) { 4279 // fold (urem x, pow2) -> (and x, pow2-1) 4280 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4281 AddToWorklist(Add.getNode()); 4282 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4283 } 4284 if (N1.getOpcode() == ISD::SHL && 4285 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { 4286 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 4287 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); 4288 AddToWorklist(Add.getNode()); 4289 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 4290 } 4291 } 4292 4293 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4294 4295 // If X/C can be simplified by the division-by-constant logic, lower 4296 // X%C to the equivalent of X-X/C*C. 4297 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the 4298 // speculative DIV must not cause a DIVREM conversion. We guard against this 4299 // by skipping the simplification if isIntDivCheap(). When div is not cheap, 4300 // combine will not return a DIVREM. Regardless, checking cheapness here 4301 // makes sense since the simplification results in fatter code. 4302 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { 4303 SDValue OptimizedDiv = 4304 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); 4305 if (OptimizedDiv.getNode()) { 4306 // If the equivalent Div node also exists, update its users. 4307 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 4308 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), 4309 { N0, N1 })) 4310 CombineTo(DivNode, OptimizedDiv); 4311 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 4312 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 4313 AddToWorklist(OptimizedDiv.getNode()); 4314 AddToWorklist(Mul.getNode()); 4315 return Sub; 4316 } 4317 } 4318 4319 // sdiv, srem -> sdivrem 4320 if (SDValue DivRem = useDivRem(N)) 4321 return DivRem.getValue(1); 4322 4323 return SDValue(); 4324 } 4325 4326 SDValue DAGCombiner::visitMULHS(SDNode *N) { 4327 SDValue N0 = N->getOperand(0); 4328 SDValue N1 = N->getOperand(1); 4329 EVT VT = N->getValueType(0); 4330 SDLoc DL(N); 4331 4332 if (VT.isVector()) { 4333 // fold (mulhs x, 0) -> 0 4334 // do not return N0/N1, because undef node may exist. 4335 if (ISD::isBuildVectorAllZeros(N0.getNode()) || 4336 ISD::isBuildVectorAllZeros(N1.getNode())) 4337 return DAG.getConstant(0, DL, VT); 4338 } 4339 4340 // fold (mulhs x, 0) -> 0 4341 if (isNullConstant(N1)) 4342 return N1; 4343 // fold (mulhs x, 1) -> (sra x, size(x)-1) 4344 if (isOneConstant(N1)) 4345 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 4346 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, 4347 getShiftAmountTy(N0.getValueType()))); 4348 4349 // fold (mulhs x, undef) -> 0 4350 if (N0.isUndef() || N1.isUndef()) 4351 return DAG.getConstant(0, DL, VT); 4352 4353 // If the type twice as wide is legal, transform the mulhs to a wider multiply 4354 // plus a shift. 4355 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && 4356 !VT.isVector()) { 4357 MVT Simple = VT.getSimpleVT(); 4358 unsigned SimpleSize = Simple.getSizeInBits(); 4359 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4360 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4361 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 4362 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 4363 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4364 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4365 DAG.getConstant(SimpleSize, DL, 4366 getShiftAmountTy(N1.getValueType()))); 4367 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4368 } 4369 } 4370 4371 return SDValue(); 4372 } 4373 4374 SDValue DAGCombiner::visitMULHU(SDNode *N) { 4375 SDValue N0 = N->getOperand(0); 4376 SDValue N1 = N->getOperand(1); 4377 EVT VT = N->getValueType(0); 4378 SDLoc DL(N); 4379 4380 if (VT.isVector()) { 4381 // fold (mulhu x, 0) -> 0 4382 // do not return N0/N1, because undef node may exist. 4383 if (ISD::isBuildVectorAllZeros(N0.getNode()) || 4384 ISD::isBuildVectorAllZeros(N1.getNode())) 4385 return DAG.getConstant(0, DL, VT); 4386 } 4387 4388 // fold (mulhu x, 0) -> 0 4389 if (isNullConstant(N1)) 4390 return N1; 4391 // fold (mulhu x, 1) -> 0 4392 if (isOneConstant(N1)) 4393 return DAG.getConstant(0, DL, N0.getValueType()); 4394 // fold (mulhu x, undef) -> 0 4395 if (N0.isUndef() || N1.isUndef()) 4396 return DAG.getConstant(0, DL, VT); 4397 4398 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) 4399 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && 4400 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { 4401 unsigned NumEltBits = VT.getScalarSizeInBits(); 4402 SDValue LogBase2 = BuildLogBase2(N1, DL); 4403 SDValue SRLAmt = DAG.getNode( 4404 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); 4405 EVT ShiftVT = getShiftAmountTy(N0.getValueType()); 4406 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); 4407 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); 4408 } 4409 4410 // If the type twice as wide is legal, transform the mulhu to a wider multiply 4411 // plus a shift. 4412 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && 4413 !VT.isVector()) { 4414 MVT Simple = VT.getSimpleVT(); 4415 unsigned SimpleSize = Simple.getSizeInBits(); 4416 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4417 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4418 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 4419 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 4420 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 4421 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 4422 DAG.getConstant(SimpleSize, DL, 4423 getShiftAmountTy(N1.getValueType()))); 4424 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 4425 } 4426 } 4427 4428 return SDValue(); 4429 } 4430 4431 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 4432 /// give the opcodes for the two computations that are being performed. Return 4433 /// true if a simplification was made. 4434 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 4435 unsigned HiOp) { 4436 // If the high half is not needed, just compute the low half. 4437 bool HiExists = N->hasAnyUseOfValue(1); 4438 if (!HiExists && (!LegalOperations || 4439 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 4440 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4441 return CombineTo(N, Res, Res); 4442 } 4443 4444 // If the low half is not needed, just compute the high half. 4445 bool LoExists = N->hasAnyUseOfValue(0); 4446 if (!LoExists && (!LegalOperations || 4447 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { 4448 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4449 return CombineTo(N, Res, Res); 4450 } 4451 4452 // If both halves are used, return as it is. 4453 if (LoExists && HiExists) 4454 return SDValue(); 4455 4456 // If the two computed results can be simplified separately, separate them. 4457 if (LoExists) { 4458 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 4459 AddToWorklist(Lo.getNode()); 4460 SDValue LoOpt = combine(Lo.getNode()); 4461 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 4462 (!LegalOperations || 4463 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) 4464 return CombineTo(N, LoOpt, LoOpt); 4465 } 4466 4467 if (HiExists) { 4468 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 4469 AddToWorklist(Hi.getNode()); 4470 SDValue HiOpt = combine(Hi.getNode()); 4471 if (HiOpt.getNode() && HiOpt != Hi && 4472 (!LegalOperations || 4473 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) 4474 return CombineTo(N, HiOpt, HiOpt); 4475 } 4476 4477 return SDValue(); 4478 } 4479 4480 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 4481 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 4482 return Res; 4483 4484 EVT VT = N->getValueType(0); 4485 SDLoc DL(N); 4486 4487 // If the type is twice as wide is legal, transform the mulhu to a wider 4488 // multiply plus a shift. 4489 if (VT.isSimple() && !VT.isVector()) { 4490 MVT Simple = VT.getSimpleVT(); 4491 unsigned SimpleSize = Simple.getSizeInBits(); 4492 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4493 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4494 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 4495 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 4496 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4497 // Compute the high part as N1. 4498 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4499 DAG.getConstant(SimpleSize, DL, 4500 getShiftAmountTy(Lo.getValueType()))); 4501 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4502 // Compute the low part as N0. 4503 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4504 return CombineTo(N, Lo, Hi); 4505 } 4506 } 4507 4508 return SDValue(); 4509 } 4510 4511 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 4512 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 4513 return Res; 4514 4515 EVT VT = N->getValueType(0); 4516 SDLoc DL(N); 4517 4518 // (umul_lohi N0, 0) -> (0, 0) 4519 if (isNullConstant(N->getOperand(1))) { 4520 SDValue Zero = DAG.getConstant(0, DL, VT); 4521 return CombineTo(N, Zero, Zero); 4522 } 4523 4524 // (umul_lohi N0, 1) -> (N0, 0) 4525 if (isOneConstant(N->getOperand(1))) { 4526 SDValue Zero = DAG.getConstant(0, DL, VT); 4527 return CombineTo(N, N->getOperand(0), Zero); 4528 } 4529 4530 // If the type is twice as wide is legal, transform the mulhu to a wider 4531 // multiply plus a shift. 4532 if (VT.isSimple() && !VT.isVector()) { 4533 MVT Simple = VT.getSimpleVT(); 4534 unsigned SimpleSize = Simple.getSizeInBits(); 4535 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 4536 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 4537 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 4538 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 4539 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 4540 // Compute the high part as N1. 4541 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 4542 DAG.getConstant(SimpleSize, DL, 4543 getShiftAmountTy(Lo.getValueType()))); 4544 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 4545 // Compute the low part as N0. 4546 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 4547 return CombineTo(N, Lo, Hi); 4548 } 4549 } 4550 4551 return SDValue(); 4552 } 4553 4554 SDValue DAGCombiner::visitMULO(SDNode *N) { 4555 SDValue N0 = N->getOperand(0); 4556 SDValue N1 = N->getOperand(1); 4557 EVT VT = N0.getValueType(); 4558 bool IsSigned = (ISD::SMULO == N->getOpcode()); 4559 4560 EVT CarryVT = N->getValueType(1); 4561 SDLoc DL(N); 4562 4563 // canonicalize constant to RHS. 4564 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4565 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4566 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); 4567 4568 // fold (mulo x, 0) -> 0 + no carry out 4569 if (isNullOrNullSplat(N1)) 4570 return CombineTo(N, DAG.getConstant(0, DL, VT), 4571 DAG.getConstant(0, DL, CarryVT)); 4572 4573 // (mulo x, 2) -> (addo x, x) 4574 if (ConstantSDNode *C2 = isConstOrConstSplat(N1)) 4575 if (C2->getAPIntValue() == 2) 4576 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, 4577 N->getVTList(), N0, N0); 4578 4579 return SDValue(); 4580 } 4581 4582 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 4583 SDValue N0 = N->getOperand(0); 4584 SDValue N1 = N->getOperand(1); 4585 EVT VT = N0.getValueType(); 4586 unsigned Opcode = N->getOpcode(); 4587 4588 // fold vector ops 4589 if (VT.isVector()) 4590 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4591 return FoldedVOp; 4592 4593 // fold operation with constant operands. 4594 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1})) 4595 return C; 4596 4597 // canonicalize constant to RHS 4598 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4599 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4600 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 4601 4602 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. 4603 // Only do this if the current op isn't legal and the flipped is. 4604 if (!TLI.isOperationLegal(Opcode, VT) && 4605 (N0.isUndef() || DAG.SignBitIsZero(N0)) && 4606 (N1.isUndef() || DAG.SignBitIsZero(N1))) { 4607 unsigned AltOpcode; 4608 switch (Opcode) { 4609 case ISD::SMIN: AltOpcode = ISD::UMIN; break; 4610 case ISD::SMAX: AltOpcode = ISD::UMAX; break; 4611 case ISD::UMIN: AltOpcode = ISD::SMIN; break; 4612 case ISD::UMAX: AltOpcode = ISD::SMAX; break; 4613 default: llvm_unreachable("Unknown MINMAX opcode"); 4614 } 4615 if (TLI.isOperationLegal(AltOpcode, VT)) 4616 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); 4617 } 4618 4619 return SDValue(); 4620 } 4621 4622 /// If this is a bitwise logic instruction and both operands have the same 4623 /// opcode, try to sink the other opcode after the logic instruction. 4624 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { 4625 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 4626 EVT VT = N0.getValueType(); 4627 unsigned LogicOpcode = N->getOpcode(); 4628 unsigned HandOpcode = N0.getOpcode(); 4629 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || 4630 LogicOpcode == ISD::XOR) && "Expected logic opcode"); 4631 assert(HandOpcode == N1.getOpcode() && "Bad input!"); 4632 4633 // Bail early if none of these transforms apply. 4634 if (N0.getNumOperands() == 0) 4635 return SDValue(); 4636 4637 // FIXME: We should check number of uses of the operands to not increase 4638 // the instruction count for all transforms. 4639 4640 // Handle size-changing casts. 4641 SDValue X = N0.getOperand(0); 4642 SDValue Y = N1.getOperand(0); 4643 EVT XVT = X.getValueType(); 4644 SDLoc DL(N); 4645 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || 4646 HandOpcode == ISD::SIGN_EXTEND) { 4647 // If both operands have other uses, this transform would create extra 4648 // instructions without eliminating anything. 4649 if (!N0.hasOneUse() && !N1.hasOneUse()) 4650 return SDValue(); 4651 // We need matching integer source types. 4652 if (XVT != Y.getValueType()) 4653 return SDValue(); 4654 // Don't create an illegal op during or after legalization. Don't ever 4655 // create an unsupported vector op. 4656 if ((VT.isVector() || LegalOperations) && 4657 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) 4658 return SDValue(); 4659 // Avoid infinite looping with PromoteIntBinOp. 4660 // TODO: Should we apply desirable/legal constraints to all opcodes? 4661 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && 4662 !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) 4663 return SDValue(); 4664 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) 4665 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4666 return DAG.getNode(HandOpcode, DL, VT, Logic); 4667 } 4668 4669 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) 4670 if (HandOpcode == ISD::TRUNCATE) { 4671 // If both operands have other uses, this transform would create extra 4672 // instructions without eliminating anything. 4673 if (!N0.hasOneUse() && !N1.hasOneUse()) 4674 return SDValue(); 4675 // We need matching source types. 4676 if (XVT != Y.getValueType()) 4677 return SDValue(); 4678 // Don't create an illegal op during or after legalization. 4679 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) 4680 return SDValue(); 4681 // Be extra careful sinking truncate. If it's free, there's no benefit in 4682 // widening a binop. Also, don't create a logic op on an illegal type. 4683 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) 4684 return SDValue(); 4685 if (!TLI.isTypeLegal(XVT)) 4686 return SDValue(); 4687 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4688 return DAG.getNode(HandOpcode, DL, VT, Logic); 4689 } 4690 4691 // For binops SHL/SRL/SRA/AND: 4692 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z 4693 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || 4694 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && 4695 N0.getOperand(1) == N1.getOperand(1)) { 4696 // If either operand has other uses, this transform is not an improvement. 4697 if (!N0.hasOneUse() || !N1.hasOneUse()) 4698 return SDValue(); 4699 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4700 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); 4701 } 4702 4703 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) 4704 if (HandOpcode == ISD::BSWAP) { 4705 // If either operand has other uses, this transform is not an improvement. 4706 if (!N0.hasOneUse() || !N1.hasOneUse()) 4707 return SDValue(); 4708 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4709 return DAG.getNode(HandOpcode, DL, VT, Logic); 4710 } 4711 4712 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 4713 // Only perform this optimization up until type legalization, before 4714 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 4715 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 4716 // we don't want to undo this promotion. 4717 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 4718 // on scalars. 4719 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && 4720 Level <= AfterLegalizeTypes) { 4721 // Input types must be integer and the same. 4722 if (XVT.isInteger() && XVT == Y.getValueType() && 4723 !(VT.isVector() && TLI.isTypeLegal(VT) && 4724 !XVT.isVector() && !TLI.isTypeLegal(XVT))) { 4725 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); 4726 return DAG.getNode(HandOpcode, DL, VT, Logic); 4727 } 4728 } 4729 4730 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 4731 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 4732 // If both shuffles use the same mask, and both shuffle within a single 4733 // vector, then it is worthwhile to move the swizzle after the operation. 4734 // The type-legalizer generates this pattern when loading illegal 4735 // vector types from memory. In many cases this allows additional shuffle 4736 // optimizations. 4737 // There are other cases where moving the shuffle after the xor/and/or 4738 // is profitable even if shuffles don't perform a swizzle. 4739 // If both shuffles use the same mask, and both shuffles have the same first 4740 // or second operand, then it might still be profitable to move the shuffle 4741 // after the xor/and/or operation. 4742 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 4743 auto *SVN0 = cast<ShuffleVectorSDNode>(N0); 4744 auto *SVN1 = cast<ShuffleVectorSDNode>(N1); 4745 assert(X.getValueType() == Y.getValueType() && 4746 "Inputs to shuffles are not the same type"); 4747 4748 // Check that both shuffles use the same mask. The masks are known to be of 4749 // the same length because the result vector type is the same. 4750 // Check also that shuffles have only one use to avoid introducing extra 4751 // instructions. 4752 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || 4753 !SVN0->getMask().equals(SVN1->getMask())) 4754 return SDValue(); 4755 4756 // Don't try to fold this node if it requires introducing a 4757 // build vector of all zeros that might be illegal at this stage. 4758 SDValue ShOp = N0.getOperand(1); 4759 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4760 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4761 4762 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) 4763 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 4764 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, 4765 N0.getOperand(0), N1.getOperand(0)); 4766 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); 4767 } 4768 4769 // Don't try to fold this node if it requires introducing a 4770 // build vector of all zeros that might be illegal at this stage. 4771 ShOp = N0.getOperand(0); 4772 if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) 4773 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 4774 4775 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) 4776 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { 4777 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), 4778 N1.getOperand(1)); 4779 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); 4780 } 4781 } 4782 4783 return SDValue(); 4784 } 4785 4786 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. 4787 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, 4788 const SDLoc &DL) { 4789 SDValue LL, LR, RL, RR, N0CC, N1CC; 4790 if (!isSetCCEquivalent(N0, LL, LR, N0CC) || 4791 !isSetCCEquivalent(N1, RL, RR, N1CC)) 4792 return SDValue(); 4793 4794 assert(N0.getValueType() == N1.getValueType() && 4795 "Unexpected operand types for bitwise logic op"); 4796 assert(LL.getValueType() == LR.getValueType() && 4797 RL.getValueType() == RR.getValueType() && 4798 "Unexpected operand types for setcc"); 4799 4800 // If we're here post-legalization or the logic op type is not i1, the logic 4801 // op type must match a setcc result type. Also, all folds require new 4802 // operations on the left and right operands, so those types must match. 4803 EVT VT = N0.getValueType(); 4804 EVT OpVT = LL.getValueType(); 4805 if (LegalOperations || VT.getScalarType() != MVT::i1) 4806 if (VT != getSetCCResultType(OpVT)) 4807 return SDValue(); 4808 if (OpVT != RL.getValueType()) 4809 return SDValue(); 4810 4811 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); 4812 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); 4813 bool IsInteger = OpVT.isInteger(); 4814 if (LR == RR && CC0 == CC1 && IsInteger) { 4815 bool IsZero = isNullOrNullSplat(LR); 4816 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); 4817 4818 // All bits clear? 4819 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; 4820 // All sign bits clear? 4821 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; 4822 // Any bits set? 4823 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; 4824 // Any sign bits set? 4825 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; 4826 4827 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) 4828 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) 4829 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) 4830 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) 4831 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { 4832 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); 4833 AddToWorklist(Or.getNode()); 4834 return DAG.getSetCC(DL, VT, Or, LR, CC1); 4835 } 4836 4837 // All bits set? 4838 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; 4839 // All sign bits set? 4840 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; 4841 // Any bits clear? 4842 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; 4843 // Any sign bits clear? 4844 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; 4845 4846 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) 4847 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) 4848 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) 4849 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) 4850 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { 4851 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); 4852 AddToWorklist(And.getNode()); 4853 return DAG.getSetCC(DL, VT, And, LR, CC1); 4854 } 4855 } 4856 4857 // TODO: What is the 'or' equivalent of this fold? 4858 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) 4859 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && 4860 IsInteger && CC0 == ISD::SETNE && 4861 ((isNullConstant(LR) && isAllOnesConstant(RR)) || 4862 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 4863 SDValue One = DAG.getConstant(1, DL, OpVT); 4864 SDValue Two = DAG.getConstant(2, DL, OpVT); 4865 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); 4866 AddToWorklist(Add.getNode()); 4867 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); 4868 } 4869 4870 // Try more general transforms if the predicates match and the only user of 4871 // the compares is the 'and' or 'or'. 4872 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && 4873 N0.hasOneUse() && N1.hasOneUse()) { 4874 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 4875 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 4876 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { 4877 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); 4878 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); 4879 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); 4880 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4881 return DAG.getSetCC(DL, VT, Or, Zero, CC1); 4882 } 4883 4884 // Turn compare of constants whose difference is 1 bit into add+and+setcc. 4885 // TODO - support non-uniform vector amounts. 4886 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { 4887 // Match a shared variable operand and 2 non-opaque constant operands. 4888 ConstantSDNode *C0 = isConstOrConstSplat(LR); 4889 ConstantSDNode *C1 = isConstOrConstSplat(RR); 4890 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { 4891 // Canonicalize larger constant as C0. 4892 if (C1->getAPIntValue().ugt(C0->getAPIntValue())) 4893 std::swap(C0, C1); 4894 4895 // The difference of the constants must be a single bit. 4896 const APInt &C0Val = C0->getAPIntValue(); 4897 const APInt &C1Val = C1->getAPIntValue(); 4898 if ((C0Val - C1Val).isPowerOf2()) { 4899 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> 4900 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq 4901 SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); 4902 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); 4903 SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); 4904 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); 4905 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4906 return DAG.getSetCC(DL, VT, And, Zero, CC0); 4907 } 4908 } 4909 } 4910 } 4911 4912 // Canonicalize equivalent operands to LL == RL. 4913 if (LL == RR && LR == RL) { 4914 CC1 = ISD::getSetCCSwappedOperands(CC1); 4915 std::swap(RL, RR); 4916 } 4917 4918 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 4919 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) 4920 if (LL == RL && LR == RR) { 4921 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) 4922 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); 4923 if (NewCC != ISD::SETCC_INVALID && 4924 (!LegalOperations || 4925 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && 4926 TLI.isOperationLegal(ISD::SETCC, OpVT)))) 4927 return DAG.getSetCC(DL, VT, LL, LR, NewCC); 4928 } 4929 4930 return SDValue(); 4931 } 4932 4933 /// This contains all DAGCombine rules which reduce two values combined by 4934 /// an And operation to a single value. This makes them reusable in the context 4935 /// of visitSELECT(). Rules involving constants are not included as 4936 /// visitSELECT() already handles those cases. 4937 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { 4938 EVT VT = N1.getValueType(); 4939 SDLoc DL(N); 4940 4941 // fold (and x, undef) -> 0 4942 if (N0.isUndef() || N1.isUndef()) 4943 return DAG.getConstant(0, DL, VT); 4944 4945 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) 4946 return V; 4947 4948 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 4949 VT.getSizeInBits() <= 64) { 4950 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4951 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 4952 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 4953 // immediate for an add, but it is legal if its top c2 bits are set, 4954 // transform the ADD so the immediate doesn't need to be materialized 4955 // in a register. 4956 APInt ADDC = ADDI->getAPIntValue(); 4957 APInt SRLC = SRLI->getAPIntValue(); 4958 if (ADDC.getMinSignedBits() <= 64 && 4959 SRLC.ult(VT.getSizeInBits()) && 4960 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 4961 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 4962 SRLC.getZExtValue()); 4963 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 4964 ADDC |= Mask; 4965 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 4966 SDLoc DL0(N0); 4967 SDValue NewAdd = 4968 DAG.getNode(ISD::ADD, DL0, VT, 4969 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 4970 CombineTo(N0.getNode(), NewAdd); 4971 // Return N so it doesn't get rechecked! 4972 return SDValue(N, 0); 4973 } 4974 } 4975 } 4976 } 4977 } 4978 } 4979 4980 // Reduce bit extract of low half of an integer to the narrower type. 4981 // (and (srl i64:x, K), KMask) -> 4982 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 4983 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4984 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 4985 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4986 unsigned Size = VT.getSizeInBits(); 4987 const APInt &AndMask = CAnd->getAPIntValue(); 4988 unsigned ShiftBits = CShift->getZExtValue(); 4989 4990 // Bail out, this node will probably disappear anyway. 4991 if (ShiftBits == 0) 4992 return SDValue(); 4993 4994 unsigned MaskBits = AndMask.countTrailingOnes(); 4995 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 4996 4997 if (AndMask.isMask() && 4998 // Required bits must not span the two halves of the integer and 4999 // must fit in the half size type. 5000 (ShiftBits + MaskBits <= Size / 2) && 5001 TLI.isNarrowingProfitable(VT, HalfVT) && 5002 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 5003 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 5004 TLI.isTruncateFree(VT, HalfVT) && 5005 TLI.isZExtFree(HalfVT, VT)) { 5006 // The isNarrowingProfitable is to avoid regressions on PPC and 5007 // AArch64 which match a few 64-bit bit insert / bit extract patterns 5008 // on downstream users of this. Those patterns could probably be 5009 // extended to handle extensions mixed in. 5010 5011 SDValue SL(N0); 5012 assert(MaskBits <= Size); 5013 5014 // Extracting the highest bit of the low half. 5015 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 5016 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 5017 N0.getOperand(0)); 5018 5019 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 5020 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 5021 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 5022 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 5023 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 5024 } 5025 } 5026 } 5027 } 5028 5029 return SDValue(); 5030 } 5031 5032 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 5033 EVT LoadResultTy, EVT &ExtVT) { 5034 if (!AndC->getAPIntValue().isMask()) 5035 return false; 5036 5037 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); 5038 5039 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5040 EVT LoadedVT = LoadN->getMemoryVT(); 5041 5042 if (ExtVT == LoadedVT && 5043 (!LegalOperations || 5044 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 5045 // ZEXTLOAD will match without needing to change the size of the value being 5046 // loaded. 5047 return true; 5048 } 5049 5050 // Do not change the width of a volatile or atomic loads. 5051 if (!LoadN->isSimple()) 5052 return false; 5053 5054 // Do not generate loads of non-round integer types since these can 5055 // be expensive (and would be wrong if the type is not byte sized). 5056 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 5057 return false; 5058 5059 if (LegalOperations && 5060 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 5061 return false; 5062 5063 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 5064 return false; 5065 5066 return true; 5067 } 5068 5069 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, 5070 ISD::LoadExtType ExtType, EVT &MemVT, 5071 unsigned ShAmt) { 5072 if (!LDST) 5073 return false; 5074 // Only allow byte offsets. 5075 if (ShAmt % 8) 5076 return false; 5077 5078 // Do not generate loads of non-round integer types since these can 5079 // be expensive (and would be wrong if the type is not byte sized). 5080 if (!MemVT.isRound()) 5081 return false; 5082 5083 // Don't change the width of a volatile or atomic loads. 5084 if (!LDST->isSimple()) 5085 return false; 5086 5087 EVT LdStMemVT = LDST->getMemoryVT(); 5088 5089 // Bail out when changing the scalable property, since we can't be sure that 5090 // we're actually narrowing here. 5091 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) 5092 return false; 5093 5094 // Verify that we are actually reducing a load width here. 5095 if (LdStMemVT.bitsLT(MemVT)) 5096 return false; 5097 5098 // Ensure that this isn't going to produce an unsupported memory access. 5099 if (ShAmt) { 5100 assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); 5101 const unsigned ByteShAmt = ShAmt / 8; 5102 const Align LDSTAlign = LDST->getAlign(); 5103 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); 5104 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 5105 LDST->getAddressSpace(), NarrowAlign, 5106 LDST->getMemOperand()->getFlags())) 5107 return false; 5108 } 5109 5110 // It's not possible to generate a constant of extended or untyped type. 5111 EVT PtrType = LDST->getBasePtr().getValueType(); 5112 if (PtrType == MVT::Untyped || PtrType.isExtended()) 5113 return false; 5114 5115 if (isa<LoadSDNode>(LDST)) { 5116 LoadSDNode *Load = cast<LoadSDNode>(LDST); 5117 // Don't transform one with multiple uses, this would require adding a new 5118 // load. 5119 if (!SDValue(Load, 0).hasOneUse()) 5120 return false; 5121 5122 if (LegalOperations && 5123 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) 5124 return false; 5125 5126 // For the transform to be legal, the load must produce only two values 5127 // (the value loaded and the chain). Don't transform a pre-increment 5128 // load, for example, which produces an extra value. Otherwise the 5129 // transformation is not equivalent, and the downstream logic to replace 5130 // uses gets things wrong. 5131 if (Load->getNumValues() > 2) 5132 return false; 5133 5134 // If the load that we're shrinking is an extload and we're not just 5135 // discarding the extension we can't simply shrink the load. Bail. 5136 // TODO: It would be possible to merge the extensions in some cases. 5137 if (Load->getExtensionType() != ISD::NON_EXTLOAD && 5138 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5139 return false; 5140 5141 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) 5142 return false; 5143 } else { 5144 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); 5145 StoreSDNode *Store = cast<StoreSDNode>(LDST); 5146 // Can't write outside the original store 5147 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) 5148 return false; 5149 5150 if (LegalOperations && 5151 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) 5152 return false; 5153 } 5154 return true; 5155 } 5156 5157 bool DAGCombiner::SearchForAndLoads(SDNode *N, 5158 SmallVectorImpl<LoadSDNode*> &Loads, 5159 SmallPtrSetImpl<SDNode*> &NodesWithConsts, 5160 ConstantSDNode *Mask, 5161 SDNode *&NodeToMask) { 5162 // Recursively search for the operands, looking for loads which can be 5163 // narrowed. 5164 for (SDValue Op : N->op_values()) { 5165 if (Op.getValueType().isVector()) 5166 return false; 5167 5168 // Some constants may need fixing up later if they are too large. 5169 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5170 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && 5171 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) 5172 NodesWithConsts.insert(N); 5173 continue; 5174 } 5175 5176 if (!Op.hasOneUse()) 5177 return false; 5178 5179 switch(Op.getOpcode()) { 5180 case ISD::LOAD: { 5181 auto *Load = cast<LoadSDNode>(Op); 5182 EVT ExtVT; 5183 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && 5184 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { 5185 5186 // ZEXTLOAD is already small enough. 5187 if (Load->getExtensionType() == ISD::ZEXTLOAD && 5188 ExtVT.bitsGE(Load->getMemoryVT())) 5189 continue; 5190 5191 // Use LE to convert equal sized loads to zext. 5192 if (ExtVT.bitsLE(Load->getMemoryVT())) 5193 Loads.push_back(Load); 5194 5195 continue; 5196 } 5197 return false; 5198 } 5199 case ISD::ZERO_EXTEND: 5200 case ISD::AssertZext: { 5201 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); 5202 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 5203 EVT VT = Op.getOpcode() == ISD::AssertZext ? 5204 cast<VTSDNode>(Op.getOperand(1))->getVT() : 5205 Op.getOperand(0).getValueType(); 5206 5207 // We can accept extending nodes if the mask is wider or an equal 5208 // width to the original type. 5209 if (ExtVT.bitsGE(VT)) 5210 continue; 5211 break; 5212 } 5213 case ISD::OR: 5214 case ISD::XOR: 5215 case ISD::AND: 5216 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, 5217 NodeToMask)) 5218 return false; 5219 continue; 5220 } 5221 5222 // Allow one node which will masked along with any loads found. 5223 if (NodeToMask) 5224 return false; 5225 5226 // Also ensure that the node to be masked only produces one data result. 5227 NodeToMask = Op.getNode(); 5228 if (NodeToMask->getNumValues() > 1) { 5229 bool HasValue = false; 5230 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { 5231 MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); 5232 if (VT != MVT::Glue && VT != MVT::Other) { 5233 if (HasValue) { 5234 NodeToMask = nullptr; 5235 return false; 5236 } 5237 HasValue = true; 5238 } 5239 } 5240 assert(HasValue && "Node to be masked has no data result?"); 5241 } 5242 } 5243 return true; 5244 } 5245 5246 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { 5247 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5248 if (!Mask) 5249 return false; 5250 5251 if (!Mask->getAPIntValue().isMask()) 5252 return false; 5253 5254 // No need to do anything if the and directly uses a load. 5255 if (isa<LoadSDNode>(N->getOperand(0))) 5256 return false; 5257 5258 SmallVector<LoadSDNode*, 8> Loads; 5259 SmallPtrSet<SDNode*, 2> NodesWithConsts; 5260 SDNode *FixupNode = nullptr; 5261 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { 5262 if (Loads.size() == 0) 5263 return false; 5264 5265 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); 5266 SDValue MaskOp = N->getOperand(1); 5267 5268 // If it exists, fixup the single node we allow in the tree that needs 5269 // masking. 5270 if (FixupNode) { 5271 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); 5272 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), 5273 FixupNode->getValueType(0), 5274 SDValue(FixupNode, 0), MaskOp); 5275 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); 5276 if (And.getOpcode() == ISD ::AND) 5277 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); 5278 } 5279 5280 // Narrow any constants that need it. 5281 for (auto *LogicN : NodesWithConsts) { 5282 SDValue Op0 = LogicN->getOperand(0); 5283 SDValue Op1 = LogicN->getOperand(1); 5284 5285 if (isa<ConstantSDNode>(Op0)) 5286 std::swap(Op0, Op1); 5287 5288 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), 5289 Op1, MaskOp); 5290 5291 DAG.UpdateNodeOperands(LogicN, Op0, And); 5292 } 5293 5294 // Create narrow loads. 5295 for (auto *Load : Loads) { 5296 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); 5297 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), 5298 SDValue(Load, 0), MaskOp); 5299 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); 5300 if (And.getOpcode() == ISD ::AND) 5301 And = SDValue( 5302 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); 5303 SDValue NewLoad = ReduceLoadWidth(And.getNode()); 5304 assert(NewLoad && 5305 "Shouldn't be masking the load if it can't be narrowed"); 5306 CombineTo(Load, NewLoad, NewLoad.getValue(1)); 5307 } 5308 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); 5309 return true; 5310 } 5311 return false; 5312 } 5313 5314 // Unfold 5315 // x & (-1 'logical shift' y) 5316 // To 5317 // (x 'opposite logical shift' y) 'logical shift' y 5318 // if it is better for performance. 5319 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { 5320 assert(N->getOpcode() == ISD::AND); 5321 5322 SDValue N0 = N->getOperand(0); 5323 SDValue N1 = N->getOperand(1); 5324 5325 // Do we actually prefer shifts over mask? 5326 if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) 5327 return SDValue(); 5328 5329 // Try to match (-1 '[outer] logical shift' y) 5330 unsigned OuterShift; 5331 unsigned InnerShift; // The opposite direction to the OuterShift. 5332 SDValue Y; // Shift amount. 5333 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { 5334 if (!M.hasOneUse()) 5335 return false; 5336 OuterShift = M->getOpcode(); 5337 if (OuterShift == ISD::SHL) 5338 InnerShift = ISD::SRL; 5339 else if (OuterShift == ISD::SRL) 5340 InnerShift = ISD::SHL; 5341 else 5342 return false; 5343 if (!isAllOnesConstant(M->getOperand(0))) 5344 return false; 5345 Y = M->getOperand(1); 5346 return true; 5347 }; 5348 5349 SDValue X; 5350 if (matchMask(N1)) 5351 X = N0; 5352 else if (matchMask(N0)) 5353 X = N1; 5354 else 5355 return SDValue(); 5356 5357 SDLoc DL(N); 5358 EVT VT = N->getValueType(0); 5359 5360 // tmp = x 'opposite logical shift' y 5361 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); 5362 // ret = tmp 'logical shift' y 5363 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); 5364 5365 return T1; 5366 } 5367 5368 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. 5369 /// For a target with a bit test, this is expected to become test + set and save 5370 /// at least 1 instruction. 5371 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { 5372 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); 5373 5374 // This is probably not worthwhile without a supported type. 5375 EVT VT = And->getValueType(0); 5376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5377 if (!TLI.isTypeLegal(VT)) 5378 return SDValue(); 5379 5380 // Look through an optional extension and find a 'not'. 5381 // TODO: Should we favor test+set even without the 'not' op? 5382 SDValue Not = And->getOperand(0), And1 = And->getOperand(1); 5383 if (Not.getOpcode() == ISD::ANY_EXTEND) 5384 Not = Not.getOperand(0); 5385 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) 5386 return SDValue(); 5387 5388 // Look though an optional truncation. The source operand may not be the same 5389 // type as the original 'and', but that is ok because we are masking off 5390 // everything but the low bit. 5391 SDValue Srl = Not.getOperand(0); 5392 if (Srl.getOpcode() == ISD::TRUNCATE) 5393 Srl = Srl.getOperand(0); 5394 5395 // Match a shift-right by constant. 5396 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || 5397 !isa<ConstantSDNode>(Srl.getOperand(1))) 5398 return SDValue(); 5399 5400 // We might have looked through casts that make this transform invalid. 5401 // TODO: If the source type is wider than the result type, do the mask and 5402 // compare in the source type. 5403 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); 5404 unsigned VTBitWidth = VT.getSizeInBits(); 5405 if (ShiftAmt.uge(VTBitWidth)) 5406 return SDValue(); 5407 5408 // Turn this into a bit-test pattern using mask op + setcc: 5409 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 5410 SDLoc DL(And); 5411 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); 5412 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5413 SDValue Mask = DAG.getConstant( 5414 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); 5415 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); 5416 SDValue Zero = DAG.getConstant(0, DL, VT); 5417 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); 5418 return DAG.getZExtOrTrunc(Setcc, DL, VT); 5419 } 5420 5421 SDValue DAGCombiner::visitAND(SDNode *N) { 5422 SDValue N0 = N->getOperand(0); 5423 SDValue N1 = N->getOperand(1); 5424 EVT VT = N1.getValueType(); 5425 5426 // x & x --> x 5427 if (N0 == N1) 5428 return N0; 5429 5430 // fold vector ops 5431 if (VT.isVector()) { 5432 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 5433 return FoldedVOp; 5434 5435 // fold (and x, 0) -> 0, vector edition 5436 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5437 // do not return N0, because undef node may exist in N0 5438 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), 5439 SDLoc(N), N0.getValueType()); 5440 if (ISD::isBuildVectorAllZeros(N1.getNode())) 5441 // do not return N1, because undef node may exist in N1 5442 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), 5443 SDLoc(N), N1.getValueType()); 5444 5445 // fold (and x, -1) -> x, vector edition 5446 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5447 return N1; 5448 if (ISD::isBuildVectorAllOnes(N1.getNode())) 5449 return N0; 5450 5451 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load 5452 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); 5453 auto *BVec = dyn_cast<BuildVectorSDNode>(N1); 5454 if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD && 5455 N0.hasOneUse() && N1.hasOneUse()) { 5456 EVT LoadVT = MLoad->getMemoryVT(); 5457 EVT ExtVT = VT; 5458 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { 5459 // For this AND to be a zero extension of the masked load the elements 5460 // of the BuildVec must mask the bottom bits of the extended element 5461 // type 5462 if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) { 5463 uint64_t ElementSize = 5464 LoadVT.getVectorElementType().getScalarSizeInBits(); 5465 if (Splat->getAPIntValue().isMask(ElementSize)) { 5466 return DAG.getMaskedLoad( 5467 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(), 5468 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), 5469 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), 5470 ISD::ZEXTLOAD, MLoad->isExpandingLoad()); 5471 } 5472 } 5473 } 5474 } 5475 } 5476 5477 // fold (and c1, c2) -> c1&c2 5478 ConstantSDNode *N1C = isConstOrConstSplat(N1); 5479 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) 5480 return C; 5481 5482 // canonicalize constant to RHS 5483 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 5484 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 5485 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 5486 5487 // fold (and x, -1) -> x 5488 if (isAllOnesConstant(N1)) 5489 return N0; 5490 5491 // if (and x, c) is known to be zero, return 0 5492 unsigned BitWidth = VT.getScalarSizeInBits(); 5493 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 5494 APInt::getAllOnesValue(BitWidth))) 5495 return DAG.getConstant(0, SDLoc(N), VT); 5496 5497 if (SDValue NewSel = foldBinOpIntoSelect(N)) 5498 return NewSel; 5499 5500 // reassociate and 5501 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) 5502 return RAND; 5503 5504 // Try to convert a constant mask AND into a shuffle clear mask. 5505 if (VT.isVector()) 5506 if (SDValue Shuffle = XformToShuffleWithZero(N)) 5507 return Shuffle; 5508 5509 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 5510 return Combined; 5511 5512 // fold (and (or x, C), D) -> D if (C & D) == D 5513 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { 5514 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); 5515 }; 5516 if (N0.getOpcode() == ISD::OR && 5517 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) 5518 return N1; 5519 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 5520 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 5521 SDValue N0Op0 = N0.getOperand(0); 5522 APInt Mask = ~N1C->getAPIntValue(); 5523 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); 5524 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 5525 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 5526 N0.getValueType(), N0Op0); 5527 5528 // Replace uses of the AND with uses of the Zero extend node. 5529 CombineTo(N, Zext); 5530 5531 // We actually want to replace all uses of the any_extend with the 5532 // zero_extend, to avoid duplicating things. This will later cause this 5533 // AND to be folded. 5534 CombineTo(N0.getNode(), Zext); 5535 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5536 } 5537 } 5538 5539 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 5540 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 5541 // already be zero by virtue of the width of the base type of the load. 5542 // 5543 // the 'X' node here can either be nothing or an extract_vector_elt to catch 5544 // more cases. 5545 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5546 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 5547 N0.getOperand(0).getOpcode() == ISD::LOAD && 5548 N0.getOperand(0).getResNo() == 0) || 5549 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 5550 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 5551 N0 : N0.getOperand(0) ); 5552 5553 // Get the constant (if applicable) the zero'th operand is being ANDed with. 5554 // This can be a pure constant or a vector splat, in which case we treat the 5555 // vector as a scalar and use the splat value. 5556 APInt Constant = APInt::getNullValue(1); 5557 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 5558 Constant = C->getAPIntValue(); 5559 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 5560 APInt SplatValue, SplatUndef; 5561 unsigned SplatBitSize; 5562 bool HasAnyUndefs; 5563 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 5564 SplatBitSize, HasAnyUndefs); 5565 if (IsSplat) { 5566 // Undef bits can contribute to a possible optimisation if set, so 5567 // set them. 5568 SplatValue |= SplatUndef; 5569 5570 // The splat value may be something like "0x00FFFFFF", which means 0 for 5571 // the first vector value and FF for the rest, repeating. We need a mask 5572 // that will apply equally to all members of the vector, so AND all the 5573 // lanes of the constant together. 5574 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); 5575 5576 // If the splat value has been compressed to a bitlength lower 5577 // than the size of the vector lane, we need to re-expand it to 5578 // the lane size. 5579 if (EltBitWidth > SplatBitSize) 5580 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); 5581 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) 5582 SplatValue |= SplatValue.shl(SplatBitSize); 5583 5584 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 5585 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 5586 if ((SplatBitSize % EltBitWidth) == 0) { 5587 Constant = APInt::getAllOnesValue(EltBitWidth); 5588 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) 5589 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); 5590 } 5591 } 5592 } 5593 5594 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 5595 // actually legal and isn't going to get expanded, else this is a false 5596 // optimisation. 5597 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 5598 Load->getValueType(0), 5599 Load->getMemoryVT()); 5600 5601 // Resize the constant to the same size as the original memory access before 5602 // extension. If it is still the AllOnesValue then this AND is completely 5603 // unneeded. 5604 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); 5605 5606 bool B; 5607 switch (Load->getExtensionType()) { 5608 default: B = false; break; 5609 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 5610 case ISD::ZEXTLOAD: 5611 case ISD::NON_EXTLOAD: B = true; break; 5612 } 5613 5614 if (B && Constant.isAllOnesValue()) { 5615 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 5616 // preserve semantics once we get rid of the AND. 5617 SDValue NewLoad(Load, 0); 5618 5619 // Fold the AND away. NewLoad may get replaced immediately. 5620 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 5621 5622 if (Load->getExtensionType() == ISD::EXTLOAD) { 5623 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 5624 Load->getValueType(0), SDLoc(Load), 5625 Load->getChain(), Load->getBasePtr(), 5626 Load->getOffset(), Load->getMemoryVT(), 5627 Load->getMemOperand()); 5628 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 5629 if (Load->getNumValues() == 3) { 5630 // PRE/POST_INC loads have 3 values. 5631 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 5632 NewLoad.getValue(2) }; 5633 CombineTo(Load, To, 3, true); 5634 } else { 5635 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 5636 } 5637 } 5638 5639 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5640 } 5641 } 5642 5643 // fold (and (masked_gather x)) -> (zext_masked_gather x) 5644 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 5645 EVT MemVT = GN0->getMemoryVT(); 5646 EVT ScalarVT = MemVT.getScalarType(); 5647 5648 if (SDValue(GN0, 0).hasOneUse() && 5649 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && 5650 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 5651 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 5652 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 5653 5654 SDValue ZExtLoad = DAG.getMaskedGather( 5655 DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops, 5656 GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD); 5657 5658 CombineTo(N, ZExtLoad); 5659 AddToWorklist(ZExtLoad.getNode()); 5660 // Avoid recheck of N. 5661 return SDValue(N, 0); 5662 } 5663 } 5664 5665 // fold (and (load x), 255) -> (zextload x, i8) 5666 // fold (and (extload x, i16), 255) -> (zextload x, i8) 5667 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 5668 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || 5669 (N0.getOpcode() == ISD::ANY_EXTEND && 5670 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 5671 if (SDValue Res = ReduceLoadWidth(N)) { 5672 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND 5673 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); 5674 AddToWorklist(N); 5675 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); 5676 return SDValue(N, 0); 5677 } 5678 } 5679 5680 if (LegalTypes) { 5681 // Attempt to propagate the AND back up to the leaves which, if they're 5682 // loads, can be combined to narrow loads and the AND node can be removed. 5683 // Perform after legalization so that extend nodes will already be 5684 // combined into the loads. 5685 if (BackwardsPropagateMask(N)) 5686 return SDValue(N, 0); 5687 } 5688 5689 if (SDValue Combined = visitANDLike(N0, N1, N)) 5690 return Combined; 5691 5692 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 5693 if (N0.getOpcode() == N1.getOpcode()) 5694 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 5695 return V; 5696 5697 // Masking the negated extension of a boolean is just the zero-extended 5698 // boolean: 5699 // and (sub 0, zext(bool X)), 1 --> zext(bool X) 5700 // and (sub 0, sext(bool X)), 1 --> zext(bool X) 5701 // 5702 // Note: the SimplifyDemandedBits fold below can make an information-losing 5703 // transform, and then we have no way to find this better fold. 5704 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { 5705 if (isNullOrNullSplat(N0.getOperand(0))) { 5706 SDValue SubRHS = N0.getOperand(1); 5707 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && 5708 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5709 return SubRHS; 5710 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && 5711 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) 5712 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); 5713 } 5714 } 5715 5716 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 5717 // fold (and (sra)) -> (and (srl)) when possible. 5718 if (SimplifyDemandedBits(SDValue(N, 0))) 5719 return SDValue(N, 0); 5720 5721 // fold (zext_inreg (extload x)) -> (zextload x) 5722 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 5723 if (ISD::isUNINDEXEDLoad(N0.getNode()) && 5724 (ISD::isEXTLoad(N0.getNode()) || 5725 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { 5726 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5727 EVT MemVT = LN0->getMemoryVT(); 5728 // If we zero all the possible extended bits, then we can turn this into 5729 // a zextload if we are running before legalize or the operation is legal. 5730 unsigned ExtBitSize = N1.getScalarValueSizeInBits(); 5731 unsigned MemBitSize = MemVT.getScalarSizeInBits(); 5732 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); 5733 if (DAG.MaskedValueIsZero(N1, ExtBits) && 5734 ((!LegalOperations && LN0->isSimple()) || 5735 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 5736 SDValue ExtLoad = 5737 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), 5738 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 5739 AddToWorklist(N); 5740 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 5741 return SDValue(N, 0); // Return N so it doesn't get rechecked! 5742 } 5743 } 5744 5745 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 5746 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 5747 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 5748 N0.getOperand(1), false)) 5749 return BSwap; 5750 } 5751 5752 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) 5753 return Shifts; 5754 5755 if (TLI.hasBitTest(N0, N1)) 5756 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) 5757 return V; 5758 5759 // Recognize the following pattern: 5760 // 5761 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) 5762 // 5763 // where bitmask is a mask that clears the upper bits of AndVT. The 5764 // number of bits in bitmask must be a power of two. 5765 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { 5766 if (LHS->getOpcode() != ISD::SIGN_EXTEND) 5767 return false; 5768 5769 auto *C = dyn_cast<ConstantSDNode>(RHS); 5770 if (!C) 5771 return false; 5772 5773 if (!C->getAPIntValue().isMask( 5774 LHS.getOperand(0).getValueType().getFixedSizeInBits())) 5775 return false; 5776 5777 return true; 5778 }; 5779 5780 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). 5781 if (IsAndZeroExtMask(N0, N1)) 5782 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); 5783 5784 return SDValue(); 5785 } 5786 5787 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 5788 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 5789 bool DemandHighBits) { 5790 if (!LegalOperations) 5791 return SDValue(); 5792 5793 EVT VT = N->getValueType(0); 5794 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 5795 return SDValue(); 5796 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 5797 return SDValue(); 5798 5799 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) 5800 bool LookPassAnd0 = false; 5801 bool LookPassAnd1 = false; 5802 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 5803 std::swap(N0, N1); 5804 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 5805 std::swap(N0, N1); 5806 if (N0.getOpcode() == ISD::AND) { 5807 if (!N0.getNode()->hasOneUse()) 5808 return SDValue(); 5809 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5810 // Also handle 0xffff since the LHS is guaranteed to have zeros there. 5811 // This is needed for X86. 5812 if (!N01C || (N01C->getZExtValue() != 0xFF00 && 5813 N01C->getZExtValue() != 0xFFFF)) 5814 return SDValue(); 5815 N0 = N0.getOperand(0); 5816 LookPassAnd0 = true; 5817 } 5818 5819 if (N1.getOpcode() == ISD::AND) { 5820 if (!N1.getNode()->hasOneUse()) 5821 return SDValue(); 5822 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5823 if (!N11C || N11C->getZExtValue() != 0xFF) 5824 return SDValue(); 5825 N1 = N1.getOperand(0); 5826 LookPassAnd1 = true; 5827 } 5828 5829 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 5830 std::swap(N0, N1); 5831 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 5832 return SDValue(); 5833 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) 5834 return SDValue(); 5835 5836 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5837 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5838 if (!N01C || !N11C) 5839 return SDValue(); 5840 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 5841 return SDValue(); 5842 5843 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 5844 SDValue N00 = N0->getOperand(0); 5845 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 5846 if (!N00.getNode()->hasOneUse()) 5847 return SDValue(); 5848 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 5849 if (!N001C || N001C->getZExtValue() != 0xFF) 5850 return SDValue(); 5851 N00 = N00.getOperand(0); 5852 LookPassAnd0 = true; 5853 } 5854 5855 SDValue N10 = N1->getOperand(0); 5856 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 5857 if (!N10.getNode()->hasOneUse()) 5858 return SDValue(); 5859 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 5860 // Also allow 0xFFFF since the bits will be shifted out. This is needed 5861 // for X86. 5862 if (!N101C || (N101C->getZExtValue() != 0xFF00 && 5863 N101C->getZExtValue() != 0xFFFF)) 5864 return SDValue(); 5865 N10 = N10.getOperand(0); 5866 LookPassAnd1 = true; 5867 } 5868 5869 if (N00 != N10) 5870 return SDValue(); 5871 5872 // Make sure everything beyond the low halfword gets set to zero since the SRL 5873 // 16 will clear the top bits. 5874 unsigned OpSizeInBits = VT.getSizeInBits(); 5875 if (DemandHighBits && OpSizeInBits > 16) { 5876 // If the left-shift isn't masked out then the only way this is a bswap is 5877 // if all bits beyond the low 8 are 0. In that case the entire pattern 5878 // reduces to a left shift anyway: leave it for other parts of the combiner. 5879 if (!LookPassAnd0) 5880 return SDValue(); 5881 5882 // However, if the right shift isn't masked out then it might be because 5883 // it's not needed. See if we can spot that too. 5884 if (!LookPassAnd1 && 5885 !DAG.MaskedValueIsZero( 5886 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 5887 return SDValue(); 5888 } 5889 5890 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 5891 if (OpSizeInBits > 16) { 5892 SDLoc DL(N); 5893 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 5894 DAG.getConstant(OpSizeInBits - 16, DL, 5895 getShiftAmountTy(VT))); 5896 } 5897 return Res; 5898 } 5899 5900 /// Return true if the specified node is an element that makes up a 32-bit 5901 /// packed halfword byteswap. 5902 /// ((x & 0x000000ff) << 8) | 5903 /// ((x & 0x0000ff00) >> 8) | 5904 /// ((x & 0x00ff0000) << 8) | 5905 /// ((x & 0xff000000) >> 8) 5906 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 5907 if (!N.getNode()->hasOneUse()) 5908 return false; 5909 5910 unsigned Opc = N.getOpcode(); 5911 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 5912 return false; 5913 5914 SDValue N0 = N.getOperand(0); 5915 unsigned Opc0 = N0.getOpcode(); 5916 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) 5917 return false; 5918 5919 ConstantSDNode *N1C = nullptr; 5920 // SHL or SRL: look upstream for AND mask operand 5921 if (Opc == ISD::AND) 5922 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5923 else if (Opc0 == ISD::AND) 5924 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5925 if (!N1C) 5926 return false; 5927 5928 unsigned MaskByteOffset; 5929 switch (N1C->getZExtValue()) { 5930 default: 5931 return false; 5932 case 0xFF: MaskByteOffset = 0; break; 5933 case 0xFF00: MaskByteOffset = 1; break; 5934 case 0xFFFF: 5935 // In case demanded bits didn't clear the bits that will be shifted out. 5936 // This is needed for X86. 5937 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { 5938 MaskByteOffset = 1; 5939 break; 5940 } 5941 return false; 5942 case 0xFF0000: MaskByteOffset = 2; break; 5943 case 0xFF000000: MaskByteOffset = 3; break; 5944 } 5945 5946 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 5947 if (Opc == ISD::AND) { 5948 if (MaskByteOffset == 0 || MaskByteOffset == 2) { 5949 // (x >> 8) & 0xff 5950 // (x >> 8) & 0xff0000 5951 if (Opc0 != ISD::SRL) 5952 return false; 5953 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5954 if (!C || C->getZExtValue() != 8) 5955 return false; 5956 } else { 5957 // (x << 8) & 0xff00 5958 // (x << 8) & 0xff000000 5959 if (Opc0 != ISD::SHL) 5960 return false; 5961 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5962 if (!C || C->getZExtValue() != 8) 5963 return false; 5964 } 5965 } else if (Opc == ISD::SHL) { 5966 // (x & 0xff) << 8 5967 // (x & 0xff0000) << 8 5968 if (MaskByteOffset != 0 && MaskByteOffset != 2) 5969 return false; 5970 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5971 if (!C || C->getZExtValue() != 8) 5972 return false; 5973 } else { // Opc == ISD::SRL 5974 // (x & 0xff00) >> 8 5975 // (x & 0xff000000) >> 8 5976 if (MaskByteOffset != 1 && MaskByteOffset != 3) 5977 return false; 5978 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 5979 if (!C || C->getZExtValue() != 8) 5980 return false; 5981 } 5982 5983 if (Parts[MaskByteOffset]) 5984 return false; 5985 5986 Parts[MaskByteOffset] = N0.getOperand(0).getNode(); 5987 return true; 5988 } 5989 5990 // Match 2 elements of a packed halfword bswap. 5991 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { 5992 if (N.getOpcode() == ISD::OR) 5993 return isBSwapHWordElement(N.getOperand(0), Parts) && 5994 isBSwapHWordElement(N.getOperand(1), Parts); 5995 5996 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { 5997 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); 5998 if (!C || C->getAPIntValue() != 16) 5999 return false; 6000 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); 6001 return true; 6002 } 6003 6004 return false; 6005 } 6006 6007 // Match this pattern: 6008 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) 6009 // And rewrite this to: 6010 // (rotr (bswap A), 16) 6011 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, 6012 SelectionDAG &DAG, SDNode *N, SDValue N0, 6013 SDValue N1, EVT VT, EVT ShiftAmountTy) { 6014 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && 6015 "MatchBSwapHWordOrAndAnd: expecting i32"); 6016 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6017 return SDValue(); 6018 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) 6019 return SDValue(); 6020 // TODO: this is too restrictive; lifting this restriction requires more tests 6021 if (!N0->hasOneUse() || !N1->hasOneUse()) 6022 return SDValue(); 6023 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); 6024 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); 6025 if (!Mask0 || !Mask1) 6026 return SDValue(); 6027 if (Mask0->getAPIntValue() != 0xff00ff00 || 6028 Mask1->getAPIntValue() != 0x00ff00ff) 6029 return SDValue(); 6030 SDValue Shift0 = N0.getOperand(0); 6031 SDValue Shift1 = N1.getOperand(0); 6032 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) 6033 return SDValue(); 6034 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); 6035 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); 6036 if (!ShiftAmt0 || !ShiftAmt1) 6037 return SDValue(); 6038 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) 6039 return SDValue(); 6040 if (Shift0.getOperand(0) != Shift1.getOperand(0)) 6041 return SDValue(); 6042 6043 SDLoc DL(N); 6044 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); 6045 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); 6046 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6047 } 6048 6049 /// Match a 32-bit packed halfword bswap. That is 6050 /// ((x & 0x000000ff) << 8) | 6051 /// ((x & 0x0000ff00) >> 8) | 6052 /// ((x & 0x00ff0000) << 8) | 6053 /// ((x & 0xff000000) >> 8) 6054 /// => (rotl (bswap x), 16) 6055 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 6056 if (!LegalOperations) 6057 return SDValue(); 6058 6059 EVT VT = N->getValueType(0); 6060 if (VT != MVT::i32) 6061 return SDValue(); 6062 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) 6063 return SDValue(); 6064 6065 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, 6066 getShiftAmountTy(VT))) 6067 return BSwap; 6068 6069 // Try again with commuted operands. 6070 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, 6071 getShiftAmountTy(VT))) 6072 return BSwap; 6073 6074 6075 // Look for either 6076 // (or (bswaphpair), (bswaphpair)) 6077 // (or (or (bswaphpair), (and)), (and)) 6078 // (or (or (and), (bswaphpair)), (and)) 6079 SDNode *Parts[4] = {}; 6080 6081 if (isBSwapHWordPair(N0, Parts)) { 6082 // (or (or (and), (and)), (or (and), (and))) 6083 if (!isBSwapHWordPair(N1, Parts)) 6084 return SDValue(); 6085 } else if (N0.getOpcode() == ISD::OR) { 6086 // (or (or (or (and), (and)), (and)), (and)) 6087 if (!isBSwapHWordElement(N1, Parts)) 6088 return SDValue(); 6089 SDValue N00 = N0.getOperand(0); 6090 SDValue N01 = N0.getOperand(1); 6091 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && 6092 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) 6093 return SDValue(); 6094 } else 6095 return SDValue(); 6096 6097 // Make sure the parts are all coming from the same node. 6098 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 6099 return SDValue(); 6100 6101 SDLoc DL(N); 6102 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 6103 SDValue(Parts[0], 0)); 6104 6105 // Result of the bswap should be rotated by 16. If it's not legal, then 6106 // do (x << 16) | (x >> 16). 6107 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 6108 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 6109 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 6110 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 6111 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 6112 return DAG.getNode(ISD::OR, DL, VT, 6113 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 6114 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 6115 } 6116 6117 /// This contains all DAGCombine rules which reduce two values combined by 6118 /// an Or operation to a single value \see visitANDLike(). 6119 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { 6120 EVT VT = N1.getValueType(); 6121 SDLoc DL(N); 6122 6123 // fold (or x, undef) -> -1 6124 if (!LegalOperations && (N0.isUndef() || N1.isUndef())) 6125 return DAG.getAllOnesConstant(DL, VT); 6126 6127 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) 6128 return V; 6129 6130 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 6131 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 6132 // Don't increase # computations. 6133 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6134 // We can only do this xform if we know that bits from X that are set in C2 6135 // but not in C1 are already zero. Likewise for Y. 6136 if (const ConstantSDNode *N0O1C = 6137 getAsNonOpaqueConstant(N0.getOperand(1))) { 6138 if (const ConstantSDNode *N1O1C = 6139 getAsNonOpaqueConstant(N1.getOperand(1))) { 6140 // We can only do this xform if we know that bits from X that are set in 6141 // C2 but not in C1 are already zero. Likewise for Y. 6142 const APInt &LHSMask = N0O1C->getAPIntValue(); 6143 const APInt &RHSMask = N1O1C->getAPIntValue(); 6144 6145 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 6146 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 6147 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6148 N0.getOperand(0), N1.getOperand(0)); 6149 return DAG.getNode(ISD::AND, DL, VT, X, 6150 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 6151 } 6152 } 6153 } 6154 } 6155 6156 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 6157 if (N0.getOpcode() == ISD::AND && 6158 N1.getOpcode() == ISD::AND && 6159 N0.getOperand(0) == N1.getOperand(0) && 6160 // Don't increase # computations. 6161 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 6162 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 6163 N0.getOperand(1), N1.getOperand(1)); 6164 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); 6165 } 6166 6167 return SDValue(); 6168 } 6169 6170 /// OR combines for which the commuted variant will be tried as well. 6171 static SDValue visitORCommutative( 6172 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { 6173 EVT VT = N0.getValueType(); 6174 if (N0.getOpcode() == ISD::AND) { 6175 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) 6176 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) 6177 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); 6178 6179 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) 6180 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) 6181 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); 6182 } 6183 6184 return SDValue(); 6185 } 6186 6187 SDValue DAGCombiner::visitOR(SDNode *N) { 6188 SDValue N0 = N->getOperand(0); 6189 SDValue N1 = N->getOperand(1); 6190 EVT VT = N1.getValueType(); 6191 6192 // x | x --> x 6193 if (N0 == N1) 6194 return N0; 6195 6196 // fold vector ops 6197 if (VT.isVector()) { 6198 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 6199 return FoldedVOp; 6200 6201 // fold (or x, 0) -> x, vector edition 6202 if (ISD::isBuildVectorAllZeros(N0.getNode())) 6203 return N1; 6204 if (ISD::isBuildVectorAllZeros(N1.getNode())) 6205 return N0; 6206 6207 // fold (or x, -1) -> -1, vector edition 6208 if (ISD::isBuildVectorAllOnes(N0.getNode())) 6209 // do not return N0, because undef node may exist in N0 6210 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); 6211 if (ISD::isBuildVectorAllOnes(N1.getNode())) 6212 // do not return N1, because undef node may exist in N1 6213 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); 6214 6215 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 6216 // Do this only if the resulting shuffle is legal. 6217 if (isa<ShuffleVectorSDNode>(N0) && 6218 isa<ShuffleVectorSDNode>(N1) && 6219 // Avoid folding a node with illegal type. 6220 TLI.isTypeLegal(VT)) { 6221 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 6222 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 6223 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 6224 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 6225 // Ensure both shuffles have a zero input. 6226 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { 6227 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 6228 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 6229 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 6230 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 6231 bool CanFold = true; 6232 int NumElts = VT.getVectorNumElements(); 6233 SmallVector<int, 4> Mask(NumElts); 6234 6235 for (int i = 0; i != NumElts; ++i) { 6236 int M0 = SV0->getMaskElt(i); 6237 int M1 = SV1->getMaskElt(i); 6238 6239 // Determine if either index is pointing to a zero vector. 6240 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 6241 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 6242 6243 // If one element is zero and the otherside is undef, keep undef. 6244 // This also handles the case that both are undef. 6245 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 6246 Mask[i] = -1; 6247 continue; 6248 } 6249 6250 // Make sure only one of the elements is zero. 6251 if (M0Zero == M1Zero) { 6252 CanFold = false; 6253 break; 6254 } 6255 6256 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 6257 6258 // We have a zero and non-zero element. If the non-zero came from 6259 // SV0 make the index a LHS index. If it came from SV1, make it 6260 // a RHS index. We need to mod by NumElts because we don't care 6261 // which operand it came from in the original shuffles. 6262 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 6263 } 6264 6265 if (CanFold) { 6266 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 6267 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 6268 6269 SDValue LegalShuffle = 6270 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, 6271 Mask, DAG); 6272 if (LegalShuffle) 6273 return LegalShuffle; 6274 } 6275 } 6276 } 6277 } 6278 6279 // fold (or c1, c2) -> c1|c2 6280 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 6281 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) 6282 return C; 6283 6284 // canonicalize constant to RHS 6285 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 6286 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 6287 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 6288 6289 // fold (or x, 0) -> x 6290 if (isNullConstant(N1)) 6291 return N0; 6292 6293 // fold (or x, -1) -> -1 6294 if (isAllOnesConstant(N1)) 6295 return N1; 6296 6297 if (SDValue NewSel = foldBinOpIntoSelect(N)) 6298 return NewSel; 6299 6300 // fold (or x, c) -> c iff (x & ~c) == 0 6301 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 6302 return N1; 6303 6304 if (SDValue Combined = visitORLike(N0, N1, N)) 6305 return Combined; 6306 6307 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 6308 return Combined; 6309 6310 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 6311 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 6312 return BSwap; 6313 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 6314 return BSwap; 6315 6316 // reassociate or 6317 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) 6318 return ROR; 6319 6320 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 6321 // iff (c1 & c2) != 0 or c1/c2 are undef. 6322 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { 6323 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); 6324 }; 6325 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 6326 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { 6327 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 6328 {N1, N0.getOperand(1)})) { 6329 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); 6330 AddToWorklist(IOR.getNode()); 6331 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); 6332 } 6333 } 6334 6335 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) 6336 return Combined; 6337 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) 6338 return Combined; 6339 6340 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 6341 if (N0.getOpcode() == N1.getOpcode()) 6342 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 6343 return V; 6344 6345 // See if this is some rotate idiom. 6346 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) 6347 return Rot; 6348 6349 if (SDValue Load = MatchLoadCombine(N)) 6350 return Load; 6351 6352 // Simplify the operands using demanded-bits information. 6353 if (SimplifyDemandedBits(SDValue(N, 0))) 6354 return SDValue(N, 0); 6355 6356 // If OR can be rewritten into ADD, try combines based on ADD. 6357 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && 6358 DAG.haveNoCommonBitsSet(N0, N1)) 6359 if (SDValue Combined = visitADDLike(N)) 6360 return Combined; 6361 6362 return SDValue(); 6363 } 6364 6365 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { 6366 if (Op.getOpcode() == ISD::AND && 6367 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 6368 Mask = Op.getOperand(1); 6369 return Op.getOperand(0); 6370 } 6371 return Op; 6372 } 6373 6374 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 6375 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, 6376 SDValue &Mask) { 6377 Op = stripConstantMask(DAG, Op, Mask); 6378 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 6379 Shift = Op; 6380 return true; 6381 } 6382 return false; 6383 } 6384 6385 /// Helper function for visitOR to extract the needed side of a rotate idiom 6386 /// from a shl/srl/mul/udiv. This is meant to handle cases where 6387 /// InstCombine merged some outside op with one of the shifts from 6388 /// the rotate pattern. 6389 /// \returns An empty \c SDValue if the needed shift couldn't be extracted. 6390 /// Otherwise, returns an expansion of \p ExtractFrom based on the following 6391 /// patterns: 6392 /// 6393 /// (or (add v v) (shrl v bitwidth-1)): 6394 /// expands (add v v) -> (shl v 1) 6395 /// 6396 /// (or (mul v c0) (shrl (mul v c1) c2)): 6397 /// expands (mul v c0) -> (shl (mul v c1) c3) 6398 /// 6399 /// (or (udiv v c0) (shl (udiv v c1) c2)): 6400 /// expands (udiv v c0) -> (shrl (udiv v c1) c3) 6401 /// 6402 /// (or (shl v c0) (shrl (shl v c1) c2)): 6403 /// expands (shl v c0) -> (shl (shl v c1) c3) 6404 /// 6405 /// (or (shrl v c0) (shl (shrl v c1) c2)): 6406 /// expands (shrl v c0) -> (shrl (shrl v c1) c3) 6407 /// 6408 /// Such that in all cases, c3+c2==bitwidth(op v c1). 6409 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, 6410 SDValue ExtractFrom, SDValue &Mask, 6411 const SDLoc &DL) { 6412 assert(OppShift && ExtractFrom && "Empty SDValue"); 6413 assert( 6414 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && 6415 "Existing shift must be valid as a rotate half"); 6416 6417 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); 6418 6419 // Value and Type of the shift. 6420 SDValue OppShiftLHS = OppShift.getOperand(0); 6421 EVT ShiftedVT = OppShiftLHS.getValueType(); 6422 6423 // Amount of the existing shift. 6424 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); 6425 6426 // (add v v) -> (shl v 1) 6427 // TODO: Should this be a general DAG canonicalization? 6428 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && 6429 ExtractFrom.getOpcode() == ISD::ADD && 6430 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && 6431 ExtractFrom.getOperand(0) == OppShiftLHS && 6432 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) 6433 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, 6434 DAG.getShiftAmountConstant(1, ShiftedVT, DL)); 6435 6436 // Preconditions: 6437 // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) 6438 // 6439 // Find opcode of the needed shift to be extracted from (op0 v c0). 6440 unsigned Opcode = ISD::DELETED_NODE; 6441 bool IsMulOrDiv = false; 6442 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift 6443 // opcode or its arithmetic (mul or udiv) variant. 6444 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { 6445 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; 6446 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) 6447 return false; 6448 Opcode = NeededShift; 6449 return true; 6450 }; 6451 // op0 must be either the needed shift opcode or the mul/udiv equivalent 6452 // that the needed shift can be extracted from. 6453 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && 6454 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) 6455 return SDValue(); 6456 6457 // op0 must be the same opcode on both sides, have the same LHS argument, 6458 // and produce the same value type. 6459 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || 6460 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || 6461 ShiftedVT != ExtractFrom.getValueType()) 6462 return SDValue(); 6463 6464 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. 6465 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); 6466 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. 6467 ConstantSDNode *ExtractFromCst = 6468 isConstOrConstSplat(ExtractFrom.getOperand(1)); 6469 // TODO: We should be able to handle non-uniform constant vectors for these values 6470 // Check that we have constant values. 6471 if (!OppShiftCst || !OppShiftCst->getAPIntValue() || 6472 !OppLHSCst || !OppLHSCst->getAPIntValue() || 6473 !ExtractFromCst || !ExtractFromCst->getAPIntValue()) 6474 return SDValue(); 6475 6476 // Compute the shift amount we need to extract to complete the rotate. 6477 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); 6478 if (OppShiftCst->getAPIntValue().ugt(VTWidth)) 6479 return SDValue(); 6480 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); 6481 // Normalize the bitwidth of the two mul/udiv/shift constant operands. 6482 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); 6483 APInt OppLHSAmt = OppLHSCst->getAPIntValue(); 6484 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); 6485 6486 // Now try extract the needed shift from the ExtractFrom op and see if the 6487 // result matches up with the existing shift's LHS op. 6488 if (IsMulOrDiv) { 6489 // Op to extract from is a mul or udiv by a constant. 6490 // Check: 6491 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 6492 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 6493 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), 6494 NeededShiftAmt.getZExtValue()); 6495 APInt ResultAmt; 6496 APInt Rem; 6497 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); 6498 if (Rem != 0 || ResultAmt != OppLHSAmt) 6499 return SDValue(); 6500 } else { 6501 // Op to extract from is a shift by a constant. 6502 // Check: 6503 // c2 - (bitwidth(op0 v c0) - c1) == c0 6504 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( 6505 ExtractFromAmt.getBitWidth())) 6506 return SDValue(); 6507 } 6508 6509 // Return the expanded shift op that should allow a rotate to be formed. 6510 EVT ShiftVT = OppShift.getOperand(1).getValueType(); 6511 EVT ResVT = ExtractFrom.getValueType(); 6512 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); 6513 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); 6514 } 6515 6516 // Return true if we can prove that, whenever Neg and Pos are both in the 6517 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 6518 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 6519 // 6520 // (or (shift1 X, Neg), (shift2 X, Pos)) 6521 // 6522 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 6523 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 6524 // to consider shift amounts with defined behavior. 6525 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, 6526 SelectionDAG &DAG) { 6527 // If EltSize is a power of 2 then: 6528 // 6529 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 6530 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 6531 // 6532 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 6533 // for the stronger condition: 6534 // 6535 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 6536 // 6537 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 6538 // we can just replace Neg with Neg' for the rest of the function. 6539 // 6540 // In other cases we check for the even stronger condition: 6541 // 6542 // Neg == EltSize - Pos [B] 6543 // 6544 // for all Neg and Pos. Note that the (or ...) then invokes undefined 6545 // behavior if Pos == 0 (and consequently Neg == EltSize). 6546 // 6547 // We could actually use [A] whenever EltSize is a power of 2, but the 6548 // only extra cases that it would match are those uninteresting ones 6549 // where Neg and Pos are never in range at the same time. E.g. for 6550 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 6551 // as well as (sub 32, Pos), but: 6552 // 6553 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 6554 // 6555 // always invokes undefined behavior for 32-bit X. 6556 // 6557 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 6558 unsigned MaskLoBits = 0; 6559 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 6560 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 6561 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); 6562 unsigned Bits = Log2_64(EltSize); 6563 if (NegC->getAPIntValue().getActiveBits() <= Bits && 6564 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { 6565 Neg = Neg.getOperand(0); 6566 MaskLoBits = Bits; 6567 } 6568 } 6569 } 6570 6571 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 6572 if (Neg.getOpcode() != ISD::SUB) 6573 return false; 6574 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 6575 if (!NegC) 6576 return false; 6577 SDValue NegOp1 = Neg.getOperand(1); 6578 6579 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 6580 // Pos'. The truncation is redundant for the purpose of the equality. 6581 if (MaskLoBits && Pos.getOpcode() == ISD::AND) { 6582 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { 6583 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); 6584 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && 6585 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= 6586 MaskLoBits)) 6587 Pos = Pos.getOperand(0); 6588 } 6589 } 6590 6591 // The condition we need is now: 6592 // 6593 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 6594 // 6595 // If NegOp1 == Pos then we need: 6596 // 6597 // EltSize & Mask == NegC & Mask 6598 // 6599 // (because "x & Mask" is a truncation and distributes through subtraction). 6600 // 6601 // We also need to account for a potential truncation of NegOp1 if the amount 6602 // has already been legalized to a shift amount type. 6603 APInt Width; 6604 if ((Pos == NegOp1) || 6605 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) 6606 Width = NegC->getAPIntValue(); 6607 6608 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 6609 // Then the condition we want to prove becomes: 6610 // 6611 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 6612 // 6613 // which, again because "x & Mask" is a truncation, becomes: 6614 // 6615 // NegC & Mask == (EltSize - PosC) & Mask 6616 // EltSize & Mask == (NegC + PosC) & Mask 6617 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 6618 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 6619 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 6620 else 6621 return false; 6622 } else 6623 return false; 6624 6625 // Now we just need to check that EltSize & Mask == Width & Mask. 6626 if (MaskLoBits) 6627 // EltSize & Mask is 0 since Mask is EltSize - 1. 6628 return Width.getLoBits(MaskLoBits) == 0; 6629 return Width == EltSize; 6630 } 6631 6632 // A subroutine of MatchRotate used once we have found an OR of two opposite 6633 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 6634 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 6635 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6636 // Neg with outer conversions stripped away. 6637 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 6638 SDValue Neg, SDValue InnerPos, 6639 SDValue InnerNeg, unsigned PosOpcode, 6640 unsigned NegOpcode, const SDLoc &DL) { 6641 // fold (or (shl x, (*ext y)), 6642 // (srl x, (*ext (sub 32, y)))) -> 6643 // (rotl x, y) or (rotr x, (sub 32, y)) 6644 // 6645 // fold (or (shl x, (*ext (sub 32, y))), 6646 // (srl x, (*ext y))) -> 6647 // (rotr x, y) or (rotl x, (sub 32, y)) 6648 EVT VT = Shifted.getValueType(); 6649 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) { 6650 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6651 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 6652 HasPos ? Pos : Neg); 6653 } 6654 6655 return SDValue(); 6656 } 6657 6658 // A subroutine of MatchRotate used once we have found an OR of two opposite 6659 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces 6660 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the 6661 // former being preferred if supported. InnerPos and InnerNeg are Pos and 6662 // Neg with outer conversions stripped away. 6663 // TODO: Merge with MatchRotatePosNeg. 6664 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, 6665 SDValue Neg, SDValue InnerPos, 6666 SDValue InnerNeg, unsigned PosOpcode, 6667 unsigned NegOpcode, const SDLoc &DL) { 6668 EVT VT = N0.getValueType(); 6669 unsigned EltBits = VT.getScalarSizeInBits(); 6670 6671 // fold (or (shl x0, (*ext y)), 6672 // (srl x1, (*ext (sub 32, y)))) -> 6673 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) 6674 // 6675 // fold (or (shl x0, (*ext (sub 32, y))), 6676 // (srl x1, (*ext y))) -> 6677 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) 6678 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG)) { 6679 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 6680 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, 6681 HasPos ? Pos : Neg); 6682 } 6683 6684 // Matching the shift+xor cases, we can't easily use the xor'd shift amount 6685 // so for now just use the PosOpcode case if its legal. 6686 // TODO: When can we use the NegOpcode case? 6687 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { 6688 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { 6689 if (Op.getOpcode() != BinOpc) 6690 return false; 6691 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); 6692 return Cst && (Cst->getAPIntValue() == Imm); 6693 }; 6694 6695 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) 6696 // -> (fshl x0, x1, y) 6697 if (IsBinOpImm(N1, ISD::SRL, 1) && 6698 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && 6699 InnerPos == InnerNeg.getOperand(0) && 6700 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { 6701 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); 6702 } 6703 6704 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) 6705 // -> (fshr x0, x1, y) 6706 if (IsBinOpImm(N0, ISD::SHL, 1) && 6707 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6708 InnerNeg == InnerPos.getOperand(0) && 6709 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6710 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6711 } 6712 6713 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) 6714 // -> (fshr x0, x1, y) 6715 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? 6716 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && 6717 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && 6718 InnerNeg == InnerPos.getOperand(0) && 6719 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { 6720 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); 6721 } 6722 } 6723 6724 return SDValue(); 6725 } 6726 6727 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 6728 // idioms for rotate, and if the target supports rotation instructions, generate 6729 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but 6730 // with different shifted sources. 6731 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 6732 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 6733 EVT VT = LHS.getValueType(); 6734 if (!TLI.isTypeLegal(VT)) 6735 return SDValue(); 6736 6737 // The target must have at least one rotate/funnel flavor. 6738 bool HasROTL = hasOperation(ISD::ROTL, VT); 6739 bool HasROTR = hasOperation(ISD::ROTR, VT); 6740 bool HasFSHL = hasOperation(ISD::FSHL, VT); 6741 bool HasFSHR = hasOperation(ISD::FSHR, VT); 6742 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) 6743 return SDValue(); 6744 6745 // Check for truncated rotate. 6746 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && 6747 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { 6748 assert(LHS.getValueType() == RHS.getValueType()); 6749 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { 6750 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); 6751 } 6752 } 6753 6754 // Match "(X shl/srl V1) & V2" where V2 may not be present. 6755 SDValue LHSShift; // The shift. 6756 SDValue LHSMask; // AND value if any. 6757 matchRotateHalf(DAG, LHS, LHSShift, LHSMask); 6758 6759 SDValue RHSShift; // The shift. 6760 SDValue RHSMask; // AND value if any. 6761 matchRotateHalf(DAG, RHS, RHSShift, RHSMask); 6762 6763 // If neither side matched a rotate half, bail 6764 if (!LHSShift && !RHSShift) 6765 return SDValue(); 6766 6767 // InstCombine may have combined a constant shl, srl, mul, or udiv with one 6768 // side of the rotate, so try to handle that here. In all cases we need to 6769 // pass the matched shift from the opposite side to compute the opcode and 6770 // needed shift amount to extract. We still want to do this if both sides 6771 // matched a rotate half because one half may be a potential overshift that 6772 // can be broken down (ie if InstCombine merged two shl or srl ops into a 6773 // single one). 6774 6775 // Have LHS side of the rotate, try to extract the needed shift from the RHS. 6776 if (LHSShift) 6777 if (SDValue NewRHSShift = 6778 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) 6779 RHSShift = NewRHSShift; 6780 // Have RHS side of the rotate, try to extract the needed shift from the LHS. 6781 if (RHSShift) 6782 if (SDValue NewLHSShift = 6783 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) 6784 LHSShift = NewLHSShift; 6785 6786 // If a side is still missing, nothing else we can do. 6787 if (!RHSShift || !LHSShift) 6788 return SDValue(); 6789 6790 // At this point we've matched or extracted a shift op on each side. 6791 6792 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 6793 return SDValue(); // Shifts must disagree. 6794 6795 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); 6796 if (!IsRotate && !(HasFSHL || HasFSHR)) 6797 return SDValue(); // Requires funnel shift support. 6798 6799 // Canonicalize shl to left side in a shl/srl pair. 6800 if (RHSShift.getOpcode() == ISD::SHL) { 6801 std::swap(LHS, RHS); 6802 std::swap(LHSShift, RHSShift); 6803 std::swap(LHSMask, RHSMask); 6804 } 6805 6806 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6807 SDValue LHSShiftArg = LHSShift.getOperand(0); 6808 SDValue LHSShiftAmt = LHSShift.getOperand(1); 6809 SDValue RHSShiftArg = RHSShift.getOperand(0); 6810 SDValue RHSShiftAmt = RHSShift.getOperand(1); 6811 6812 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 6813 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 6814 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) 6815 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) 6816 // iff C1+C2 == EltSizeInBits 6817 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, 6818 ConstantSDNode *RHS) { 6819 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; 6820 }; 6821 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { 6822 SDValue Res; 6823 if (IsRotate && (HasROTL || HasROTR)) 6824 Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, 6825 HasROTL ? LHSShiftAmt : RHSShiftAmt); 6826 else 6827 Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, 6828 RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt); 6829 6830 // If there is an AND of either shifted operand, apply it to the result. 6831 if (LHSMask.getNode() || RHSMask.getNode()) { 6832 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); 6833 SDValue Mask = AllOnes; 6834 6835 if (LHSMask.getNode()) { 6836 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); 6837 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 6838 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); 6839 } 6840 if (RHSMask.getNode()) { 6841 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); 6842 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 6843 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); 6844 } 6845 6846 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); 6847 } 6848 6849 return Res; 6850 } 6851 6852 // If there is a mask here, and we have a variable shift, we can't be sure 6853 // that we're masking out the right stuff. 6854 if (LHSMask.getNode() || RHSMask.getNode()) 6855 return SDValue(); 6856 6857 // If the shift amount is sign/zext/any-extended just peel it off. 6858 SDValue LExtOp0 = LHSShiftAmt; 6859 SDValue RExtOp0 = RHSShiftAmt; 6860 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 6861 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 6862 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 6863 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 6864 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 6865 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 6866 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 6867 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 6868 LExtOp0 = LHSShiftAmt.getOperand(0); 6869 RExtOp0 = RHSShiftAmt.getOperand(0); 6870 } 6871 6872 if (IsRotate && (HasROTL || HasROTR)) { 6873 SDValue TryL = 6874 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, 6875 RExtOp0, ISD::ROTL, ISD::ROTR, DL); 6876 if (TryL) 6877 return TryL; 6878 6879 SDValue TryR = 6880 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, 6881 LExtOp0, ISD::ROTR, ISD::ROTL, DL); 6882 if (TryR) 6883 return TryR; 6884 } 6885 6886 SDValue TryL = 6887 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, 6888 LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); 6889 if (TryL) 6890 return TryL; 6891 6892 SDValue TryR = 6893 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 6894 RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); 6895 if (TryR) 6896 return TryR; 6897 6898 return SDValue(); 6899 } 6900 6901 namespace { 6902 6903 /// Represents known origin of an individual byte in load combine pattern. The 6904 /// value of the byte is either constant zero or comes from memory. 6905 struct ByteProvider { 6906 // For constant zero providers Load is set to nullptr. For memory providers 6907 // Load represents the node which loads the byte from memory. 6908 // ByteOffset is the offset of the byte in the value produced by the load. 6909 LoadSDNode *Load = nullptr; 6910 unsigned ByteOffset = 0; 6911 6912 ByteProvider() = default; 6913 6914 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { 6915 return ByteProvider(Load, ByteOffset); 6916 } 6917 6918 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } 6919 6920 bool isConstantZero() const { return !Load; } 6921 bool isMemory() const { return Load; } 6922 6923 bool operator==(const ByteProvider &Other) const { 6924 return Other.Load == Load && Other.ByteOffset == ByteOffset; 6925 } 6926 6927 private: 6928 ByteProvider(LoadSDNode *Load, unsigned ByteOffset) 6929 : Load(Load), ByteOffset(ByteOffset) {} 6930 }; 6931 6932 } // end anonymous namespace 6933 6934 /// Recursively traverses the expression calculating the origin of the requested 6935 /// byte of the given value. Returns None if the provider can't be calculated. 6936 /// 6937 /// For all the values except the root of the expression verifies that the value 6938 /// has exactly one use and if it's not true return None. This way if the origin 6939 /// of the byte is returned it's guaranteed that the values which contribute to 6940 /// the byte are not used outside of this expression. 6941 /// 6942 /// Because the parts of the expression are not allowed to have more than one 6943 /// use this function iterates over trees, not DAGs. So it never visits the same 6944 /// node more than once. 6945 static const Optional<ByteProvider> 6946 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, 6947 bool Root = false) { 6948 // Typical i64 by i8 pattern requires recursion up to 8 calls depth 6949 if (Depth == 10) 6950 return None; 6951 6952 if (!Root && !Op.hasOneUse()) 6953 return None; 6954 6955 assert(Op.getValueType().isScalarInteger() && "can't handle other types"); 6956 unsigned BitWidth = Op.getValueSizeInBits(); 6957 if (BitWidth % 8 != 0) 6958 return None; 6959 unsigned ByteWidth = BitWidth / 8; 6960 assert(Index < ByteWidth && "invalid index requested"); 6961 (void) ByteWidth; 6962 6963 switch (Op.getOpcode()) { 6964 case ISD::OR: { 6965 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); 6966 if (!LHS) 6967 return None; 6968 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); 6969 if (!RHS) 6970 return None; 6971 6972 if (LHS->isConstantZero()) 6973 return RHS; 6974 if (RHS->isConstantZero()) 6975 return LHS; 6976 return None; 6977 } 6978 case ISD::SHL: { 6979 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 6980 if (!ShiftOp) 6981 return None; 6982 6983 uint64_t BitShift = ShiftOp->getZExtValue(); 6984 if (BitShift % 8 != 0) 6985 return None; 6986 uint64_t ByteShift = BitShift / 8; 6987 6988 return Index < ByteShift 6989 ? ByteProvider::getConstantZero() 6990 : calculateByteProvider(Op->getOperand(0), Index - ByteShift, 6991 Depth + 1); 6992 } 6993 case ISD::ANY_EXTEND: 6994 case ISD::SIGN_EXTEND: 6995 case ISD::ZERO_EXTEND: { 6996 SDValue NarrowOp = Op->getOperand(0); 6997 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 6998 if (NarrowBitWidth % 8 != 0) 6999 return None; 7000 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7001 7002 if (Index >= NarrowByteWidth) 7003 return Op.getOpcode() == ISD::ZERO_EXTEND 7004 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7005 : None; 7006 return calculateByteProvider(NarrowOp, Index, Depth + 1); 7007 } 7008 case ISD::BSWAP: 7009 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, 7010 Depth + 1); 7011 case ISD::LOAD: { 7012 auto L = cast<LoadSDNode>(Op.getNode()); 7013 if (!L->isSimple() || L->isIndexed()) 7014 return None; 7015 7016 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 7017 if (NarrowBitWidth % 8 != 0) 7018 return None; 7019 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 7020 7021 if (Index >= NarrowByteWidth) 7022 return L->getExtensionType() == ISD::ZEXTLOAD 7023 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) 7024 : None; 7025 return ByteProvider::getMemory(L, Index); 7026 } 7027 } 7028 7029 return None; 7030 } 7031 7032 static unsigned littleEndianByteAt(unsigned BW, unsigned i) { 7033 return i; 7034 } 7035 7036 static unsigned bigEndianByteAt(unsigned BW, unsigned i) { 7037 return BW - i - 1; 7038 } 7039 7040 // Check if the bytes offsets we are looking at match with either big or 7041 // little endian value loaded. Return true for big endian, false for little 7042 // endian, and None if match failed. 7043 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, 7044 int64_t FirstOffset) { 7045 // The endian can be decided only when it is 2 bytes at least. 7046 unsigned Width = ByteOffsets.size(); 7047 if (Width < 2) 7048 return None; 7049 7050 bool BigEndian = true, LittleEndian = true; 7051 for (unsigned i = 0; i < Width; i++) { 7052 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; 7053 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); 7054 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); 7055 if (!BigEndian && !LittleEndian) 7056 return None; 7057 } 7058 7059 assert((BigEndian != LittleEndian) && "It should be either big endian or" 7060 "little endian"); 7061 return BigEndian; 7062 } 7063 7064 static SDValue stripTruncAndExt(SDValue Value) { 7065 switch (Value.getOpcode()) { 7066 case ISD::TRUNCATE: 7067 case ISD::ZERO_EXTEND: 7068 case ISD::SIGN_EXTEND: 7069 case ISD::ANY_EXTEND: 7070 return stripTruncAndExt(Value.getOperand(0)); 7071 } 7072 return Value; 7073 } 7074 7075 /// Match a pattern where a wide type scalar value is stored by several narrow 7076 /// stores. Fold it into a single store or a BSWAP and a store if the targets 7077 /// supports it. 7078 /// 7079 /// Assuming little endian target: 7080 /// i8 *p = ... 7081 /// i32 val = ... 7082 /// p[0] = (val >> 0) & 0xFF; 7083 /// p[1] = (val >> 8) & 0xFF; 7084 /// p[2] = (val >> 16) & 0xFF; 7085 /// p[3] = (val >> 24) & 0xFF; 7086 /// => 7087 /// *((i32)p) = val; 7088 /// 7089 /// i8 *p = ... 7090 /// i32 val = ... 7091 /// p[0] = (val >> 24) & 0xFF; 7092 /// p[1] = (val >> 16) & 0xFF; 7093 /// p[2] = (val >> 8) & 0xFF; 7094 /// p[3] = (val >> 0) & 0xFF; 7095 /// => 7096 /// *((i32)p) = BSWAP(val); 7097 SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { 7098 // The matching looks for "store (trunc x)" patterns that appear early but are 7099 // likely to be replaced by truncating store nodes during combining. 7100 // TODO: If there is evidence that running this later would help, this 7101 // limitation could be removed. Legality checks may need to be added 7102 // for the created store and optional bswap/rotate. 7103 if (LegalOperations) 7104 return SDValue(); 7105 7106 // Collect all the stores in the chain. 7107 SDValue Chain; 7108 SmallVector<StoreSDNode *, 8> Stores; 7109 for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) { 7110 // TODO: Allow unordered atomics when wider type is legal (see D66309) 7111 EVT MemVT = Store->getMemoryVT(); 7112 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || 7113 !Store->isSimple() || Store->isIndexed()) 7114 return SDValue(); 7115 Stores.push_back(Store); 7116 Chain = Store->getChain(); 7117 } 7118 // There is no reason to continue if we do not have at least a pair of stores. 7119 if (Stores.size() < 2) 7120 return SDValue(); 7121 7122 // Handle simple types only. 7123 LLVMContext &Context = *DAG.getContext(); 7124 unsigned NumStores = Stores.size(); 7125 unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits(); 7126 unsigned WideNumBits = NumStores * NarrowNumBits; 7127 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); 7128 if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) 7129 return SDValue(); 7130 7131 // Check if all bytes of the source value that we are looking at are stored 7132 // to the same base address. Collect offsets from Base address into OffsetMap. 7133 SDValue SourceValue; 7134 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); 7135 int64_t FirstOffset = INT64_MAX; 7136 StoreSDNode *FirstStore = nullptr; 7137 Optional<BaseIndexOffset> Base; 7138 for (auto Store : Stores) { 7139 // All the stores store different parts of the CombinedValue. A truncate is 7140 // required to get the partial value. 7141 SDValue Trunc = Store->getValue(); 7142 if (Trunc.getOpcode() != ISD::TRUNCATE) 7143 return SDValue(); 7144 // Other than the first/last part, a shift operation is required to get the 7145 // offset. 7146 int64_t Offset = 0; 7147 SDValue WideVal = Trunc.getOperand(0); 7148 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && 7149 isa<ConstantSDNode>(WideVal.getOperand(1))) { 7150 // The shift amount must be a constant multiple of the narrow type. 7151 // It is translated to the offset address in the wide source value "y". 7152 // 7153 // x = srl y, ShiftAmtC 7154 // i8 z = trunc x 7155 // store z, ... 7156 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); 7157 if (ShiftAmtC % NarrowNumBits != 0) 7158 return SDValue(); 7159 7160 Offset = ShiftAmtC / NarrowNumBits; 7161 WideVal = WideVal.getOperand(0); 7162 } 7163 7164 // Stores must share the same source value with different offsets. 7165 // Truncate and extends should be stripped to get the single source value. 7166 if (!SourceValue) 7167 SourceValue = WideVal; 7168 else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) 7169 return SDValue(); 7170 else if (SourceValue.getValueType() != WideVT) { 7171 if (WideVal.getValueType() == WideVT || 7172 WideVal.getScalarValueSizeInBits() > 7173 SourceValue.getScalarValueSizeInBits()) 7174 SourceValue = WideVal; 7175 // Give up if the source value type is smaller than the store size. 7176 if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) 7177 return SDValue(); 7178 } 7179 7180 // Stores must share the same base address. 7181 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); 7182 int64_t ByteOffsetFromBase = 0; 7183 if (!Base) 7184 Base = Ptr; 7185 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7186 return SDValue(); 7187 7188 // Remember the first store. 7189 if (ByteOffsetFromBase < FirstOffset) { 7190 FirstStore = Store; 7191 FirstOffset = ByteOffsetFromBase; 7192 } 7193 // Map the offset in the store and the offset in the combined value, and 7194 // early return if it has been set before. 7195 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) 7196 return SDValue(); 7197 OffsetMap[Offset] = ByteOffsetFromBase; 7198 } 7199 7200 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7201 assert(FirstStore && "First store must be set"); 7202 7203 // Check that a store of the wide type is both allowed and fast on the target 7204 const DataLayout &Layout = DAG.getDataLayout(); 7205 bool Fast = false; 7206 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, 7207 *FirstStore->getMemOperand(), &Fast); 7208 if (!Allowed || !Fast) 7209 return SDValue(); 7210 7211 // Check if the pieces of the value are going to the expected places in memory 7212 // to merge the stores. 7213 auto checkOffsets = [&](bool MatchLittleEndian) { 7214 if (MatchLittleEndian) { 7215 for (unsigned i = 0; i != NumStores; ++i) 7216 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) 7217 return false; 7218 } else { // MatchBigEndian by reversing loop counter. 7219 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) 7220 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) 7221 return false; 7222 } 7223 return true; 7224 }; 7225 7226 // Check if the offsets line up for the native data layout of this target. 7227 bool NeedBswap = false; 7228 bool NeedRotate = false; 7229 if (!checkOffsets(Layout.isLittleEndian())) { 7230 // Special-case: check if byte offsets line up for the opposite endian. 7231 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) 7232 NeedBswap = true; 7233 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) 7234 NeedRotate = true; 7235 else 7236 return SDValue(); 7237 } 7238 7239 SDLoc DL(N); 7240 if (WideVT != SourceValue.getValueType()) { 7241 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && 7242 "Unexpected store value to merge"); 7243 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); 7244 } 7245 7246 // Before legalize we can introduce illegal bswaps/rotates which will be later 7247 // converted to an explicit bswap sequence. This way we end up with a single 7248 // store and byte shuffling instead of several stores and byte shuffling. 7249 if (NeedBswap) { 7250 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); 7251 } else if (NeedRotate) { 7252 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); 7253 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); 7254 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); 7255 } 7256 7257 SDValue NewStore = 7258 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), 7259 FirstStore->getPointerInfo(), FirstStore->getAlign()); 7260 7261 // Rely on other DAG combine rules to remove the other individual stores. 7262 DAG.ReplaceAllUsesWith(N, NewStore.getNode()); 7263 return NewStore; 7264 } 7265 7266 /// Match a pattern where a wide type scalar value is loaded by several narrow 7267 /// loads and combined by shifts and ors. Fold it into a single load or a load 7268 /// and a BSWAP if the targets supports it. 7269 /// 7270 /// Assuming little endian target: 7271 /// i8 *a = ... 7272 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 7273 /// => 7274 /// i32 val = *((i32)a) 7275 /// 7276 /// i8 *a = ... 7277 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 7278 /// => 7279 /// i32 val = BSWAP(*((i32)a)) 7280 /// 7281 /// TODO: This rule matches complex patterns with OR node roots and doesn't 7282 /// interact well with the worklist mechanism. When a part of the pattern is 7283 /// updated (e.g. one of the loads) its direct users are put into the worklist, 7284 /// but the root node of the pattern which triggers the load combine is not 7285 /// necessarily a direct user of the changed node. For example, once the address 7286 /// of t28 load is reassociated load combine won't be triggered: 7287 /// t25: i32 = add t4, Constant:i32<2> 7288 /// t26: i64 = sign_extend t25 7289 /// t27: i64 = add t2, t26 7290 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 7291 /// t29: i32 = zero_extend t28 7292 /// t32: i32 = shl t29, Constant:i8<8> 7293 /// t33: i32 = or t23, t32 7294 /// As a possible fix visitLoad can check if the load can be a part of a load 7295 /// combine pattern and add corresponding OR roots to the worklist. 7296 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { 7297 assert(N->getOpcode() == ISD::OR && 7298 "Can only match load combining against OR nodes"); 7299 7300 // Handles simple types only 7301 EVT VT = N->getValueType(0); 7302 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) 7303 return SDValue(); 7304 unsigned ByteWidth = VT.getSizeInBits() / 8; 7305 7306 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); 7307 auto MemoryByteOffset = [&] (ByteProvider P) { 7308 assert(P.isMemory() && "Must be a memory byte provider"); 7309 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); 7310 assert(LoadBitWidth % 8 == 0 && 7311 "can only analyze providers for individual bytes not bit"); 7312 unsigned LoadByteWidth = LoadBitWidth / 8; 7313 return IsBigEndianTarget 7314 ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) 7315 : littleEndianByteAt(LoadByteWidth, P.ByteOffset); 7316 }; 7317 7318 Optional<BaseIndexOffset> Base; 7319 SDValue Chain; 7320 7321 SmallPtrSet<LoadSDNode *, 8> Loads; 7322 Optional<ByteProvider> FirstByteProvider; 7323 int64_t FirstOffset = INT64_MAX; 7324 7325 // Check if all the bytes of the OR we are looking at are loaded from the same 7326 // base address. Collect bytes offsets from Base address in ByteOffsets. 7327 SmallVector<int64_t, 8> ByteOffsets(ByteWidth); 7328 unsigned ZeroExtendedBytes = 0; 7329 for (int i = ByteWidth - 1; i >= 0; --i) { 7330 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); 7331 if (!P) 7332 return SDValue(); 7333 7334 if (P->isConstantZero()) { 7335 // It's OK for the N most significant bytes to be 0, we can just 7336 // zero-extend the load. 7337 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) 7338 return SDValue(); 7339 continue; 7340 } 7341 assert(P->isMemory() && "provenance should either be memory or zero"); 7342 7343 LoadSDNode *L = P->Load; 7344 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && 7345 !L->isIndexed() && 7346 "Must be enforced by calculateByteProvider"); 7347 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); 7348 7349 // All loads must share the same chain 7350 SDValue LChain = L->getChain(); 7351 if (!Chain) 7352 Chain = LChain; 7353 else if (Chain != LChain) 7354 return SDValue(); 7355 7356 // Loads must share the same base address 7357 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); 7358 int64_t ByteOffsetFromBase = 0; 7359 if (!Base) 7360 Base = Ptr; 7361 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) 7362 return SDValue(); 7363 7364 // Calculate the offset of the current byte from the base address 7365 ByteOffsetFromBase += MemoryByteOffset(*P); 7366 ByteOffsets[i] = ByteOffsetFromBase; 7367 7368 // Remember the first byte load 7369 if (ByteOffsetFromBase < FirstOffset) { 7370 FirstByteProvider = P; 7371 FirstOffset = ByteOffsetFromBase; 7372 } 7373 7374 Loads.insert(L); 7375 } 7376 assert(!Loads.empty() && "All the bytes of the value must be loaded from " 7377 "memory, so there must be at least one load which produces the value"); 7378 assert(Base && "Base address of the accessed memory location must be set"); 7379 assert(FirstOffset != INT64_MAX && "First byte offset must be set"); 7380 7381 bool NeedsZext = ZeroExtendedBytes > 0; 7382 7383 EVT MemVT = 7384 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); 7385 7386 if (!MemVT.isSimple()) 7387 return SDValue(); 7388 7389 // Before legalize we can introduce too wide illegal loads which will be later 7390 // split into legal sized loads. This enables us to combine i64 load by i8 7391 // patterns to a couple of i32 loads on 32 bit targets. 7392 if (LegalOperations && 7393 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, 7394 MemVT)) 7395 return SDValue(); 7396 7397 // Check if the bytes of the OR we are looking at match with either big or 7398 // little endian value load 7399 Optional<bool> IsBigEndian = isBigEndian( 7400 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); 7401 if (!IsBigEndian.hasValue()) 7402 return SDValue(); 7403 7404 assert(FirstByteProvider && "must be set"); 7405 7406 // Ensure that the first byte is loaded from zero offset of the first load. 7407 // So the combined value can be loaded from the first load address. 7408 if (MemoryByteOffset(*FirstByteProvider) != 0) 7409 return SDValue(); 7410 LoadSDNode *FirstLoad = FirstByteProvider->Load; 7411 7412 // The node we are looking at matches with the pattern, check if we can 7413 // replace it with a single (possibly zero-extended) load and bswap + shift if 7414 // needed. 7415 7416 // If the load needs byte swap check if the target supports it 7417 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; 7418 7419 // Before legalize we can introduce illegal bswaps which will be later 7420 // converted to an explicit bswap sequence. This way we end up with a single 7421 // load and byte shuffling instead of several loads and byte shuffling. 7422 // We do not introduce illegal bswaps when zero-extending as this tends to 7423 // introduce too many arithmetic instructions. 7424 if (NeedsBswap && (LegalOperations || NeedsZext) && 7425 !TLI.isOperationLegal(ISD::BSWAP, VT)) 7426 return SDValue(); 7427 7428 // If we need to bswap and zero extend, we have to insert a shift. Check that 7429 // it is legal. 7430 if (NeedsBswap && NeedsZext && LegalOperations && 7431 !TLI.isOperationLegal(ISD::SHL, VT)) 7432 return SDValue(); 7433 7434 // Check that a load of the wide type is both allowed and fast on the target 7435 bool Fast = false; 7436 bool Allowed = 7437 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 7438 *FirstLoad->getMemOperand(), &Fast); 7439 if (!Allowed || !Fast) 7440 return SDValue(); 7441 7442 SDValue NewLoad = 7443 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, 7444 Chain, FirstLoad->getBasePtr(), 7445 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); 7446 7447 // Transfer chain users from old loads to the new load. 7448 for (LoadSDNode *L : Loads) 7449 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); 7450 7451 if (!NeedsBswap) 7452 return NewLoad; 7453 7454 SDValue ShiftedLoad = 7455 NeedsZext 7456 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, 7457 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, 7458 SDLoc(N), LegalOperations)) 7459 : NewLoad; 7460 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); 7461 } 7462 7463 // If the target has andn, bsl, or a similar bit-select instruction, 7464 // we want to unfold masked merge, with canonical pattern of: 7465 // | A | |B| 7466 // ((x ^ y) & m) ^ y 7467 // | D | 7468 // Into: 7469 // (x & m) | (y & ~m) 7470 // If y is a constant, and the 'andn' does not work with immediates, 7471 // we unfold into a different pattern: 7472 // ~(~x & m) & (m | y) 7473 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at 7474 // the very least that breaks andnpd / andnps patterns, and because those 7475 // patterns are simplified in IR and shouldn't be created in the DAG 7476 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { 7477 assert(N->getOpcode() == ISD::XOR); 7478 7479 // Don't touch 'not' (i.e. where y = -1). 7480 if (isAllOnesOrAllOnesSplat(N->getOperand(1))) 7481 return SDValue(); 7482 7483 EVT VT = N->getValueType(0); 7484 7485 // There are 3 commutable operators in the pattern, 7486 // so we have to deal with 8 possible variants of the basic pattern. 7487 SDValue X, Y, M; 7488 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { 7489 if (And.getOpcode() != ISD::AND || !And.hasOneUse()) 7490 return false; 7491 SDValue Xor = And.getOperand(XorIdx); 7492 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) 7493 return false; 7494 SDValue Xor0 = Xor.getOperand(0); 7495 SDValue Xor1 = Xor.getOperand(1); 7496 // Don't touch 'not' (i.e. where y = -1). 7497 if (isAllOnesOrAllOnesSplat(Xor1)) 7498 return false; 7499 if (Other == Xor0) 7500 std::swap(Xor0, Xor1); 7501 if (Other != Xor1) 7502 return false; 7503 X = Xor0; 7504 Y = Xor1; 7505 M = And.getOperand(XorIdx ? 0 : 1); 7506 return true; 7507 }; 7508 7509 SDValue N0 = N->getOperand(0); 7510 SDValue N1 = N->getOperand(1); 7511 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && 7512 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) 7513 return SDValue(); 7514 7515 // Don't do anything if the mask is constant. This should not be reachable. 7516 // InstCombine should have already unfolded this pattern, and DAGCombiner 7517 // probably shouldn't produce it, too. 7518 if (isa<ConstantSDNode>(M.getNode())) 7519 return SDValue(); 7520 7521 // We can transform if the target has AndNot 7522 if (!TLI.hasAndNot(M)) 7523 return SDValue(); 7524 7525 SDLoc DL(N); 7526 7527 // If Y is a constant, check that 'andn' works with immediates. 7528 if (!TLI.hasAndNot(Y)) { 7529 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); 7530 // If not, we need to do a bit more work to make sure andn is still used. 7531 SDValue NotX = DAG.getNOT(DL, X, VT); 7532 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); 7533 SDValue NotLHS = DAG.getNOT(DL, LHS, VT); 7534 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); 7535 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); 7536 } 7537 7538 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); 7539 SDValue NotM = DAG.getNOT(DL, M, VT); 7540 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); 7541 7542 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); 7543 } 7544 7545 SDValue DAGCombiner::visitXOR(SDNode *N) { 7546 SDValue N0 = N->getOperand(0); 7547 SDValue N1 = N->getOperand(1); 7548 EVT VT = N0.getValueType(); 7549 7550 // fold vector ops 7551 if (VT.isVector()) { 7552 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 7553 return FoldedVOp; 7554 7555 // fold (xor x, 0) -> x, vector edition 7556 if (ISD::isBuildVectorAllZeros(N0.getNode())) 7557 return N1; 7558 if (ISD::isBuildVectorAllZeros(N1.getNode())) 7559 return N0; 7560 } 7561 7562 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 7563 SDLoc DL(N); 7564 if (N0.isUndef() && N1.isUndef()) 7565 return DAG.getConstant(0, DL, VT); 7566 7567 // fold (xor x, undef) -> undef 7568 if (N0.isUndef()) 7569 return N0; 7570 if (N1.isUndef()) 7571 return N1; 7572 7573 // fold (xor c1, c2) -> c1^c2 7574 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) 7575 return C; 7576 7577 // canonicalize constant to RHS 7578 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 7579 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 7580 return DAG.getNode(ISD::XOR, DL, VT, N1, N0); 7581 7582 // fold (xor x, 0) -> x 7583 if (isNullConstant(N1)) 7584 return N0; 7585 7586 if (SDValue NewSel = foldBinOpIntoSelect(N)) 7587 return NewSel; 7588 7589 // reassociate xor 7590 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) 7591 return RXOR; 7592 7593 // fold !(x cc y) -> (x !cc y) 7594 unsigned N0Opcode = N0.getOpcode(); 7595 SDValue LHS, RHS, CC; 7596 if (TLI.isConstTrueVal(N1.getNode()) && 7597 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) { 7598 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 7599 LHS.getValueType()); 7600 if (!LegalOperations || 7601 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 7602 switch (N0Opcode) { 7603 default: 7604 llvm_unreachable("Unhandled SetCC Equivalent!"); 7605 case ISD::SETCC: 7606 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); 7607 case ISD::SELECT_CC: 7608 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), 7609 N0.getOperand(3), NotCC); 7610 case ISD::STRICT_FSETCC: 7611 case ISD::STRICT_FSETCCS: { 7612 if (N0.hasOneUse()) { 7613 // FIXME Can we handle multiple uses? Could we token factor the chain 7614 // results from the new/old setcc? 7615 SDValue SetCC = 7616 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, 7617 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); 7618 CombineTo(N, SetCC); 7619 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); 7620 recursivelyDeleteUnusedNodes(N0.getNode()); 7621 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7622 } 7623 break; 7624 } 7625 } 7626 } 7627 } 7628 7629 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 7630 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && 7631 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 7632 SDValue V = N0.getOperand(0); 7633 SDLoc DL0(N0); 7634 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, 7635 DAG.getConstant(1, DL0, V.getValueType())); 7636 AddToWorklist(V.getNode()); 7637 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); 7638 } 7639 7640 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 7641 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && 7642 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7643 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7644 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { 7645 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7646 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7647 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7648 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7649 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7650 } 7651 } 7652 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 7653 if (isAllOnesConstant(N1) && N0.hasOneUse() && 7654 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { 7655 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); 7656 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { 7657 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; 7658 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 7659 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 7660 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); 7661 return DAG.getNode(NewOpcode, DL, VT, N00, N01); 7662 } 7663 } 7664 7665 // fold (not (neg x)) -> (add X, -1) 7666 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if 7667 // Y is a constant or the subtract has a single use. 7668 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && 7669 isNullConstant(N0.getOperand(0))) { 7670 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), 7671 DAG.getAllOnesConstant(DL, VT)); 7672 } 7673 7674 // fold (not (add X, -1)) -> (neg X) 7675 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && 7676 isAllOnesOrAllOnesSplat(N0.getOperand(1))) { 7677 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 7678 N0.getOperand(0)); 7679 } 7680 7681 // fold (xor (and x, y), y) -> (and (not x), y) 7682 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { 7683 SDValue X = N0.getOperand(0); 7684 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 7685 AddToWorklist(NotX.getNode()); 7686 return DAG.getNode(ISD::AND, DL, VT, NotX, N1); 7687 } 7688 7689 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { 7690 ConstantSDNode *XorC = isConstOrConstSplat(N1); 7691 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); 7692 unsigned BitWidth = VT.getScalarSizeInBits(); 7693 if (XorC && ShiftC) { 7694 // Don't crash on an oversized shift. We can not guarantee that a bogus 7695 // shift has been simplified to undef. 7696 uint64_t ShiftAmt = ShiftC->getLimitedValue(); 7697 if (ShiftAmt < BitWidth) { 7698 APInt Ones = APInt::getAllOnesValue(BitWidth); 7699 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); 7700 if (XorC->getAPIntValue() == Ones) { 7701 // If the xor constant is a shifted -1, do a 'not' before the shift: 7702 // xor (X << ShiftC), XorC --> (not X) << ShiftC 7703 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 7704 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); 7705 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); 7706 } 7707 } 7708 } 7709 } 7710 7711 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) 7712 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { 7713 SDValue A = N0Opcode == ISD::ADD ? N0 : N1; 7714 SDValue S = N0Opcode == ISD::SRA ? N0 : N1; 7715 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { 7716 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); 7717 SDValue S0 = S.getOperand(0); 7718 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) 7719 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) 7720 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) 7721 return DAG.getNode(ISD::ABS, DL, VT, S0); 7722 } 7723 } 7724 7725 // fold (xor x, x) -> 0 7726 if (N0 == N1) 7727 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); 7728 7729 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 7730 // Here is a concrete example of this equivalence: 7731 // i16 x == 14 7732 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 7733 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 7734 // 7735 // => 7736 // 7737 // i16 ~1 == 0b1111111111111110 7738 // i16 rol(~1, 14) == 0b1011111111111111 7739 // 7740 // Some additional tips to help conceptualize this transform: 7741 // - Try to see the operation as placing a single zero in a value of all ones. 7742 // - There exists no value for x which would allow the result to contain zero. 7743 // - Values of x larger than the bitwidth are undefined and do not require a 7744 // consistent result. 7745 // - Pushing the zero left requires shifting one bits in from the right. 7746 // A rotate left of ~1 is a nice way of achieving the desired result. 7747 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && 7748 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 7749 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 7750 N0.getOperand(1)); 7751 } 7752 7753 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 7754 if (N0Opcode == N1.getOpcode()) 7755 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) 7756 return V; 7757 7758 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable 7759 if (SDValue MM = unfoldMaskedMerge(N)) 7760 return MM; 7761 7762 // Simplify the expression using non-local knowledge. 7763 if (SimplifyDemandedBits(SDValue(N, 0))) 7764 return SDValue(N, 0); 7765 7766 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) 7767 return Combined; 7768 7769 return SDValue(); 7770 } 7771 7772 /// If we have a shift-by-constant of a bitwise logic op that itself has a 7773 /// shift-by-constant operand with identical opcode, we may be able to convert 7774 /// that into 2 independent shifts followed by the logic op. This is a 7775 /// throughput improvement. 7776 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { 7777 // Match a one-use bitwise logic op. 7778 SDValue LogicOp = Shift->getOperand(0); 7779 if (!LogicOp.hasOneUse()) 7780 return SDValue(); 7781 7782 unsigned LogicOpcode = LogicOp.getOpcode(); 7783 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && 7784 LogicOpcode != ISD::XOR) 7785 return SDValue(); 7786 7787 // Find a matching one-use shift by constant. 7788 unsigned ShiftOpcode = Shift->getOpcode(); 7789 SDValue C1 = Shift->getOperand(1); 7790 ConstantSDNode *C1Node = isConstOrConstSplat(C1); 7791 assert(C1Node && "Expected a shift with constant operand"); 7792 const APInt &C1Val = C1Node->getAPIntValue(); 7793 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, 7794 const APInt *&ShiftAmtVal) { 7795 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) 7796 return false; 7797 7798 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); 7799 if (!ShiftCNode) 7800 return false; 7801 7802 // Capture the shifted operand and shift amount value. 7803 ShiftOp = V.getOperand(0); 7804 ShiftAmtVal = &ShiftCNode->getAPIntValue(); 7805 7806 // Shift amount types do not have to match their operand type, so check that 7807 // the constants are the same width. 7808 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) 7809 return false; 7810 7811 // The fold is not valid if the sum of the shift values exceeds bitwidth. 7812 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) 7813 return false; 7814 7815 return true; 7816 }; 7817 7818 // Logic ops are commutative, so check each operand for a match. 7819 SDValue X, Y; 7820 const APInt *C0Val; 7821 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) 7822 Y = LogicOp.getOperand(1); 7823 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) 7824 Y = LogicOp.getOperand(0); 7825 else 7826 return SDValue(); 7827 7828 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 7829 SDLoc DL(Shift); 7830 EVT VT = Shift->getValueType(0); 7831 EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); 7832 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); 7833 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); 7834 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); 7835 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); 7836 } 7837 7838 /// Handle transforms common to the three shifts, when the shift amount is a 7839 /// constant. 7840 /// We are looking for: (shift being one of shl/sra/srl) 7841 /// shift (binop X, C0), C1 7842 /// And want to transform into: 7843 /// binop (shift X, C1), (shift C0, C1) 7844 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { 7845 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); 7846 7847 // Do not turn a 'not' into a regular xor. 7848 if (isBitwiseNot(N->getOperand(0))) 7849 return SDValue(); 7850 7851 // The inner binop must be one-use, since we want to replace it. 7852 SDValue LHS = N->getOperand(0); 7853 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) 7854 return SDValue(); 7855 7856 // TODO: This is limited to early combining because it may reveal regressions 7857 // otherwise. But since we just checked a target hook to see if this is 7858 // desirable, that should have filtered out cases where this interferes 7859 // with some other pattern matching. 7860 if (!LegalTypes) 7861 if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) 7862 return R; 7863 7864 // We want to pull some binops through shifts, so that we have (and (shift)) 7865 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 7866 // thing happens with address calculations, so it's important to canonicalize 7867 // it. 7868 switch (LHS.getOpcode()) { 7869 default: 7870 return SDValue(); 7871 case ISD::OR: 7872 case ISD::XOR: 7873 case ISD::AND: 7874 break; 7875 case ISD::ADD: 7876 if (N->getOpcode() != ISD::SHL) 7877 return SDValue(); // only shl(add) not sr[al](add). 7878 break; 7879 } 7880 7881 // We require the RHS of the binop to be a constant and not opaque as well. 7882 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); 7883 if (!BinOpCst) 7884 return SDValue(); 7885 7886 // FIXME: disable this unless the input to the binop is a shift by a constant 7887 // or is copy/select. Enable this in other cases when figure out it's exactly 7888 // profitable. 7889 SDValue BinOpLHSVal = LHS.getOperand(0); 7890 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || 7891 BinOpLHSVal.getOpcode() == ISD::SRA || 7892 BinOpLHSVal.getOpcode() == ISD::SRL) && 7893 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); 7894 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || 7895 BinOpLHSVal.getOpcode() == ISD::SELECT; 7896 7897 if (!IsShiftByConstant && !IsCopyOrSelect) 7898 return SDValue(); 7899 7900 if (IsCopyOrSelect && N->hasOneUse()) 7901 return SDValue(); 7902 7903 // Fold the constants, shifting the binop RHS by the shift amount. 7904 SDLoc DL(N); 7905 EVT VT = N->getValueType(0); 7906 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), 7907 N->getOperand(1)); 7908 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 7909 7910 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), 7911 N->getOperand(1)); 7912 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); 7913 } 7914 7915 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 7916 assert(N->getOpcode() == ISD::TRUNCATE); 7917 assert(N->getOperand(0).getOpcode() == ISD::AND); 7918 7919 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 7920 EVT TruncVT = N->getValueType(0); 7921 if (N->hasOneUse() && N->getOperand(0).hasOneUse() && 7922 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { 7923 SDValue N01 = N->getOperand(0).getOperand(1); 7924 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { 7925 SDLoc DL(N); 7926 SDValue N00 = N->getOperand(0).getOperand(0); 7927 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); 7928 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); 7929 AddToWorklist(Trunc00.getNode()); 7930 AddToWorklist(Trunc01.getNode()); 7931 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); 7932 } 7933 } 7934 7935 return SDValue(); 7936 } 7937 7938 SDValue DAGCombiner::visitRotate(SDNode *N) { 7939 SDLoc dl(N); 7940 SDValue N0 = N->getOperand(0); 7941 SDValue N1 = N->getOperand(1); 7942 EVT VT = N->getValueType(0); 7943 unsigned Bitsize = VT.getScalarSizeInBits(); 7944 7945 // fold (rot x, 0) -> x 7946 if (isNullOrNullSplat(N1)) 7947 return N0; 7948 7949 // fold (rot x, c) -> x iff (c % BitSize) == 0 7950 if (isPowerOf2_32(Bitsize) && Bitsize > 1) { 7951 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); 7952 if (DAG.MaskedValueIsZero(N1, ModuloMask)) 7953 return N0; 7954 } 7955 7956 // fold (rot x, c) -> (rot x, c % BitSize) 7957 bool OutOfRange = false; 7958 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { 7959 OutOfRange |= C->getAPIntValue().uge(Bitsize); 7960 return true; 7961 }; 7962 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { 7963 EVT AmtVT = N1.getValueType(); 7964 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); 7965 if (SDValue Amt = 7966 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) 7967 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); 7968 } 7969 7970 // rot i16 X, 8 --> bswap X 7971 auto *RotAmtC = isConstOrConstSplat(N1); 7972 if (RotAmtC && RotAmtC->getAPIntValue() == 8 && 7973 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) 7974 return DAG.getNode(ISD::BSWAP, dl, VT, N0); 7975 7976 // Simplify the operands using demanded-bits information. 7977 if (SimplifyDemandedBits(SDValue(N, 0))) 7978 return SDValue(N, 0); 7979 7980 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 7981 if (N1.getOpcode() == ISD::TRUNCATE && 7982 N1.getOperand(0).getOpcode() == ISD::AND) { 7983 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 7984 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); 7985 } 7986 7987 unsigned NextOp = N0.getOpcode(); 7988 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) 7989 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { 7990 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); 7991 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); 7992 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { 7993 EVT ShiftVT = C1->getValueType(0); 7994 bool SameSide = (N->getOpcode() == NextOp); 7995 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; 7996 if (SDValue CombinedShift = DAG.FoldConstantArithmetic( 7997 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { 7998 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); 7999 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( 8000 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); 8001 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), 8002 CombinedShiftNorm); 8003 } 8004 } 8005 } 8006 return SDValue(); 8007 } 8008 8009 SDValue DAGCombiner::visitSHL(SDNode *N) { 8010 SDValue N0 = N->getOperand(0); 8011 SDValue N1 = N->getOperand(1); 8012 if (SDValue V = DAG.simplifyShift(N0, N1)) 8013 return V; 8014 8015 EVT VT = N0.getValueType(); 8016 EVT ShiftVT = N1.getValueType(); 8017 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8018 8019 // fold vector ops 8020 if (VT.isVector()) { 8021 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8022 return FoldedVOp; 8023 8024 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 8025 // If setcc produces all-one true value then: 8026 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 8027 if (N1CV && N1CV->isConstant()) { 8028 if (N0.getOpcode() == ISD::AND) { 8029 SDValue N00 = N0->getOperand(0); 8030 SDValue N01 = N0->getOperand(1); 8031 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 8032 8033 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 8034 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 8035 TargetLowering::ZeroOrNegativeOneBooleanContent) { 8036 if (SDValue C = 8037 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) 8038 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 8039 } 8040 } 8041 } 8042 } 8043 8044 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8045 8046 // fold (shl c1, c2) -> c1<<c2 8047 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) 8048 return C; 8049 8050 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8051 return NewSel; 8052 8053 // if (shl x, c) is known to be zero, return 0 8054 if (DAG.MaskedValueIsZero(SDValue(N, 0), 8055 APInt::getAllOnesValue(OpSizeInBits))) 8056 return DAG.getConstant(0, SDLoc(N), VT); 8057 8058 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 8059 if (N1.getOpcode() == ISD::TRUNCATE && 8060 N1.getOperand(0).getOpcode() == ISD::AND) { 8061 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8062 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 8063 } 8064 8065 if (SimplifyDemandedBits(SDValue(N, 0))) 8066 return SDValue(N, 0); 8067 8068 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 8069 if (N0.getOpcode() == ISD::SHL) { 8070 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8071 ConstantSDNode *RHS) { 8072 APInt c1 = LHS->getAPIntValue(); 8073 APInt c2 = RHS->getAPIntValue(); 8074 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8075 return (c1 + c2).uge(OpSizeInBits); 8076 }; 8077 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8078 return DAG.getConstant(0, SDLoc(N), VT); 8079 8080 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8081 ConstantSDNode *RHS) { 8082 APInt c1 = LHS->getAPIntValue(); 8083 APInt c2 = RHS->getAPIntValue(); 8084 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8085 return (c1 + c2).ult(OpSizeInBits); 8086 }; 8087 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8088 SDLoc DL(N); 8089 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8090 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); 8091 } 8092 } 8093 8094 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) 8095 // For this to be valid, the second form must not preserve any of the bits 8096 // that are shifted out by the inner shift in the first form. This means 8097 // the outer shift size must be >= the number of bits added by the ext. 8098 // As a corollary, we don't care what kind of ext it is. 8099 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 8100 N0.getOpcode() == ISD::ANY_EXTEND || 8101 N0.getOpcode() == ISD::SIGN_EXTEND) && 8102 N0.getOperand(0).getOpcode() == ISD::SHL) { 8103 SDValue N0Op0 = N0.getOperand(0); 8104 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8105 EVT InnerVT = N0Op0.getValueType(); 8106 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); 8107 8108 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8109 ConstantSDNode *RHS) { 8110 APInt c1 = LHS->getAPIntValue(); 8111 APInt c2 = RHS->getAPIntValue(); 8112 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8113 return c2.uge(OpSizeInBits - InnerBitwidth) && 8114 (c1 + c2).uge(OpSizeInBits); 8115 }; 8116 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, 8117 /*AllowUndefs*/ false, 8118 /*AllowTypeMismatch*/ true)) 8119 return DAG.getConstant(0, SDLoc(N), VT); 8120 8121 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, 8122 ConstantSDNode *RHS) { 8123 APInt c1 = LHS->getAPIntValue(); 8124 APInt c2 = RHS->getAPIntValue(); 8125 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8126 return c2.uge(OpSizeInBits - InnerBitwidth) && 8127 (c1 + c2).ult(OpSizeInBits); 8128 }; 8129 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, 8130 /*AllowUndefs*/ false, 8131 /*AllowTypeMismatch*/ true)) { 8132 SDLoc DL(N); 8133 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); 8134 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); 8135 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); 8136 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); 8137 } 8138 } 8139 8140 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 8141 // Only fold this if the inner zext has no other uses to avoid increasing 8142 // the total number of instructions. 8143 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 8144 N0.getOperand(0).getOpcode() == ISD::SRL) { 8145 SDValue N0Op0 = N0.getOperand(0); 8146 SDValue InnerShiftAmt = N0Op0.getOperand(1); 8147 8148 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8149 APInt c1 = LHS->getAPIntValue(); 8150 APInt c2 = RHS->getAPIntValue(); 8151 zeroExtendToMatch(c1, c2); 8152 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); 8153 }; 8154 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, 8155 /*AllowUndefs*/ false, 8156 /*AllowTypeMismatch*/ true)) { 8157 SDLoc DL(N); 8158 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); 8159 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); 8160 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); 8161 AddToWorklist(NewSHL.getNode()); 8162 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 8163 } 8164 } 8165 8166 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 8167 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 8168 // TODO - support non-uniform vector shift amounts. 8169 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 8170 N0->getFlags().hasExact()) { 8171 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8172 uint64_t C1 = N0C1->getZExtValue(); 8173 uint64_t C2 = N1C->getZExtValue(); 8174 SDLoc DL(N); 8175 if (C1 <= C2) 8176 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8177 DAG.getConstant(C2 - C1, DL, ShiftVT)); 8178 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 8179 DAG.getConstant(C1 - C2, DL, ShiftVT)); 8180 } 8181 } 8182 8183 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 8184 // (and (srl x, (sub c1, c2), MASK) 8185 // Only fold this if the inner shift has no other uses -- if it does, folding 8186 // this will increase the total number of instructions. 8187 // TODO - drop hasOneUse requirement if c1 == c2? 8188 // TODO - support non-uniform vector shift amounts. 8189 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && 8190 TLI.shouldFoldConstantShiftPairToMask(N, Level)) { 8191 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 8192 if (N0C1->getAPIntValue().ult(OpSizeInBits)) { 8193 uint64_t c1 = N0C1->getZExtValue(); 8194 uint64_t c2 = N1C->getZExtValue(); 8195 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 8196 SDValue Shift; 8197 if (c2 > c1) { 8198 Mask <<= c2 - c1; 8199 SDLoc DL(N); 8200 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 8201 DAG.getConstant(c2 - c1, DL, ShiftVT)); 8202 } else { 8203 Mask.lshrInPlace(c1 - c2); 8204 SDLoc DL(N); 8205 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 8206 DAG.getConstant(c1 - c2, DL, ShiftVT)); 8207 } 8208 SDLoc DL(N0); 8209 return DAG.getNode(ISD::AND, DL, VT, Shift, 8210 DAG.getConstant(Mask, DL, VT)); 8211 } 8212 } 8213 } 8214 8215 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 8216 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && 8217 isConstantOrConstantVector(N1, /* No Opaques */ true)) { 8218 SDLoc DL(N); 8219 SDValue AllBits = DAG.getAllOnesConstant(DL, VT); 8220 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); 8221 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); 8222 } 8223 8224 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8225 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8226 // Variant of version done on multiply, except mul by a power of 2 is turned 8227 // into a shift. 8228 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && 8229 N0.getNode()->hasOneUse() && 8230 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8231 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && 8232 TLI.isDesirableToCommuteWithShift(N, Level)) { 8233 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 8234 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8235 AddToWorklist(Shl0.getNode()); 8236 AddToWorklist(Shl1.getNode()); 8237 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); 8238 } 8239 8240 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 8241 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && 8242 isConstantOrConstantVector(N1, /* No Opaques */ true) && 8243 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { 8244 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 8245 if (isConstantOrConstantVector(Shl)) 8246 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); 8247 } 8248 8249 if (N1C && !N1C->isOpaque()) 8250 if (SDValue NewSHL = visitShiftByConstant(N)) 8251 return NewSHL; 8252 8253 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). 8254 if (N0.getOpcode() == ISD::VSCALE) 8255 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { 8256 const APInt &C0 = N0.getConstantOperandAPInt(0); 8257 const APInt &C1 = NC1->getAPIntValue(); 8258 return DAG.getVScale(SDLoc(N), VT, C0 << C1); 8259 } 8260 8261 return SDValue(); 8262 } 8263 8264 // Transform a right shift of a multiply into a multiply-high. 8265 // Examples: 8266 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) 8267 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) 8268 static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, 8269 const TargetLowering &TLI) { 8270 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 8271 "SRL or SRA node is required here!"); 8272 8273 // Check the shift amount. Proceed with the transformation if the shift 8274 // amount is constant. 8275 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); 8276 if (!ShiftAmtSrc) 8277 return SDValue(); 8278 8279 SDLoc DL(N); 8280 8281 // The operation feeding into the shift must be a multiply. 8282 SDValue ShiftOperand = N->getOperand(0); 8283 if (ShiftOperand.getOpcode() != ISD::MUL) 8284 return SDValue(); 8285 8286 // Both operands must be equivalent extend nodes. 8287 SDValue LeftOp = ShiftOperand.getOperand(0); 8288 SDValue RightOp = ShiftOperand.getOperand(1); 8289 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; 8290 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; 8291 8292 if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode()) 8293 return SDValue(); 8294 8295 EVT WideVT1 = LeftOp.getValueType(); 8296 EVT WideVT2 = RightOp.getValueType(); 8297 (void)WideVT2; 8298 // Proceed with the transformation if the wide types match. 8299 assert((WideVT1 == WideVT2) && 8300 "Cannot have a multiply node with two different operand types."); 8301 8302 EVT NarrowVT = LeftOp.getOperand(0).getValueType(); 8303 // Check that the two extend nodes are the same type. 8304 if (NarrowVT != RightOp.getOperand(0).getValueType()) 8305 return SDValue(); 8306 8307 // Proceed with the transformation if the wide type is twice as large 8308 // as the narrow type. 8309 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); 8310 if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize) 8311 return SDValue(); 8312 8313 // Check the shift amount with the narrow type size. 8314 // Proceed with the transformation if the shift amount is the width 8315 // of the narrow type. 8316 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); 8317 if (ShiftAmt != NarrowVTSize) 8318 return SDValue(); 8319 8320 // If the operation feeding into the MUL is a sign extend (sext), 8321 // we use mulhs. Othewise, zero extends (zext) use mulhu. 8322 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; 8323 8324 // Combine to mulh if mulh is legal/custom for the narrow type on the target. 8325 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) 8326 return SDValue(); 8327 8328 SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), 8329 RightOp.getOperand(0)); 8330 return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1) 8331 : DAG.getZExtOrTrunc(Result, DL, WideVT1)); 8332 } 8333 8334 SDValue DAGCombiner::visitSRA(SDNode *N) { 8335 SDValue N0 = N->getOperand(0); 8336 SDValue N1 = N->getOperand(1); 8337 if (SDValue V = DAG.simplifyShift(N0, N1)) 8338 return V; 8339 8340 EVT VT = N0.getValueType(); 8341 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8342 8343 // Arithmetic shifting an all-sign-bit value is a no-op. 8344 // fold (sra 0, x) -> 0 8345 // fold (sra -1, x) -> -1 8346 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) 8347 return N0; 8348 8349 // fold vector ops 8350 if (VT.isVector()) 8351 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8352 return FoldedVOp; 8353 8354 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8355 8356 // fold (sra c1, c2) -> (sra c1, c2) 8357 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) 8358 return C; 8359 8360 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8361 return NewSel; 8362 8363 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 8364 // sext_inreg. 8365 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 8366 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 8367 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 8368 if (VT.isVector()) 8369 ExtVT = EVT::getVectorVT(*DAG.getContext(), 8370 ExtVT, VT.getVectorNumElements()); 8371 if (!LegalOperations || 8372 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == 8373 TargetLowering::Legal) 8374 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 8375 N0.getOperand(0), DAG.getValueType(ExtVT)); 8376 } 8377 8378 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 8379 // clamp (add c1, c2) to max shift. 8380 if (N0.getOpcode() == ISD::SRA) { 8381 SDLoc DL(N); 8382 EVT ShiftVT = N1.getValueType(); 8383 EVT ShiftSVT = ShiftVT.getScalarType(); 8384 SmallVector<SDValue, 16> ShiftValues; 8385 8386 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { 8387 APInt c1 = LHS->getAPIntValue(); 8388 APInt c2 = RHS->getAPIntValue(); 8389 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8390 APInt Sum = c1 + c2; 8391 unsigned ShiftSum = 8392 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); 8393 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); 8394 return true; 8395 }; 8396 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { 8397 SDValue ShiftValue; 8398 if (VT.isVector()) 8399 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); 8400 else 8401 ShiftValue = ShiftValues[0]; 8402 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); 8403 } 8404 } 8405 8406 // fold (sra (shl X, m), (sub result_size, n)) 8407 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 8408 // result_size - n != m. 8409 // If truncate is free for the target sext(shl) is likely to result in better 8410 // code. 8411 if (N0.getOpcode() == ISD::SHL && N1C) { 8412 // Get the two constanst of the shifts, CN0 = m, CN = n. 8413 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 8414 if (N01C) { 8415 LLVMContext &Ctx = *DAG.getContext(); 8416 // Determine what the truncate's result bitsize and type would be. 8417 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 8418 8419 if (VT.isVector()) 8420 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 8421 8422 // Determine the residual right-shift amount. 8423 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 8424 8425 // If the shift is not a no-op (in which case this should be just a sign 8426 // extend already), the truncated to type is legal, sign_extend is legal 8427 // on that type, and the truncate to that type is both legal and free, 8428 // perform the transform. 8429 if ((ShiftAmt > 0) && 8430 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 8431 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 8432 TLI.isTruncateFree(VT, TruncVT)) { 8433 SDLoc DL(N); 8434 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 8435 getShiftAmountTy(N0.getOperand(0).getValueType())); 8436 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 8437 N0.getOperand(0), Amt); 8438 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 8439 Shift); 8440 return DAG.getNode(ISD::SIGN_EXTEND, DL, 8441 N->getValueType(0), Trunc); 8442 } 8443 } 8444 } 8445 8446 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. 8447 // sra (add (shl X, N1C), AddC), N1C --> 8448 // sext (add (trunc X to (width - N1C)), AddC') 8449 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && 8450 N0.getOperand(0).getOpcode() == ISD::SHL && 8451 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { 8452 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { 8453 SDValue Shl = N0.getOperand(0); 8454 // Determine what the truncate's type would be and ask the target if that 8455 // is a free operation. 8456 LLVMContext &Ctx = *DAG.getContext(); 8457 unsigned ShiftAmt = N1C->getZExtValue(); 8458 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); 8459 if (VT.isVector()) 8460 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 8461 8462 // TODO: The simple type check probably belongs in the default hook 8463 // implementation and/or target-specific overrides (because 8464 // non-simple types likely require masking when legalized), but that 8465 // restriction may conflict with other transforms. 8466 if (TruncVT.isSimple() && isTypeLegal(TruncVT) && 8467 TLI.isTruncateFree(VT, TruncVT)) { 8468 SDLoc DL(N); 8469 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); 8470 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). 8471 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); 8472 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); 8473 return DAG.getSExtOrTrunc(Add, DL, VT); 8474 } 8475 } 8476 } 8477 8478 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 8479 if (N1.getOpcode() == ISD::TRUNCATE && 8480 N1.getOperand(0).getOpcode() == ISD::AND) { 8481 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8482 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 8483 } 8484 8485 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8486 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 8487 // if c1 is equal to the number of bits the trunc removes 8488 // TODO - support non-uniform vector shift amounts. 8489 if (N0.getOpcode() == ISD::TRUNCATE && 8490 (N0.getOperand(0).getOpcode() == ISD::SRL || 8491 N0.getOperand(0).getOpcode() == ISD::SRA) && 8492 N0.getOperand(0).hasOneUse() && 8493 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { 8494 SDValue N0Op0 = N0.getOperand(0); 8495 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 8496 EVT LargeVT = N0Op0.getValueType(); 8497 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; 8498 if (LargeShift->getAPIntValue() == TruncBits) { 8499 SDLoc DL(N); 8500 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, 8501 getShiftAmountTy(LargeVT)); 8502 SDValue SRA = 8503 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); 8504 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 8505 } 8506 } 8507 } 8508 8509 // Simplify, based on bits shifted out of the LHS. 8510 if (SimplifyDemandedBits(SDValue(N, 0))) 8511 return SDValue(N, 0); 8512 8513 // If the sign bit is known to be zero, switch this to a SRL. 8514 if (DAG.SignBitIsZero(N0)) 8515 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 8516 8517 if (N1C && !N1C->isOpaque()) 8518 if (SDValue NewSRA = visitShiftByConstant(N)) 8519 return NewSRA; 8520 8521 // Try to transform this shift into a multiply-high if 8522 // it matches the appropriate pattern detected in combineShiftToMULH. 8523 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8524 return MULH; 8525 8526 return SDValue(); 8527 } 8528 8529 SDValue DAGCombiner::visitSRL(SDNode *N) { 8530 SDValue N0 = N->getOperand(0); 8531 SDValue N1 = N->getOperand(1); 8532 if (SDValue V = DAG.simplifyShift(N0, N1)) 8533 return V; 8534 8535 EVT VT = N0.getValueType(); 8536 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 8537 8538 // fold vector ops 8539 if (VT.isVector()) 8540 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8541 return FoldedVOp; 8542 8543 ConstantSDNode *N1C = isConstOrConstSplat(N1); 8544 8545 // fold (srl c1, c2) -> c1 >>u c2 8546 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) 8547 return C; 8548 8549 if (SDValue NewSel = foldBinOpIntoSelect(N)) 8550 return NewSel; 8551 8552 // if (srl x, c) is known to be zero, return 0 8553 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 8554 APInt::getAllOnesValue(OpSizeInBits))) 8555 return DAG.getConstant(0, SDLoc(N), VT); 8556 8557 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 8558 if (N0.getOpcode() == ISD::SRL) { 8559 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, 8560 ConstantSDNode *RHS) { 8561 APInt c1 = LHS->getAPIntValue(); 8562 APInt c2 = RHS->getAPIntValue(); 8563 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8564 return (c1 + c2).uge(OpSizeInBits); 8565 }; 8566 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) 8567 return DAG.getConstant(0, SDLoc(N), VT); 8568 8569 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, 8570 ConstantSDNode *RHS) { 8571 APInt c1 = LHS->getAPIntValue(); 8572 APInt c2 = RHS->getAPIntValue(); 8573 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); 8574 return (c1 + c2).ult(OpSizeInBits); 8575 }; 8576 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { 8577 SDLoc DL(N); 8578 EVT ShiftVT = N1.getValueType(); 8579 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); 8580 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); 8581 } 8582 } 8583 8584 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 8585 N0.getOperand(0).getOpcode() == ISD::SRL) { 8586 SDValue InnerShift = N0.getOperand(0); 8587 // TODO - support non-uniform vector shift amounts. 8588 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { 8589 uint64_t c1 = N001C->getZExtValue(); 8590 uint64_t c2 = N1C->getZExtValue(); 8591 EVT InnerShiftVT = InnerShift.getValueType(); 8592 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); 8593 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 8594 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) 8595 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 8596 if (c1 + OpSizeInBits == InnerShiftSize) { 8597 SDLoc DL(N); 8598 if (c1 + c2 >= InnerShiftSize) 8599 return DAG.getConstant(0, DL, VT); 8600 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8601 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8602 InnerShift.getOperand(0), NewShiftAmt); 8603 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); 8604 } 8605 // In the more general case, we can clear the high bits after the shift: 8606 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) 8607 if (N0.hasOneUse() && InnerShift.hasOneUse() && 8608 c1 + c2 < InnerShiftSize) { 8609 SDLoc DL(N); 8610 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); 8611 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, 8612 InnerShift.getOperand(0), NewShiftAmt); 8613 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, 8614 OpSizeInBits - c2), 8615 DL, InnerShiftVT); 8616 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); 8617 return DAG.getNode(ISD::TRUNCATE, DL, VT, And); 8618 } 8619 } 8620 } 8621 8622 // fold (srl (shl x, c), c) -> (and x, cst2) 8623 // TODO - (srl (shl x, c1), c2). 8624 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && 8625 isConstantOrConstantVector(N1, /* NoOpaques */ true)) { 8626 SDLoc DL(N); 8627 SDValue Mask = 8628 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); 8629 AddToWorklist(Mask.getNode()); 8630 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); 8631 } 8632 8633 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 8634 // TODO - support non-uniform vector shift amounts. 8635 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 8636 // Shifting in all undef bits? 8637 EVT SmallVT = N0.getOperand(0).getValueType(); 8638 unsigned BitSize = SmallVT.getScalarSizeInBits(); 8639 if (N1C->getAPIntValue().uge(BitSize)) 8640 return DAG.getUNDEF(VT); 8641 8642 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 8643 uint64_t ShiftAmt = N1C->getZExtValue(); 8644 SDLoc DL0(N0); 8645 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 8646 N0.getOperand(0), 8647 DAG.getConstant(ShiftAmt, DL0, 8648 getShiftAmountTy(SmallVT))); 8649 AddToWorklist(SmallShift.getNode()); 8650 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); 8651 SDLoc DL(N); 8652 return DAG.getNode(ISD::AND, DL, VT, 8653 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 8654 DAG.getConstant(Mask, DL, VT)); 8655 } 8656 } 8657 8658 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 8659 // bit, which is unmodified by sra. 8660 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { 8661 if (N0.getOpcode() == ISD::SRA) 8662 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 8663 } 8664 8665 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 8666 if (N1C && N0.getOpcode() == ISD::CTLZ && 8667 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 8668 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); 8669 8670 // If any of the input bits are KnownOne, then the input couldn't be all 8671 // zeros, thus the result of the srl will always be zero. 8672 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 8673 8674 // If all of the bits input the to ctlz node are known to be zero, then 8675 // the result of the ctlz is "32" and the result of the shift is one. 8676 APInt UnknownBits = ~Known.Zero; 8677 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 8678 8679 // Otherwise, check to see if there is exactly one bit input to the ctlz. 8680 if (UnknownBits.isPowerOf2()) { 8681 // Okay, we know that only that the single bit specified by UnknownBits 8682 // could be set on input to the CTLZ node. If this bit is set, the SRL 8683 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 8684 // to an SRL/XOR pair, which is likely to simplify more. 8685 unsigned ShAmt = UnknownBits.countTrailingZeros(); 8686 SDValue Op = N0.getOperand(0); 8687 8688 if (ShAmt) { 8689 SDLoc DL(N0); 8690 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 8691 DAG.getConstant(ShAmt, DL, 8692 getShiftAmountTy(Op.getValueType()))); 8693 AddToWorklist(Op.getNode()); 8694 } 8695 8696 SDLoc DL(N); 8697 return DAG.getNode(ISD::XOR, DL, VT, 8698 Op, DAG.getConstant(1, DL, VT)); 8699 } 8700 } 8701 8702 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 8703 if (N1.getOpcode() == ISD::TRUNCATE && 8704 N1.getOperand(0).getOpcode() == ISD::AND) { 8705 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 8706 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 8707 } 8708 8709 // fold operands of srl based on knowledge that the low bits are not 8710 // demanded. 8711 if (SimplifyDemandedBits(SDValue(N, 0))) 8712 return SDValue(N, 0); 8713 8714 if (N1C && !N1C->isOpaque()) 8715 if (SDValue NewSRL = visitShiftByConstant(N)) 8716 return NewSRL; 8717 8718 // Attempt to convert a srl of a load into a narrower zero-extending load. 8719 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 8720 return NarrowLoad; 8721 8722 // Here is a common situation. We want to optimize: 8723 // 8724 // %a = ... 8725 // %b = and i32 %a, 2 8726 // %c = srl i32 %b, 1 8727 // brcond i32 %c ... 8728 // 8729 // into 8730 // 8731 // %a = ... 8732 // %b = and %a, 2 8733 // %c = setcc eq %b, 0 8734 // brcond %c ... 8735 // 8736 // However when after the source operand of SRL is optimized into AND, the SRL 8737 // itself may not be optimized further. Look for it and add the BRCOND into 8738 // the worklist. 8739 if (N->hasOneUse()) { 8740 SDNode *Use = *N->use_begin(); 8741 if (Use->getOpcode() == ISD::BRCOND) 8742 AddToWorklist(Use); 8743 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 8744 // Also look pass the truncate. 8745 Use = *Use->use_begin(); 8746 if (Use->getOpcode() == ISD::BRCOND) 8747 AddToWorklist(Use); 8748 } 8749 } 8750 8751 // Try to transform this shift into a multiply-high if 8752 // it matches the appropriate pattern detected in combineShiftToMULH. 8753 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) 8754 return MULH; 8755 8756 return SDValue(); 8757 } 8758 8759 SDValue DAGCombiner::visitFunnelShift(SDNode *N) { 8760 EVT VT = N->getValueType(0); 8761 SDValue N0 = N->getOperand(0); 8762 SDValue N1 = N->getOperand(1); 8763 SDValue N2 = N->getOperand(2); 8764 bool IsFSHL = N->getOpcode() == ISD::FSHL; 8765 unsigned BitWidth = VT.getScalarSizeInBits(); 8766 8767 // fold (fshl N0, N1, 0) -> N0 8768 // fold (fshr N0, N1, 0) -> N1 8769 if (isPowerOf2_32(BitWidth)) 8770 if (DAG.MaskedValueIsZero( 8771 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) 8772 return IsFSHL ? N0 : N1; 8773 8774 auto IsUndefOrZero = [](SDValue V) { 8775 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); 8776 }; 8777 8778 // TODO - support non-uniform vector shift amounts. 8779 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { 8780 EVT ShAmtTy = N2.getValueType(); 8781 8782 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) 8783 if (Cst->getAPIntValue().uge(BitWidth)) { 8784 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); 8785 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, 8786 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); 8787 } 8788 8789 unsigned ShAmt = Cst->getZExtValue(); 8790 if (ShAmt == 0) 8791 return IsFSHL ? N0 : N1; 8792 8793 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) 8794 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) 8795 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) 8796 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) 8797 if (IsUndefOrZero(N0)) 8798 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, 8799 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, 8800 SDLoc(N), ShAmtTy)); 8801 if (IsUndefOrZero(N1)) 8802 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 8803 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, 8804 SDLoc(N), ShAmtTy)); 8805 8806 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 8807 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. 8808 // TODO - bigendian support once we have test coverage. 8809 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? 8810 // TODO - permit LHS EXTLOAD if extensions are shifted out. 8811 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && 8812 !DAG.getDataLayout().isBigEndian()) { 8813 auto *LHS = dyn_cast<LoadSDNode>(N0); 8814 auto *RHS = dyn_cast<LoadSDNode>(N1); 8815 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && 8816 LHS->getAddressSpace() == RHS->getAddressSpace() && 8817 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && 8818 ISD::isNON_EXTLoad(LHS)) { 8819 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { 8820 SDLoc DL(RHS); 8821 uint64_t PtrOff = 8822 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); 8823 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); 8824 bool Fast = false; 8825 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 8826 RHS->getAddressSpace(), NewAlign, 8827 RHS->getMemOperand()->getFlags(), &Fast) && 8828 Fast) { 8829 SDValue NewPtr = DAG.getMemBasePlusOffset( 8830 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); 8831 AddToWorklist(NewPtr.getNode()); 8832 SDValue Load = DAG.getLoad( 8833 VT, DL, RHS->getChain(), NewPtr, 8834 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, 8835 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); 8836 // Replace the old load's chain with the new load's chain. 8837 WorklistRemover DeadNodes(*this); 8838 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); 8839 return Load; 8840 } 8841 } 8842 } 8843 } 8844 } 8845 8846 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) 8847 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) 8848 // iff We know the shift amount is in range. 8849 // TODO: when is it worth doing SUB(BW, N2) as well? 8850 if (isPowerOf2_32(BitWidth)) { 8851 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); 8852 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 8853 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); 8854 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) 8855 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); 8856 } 8857 8858 // fold (fshl N0, N0, N2) -> (rotl N0, N2) 8859 // fold (fshr N0, N0, N2) -> (rotr N0, N2) 8860 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift 8861 // is legal as well we might be better off avoiding non-constant (BW - N2). 8862 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; 8863 if (N0 == N1 && hasOperation(RotOpc, VT)) 8864 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); 8865 8866 // Simplify, based on bits shifted out of N0/N1. 8867 if (SimplifyDemandedBits(SDValue(N, 0))) 8868 return SDValue(N, 0); 8869 8870 return SDValue(); 8871 } 8872 8873 SDValue DAGCombiner::visitABS(SDNode *N) { 8874 SDValue N0 = N->getOperand(0); 8875 EVT VT = N->getValueType(0); 8876 8877 // fold (abs c1) -> c2 8878 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8879 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); 8880 // fold (abs (abs x)) -> (abs x) 8881 if (N0.getOpcode() == ISD::ABS) 8882 return N0; 8883 // fold (abs x) -> x iff not-negative 8884 if (DAG.SignBitIsZero(N0)) 8885 return N0; 8886 return SDValue(); 8887 } 8888 8889 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 8890 SDValue N0 = N->getOperand(0); 8891 EVT VT = N->getValueType(0); 8892 8893 // fold (bswap c1) -> c2 8894 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8895 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 8896 // fold (bswap (bswap x)) -> x 8897 if (N0.getOpcode() == ISD::BSWAP) 8898 return N0->getOperand(0); 8899 return SDValue(); 8900 } 8901 8902 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 8903 SDValue N0 = N->getOperand(0); 8904 EVT VT = N->getValueType(0); 8905 8906 // fold (bitreverse c1) -> c2 8907 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8908 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); 8909 // fold (bitreverse (bitreverse x)) -> x 8910 if (N0.getOpcode() == ISD::BITREVERSE) 8911 return N0.getOperand(0); 8912 return SDValue(); 8913 } 8914 8915 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 8916 SDValue N0 = N->getOperand(0); 8917 EVT VT = N->getValueType(0); 8918 8919 // fold (ctlz c1) -> c2 8920 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8921 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 8922 8923 // If the value is known never to be zero, switch to the undef version. 8924 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { 8925 if (DAG.isKnownNeverZero(N0)) 8926 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8927 } 8928 8929 return SDValue(); 8930 } 8931 8932 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 8933 SDValue N0 = N->getOperand(0); 8934 EVT VT = N->getValueType(0); 8935 8936 // fold (ctlz_zero_undef c1) -> c2 8937 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8938 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8939 return SDValue(); 8940 } 8941 8942 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 8943 SDValue N0 = N->getOperand(0); 8944 EVT VT = N->getValueType(0); 8945 8946 // fold (cttz c1) -> c2 8947 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8948 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 8949 8950 // If the value is known never to be zero, switch to the undef version. 8951 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { 8952 if (DAG.isKnownNeverZero(N0)) 8953 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8954 } 8955 8956 return SDValue(); 8957 } 8958 8959 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 8960 SDValue N0 = N->getOperand(0); 8961 EVT VT = N->getValueType(0); 8962 8963 // fold (cttz_zero_undef c1) -> c2 8964 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8965 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 8966 return SDValue(); 8967 } 8968 8969 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 8970 SDValue N0 = N->getOperand(0); 8971 EVT VT = N->getValueType(0); 8972 8973 // fold (ctpop c1) -> c2 8974 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 8975 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 8976 return SDValue(); 8977 } 8978 8979 // FIXME: This should be checking for no signed zeros on individual operands, as 8980 // well as no nans. 8981 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, 8982 SDValue RHS, 8983 const TargetLowering &TLI) { 8984 const TargetOptions &Options = DAG.getTarget().Options; 8985 EVT VT = LHS.getValueType(); 8986 8987 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && 8988 TLI.isProfitableToCombineMinNumMaxNum(VT) && 8989 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); 8990 } 8991 8992 /// Generate Min/Max node 8993 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 8994 SDValue RHS, SDValue True, SDValue False, 8995 ISD::CondCode CC, const TargetLowering &TLI, 8996 SelectionDAG &DAG) { 8997 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 8998 return SDValue(); 8999 9000 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 9001 switch (CC) { 9002 case ISD::SETOLT: 9003 case ISD::SETOLE: 9004 case ISD::SETLT: 9005 case ISD::SETLE: 9006 case ISD::SETULT: 9007 case ISD::SETULE: { 9008 // Since it's known never nan to get here already, either fminnum or 9009 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is 9010 // expanded in terms of it. 9011 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 9012 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9013 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9014 9015 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 9016 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9017 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9018 return SDValue(); 9019 } 9020 case ISD::SETOGT: 9021 case ISD::SETOGE: 9022 case ISD::SETGT: 9023 case ISD::SETGE: 9024 case ISD::SETUGT: 9025 case ISD::SETUGE: { 9026 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 9027 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) 9028 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); 9029 9030 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 9031 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) 9032 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 9033 return SDValue(); 9034 } 9035 default: 9036 return SDValue(); 9037 } 9038 } 9039 9040 /// If a (v)select has a condition value that is a sign-bit test, try to smear 9041 /// the condition operand sign-bit across the value width and use it as a mask. 9042 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { 9043 SDValue Cond = N->getOperand(0); 9044 SDValue C1 = N->getOperand(1); 9045 SDValue C2 = N->getOperand(2); 9046 assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && 9047 "Expected select-of-constants"); 9048 9049 EVT VT = N->getValueType(0); 9050 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || 9051 VT != Cond.getOperand(0).getValueType()) 9052 return SDValue(); 9053 9054 // The inverted-condition + commuted-select variants of these patterns are 9055 // canonicalized to these forms in IR. 9056 SDValue X = Cond.getOperand(0); 9057 SDValue CondC = Cond.getOperand(1); 9058 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 9059 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && 9060 isAllOnesOrAllOnesSplat(C2)) { 9061 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 9062 SDLoc DL(N); 9063 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9064 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9065 return DAG.getNode(ISD::OR, DL, VT, Sra, C1); 9066 } 9067 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { 9068 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 9069 SDLoc DL(N); 9070 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); 9071 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); 9072 return DAG.getNode(ISD::AND, DL, VT, Sra, C1); 9073 } 9074 return SDValue(); 9075 } 9076 9077 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { 9078 SDValue Cond = N->getOperand(0); 9079 SDValue N1 = N->getOperand(1); 9080 SDValue N2 = N->getOperand(2); 9081 EVT VT = N->getValueType(0); 9082 EVT CondVT = Cond.getValueType(); 9083 SDLoc DL(N); 9084 9085 if (!VT.isInteger()) 9086 return SDValue(); 9087 9088 auto *C1 = dyn_cast<ConstantSDNode>(N1); 9089 auto *C2 = dyn_cast<ConstantSDNode>(N2); 9090 if (!C1 || !C2) 9091 return SDValue(); 9092 9093 // Only do this before legalization to avoid conflicting with target-specific 9094 // transforms in the other direction (create a select from a zext/sext). There 9095 // is also a target-independent combine here in DAGCombiner in the other 9096 // direction for (select Cond, -1, 0) when the condition is not i1. 9097 if (CondVT == MVT::i1 && !LegalOperations) { 9098 if (C1->isNullValue() && C2->isOne()) { 9099 // select Cond, 0, 1 --> zext (!Cond) 9100 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9101 if (VT != MVT::i1) 9102 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); 9103 return NotCond; 9104 } 9105 if (C1->isNullValue() && C2->isAllOnesValue()) { 9106 // select Cond, 0, -1 --> sext (!Cond) 9107 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); 9108 if (VT != MVT::i1) 9109 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); 9110 return NotCond; 9111 } 9112 if (C1->isOne() && C2->isNullValue()) { 9113 // select Cond, 1, 0 --> zext (Cond) 9114 if (VT != MVT::i1) 9115 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9116 return Cond; 9117 } 9118 if (C1->isAllOnesValue() && C2->isNullValue()) { 9119 // select Cond, -1, 0 --> sext (Cond) 9120 if (VT != MVT::i1) 9121 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9122 return Cond; 9123 } 9124 9125 // Use a target hook because some targets may prefer to transform in the 9126 // other direction. 9127 if (TLI.convertSelectOfConstantsToMath(VT)) { 9128 // For any constants that differ by 1, we can transform the select into an 9129 // extend and add. 9130 const APInt &C1Val = C1->getAPIntValue(); 9131 const APInt &C2Val = C2->getAPIntValue(); 9132 if (C1Val - 1 == C2Val) { 9133 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 9134 if (VT != MVT::i1) 9135 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9136 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9137 } 9138 if (C1Val + 1 == C2Val) { 9139 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 9140 if (VT != MVT::i1) 9141 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); 9142 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); 9143 } 9144 9145 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 9146 if (C1Val.isPowerOf2() && C2Val.isNullValue()) { 9147 if (VT != MVT::i1) 9148 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); 9149 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); 9150 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); 9151 } 9152 9153 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9154 return V; 9155 } 9156 9157 return SDValue(); 9158 } 9159 9160 // fold (select Cond, 0, 1) -> (xor Cond, 1) 9161 // We can't do this reliably if integer based booleans have different contents 9162 // to floating point based booleans. This is because we can't tell whether we 9163 // have an integer-based boolean or a floating-point-based boolean unless we 9164 // can find the SETCC that produced it and inspect its operands. This is 9165 // fairly easy if C is the SETCC node, but it can potentially be 9166 // undiscoverable (or not reasonably discoverable). For example, it could be 9167 // in another basic block or it could require searching a complicated 9168 // expression. 9169 if (CondVT.isInteger() && 9170 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == 9171 TargetLowering::ZeroOrOneBooleanContent && 9172 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == 9173 TargetLowering::ZeroOrOneBooleanContent && 9174 C1->isNullValue() && C2->isOne()) { 9175 SDValue NotCond = 9176 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); 9177 if (VT.bitsEq(CondVT)) 9178 return NotCond; 9179 return DAG.getZExtOrTrunc(NotCond, DL, VT); 9180 } 9181 9182 return SDValue(); 9183 } 9184 9185 SDValue DAGCombiner::visitSELECT(SDNode *N) { 9186 SDValue N0 = N->getOperand(0); 9187 SDValue N1 = N->getOperand(1); 9188 SDValue N2 = N->getOperand(2); 9189 EVT VT = N->getValueType(0); 9190 EVT VT0 = N0.getValueType(); 9191 SDLoc DL(N); 9192 SDNodeFlags Flags = N->getFlags(); 9193 9194 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9195 return V; 9196 9197 // fold (select X, X, Y) -> (or X, Y) 9198 // fold (select X, 1, Y) -> (or C, Y) 9199 if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 9200 return DAG.getNode(ISD::OR, DL, VT, N0, N2); 9201 9202 if (SDValue V = foldSelectOfConstants(N)) 9203 return V; 9204 9205 // fold (select C, 0, X) -> (and (not C), X) 9206 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 9207 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 9208 AddToWorklist(NOTNode.getNode()); 9209 return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); 9210 } 9211 // fold (select C, X, 1) -> (or (not C), X) 9212 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 9213 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 9214 AddToWorklist(NOTNode.getNode()); 9215 return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); 9216 } 9217 // fold (select X, Y, X) -> (and X, Y) 9218 // fold (select X, Y, 0) -> (and X, Y) 9219 if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 9220 return DAG.getNode(ISD::AND, DL, VT, N0, N1); 9221 9222 // If we can fold this based on the true/false value, do so. 9223 if (SimplifySelectOps(N, N1, N2)) 9224 return SDValue(N, 0); // Don't revisit N. 9225 9226 if (VT0 == MVT::i1) { 9227 // The code in this block deals with the following 2 equivalences: 9228 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 9229 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 9230 // The target can specify its preferred form with the 9231 // shouldNormalizeToSelectSequence() callback. However we always transform 9232 // to the right anyway if we find the inner select exists in the DAG anyway 9233 // and we always transform to the left side if we know that we can further 9234 // optimize the combination of the conditions. 9235 bool normalizeToSequence = 9236 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 9237 // select (and Cond0, Cond1), X, Y 9238 // -> select Cond0, (select Cond1, X, Y), Y 9239 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 9240 SDValue Cond0 = N0->getOperand(0); 9241 SDValue Cond1 = N0->getOperand(1); 9242 SDValue InnerSelect = 9243 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); 9244 if (normalizeToSequence || !InnerSelect.use_empty()) 9245 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, 9246 InnerSelect, N2, Flags); 9247 // Cleanup on failure. 9248 if (InnerSelect.use_empty()) 9249 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9250 } 9251 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 9252 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 9253 SDValue Cond0 = N0->getOperand(0); 9254 SDValue Cond1 = N0->getOperand(1); 9255 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), 9256 Cond1, N1, N2, Flags); 9257 if (normalizeToSequence || !InnerSelect.use_empty()) 9258 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, 9259 InnerSelect, Flags); 9260 // Cleanup on failure. 9261 if (InnerSelect.use_empty()) 9262 recursivelyDeleteUnusedNodes(InnerSelect.getNode()); 9263 } 9264 9265 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 9266 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 9267 SDValue N1_0 = N1->getOperand(0); 9268 SDValue N1_1 = N1->getOperand(1); 9269 SDValue N1_2 = N1->getOperand(2); 9270 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 9271 // Create the actual and node if we can generate good code for it. 9272 if (!normalizeToSequence) { 9273 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); 9274 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, 9275 N2, Flags); 9276 } 9277 // Otherwise see if we can optimize the "and" to a better pattern. 9278 if (SDValue Combined = visitANDLike(N0, N1_0, N)) { 9279 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, 9280 N2, Flags); 9281 } 9282 } 9283 } 9284 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 9285 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 9286 SDValue N2_0 = N2->getOperand(0); 9287 SDValue N2_1 = N2->getOperand(1); 9288 SDValue N2_2 = N2->getOperand(2); 9289 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 9290 // Create the actual or node if we can generate good code for it. 9291 if (!normalizeToSequence) { 9292 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); 9293 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, 9294 N2_2, Flags); 9295 } 9296 // Otherwise see if we can optimize to a better pattern. 9297 if (SDValue Combined = visitORLike(N0, N2_0, N)) 9298 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, 9299 N2_2, Flags); 9300 } 9301 } 9302 } 9303 9304 // select (not Cond), N1, N2 -> select Cond, N2, N1 9305 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { 9306 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); 9307 SelectOp->setFlags(Flags); 9308 return SelectOp; 9309 } 9310 9311 // Fold selects based on a setcc into other things, such as min/max/abs. 9312 if (N0.getOpcode() == ISD::SETCC) { 9313 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); 9314 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9315 9316 // select (fcmp lt x, y), x, y -> fminnum x, y 9317 // select (fcmp gt x, y), x, y -> fmaxnum x, y 9318 // 9319 // This is OK if we don't care what happens if either operand is a NaN. 9320 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) 9321 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, 9322 CC, TLI, DAG)) 9323 return FMinMax; 9324 9325 // Use 'unsigned add with overflow' to optimize an unsigned saturating add. 9326 // This is conservatively limited to pre-legal-operations to give targets 9327 // a chance to reverse the transform if they want to do that. Also, it is 9328 // unlikely that the pattern would be formed late, so it's probably not 9329 // worth going through the other checks. 9330 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && 9331 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && 9332 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { 9333 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); 9334 auto *NotC = dyn_cast<ConstantSDNode>(Cond1); 9335 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { 9336 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> 9337 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 9338 // 9339 // The IR equivalent of this transform would have this form: 9340 // %a = add %x, C 9341 // %c = icmp ugt %x, ~C 9342 // %r = select %c, -1, %a 9343 // => 9344 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) 9345 // %u0 = extractvalue %u, 0 9346 // %u1 = extractvalue %u, 1 9347 // %r = select %u1, -1, %u0 9348 SDVTList VTs = DAG.getVTList(VT, VT0); 9349 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); 9350 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); 9351 } 9352 } 9353 9354 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || 9355 (!LegalOperations && 9356 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { 9357 // Any flags available in a select/setcc fold will be on the setcc as they 9358 // migrated from fcmp 9359 Flags = N0.getNode()->getFlags(); 9360 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, 9361 N2, N0.getOperand(2)); 9362 SelectNode->setFlags(Flags); 9363 return SelectNode; 9364 } 9365 9366 return SimplifySelect(DL, N0, N1, N2); 9367 } 9368 9369 return SDValue(); 9370 } 9371 9372 // This function assumes all the vselect's arguments are CONCAT_VECTOR 9373 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 9374 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 9375 SDLoc DL(N); 9376 SDValue Cond = N->getOperand(0); 9377 SDValue LHS = N->getOperand(1); 9378 SDValue RHS = N->getOperand(2); 9379 EVT VT = N->getValueType(0); 9380 int NumElems = VT.getVectorNumElements(); 9381 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 9382 RHS.getOpcode() == ISD::CONCAT_VECTORS && 9383 Cond.getOpcode() == ISD::BUILD_VECTOR); 9384 9385 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 9386 // binary ones here. 9387 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 9388 return SDValue(); 9389 9390 // We're sure we have an even number of elements due to the 9391 // concat_vectors we have as arguments to vselect. 9392 // Skip BV elements until we find one that's not an UNDEF 9393 // After we find an UNDEF element, keep looping until we get to half the 9394 // length of the BV and see if all the non-undef nodes are the same. 9395 ConstantSDNode *BottomHalf = nullptr; 9396 for (int i = 0; i < NumElems / 2; ++i) { 9397 if (Cond->getOperand(i)->isUndef()) 9398 continue; 9399 9400 if (BottomHalf == nullptr) 9401 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9402 else if (Cond->getOperand(i).getNode() != BottomHalf) 9403 return SDValue(); 9404 } 9405 9406 // Do the same for the second half of the BuildVector 9407 ConstantSDNode *TopHalf = nullptr; 9408 for (int i = NumElems / 2; i < NumElems; ++i) { 9409 if (Cond->getOperand(i)->isUndef()) 9410 continue; 9411 9412 if (TopHalf == nullptr) 9413 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 9414 else if (Cond->getOperand(i).getNode() != TopHalf) 9415 return SDValue(); 9416 } 9417 9418 assert(TopHalf && BottomHalf && 9419 "One half of the selector was all UNDEFs and the other was all the " 9420 "same value. This should have been addressed before this function."); 9421 return DAG.getNode( 9422 ISD::CONCAT_VECTORS, DL, VT, 9423 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 9424 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 9425 } 9426 9427 bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { 9428 if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD) 9429 return false; 9430 9431 // For now we check only the LHS of the add. 9432 SDValue LHS = Index.getOperand(0); 9433 SDValue SplatVal = DAG.getSplatValue(LHS); 9434 if (!SplatVal) 9435 return false; 9436 9437 BasePtr = SplatVal; 9438 Index = Index.getOperand(1); 9439 return true; 9440 } 9441 9442 // Fold sext/zext of index into index type. 9443 bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index, 9444 bool Scaled, SelectionDAG &DAG) { 9445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9446 9447 if (Index.getOpcode() == ISD::ZERO_EXTEND) { 9448 SDValue Op = Index.getOperand(0); 9449 MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED); 9450 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 9451 Index = Op; 9452 return true; 9453 } 9454 } 9455 9456 if (Index.getOpcode() == ISD::SIGN_EXTEND) { 9457 SDValue Op = Index.getOperand(0); 9458 MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED); 9459 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) { 9460 Index = Op; 9461 return true; 9462 } 9463 } 9464 9465 return false; 9466 } 9467 9468 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 9469 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 9470 SDValue Mask = MSC->getMask(); 9471 SDValue Chain = MSC->getChain(); 9472 SDValue Index = MSC->getIndex(); 9473 SDValue Scale = MSC->getScale(); 9474 SDValue StoreVal = MSC->getValue(); 9475 SDValue BasePtr = MSC->getBasePtr(); 9476 SDLoc DL(N); 9477 9478 // Zap scatters with a zero mask. 9479 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9480 return Chain; 9481 9482 if (refineUniformBase(BasePtr, Index, DAG)) { 9483 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 9484 return DAG.getMaskedScatter( 9485 DAG.getVTList(MVT::Other), StoreVal.getValueType(), DL, Ops, 9486 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 9487 } 9488 9489 if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) { 9490 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; 9491 return DAG.getMaskedScatter( 9492 DAG.getVTList(MVT::Other), StoreVal.getValueType(), DL, Ops, 9493 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); 9494 } 9495 9496 return SDValue(); 9497 } 9498 9499 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 9500 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 9501 SDValue Mask = MST->getMask(); 9502 SDValue Chain = MST->getChain(); 9503 SDLoc DL(N); 9504 9505 // Zap masked stores with a zero mask. 9506 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9507 return Chain; 9508 9509 // If this is a masked load with an all ones mask, we can use a unmasked load. 9510 // FIXME: Can we do this for indexed, compressing, or truncating stores? 9511 if (ISD::isBuildVectorAllOnes(Mask.getNode()) && 9512 MST->isUnindexed() && !MST->isCompressingStore() && 9513 !MST->isTruncatingStore()) 9514 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), 9515 MST->getBasePtr(), MST->getMemOperand()); 9516 9517 // Try transforming N to an indexed store. 9518 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9519 return SDValue(N, 0); 9520 9521 return SDValue(); 9522 } 9523 9524 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 9525 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); 9526 SDValue Mask = MGT->getMask(); 9527 SDValue Chain = MGT->getChain(); 9528 SDValue Index = MGT->getIndex(); 9529 SDValue Scale = MGT->getScale(); 9530 SDValue PassThru = MGT->getPassThru(); 9531 SDValue BasePtr = MGT->getBasePtr(); 9532 SDLoc DL(N); 9533 9534 // Zap gathers with a zero mask. 9535 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9536 return CombineTo(N, PassThru, MGT->getChain()); 9537 9538 if (refineUniformBase(BasePtr, Index, DAG)) { 9539 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 9540 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 9541 PassThru.getValueType(), DL, Ops, 9542 MGT->getMemOperand(), MGT->getIndexType(), 9543 MGT->getExtensionType()); 9544 } 9545 9546 if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) { 9547 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; 9548 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), 9549 PassThru.getValueType(), DL, Ops, 9550 MGT->getMemOperand(), MGT->getIndexType(), 9551 MGT->getExtensionType()); 9552 } 9553 9554 return SDValue(); 9555 } 9556 9557 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 9558 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 9559 SDValue Mask = MLD->getMask(); 9560 SDLoc DL(N); 9561 9562 // Zap masked loads with a zero mask. 9563 if (ISD::isBuildVectorAllZeros(Mask.getNode())) 9564 return CombineTo(N, MLD->getPassThru(), MLD->getChain()); 9565 9566 // If this is a masked load with an all ones mask, we can use a unmasked load. 9567 // FIXME: Can we do this for indexed, expanding, or extending loads? 9568 if (ISD::isBuildVectorAllOnes(Mask.getNode()) && 9569 MLD->isUnindexed() && !MLD->isExpandingLoad() && 9570 MLD->getExtensionType() == ISD::NON_EXTLOAD) { 9571 SDValue NewLd = DAG.getLoad(N->getValueType(0), SDLoc(N), MLD->getChain(), 9572 MLD->getBasePtr(), MLD->getMemOperand()); 9573 return CombineTo(N, NewLd, NewLd.getValue(1)); 9574 } 9575 9576 // Try transforming N to an indexed load. 9577 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 9578 return SDValue(N, 0); 9579 9580 return SDValue(); 9581 } 9582 9583 /// A vector select of 2 constant vectors can be simplified to math/logic to 9584 /// avoid a variable select instruction and possibly avoid constant loads. 9585 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { 9586 SDValue Cond = N->getOperand(0); 9587 SDValue N1 = N->getOperand(1); 9588 SDValue N2 = N->getOperand(2); 9589 EVT VT = N->getValueType(0); 9590 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || 9591 !TLI.convertSelectOfConstantsToMath(VT) || 9592 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || 9593 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) 9594 return SDValue(); 9595 9596 // Check if we can use the condition value to increment/decrement a single 9597 // constant value. This simplifies a select to an add and removes a constant 9598 // load/materialization from the general case. 9599 bool AllAddOne = true; 9600 bool AllSubOne = true; 9601 unsigned Elts = VT.getVectorNumElements(); 9602 for (unsigned i = 0; i != Elts; ++i) { 9603 SDValue N1Elt = N1.getOperand(i); 9604 SDValue N2Elt = N2.getOperand(i); 9605 if (N1Elt.isUndef() || N2Elt.isUndef()) 9606 continue; 9607 if (N1Elt.getValueType() != N2Elt.getValueType()) 9608 continue; 9609 9610 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); 9611 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); 9612 if (C1 != C2 + 1) 9613 AllAddOne = false; 9614 if (C1 != C2 - 1) 9615 AllSubOne = false; 9616 } 9617 9618 // Further simplifications for the extra-special cases where the constants are 9619 // all 0 or all -1 should be implemented as folds of these patterns. 9620 SDLoc DL(N); 9621 if (AllAddOne || AllSubOne) { 9622 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C 9623 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C 9624 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 9625 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); 9626 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); 9627 } 9628 9629 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) 9630 APInt Pow2C; 9631 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && 9632 isNullOrNullSplat(N2)) { 9633 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); 9634 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); 9635 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); 9636 } 9637 9638 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) 9639 return V; 9640 9641 // The general case for select-of-constants: 9642 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 9643 // ...but that only makes sense if a vselect is slower than 2 logic ops, so 9644 // leave that to a machine-specific pass. 9645 return SDValue(); 9646 } 9647 9648 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 9649 SDValue N0 = N->getOperand(0); 9650 SDValue N1 = N->getOperand(1); 9651 SDValue N2 = N->getOperand(2); 9652 EVT VT = N->getValueType(0); 9653 SDLoc DL(N); 9654 9655 if (SDValue V = DAG.simplifySelect(N0, N1, N2)) 9656 return V; 9657 9658 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 9659 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) 9660 return DAG.getSelect(DL, VT, F, N2, N1); 9661 9662 // Canonicalize integer abs. 9663 // vselect (setg[te] X, 0), X, -X -> 9664 // vselect (setgt X, -1), X, -X -> 9665 // vselect (setl[te] X, 0), -X, X -> 9666 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 9667 if (N0.getOpcode() == ISD::SETCC) { 9668 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 9669 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 9670 bool isAbs = false; 9671 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 9672 9673 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 9674 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 9675 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 9676 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 9677 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 9678 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 9679 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 9680 9681 if (isAbs) { 9682 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) 9683 return DAG.getNode(ISD::ABS, DL, VT, LHS); 9684 9685 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, 9686 DAG.getConstant(VT.getScalarSizeInBits() - 1, 9687 DL, getShiftAmountTy(VT))); 9688 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 9689 AddToWorklist(Shift.getNode()); 9690 AddToWorklist(Add.getNode()); 9691 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 9692 } 9693 9694 // vselect x, y (fcmp lt x, y) -> fminnum x, y 9695 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y 9696 // 9697 // This is OK if we don't care about what happens if either operand is a 9698 // NaN. 9699 // 9700 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { 9701 if (SDValue FMinMax = 9702 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) 9703 return FMinMax; 9704 } 9705 9706 // If this select has a condition (setcc) with narrower operands than the 9707 // select, try to widen the compare to match the select width. 9708 // TODO: This should be extended to handle any constant. 9709 // TODO: This could be extended to handle non-loading patterns, but that 9710 // requires thorough testing to avoid regressions. 9711 if (isNullOrNullSplat(RHS)) { 9712 EVT NarrowVT = LHS.getValueType(); 9713 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); 9714 EVT SetCCVT = getSetCCResultType(LHS.getValueType()); 9715 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); 9716 unsigned WideWidth = WideVT.getScalarSizeInBits(); 9717 bool IsSigned = isSignedIntSetCC(CC); 9718 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 9719 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && 9720 SetCCWidth != 1 && SetCCWidth < WideWidth && 9721 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && 9722 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { 9723 // Both compare operands can be widened for free. The LHS can use an 9724 // extended load, and the RHS is a constant: 9725 // vselect (ext (setcc load(X), C)), N1, N2 --> 9726 // vselect (setcc extload(X), C'), N1, N2 9727 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9728 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); 9729 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); 9730 EVT WideSetCCVT = getSetCCResultType(WideVT); 9731 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); 9732 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); 9733 } 9734 } 9735 9736 // Match VSELECTs into add with unsigned saturation. 9737 if (hasOperation(ISD::UADDSAT, VT)) { 9738 // Check if one of the arms of the VSELECT is vector with all bits set. 9739 // If it's on the left side invert the predicate to simplify logic below. 9740 SDValue Other; 9741 ISD::CondCode SatCC = CC; 9742 if (ISD::isBuildVectorAllOnes(N1.getNode())) { 9743 Other = N2; 9744 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 9745 } else if (ISD::isBuildVectorAllOnes(N2.getNode())) { 9746 Other = N1; 9747 } 9748 9749 if (Other && Other.getOpcode() == ISD::ADD) { 9750 SDValue CondLHS = LHS, CondRHS = RHS; 9751 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 9752 9753 // Canonicalize condition operands. 9754 if (SatCC == ISD::SETUGE) { 9755 std::swap(CondLHS, CondRHS); 9756 SatCC = ISD::SETULE; 9757 } 9758 9759 // We can test against either of the addition operands. 9760 // x <= x+y ? x+y : ~0 --> uaddsat x, y 9761 // x+y >= x ? x+y : ~0 --> uaddsat x, y 9762 if (SatCC == ISD::SETULE && Other == CondRHS && 9763 (OpLHS == CondLHS || OpRHS == CondLHS)) 9764 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 9765 9766 if (isa<BuildVectorSDNode>(OpRHS) && isa<BuildVectorSDNode>(CondRHS) && 9767 CondLHS == OpLHS) { 9768 // If the RHS is a constant we have to reverse the const 9769 // canonicalization. 9770 // x >= ~C ? x+C : ~0 --> uaddsat x, C 9771 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 9772 return Cond->getAPIntValue() == ~Op->getAPIntValue(); 9773 }; 9774 if (SatCC == ISD::SETULE && 9775 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) 9776 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); 9777 } 9778 } 9779 } 9780 9781 // Match VSELECTs into sub with unsigned saturation. 9782 if (hasOperation(ISD::USUBSAT, VT)) { 9783 // Check if one of the arms of the VSELECT is a zero vector. If it's on 9784 // the left side invert the predicate to simplify logic below. 9785 SDValue Other; 9786 ISD::CondCode SatCC = CC; 9787 if (ISD::isBuildVectorAllZeros(N1.getNode())) { 9788 Other = N2; 9789 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); 9790 } else if (ISD::isBuildVectorAllZeros(N2.getNode())) { 9791 Other = N1; 9792 } 9793 9794 if (Other && Other.getNumOperands() == 2 && Other.getOperand(0) == LHS) { 9795 SDValue CondRHS = RHS; 9796 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); 9797 9798 // Look for a general sub with unsigned saturation first. 9799 // x >= y ? x-y : 0 --> usubsat x, y 9800 // x > y ? x-y : 0 --> usubsat x, y 9801 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && 9802 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) 9803 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 9804 9805 if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) { 9806 if (isa<BuildVectorSDNode>(CondRHS)) { 9807 // If the RHS is a constant we have to reverse the const 9808 // canonicalization. 9809 // x > C-1 ? x+-C : 0 --> usubsat x, C 9810 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { 9811 return (!Op && !Cond) || 9812 (Op && Cond && 9813 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); 9814 }; 9815 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && 9816 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, 9817 /*AllowUndefs*/ true)) { 9818 OpRHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 9819 OpRHS); 9820 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 9821 } 9822 9823 // Another special case: If C was a sign bit, the sub has been 9824 // canonicalized into a xor. 9825 // FIXME: Would it be better to use computeKnownBits to determine 9826 // whether it's safe to decanonicalize the xor? 9827 // x s< 0 ? x^C : 0 --> usubsat x, C 9828 if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) { 9829 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && 9830 ISD::isBuildVectorAllZeros(CondRHS.getNode()) && 9831 OpRHSConst->getAPIntValue().isSignMask()) { 9832 // Note that we have to rebuild the RHS constant here to ensure 9833 // we don't rely on particular values of undef lanes. 9834 OpRHS = DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT); 9835 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); 9836 } 9837 } 9838 } 9839 } 9840 } 9841 } 9842 } 9843 9844 if (SimplifySelectOps(N, N1, N2)) 9845 return SDValue(N, 0); // Don't revisit N. 9846 9847 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 9848 if (ISD::isBuildVectorAllOnes(N0.getNode())) 9849 return N1; 9850 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 9851 if (ISD::isBuildVectorAllZeros(N0.getNode())) 9852 return N2; 9853 9854 // The ConvertSelectToConcatVector function is assuming both the above 9855 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 9856 // and addressed. 9857 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 9858 N2.getOpcode() == ISD::CONCAT_VECTORS && 9859 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 9860 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 9861 return CV; 9862 } 9863 9864 if (SDValue V = foldVSelectOfConstants(N)) 9865 return V; 9866 9867 return SDValue(); 9868 } 9869 9870 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 9871 SDValue N0 = N->getOperand(0); 9872 SDValue N1 = N->getOperand(1); 9873 SDValue N2 = N->getOperand(2); 9874 SDValue N3 = N->getOperand(3); 9875 SDValue N4 = N->getOperand(4); 9876 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 9877 9878 // fold select_cc lhs, rhs, x, x, cc -> x 9879 if (N2 == N3) 9880 return N2; 9881 9882 // Determine if the condition we're dealing with is constant 9883 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 9884 CC, SDLoc(N), false)) { 9885 AddToWorklist(SCC.getNode()); 9886 9887 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 9888 if (!SCCC->isNullValue()) 9889 return N2; // cond always true -> true val 9890 else 9891 return N3; // cond always false -> false val 9892 } else if (SCC->isUndef()) { 9893 // When the condition is UNDEF, just return the first operand. This is 9894 // coherent the DAG creation, no setcc node is created in this case 9895 return N2; 9896 } else if (SCC.getOpcode() == ISD::SETCC) { 9897 // Fold to a simpler select_cc 9898 SDValue SelectOp = DAG.getNode( 9899 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), 9900 SCC.getOperand(1), N2, N3, SCC.getOperand(2)); 9901 SelectOp->setFlags(SCC->getFlags()); 9902 return SelectOp; 9903 } 9904 } 9905 9906 // If we can fold this based on the true/false value, do so. 9907 if (SimplifySelectOps(N, N2, N3)) 9908 return SDValue(N, 0); // Don't revisit N. 9909 9910 // fold select_cc into other things, such as min/max/abs 9911 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 9912 } 9913 9914 SDValue DAGCombiner::visitSETCC(SDNode *N) { 9915 // setcc is very commonly used as an argument to brcond. This pattern 9916 // also lend itself to numerous combines and, as a result, it is desired 9917 // we keep the argument to a brcond as a setcc as much as possible. 9918 bool PreferSetCC = 9919 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; 9920 9921 SDValue Combined = SimplifySetCC( 9922 N->getValueType(0), N->getOperand(0), N->getOperand(1), 9923 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); 9924 9925 if (!Combined) 9926 return SDValue(); 9927 9928 // If we prefer to have a setcc, and we don't, we'll try our best to 9929 // recreate one using rebuildSetCC. 9930 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { 9931 SDValue NewSetCC = rebuildSetCC(Combined); 9932 9933 // We don't have anything interesting to combine to. 9934 if (NewSetCC.getNode() == N) 9935 return SDValue(); 9936 9937 if (NewSetCC) 9938 return NewSetCC; 9939 } 9940 9941 return Combined; 9942 } 9943 9944 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { 9945 SDValue LHS = N->getOperand(0); 9946 SDValue RHS = N->getOperand(1); 9947 SDValue Carry = N->getOperand(2); 9948 SDValue Cond = N->getOperand(3); 9949 9950 // If Carry is false, fold to a regular SETCC. 9951 if (isNullConstant(Carry)) 9952 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 9953 9954 return SDValue(); 9955 } 9956 9957 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 9958 /// a build_vector of constants. 9959 /// This function is called by the DAGCombiner when visiting sext/zext/aext 9960 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 9961 /// Vector extends are not folded if operations are legal; this is to 9962 /// avoid introducing illegal build_vector dag nodes. 9963 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 9964 SelectionDAG &DAG, bool LegalTypes) { 9965 unsigned Opcode = N->getOpcode(); 9966 SDValue N0 = N->getOperand(0); 9967 EVT VT = N->getValueType(0); 9968 SDLoc DL(N); 9969 9970 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 9971 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 9972 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 9973 && "Expected EXTEND dag node in input!"); 9974 9975 // fold (sext c1) -> c1 9976 // fold (zext c1) -> c1 9977 // fold (aext c1) -> c1 9978 if (isa<ConstantSDNode>(N0)) 9979 return DAG.getNode(Opcode, DL, VT, N0); 9980 9981 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 9982 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) 9983 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) 9984 if (N0->getOpcode() == ISD::SELECT) { 9985 SDValue Op1 = N0->getOperand(1); 9986 SDValue Op2 = N0->getOperand(2); 9987 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && 9988 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { 9989 // For any_extend, choose sign extension of the constants to allow a 9990 // possible further transform to sign_extend_inreg.i.e. 9991 // 9992 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> 9993 // t2: i64 = any_extend t1 9994 // --> 9995 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> 9996 // --> 9997 // t4: i64 = sign_extend_inreg t3 9998 unsigned FoldOpc = Opcode; 9999 if (FoldOpc == ISD::ANY_EXTEND) 10000 FoldOpc = ISD::SIGN_EXTEND; 10001 return DAG.getSelect(DL, VT, N0->getOperand(0), 10002 DAG.getNode(FoldOpc, DL, VT, Op1), 10003 DAG.getNode(FoldOpc, DL, VT, Op2)); 10004 } 10005 } 10006 10007 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 10008 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 10009 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 10010 EVT SVT = VT.getScalarType(); 10011 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && 10012 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 10013 return SDValue(); 10014 10015 // We can fold this node into a build_vector. 10016 unsigned VTBits = SVT.getSizeInBits(); 10017 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); 10018 SmallVector<SDValue, 8> Elts; 10019 unsigned NumElts = VT.getVectorNumElements(); 10020 10021 // For zero-extensions, UNDEF elements still guarantee to have the upper 10022 // bits set to zero. 10023 bool IsZext = 10024 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; 10025 10026 for (unsigned i = 0; i != NumElts; ++i) { 10027 SDValue Op = N0.getOperand(i); 10028 if (Op.isUndef()) { 10029 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); 10030 continue; 10031 } 10032 10033 SDLoc DL(Op); 10034 // Get the constant value and if needed trunc it to the size of the type. 10035 // Nodes like build_vector might have constants wider than the scalar type. 10036 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 10037 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 10038 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 10039 else 10040 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 10041 } 10042 10043 return DAG.getBuildVector(VT, DL, Elts); 10044 } 10045 10046 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 10047 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 10048 // transformation. Returns true if extension are possible and the above 10049 // mentioned transformation is profitable. 10050 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, 10051 unsigned ExtOpc, 10052 SmallVectorImpl<SDNode *> &ExtendNodes, 10053 const TargetLowering &TLI) { 10054 bool HasCopyToRegUses = false; 10055 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); 10056 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 10057 UE = N0.getNode()->use_end(); 10058 UI != UE; ++UI) { 10059 SDNode *User = *UI; 10060 if (User == N) 10061 continue; 10062 if (UI.getUse().getResNo() != N0.getResNo()) 10063 continue; 10064 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 10065 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 10066 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 10067 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 10068 // Sign bits will be lost after a zext. 10069 return false; 10070 bool Add = false; 10071 for (unsigned i = 0; i != 2; ++i) { 10072 SDValue UseOp = User->getOperand(i); 10073 if (UseOp == N0) 10074 continue; 10075 if (!isa<ConstantSDNode>(UseOp)) 10076 return false; 10077 Add = true; 10078 } 10079 if (Add) 10080 ExtendNodes.push_back(User); 10081 continue; 10082 } 10083 // If truncates aren't free and there are users we can't 10084 // extend, it isn't worthwhile. 10085 if (!isTruncFree) 10086 return false; 10087 // Remember if this value is live-out. 10088 if (User->getOpcode() == ISD::CopyToReg) 10089 HasCopyToRegUses = true; 10090 } 10091 10092 if (HasCopyToRegUses) { 10093 bool BothLiveOut = false; 10094 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 10095 UI != UE; ++UI) { 10096 SDUse &Use = UI.getUse(); 10097 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 10098 BothLiveOut = true; 10099 break; 10100 } 10101 } 10102 if (BothLiveOut) 10103 // Both unextended and extended values are live out. There had better be 10104 // a good reason for the transformation. 10105 return ExtendNodes.size(); 10106 } 10107 return true; 10108 } 10109 10110 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 10111 SDValue OrigLoad, SDValue ExtLoad, 10112 ISD::NodeType ExtType) { 10113 // Extend SetCC uses if necessary. 10114 SDLoc DL(ExtLoad); 10115 for (SDNode *SetCC : SetCCs) { 10116 SmallVector<SDValue, 4> Ops; 10117 10118 for (unsigned j = 0; j != 2; ++j) { 10119 SDValue SOp = SetCC->getOperand(j); 10120 if (SOp == OrigLoad) 10121 Ops.push_back(ExtLoad); 10122 else 10123 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 10124 } 10125 10126 Ops.push_back(SetCC->getOperand(2)); 10127 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 10128 } 10129 } 10130 10131 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 10132 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 10133 SDValue N0 = N->getOperand(0); 10134 EVT DstVT = N->getValueType(0); 10135 EVT SrcVT = N0.getValueType(); 10136 10137 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10138 N->getOpcode() == ISD::ZERO_EXTEND) && 10139 "Unexpected node type (not an extend)!"); 10140 10141 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 10142 // For example, on a target with legal v4i32, but illegal v8i32, turn: 10143 // (v8i32 (sext (v8i16 (load x)))) 10144 // into: 10145 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10146 // (v4i32 (sextload (x + 16))))) 10147 // Where uses of the original load, i.e.: 10148 // (v8i16 (load x)) 10149 // are replaced with: 10150 // (v8i16 (truncate 10151 // (v8i32 (concat_vectors (v4i32 (sextload x)), 10152 // (v4i32 (sextload (x + 16))))))) 10153 // 10154 // This combine is only applicable to illegal, but splittable, vectors. 10155 // All legal types, and illegal non-vector types, are handled elsewhere. 10156 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 10157 // 10158 if (N0->getOpcode() != ISD::LOAD) 10159 return SDValue(); 10160 10161 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10162 10163 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 10164 !N0.hasOneUse() || !LN0->isSimple() || 10165 !DstVT.isVector() || !DstVT.isPow2VectorType() || 10166 !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10167 return SDValue(); 10168 10169 SmallVector<SDNode *, 4> SetCCs; 10170 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) 10171 return SDValue(); 10172 10173 ISD::LoadExtType ExtType = 10174 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 10175 10176 // Try to split the vector types to get down to legal types. 10177 EVT SplitSrcVT = SrcVT; 10178 EVT SplitDstVT = DstVT; 10179 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 10180 SplitSrcVT.getVectorNumElements() > 1) { 10181 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 10182 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 10183 } 10184 10185 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 10186 return SDValue(); 10187 10188 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); 10189 10190 SDLoc DL(N); 10191 const unsigned NumSplits = 10192 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 10193 const unsigned Stride = SplitSrcVT.getStoreSize(); 10194 SmallVector<SDValue, 4> Loads; 10195 SmallVector<SDValue, 4> Chains; 10196 10197 SDValue BasePtr = LN0->getBasePtr(); 10198 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 10199 const unsigned Offset = Idx * Stride; 10200 const Align Align = commonAlignment(LN0->getAlign(), Offset); 10201 10202 SDValue SplitLoad = DAG.getExtLoad( 10203 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, 10204 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, 10205 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 10206 10207 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); 10208 10209 Loads.push_back(SplitLoad.getValue(0)); 10210 Chains.push_back(SplitLoad.getValue(1)); 10211 } 10212 10213 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 10214 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 10215 10216 // Simplify TF. 10217 AddToWorklist(NewChain.getNode()); 10218 10219 CombineTo(N, NewValue); 10220 10221 // Replace uses of the original load (before extension) 10222 // with a truncate of the concatenated sextloaded vectors. 10223 SDValue Trunc = 10224 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 10225 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); 10226 CombineTo(N0.getNode(), Trunc, NewChain); 10227 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10228 } 10229 10230 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 10231 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 10232 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { 10233 assert(N->getOpcode() == ISD::ZERO_EXTEND); 10234 EVT VT = N->getValueType(0); 10235 EVT OrigVT = N->getOperand(0).getValueType(); 10236 if (TLI.isZExtFree(OrigVT, VT)) 10237 return SDValue(); 10238 10239 // and/or/xor 10240 SDValue N0 = N->getOperand(0); 10241 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10242 N0.getOpcode() == ISD::XOR) || 10243 N0.getOperand(1).getOpcode() != ISD::Constant || 10244 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) 10245 return SDValue(); 10246 10247 // shl/shr 10248 SDValue N1 = N0->getOperand(0); 10249 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || 10250 N1.getOperand(1).getOpcode() != ISD::Constant || 10251 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) 10252 return SDValue(); 10253 10254 // load 10255 if (!isa<LoadSDNode>(N1.getOperand(0))) 10256 return SDValue(); 10257 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); 10258 EVT MemVT = Load->getMemoryVT(); 10259 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || 10260 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) 10261 return SDValue(); 10262 10263 10264 // If the shift op is SHL, the logic op must be AND, otherwise the result 10265 // will be wrong. 10266 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) 10267 return SDValue(); 10268 10269 if (!N0.hasOneUse() || !N1.hasOneUse()) 10270 return SDValue(); 10271 10272 SmallVector<SDNode*, 4> SetCCs; 10273 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), 10274 ISD::ZERO_EXTEND, SetCCs, TLI)) 10275 return SDValue(); 10276 10277 // Actually do the transformation. 10278 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, 10279 Load->getChain(), Load->getBasePtr(), 10280 Load->getMemoryVT(), Load->getMemOperand()); 10281 10282 SDLoc DL1(N1); 10283 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, 10284 N1.getOperand(1)); 10285 10286 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10287 SDLoc DL0(N0); 10288 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, 10289 DAG.getConstant(Mask, DL0, VT)); 10290 10291 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 10292 CombineTo(N, And); 10293 if (SDValue(Load, 0).hasOneUse()) { 10294 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); 10295 } else { 10296 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), 10297 Load->getValueType(0), ExtLoad); 10298 CombineTo(Load, Trunc, ExtLoad.getValue(1)); 10299 } 10300 10301 // N0 is dead at this point. 10302 recursivelyDeleteUnusedNodes(N0.getNode()); 10303 10304 return SDValue(N,0); // Return N so it doesn't get rechecked! 10305 } 10306 10307 /// If we're narrowing or widening the result of a vector select and the final 10308 /// size is the same size as a setcc (compare) feeding the select, then try to 10309 /// apply the cast operation to the select's operands because matching vector 10310 /// sizes for a select condition and other operands should be more efficient. 10311 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { 10312 unsigned CastOpcode = Cast->getOpcode(); 10313 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || 10314 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || 10315 CastOpcode == ISD::FP_ROUND) && 10316 "Unexpected opcode for vector select narrowing/widening"); 10317 10318 // We only do this transform before legal ops because the pattern may be 10319 // obfuscated by target-specific operations after legalization. Do not create 10320 // an illegal select op, however, because that may be difficult to lower. 10321 EVT VT = Cast->getValueType(0); 10322 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) 10323 return SDValue(); 10324 10325 SDValue VSel = Cast->getOperand(0); 10326 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || 10327 VSel.getOperand(0).getOpcode() != ISD::SETCC) 10328 return SDValue(); 10329 10330 // Does the setcc have the same vector size as the casted select? 10331 SDValue SetCC = VSel.getOperand(0); 10332 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); 10333 if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) 10334 return SDValue(); 10335 10336 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) 10337 SDValue A = VSel.getOperand(1); 10338 SDValue B = VSel.getOperand(2); 10339 SDValue CastA, CastB; 10340 SDLoc DL(Cast); 10341 if (CastOpcode == ISD::FP_ROUND) { 10342 // FP_ROUND (fptrunc) has an extra flag operand to pass along. 10343 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); 10344 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); 10345 } else { 10346 CastA = DAG.getNode(CastOpcode, DL, VT, A); 10347 CastB = DAG.getNode(CastOpcode, DL, VT, B); 10348 } 10349 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); 10350 } 10351 10352 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10353 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10354 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, 10355 const TargetLowering &TLI, EVT VT, 10356 bool LegalOperations, SDNode *N, 10357 SDValue N0, ISD::LoadExtType ExtLoadType) { 10358 SDNode *N0Node = N0.getNode(); 10359 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) 10360 : ISD::isZEXTLoad(N0Node); 10361 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || 10362 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) 10363 return SDValue(); 10364 10365 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10366 EVT MemVT = LN0->getMemoryVT(); 10367 if ((LegalOperations || !LN0->isSimple() || 10368 VT.isVector()) && 10369 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) 10370 return SDValue(); 10371 10372 SDValue ExtLoad = 10373 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 10374 LN0->getBasePtr(), MemVT, LN0->getMemOperand()); 10375 Combiner.CombineTo(N, ExtLoad); 10376 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10377 if (LN0->use_empty()) 10378 Combiner.recursivelyDeleteUnusedNodes(LN0); 10379 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10380 } 10381 10382 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) 10383 // Only generate vector extloads when 1) they're legal, and 2) they are 10384 // deemed desirable by the target. 10385 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, 10386 const TargetLowering &TLI, EVT VT, 10387 bool LegalOperations, SDNode *N, SDValue N0, 10388 ISD::LoadExtType ExtLoadType, 10389 ISD::NodeType ExtOpc) { 10390 if (!ISD::isNON_EXTLoad(N0.getNode()) || 10391 !ISD::isUNINDEXEDLoad(N0.getNode()) || 10392 ((LegalOperations || VT.isVector() || 10393 !cast<LoadSDNode>(N0)->isSimple()) && 10394 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) 10395 return {}; 10396 10397 bool DoXform = true; 10398 SmallVector<SDNode *, 4> SetCCs; 10399 if (!N0.hasOneUse()) 10400 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); 10401 if (VT.isVector()) 10402 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 10403 if (!DoXform) 10404 return {}; 10405 10406 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10407 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), 10408 LN0->getBasePtr(), N0.getValueType(), 10409 LN0->getMemOperand()); 10410 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); 10411 // If the load value is used only by N, replace it via CombineTo N. 10412 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); 10413 Combiner.CombineTo(N, ExtLoad); 10414 if (NoReplaceTrunc) { 10415 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 10416 Combiner.recursivelyDeleteUnusedNodes(LN0); 10417 } else { 10418 SDValue Trunc = 10419 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 10420 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 10421 } 10422 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10423 } 10424 10425 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, 10426 const TargetLowering &TLI, EVT VT, 10427 SDNode *N, SDValue N0, 10428 ISD::LoadExtType ExtLoadType, 10429 ISD::NodeType ExtOpc) { 10430 if (!N0.hasOneUse()) 10431 return SDValue(); 10432 10433 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); 10434 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) 10435 return SDValue(); 10436 10437 if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0))) 10438 return SDValue(); 10439 10440 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 10441 return SDValue(); 10442 10443 SDLoc dl(Ld); 10444 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); 10445 SDValue NewLoad = DAG.getMaskedLoad( 10446 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), 10447 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), 10448 ExtLoadType, Ld->isExpandingLoad()); 10449 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); 10450 return NewLoad; 10451 } 10452 10453 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, 10454 bool LegalOperations) { 10455 assert((N->getOpcode() == ISD::SIGN_EXTEND || 10456 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); 10457 10458 SDValue SetCC = N->getOperand(0); 10459 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || 10460 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) 10461 return SDValue(); 10462 10463 SDValue X = SetCC.getOperand(0); 10464 SDValue Ones = SetCC.getOperand(1); 10465 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 10466 EVT VT = N->getValueType(0); 10467 EVT XVT = X.getValueType(); 10468 // setge X, C is canonicalized to setgt, so we do not need to match that 10469 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does 10470 // not require the 'not' op. 10471 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { 10472 // Invert and smear/shift the sign bit: 10473 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) 10474 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) 10475 SDLoc DL(N); 10476 unsigned ShCt = VT.getSizeInBits() - 1; 10477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10478 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 10479 SDValue NotX = DAG.getNOT(DL, X, VT); 10480 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); 10481 auto ShiftOpcode = 10482 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; 10483 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); 10484 } 10485 } 10486 return SDValue(); 10487 } 10488 10489 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 10490 SDValue N0 = N->getOperand(0); 10491 EVT VT = N->getValueType(0); 10492 SDLoc DL(N); 10493 10494 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10495 return Res; 10496 10497 // fold (sext (sext x)) -> (sext x) 10498 // fold (sext (aext x)) -> (sext x) 10499 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 10500 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); 10501 10502 if (N0.getOpcode() == ISD::TRUNCATE) { 10503 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 10504 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 10505 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 10506 SDNode *oye = N0.getOperand(0).getNode(); 10507 if (NarrowLoad.getNode() != N0.getNode()) { 10508 CombineTo(N0.getNode(), NarrowLoad); 10509 // CombineTo deleted the truncate, if needed, but not what's under it. 10510 AddToWorklist(oye); 10511 } 10512 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10513 } 10514 10515 // See if the value being truncated is already sign extended. If so, just 10516 // eliminate the trunc/sext pair. 10517 SDValue Op = N0.getOperand(0); 10518 unsigned OpBits = Op.getScalarValueSizeInBits(); 10519 unsigned MidBits = N0.getScalarValueSizeInBits(); 10520 unsigned DestBits = VT.getScalarSizeInBits(); 10521 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 10522 10523 if (OpBits == DestBits) { 10524 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 10525 // bits, it is already ready. 10526 if (NumSignBits > DestBits-MidBits) 10527 return Op; 10528 } else if (OpBits < DestBits) { 10529 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 10530 // bits, just sext from i32. 10531 if (NumSignBits > OpBits-MidBits) 10532 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); 10533 } else { 10534 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 10535 // bits, just truncate to i32. 10536 if (NumSignBits > OpBits-MidBits) 10537 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 10538 } 10539 10540 // fold (sext (truncate x)) -> (sextinreg x). 10541 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 10542 N0.getValueType())) { 10543 if (OpBits < DestBits) 10544 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 10545 else if (OpBits > DestBits) 10546 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 10547 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, 10548 DAG.getValueType(N0.getValueType())); 10549 } 10550 } 10551 10552 // Try to simplify (sext (load x)). 10553 if (SDValue foldedExt = 10554 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 10555 ISD::SEXTLOAD, ISD::SIGN_EXTEND)) 10556 return foldedExt; 10557 10558 if (SDValue foldedExt = 10559 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, 10560 ISD::SIGN_EXTEND)) 10561 return foldedExt; 10562 10563 // fold (sext (load x)) to multiple smaller sextloads. 10564 // Only on illegal but splittable vectors. 10565 if (SDValue ExtLoad = CombineExtLoad(N)) 10566 return ExtLoad; 10567 10568 // Try to simplify (sext (sextload x)). 10569 if (SDValue foldedExt = tryToFoldExtOfExtload( 10570 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) 10571 return foldedExt; 10572 10573 // fold (sext (and/or/xor (load x), cst)) -> 10574 // (and/or/xor (sextload x), (sext cst)) 10575 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10576 N0.getOpcode() == ISD::XOR) && 10577 isa<LoadSDNode>(N0.getOperand(0)) && 10578 N0.getOperand(1).getOpcode() == ISD::Constant && 10579 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 10580 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 10581 EVT MemVT = LN00->getMemoryVT(); 10582 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && 10583 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { 10584 SmallVector<SDNode*, 4> SetCCs; 10585 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 10586 ISD::SIGN_EXTEND, SetCCs, TLI); 10587 if (DoXform) { 10588 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, 10589 LN00->getChain(), LN00->getBasePtr(), 10590 LN00->getMemoryVT(), 10591 LN00->getMemOperand()); 10592 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); 10593 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 10594 ExtLoad, DAG.getConstant(Mask, DL, VT)); 10595 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); 10596 bool NoReplaceTruncAnd = !N0.hasOneUse(); 10597 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 10598 CombineTo(N, And); 10599 // If N0 has multiple uses, change other uses as well. 10600 if (NoReplaceTruncAnd) { 10601 SDValue TruncAnd = 10602 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 10603 CombineTo(N0.getNode(), TruncAnd); 10604 } 10605 if (NoReplaceTrunc) { 10606 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 10607 } else { 10608 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 10609 LN00->getValueType(0), ExtLoad); 10610 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 10611 } 10612 return SDValue(N,0); // Return N so it doesn't get rechecked! 10613 } 10614 } 10615 } 10616 10617 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 10618 return V; 10619 10620 if (N0.getOpcode() == ISD::SETCC) { 10621 SDValue N00 = N0.getOperand(0); 10622 SDValue N01 = N0.getOperand(1); 10623 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 10624 EVT N00VT = N00.getValueType(); 10625 10626 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 10627 // Only do this before legalize for now. 10628 if (VT.isVector() && !LegalOperations && 10629 TLI.getBooleanContents(N00VT) == 10630 TargetLowering::ZeroOrNegativeOneBooleanContent) { 10631 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 10632 // of the same size as the compared operands. Only optimize sext(setcc()) 10633 // if this is the case. 10634 EVT SVT = getSetCCResultType(N00VT); 10635 10636 // If we already have the desired type, don't change it. 10637 if (SVT != N0.getValueType()) { 10638 // We know that the # elements of the results is the same as the 10639 // # elements of the compare (and the # elements of the compare result 10640 // for that matter). Check to see that they are the same size. If so, 10641 // we know that the element size of the sext'd result matches the 10642 // element size of the compare operands. 10643 if (VT.getSizeInBits() == SVT.getSizeInBits()) 10644 return DAG.getSetCC(DL, VT, N00, N01, CC); 10645 10646 // If the desired elements are smaller or larger than the source 10647 // elements, we can use a matching integer vector type and then 10648 // truncate/sign extend. 10649 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); 10650 if (SVT == MatchingVecType) { 10651 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); 10652 return DAG.getSExtOrTrunc(VsetCC, DL, VT); 10653 } 10654 } 10655 } 10656 10657 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) 10658 // Here, T can be 1 or -1, depending on the type of the setcc and 10659 // getBooleanContents(). 10660 unsigned SetCCWidth = N0.getScalarValueSizeInBits(); 10661 10662 // To determine the "true" side of the select, we need to know the high bit 10663 // of the value returned by the setcc if it evaluates to true. 10664 // If the type of the setcc is i1, then the true case of the select is just 10665 // sext(i1 1), that is, -1. 10666 // If the type of the setcc is larger (say, i8) then the value of the high 10667 // bit depends on getBooleanContents(), so ask TLI for a real "true" value 10668 // of the appropriate width. 10669 SDValue ExtTrueVal = (SetCCWidth == 1) 10670 ? DAG.getAllOnesConstant(DL, VT) 10671 : DAG.getBoolConstant(true, DL, VT, N00VT); 10672 SDValue Zero = DAG.getConstant(0, DL, VT); 10673 if (SDValue SCC = 10674 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) 10675 return SCC; 10676 10677 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { 10678 EVT SetCCVT = getSetCCResultType(N00VT); 10679 // Don't do this transform for i1 because there's a select transform 10680 // that would reverse it. 10681 // TODO: We should not do this transform at all without a target hook 10682 // because a sext is likely cheaper than a select? 10683 if (SetCCVT.getScalarSizeInBits() != 1 && 10684 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { 10685 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); 10686 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); 10687 } 10688 } 10689 } 10690 10691 // fold (sext x) -> (zext x) if the sign bit is known zero. 10692 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 10693 DAG.SignBitIsZero(N0)) 10694 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); 10695 10696 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 10697 return NewVSel; 10698 10699 // Eliminate this sign extend by doing a negation in the destination type: 10700 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) 10701 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && 10702 isNullOrNullSplat(N0.getOperand(0)) && 10703 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && 10704 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { 10705 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); 10706 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); 10707 } 10708 // Eliminate this sign extend by doing a decrement in the destination type: 10709 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) 10710 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && 10711 isAllOnesOrAllOnesSplat(N0.getOperand(1)) && 10712 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 10713 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { 10714 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); 10715 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 10716 } 10717 10718 // fold sext (not i1 X) -> add (zext i1 X), -1 10719 // TODO: This could be extended to handle bool vectors. 10720 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && 10721 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && 10722 TLI.isOperationLegal(ISD::ADD, VT)))) { 10723 // If we can eliminate the 'not', the sext form should be better 10724 if (SDValue NewXor = visitXOR(N0.getNode())) { 10725 // Returning N0 is a form of in-visit replacement that may have 10726 // invalidated N0. 10727 if (NewXor.getNode() == N0.getNode()) { 10728 // Return SDValue here as the xor should have already been replaced in 10729 // this sext. 10730 return SDValue(); 10731 } else { 10732 // Return a new sext with the new xor. 10733 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); 10734 } 10735 } 10736 10737 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 10738 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); 10739 } 10740 10741 return SDValue(); 10742 } 10743 10744 // isTruncateOf - If N is a truncate of some other value, return true, record 10745 // the value being truncated in Op and which of Op's bits are zero/one in Known. 10746 // This function computes KnownBits to avoid a duplicated call to 10747 // computeKnownBits in the caller. 10748 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 10749 KnownBits &Known) { 10750 if (N->getOpcode() == ISD::TRUNCATE) { 10751 Op = N->getOperand(0); 10752 Known = DAG.computeKnownBits(Op); 10753 return true; 10754 } 10755 10756 if (N.getOpcode() != ISD::SETCC || 10757 N.getValueType().getScalarType() != MVT::i1 || 10758 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) 10759 return false; 10760 10761 SDValue Op0 = N->getOperand(0); 10762 SDValue Op1 = N->getOperand(1); 10763 assert(Op0.getValueType() == Op1.getValueType()); 10764 10765 if (isNullOrNullSplat(Op0)) 10766 Op = Op1; 10767 else if (isNullOrNullSplat(Op1)) 10768 Op = Op0; 10769 else 10770 return false; 10771 10772 Known = DAG.computeKnownBits(Op); 10773 10774 return (Known.Zero | 1).isAllOnesValue(); 10775 } 10776 10777 /// Given an extending node with a pop-count operand, if the target does not 10778 /// support a pop-count in the narrow source type but does support it in the 10779 /// destination type, widen the pop-count to the destination type. 10780 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { 10781 assert((Extend->getOpcode() == ISD::ZERO_EXTEND || 10782 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); 10783 10784 SDValue CtPop = Extend->getOperand(0); 10785 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) 10786 return SDValue(); 10787 10788 EVT VT = Extend->getValueType(0); 10789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10790 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || 10791 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) 10792 return SDValue(); 10793 10794 // zext (ctpop X) --> ctpop (zext X) 10795 SDLoc DL(Extend); 10796 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); 10797 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); 10798 } 10799 10800 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 10801 SDValue N0 = N->getOperand(0); 10802 EVT VT = N->getValueType(0); 10803 10804 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 10805 return Res; 10806 10807 // fold (zext (zext x)) -> (zext x) 10808 // fold (zext (aext x)) -> (zext x) 10809 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 10810 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 10811 N0.getOperand(0)); 10812 10813 // fold (zext (truncate x)) -> (zext x) or 10814 // (zext (truncate x)) -> (truncate x) 10815 // This is valid when the truncated bits of x are already zero. 10816 SDValue Op; 10817 KnownBits Known; 10818 if (isTruncateOf(DAG, N0, Op, Known)) { 10819 APInt TruncatedBits = 10820 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? 10821 APInt(Op.getScalarValueSizeInBits(), 0) : 10822 APInt::getBitsSet(Op.getScalarValueSizeInBits(), 10823 N0.getScalarValueSizeInBits(), 10824 std::min(Op.getScalarValueSizeInBits(), 10825 VT.getScalarSizeInBits())); 10826 if (TruncatedBits.isSubsetOf(Known.Zero)) 10827 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 10828 } 10829 10830 // fold (zext (truncate x)) -> (and x, mask) 10831 if (N0.getOpcode() == ISD::TRUNCATE) { 10832 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 10833 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 10834 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 10835 SDNode *oye = N0.getOperand(0).getNode(); 10836 if (NarrowLoad.getNode() != N0.getNode()) { 10837 CombineTo(N0.getNode(), NarrowLoad); 10838 // CombineTo deleted the truncate, if needed, but not what's under it. 10839 AddToWorklist(oye); 10840 } 10841 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10842 } 10843 10844 EVT SrcVT = N0.getOperand(0).getValueType(); 10845 EVT MinVT = N0.getValueType(); 10846 10847 // Try to mask before the extension to avoid having to generate a larger mask, 10848 // possibly over several sub-vectors. 10849 if (SrcVT.bitsLT(VT) && VT.isVector()) { 10850 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 10851 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 10852 SDValue Op = N0.getOperand(0); 10853 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 10854 AddToWorklist(Op.getNode()); 10855 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 10856 // Transfer the debug info; the new node is equivalent to N0. 10857 DAG.transferDbgValues(N0, ZExtOrTrunc); 10858 return ZExtOrTrunc; 10859 } 10860 } 10861 10862 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 10863 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 10864 AddToWorklist(Op.getNode()); 10865 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); 10866 // We may safely transfer the debug info describing the truncate node over 10867 // to the equivalent and operation. 10868 DAG.transferDbgValues(N0, And); 10869 return And; 10870 } 10871 } 10872 10873 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 10874 // if either of the casts is not free. 10875 if (N0.getOpcode() == ISD::AND && 10876 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 10877 N0.getOperand(1).getOpcode() == ISD::Constant && 10878 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 10879 N0.getValueType()) || 10880 !TLI.isZExtFree(N0.getValueType(), VT))) { 10881 SDValue X = N0.getOperand(0).getOperand(0); 10882 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); 10883 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10884 SDLoc DL(N); 10885 return DAG.getNode(ISD::AND, DL, VT, 10886 X, DAG.getConstant(Mask, DL, VT)); 10887 } 10888 10889 // Try to simplify (zext (load x)). 10890 if (SDValue foldedExt = 10891 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 10892 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 10893 return foldedExt; 10894 10895 if (SDValue foldedExt = 10896 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, 10897 ISD::ZERO_EXTEND)) 10898 return foldedExt; 10899 10900 // fold (zext (load x)) to multiple smaller zextloads. 10901 // Only on illegal but splittable vectors. 10902 if (SDValue ExtLoad = CombineExtLoad(N)) 10903 return ExtLoad; 10904 10905 // fold (zext (and/or/xor (load x), cst)) -> 10906 // (and/or/xor (zextload x), (zext cst)) 10907 // Unless (and (load x) cst) will match as a zextload already and has 10908 // additional users. 10909 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 10910 N0.getOpcode() == ISD::XOR) && 10911 isa<LoadSDNode>(N0.getOperand(0)) && 10912 N0.getOperand(1).getOpcode() == ISD::Constant && 10913 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 10914 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); 10915 EVT MemVT = LN00->getMemoryVT(); 10916 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && 10917 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { 10918 bool DoXform = true; 10919 SmallVector<SDNode*, 4> SetCCs; 10920 if (!N0.hasOneUse()) { 10921 if (N0.getOpcode() == ISD::AND) { 10922 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 10923 EVT LoadResultTy = AndC->getValueType(0); 10924 EVT ExtVT; 10925 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) 10926 DoXform = false; 10927 } 10928 } 10929 if (DoXform) 10930 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), 10931 ISD::ZERO_EXTEND, SetCCs, TLI); 10932 if (DoXform) { 10933 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, 10934 LN00->getChain(), LN00->getBasePtr(), 10935 LN00->getMemoryVT(), 10936 LN00->getMemOperand()); 10937 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 10938 SDLoc DL(N); 10939 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 10940 ExtLoad, DAG.getConstant(Mask, DL, VT)); 10941 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); 10942 bool NoReplaceTruncAnd = !N0.hasOneUse(); 10943 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); 10944 CombineTo(N, And); 10945 // If N0 has multiple uses, change other uses as well. 10946 if (NoReplaceTruncAnd) { 10947 SDValue TruncAnd = 10948 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); 10949 CombineTo(N0.getNode(), TruncAnd); 10950 } 10951 if (NoReplaceTrunc) { 10952 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); 10953 } else { 10954 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), 10955 LN00->getValueType(0), ExtLoad); 10956 CombineTo(LN00, Trunc, ExtLoad.getValue(1)); 10957 } 10958 return SDValue(N,0); // Return N so it doesn't get rechecked! 10959 } 10960 } 10961 } 10962 10963 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> 10964 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) 10965 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) 10966 return ZExtLoad; 10967 10968 // Try to simplify (zext (zextload x)). 10969 if (SDValue foldedExt = tryToFoldExtOfExtload( 10970 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) 10971 return foldedExt; 10972 10973 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) 10974 return V; 10975 10976 if (N0.getOpcode() == ISD::SETCC) { 10977 // Only do this before legalize for now. 10978 if (!LegalOperations && VT.isVector() && 10979 N0.getValueType().getVectorElementType() == MVT::i1) { 10980 EVT N00VT = N0.getOperand(0).getValueType(); 10981 if (getSetCCResultType(N00VT) == N0.getValueType()) 10982 return SDValue(); 10983 10984 // We know that the # elements of the results is the same as the # 10985 // elements of the compare (and the # elements of the compare result for 10986 // that matter). Check to see that they are the same size. If so, we know 10987 // that the element size of the sext'd result matches the element size of 10988 // the compare operands. 10989 SDLoc DL(N); 10990 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 10991 // zext(setcc) -> zext_in_reg(vsetcc) for vectors. 10992 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 10993 N0.getOperand(1), N0.getOperand(2)); 10994 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); 10995 } 10996 10997 // If the desired elements are smaller or larger than the source 10998 // elements we can use a matching integer vector type and then 10999 // truncate/any extend followed by zext_in_reg. 11000 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11001 SDValue VsetCC = 11002 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 11003 N0.getOperand(1), N0.getOperand(2)); 11004 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, 11005 N0.getValueType()); 11006 } 11007 11008 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) 11009 SDLoc DL(N); 11010 EVT N0VT = N0.getValueType(); 11011 EVT N00VT = N0.getOperand(0).getValueType(); 11012 if (SDValue SCC = SimplifySelectCC( 11013 DL, N0.getOperand(0), N0.getOperand(1), 11014 DAG.getBoolConstant(true, DL, N0VT, N00VT), 11015 DAG.getBoolConstant(false, DL, N0VT, N00VT), 11016 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11017 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); 11018 } 11019 11020 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 11021 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 11022 isa<ConstantSDNode>(N0.getOperand(1)) && 11023 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 11024 N0.hasOneUse()) { 11025 SDValue ShAmt = N0.getOperand(1); 11026 if (N0.getOpcode() == ISD::SHL) { 11027 SDValue InnerZExt = N0.getOperand(0); 11028 // If the original shl may be shifting out bits, do not perform this 11029 // transformation. 11030 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - 11031 InnerZExt.getOperand(0).getValueSizeInBits(); 11032 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) 11033 return SDValue(); 11034 } 11035 11036 SDLoc DL(N); 11037 11038 // Ensure that the shift amount is wide enough for the shifted value. 11039 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) 11040 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 11041 11042 return DAG.getNode(N0.getOpcode(), DL, VT, 11043 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 11044 ShAmt); 11045 } 11046 11047 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11048 return NewVSel; 11049 11050 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11051 return NewCtPop; 11052 11053 return SDValue(); 11054 } 11055 11056 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 11057 SDValue N0 = N->getOperand(0); 11058 EVT VT = N->getValueType(0); 11059 11060 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11061 return Res; 11062 11063 // fold (aext (aext x)) -> (aext x) 11064 // fold (aext (zext x)) -> (zext x) 11065 // fold (aext (sext x)) -> (sext x) 11066 if (N0.getOpcode() == ISD::ANY_EXTEND || 11067 N0.getOpcode() == ISD::ZERO_EXTEND || 11068 N0.getOpcode() == ISD::SIGN_EXTEND) 11069 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 11070 11071 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 11072 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 11073 if (N0.getOpcode() == ISD::TRUNCATE) { 11074 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 11075 SDNode *oye = N0.getOperand(0).getNode(); 11076 if (NarrowLoad.getNode() != N0.getNode()) { 11077 CombineTo(N0.getNode(), NarrowLoad); 11078 // CombineTo deleted the truncate, if needed, but not what's under it. 11079 AddToWorklist(oye); 11080 } 11081 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11082 } 11083 } 11084 11085 // fold (aext (truncate x)) 11086 if (N0.getOpcode() == ISD::TRUNCATE) 11087 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); 11088 11089 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 11090 // if the trunc is not free. 11091 if (N0.getOpcode() == ISD::AND && 11092 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 11093 N0.getOperand(1).getOpcode() == ISD::Constant && 11094 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 11095 N0.getValueType())) { 11096 SDLoc DL(N); 11097 SDValue X = N0.getOperand(0).getOperand(0); 11098 X = DAG.getAnyExtOrTrunc(X, DL, VT); 11099 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 11100 return DAG.getNode(ISD::AND, DL, VT, 11101 X, DAG.getConstant(Mask, DL, VT)); 11102 } 11103 11104 // fold (aext (load x)) -> (aext (truncate (extload x))) 11105 // None of the supported targets knows how to perform load and any_ext 11106 // on vectors in one instruction, so attempt to fold to zext instead. 11107 if (VT.isVector()) { 11108 // Try to simplify (zext (load x)). 11109 if (SDValue foldedExt = 11110 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, 11111 ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) 11112 return foldedExt; 11113 } else if (ISD::isNON_EXTLoad(N0.getNode()) && 11114 ISD::isUNINDEXEDLoad(N0.getNode()) && 11115 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 11116 bool DoXform = true; 11117 SmallVector<SDNode *, 4> SetCCs; 11118 if (!N0.hasOneUse()) 11119 DoXform = 11120 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 11121 if (DoXform) { 11122 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11123 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 11124 LN0->getChain(), LN0->getBasePtr(), 11125 N0.getValueType(), LN0->getMemOperand()); 11126 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); 11127 // If the load value is used only by N, replace it via CombineTo N. 11128 bool NoReplaceTrunc = N0.hasOneUse(); 11129 CombineTo(N, ExtLoad); 11130 if (NoReplaceTrunc) { 11131 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11132 recursivelyDeleteUnusedNodes(LN0); 11133 } else { 11134 SDValue Trunc = 11135 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); 11136 CombineTo(LN0, Trunc, ExtLoad.getValue(1)); 11137 } 11138 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11139 } 11140 } 11141 11142 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 11143 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 11144 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 11145 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && 11146 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 11147 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11148 ISD::LoadExtType ExtType = LN0->getExtensionType(); 11149 EVT MemVT = LN0->getMemoryVT(); 11150 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 11151 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 11152 VT, LN0->getChain(), LN0->getBasePtr(), 11153 MemVT, LN0->getMemOperand()); 11154 CombineTo(N, ExtLoad); 11155 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); 11156 recursivelyDeleteUnusedNodes(LN0); 11157 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11158 } 11159 } 11160 11161 if (N0.getOpcode() == ISD::SETCC) { 11162 // For vectors: 11163 // aext(setcc) -> vsetcc 11164 // aext(setcc) -> truncate(vsetcc) 11165 // aext(setcc) -> aext(vsetcc) 11166 // Only do this before legalize for now. 11167 if (VT.isVector() && !LegalOperations) { 11168 EVT N00VT = N0.getOperand(0).getValueType(); 11169 if (getSetCCResultType(N00VT) == N0.getValueType()) 11170 return SDValue(); 11171 11172 // We know that the # elements of the results is the same as the 11173 // # elements of the compare (and the # elements of the compare result 11174 // for that matter). Check to see that they are the same size. If so, 11175 // we know that the element size of the sext'd result matches the 11176 // element size of the compare operands. 11177 if (VT.getSizeInBits() == N00VT.getSizeInBits()) 11178 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 11179 N0.getOperand(1), 11180 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11181 11182 // If the desired elements are smaller or larger than the source 11183 // elements we can use a matching integer vector type and then 11184 // truncate/any extend 11185 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); 11186 SDValue VsetCC = 11187 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 11188 N0.getOperand(1), 11189 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11190 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 11191 } 11192 11193 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 11194 SDLoc DL(N); 11195 if (SDValue SCC = SimplifySelectCC( 11196 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 11197 DAG.getConstant(0, DL, VT), 11198 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 11199 return SCC; 11200 } 11201 11202 if (SDValue NewCtPop = widenCtPop(N, DAG)) 11203 return NewCtPop; 11204 11205 return SDValue(); 11206 } 11207 11208 SDValue DAGCombiner::visitAssertExt(SDNode *N) { 11209 unsigned Opcode = N->getOpcode(); 11210 SDValue N0 = N->getOperand(0); 11211 SDValue N1 = N->getOperand(1); 11212 EVT AssertVT = cast<VTSDNode>(N1)->getVT(); 11213 11214 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) 11215 if (N0.getOpcode() == Opcode && 11216 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) 11217 return N0; 11218 11219 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 11220 N0.getOperand(0).getOpcode() == Opcode) { 11221 // We have an assert, truncate, assert sandwich. Make one stronger assert 11222 // by asserting on the smallest asserted type to the larger source type. 11223 // This eliminates the later assert: 11224 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN 11225 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN 11226 SDValue BigA = N0.getOperand(0); 11227 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 11228 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 11229 "Asserting zero/sign-extended bits to a type larger than the " 11230 "truncated destination does not provide information"); 11231 11232 SDLoc DL(N); 11233 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; 11234 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); 11235 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 11236 BigA.getOperand(0), MinAssertVTVal); 11237 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 11238 } 11239 11240 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller 11241 // than X. Just move the AssertZext in front of the truncate and drop the 11242 // AssertSExt. 11243 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 11244 N0.getOperand(0).getOpcode() == ISD::AssertSext && 11245 Opcode == ISD::AssertZext) { 11246 SDValue BigA = N0.getOperand(0); 11247 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); 11248 assert(BigA_AssertVT.bitsLE(N0.getValueType()) && 11249 "Asserting zero/sign-extended bits to a type larger than the " 11250 "truncated destination does not provide information"); 11251 11252 if (AssertVT.bitsLT(BigA_AssertVT)) { 11253 SDLoc DL(N); 11254 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), 11255 BigA.getOperand(0), N1); 11256 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); 11257 } 11258 } 11259 11260 return SDValue(); 11261 } 11262 11263 SDValue DAGCombiner::visitAssertAlign(SDNode *N) { 11264 SDLoc DL(N); 11265 11266 Align AL = cast<AssertAlignSDNode>(N)->getAlign(); 11267 SDValue N0 = N->getOperand(0); 11268 11269 // Fold (assertalign (assertalign x, AL0), AL1) -> 11270 // (assertalign x, max(AL0, AL1)) 11271 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) 11272 return DAG.getAssertAlign(DL, N0.getOperand(0), 11273 std::max(AL, AAN->getAlign())); 11274 11275 // In rare cases, there are trivial arithmetic ops in source operands. Sink 11276 // this assert down to source operands so that those arithmetic ops could be 11277 // exposed to the DAG combining. 11278 switch (N0.getOpcode()) { 11279 default: 11280 break; 11281 case ISD::ADD: 11282 case ISD::SUB: { 11283 unsigned AlignShift = Log2(AL); 11284 SDValue LHS = N0.getOperand(0); 11285 SDValue RHS = N0.getOperand(1); 11286 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); 11287 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11288 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { 11289 if (LHSAlignShift < AlignShift) 11290 LHS = DAG.getAssertAlign(DL, LHS, AL); 11291 if (RHSAlignShift < AlignShift) 11292 RHS = DAG.getAssertAlign(DL, RHS, AL); 11293 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); 11294 } 11295 break; 11296 } 11297 } 11298 11299 return SDValue(); 11300 } 11301 11302 /// If the result of a wider load is shifted to right of N bits and then 11303 /// truncated to a narrower type and where N is a multiple of number of bits of 11304 /// the narrower type, transform it to a narrower load from address + N / num of 11305 /// bits of new type. Also narrow the load if the result is masked with an AND 11306 /// to effectively produce a smaller type. If the result is to be extended, also 11307 /// fold the extension to form a extending load. 11308 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 11309 unsigned Opc = N->getOpcode(); 11310 11311 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 11312 SDValue N0 = N->getOperand(0); 11313 EVT VT = N->getValueType(0); 11314 EVT ExtVT = VT; 11315 11316 // This transformation isn't valid for vector loads. 11317 if (VT.isVector()) 11318 return SDValue(); 11319 11320 unsigned ShAmt = 0; 11321 bool HasShiftedOffset = false; 11322 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 11323 // extended to VT. 11324 if (Opc == ISD::SIGN_EXTEND_INREG) { 11325 ExtType = ISD::SEXTLOAD; 11326 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 11327 } else if (Opc == ISD::SRL) { 11328 // Another special-case: SRL is basically zero-extending a narrower value, 11329 // or it maybe shifting a higher subword, half or byte into the lowest 11330 // bits. 11331 ExtType = ISD::ZEXTLOAD; 11332 N0 = SDValue(N, 0); 11333 11334 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); 11335 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 11336 if (!N01 || !LN0) 11337 return SDValue(); 11338 11339 uint64_t ShiftAmt = N01->getZExtValue(); 11340 uint64_t MemoryWidth = LN0->getMemoryVT().getScalarSizeInBits(); 11341 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) 11342 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); 11343 else 11344 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 11345 VT.getScalarSizeInBits() - ShiftAmt); 11346 } else if (Opc == ISD::AND) { 11347 // An AND with a constant mask is the same as a truncate + zero-extend. 11348 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11349 if (!AndC) 11350 return SDValue(); 11351 11352 const APInt &Mask = AndC->getAPIntValue(); 11353 unsigned ActiveBits = 0; 11354 if (Mask.isMask()) { 11355 ActiveBits = Mask.countTrailingOnes(); 11356 } else if (Mask.isShiftedMask()) { 11357 ShAmt = Mask.countTrailingZeros(); 11358 APInt ShiftedMask = Mask.lshr(ShAmt); 11359 ActiveBits = ShiftedMask.countTrailingOnes(); 11360 HasShiftedOffset = true; 11361 } else 11362 return SDValue(); 11363 11364 ExtType = ISD::ZEXTLOAD; 11365 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 11366 } 11367 11368 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 11369 SDValue SRL = N0; 11370 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { 11371 ShAmt = ConstShift->getZExtValue(); 11372 unsigned EVTBits = ExtVT.getScalarSizeInBits(); 11373 // Is the shift amount a multiple of size of VT? 11374 if ((ShAmt & (EVTBits-1)) == 0) { 11375 N0 = N0.getOperand(0); 11376 // Is the load width a multiple of size of VT? 11377 if ((N0.getScalarValueSizeInBits() & (EVTBits - 1)) != 0) 11378 return SDValue(); 11379 } 11380 11381 // At this point, we must have a load or else we can't do the transform. 11382 auto *LN0 = dyn_cast<LoadSDNode>(N0); 11383 if (!LN0) return SDValue(); 11384 11385 // Because a SRL must be assumed to *need* to zero-extend the high bits 11386 // (as opposed to anyext the high bits), we can't combine the zextload 11387 // lowering of SRL and an sextload. 11388 if (LN0->getExtensionType() == ISD::SEXTLOAD) 11389 return SDValue(); 11390 11391 // If the shift amount is larger than the input type then we're not 11392 // accessing any of the loaded bytes. If the load was a zextload/extload 11393 // then the result of the shift+trunc is zero/undef (handled elsewhere). 11394 if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) 11395 return SDValue(); 11396 11397 // If the SRL is only used by a masking AND, we may be able to adjust 11398 // the ExtVT to make the AND redundant. 11399 SDNode *Mask = *(SRL->use_begin()); 11400 if (Mask->getOpcode() == ISD::AND && 11401 isa<ConstantSDNode>(Mask->getOperand(1))) { 11402 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); 11403 if (ShiftMask.isMask()) { 11404 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), 11405 ShiftMask.countTrailingOnes()); 11406 // If the mask is smaller, recompute the type. 11407 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && 11408 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) 11409 ExtVT = MaskedVT; 11410 } 11411 } 11412 } 11413 } 11414 11415 // If the load is shifted left (and the result isn't shifted back right), 11416 // we can fold the truncate through the shift. 11417 unsigned ShLeftAmt = 0; 11418 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 11419 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 11420 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 11421 ShLeftAmt = N01->getZExtValue(); 11422 N0 = N0.getOperand(0); 11423 } 11424 } 11425 11426 // If we haven't found a load, we can't narrow it. 11427 if (!isa<LoadSDNode>(N0)) 11428 return SDValue(); 11429 11430 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11431 // Reducing the width of a volatile load is illegal. For atomics, we may be 11432 // able to reduce the width provided we never widen again. (see D66309) 11433 if (!LN0->isSimple() || 11434 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) 11435 return SDValue(); 11436 11437 auto AdjustBigEndianShift = [&](unsigned ShAmt) { 11438 unsigned LVTStoreBits = 11439 LN0->getMemoryVT().getStoreSizeInBits().getFixedSize(); 11440 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize(); 11441 return LVTStoreBits - EVTStoreBits - ShAmt; 11442 }; 11443 11444 // For big endian targets, we need to adjust the offset to the pointer to 11445 // load the correct bytes. 11446 if (DAG.getDataLayout().isBigEndian()) 11447 ShAmt = AdjustBigEndianShift(ShAmt); 11448 11449 uint64_t PtrOff = ShAmt / 8; 11450 Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); 11451 SDLoc DL(LN0); 11452 // The original load itself didn't wrap, so an offset within it doesn't. 11453 SDNodeFlags Flags; 11454 Flags.setNoUnsignedWrap(true); 11455 SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), 11456 TypeSize::Fixed(PtrOff), DL, Flags); 11457 AddToWorklist(NewPtr.getNode()); 11458 11459 SDValue Load; 11460 if (ExtType == ISD::NON_EXTLOAD) 11461 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, 11462 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, 11463 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 11464 else 11465 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, 11466 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, 11467 NewAlign, LN0->getMemOperand()->getFlags(), 11468 LN0->getAAInfo()); 11469 11470 // Replace the old load's chain with the new load's chain. 11471 WorklistRemover DeadNodes(*this); 11472 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 11473 11474 // Shift the result left, if we've swallowed a left shift. 11475 SDValue Result = Load; 11476 if (ShLeftAmt != 0) { 11477 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 11478 if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) 11479 ShImmTy = VT; 11480 // If the shift amount is as large as the result size (but, presumably, 11481 // no larger than the source) then the useful bits of the result are 11482 // zero; we can't simply return the shortened shift, because the result 11483 // of that operation is undefined. 11484 if (ShLeftAmt >= VT.getScalarSizeInBits()) 11485 Result = DAG.getConstant(0, DL, VT); 11486 else 11487 Result = DAG.getNode(ISD::SHL, DL, VT, 11488 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 11489 } 11490 11491 if (HasShiftedOffset) { 11492 // Recalculate the shift amount after it has been altered to calculate 11493 // the offset. 11494 if (DAG.getDataLayout().isBigEndian()) 11495 ShAmt = AdjustBigEndianShift(ShAmt); 11496 11497 // We're using a shifted mask, so the load now has an offset. This means 11498 // that data has been loaded into the lower bytes than it would have been 11499 // before, so we need to shl the loaded data into the correct position in the 11500 // register. 11501 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); 11502 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); 11503 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 11504 } 11505 11506 // Return the new loaded value. 11507 return Result; 11508 } 11509 11510 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 11511 SDValue N0 = N->getOperand(0); 11512 SDValue N1 = N->getOperand(1); 11513 EVT VT = N->getValueType(0); 11514 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 11515 unsigned VTBits = VT.getScalarSizeInBits(); 11516 unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); 11517 11518 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 11519 if (N0.isUndef()) 11520 return DAG.getConstant(0, SDLoc(N), VT); 11521 11522 // fold (sext_in_reg c1) -> c1 11523 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 11524 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 11525 11526 // If the input is already sign extended, just drop the extension. 11527 if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1)) 11528 return N0; 11529 11530 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 11531 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 11532 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 11533 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), 11534 N1); 11535 11536 // fold (sext_in_reg (sext x)) -> (sext x) 11537 // fold (sext_in_reg (aext x)) -> (sext x) 11538 // if x is small enough or if we know that x has more than 1 sign bit and the 11539 // sign_extend_inreg is extending from one of them. 11540 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 11541 SDValue N00 = N0.getOperand(0); 11542 unsigned N00Bits = N00.getScalarValueSizeInBits(); 11543 if ((N00Bits <= ExtVTBits || 11544 (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) && 11545 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 11546 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); 11547 } 11548 11549 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) 11550 if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || 11551 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || 11552 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && 11553 N0.getOperand(0).getScalarValueSizeInBits() == ExtVTBits) { 11554 if (!LegalOperations || 11555 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) 11556 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, 11557 N0.getOperand(0)); 11558 } 11559 11560 // fold (sext_in_reg (zext x)) -> (sext x) 11561 // iff we are extending the source sign bit. 11562 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 11563 SDValue N00 = N0.getOperand(0); 11564 if (N00.getScalarValueSizeInBits() == ExtVTBits && 11565 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 11566 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 11567 } 11568 11569 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 11570 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) 11571 return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); 11572 11573 // fold operands of sext_in_reg based on knowledge that the top bits are not 11574 // demanded. 11575 if (SimplifyDemandedBits(SDValue(N, 0))) 11576 return SDValue(N, 0); 11577 11578 // fold (sext_in_reg (load x)) -> (smaller sextload x) 11579 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 11580 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 11581 return NarrowLoad; 11582 11583 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 11584 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 11585 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 11586 if (N0.getOpcode() == ISD::SRL) { 11587 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 11588 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { 11589 // We can turn this into an SRA iff the input to the SRL is already sign 11590 // extended enough. 11591 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 11592 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) 11593 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 11594 N0.getOperand(1)); 11595 } 11596 } 11597 11598 // fold (sext_inreg (extload x)) -> (sextload x) 11599 // If sextload is not supported by target, we can only do the combine when 11600 // load has one use. Doing otherwise can block folding the extload with other 11601 // extends that the target does support. 11602 if (ISD::isEXTLoad(N0.getNode()) && 11603 ISD::isUNINDEXEDLoad(N0.getNode()) && 11604 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 11605 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && 11606 N0.hasOneUse()) || 11607 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 11608 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11609 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 11610 LN0->getChain(), 11611 LN0->getBasePtr(), ExtVT, 11612 LN0->getMemOperand()); 11613 CombineTo(N, ExtLoad); 11614 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 11615 AddToWorklist(ExtLoad.getNode()); 11616 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11617 } 11618 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 11619 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 11620 N0.hasOneUse() && 11621 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && 11622 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && 11623 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { 11624 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11625 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 11626 LN0->getChain(), 11627 LN0->getBasePtr(), ExtVT, 11628 LN0->getMemOperand()); 11629 CombineTo(N, ExtLoad); 11630 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 11631 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11632 } 11633 11634 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) 11635 // ignore it if the masked load is already sign extended 11636 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { 11637 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && 11638 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && 11639 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { 11640 SDValue ExtMaskedLoad = DAG.getMaskedLoad( 11641 VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), 11642 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), 11643 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); 11644 CombineTo(N, ExtMaskedLoad); 11645 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); 11646 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11647 } 11648 } 11649 11650 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) 11651 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { 11652 if (SDValue(GN0, 0).hasOneUse() && 11653 ExtVT == GN0->getMemoryVT() && 11654 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { 11655 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(), 11656 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()}; 11657 11658 SDValue ExtLoad = DAG.getMaskedGather( 11659 DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops, 11660 GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD); 11661 11662 CombineTo(N, ExtLoad); 11663 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 11664 AddToWorklist(ExtLoad.getNode()); 11665 return SDValue(N, 0); // Return N so it doesn't get rechecked! 11666 } 11667 } 11668 11669 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 11670 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { 11671 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 11672 N0.getOperand(1), false)) 11673 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); 11674 } 11675 11676 return SDValue(); 11677 } 11678 11679 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 11680 SDValue N0 = N->getOperand(0); 11681 EVT VT = N->getValueType(0); 11682 11683 // sext_vector_inreg(undef) = 0 because the top bit will all be the same. 11684 if (N0.isUndef()) 11685 return DAG.getConstant(0, SDLoc(N), VT); 11686 11687 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11688 return Res; 11689 11690 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 11691 return SDValue(N, 0); 11692 11693 return SDValue(); 11694 } 11695 11696 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 11697 SDValue N0 = N->getOperand(0); 11698 EVT VT = N->getValueType(0); 11699 11700 // zext_vector_inreg(undef) = 0 because the top bits will be zero. 11701 if (N0.isUndef()) 11702 return DAG.getConstant(0, SDLoc(N), VT); 11703 11704 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) 11705 return Res; 11706 11707 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 11708 return SDValue(N, 0); 11709 11710 return SDValue(); 11711 } 11712 11713 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 11714 SDValue N0 = N->getOperand(0); 11715 EVT VT = N->getValueType(0); 11716 EVT SrcVT = N0.getValueType(); 11717 bool isLE = DAG.getDataLayout().isLittleEndian(); 11718 11719 // noop truncate 11720 if (SrcVT == VT) 11721 return N0; 11722 11723 // fold (truncate (truncate x)) -> (truncate x) 11724 if (N0.getOpcode() == ISD::TRUNCATE) 11725 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 11726 11727 // fold (truncate c1) -> c1 11728 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 11729 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 11730 if (C.getNode() != N) 11731 return C; 11732 } 11733 11734 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 11735 if (N0.getOpcode() == ISD::ZERO_EXTEND || 11736 N0.getOpcode() == ISD::SIGN_EXTEND || 11737 N0.getOpcode() == ISD::ANY_EXTEND) { 11738 // if the source is smaller than the dest, we still need an extend. 11739 if (N0.getOperand(0).getValueType().bitsLT(VT)) 11740 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 11741 // if the source is larger than the dest, than we just need the truncate. 11742 if (N0.getOperand(0).getValueType().bitsGT(VT)) 11743 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 11744 // if the source and dest are the same type, we can drop both the extend 11745 // and the truncate. 11746 return N0.getOperand(0); 11747 } 11748 11749 // If this is anyext(trunc), don't fold it, allow ourselves to be folded. 11750 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) 11751 return SDValue(); 11752 11753 // Fold extract-and-trunc into a narrow extract. For example: 11754 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 11755 // i32 y = TRUNCATE(i64 x) 11756 // -- becomes -- 11757 // v16i8 b = BITCAST (v2i64 val) 11758 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 11759 // 11760 // Note: We only run this optimization after type legalization (which often 11761 // creates this pattern) and before operation legalization after which 11762 // we need to be more careful about the vector instructions that we generate. 11763 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 11764 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 11765 EVT VecTy = N0.getOperand(0).getValueType(); 11766 EVT ExTy = N0.getValueType(); 11767 EVT TrTy = N->getValueType(0); 11768 11769 auto EltCnt = VecTy.getVectorElementCount(); 11770 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 11771 auto NewEltCnt = EltCnt * SizeRatio; 11772 11773 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); 11774 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 11775 11776 SDValue EltNo = N0->getOperand(1); 11777 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 11778 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 11779 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 11780 11781 SDLoc DL(N); 11782 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 11783 DAG.getBitcast(NVT, N0.getOperand(0)), 11784 DAG.getVectorIdxConstant(Index, DL)); 11785 } 11786 } 11787 11788 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 11789 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { 11790 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 11791 TLI.isTruncateFree(SrcVT, VT)) { 11792 SDLoc SL(N0); 11793 SDValue Cond = N0.getOperand(0); 11794 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 11795 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 11796 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 11797 } 11798 } 11799 11800 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() 11801 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 11802 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && 11803 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 11804 SDValue Amt = N0.getOperand(1); 11805 KnownBits Known = DAG.computeKnownBits(Amt); 11806 unsigned Size = VT.getScalarSizeInBits(); 11807 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 11808 SDLoc SL(N); 11809 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 11810 11811 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 11812 if (AmtVT != Amt.getValueType()) { 11813 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); 11814 AddToWorklist(Amt.getNode()); 11815 } 11816 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); 11817 } 11818 } 11819 11820 // Attempt to pre-truncate BUILD_VECTOR sources. 11821 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && 11822 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && 11823 // Avoid creating illegal types if running after type legalizer. 11824 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { 11825 SDLoc DL(N); 11826 EVT SVT = VT.getScalarType(); 11827 SmallVector<SDValue, 8> TruncOps; 11828 for (const SDValue &Op : N0->op_values()) { 11829 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); 11830 TruncOps.push_back(TruncOp); 11831 } 11832 return DAG.getBuildVector(VT, DL, TruncOps); 11833 } 11834 11835 // Fold a series of buildvector, bitcast, and truncate if possible. 11836 // For example fold 11837 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 11838 // (2xi32 (buildvector x, y)). 11839 if (Level == AfterLegalizeVectorOps && VT.isVector() && 11840 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 11841 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 11842 N0.getOperand(0).hasOneUse()) { 11843 SDValue BuildVect = N0.getOperand(0); 11844 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 11845 EVT TruncVecEltTy = VT.getVectorElementType(); 11846 11847 // Check that the element types match. 11848 if (BuildVectEltTy == TruncVecEltTy) { 11849 // Now we only need to compute the offset of the truncated elements. 11850 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 11851 unsigned TruncVecNumElts = VT.getVectorNumElements(); 11852 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 11853 11854 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 11855 "Invalid number of elements"); 11856 11857 SmallVector<SDValue, 8> Opnds; 11858 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 11859 Opnds.push_back(BuildVect.getOperand(i)); 11860 11861 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 11862 } 11863 } 11864 11865 // See if we can simplify the input to this truncate through knowledge that 11866 // only the low bits are being used. 11867 // For example "trunc (or (shl x, 8), y)" // -> trunc y 11868 // Currently we only perform this optimization on scalars because vectors 11869 // may have different active low bits. 11870 if (!VT.isVector()) { 11871 APInt Mask = 11872 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); 11873 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) 11874 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 11875 } 11876 11877 // fold (truncate (load x)) -> (smaller load x) 11878 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 11879 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 11880 if (SDValue Reduced = ReduceLoadWidth(N)) 11881 return Reduced; 11882 11883 // Handle the case where the load remains an extending load even 11884 // after truncation. 11885 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 11886 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 11887 if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { 11888 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 11889 VT, LN0->getChain(), LN0->getBasePtr(), 11890 LN0->getMemoryVT(), 11891 LN0->getMemOperand()); 11892 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 11893 return NewLoad; 11894 } 11895 } 11896 } 11897 11898 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 11899 // where ... are all 'undef'. 11900 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 11901 SmallVector<EVT, 8> VTs; 11902 SDValue V; 11903 unsigned Idx = 0; 11904 unsigned NumDefs = 0; 11905 11906 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 11907 SDValue X = N0.getOperand(i); 11908 if (!X.isUndef()) { 11909 V = X; 11910 Idx = i; 11911 NumDefs++; 11912 } 11913 // Stop if more than one members are non-undef. 11914 if (NumDefs > 1) 11915 break; 11916 11917 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 11918 VT.getVectorElementType(), 11919 X.getValueType().getVectorElementCount())); 11920 } 11921 11922 if (NumDefs == 0) 11923 return DAG.getUNDEF(VT); 11924 11925 if (NumDefs == 1) { 11926 assert(V.getNode() && "The single defined operand is empty!"); 11927 SmallVector<SDValue, 8> Opnds; 11928 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 11929 if (i != Idx) { 11930 Opnds.push_back(DAG.getUNDEF(VTs[i])); 11931 continue; 11932 } 11933 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 11934 AddToWorklist(NV.getNode()); 11935 Opnds.push_back(NV); 11936 } 11937 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 11938 } 11939 } 11940 11941 // Fold truncate of a bitcast of a vector to an extract of the low vector 11942 // element. 11943 // 11944 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx 11945 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 11946 SDValue VecSrc = N0.getOperand(0); 11947 EVT VecSrcVT = VecSrc.getValueType(); 11948 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && 11949 (!LegalOperations || 11950 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { 11951 SDLoc SL(N); 11952 11953 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; 11954 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, 11955 DAG.getVectorIdxConstant(Idx, SL)); 11956 } 11957 } 11958 11959 // Simplify the operands using demanded-bits information. 11960 if (!VT.isVector() && 11961 SimplifyDemandedBits(SDValue(N, 0))) 11962 return SDValue(N, 0); 11963 11964 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) 11965 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) 11966 // When the adde's carry is not used. 11967 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && 11968 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && 11969 // We only do for addcarry before legalize operation 11970 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || 11971 TLI.isOperationLegal(N0.getOpcode(), VT))) { 11972 SDLoc SL(N); 11973 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 11974 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 11975 auto VTs = DAG.getVTList(VT, N0->getValueType(1)); 11976 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); 11977 } 11978 11979 // fold (truncate (extract_subvector(ext x))) -> 11980 // (extract_subvector x) 11981 // TODO: This can be generalized to cover cases where the truncate and extract 11982 // do not fully cancel each other out. 11983 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 11984 SDValue N00 = N0.getOperand(0); 11985 if (N00.getOpcode() == ISD::SIGN_EXTEND || 11986 N00.getOpcode() == ISD::ZERO_EXTEND || 11987 N00.getOpcode() == ISD::ANY_EXTEND) { 11988 if (N00.getOperand(0)->getValueType(0).getVectorElementType() == 11989 VT.getVectorElementType()) 11990 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, 11991 N00.getOperand(0), N0.getOperand(1)); 11992 } 11993 } 11994 11995 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 11996 return NewVSel; 11997 11998 // Narrow a suitable binary operation with a non-opaque constant operand by 11999 // moving it ahead of the truncate. This is limited to pre-legalization 12000 // because targets may prefer a wider type during later combines and invert 12001 // this transform. 12002 switch (N0.getOpcode()) { 12003 case ISD::ADD: 12004 case ISD::SUB: 12005 case ISD::MUL: 12006 case ISD::AND: 12007 case ISD::OR: 12008 case ISD::XOR: 12009 if (!LegalOperations && N0.hasOneUse() && 12010 (isConstantOrConstantVector(N0.getOperand(0), true) || 12011 isConstantOrConstantVector(N0.getOperand(1), true))) { 12012 // TODO: We already restricted this to pre-legalization, but for vectors 12013 // we are extra cautious to not create an unsupported operation. 12014 // Target-specific changes are likely needed to avoid regressions here. 12015 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { 12016 SDLoc DL(N); 12017 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); 12018 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); 12019 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); 12020 } 12021 } 12022 } 12023 12024 return SDValue(); 12025 } 12026 12027 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 12028 SDValue Elt = N->getOperand(i); 12029 if (Elt.getOpcode() != ISD::MERGE_VALUES) 12030 return Elt.getNode(); 12031 return Elt.getOperand(Elt.getResNo()).getNode(); 12032 } 12033 12034 /// build_pair (load, load) -> load 12035 /// if load locations are consecutive. 12036 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 12037 assert(N->getOpcode() == ISD::BUILD_PAIR); 12038 12039 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 12040 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 12041 12042 // A BUILD_PAIR is always having the least significant part in elt 0 and the 12043 // most significant part in elt 1. So when combining into one large load, we 12044 // need to consider the endianness. 12045 if (DAG.getDataLayout().isBigEndian()) 12046 std::swap(LD1, LD2); 12047 12048 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 12049 LD1->getAddressSpace() != LD2->getAddressSpace()) 12050 return SDValue(); 12051 EVT LD1VT = LD1->getValueType(0); 12052 unsigned LD1Bytes = LD1VT.getStoreSize(); 12053 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 12054 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 12055 Align Alignment = LD1->getAlign(); 12056 Align NewAlign = DAG.getDataLayout().getABITypeAlign( 12057 VT.getTypeForEVT(*DAG.getContext())); 12058 12059 if (NewAlign <= Alignment && 12060 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 12061 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), 12062 LD1->getPointerInfo(), Alignment); 12063 } 12064 12065 return SDValue(); 12066 } 12067 12068 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 12069 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 12070 // and Lo parts; on big-endian machines it doesn't. 12071 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 12072 } 12073 12074 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 12075 const TargetLowering &TLI) { 12076 // If this is not a bitcast to an FP type or if the target doesn't have 12077 // IEEE754-compliant FP logic, we're done. 12078 EVT VT = N->getValueType(0); 12079 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 12080 return SDValue(); 12081 12082 // TODO: Handle cases where the integer constant is a different scalar 12083 // bitwidth to the FP. 12084 SDValue N0 = N->getOperand(0); 12085 EVT SourceVT = N0.getValueType(); 12086 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) 12087 return SDValue(); 12088 12089 unsigned FPOpcode; 12090 APInt SignMask; 12091 switch (N0.getOpcode()) { 12092 case ISD::AND: 12093 FPOpcode = ISD::FABS; 12094 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12095 break; 12096 case ISD::XOR: 12097 FPOpcode = ISD::FNEG; 12098 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12099 break; 12100 case ISD::OR: 12101 FPOpcode = ISD::FABS; 12102 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); 12103 break; 12104 default: 12105 return SDValue(); 12106 } 12107 12108 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 12109 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 12110 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> 12111 // fneg (fabs X) 12112 SDValue LogicOp0 = N0.getOperand(0); 12113 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); 12114 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 12115 LogicOp0.getOpcode() == ISD::BITCAST && 12116 LogicOp0.getOperand(0).getValueType() == VT) { 12117 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); 12118 NumFPLogicOpsConv++; 12119 if (N0.getOpcode() == ISD::OR) 12120 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); 12121 return FPOp; 12122 } 12123 12124 return SDValue(); 12125 } 12126 12127 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 12128 SDValue N0 = N->getOperand(0); 12129 EVT VT = N->getValueType(0); 12130 12131 if (N0.isUndef()) 12132 return DAG.getUNDEF(VT); 12133 12134 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 12135 // Only do this before legalize types, unless both types are integer and the 12136 // scalar type is legal. Only do this before legalize ops, since the target 12137 // maybe depending on the bitcast. 12138 // First check to see if this is all constant. 12139 // TODO: Support FP bitcasts after legalize types. 12140 if (VT.isVector() && 12141 (!LegalTypes || 12142 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && 12143 TLI.isTypeLegal(VT.getVectorElementType()))) && 12144 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 12145 cast<BuildVectorSDNode>(N0)->isConstant()) 12146 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), 12147 VT.getVectorElementType()); 12148 12149 // If the input is a constant, let getNode fold it. 12150 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 12151 // If we can't allow illegal operations, we need to check that this is just 12152 // a fp -> int or int -> conversion and that the resulting operation will 12153 // be legal. 12154 if (!LegalOperations || 12155 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 12156 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 12157 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 12158 TLI.isOperationLegal(ISD::Constant, VT))) { 12159 SDValue C = DAG.getBitcast(VT, N0); 12160 if (C.getNode() != N) 12161 return C; 12162 } 12163 } 12164 12165 // (conv (conv x, t1), t2) -> (conv x, t2) 12166 if (N0.getOpcode() == ISD::BITCAST) 12167 return DAG.getBitcast(VT, N0.getOperand(0)); 12168 12169 // fold (conv (load x)) -> (load (conv*)x) 12170 // If the resultant load doesn't need a higher alignment than the original! 12171 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 12172 // Do not remove the cast if the types differ in endian layout. 12173 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 12174 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 12175 // If the load is volatile, we only want to change the load type if the 12176 // resulting load is legal. Otherwise we might increase the number of 12177 // memory accesses. We don't care if the original type was legal or not 12178 // as we assume software couldn't rely on the number of accesses of an 12179 // illegal type. 12180 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || 12181 TLI.isOperationLegal(ISD::LOAD, VT))) { 12182 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 12183 12184 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, 12185 *LN0->getMemOperand())) { 12186 SDValue Load = 12187 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 12188 LN0->getPointerInfo(), LN0->getAlign(), 12189 LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); 12190 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 12191 return Load; 12192 } 12193 } 12194 12195 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 12196 return V; 12197 12198 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 12199 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 12200 // 12201 // For ppc_fp128: 12202 // fold (bitcast (fneg x)) -> 12203 // flipbit = signbit 12204 // (xor (bitcast x) (build_pair flipbit, flipbit)) 12205 // 12206 // fold (bitcast (fabs x)) -> 12207 // flipbit = (and (extract_element (bitcast x), 0), signbit) 12208 // (xor (bitcast x) (build_pair flipbit, flipbit)) 12209 // This often reduces constant pool loads. 12210 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 12211 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 12212 N0.getNode()->hasOneUse() && VT.isInteger() && 12213 !VT.isVector() && !N0.getValueType().isVector()) { 12214 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 12215 AddToWorklist(NewConv.getNode()); 12216 12217 SDLoc DL(N); 12218 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 12219 assert(VT.getSizeInBits() == 128); 12220 SDValue SignBit = DAG.getConstant( 12221 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 12222 SDValue FlipBit; 12223 if (N0.getOpcode() == ISD::FNEG) { 12224 FlipBit = SignBit; 12225 AddToWorklist(FlipBit.getNode()); 12226 } else { 12227 assert(N0.getOpcode() == ISD::FABS); 12228 SDValue Hi = 12229 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 12230 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 12231 SDLoc(NewConv))); 12232 AddToWorklist(Hi.getNode()); 12233 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 12234 AddToWorklist(FlipBit.getNode()); 12235 } 12236 SDValue FlipBits = 12237 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 12238 AddToWorklist(FlipBits.getNode()); 12239 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 12240 } 12241 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 12242 if (N0.getOpcode() == ISD::FNEG) 12243 return DAG.getNode(ISD::XOR, DL, VT, 12244 NewConv, DAG.getConstant(SignBit, DL, VT)); 12245 assert(N0.getOpcode() == ISD::FABS); 12246 return DAG.getNode(ISD::AND, DL, VT, 12247 NewConv, DAG.getConstant(~SignBit, DL, VT)); 12248 } 12249 12250 // fold (bitconvert (fcopysign cst, x)) -> 12251 // (or (and (bitconvert x), sign), (and cst, (not sign))) 12252 // Note that we don't handle (copysign x, cst) because this can always be 12253 // folded to an fneg or fabs. 12254 // 12255 // For ppc_fp128: 12256 // fold (bitcast (fcopysign cst, x)) -> 12257 // flipbit = (and (extract_element 12258 // (xor (bitcast cst), (bitcast x)), 0), 12259 // signbit) 12260 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 12261 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 12262 isa<ConstantFPSDNode>(N0.getOperand(0)) && 12263 VT.isInteger() && !VT.isVector()) { 12264 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); 12265 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 12266 if (isTypeLegal(IntXVT)) { 12267 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 12268 AddToWorklist(X.getNode()); 12269 12270 // If X has a different width than the result/lhs, sext it or truncate it. 12271 unsigned VTWidth = VT.getSizeInBits(); 12272 if (OrigXWidth < VTWidth) { 12273 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 12274 AddToWorklist(X.getNode()); 12275 } else if (OrigXWidth > VTWidth) { 12276 // To get the sign bit in the right place, we have to shift it right 12277 // before truncating. 12278 SDLoc DL(X); 12279 X = DAG.getNode(ISD::SRL, DL, 12280 X.getValueType(), X, 12281 DAG.getConstant(OrigXWidth-VTWidth, DL, 12282 X.getValueType())); 12283 AddToWorklist(X.getNode()); 12284 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 12285 AddToWorklist(X.getNode()); 12286 } 12287 12288 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 12289 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); 12290 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 12291 AddToWorklist(Cst.getNode()); 12292 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 12293 AddToWorklist(X.getNode()); 12294 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 12295 AddToWorklist(XorResult.getNode()); 12296 SDValue XorResult64 = DAG.getNode( 12297 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 12298 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 12299 SDLoc(XorResult))); 12300 AddToWorklist(XorResult64.getNode()); 12301 SDValue FlipBit = 12302 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 12303 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 12304 AddToWorklist(FlipBit.getNode()); 12305 SDValue FlipBits = 12306 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 12307 AddToWorklist(FlipBits.getNode()); 12308 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 12309 } 12310 APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); 12311 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 12312 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 12313 AddToWorklist(X.getNode()); 12314 12315 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 12316 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 12317 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 12318 AddToWorklist(Cst.getNode()); 12319 12320 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 12321 } 12322 } 12323 12324 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 12325 if (N0.getOpcode() == ISD::BUILD_PAIR) 12326 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 12327 return CombineLD; 12328 12329 // Remove double bitcasts from shuffles - this is often a legacy of 12330 // XformToShuffleWithZero being used to combine bitmaskings (of 12331 // float vectors bitcast to integer vectors) into shuffles. 12332 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 12333 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 12334 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && 12335 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 12336 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 12337 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 12338 12339 // If operands are a bitcast, peek through if it casts the original VT. 12340 // If operands are a constant, just bitcast back to original VT. 12341 auto PeekThroughBitcast = [&](SDValue Op) { 12342 if (Op.getOpcode() == ISD::BITCAST && 12343 Op.getOperand(0).getValueType() == VT) 12344 return SDValue(Op.getOperand(0)); 12345 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 12346 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 12347 return DAG.getBitcast(VT, Op); 12348 return SDValue(); 12349 }; 12350 12351 // FIXME: If either input vector is bitcast, try to convert the shuffle to 12352 // the result type of this bitcast. This would eliminate at least one 12353 // bitcast. See the transform in InstCombine. 12354 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 12355 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 12356 if (!(SV0 && SV1)) 12357 return SDValue(); 12358 12359 int MaskScale = 12360 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 12361 SmallVector<int, 8> NewMask; 12362 for (int M : SVN->getMask()) 12363 for (int i = 0; i != MaskScale; ++i) 12364 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 12365 12366 SDValue LegalShuffle = 12367 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); 12368 if (LegalShuffle) 12369 return LegalShuffle; 12370 } 12371 12372 return SDValue(); 12373 } 12374 12375 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 12376 EVT VT = N->getValueType(0); 12377 return CombineConsecutiveLoads(N, VT); 12378 } 12379 12380 SDValue DAGCombiner::visitFREEZE(SDNode *N) { 12381 SDValue N0 = N->getOperand(0); 12382 12383 // (freeze (freeze x)) -> (freeze x) 12384 if (N0.getOpcode() == ISD::FREEZE) 12385 return N0; 12386 12387 // If the input is a constant, return it. 12388 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) 12389 return N0; 12390 12391 return SDValue(); 12392 } 12393 12394 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 12395 /// operands. DstEltVT indicates the destination element value type. 12396 SDValue DAGCombiner:: 12397 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 12398 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 12399 12400 // If this is already the right type, we're done. 12401 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 12402 12403 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 12404 unsigned DstBitSize = DstEltVT.getSizeInBits(); 12405 12406 // If this is a conversion of N elements of one type to N elements of another 12407 // type, convert each element. This handles FP<->INT cases. 12408 if (SrcBitSize == DstBitSize) { 12409 SmallVector<SDValue, 8> Ops; 12410 for (SDValue Op : BV->op_values()) { 12411 // If the vector element type is not legal, the BUILD_VECTOR operands 12412 // are promoted and implicitly truncated. Make that explicit here. 12413 if (Op.getValueType() != SrcEltVT) 12414 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 12415 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 12416 AddToWorklist(Ops.back().getNode()); 12417 } 12418 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 12419 BV->getValueType(0).getVectorNumElements()); 12420 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 12421 } 12422 12423 // Otherwise, we're growing or shrinking the elements. To avoid having to 12424 // handle annoying details of growing/shrinking FP values, we convert them to 12425 // int first. 12426 if (SrcEltVT.isFloatingPoint()) { 12427 // Convert the input float vector to a int vector where the elements are the 12428 // same sizes. 12429 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 12430 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 12431 SrcEltVT = IntVT; 12432 } 12433 12434 // Now we know the input is an integer vector. If the output is a FP type, 12435 // convert to integer first, then to FP of the right size. 12436 if (DstEltVT.isFloatingPoint()) { 12437 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 12438 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 12439 12440 // Next, convert to FP elements of the same size. 12441 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 12442 } 12443 12444 SDLoc DL(BV); 12445 12446 // Okay, we know the src/dst types are both integers of differing types. 12447 // Handling growing first. 12448 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 12449 if (SrcBitSize < DstBitSize) { 12450 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 12451 12452 SmallVector<SDValue, 8> Ops; 12453 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 12454 i += NumInputsPerOutput) { 12455 bool isLE = DAG.getDataLayout().isLittleEndian(); 12456 APInt NewBits = APInt(DstBitSize, 0); 12457 bool EltIsUndef = true; 12458 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 12459 // Shift the previously computed bits over. 12460 NewBits <<= SrcBitSize; 12461 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 12462 if (Op.isUndef()) continue; 12463 EltIsUndef = false; 12464 12465 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 12466 zextOrTrunc(SrcBitSize).zext(DstBitSize); 12467 } 12468 12469 if (EltIsUndef) 12470 Ops.push_back(DAG.getUNDEF(DstEltVT)); 12471 else 12472 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 12473 } 12474 12475 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 12476 return DAG.getBuildVector(VT, DL, Ops); 12477 } 12478 12479 // Finally, this must be the case where we are shrinking elements: each input 12480 // turns into multiple outputs. 12481 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 12482 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 12483 NumOutputsPerInput*BV->getNumOperands()); 12484 SmallVector<SDValue, 8> Ops; 12485 12486 for (const SDValue &Op : BV->op_values()) { 12487 if (Op.isUndef()) { 12488 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 12489 continue; 12490 } 12491 12492 APInt OpVal = cast<ConstantSDNode>(Op)-> 12493 getAPIntValue().zextOrTrunc(SrcBitSize); 12494 12495 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 12496 APInt ThisVal = OpVal.trunc(DstBitSize); 12497 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 12498 OpVal.lshrInPlace(DstBitSize); 12499 } 12500 12501 // For big endian targets, swap the order of the pieces of each element. 12502 if (DAG.getDataLayout().isBigEndian()) 12503 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 12504 } 12505 12506 return DAG.getBuildVector(VT, DL, Ops); 12507 } 12508 12509 static bool isContractable(SDNode *N) { 12510 SDNodeFlags F = N->getFlags(); 12511 return F.hasAllowContract() || F.hasAllowReassociation(); 12512 } 12513 12514 /// Try to perform FMA combining on a given FADD node. 12515 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 12516 SDValue N0 = N->getOperand(0); 12517 SDValue N1 = N->getOperand(1); 12518 EVT VT = N->getValueType(0); 12519 SDLoc SL(N); 12520 12521 const TargetOptions &Options = DAG.getTarget().Options; 12522 12523 // Floating-point multiply-add with intermediate rounding. 12524 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 12525 12526 // Floating-point multiply-add without intermediate rounding. 12527 bool HasFMA = 12528 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 12529 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 12530 12531 // No valid opcode, do not combine. 12532 if (!HasFMAD && !HasFMA) 12533 return SDValue(); 12534 12535 bool CanFuse = Options.UnsafeFPMath || isContractable(N); 12536 bool CanReassociate = 12537 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 12538 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 12539 CanFuse || HasFMAD); 12540 // If the addition is not contractable, do not combine. 12541 if (!AllowFusionGlobally && !isContractable(N)) 12542 return SDValue(); 12543 12544 if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) 12545 return SDValue(); 12546 12547 // Always prefer FMAD to FMA for precision. 12548 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 12549 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 12550 12551 // Is the node an FMUL and contractable either due to global flags or 12552 // SDNodeFlags. 12553 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 12554 if (N.getOpcode() != ISD::FMUL) 12555 return false; 12556 return AllowFusionGlobally || isContractable(N.getNode()); 12557 }; 12558 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 12559 // prefer to fold the multiply with fewer uses. 12560 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { 12561 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 12562 std::swap(N0, N1); 12563 } 12564 12565 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 12566 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { 12567 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 12568 N0.getOperand(1), N1); 12569 } 12570 12571 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 12572 // Note: Commutes FADD operands. 12573 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { 12574 return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), 12575 N1.getOperand(1), N0); 12576 } 12577 12578 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) 12579 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) 12580 // This requires reassociation because it changes the order of operations. 12581 SDValue FMA, E; 12582 if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode && 12583 N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && 12584 N0.getOperand(2).hasOneUse()) { 12585 FMA = N0; 12586 E = N1; 12587 } else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode && 12588 N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && 12589 N1.getOperand(2).hasOneUse()) { 12590 FMA = N1; 12591 E = N0; 12592 } 12593 if (FMA && E) { 12594 SDValue A = FMA.getOperand(0); 12595 SDValue B = FMA.getOperand(1); 12596 SDValue C = FMA.getOperand(2).getOperand(0); 12597 SDValue D = FMA.getOperand(2).getOperand(1); 12598 SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); 12599 return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE); 12600 } 12601 12602 // Look through FP_EXTEND nodes to do more combining. 12603 12604 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 12605 if (N0.getOpcode() == ISD::FP_EXTEND) { 12606 SDValue N00 = N0.getOperand(0); 12607 if (isContractableFMUL(N00) && 12608 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12609 N00.getValueType())) { 12610 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12611 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 12612 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 12613 N1); 12614 } 12615 } 12616 12617 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 12618 // Note: Commutes FADD operands. 12619 if (N1.getOpcode() == ISD::FP_EXTEND) { 12620 SDValue N10 = N1.getOperand(0); 12621 if (isContractableFMUL(N10) && 12622 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12623 N10.getValueType())) { 12624 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12625 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), 12626 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), 12627 N0); 12628 } 12629 } 12630 12631 // More folding opportunities when target permits. 12632 if (Aggressive) { 12633 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 12634 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 12635 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 12636 SDValue Z) { 12637 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 12638 DAG.getNode(PreferredFusedOpcode, SL, VT, 12639 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 12640 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 12641 Z)); 12642 }; 12643 if (N0.getOpcode() == PreferredFusedOpcode) { 12644 SDValue N02 = N0.getOperand(2); 12645 if (N02.getOpcode() == ISD::FP_EXTEND) { 12646 SDValue N020 = N02.getOperand(0); 12647 if (isContractableFMUL(N020) && 12648 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12649 N020.getValueType())) { 12650 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 12651 N020.getOperand(0), N020.getOperand(1), 12652 N1); 12653 } 12654 } 12655 } 12656 12657 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 12658 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 12659 // FIXME: This turns two single-precision and one double-precision 12660 // operation into two double-precision operations, which might not be 12661 // interesting for all targets, especially GPUs. 12662 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, 12663 SDValue Z) { 12664 return DAG.getNode( 12665 PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 12666 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 12667 DAG.getNode(PreferredFusedOpcode, SL, VT, 12668 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 12669 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); 12670 }; 12671 if (N0.getOpcode() == ISD::FP_EXTEND) { 12672 SDValue N00 = N0.getOperand(0); 12673 if (N00.getOpcode() == PreferredFusedOpcode) { 12674 SDValue N002 = N00.getOperand(2); 12675 if (isContractableFMUL(N002) && 12676 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12677 N00.getValueType())) { 12678 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 12679 N002.getOperand(0), N002.getOperand(1), 12680 N1); 12681 } 12682 } 12683 } 12684 12685 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 12686 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 12687 if (N1.getOpcode() == PreferredFusedOpcode) { 12688 SDValue N12 = N1.getOperand(2); 12689 if (N12.getOpcode() == ISD::FP_EXTEND) { 12690 SDValue N120 = N12.getOperand(0); 12691 if (isContractableFMUL(N120) && 12692 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12693 N120.getValueType())) { 12694 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 12695 N120.getOperand(0), N120.getOperand(1), 12696 N0); 12697 } 12698 } 12699 } 12700 12701 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 12702 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 12703 // FIXME: This turns two single-precision and one double-precision 12704 // operation into two double-precision operations, which might not be 12705 // interesting for all targets, especially GPUs. 12706 if (N1.getOpcode() == ISD::FP_EXTEND) { 12707 SDValue N10 = N1.getOperand(0); 12708 if (N10.getOpcode() == PreferredFusedOpcode) { 12709 SDValue N102 = N10.getOperand(2); 12710 if (isContractableFMUL(N102) && 12711 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12712 N10.getValueType())) { 12713 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 12714 N102.getOperand(0), N102.getOperand(1), 12715 N0); 12716 } 12717 } 12718 } 12719 } 12720 12721 return SDValue(); 12722 } 12723 12724 /// Try to perform FMA combining on a given FSUB node. 12725 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 12726 SDValue N0 = N->getOperand(0); 12727 SDValue N1 = N->getOperand(1); 12728 EVT VT = N->getValueType(0); 12729 SDLoc SL(N); 12730 12731 const TargetOptions &Options = DAG.getTarget().Options; 12732 // Floating-point multiply-add with intermediate rounding. 12733 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); 12734 12735 // Floating-point multiply-add without intermediate rounding. 12736 bool HasFMA = 12737 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 12738 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 12739 12740 // No valid opcode, do not combine. 12741 if (!HasFMAD && !HasFMA) 12742 return SDValue(); 12743 12744 const SDNodeFlags Flags = N->getFlags(); 12745 bool CanFuse = Options.UnsafeFPMath || isContractable(N); 12746 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || 12747 CanFuse || HasFMAD); 12748 12749 // If the subtraction is not contractable, do not combine. 12750 if (!AllowFusionGlobally && !isContractable(N)) 12751 return SDValue(); 12752 12753 if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) 12754 return SDValue(); 12755 12756 // Always prefer FMAD to FMA for precision. 12757 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 12758 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 12759 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); 12760 12761 // Is the node an FMUL and contractable either due to global flags or 12762 // SDNodeFlags. 12763 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { 12764 if (N.getOpcode() != ISD::FMUL) 12765 return false; 12766 return AllowFusionGlobally || isContractable(N.getNode()); 12767 }; 12768 12769 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 12770 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { 12771 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { 12772 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), 12773 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); 12774 } 12775 return SDValue(); 12776 }; 12777 12778 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 12779 // Note: Commutes FSUB operands. 12780 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { 12781 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { 12782 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12783 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), 12784 YZ.getOperand(1), X); 12785 } 12786 return SDValue(); 12787 }; 12788 12789 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), 12790 // prefer to fold the multiply with fewer uses. 12791 if (isContractableFMUL(N0) && isContractableFMUL(N1) && 12792 (N0.getNode()->use_size() > N1.getNode()->use_size())) { 12793 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) 12794 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 12795 return V; 12796 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) 12797 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 12798 return V; 12799 } else { 12800 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 12801 if (SDValue V = tryToFoldXYSubZ(N0, N1)) 12802 return V; 12803 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 12804 if (SDValue V = tryToFoldXSubYZ(N0, N1)) 12805 return V; 12806 } 12807 12808 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 12809 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && 12810 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 12811 SDValue N00 = N0.getOperand(0).getOperand(0); 12812 SDValue N01 = N0.getOperand(0).getOperand(1); 12813 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12814 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 12815 DAG.getNode(ISD::FNEG, SL, VT, N1)); 12816 } 12817 12818 // Look through FP_EXTEND nodes to do more combining. 12819 12820 // fold (fsub (fpext (fmul x, y)), z) 12821 // -> (fma (fpext x), (fpext y), (fneg z)) 12822 if (N0.getOpcode() == ISD::FP_EXTEND) { 12823 SDValue N00 = N0.getOperand(0); 12824 if (isContractableFMUL(N00) && 12825 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12826 N00.getValueType())) { 12827 return DAG.getNode(PreferredFusedOpcode, SL, VT, 12828 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 12829 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 12830 DAG.getNode(ISD::FNEG, SL, VT, N1)); 12831 } 12832 } 12833 12834 // fold (fsub x, (fpext (fmul y, z))) 12835 // -> (fma (fneg (fpext y)), (fpext z), x) 12836 // Note: Commutes FSUB operands. 12837 if (N1.getOpcode() == ISD::FP_EXTEND) { 12838 SDValue N10 = N1.getOperand(0); 12839 if (isContractableFMUL(N10) && 12840 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12841 N10.getValueType())) { 12842 return DAG.getNode( 12843 PreferredFusedOpcode, SL, VT, 12844 DAG.getNode(ISD::FNEG, SL, VT, 12845 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), 12846 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); 12847 } 12848 } 12849 12850 // fold (fsub (fpext (fneg (fmul, x, y))), z) 12851 // -> (fneg (fma (fpext x), (fpext y), z)) 12852 // Note: This could be removed with appropriate canonicalization of the 12853 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 12854 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 12855 // from implementing the canonicalization in visitFSUB. 12856 if (N0.getOpcode() == ISD::FP_EXTEND) { 12857 SDValue N00 = N0.getOperand(0); 12858 if (N00.getOpcode() == ISD::FNEG) { 12859 SDValue N000 = N00.getOperand(0); 12860 if (isContractableFMUL(N000) && 12861 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12862 N00.getValueType())) { 12863 return DAG.getNode( 12864 ISD::FNEG, SL, VT, 12865 DAG.getNode(PreferredFusedOpcode, SL, VT, 12866 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 12867 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 12868 N1)); 12869 } 12870 } 12871 } 12872 12873 // fold (fsub (fneg (fpext (fmul, x, y))), z) 12874 // -> (fneg (fma (fpext x)), (fpext y), z) 12875 // Note: This could be removed with appropriate canonicalization of the 12876 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 12877 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 12878 // from implementing the canonicalization in visitFSUB. 12879 if (N0.getOpcode() == ISD::FNEG) { 12880 SDValue N00 = N0.getOperand(0); 12881 if (N00.getOpcode() == ISD::FP_EXTEND) { 12882 SDValue N000 = N00.getOperand(0); 12883 if (isContractableFMUL(N000) && 12884 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12885 N000.getValueType())) { 12886 return DAG.getNode( 12887 ISD::FNEG, SL, VT, 12888 DAG.getNode(PreferredFusedOpcode, SL, VT, 12889 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), 12890 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), 12891 N1)); 12892 } 12893 } 12894 } 12895 12896 // More folding opportunities when target permits. 12897 if (Aggressive) { 12898 // fold (fsub (fma x, y, (fmul u, v)), z) 12899 // -> (fma x, y (fma u, v, (fneg z))) 12900 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && 12901 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && 12902 N0.getOperand(2)->hasOneUse()) { 12903 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), 12904 N0.getOperand(1), 12905 DAG.getNode(PreferredFusedOpcode, SL, VT, 12906 N0.getOperand(2).getOperand(0), 12907 N0.getOperand(2).getOperand(1), 12908 DAG.getNode(ISD::FNEG, SL, VT, N1))); 12909 } 12910 12911 // fold (fsub x, (fma y, z, (fmul u, v))) 12912 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 12913 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && 12914 isContractableFMUL(N1.getOperand(2)) && 12915 N1->hasOneUse() && NoSignedZero) { 12916 SDValue N20 = N1.getOperand(2).getOperand(0); 12917 SDValue N21 = N1.getOperand(2).getOperand(1); 12918 return DAG.getNode( 12919 PreferredFusedOpcode, SL, VT, 12920 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 12921 DAG.getNode(PreferredFusedOpcode, SL, VT, 12922 DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); 12923 } 12924 12925 12926 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 12927 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 12928 if (N0.getOpcode() == PreferredFusedOpcode && 12929 N0->hasOneUse()) { 12930 SDValue N02 = N0.getOperand(2); 12931 if (N02.getOpcode() == ISD::FP_EXTEND) { 12932 SDValue N020 = N02.getOperand(0); 12933 if (isContractableFMUL(N020) && 12934 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12935 N020.getValueType())) { 12936 return DAG.getNode( 12937 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), 12938 DAG.getNode( 12939 PreferredFusedOpcode, SL, VT, 12940 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), 12941 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), 12942 DAG.getNode(ISD::FNEG, SL, VT, N1))); 12943 } 12944 } 12945 } 12946 12947 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 12948 // -> (fma (fpext x), (fpext y), 12949 // (fma (fpext u), (fpext v), (fneg z))) 12950 // FIXME: This turns two single-precision and one double-precision 12951 // operation into two double-precision operations, which might not be 12952 // interesting for all targets, especially GPUs. 12953 if (N0.getOpcode() == ISD::FP_EXTEND) { 12954 SDValue N00 = N0.getOperand(0); 12955 if (N00.getOpcode() == PreferredFusedOpcode) { 12956 SDValue N002 = N00.getOperand(2); 12957 if (isContractableFMUL(N002) && 12958 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12959 N00.getValueType())) { 12960 return DAG.getNode( 12961 PreferredFusedOpcode, SL, VT, 12962 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), 12963 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), 12964 DAG.getNode( 12965 PreferredFusedOpcode, SL, VT, 12966 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), 12967 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), 12968 DAG.getNode(ISD::FNEG, SL, VT, N1))); 12969 } 12970 } 12971 } 12972 12973 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 12974 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 12975 if (N1.getOpcode() == PreferredFusedOpcode && 12976 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && 12977 N1->hasOneUse()) { 12978 SDValue N120 = N1.getOperand(2).getOperand(0); 12979 if (isContractableFMUL(N120) && 12980 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 12981 N120.getValueType())) { 12982 SDValue N1200 = N120.getOperand(0); 12983 SDValue N1201 = N120.getOperand(1); 12984 return DAG.getNode( 12985 PreferredFusedOpcode, SL, VT, 12986 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), 12987 DAG.getNode(PreferredFusedOpcode, SL, VT, 12988 DAG.getNode(ISD::FNEG, SL, VT, 12989 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), 12990 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); 12991 } 12992 } 12993 12994 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 12995 // -> (fma (fneg (fpext y)), (fpext z), 12996 // (fma (fneg (fpext u)), (fpext v), x)) 12997 // FIXME: This turns two single-precision and one double-precision 12998 // operation into two double-precision operations, which might not be 12999 // interesting for all targets, especially GPUs. 13000 if (N1.getOpcode() == ISD::FP_EXTEND && 13001 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 13002 SDValue CvtSrc = N1.getOperand(0); 13003 SDValue N100 = CvtSrc.getOperand(0); 13004 SDValue N101 = CvtSrc.getOperand(1); 13005 SDValue N102 = CvtSrc.getOperand(2); 13006 if (isContractableFMUL(N102) && 13007 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, 13008 CvtSrc.getValueType())) { 13009 SDValue N1020 = N102.getOperand(0); 13010 SDValue N1021 = N102.getOperand(1); 13011 return DAG.getNode( 13012 PreferredFusedOpcode, SL, VT, 13013 DAG.getNode(ISD::FNEG, SL, VT, 13014 DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), 13015 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 13016 DAG.getNode(PreferredFusedOpcode, SL, VT, 13017 DAG.getNode(ISD::FNEG, SL, VT, 13018 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), 13019 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); 13020 } 13021 } 13022 } 13023 13024 return SDValue(); 13025 } 13026 13027 /// Try to perform FMA combining on a given FMUL node based on the distributive 13028 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, 13029 /// subtraction instead of addition). 13030 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { 13031 SDValue N0 = N->getOperand(0); 13032 SDValue N1 = N->getOperand(1); 13033 EVT VT = N->getValueType(0); 13034 SDLoc SL(N); 13035 13036 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 13037 13038 const TargetOptions &Options = DAG.getTarget().Options; 13039 13040 // The transforms below are incorrect when x == 0 and y == inf, because the 13041 // intermediate multiplication produces a nan. 13042 if (!Options.NoInfsFPMath) 13043 return SDValue(); 13044 13045 // Floating-point multiply-add without intermediate rounding. 13046 bool HasFMA = 13047 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && 13048 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && 13049 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 13050 13051 // Floating-point multiply-add with intermediate rounding. This can result 13052 // in a less precise result due to the changed rounding order. 13053 bool HasFMAD = Options.UnsafeFPMath && 13054 (LegalOperations && TLI.isFMADLegal(DAG, N)); 13055 13056 // No valid opcode, do not combine. 13057 if (!HasFMAD && !HasFMA) 13058 return SDValue(); 13059 13060 // Always prefer FMAD to FMA for precision. 13061 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 13062 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 13063 13064 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) 13065 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) 13066 auto FuseFADD = [&](SDValue X, SDValue Y) { 13067 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 13068 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { 13069 if (C->isExactlyValue(+1.0)) 13070 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13071 Y); 13072 if (C->isExactlyValue(-1.0)) 13073 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13074 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13075 } 13076 } 13077 return SDValue(); 13078 }; 13079 13080 if (SDValue FMA = FuseFADD(N0, N1)) 13081 return FMA; 13082 if (SDValue FMA = FuseFADD(N1, N0)) 13083 return FMA; 13084 13085 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) 13086 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) 13087 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) 13088 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) 13089 auto FuseFSUB = [&](SDValue X, SDValue Y) { 13090 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 13091 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { 13092 if (C0->isExactlyValue(+1.0)) 13093 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13094 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13095 Y); 13096 if (C0->isExactlyValue(-1.0)) 13097 return DAG.getNode(PreferredFusedOpcode, SL, VT, 13098 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 13099 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13100 } 13101 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { 13102 if (C1->isExactlyValue(+1.0)) 13103 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13104 DAG.getNode(ISD::FNEG, SL, VT, Y)); 13105 if (C1->isExactlyValue(-1.0)) 13106 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 13107 Y); 13108 } 13109 } 13110 return SDValue(); 13111 }; 13112 13113 if (SDValue FMA = FuseFSUB(N0, N1)) 13114 return FMA; 13115 if (SDValue FMA = FuseFSUB(N1, N0)) 13116 return FMA; 13117 13118 return SDValue(); 13119 } 13120 13121 SDValue DAGCombiner::visitFADD(SDNode *N) { 13122 SDValue N0 = N->getOperand(0); 13123 SDValue N1 = N->getOperand(1); 13124 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 13125 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 13126 EVT VT = N->getValueType(0); 13127 SDLoc DL(N); 13128 const TargetOptions &Options = DAG.getTarget().Options; 13129 SDNodeFlags Flags = N->getFlags(); 13130 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13131 13132 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13133 return R; 13134 13135 // fold vector ops 13136 if (VT.isVector()) 13137 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13138 return FoldedVOp; 13139 13140 // fold (fadd c1, c2) -> c1 + c2 13141 if (N0CFP && N1CFP) 13142 return DAG.getNode(ISD::FADD, DL, VT, N0, N1); 13143 13144 // canonicalize constant to RHS 13145 if (N0CFP && !N1CFP) 13146 return DAG.getNode(ISD::FADD, DL, VT, N1, N0); 13147 13148 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) 13149 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); 13150 if (N1C && N1C->isZero()) 13151 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) 13152 return N0; 13153 13154 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13155 return NewSel; 13156 13157 // fold (fadd A, (fneg B)) -> (fsub A, B) 13158 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13159 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13160 N1, DAG, LegalOperations, ForCodeSize)) 13161 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); 13162 13163 // fold (fadd (fneg A), B) -> (fsub B, A) 13164 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) 13165 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13166 N0, DAG, LegalOperations, ForCodeSize)) 13167 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); 13168 13169 auto isFMulNegTwo = [](SDValue FMul) { 13170 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) 13171 return false; 13172 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); 13173 return C && C->isExactlyValue(-2.0); 13174 }; 13175 13176 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) 13177 if (isFMulNegTwo(N0)) { 13178 SDValue B = N0.getOperand(0); 13179 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 13180 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); 13181 } 13182 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) 13183 if (isFMulNegTwo(N1)) { 13184 SDValue B = N1.getOperand(0); 13185 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); 13186 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); 13187 } 13188 13189 // No FP constant should be created after legalization as Instruction 13190 // Selection pass has a hard time dealing with FP constants. 13191 bool AllowNewConst = (Level < AfterLegalizeDAG); 13192 13193 // If nnan is enabled, fold lots of things. 13194 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { 13195 // If allowed, fold (fadd (fneg x), x) -> 0.0 13196 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 13197 return DAG.getConstantFP(0.0, DL, VT); 13198 13199 // If allowed, fold (fadd x, (fneg x)) -> 0.0 13200 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 13201 return DAG.getConstantFP(0.0, DL, VT); 13202 } 13203 13204 // If 'unsafe math' or reassoc and nsz, fold lots of things. 13205 // TODO: break out portions of the transformations below for which Unsafe is 13206 // considered and which do not require both nsz and reassoc 13207 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 13208 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 13209 AllowNewConst) { 13210 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 13211 if (N1CFP && N0.getOpcode() == ISD::FADD && 13212 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 13213 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); 13214 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); 13215 } 13216 13217 // We can fold chains of FADD's of the same value into multiplications. 13218 // This transform is not safe in general because we are reducing the number 13219 // of rounding steps. 13220 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 13221 if (N0.getOpcode() == ISD::FMUL) { 13222 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 13223 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 13224 13225 // (fadd (fmul x, c), x) -> (fmul x, c+1) 13226 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 13227 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 13228 DAG.getConstantFP(1.0, DL, VT)); 13229 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); 13230 } 13231 13232 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 13233 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 13234 N1.getOperand(0) == N1.getOperand(1) && 13235 N0.getOperand(0) == N1.getOperand(0)) { 13236 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 13237 DAG.getConstantFP(2.0, DL, VT)); 13238 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); 13239 } 13240 } 13241 13242 if (N1.getOpcode() == ISD::FMUL) { 13243 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 13244 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 13245 13246 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 13247 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 13248 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 13249 DAG.getConstantFP(1.0, DL, VT)); 13250 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); 13251 } 13252 13253 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 13254 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 13255 N0.getOperand(0) == N0.getOperand(1) && 13256 N1.getOperand(0) == N0.getOperand(0)) { 13257 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 13258 DAG.getConstantFP(2.0, DL, VT)); 13259 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); 13260 } 13261 } 13262 13263 if (N0.getOpcode() == ISD::FADD) { 13264 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 13265 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 13266 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 13267 (N0.getOperand(0) == N1)) { 13268 return DAG.getNode(ISD::FMUL, DL, VT, N1, 13269 DAG.getConstantFP(3.0, DL, VT)); 13270 } 13271 } 13272 13273 if (N1.getOpcode() == ISD::FADD) { 13274 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 13275 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 13276 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 13277 N1.getOperand(0) == N0) { 13278 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13279 DAG.getConstantFP(3.0, DL, VT)); 13280 } 13281 } 13282 13283 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 13284 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 13285 N0.getOperand(0) == N0.getOperand(1) && 13286 N1.getOperand(0) == N1.getOperand(1) && 13287 N0.getOperand(0) == N1.getOperand(0)) { 13288 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 13289 DAG.getConstantFP(4.0, DL, VT)); 13290 } 13291 } 13292 } // enable-unsafe-fp-math 13293 13294 // FADD -> FMA combines: 13295 if (SDValue Fused = visitFADDForFMACombine(N)) { 13296 AddToWorklist(Fused.getNode()); 13297 return Fused; 13298 } 13299 return SDValue(); 13300 } 13301 13302 SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { 13303 SDValue Chain = N->getOperand(0); 13304 SDValue N0 = N->getOperand(1); 13305 SDValue N1 = N->getOperand(2); 13306 EVT VT = N->getValueType(0); 13307 EVT ChainVT = N->getValueType(1); 13308 SDLoc DL(N); 13309 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13310 13311 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) 13312 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 13313 if (SDValue NegN1 = TLI.getCheaperNegatedExpression( 13314 N1, DAG, LegalOperations, ForCodeSize)) { 13315 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 13316 {Chain, N0, NegN1}); 13317 } 13318 13319 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) 13320 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) 13321 if (SDValue NegN0 = TLI.getCheaperNegatedExpression( 13322 N0, DAG, LegalOperations, ForCodeSize)) { 13323 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), 13324 {Chain, N1, NegN0}); 13325 } 13326 return SDValue(); 13327 } 13328 13329 SDValue DAGCombiner::visitFSUB(SDNode *N) { 13330 SDValue N0 = N->getOperand(0); 13331 SDValue N1 = N->getOperand(1); 13332 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 13333 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 13334 EVT VT = N->getValueType(0); 13335 SDLoc DL(N); 13336 const TargetOptions &Options = DAG.getTarget().Options; 13337 const SDNodeFlags Flags = N->getFlags(); 13338 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13339 13340 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13341 return R; 13342 13343 // fold vector ops 13344 if (VT.isVector()) 13345 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13346 return FoldedVOp; 13347 13348 // fold (fsub c1, c2) -> c1-c2 13349 if (N0CFP && N1CFP) 13350 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1); 13351 13352 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13353 return NewSel; 13354 13355 // (fsub A, 0) -> A 13356 if (N1CFP && N1CFP->isZero()) { 13357 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || 13358 Flags.hasNoSignedZeros()) { 13359 return N0; 13360 } 13361 } 13362 13363 if (N0 == N1) { 13364 // (fsub x, x) -> 0.0 13365 if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) 13366 return DAG.getConstantFP(0.0f, DL, VT); 13367 } 13368 13369 // (fsub -0.0, N1) -> -N1 13370 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the 13371 // FSUB does not specify the sign bit of a NaN. Also note that for 13372 // the same reason, the inverse transform is not safe, unless fast math 13373 // flags are in play. 13374 if (N0CFP && N0CFP->isZero()) { 13375 if (N0CFP->isNegative() || 13376 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { 13377 if (SDValue NegN1 = 13378 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 13379 return NegN1; 13380 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13381 return DAG.getNode(ISD::FNEG, DL, VT, N1); 13382 } 13383 } 13384 13385 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || 13386 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && 13387 N1.getOpcode() == ISD::FADD) { 13388 // X - (X + Y) -> -Y 13389 if (N0 == N1->getOperand(0)) 13390 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); 13391 // X - (Y + X) -> -Y 13392 if (N0 == N1->getOperand(1)) 13393 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); 13394 } 13395 13396 // fold (fsub A, (fneg B)) -> (fadd A, B) 13397 if (SDValue NegN1 = 13398 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) 13399 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); 13400 13401 // FSUB -> FMA combines: 13402 if (SDValue Fused = visitFSUBForFMACombine(N)) { 13403 AddToWorklist(Fused.getNode()); 13404 return Fused; 13405 } 13406 13407 return SDValue(); 13408 } 13409 13410 SDValue DAGCombiner::visitFMUL(SDNode *N) { 13411 SDValue N0 = N->getOperand(0); 13412 SDValue N1 = N->getOperand(1); 13413 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); 13414 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); 13415 EVT VT = N->getValueType(0); 13416 SDLoc DL(N); 13417 const TargetOptions &Options = DAG.getTarget().Options; 13418 const SDNodeFlags Flags = N->getFlags(); 13419 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13420 13421 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13422 return R; 13423 13424 // fold vector ops 13425 if (VT.isVector()) { 13426 // This just handles C1 * C2 for vectors. Other vector folds are below. 13427 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13428 return FoldedVOp; 13429 } 13430 13431 // fold (fmul c1, c2) -> c1*c2 13432 if (N0CFP && N1CFP) 13433 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1); 13434 13435 // canonicalize constant to RHS 13436 if (isConstantFPBuildVectorOrConstantFP(N0) && 13437 !isConstantFPBuildVectorOrConstantFP(N1)) 13438 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); 13439 13440 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13441 return NewSel; 13442 13443 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { 13444 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 13445 if (isConstantFPBuildVectorOrConstantFP(N1) && 13446 N0.getOpcode() == ISD::FMUL) { 13447 SDValue N00 = N0.getOperand(0); 13448 SDValue N01 = N0.getOperand(1); 13449 // Avoid an infinite loop by making sure that N00 is not a constant 13450 // (the inner multiply has not been constant folded yet). 13451 if (isConstantFPBuildVectorOrConstantFP(N01) && 13452 !isConstantFPBuildVectorOrConstantFP(N00)) { 13453 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); 13454 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); 13455 } 13456 } 13457 13458 // Match a special-case: we convert X * 2.0 into fadd. 13459 // fmul (fadd X, X), C -> fmul X, 2.0 * C 13460 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && 13461 N0.getOperand(0) == N0.getOperand(1)) { 13462 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 13463 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); 13464 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); 13465 } 13466 } 13467 13468 // fold (fmul X, 2.0) -> (fadd X, X) 13469 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 13470 return DAG.getNode(ISD::FADD, DL, VT, N0, N0); 13471 13472 // fold (fmul X, -1.0) -> (fneg X) 13473 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 13474 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13475 return DAG.getNode(ISD::FNEG, DL, VT, N0); 13476 13477 // -N0 * -N1 --> N0 * N1 13478 TargetLowering::NegatibleCost CostN0 = 13479 TargetLowering::NegatibleCost::Expensive; 13480 TargetLowering::NegatibleCost CostN1 = 13481 TargetLowering::NegatibleCost::Expensive; 13482 SDValue NegN0 = 13483 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 13484 SDValue NegN1 = 13485 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 13486 if (NegN0 && NegN1 && 13487 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 13488 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 13489 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); 13490 13491 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) 13492 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) 13493 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && 13494 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && 13495 TLI.isOperationLegal(ISD::FABS, VT)) { 13496 SDValue Select = N0, X = N1; 13497 if (Select.getOpcode() != ISD::SELECT) 13498 std::swap(Select, X); 13499 13500 SDValue Cond = Select.getOperand(0); 13501 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); 13502 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); 13503 13504 if (TrueOpnd && FalseOpnd && 13505 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && 13506 isa<ConstantFPSDNode>(Cond.getOperand(1)) && 13507 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { 13508 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 13509 switch (CC) { 13510 default: break; 13511 case ISD::SETOLT: 13512 case ISD::SETULT: 13513 case ISD::SETOLE: 13514 case ISD::SETULE: 13515 case ISD::SETLT: 13516 case ISD::SETLE: 13517 std::swap(TrueOpnd, FalseOpnd); 13518 LLVM_FALLTHROUGH; 13519 case ISD::SETOGT: 13520 case ISD::SETUGT: 13521 case ISD::SETOGE: 13522 case ISD::SETUGE: 13523 case ISD::SETGT: 13524 case ISD::SETGE: 13525 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && 13526 TLI.isOperationLegal(ISD::FNEG, VT)) 13527 return DAG.getNode(ISD::FNEG, DL, VT, 13528 DAG.getNode(ISD::FABS, DL, VT, X)); 13529 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) 13530 return DAG.getNode(ISD::FABS, DL, VT, X); 13531 13532 break; 13533 } 13534 } 13535 } 13536 13537 // FMUL -> FMA combines: 13538 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { 13539 AddToWorklist(Fused.getNode()); 13540 return Fused; 13541 } 13542 13543 return SDValue(); 13544 } 13545 13546 SDValue DAGCombiner::visitFMA(SDNode *N) { 13547 SDValue N0 = N->getOperand(0); 13548 SDValue N1 = N->getOperand(1); 13549 SDValue N2 = N->getOperand(2); 13550 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13551 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 13552 EVT VT = N->getValueType(0); 13553 SDLoc DL(N); 13554 const TargetOptions &Options = DAG.getTarget().Options; 13555 // FMA nodes have flags that propagate to the created nodes. 13556 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13557 13558 bool UnsafeFPMath = 13559 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); 13560 13561 // Constant fold FMA. 13562 if (isa<ConstantFPSDNode>(N0) && 13563 isa<ConstantFPSDNode>(N1) && 13564 isa<ConstantFPSDNode>(N2)) { 13565 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); 13566 } 13567 13568 // (-N0 * -N1) + N2 --> (N0 * N1) + N2 13569 TargetLowering::NegatibleCost CostN0 = 13570 TargetLowering::NegatibleCost::Expensive; 13571 TargetLowering::NegatibleCost CostN1 = 13572 TargetLowering::NegatibleCost::Expensive; 13573 SDValue NegN0 = 13574 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 13575 SDValue NegN1 = 13576 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 13577 if (NegN0 && NegN1 && 13578 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 13579 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 13580 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); 13581 13582 if (UnsafeFPMath) { 13583 if (N0CFP && N0CFP->isZero()) 13584 return N2; 13585 if (N1CFP && N1CFP->isZero()) 13586 return N2; 13587 } 13588 13589 if (N0CFP && N0CFP->isExactlyValue(1.0)) 13590 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 13591 if (N1CFP && N1CFP->isExactlyValue(1.0)) 13592 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 13593 13594 // Canonicalize (fma c, x, y) -> (fma x, c, y) 13595 if (isConstantFPBuildVectorOrConstantFP(N0) && 13596 !isConstantFPBuildVectorOrConstantFP(N1)) 13597 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 13598 13599 if (UnsafeFPMath) { 13600 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 13601 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 13602 isConstantFPBuildVectorOrConstantFP(N1) && 13603 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 13604 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13605 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); 13606 } 13607 13608 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 13609 if (N0.getOpcode() == ISD::FMUL && 13610 isConstantFPBuildVectorOrConstantFP(N1) && 13611 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 13612 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 13613 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), 13614 N2); 13615 } 13616 } 13617 13618 // (fma x, -1, y) -> (fadd (fneg x), y) 13619 if (N1CFP) { 13620 if (N1CFP->isExactlyValue(1.0)) 13621 return DAG.getNode(ISD::FADD, DL, VT, N0, N2); 13622 13623 if (N1CFP->isExactlyValue(-1.0) && 13624 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 13625 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); 13626 AddToWorklist(RHSNeg.getNode()); 13627 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); 13628 } 13629 13630 // fma (fneg x), K, y -> fma x -K, y 13631 if (N0.getOpcode() == ISD::FNEG && 13632 (TLI.isOperationLegal(ISD::ConstantFP, VT) || 13633 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, 13634 ForCodeSize)))) { 13635 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), 13636 DAG.getNode(ISD::FNEG, DL, VT, N1), N2); 13637 } 13638 } 13639 13640 if (UnsafeFPMath) { 13641 // (fma x, c, x) -> (fmul x, (c+1)) 13642 if (N1CFP && N0 == N2) { 13643 return DAG.getNode( 13644 ISD::FMUL, DL, VT, N0, 13645 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); 13646 } 13647 13648 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 13649 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 13650 return DAG.getNode( 13651 ISD::FMUL, DL, VT, N0, 13652 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); 13653 } 13654 } 13655 13656 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) 13657 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) 13658 if (!TLI.isFNegFree(VT)) 13659 if (SDValue Neg = TLI.getCheaperNegatedExpression( 13660 SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) 13661 return DAG.getNode(ISD::FNEG, DL, VT, Neg); 13662 return SDValue(); 13663 } 13664 13665 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13666 // reciprocal. 13667 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 13668 // Notice that this is not always beneficial. One reason is different targets 13669 // may have different costs for FDIV and FMUL, so sometimes the cost of two 13670 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 13671 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 13672 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 13673 // TODO: Limit this transform based on optsize/minsize - it always creates at 13674 // least 1 extra instruction. But the perf win may be substantial enough 13675 // that only minsize should restrict this. 13676 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 13677 const SDNodeFlags Flags = N->getFlags(); 13678 if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) 13679 return SDValue(); 13680 13681 // Skip if current node is a reciprocal/fneg-reciprocal. 13682 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 13683 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); 13684 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) 13685 return SDValue(); 13686 13687 // Exit early if the target does not want this transform or if there can't 13688 // possibly be enough uses of the divisor to make the transform worthwhile. 13689 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 13690 13691 // For splat vectors, scale the number of uses by the splat factor. If we can 13692 // convert the division into a scalar op, that will likely be much faster. 13693 unsigned NumElts = 1; 13694 EVT VT = N->getValueType(0); 13695 if (VT.isVector() && DAG.isSplatValue(N1)) 13696 NumElts = VT.getVectorNumElements(); 13697 13698 if (!MinUses || (N1->use_size() * NumElts) < MinUses) 13699 return SDValue(); 13700 13701 // Find all FDIV users of the same divisor. 13702 // Use a set because duplicates may be present in the user list. 13703 SetVector<SDNode *> Users; 13704 for (auto *U : N1->uses()) { 13705 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 13706 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. 13707 if (U->getOperand(1).getOpcode() == ISD::FSQRT && 13708 U->getOperand(0) == U->getOperand(1).getOperand(0) && 13709 U->getFlags().hasAllowReassociation() && 13710 U->getFlags().hasNoSignedZeros()) 13711 continue; 13712 13713 // This division is eligible for optimization only if global unsafe math 13714 // is enabled or if this division allows reciprocal formation. 13715 if (UnsafeMath || U->getFlags().hasAllowReciprocal()) 13716 Users.insert(U); 13717 } 13718 } 13719 13720 // Now that we have the actual number of divisor uses, make sure it meets 13721 // the minimum threshold specified by the target. 13722 if ((Users.size() * NumElts) < MinUses) 13723 return SDValue(); 13724 13725 SDLoc DL(N); 13726 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 13727 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 13728 13729 // Dividend / Divisor -> Dividend * Reciprocal 13730 for (auto *U : Users) { 13731 SDValue Dividend = U->getOperand(0); 13732 if (Dividend != FPOne) { 13733 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 13734 Reciprocal, Flags); 13735 CombineTo(U, NewNode); 13736 } else if (U != Reciprocal.getNode()) { 13737 // In the absence of fast-math-flags, this user node is always the 13738 // same node as Reciprocal, but with FMF they may be different nodes. 13739 CombineTo(U, Reciprocal); 13740 } 13741 } 13742 return SDValue(N, 0); // N was replaced. 13743 } 13744 13745 SDValue DAGCombiner::visitFDIV(SDNode *N) { 13746 SDValue N0 = N->getOperand(0); 13747 SDValue N1 = N->getOperand(1); 13748 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13749 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 13750 EVT VT = N->getValueType(0); 13751 SDLoc DL(N); 13752 const TargetOptions &Options = DAG.getTarget().Options; 13753 SDNodeFlags Flags = N->getFlags(); 13754 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13755 13756 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13757 return R; 13758 13759 // fold vector ops 13760 if (VT.isVector()) 13761 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 13762 return FoldedVOp; 13763 13764 // fold (fdiv c1, c2) -> c1/c2 13765 if (N0CFP && N1CFP) 13766 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1); 13767 13768 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13769 return NewSel; 13770 13771 if (SDValue V = combineRepeatedFPDivisors(N)) 13772 return V; 13773 13774 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { 13775 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 13776 if (N1CFP) { 13777 // Compute the reciprocal 1.0 / c2. 13778 const APFloat &N1APF = N1CFP->getValueAPF(); 13779 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 13780 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 13781 // Only do the transform if the reciprocal is a legal fp immediate that 13782 // isn't too nasty (eg NaN, denormal, ...). 13783 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 13784 (!LegalOperations || 13785 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 13786 // backend)... we should handle this gracefully after Legalize. 13787 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || 13788 TLI.isOperationLegal(ISD::ConstantFP, VT) || 13789 TLI.isFPImmLegal(Recip, VT, ForCodeSize))) 13790 return DAG.getNode(ISD::FMUL, DL, VT, N0, 13791 DAG.getConstantFP(Recip, DL, VT)); 13792 } 13793 13794 // If this FDIV is part of a reciprocal square root, it may be folded 13795 // into a target-specific square root estimate instruction. 13796 if (N1.getOpcode() == ISD::FSQRT) { 13797 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) 13798 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 13799 } else if (N1.getOpcode() == ISD::FP_EXTEND && 13800 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13801 if (SDValue RV = 13802 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 13803 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 13804 AddToWorklist(RV.getNode()); 13805 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 13806 } 13807 } else if (N1.getOpcode() == ISD::FP_ROUND && 13808 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13809 if (SDValue RV = 13810 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { 13811 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 13812 AddToWorklist(RV.getNode()); 13813 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); 13814 } 13815 } else if (N1.getOpcode() == ISD::FMUL) { 13816 // Look through an FMUL. Even though this won't remove the FDIV directly, 13817 // it's still worthwhile to get rid of the FSQRT if possible. 13818 SDValue Sqrt, Y; 13819 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 13820 Sqrt = N1.getOperand(0); 13821 Y = N1.getOperand(1); 13822 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 13823 Sqrt = N1.getOperand(1); 13824 Y = N1.getOperand(0); 13825 } 13826 if (Sqrt.getNode()) { 13827 // If the other multiply operand is known positive, pull it into the 13828 // sqrt. That will eliminate the division if we convert to an estimate. 13829 if (Flags.hasAllowReassociation() && N1.hasOneUse() && 13830 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { 13831 SDValue A; 13832 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) 13833 A = Y.getOperand(0); 13834 else if (Y == Sqrt.getOperand(0)) 13835 A = Y; 13836 if (A) { 13837 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) 13838 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) 13839 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); 13840 SDValue AAZ = 13841 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); 13842 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) 13843 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); 13844 13845 // Estimate creation failed. Clean up speculatively created nodes. 13846 recursivelyDeleteUnusedNodes(AAZ.getNode()); 13847 } 13848 } 13849 13850 // We found a FSQRT, so try to make this fold: 13851 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) 13852 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { 13853 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); 13854 AddToWorklist(Div.getNode()); 13855 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); 13856 } 13857 } 13858 } 13859 13860 // Fold into a reciprocal estimate and multiply instead of a real divide. 13861 if (Options.NoInfsFPMath || Flags.hasNoInfs()) 13862 if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) 13863 return RV; 13864 } 13865 13866 // Fold X/Sqrt(X) -> Sqrt(X) 13867 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 13868 (Options.UnsafeFPMath || Flags.hasAllowReassociation())) 13869 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) 13870 return N1; 13871 13872 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 13873 TargetLowering::NegatibleCost CostN0 = 13874 TargetLowering::NegatibleCost::Expensive; 13875 TargetLowering::NegatibleCost CostN1 = 13876 TargetLowering::NegatibleCost::Expensive; 13877 SDValue NegN0 = 13878 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); 13879 SDValue NegN1 = 13880 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); 13881 if (NegN0 && NegN1 && 13882 (CostN0 == TargetLowering::NegatibleCost::Cheaper || 13883 CostN1 == TargetLowering::NegatibleCost::Cheaper)) 13884 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); 13885 13886 return SDValue(); 13887 } 13888 13889 SDValue DAGCombiner::visitFREM(SDNode *N) { 13890 SDValue N0 = N->getOperand(0); 13891 SDValue N1 = N->getOperand(1); 13892 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 13893 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 13894 EVT VT = N->getValueType(0); 13895 SDNodeFlags Flags = N->getFlags(); 13896 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 13897 13898 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) 13899 return R; 13900 13901 // fold (frem c1, c2) -> fmod(c1,c2) 13902 if (N0CFP && N1CFP) 13903 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1); 13904 13905 if (SDValue NewSel = foldBinOpIntoSelect(N)) 13906 return NewSel; 13907 13908 return SDValue(); 13909 } 13910 13911 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 13912 SDNodeFlags Flags = N->getFlags(); 13913 const TargetOptions &Options = DAG.getTarget().Options; 13914 13915 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: 13916 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN 13917 if ((!Options.UnsafeFPMath && !Flags.hasApproximateFuncs()) || 13918 (!Options.NoInfsFPMath && !Flags.hasNoInfs())) 13919 return SDValue(); 13920 13921 SDValue N0 = N->getOperand(0); 13922 if (TLI.isFsqrtCheap(N0, DAG)) 13923 return SDValue(); 13924 13925 // FSQRT nodes have flags that propagate to the created nodes. 13926 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to 13927 // transform the fdiv, we may produce a sub-optimal estimate sequence 13928 // because the reciprocal calculation may not have to filter out a 13929 // 0.0 input. 13930 return buildSqrtEstimate(N0, Flags); 13931 } 13932 13933 /// copysign(x, fp_extend(y)) -> copysign(x, y) 13934 /// copysign(x, fp_round(y)) -> copysign(x, y) 13935 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 13936 SDValue N1 = N->getOperand(1); 13937 if ((N1.getOpcode() == ISD::FP_EXTEND || 13938 N1.getOpcode() == ISD::FP_ROUND)) { 13939 // Do not optimize out type conversion of f128 type yet. 13940 // For some targets like x86_64, configuration is changed to keep one f128 13941 // value in one SSE register, but instruction selection cannot handle 13942 // FCOPYSIGN on SSE registers yet. 13943 EVT N1VT = N1->getValueType(0); 13944 EVT N1Op0VT = N1->getOperand(0).getValueType(); 13945 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 13946 } 13947 return false; 13948 } 13949 13950 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 13951 SDValue N0 = N->getOperand(0); 13952 SDValue N1 = N->getOperand(1); 13953 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 13954 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 13955 EVT VT = N->getValueType(0); 13956 13957 if (N0CFP && N1CFP) // Constant fold 13958 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 13959 13960 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { 13961 const APFloat &V = N1C->getValueAPF(); 13962 // copysign(x, c1) -> fabs(x) iff ispos(c1) 13963 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 13964 if (!V.isNegative()) { 13965 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 13966 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 13967 } else { 13968 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 13969 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 13970 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 13971 } 13972 } 13973 13974 // copysign(fabs(x), y) -> copysign(x, y) 13975 // copysign(fneg(x), y) -> copysign(x, y) 13976 // copysign(copysign(x,z), y) -> copysign(x, y) 13977 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 13978 N0.getOpcode() == ISD::FCOPYSIGN) 13979 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); 13980 13981 // copysign(x, abs(y)) -> abs(x) 13982 if (N1.getOpcode() == ISD::FABS) 13983 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 13984 13985 // copysign(x, copysign(y,z)) -> copysign(x, z) 13986 if (N1.getOpcode() == ISD::FCOPYSIGN) 13987 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); 13988 13989 // copysign(x, fp_extend(y)) -> copysign(x, y) 13990 // copysign(x, fp_round(y)) -> copysign(x, y) 13991 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 13992 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); 13993 13994 return SDValue(); 13995 } 13996 13997 SDValue DAGCombiner::visitFPOW(SDNode *N) { 13998 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); 13999 if (!ExponentC) 14000 return SDValue(); 14001 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14002 14003 // Try to convert x ** (1/3) into cube root. 14004 // TODO: Handle the various flavors of long double. 14005 // TODO: Since we're approximating, we don't need an exact 1/3 exponent. 14006 // Some range near 1/3 should be fine. 14007 EVT VT = N->getValueType(0); 14008 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || 14009 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { 14010 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. 14011 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. 14012 // pow(-val, 1/3) = nan; cbrt(-val) = -num. 14013 // For regular numbers, rounding may cause the results to differ. 14014 // Therefore, we require { nsz ninf nnan afn } for this transform. 14015 // TODO: We could select out the special cases if we don't have nsz/ninf. 14016 SDNodeFlags Flags = N->getFlags(); 14017 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || 14018 !Flags.hasApproximateFuncs()) 14019 return SDValue(); 14020 14021 // Do not create a cbrt() libcall if the target does not have it, and do not 14022 // turn a pow that has lowering support into a cbrt() libcall. 14023 if (!DAG.getLibInfo().has(LibFunc_cbrt) || 14024 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && 14025 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) 14026 return SDValue(); 14027 14028 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); 14029 } 14030 14031 // Try to convert x ** (1/4) and x ** (3/4) into square roots. 14032 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. 14033 // TODO: This could be extended (using a target hook) to handle smaller 14034 // power-of-2 fractional exponents. 14035 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); 14036 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); 14037 if (ExponentIs025 || ExponentIs075) { 14038 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. 14039 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. 14040 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. 14041 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. 14042 // For regular numbers, rounding may cause the results to differ. 14043 // Therefore, we require { nsz ninf afn } for this transform. 14044 // TODO: We could select out the special cases if we don't have nsz/ninf. 14045 SDNodeFlags Flags = N->getFlags(); 14046 14047 // We only need no signed zeros for the 0.25 case. 14048 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || 14049 !Flags.hasApproximateFuncs()) 14050 return SDValue(); 14051 14052 // Don't double the number of libcalls. We are trying to inline fast code. 14053 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) 14054 return SDValue(); 14055 14056 // Assume that libcalls are the smallest code. 14057 // TODO: This restriction should probably be lifted for vectors. 14058 if (ForCodeSize) 14059 return SDValue(); 14060 14061 // pow(X, 0.25) --> sqrt(sqrt(X)) 14062 SDLoc DL(N); 14063 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); 14064 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); 14065 if (ExponentIs025) 14066 return SqrtSqrt; 14067 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) 14068 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); 14069 } 14070 14071 return SDValue(); 14072 } 14073 14074 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, 14075 const TargetLowering &TLI) { 14076 // This optimization is guarded by a function attribute because it may produce 14077 // unexpected results. Ie, programs may be relying on the platform-specific 14078 // undefined behavior when the float-to-int conversion overflows. 14079 const Function &F = DAG.getMachineFunction().getFunction(); 14080 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); 14081 if (StrictOverflow.getValueAsString().equals("false")) 14082 return SDValue(); 14083 14084 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be 14085 // replacing casts with a libcall. We also must be allowed to ignore -0.0 14086 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer 14087 // conversions would return +0.0. 14088 // FIXME: We should be able to use node-level FMF here. 14089 // TODO: If strict math, should we use FABS (+ range check for signed cast)? 14090 EVT VT = N->getValueType(0); 14091 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || 14092 !DAG.getTarget().Options.NoSignedZerosFPMath) 14093 return SDValue(); 14094 14095 // fptosi/fptoui round towards zero, so converting from FP to integer and 14096 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X 14097 SDValue N0 = N->getOperand(0); 14098 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && 14099 N0.getOperand(0).getValueType() == VT) 14100 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14101 14102 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && 14103 N0.getOperand(0).getValueType() == VT) 14104 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); 14105 14106 return SDValue(); 14107 } 14108 14109 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 14110 SDValue N0 = N->getOperand(0); 14111 EVT VT = N->getValueType(0); 14112 EVT OpVT = N0.getValueType(); 14113 14114 // [us]itofp(undef) = 0, because the result value is bounded. 14115 if (N0.isUndef()) 14116 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14117 14118 // fold (sint_to_fp c1) -> c1fp 14119 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14120 // ...but only if the target supports immediate floating-point values 14121 (!LegalOperations || 14122 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14123 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14124 14125 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 14126 // but UINT_TO_FP is legal on this target, try to convert. 14127 if (!hasOperation(ISD::SINT_TO_FP, OpVT) && 14128 hasOperation(ISD::UINT_TO_FP, OpVT)) { 14129 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 14130 if (DAG.SignBitIsZero(N0)) 14131 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14132 } 14133 14134 // The next optimizations are desirable only if SELECT_CC can be lowered. 14135 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) 14136 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 14137 !VT.isVector() && 14138 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14139 SDLoc DL(N); 14140 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), 14141 DAG.getConstantFP(0.0, DL, VT)); 14142 } 14143 14144 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 14145 // (select (setcc x, y, cc), 1.0, 0.0) 14146 if (N0.getOpcode() == ISD::ZERO_EXTEND && 14147 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && 14148 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14149 SDLoc DL(N); 14150 return DAG.getSelect(DL, VT, N0.getOperand(0), 14151 DAG.getConstantFP(1.0, DL, VT), 14152 DAG.getConstantFP(0.0, DL, VT)); 14153 } 14154 14155 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14156 return FTrunc; 14157 14158 return SDValue(); 14159 } 14160 14161 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 14162 SDValue N0 = N->getOperand(0); 14163 EVT VT = N->getValueType(0); 14164 EVT OpVT = N0.getValueType(); 14165 14166 // [us]itofp(undef) = 0, because the result value is bounded. 14167 if (N0.isUndef()) 14168 return DAG.getConstantFP(0.0, SDLoc(N), VT); 14169 14170 // fold (uint_to_fp c1) -> c1fp 14171 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 14172 // ...but only if the target supports immediate floating-point values 14173 (!LegalOperations || 14174 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) 14175 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 14176 14177 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 14178 // but SINT_TO_FP is legal on this target, try to convert. 14179 if (!hasOperation(ISD::UINT_TO_FP, OpVT) && 14180 hasOperation(ISD::SINT_TO_FP, OpVT)) { 14181 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 14182 if (DAG.SignBitIsZero(N0)) 14183 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 14184 } 14185 14186 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) 14187 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 14188 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { 14189 SDLoc DL(N); 14190 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), 14191 DAG.getConstantFP(0.0, DL, VT)); 14192 } 14193 14194 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) 14195 return FTrunc; 14196 14197 return SDValue(); 14198 } 14199 14200 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 14201 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 14202 SDValue N0 = N->getOperand(0); 14203 EVT VT = N->getValueType(0); 14204 14205 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 14206 return SDValue(); 14207 14208 SDValue Src = N0.getOperand(0); 14209 EVT SrcVT = Src.getValueType(); 14210 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 14211 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 14212 14213 // We can safely assume the conversion won't overflow the output range, 14214 // because (for example) (uint8_t)18293.f is undefined behavior. 14215 14216 // Since we can assume the conversion won't overflow, our decision as to 14217 // whether the input will fit in the float should depend on the minimum 14218 // of the input range and output range. 14219 14220 // This means this is also safe for a signed input and unsigned output, since 14221 // a negative input would lead to undefined behavior. 14222 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 14223 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 14224 unsigned ActualSize = std::min(InputSize, OutputSize); 14225 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 14226 14227 // We can only fold away the float conversion if the input range can be 14228 // represented exactly in the float range. 14229 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 14230 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 14231 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 14232 : ISD::ZERO_EXTEND; 14233 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 14234 } 14235 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 14236 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 14237 return DAG.getBitcast(VT, Src); 14238 } 14239 return SDValue(); 14240 } 14241 14242 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 14243 SDValue N0 = N->getOperand(0); 14244 EVT VT = N->getValueType(0); 14245 14246 // fold (fp_to_sint undef) -> undef 14247 if (N0.isUndef()) 14248 return DAG.getUNDEF(VT); 14249 14250 // fold (fp_to_sint c1fp) -> c1 14251 if (isConstantFPBuildVectorOrConstantFP(N0)) 14252 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 14253 14254 return FoldIntToFPToInt(N, DAG); 14255 } 14256 14257 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 14258 SDValue N0 = N->getOperand(0); 14259 EVT VT = N->getValueType(0); 14260 14261 // fold (fp_to_uint undef) -> undef 14262 if (N0.isUndef()) 14263 return DAG.getUNDEF(VT); 14264 14265 // fold (fp_to_uint c1fp) -> c1 14266 if (isConstantFPBuildVectorOrConstantFP(N0)) 14267 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 14268 14269 return FoldIntToFPToInt(N, DAG); 14270 } 14271 14272 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 14273 SDValue N0 = N->getOperand(0); 14274 SDValue N1 = N->getOperand(1); 14275 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 14276 EVT VT = N->getValueType(0); 14277 14278 // fold (fp_round c1fp) -> c1fp 14279 if (N0CFP) 14280 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 14281 14282 // fold (fp_round (fp_extend x)) -> x 14283 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 14284 return N0.getOperand(0); 14285 14286 // fold (fp_round (fp_round x)) -> (fp_round x) 14287 if (N0.getOpcode() == ISD::FP_ROUND) { 14288 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 14289 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; 14290 14291 // Skip this folding if it results in an fp_round from f80 to f16. 14292 // 14293 // f80 to f16 always generates an expensive (and as yet, unimplemented) 14294 // libcall to __truncxfhf2 instead of selecting native f16 conversion 14295 // instructions from f32 or f64. Moreover, the first (value-preserving) 14296 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 14297 // x86. 14298 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 14299 return SDValue(); 14300 14301 // If the first fp_round isn't a value preserving truncation, it might 14302 // introduce a tie in the second fp_round, that wouldn't occur in the 14303 // single-step fp_round we want to fold to. 14304 // In other words, double rounding isn't the same as rounding. 14305 // Also, this is a value preserving truncation iff both fp_round's are. 14306 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 14307 SDLoc DL(N); 14308 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 14309 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 14310 } 14311 } 14312 14313 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 14314 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 14315 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 14316 N0.getOperand(0), N1); 14317 AddToWorklist(Tmp.getNode()); 14318 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 14319 Tmp, N0.getOperand(1)); 14320 } 14321 14322 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 14323 return NewVSel; 14324 14325 return SDValue(); 14326 } 14327 14328 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 14329 SDValue N0 = N->getOperand(0); 14330 EVT VT = N->getValueType(0); 14331 14332 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 14333 if (N->hasOneUse() && 14334 N->use_begin()->getOpcode() == ISD::FP_ROUND) 14335 return SDValue(); 14336 14337 // fold (fp_extend c1fp) -> c1fp 14338 if (isConstantFPBuildVectorOrConstantFP(N0)) 14339 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 14340 14341 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 14342 if (N0.getOpcode() == ISD::FP16_TO_FP && 14343 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 14344 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 14345 14346 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 14347 // value of X. 14348 if (N0.getOpcode() == ISD::FP_ROUND 14349 && N0.getConstantOperandVal(1) == 1) { 14350 SDValue In = N0.getOperand(0); 14351 if (In.getValueType() == VT) return In; 14352 if (VT.bitsLT(In.getValueType())) 14353 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 14354 In, N0.getOperand(1)); 14355 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 14356 } 14357 14358 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 14359 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 14360 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 14361 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 14362 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 14363 LN0->getChain(), 14364 LN0->getBasePtr(), N0.getValueType(), 14365 LN0->getMemOperand()); 14366 CombineTo(N, ExtLoad); 14367 CombineTo(N0.getNode(), 14368 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 14369 N0.getValueType(), ExtLoad, 14370 DAG.getIntPtrConstant(1, SDLoc(N0))), 14371 ExtLoad.getValue(1)); 14372 return SDValue(N, 0); // Return N so it doesn't get rechecked! 14373 } 14374 14375 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) 14376 return NewVSel; 14377 14378 return SDValue(); 14379 } 14380 14381 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 14382 SDValue N0 = N->getOperand(0); 14383 EVT VT = N->getValueType(0); 14384 14385 // fold (fceil c1) -> fceil(c1) 14386 if (isConstantFPBuildVectorOrConstantFP(N0)) 14387 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 14388 14389 return SDValue(); 14390 } 14391 14392 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 14393 SDValue N0 = N->getOperand(0); 14394 EVT VT = N->getValueType(0); 14395 14396 // fold (ftrunc c1) -> ftrunc(c1) 14397 if (isConstantFPBuildVectorOrConstantFP(N0)) 14398 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 14399 14400 // fold ftrunc (known rounded int x) -> x 14401 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is 14402 // likely to be generated to extract integer from a rounded floating value. 14403 switch (N0.getOpcode()) { 14404 default: break; 14405 case ISD::FRINT: 14406 case ISD::FTRUNC: 14407 case ISD::FNEARBYINT: 14408 case ISD::FFLOOR: 14409 case ISD::FCEIL: 14410 return N0; 14411 } 14412 14413 return SDValue(); 14414 } 14415 14416 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 14417 SDValue N0 = N->getOperand(0); 14418 EVT VT = N->getValueType(0); 14419 14420 // fold (ffloor c1) -> ffloor(c1) 14421 if (isConstantFPBuildVectorOrConstantFP(N0)) 14422 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 14423 14424 return SDValue(); 14425 } 14426 14427 SDValue DAGCombiner::visitFNEG(SDNode *N) { 14428 SDValue N0 = N->getOperand(0); 14429 EVT VT = N->getValueType(0); 14430 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14431 14432 // Constant fold FNEG. 14433 if (isConstantFPBuildVectorOrConstantFP(N0)) 14434 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 14435 14436 if (SDValue NegN0 = 14437 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) 14438 return NegN0; 14439 14440 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 14441 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't 14442 // know it was called from a context with a nsz flag if the input fsub does 14443 // not. 14444 if (N0.getOpcode() == ISD::FSUB && 14445 (DAG.getTarget().Options.NoSignedZerosFPMath || 14446 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { 14447 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), 14448 N0.getOperand(0)); 14449 } 14450 14451 if (SDValue Cast = foldSignChangeInBitcast(N)) 14452 return Cast; 14453 14454 return SDValue(); 14455 } 14456 14457 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, 14458 APFloat (*Op)(const APFloat &, const APFloat &)) { 14459 SDValue N0 = N->getOperand(0); 14460 SDValue N1 = N->getOperand(1); 14461 EVT VT = N->getValueType(0); 14462 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 14463 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 14464 const SDNodeFlags Flags = N->getFlags(); 14465 unsigned Opc = N->getOpcode(); 14466 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; 14467 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; 14468 SelectionDAG::FlagInserter FlagsInserter(DAG, N); 14469 14470 if (N0CFP && N1CFP) { 14471 const APFloat &C0 = N0CFP->getValueAPF(); 14472 const APFloat &C1 = N1CFP->getValueAPF(); 14473 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); 14474 } 14475 14476 // Canonicalize to constant on RHS. 14477 if (isConstantFPBuildVectorOrConstantFP(N0) && 14478 !isConstantFPBuildVectorOrConstantFP(N1)) 14479 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 14480 14481 if (N1CFP) { 14482 const APFloat &AF = N1CFP->getValueAPF(); 14483 14484 // minnum(X, nan) -> X 14485 // maxnum(X, nan) -> X 14486 // minimum(X, nan) -> nan 14487 // maximum(X, nan) -> nan 14488 if (AF.isNaN()) 14489 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); 14490 14491 // In the following folds, inf can be replaced with the largest finite 14492 // float, if the ninf flag is set. 14493 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { 14494 // minnum(X, -inf) -> -inf 14495 // maxnum(X, +inf) -> +inf 14496 // minimum(X, -inf) -> -inf if nnan 14497 // maximum(X, +inf) -> +inf if nnan 14498 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) 14499 return N->getOperand(1); 14500 14501 // minnum(X, +inf) -> X if nnan 14502 // maxnum(X, -inf) -> X if nnan 14503 // minimum(X, +inf) -> X 14504 // maximum(X, -inf) -> X 14505 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) 14506 return N->getOperand(0); 14507 } 14508 } 14509 14510 return SDValue(); 14511 } 14512 14513 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 14514 return visitFMinMax(DAG, N, minnum); 14515 } 14516 14517 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 14518 return visitFMinMax(DAG, N, maxnum); 14519 } 14520 14521 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { 14522 return visitFMinMax(DAG, N, minimum); 14523 } 14524 14525 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { 14526 return visitFMinMax(DAG, N, maximum); 14527 } 14528 14529 SDValue DAGCombiner::visitFABS(SDNode *N) { 14530 SDValue N0 = N->getOperand(0); 14531 EVT VT = N->getValueType(0); 14532 14533 // fold (fabs c1) -> fabs(c1) 14534 if (isConstantFPBuildVectorOrConstantFP(N0)) 14535 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 14536 14537 // fold (fabs (fabs x)) -> (fabs x) 14538 if (N0.getOpcode() == ISD::FABS) 14539 return N->getOperand(0); 14540 14541 // fold (fabs (fneg x)) -> (fabs x) 14542 // fold (fabs (fcopysign x, y)) -> (fabs x) 14543 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 14544 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 14545 14546 if (SDValue Cast = foldSignChangeInBitcast(N)) 14547 return Cast; 14548 14549 return SDValue(); 14550 } 14551 14552 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 14553 SDValue Chain = N->getOperand(0); 14554 SDValue N1 = N->getOperand(1); 14555 SDValue N2 = N->getOperand(2); 14556 14557 // If N is a constant we could fold this into a fallthrough or unconditional 14558 // branch. However that doesn't happen very often in normal code, because 14559 // Instcombine/SimplifyCFG should have handled the available opportunities. 14560 // If we did this folding here, it would be necessary to update the 14561 // MachineBasicBlock CFG, which is awkward. 14562 14563 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 14564 // on the target. 14565 if (N1.getOpcode() == ISD::SETCC && 14566 TLI.isOperationLegalOrCustom(ISD::BR_CC, 14567 N1.getOperand(0).getValueType())) { 14568 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 14569 Chain, N1.getOperand(2), 14570 N1.getOperand(0), N1.getOperand(1), N2); 14571 } 14572 14573 if (N1.hasOneUse()) { 14574 // rebuildSetCC calls visitXor which may change the Chain when there is a 14575 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. 14576 HandleSDNode ChainHandle(Chain); 14577 if (SDValue NewN1 = rebuildSetCC(N1)) 14578 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, 14579 ChainHandle.getValue(), NewN1, N2); 14580 } 14581 14582 return SDValue(); 14583 } 14584 14585 SDValue DAGCombiner::rebuildSetCC(SDValue N) { 14586 if (N.getOpcode() == ISD::SRL || 14587 (N.getOpcode() == ISD::TRUNCATE && 14588 (N.getOperand(0).hasOneUse() && 14589 N.getOperand(0).getOpcode() == ISD::SRL))) { 14590 // Look pass the truncate. 14591 if (N.getOpcode() == ISD::TRUNCATE) 14592 N = N.getOperand(0); 14593 14594 // Match this pattern so that we can generate simpler code: 14595 // 14596 // %a = ... 14597 // %b = and i32 %a, 2 14598 // %c = srl i32 %b, 1 14599 // brcond i32 %c ... 14600 // 14601 // into 14602 // 14603 // %a = ... 14604 // %b = and i32 %a, 2 14605 // %c = setcc eq %b, 0 14606 // brcond %c ... 14607 // 14608 // This applies only when the AND constant value has one bit set and the 14609 // SRL constant is equal to the log2 of the AND constant. The back-end is 14610 // smart enough to convert the result into a TEST/JMP sequence. 14611 SDValue Op0 = N.getOperand(0); 14612 SDValue Op1 = N.getOperand(1); 14613 14614 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { 14615 SDValue AndOp1 = Op0.getOperand(1); 14616 14617 if (AndOp1.getOpcode() == ISD::Constant) { 14618 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 14619 14620 if (AndConst.isPowerOf2() && 14621 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { 14622 SDLoc DL(N); 14623 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), 14624 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 14625 ISD::SETNE); 14626 } 14627 } 14628 } 14629 } 14630 14631 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) 14632 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) 14633 if (N.getOpcode() == ISD::XOR) { 14634 // Because we may call this on a speculatively constructed 14635 // SimplifiedSetCC Node, we need to simplify this node first. 14636 // Ideally this should be folded into SimplifySetCC and not 14637 // here. For now, grab a handle to N so we don't lose it from 14638 // replacements interal to the visit. 14639 HandleSDNode XORHandle(N); 14640 while (N.getOpcode() == ISD::XOR) { 14641 SDValue Tmp = visitXOR(N.getNode()); 14642 // No simplification done. 14643 if (!Tmp.getNode()) 14644 break; 14645 // Returning N is form in-visit replacement that may invalidated 14646 // N. Grab value from Handle. 14647 if (Tmp.getNode() == N.getNode()) 14648 N = XORHandle.getValue(); 14649 else // Node simplified. Try simplifying again. 14650 N = Tmp; 14651 } 14652 14653 if (N.getOpcode() != ISD::XOR) 14654 return N; 14655 14656 SDValue Op0 = N->getOperand(0); 14657 SDValue Op1 = N->getOperand(1); 14658 14659 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 14660 bool Equal = false; 14661 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) 14662 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && 14663 Op0.getValueType() == MVT::i1) { 14664 N = Op0; 14665 Op0 = N->getOperand(0); 14666 Op1 = N->getOperand(1); 14667 Equal = true; 14668 } 14669 14670 EVT SetCCVT = N.getValueType(); 14671 if (LegalTypes) 14672 SetCCVT = getSetCCResultType(SetCCVT); 14673 // Replace the uses of XOR with SETCC 14674 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, 14675 Equal ? ISD::SETEQ : ISD::SETNE); 14676 } 14677 } 14678 14679 return SDValue(); 14680 } 14681 14682 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 14683 // 14684 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 14685 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 14686 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 14687 14688 // If N is a constant we could fold this into a fallthrough or unconditional 14689 // branch. However that doesn't happen very often in normal code, because 14690 // Instcombine/SimplifyCFG should have handled the available opportunities. 14691 // If we did this folding here, it would be necessary to update the 14692 // MachineBasicBlock CFG, which is awkward. 14693 14694 // Use SimplifySetCC to simplify SETCC's. 14695 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 14696 CondLHS, CondRHS, CC->get(), SDLoc(N), 14697 false); 14698 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 14699 14700 // fold to a simpler setcc 14701 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 14702 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 14703 N->getOperand(0), Simp.getOperand(2), 14704 Simp.getOperand(0), Simp.getOperand(1), 14705 N->getOperand(4)); 14706 14707 return SDValue(); 14708 } 14709 14710 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, 14711 bool &IsLoad, bool &IsMasked, SDValue &Ptr, 14712 const TargetLowering &TLI) { 14713 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 14714 if (LD->isIndexed()) 14715 return false; 14716 EVT VT = LD->getMemoryVT(); 14717 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) 14718 return false; 14719 Ptr = LD->getBasePtr(); 14720 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 14721 if (ST->isIndexed()) 14722 return false; 14723 EVT VT = ST->getMemoryVT(); 14724 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) 14725 return false; 14726 Ptr = ST->getBasePtr(); 14727 IsLoad = false; 14728 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 14729 if (LD->isIndexed()) 14730 return false; 14731 EVT VT = LD->getMemoryVT(); 14732 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && 14733 !TLI.isIndexedMaskedLoadLegal(Dec, VT)) 14734 return false; 14735 Ptr = LD->getBasePtr(); 14736 IsMasked = true; 14737 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 14738 if (ST->isIndexed()) 14739 return false; 14740 EVT VT = ST->getMemoryVT(); 14741 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && 14742 !TLI.isIndexedMaskedStoreLegal(Dec, VT)) 14743 return false; 14744 Ptr = ST->getBasePtr(); 14745 IsLoad = false; 14746 IsMasked = true; 14747 } else { 14748 return false; 14749 } 14750 return true; 14751 } 14752 14753 /// Try turning a load/store into a pre-indexed load/store when the base 14754 /// pointer is an add or subtract and it has other uses besides the load/store. 14755 /// After the transformation, the new indexed load/store has effectively folded 14756 /// the add/subtract in and all of its other uses are redirected to the 14757 /// new load/store. 14758 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 14759 if (Level < AfterLegalizeDAG) 14760 return false; 14761 14762 bool IsLoad = true; 14763 bool IsMasked = false; 14764 SDValue Ptr; 14765 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, 14766 Ptr, TLI)) 14767 return false; 14768 14769 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 14770 // out. There is no reason to make this a preinc/predec. 14771 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 14772 Ptr.getNode()->hasOneUse()) 14773 return false; 14774 14775 // Ask the target to do addressing mode selection. 14776 SDValue BasePtr; 14777 SDValue Offset; 14778 ISD::MemIndexedMode AM = ISD::UNINDEXED; 14779 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 14780 return false; 14781 14782 // Backends without true r+i pre-indexed forms may need to pass a 14783 // constant base with a variable offset so that constant coercion 14784 // will work with the patterns in canonical form. 14785 bool Swapped = false; 14786 if (isa<ConstantSDNode>(BasePtr)) { 14787 std::swap(BasePtr, Offset); 14788 Swapped = true; 14789 } 14790 14791 // Don't create a indexed load / store with zero offset. 14792 if (isNullConstant(Offset)) 14793 return false; 14794 14795 // Try turning it into a pre-indexed load / store except when: 14796 // 1) The new base ptr is a frame index. 14797 // 2) If N is a store and the new base ptr is either the same as or is a 14798 // predecessor of the value being stored. 14799 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 14800 // that would create a cycle. 14801 // 4) All uses are load / store ops that use it as old base ptr. 14802 14803 // Check #1. Preinc'ing a frame index would require copying the stack pointer 14804 // (plus the implicit offset) to a register to preinc anyway. 14805 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 14806 return false; 14807 14808 // Check #2. 14809 if (!IsLoad) { 14810 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() 14811 : cast<StoreSDNode>(N)->getValue(); 14812 14813 // Would require a copy. 14814 if (Val == BasePtr) 14815 return false; 14816 14817 // Would create a cycle. 14818 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) 14819 return false; 14820 } 14821 14822 // Caches for hasPredecessorHelper. 14823 SmallPtrSet<const SDNode *, 32> Visited; 14824 SmallVector<const SDNode *, 16> Worklist; 14825 Worklist.push_back(N); 14826 14827 // If the offset is a constant, there may be other adds of constants that 14828 // can be folded with this one. We should do this to avoid having to keep 14829 // a copy of the original base pointer. 14830 SmallVector<SDNode *, 16> OtherUses; 14831 if (isa<ConstantSDNode>(Offset)) 14832 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 14833 UE = BasePtr.getNode()->use_end(); 14834 UI != UE; ++UI) { 14835 SDUse &Use = UI.getUse(); 14836 // Skip the use that is Ptr and uses of other results from BasePtr's 14837 // node (important for nodes that return multiple results). 14838 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 14839 continue; 14840 14841 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 14842 continue; 14843 14844 if (Use.getUser()->getOpcode() != ISD::ADD && 14845 Use.getUser()->getOpcode() != ISD::SUB) { 14846 OtherUses.clear(); 14847 break; 14848 } 14849 14850 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 14851 if (!isa<ConstantSDNode>(Op1)) { 14852 OtherUses.clear(); 14853 break; 14854 } 14855 14856 // FIXME: In some cases, we can be smarter about this. 14857 if (Op1.getValueType() != Offset.getValueType()) { 14858 OtherUses.clear(); 14859 break; 14860 } 14861 14862 OtherUses.push_back(Use.getUser()); 14863 } 14864 14865 if (Swapped) 14866 std::swap(BasePtr, Offset); 14867 14868 // Now check for #3 and #4. 14869 bool RealUse = false; 14870 14871 for (SDNode *Use : Ptr.getNode()->uses()) { 14872 if (Use == N) 14873 continue; 14874 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 14875 return false; 14876 14877 // If Ptr may be folded in addressing mode of other use, then it's 14878 // not profitable to do this transformation. 14879 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 14880 RealUse = true; 14881 } 14882 14883 if (!RealUse) 14884 return false; 14885 14886 SDValue Result; 14887 if (!IsMasked) { 14888 if (IsLoad) 14889 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 14890 else 14891 Result = 14892 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); 14893 } else { 14894 if (IsLoad) 14895 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 14896 Offset, AM); 14897 else 14898 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, 14899 Offset, AM); 14900 } 14901 ++PreIndexedNodes; 14902 ++NodesCombined; 14903 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; 14904 Result.getNode()->dump(&DAG); dbgs() << '\n'); 14905 WorklistRemover DeadNodes(*this); 14906 if (IsLoad) { 14907 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 14908 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 14909 } else { 14910 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 14911 } 14912 14913 // Finally, since the node is now dead, remove it from the graph. 14914 deleteAndRecombine(N); 14915 14916 if (Swapped) 14917 std::swap(BasePtr, Offset); 14918 14919 // Replace other uses of BasePtr that can be updated to use Ptr 14920 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 14921 unsigned OffsetIdx = 1; 14922 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 14923 OffsetIdx = 0; 14924 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 14925 BasePtr.getNode() && "Expected BasePtr operand"); 14926 14927 // We need to replace ptr0 in the following expression: 14928 // x0 * offset0 + y0 * ptr0 = t0 14929 // knowing that 14930 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 14931 // 14932 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 14933 // indexed load/store and the expression that needs to be re-written. 14934 // 14935 // Therefore, we have: 14936 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 14937 14938 ConstantSDNode *CN = 14939 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 14940 int X0, X1, Y0, Y1; 14941 const APInt &Offset0 = CN->getAPIntValue(); 14942 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 14943 14944 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 14945 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 14946 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 14947 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 14948 14949 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 14950 14951 APInt CNV = Offset0; 14952 if (X0 < 0) CNV = -CNV; 14953 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 14954 else CNV = CNV - Offset1; 14955 14956 SDLoc DL(OtherUses[i]); 14957 14958 // We can now generate the new expression. 14959 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 14960 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); 14961 14962 SDValue NewUse = DAG.getNode(Opcode, 14963 DL, 14964 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 14965 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 14966 deleteAndRecombine(OtherUses[i]); 14967 } 14968 14969 // Replace the uses of Ptr with uses of the updated base value. 14970 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); 14971 deleteAndRecombine(Ptr.getNode()); 14972 AddToWorklist(Result.getNode()); 14973 14974 return true; 14975 } 14976 14977 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, 14978 SDValue &BasePtr, SDValue &Offset, 14979 ISD::MemIndexedMode &AM, 14980 SelectionDAG &DAG, 14981 const TargetLowering &TLI) { 14982 if (PtrUse == N || 14983 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) 14984 return false; 14985 14986 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) 14987 return false; 14988 14989 // Don't create a indexed load / store with zero offset. 14990 if (isNullConstant(Offset)) 14991 return false; 14992 14993 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 14994 return false; 14995 14996 SmallPtrSet<const SDNode *, 32> Visited; 14997 for (SDNode *Use : BasePtr.getNode()->uses()) { 14998 if (Use == Ptr.getNode()) 14999 continue; 15000 15001 // No if there's a later user which could perform the index instead. 15002 if (isa<MemSDNode>(Use)) { 15003 bool IsLoad = true; 15004 bool IsMasked = false; 15005 SDValue OtherPtr; 15006 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15007 IsMasked, OtherPtr, TLI)) { 15008 SmallVector<const SDNode *, 2> Worklist; 15009 Worklist.push_back(Use); 15010 if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) 15011 return false; 15012 } 15013 } 15014 15015 // If all the uses are load / store addresses, then don't do the 15016 // transformation. 15017 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { 15018 for (SDNode *UseUse : Use->uses()) 15019 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 15020 return false; 15021 } 15022 } 15023 return true; 15024 } 15025 15026 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, 15027 bool &IsMasked, SDValue &Ptr, 15028 SDValue &BasePtr, SDValue &Offset, 15029 ISD::MemIndexedMode &AM, 15030 SelectionDAG &DAG, 15031 const TargetLowering &TLI) { 15032 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, 15033 IsMasked, Ptr, TLI) || 15034 Ptr.getNode()->hasOneUse()) 15035 return nullptr; 15036 15037 // Try turning it into a post-indexed load / store except when 15038 // 1) All uses are load / store ops that use it as base ptr (and 15039 // it may be folded as addressing mmode). 15040 // 2) Op must be independent of N, i.e. Op is neither a predecessor 15041 // nor a successor of N. Otherwise, if Op is folded that would 15042 // create a cycle. 15043 for (SDNode *Op : Ptr->uses()) { 15044 // Check for #1. 15045 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) 15046 continue; 15047 15048 // Check for #2. 15049 SmallPtrSet<const SDNode *, 32> Visited; 15050 SmallVector<const SDNode *, 8> Worklist; 15051 // Ptr is predecessor to both N and Op. 15052 Visited.insert(Ptr.getNode()); 15053 Worklist.push_back(N); 15054 Worklist.push_back(Op); 15055 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && 15056 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) 15057 return Op; 15058 } 15059 return nullptr; 15060 } 15061 15062 /// Try to combine a load/store with a add/sub of the base pointer node into a 15063 /// post-indexed load/store. The transformation folded the add/subtract into the 15064 /// new indexed load/store effectively and all of its uses are redirected to the 15065 /// new load/store. 15066 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 15067 if (Level < AfterLegalizeDAG) 15068 return false; 15069 15070 bool IsLoad = true; 15071 bool IsMasked = false; 15072 SDValue Ptr; 15073 SDValue BasePtr; 15074 SDValue Offset; 15075 ISD::MemIndexedMode AM = ISD::UNINDEXED; 15076 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, 15077 Offset, AM, DAG, TLI); 15078 if (!Op) 15079 return false; 15080 15081 SDValue Result; 15082 if (!IsMasked) 15083 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, 15084 Offset, AM) 15085 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), 15086 BasePtr, Offset, AM); 15087 else 15088 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), 15089 BasePtr, Offset, AM) 15090 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), 15091 BasePtr, Offset, AM); 15092 ++PostIndexedNodes; 15093 ++NodesCombined; 15094 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); 15095 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); 15096 dbgs() << '\n'); 15097 WorklistRemover DeadNodes(*this); 15098 if (IsLoad) { 15099 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 15100 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 15101 } else { 15102 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 15103 } 15104 15105 // Finally, since the node is now dead, remove it from the graph. 15106 deleteAndRecombine(N); 15107 15108 // Replace the uses of Use with uses of the updated base value. 15109 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 15110 Result.getValue(IsLoad ? 1 : 0)); 15111 deleteAndRecombine(Op); 15112 return true; 15113 } 15114 15115 /// Return the base-pointer arithmetic from an indexed \p LD. 15116 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 15117 ISD::MemIndexedMode AM = LD->getAddressingMode(); 15118 assert(AM != ISD::UNINDEXED); 15119 SDValue BP = LD->getOperand(1); 15120 SDValue Inc = LD->getOperand(2); 15121 15122 // Some backends use TargetConstants for load offsets, but don't expect 15123 // TargetConstants in general ADD nodes. We can convert these constants into 15124 // regular Constants (if the constant is not opaque). 15125 assert((Inc.getOpcode() != ISD::TargetConstant || 15126 !cast<ConstantSDNode>(Inc)->isOpaque()) && 15127 "Cannot split out indexing using opaque target constants"); 15128 if (Inc.getOpcode() == ISD::TargetConstant) { 15129 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 15130 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 15131 ConstInc->getValueType(0)); 15132 } 15133 15134 unsigned Opc = 15135 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 15136 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 15137 } 15138 15139 static inline ElementCount numVectorEltsOrZero(EVT T) { 15140 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); 15141 } 15142 15143 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { 15144 Val = ST->getValue(); 15145 EVT STType = Val.getValueType(); 15146 EVT STMemType = ST->getMemoryVT(); 15147 if (STType == STMemType) 15148 return true; 15149 if (isTypeLegal(STMemType)) 15150 return false; // fail. 15151 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && 15152 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { 15153 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); 15154 return true; 15155 } 15156 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && 15157 STType.isInteger() && STMemType.isInteger()) { 15158 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); 15159 return true; 15160 } 15161 if (STType.getSizeInBits() == STMemType.getSizeInBits()) { 15162 Val = DAG.getBitcast(STMemType, Val); 15163 return true; 15164 } 15165 return false; // fail. 15166 } 15167 15168 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { 15169 EVT LDMemType = LD->getMemoryVT(); 15170 EVT LDType = LD->getValueType(0); 15171 assert(Val.getValueType() == LDMemType && 15172 "Attempting to extend value of non-matching type"); 15173 if (LDType == LDMemType) 15174 return true; 15175 if (LDMemType.isInteger() && LDType.isInteger()) { 15176 switch (LD->getExtensionType()) { 15177 case ISD::NON_EXTLOAD: 15178 Val = DAG.getBitcast(LDType, Val); 15179 return true; 15180 case ISD::EXTLOAD: 15181 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); 15182 return true; 15183 case ISD::SEXTLOAD: 15184 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); 15185 return true; 15186 case ISD::ZEXTLOAD: 15187 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); 15188 return true; 15189 } 15190 } 15191 return false; 15192 } 15193 15194 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { 15195 if (OptLevel == CodeGenOpt::None || !LD->isSimple()) 15196 return SDValue(); 15197 SDValue Chain = LD->getOperand(0); 15198 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); 15199 // TODO: Relax this restriction for unordered atomics (see D66309) 15200 if (!ST || !ST->isSimple()) 15201 return SDValue(); 15202 15203 EVT LDType = LD->getValueType(0); 15204 EVT LDMemType = LD->getMemoryVT(); 15205 EVT STMemType = ST->getMemoryVT(); 15206 EVT STType = ST->getValue().getValueType(); 15207 15208 // There are two cases to consider here: 15209 // 1. The store is fixed width and the load is scalable. In this case we 15210 // don't know at compile time if the store completely envelops the load 15211 // so we abandon the optimisation. 15212 // 2. The store is scalable and the load is fixed width. We could 15213 // potentially support a limited number of cases here, but there has been 15214 // no cost-benefit analysis to prove it's worth it. 15215 bool LdStScalable = LDMemType.isScalableVector(); 15216 if (LdStScalable != STMemType.isScalableVector()) 15217 return SDValue(); 15218 15219 // If we are dealing with scalable vectors on a big endian platform the 15220 // calculation of offsets below becomes trickier, since we do not know at 15221 // compile time the absolute size of the vector. Until we've done more 15222 // analysis on big-endian platforms it seems better to bail out for now. 15223 if (LdStScalable && DAG.getDataLayout().isBigEndian()) 15224 return SDValue(); 15225 15226 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); 15227 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); 15228 int64_t Offset; 15229 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) 15230 return SDValue(); 15231 15232 // Normalize for Endianness. After this Offset=0 will denote that the least 15233 // significant bit in the loaded value maps to the least significant bit in 15234 // the stored value). With Offset=n (for n > 0) the loaded value starts at the 15235 // n:th least significant byte of the stored value. 15236 if (DAG.getDataLayout().isBigEndian()) 15237 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() - 15238 (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) / 15239 8 - 15240 Offset; 15241 15242 // Check that the stored value cover all bits that are loaded. 15243 bool STCoversLD; 15244 15245 TypeSize LdMemSize = LDMemType.getSizeInBits(); 15246 TypeSize StMemSize = STMemType.getSizeInBits(); 15247 if (LdStScalable) 15248 STCoversLD = (Offset == 0) && LdMemSize == StMemSize; 15249 else 15250 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <= 15251 StMemSize.getFixedSize()); 15252 15253 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { 15254 if (LD->isIndexed()) { 15255 // Cannot handle opaque target constants and we must respect the user's 15256 // request not to split indexes from loads. 15257 if (!canSplitIdx(LD)) 15258 return SDValue(); 15259 SDValue Idx = SplitIndexingFromLoad(LD); 15260 SDValue Ops[] = {Val, Idx, Chain}; 15261 return CombineTo(LD, Ops, 3); 15262 } 15263 return CombineTo(LD, Val, Chain); 15264 }; 15265 15266 if (!STCoversLD) 15267 return SDValue(); 15268 15269 // Memory as copy space (potentially masked). 15270 if (Offset == 0 && LDType == STType && STMemType == LDMemType) { 15271 // Simple case: Direct non-truncating forwarding 15272 if (LDType.getSizeInBits() == LdMemSize) 15273 return ReplaceLd(LD, ST->getValue(), Chain); 15274 // Can we model the truncate and extension with an and mask? 15275 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && 15276 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { 15277 // Mask to size of LDMemType 15278 auto Mask = 15279 DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), 15280 StMemSize.getFixedSize()), 15281 SDLoc(ST), STType); 15282 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); 15283 return ReplaceLd(LD, Val, Chain); 15284 } 15285 } 15286 15287 // TODO: Deal with nonzero offset. 15288 if (LD->getBasePtr().isUndef() || Offset != 0) 15289 return SDValue(); 15290 // Model necessary truncations / extenstions. 15291 SDValue Val; 15292 // Truncate Value To Stored Memory Size. 15293 do { 15294 if (!getTruncatedStoreValue(ST, Val)) 15295 continue; 15296 if (!isTypeLegal(LDMemType)) 15297 continue; 15298 if (STMemType != LDMemType) { 15299 // TODO: Support vectors? This requires extract_subvector/bitcast. 15300 if (!STMemType.isVector() && !LDMemType.isVector() && 15301 STMemType.isInteger() && LDMemType.isInteger()) 15302 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); 15303 else 15304 continue; 15305 } 15306 if (!extendLoadedValueToExtension(LD, Val)) 15307 continue; 15308 return ReplaceLd(LD, Val, Chain); 15309 } while (false); 15310 15311 // On failure, cleanup dead nodes we may have created. 15312 if (Val->use_empty()) 15313 deleteAndRecombine(Val.getNode()); 15314 return SDValue(); 15315 } 15316 15317 SDValue DAGCombiner::visitLOAD(SDNode *N) { 15318 LoadSDNode *LD = cast<LoadSDNode>(N); 15319 SDValue Chain = LD->getChain(); 15320 SDValue Ptr = LD->getBasePtr(); 15321 15322 // If load is not volatile and there are no uses of the loaded value (and 15323 // the updated indexed value in case of indexed loads), change uses of the 15324 // chain value into uses of the chain input (i.e. delete the dead load). 15325 // TODO: Allow this for unordered atomics (see D66309) 15326 if (LD->isSimple()) { 15327 if (N->getValueType(1) == MVT::Other) { 15328 // Unindexed loads. 15329 if (!N->hasAnyUseOfValue(0)) { 15330 // It's not safe to use the two value CombineTo variant here. e.g. 15331 // v1, chain2 = load chain1, loc 15332 // v2, chain3 = load chain2, loc 15333 // v3 = add v2, c 15334 // Now we replace use of chain2 with chain1. This makes the second load 15335 // isomorphic to the one we are deleting, and thus makes this load live. 15336 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); 15337 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); 15338 dbgs() << "\n"); 15339 WorklistRemover DeadNodes(*this); 15340 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 15341 AddUsersToWorklist(Chain.getNode()); 15342 if (N->use_empty()) 15343 deleteAndRecombine(N); 15344 15345 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15346 } 15347 } else { 15348 // Indexed loads. 15349 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 15350 15351 // If this load has an opaque TargetConstant offset, then we cannot split 15352 // the indexing into an add/sub directly (that TargetConstant may not be 15353 // valid for a different type of node, and we cannot convert an opaque 15354 // target constant into a regular constant). 15355 bool CanSplitIdx = canSplitIdx(LD); 15356 15357 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { 15358 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 15359 SDValue Index; 15360 if (N->hasAnyUseOfValue(1) && CanSplitIdx) { 15361 Index = SplitIndexingFromLoad(LD); 15362 // Try to fold the base pointer arithmetic into subsequent loads and 15363 // stores. 15364 AddUsersToWorklist(N); 15365 } else 15366 Index = DAG.getUNDEF(N->getValueType(1)); 15367 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); 15368 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); 15369 dbgs() << " and 2 other values\n"); 15370 WorklistRemover DeadNodes(*this); 15371 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 15372 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 15373 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 15374 deleteAndRecombine(N); 15375 return SDValue(N, 0); // Return N so it doesn't get rechecked! 15376 } 15377 } 15378 } 15379 15380 // If this load is directly stored, replace the load value with the stored 15381 // value. 15382 if (auto V = ForwardStoreValueToDirectLoad(LD)) 15383 return V; 15384 15385 // Try to infer better alignment information than the load already has. 15386 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { 15387 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 15388 if (*Alignment > LD->getAlign() && 15389 isAligned(*Alignment, LD->getSrcValueOffset())) { 15390 SDValue NewLoad = DAG.getExtLoad( 15391 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, 15392 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, 15393 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 15394 // NewLoad will always be N as we are only refining the alignment 15395 assert(NewLoad.getNode() == N); 15396 (void)NewLoad; 15397 } 15398 } 15399 } 15400 15401 if (LD->isUnindexed()) { 15402 // Walk up chain skipping non-aliasing memory nodes. 15403 SDValue BetterChain = FindBetterChain(LD, Chain); 15404 15405 // If there is a better chain. 15406 if (Chain != BetterChain) { 15407 SDValue ReplLoad; 15408 15409 // Replace the chain to void dependency. 15410 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 15411 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 15412 BetterChain, Ptr, LD->getMemOperand()); 15413 } else { 15414 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 15415 LD->getValueType(0), 15416 BetterChain, Ptr, LD->getMemoryVT(), 15417 LD->getMemOperand()); 15418 } 15419 15420 // Create token factor to keep old chain connected. 15421 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 15422 MVT::Other, Chain, ReplLoad.getValue(1)); 15423 15424 // Replace uses with load result and token factor 15425 return CombineTo(N, ReplLoad.getValue(0), Token); 15426 } 15427 } 15428 15429 // Try transforming N to an indexed load. 15430 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 15431 return SDValue(N, 0); 15432 15433 // Try to slice up N to more direct loads if the slices are mapped to 15434 // different register banks or pairing can take place. 15435 if (SliceUpLoad(N)) 15436 return SDValue(N, 0); 15437 15438 return SDValue(); 15439 } 15440 15441 namespace { 15442 15443 /// Helper structure used to slice a load in smaller loads. 15444 /// Basically a slice is obtained from the following sequence: 15445 /// Origin = load Ty1, Base 15446 /// Shift = srl Ty1 Origin, CstTy Amount 15447 /// Inst = trunc Shift to Ty2 15448 /// 15449 /// Then, it will be rewritten into: 15450 /// Slice = load SliceTy, Base + SliceOffset 15451 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 15452 /// 15453 /// SliceTy is deduced from the number of bits that are actually used to 15454 /// build Inst. 15455 struct LoadedSlice { 15456 /// Helper structure used to compute the cost of a slice. 15457 struct Cost { 15458 /// Are we optimizing for code size. 15459 bool ForCodeSize = false; 15460 15461 /// Various cost. 15462 unsigned Loads = 0; 15463 unsigned Truncates = 0; 15464 unsigned CrossRegisterBanksCopies = 0; 15465 unsigned ZExts = 0; 15466 unsigned Shift = 0; 15467 15468 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} 15469 15470 /// Get the cost of one isolated slice. 15471 Cost(const LoadedSlice &LS, bool ForCodeSize) 15472 : ForCodeSize(ForCodeSize), Loads(1) { 15473 EVT TruncType = LS.Inst->getValueType(0); 15474 EVT LoadedType = LS.getLoadedType(); 15475 if (TruncType != LoadedType && 15476 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 15477 ZExts = 1; 15478 } 15479 15480 /// Account for slicing gain in the current cost. 15481 /// Slicing provide a few gains like removing a shift or a 15482 /// truncate. This method allows to grow the cost of the original 15483 /// load with the gain from this slice. 15484 void addSliceGain(const LoadedSlice &LS) { 15485 // Each slice saves a truncate. 15486 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 15487 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 15488 LS.Inst->getValueType(0))) 15489 ++Truncates; 15490 // If there is a shift amount, this slice gets rid of it. 15491 if (LS.Shift) 15492 ++Shift; 15493 // If this slice can merge a cross register bank copy, account for it. 15494 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 15495 ++CrossRegisterBanksCopies; 15496 } 15497 15498 Cost &operator+=(const Cost &RHS) { 15499 Loads += RHS.Loads; 15500 Truncates += RHS.Truncates; 15501 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 15502 ZExts += RHS.ZExts; 15503 Shift += RHS.Shift; 15504 return *this; 15505 } 15506 15507 bool operator==(const Cost &RHS) const { 15508 return Loads == RHS.Loads && Truncates == RHS.Truncates && 15509 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 15510 ZExts == RHS.ZExts && Shift == RHS.Shift; 15511 } 15512 15513 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 15514 15515 bool operator<(const Cost &RHS) const { 15516 // Assume cross register banks copies are as expensive as loads. 15517 // FIXME: Do we want some more target hooks? 15518 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 15519 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 15520 // Unless we are optimizing for code size, consider the 15521 // expensive operation first. 15522 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 15523 return ExpensiveOpsLHS < ExpensiveOpsRHS; 15524 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 15525 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 15526 } 15527 15528 bool operator>(const Cost &RHS) const { return RHS < *this; } 15529 15530 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 15531 15532 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 15533 }; 15534 15535 // The last instruction that represent the slice. This should be a 15536 // truncate instruction. 15537 SDNode *Inst; 15538 15539 // The original load instruction. 15540 LoadSDNode *Origin; 15541 15542 // The right shift amount in bits from the original load. 15543 unsigned Shift; 15544 15545 // The DAG from which Origin came from. 15546 // This is used to get some contextual information about legal types, etc. 15547 SelectionDAG *DAG; 15548 15549 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 15550 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 15551 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 15552 15553 /// Get the bits used in a chunk of bits \p BitWidth large. 15554 /// \return Result is \p BitWidth and has used bits set to 1 and 15555 /// not used bits set to 0. 15556 APInt getUsedBits() const { 15557 // Reproduce the trunc(lshr) sequence: 15558 // - Start from the truncated value. 15559 // - Zero extend to the desired bit width. 15560 // - Shift left. 15561 assert(Origin && "No original load to compare against."); 15562 unsigned BitWidth = Origin->getValueSizeInBits(0); 15563 assert(Inst && "This slice is not bound to an instruction"); 15564 assert(Inst->getValueSizeInBits(0) <= BitWidth && 15565 "Extracted slice is bigger than the whole type!"); 15566 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 15567 UsedBits.setAllBits(); 15568 UsedBits = UsedBits.zext(BitWidth); 15569 UsedBits <<= Shift; 15570 return UsedBits; 15571 } 15572 15573 /// Get the size of the slice to be loaded in bytes. 15574 unsigned getLoadedSize() const { 15575 unsigned SliceSize = getUsedBits().countPopulation(); 15576 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 15577 return SliceSize / 8; 15578 } 15579 15580 /// Get the type that will be loaded for this slice. 15581 /// Note: This may not be the final type for the slice. 15582 EVT getLoadedType() const { 15583 assert(DAG && "Missing context"); 15584 LLVMContext &Ctxt = *DAG->getContext(); 15585 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 15586 } 15587 15588 /// Get the alignment of the load used for this slice. 15589 Align getAlign() const { 15590 Align Alignment = Origin->getAlign(); 15591 uint64_t Offset = getOffsetFromBase(); 15592 if (Offset != 0) 15593 Alignment = commonAlignment(Alignment, Alignment.value() + Offset); 15594 return Alignment; 15595 } 15596 15597 /// Check if this slice can be rewritten with legal operations. 15598 bool isLegal() const { 15599 // An invalid slice is not legal. 15600 if (!Origin || !Inst || !DAG) 15601 return false; 15602 15603 // Offsets are for indexed load only, we do not handle that. 15604 if (!Origin->getOffset().isUndef()) 15605 return false; 15606 15607 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 15608 15609 // Check that the type is legal. 15610 EVT SliceType = getLoadedType(); 15611 if (!TLI.isTypeLegal(SliceType)) 15612 return false; 15613 15614 // Check that the load is legal for this type. 15615 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 15616 return false; 15617 15618 // Check that the offset can be computed. 15619 // 1. Check its type. 15620 EVT PtrType = Origin->getBasePtr().getValueType(); 15621 if (PtrType == MVT::Untyped || PtrType.isExtended()) 15622 return false; 15623 15624 // 2. Check that it fits in the immediate. 15625 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 15626 return false; 15627 15628 // 3. Check that the computation is legal. 15629 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 15630 return false; 15631 15632 // Check that the zext is legal if it needs one. 15633 EVT TruncateType = Inst->getValueType(0); 15634 if (TruncateType != SliceType && 15635 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 15636 return false; 15637 15638 return true; 15639 } 15640 15641 /// Get the offset in bytes of this slice in the original chunk of 15642 /// bits. 15643 /// \pre DAG != nullptr. 15644 uint64_t getOffsetFromBase() const { 15645 assert(DAG && "Missing context."); 15646 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 15647 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 15648 uint64_t Offset = Shift / 8; 15649 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 15650 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 15651 "The size of the original loaded type is not a multiple of a" 15652 " byte."); 15653 // If Offset is bigger than TySizeInBytes, it means we are loading all 15654 // zeros. This should have been optimized before in the process. 15655 assert(TySizeInBytes > Offset && 15656 "Invalid shift amount for given loaded size"); 15657 if (IsBigEndian) 15658 Offset = TySizeInBytes - Offset - getLoadedSize(); 15659 return Offset; 15660 } 15661 15662 /// Generate the sequence of instructions to load the slice 15663 /// represented by this object and redirect the uses of this slice to 15664 /// this new sequence of instructions. 15665 /// \pre this->Inst && this->Origin are valid Instructions and this 15666 /// object passed the legal check: LoadedSlice::isLegal returned true. 15667 /// \return The last instruction of the sequence used to load the slice. 15668 SDValue loadSlice() const { 15669 assert(Inst && Origin && "Unable to replace a non-existing slice."); 15670 const SDValue &OldBaseAddr = Origin->getBasePtr(); 15671 SDValue BaseAddr = OldBaseAddr; 15672 // Get the offset in that chunk of bytes w.r.t. the endianness. 15673 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 15674 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 15675 if (Offset) { 15676 // BaseAddr = BaseAddr + Offset. 15677 EVT ArithType = BaseAddr.getValueType(); 15678 SDLoc DL(Origin); 15679 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 15680 DAG->getConstant(Offset, DL, ArithType)); 15681 } 15682 15683 // Create the type of the loaded slice according to its size. 15684 EVT SliceType = getLoadedType(); 15685 15686 // Create the load for the slice. 15687 SDValue LastInst = 15688 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 15689 Origin->getPointerInfo().getWithOffset(Offset), getAlign(), 15690 Origin->getMemOperand()->getFlags()); 15691 // If the final type is not the same as the loaded type, this means that 15692 // we have to pad with zero. Create a zero extend for that. 15693 EVT FinalType = Inst->getValueType(0); 15694 if (SliceType != FinalType) 15695 LastInst = 15696 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 15697 return LastInst; 15698 } 15699 15700 /// Check if this slice can be merged with an expensive cross register 15701 /// bank copy. E.g., 15702 /// i = load i32 15703 /// f = bitcast i32 i to float 15704 bool canMergeExpensiveCrossRegisterBankCopy() const { 15705 if (!Inst || !Inst->hasOneUse()) 15706 return false; 15707 SDNode *Use = *Inst->use_begin(); 15708 if (Use->getOpcode() != ISD::BITCAST) 15709 return false; 15710 assert(DAG && "Missing context"); 15711 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 15712 EVT ResVT = Use->getValueType(0); 15713 const TargetRegisterClass *ResRC = 15714 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); 15715 const TargetRegisterClass *ArgRC = 15716 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), 15717 Use->getOperand(0)->isDivergent()); 15718 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 15719 return false; 15720 15721 // At this point, we know that we perform a cross-register-bank copy. 15722 // Check if it is expensive. 15723 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 15724 // Assume bitcasts are cheap, unless both register classes do not 15725 // explicitly share a common sub class. 15726 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 15727 return false; 15728 15729 // Check if it will be merged with the load. 15730 // 1. Check the alignment constraint. 15731 Align RequiredAlignment = DAG->getDataLayout().getABITypeAlign( 15732 ResVT.getTypeForEVT(*DAG->getContext())); 15733 15734 if (RequiredAlignment > getAlign()) 15735 return false; 15736 15737 // 2. Check that the load is a legal operation for that type. 15738 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 15739 return false; 15740 15741 // 3. Check that we do not have a zext in the way. 15742 if (Inst->getValueType(0) != getLoadedType()) 15743 return false; 15744 15745 return true; 15746 } 15747 }; 15748 15749 } // end anonymous namespace 15750 15751 /// Check that all bits set in \p UsedBits form a dense region, i.e., 15752 /// \p UsedBits looks like 0..0 1..1 0..0. 15753 static bool areUsedBitsDense(const APInt &UsedBits) { 15754 // If all the bits are one, this is dense! 15755 if (UsedBits.isAllOnesValue()) 15756 return true; 15757 15758 // Get rid of the unused bits on the right. 15759 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 15760 // Get rid of the unused bits on the left. 15761 if (NarrowedUsedBits.countLeadingZeros()) 15762 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 15763 // Check that the chunk of bits is completely used. 15764 return NarrowedUsedBits.isAllOnesValue(); 15765 } 15766 15767 /// Check whether or not \p First and \p Second are next to each other 15768 /// in memory. This means that there is no hole between the bits loaded 15769 /// by \p First and the bits loaded by \p Second. 15770 static bool areSlicesNextToEachOther(const LoadedSlice &First, 15771 const LoadedSlice &Second) { 15772 assert(First.Origin == Second.Origin && First.Origin && 15773 "Unable to match different memory origins."); 15774 APInt UsedBits = First.getUsedBits(); 15775 assert((UsedBits & Second.getUsedBits()) == 0 && 15776 "Slices are not supposed to overlap."); 15777 UsedBits |= Second.getUsedBits(); 15778 return areUsedBitsDense(UsedBits); 15779 } 15780 15781 /// Adjust the \p GlobalLSCost according to the target 15782 /// paring capabilities and the layout of the slices. 15783 /// \pre \p GlobalLSCost should account for at least as many loads as 15784 /// there is in the slices in \p LoadedSlices. 15785 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 15786 LoadedSlice::Cost &GlobalLSCost) { 15787 unsigned NumberOfSlices = LoadedSlices.size(); 15788 // If there is less than 2 elements, no pairing is possible. 15789 if (NumberOfSlices < 2) 15790 return; 15791 15792 // Sort the slices so that elements that are likely to be next to each 15793 // other in memory are next to each other in the list. 15794 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 15795 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 15796 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 15797 }); 15798 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 15799 // First (resp. Second) is the first (resp. Second) potentially candidate 15800 // to be placed in a paired load. 15801 const LoadedSlice *First = nullptr; 15802 const LoadedSlice *Second = nullptr; 15803 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 15804 // Set the beginning of the pair. 15805 First = Second) { 15806 Second = &LoadedSlices[CurrSlice]; 15807 15808 // If First is NULL, it means we start a new pair. 15809 // Get to the next slice. 15810 if (!First) 15811 continue; 15812 15813 EVT LoadedType = First->getLoadedType(); 15814 15815 // If the types of the slices are different, we cannot pair them. 15816 if (LoadedType != Second->getLoadedType()) 15817 continue; 15818 15819 // Check if the target supplies paired loads for this type. 15820 Align RequiredAlignment; 15821 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 15822 // move to the next pair, this type is hopeless. 15823 Second = nullptr; 15824 continue; 15825 } 15826 // Check if we meet the alignment requirement. 15827 if (First->getAlign() < RequiredAlignment) 15828 continue; 15829 15830 // Check that both loads are next to each other in memory. 15831 if (!areSlicesNextToEachOther(*First, *Second)) 15832 continue; 15833 15834 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 15835 --GlobalLSCost.Loads; 15836 // Move to the next pair. 15837 Second = nullptr; 15838 } 15839 } 15840 15841 /// Check the profitability of all involved LoadedSlice. 15842 /// Currently, it is considered profitable if there is exactly two 15843 /// involved slices (1) which are (2) next to each other in memory, and 15844 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 15845 /// 15846 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 15847 /// the elements themselves. 15848 /// 15849 /// FIXME: When the cost model will be mature enough, we can relax 15850 /// constraints (1) and (2). 15851 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 15852 const APInt &UsedBits, bool ForCodeSize) { 15853 unsigned NumberOfSlices = LoadedSlices.size(); 15854 if (StressLoadSlicing) 15855 return NumberOfSlices > 1; 15856 15857 // Check (1). 15858 if (NumberOfSlices != 2) 15859 return false; 15860 15861 // Check (2). 15862 if (!areUsedBitsDense(UsedBits)) 15863 return false; 15864 15865 // Check (3). 15866 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 15867 // The original code has one big load. 15868 OrigCost.Loads = 1; 15869 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 15870 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 15871 // Accumulate the cost of all the slices. 15872 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 15873 GlobalSlicingCost += SliceCost; 15874 15875 // Account as cost in the original configuration the gain obtained 15876 // with the current slices. 15877 OrigCost.addSliceGain(LS); 15878 } 15879 15880 // If the target supports paired load, adjust the cost accordingly. 15881 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 15882 return OrigCost > GlobalSlicingCost; 15883 } 15884 15885 /// If the given load, \p LI, is used only by trunc or trunc(lshr) 15886 /// operations, split it in the various pieces being extracted. 15887 /// 15888 /// This sort of thing is introduced by SROA. 15889 /// This slicing takes care not to insert overlapping loads. 15890 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 15891 bool DAGCombiner::SliceUpLoad(SDNode *N) { 15892 if (Level < AfterLegalizeDAG) 15893 return false; 15894 15895 LoadSDNode *LD = cast<LoadSDNode>(N); 15896 if (!LD->isSimple() || !ISD::isNormalLoad(LD) || 15897 !LD->getValueType(0).isInteger()) 15898 return false; 15899 15900 // The algorithm to split up a load of a scalable vector into individual 15901 // elements currently requires knowing the length of the loaded type, 15902 // so will need adjusting to work on scalable vectors. 15903 if (LD->getValueType(0).isScalableVector()) 15904 return false; 15905 15906 // Keep track of already used bits to detect overlapping values. 15907 // In that case, we will just abort the transformation. 15908 APInt UsedBits(LD->getValueSizeInBits(0), 0); 15909 15910 SmallVector<LoadedSlice, 4> LoadedSlices; 15911 15912 // Check if this load is used as several smaller chunks of bits. 15913 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 15914 // of computation for each trunc. 15915 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 15916 UI != UIEnd; ++UI) { 15917 // Skip the uses of the chain. 15918 if (UI.getUse().getResNo() != 0) 15919 continue; 15920 15921 SDNode *User = *UI; 15922 unsigned Shift = 0; 15923 15924 // Check if this is a trunc(lshr). 15925 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 15926 isa<ConstantSDNode>(User->getOperand(1))) { 15927 Shift = User->getConstantOperandVal(1); 15928 User = *User->use_begin(); 15929 } 15930 15931 // At this point, User is a Truncate, iff we encountered, trunc or 15932 // trunc(lshr). 15933 if (User->getOpcode() != ISD::TRUNCATE) 15934 return false; 15935 15936 // The width of the type must be a power of 2 and greater than 8-bits. 15937 // Otherwise the load cannot be represented in LLVM IR. 15938 // Moreover, if we shifted with a non-8-bits multiple, the slice 15939 // will be across several bytes. We do not support that. 15940 unsigned Width = User->getValueSizeInBits(0); 15941 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 15942 return false; 15943 15944 // Build the slice for this chain of computations. 15945 LoadedSlice LS(User, LD, Shift, &DAG); 15946 APInt CurrentUsedBits = LS.getUsedBits(); 15947 15948 // Check if this slice overlaps with another. 15949 if ((CurrentUsedBits & UsedBits) != 0) 15950 return false; 15951 // Update the bits used globally. 15952 UsedBits |= CurrentUsedBits; 15953 15954 // Check if the new slice would be legal. 15955 if (!LS.isLegal()) 15956 return false; 15957 15958 // Record the slice. 15959 LoadedSlices.push_back(LS); 15960 } 15961 15962 // Abort slicing if it does not seem to be profitable. 15963 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 15964 return false; 15965 15966 ++SlicedLoads; 15967 15968 // Rewrite each chain to use an independent load. 15969 // By construction, each chain can be represented by a unique load. 15970 15971 // Prepare the argument for the new token factor for all the slices. 15972 SmallVector<SDValue, 8> ArgChains; 15973 for (SmallVectorImpl<LoadedSlice>::const_iterator 15974 LSIt = LoadedSlices.begin(), 15975 LSItEnd = LoadedSlices.end(); 15976 LSIt != LSItEnd; ++LSIt) { 15977 SDValue SliceInst = LSIt->loadSlice(); 15978 CombineTo(LSIt->Inst, SliceInst, true); 15979 if (SliceInst.getOpcode() != ISD::LOAD) 15980 SliceInst = SliceInst.getOperand(0); 15981 assert(SliceInst->getOpcode() == ISD::LOAD && 15982 "It takes more than a zext to get to the loaded slice!!"); 15983 ArgChains.push_back(SliceInst.getValue(1)); 15984 } 15985 15986 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 15987 ArgChains); 15988 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 15989 AddToWorklist(Chain.getNode()); 15990 return true; 15991 } 15992 15993 /// Check to see if V is (and load (ptr), imm), where the load is having 15994 /// specific bytes cleared out. If so, return the byte size being masked out 15995 /// and the shift amount. 15996 static std::pair<unsigned, unsigned> 15997 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 15998 std::pair<unsigned, unsigned> Result(0, 0); 15999 16000 // Check for the structure we're looking for. 16001 if (V->getOpcode() != ISD::AND || 16002 !isa<ConstantSDNode>(V->getOperand(1)) || 16003 !ISD::isNormalLoad(V->getOperand(0).getNode())) 16004 return Result; 16005 16006 // Check the chain and pointer. 16007 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 16008 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 16009 16010 // This only handles simple types. 16011 if (V.getValueType() != MVT::i16 && 16012 V.getValueType() != MVT::i32 && 16013 V.getValueType() != MVT::i64) 16014 return Result; 16015 16016 // Check the constant mask. Invert it so that the bits being masked out are 16017 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 16018 // follow the sign bit for uniformity. 16019 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 16020 unsigned NotMaskLZ = countLeadingZeros(NotMask); 16021 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 16022 unsigned NotMaskTZ = countTrailingZeros(NotMask); 16023 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 16024 if (NotMaskLZ == 64) return Result; // All zero mask. 16025 16026 // See if we have a continuous run of bits. If so, we have 0*1+0* 16027 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 16028 return Result; 16029 16030 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 16031 if (V.getValueType() != MVT::i64 && NotMaskLZ) 16032 NotMaskLZ -= 64-V.getValueSizeInBits(); 16033 16034 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 16035 switch (MaskedBytes) { 16036 case 1: 16037 case 2: 16038 case 4: break; 16039 default: return Result; // All one mask, or 5-byte mask. 16040 } 16041 16042 // Verify that the first bit starts at a multiple of mask so that the access 16043 // is aligned the same as the access width. 16044 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 16045 16046 // For narrowing to be valid, it must be the case that the load the 16047 // immediately preceding memory operation before the store. 16048 if (LD == Chain.getNode()) 16049 ; // ok. 16050 else if (Chain->getOpcode() == ISD::TokenFactor && 16051 SDValue(LD, 1).hasOneUse()) { 16052 // LD has only 1 chain use so they are no indirect dependencies. 16053 if (!LD->isOperandOf(Chain.getNode())) 16054 return Result; 16055 } else 16056 return Result; // Fail. 16057 16058 Result.first = MaskedBytes; 16059 Result.second = NotMaskTZ/8; 16060 return Result; 16061 } 16062 16063 /// Check to see if IVal is something that provides a value as specified by 16064 /// MaskInfo. If so, replace the specified store with a narrower store of 16065 /// truncated IVal. 16066 static SDValue 16067 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 16068 SDValue IVal, StoreSDNode *St, 16069 DAGCombiner *DC) { 16070 unsigned NumBytes = MaskInfo.first; 16071 unsigned ByteShift = MaskInfo.second; 16072 SelectionDAG &DAG = DC->getDAG(); 16073 16074 // Check to see if IVal is all zeros in the part being masked in by the 'or' 16075 // that uses this. If not, this is not a replacement. 16076 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 16077 ByteShift*8, (ByteShift+NumBytes)*8); 16078 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); 16079 16080 // Check that it is legal on the target to do this. It is legal if the new 16081 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 16082 // legalization (and the target doesn't explicitly think this is a bad idea). 16083 MVT VT = MVT::getIntegerVT(NumBytes * 8); 16084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 16085 if (!DC->isTypeLegal(VT)) 16086 return SDValue(); 16087 if (St->getMemOperand() && 16088 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 16089 *St->getMemOperand())) 16090 return SDValue(); 16091 16092 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 16093 // shifted by ByteShift and truncated down to NumBytes. 16094 if (ByteShift) { 16095 SDLoc DL(IVal); 16096 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 16097 DAG.getConstant(ByteShift*8, DL, 16098 DC->getShiftAmountTy(IVal.getValueType()))); 16099 } 16100 16101 // Figure out the offset for the store and the alignment of the access. 16102 unsigned StOffset; 16103 if (DAG.getDataLayout().isLittleEndian()) 16104 StOffset = ByteShift; 16105 else 16106 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 16107 16108 SDValue Ptr = St->getBasePtr(); 16109 if (StOffset) { 16110 SDLoc DL(IVal); 16111 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); 16112 } 16113 16114 // Truncate down to the new size. 16115 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 16116 16117 ++OpsNarrowed; 16118 return DAG 16119 .getStore(St->getChain(), SDLoc(St), IVal, Ptr, 16120 St->getPointerInfo().getWithOffset(StOffset), 16121 St->getOriginalAlign()); 16122 } 16123 16124 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 16125 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 16126 /// narrowing the load and store if it would end up being a win for performance 16127 /// or code size. 16128 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 16129 StoreSDNode *ST = cast<StoreSDNode>(N); 16130 if (!ST->isSimple()) 16131 return SDValue(); 16132 16133 SDValue Chain = ST->getChain(); 16134 SDValue Value = ST->getValue(); 16135 SDValue Ptr = ST->getBasePtr(); 16136 EVT VT = Value.getValueType(); 16137 16138 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 16139 return SDValue(); 16140 16141 unsigned Opc = Value.getOpcode(); 16142 16143 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 16144 // is a byte mask indicating a consecutive number of bytes, check to see if 16145 // Y is known to provide just those bytes. If so, we try to replace the 16146 // load + replace + store sequence with a single (narrower) store, which makes 16147 // the load dead. 16148 if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { 16149 std::pair<unsigned, unsigned> MaskedLoad; 16150 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 16151 if (MaskedLoad.first) 16152 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16153 Value.getOperand(1), ST,this)) 16154 return NewST; 16155 16156 // Or is commutative, so try swapping X and Y. 16157 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 16158 if (MaskedLoad.first) 16159 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 16160 Value.getOperand(0), ST,this)) 16161 return NewST; 16162 } 16163 16164 if (!EnableReduceLoadOpStoreWidth) 16165 return SDValue(); 16166 16167 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 16168 Value.getOperand(1).getOpcode() != ISD::Constant) 16169 return SDValue(); 16170 16171 SDValue N0 = Value.getOperand(0); 16172 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 16173 Chain == SDValue(N0.getNode(), 1)) { 16174 LoadSDNode *LD = cast<LoadSDNode>(N0); 16175 if (LD->getBasePtr() != Ptr || 16176 LD->getPointerInfo().getAddrSpace() != 16177 ST->getPointerInfo().getAddrSpace()) 16178 return SDValue(); 16179 16180 // Find the type to narrow it the load / op / store to. 16181 SDValue N1 = Value.getOperand(1); 16182 unsigned BitWidth = N1.getValueSizeInBits(); 16183 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 16184 if (Opc == ISD::AND) 16185 Imm ^= APInt::getAllOnesValue(BitWidth); 16186 if (Imm == 0 || Imm.isAllOnesValue()) 16187 return SDValue(); 16188 unsigned ShAmt = Imm.countTrailingZeros(); 16189 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 16190 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 16191 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 16192 // The narrowing should be profitable, the load/store operation should be 16193 // legal (or custom) and the store size should be equal to the NewVT width. 16194 while (NewBW < BitWidth && 16195 (NewVT.getStoreSizeInBits() != NewBW || 16196 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 16197 !TLI.isNarrowingProfitable(VT, NewVT))) { 16198 NewBW = NextPowerOf2(NewBW); 16199 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 16200 } 16201 if (NewBW >= BitWidth) 16202 return SDValue(); 16203 16204 // If the lsb changed does not start at the type bitwidth boundary, 16205 // start at the previous one. 16206 if (ShAmt % NewBW) 16207 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 16208 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 16209 std::min(BitWidth, ShAmt + NewBW)); 16210 if ((Imm & Mask) == Imm) { 16211 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 16212 if (Opc == ISD::AND) 16213 NewImm ^= APInt::getAllOnesValue(NewBW); 16214 uint64_t PtrOff = ShAmt / 8; 16215 // For big endian targets, we need to adjust the offset to the pointer to 16216 // load the correct bytes. 16217 if (DAG.getDataLayout().isBigEndian()) 16218 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 16219 16220 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); 16221 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 16222 if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy)) 16223 return SDValue(); 16224 16225 SDValue NewPtr = 16226 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); 16227 SDValue NewLD = 16228 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, 16229 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, 16230 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 16231 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 16232 DAG.getConstant(NewImm, SDLoc(Value), 16233 NewVT)); 16234 SDValue NewST = 16235 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, 16236 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); 16237 16238 AddToWorklist(NewPtr.getNode()); 16239 AddToWorklist(NewLD.getNode()); 16240 AddToWorklist(NewVal.getNode()); 16241 WorklistRemover DeadNodes(*this); 16242 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 16243 ++OpsNarrowed; 16244 return NewST; 16245 } 16246 } 16247 16248 return SDValue(); 16249 } 16250 16251 /// For a given floating point load / store pair, if the load value isn't used 16252 /// by any other operations, then consider transforming the pair to integer 16253 /// load / store operations if the target deems the transformation profitable. 16254 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 16255 StoreSDNode *ST = cast<StoreSDNode>(N); 16256 SDValue Value = ST->getValue(); 16257 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 16258 Value.hasOneUse()) { 16259 LoadSDNode *LD = cast<LoadSDNode>(Value); 16260 EVT VT = LD->getMemoryVT(); 16261 if (!VT.isFloatingPoint() || 16262 VT != ST->getMemoryVT() || 16263 LD->isNonTemporal() || 16264 ST->isNonTemporal() || 16265 LD->getPointerInfo().getAddrSpace() != 0 || 16266 ST->getPointerInfo().getAddrSpace() != 0) 16267 return SDValue(); 16268 16269 TypeSize VTSize = VT.getSizeInBits(); 16270 16271 // We don't know the size of scalable types at compile time so we cannot 16272 // create an integer of the equivalent size. 16273 if (VTSize.isScalable()) 16274 return SDValue(); 16275 16276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); 16277 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 16278 !TLI.isOperationLegal(ISD::STORE, IntVT) || 16279 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 16280 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 16281 return SDValue(); 16282 16283 Align LDAlign = LD->getAlign(); 16284 Align STAlign = ST->getAlign(); 16285 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 16286 Align ABIAlign = DAG.getDataLayout().getABITypeAlign(IntVTTy); 16287 if (LDAlign < ABIAlign || STAlign < ABIAlign) 16288 return SDValue(); 16289 16290 SDValue NewLD = 16291 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), 16292 LD->getPointerInfo(), LDAlign); 16293 16294 SDValue NewST = 16295 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), 16296 ST->getPointerInfo(), STAlign); 16297 16298 AddToWorklist(NewLD.getNode()); 16299 AddToWorklist(NewST.getNode()); 16300 WorklistRemover DeadNodes(*this); 16301 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 16302 ++LdStFP2Int; 16303 return NewST; 16304 } 16305 16306 return SDValue(); 16307 } 16308 16309 // This is a helper function for visitMUL to check the profitability 16310 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 16311 // MulNode is the original multiply, AddNode is (add x, c1), 16312 // and ConstNode is c2. 16313 // 16314 // If the (add x, c1) has multiple uses, we could increase 16315 // the number of adds if we make this transformation. 16316 // It would only be worth doing this if we can remove a 16317 // multiply in the process. Check for that here. 16318 // To illustrate: 16319 // (A + c1) * c3 16320 // (A + c2) * c3 16321 // We're checking for cases where we have common "c3 * A" expressions. 16322 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 16323 SDValue &AddNode, 16324 SDValue &ConstNode) { 16325 APInt Val; 16326 16327 // If the add only has one use, this would be OK to do. 16328 if (AddNode.getNode()->hasOneUse()) 16329 return true; 16330 16331 // Walk all the users of the constant with which we're multiplying. 16332 for (SDNode *Use : ConstNode->uses()) { 16333 if (Use == MulNode) // This use is the one we're on right now. Skip it. 16334 continue; 16335 16336 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 16337 SDNode *OtherOp; 16338 SDNode *MulVar = AddNode.getOperand(0).getNode(); 16339 16340 // OtherOp is what we're multiplying against the constant. 16341 if (Use->getOperand(0) == ConstNode) 16342 OtherOp = Use->getOperand(1).getNode(); 16343 else 16344 OtherOp = Use->getOperand(0).getNode(); 16345 16346 // Check to see if multiply is with the same operand of our "add". 16347 // 16348 // ConstNode = CONST 16349 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 16350 // ... 16351 // AddNode = (A + c1) <-- MulVar is A. 16352 // = AddNode * ConstNode <-- current visiting instruction. 16353 // 16354 // If we make this transformation, we will have a common 16355 // multiply (ConstNode * A) that we can save. 16356 if (OtherOp == MulVar) 16357 return true; 16358 16359 // Now check to see if a future expansion will give us a common 16360 // multiply. 16361 // 16362 // ConstNode = CONST 16363 // AddNode = (A + c1) 16364 // ... = AddNode * ConstNode <-- current visiting instruction. 16365 // ... 16366 // OtherOp = (A + c2) 16367 // Use = OtherOp * ConstNode <-- visiting Use. 16368 // 16369 // If we make this transformation, we will have a common 16370 // multiply (CONST * A) after we also do the same transformation 16371 // to the "t2" instruction. 16372 if (OtherOp->getOpcode() == ISD::ADD && 16373 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 16374 OtherOp->getOperand(0).getNode() == MulVar) 16375 return true; 16376 } 16377 } 16378 16379 // Didn't find a case where this would be profitable. 16380 return false; 16381 } 16382 16383 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, 16384 unsigned NumStores) { 16385 SmallVector<SDValue, 8> Chains; 16386 SmallPtrSet<const SDNode *, 8> Visited; 16387 SDLoc StoreDL(StoreNodes[0].MemNode); 16388 16389 for (unsigned i = 0; i < NumStores; ++i) { 16390 Visited.insert(StoreNodes[i].MemNode); 16391 } 16392 16393 // don't include nodes that are children or repeated nodes. 16394 for (unsigned i = 0; i < NumStores; ++i) { 16395 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) 16396 Chains.push_back(StoreNodes[i].MemNode->getChain()); 16397 } 16398 16399 assert(Chains.size() > 0 && "Chain should have generated a chain"); 16400 return DAG.getTokenFactor(StoreDL, Chains); 16401 } 16402 16403 bool DAGCombiner::mergeStoresOfConstantsOrVecElts( 16404 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, 16405 bool IsConstantSrc, bool UseVector, bool UseTrunc) { 16406 // Make sure we have something to merge. 16407 if (NumStores < 2) 16408 return false; 16409 16410 // The latest Node in the DAG. 16411 SDLoc DL(StoreNodes[0].MemNode); 16412 16413 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); 16414 unsigned SizeInBits = NumStores * ElementSizeBits; 16415 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16416 16417 EVT StoreTy; 16418 if (UseVector) { 16419 unsigned Elts = NumStores * NumMemElts; 16420 // Get the type for the merged vector store. 16421 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 16422 } else 16423 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 16424 16425 SDValue StoredVal; 16426 if (UseVector) { 16427 if (IsConstantSrc) { 16428 SmallVector<SDValue, 8> BuildVector; 16429 for (unsigned I = 0; I != NumStores; ++I) { 16430 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); 16431 SDValue Val = St->getValue(); 16432 // If constant is of the wrong type, convert it now. 16433 if (MemVT != Val.getValueType()) { 16434 Val = peekThroughBitcasts(Val); 16435 // Deal with constants of wrong size. 16436 if (ElementSizeBits != Val.getValueSizeInBits()) { 16437 EVT IntMemVT = 16438 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 16439 if (isa<ConstantFPSDNode>(Val)) { 16440 // Not clear how to truncate FP values. 16441 return false; 16442 } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) 16443 Val = DAG.getConstant(C->getAPIntValue() 16444 .zextOrTrunc(Val.getValueSizeInBits()) 16445 .zextOrTrunc(ElementSizeBits), 16446 SDLoc(C), IntMemVT); 16447 } 16448 // Make sure correctly size type is the correct type. 16449 Val = DAG.getBitcast(MemVT, Val); 16450 } 16451 BuildVector.push_back(Val); 16452 } 16453 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 16454 : ISD::BUILD_VECTOR, 16455 DL, StoreTy, BuildVector); 16456 } else { 16457 SmallVector<SDValue, 8> Ops; 16458 for (unsigned i = 0; i < NumStores; ++i) { 16459 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 16460 SDValue Val = peekThroughBitcasts(St->getValue()); 16461 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of 16462 // type MemVT. If the underlying value is not the correct 16463 // type, but it is an extraction of an appropriate vector we 16464 // can recast Val to be of the correct type. This may require 16465 // converting between EXTRACT_VECTOR_ELT and 16466 // EXTRACT_SUBVECTOR. 16467 if ((MemVT != Val.getValueType()) && 16468 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 16469 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { 16470 EVT MemVTScalarTy = MemVT.getScalarType(); 16471 // We may need to add a bitcast here to get types to line up. 16472 if (MemVTScalarTy != Val.getValueType().getScalarType()) { 16473 Val = DAG.getBitcast(MemVT, Val); 16474 } else { 16475 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR 16476 : ISD::EXTRACT_VECTOR_ELT; 16477 SDValue Vec = Val.getOperand(0); 16478 SDValue Idx = Val.getOperand(1); 16479 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); 16480 } 16481 } 16482 Ops.push_back(Val); 16483 } 16484 16485 // Build the extracted vector elements back into a vector. 16486 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS 16487 : ISD::BUILD_VECTOR, 16488 DL, StoreTy, Ops); 16489 } 16490 } else { 16491 // We should always use a vector store when merging extracted vector 16492 // elements, so this path implies a store of constants. 16493 assert(IsConstantSrc && "Merged vector elements should use vector store"); 16494 16495 APInt StoreInt(SizeInBits, 0); 16496 16497 // Construct a single integer constant which is made of the smaller 16498 // constant inputs. 16499 bool IsLE = DAG.getDataLayout().isLittleEndian(); 16500 for (unsigned i = 0; i < NumStores; ++i) { 16501 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 16502 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 16503 16504 SDValue Val = St->getValue(); 16505 Val = peekThroughBitcasts(Val); 16506 StoreInt <<= ElementSizeBits; 16507 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 16508 StoreInt |= C->getAPIntValue() 16509 .zextOrTrunc(ElementSizeBits) 16510 .zextOrTrunc(SizeInBits); 16511 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 16512 StoreInt |= C->getValueAPF() 16513 .bitcastToAPInt() 16514 .zextOrTrunc(ElementSizeBits) 16515 .zextOrTrunc(SizeInBits); 16516 // If fp truncation is necessary give up for now. 16517 if (MemVT.getSizeInBits() != ElementSizeBits) 16518 return false; 16519 } else { 16520 llvm_unreachable("Invalid constant element type"); 16521 } 16522 } 16523 16524 // Create the new Load and Store operations. 16525 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 16526 } 16527 16528 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16529 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); 16530 16531 // make sure we use trunc store if it's necessary to be legal. 16532 SDValue NewStore; 16533 if (!UseTrunc) { 16534 NewStore = 16535 DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), 16536 FirstInChain->getPointerInfo(), FirstInChain->getAlign()); 16537 } else { // Must be realized as a trunc store 16538 EVT LegalizedStoredValTy = 16539 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 16540 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); 16541 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); 16542 SDValue ExtendedStoreVal = 16543 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, 16544 LegalizedStoredValTy); 16545 NewStore = DAG.getTruncStore( 16546 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), 16547 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, 16548 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 16549 } 16550 16551 // Replace all merged stores with the new store. 16552 for (unsigned i = 0; i < NumStores; ++i) 16553 CombineTo(StoreNodes[i].MemNode, NewStore); 16554 16555 AddToWorklist(NewChain.getNode()); 16556 return true; 16557 } 16558 16559 void DAGCombiner::getStoreMergeCandidates( 16560 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, 16561 SDNode *&RootNode) { 16562 // This holds the base pointer, index, and the offset in bytes from the base 16563 // pointer. We must have a base and an offset. Do not handle stores to undef 16564 // base pointers. 16565 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 16566 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) 16567 return; 16568 16569 SDValue Val = peekThroughBitcasts(St->getValue()); 16570 StoreSource StoreSrc = getStoreSource(Val); 16571 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); 16572 16573 // Match on loadbaseptr if relevant. 16574 EVT MemVT = St->getMemoryVT(); 16575 BaseIndexOffset LBasePtr; 16576 EVT LoadVT; 16577 if (StoreSrc == StoreSource::Load) { 16578 auto *Ld = cast<LoadSDNode>(Val); 16579 LBasePtr = BaseIndexOffset::match(Ld, DAG); 16580 LoadVT = Ld->getMemoryVT(); 16581 // Load and store should be the same type. 16582 if (MemVT != LoadVT) 16583 return; 16584 // Loads must only have one use. 16585 if (!Ld->hasNUsesOfValue(1, 0)) 16586 return; 16587 // The memory operands must not be volatile/indexed/atomic. 16588 // TODO: May be able to relax for unordered atomics (see D66309) 16589 if (!Ld->isSimple() || Ld->isIndexed()) 16590 return; 16591 } 16592 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, 16593 int64_t &Offset) -> bool { 16594 // The memory operands must not be volatile/indexed/atomic. 16595 // TODO: May be able to relax for unordered atomics (see D66309) 16596 if (!Other->isSimple() || Other->isIndexed()) 16597 return false; 16598 // Don't mix temporal stores with non-temporal stores. 16599 if (St->isNonTemporal() != Other->isNonTemporal()) 16600 return false; 16601 SDValue OtherBC = peekThroughBitcasts(Other->getValue()); 16602 // Allow merging constants of different types as integers. 16603 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) 16604 : Other->getMemoryVT() != MemVT; 16605 switch (StoreSrc) { 16606 case StoreSource::Load: { 16607 if (NoTypeMatch) 16608 return false; 16609 // The Load's Base Ptr must also match. 16610 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); 16611 if (!OtherLd) 16612 return false; 16613 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); 16614 if (LoadVT != OtherLd->getMemoryVT()) 16615 return false; 16616 // Loads must only have one use. 16617 if (!OtherLd->hasNUsesOfValue(1, 0)) 16618 return false; 16619 // The memory operands must not be volatile/indexed/atomic. 16620 // TODO: May be able to relax for unordered atomics (see D66309) 16621 if (!OtherLd->isSimple() || OtherLd->isIndexed()) 16622 return false; 16623 // Don't mix temporal loads with non-temporal loads. 16624 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) 16625 return false; 16626 if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) 16627 return false; 16628 break; 16629 } 16630 case StoreSource::Constant: 16631 if (NoTypeMatch) 16632 return false; 16633 if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC))) 16634 return false; 16635 break; 16636 case StoreSource::Extract: 16637 // Do not merge truncated stores here. 16638 if (Other->isTruncatingStore()) 16639 return false; 16640 if (!MemVT.bitsEq(OtherBC.getValueType())) 16641 return false; 16642 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && 16643 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) 16644 return false; 16645 break; 16646 default: 16647 llvm_unreachable("Unhandled store source for merging"); 16648 } 16649 Ptr = BaseIndexOffset::match(Other, DAG); 16650 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); 16651 }; 16652 16653 // Check if the pair of StoreNode and the RootNode already bail out many 16654 // times which is over the limit in dependence check. 16655 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, 16656 SDNode *RootNode) -> bool { 16657 auto RootCount = StoreRootCountMap.find(StoreNode); 16658 return RootCount != StoreRootCountMap.end() && 16659 RootCount->second.first == RootNode && 16660 RootCount->second.second > StoreMergeDependenceLimit; 16661 }; 16662 16663 auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { 16664 // This must be a chain use. 16665 if (UseIter.getOperandNo() != 0) 16666 return; 16667 if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) { 16668 BaseIndexOffset Ptr; 16669 int64_t PtrDiff; 16670 if (CandidateMatch(OtherStore, Ptr, PtrDiff) && 16671 !OverLimitInDependenceCheck(OtherStore, RootNode)) 16672 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); 16673 } 16674 }; 16675 16676 // We looking for a root node which is an ancestor to all mergable 16677 // stores. We search up through a load, to our root and then down 16678 // through all children. For instance we will find Store{1,2,3} if 16679 // St is Store1, Store2. or Store3 where the root is not a load 16680 // which always true for nonvolatile ops. TODO: Expand 16681 // the search to find all valid candidates through multiple layers of loads. 16682 // 16683 // Root 16684 // |-------|-------| 16685 // Load Load Store3 16686 // | | 16687 // Store1 Store2 16688 // 16689 // FIXME: We should be able to climb and 16690 // descend TokenFactors to find candidates as well. 16691 16692 RootNode = St->getChain().getNode(); 16693 16694 unsigned NumNodesExplored = 0; 16695 const unsigned MaxSearchNodes = 1024; 16696 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { 16697 RootNode = Ldn->getChain().getNode(); 16698 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 16699 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { 16700 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain 16701 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) 16702 TryToAddCandidate(I2); 16703 } 16704 } 16705 } else { 16706 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); 16707 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) 16708 TryToAddCandidate(I); 16709 } 16710 } 16711 16712 // We need to check that merging these stores does not cause a loop in 16713 // the DAG. Any store candidate may depend on another candidate 16714 // indirectly through its operand (we already consider dependencies 16715 // through the chain). Check in parallel by searching up from 16716 // non-chain operands of candidates. 16717 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 16718 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, 16719 SDNode *RootNode) { 16720 // FIXME: We should be able to truncate a full search of 16721 // predecessors by doing a BFS and keeping tabs the originating 16722 // stores from which worklist nodes come from in a similar way to 16723 // TokenFactor simplfication. 16724 16725 SmallPtrSet<const SDNode *, 32> Visited; 16726 SmallVector<const SDNode *, 8> Worklist; 16727 16728 // RootNode is a predecessor to all candidates so we need not search 16729 // past it. Add RootNode (peeking through TokenFactors). Do not count 16730 // these towards size check. 16731 16732 Worklist.push_back(RootNode); 16733 while (!Worklist.empty()) { 16734 auto N = Worklist.pop_back_val(); 16735 if (!Visited.insert(N).second) 16736 continue; // Already present in Visited. 16737 if (N->getOpcode() == ISD::TokenFactor) { 16738 for (SDValue Op : N->ops()) 16739 Worklist.push_back(Op.getNode()); 16740 } 16741 } 16742 16743 // Don't count pruning nodes towards max. 16744 unsigned int Max = 1024 + Visited.size(); 16745 // Search Ops of store candidates. 16746 for (unsigned i = 0; i < NumStores; ++i) { 16747 SDNode *N = StoreNodes[i].MemNode; 16748 // Of the 4 Store Operands: 16749 // * Chain (Op 0) -> We have already considered these 16750 // in candidate selection and can be 16751 // safely ignored 16752 // * Value (Op 1) -> Cycles may happen (e.g. through load chains) 16753 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, 16754 // but aren't necessarily fromt the same base node, so 16755 // cycles possible (e.g. via indexed store). 16756 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for 16757 // non-indexed stores). Not constant on all targets (e.g. ARM) 16758 // and so can participate in a cycle. 16759 for (unsigned j = 1; j < N->getNumOperands(); ++j) 16760 Worklist.push_back(N->getOperand(j).getNode()); 16761 } 16762 // Search through DAG. We can stop early if we find a store node. 16763 for (unsigned i = 0; i < NumStores; ++i) 16764 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, 16765 Max)) { 16766 // If the searching bail out, record the StoreNode and RootNode in the 16767 // StoreRootCountMap. If we have seen the pair many times over a limit, 16768 // we won't add the StoreNode into StoreNodes set again. 16769 if (Visited.size() >= Max) { 16770 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; 16771 if (RootCount.first == RootNode) 16772 RootCount.second++; 16773 else 16774 RootCount = {RootNode, 1}; 16775 } 16776 return false; 16777 } 16778 return true; 16779 } 16780 16781 unsigned 16782 DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, 16783 int64_t ElementSizeBytes) const { 16784 while (true) { 16785 // Find a store past the width of the first store. 16786 size_t StartIdx = 0; 16787 while ((StartIdx + 1 < StoreNodes.size()) && 16788 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != 16789 StoreNodes[StartIdx + 1].OffsetFromBase) 16790 ++StartIdx; 16791 16792 // Bail if we don't have enough candidates to merge. 16793 if (StartIdx + 1 >= StoreNodes.size()) 16794 return 0; 16795 16796 // Trim stores that overlapped with the first store. 16797 if (StartIdx) 16798 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); 16799 16800 // Scan the memory operations on the chain and find the first 16801 // non-consecutive store memory address. 16802 unsigned NumConsecutiveStores = 1; 16803 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 16804 // Check that the addresses are consecutive starting from the second 16805 // element in the list of stores. 16806 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { 16807 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 16808 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 16809 break; 16810 NumConsecutiveStores = i + 1; 16811 } 16812 if (NumConsecutiveStores > 1) 16813 return NumConsecutiveStores; 16814 16815 // There are no consecutive stores at the start of the list. 16816 // Remove the first store and try again. 16817 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); 16818 } 16819 } 16820 16821 bool DAGCombiner::tryStoreMergeOfConstants( 16822 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 16823 EVT MemVT, SDNode *RootNode, bool AllowVectors) { 16824 LLVMContext &Context = *DAG.getContext(); 16825 const DataLayout &DL = DAG.getDataLayout(); 16826 int64_t ElementSizeBytes = MemVT.getStoreSize(); 16827 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16828 bool MadeChange = false; 16829 16830 // Store the constants into memory as one consecutive store. 16831 while (NumConsecutiveStores >= 2) { 16832 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16833 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 16834 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 16835 unsigned LastLegalType = 1; 16836 unsigned LastLegalVectorType = 1; 16837 bool LastIntegerTrunc = false; 16838 bool NonZero = false; 16839 unsigned FirstZeroAfterNonZero = NumConsecutiveStores; 16840 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 16841 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); 16842 SDValue StoredVal = ST->getValue(); 16843 bool IsElementZero = false; 16844 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) 16845 IsElementZero = C->isNullValue(); 16846 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) 16847 IsElementZero = C->getConstantFPValue()->isNullValue(); 16848 if (IsElementZero) { 16849 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) 16850 FirstZeroAfterNonZero = i; 16851 } 16852 NonZero |= !IsElementZero; 16853 16854 // Find a legal type for the constant store. 16855 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 16856 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 16857 bool IsFast = false; 16858 16859 // Break early when size is too large to be legal. 16860 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 16861 break; 16862 16863 if (TLI.isTypeLegal(StoreTy) && 16864 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 16865 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16866 *FirstInChain->getMemOperand(), &IsFast) && 16867 IsFast) { 16868 LastIntegerTrunc = false; 16869 LastLegalType = i + 1; 16870 // Or check whether a truncstore is legal. 16871 } else if (TLI.getTypeAction(Context, StoreTy) == 16872 TargetLowering::TypePromoteInteger) { 16873 EVT LegalizedStoredValTy = 16874 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 16875 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 16876 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && 16877 TLI.allowsMemoryAccess(Context, DL, StoreTy, 16878 *FirstInChain->getMemOperand(), &IsFast) && 16879 IsFast) { 16880 LastIntegerTrunc = true; 16881 LastLegalType = i + 1; 16882 } 16883 } 16884 16885 // We only use vectors if the constant is known to be zero or the 16886 // target allows it and the function is not marked with the 16887 // noimplicitfloat attribute. 16888 if ((!NonZero || 16889 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && 16890 AllowVectors) { 16891 // Find a legal type for the vector store. 16892 unsigned Elts = (i + 1) * NumMemElts; 16893 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 16894 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && 16895 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && 16896 TLI.allowsMemoryAccess(Context, DL, Ty, 16897 *FirstInChain->getMemOperand(), &IsFast) && 16898 IsFast) 16899 LastLegalVectorType = i + 1; 16900 } 16901 } 16902 16903 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; 16904 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; 16905 16906 // Check if we found a legal integer type that creates a meaningful 16907 // merge. 16908 if (NumElem < 2) { 16909 // We know that candidate stores are in order and of correct 16910 // shape. While there is no mergeable sequence from the 16911 // beginning one may start later in the sequence. The only 16912 // reason a merge of size N could have failed where another of 16913 // the same size would not have, is if the alignment has 16914 // improved or we've dropped a non-zero value. Drop as many 16915 // candidates as we can here. 16916 unsigned NumSkip = 1; 16917 while ((NumSkip < NumConsecutiveStores) && 16918 (NumSkip < FirstZeroAfterNonZero) && 16919 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 16920 NumSkip++; 16921 16922 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 16923 NumConsecutiveStores -= NumSkip; 16924 continue; 16925 } 16926 16927 // Check that we can merge these candidates without causing a cycle. 16928 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 16929 RootNode)) { 16930 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 16931 NumConsecutiveStores -= NumElem; 16932 continue; 16933 } 16934 16935 MadeChange |= mergeStoresOfConstantsOrVecElts( 16936 StoreNodes, MemVT, NumElem, true, UseVector, LastIntegerTrunc); 16937 16938 // Remove merged stores for next iteration. 16939 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 16940 NumConsecutiveStores -= NumElem; 16941 } 16942 return MadeChange; 16943 } 16944 16945 bool DAGCombiner::tryStoreMergeOfExtracts( 16946 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, 16947 EVT MemVT, SDNode *RootNode) { 16948 LLVMContext &Context = *DAG.getContext(); 16949 const DataLayout &DL = DAG.getDataLayout(); 16950 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 16951 bool MadeChange = false; 16952 16953 // Loop on Consecutive Stores on success. 16954 while (NumConsecutiveStores >= 2) { 16955 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 16956 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 16957 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 16958 unsigned NumStoresToMerge = 1; 16959 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 16960 // Find a legal type for the vector store. 16961 unsigned Elts = (i + 1) * NumMemElts; 16962 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 16963 bool IsFast = false; 16964 16965 // Break early when size is too large to be legal. 16966 if (Ty.getSizeInBits() > MaximumLegalStoreInBits) 16967 break; 16968 16969 if (TLI.isTypeLegal(Ty) && TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && 16970 TLI.allowsMemoryAccess(Context, DL, Ty, 16971 *FirstInChain->getMemOperand(), &IsFast) && 16972 IsFast) 16973 NumStoresToMerge = i + 1; 16974 } 16975 16976 // Check if we found a legal integer type creating a meaningful 16977 // merge. 16978 if (NumStoresToMerge < 2) { 16979 // We know that candidate stores are in order and of correct 16980 // shape. While there is no mergeable sequence from the 16981 // beginning one may start later in the sequence. The only 16982 // reason a merge of size N could have failed where another of 16983 // the same size would not have, is if the alignment has 16984 // improved. Drop as many candidates as we can here. 16985 unsigned NumSkip = 1; 16986 while ((NumSkip < NumConsecutiveStores) && 16987 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) 16988 NumSkip++; 16989 16990 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 16991 NumConsecutiveStores -= NumSkip; 16992 continue; 16993 } 16994 16995 // Check that we can merge these candidates without causing a cycle. 16996 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, 16997 RootNode)) { 16998 StoreNodes.erase(StoreNodes.begin(), 16999 StoreNodes.begin() + NumStoresToMerge); 17000 NumConsecutiveStores -= NumStoresToMerge; 17001 continue; 17002 } 17003 17004 MadeChange |= mergeStoresOfConstantsOrVecElts( 17005 StoreNodes, MemVT, NumStoresToMerge, false, true, false); 17006 17007 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); 17008 NumConsecutiveStores -= NumStoresToMerge; 17009 } 17010 return MadeChange; 17011 } 17012 17013 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, 17014 unsigned NumConsecutiveStores, EVT MemVT, 17015 SDNode *RootNode, bool AllowVectors, 17016 bool IsNonTemporalStore, 17017 bool IsNonTemporalLoad) { 17018 LLVMContext &Context = *DAG.getContext(); 17019 const DataLayout &DL = DAG.getDataLayout(); 17020 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17021 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; 17022 bool MadeChange = false; 17023 17024 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 17025 17026 // Look for load nodes which are used by the stored values. 17027 SmallVector<MemOpLink, 8> LoadNodes; 17028 17029 // Find acceptable loads. Loads need to have the same chain (token factor), 17030 // must not be zext, volatile, indexed, and they must be consecutive. 17031 BaseIndexOffset LdBasePtr; 17032 17033 for (unsigned i = 0; i < NumConsecutiveStores; ++i) { 17034 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 17035 SDValue Val = peekThroughBitcasts(St->getValue()); 17036 LoadSDNode *Ld = cast<LoadSDNode>(Val); 17037 17038 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); 17039 // If this is not the first ptr that we check. 17040 int64_t LdOffset = 0; 17041 if (LdBasePtr.getBase().getNode()) { 17042 // The base ptr must be the same. 17043 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) 17044 break; 17045 } else { 17046 // Check that all other base pointers are the same as this one. 17047 LdBasePtr = LdPtr; 17048 } 17049 17050 // We found a potential memory operand to merge. 17051 LoadNodes.push_back(MemOpLink(Ld, LdOffset)); 17052 } 17053 17054 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { 17055 Align RequiredAlignment; 17056 bool NeedRotate = false; 17057 if (LoadNodes.size() == 2) { 17058 // If we have load/store pair instructions and we only have two values, 17059 // don't bother merging. 17060 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && 17061 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { 17062 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); 17063 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); 17064 break; 17065 } 17066 // If the loads are reversed, see if we can rotate the halves into place. 17067 int64_t Offset0 = LoadNodes[0].OffsetFromBase; 17068 int64_t Offset1 = LoadNodes[1].OffsetFromBase; 17069 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); 17070 if (Offset0 - Offset1 == ElementSizeBytes && 17071 (hasOperation(ISD::ROTL, PairVT) || 17072 hasOperation(ISD::ROTR, PairVT))) { 17073 std::swap(LoadNodes[0], LoadNodes[1]); 17074 NeedRotate = true; 17075 } 17076 } 17077 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 17078 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 17079 Align FirstStoreAlign = FirstInChain->getAlign(); 17080 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 17081 17082 // Scan the memory operations on the chain and find the first 17083 // non-consecutive load memory address. These variables hold the index in 17084 // the store node array. 17085 17086 unsigned LastConsecutiveLoad = 1; 17087 17088 // This variable refers to the size and not index in the array. 17089 unsigned LastLegalVectorType = 1; 17090 unsigned LastLegalIntegerType = 1; 17091 bool isDereferenceable = true; 17092 bool DoIntegerTruncate = false; 17093 StartAddress = LoadNodes[0].OffsetFromBase; 17094 SDValue LoadChain = FirstLoad->getChain(); 17095 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 17096 // All loads must share the same chain. 17097 if (LoadNodes[i].MemNode->getChain() != LoadChain) 17098 break; 17099 17100 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 17101 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 17102 break; 17103 LastConsecutiveLoad = i; 17104 17105 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) 17106 isDereferenceable = false; 17107 17108 // Find a legal type for the vector store. 17109 unsigned Elts = (i + 1) * NumMemElts; 17110 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17111 17112 // Break early when size is too large to be legal. 17113 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) 17114 break; 17115 17116 bool IsFastSt = false; 17117 bool IsFastLd = false; 17118 if (TLI.isTypeLegal(StoreTy) && 17119 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 17120 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17121 *FirstInChain->getMemOperand(), &IsFastSt) && 17122 IsFastSt && 17123 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17124 *FirstLoad->getMemOperand(), &IsFastLd) && 17125 IsFastLd) { 17126 LastLegalVectorType = i + 1; 17127 } 17128 17129 // Find a legal type for the integer store. 17130 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; 17131 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 17132 if (TLI.isTypeLegal(StoreTy) && 17133 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && 17134 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17135 *FirstInChain->getMemOperand(), &IsFastSt) && 17136 IsFastSt && 17137 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17138 *FirstLoad->getMemOperand(), &IsFastLd) && 17139 IsFastLd) { 17140 LastLegalIntegerType = i + 1; 17141 DoIntegerTruncate = false; 17142 // Or check whether a truncstore and extload is legal. 17143 } else if (TLI.getTypeAction(Context, StoreTy) == 17144 TargetLowering::TypePromoteInteger) { 17145 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); 17146 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && 17147 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && 17148 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && 17149 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && 17150 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && 17151 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17152 *FirstInChain->getMemOperand(), &IsFastSt) && 17153 IsFastSt && 17154 TLI.allowsMemoryAccess(Context, DL, StoreTy, 17155 *FirstLoad->getMemOperand(), &IsFastLd) && 17156 IsFastLd) { 17157 LastLegalIntegerType = i + 1; 17158 DoIntegerTruncate = true; 17159 } 17160 } 17161 } 17162 17163 // Only use vector types if the vector type is larger than the integer 17164 // type. If they are the same, use integers. 17165 bool UseVectorTy = 17166 LastLegalVectorType > LastLegalIntegerType && AllowVectors; 17167 unsigned LastLegalType = 17168 std::max(LastLegalVectorType, LastLegalIntegerType); 17169 17170 // We add +1 here because the LastXXX variables refer to location while 17171 // the NumElem refers to array/index size. 17172 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); 17173 NumElem = std::min(LastLegalType, NumElem); 17174 Align FirstLoadAlign = FirstLoad->getAlign(); 17175 17176 if (NumElem < 2) { 17177 // We know that candidate stores are in order and of correct 17178 // shape. While there is no mergeable sequence from the 17179 // beginning one may start later in the sequence. The only 17180 // reason a merge of size N could have failed where another of 17181 // the same size would not have is if the alignment or either 17182 // the load or store has improved. Drop as many candidates as we 17183 // can here. 17184 unsigned NumSkip = 1; 17185 while ((NumSkip < LoadNodes.size()) && 17186 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && 17187 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) 17188 NumSkip++; 17189 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); 17190 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); 17191 NumConsecutiveStores -= NumSkip; 17192 continue; 17193 } 17194 17195 // Check that we can merge these candidates without causing a cycle. 17196 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, 17197 RootNode)) { 17198 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17199 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 17200 NumConsecutiveStores -= NumElem; 17201 continue; 17202 } 17203 17204 // Find if it is better to use vectors or integers to load and store 17205 // to memory. 17206 EVT JointMemOpVT; 17207 if (UseVectorTy) { 17208 // Find a legal type for the vector store. 17209 unsigned Elts = NumElem * NumMemElts; 17210 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); 17211 } else { 17212 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 17213 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 17214 } 17215 17216 SDLoc LoadDL(LoadNodes[0].MemNode); 17217 SDLoc StoreDL(StoreNodes[0].MemNode); 17218 17219 // The merged loads are required to have the same incoming chain, so 17220 // using the first's chain is acceptable. 17221 17222 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); 17223 AddToWorklist(NewStoreChain.getNode()); 17224 17225 MachineMemOperand::Flags LdMMOFlags = 17226 isDereferenceable ? MachineMemOperand::MODereferenceable 17227 : MachineMemOperand::MONone; 17228 if (IsNonTemporalLoad) 17229 LdMMOFlags |= MachineMemOperand::MONonTemporal; 17230 17231 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore 17232 ? MachineMemOperand::MONonTemporal 17233 : MachineMemOperand::MONone; 17234 17235 SDValue NewLoad, NewStore; 17236 if (UseVectorTy || !DoIntegerTruncate) { 17237 NewLoad = DAG.getLoad( 17238 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 17239 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); 17240 SDValue StoreOp = NewLoad; 17241 if (NeedRotate) { 17242 unsigned LoadWidth = ElementSizeBytes * 8 * 2; 17243 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && 17244 "Unexpected type for rotate-able load pair"); 17245 SDValue RotAmt = 17246 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); 17247 // Target can convert to the identical ROTR if it does not have ROTL. 17248 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); 17249 } 17250 NewStore = DAG.getStore( 17251 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), 17252 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); 17253 } else { // This must be the truncstore/extload case 17254 EVT ExtendedTy = 17255 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); 17256 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, 17257 FirstLoad->getChain(), FirstLoad->getBasePtr(), 17258 FirstLoad->getPointerInfo(), JointMemOpVT, 17259 FirstLoadAlign, LdMMOFlags); 17260 NewStore = DAG.getTruncStore( 17261 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 17262 FirstInChain->getPointerInfo(), JointMemOpVT, 17263 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); 17264 } 17265 17266 // Transfer chain users from old loads to the new load. 17267 for (unsigned i = 0; i < NumElem; ++i) { 17268 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 17269 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 17270 SDValue(NewLoad.getNode(), 1)); 17271 } 17272 17273 // Replace all stores with the new store. Recursively remove corresponding 17274 // values if they are no longer used. 17275 for (unsigned i = 0; i < NumElem; ++i) { 17276 SDValue Val = StoreNodes[i].MemNode->getOperand(1); 17277 CombineTo(StoreNodes[i].MemNode, NewStore); 17278 if (Val.getNode()->use_empty()) 17279 recursivelyDeleteUnusedNodes(Val.getNode()); 17280 } 17281 17282 MadeChange = true; 17283 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); 17284 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); 17285 NumConsecutiveStores -= NumElem; 17286 } 17287 return MadeChange; 17288 } 17289 17290 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { 17291 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) 17292 return false; 17293 17294 // TODO: Extend this function to merge stores of scalable vectors. 17295 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> 17296 // store since we know <vscale x 16 x i8> is exactly twice as large as 17297 // <vscale x 8 x i8>). Until then, bail out for scalable vectors. 17298 EVT MemVT = St->getMemoryVT(); 17299 if (MemVT.isScalableVector()) 17300 return false; 17301 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) 17302 return false; 17303 17304 // This function cannot currently deal with non-byte-sized memory sizes. 17305 int64_t ElementSizeBytes = MemVT.getStoreSize(); 17306 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) 17307 return false; 17308 17309 // Do not bother looking at stored values that are not constants, loads, or 17310 // extracted vector elements. 17311 SDValue StoredVal = peekThroughBitcasts(St->getValue()); 17312 const StoreSource StoreSrc = getStoreSource(StoredVal); 17313 if (StoreSrc == StoreSource::Unknown) 17314 return false; 17315 17316 SmallVector<MemOpLink, 8> StoreNodes; 17317 SDNode *RootNode; 17318 // Find potential store merge candidates by searching through chain sub-DAG 17319 getStoreMergeCandidates(St, StoreNodes, RootNode); 17320 17321 // Check if there is anything to merge. 17322 if (StoreNodes.size() < 2) 17323 return false; 17324 17325 // Sort the memory operands according to their distance from the 17326 // base pointer. 17327 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { 17328 return LHS.OffsetFromBase < RHS.OffsetFromBase; 17329 }); 17330 17331 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( 17332 Attribute::NoImplicitFloat); 17333 bool IsNonTemporalStore = St->isNonTemporal(); 17334 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && 17335 cast<LoadSDNode>(StoredVal)->isNonTemporal(); 17336 17337 // Store Merge attempts to merge the lowest stores. This generally 17338 // works out as if successful, as the remaining stores are checked 17339 // after the first collection of stores is merged. However, in the 17340 // case that a non-mergeable store is found first, e.g., {p[-2], 17341 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent 17342 // mergeable cases. To prevent this, we prune such stores from the 17343 // front of StoreNodes here. 17344 bool MadeChange = false; 17345 while (StoreNodes.size() > 1) { 17346 unsigned NumConsecutiveStores = 17347 getConsecutiveStores(StoreNodes, ElementSizeBytes); 17348 // There are no more stores in the list to examine. 17349 if (NumConsecutiveStores == 0) 17350 return MadeChange; 17351 17352 // We have at least 2 consecutive stores. Try to merge them. 17353 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); 17354 switch (StoreSrc) { 17355 case StoreSource::Constant: 17356 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, 17357 MemVT, RootNode, AllowVectors); 17358 break; 17359 17360 case StoreSource::Extract: 17361 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, 17362 MemVT, RootNode); 17363 break; 17364 17365 case StoreSource::Load: 17366 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, 17367 MemVT, RootNode, AllowVectors, 17368 IsNonTemporalStore, IsNonTemporalLoad); 17369 break; 17370 17371 default: 17372 llvm_unreachable("Unhandled store source type"); 17373 } 17374 } 17375 return MadeChange; 17376 } 17377 17378 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 17379 SDLoc SL(ST); 17380 SDValue ReplStore; 17381 17382 // Replace the chain to avoid dependency. 17383 if (ST->isTruncatingStore()) { 17384 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 17385 ST->getBasePtr(), ST->getMemoryVT(), 17386 ST->getMemOperand()); 17387 } else { 17388 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 17389 ST->getMemOperand()); 17390 } 17391 17392 // Create token to keep both nodes around. 17393 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 17394 MVT::Other, ST->getChain(), ReplStore); 17395 17396 // Make sure the new and old chains are cleaned up. 17397 AddToWorklist(Token.getNode()); 17398 17399 // Don't add users to work list. 17400 return CombineTo(ST, Token, false); 17401 } 17402 17403 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 17404 SDValue Value = ST->getValue(); 17405 if (Value.getOpcode() == ISD::TargetConstantFP) 17406 return SDValue(); 17407 17408 if (!ISD::isNormalStore(ST)) 17409 return SDValue(); 17410 17411 SDLoc DL(ST); 17412 17413 SDValue Chain = ST->getChain(); 17414 SDValue Ptr = ST->getBasePtr(); 17415 17416 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 17417 17418 // NOTE: If the original store is volatile, this transform must not increase 17419 // the number of stores. For example, on x86-32 an f64 can be stored in one 17420 // processor operation but an i64 (which is not legal) requires two. So the 17421 // transform should not be done in this case. 17422 17423 SDValue Tmp; 17424 switch (CFP->getSimpleValueType(0).SimpleTy) { 17425 default: 17426 llvm_unreachable("Unknown FP type"); 17427 case MVT::f16: // We don't do this for these yet. 17428 case MVT::f80: 17429 case MVT::f128: 17430 case MVT::ppcf128: 17431 return SDValue(); 17432 case MVT::f32: 17433 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || 17434 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 17435 ; 17436 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 17437 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 17438 MVT::i32); 17439 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 17440 } 17441 17442 return SDValue(); 17443 case MVT::f64: 17444 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 17445 ST->isSimple()) || 17446 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 17447 ; 17448 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 17449 getZExtValue(), SDLoc(CFP), MVT::i64); 17450 return DAG.getStore(Chain, DL, Tmp, 17451 Ptr, ST->getMemOperand()); 17452 } 17453 17454 if (ST->isSimple() && 17455 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 17456 // Many FP stores are not made apparent until after legalize, e.g. for 17457 // argument passing. Since this is so common, custom legalize the 17458 // 64-bit integer store into two 32-bit stores. 17459 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 17460 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 17461 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 17462 if (DAG.getDataLayout().isBigEndian()) 17463 std::swap(Lo, Hi); 17464 17465 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 17466 AAMDNodes AAInfo = ST->getAAInfo(); 17467 17468 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 17469 ST->getOriginalAlign(), MMOFlags, AAInfo); 17470 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); 17471 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, 17472 ST->getPointerInfo().getWithOffset(4), 17473 ST->getOriginalAlign(), MMOFlags, AAInfo); 17474 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 17475 St0, St1); 17476 } 17477 17478 return SDValue(); 17479 } 17480 } 17481 17482 SDValue DAGCombiner::visitSTORE(SDNode *N) { 17483 StoreSDNode *ST = cast<StoreSDNode>(N); 17484 SDValue Chain = ST->getChain(); 17485 SDValue Value = ST->getValue(); 17486 SDValue Ptr = ST->getBasePtr(); 17487 17488 // If this is a store of a bit convert, store the input value if the 17489 // resultant store does not need a higher alignment than the original. 17490 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 17491 ST->isUnindexed()) { 17492 EVT SVT = Value.getOperand(0).getValueType(); 17493 // If the store is volatile, we only want to change the store type if the 17494 // resulting store is legal. Otherwise we might increase the number of 17495 // memory accesses. We don't care if the original type was legal or not 17496 // as we assume software couldn't rely on the number of accesses of an 17497 // illegal type. 17498 // TODO: May be able to relax for unordered atomics (see D66309) 17499 if (((!LegalOperations && ST->isSimple()) || 17500 TLI.isOperationLegal(ISD::STORE, SVT)) && 17501 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, 17502 DAG, *ST->getMemOperand())) { 17503 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, 17504 ST->getMemOperand()); 17505 } 17506 } 17507 17508 // Turn 'store undef, Ptr' -> nothing. 17509 if (Value.isUndef() && ST->isUnindexed()) 17510 return Chain; 17511 17512 // Try to infer better alignment information than the store already has. 17513 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { 17514 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { 17515 if (*Alignment > ST->getAlign() && 17516 isAligned(*Alignment, ST->getSrcValueOffset())) { 17517 SDValue NewStore = 17518 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), 17519 ST->getMemoryVT(), *Alignment, 17520 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 17521 // NewStore will always be N as we are only refining the alignment 17522 assert(NewStore.getNode() == N); 17523 (void)NewStore; 17524 } 17525 } 17526 } 17527 17528 // Try transforming a pair floating point load / store ops to integer 17529 // load / store ops. 17530 if (SDValue NewST = TransformFPLoadStorePair(N)) 17531 return NewST; 17532 17533 // Try transforming several stores into STORE (BSWAP). 17534 if (SDValue Store = mergeTruncStores(ST)) 17535 return Store; 17536 17537 if (ST->isUnindexed()) { 17538 // Walk up chain skipping non-aliasing memory nodes, on this store and any 17539 // adjacent stores. 17540 if (findBetterNeighborChains(ST)) { 17541 // replaceStoreChain uses CombineTo, which handled all of the worklist 17542 // manipulation. Return the original node to not do anything else. 17543 return SDValue(ST, 0); 17544 } 17545 Chain = ST->getChain(); 17546 } 17547 17548 // FIXME: is there such a thing as a truncating indexed store? 17549 if (ST->isTruncatingStore() && ST->isUnindexed() && 17550 Value.getValueType().isInteger() && 17551 (!isa<ConstantSDNode>(Value) || 17552 !cast<ConstantSDNode>(Value)->isOpaque())) { 17553 APInt TruncDemandedBits = 17554 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), 17555 ST->getMemoryVT().getScalarSizeInBits()); 17556 17557 // See if we can simplify the input to this truncstore with knowledge that 17558 // only the low bits are being used. For example: 17559 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 17560 AddToWorklist(Value.getNode()); 17561 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) 17562 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), 17563 ST->getMemOperand()); 17564 17565 // Otherwise, see if we can simplify the operation with 17566 // SimplifyDemandedBits, which only works if the value has a single use. 17567 if (SimplifyDemandedBits(Value, TruncDemandedBits)) { 17568 // Re-visit the store if anything changed and the store hasn't been merged 17569 // with another node (N is deleted) SimplifyDemandedBits will add Value's 17570 // node back to the worklist if necessary, but we also need to re-visit 17571 // the Store node itself. 17572 if (N->getOpcode() != ISD::DELETED_NODE) 17573 AddToWorklist(N); 17574 return SDValue(N, 0); 17575 } 17576 } 17577 17578 // If this is a load followed by a store to the same location, then the store 17579 // is dead/noop. 17580 // TODO: Can relax for unordered atomics (see D66309) 17581 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 17582 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 17583 ST->isUnindexed() && ST->isSimple() && 17584 // There can't be any side effects between the load and store, such as 17585 // a call or store. 17586 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 17587 // The store is dead, remove it. 17588 return Chain; 17589 } 17590 } 17591 17592 // TODO: Can relax for unordered atomics (see D66309) 17593 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 17594 if (ST->isUnindexed() && ST->isSimple() && 17595 ST1->isUnindexed() && ST1->isSimple()) { 17596 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && 17597 ST->getMemoryVT() == ST1->getMemoryVT()) { 17598 // If this is a store followed by a store with the same value to the 17599 // same location, then the store is dead/noop. 17600 return Chain; 17601 } 17602 17603 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && 17604 !ST1->getBasePtr().isUndef() && 17605 // BaseIndexOffset and the code below requires knowing the size 17606 // of a vector, so bail out if MemoryVT is scalable. 17607 !ST->getMemoryVT().isScalableVector() && 17608 !ST1->getMemoryVT().isScalableVector()) { 17609 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); 17610 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); 17611 unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); 17612 unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); 17613 // If this is a store who's preceding store to a subset of the current 17614 // location and no one other node is chained to that store we can 17615 // effectively drop the store. Do not remove stores to undef as they may 17616 // be used as data sinks. 17617 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { 17618 CombineTo(ST1, ST1->getChain()); 17619 return SDValue(); 17620 } 17621 } 17622 } 17623 } 17624 17625 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 17626 // truncating store. We can do this even if this is already a truncstore. 17627 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 17628 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 17629 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 17630 ST->getMemoryVT())) { 17631 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 17632 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 17633 } 17634 17635 // Always perform this optimization before types are legal. If the target 17636 // prefers, also try this after legalization to catch stores that were created 17637 // by intrinsics or other nodes. 17638 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { 17639 while (true) { 17640 // There can be multiple store sequences on the same chain. 17641 // Keep trying to merge store sequences until we are unable to do so 17642 // or until we merge the last store on the chain. 17643 bool Changed = mergeConsecutiveStores(ST); 17644 if (!Changed) break; 17645 // Return N as merge only uses CombineTo and no worklist clean 17646 // up is necessary. 17647 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) 17648 return SDValue(N, 0); 17649 } 17650 } 17651 17652 // Try transforming N to an indexed store. 17653 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 17654 return SDValue(N, 0); 17655 17656 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 17657 // 17658 // Make sure to do this only after attempting to merge stores in order to 17659 // avoid changing the types of some subset of stores due to visit order, 17660 // preventing their merging. 17661 if (isa<ConstantFPSDNode>(ST->getValue())) { 17662 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 17663 return NewSt; 17664 } 17665 17666 if (SDValue NewSt = splitMergedValStore(ST)) 17667 return NewSt; 17668 17669 return ReduceLoadOpStoreWidth(N); 17670 } 17671 17672 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { 17673 const auto *LifetimeEnd = cast<LifetimeSDNode>(N); 17674 if (!LifetimeEnd->hasOffset()) 17675 return SDValue(); 17676 17677 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 17678 LifetimeEnd->getOffset(), false); 17679 17680 // We walk up the chains to find stores. 17681 SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; 17682 while (!Chains.empty()) { 17683 SDValue Chain = Chains.back(); 17684 Chains.pop_back(); 17685 if (!Chain.hasOneUse()) 17686 continue; 17687 switch (Chain.getOpcode()) { 17688 case ISD::TokenFactor: 17689 for (unsigned Nops = Chain.getNumOperands(); Nops;) 17690 Chains.push_back(Chain.getOperand(--Nops)); 17691 break; 17692 case ISD::LIFETIME_START: 17693 case ISD::LIFETIME_END: 17694 // We can forward past any lifetime start/end that can be proven not to 17695 // alias the node. 17696 if (!isAlias(Chain.getNode(), N)) 17697 Chains.push_back(Chain.getOperand(0)); 17698 break; 17699 case ISD::STORE: { 17700 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); 17701 // TODO: Can relax for unordered atomics (see D66309) 17702 if (!ST->isSimple() || ST->isIndexed()) 17703 continue; 17704 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); 17705 // The bounds of a scalable store are not known until runtime, so this 17706 // store cannot be elided. 17707 if (StoreSize.isScalable()) 17708 continue; 17709 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); 17710 // If we store purely within object bounds just before its lifetime ends, 17711 // we can remove the store. 17712 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, 17713 StoreSize.getFixedSize() * 8)) { 17714 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); 17715 dbgs() << "\nwithin LIFETIME_END of : "; 17716 LifetimeEndBase.dump(); dbgs() << "\n"); 17717 CombineTo(ST, ST->getChain()); 17718 return SDValue(N, 0); 17719 } 17720 } 17721 } 17722 } 17723 return SDValue(); 17724 } 17725 17726 /// For the instruction sequence of store below, F and I values 17727 /// are bundled together as an i64 value before being stored into memory. 17728 /// Sometimes it is more efficent to generate separate stores for F and I, 17729 /// which can remove the bitwise instructions or sink them to colder places. 17730 /// 17731 /// (store (or (zext (bitcast F to i32) to i64), 17732 /// (shl (zext I to i64), 32)), addr) --> 17733 /// (store F, addr) and (store I, addr+4) 17734 /// 17735 /// Similarly, splitting for other merged store can also be beneficial, like: 17736 /// For pair of {i32, i32}, i64 store --> two i32 stores. 17737 /// For pair of {i32, i16}, i64 store --> two i32 stores. 17738 /// For pair of {i16, i16}, i32 store --> two i16 stores. 17739 /// For pair of {i16, i8}, i32 store --> two i16 stores. 17740 /// For pair of {i8, i8}, i16 store --> two i8 stores. 17741 /// 17742 /// We allow each target to determine specifically which kind of splitting is 17743 /// supported. 17744 /// 17745 /// The store patterns are commonly seen from the simple code snippet below 17746 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 17747 /// void goo(const std::pair<int, float> &); 17748 /// hoo() { 17749 /// ... 17750 /// goo(std::make_pair(tmp, ftmp)); 17751 /// ... 17752 /// } 17753 /// 17754 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { 17755 if (OptLevel == CodeGenOpt::None) 17756 return SDValue(); 17757 17758 // Can't change the number of memory accesses for a volatile store or break 17759 // atomicity for an atomic one. 17760 if (!ST->isSimple()) 17761 return SDValue(); 17762 17763 SDValue Val = ST->getValue(); 17764 SDLoc DL(ST); 17765 17766 // Match OR operand. 17767 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) 17768 return SDValue(); 17769 17770 // Match SHL operand and get Lower and Higher parts of Val. 17771 SDValue Op1 = Val.getOperand(0); 17772 SDValue Op2 = Val.getOperand(1); 17773 SDValue Lo, Hi; 17774 if (Op1.getOpcode() != ISD::SHL) { 17775 std::swap(Op1, Op2); 17776 if (Op1.getOpcode() != ISD::SHL) 17777 return SDValue(); 17778 } 17779 Lo = Op2; 17780 Hi = Op1.getOperand(0); 17781 if (!Op1.hasOneUse()) 17782 return SDValue(); 17783 17784 // Match shift amount to HalfValBitSize. 17785 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; 17786 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); 17787 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) 17788 return SDValue(); 17789 17790 // Lo and Hi are zero-extended from int with size less equal than 32 17791 // to i64. 17792 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || 17793 !Lo.getOperand(0).getValueType().isScalarInteger() || 17794 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || 17795 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || 17796 !Hi.getOperand(0).getValueType().isScalarInteger() || 17797 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) 17798 return SDValue(); 17799 17800 // Use the EVT of low and high parts before bitcast as the input 17801 // of target query. 17802 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) 17803 ? Lo.getOperand(0).getValueType() 17804 : Lo.getValueType(); 17805 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) 17806 ? Hi.getOperand(0).getValueType() 17807 : Hi.getValueType(); 17808 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 17809 return SDValue(); 17810 17811 // Start to split store. 17812 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 17813 AAMDNodes AAInfo = ST->getAAInfo(); 17814 17815 // Change the sizes of Lo and Hi's value types to HalfValBitSize. 17816 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); 17817 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); 17818 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); 17819 17820 SDValue Chain = ST->getChain(); 17821 SDValue Ptr = ST->getBasePtr(); 17822 // Lower value store. 17823 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), 17824 ST->getOriginalAlign(), MMOFlags, AAInfo); 17825 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); 17826 // Higher value store. 17827 SDValue St1 = DAG.getStore( 17828 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), 17829 ST->getOriginalAlign(), MMOFlags, AAInfo); 17830 return St1; 17831 } 17832 17833 /// Convert a disguised subvector insertion into a shuffle: 17834 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { 17835 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && 17836 "Expected extract_vector_elt"); 17837 SDValue InsertVal = N->getOperand(1); 17838 SDValue Vec = N->getOperand(0); 17839 17840 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), 17841 // InsIndex) 17842 // --> (vector_shuffle X, Y) and variations where shuffle operands may be 17843 // CONCAT_VECTORS. 17844 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && 17845 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17846 isa<ConstantSDNode>(InsertVal.getOperand(1))) { 17847 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); 17848 ArrayRef<int> Mask = SVN->getMask(); 17849 17850 SDValue X = Vec.getOperand(0); 17851 SDValue Y = Vec.getOperand(1); 17852 17853 // Vec's operand 0 is using indices from 0 to N-1 and 17854 // operand 1 from N to 2N - 1, where N is the number of 17855 // elements in the vectors. 17856 SDValue InsertVal0 = InsertVal.getOperand(0); 17857 int ElementOffset = -1; 17858 17859 // We explore the inputs of the shuffle in order to see if we find the 17860 // source of the extract_vector_elt. If so, we can use it to modify the 17861 // shuffle rather than perform an insert_vector_elt. 17862 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; 17863 ArgWorkList.emplace_back(Mask.size(), Y); 17864 ArgWorkList.emplace_back(0, X); 17865 17866 while (!ArgWorkList.empty()) { 17867 int ArgOffset; 17868 SDValue ArgVal; 17869 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); 17870 17871 if (ArgVal == InsertVal0) { 17872 ElementOffset = ArgOffset; 17873 break; 17874 } 17875 17876 // Peek through concat_vector. 17877 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { 17878 int CurrentArgOffset = 17879 ArgOffset + ArgVal.getValueType().getVectorNumElements(); 17880 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); 17881 for (SDValue Op : reverse(ArgVal->ops())) { 17882 CurrentArgOffset -= Step; 17883 ArgWorkList.emplace_back(CurrentArgOffset, Op); 17884 } 17885 17886 // Make sure we went through all the elements and did not screw up index 17887 // computation. 17888 assert(CurrentArgOffset == ArgOffset); 17889 } 17890 } 17891 17892 if (ElementOffset != -1) { 17893 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); 17894 17895 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); 17896 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); 17897 assert(NewMask[InsIndex] < 17898 (int)(2 * Vec.getValueType().getVectorNumElements()) && 17899 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); 17900 17901 SDValue LegalShuffle = 17902 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, 17903 Y, NewMask, DAG); 17904 if (LegalShuffle) 17905 return LegalShuffle; 17906 } 17907 } 17908 17909 // insert_vector_elt V, (bitcast X from vector type), IdxC --> 17910 // bitcast(shuffle (bitcast V), (extended X), Mask) 17911 // Note: We do not use an insert_subvector node because that requires a 17912 // legal subvector type. 17913 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || 17914 !InsertVal.getOperand(0).getValueType().isVector()) 17915 return SDValue(); 17916 17917 SDValue SubVec = InsertVal.getOperand(0); 17918 SDValue DestVec = N->getOperand(0); 17919 EVT SubVecVT = SubVec.getValueType(); 17920 EVT VT = DestVec.getValueType(); 17921 unsigned NumSrcElts = SubVecVT.getVectorNumElements(); 17922 // If the source only has a single vector element, the cost of creating adding 17923 // it to a vector is likely to exceed the cost of a insert_vector_elt. 17924 if (NumSrcElts == 1) 17925 return SDValue(); 17926 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); 17927 unsigned NumMaskVals = ExtendRatio * NumSrcElts; 17928 17929 // Step 1: Create a shuffle mask that implements this insert operation. The 17930 // vector that we are inserting into will be operand 0 of the shuffle, so 17931 // those elements are just 'i'. The inserted subvector is in the first 17932 // positions of operand 1 of the shuffle. Example: 17933 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} 17934 SmallVector<int, 16> Mask(NumMaskVals); 17935 for (unsigned i = 0; i != NumMaskVals; ++i) { 17936 if (i / NumSrcElts == InsIndex) 17937 Mask[i] = (i % NumSrcElts) + NumMaskVals; 17938 else 17939 Mask[i] = i; 17940 } 17941 17942 // Bail out if the target can not handle the shuffle we want to create. 17943 EVT SubVecEltVT = SubVecVT.getVectorElementType(); 17944 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); 17945 if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) 17946 return SDValue(); 17947 17948 // Step 2: Create a wide vector from the inserted source vector by appending 17949 // undefined elements. This is the same size as our destination vector. 17950 SDLoc DL(N); 17951 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); 17952 ConcatOps[0] = SubVec; 17953 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); 17954 17955 // Step 3: Shuffle in the padded subvector. 17956 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); 17957 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); 17958 AddToWorklist(PaddedSubV.getNode()); 17959 AddToWorklist(DestVecBC.getNode()); 17960 AddToWorklist(Shuf.getNode()); 17961 return DAG.getBitcast(VT, Shuf); 17962 } 17963 17964 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 17965 SDValue InVec = N->getOperand(0); 17966 SDValue InVal = N->getOperand(1); 17967 SDValue EltNo = N->getOperand(2); 17968 SDLoc DL(N); 17969 17970 EVT VT = InVec.getValueType(); 17971 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); 17972 17973 // Insert into out-of-bounds element is undefined. 17974 if (IndexC && VT.isFixedLengthVector() && 17975 IndexC->getZExtValue() >= VT.getVectorNumElements()) 17976 return DAG.getUNDEF(VT); 17977 17978 // Remove redundant insertions: 17979 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x 17980 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 17981 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) 17982 return InVec; 17983 17984 if (!IndexC) { 17985 // If this is variable insert to undef vector, it might be better to splat: 17986 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > 17987 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { 17988 if (VT.isScalableVector()) 17989 return DAG.getSplatVector(VT, DL, InVal); 17990 else { 17991 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); 17992 return DAG.getBuildVector(VT, DL, Ops); 17993 } 17994 } 17995 return SDValue(); 17996 } 17997 17998 if (VT.isScalableVector()) 17999 return SDValue(); 18000 18001 unsigned NumElts = VT.getVectorNumElements(); 18002 18003 // We must know which element is being inserted for folds below here. 18004 unsigned Elt = IndexC->getZExtValue(); 18005 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) 18006 return Shuf; 18007 18008 // Canonicalize insert_vector_elt dag nodes. 18009 // Example: 18010 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 18011 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 18012 // 18013 // Do this only if the child insert_vector node has one use; also 18014 // do this only if indices are both constants and Idx1 < Idx0. 18015 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 18016 && isa<ConstantSDNode>(InVec.getOperand(2))) { 18017 unsigned OtherElt = InVec.getConstantOperandVal(2); 18018 if (Elt < OtherElt) { 18019 // Swap nodes. 18020 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, 18021 InVec.getOperand(0), InVal, EltNo); 18022 AddToWorklist(NewOp.getNode()); 18023 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 18024 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 18025 } 18026 } 18027 18028 // If we can't generate a legal BUILD_VECTOR, exit 18029 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 18030 return SDValue(); 18031 18032 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 18033 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 18034 // vector elements. 18035 SmallVector<SDValue, 8> Ops; 18036 // Do not combine these two vectors if the output vector will not replace 18037 // the input vector. 18038 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 18039 Ops.append(InVec.getNode()->op_begin(), 18040 InVec.getNode()->op_end()); 18041 } else if (InVec.isUndef()) { 18042 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); 18043 } else { 18044 return SDValue(); 18045 } 18046 assert(Ops.size() == NumElts && "Unexpected vector size"); 18047 18048 // Insert the element 18049 if (Elt < Ops.size()) { 18050 // All the operands of BUILD_VECTOR must have the same type; 18051 // we enforce that here. 18052 EVT OpVT = Ops[0].getValueType(); 18053 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; 18054 } 18055 18056 // Return the new vector 18057 return DAG.getBuildVector(VT, DL, Ops); 18058 } 18059 18060 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, 18061 SDValue EltNo, 18062 LoadSDNode *OriginalLoad) { 18063 assert(OriginalLoad->isSimple()); 18064 18065 EVT ResultVT = EVE->getValueType(0); 18066 EVT VecEltVT = InVecVT.getVectorElementType(); 18067 18068 // If the vector element type is not a multiple of a byte then we are unable 18069 // to correctly compute an address to load only the extracted element as a 18070 // scalar. 18071 if (!VecEltVT.isByteSized()) 18072 return SDValue(); 18073 18074 Align Alignment = OriginalLoad->getAlign(); 18075 Align NewAlign = DAG.getDataLayout().getABITypeAlign( 18076 VecEltVT.getTypeForEVT(*DAG.getContext())); 18077 18078 if (NewAlign > Alignment || 18079 !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 18080 return SDValue(); 18081 18082 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? 18083 ISD::NON_EXTLOAD : ISD::EXTLOAD; 18084 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) 18085 return SDValue(); 18086 18087 Alignment = NewAlign; 18088 18089 SDValue NewPtr = OriginalLoad->getBasePtr(); 18090 SDValue Offset; 18091 EVT PtrType = NewPtr.getValueType(); 18092 MachinePointerInfo MPI; 18093 SDLoc DL(EVE); 18094 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 18095 int Elt = ConstEltNo->getZExtValue(); 18096 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 18097 Offset = DAG.getConstant(PtrOff, DL, PtrType); 18098 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 18099 } else { 18100 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 18101 Offset = DAG.getNode( 18102 ISD::MUL, DL, PtrType, Offset, 18103 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 18104 // Discard the pointer info except the address space because the memory 18105 // operand can't represent this new access since the offset is variable. 18106 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); 18107 } 18108 NewPtr = DAG.getMemBasePlusOffset(NewPtr, Offset, DL); 18109 18110 // The replacement we need to do here is a little tricky: we need to 18111 // replace an extractelement of a load with a load. 18112 // Use ReplaceAllUsesOfValuesWith to do the replacement. 18113 // Note that this replacement assumes that the extractvalue is the only 18114 // use of the load; that's okay because we don't want to perform this 18115 // transformation in other cases anyway. 18116 SDValue Load; 18117 SDValue Chain; 18118 if (ResultVT.bitsGT(VecEltVT)) { 18119 // If the result type of vextract is wider than the load, then issue an 18120 // extending load instead. 18121 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 18122 VecEltVT) 18123 ? ISD::ZEXTLOAD 18124 : ISD::EXTLOAD; 18125 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, 18126 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, 18127 Alignment, OriginalLoad->getMemOperand()->getFlags(), 18128 OriginalLoad->getAAInfo()); 18129 Chain = Load.getValue(1); 18130 } else { 18131 Load = DAG.getLoad( 18132 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment, 18133 OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo()); 18134 Chain = Load.getValue(1); 18135 if (ResultVT.bitsLT(VecEltVT)) 18136 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 18137 else 18138 Load = DAG.getBitcast(ResultVT, Load); 18139 } 18140 WorklistRemover DeadNodes(*this); 18141 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 18142 SDValue To[] = { Load, Chain }; 18143 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 18144 // Make sure to revisit this node to clean it up; it will usually be dead. 18145 AddToWorklist(EVE); 18146 // Since we're explicitly calling ReplaceAllUses, add the new node to the 18147 // worklist explicitly as well. 18148 AddToWorklistWithUsers(Load.getNode()); 18149 ++OpsNarrowed; 18150 return SDValue(EVE, 0); 18151 } 18152 18153 /// Transform a vector binary operation into a scalar binary operation by moving 18154 /// the math/logic after an extract element of a vector. 18155 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, 18156 bool LegalOperations) { 18157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18158 SDValue Vec = ExtElt->getOperand(0); 18159 SDValue Index = ExtElt->getOperand(1); 18160 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18161 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || 18162 Vec.getNode()->getNumValues() != 1) 18163 return SDValue(); 18164 18165 // Targets may want to avoid this to prevent an expensive register transfer. 18166 if (!TLI.shouldScalarizeBinop(Vec)) 18167 return SDValue(); 18168 18169 // Extracting an element of a vector constant is constant-folded, so this 18170 // transform is just replacing a vector op with a scalar op while moving the 18171 // extract. 18172 SDValue Op0 = Vec.getOperand(0); 18173 SDValue Op1 = Vec.getOperand(1); 18174 if (isAnyConstantBuildVector(Op0, true) || 18175 isAnyConstantBuildVector(Op1, true)) { 18176 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' 18177 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) 18178 SDLoc DL(ExtElt); 18179 EVT VT = ExtElt->getValueType(0); 18180 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); 18181 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); 18182 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); 18183 } 18184 18185 return SDValue(); 18186 } 18187 18188 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 18189 SDValue VecOp = N->getOperand(0); 18190 SDValue Index = N->getOperand(1); 18191 EVT ScalarVT = N->getValueType(0); 18192 EVT VecVT = VecOp.getValueType(); 18193 if (VecOp.isUndef()) 18194 return DAG.getUNDEF(ScalarVT); 18195 18196 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 18197 // 18198 // This only really matters if the index is non-constant since other combines 18199 // on the constant elements already work. 18200 SDLoc DL(N); 18201 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && 18202 Index == VecOp.getOperand(2)) { 18203 SDValue Elt = VecOp.getOperand(1); 18204 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; 18205 } 18206 18207 // (vextract (scalar_to_vector val, 0) -> val 18208 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { 18209 // Only 0'th element of SCALAR_TO_VECTOR is defined. 18210 if (DAG.isKnownNeverZero(Index)) 18211 return DAG.getUNDEF(ScalarVT); 18212 18213 // Check if the result type doesn't match the inserted element type. A 18214 // SCALAR_TO_VECTOR may truncate the inserted element and the 18215 // EXTRACT_VECTOR_ELT may widen the extracted vector. 18216 SDValue InOp = VecOp.getOperand(0); 18217 if (InOp.getValueType() != ScalarVT) { 18218 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 18219 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 18220 } 18221 return InOp; 18222 } 18223 18224 // extract_vector_elt of out-of-bounds element -> UNDEF 18225 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 18226 if (IndexC && VecVT.isFixedLengthVector() && 18227 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) 18228 return DAG.getUNDEF(ScalarVT); 18229 18230 // extract_vector_elt (build_vector x, y), 1 -> y 18231 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || 18232 VecOp.getOpcode() == ISD::SPLAT_VECTOR) && 18233 TLI.isTypeLegal(VecVT) && 18234 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { 18235 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || 18236 VecVT.isFixedLengthVector()) && 18237 "BUILD_VECTOR used for scalable vectors"); 18238 unsigned IndexVal = 18239 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; 18240 SDValue Elt = VecOp.getOperand(IndexVal); 18241 EVT InEltVT = Elt.getValueType(); 18242 18243 // Sometimes build_vector's scalar input types do not match result type. 18244 if (ScalarVT == InEltVT) 18245 return Elt; 18246 18247 // TODO: It may be useful to truncate if free if the build_vector implicitly 18248 // converts. 18249 } 18250 18251 if (VecVT.isScalableVector()) 18252 return SDValue(); 18253 18254 // All the code from this point onwards assumes fixed width vectors, but it's 18255 // possible that some of the combinations could be made to work for scalable 18256 // vectors too. 18257 unsigned NumElts = VecVT.getVectorNumElements(); 18258 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); 18259 18260 // TODO: These transforms should not require the 'hasOneUse' restriction, but 18261 // there are regressions on multiple targets without it. We can end up with a 18262 // mess of scalar and vector code if we reduce only part of the DAG to scalar. 18263 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && 18264 VecOp.hasOneUse()) { 18265 // The vector index of the LSBs of the source depend on the endian-ness. 18266 bool IsLE = DAG.getDataLayout().isLittleEndian(); 18267 unsigned ExtractIndex = IndexC->getZExtValue(); 18268 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) 18269 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; 18270 SDValue BCSrc = VecOp.getOperand(0); 18271 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) 18272 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); 18273 18274 if (LegalTypes && BCSrc.getValueType().isInteger() && 18275 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { 18276 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> 18277 // trunc i64 X to i32 18278 SDValue X = BCSrc.getOperand(0); 18279 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && 18280 "Extract element and scalar to vector can't change element type " 18281 "from FP to integer."); 18282 unsigned XBitWidth = X.getValueSizeInBits(); 18283 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; 18284 18285 // An extract element return value type can be wider than its vector 18286 // operand element type. In that case, the high bits are undefined, so 18287 // it's possible that we may need to extend rather than truncate. 18288 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { 18289 assert(XBitWidth % VecEltBitWidth == 0 && 18290 "Scalar bitwidth must be a multiple of vector element bitwidth"); 18291 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); 18292 } 18293 } 18294 } 18295 18296 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) 18297 return BO; 18298 18299 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 18300 // We only perform this optimization before the op legalization phase because 18301 // we may introduce new vector instructions which are not backed by TD 18302 // patterns. For example on AVX, extracting elements from a wide vector 18303 // without using extract_subvector. However, if we can find an underlying 18304 // scalar value, then we can always use that. 18305 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { 18306 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); 18307 // Find the new index to extract from. 18308 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); 18309 18310 // Extracting an undef index is undef. 18311 if (OrigElt == -1) 18312 return DAG.getUNDEF(ScalarVT); 18313 18314 // Select the right vector half to extract from. 18315 SDValue SVInVec; 18316 if (OrigElt < (int)NumElts) { 18317 SVInVec = VecOp.getOperand(0); 18318 } else { 18319 SVInVec = VecOp.getOperand(1); 18320 OrigElt -= NumElts; 18321 } 18322 18323 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 18324 SDValue InOp = SVInVec.getOperand(OrigElt); 18325 if (InOp.getValueType() != ScalarVT) { 18326 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); 18327 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); 18328 } 18329 18330 return InOp; 18331 } 18332 18333 // FIXME: We should handle recursing on other vector shuffles and 18334 // scalar_to_vector here as well. 18335 18336 if (!LegalOperations || 18337 // FIXME: Should really be just isOperationLegalOrCustom. 18338 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || 18339 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { 18340 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, 18341 DAG.getVectorIdxConstant(OrigElt, DL)); 18342 } 18343 } 18344 18345 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can 18346 // simplify it based on the (valid) extraction indices. 18347 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { 18348 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 18349 Use->getOperand(0) == VecOp && 18350 isa<ConstantSDNode>(Use->getOperand(1)); 18351 })) { 18352 APInt DemandedElts = APInt::getNullValue(NumElts); 18353 for (SDNode *Use : VecOp->uses()) { 18354 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); 18355 if (CstElt->getAPIntValue().ult(NumElts)) 18356 DemandedElts.setBit(CstElt->getZExtValue()); 18357 } 18358 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { 18359 // We simplified the vector operand of this extract element. If this 18360 // extract is not dead, visit it again so it is folded properly. 18361 if (N->getOpcode() != ISD::DELETED_NODE) 18362 AddToWorklist(N); 18363 return SDValue(N, 0); 18364 } 18365 APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth); 18366 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { 18367 // We simplified the vector operand of this extract element. If this 18368 // extract is not dead, visit it again so it is folded properly. 18369 if (N->getOpcode() != ISD::DELETED_NODE) 18370 AddToWorklist(N); 18371 return SDValue(N, 0); 18372 } 18373 } 18374 18375 // Everything under here is trying to match an extract of a loaded value. 18376 // If the result of load has to be truncated, then it's not necessarily 18377 // profitable. 18378 bool BCNumEltsChanged = false; 18379 EVT ExtVT = VecVT.getVectorElementType(); 18380 EVT LVT = ExtVT; 18381 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) 18382 return SDValue(); 18383 18384 if (VecOp.getOpcode() == ISD::BITCAST) { 18385 // Don't duplicate a load with other uses. 18386 if (!VecOp.hasOneUse()) 18387 return SDValue(); 18388 18389 EVT BCVT = VecOp.getOperand(0).getValueType(); 18390 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 18391 return SDValue(); 18392 if (NumElts != BCVT.getVectorNumElements()) 18393 BCNumEltsChanged = true; 18394 VecOp = VecOp.getOperand(0); 18395 ExtVT = BCVT.getVectorElementType(); 18396 } 18397 18398 // extract (vector load $addr), i --> load $addr + i * size 18399 if (!LegalOperations && !IndexC && VecOp.hasOneUse() && 18400 ISD::isNormalLoad(VecOp.getNode()) && 18401 !Index->hasPredecessor(VecOp.getNode())) { 18402 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); 18403 if (VecLoad && VecLoad->isSimple()) 18404 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); 18405 } 18406 18407 // Perform only after legalization to ensure build_vector / vector_shuffle 18408 // optimizations have already been done. 18409 if (!LegalOperations || !IndexC) 18410 return SDValue(); 18411 18412 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 18413 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 18414 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 18415 int Elt = IndexC->getZExtValue(); 18416 LoadSDNode *LN0 = nullptr; 18417 if (ISD::isNormalLoad(VecOp.getNode())) { 18418 LN0 = cast<LoadSDNode>(VecOp); 18419 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 18420 VecOp.getOperand(0).getValueType() == ExtVT && 18421 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { 18422 // Don't duplicate a load with other uses. 18423 if (!VecOp.hasOneUse()) 18424 return SDValue(); 18425 18426 LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); 18427 } 18428 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { 18429 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 18430 // => 18431 // (load $addr+1*size) 18432 18433 // Don't duplicate a load with other uses. 18434 if (!VecOp.hasOneUse()) 18435 return SDValue(); 18436 18437 // If the bit convert changed the number of elements, it is unsafe 18438 // to examine the mask. 18439 if (BCNumEltsChanged) 18440 return SDValue(); 18441 18442 // Select the input vector, guarding against out of range extract vector. 18443 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); 18444 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); 18445 18446 if (VecOp.getOpcode() == ISD::BITCAST) { 18447 // Don't duplicate a load with other uses. 18448 if (!VecOp.hasOneUse()) 18449 return SDValue(); 18450 18451 VecOp = VecOp.getOperand(0); 18452 } 18453 if (ISD::isNormalLoad(VecOp.getNode())) { 18454 LN0 = cast<LoadSDNode>(VecOp); 18455 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; 18456 Index = DAG.getConstant(Elt, DL, Index.getValueType()); 18457 } 18458 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && 18459 VecVT.getVectorElementType() == ScalarVT && 18460 (!LegalTypes || 18461 TLI.isTypeLegal( 18462 VecOp.getOperand(0).getValueType().getVectorElementType()))) { 18463 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 18464 // -> extract_vector_elt a, 0 18465 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 18466 // -> extract_vector_elt a, 1 18467 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 18468 // -> extract_vector_elt b, 0 18469 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 18470 // -> extract_vector_elt b, 1 18471 SDLoc SL(N); 18472 EVT ConcatVT = VecOp.getOperand(0).getValueType(); 18473 unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); 18474 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, 18475 Index.getValueType()); 18476 18477 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); 18478 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, 18479 ConcatVT.getVectorElementType(), 18480 ConcatOp, NewIdx); 18481 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); 18482 } 18483 18484 // Make sure we found a non-volatile load and the extractelement is 18485 // the only use. 18486 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) 18487 return SDValue(); 18488 18489 // If Idx was -1 above, Elt is going to be -1, so just return undef. 18490 if (Elt == -1) 18491 return DAG.getUNDEF(LVT); 18492 18493 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); 18494 } 18495 18496 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 18497 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 18498 // We perform this optimization post type-legalization because 18499 // the type-legalizer often scalarizes integer-promoted vectors. 18500 // Performing this optimization before may create bit-casts which 18501 // will be type-legalized to complex code sequences. 18502 // We perform this optimization only before the operation legalizer because we 18503 // may introduce illegal operations. 18504 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 18505 return SDValue(); 18506 18507 unsigned NumInScalars = N->getNumOperands(); 18508 SDLoc DL(N); 18509 EVT VT = N->getValueType(0); 18510 18511 // Check to see if this is a BUILD_VECTOR of a bunch of values 18512 // which come from any_extend or zero_extend nodes. If so, we can create 18513 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 18514 // optimizations. We do not handle sign-extend because we can't fill the sign 18515 // using shuffles. 18516 EVT SourceType = MVT::Other; 18517 bool AllAnyExt = true; 18518 18519 for (unsigned i = 0; i != NumInScalars; ++i) { 18520 SDValue In = N->getOperand(i); 18521 // Ignore undef inputs. 18522 if (In.isUndef()) continue; 18523 18524 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 18525 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 18526 18527 // Abort if the element is not an extension. 18528 if (!ZeroExt && !AnyExt) { 18529 SourceType = MVT::Other; 18530 break; 18531 } 18532 18533 // The input is a ZeroExt or AnyExt. Check the original type. 18534 EVT InTy = In.getOperand(0).getValueType(); 18535 18536 // Check that all of the widened source types are the same. 18537 if (SourceType == MVT::Other) 18538 // First time. 18539 SourceType = InTy; 18540 else if (InTy != SourceType) { 18541 // Multiple income types. Abort. 18542 SourceType = MVT::Other; 18543 break; 18544 } 18545 18546 // Check if all of the extends are ANY_EXTENDs. 18547 AllAnyExt &= AnyExt; 18548 } 18549 18550 // In order to have valid types, all of the inputs must be extended from the 18551 // same source type and all of the inputs must be any or zero extend. 18552 // Scalar sizes must be a power of two. 18553 EVT OutScalarTy = VT.getScalarType(); 18554 bool ValidTypes = SourceType != MVT::Other && 18555 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 18556 isPowerOf2_32(SourceType.getSizeInBits()); 18557 18558 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 18559 // turn into a single shuffle instruction. 18560 if (!ValidTypes) 18561 return SDValue(); 18562 18563 // If we already have a splat buildvector, then don't fold it if it means 18564 // introducing zeros. 18565 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) 18566 return SDValue(); 18567 18568 bool isLE = DAG.getDataLayout().isLittleEndian(); 18569 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 18570 assert(ElemRatio > 1 && "Invalid element size ratio"); 18571 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 18572 DAG.getConstant(0, DL, SourceType); 18573 18574 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 18575 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 18576 18577 // Populate the new build_vector 18578 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 18579 SDValue Cast = N->getOperand(i); 18580 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 18581 Cast.getOpcode() == ISD::ZERO_EXTEND || 18582 Cast.isUndef()) && "Invalid cast opcode"); 18583 SDValue In; 18584 if (Cast.isUndef()) 18585 In = DAG.getUNDEF(SourceType); 18586 else 18587 In = Cast->getOperand(0); 18588 unsigned Index = isLE ? (i * ElemRatio) : 18589 (i * ElemRatio + (ElemRatio - 1)); 18590 18591 assert(Index < Ops.size() && "Invalid index"); 18592 Ops[Index] = In; 18593 } 18594 18595 // The type of the new BUILD_VECTOR node. 18596 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 18597 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 18598 "Invalid vector size"); 18599 // Check if the new vector type is legal. 18600 if (!isTypeLegal(VecVT) || 18601 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && 18602 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) 18603 return SDValue(); 18604 18605 // Make the new BUILD_VECTOR. 18606 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); 18607 18608 // The new BUILD_VECTOR node has the potential to be further optimized. 18609 AddToWorklist(BV.getNode()); 18610 // Bitcast to the desired type. 18611 return DAG.getBitcast(VT, BV); 18612 } 18613 18614 // Simplify (build_vec (trunc $1) 18615 // (trunc (srl $1 half-width)) 18616 // (trunc (srl $1 (2 * half-width))) …) 18617 // to (bitcast $1) 18618 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { 18619 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 18620 18621 // Only for little endian 18622 if (!DAG.getDataLayout().isLittleEndian()) 18623 return SDValue(); 18624 18625 SDLoc DL(N); 18626 EVT VT = N->getValueType(0); 18627 EVT OutScalarTy = VT.getScalarType(); 18628 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); 18629 18630 // Only for power of two types to be sure that bitcast works well 18631 if (!isPowerOf2_64(ScalarTypeBitsize)) 18632 return SDValue(); 18633 18634 unsigned NumInScalars = N->getNumOperands(); 18635 18636 // Look through bitcasts 18637 auto PeekThroughBitcast = [](SDValue Op) { 18638 if (Op.getOpcode() == ISD::BITCAST) 18639 return Op.getOperand(0); 18640 return Op; 18641 }; 18642 18643 // The source value where all the parts are extracted. 18644 SDValue Src; 18645 for (unsigned i = 0; i != NumInScalars; ++i) { 18646 SDValue In = PeekThroughBitcast(N->getOperand(i)); 18647 // Ignore undef inputs. 18648 if (In.isUndef()) continue; 18649 18650 if (In.getOpcode() != ISD::TRUNCATE) 18651 return SDValue(); 18652 18653 In = PeekThroughBitcast(In.getOperand(0)); 18654 18655 if (In.getOpcode() != ISD::SRL) { 18656 // For now only build_vec without shuffling, handle shifts here in the 18657 // future. 18658 if (i != 0) 18659 return SDValue(); 18660 18661 Src = In; 18662 } else { 18663 // In is SRL 18664 SDValue part = PeekThroughBitcast(In.getOperand(0)); 18665 18666 if (!Src) { 18667 Src = part; 18668 } else if (Src != part) { 18669 // Vector parts do not stem from the same variable 18670 return SDValue(); 18671 } 18672 18673 SDValue ShiftAmtVal = In.getOperand(1); 18674 if (!isa<ConstantSDNode>(ShiftAmtVal)) 18675 return SDValue(); 18676 18677 uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); 18678 18679 // The extracted value is not extracted at the right position 18680 if (ShiftAmt != i * ScalarTypeBitsize) 18681 return SDValue(); 18682 } 18683 } 18684 18685 // Only cast if the size is the same 18686 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) 18687 return SDValue(); 18688 18689 return DAG.getBitcast(VT, Src); 18690 } 18691 18692 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, 18693 ArrayRef<int> VectorMask, 18694 SDValue VecIn1, SDValue VecIn2, 18695 unsigned LeftIdx, bool DidSplitVec) { 18696 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 18697 18698 EVT VT = N->getValueType(0); 18699 EVT InVT1 = VecIn1.getValueType(); 18700 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; 18701 18702 unsigned NumElems = VT.getVectorNumElements(); 18703 unsigned ShuffleNumElems = NumElems; 18704 18705 // If we artificially split a vector in two already, then the offsets in the 18706 // operands will all be based off of VecIn1, even those in VecIn2. 18707 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); 18708 18709 uint64_t VTSize = VT.getFixedSizeInBits(); 18710 uint64_t InVT1Size = InVT1.getFixedSizeInBits(); 18711 uint64_t InVT2Size = InVT2.getFixedSizeInBits(); 18712 18713 // We can't generate a shuffle node with mismatched input and output types. 18714 // Try to make the types match the type of the output. 18715 if (InVT1 != VT || InVT2 != VT) { 18716 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { 18717 // If the output vector length is a multiple of both input lengths, 18718 // we can concatenate them and pad the rest with undefs. 18719 unsigned NumConcats = VTSize / InVT1Size; 18720 assert(NumConcats >= 2 && "Concat needs at least two inputs!"); 18721 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); 18722 ConcatOps[0] = VecIn1; 18723 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); 18724 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 18725 VecIn2 = SDValue(); 18726 } else if (InVT1Size == VTSize * 2) { 18727 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) 18728 return SDValue(); 18729 18730 if (!VecIn2.getNode()) { 18731 // If we only have one input vector, and it's twice the size of the 18732 // output, split it in two. 18733 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, 18734 DAG.getVectorIdxConstant(NumElems, DL)); 18735 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); 18736 // Since we now have shorter input vectors, adjust the offset of the 18737 // second vector's start. 18738 Vec2Offset = NumElems; 18739 } else if (InVT2Size <= InVT1Size) { 18740 // VecIn1 is wider than the output, and we have another, possibly 18741 // smaller input. Pad the smaller input with undefs, shuffle at the 18742 // input vector width, and extract the output. 18743 // The shuffle type is different than VT, so check legality again. 18744 if (LegalOperations && 18745 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) 18746 return SDValue(); 18747 18748 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to 18749 // lower it back into a BUILD_VECTOR. So if the inserted type is 18750 // illegal, don't even try. 18751 if (InVT1 != InVT2) { 18752 if (!TLI.isTypeLegal(InVT2)) 18753 return SDValue(); 18754 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, 18755 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); 18756 } 18757 ShuffleNumElems = NumElems * 2; 18758 } else { 18759 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider 18760 // than VecIn1. We can't handle this for now - this case will disappear 18761 // when we start sorting the vectors by type. 18762 return SDValue(); 18763 } 18764 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { 18765 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); 18766 ConcatOps[0] = VecIn2; 18767 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 18768 } else { 18769 // TODO: Support cases where the length mismatch isn't exactly by a 18770 // factor of 2. 18771 // TODO: Move this check upwards, so that if we have bad type 18772 // mismatches, we don't create any DAG nodes. 18773 return SDValue(); 18774 } 18775 } 18776 18777 // Initialize mask to undef. 18778 SmallVector<int, 8> Mask(ShuffleNumElems, -1); 18779 18780 // Only need to run up to the number of elements actually used, not the 18781 // total number of elements in the shuffle - if we are shuffling a wider 18782 // vector, the high lanes should be set to undef. 18783 for (unsigned i = 0; i != NumElems; ++i) { 18784 if (VectorMask[i] <= 0) 18785 continue; 18786 18787 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); 18788 if (VectorMask[i] == (int)LeftIdx) { 18789 Mask[i] = ExtIndex; 18790 } else if (VectorMask[i] == (int)LeftIdx + 1) { 18791 Mask[i] = Vec2Offset + ExtIndex; 18792 } 18793 } 18794 18795 // The type the input vectors may have changed above. 18796 InVT1 = VecIn1.getValueType(); 18797 18798 // If we already have a VecIn2, it should have the same type as VecIn1. 18799 // If we don't, get an undef/zero vector of the appropriate type. 18800 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); 18801 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); 18802 18803 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); 18804 if (ShuffleNumElems > NumElems) 18805 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); 18806 18807 return Shuffle; 18808 } 18809 18810 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { 18811 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); 18812 18813 // First, determine where the build vector is not undef. 18814 // TODO: We could extend this to handle zero elements as well as undefs. 18815 int NumBVOps = BV->getNumOperands(); 18816 int ZextElt = -1; 18817 for (int i = 0; i != NumBVOps; ++i) { 18818 SDValue Op = BV->getOperand(i); 18819 if (Op.isUndef()) 18820 continue; 18821 if (ZextElt == -1) 18822 ZextElt = i; 18823 else 18824 return SDValue(); 18825 } 18826 // Bail out if there's no non-undef element. 18827 if (ZextElt == -1) 18828 return SDValue(); 18829 18830 // The build vector contains some number of undef elements and exactly 18831 // one other element. That other element must be a zero-extended scalar 18832 // extracted from a vector at a constant index to turn this into a shuffle. 18833 // Also, require that the build vector does not implicitly truncate/extend 18834 // its elements. 18835 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. 18836 EVT VT = BV->getValueType(0); 18837 SDValue Zext = BV->getOperand(ZextElt); 18838 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || 18839 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 18840 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || 18841 Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) 18842 return SDValue(); 18843 18844 // The zero-extend must be a multiple of the source size, and we must be 18845 // building a vector of the same size as the source of the extract element. 18846 SDValue Extract = Zext.getOperand(0); 18847 unsigned DestSize = Zext.getValueSizeInBits(); 18848 unsigned SrcSize = Extract.getValueSizeInBits(); 18849 if (DestSize % SrcSize != 0 || 18850 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) 18851 return SDValue(); 18852 18853 // Create a shuffle mask that will combine the extracted element with zeros 18854 // and undefs. 18855 int ZextRatio = DestSize / SrcSize; 18856 int NumMaskElts = NumBVOps * ZextRatio; 18857 SmallVector<int, 32> ShufMask(NumMaskElts, -1); 18858 for (int i = 0; i != NumMaskElts; ++i) { 18859 if (i / ZextRatio == ZextElt) { 18860 // The low bits of the (potentially translated) extracted element map to 18861 // the source vector. The high bits map to zero. We will use a zero vector 18862 // as the 2nd source operand of the shuffle, so use the 1st element of 18863 // that vector (mask value is number-of-elements) for the high bits. 18864 if (i % ZextRatio == 0) 18865 ShufMask[i] = Extract.getConstantOperandVal(1); 18866 else 18867 ShufMask[i] = NumMaskElts; 18868 } 18869 18870 // Undef elements of the build vector remain undef because we initialize 18871 // the shuffle mask with -1. 18872 } 18873 18874 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> 18875 // bitcast (shuffle V, ZeroVec, VectorMask) 18876 SDLoc DL(BV); 18877 EVT VecVT = Extract.getOperand(0).getValueType(); 18878 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); 18879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18880 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), 18881 ZeroVec, ShufMask, DAG); 18882 if (!Shuf) 18883 return SDValue(); 18884 return DAG.getBitcast(VT, Shuf); 18885 } 18886 18887 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 18888 // operations. If the types of the vectors we're extracting from allow it, 18889 // turn this into a vector_shuffle node. 18890 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { 18891 SDLoc DL(N); 18892 EVT VT = N->getValueType(0); 18893 18894 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 18895 if (!isTypeLegal(VT)) 18896 return SDValue(); 18897 18898 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) 18899 return V; 18900 18901 // May only combine to shuffle after legalize if shuffle is legal. 18902 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 18903 return SDValue(); 18904 18905 bool UsesZeroVector = false; 18906 unsigned NumElems = N->getNumOperands(); 18907 18908 // Record, for each element of the newly built vector, which input vector 18909 // that element comes from. -1 stands for undef, 0 for the zero vector, 18910 // and positive values for the input vectors. 18911 // VectorMask maps each element to its vector number, and VecIn maps vector 18912 // numbers to their initial SDValues. 18913 18914 SmallVector<int, 8> VectorMask(NumElems, -1); 18915 SmallVector<SDValue, 8> VecIn; 18916 VecIn.push_back(SDValue()); 18917 18918 for (unsigned i = 0; i != NumElems; ++i) { 18919 SDValue Op = N->getOperand(i); 18920 18921 if (Op.isUndef()) 18922 continue; 18923 18924 // See if we can use a blend with a zero vector. 18925 // TODO: Should we generalize this to a blend with an arbitrary constant 18926 // vector? 18927 if (isNullConstant(Op) || isNullFPConstant(Op)) { 18928 UsesZeroVector = true; 18929 VectorMask[i] = 0; 18930 continue; 18931 } 18932 18933 // Not an undef or zero. If the input is something other than an 18934 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. 18935 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 18936 !isa<ConstantSDNode>(Op.getOperand(1))) 18937 return SDValue(); 18938 SDValue ExtractedFromVec = Op.getOperand(0); 18939 18940 if (ExtractedFromVec.getValueType().isScalableVector()) 18941 return SDValue(); 18942 18943 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); 18944 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) 18945 return SDValue(); 18946 18947 // All inputs must have the same element type as the output. 18948 if (VT.getVectorElementType() != 18949 ExtractedFromVec.getValueType().getVectorElementType()) 18950 return SDValue(); 18951 18952 // Have we seen this input vector before? 18953 // The vectors are expected to be tiny (usually 1 or 2 elements), so using 18954 // a map back from SDValues to numbers isn't worth it. 18955 unsigned Idx = std::distance( 18956 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); 18957 if (Idx == VecIn.size()) 18958 VecIn.push_back(ExtractedFromVec); 18959 18960 VectorMask[i] = Idx; 18961 } 18962 18963 // If we didn't find at least one input vector, bail out. 18964 if (VecIn.size() < 2) 18965 return SDValue(); 18966 18967 // If all the Operands of BUILD_VECTOR extract from same 18968 // vector, then split the vector efficiently based on the maximum 18969 // vector access index and adjust the VectorMask and 18970 // VecIn accordingly. 18971 bool DidSplitVec = false; 18972 if (VecIn.size() == 2) { 18973 unsigned MaxIndex = 0; 18974 unsigned NearestPow2 = 0; 18975 SDValue Vec = VecIn.back(); 18976 EVT InVT = Vec.getValueType(); 18977 SmallVector<unsigned, 8> IndexVec(NumElems, 0); 18978 18979 for (unsigned i = 0; i < NumElems; i++) { 18980 if (VectorMask[i] <= 0) 18981 continue; 18982 unsigned Index = N->getOperand(i).getConstantOperandVal(1); 18983 IndexVec[i] = Index; 18984 MaxIndex = std::max(MaxIndex, Index); 18985 } 18986 18987 NearestPow2 = PowerOf2Ceil(MaxIndex); 18988 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && 18989 NumElems * 2 < NearestPow2) { 18990 unsigned SplitSize = NearestPow2 / 2; 18991 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), 18992 InVT.getVectorElementType(), SplitSize); 18993 if (TLI.isTypeLegal(SplitVT)) { 18994 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 18995 DAG.getVectorIdxConstant(SplitSize, DL)); 18996 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, 18997 DAG.getVectorIdxConstant(0, DL)); 18998 VecIn.pop_back(); 18999 VecIn.push_back(VecIn1); 19000 VecIn.push_back(VecIn2); 19001 DidSplitVec = true; 19002 19003 for (unsigned i = 0; i < NumElems; i++) { 19004 if (VectorMask[i] <= 0) 19005 continue; 19006 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; 19007 } 19008 } 19009 } 19010 } 19011 19012 // TODO: We want to sort the vectors by descending length, so that adjacent 19013 // pairs have similar length, and the longer vector is always first in the 19014 // pair. 19015 19016 // TODO: Should this fire if some of the input vectors has illegal type (like 19017 // it does now), or should we let legalization run its course first? 19018 19019 // Shuffle phase: 19020 // Take pairs of vectors, and shuffle them so that the result has elements 19021 // from these vectors in the correct places. 19022 // For example, given: 19023 // t10: i32 = extract_vector_elt t1, Constant:i64<0> 19024 // t11: i32 = extract_vector_elt t2, Constant:i64<0> 19025 // t12: i32 = extract_vector_elt t3, Constant:i64<0> 19026 // t13: i32 = extract_vector_elt t1, Constant:i64<1> 19027 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 19028 // We will generate: 19029 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 19030 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef 19031 SmallVector<SDValue, 4> Shuffles; 19032 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { 19033 unsigned LeftIdx = 2 * In + 1; 19034 SDValue VecLeft = VecIn[LeftIdx]; 19035 SDValue VecRight = 19036 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); 19037 19038 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, 19039 VecRight, LeftIdx, DidSplitVec)) 19040 Shuffles.push_back(Shuffle); 19041 else 19042 return SDValue(); 19043 } 19044 19045 // If we need the zero vector as an "ingredient" in the blend tree, add it 19046 // to the list of shuffles. 19047 if (UsesZeroVector) 19048 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) 19049 : DAG.getConstantFP(0.0, DL, VT)); 19050 19051 // If we only have one shuffle, we're done. 19052 if (Shuffles.size() == 1) 19053 return Shuffles[0]; 19054 19055 // Update the vector mask to point to the post-shuffle vectors. 19056 for (int &Vec : VectorMask) 19057 if (Vec == 0) 19058 Vec = Shuffles.size() - 1; 19059 else 19060 Vec = (Vec - 1) / 2; 19061 19062 // More than one shuffle. Generate a binary tree of blends, e.g. if from 19063 // the previous step we got the set of shuffles t10, t11, t12, t13, we will 19064 // generate: 19065 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 19066 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 19067 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 19068 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 19069 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 19070 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 19071 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 19072 19073 // Make sure the initial size of the shuffle list is even. 19074 if (Shuffles.size() % 2) 19075 Shuffles.push_back(DAG.getUNDEF(VT)); 19076 19077 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { 19078 if (CurSize % 2) { 19079 Shuffles[CurSize] = DAG.getUNDEF(VT); 19080 CurSize++; 19081 } 19082 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { 19083 int Left = 2 * In; 19084 int Right = 2 * In + 1; 19085 SmallVector<int, 8> Mask(NumElems, -1); 19086 for (unsigned i = 0; i != NumElems; ++i) { 19087 if (VectorMask[i] == Left) { 19088 Mask[i] = i; 19089 VectorMask[i] = In; 19090 } else if (VectorMask[i] == Right) { 19091 Mask[i] = i + NumElems; 19092 VectorMask[i] = In; 19093 } 19094 } 19095 19096 Shuffles[In] = 19097 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); 19098 } 19099 } 19100 return Shuffles[0]; 19101 } 19102 19103 // Try to turn a build vector of zero extends of extract vector elts into a 19104 // a vector zero extend and possibly an extract subvector. 19105 // TODO: Support sign extend? 19106 // TODO: Allow undef elements? 19107 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { 19108 if (LegalOperations) 19109 return SDValue(); 19110 19111 EVT VT = N->getValueType(0); 19112 19113 bool FoundZeroExtend = false; 19114 SDValue Op0 = N->getOperand(0); 19115 auto checkElem = [&](SDValue Op) -> int64_t { 19116 unsigned Opc = Op.getOpcode(); 19117 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); 19118 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && 19119 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 19120 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) 19121 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) 19122 return C->getZExtValue(); 19123 return -1; 19124 }; 19125 19126 // Make sure the first element matches 19127 // (zext (extract_vector_elt X, C)) 19128 int64_t Offset = checkElem(Op0); 19129 if (Offset < 0) 19130 return SDValue(); 19131 19132 unsigned NumElems = N->getNumOperands(); 19133 SDValue In = Op0.getOperand(0).getOperand(0); 19134 EVT InSVT = In.getValueType().getScalarType(); 19135 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); 19136 19137 // Don't create an illegal input type after type legalization. 19138 if (LegalTypes && !TLI.isTypeLegal(InVT)) 19139 return SDValue(); 19140 19141 // Ensure all the elements come from the same vector and are adjacent. 19142 for (unsigned i = 1; i != NumElems; ++i) { 19143 if ((Offset + i) != checkElem(N->getOperand(i))) 19144 return SDValue(); 19145 } 19146 19147 SDLoc DL(N); 19148 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, 19149 Op0.getOperand(0).getOperand(1)); 19150 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, 19151 VT, In); 19152 } 19153 19154 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 19155 EVT VT = N->getValueType(0); 19156 19157 // A vector built entirely of undefs is undef. 19158 if (ISD::allOperandsUndef(N)) 19159 return DAG.getUNDEF(VT); 19160 19161 // If this is a splat of a bitcast from another vector, change to a 19162 // concat_vector. 19163 // For example: 19164 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> 19165 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) 19166 // 19167 // If X is a build_vector itself, the concat can become a larger build_vector. 19168 // TODO: Maybe this is useful for non-splat too? 19169 if (!LegalOperations) { 19170 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { 19171 Splat = peekThroughBitcasts(Splat); 19172 EVT SrcVT = Splat.getValueType(); 19173 if (SrcVT.isVector()) { 19174 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); 19175 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), 19176 SrcVT.getVectorElementType(), NumElts); 19177 if (!LegalTypes || TLI.isTypeLegal(NewVT)) { 19178 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); 19179 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), 19180 NewVT, Ops); 19181 return DAG.getBitcast(VT, Concat); 19182 } 19183 } 19184 } 19185 } 19186 19187 // A splat of a single element is a SPLAT_VECTOR if supported on the target. 19188 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) 19189 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { 19190 assert(!V.isUndef() && "Splat of undef should have been handled earlier"); 19191 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); 19192 } 19193 19194 // Check if we can express BUILD VECTOR via subvector extract. 19195 if (!LegalTypes && (N->getNumOperands() > 1)) { 19196 SDValue Op0 = N->getOperand(0); 19197 auto checkElem = [&](SDValue Op) -> uint64_t { 19198 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && 19199 (Op0.getOperand(0) == Op.getOperand(0))) 19200 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 19201 return CNode->getZExtValue(); 19202 return -1; 19203 }; 19204 19205 int Offset = checkElem(Op0); 19206 for (unsigned i = 0; i < N->getNumOperands(); ++i) { 19207 if (Offset + i != checkElem(N->getOperand(i))) { 19208 Offset = -1; 19209 break; 19210 } 19211 } 19212 19213 if ((Offset == 0) && 19214 (Op0.getOperand(0).getValueType() == N->getValueType(0))) 19215 return Op0.getOperand(0); 19216 if ((Offset != -1) && 19217 ((Offset % N->getValueType(0).getVectorNumElements()) == 19218 0)) // IDX must be multiple of output size. 19219 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), 19220 Op0.getOperand(0), Op0.getOperand(1)); 19221 } 19222 19223 if (SDValue V = convertBuildVecZextToZext(N)) 19224 return V; 19225 19226 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 19227 return V; 19228 19229 if (SDValue V = reduceBuildVecTruncToBitCast(N)) 19230 return V; 19231 19232 if (SDValue V = reduceBuildVecToShuffle(N)) 19233 return V; 19234 19235 return SDValue(); 19236 } 19237 19238 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 19239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19240 EVT OpVT = N->getOperand(0).getValueType(); 19241 19242 // If the operands are legal vectors, leave them alone. 19243 if (TLI.isTypeLegal(OpVT)) 19244 return SDValue(); 19245 19246 SDLoc DL(N); 19247 EVT VT = N->getValueType(0); 19248 SmallVector<SDValue, 8> Ops; 19249 19250 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 19251 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 19252 19253 // Keep track of what we encounter. 19254 bool AnyInteger = false; 19255 bool AnyFP = false; 19256 for (const SDValue &Op : N->ops()) { 19257 if (ISD::BITCAST == Op.getOpcode() && 19258 !Op.getOperand(0).getValueType().isVector()) 19259 Ops.push_back(Op.getOperand(0)); 19260 else if (ISD::UNDEF == Op.getOpcode()) 19261 Ops.push_back(ScalarUndef); 19262 else 19263 return SDValue(); 19264 19265 // Note whether we encounter an integer or floating point scalar. 19266 // If it's neither, bail out, it could be something weird like x86mmx. 19267 EVT LastOpVT = Ops.back().getValueType(); 19268 if (LastOpVT.isFloatingPoint()) 19269 AnyFP = true; 19270 else if (LastOpVT.isInteger()) 19271 AnyInteger = true; 19272 else 19273 return SDValue(); 19274 } 19275 19276 // If any of the operands is a floating point scalar bitcast to a vector, 19277 // use floating point types throughout, and bitcast everything. 19278 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 19279 if (AnyFP) { 19280 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 19281 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 19282 if (AnyInteger) { 19283 for (SDValue &Op : Ops) { 19284 if (Op.getValueType() == SVT) 19285 continue; 19286 if (Op.isUndef()) 19287 Op = ScalarUndef; 19288 else 19289 Op = DAG.getBitcast(SVT, Op); 19290 } 19291 } 19292 } 19293 19294 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 19295 VT.getSizeInBits() / SVT.getSizeInBits()); 19296 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 19297 } 19298 19299 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 19300 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 19301 // most two distinct vectors the same size as the result, attempt to turn this 19302 // into a legal shuffle. 19303 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 19304 EVT VT = N->getValueType(0); 19305 EVT OpVT = N->getOperand(0).getValueType(); 19306 19307 // We currently can't generate an appropriate shuffle for a scalable vector. 19308 if (VT.isScalableVector()) 19309 return SDValue(); 19310 19311 int NumElts = VT.getVectorNumElements(); 19312 int NumOpElts = OpVT.getVectorNumElements(); 19313 19314 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 19315 SmallVector<int, 8> Mask; 19316 19317 for (SDValue Op : N->ops()) { 19318 Op = peekThroughBitcasts(Op); 19319 19320 // UNDEF nodes convert to UNDEF shuffle mask values. 19321 if (Op.isUndef()) { 19322 Mask.append((unsigned)NumOpElts, -1); 19323 continue; 19324 } 19325 19326 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 19327 return SDValue(); 19328 19329 // What vector are we extracting the subvector from and at what index? 19330 SDValue ExtVec = Op.getOperand(0); 19331 int ExtIdx = Op.getConstantOperandVal(1); 19332 19333 // We want the EVT of the original extraction to correctly scale the 19334 // extraction index. 19335 EVT ExtVT = ExtVec.getValueType(); 19336 ExtVec = peekThroughBitcasts(ExtVec); 19337 19338 // UNDEF nodes convert to UNDEF shuffle mask values. 19339 if (ExtVec.isUndef()) { 19340 Mask.append((unsigned)NumOpElts, -1); 19341 continue; 19342 } 19343 19344 // Ensure that we are extracting a subvector from a vector the same 19345 // size as the result. 19346 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 19347 return SDValue(); 19348 19349 // Scale the subvector index to account for any bitcast. 19350 int NumExtElts = ExtVT.getVectorNumElements(); 19351 if (0 == (NumExtElts % NumElts)) 19352 ExtIdx /= (NumExtElts / NumElts); 19353 else if (0 == (NumElts % NumExtElts)) 19354 ExtIdx *= (NumElts / NumExtElts); 19355 else 19356 return SDValue(); 19357 19358 // At most we can reference 2 inputs in the final shuffle. 19359 if (SV0.isUndef() || SV0 == ExtVec) { 19360 SV0 = ExtVec; 19361 for (int i = 0; i != NumOpElts; ++i) 19362 Mask.push_back(i + ExtIdx); 19363 } else if (SV1.isUndef() || SV1 == ExtVec) { 19364 SV1 = ExtVec; 19365 for (int i = 0; i != NumOpElts; ++i) 19366 Mask.push_back(i + ExtIdx + NumElts); 19367 } else { 19368 return SDValue(); 19369 } 19370 } 19371 19372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19373 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 19374 DAG.getBitcast(VT, SV1), Mask, DAG); 19375 } 19376 19377 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { 19378 unsigned CastOpcode = N->getOperand(0).getOpcode(); 19379 switch (CastOpcode) { 19380 case ISD::SINT_TO_FP: 19381 case ISD::UINT_TO_FP: 19382 case ISD::FP_TO_SINT: 19383 case ISD::FP_TO_UINT: 19384 // TODO: Allow more opcodes? 19385 // case ISD::BITCAST: 19386 // case ISD::TRUNCATE: 19387 // case ISD::ZERO_EXTEND: 19388 // case ISD::SIGN_EXTEND: 19389 // case ISD::FP_EXTEND: 19390 break; 19391 default: 19392 return SDValue(); 19393 } 19394 19395 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); 19396 if (!SrcVT.isVector()) 19397 return SDValue(); 19398 19399 // All operands of the concat must be the same kind of cast from the same 19400 // source type. 19401 SmallVector<SDValue, 4> SrcOps; 19402 for (SDValue Op : N->ops()) { 19403 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || 19404 Op.getOperand(0).getValueType() != SrcVT) 19405 return SDValue(); 19406 SrcOps.push_back(Op.getOperand(0)); 19407 } 19408 19409 // The wider cast must be supported by the target. This is unusual because 19410 // the operation support type parameter depends on the opcode. In addition, 19411 // check the other type in the cast to make sure this is really legal. 19412 EVT VT = N->getValueType(0); 19413 EVT SrcEltVT = SrcVT.getVectorElementType(); 19414 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); 19415 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); 19416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19417 switch (CastOpcode) { 19418 case ISD::SINT_TO_FP: 19419 case ISD::UINT_TO_FP: 19420 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || 19421 !TLI.isTypeLegal(VT)) 19422 return SDValue(); 19423 break; 19424 case ISD::FP_TO_SINT: 19425 case ISD::FP_TO_UINT: 19426 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || 19427 !TLI.isTypeLegal(ConcatSrcVT)) 19428 return SDValue(); 19429 break; 19430 default: 19431 llvm_unreachable("Unexpected cast opcode"); 19432 } 19433 19434 // concat (cast X), (cast Y)... -> cast (concat X, Y...) 19435 SDLoc DL(N); 19436 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); 19437 return DAG.getNode(CastOpcode, DL, VT, NewConcat); 19438 } 19439 19440 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 19441 // If we only have one input vector, we don't need to do any concatenation. 19442 if (N->getNumOperands() == 1) 19443 return N->getOperand(0); 19444 19445 // Check if all of the operands are undefs. 19446 EVT VT = N->getValueType(0); 19447 if (ISD::allOperandsUndef(N)) 19448 return DAG.getUNDEF(VT); 19449 19450 // Optimize concat_vectors where all but the first of the vectors are undef. 19451 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 19452 return Op.isUndef(); 19453 })) { 19454 SDValue In = N->getOperand(0); 19455 assert(In.getValueType().isVector() && "Must concat vectors"); 19456 19457 // If the input is a concat_vectors, just make a larger concat by padding 19458 // with smaller undefs. 19459 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { 19460 unsigned NumOps = N->getNumOperands() * In.getNumOperands(); 19461 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); 19462 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); 19463 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 19464 } 19465 19466 SDValue Scalar = peekThroughOneUseBitcasts(In); 19467 19468 // concat_vectors(scalar_to_vector(scalar), undef) -> 19469 // scalar_to_vector(scalar) 19470 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && 19471 Scalar.hasOneUse()) { 19472 EVT SVT = Scalar.getValueType().getVectorElementType(); 19473 if (SVT == Scalar.getOperand(0).getValueType()) 19474 Scalar = Scalar.getOperand(0); 19475 } 19476 19477 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) 19478 if (!Scalar.getValueType().isVector()) { 19479 // If the bitcast type isn't legal, it might be a trunc of a legal type; 19480 // look through the trunc so we can still do the transform: 19481 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 19482 if (Scalar->getOpcode() == ISD::TRUNCATE && 19483 !TLI.isTypeLegal(Scalar.getValueType()) && 19484 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 19485 Scalar = Scalar->getOperand(0); 19486 19487 EVT SclTy = Scalar.getValueType(); 19488 19489 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 19490 return SDValue(); 19491 19492 // Bail out if the vector size is not a multiple of the scalar size. 19493 if (VT.getSizeInBits() % SclTy.getSizeInBits()) 19494 return SDValue(); 19495 19496 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); 19497 if (VNTNumElms < 2) 19498 return SDValue(); 19499 19500 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); 19501 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 19502 return SDValue(); 19503 19504 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); 19505 return DAG.getBitcast(VT, Res); 19506 } 19507 } 19508 19509 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 19510 // We have already tested above for an UNDEF only concatenation. 19511 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 19512 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 19513 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 19514 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 19515 }; 19516 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 19517 SmallVector<SDValue, 8> Opnds; 19518 EVT SVT = VT.getScalarType(); 19519 19520 EVT MinVT = SVT; 19521 if (!SVT.isFloatingPoint()) { 19522 // If BUILD_VECTOR are from built from integer, they may have different 19523 // operand types. Get the smallest type and truncate all operands to it. 19524 bool FoundMinVT = false; 19525 for (const SDValue &Op : N->ops()) 19526 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 19527 EVT OpSVT = Op.getOperand(0).getValueType(); 19528 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 19529 FoundMinVT = true; 19530 } 19531 assert(FoundMinVT && "Concat vector type mismatch"); 19532 } 19533 19534 for (const SDValue &Op : N->ops()) { 19535 EVT OpVT = Op.getValueType(); 19536 unsigned NumElts = OpVT.getVectorNumElements(); 19537 19538 if (ISD::UNDEF == Op.getOpcode()) 19539 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 19540 19541 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 19542 if (SVT.isFloatingPoint()) { 19543 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 19544 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 19545 } else { 19546 for (unsigned i = 0; i != NumElts; ++i) 19547 Opnds.push_back( 19548 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 19549 } 19550 } 19551 } 19552 19553 assert(VT.getVectorNumElements() == Opnds.size() && 19554 "Concat vector type mismatch"); 19555 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 19556 } 19557 19558 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 19559 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 19560 return V; 19561 19562 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 19563 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 19564 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 19565 return V; 19566 19567 if (SDValue V = combineConcatVectorOfCasts(N, DAG)) 19568 return V; 19569 19570 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 19571 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR 19572 // operands and look for a CONCAT operations that place the incoming vectors 19573 // at the exact same location. 19574 // 19575 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. 19576 SDValue SingleSource = SDValue(); 19577 unsigned PartNumElem = 19578 N->getOperand(0).getValueType().getVectorMinNumElements(); 19579 19580 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 19581 SDValue Op = N->getOperand(i); 19582 19583 if (Op.isUndef()) 19584 continue; 19585 19586 // Check if this is the identity extract: 19587 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 19588 return SDValue(); 19589 19590 // Find the single incoming vector for the extract_subvector. 19591 if (SingleSource.getNode()) { 19592 if (Op.getOperand(0) != SingleSource) 19593 return SDValue(); 19594 } else { 19595 SingleSource = Op.getOperand(0); 19596 19597 // Check the source type is the same as the type of the result. 19598 // If not, this concat may extend the vector, so we can not 19599 // optimize it away. 19600 if (SingleSource.getValueType() != N->getValueType(0)) 19601 return SDValue(); 19602 } 19603 19604 // Check that we are reading from the identity index. 19605 unsigned IdentityIndex = i * PartNumElem; 19606 if (Op.getConstantOperandAPInt(1) != IdentityIndex) 19607 return SDValue(); 19608 } 19609 19610 if (SingleSource.getNode()) 19611 return SingleSource; 19612 19613 return SDValue(); 19614 } 19615 19616 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find 19617 // if the subvector can be sourced for free. 19618 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { 19619 if (V.getOpcode() == ISD::INSERT_SUBVECTOR && 19620 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { 19621 return V.getOperand(1); 19622 } 19623 auto *IndexC = dyn_cast<ConstantSDNode>(Index); 19624 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && 19625 V.getOperand(0).getValueType() == SubVT && 19626 (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { 19627 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); 19628 return V.getOperand(SubIdx); 19629 } 19630 return SDValue(); 19631 } 19632 19633 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, 19634 SelectionDAG &DAG, 19635 bool LegalOperations) { 19636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19637 SDValue BinOp = Extract->getOperand(0); 19638 unsigned BinOpcode = BinOp.getOpcode(); 19639 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) 19640 return SDValue(); 19641 19642 EVT VecVT = BinOp.getValueType(); 19643 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); 19644 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) 19645 return SDValue(); 19646 19647 SDValue Index = Extract->getOperand(1); 19648 EVT SubVT = Extract->getValueType(0); 19649 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) 19650 return SDValue(); 19651 19652 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); 19653 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); 19654 19655 // TODO: We could handle the case where only 1 operand is being inserted by 19656 // creating an extract of the other operand, but that requires checking 19657 // number of uses and/or costs. 19658 if (!Sub0 || !Sub1) 19659 return SDValue(); 19660 19661 // We are inserting both operands of the wide binop only to extract back 19662 // to the narrow vector size. Eliminate all of the insert/extract: 19663 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y 19664 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, 19665 BinOp->getFlags()); 19666 } 19667 19668 /// If we are extracting a subvector produced by a wide binary operator try 19669 /// to use a narrow binary operator and/or avoid concatenation and extraction. 19670 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, 19671 bool LegalOperations) { 19672 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share 19673 // some of these bailouts with other transforms. 19674 19675 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) 19676 return V; 19677 19678 // The extract index must be a constant, so we can map it to a concat operand. 19679 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 19680 if (!ExtractIndexC) 19681 return SDValue(); 19682 19683 // We are looking for an optionally bitcasted wide vector binary operator 19684 // feeding an extract subvector. 19685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19686 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); 19687 unsigned BOpcode = BinOp.getOpcode(); 19688 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) 19689 return SDValue(); 19690 19691 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be 19692 // reduced to the unary fneg when it is visited, and we probably want to deal 19693 // with fneg in a target-specific way. 19694 if (BOpcode == ISD::FSUB) { 19695 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); 19696 if (C && C->getValueAPF().isNegZero()) 19697 return SDValue(); 19698 } 19699 19700 // The binop must be a vector type, so we can extract some fraction of it. 19701 EVT WideBVT = BinOp.getValueType(); 19702 // The optimisations below currently assume we are dealing with fixed length 19703 // vectors. It is possible to add support for scalable vectors, but at the 19704 // moment we've done no analysis to prove whether they are profitable or not. 19705 if (!WideBVT.isFixedLengthVector()) 19706 return SDValue(); 19707 19708 EVT VT = Extract->getValueType(0); 19709 unsigned ExtractIndex = ExtractIndexC->getZExtValue(); 19710 assert(ExtractIndex % VT.getVectorNumElements() == 0 && 19711 "Extract index is not a multiple of the vector length."); 19712 19713 // Bail out if this is not a proper multiple width extraction. 19714 unsigned WideWidth = WideBVT.getSizeInBits(); 19715 unsigned NarrowWidth = VT.getSizeInBits(); 19716 if (WideWidth % NarrowWidth != 0) 19717 return SDValue(); 19718 19719 // Bail out if we are extracting a fraction of a single operation. This can 19720 // occur because we potentially looked through a bitcast of the binop. 19721 unsigned NarrowingRatio = WideWidth / NarrowWidth; 19722 unsigned WideNumElts = WideBVT.getVectorNumElements(); 19723 if (WideNumElts % NarrowingRatio != 0) 19724 return SDValue(); 19725 19726 // Bail out if the target does not support a narrower version of the binop. 19727 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), 19728 WideNumElts / NarrowingRatio); 19729 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) 19730 return SDValue(); 19731 19732 // If extraction is cheap, we don't need to look at the binop operands 19733 // for concat ops. The narrow binop alone makes this transform profitable. 19734 // We can't just reuse the original extract index operand because we may have 19735 // bitcasted. 19736 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); 19737 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); 19738 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && 19739 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { 19740 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) 19741 SDLoc DL(Extract); 19742 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); 19743 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 19744 BinOp.getOperand(0), NewExtIndex); 19745 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 19746 BinOp.getOperand(1), NewExtIndex); 19747 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, 19748 BinOp.getNode()->getFlags()); 19749 return DAG.getBitcast(VT, NarrowBinOp); 19750 } 19751 19752 // Only handle the case where we are doubling and then halving. A larger ratio 19753 // may require more than two narrow binops to replace the wide binop. 19754 if (NarrowingRatio != 2) 19755 return SDValue(); 19756 19757 // TODO: The motivating case for this transform is an x86 AVX1 target. That 19758 // target has temptingly almost legal versions of bitwise logic ops in 256-bit 19759 // flavors, but no other 256-bit integer support. This could be extended to 19760 // handle any binop, but that may require fixing/adding other folds to avoid 19761 // codegen regressions. 19762 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) 19763 return SDValue(); 19764 19765 // We need at least one concatenation operation of a binop operand to make 19766 // this transform worthwhile. The concat must double the input vector sizes. 19767 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { 19768 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) 19769 return V.getOperand(ConcatOpNum); 19770 return SDValue(); 19771 }; 19772 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); 19773 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); 19774 19775 if (SubVecL || SubVecR) { 19776 // If a binop operand was not the result of a concat, we must extract a 19777 // half-sized operand for our new narrow binop: 19778 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN 19779 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) 19780 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN 19781 SDLoc DL(Extract); 19782 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); 19783 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) 19784 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 19785 BinOp.getOperand(0), IndexC); 19786 19787 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) 19788 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, 19789 BinOp.getOperand(1), IndexC); 19790 19791 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); 19792 return DAG.getBitcast(VT, NarrowBinOp); 19793 } 19794 19795 return SDValue(); 19796 } 19797 19798 /// If we are extracting a subvector from a wide vector load, convert to a 19799 /// narrow load to eliminate the extraction: 19800 /// (extract_subvector (load wide vector)) --> (load narrow vector) 19801 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { 19802 // TODO: Add support for big-endian. The offset calculation must be adjusted. 19803 if (DAG.getDataLayout().isBigEndian()) 19804 return SDValue(); 19805 19806 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); 19807 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); 19808 if (!Ld || Ld->getExtensionType() || !Ld->isSimple() || 19809 !ExtIdx) 19810 return SDValue(); 19811 19812 // Allow targets to opt-out. 19813 EVT VT = Extract->getValueType(0); 19814 19815 // We can only create byte sized loads. 19816 if (!VT.isByteSized()) 19817 return SDValue(); 19818 19819 unsigned Index = ExtIdx->getZExtValue(); 19820 unsigned NumElts = VT.getVectorMinNumElements(); 19821 19822 // The definition of EXTRACT_SUBVECTOR states that the index must be a 19823 // multiple of the minimum number of elements in the result type. 19824 assert(Index % NumElts == 0 && "The extract subvector index is not a " 19825 "multiple of the result's element count"); 19826 19827 // It's fine to use TypeSize here as we know the offset will not be negative. 19828 TypeSize Offset = VT.getStoreSize() * (Index / NumElts); 19829 19830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 19831 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) 19832 return SDValue(); 19833 19834 // The narrow load will be offset from the base address of the old load if 19835 // we are extracting from something besides index 0 (little-endian). 19836 SDLoc DL(Extract); 19837 19838 // TODO: Use "BaseIndexOffset" to make this more effective. 19839 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); 19840 19841 uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); 19842 MachineFunction &MF = DAG.getMachineFunction(); 19843 MachineMemOperand *MMO; 19844 if (Offset.isScalable()) { 19845 MachinePointerInfo MPI = 19846 MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); 19847 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize); 19848 } else 19849 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(), 19850 StoreSize); 19851 19852 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); 19853 DAG.makeEquivalentMemoryOrdering(Ld, NewLd); 19854 return NewLd; 19855 } 19856 19857 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { 19858 EVT NVT = N->getValueType(0); 19859 SDValue V = N->getOperand(0); 19860 uint64_t ExtIdx = N->getConstantOperandVal(1); 19861 19862 // Extract from UNDEF is UNDEF. 19863 if (V.isUndef()) 19864 return DAG.getUNDEF(NVT); 19865 19866 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) 19867 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) 19868 return NarrowLoad; 19869 19870 // Combine an extract of an extract into a single extract_subvector. 19871 // ext (ext X, C), 0 --> ext X, C 19872 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { 19873 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), 19874 V.getConstantOperandVal(1)) && 19875 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { 19876 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), 19877 V.getOperand(1)); 19878 } 19879 } 19880 19881 // Try to move vector bitcast after extract_subv by scaling extraction index: 19882 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') 19883 if (V.getOpcode() == ISD::BITCAST && 19884 V.getOperand(0).getValueType().isVector()) { 19885 SDValue SrcOp = V.getOperand(0); 19886 EVT SrcVT = SrcOp.getValueType(); 19887 unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); 19888 unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); 19889 if ((SrcNumElts % DestNumElts) == 0) { 19890 unsigned SrcDestRatio = SrcNumElts / DestNumElts; 19891 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; 19892 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 19893 NewExtEC); 19894 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 19895 SDLoc DL(N); 19896 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); 19897 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 19898 V.getOperand(0), NewIndex); 19899 return DAG.getBitcast(NVT, NewExtract); 19900 } 19901 } 19902 if ((DestNumElts % SrcNumElts) == 0) { 19903 unsigned DestSrcRatio = DestNumElts / SrcNumElts; 19904 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { 19905 ElementCount NewExtEC = 19906 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); 19907 EVT ScalarVT = SrcVT.getScalarType(); 19908 if ((ExtIdx % DestSrcRatio) == 0) { 19909 SDLoc DL(N); 19910 unsigned IndexValScaled = ExtIdx / DestSrcRatio; 19911 EVT NewExtVT = 19912 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); 19913 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { 19914 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 19915 SDValue NewExtract = 19916 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, 19917 V.getOperand(0), NewIndex); 19918 return DAG.getBitcast(NVT, NewExtract); 19919 } 19920 if (NewExtEC.isScalar() && 19921 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { 19922 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); 19923 SDValue NewExtract = 19924 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, 19925 V.getOperand(0), NewIndex); 19926 return DAG.getBitcast(NVT, NewExtract); 19927 } 19928 } 19929 } 19930 } 19931 } 19932 19933 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 19934 unsigned ExtNumElts = NVT.getVectorMinNumElements(); 19935 EVT ConcatSrcVT = V.getOperand(0).getValueType(); 19936 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && 19937 "Concat and extract subvector do not change element type"); 19938 assert((ExtIdx % ExtNumElts) == 0 && 19939 "Extract index is not a multiple of the input vector length."); 19940 19941 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); 19942 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; 19943 19944 // If the concatenated source types match this extract, it's a direct 19945 // simplification: 19946 // extract_subvec (concat V1, V2, ...), i --> Vi 19947 if (ConcatSrcNumElts == ExtNumElts) 19948 return V.getOperand(ConcatOpIdx); 19949 19950 // If the concatenated source vectors are a multiple length of this extract, 19951 // then extract a fraction of one of those source vectors directly from a 19952 // concat operand. Example: 19953 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> 19954 // v2i8 extract_subvec v8i8 Y, 6 19955 if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) { 19956 SDLoc DL(N); 19957 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; 19958 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && 19959 "Trying to extract from >1 concat operand?"); 19960 assert(NewExtIdx % ExtNumElts == 0 && 19961 "Extract index is not a multiple of the input vector length."); 19962 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); 19963 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, 19964 V.getOperand(ConcatOpIdx), NewIndexC); 19965 } 19966 } 19967 19968 V = peekThroughBitcasts(V); 19969 19970 // If the input is a build vector. Try to make a smaller build vector. 19971 if (V.getOpcode() == ISD::BUILD_VECTOR) { 19972 EVT InVT = V.getValueType(); 19973 unsigned ExtractSize = NVT.getSizeInBits(); 19974 unsigned EltSize = InVT.getScalarSizeInBits(); 19975 // Only do this if we won't split any elements. 19976 if (ExtractSize % EltSize == 0) { 19977 unsigned NumElems = ExtractSize / EltSize; 19978 EVT EltVT = InVT.getVectorElementType(); 19979 EVT ExtractVT = 19980 NumElems == 1 ? EltVT 19981 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); 19982 if ((Level < AfterLegalizeDAG || 19983 (NumElems == 1 || 19984 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && 19985 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { 19986 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; 19987 19988 if (NumElems == 1) { 19989 SDValue Src = V->getOperand(IdxVal); 19990 if (EltVT != Src.getValueType()) 19991 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); 19992 return DAG.getBitcast(NVT, Src); 19993 } 19994 19995 // Extract the pieces from the original build_vector. 19996 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), 19997 V->ops().slice(IdxVal, NumElems)); 19998 return DAG.getBitcast(NVT, BuildVec); 19999 } 20000 } 20001 } 20002 20003 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { 20004 // Handle only simple case where vector being inserted and vector 20005 // being extracted are of same size. 20006 EVT SmallVT = V.getOperand(1).getValueType(); 20007 if (!NVT.bitsEq(SmallVT)) 20008 return SDValue(); 20009 20010 // Combine: 20011 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 20012 // Into: 20013 // indices are equal or bit offsets are equal => V1 20014 // otherwise => (extract_subvec V1, ExtIdx) 20015 uint64_t InsIdx = V.getConstantOperandVal(2); 20016 if (InsIdx * SmallVT.getScalarSizeInBits() == 20017 ExtIdx * NVT.getScalarSizeInBits()) 20018 return DAG.getBitcast(NVT, V.getOperand(1)); 20019 return DAG.getNode( 20020 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, 20021 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), 20022 N->getOperand(1)); 20023 } 20024 20025 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) 20026 return NarrowBOp; 20027 20028 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 20029 return SDValue(N, 0); 20030 20031 return SDValue(); 20032 } 20033 20034 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles 20035 /// followed by concatenation. Narrow vector ops may have better performance 20036 /// than wide ops, and this can unlock further narrowing of other vector ops. 20037 /// Targets can invert this transform later if it is not profitable. 20038 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, 20039 SelectionDAG &DAG) { 20040 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); 20041 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || 20042 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || 20043 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) 20044 return SDValue(); 20045 20046 // Split the wide shuffle mask into halves. Any mask element that is accessing 20047 // operand 1 is offset down to account for narrowing of the vectors. 20048 ArrayRef<int> Mask = Shuf->getMask(); 20049 EVT VT = Shuf->getValueType(0); 20050 unsigned NumElts = VT.getVectorNumElements(); 20051 unsigned HalfNumElts = NumElts / 2; 20052 SmallVector<int, 16> Mask0(HalfNumElts, -1); 20053 SmallVector<int, 16> Mask1(HalfNumElts, -1); 20054 for (unsigned i = 0; i != NumElts; ++i) { 20055 if (Mask[i] == -1) 20056 continue; 20057 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; 20058 if (i < HalfNumElts) 20059 Mask0[i] = M; 20060 else 20061 Mask1[i - HalfNumElts] = M; 20062 } 20063 20064 // Ask the target if this is a valid transform. 20065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 20066 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 20067 HalfNumElts); 20068 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || 20069 !TLI.isShuffleMaskLegal(Mask1, HalfVT)) 20070 return SDValue(); 20071 20072 // shuffle (concat X, undef), (concat Y, undef), Mask --> 20073 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) 20074 SDValue X = N0.getOperand(0), Y = N1.getOperand(0); 20075 SDLoc DL(Shuf); 20076 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); 20077 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); 20078 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); 20079 } 20080 20081 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 20082 // or turn a shuffle of a single concat into simpler shuffle then concat. 20083 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 20084 EVT VT = N->getValueType(0); 20085 unsigned NumElts = VT.getVectorNumElements(); 20086 20087 SDValue N0 = N->getOperand(0); 20088 SDValue N1 = N->getOperand(1); 20089 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 20090 ArrayRef<int> Mask = SVN->getMask(); 20091 20092 SmallVector<SDValue, 4> Ops; 20093 EVT ConcatVT = N0.getOperand(0).getValueType(); 20094 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 20095 unsigned NumConcats = NumElts / NumElemsPerConcat; 20096 20097 auto IsUndefMaskElt = [](int i) { return i == -1; }; 20098 20099 // Special case: shuffle(concat(A,B)) can be more efficiently represented 20100 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 20101 // half vector elements. 20102 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 20103 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), 20104 IsUndefMaskElt)) { 20105 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), 20106 N0.getOperand(1), 20107 Mask.slice(0, NumElemsPerConcat)); 20108 N1 = DAG.getUNDEF(ConcatVT); 20109 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 20110 } 20111 20112 // Look at every vector that's inserted. We're looking for exact 20113 // subvector-sized copies from a concatenated vector 20114 for (unsigned I = 0; I != NumConcats; ++I) { 20115 unsigned Begin = I * NumElemsPerConcat; 20116 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); 20117 20118 // Make sure we're dealing with a copy. 20119 if (llvm::all_of(SubMask, IsUndefMaskElt)) { 20120 Ops.push_back(DAG.getUNDEF(ConcatVT)); 20121 continue; 20122 } 20123 20124 int OpIdx = -1; 20125 for (int i = 0; i != (int)NumElemsPerConcat; ++i) { 20126 if (IsUndefMaskElt(SubMask[i])) 20127 continue; 20128 if ((SubMask[i] % (int)NumElemsPerConcat) != i) 20129 return SDValue(); 20130 int EltOpIdx = SubMask[i] / NumElemsPerConcat; 20131 if (0 <= OpIdx && EltOpIdx != OpIdx) 20132 return SDValue(); 20133 OpIdx = EltOpIdx; 20134 } 20135 assert(0 <= OpIdx && "Unknown concat_vectors op"); 20136 20137 if (OpIdx < (int)N0.getNumOperands()) 20138 Ops.push_back(N0.getOperand(OpIdx)); 20139 else 20140 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); 20141 } 20142 20143 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 20144 } 20145 20146 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 20147 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 20148 // 20149 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always 20150 // a simplification in some sense, but it isn't appropriate in general: some 20151 // BUILD_VECTORs are substantially cheaper than others. The general case 20152 // of a BUILD_VECTOR requires inserting each element individually (or 20153 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of 20154 // all constants is a single constant pool load. A BUILD_VECTOR where each 20155 // element is identical is a splat. A BUILD_VECTOR where most of the operands 20156 // are undef lowers to a small number of element insertions. 20157 // 20158 // To deal with this, we currently use a bunch of mostly arbitrary heuristics. 20159 // We don't fold shuffles where one side is a non-zero constant, and we don't 20160 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate 20161 // non-constant operands. This seems to work out reasonably well in practice. 20162 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, 20163 SelectionDAG &DAG, 20164 const TargetLowering &TLI) { 20165 EVT VT = SVN->getValueType(0); 20166 unsigned NumElts = VT.getVectorNumElements(); 20167 SDValue N0 = SVN->getOperand(0); 20168 SDValue N1 = SVN->getOperand(1); 20169 20170 if (!N0->hasOneUse()) 20171 return SDValue(); 20172 20173 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as 20174 // discussed above. 20175 if (!N1.isUndef()) { 20176 if (!N1->hasOneUse()) 20177 return SDValue(); 20178 20179 bool N0AnyConst = isAnyConstantBuildVector(N0); 20180 bool N1AnyConst = isAnyConstantBuildVector(N1); 20181 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) 20182 return SDValue(); 20183 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) 20184 return SDValue(); 20185 } 20186 20187 // If both inputs are splats of the same value then we can safely merge this 20188 // to a single BUILD_VECTOR with undef elements based on the shuffle mask. 20189 bool IsSplat = false; 20190 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); 20191 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 20192 if (BV0 && BV1) 20193 if (SDValue Splat0 = BV0->getSplatValue()) 20194 IsSplat = (Splat0 == BV1->getSplatValue()); 20195 20196 SmallVector<SDValue, 8> Ops; 20197 SmallSet<SDValue, 16> DuplicateOps; 20198 for (int M : SVN->getMask()) { 20199 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 20200 if (M >= 0) { 20201 int Idx = M < (int)NumElts ? M : M - NumElts; 20202 SDValue &S = (M < (int)NumElts ? N0 : N1); 20203 if (S.getOpcode() == ISD::BUILD_VECTOR) { 20204 Op = S.getOperand(Idx); 20205 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { 20206 SDValue Op0 = S.getOperand(0); 20207 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); 20208 } else { 20209 // Operand can't be combined - bail out. 20210 return SDValue(); 20211 } 20212 } 20213 20214 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're 20215 // generating a splat; semantically, this is fine, but it's likely to 20216 // generate low-quality code if the target can't reconstruct an appropriate 20217 // shuffle. 20218 if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) 20219 if (!IsSplat && !DuplicateOps.insert(Op).second) 20220 return SDValue(); 20221 20222 Ops.push_back(Op); 20223 } 20224 20225 // BUILD_VECTOR requires all inputs to be of the same type, find the 20226 // maximum type and extend them all. 20227 EVT SVT = VT.getScalarType(); 20228 if (SVT.isInteger()) 20229 for (SDValue &Op : Ops) 20230 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 20231 if (SVT != VT.getScalarType()) 20232 for (SDValue &Op : Ops) 20233 Op = TLI.isZExtFree(Op.getValueType(), SVT) 20234 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) 20235 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); 20236 return DAG.getBuildVector(VT, SDLoc(SVN), Ops); 20237 } 20238 20239 // Match shuffles that can be converted to any_vector_extend_in_reg. 20240 // This is often generated during legalization. 20241 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) 20242 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. 20243 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, 20244 SelectionDAG &DAG, 20245 const TargetLowering &TLI, 20246 bool LegalOperations) { 20247 EVT VT = SVN->getValueType(0); 20248 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 20249 20250 // TODO Add support for big-endian when we have a test case. 20251 if (!VT.isInteger() || IsBigEndian) 20252 return SDValue(); 20253 20254 unsigned NumElts = VT.getVectorNumElements(); 20255 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20256 ArrayRef<int> Mask = SVN->getMask(); 20257 SDValue N0 = SVN->getOperand(0); 20258 20259 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) 20260 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { 20261 for (unsigned i = 0; i != NumElts; ++i) { 20262 if (Mask[i] < 0) 20263 continue; 20264 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) 20265 continue; 20266 return false; 20267 } 20268 return true; 20269 }; 20270 20271 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for 20272 // power-of-2 extensions as they are the most likely. 20273 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { 20274 // Check for non power of 2 vector sizes 20275 if (NumElts % Scale != 0) 20276 continue; 20277 if (!isAnyExtend(Scale)) 20278 continue; 20279 20280 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); 20281 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); 20282 // Never create an illegal type. Only create unsupported operations if we 20283 // are pre-legalization. 20284 if (TLI.isTypeLegal(OutVT)) 20285 if (!LegalOperations || 20286 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) 20287 return DAG.getBitcast(VT, 20288 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, 20289 SDLoc(SVN), OutVT, N0)); 20290 } 20291 20292 return SDValue(); 20293 } 20294 20295 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of 20296 // each source element of a large type into the lowest elements of a smaller 20297 // destination type. This is often generated during legalization. 20298 // If the source node itself was a '*_extend_vector_inreg' node then we should 20299 // then be able to remove it. 20300 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, 20301 SelectionDAG &DAG) { 20302 EVT VT = SVN->getValueType(0); 20303 bool IsBigEndian = DAG.getDataLayout().isBigEndian(); 20304 20305 // TODO Add support for big-endian when we have a test case. 20306 if (!VT.isInteger() || IsBigEndian) 20307 return SDValue(); 20308 20309 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); 20310 20311 unsigned Opcode = N0.getOpcode(); 20312 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && 20313 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && 20314 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) 20315 return SDValue(); 20316 20317 SDValue N00 = N0.getOperand(0); 20318 ArrayRef<int> Mask = SVN->getMask(); 20319 unsigned NumElts = VT.getVectorNumElements(); 20320 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 20321 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); 20322 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); 20323 20324 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) 20325 return SDValue(); 20326 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; 20327 20328 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> 20329 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> 20330 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> 20331 auto isTruncate = [&Mask, &NumElts](unsigned Scale) { 20332 for (unsigned i = 0; i != NumElts; ++i) { 20333 if (Mask[i] < 0) 20334 continue; 20335 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) 20336 continue; 20337 return false; 20338 } 20339 return true; 20340 }; 20341 20342 // At the moment we just handle the case where we've truncated back to the 20343 // same size as before the extension. 20344 // TODO: handle more extension/truncation cases as cases arise. 20345 if (EltSizeInBits != ExtSrcSizeInBits) 20346 return SDValue(); 20347 20348 // We can remove *extend_vector_inreg only if the truncation happens at 20349 // the same scale as the extension. 20350 if (isTruncate(ExtScale)) 20351 return DAG.getBitcast(VT, N00); 20352 20353 return SDValue(); 20354 } 20355 20356 // Combine shuffles of splat-shuffles of the form: 20357 // shuffle (shuffle V, undef, splat-mask), undef, M 20358 // If splat-mask contains undef elements, we need to be careful about 20359 // introducing undef's in the folded mask which are not the result of composing 20360 // the masks of the shuffles. 20361 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, 20362 SelectionDAG &DAG) { 20363 if (!Shuf->getOperand(1).isUndef()) 20364 return SDValue(); 20365 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 20366 if (!Splat || !Splat->isSplat()) 20367 return SDValue(); 20368 20369 ArrayRef<int> ShufMask = Shuf->getMask(); 20370 ArrayRef<int> SplatMask = Splat->getMask(); 20371 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); 20372 20373 // Prefer simplifying to the splat-shuffle, if possible. This is legal if 20374 // every undef mask element in the splat-shuffle has a corresponding undef 20375 // element in the user-shuffle's mask or if the composition of mask elements 20376 // would result in undef. 20377 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): 20378 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] 20379 // In this case it is not legal to simplify to the splat-shuffle because we 20380 // may be exposing the users of the shuffle an undef element at index 1 20381 // which was not there before the combine. 20382 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] 20383 // In this case the composition of masks yields SplatMask, so it's ok to 20384 // simplify to the splat-shuffle. 20385 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] 20386 // In this case the composed mask includes all undef elements of SplatMask 20387 // and in addition sets element zero to undef. It is safe to simplify to 20388 // the splat-shuffle. 20389 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, 20390 ArrayRef<int> SplatMask) { 20391 for (unsigned i = 0, e = UserMask.size(); i != e; ++i) 20392 if (UserMask[i] != -1 && SplatMask[i] == -1 && 20393 SplatMask[UserMask[i]] != -1) 20394 return false; 20395 return true; 20396 }; 20397 if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) 20398 return Shuf->getOperand(0); 20399 20400 // Create a new shuffle with a mask that is composed of the two shuffles' 20401 // masks. 20402 SmallVector<int, 32> NewMask; 20403 for (int Idx : ShufMask) 20404 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); 20405 20406 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), 20407 Splat->getOperand(0), Splat->getOperand(1), 20408 NewMask); 20409 } 20410 20411 /// Combine shuffle of shuffle of the form: 20412 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X 20413 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, 20414 SelectionDAG &DAG) { 20415 if (!OuterShuf->getOperand(1).isUndef()) 20416 return SDValue(); 20417 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); 20418 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) 20419 return SDValue(); 20420 20421 ArrayRef<int> OuterMask = OuterShuf->getMask(); 20422 ArrayRef<int> InnerMask = InnerShuf->getMask(); 20423 unsigned NumElts = OuterMask.size(); 20424 assert(NumElts == InnerMask.size() && "Mask length mismatch"); 20425 SmallVector<int, 32> CombinedMask(NumElts, -1); 20426 int SplatIndex = -1; 20427 for (unsigned i = 0; i != NumElts; ++i) { 20428 // Undef lanes remain undef. 20429 int OuterMaskElt = OuterMask[i]; 20430 if (OuterMaskElt == -1) 20431 continue; 20432 20433 // Peek through the shuffle masks to get the underlying source element. 20434 int InnerMaskElt = InnerMask[OuterMaskElt]; 20435 if (InnerMaskElt == -1) 20436 continue; 20437 20438 // Initialize the splatted element. 20439 if (SplatIndex == -1) 20440 SplatIndex = InnerMaskElt; 20441 20442 // Non-matching index - this is not a splat. 20443 if (SplatIndex != InnerMaskElt) 20444 return SDValue(); 20445 20446 CombinedMask[i] = InnerMaskElt; 20447 } 20448 assert((all_of(CombinedMask, [](int M) { return M == -1; }) || 20449 getSplatIndex(CombinedMask) != -1) && 20450 "Expected a splat mask"); 20451 20452 // TODO: The transform may be a win even if the mask is not legal. 20453 EVT VT = OuterShuf->getValueType(0); 20454 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); 20455 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) 20456 return SDValue(); 20457 20458 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), 20459 InnerShuf->getOperand(1), CombinedMask); 20460 } 20461 20462 /// If the shuffle mask is taking exactly one element from the first vector 20463 /// operand and passing through all other elements from the second vector 20464 /// operand, return the index of the mask element that is choosing an element 20465 /// from the first operand. Otherwise, return -1. 20466 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { 20467 int MaskSize = Mask.size(); 20468 int EltFromOp0 = -1; 20469 // TODO: This does not match if there are undef elements in the shuffle mask. 20470 // Should we ignore undefs in the shuffle mask instead? The trade-off is 20471 // removing an instruction (a shuffle), but losing the knowledge that some 20472 // vector lanes are not needed. 20473 for (int i = 0; i != MaskSize; ++i) { 20474 if (Mask[i] >= 0 && Mask[i] < MaskSize) { 20475 // We're looking for a shuffle of exactly one element from operand 0. 20476 if (EltFromOp0 != -1) 20477 return -1; 20478 EltFromOp0 = i; 20479 } else if (Mask[i] != i + MaskSize) { 20480 // Nothing from operand 1 can change lanes. 20481 return -1; 20482 } 20483 } 20484 return EltFromOp0; 20485 } 20486 20487 /// If a shuffle inserts exactly one element from a source vector operand into 20488 /// another vector operand and we can access the specified element as a scalar, 20489 /// then we can eliminate the shuffle. 20490 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, 20491 SelectionDAG &DAG) { 20492 // First, check if we are taking one element of a vector and shuffling that 20493 // element into another vector. 20494 ArrayRef<int> Mask = Shuf->getMask(); 20495 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); 20496 SDValue Op0 = Shuf->getOperand(0); 20497 SDValue Op1 = Shuf->getOperand(1); 20498 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); 20499 if (ShufOp0Index == -1) { 20500 // Commute mask and check again. 20501 ShuffleVectorSDNode::commuteMask(CommutedMask); 20502 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); 20503 if (ShufOp0Index == -1) 20504 return SDValue(); 20505 // Commute operands to match the commuted shuffle mask. 20506 std::swap(Op0, Op1); 20507 Mask = CommutedMask; 20508 } 20509 20510 // The shuffle inserts exactly one element from operand 0 into operand 1. 20511 // Now see if we can access that element as a scalar via a real insert element 20512 // instruction. 20513 // TODO: We can try harder to locate the element as a scalar. Examples: it 20514 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. 20515 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && 20516 "Shuffle mask value must be from operand 0"); 20517 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) 20518 return SDValue(); 20519 20520 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); 20521 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) 20522 return SDValue(); 20523 20524 // There's an existing insertelement with constant insertion index, so we 20525 // don't need to check the legality/profitability of a replacement operation 20526 // that differs at most in the constant value. The target should be able to 20527 // lower any of those in a similar way. If not, legalization will expand this 20528 // to a scalar-to-vector plus shuffle. 20529 // 20530 // Note that the shuffle may move the scalar from the position that the insert 20531 // element used. Therefore, our new insert element occurs at the shuffle's 20532 // mask index value, not the insert's index value. 20533 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' 20534 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); 20535 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), 20536 Op1, Op0.getOperand(1), NewInsIndex); 20537 } 20538 20539 /// If we have a unary shuffle of a shuffle, see if it can be folded away 20540 /// completely. This has the potential to lose undef knowledge because the first 20541 /// shuffle may not have an undef mask element where the second one does. So 20542 /// only call this after doing simplifications based on demanded elements. 20543 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { 20544 // shuf (shuf0 X, Y, Mask0), undef, Mask 20545 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); 20546 if (!Shuf0 || !Shuf->getOperand(1).isUndef()) 20547 return SDValue(); 20548 20549 ArrayRef<int> Mask = Shuf->getMask(); 20550 ArrayRef<int> Mask0 = Shuf0->getMask(); 20551 for (int i = 0, e = (int)Mask.size(); i != e; ++i) { 20552 // Ignore undef elements. 20553 if (Mask[i] == -1) 20554 continue; 20555 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); 20556 20557 // Is the element of the shuffle operand chosen by this shuffle the same as 20558 // the element chosen by the shuffle operand itself? 20559 if (Mask0[Mask[i]] != Mask0[i]) 20560 return SDValue(); 20561 } 20562 // Every element of this shuffle is identical to the result of the previous 20563 // shuffle, so we can replace this value. 20564 return Shuf->getOperand(0); 20565 } 20566 20567 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 20568 EVT VT = N->getValueType(0); 20569 unsigned NumElts = VT.getVectorNumElements(); 20570 20571 SDValue N0 = N->getOperand(0); 20572 SDValue N1 = N->getOperand(1); 20573 20574 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 20575 20576 // Canonicalize shuffle undef, undef -> undef 20577 if (N0.isUndef() && N1.isUndef()) 20578 return DAG.getUNDEF(VT); 20579 20580 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 20581 20582 // Canonicalize shuffle v, v -> v, undef 20583 if (N0 == N1) { 20584 SmallVector<int, 8> NewMask; 20585 for (unsigned i = 0; i != NumElts; ++i) { 20586 int Idx = SVN->getMaskElt(i); 20587 if (Idx >= (int)NumElts) Idx -= NumElts; 20588 NewMask.push_back(Idx); 20589 } 20590 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 20591 } 20592 20593 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 20594 if (N0.isUndef()) 20595 return DAG.getCommutedVectorShuffle(*SVN); 20596 20597 // Remove references to rhs if it is undef 20598 if (N1.isUndef()) { 20599 bool Changed = false; 20600 SmallVector<int, 8> NewMask; 20601 for (unsigned i = 0; i != NumElts; ++i) { 20602 int Idx = SVN->getMaskElt(i); 20603 if (Idx >= (int)NumElts) { 20604 Idx = -1; 20605 Changed = true; 20606 } 20607 NewMask.push_back(Idx); 20608 } 20609 if (Changed) 20610 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 20611 } 20612 20613 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) 20614 return InsElt; 20615 20616 // A shuffle of a single vector that is a splatted value can always be folded. 20617 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) 20618 return V; 20619 20620 if (SDValue V = formSplatFromShuffles(SVN, DAG)) 20621 return V; 20622 20623 // If it is a splat, check if the argument vector is another splat or a 20624 // build_vector. 20625 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 20626 int SplatIndex = SVN->getSplatIndex(); 20627 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && 20628 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { 20629 // splat (vector_bo L, R), Index --> 20630 // splat (scalar_bo (extelt L, Index), (extelt R, Index)) 20631 SDValue L = N0.getOperand(0), R = N0.getOperand(1); 20632 SDLoc DL(N); 20633 EVT EltVT = VT.getScalarType(); 20634 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); 20635 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); 20636 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); 20637 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, 20638 N0.getNode()->getFlags()); 20639 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); 20640 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); 20641 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); 20642 } 20643 20644 // If this is a bit convert that changes the element type of the vector but 20645 // not the number of vector elements, look through it. Be careful not to 20646 // look though conversions that change things like v4f32 to v2f64. 20647 SDNode *V = N0.getNode(); 20648 if (V->getOpcode() == ISD::BITCAST) { 20649 SDValue ConvInput = V->getOperand(0); 20650 if (ConvInput.getValueType().isVector() && 20651 ConvInput.getValueType().getVectorNumElements() == NumElts) 20652 V = ConvInput.getNode(); 20653 } 20654 20655 if (V->getOpcode() == ISD::BUILD_VECTOR) { 20656 assert(V->getNumOperands() == NumElts && 20657 "BUILD_VECTOR has wrong number of operands"); 20658 SDValue Base; 20659 bool AllSame = true; 20660 for (unsigned i = 0; i != NumElts; ++i) { 20661 if (!V->getOperand(i).isUndef()) { 20662 Base = V->getOperand(i); 20663 break; 20664 } 20665 } 20666 // Splat of <u, u, u, u>, return <u, u, u, u> 20667 if (!Base.getNode()) 20668 return N0; 20669 for (unsigned i = 0; i != NumElts; ++i) { 20670 if (V->getOperand(i) != Base) { 20671 AllSame = false; 20672 break; 20673 } 20674 } 20675 // Splat of <x, x, x, x>, return <x, x, x, x> 20676 if (AllSame) 20677 return N0; 20678 20679 // Canonicalize any other splat as a build_vector. 20680 SDValue Splatted = V->getOperand(SplatIndex); 20681 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 20682 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 20683 20684 // We may have jumped through bitcasts, so the type of the 20685 // BUILD_VECTOR may not match the type of the shuffle. 20686 if (V->getValueType(0) != VT) 20687 NewBV = DAG.getBitcast(VT, NewBV); 20688 return NewBV; 20689 } 20690 } 20691 20692 // Simplify source operands based on shuffle mask. 20693 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 20694 return SDValue(N, 0); 20695 20696 // This is intentionally placed after demanded elements simplification because 20697 // it could eliminate knowledge of undef elements created by this shuffle. 20698 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) 20699 return ShufOp; 20700 20701 // Match shuffles that can be converted to any_vector_extend_in_reg. 20702 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) 20703 return V; 20704 20705 // Combine "truncate_vector_in_reg" style shuffles. 20706 if (SDValue V = combineTruncationShuffle(SVN, DAG)) 20707 return V; 20708 20709 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 20710 Level < AfterLegalizeVectorOps && 20711 (N1.isUndef() || 20712 (N1.getOpcode() == ISD::CONCAT_VECTORS && 20713 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 20714 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 20715 return V; 20716 } 20717 20718 // A shuffle of a concat of the same narrow vector can be reduced to use 20719 // only low-half elements of a concat with undef: 20720 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' 20721 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && 20722 N0.getNumOperands() == 2 && 20723 N0.getOperand(0) == N0.getOperand(1)) { 20724 int HalfNumElts = (int)NumElts / 2; 20725 SmallVector<int, 8> NewMask; 20726 for (unsigned i = 0; i != NumElts; ++i) { 20727 int Idx = SVN->getMaskElt(i); 20728 if (Idx >= HalfNumElts) { 20729 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); 20730 Idx -= HalfNumElts; 20731 } 20732 NewMask.push_back(Idx); 20733 } 20734 if (TLI.isShuffleMaskLegal(NewMask, VT)) { 20735 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); 20736 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 20737 N0.getOperand(0), UndefVec); 20738 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); 20739 } 20740 } 20741 20742 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 20743 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 20744 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) 20745 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) 20746 return Res; 20747 20748 // If this shuffle only has a single input that is a bitcasted shuffle, 20749 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 20750 // back to their original types. 20751 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 20752 N1.isUndef() && Level < AfterLegalizeVectorOps && 20753 TLI.isTypeLegal(VT)) { 20754 20755 SDValue BC0 = peekThroughOneUseBitcasts(N0); 20756 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 20757 EVT SVT = VT.getScalarType(); 20758 EVT InnerVT = BC0->getValueType(0); 20759 EVT InnerSVT = InnerVT.getScalarType(); 20760 20761 // Determine which shuffle works with the smaller scalar type. 20762 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 20763 EVT ScaleSVT = ScaleVT.getScalarType(); 20764 20765 if (TLI.isTypeLegal(ScaleVT) && 20766 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 20767 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 20768 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 20769 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 20770 20771 // Scale the shuffle masks to the smaller scalar type. 20772 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 20773 SmallVector<int, 8> InnerMask; 20774 SmallVector<int, 8> OuterMask; 20775 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); 20776 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); 20777 20778 // Merge the shuffle masks. 20779 SmallVector<int, 8> NewMask; 20780 for (int M : OuterMask) 20781 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 20782 20783 // Test for shuffle mask legality over both commutations. 20784 SDValue SV0 = BC0->getOperand(0); 20785 SDValue SV1 = BC0->getOperand(1); 20786 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 20787 if (!LegalMask) { 20788 std::swap(SV0, SV1); 20789 ShuffleVectorSDNode::commuteMask(NewMask); 20790 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 20791 } 20792 20793 if (LegalMask) { 20794 SV0 = DAG.getBitcast(ScaleVT, SV0); 20795 SV1 = DAG.getBitcast(ScaleVT, SV1); 20796 return DAG.getBitcast( 20797 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 20798 } 20799 } 20800 } 20801 } 20802 20803 // Canonicalize shuffles according to rules: 20804 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 20805 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 20806 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 20807 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 20808 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 20809 TLI.isTypeLegal(VT)) { 20810 // The incoming shuffle must be of the same type as the result of the 20811 // current shuffle. 20812 assert(N1->getOperand(0).getValueType() == VT && 20813 "Shuffle types don't match"); 20814 20815 SDValue SV0 = N1->getOperand(0); 20816 SDValue SV1 = N1->getOperand(1); 20817 bool HasSameOp0 = N0 == SV0; 20818 bool IsSV1Undef = SV1.isUndef(); 20819 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 20820 // Commute the operands of this shuffle so that next rule 20821 // will trigger. 20822 return DAG.getCommutedVectorShuffle(*SVN); 20823 } 20824 20825 // Try to fold according to rules: 20826 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 20827 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 20828 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 20829 // Don't try to fold shuffles with illegal type. 20830 // Only fold if this shuffle is the only user of the other shuffle. 20831 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 20832 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 20833 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 20834 20835 // Don't try to fold splats; they're likely to simplify somehow, or they 20836 // might be free. 20837 if (OtherSV->isSplat()) 20838 return SDValue(); 20839 20840 // The incoming shuffle must be of the same type as the result of the 20841 // current shuffle. 20842 assert(OtherSV->getOperand(0).getValueType() == VT && 20843 "Shuffle types don't match"); 20844 20845 SDValue SV0, SV1; 20846 SmallVector<int, 4> Mask; 20847 // Compute the combined shuffle mask for a shuffle with SV0 as the first 20848 // operand, and SV1 as the second operand. 20849 for (unsigned i = 0; i != NumElts; ++i) { 20850 int Idx = SVN->getMaskElt(i); 20851 if (Idx < 0) { 20852 // Propagate Undef. 20853 Mask.push_back(Idx); 20854 continue; 20855 } 20856 20857 SDValue CurrentVec; 20858 if (Idx < (int)NumElts) { 20859 // This shuffle index refers to the inner shuffle N0. Lookup the inner 20860 // shuffle mask to identify which vector is actually referenced. 20861 Idx = OtherSV->getMaskElt(Idx); 20862 if (Idx < 0) { 20863 // Propagate Undef. 20864 Mask.push_back(Idx); 20865 continue; 20866 } 20867 20868 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 20869 : OtherSV->getOperand(1); 20870 } else { 20871 // This shuffle index references an element within N1. 20872 CurrentVec = N1; 20873 } 20874 20875 // Simple case where 'CurrentVec' is UNDEF. 20876 if (CurrentVec.isUndef()) { 20877 Mask.push_back(-1); 20878 continue; 20879 } 20880 20881 // Canonicalize the shuffle index. We don't know yet if CurrentVec 20882 // will be the first or second operand of the combined shuffle. 20883 Idx = Idx % NumElts; 20884 if (!SV0.getNode() || SV0 == CurrentVec) { 20885 // Ok. CurrentVec is the left hand side. 20886 // Update the mask accordingly. 20887 SV0 = CurrentVec; 20888 Mask.push_back(Idx); 20889 continue; 20890 } 20891 20892 // Bail out if we cannot convert the shuffle pair into a single shuffle. 20893 if (SV1.getNode() && SV1 != CurrentVec) 20894 return SDValue(); 20895 20896 // Ok. CurrentVec is the right hand side. 20897 // Update the mask accordingly. 20898 SV1 = CurrentVec; 20899 Mask.push_back(Idx + NumElts); 20900 } 20901 20902 // Check if all indices in Mask are Undef. In case, propagate Undef. 20903 bool isUndefMask = true; 20904 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 20905 isUndefMask &= Mask[i] < 0; 20906 20907 if (isUndefMask) 20908 return DAG.getUNDEF(VT); 20909 20910 if (!SV0.getNode()) 20911 SV0 = DAG.getUNDEF(VT); 20912 if (!SV1.getNode()) 20913 SV1 = DAG.getUNDEF(VT); 20914 20915 // Avoid introducing shuffles with illegal mask. 20916 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 20917 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 20918 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 20919 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 20920 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 20921 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 20922 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG); 20923 } 20924 20925 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) 20926 return V; 20927 20928 return SDValue(); 20929 } 20930 20931 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 20932 SDValue InVal = N->getOperand(0); 20933 EVT VT = N->getValueType(0); 20934 20935 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 20936 // with a VECTOR_SHUFFLE and possible truncate. 20937 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 20938 VT.isFixedLengthVector() && 20939 InVal->getOperand(0).getValueType().isFixedLengthVector()) { 20940 SDValue InVec = InVal->getOperand(0); 20941 SDValue EltNo = InVal->getOperand(1); 20942 auto InVecT = InVec.getValueType(); 20943 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { 20944 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); 20945 int Elt = C0->getZExtValue(); 20946 NewMask[0] = Elt; 20947 // If we have an implict truncate do truncate here as long as it's legal. 20948 // if it's not legal, this should 20949 if (VT.getScalarType() != InVal.getValueType() && 20950 InVal.getValueType().isScalarInteger() && 20951 isTypeLegal(VT.getScalarType())) { 20952 SDValue Val = 20953 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); 20954 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); 20955 } 20956 if (VT.getScalarType() == InVecT.getScalarType() && 20957 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { 20958 SDValue LegalShuffle = 20959 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, 20960 DAG.getUNDEF(InVecT), NewMask, DAG); 20961 if (LegalShuffle) { 20962 // If the initial vector is the correct size this shuffle is a 20963 // valid result. 20964 if (VT == InVecT) 20965 return LegalShuffle; 20966 // If not we must truncate the vector. 20967 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { 20968 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); 20969 EVT SubVT = EVT::getVectorVT(*DAG.getContext(), 20970 InVecT.getVectorElementType(), 20971 VT.getVectorNumElements()); 20972 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, 20973 LegalShuffle, ZeroIdx); 20974 } 20975 } 20976 } 20977 } 20978 } 20979 20980 return SDValue(); 20981 } 20982 20983 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 20984 EVT VT = N->getValueType(0); 20985 SDValue N0 = N->getOperand(0); 20986 SDValue N1 = N->getOperand(1); 20987 SDValue N2 = N->getOperand(2); 20988 uint64_t InsIdx = N->getConstantOperandVal(2); 20989 20990 // If inserting an UNDEF, just return the original vector. 20991 if (N1.isUndef()) 20992 return N0; 20993 20994 // If this is an insert of an extracted vector into an undef vector, we can 20995 // just use the input to the extract. 20996 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 20997 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) 20998 return N1.getOperand(0); 20999 21000 // If we are inserting a bitcast value into an undef, with the same 21001 // number of elements, just use the bitcast input of the extract. 21002 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> 21003 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) 21004 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && 21005 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && 21006 N1.getOperand(0).getOperand(1) == N2 && 21007 N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() == 21008 VT.getVectorNumElements() && 21009 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == 21010 VT.getSizeInBits()) { 21011 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); 21012 } 21013 21014 // If both N1 and N2 are bitcast values on which insert_subvector 21015 // would makes sense, pull the bitcast through. 21016 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> 21017 // BITCAST (INSERT_SUBVECTOR N0 N1 N2) 21018 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { 21019 SDValue CN0 = N0.getOperand(0); 21020 SDValue CN1 = N1.getOperand(0); 21021 EVT CN0VT = CN0.getValueType(); 21022 EVT CN1VT = CN1.getValueType(); 21023 if (CN0VT.isVector() && CN1VT.isVector() && 21024 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && 21025 CN0VT.getVectorNumElements() == VT.getVectorNumElements()) { 21026 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), 21027 CN0.getValueType(), CN0, CN1, N2); 21028 return DAG.getBitcast(VT, NewINSERT); 21029 } 21030 } 21031 21032 // Combine INSERT_SUBVECTORs where we are inserting to the same index. 21033 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) 21034 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) 21035 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && 21036 N0.getOperand(1).getValueType() == N1.getValueType() && 21037 N0.getOperand(2) == N2) 21038 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), 21039 N1, N2); 21040 21041 // Eliminate an intermediate insert into an undef vector: 21042 // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> 21043 // insert_subvector undef, X, N2 21044 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && 21045 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) 21046 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, 21047 N1.getOperand(1), N2); 21048 21049 // Push subvector bitcasts to the output, adjusting the index as we go. 21050 // insert_subvector(bitcast(v), bitcast(s), c1) 21051 // -> bitcast(insert_subvector(v, s, c2)) 21052 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && 21053 N1.getOpcode() == ISD::BITCAST) { 21054 SDValue N0Src = peekThroughBitcasts(N0); 21055 SDValue N1Src = peekThroughBitcasts(N1); 21056 EVT N0SrcSVT = N0Src.getValueType().getScalarType(); 21057 EVT N1SrcSVT = N1Src.getValueType().getScalarType(); 21058 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && 21059 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { 21060 EVT NewVT; 21061 SDLoc DL(N); 21062 SDValue NewIdx; 21063 LLVMContext &Ctx = *DAG.getContext(); 21064 ElementCount NumElts = VT.getVectorElementCount(); 21065 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 21066 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { 21067 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); 21068 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); 21069 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); 21070 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { 21071 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; 21072 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { 21073 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, 21074 NumElts.divideCoefficientBy(Scale)); 21075 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); 21076 } 21077 } 21078 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { 21079 SDValue Res = DAG.getBitcast(NewVT, N0Src); 21080 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); 21081 return DAG.getBitcast(VT, Res); 21082 } 21083 } 21084 } 21085 21086 // Canonicalize insert_subvector dag nodes. 21087 // Example: 21088 // (insert_subvector (insert_subvector A, Idx0), Idx1) 21089 // -> (insert_subvector (insert_subvector A, Idx1), Idx0) 21090 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && 21091 N1.getValueType() == N0.getOperand(1).getValueType()) { 21092 unsigned OtherIdx = N0.getConstantOperandVal(2); 21093 if (InsIdx < OtherIdx) { 21094 // Swap nodes. 21095 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, 21096 N0.getOperand(0), N1, N2); 21097 AddToWorklist(NewOp.getNode()); 21098 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), 21099 VT, NewOp, N0.getOperand(1), N0.getOperand(2)); 21100 } 21101 } 21102 21103 // If the input vector is a concatenation, and the insert replaces 21104 // one of the pieces, we can optimize into a single concat_vectors. 21105 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && 21106 N0.getOperand(0).getValueType() == N1.getValueType()) { 21107 unsigned Factor = N1.getValueType().getVectorNumElements(); 21108 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); 21109 Ops[InsIdx / Factor] = N1; 21110 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 21111 } 21112 21113 // Simplify source operands based on insertion. 21114 if (SimplifyDemandedVectorElts(SDValue(N, 0))) 21115 return SDValue(N, 0); 21116 21117 return SDValue(); 21118 } 21119 21120 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 21121 SDValue N0 = N->getOperand(0); 21122 21123 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 21124 if (N0->getOpcode() == ISD::FP16_TO_FP) 21125 return N0->getOperand(0); 21126 21127 return SDValue(); 21128 } 21129 21130 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 21131 SDValue N0 = N->getOperand(0); 21132 21133 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 21134 if (N0->getOpcode() == ISD::AND) { 21135 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 21136 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 21137 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 21138 N0.getOperand(0)); 21139 } 21140 } 21141 21142 return SDValue(); 21143 } 21144 21145 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { 21146 SDValue N0 = N->getOperand(0); 21147 EVT VT = N0.getValueType(); 21148 unsigned Opcode = N->getOpcode(); 21149 21150 // VECREDUCE over 1-element vector is just an extract. 21151 if (VT.getVectorElementCount().isScalar()) { 21152 SDLoc dl(N); 21153 SDValue Res = 21154 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, 21155 DAG.getVectorIdxConstant(0, dl)); 21156 if (Res.getValueType() != N->getValueType(0)) 21157 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); 21158 return Res; 21159 } 21160 21161 // On an boolean vector an and/or reduction is the same as a umin/umax 21162 // reduction. Convert them if the latter is legal while the former isn't. 21163 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { 21164 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND 21165 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; 21166 if (!TLI.isOperationLegalOrCustom(Opcode, VT) && 21167 TLI.isOperationLegalOrCustom(NewOpcode, VT) && 21168 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) 21169 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); 21170 } 21171 21172 return SDValue(); 21173 } 21174 21175 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 21176 /// with the destination vector and a zero vector. 21177 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 21178 /// vector_shuffle V, Zero, <0, 4, 2, 4> 21179 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 21180 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); 21181 21182 EVT VT = N->getValueType(0); 21183 SDValue LHS = N->getOperand(0); 21184 SDValue RHS = peekThroughBitcasts(N->getOperand(1)); 21185 SDLoc DL(N); 21186 21187 // Make sure we're not running after operation legalization where it 21188 // may have custom lowered the vector shuffles. 21189 if (LegalOperations) 21190 return SDValue(); 21191 21192 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 21193 return SDValue(); 21194 21195 EVT RVT = RHS.getValueType(); 21196 unsigned NumElts = RHS.getNumOperands(); 21197 21198 // Attempt to create a valid clear mask, splitting the mask into 21199 // sub elements and checking to see if each is 21200 // all zeros or all ones - suitable for shuffle masking. 21201 auto BuildClearMask = [&](int Split) { 21202 int NumSubElts = NumElts * Split; 21203 int NumSubBits = RVT.getScalarSizeInBits() / Split; 21204 21205 SmallVector<int, 8> Indices; 21206 for (int i = 0; i != NumSubElts; ++i) { 21207 int EltIdx = i / Split; 21208 int SubIdx = i % Split; 21209 SDValue Elt = RHS.getOperand(EltIdx); 21210 // X & undef --> 0 (not undef). So this lane must be converted to choose 21211 // from the zero constant vector (same as if the element had all 0-bits). 21212 if (Elt.isUndef()) { 21213 Indices.push_back(i + NumSubElts); 21214 continue; 21215 } 21216 21217 APInt Bits; 21218 if (isa<ConstantSDNode>(Elt)) 21219 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 21220 else if (isa<ConstantFPSDNode>(Elt)) 21221 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 21222 else 21223 return SDValue(); 21224 21225 // Extract the sub element from the constant bit mask. 21226 if (DAG.getDataLayout().isBigEndian()) 21227 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); 21228 else 21229 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); 21230 21231 if (Bits.isAllOnesValue()) 21232 Indices.push_back(i); 21233 else if (Bits == 0) 21234 Indices.push_back(i + NumSubElts); 21235 else 21236 return SDValue(); 21237 } 21238 21239 // Let's see if the target supports this vector_shuffle. 21240 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 21241 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 21242 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 21243 return SDValue(); 21244 21245 SDValue Zero = DAG.getConstant(0, DL, ClearVT); 21246 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, 21247 DAG.getBitcast(ClearVT, LHS), 21248 Zero, Indices)); 21249 }; 21250 21251 // Determine maximum split level (byte level masking). 21252 int MaxSplit = 1; 21253 if (RVT.getScalarSizeInBits() % 8 == 0) 21254 MaxSplit = RVT.getScalarSizeInBits() / 8; 21255 21256 for (int Split = 1; Split <= MaxSplit; ++Split) 21257 if (RVT.getScalarSizeInBits() % Split == 0) 21258 if (SDValue S = BuildClearMask(Split)) 21259 return S; 21260 21261 return SDValue(); 21262 } 21263 21264 /// If a vector binop is performed on splat values, it may be profitable to 21265 /// extract, scalarize, and insert/splat. 21266 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { 21267 SDValue N0 = N->getOperand(0); 21268 SDValue N1 = N->getOperand(1); 21269 unsigned Opcode = N->getOpcode(); 21270 EVT VT = N->getValueType(0); 21271 EVT EltVT = VT.getVectorElementType(); 21272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 21273 21274 // TODO: Remove/replace the extract cost check? If the elements are available 21275 // as scalars, then there may be no extract cost. Should we ask if 21276 // inserting a scalar back into a vector is cheap instead? 21277 int Index0, Index1; 21278 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); 21279 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); 21280 if (!Src0 || !Src1 || Index0 != Index1 || 21281 Src0.getValueType().getVectorElementType() != EltVT || 21282 Src1.getValueType().getVectorElementType() != EltVT || 21283 !TLI.isExtractVecEltCheap(VT, Index0) || 21284 !TLI.isOperationLegalOrCustom(Opcode, EltVT)) 21285 return SDValue(); 21286 21287 SDLoc DL(N); 21288 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); 21289 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); 21290 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); 21291 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); 21292 21293 // If all lanes but 1 are undefined, no need to splat the scalar result. 21294 // TODO: Keep track of undefs and use that info in the general case. 21295 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && 21296 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && 21297 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { 21298 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> 21299 // build_vec ..undef, (bo X, Y), undef... 21300 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); 21301 Ops[Index0] = ScalarBO; 21302 return DAG.getBuildVector(VT, DL, Ops); 21303 } 21304 21305 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index 21306 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); 21307 return DAG.getBuildVector(VT, DL, Ops); 21308 } 21309 21310 /// Visit a binary vector operation, like ADD. 21311 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 21312 assert(N->getValueType(0).isVector() && 21313 "SimplifyVBinOp only works on vectors!"); 21314 21315 SDValue LHS = N->getOperand(0); 21316 SDValue RHS = N->getOperand(1); 21317 SDValue Ops[] = {LHS, RHS}; 21318 EVT VT = N->getValueType(0); 21319 unsigned Opcode = N->getOpcode(); 21320 SDNodeFlags Flags = N->getFlags(); 21321 21322 // See if we can constant fold the vector operation. 21323 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 21324 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 21325 return Fold; 21326 21327 // Move unary shuffles with identical masks after a vector binop: 21328 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) 21329 // --> shuffle (VBinOp A, B), Undef, Mask 21330 // This does not require type legality checks because we are creating the 21331 // same types of operations that are in the original sequence. We do have to 21332 // restrict ops like integer div that have immediate UB (eg, div-by-zero) 21333 // though. This code is adapted from the identical transform in instcombine. 21334 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && 21335 Opcode != ISD::UREM && Opcode != ISD::SREM && 21336 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { 21337 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 21338 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 21339 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 21340 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 21341 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 21342 SDLoc DL(N); 21343 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), 21344 RHS.getOperand(0), Flags); 21345 SDValue UndefV = LHS.getOperand(1); 21346 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 21347 } 21348 21349 // Try to sink a splat shuffle after a binop with a uniform constant. 21350 // This is limited to cases where neither the shuffle nor the constant have 21351 // undefined elements because that could be poison-unsafe or inhibit 21352 // demanded elements analysis. It is further limited to not change a splat 21353 // of an inserted scalar because that may be optimized better by 21354 // load-folding or other target-specific behaviors. 21355 if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && 21356 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && 21357 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 21358 // binop (splat X), (splat C) --> splat (binop X, C) 21359 SDLoc DL(N); 21360 SDValue X = Shuf0->getOperand(0); 21361 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); 21362 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 21363 Shuf0->getMask()); 21364 } 21365 if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && 21366 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && 21367 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { 21368 // binop (splat C), (splat X) --> splat (binop C, X) 21369 SDLoc DL(N); 21370 SDValue X = Shuf1->getOperand(0); 21371 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); 21372 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), 21373 Shuf1->getMask()); 21374 } 21375 } 21376 21377 // The following pattern is likely to emerge with vector reduction ops. Moving 21378 // the binary operation ahead of insertion may allow using a narrower vector 21379 // instruction that has better performance than the wide version of the op: 21380 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z 21381 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && 21382 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && 21383 LHS.getOperand(2) == RHS.getOperand(2) && 21384 (LHS.hasOneUse() || RHS.hasOneUse())) { 21385 SDValue X = LHS.getOperand(1); 21386 SDValue Y = RHS.getOperand(1); 21387 SDValue Z = LHS.getOperand(2); 21388 EVT NarrowVT = X.getValueType(); 21389 if (NarrowVT == Y.getValueType() && 21390 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, 21391 LegalOperations)) { 21392 // (binop undef, undef) may not return undef, so compute that result. 21393 SDLoc DL(N); 21394 SDValue VecC = 21395 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); 21396 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); 21397 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); 21398 } 21399 } 21400 21401 // Make sure all but the first op are undef or constant. 21402 auto ConcatWithConstantOrUndef = [](SDValue Concat) { 21403 return Concat.getOpcode() == ISD::CONCAT_VECTORS && 21404 std::all_of(std::next(Concat->op_begin()), Concat->op_end(), 21405 [](const SDValue &Op) { 21406 return Op.isUndef() || 21407 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); 21408 }); 21409 }; 21410 21411 // The following pattern is likely to emerge with vector reduction ops. Moving 21412 // the binary operation ahead of the concat may allow using a narrower vector 21413 // instruction that has better performance than the wide version of the op: 21414 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> 21415 // concat (VBinOp X, Y), VecC 21416 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && 21417 (LHS.hasOneUse() || RHS.hasOneUse())) { 21418 EVT NarrowVT = LHS.getOperand(0).getValueType(); 21419 if (NarrowVT == RHS.getOperand(0).getValueType() && 21420 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { 21421 SDLoc DL(N); 21422 unsigned NumOperands = LHS.getNumOperands(); 21423 SmallVector<SDValue, 4> ConcatOps; 21424 for (unsigned i = 0; i != NumOperands; ++i) { 21425 // This constant fold for operands 1 and up. 21426 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), 21427 RHS.getOperand(i))); 21428 } 21429 21430 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); 21431 } 21432 } 21433 21434 if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) 21435 return V; 21436 21437 return SDValue(); 21438 } 21439 21440 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 21441 SDValue N2) { 21442 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 21443 21444 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 21445 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 21446 21447 // If we got a simplified select_cc node back from SimplifySelectCC, then 21448 // break it down into a new SETCC node, and a new SELECT node, and then return 21449 // the SELECT node, since we were called with a SELECT node. 21450 if (SCC.getNode()) { 21451 // Check to see if we got a select_cc back (to turn into setcc/select). 21452 // Otherwise, just return whatever node we got back, like fabs. 21453 if (SCC.getOpcode() == ISD::SELECT_CC) { 21454 const SDNodeFlags Flags = N0.getNode()->getFlags(); 21455 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 21456 N0.getValueType(), 21457 SCC.getOperand(0), SCC.getOperand(1), 21458 SCC.getOperand(4), Flags); 21459 AddToWorklist(SETCC.getNode()); 21460 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 21461 SCC.getOperand(2), SCC.getOperand(3)); 21462 SelectNode->setFlags(Flags); 21463 return SelectNode; 21464 } 21465 21466 return SCC; 21467 } 21468 return SDValue(); 21469 } 21470 21471 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 21472 /// being selected between, see if we can simplify the select. Callers of this 21473 /// should assume that TheSelect is deleted if this returns true. As such, they 21474 /// should return the appropriate thing (e.g. the node) back to the top-level of 21475 /// the DAG combiner loop to avoid it being looked at. 21476 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 21477 SDValue RHS) { 21478 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 21479 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 21480 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 21481 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 21482 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 21483 SDValue Sqrt = RHS; 21484 ISD::CondCode CC; 21485 SDValue CmpLHS; 21486 const ConstantFPSDNode *Zero = nullptr; 21487 21488 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 21489 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 21490 CmpLHS = TheSelect->getOperand(0); 21491 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 21492 } else { 21493 // SELECT or VSELECT 21494 SDValue Cmp = TheSelect->getOperand(0); 21495 if (Cmp.getOpcode() == ISD::SETCC) { 21496 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 21497 CmpLHS = Cmp.getOperand(0); 21498 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 21499 } 21500 } 21501 if (Zero && Zero->isZero() && 21502 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 21503 CC == ISD::SETULT || CC == ISD::SETLT)) { 21504 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 21505 CombineTo(TheSelect, Sqrt); 21506 return true; 21507 } 21508 } 21509 } 21510 // Cannot simplify select with vector condition 21511 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 21512 21513 // If this is a select from two identical things, try to pull the operation 21514 // through the select. 21515 if (LHS.getOpcode() != RHS.getOpcode() || 21516 !LHS.hasOneUse() || !RHS.hasOneUse()) 21517 return false; 21518 21519 // If this is a load and the token chain is identical, replace the select 21520 // of two loads with a load through a select of the address to load from. 21521 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 21522 // constants have been dropped into the constant pool. 21523 if (LHS.getOpcode() == ISD::LOAD) { 21524 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 21525 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 21526 21527 // Token chains must be identical. 21528 if (LHS.getOperand(0) != RHS.getOperand(0) || 21529 // Do not let this transformation reduce the number of volatile loads. 21530 // Be conservative for atomics for the moment 21531 // TODO: This does appear to be legal for unordered atomics (see D66309) 21532 !LLD->isSimple() || !RLD->isSimple() || 21533 // FIXME: If either is a pre/post inc/dec load, 21534 // we'd need to split out the address adjustment. 21535 LLD->isIndexed() || RLD->isIndexed() || 21536 // If this is an EXTLOAD, the VT's must match. 21537 LLD->getMemoryVT() != RLD->getMemoryVT() || 21538 // If this is an EXTLOAD, the kind of extension must match. 21539 (LLD->getExtensionType() != RLD->getExtensionType() && 21540 // The only exception is if one of the extensions is anyext. 21541 LLD->getExtensionType() != ISD::EXTLOAD && 21542 RLD->getExtensionType() != ISD::EXTLOAD) || 21543 // FIXME: this discards src value information. This is 21544 // over-conservative. It would be beneficial to be able to remember 21545 // both potential memory locations. Since we are discarding 21546 // src value info, don't do the transformation if the memory 21547 // locations are not in the default address space. 21548 LLD->getPointerInfo().getAddrSpace() != 0 || 21549 RLD->getPointerInfo().getAddrSpace() != 0 || 21550 // We can't produce a CMOV of a TargetFrameIndex since we won't 21551 // generate the address generation required. 21552 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 21553 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || 21554 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 21555 LLD->getBasePtr().getValueType())) 21556 return false; 21557 21558 // The loads must not depend on one another. 21559 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) 21560 return false; 21561 21562 // Check that the select condition doesn't reach either load. If so, 21563 // folding this will induce a cycle into the DAG. If not, this is safe to 21564 // xform, so create a select of the addresses. 21565 21566 SmallPtrSet<const SDNode *, 32> Visited; 21567 SmallVector<const SDNode *, 16> Worklist; 21568 21569 // Always fail if LLD and RLD are not independent. TheSelect is a 21570 // predecessor to all Nodes in question so we need not search past it. 21571 21572 Visited.insert(TheSelect); 21573 Worklist.push_back(LLD); 21574 Worklist.push_back(RLD); 21575 21576 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || 21577 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) 21578 return false; 21579 21580 SDValue Addr; 21581 if (TheSelect->getOpcode() == ISD::SELECT) { 21582 // We cannot do this optimization if any pair of {RLD, LLD} is a 21583 // predecessor to {RLD, LLD, CondNode}. As we've already compared the 21584 // Loads, we only need to check if CondNode is a successor to one of the 21585 // loads. We can further avoid this if there's no use of their chain 21586 // value. 21587 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 21588 Worklist.push_back(CondNode); 21589 21590 if ((LLD->hasAnyUseOfValue(1) && 21591 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 21592 (RLD->hasAnyUseOfValue(1) && 21593 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 21594 return false; 21595 21596 Addr = DAG.getSelect(SDLoc(TheSelect), 21597 LLD->getBasePtr().getValueType(), 21598 TheSelect->getOperand(0), LLD->getBasePtr(), 21599 RLD->getBasePtr()); 21600 } else { // Otherwise SELECT_CC 21601 // We cannot do this optimization if any pair of {RLD, LLD} is a 21602 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared 21603 // the Loads, we only need to check if CondLHS/CondRHS is a successor to 21604 // one of the loads. We can further avoid this if there's no use of their 21605 // chain value. 21606 21607 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 21608 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 21609 Worklist.push_back(CondLHS); 21610 Worklist.push_back(CondRHS); 21611 21612 if ((LLD->hasAnyUseOfValue(1) && 21613 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || 21614 (RLD->hasAnyUseOfValue(1) && 21615 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) 21616 return false; 21617 21618 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 21619 LLD->getBasePtr().getValueType(), 21620 TheSelect->getOperand(0), 21621 TheSelect->getOperand(1), 21622 LLD->getBasePtr(), RLD->getBasePtr(), 21623 TheSelect->getOperand(4)); 21624 } 21625 21626 SDValue Load; 21627 // It is safe to replace the two loads if they have different alignments, 21628 // but the new load must be the minimum (most restrictive) alignment of the 21629 // inputs. 21630 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); 21631 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); 21632 if (!RLD->isInvariant()) 21633 MMOFlags &= ~MachineMemOperand::MOInvariant; 21634 if (!RLD->isDereferenceable()) 21635 MMOFlags &= ~MachineMemOperand::MODereferenceable; 21636 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 21637 // FIXME: Discards pointer and AA info. 21638 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), 21639 LLD->getChain(), Addr, MachinePointerInfo(), Alignment, 21640 MMOFlags); 21641 } else { 21642 // FIXME: Discards pointer and AA info. 21643 Load = DAG.getExtLoad( 21644 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() 21645 : LLD->getExtensionType(), 21646 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, 21647 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); 21648 } 21649 21650 // Users of the select now use the result of the load. 21651 CombineTo(TheSelect, Load); 21652 21653 // Users of the old loads now use the new load's chain. We know the 21654 // old-load value is dead now. 21655 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 21656 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 21657 return true; 21658 } 21659 21660 return false; 21661 } 21662 21663 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and 21664 /// bitwise 'and'. 21665 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, 21666 SDValue N1, SDValue N2, SDValue N3, 21667 ISD::CondCode CC) { 21668 // If this is a select where the false operand is zero and the compare is a 21669 // check of the sign bit, see if we can perform the "gzip trick": 21670 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A 21671 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A 21672 EVT XType = N0.getValueType(); 21673 EVT AType = N2.getValueType(); 21674 if (!isNullConstant(N3) || !XType.bitsGE(AType)) 21675 return SDValue(); 21676 21677 // If the comparison is testing for a positive value, we have to invert 21678 // the sign bit mask, so only do that transform if the target has a bitwise 21679 // 'and not' instruction (the invert is free). 21680 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { 21681 // (X > -1) ? A : 0 21682 // (X > 0) ? X : 0 <-- This is canonical signed max. 21683 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) 21684 return SDValue(); 21685 } else if (CC == ISD::SETLT) { 21686 // (X < 0) ? A : 0 21687 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. 21688 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) 21689 return SDValue(); 21690 } else { 21691 return SDValue(); 21692 } 21693 21694 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit 21695 // constant. 21696 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); 21697 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 21698 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 21699 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; 21700 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { 21701 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 21702 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); 21703 AddToWorklist(Shift.getNode()); 21704 21705 if (XType.bitsGT(AType)) { 21706 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 21707 AddToWorklist(Shift.getNode()); 21708 } 21709 21710 if (CC == ISD::SETGT) 21711 Shift = DAG.getNOT(DL, Shift, AType); 21712 21713 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 21714 } 21715 } 21716 21717 unsigned ShCt = XType.getSizeInBits() - 1; 21718 if (TLI.shouldAvoidTransformToShift(XType, ShCt)) 21719 return SDValue(); 21720 21721 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); 21722 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); 21723 AddToWorklist(Shift.getNode()); 21724 21725 if (XType.bitsGT(AType)) { 21726 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 21727 AddToWorklist(Shift.getNode()); 21728 } 21729 21730 if (CC == ISD::SETGT) 21731 Shift = DAG.getNOT(DL, Shift, AType); 21732 21733 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 21734 } 21735 21736 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. 21737 SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { 21738 SDValue N0 = N->getOperand(0); 21739 EVT VT = N->getValueType(0); 21740 bool IsFabs = N->getOpcode() == ISD::FABS; 21741 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); 21742 21743 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) 21744 return SDValue(); 21745 21746 SDValue Int = N0.getOperand(0); 21747 EVT IntVT = Int.getValueType(); 21748 21749 // The operand to cast should be integer. 21750 if (!IntVT.isInteger() || IntVT.isVector()) 21751 return SDValue(); 21752 21753 // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) 21754 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) 21755 APInt SignMask; 21756 if (N0.getValueType().isVector()) { 21757 // For vector, create a sign mask (0x80...) or its inverse (for fabs, 21758 // 0x7f...) per element and splat it. 21759 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); 21760 if (IsFabs) 21761 SignMask = ~SignMask; 21762 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 21763 } else { 21764 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) 21765 SignMask = APInt::getSignMask(IntVT.getSizeInBits()); 21766 if (IsFabs) 21767 SignMask = ~SignMask; 21768 } 21769 SDLoc DL(N0); 21770 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, 21771 DAG.getConstant(SignMask, DL, IntVT)); 21772 AddToWorklist(Int.getNode()); 21773 return DAG.getBitcast(VT, Int); 21774 } 21775 21776 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 21777 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 21778 /// in it. This may be a win when the constant is not otherwise available 21779 /// because it replaces two constant pool loads with one. 21780 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( 21781 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, 21782 ISD::CondCode CC) { 21783 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) 21784 return SDValue(); 21785 21786 // If we are before legalize types, we want the other legalization to happen 21787 // first (for example, to avoid messing with soft float). 21788 auto *TV = dyn_cast<ConstantFPSDNode>(N2); 21789 auto *FV = dyn_cast<ConstantFPSDNode>(N3); 21790 EVT VT = N2.getValueType(); 21791 if (!TV || !FV || !TLI.isTypeLegal(VT)) 21792 return SDValue(); 21793 21794 // If a constant can be materialized without loads, this does not make sense. 21795 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || 21796 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || 21797 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) 21798 return SDValue(); 21799 21800 // If both constants have multiple uses, then we won't need to do an extra 21801 // load. The values are likely around in registers for other users. 21802 if (!TV->hasOneUse() && !FV->hasOneUse()) 21803 return SDValue(); 21804 21805 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), 21806 const_cast<ConstantFP*>(TV->getConstantFPValue()) }; 21807 Type *FPTy = Elts[0]->getType(); 21808 const DataLayout &TD = DAG.getDataLayout(); 21809 21810 // Create a ConstantArray of the two constants. 21811 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 21812 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 21813 TD.getPrefTypeAlign(FPTy)); 21814 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 21815 21816 // Get offsets to the 0 and 1 elements of the array, so we can select between 21817 // them. 21818 SDValue Zero = DAG.getIntPtrConstant(0, DL); 21819 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 21820 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 21821 SDValue Cond = 21822 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); 21823 AddToWorklist(Cond.getNode()); 21824 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); 21825 AddToWorklist(CstOffset.getNode()); 21826 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); 21827 AddToWorklist(CPIdx.getNode()); 21828 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 21829 MachinePointerInfo::getConstantPool( 21830 DAG.getMachineFunction()), Alignment); 21831 } 21832 21833 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 21834 /// where 'cond' is the comparison specified by CC. 21835 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 21836 SDValue N2, SDValue N3, ISD::CondCode CC, 21837 bool NotExtCompare) { 21838 // (x ? y : y) -> y. 21839 if (N2 == N3) return N2; 21840 21841 EVT CmpOpVT = N0.getValueType(); 21842 EVT CmpResVT = getSetCCResultType(CmpOpVT); 21843 EVT VT = N2.getValueType(); 21844 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 21845 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 21846 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 21847 21848 // Determine if the condition we're dealing with is constant. 21849 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { 21850 AddToWorklist(SCC.getNode()); 21851 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { 21852 // fold select_cc true, x, y -> x 21853 // fold select_cc false, x, y -> y 21854 return !(SCCC->isNullValue()) ? N2 : N3; 21855 } 21856 } 21857 21858 if (SDValue V = 21859 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) 21860 return V; 21861 21862 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) 21863 return V; 21864 21865 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 21866 // where y is has a single bit set. 21867 // A plaintext description would be, we can turn the SELECT_CC into an AND 21868 // when the condition can be materialized as an all-ones register. Any 21869 // single bit-test can be materialized as an all-ones register with 21870 // shift-left and shift-right-arith. 21871 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 21872 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 21873 SDValue AndLHS = N0->getOperand(0); 21874 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 21875 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 21876 // Shift the tested bit over the sign bit. 21877 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 21878 unsigned ShCt = AndMask.getBitWidth() - 1; 21879 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { 21880 SDValue ShlAmt = 21881 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 21882 getShiftAmountTy(AndLHS.getValueType())); 21883 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 21884 21885 // Now arithmetic right shift it all the way over, so the result is 21886 // either all-ones, or zero. 21887 SDValue ShrAmt = 21888 DAG.getConstant(ShCt, SDLoc(Shl), 21889 getShiftAmountTy(Shl.getValueType())); 21890 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 21891 21892 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 21893 } 21894 } 21895 } 21896 21897 // fold select C, 16, 0 -> shl C, 4 21898 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); 21899 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); 21900 21901 if ((Fold || Swap) && 21902 TLI.getBooleanContents(CmpOpVT) == 21903 TargetLowering::ZeroOrOneBooleanContent && 21904 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { 21905 21906 if (Swap) { 21907 CC = ISD::getSetCCInverse(CC, CmpOpVT); 21908 std::swap(N2C, N3C); 21909 } 21910 21911 // If the caller doesn't want us to simplify this into a zext of a compare, 21912 // don't do it. 21913 if (NotExtCompare && N2C->isOne()) 21914 return SDValue(); 21915 21916 SDValue Temp, SCC; 21917 // zext (setcc n0, n1) 21918 if (LegalTypes) { 21919 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); 21920 if (VT.bitsLT(SCC.getValueType())) 21921 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); 21922 else 21923 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 21924 } else { 21925 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 21926 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); 21927 } 21928 21929 AddToWorklist(SCC.getNode()); 21930 AddToWorklist(Temp.getNode()); 21931 21932 if (N2C->isOne()) 21933 return Temp; 21934 21935 unsigned ShCt = N2C->getAPIntValue().logBase2(); 21936 if (TLI.shouldAvoidTransformToShift(VT, ShCt)) 21937 return SDValue(); 21938 21939 // shl setcc result by log2 n2c 21940 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, 21941 DAG.getConstant(ShCt, SDLoc(Temp), 21942 getShiftAmountTy(Temp.getValueType()))); 21943 } 21944 21945 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 21946 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 21947 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 21948 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 21949 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 21950 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 21951 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 21952 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 21953 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 21954 SDValue ValueOnZero = N2; 21955 SDValue Count = N3; 21956 // If the condition is NE instead of E, swap the operands. 21957 if (CC == ISD::SETNE) 21958 std::swap(ValueOnZero, Count); 21959 // Check if the value on zero is a constant equal to the bits in the type. 21960 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 21961 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 21962 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 21963 // legal, combine to just cttz. 21964 if ((Count.getOpcode() == ISD::CTTZ || 21965 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 21966 N0 == Count.getOperand(0) && 21967 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 21968 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 21969 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 21970 // legal, combine to just ctlz. 21971 if ((Count.getOpcode() == ISD::CTLZ || 21972 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 21973 N0 == Count.getOperand(0) && 21974 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 21975 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 21976 } 21977 } 21978 } 21979 21980 return SDValue(); 21981 } 21982 21983 /// This is a stub for TargetLowering::SimplifySetCC. 21984 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 21985 ISD::CondCode Cond, const SDLoc &DL, 21986 bool foldBooleans) { 21987 TargetLowering::DAGCombinerInfo 21988 DagCombineInfo(DAG, Level, false, this); 21989 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 21990 } 21991 21992 /// Given an ISD::SDIV node expressing a divide by constant, return 21993 /// a DAG expression to select that will generate the same value by multiplying 21994 /// by a magic number. 21995 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 21996 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 21997 // when optimising for minimum size, we don't want to expand a div to a mul 21998 // and a shift. 21999 if (DAG.getMachineFunction().getFunction().hasMinSize()) 22000 return SDValue(); 22001 22002 SmallVector<SDNode *, 8> Built; 22003 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { 22004 for (SDNode *N : Built) 22005 AddToWorklist(N); 22006 return S; 22007 } 22008 22009 return SDValue(); 22010 } 22011 22012 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 22013 /// DAG expression that will generate the same value by right shifting. 22014 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 22015 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 22016 if (!C) 22017 return SDValue(); 22018 22019 // Avoid division by zero. 22020 if (C->isNullValue()) 22021 return SDValue(); 22022 22023 SmallVector<SDNode *, 8> Built; 22024 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { 22025 for (SDNode *N : Built) 22026 AddToWorklist(N); 22027 return S; 22028 } 22029 22030 return SDValue(); 22031 } 22032 22033 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 22034 /// expression that will generate the same value by multiplying by a magic 22035 /// number. 22036 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 22037 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 22038 // when optimising for minimum size, we don't want to expand a div to a mul 22039 // and a shift. 22040 if (DAG.getMachineFunction().getFunction().hasMinSize()) 22041 return SDValue(); 22042 22043 SmallVector<SDNode *, 8> Built; 22044 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { 22045 for (SDNode *N : Built) 22046 AddToWorklist(N); 22047 return S; 22048 } 22049 22050 return SDValue(); 22051 } 22052 22053 /// Determines the LogBase2 value for a non-null input value using the 22054 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 22055 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { 22056 EVT VT = V.getValueType(); 22057 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); 22058 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); 22059 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); 22060 return LogBase2; 22061 } 22062 22063 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 22064 /// For the reciprocal, we need to find the zero of the function: 22065 /// F(X) = A X - 1 [which has a zero at X = 1/A] 22066 /// => 22067 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 22068 /// does not require additional intermediate precision] 22069 /// For the last iteration, put numerator N into it to gain more precision: 22070 /// Result = N X_i + X_i (N - N A X_i) 22071 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, 22072 SDNodeFlags Flags) { 22073 if (LegalDAG) 22074 return SDValue(); 22075 22076 // TODO: Handle half and/or extended types? 22077 EVT VT = Op.getValueType(); 22078 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 22079 return SDValue(); 22080 22081 // If estimates are explicitly disabled for this function, we're done. 22082 MachineFunction &MF = DAG.getMachineFunction(); 22083 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); 22084 if (Enabled == TLI.ReciprocalEstimate::Disabled) 22085 return SDValue(); 22086 22087 // Estimates may be explicitly enabled for this type with a custom number of 22088 // refinement steps. 22089 int Iterations = TLI.getDivRefinementSteps(VT, MF); 22090 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { 22091 AddToWorklist(Est.getNode()); 22092 22093 SDLoc DL(Op); 22094 if (Iterations) { 22095 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 22096 22097 // Newton iterations: Est = Est + Est (N - Arg * Est) 22098 // If this is the last iteration, also multiply by the numerator. 22099 for (int i = 0; i < Iterations; ++i) { 22100 SDValue MulEst = Est; 22101 22102 if (i == Iterations - 1) { 22103 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); 22104 AddToWorklist(MulEst.getNode()); 22105 } 22106 22107 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); 22108 AddToWorklist(NewEst.getNode()); 22109 22110 NewEst = DAG.getNode(ISD::FSUB, DL, VT, 22111 (i == Iterations - 1 ? N : FPOne), NewEst, Flags); 22112 AddToWorklist(NewEst.getNode()); 22113 22114 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 22115 AddToWorklist(NewEst.getNode()); 22116 22117 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); 22118 AddToWorklist(Est.getNode()); 22119 } 22120 } else { 22121 // If no iterations are available, multiply with N. 22122 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); 22123 AddToWorklist(Est.getNode()); 22124 } 22125 22126 return Est; 22127 } 22128 22129 return SDValue(); 22130 } 22131 22132 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 22133 /// For the reciprocal sqrt, we need to find the zero of the function: 22134 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 22135 /// => 22136 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 22137 /// As a result, we precompute A/2 prior to the iteration loop. 22138 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 22139 unsigned Iterations, 22140 SDNodeFlags Flags, bool Reciprocal) { 22141 EVT VT = Arg.getValueType(); 22142 SDLoc DL(Arg); 22143 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 22144 22145 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 22146 // this entire sequence requires only one FP constant. 22147 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 22148 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 22149 22150 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 22151 for (unsigned i = 0; i < Iterations; ++i) { 22152 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 22153 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 22154 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 22155 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 22156 } 22157 22158 // If non-reciprocal square root is requested, multiply the result by Arg. 22159 if (!Reciprocal) 22160 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 22161 22162 return Est; 22163 } 22164 22165 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 22166 /// For the reciprocal sqrt, we need to find the zero of the function: 22167 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 22168 /// => 22169 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 22170 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 22171 unsigned Iterations, 22172 SDNodeFlags Flags, bool Reciprocal) { 22173 EVT VT = Arg.getValueType(); 22174 SDLoc DL(Arg); 22175 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 22176 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 22177 22178 // This routine must enter the loop below to work correctly 22179 // when (Reciprocal == false). 22180 assert(Iterations > 0); 22181 22182 // Newton iterations for reciprocal square root: 22183 // E = (E * -0.5) * ((A * E) * E + -3.0) 22184 for (unsigned i = 0; i < Iterations; ++i) { 22185 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 22186 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 22187 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 22188 22189 // When calculating a square root at the last iteration build: 22190 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 22191 // (notice a common subexpression) 22192 SDValue LHS; 22193 if (Reciprocal || (i + 1) < Iterations) { 22194 // RSQRT: LHS = (E * -0.5) 22195 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 22196 } else { 22197 // SQRT: LHS = (A * E) * -0.5 22198 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 22199 } 22200 22201 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 22202 } 22203 22204 return Est; 22205 } 22206 22207 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 22208 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 22209 /// Op can be zero. 22210 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, 22211 bool Reciprocal) { 22212 if (LegalDAG) 22213 return SDValue(); 22214 22215 // TODO: Handle half and/or extended types? 22216 EVT VT = Op.getValueType(); 22217 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) 22218 return SDValue(); 22219 22220 // If estimates are explicitly disabled for this function, we're done. 22221 MachineFunction &MF = DAG.getMachineFunction(); 22222 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); 22223 if (Enabled == TLI.ReciprocalEstimate::Disabled) 22224 return SDValue(); 22225 22226 // Estimates may be explicitly enabled for this type with a custom number of 22227 // refinement steps. 22228 int Iterations = TLI.getSqrtRefinementSteps(VT, MF); 22229 22230 bool UseOneConstNR = false; 22231 if (SDValue Est = 22232 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, 22233 Reciprocal)) { 22234 AddToWorklist(Est.getNode()); 22235 22236 if (Iterations) { 22237 Est = UseOneConstNR 22238 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 22239 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 22240 22241 if (!Reciprocal) { 22242 SDLoc DL(Op); 22243 EVT CCVT = getSetCCResultType(VT); 22244 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 22245 DenormalMode DenormMode = DAG.getDenormalMode(VT); 22246 // Try the target specific test first. 22247 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DenormMode); 22248 if (!Test) { 22249 // If no test provided by target, testing it with denormal inputs to 22250 // avoid wrong estimate. 22251 if (DenormMode.Input == DenormalMode::IEEE) { 22252 // This is specifically a check for the handling of denormal inputs, 22253 // not the result. 22254 22255 // Test = fabs(X) < SmallestNormal 22256 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 22257 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 22258 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 22259 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 22260 Test = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 22261 } else 22262 // Test = X == 0.0 22263 Test = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 22264 } 22265 22266 // The estimate is now completely wrong if the input was exactly 0.0 or 22267 // possibly a denormal. Force the answer to 0.0 or value provided by 22268 // target for those cases. 22269 Est = DAG.getNode( 22270 Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 22271 Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); 22272 } 22273 } 22274 return Est; 22275 } 22276 22277 return SDValue(); 22278 } 22279 22280 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { 22281 return buildSqrtEstimateImpl(Op, Flags, true); 22282 } 22283 22284 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { 22285 return buildSqrtEstimateImpl(Op, Flags, false); 22286 } 22287 22288 /// Return true if there is any possibility that the two addresses overlap. 22289 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { 22290 22291 struct MemUseCharacteristics { 22292 bool IsVolatile; 22293 bool IsAtomic; 22294 SDValue BasePtr; 22295 int64_t Offset; 22296 Optional<int64_t> NumBytes; 22297 MachineMemOperand *MMO; 22298 }; 22299 22300 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { 22301 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { 22302 int64_t Offset = 0; 22303 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) 22304 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) 22305 ? C->getSExtValue() 22306 : (LSN->getAddressingMode() == ISD::PRE_DEC) 22307 ? -1 * C->getSExtValue() 22308 : 0; 22309 uint64_t Size = 22310 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); 22311 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), 22312 Offset /*base offset*/, 22313 Optional<int64_t>(Size), 22314 LSN->getMemOperand()}; 22315 } 22316 if (const auto *LN = cast<LifetimeSDNode>(N)) 22317 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), 22318 (LN->hasOffset()) ? LN->getOffset() : 0, 22319 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) 22320 : Optional<int64_t>(), 22321 (MachineMemOperand *)nullptr}; 22322 // Default. 22323 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), 22324 (int64_t)0 /*offset*/, 22325 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; 22326 }; 22327 22328 MemUseCharacteristics MUC0 = getCharacteristics(Op0), 22329 MUC1 = getCharacteristics(Op1); 22330 22331 // If they are to the same address, then they must be aliases. 22332 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && 22333 MUC0.Offset == MUC1.Offset) 22334 return true; 22335 22336 // If they are both volatile then they cannot be reordered. 22337 if (MUC0.IsVolatile && MUC1.IsVolatile) 22338 return true; 22339 22340 // Be conservative about atomics for the moment 22341 // TODO: This is way overconservative for unordered atomics (see D66309) 22342 if (MUC0.IsAtomic && MUC1.IsAtomic) 22343 return true; 22344 22345 if (MUC0.MMO && MUC1.MMO) { 22346 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 22347 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 22348 return false; 22349 } 22350 22351 // Try to prove that there is aliasing, or that there is no aliasing. Either 22352 // way, we can return now. If nothing can be proved, proceed with more tests. 22353 bool IsAlias; 22354 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, 22355 DAG, IsAlias)) 22356 return IsAlias; 22357 22358 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if 22359 // either are not known. 22360 if (!MUC0.MMO || !MUC1.MMO) 22361 return true; 22362 22363 // If one operation reads from invariant memory, and the other may store, they 22364 // cannot alias. These should really be checking the equivalent of mayWrite, 22365 // but it only matters for memory nodes other than load /store. 22366 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 22367 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 22368 return false; 22369 22370 // If we know required SrcValue1 and SrcValue2 have relatively large 22371 // alignment compared to the size and offset of the access, we may be able 22372 // to prove they do not alias. This check is conservative for now to catch 22373 // cases created by splitting vector types, it only works when the offsets are 22374 // multiples of the size of the data. 22375 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 22376 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 22377 Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); 22378 Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); 22379 auto &Size0 = MUC0.NumBytes; 22380 auto &Size1 = MUC1.NumBytes; 22381 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && 22382 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && 22383 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && 22384 SrcValOffset1 % *Size1 == 0) { 22385 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); 22386 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); 22387 22388 // There is no overlap between these relatively aligned accesses of 22389 // similar size. Return no alias. 22390 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) 22391 return false; 22392 } 22393 22394 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 22395 ? CombinerGlobalAA 22396 : DAG.getSubtarget().useAA(); 22397 #ifndef NDEBUG 22398 if (CombinerAAOnlyFunc.getNumOccurrences() && 22399 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 22400 UseAA = false; 22401 #endif 22402 22403 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 22404 Size0.hasValue() && Size1.hasValue()) { 22405 // Use alias analysis information. 22406 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 22407 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; 22408 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; 22409 AliasResult AAResult = AA->alias( 22410 MemoryLocation(MUC0.MMO->getValue(), Overlap0, 22411 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), 22412 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 22413 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())); 22414 if (AAResult == NoAlias) 22415 return false; 22416 } 22417 22418 // Otherwise we have to assume they alias. 22419 return true; 22420 } 22421 22422 /// Walk up chain skipping non-aliasing memory nodes, 22423 /// looking for aliasing nodes and adding them to the Aliases vector. 22424 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 22425 SmallVectorImpl<SDValue> &Aliases) { 22426 SmallVector<SDValue, 8> Chains; // List of chains to visit. 22427 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 22428 22429 // Get alias information for node. 22430 // TODO: relax aliasing for unordered atomics (see D66309) 22431 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); 22432 22433 // Starting off. 22434 Chains.push_back(OriginalChain); 22435 unsigned Depth = 0; 22436 22437 // Attempt to improve chain by a single step 22438 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { 22439 switch (C.getOpcode()) { 22440 case ISD::EntryToken: 22441 // No need to mark EntryToken. 22442 C = SDValue(); 22443 return true; 22444 case ISD::LOAD: 22445 case ISD::STORE: { 22446 // Get alias information for C. 22447 // TODO: Relax aliasing for unordered atomics (see D66309) 22448 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && 22449 cast<LSBaseSDNode>(C.getNode())->isSimple(); 22450 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { 22451 // Look further up the chain. 22452 C = C.getOperand(0); 22453 return true; 22454 } 22455 // Alias, so stop here. 22456 return false; 22457 } 22458 22459 case ISD::CopyFromReg: 22460 // Always forward past past CopyFromReg. 22461 C = C.getOperand(0); 22462 return true; 22463 22464 case ISD::LIFETIME_START: 22465 case ISD::LIFETIME_END: { 22466 // We can forward past any lifetime start/end that can be proven not to 22467 // alias the memory access. 22468 if (!isAlias(N, C.getNode())) { 22469 // Look further up the chain. 22470 C = C.getOperand(0); 22471 return true; 22472 } 22473 return false; 22474 } 22475 default: 22476 return false; 22477 } 22478 }; 22479 22480 // Look at each chain and determine if it is an alias. If so, add it to the 22481 // aliases list. If not, then continue up the chain looking for the next 22482 // candidate. 22483 while (!Chains.empty()) { 22484 SDValue Chain = Chains.pop_back_val(); 22485 22486 // Don't bother if we've seen Chain before. 22487 if (!Visited.insert(Chain.getNode()).second) 22488 continue; 22489 22490 // For TokenFactor nodes, look at each operand and only continue up the 22491 // chain until we reach the depth limit. 22492 // 22493 // FIXME: The depth check could be made to return the last non-aliasing 22494 // chain we found before we hit a tokenfactor rather than the original 22495 // chain. 22496 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 22497 Aliases.clear(); 22498 Aliases.push_back(OriginalChain); 22499 return; 22500 } 22501 22502 if (Chain.getOpcode() == ISD::TokenFactor) { 22503 // We have to check each of the operands of the token factor for "small" 22504 // token factors, so we queue them up. Adding the operands to the queue 22505 // (stack) in reverse order maintains the original order and increases the 22506 // likelihood that getNode will find a matching token factor (CSE.) 22507 if (Chain.getNumOperands() > 16) { 22508 Aliases.push_back(Chain); 22509 continue; 22510 } 22511 for (unsigned n = Chain.getNumOperands(); n;) 22512 Chains.push_back(Chain.getOperand(--n)); 22513 ++Depth; 22514 continue; 22515 } 22516 // Everything else 22517 if (ImproveChain(Chain)) { 22518 // Updated Chain Found, Consider new chain if one exists. 22519 if (Chain.getNode()) 22520 Chains.push_back(Chain); 22521 ++Depth; 22522 continue; 22523 } 22524 // No Improved Chain Possible, treat as Alias. 22525 Aliases.push_back(Chain); 22526 } 22527 } 22528 22529 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 22530 /// (aliasing node.) 22531 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 22532 if (OptLevel == CodeGenOpt::None) 22533 return OldChain; 22534 22535 // Ops for replacing token factor. 22536 SmallVector<SDValue, 8> Aliases; 22537 22538 // Accumulate all the aliases to this node. 22539 GatherAllAliases(N, OldChain, Aliases); 22540 22541 // If no operands then chain to entry token. 22542 if (Aliases.size() == 0) 22543 return DAG.getEntryNode(); 22544 22545 // If a single operand then chain to it. We don't need to revisit it. 22546 if (Aliases.size() == 1) 22547 return Aliases[0]; 22548 22549 // Construct a custom tailored token factor. 22550 return DAG.getTokenFactor(SDLoc(N), Aliases); 22551 } 22552 22553 namespace { 22554 // TODO: Replace with with std::monostate when we move to C++17. 22555 struct UnitT { } Unit; 22556 bool operator==(const UnitT &, const UnitT &) { return true; } 22557 bool operator!=(const UnitT &, const UnitT &) { return false; } 22558 } // namespace 22559 22560 // This function tries to collect a bunch of potentially interesting 22561 // nodes to improve the chains of, all at once. This might seem 22562 // redundant, as this function gets called when visiting every store 22563 // node, so why not let the work be done on each store as it's visited? 22564 // 22565 // I believe this is mainly important because mergeConsecutiveStores 22566 // is unable to deal with merging stores of different sizes, so unless 22567 // we improve the chains of all the potential candidates up-front 22568 // before running mergeConsecutiveStores, it might only see some of 22569 // the nodes that will eventually be candidates, and then not be able 22570 // to go from a partially-merged state to the desired final 22571 // fully-merged state. 22572 22573 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { 22574 SmallVector<StoreSDNode *, 8> ChainedStores; 22575 StoreSDNode *STChain = St; 22576 // Intervals records which offsets from BaseIndex have been covered. In 22577 // the common case, every store writes to the immediately previous address 22578 // space and thus merged with the previous interval at insertion time. 22579 22580 using IMap = 22581 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; 22582 IMap::Allocator A; 22583 IMap Intervals(A); 22584 22585 // This holds the base pointer, index, and the offset in bytes from the base 22586 // pointer. 22587 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 22588 22589 // We must have a base and an offset. 22590 if (!BasePtr.getBase().getNode()) 22591 return false; 22592 22593 // Do not handle stores to undef base pointers. 22594 if (BasePtr.getBase().isUndef()) 22595 return false; 22596 22597 // BaseIndexOffset assumes that offsets are fixed-size, which 22598 // is not valid for scalable vectors where the offsets are 22599 // scaled by `vscale`, so bail out early. 22600 if (St->getMemoryVT().isScalableVector()) 22601 return false; 22602 22603 // Add ST's interval. 22604 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); 22605 22606 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { 22607 // If the chain has more than one use, then we can't reorder the mem ops. 22608 if (!SDValue(Chain, 0)->hasOneUse()) 22609 break; 22610 // TODO: Relax for unordered atomics (see D66309) 22611 if (!Chain->isSimple() || Chain->isIndexed()) 22612 break; 22613 22614 // Find the base pointer and offset for this memory node. 22615 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); 22616 // Check that the base pointer is the same as the original one. 22617 int64_t Offset; 22618 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) 22619 break; 22620 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; 22621 // Make sure we don't overlap with other intervals by checking the ones to 22622 // the left or right before inserting. 22623 auto I = Intervals.find(Offset); 22624 // If there's a next interval, we should end before it. 22625 if (I != Intervals.end() && I.start() < (Offset + Length)) 22626 break; 22627 // If there's a previous interval, we should start after it. 22628 if (I != Intervals.begin() && (--I).stop() <= Offset) 22629 break; 22630 Intervals.insert(Offset, Offset + Length, Unit); 22631 22632 ChainedStores.push_back(Chain); 22633 STChain = Chain; 22634 } 22635 22636 // If we didn't find a chained store, exit. 22637 if (ChainedStores.size() == 0) 22638 return false; 22639 22640 // Improve all chained stores (St and ChainedStores members) starting from 22641 // where the store chain ended and return single TokenFactor. 22642 SDValue NewChain = STChain->getChain(); 22643 SmallVector<SDValue, 8> TFOps; 22644 for (unsigned I = ChainedStores.size(); I;) { 22645 StoreSDNode *S = ChainedStores[--I]; 22646 SDValue BetterChain = FindBetterChain(S, NewChain); 22647 S = cast<StoreSDNode>(DAG.UpdateNodeOperands( 22648 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); 22649 TFOps.push_back(SDValue(S, 0)); 22650 ChainedStores[I] = S; 22651 } 22652 22653 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. 22654 SDValue BetterChain = FindBetterChain(St, NewChain); 22655 SDValue NewST; 22656 if (St->isTruncatingStore()) 22657 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), 22658 St->getBasePtr(), St->getMemoryVT(), 22659 St->getMemOperand()); 22660 else 22661 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), 22662 St->getBasePtr(), St->getMemOperand()); 22663 22664 TFOps.push_back(NewST); 22665 22666 // If we improved every element of TFOps, then we've lost the dependence on 22667 // NewChain to successors of St and we need to add it back to TFOps. Do so at 22668 // the beginning to keep relative order consistent with FindBetterChains. 22669 auto hasImprovedChain = [&](SDValue ST) -> bool { 22670 return ST->getOperand(0) != NewChain; 22671 }; 22672 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); 22673 if (AddNewChain) 22674 TFOps.insert(TFOps.begin(), NewChain); 22675 22676 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); 22677 CombineTo(St, TF); 22678 22679 // Add TF and its operands to the worklist. 22680 AddToWorklist(TF.getNode()); 22681 for (const SDValue &Op : TF->ops()) 22682 AddToWorklist(Op.getNode()); 22683 AddToWorklist(STChain); 22684 return true; 22685 } 22686 22687 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 22688 if (OptLevel == CodeGenOpt::None) 22689 return false; 22690 22691 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); 22692 22693 // We must have a base and an offset. 22694 if (!BasePtr.getBase().getNode()) 22695 return false; 22696 22697 // Do not handle stores to undef base pointers. 22698 if (BasePtr.getBase().isUndef()) 22699 return false; 22700 22701 // Directly improve a chain of disjoint stores starting at St. 22702 if (parallelizeChainedStores(St)) 22703 return true; 22704 22705 // Improve St's Chain.. 22706 SDValue BetterChain = FindBetterChain(St, St->getChain()); 22707 if (St->getChain() != BetterChain) { 22708 replaceStoreChain(St, BetterChain); 22709 return true; 22710 } 22711 return false; 22712 } 22713 22714 /// This is the entry point for the file. 22715 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, 22716 CodeGenOpt::Level OptLevel) { 22717 /// This is the main entry point to this class. 22718 DAGCombiner(*this, AA, OptLevel).Run(Level); 22719 } 22720