1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
10 // both before and after the DAG is legalized.
11 //
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/DAGCombine.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstdint>
72 #include <functional>
73 #include <iterator>
74 #include <string>
75 #include <tuple>
76 #include <utility>
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "dagcombine"
81 
82 STATISTIC(NodesCombined   , "Number of dag nodes combined");
83 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
84 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
85 STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
86 STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
87 STATISTIC(SlicedLoads, "Number of load sliced");
88 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
89 
90 static cl::opt<bool>
91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
92                  cl::desc("Enable DAG combiner's use of IR alias analysis"));
93 
94 static cl::opt<bool>
95 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
96         cl::desc("Enable DAG combiner's use of TBAA"));
97 
98 #ifndef NDEBUG
99 static cl::opt<std::string>
100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
101                    cl::desc("Only use DAG-combiner alias analysis in this"
102                             " function"));
103 #endif
104 
105 /// Hidden option to stress test load slicing, i.e., when this option
106 /// is enabled, load slicing bypasses most of its profitability guards.
107 static cl::opt<bool>
108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
109                   cl::desc("Bypass the profitability model of load slicing"),
110                   cl::init(false));
111 
112 static cl::opt<bool>
113   MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
114                     cl::desc("DAG combiner may split indexing from loads"));
115 
116 static cl::opt<bool>
117     EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
118                        cl::desc("DAG combiner enable merging multiple stores "
119                                 "into a wider store"));
120 
121 static cl::opt<unsigned> TokenFactorInlineLimit(
122     "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
123     cl::desc("Limit the number of operands to inline for Token Factors"));
124 
125 static cl::opt<unsigned> StoreMergeDependenceLimit(
126     "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
127     cl::desc("Limit the number of times for the same StoreNode and RootNode "
128              "to bail out in store merging dependence check"));
129 
130 static cl::opt<bool> EnableReduceLoadOpStoreWidth(
131     "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true),
132     cl::desc("DAG cominber enable reducing the width of load/op/store "
133              "sequence"));
134 
135 static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore(
136     "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true),
137     cl::desc("DAG cominber enable load/<replace bytes>/store with "
138              "a narrower store"));
139 
140 namespace {
141 
142   class DAGCombiner {
143     SelectionDAG &DAG;
144     const TargetLowering &TLI;
145     const SelectionDAGTargetInfo *STI;
146     CombineLevel Level;
147     CodeGenOpt::Level OptLevel;
148     bool LegalDAG = false;
149     bool LegalOperations = false;
150     bool LegalTypes = false;
151     bool ForCodeSize;
152     bool DisableGenericCombines;
153 
154     /// Worklist of all of the nodes that need to be simplified.
155     ///
156     /// This must behave as a stack -- new nodes to process are pushed onto the
157     /// back and when processing we pop off of the back.
158     ///
159     /// The worklist will not contain duplicates but may contain null entries
160     /// due to nodes being deleted from the underlying DAG.
161     SmallVector<SDNode *, 64> Worklist;
162 
163     /// Mapping from an SDNode to its position on the worklist.
164     ///
165     /// This is used to find and remove nodes from the worklist (by nulling
166     /// them) when they are deleted from the underlying DAG. It relies on
167     /// stable indices of nodes within the worklist.
168     DenseMap<SDNode *, unsigned> WorklistMap;
169     /// This records all nodes attempted to add to the worklist since we
170     /// considered a new worklist entry. As we keep do not add duplicate nodes
171     /// in the worklist, this is different from the tail of the worklist.
172     SmallSetVector<SDNode *, 32> PruningList;
173 
174     /// Set of nodes which have been combined (at least once).
175     ///
176     /// This is used to allow us to reliably add any operands of a DAG node
177     /// which have not yet been combined to the worklist.
178     SmallPtrSet<SDNode *, 32> CombinedNodes;
179 
180     /// Map from candidate StoreNode to the pair of RootNode and count.
181     /// The count is used to track how many times we have seen the StoreNode
182     /// with the same RootNode bail out in dependence check. If we have seen
183     /// the bail out for the same pair many times over a limit, we won't
184     /// consider the StoreNode with the same RootNode as store merging
185     /// candidate again.
186     DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
187 
188     // AA - Used for DAG load/store alias analysis.
189     AliasAnalysis *AA;
190 
191     /// When an instruction is simplified, add all users of the instruction to
192     /// the work lists because they might get more simplified now.
193     void AddUsersToWorklist(SDNode *N) {
194       for (SDNode *Node : N->uses())
195         AddToWorklist(Node);
196     }
197 
198     /// Convenient shorthand to add a node and all of its user to the worklist.
199     void AddToWorklistWithUsers(SDNode *N) {
200       AddUsersToWorklist(N);
201       AddToWorklist(N);
202     }
203 
204     // Prune potentially dangling nodes. This is called after
205     // any visit to a node, but should also be called during a visit after any
206     // failed combine which may have created a DAG node.
207     void clearAddedDanglingWorklistEntries() {
208       // Check any nodes added to the worklist to see if they are prunable.
209       while (!PruningList.empty()) {
210         auto *N = PruningList.pop_back_val();
211         if (N->use_empty())
212           recursivelyDeleteUnusedNodes(N);
213       }
214     }
215 
216     SDNode *getNextWorklistEntry() {
217       // Before we do any work, remove nodes that are not in use.
218       clearAddedDanglingWorklistEntries();
219       SDNode *N = nullptr;
220       // The Worklist holds the SDNodes in order, but it may contain null
221       // entries.
222       while (!N && !Worklist.empty()) {
223         N = Worklist.pop_back_val();
224       }
225 
226       if (N) {
227         bool GoodWorklistEntry = WorklistMap.erase(N);
228         (void)GoodWorklistEntry;
229         assert(GoodWorklistEntry &&
230                "Found a worklist entry without a corresponding map entry!");
231       }
232       return N;
233     }
234 
235     /// Call the node-specific routine that folds each particular type of node.
236     SDValue visit(SDNode *N);
237 
238   public:
239     DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
240         : DAG(D), TLI(D.getTargetLoweringInfo()),
241           STI(D.getSubtarget().getSelectionDAGInfo()),
242           Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) {
243       ForCodeSize = DAG.shouldOptForSize();
244       DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel);
245 
246       MaximumLegalStoreInBits = 0;
247       // We use the minimum store size here, since that's all we can guarantee
248       // for the scalable vector types.
249       for (MVT VT : MVT::all_valuetypes())
250         if (EVT(VT).isSimple() && VT != MVT::Other &&
251             TLI.isTypeLegal(EVT(VT)) &&
252             VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits)
253           MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize();
254     }
255 
256     void ConsiderForPruning(SDNode *N) {
257       // Mark this for potential pruning.
258       PruningList.insert(N);
259     }
260 
261     /// Add to the worklist making sure its instance is at the back (next to be
262     /// processed.)
263     void AddToWorklist(SDNode *N) {
264       assert(N->getOpcode() != ISD::DELETED_NODE &&
265              "Deleted Node added to Worklist");
266 
267       // Skip handle nodes as they can't usefully be combined and confuse the
268       // zero-use deletion strategy.
269       if (N->getOpcode() == ISD::HANDLENODE)
270         return;
271 
272       ConsiderForPruning(N);
273 
274       if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
275         Worklist.push_back(N);
276     }
277 
278     /// Remove all instances of N from the worklist.
279     void removeFromWorklist(SDNode *N) {
280       CombinedNodes.erase(N);
281       PruningList.remove(N);
282       StoreRootCountMap.erase(N);
283 
284       auto It = WorklistMap.find(N);
285       if (It == WorklistMap.end())
286         return; // Not in the worklist.
287 
288       // Null out the entry rather than erasing it to avoid a linear operation.
289       Worklist[It->second] = nullptr;
290       WorklistMap.erase(It);
291     }
292 
293     void deleteAndRecombine(SDNode *N);
294     bool recursivelyDeleteUnusedNodes(SDNode *N);
295 
296     /// Replaces all uses of the results of one DAG node with new values.
297     SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
298                       bool AddTo = true);
299 
300     /// Replaces all uses of the results of one DAG node with new values.
301     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
302       return CombineTo(N, &Res, 1, AddTo);
303     }
304 
305     /// Replaces all uses of the results of one DAG node with new values.
306     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
307                       bool AddTo = true) {
308       SDValue To[] = { Res0, Res1 };
309       return CombineTo(N, To, 2, AddTo);
310     }
311 
312     void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
313 
314   private:
315     unsigned MaximumLegalStoreInBits;
316 
317     /// Check the specified integer node value to see if it can be simplified or
318     /// if things it uses can be simplified by bit propagation.
319     /// If so, return true.
320     bool SimplifyDemandedBits(SDValue Op) {
321       unsigned BitWidth = Op.getScalarValueSizeInBits();
322       APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
323       return SimplifyDemandedBits(Op, DemandedBits);
324     }
325 
326     bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
327       TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
328       KnownBits Known;
329       if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false))
330         return false;
331 
332       // Revisit the node.
333       AddToWorklist(Op.getNode());
334 
335       CommitTargetLoweringOpt(TLO);
336       return true;
337     }
338 
339     /// Check the specified vector node value to see if it can be simplified or
340     /// if things it uses can be simplified as it only uses some of the
341     /// elements. If so, return true.
342     bool SimplifyDemandedVectorElts(SDValue Op) {
343       // TODO: For now just pretend it cannot be simplified.
344       if (Op.getValueType().isScalableVector())
345         return false;
346 
347       unsigned NumElts = Op.getValueType().getVectorNumElements();
348       APInt DemandedElts = APInt::getAllOnesValue(NumElts);
349       return SimplifyDemandedVectorElts(Op, DemandedElts);
350     }
351 
352     bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
353                               const APInt &DemandedElts,
354                               bool AssumeSingleUse = false);
355     bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
356                                     bool AssumeSingleUse = false);
357 
358     bool CombineToPreIndexedLoadStore(SDNode *N);
359     bool CombineToPostIndexedLoadStore(SDNode *N);
360     SDValue SplitIndexingFromLoad(LoadSDNode *LD);
361     bool SliceUpLoad(SDNode *N);
362 
363     // Scalars have size 0 to distinguish from singleton vectors.
364     SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
365     bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
366     bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
367 
368     /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
369     ///   load.
370     ///
371     /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
372     /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
373     /// \param EltNo index of the vector element to load.
374     /// \param OriginalLoad load that EVE came from to be replaced.
375     /// \returns EVE on success SDValue() on failure.
376     SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
377                                          SDValue EltNo,
378                                          LoadSDNode *OriginalLoad);
379     void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
380     SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
381     SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
382     SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
383     SDValue PromoteIntBinOp(SDValue Op);
384     SDValue PromoteIntShiftOp(SDValue Op);
385     SDValue PromoteExtend(SDValue Op);
386     bool PromoteLoad(SDValue Op);
387 
388     /// Call the node-specific routine that knows how to fold each
389     /// particular type of node. If that doesn't do anything, try the
390     /// target-specific DAG combines.
391     SDValue combine(SDNode *N);
392 
393     // Visitation implementation - Implement dag node combining for different
394     // node types.  The semantics are as follows:
395     // Return Value:
396     //   SDValue.getNode() == 0 - No change was made
397     //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
398     //   otherwise              - N should be replaced by the returned Operand.
399     //
400     SDValue visitTokenFactor(SDNode *N);
401     SDValue visitMERGE_VALUES(SDNode *N);
402     SDValue visitADD(SDNode *N);
403     SDValue visitADDLike(SDNode *N);
404     SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
405     SDValue visitSUB(SDNode *N);
406     SDValue visitADDSAT(SDNode *N);
407     SDValue visitSUBSAT(SDNode *N);
408     SDValue visitADDC(SDNode *N);
409     SDValue visitADDO(SDNode *N);
410     SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
411     SDValue visitSUBC(SDNode *N);
412     SDValue visitSUBO(SDNode *N);
413     SDValue visitADDE(SDNode *N);
414     SDValue visitADDCARRY(SDNode *N);
415     SDValue visitSADDO_CARRY(SDNode *N);
416     SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
417     SDValue visitSUBE(SDNode *N);
418     SDValue visitSUBCARRY(SDNode *N);
419     SDValue visitSSUBO_CARRY(SDNode *N);
420     SDValue visitMUL(SDNode *N);
421     SDValue visitMULFIX(SDNode *N);
422     SDValue useDivRem(SDNode *N);
423     SDValue visitSDIV(SDNode *N);
424     SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
425     SDValue visitUDIV(SDNode *N);
426     SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
427     SDValue visitREM(SDNode *N);
428     SDValue visitMULHU(SDNode *N);
429     SDValue visitMULHS(SDNode *N);
430     SDValue visitSMUL_LOHI(SDNode *N);
431     SDValue visitUMUL_LOHI(SDNode *N);
432     SDValue visitMULO(SDNode *N);
433     SDValue visitIMINMAX(SDNode *N);
434     SDValue visitAND(SDNode *N);
435     SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
436     SDValue visitOR(SDNode *N);
437     SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
438     SDValue visitXOR(SDNode *N);
439     SDValue SimplifyVBinOp(SDNode *N);
440     SDValue visitSHL(SDNode *N);
441     SDValue visitSRA(SDNode *N);
442     SDValue visitSRL(SDNode *N);
443     SDValue visitFunnelShift(SDNode *N);
444     SDValue visitRotate(SDNode *N);
445     SDValue visitABS(SDNode *N);
446     SDValue visitBSWAP(SDNode *N);
447     SDValue visitBITREVERSE(SDNode *N);
448     SDValue visitCTLZ(SDNode *N);
449     SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
450     SDValue visitCTTZ(SDNode *N);
451     SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
452     SDValue visitCTPOP(SDNode *N);
453     SDValue visitSELECT(SDNode *N);
454     SDValue visitVSELECT(SDNode *N);
455     SDValue visitSELECT_CC(SDNode *N);
456     SDValue visitSETCC(SDNode *N);
457     SDValue visitSETCCCARRY(SDNode *N);
458     SDValue visitSIGN_EXTEND(SDNode *N);
459     SDValue visitZERO_EXTEND(SDNode *N);
460     SDValue visitANY_EXTEND(SDNode *N);
461     SDValue visitAssertExt(SDNode *N);
462     SDValue visitAssertAlign(SDNode *N);
463     SDValue visitSIGN_EXTEND_INREG(SDNode *N);
464     SDValue visitEXTEND_VECTOR_INREG(SDNode *N);
465     SDValue visitTRUNCATE(SDNode *N);
466     SDValue visitBITCAST(SDNode *N);
467     SDValue visitFREEZE(SDNode *N);
468     SDValue visitBUILD_PAIR(SDNode *N);
469     SDValue visitFADD(SDNode *N);
470     SDValue visitSTRICT_FADD(SDNode *N);
471     SDValue visitFSUB(SDNode *N);
472     SDValue visitFMUL(SDNode *N);
473     SDValue visitFMA(SDNode *N);
474     SDValue visitFDIV(SDNode *N);
475     SDValue visitFREM(SDNode *N);
476     SDValue visitFSQRT(SDNode *N);
477     SDValue visitFCOPYSIGN(SDNode *N);
478     SDValue visitFPOW(SDNode *N);
479     SDValue visitSINT_TO_FP(SDNode *N);
480     SDValue visitUINT_TO_FP(SDNode *N);
481     SDValue visitFP_TO_SINT(SDNode *N);
482     SDValue visitFP_TO_UINT(SDNode *N);
483     SDValue visitFP_ROUND(SDNode *N);
484     SDValue visitFP_EXTEND(SDNode *N);
485     SDValue visitFNEG(SDNode *N);
486     SDValue visitFABS(SDNode *N);
487     SDValue visitFCEIL(SDNode *N);
488     SDValue visitFTRUNC(SDNode *N);
489     SDValue visitFFLOOR(SDNode *N);
490     SDValue visitFMINNUM(SDNode *N);
491     SDValue visitFMAXNUM(SDNode *N);
492     SDValue visitFMINIMUM(SDNode *N);
493     SDValue visitFMAXIMUM(SDNode *N);
494     SDValue visitBRCOND(SDNode *N);
495     SDValue visitBR_CC(SDNode *N);
496     SDValue visitLOAD(SDNode *N);
497 
498     SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
499     SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
500 
501     SDValue visitSTORE(SDNode *N);
502     SDValue visitLIFETIME_END(SDNode *N);
503     SDValue visitINSERT_VECTOR_ELT(SDNode *N);
504     SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
505     SDValue visitBUILD_VECTOR(SDNode *N);
506     SDValue visitCONCAT_VECTORS(SDNode *N);
507     SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
508     SDValue visitVECTOR_SHUFFLE(SDNode *N);
509     SDValue visitSCALAR_TO_VECTOR(SDNode *N);
510     SDValue visitINSERT_SUBVECTOR(SDNode *N);
511     SDValue visitMLOAD(SDNode *N);
512     SDValue visitMSTORE(SDNode *N);
513     SDValue visitMGATHER(SDNode *N);
514     SDValue visitMSCATTER(SDNode *N);
515     SDValue visitFP_TO_FP16(SDNode *N);
516     SDValue visitFP16_TO_FP(SDNode *N);
517     SDValue visitVECREDUCE(SDNode *N);
518 
519     SDValue visitFADDForFMACombine(SDNode *N);
520     SDValue visitFSUBForFMACombine(SDNode *N);
521     SDValue visitFMULForFMADistributiveCombine(SDNode *N);
522 
523     SDValue XformToShuffleWithZero(SDNode *N);
524     bool reassociationCanBreakAddressingModePattern(unsigned Opc,
525                                                     const SDLoc &DL, SDValue N0,
526                                                     SDValue N1);
527     SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
528                                       SDValue N1);
529     SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
530                            SDValue N1, SDNodeFlags Flags);
531 
532     SDValue visitShiftByConstant(SDNode *N);
533 
534     SDValue foldSelectOfConstants(SDNode *N);
535     SDValue foldVSelectOfConstants(SDNode *N);
536     SDValue foldBinOpIntoSelect(SDNode *BO);
537     bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
538     SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
539     SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
540     SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
541                              SDValue N2, SDValue N3, ISD::CondCode CC,
542                              bool NotExtCompare = false);
543     SDValue convertSelectOfFPConstantsToLoadOffset(
544         const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
545         ISD::CondCode CC);
546     SDValue foldSignChangeInBitcast(SDNode *N);
547     SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
548                                    SDValue N2, SDValue N3, ISD::CondCode CC);
549     SDValue foldSelectOfBinops(SDNode *N);
550     SDValue foldSextSetcc(SDNode *N);
551     SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
552                               const SDLoc &DL);
553     SDValue foldSubToUSubSat(EVT DstVT, SDNode *N);
554     SDValue unfoldMaskedMerge(SDNode *N);
555     SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
556     SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
557                           const SDLoc &DL, bool foldBooleans);
558     SDValue rebuildSetCC(SDValue N);
559 
560     bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
561                            SDValue &CC, bool MatchStrict = false) const;
562     bool isOneUseSetCC(SDValue N) const;
563 
564     SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
565                                          unsigned HiOp);
566     SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
567     SDValue CombineExtLoad(SDNode *N);
568     SDValue CombineZExtLogicopShiftLoad(SDNode *N);
569     SDValue combineRepeatedFPDivisors(SDNode *N);
570     SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
571     SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
572     SDValue BuildSDIV(SDNode *N);
573     SDValue BuildSDIVPow2(SDNode *N);
574     SDValue BuildUDIV(SDNode *N);
575     SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
576     SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
577     SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
578     SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
579     SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
580     SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
581                                 SDNodeFlags Flags, bool Reciprocal);
582     SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
583                                 SDNodeFlags Flags, bool Reciprocal);
584     SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
585                                bool DemandHighBits = true);
586     SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
587     SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
588                               SDValue InnerPos, SDValue InnerNeg,
589                               unsigned PosOpcode, unsigned NegOpcode,
590                               const SDLoc &DL);
591     SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg,
592                               SDValue InnerPos, SDValue InnerNeg,
593                               unsigned PosOpcode, unsigned NegOpcode,
594                               const SDLoc &DL);
595     SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
596     SDValue MatchLoadCombine(SDNode *N);
597     SDValue mergeTruncStores(StoreSDNode *N);
598     SDValue ReduceLoadWidth(SDNode *N);
599     SDValue ReduceLoadOpStoreWidth(SDNode *N);
600     SDValue splitMergedValStore(StoreSDNode *ST);
601     SDValue TransformFPLoadStorePair(SDNode *N);
602     SDValue convertBuildVecZextToZext(SDNode *N);
603     SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
604     SDValue reduceBuildVecTruncToBitCast(SDNode *N);
605     SDValue reduceBuildVecToShuffle(SDNode *N);
606     SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
607                                   ArrayRef<int> VectorMask, SDValue VecIn1,
608                                   SDValue VecIn2, unsigned LeftIdx,
609                                   bool DidSplitVec);
610     SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
611 
612     /// Walk up chain skipping non-aliasing memory nodes,
613     /// looking for aliasing nodes and adding them to the Aliases vector.
614     void GatherAllAliases(SDNode *N, SDValue OriginalChain,
615                           SmallVectorImpl<SDValue> &Aliases);
616 
617     /// Return true if there is any possibility that the two addresses overlap.
618     bool isAlias(SDNode *Op0, SDNode *Op1) const;
619 
620     /// Walk up chain skipping non-aliasing memory nodes, looking for a better
621     /// chain (aliasing node.)
622     SDValue FindBetterChain(SDNode *N, SDValue Chain);
623 
624     /// Try to replace a store and any possibly adjacent stores on
625     /// consecutive chains with better chains. Return true only if St is
626     /// replaced.
627     ///
628     /// Notice that other chains may still be replaced even if the function
629     /// returns false.
630     bool findBetterNeighborChains(StoreSDNode *St);
631 
632     // Helper for findBetterNeighborChains. Walk up store chain add additional
633     // chained stores that do not overlap and can be parallelized.
634     bool parallelizeChainedStores(StoreSDNode *St);
635 
636     /// Holds a pointer to an LSBaseSDNode as well as information on where it
637     /// is located in a sequence of memory operations connected by a chain.
638     struct MemOpLink {
639       // Ptr to the mem node.
640       LSBaseSDNode *MemNode;
641 
642       // Offset from the base ptr.
643       int64_t OffsetFromBase;
644 
645       MemOpLink(LSBaseSDNode *N, int64_t Offset)
646           : MemNode(N), OffsetFromBase(Offset) {}
647     };
648 
649     // Classify the origin of a stored value.
650     enum class StoreSource { Unknown, Constant, Extract, Load };
651     StoreSource getStoreSource(SDValue StoreVal) {
652       switch (StoreVal.getOpcode()) {
653       case ISD::Constant:
654       case ISD::ConstantFP:
655         return StoreSource::Constant;
656       case ISD::EXTRACT_VECTOR_ELT:
657       case ISD::EXTRACT_SUBVECTOR:
658         return StoreSource::Extract;
659       case ISD::LOAD:
660         return StoreSource::Load;
661       default:
662         return StoreSource::Unknown;
663       }
664     }
665 
666     /// This is a helper function for visitMUL to check the profitability
667     /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
668     /// MulNode is the original multiply, AddNode is (add x, c1),
669     /// and ConstNode is c2.
670     bool isMulAddWithConstProfitable(SDNode *MulNode,
671                                      SDValue &AddNode,
672                                      SDValue &ConstNode);
673 
674     /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns
675     /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns
676     /// the type of the loaded value to be extended.
677     bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
678                           EVT LoadResultTy, EVT &ExtVT);
679 
680     /// Helper function to calculate whether the given Load/Store can have its
681     /// width reduced to ExtVT.
682     bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
683                            EVT &MemVT, unsigned ShAmt = 0);
684 
685     /// Used by BackwardsPropagateMask to find suitable loads.
686     bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
687                            SmallPtrSetImpl<SDNode*> &NodesWithConsts,
688                            ConstantSDNode *Mask, SDNode *&NodeToMask);
689     /// Attempt to propagate a given AND node back to load leaves so that they
690     /// can be combined into narrow loads.
691     bool BackwardsPropagateMask(SDNode *N);
692 
693     /// Helper function for mergeConsecutiveStores which merges the component
694     /// store chains.
695     SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
696                                 unsigned NumStores);
697 
698     /// This is a helper function for mergeConsecutiveStores. When the source
699     /// elements of the consecutive stores are all constants or all extracted
700     /// vector elements, try to merge them into one larger store introducing
701     /// bitcasts if necessary.  \return True if a merged store was created.
702     bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
703                                          EVT MemVT, unsigned NumStores,
704                                          bool IsConstantSrc, bool UseVector,
705                                          bool UseTrunc);
706 
707     /// This is a helper function for mergeConsecutiveStores. Stores that
708     /// potentially may be merged with St are placed in StoreNodes. RootNode is
709     /// a chain predecessor to all store candidates.
710     void getStoreMergeCandidates(StoreSDNode *St,
711                                  SmallVectorImpl<MemOpLink> &StoreNodes,
712                                  SDNode *&Root);
713 
714     /// Helper function for mergeConsecutiveStores. Checks if candidate stores
715     /// have indirect dependency through their operands. RootNode is the
716     /// predecessor to all stores calculated by getStoreMergeCandidates and is
717     /// used to prune the dependency check. \return True if safe to merge.
718     bool checkMergeStoreCandidatesForDependencies(
719         SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
720         SDNode *RootNode);
721 
722     /// This is a helper function for mergeConsecutiveStores. Given a list of
723     /// store candidates, find the first N that are consecutive in memory.
724     /// Returns 0 if there are not at least 2 consecutive stores to try merging.
725     unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
726                                   int64_t ElementSizeBytes) const;
727 
728     /// This is a helper function for mergeConsecutiveStores. It is used for
729     /// store chains that are composed entirely of constant values.
730     bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes,
731                                   unsigned NumConsecutiveStores,
732                                   EVT MemVT, SDNode *Root, bool AllowVectors);
733 
734     /// This is a helper function for mergeConsecutiveStores. It is used for
735     /// store chains that are composed entirely of extracted vector elements.
736     /// When extracting multiple vector elements, try to store them in one
737     /// vector store rather than a sequence of scalar stores.
738     bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes,
739                                  unsigned NumConsecutiveStores, EVT MemVT,
740                                  SDNode *Root);
741 
742     /// This is a helper function for mergeConsecutiveStores. It is used for
743     /// store chains that are composed entirely of loaded values.
744     bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
745                               unsigned NumConsecutiveStores, EVT MemVT,
746                               SDNode *Root, bool AllowVectors,
747                               bool IsNonTemporalStore, bool IsNonTemporalLoad);
748 
749     /// Merge consecutive store operations into a wide store.
750     /// This optimization uses wide integers or vectors when possible.
751     /// \return true if stores were merged.
752     bool mergeConsecutiveStores(StoreSDNode *St);
753 
754     /// Try to transform a truncation where C is a constant:
755     ///     (trunc (and X, C)) -> (and (trunc X), (trunc C))
756     ///
757     /// \p N needs to be a truncation and its first operand an AND. Other
758     /// requirements are checked by the function (e.g. that trunc is
759     /// single-use) and if missed an empty SDValue is returned.
760     SDValue distributeTruncateThroughAnd(SDNode *N);
761 
762     /// Helper function to determine whether the target supports operation
763     /// given by \p Opcode for type \p VT, that is, whether the operation
764     /// is legal or custom before legalizing operations, and whether is
765     /// legal (but not custom) after legalization.
766     bool hasOperation(unsigned Opcode, EVT VT) {
767       return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations);
768     }
769 
770   public:
771     /// Runs the dag combiner on all nodes in the work list
772     void Run(CombineLevel AtLevel);
773 
774     SelectionDAG &getDAG() const { return DAG; }
775 
776     /// Returns a type large enough to hold any valid shift amount - before type
777     /// legalization these can be huge.
778     EVT getShiftAmountTy(EVT LHSTy) {
779       assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
780       return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
781     }
782 
783     /// This method returns true if we are running before type legalization or
784     /// if the specified VT is legal.
785     bool isTypeLegal(const EVT &VT) {
786       if (!LegalTypes) return true;
787       return TLI.isTypeLegal(VT);
788     }
789 
790     /// Convenience wrapper around TargetLowering::getSetCCResultType
791     EVT getSetCCResultType(EVT VT) const {
792       return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
793     }
794 
795     void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
796                          SDValue OrigLoad, SDValue ExtLoad,
797                          ISD::NodeType ExtType);
798   };
799 
800 /// This class is a DAGUpdateListener that removes any deleted
801 /// nodes from the worklist.
802 class WorklistRemover : public SelectionDAG::DAGUpdateListener {
803   DAGCombiner &DC;
804 
805 public:
806   explicit WorklistRemover(DAGCombiner &dc)
807     : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
808 
809   void NodeDeleted(SDNode *N, SDNode *E) override {
810     DC.removeFromWorklist(N);
811   }
812 };
813 
814 class WorklistInserter : public SelectionDAG::DAGUpdateListener {
815   DAGCombiner &DC;
816 
817 public:
818   explicit WorklistInserter(DAGCombiner &dc)
819       : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
820 
821   // FIXME: Ideally we could add N to the worklist, but this causes exponential
822   //        compile time costs in large DAGs, e.g. Halide.
823   void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
824 };
825 
826 } // end anonymous namespace
827 
828 //===----------------------------------------------------------------------===//
829 //  TargetLowering::DAGCombinerInfo implementation
830 //===----------------------------------------------------------------------===//
831 
832 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
833   ((DAGCombiner*)DC)->AddToWorklist(N);
834 }
835 
836 SDValue TargetLowering::DAGCombinerInfo::
837 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
838   return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
839 }
840 
841 SDValue TargetLowering::DAGCombinerInfo::
842 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
843   return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
844 }
845 
846 SDValue TargetLowering::DAGCombinerInfo::
847 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
848   return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
849 }
850 
851 bool TargetLowering::DAGCombinerInfo::
852 recursivelyDeleteUnusedNodes(SDNode *N) {
853   return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
854 }
855 
856 void TargetLowering::DAGCombinerInfo::
857 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
858   return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
859 }
860 
861 //===----------------------------------------------------------------------===//
862 // Helper Functions
863 //===----------------------------------------------------------------------===//
864 
865 void DAGCombiner::deleteAndRecombine(SDNode *N) {
866   removeFromWorklist(N);
867 
868   // If the operands of this node are only used by the node, they will now be
869   // dead. Make sure to re-visit them and recursively delete dead nodes.
870   for (const SDValue &Op : N->ops())
871     // For an operand generating multiple values, one of the values may
872     // become dead allowing further simplification (e.g. split index
873     // arithmetic from an indexed load).
874     if (Op->hasOneUse() || Op->getNumValues() > 1)
875       AddToWorklist(Op.getNode());
876 
877   DAG.DeleteNode(N);
878 }
879 
880 // APInts must be the same size for most operations, this helper
881 // function zero extends the shorter of the pair so that they match.
882 // We provide an Offset so that we can create bitwidths that won't overflow.
883 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
884   unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
885   LHS = LHS.zextOrSelf(Bits);
886   RHS = RHS.zextOrSelf(Bits);
887 }
888 
889 // Return true if this node is a setcc, or is a select_cc
890 // that selects between the target values used for true and false, making it
891 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
892 // the appropriate nodes based on the type of node we are checking. This
893 // simplifies life a bit for the callers.
894 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
895                                     SDValue &CC, bool MatchStrict) const {
896   if (N.getOpcode() == ISD::SETCC) {
897     LHS = N.getOperand(0);
898     RHS = N.getOperand(1);
899     CC  = N.getOperand(2);
900     return true;
901   }
902 
903   if (MatchStrict &&
904       (N.getOpcode() == ISD::STRICT_FSETCC ||
905        N.getOpcode() == ISD::STRICT_FSETCCS)) {
906     LHS = N.getOperand(1);
907     RHS = N.getOperand(2);
908     CC  = N.getOperand(3);
909     return true;
910   }
911 
912   if (N.getOpcode() != ISD::SELECT_CC ||
913       !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
914       !TLI.isConstFalseVal(N.getOperand(3).getNode()))
915     return false;
916 
917   if (TLI.getBooleanContents(N.getValueType()) ==
918       TargetLowering::UndefinedBooleanContent)
919     return false;
920 
921   LHS = N.getOperand(0);
922   RHS = N.getOperand(1);
923   CC  = N.getOperand(4);
924   return true;
925 }
926 
927 /// Return true if this is a SetCC-equivalent operation with only one use.
928 /// If this is true, it allows the users to invert the operation for free when
929 /// it is profitable to do so.
930 bool DAGCombiner::isOneUseSetCC(SDValue N) const {
931   SDValue N0, N1, N2;
932   if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
933     return true;
934   return false;
935 }
936 
937 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) {
938   if (!ScalarTy.isSimple())
939     return false;
940 
941   uint64_t MaskForTy = 0ULL;
942   switch (ScalarTy.getSimpleVT().SimpleTy) {
943   case MVT::i8:
944     MaskForTy = 0xFFULL;
945     break;
946   case MVT::i16:
947     MaskForTy = 0xFFFFULL;
948     break;
949   case MVT::i32:
950     MaskForTy = 0xFFFFFFFFULL;
951     break;
952   default:
953     return false;
954     break;
955   }
956 
957   APInt Val;
958   if (ISD::isConstantSplatVector(N, Val))
959     return Val.getLimitedValue() == MaskForTy;
960 
961   return false;
962 }
963 
964 // Determines if it is a constant integer or a splat/build vector of constant
965 // integers (and undefs).
966 // Do not permit build vector implicit truncation.
967 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
968   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
969     return !(Const->isOpaque() && NoOpaques);
970   if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR)
971     return false;
972   unsigned BitWidth = N.getScalarValueSizeInBits();
973   for (const SDValue &Op : N->op_values()) {
974     if (Op.isUndef())
975       continue;
976     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
977     if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
978         (Const->isOpaque() && NoOpaques))
979       return false;
980   }
981   return true;
982 }
983 
984 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
985 // undef's.
986 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
987   if (V.getOpcode() != ISD::BUILD_VECTOR)
988     return false;
989   return isConstantOrConstantVector(V, NoOpaques) ||
990          ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
991 }
992 
993 // Determine if this an indexed load with an opaque target constant index.
994 static bool canSplitIdx(LoadSDNode *LD) {
995   return MaySplitLoadIndex &&
996          (LD->getOperand(2).getOpcode() != ISD::TargetConstant ||
997           !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque());
998 }
999 
1000 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
1001                                                              const SDLoc &DL,
1002                                                              SDValue N0,
1003                                                              SDValue N1) {
1004   // Currently this only tries to ensure we don't undo the GEP splits done by
1005   // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1006   // we check if the following transformation would be problematic:
1007   // (load/store (add, (add, x, offset1), offset2)) ->
1008   // (load/store (add, x, offset1+offset2)).
1009 
1010   if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
1011     return false;
1012 
1013   if (N0.hasOneUse())
1014     return false;
1015 
1016   auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1017   auto *C2 = dyn_cast<ConstantSDNode>(N1);
1018   if (!C1 || !C2)
1019     return false;
1020 
1021   const APInt &C1APIntVal = C1->getAPIntValue();
1022   const APInt &C2APIntVal = C2->getAPIntValue();
1023   if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64)
1024     return false;
1025 
1026   const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
1027   if (CombinedValueIntVal.getBitWidth() > 64)
1028     return false;
1029   const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
1030 
1031   for (SDNode *Node : N0->uses()) {
1032     auto LoadStore = dyn_cast<MemSDNode>(Node);
1033     if (LoadStore) {
1034       // Is x[offset2] already not a legal addressing mode? If so then
1035       // reassociating the constants breaks nothing (we test offset2 because
1036       // that's the one we hope to fold into the load or store).
1037       TargetLoweringBase::AddrMode AM;
1038       AM.HasBaseReg = true;
1039       AM.BaseOffs = C2APIntVal.getSExtValue();
1040       EVT VT = LoadStore->getMemoryVT();
1041       unsigned AS = LoadStore->getAddressSpace();
1042       Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1043       if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1044         continue;
1045 
1046       // Would x[offset1+offset2] still be a legal addressing mode?
1047       AM.BaseOffs = CombinedValue;
1048       if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1049         return true;
1050     }
1051   }
1052 
1053   return false;
1054 }
1055 
1056 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1057 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1058 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
1059                                                SDValue N0, SDValue N1) {
1060   EVT VT = N0.getValueType();
1061 
1062   if (N0.getOpcode() != Opc)
1063     return SDValue();
1064 
1065   if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
1066     if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
1067       // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1068       if (SDValue OpNode =
1069               DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1}))
1070         return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
1071       return SDValue();
1072     }
1073     if (N0.hasOneUse()) {
1074       // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1075       //              iff (op x, c1) has one use
1076       SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
1077       if (!OpNode.getNode())
1078         return SDValue();
1079       return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
1080     }
1081   }
1082   return SDValue();
1083 }
1084 
1085 // Try to reassociate commutative binops.
1086 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
1087                                     SDValue N1, SDNodeFlags Flags) {
1088   assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
1089 
1090   // Floating-point reassociation is not allowed without loose FP math.
1091   if (N0.getValueType().isFloatingPoint() ||
1092       N1.getValueType().isFloatingPoint())
1093     if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
1094       return SDValue();
1095 
1096   if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
1097     return Combined;
1098   if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
1099     return Combined;
1100   return SDValue();
1101 }
1102 
1103 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
1104                                bool AddTo) {
1105   assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
1106   ++NodesCombined;
1107   LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
1108              To[0].getNode()->dump(&DAG);
1109              dbgs() << " and " << NumTo - 1 << " other values\n");
1110   for (unsigned i = 0, e = NumTo; i != e; ++i)
1111     assert((!To[i].getNode() ||
1112             N->getValueType(i) == To[i].getValueType()) &&
1113            "Cannot combine value to value of different type!");
1114 
1115   WorklistRemover DeadNodes(*this);
1116   DAG.ReplaceAllUsesWith(N, To);
1117   if (AddTo) {
1118     // Push the new nodes and any users onto the worklist
1119     for (unsigned i = 0, e = NumTo; i != e; ++i) {
1120       if (To[i].getNode()) {
1121         AddToWorklist(To[i].getNode());
1122         AddUsersToWorklist(To[i].getNode());
1123       }
1124     }
1125   }
1126 
1127   // Finally, if the node is now dead, remove it from the graph.  The node
1128   // may not be dead if the replacement process recursively simplified to
1129   // something else needing this node.
1130   if (N->use_empty())
1131     deleteAndRecombine(N);
1132   return SDValue(N, 0);
1133 }
1134 
1135 void DAGCombiner::
1136 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
1137   // Replace the old value with the new one.
1138   ++NodesCombined;
1139   LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1140              dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1141              dbgs() << '\n');
1142 
1143   // Replace all uses.  If any nodes become isomorphic to other nodes and
1144   // are deleted, make sure to remove them from our worklist.
1145   WorklistRemover DeadNodes(*this);
1146   DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
1147 
1148   // Push the new node and any (possibly new) users onto the worklist.
1149   AddToWorklistWithUsers(TLO.New.getNode());
1150 
1151   // Finally, if the node is now dead, remove it from the graph.  The node
1152   // may not be dead if the replacement process recursively simplified to
1153   // something else needing this node.
1154   if (TLO.Old.getNode()->use_empty())
1155     deleteAndRecombine(TLO.Old.getNode());
1156 }
1157 
1158 /// Check the specified integer node value to see if it can be simplified or if
1159 /// things it uses can be simplified by bit propagation. If so, return true.
1160 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
1161                                        const APInt &DemandedElts,
1162                                        bool AssumeSingleUse) {
1163   TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1164   KnownBits Known;
1165   if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0,
1166                                 AssumeSingleUse))
1167     return false;
1168 
1169   // Revisit the node.
1170   AddToWorklist(Op.getNode());
1171 
1172   CommitTargetLoweringOpt(TLO);
1173   return true;
1174 }
1175 
1176 /// Check the specified vector node value to see if it can be simplified or
1177 /// if things it uses can be simplified as it only uses some of the elements.
1178 /// If so, return true.
1179 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
1180                                              const APInt &DemandedElts,
1181                                              bool AssumeSingleUse) {
1182   TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1183   APInt KnownUndef, KnownZero;
1184   if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
1185                                       TLO, 0, AssumeSingleUse))
1186     return false;
1187 
1188   // Revisit the node.
1189   AddToWorklist(Op.getNode());
1190 
1191   CommitTargetLoweringOpt(TLO);
1192   return true;
1193 }
1194 
1195 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
1196   SDLoc DL(Load);
1197   EVT VT = Load->getValueType(0);
1198   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
1199 
1200   LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
1201              Trunc.getNode()->dump(&DAG); dbgs() << '\n');
1202   WorklistRemover DeadNodes(*this);
1203   DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
1204   DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
1205   deleteAndRecombine(Load);
1206   AddToWorklist(Trunc.getNode());
1207 }
1208 
1209 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
1210   Replace = false;
1211   SDLoc DL(Op);
1212   if (ISD::isUNINDEXEDLoad(Op.getNode())) {
1213     LoadSDNode *LD = cast<LoadSDNode>(Op);
1214     EVT MemVT = LD->getMemoryVT();
1215     ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1216                                                       : LD->getExtensionType();
1217     Replace = true;
1218     return DAG.getExtLoad(ExtType, DL, PVT,
1219                           LD->getChain(), LD->getBasePtr(),
1220                           MemVT, LD->getMemOperand());
1221   }
1222 
1223   unsigned Opc = Op.getOpcode();
1224   switch (Opc) {
1225   default: break;
1226   case ISD::AssertSext:
1227     if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
1228       return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
1229     break;
1230   case ISD::AssertZext:
1231     if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
1232       return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
1233     break;
1234   case ISD::Constant: {
1235     unsigned ExtOpc =
1236       Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1237     return DAG.getNode(ExtOpc, DL, PVT, Op);
1238   }
1239   }
1240 
1241   if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1242     return SDValue();
1243   return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1244 }
1245 
1246 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1247   if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1248     return SDValue();
1249   EVT OldVT = Op.getValueType();
1250   SDLoc DL(Op);
1251   bool Replace = false;
1252   SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1253   if (!NewOp.getNode())
1254     return SDValue();
1255   AddToWorklist(NewOp.getNode());
1256 
1257   if (Replace)
1258     ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1259   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1260                      DAG.getValueType(OldVT));
1261 }
1262 
1263 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1264   EVT OldVT = Op.getValueType();
1265   SDLoc DL(Op);
1266   bool Replace = false;
1267   SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1268   if (!NewOp.getNode())
1269     return SDValue();
1270   AddToWorklist(NewOp.getNode());
1271 
1272   if (Replace)
1273     ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1274   return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1275 }
1276 
1277 /// Promote the specified integer binary operation if the target indicates it is
1278 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1279 /// i32 since i16 instructions are longer.
1280 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1281   if (!LegalOperations)
1282     return SDValue();
1283 
1284   EVT VT = Op.getValueType();
1285   if (VT.isVector() || !VT.isInteger())
1286     return SDValue();
1287 
1288   // If operation type is 'undesirable', e.g. i16 on x86, consider
1289   // promoting it.
1290   unsigned Opc = Op.getOpcode();
1291   if (TLI.isTypeDesirableForOp(Opc, VT))
1292     return SDValue();
1293 
1294   EVT PVT = VT;
1295   // Consult target whether it is a good idea to promote this operation and
1296   // what's the right type to promote it to.
1297   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1298     assert(PVT != VT && "Don't know what type to promote to!");
1299 
1300     LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1301 
1302     bool Replace0 = false;
1303     SDValue N0 = Op.getOperand(0);
1304     SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1305 
1306     bool Replace1 = false;
1307     SDValue N1 = Op.getOperand(1);
1308     SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
1309     SDLoc DL(Op);
1310 
1311     SDValue RV =
1312         DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
1313 
1314     // We are always replacing N0/N1's use in N and only need additional
1315     // replacements if there are additional uses.
1316     // Note: We are checking uses of the *nodes* (SDNode) rather than values
1317     //       (SDValue) here because the node may reference multiple values
1318     //       (for example, the chain value of a load node).
1319     Replace0 &= !N0->hasOneUse();
1320     Replace1 &= (N0 != N1) && !N1->hasOneUse();
1321 
1322     // Combine Op here so it is preserved past replacements.
1323     CombineTo(Op.getNode(), RV);
1324 
1325     // If operands have a use ordering, make sure we deal with
1326     // predecessor first.
1327     if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
1328       std::swap(N0, N1);
1329       std::swap(NN0, NN1);
1330     }
1331 
1332     if (Replace0) {
1333       AddToWorklist(NN0.getNode());
1334       ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1335     }
1336     if (Replace1) {
1337       AddToWorklist(NN1.getNode());
1338       ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1339     }
1340     return Op;
1341   }
1342   return SDValue();
1343 }
1344 
1345 /// Promote the specified integer shift operation if the target indicates it is
1346 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1347 /// i32 since i16 instructions are longer.
1348 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1349   if (!LegalOperations)
1350     return SDValue();
1351 
1352   EVT VT = Op.getValueType();
1353   if (VT.isVector() || !VT.isInteger())
1354     return SDValue();
1355 
1356   // If operation type is 'undesirable', e.g. i16 on x86, consider
1357   // promoting it.
1358   unsigned Opc = Op.getOpcode();
1359   if (TLI.isTypeDesirableForOp(Opc, VT))
1360     return SDValue();
1361 
1362   EVT PVT = VT;
1363   // Consult target whether it is a good idea to promote this operation and
1364   // what's the right type to promote it to.
1365   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1366     assert(PVT != VT && "Don't know what type to promote to!");
1367 
1368     LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1369 
1370     bool Replace = false;
1371     SDValue N0 = Op.getOperand(0);
1372     SDValue N1 = Op.getOperand(1);
1373     if (Opc == ISD::SRA)
1374       N0 = SExtPromoteOperand(N0, PVT);
1375     else if (Opc == ISD::SRL)
1376       N0 = ZExtPromoteOperand(N0, PVT);
1377     else
1378       N0 = PromoteOperand(N0, PVT, Replace);
1379 
1380     if (!N0.getNode())
1381       return SDValue();
1382 
1383     SDLoc DL(Op);
1384     SDValue RV =
1385         DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
1386 
1387     if (Replace)
1388       ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1389 
1390     // Deal with Op being deleted.
1391     if (Op && Op.getOpcode() != ISD::DELETED_NODE)
1392       return RV;
1393   }
1394   return SDValue();
1395 }
1396 
1397 SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1398   if (!LegalOperations)
1399     return SDValue();
1400 
1401   EVT VT = Op.getValueType();
1402   if (VT.isVector() || !VT.isInteger())
1403     return SDValue();
1404 
1405   // If operation type is 'undesirable', e.g. i16 on x86, consider
1406   // promoting it.
1407   unsigned Opc = Op.getOpcode();
1408   if (TLI.isTypeDesirableForOp(Opc, VT))
1409     return SDValue();
1410 
1411   EVT PVT = VT;
1412   // Consult target whether it is a good idea to promote this operation and
1413   // what's the right type to promote it to.
1414   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1415     assert(PVT != VT && "Don't know what type to promote to!");
1416     // fold (aext (aext x)) -> (aext x)
1417     // fold (aext (zext x)) -> (zext x)
1418     // fold (aext (sext x)) -> (sext x)
1419     LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1420     return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1421   }
1422   return SDValue();
1423 }
1424 
1425 bool DAGCombiner::PromoteLoad(SDValue Op) {
1426   if (!LegalOperations)
1427     return false;
1428 
1429   if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1430     return false;
1431 
1432   EVT VT = Op.getValueType();
1433   if (VT.isVector() || !VT.isInteger())
1434     return false;
1435 
1436   // If operation type is 'undesirable', e.g. i16 on x86, consider
1437   // promoting it.
1438   unsigned Opc = Op.getOpcode();
1439   if (TLI.isTypeDesirableForOp(Opc, VT))
1440     return false;
1441 
1442   EVT PVT = VT;
1443   // Consult target whether it is a good idea to promote this operation and
1444   // what's the right type to promote it to.
1445   if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1446     assert(PVT != VT && "Don't know what type to promote to!");
1447 
1448     SDLoc DL(Op);
1449     SDNode *N = Op.getNode();
1450     LoadSDNode *LD = cast<LoadSDNode>(N);
1451     EVT MemVT = LD->getMemoryVT();
1452     ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1453                                                       : LD->getExtensionType();
1454     SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1455                                    LD->getChain(), LD->getBasePtr(),
1456                                    MemVT, LD->getMemOperand());
1457     SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1458 
1459     LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
1460                Result.getNode()->dump(&DAG); dbgs() << '\n');
1461     WorklistRemover DeadNodes(*this);
1462     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1463     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1464     deleteAndRecombine(N);
1465     AddToWorklist(Result.getNode());
1466     return true;
1467   }
1468   return false;
1469 }
1470 
1471 /// Recursively delete a node which has no uses and any operands for
1472 /// which it is the only use.
1473 ///
1474 /// Note that this both deletes the nodes and removes them from the worklist.
1475 /// It also adds any nodes who have had a user deleted to the worklist as they
1476 /// may now have only one use and subject to other combines.
1477 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1478   if (!N->use_empty())
1479     return false;
1480 
1481   SmallSetVector<SDNode *, 16> Nodes;
1482   Nodes.insert(N);
1483   do {
1484     N = Nodes.pop_back_val();
1485     if (!N)
1486       continue;
1487 
1488     if (N->use_empty()) {
1489       for (const SDValue &ChildN : N->op_values())
1490         Nodes.insert(ChildN.getNode());
1491 
1492       removeFromWorklist(N);
1493       DAG.DeleteNode(N);
1494     } else {
1495       AddToWorklist(N);
1496     }
1497   } while (!Nodes.empty());
1498   return true;
1499 }
1500 
1501 //===----------------------------------------------------------------------===//
1502 //  Main DAG Combiner implementation
1503 //===----------------------------------------------------------------------===//
1504 
1505 void DAGCombiner::Run(CombineLevel AtLevel) {
1506   // set the instance variables, so that the various visit routines may use it.
1507   Level = AtLevel;
1508   LegalDAG = Level >= AfterLegalizeDAG;
1509   LegalOperations = Level >= AfterLegalizeVectorOps;
1510   LegalTypes = Level >= AfterLegalizeTypes;
1511 
1512   WorklistInserter AddNodes(*this);
1513 
1514   // Add all the dag nodes to the worklist.
1515   for (SDNode &Node : DAG.allnodes())
1516     AddToWorklist(&Node);
1517 
1518   // Create a dummy node (which is not added to allnodes), that adds a reference
1519   // to the root node, preventing it from being deleted, and tracking any
1520   // changes of the root.
1521   HandleSDNode Dummy(DAG.getRoot());
1522 
1523   // While we have a valid worklist entry node, try to combine it.
1524   while (SDNode *N = getNextWorklistEntry()) {
1525     // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1526     // N is deleted from the DAG, since they too may now be dead or may have a
1527     // reduced number of uses, allowing other xforms.
1528     if (recursivelyDeleteUnusedNodes(N))
1529       continue;
1530 
1531     WorklistRemover DeadNodes(*this);
1532 
1533     // If this combine is running after legalizing the DAG, re-legalize any
1534     // nodes pulled off the worklist.
1535     if (LegalDAG) {
1536       SmallSetVector<SDNode *, 16> UpdatedNodes;
1537       bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1538 
1539       for (SDNode *LN : UpdatedNodes)
1540         AddToWorklistWithUsers(LN);
1541 
1542       if (!NIsValid)
1543         continue;
1544     }
1545 
1546     LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1547 
1548     // Add any operands of the new node which have not yet been combined to the
1549     // worklist as well. Because the worklist uniques things already, this
1550     // won't repeatedly process the same operand.
1551     CombinedNodes.insert(N);
1552     for (const SDValue &ChildN : N->op_values())
1553       if (!CombinedNodes.count(ChildN.getNode()))
1554         AddToWorklist(ChildN.getNode());
1555 
1556     SDValue RV = combine(N);
1557 
1558     if (!RV.getNode())
1559       continue;
1560 
1561     ++NodesCombined;
1562 
1563     // If we get back the same node we passed in, rather than a new node or
1564     // zero, we know that the node must have defined multiple values and
1565     // CombineTo was used.  Since CombineTo takes care of the worklist
1566     // mechanics for us, we have no work to do in this case.
1567     if (RV.getNode() == N)
1568       continue;
1569 
1570     assert(N->getOpcode() != ISD::DELETED_NODE &&
1571            RV.getOpcode() != ISD::DELETED_NODE &&
1572            "Node was deleted but visit returned new node!");
1573 
1574     LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
1575 
1576     if (N->getNumValues() == RV.getNode()->getNumValues())
1577       DAG.ReplaceAllUsesWith(N, RV.getNode());
1578     else {
1579       assert(N->getValueType(0) == RV.getValueType() &&
1580              N->getNumValues() == 1 && "Type mismatch");
1581       DAG.ReplaceAllUsesWith(N, &RV);
1582     }
1583 
1584     // Push the new node and any users onto the worklist.  Omit this if the
1585     // new node is the EntryToken (e.g. if a store managed to get optimized
1586     // out), because re-visiting the EntryToken and its users will not uncover
1587     // any additional opportunities, but there may be a large number of such
1588     // users, potentially causing compile time explosion.
1589     if (RV.getOpcode() != ISD::EntryToken) {
1590       AddToWorklist(RV.getNode());
1591       AddUsersToWorklist(RV.getNode());
1592     }
1593 
1594     // Finally, if the node is now dead, remove it from the graph.  The node
1595     // may not be dead if the replacement process recursively simplified to
1596     // something else needing this node. This will also take care of adding any
1597     // operands which have lost a user to the worklist.
1598     recursivelyDeleteUnusedNodes(N);
1599   }
1600 
1601   // If the root changed (e.g. it was a dead load, update the root).
1602   DAG.setRoot(Dummy.getValue());
1603   DAG.RemoveDeadNodes();
1604 }
1605 
1606 SDValue DAGCombiner::visit(SDNode *N) {
1607   switch (N->getOpcode()) {
1608   default: break;
1609   case ISD::TokenFactor:        return visitTokenFactor(N);
1610   case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1611   case ISD::ADD:                return visitADD(N);
1612   case ISD::SUB:                return visitSUB(N);
1613   case ISD::SADDSAT:
1614   case ISD::UADDSAT:            return visitADDSAT(N);
1615   case ISD::SSUBSAT:
1616   case ISD::USUBSAT:            return visitSUBSAT(N);
1617   case ISD::ADDC:               return visitADDC(N);
1618   case ISD::SADDO:
1619   case ISD::UADDO:              return visitADDO(N);
1620   case ISD::SUBC:               return visitSUBC(N);
1621   case ISD::SSUBO:
1622   case ISD::USUBO:              return visitSUBO(N);
1623   case ISD::ADDE:               return visitADDE(N);
1624   case ISD::ADDCARRY:           return visitADDCARRY(N);
1625   case ISD::SADDO_CARRY:        return visitSADDO_CARRY(N);
1626   case ISD::SUBE:               return visitSUBE(N);
1627   case ISD::SUBCARRY:           return visitSUBCARRY(N);
1628   case ISD::SSUBO_CARRY:        return visitSSUBO_CARRY(N);
1629   case ISD::SMULFIX:
1630   case ISD::SMULFIXSAT:
1631   case ISD::UMULFIX:
1632   case ISD::UMULFIXSAT:         return visitMULFIX(N);
1633   case ISD::MUL:                return visitMUL(N);
1634   case ISD::SDIV:               return visitSDIV(N);
1635   case ISD::UDIV:               return visitUDIV(N);
1636   case ISD::SREM:
1637   case ISD::UREM:               return visitREM(N);
1638   case ISD::MULHU:              return visitMULHU(N);
1639   case ISD::MULHS:              return visitMULHS(N);
1640   case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1641   case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1642   case ISD::SMULO:
1643   case ISD::UMULO:              return visitMULO(N);
1644   case ISD::SMIN:
1645   case ISD::SMAX:
1646   case ISD::UMIN:
1647   case ISD::UMAX:               return visitIMINMAX(N);
1648   case ISD::AND:                return visitAND(N);
1649   case ISD::OR:                 return visitOR(N);
1650   case ISD::XOR:                return visitXOR(N);
1651   case ISD::SHL:                return visitSHL(N);
1652   case ISD::SRA:                return visitSRA(N);
1653   case ISD::SRL:                return visitSRL(N);
1654   case ISD::ROTR:
1655   case ISD::ROTL:               return visitRotate(N);
1656   case ISD::FSHL:
1657   case ISD::FSHR:               return visitFunnelShift(N);
1658   case ISD::ABS:                return visitABS(N);
1659   case ISD::BSWAP:              return visitBSWAP(N);
1660   case ISD::BITREVERSE:         return visitBITREVERSE(N);
1661   case ISD::CTLZ:               return visitCTLZ(N);
1662   case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1663   case ISD::CTTZ:               return visitCTTZ(N);
1664   case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1665   case ISD::CTPOP:              return visitCTPOP(N);
1666   case ISD::SELECT:             return visitSELECT(N);
1667   case ISD::VSELECT:            return visitVSELECT(N);
1668   case ISD::SELECT_CC:          return visitSELECT_CC(N);
1669   case ISD::SETCC:              return visitSETCC(N);
1670   case ISD::SETCCCARRY:         return visitSETCCCARRY(N);
1671   case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1672   case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1673   case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1674   case ISD::AssertSext:
1675   case ISD::AssertZext:         return visitAssertExt(N);
1676   case ISD::AssertAlign:        return visitAssertAlign(N);
1677   case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1678   case ISD::SIGN_EXTEND_VECTOR_INREG:
1679   case ISD::ZERO_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N);
1680   case ISD::TRUNCATE:           return visitTRUNCATE(N);
1681   case ISD::BITCAST:            return visitBITCAST(N);
1682   case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1683   case ISD::FADD:               return visitFADD(N);
1684   case ISD::STRICT_FADD:        return visitSTRICT_FADD(N);
1685   case ISD::FSUB:               return visitFSUB(N);
1686   case ISD::FMUL:               return visitFMUL(N);
1687   case ISD::FMA:                return visitFMA(N);
1688   case ISD::FDIV:               return visitFDIV(N);
1689   case ISD::FREM:               return visitFREM(N);
1690   case ISD::FSQRT:              return visitFSQRT(N);
1691   case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1692   case ISD::FPOW:               return visitFPOW(N);
1693   case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1694   case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1695   case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1696   case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1697   case ISD::FP_ROUND:           return visitFP_ROUND(N);
1698   case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1699   case ISD::FNEG:               return visitFNEG(N);
1700   case ISD::FABS:               return visitFABS(N);
1701   case ISD::FFLOOR:             return visitFFLOOR(N);
1702   case ISD::FMINNUM:            return visitFMINNUM(N);
1703   case ISD::FMAXNUM:            return visitFMAXNUM(N);
1704   case ISD::FMINIMUM:           return visitFMINIMUM(N);
1705   case ISD::FMAXIMUM:           return visitFMAXIMUM(N);
1706   case ISD::FCEIL:              return visitFCEIL(N);
1707   case ISD::FTRUNC:             return visitFTRUNC(N);
1708   case ISD::BRCOND:             return visitBRCOND(N);
1709   case ISD::BR_CC:              return visitBR_CC(N);
1710   case ISD::LOAD:               return visitLOAD(N);
1711   case ISD::STORE:              return visitSTORE(N);
1712   case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1713   case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1714   case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1715   case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1716   case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1717   case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1718   case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N);
1719   case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N);
1720   case ISD::MGATHER:            return visitMGATHER(N);
1721   case ISD::MLOAD:              return visitMLOAD(N);
1722   case ISD::MSCATTER:           return visitMSCATTER(N);
1723   case ISD::MSTORE:             return visitMSTORE(N);
1724   case ISD::LIFETIME_END:       return visitLIFETIME_END(N);
1725   case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N);
1726   case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N);
1727   case ISD::FREEZE:             return visitFREEZE(N);
1728   case ISD::VECREDUCE_FADD:
1729   case ISD::VECREDUCE_FMUL:
1730   case ISD::VECREDUCE_ADD:
1731   case ISD::VECREDUCE_MUL:
1732   case ISD::VECREDUCE_AND:
1733   case ISD::VECREDUCE_OR:
1734   case ISD::VECREDUCE_XOR:
1735   case ISD::VECREDUCE_SMAX:
1736   case ISD::VECREDUCE_SMIN:
1737   case ISD::VECREDUCE_UMAX:
1738   case ISD::VECREDUCE_UMIN:
1739   case ISD::VECREDUCE_FMAX:
1740   case ISD::VECREDUCE_FMIN:     return visitVECREDUCE(N);
1741   }
1742   return SDValue();
1743 }
1744 
1745 SDValue DAGCombiner::combine(SDNode *N) {
1746   SDValue RV;
1747   if (!DisableGenericCombines)
1748     RV = visit(N);
1749 
1750   // If nothing happened, try a target-specific DAG combine.
1751   if (!RV.getNode()) {
1752     assert(N->getOpcode() != ISD::DELETED_NODE &&
1753            "Node was deleted but visit returned NULL!");
1754 
1755     if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1756         TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1757 
1758       // Expose the DAG combiner to the target combiner impls.
1759       TargetLowering::DAGCombinerInfo
1760         DagCombineInfo(DAG, Level, false, this);
1761 
1762       RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1763     }
1764   }
1765 
1766   // If nothing happened still, try promoting the operation.
1767   if (!RV.getNode()) {
1768     switch (N->getOpcode()) {
1769     default: break;
1770     case ISD::ADD:
1771     case ISD::SUB:
1772     case ISD::MUL:
1773     case ISD::AND:
1774     case ISD::OR:
1775     case ISD::XOR:
1776       RV = PromoteIntBinOp(SDValue(N, 0));
1777       break;
1778     case ISD::SHL:
1779     case ISD::SRA:
1780     case ISD::SRL:
1781       RV = PromoteIntShiftOp(SDValue(N, 0));
1782       break;
1783     case ISD::SIGN_EXTEND:
1784     case ISD::ZERO_EXTEND:
1785     case ISD::ANY_EXTEND:
1786       RV = PromoteExtend(SDValue(N, 0));
1787       break;
1788     case ISD::LOAD:
1789       if (PromoteLoad(SDValue(N, 0)))
1790         RV = SDValue(N, 0);
1791       break;
1792     }
1793   }
1794 
1795   // If N is a commutative binary node, try to eliminate it if the commuted
1796   // version is already present in the DAG.
1797   if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
1798       N->getNumValues() == 1) {
1799     SDValue N0 = N->getOperand(0);
1800     SDValue N1 = N->getOperand(1);
1801 
1802     // Constant operands are canonicalized to RHS.
1803     if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
1804       SDValue Ops[] = {N1, N0};
1805       SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1806                                             N->getFlags());
1807       if (CSENode)
1808         return SDValue(CSENode, 0);
1809     }
1810   }
1811 
1812   return RV;
1813 }
1814 
1815 /// Given a node, return its input chain if it has one, otherwise return a null
1816 /// sd operand.
1817 static SDValue getInputChainForNode(SDNode *N) {
1818   if (unsigned NumOps = N->getNumOperands()) {
1819     if (N->getOperand(0).getValueType() == MVT::Other)
1820       return N->getOperand(0);
1821     if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1822       return N->getOperand(NumOps-1);
1823     for (unsigned i = 1; i < NumOps-1; ++i)
1824       if (N->getOperand(i).getValueType() == MVT::Other)
1825         return N->getOperand(i);
1826   }
1827   return SDValue();
1828 }
1829 
1830 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1831   // If N has two operands, where one has an input chain equal to the other,
1832   // the 'other' chain is redundant.
1833   if (N->getNumOperands() == 2) {
1834     if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1835       return N->getOperand(0);
1836     if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1837       return N->getOperand(1);
1838   }
1839 
1840   // Don't simplify token factors if optnone.
1841   if (OptLevel == CodeGenOpt::None)
1842     return SDValue();
1843 
1844   // Don't simplify the token factor if the node itself has too many operands.
1845   if (N->getNumOperands() > TokenFactorInlineLimit)
1846     return SDValue();
1847 
1848   // If the sole user is a token factor, we should make sure we have a
1849   // chance to merge them together. This prevents TF chains from inhibiting
1850   // optimizations.
1851   if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
1852     AddToWorklist(*(N->use_begin()));
1853 
1854   SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1855   SmallVector<SDValue, 8> Ops;      // Ops for replacing token factor.
1856   SmallPtrSet<SDNode*, 16> SeenOps;
1857   bool Changed = false;             // If we should replace this token factor.
1858 
1859   // Start out with this token factor.
1860   TFs.push_back(N);
1861 
1862   // Iterate through token factors.  The TFs grows when new token factors are
1863   // encountered.
1864   for (unsigned i = 0; i < TFs.size(); ++i) {
1865     // Limit number of nodes to inline, to avoid quadratic compile times.
1866     // We have to add the outstanding Token Factors to Ops, otherwise we might
1867     // drop Ops from the resulting Token Factors.
1868     if (Ops.size() > TokenFactorInlineLimit) {
1869       for (unsigned j = i; j < TFs.size(); j++)
1870         Ops.emplace_back(TFs[j], 0);
1871       // Drop unprocessed Token Factors from TFs, so we do not add them to the
1872       // combiner worklist later.
1873       TFs.resize(i);
1874       break;
1875     }
1876 
1877     SDNode *TF = TFs[i];
1878     // Check each of the operands.
1879     for (const SDValue &Op : TF->op_values()) {
1880       switch (Op.getOpcode()) {
1881       case ISD::EntryToken:
1882         // Entry tokens don't need to be added to the list. They are
1883         // redundant.
1884         Changed = true;
1885         break;
1886 
1887       case ISD::TokenFactor:
1888         if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
1889           // Queue up for processing.
1890           TFs.push_back(Op.getNode());
1891           Changed = true;
1892           break;
1893         }
1894         LLVM_FALLTHROUGH;
1895 
1896       default:
1897         // Only add if it isn't already in the list.
1898         if (SeenOps.insert(Op.getNode()).second)
1899           Ops.push_back(Op);
1900         else
1901           Changed = true;
1902         break;
1903       }
1904     }
1905   }
1906 
1907   // Re-visit inlined Token Factors, to clean them up in case they have been
1908   // removed. Skip the first Token Factor, as this is the current node.
1909   for (unsigned i = 1, e = TFs.size(); i < e; i++)
1910     AddToWorklist(TFs[i]);
1911 
1912   // Remove Nodes that are chained to another node in the list. Do so
1913   // by walking up chains breath-first stopping when we've seen
1914   // another operand. In general we must climb to the EntryNode, but we can exit
1915   // early if we find all remaining work is associated with just one operand as
1916   // no further pruning is possible.
1917 
1918   // List of nodes to search through and original Ops from which they originate.
1919   SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
1920   SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
1921   SmallPtrSet<SDNode *, 16> SeenChains;
1922   bool DidPruneOps = false;
1923 
1924   unsigned NumLeftToConsider = 0;
1925   for (const SDValue &Op : Ops) {
1926     Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
1927     OpWorkCount.push_back(1);
1928   }
1929 
1930   auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
1931     // If this is an Op, we can remove the op from the list. Remark any
1932     // search associated with it as from the current OpNumber.
1933     if (SeenOps.contains(Op)) {
1934       Changed = true;
1935       DidPruneOps = true;
1936       unsigned OrigOpNumber = 0;
1937       while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
1938         OrigOpNumber++;
1939       assert((OrigOpNumber != Ops.size()) &&
1940              "expected to find TokenFactor Operand");
1941       // Re-mark worklist from OrigOpNumber to OpNumber
1942       for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
1943         if (Worklist[i].second == OrigOpNumber) {
1944           Worklist[i].second = OpNumber;
1945         }
1946       }
1947       OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
1948       OpWorkCount[OrigOpNumber] = 0;
1949       NumLeftToConsider--;
1950     }
1951     // Add if it's a new chain
1952     if (SeenChains.insert(Op).second) {
1953       OpWorkCount[OpNumber]++;
1954       Worklist.push_back(std::make_pair(Op, OpNumber));
1955     }
1956   };
1957 
1958   for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
1959     // We need at least be consider at least 2 Ops to prune.
1960     if (NumLeftToConsider <= 1)
1961       break;
1962     auto CurNode = Worklist[i].first;
1963     auto CurOpNumber = Worklist[i].second;
1964     assert((OpWorkCount[CurOpNumber] > 0) &&
1965            "Node should not appear in worklist");
1966     switch (CurNode->getOpcode()) {
1967     case ISD::EntryToken:
1968       // Hitting EntryToken is the only way for the search to terminate without
1969       // hitting
1970       // another operand's search. Prevent us from marking this operand
1971       // considered.
1972       NumLeftToConsider++;
1973       break;
1974     case ISD::TokenFactor:
1975       for (const SDValue &Op : CurNode->op_values())
1976         AddToWorklist(i, Op.getNode(), CurOpNumber);
1977       break;
1978     case ISD::LIFETIME_START:
1979     case ISD::LIFETIME_END:
1980     case ISD::CopyFromReg:
1981     case ISD::CopyToReg:
1982       AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
1983       break;
1984     default:
1985       if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
1986         AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
1987       break;
1988     }
1989     OpWorkCount[CurOpNumber]--;
1990     if (OpWorkCount[CurOpNumber] == 0)
1991       NumLeftToConsider--;
1992   }
1993 
1994   // If we've changed things around then replace token factor.
1995   if (Changed) {
1996     SDValue Result;
1997     if (Ops.empty()) {
1998       // The entry token is the only possible outcome.
1999       Result = DAG.getEntryNode();
2000     } else {
2001       if (DidPruneOps) {
2002         SmallVector<SDValue, 8> PrunedOps;
2003         //
2004         for (const SDValue &Op : Ops) {
2005           if (SeenChains.count(Op.getNode()) == 0)
2006             PrunedOps.push_back(Op);
2007         }
2008         Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
2009       } else {
2010         Result = DAG.getTokenFactor(SDLoc(N), Ops);
2011       }
2012     }
2013     return Result;
2014   }
2015   return SDValue();
2016 }
2017 
2018 /// MERGE_VALUES can always be eliminated.
2019 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
2020   WorklistRemover DeadNodes(*this);
2021   // Replacing results may cause a different MERGE_VALUES to suddenly
2022   // be CSE'd with N, and carry its uses with it. Iterate until no
2023   // uses remain, to ensure that the node can be safely deleted.
2024   // First add the users of this node to the work list so that they
2025   // can be tried again once they have new operands.
2026   AddUsersToWorklist(N);
2027   do {
2028     // Do as a single replacement to avoid rewalking use lists.
2029     SmallVector<SDValue, 8> Ops;
2030     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2031       Ops.push_back(N->getOperand(i));
2032     DAG.ReplaceAllUsesWith(N, Ops.data());
2033   } while (!N->use_empty());
2034   deleteAndRecombine(N);
2035   return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2036 }
2037 
2038 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2039 /// ConstantSDNode pointer else nullptr.
2040 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
2041   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
2042   return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
2043 }
2044 
2045 /// Return true if 'Use' is a load or a store that uses N as its base pointer
2046 /// and that N may be folded in the load / store addressing mode.
2047 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG,
2048                                     const TargetLowering &TLI) {
2049   EVT VT;
2050   unsigned AS;
2051 
2052   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
2053     if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
2054       return false;
2055     VT = LD->getMemoryVT();
2056     AS = LD->getAddressSpace();
2057   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
2058     if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
2059       return false;
2060     VT = ST->getMemoryVT();
2061     AS = ST->getAddressSpace();
2062   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) {
2063     if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
2064       return false;
2065     VT = LD->getMemoryVT();
2066     AS = LD->getAddressSpace();
2067   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) {
2068     if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
2069       return false;
2070     VT = ST->getMemoryVT();
2071     AS = ST->getAddressSpace();
2072   } else
2073     return false;
2074 
2075   TargetLowering::AddrMode AM;
2076   if (N->getOpcode() == ISD::ADD) {
2077     AM.HasBaseReg = true;
2078     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2079     if (Offset)
2080       // [reg +/- imm]
2081       AM.BaseOffs = Offset->getSExtValue();
2082     else
2083       // [reg +/- reg]
2084       AM.Scale = 1;
2085   } else if (N->getOpcode() == ISD::SUB) {
2086     AM.HasBaseReg = true;
2087     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2088     if (Offset)
2089       // [reg +/- imm]
2090       AM.BaseOffs = -Offset->getSExtValue();
2091     else
2092       // [reg +/- reg]
2093       AM.Scale = 1;
2094   } else
2095     return false;
2096 
2097   return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
2098                                    VT.getTypeForEVT(*DAG.getContext()), AS);
2099 }
2100 
2101 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
2102   assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
2103          "Unexpected binary operator");
2104 
2105   // Don't do this unless the old select is going away. We want to eliminate the
2106   // binary operator, not replace a binop with a select.
2107   // TODO: Handle ISD::SELECT_CC.
2108   unsigned SelOpNo = 0;
2109   SDValue Sel = BO->getOperand(0);
2110   if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
2111     SelOpNo = 1;
2112     Sel = BO->getOperand(1);
2113   }
2114 
2115   if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
2116     return SDValue();
2117 
2118   SDValue CT = Sel.getOperand(1);
2119   if (!isConstantOrConstantVector(CT, true) &&
2120       !DAG.isConstantFPBuildVectorOrConstantFP(CT))
2121     return SDValue();
2122 
2123   SDValue CF = Sel.getOperand(2);
2124   if (!isConstantOrConstantVector(CF, true) &&
2125       !DAG.isConstantFPBuildVectorOrConstantFP(CF))
2126     return SDValue();
2127 
2128   // Bail out if any constants are opaque because we can't constant fold those.
2129   // The exception is "and" and "or" with either 0 or -1 in which case we can
2130   // propagate non constant operands into select. I.e.:
2131   // and (select Cond, 0, -1), X --> select Cond, 0, X
2132   // or X, (select Cond, -1, 0) --> select Cond, -1, X
2133   auto BinOpcode = BO->getOpcode();
2134   bool CanFoldNonConst =
2135       (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
2136       (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
2137       (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
2138 
2139   SDValue CBO = BO->getOperand(SelOpNo ^ 1);
2140   if (!CanFoldNonConst &&
2141       !isConstantOrConstantVector(CBO, true) &&
2142       !DAG.isConstantFPBuildVectorOrConstantFP(CBO))
2143     return SDValue();
2144 
2145   EVT VT = BO->getValueType(0);
2146 
2147   // We have a select-of-constants followed by a binary operator with a
2148   // constant. Eliminate the binop by pulling the constant math into the select.
2149   // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2150   SDLoc DL(Sel);
2151   SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
2152                           : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
2153   if (!CanFoldNonConst && !NewCT.isUndef() &&
2154       !isConstantOrConstantVector(NewCT, true) &&
2155       !DAG.isConstantFPBuildVectorOrConstantFP(NewCT))
2156     return SDValue();
2157 
2158   SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
2159                           : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
2160   if (!CanFoldNonConst && !NewCF.isUndef() &&
2161       !isConstantOrConstantVector(NewCF, true) &&
2162       !DAG.isConstantFPBuildVectorOrConstantFP(NewCF))
2163     return SDValue();
2164 
2165   SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
2166   SelectOp->setFlags(BO->getFlags());
2167   return SelectOp;
2168 }
2169 
2170 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
2171   assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2172          "Expecting add or sub");
2173 
2174   // Match a constant operand and a zext operand for the math instruction:
2175   // add Z, C
2176   // sub C, Z
2177   bool IsAdd = N->getOpcode() == ISD::ADD;
2178   SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
2179   SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
2180   auto *CN = dyn_cast<ConstantSDNode>(C);
2181   if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
2182     return SDValue();
2183 
2184   // Match the zext operand as a setcc of a boolean.
2185   if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
2186       Z.getOperand(0).getValueType() != MVT::i1)
2187     return SDValue();
2188 
2189   // Match the compare as: setcc (X & 1), 0, eq.
2190   SDValue SetCC = Z.getOperand(0);
2191   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
2192   if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
2193       SetCC.getOperand(0).getOpcode() != ISD::AND ||
2194       !isOneConstant(SetCC.getOperand(0).getOperand(1)))
2195     return SDValue();
2196 
2197   // We are adding/subtracting a constant and an inverted low bit. Turn that
2198   // into a subtract/add of the low bit with incremented/decremented constant:
2199   // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2200   // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2201   EVT VT = C.getValueType();
2202   SDLoc DL(N);
2203   SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
2204   SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
2205                        DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
2206   return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
2207 }
2208 
2209 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2210 /// a shift and add with a different constant.
2211 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
2212   assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2213          "Expecting add or sub");
2214 
2215   // We need a constant operand for the add/sub, and the other operand is a
2216   // logical shift right: add (srl), C or sub C, (srl).
2217   bool IsAdd = N->getOpcode() == ISD::ADD;
2218   SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
2219   SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
2220   if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) ||
2221       ShiftOp.getOpcode() != ISD::SRL)
2222     return SDValue();
2223 
2224   // The shift must be of a 'not' value.
2225   SDValue Not = ShiftOp.getOperand(0);
2226   if (!Not.hasOneUse() || !isBitwiseNot(Not))
2227     return SDValue();
2228 
2229   // The shift must be moving the sign bit to the least-significant-bit.
2230   EVT VT = ShiftOp.getValueType();
2231   SDValue ShAmt = ShiftOp.getOperand(1);
2232   ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2233   if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
2234     return SDValue();
2235 
2236   // Eliminate the 'not' by adjusting the shift and add/sub constant:
2237   // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2238   // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2239   SDLoc DL(N);
2240   auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
2241   SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
2242   if (SDValue NewC =
2243           DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT,
2244                                      {ConstantOp, DAG.getConstant(1, DL, VT)}))
2245     return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC);
2246   return SDValue();
2247 }
2248 
2249 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2250 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2251 /// are no common bits set in the operands).
2252 SDValue DAGCombiner::visitADDLike(SDNode *N) {
2253   SDValue N0 = N->getOperand(0);
2254   SDValue N1 = N->getOperand(1);
2255   EVT VT = N0.getValueType();
2256   SDLoc DL(N);
2257 
2258   // fold vector ops
2259   if (VT.isVector()) {
2260     if (SDValue FoldedVOp = SimplifyVBinOp(N))
2261       return FoldedVOp;
2262 
2263     // fold (add x, 0) -> x, vector edition
2264     if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
2265       return N0;
2266     if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
2267       return N1;
2268   }
2269 
2270   // fold (add x, undef) -> undef
2271   if (N0.isUndef())
2272     return N0;
2273 
2274   if (N1.isUndef())
2275     return N1;
2276 
2277   if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2278     // canonicalize constant to RHS
2279     if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2280       return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
2281     // fold (add c1, c2) -> c1+c2
2282     return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1});
2283   }
2284 
2285   // fold (add x, 0) -> x
2286   if (isNullConstant(N1))
2287     return N0;
2288 
2289   if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
2290     // fold ((A-c1)+c2) -> (A+(c2-c1))
2291     if (N0.getOpcode() == ISD::SUB &&
2292         isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
2293       SDValue Sub =
2294           DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)});
2295       assert(Sub && "Constant folding failed");
2296       return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
2297     }
2298 
2299     // fold ((c1-A)+c2) -> (c1+c2)-A
2300     if (N0.getOpcode() == ISD::SUB &&
2301         isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
2302       SDValue Add =
2303           DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)});
2304       assert(Add && "Constant folding failed");
2305       return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2306     }
2307 
2308     // add (sext i1 X), 1 -> zext (not i1 X)
2309     // We don't transform this pattern:
2310     //   add (zext i1 X), -1 -> sext (not i1 X)
2311     // because most (?) targets generate better code for the zext form.
2312     if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
2313         isOneOrOneSplat(N1)) {
2314       SDValue X = N0.getOperand(0);
2315       if ((!LegalOperations ||
2316            (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
2317             TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
2318           X.getScalarValueSizeInBits() == 1) {
2319         SDValue Not = DAG.getNOT(DL, X, X.getValueType());
2320         return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
2321       }
2322     }
2323 
2324     // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is
2325     // equivalent to (add x, c0).
2326     if (N0.getOpcode() == ISD::OR &&
2327         isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) &&
2328         DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
2329       if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT,
2330                                                     {N1, N0.getOperand(1)}))
2331         return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
2332     }
2333   }
2334 
2335   if (SDValue NewSel = foldBinOpIntoSelect(N))
2336     return NewSel;
2337 
2338   // reassociate add
2339   if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) {
2340     if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
2341       return RADD;
2342 
2343     // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
2344     // equivalent to (add x, c).
2345     auto ReassociateAddOr = [&](SDValue N0, SDValue N1) {
2346       if (N0.getOpcode() == ISD::OR && N0.hasOneUse() &&
2347           isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) &&
2348           DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
2349         return DAG.getNode(ISD::ADD, DL, VT,
2350                            DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
2351                            N0.getOperand(1));
2352       }
2353       return SDValue();
2354     };
2355     if (SDValue Add = ReassociateAddOr(N0, N1))
2356       return Add;
2357     if (SDValue Add = ReassociateAddOr(N1, N0))
2358       return Add;
2359   }
2360   // fold ((0-A) + B) -> B-A
2361   if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
2362     return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2363 
2364   // fold (A + (0-B)) -> A-B
2365   if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
2366     return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
2367 
2368   // fold (A+(B-A)) -> B
2369   if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
2370     return N1.getOperand(0);
2371 
2372   // fold ((B-A)+A) -> B
2373   if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
2374     return N0.getOperand(0);
2375 
2376   // fold ((A-B)+(C-A)) -> (C-B)
2377   if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2378       N0.getOperand(0) == N1.getOperand(1))
2379     return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2380                        N0.getOperand(1));
2381 
2382   // fold ((A-B)+(B-C)) -> (A-C)
2383   if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2384       N0.getOperand(1) == N1.getOperand(0))
2385     return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
2386                        N1.getOperand(1));
2387 
2388   // fold (A+(B-(A+C))) to (B-C)
2389   if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2390       N0 == N1.getOperand(1).getOperand(0))
2391     return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2392                        N1.getOperand(1).getOperand(1));
2393 
2394   // fold (A+(B-(C+A))) to (B-C)
2395   if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2396       N0 == N1.getOperand(1).getOperand(1))
2397     return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2398                        N1.getOperand(1).getOperand(0));
2399 
2400   // fold (A+((B-A)+or-C)) to (B+or-C)
2401   if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
2402       N1.getOperand(0).getOpcode() == ISD::SUB &&
2403       N0 == N1.getOperand(0).getOperand(1))
2404     return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
2405                        N1.getOperand(1));
2406 
2407   // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2408   if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
2409     SDValue N00 = N0.getOperand(0);
2410     SDValue N01 = N0.getOperand(1);
2411     SDValue N10 = N1.getOperand(0);
2412     SDValue N11 = N1.getOperand(1);
2413 
2414     if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
2415       return DAG.getNode(ISD::SUB, DL, VT,
2416                          DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
2417                          DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
2418   }
2419 
2420   // fold (add (umax X, C), -C) --> (usubsat X, C)
2421   if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
2422     auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
2423       return (!Max && !Op) ||
2424              (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
2425     };
2426     if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
2427                                   /*AllowUndefs*/ true))
2428       return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
2429                          N0.getOperand(1));
2430   }
2431 
2432   if (SimplifyDemandedBits(SDValue(N, 0)))
2433     return SDValue(N, 0);
2434 
2435   if (isOneOrOneSplat(N1)) {
2436     // fold (add (xor a, -1), 1) -> (sub 0, a)
2437     if (isBitwiseNot(N0))
2438       return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
2439                          N0.getOperand(0));
2440 
2441     // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2442     if (N0.getOpcode() == ISD::ADD) {
2443       SDValue A, Xor;
2444 
2445       if (isBitwiseNot(N0.getOperand(0))) {
2446         A = N0.getOperand(1);
2447         Xor = N0.getOperand(0);
2448       } else if (isBitwiseNot(N0.getOperand(1))) {
2449         A = N0.getOperand(0);
2450         Xor = N0.getOperand(1);
2451       }
2452 
2453       if (Xor)
2454         return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
2455     }
2456 
2457     // Look for:
2458     //   add (add x, y), 1
2459     // And if the target does not like this form then turn into:
2460     //   sub y, (xor x, -1)
2461     if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2462         N0.getOpcode() == ISD::ADD) {
2463       SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2464                                 DAG.getAllOnesConstant(DL, VT));
2465       return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
2466     }
2467   }
2468 
2469   // (x - y) + -1  ->  add (xor y, -1), x
2470   if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2471       isAllOnesOrAllOnesSplat(N1)) {
2472     SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
2473     return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
2474   }
2475 
2476   if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
2477     return Combined;
2478 
2479   if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
2480     return Combined;
2481 
2482   return SDValue();
2483 }
2484 
2485 SDValue DAGCombiner::visitADD(SDNode *N) {
2486   SDValue N0 = N->getOperand(0);
2487   SDValue N1 = N->getOperand(1);
2488   EVT VT = N0.getValueType();
2489   SDLoc DL(N);
2490 
2491   if (SDValue Combined = visitADDLike(N))
2492     return Combined;
2493 
2494   if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
2495     return V;
2496 
2497   if (SDValue V = foldAddSubOfSignBit(N, DAG))
2498     return V;
2499 
2500   // fold (a+b) -> (a|b) iff a and b share no bits.
2501   if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
2502       DAG.haveNoCommonBitsSet(N0, N1))
2503     return DAG.getNode(ISD::OR, DL, VT, N0, N1);
2504 
2505   // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
2506   if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
2507     const APInt &C0 = N0->getConstantOperandAPInt(0);
2508     const APInt &C1 = N1->getConstantOperandAPInt(0);
2509     return DAG.getVScale(DL, VT, C0 + C1);
2510   }
2511 
2512   // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
2513   if ((N0.getOpcode() == ISD::ADD) &&
2514       (N0.getOperand(1).getOpcode() == ISD::VSCALE) &&
2515       (N1.getOpcode() == ISD::VSCALE)) {
2516     const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0);
2517     const APInt &VS1 = N1->getConstantOperandAPInt(0);
2518     SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1);
2519     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS);
2520   }
2521 
2522   // Fold (add step_vector(c1), step_vector(c2)  to step_vector(c1+c2))
2523   if (N0.getOpcode() == ISD::STEP_VECTOR &&
2524       N1.getOpcode() == ISD::STEP_VECTOR) {
2525     const APInt &C0 = N0->getConstantOperandAPInt(0);
2526     const APInt &C1 = N1->getConstantOperandAPInt(0);
2527     APInt NewStep = C0 + C1;
2528     return DAG.getStepVector(DL, VT, NewStep);
2529   }
2530 
2531   // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
2532   if ((N0.getOpcode() == ISD::ADD) &&
2533       (N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR) &&
2534       (N1.getOpcode() == ISD::STEP_VECTOR)) {
2535     const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0);
2536     const APInt &SV1 = N1->getConstantOperandAPInt(0);
2537     APInt NewStep = SV0 + SV1;
2538     SDValue SV = DAG.getStepVector(DL, VT, NewStep);
2539     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV);
2540   }
2541 
2542   return SDValue();
2543 }
2544 
2545 SDValue DAGCombiner::visitADDSAT(SDNode *N) {
2546   unsigned Opcode = N->getOpcode();
2547   SDValue N0 = N->getOperand(0);
2548   SDValue N1 = N->getOperand(1);
2549   EVT VT = N0.getValueType();
2550   SDLoc DL(N);
2551 
2552   // fold vector ops
2553   if (VT.isVector()) {
2554     // TODO SimplifyVBinOp
2555 
2556     // fold (add_sat x, 0) -> x, vector edition
2557     if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
2558       return N0;
2559     if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
2560       return N1;
2561   }
2562 
2563   // fold (add_sat x, undef) -> -1
2564   if (N0.isUndef() || N1.isUndef())
2565     return DAG.getAllOnesConstant(DL, VT);
2566 
2567   if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2568     // canonicalize constant to RHS
2569     if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2570       return DAG.getNode(Opcode, DL, VT, N1, N0);
2571     // fold (add_sat c1, c2) -> c3
2572     return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1});
2573   }
2574 
2575   // fold (add_sat x, 0) -> x
2576   if (isNullConstant(N1))
2577     return N0;
2578 
2579   // If it cannot overflow, transform into an add.
2580   if (Opcode == ISD::UADDSAT)
2581     if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2582       return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
2583 
2584   return SDValue();
2585 }
2586 
2587 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
2588   bool Masked = false;
2589 
2590   // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2591   while (true) {
2592     if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
2593       V = V.getOperand(0);
2594       continue;
2595     }
2596 
2597     if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
2598       Masked = true;
2599       V = V.getOperand(0);
2600       continue;
2601     }
2602 
2603     break;
2604   }
2605 
2606   // If this is not a carry, return.
2607   if (V.getResNo() != 1)
2608     return SDValue();
2609 
2610   if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
2611       V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
2612     return SDValue();
2613 
2614   EVT VT = V.getNode()->getValueType(0);
2615   if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
2616     return SDValue();
2617 
2618   // If the result is masked, then no matter what kind of bool it is we can
2619   // return. If it isn't, then we need to make sure the bool type is either 0 or
2620   // 1 and not other values.
2621   if (Masked ||
2622       TLI.getBooleanContents(V.getValueType()) ==
2623           TargetLoweringBase::ZeroOrOneBooleanContent)
2624     return V;
2625 
2626   return SDValue();
2627 }
2628 
2629 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2630 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2631 /// the opcode and bypass the mask operation.
2632 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
2633                                  SelectionDAG &DAG, const SDLoc &DL) {
2634   if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
2635     return SDValue();
2636 
2637   EVT VT = N0.getValueType();
2638   if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
2639     return SDValue();
2640 
2641   // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2642   // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2643   return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
2644 }
2645 
2646 /// Helper for doing combines based on N0 and N1 being added to each other.
2647 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
2648                                           SDNode *LocReference) {
2649   EVT VT = N0.getValueType();
2650   SDLoc DL(LocReference);
2651 
2652   // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2653   if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
2654       isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
2655     return DAG.getNode(ISD::SUB, DL, VT, N0,
2656                        DAG.getNode(ISD::SHL, DL, VT,
2657                                    N1.getOperand(0).getOperand(1),
2658                                    N1.getOperand(1)));
2659 
2660   if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
2661     return V;
2662 
2663   // Look for:
2664   //   add (add x, 1), y
2665   // And if the target does not like this form then turn into:
2666   //   sub y, (xor x, -1)
2667   if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2668       N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) {
2669     SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2670                               DAG.getAllOnesConstant(DL, VT));
2671     return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
2672   }
2673 
2674   // Hoist one-use subtraction by non-opaque constant:
2675   //   (x - C) + y  ->  (x + y) - C
2676   // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2677   if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2678       isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
2679     SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
2680     return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2681   }
2682   // Hoist one-use subtraction from non-opaque constant:
2683   //   (C - x) + y  ->  (y - x) + C
2684   if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2685       isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
2686     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2687     return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
2688   }
2689 
2690   // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2691   // rather than 'add 0/-1' (the zext should get folded).
2692   // add (sext i1 Y), X --> sub X, (zext i1 Y)
2693   if (N0.getOpcode() == ISD::SIGN_EXTEND &&
2694       N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
2695       TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
2696     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
2697     return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
2698   }
2699 
2700   // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2701   if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2702     VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
2703     if (TN->getVT() == MVT::i1) {
2704       SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
2705                                  DAG.getConstant(1, DL, VT));
2706       return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
2707     }
2708   }
2709 
2710   // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2711   if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
2712       N1.getResNo() == 0)
2713     return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
2714                        N0, N1.getOperand(0), N1.getOperand(2));
2715 
2716   // (add X, Carry) -> (addcarry X, 0, Carry)
2717   if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2718     if (SDValue Carry = getAsCarry(TLI, N1))
2719       return DAG.getNode(ISD::ADDCARRY, DL,
2720                          DAG.getVTList(VT, Carry.getValueType()), N0,
2721                          DAG.getConstant(0, DL, VT), Carry);
2722 
2723   return SDValue();
2724 }
2725 
2726 SDValue DAGCombiner::visitADDC(SDNode *N) {
2727   SDValue N0 = N->getOperand(0);
2728   SDValue N1 = N->getOperand(1);
2729   EVT VT = N0.getValueType();
2730   SDLoc DL(N);
2731 
2732   // If the flag result is dead, turn this into an ADD.
2733   if (!N->hasAnyUseOfValue(1))
2734     return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2735                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2736 
2737   // canonicalize constant to RHS.
2738   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2739   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2740   if (N0C && !N1C)
2741     return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
2742 
2743   // fold (addc x, 0) -> x + no carry out
2744   if (isNullConstant(N1))
2745     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
2746                                         DL, MVT::Glue));
2747 
2748   // If it cannot overflow, transform into an add.
2749   if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2750     return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2751                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2752 
2753   return SDValue();
2754 }
2755 
2756 /**
2757  * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2758  * then the flip also occurs if computing the inverse is the same cost.
2759  * This function returns an empty SDValue in case it cannot flip the boolean
2760  * without increasing the cost of the computation. If you want to flip a boolean
2761  * no matter what, use DAG.getLogicalNOT.
2762  */
2763 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
2764                                   const TargetLowering &TLI,
2765                                   bool Force) {
2766   if (Force && isa<ConstantSDNode>(V))
2767     return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
2768 
2769   if (V.getOpcode() != ISD::XOR)
2770     return SDValue();
2771 
2772   ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
2773   if (!Const)
2774     return SDValue();
2775 
2776   EVT VT = V.getValueType();
2777 
2778   bool IsFlip = false;
2779   switch(TLI.getBooleanContents(VT)) {
2780     case TargetLowering::ZeroOrOneBooleanContent:
2781       IsFlip = Const->isOne();
2782       break;
2783     case TargetLowering::ZeroOrNegativeOneBooleanContent:
2784       IsFlip = Const->isAllOnesValue();
2785       break;
2786     case TargetLowering::UndefinedBooleanContent:
2787       IsFlip = (Const->getAPIntValue() & 0x01) == 1;
2788       break;
2789   }
2790 
2791   if (IsFlip)
2792     return V.getOperand(0);
2793   if (Force)
2794     return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
2795   return SDValue();
2796 }
2797 
2798 SDValue DAGCombiner::visitADDO(SDNode *N) {
2799   SDValue N0 = N->getOperand(0);
2800   SDValue N1 = N->getOperand(1);
2801   EVT VT = N0.getValueType();
2802   bool IsSigned = (ISD::SADDO == N->getOpcode());
2803 
2804   EVT CarryVT = N->getValueType(1);
2805   SDLoc DL(N);
2806 
2807   // If the flag result is dead, turn this into an ADD.
2808   if (!N->hasAnyUseOfValue(1))
2809     return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2810                      DAG.getUNDEF(CarryVT));
2811 
2812   // canonicalize constant to RHS.
2813   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2814       !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2815     return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
2816 
2817   // fold (addo x, 0) -> x + no carry out
2818   if (isNullOrNullSplat(N1))
2819     return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
2820 
2821   if (!IsSigned) {
2822     // If it cannot overflow, transform into an add.
2823     if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2824       return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2825                        DAG.getConstant(0, DL, CarryVT));
2826 
2827     // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2828     if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
2829       SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
2830                                 DAG.getConstant(0, DL, VT), N0.getOperand(0));
2831       return CombineTo(
2832           N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
2833     }
2834 
2835     if (SDValue Combined = visitUADDOLike(N0, N1, N))
2836       return Combined;
2837 
2838     if (SDValue Combined = visitUADDOLike(N1, N0, N))
2839       return Combined;
2840   }
2841 
2842   return SDValue();
2843 }
2844 
2845 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
2846   EVT VT = N0.getValueType();
2847   if (VT.isVector())
2848     return SDValue();
2849 
2850   // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2851   // If Y + 1 cannot overflow.
2852   if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
2853     SDValue Y = N1.getOperand(0);
2854     SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
2855     if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
2856       return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
2857                          N1.getOperand(2));
2858   }
2859 
2860   // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2861   if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2862     if (SDValue Carry = getAsCarry(TLI, N1))
2863       return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
2864                          DAG.getConstant(0, SDLoc(N), VT), Carry);
2865 
2866   return SDValue();
2867 }
2868 
2869 SDValue DAGCombiner::visitADDE(SDNode *N) {
2870   SDValue N0 = N->getOperand(0);
2871   SDValue N1 = N->getOperand(1);
2872   SDValue CarryIn = N->getOperand(2);
2873 
2874   // canonicalize constant to RHS
2875   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2876   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2877   if (N0C && !N1C)
2878     return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
2879                        N1, N0, CarryIn);
2880 
2881   // fold (adde x, y, false) -> (addc x, y)
2882   if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2883     return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
2884 
2885   return SDValue();
2886 }
2887 
2888 SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
2889   SDValue N0 = N->getOperand(0);
2890   SDValue N1 = N->getOperand(1);
2891   SDValue CarryIn = N->getOperand(2);
2892   SDLoc DL(N);
2893 
2894   // canonicalize constant to RHS
2895   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2896   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2897   if (N0C && !N1C)
2898     return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
2899 
2900   // fold (addcarry x, y, false) -> (uaddo x, y)
2901   if (isNullConstant(CarryIn)) {
2902     if (!LegalOperations ||
2903         TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
2904       return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
2905   }
2906 
2907   // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2908   if (isNullConstant(N0) && isNullConstant(N1)) {
2909     EVT VT = N0.getValueType();
2910     EVT CarryVT = CarryIn.getValueType();
2911     SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
2912     AddToWorklist(CarryExt.getNode());
2913     return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
2914                                     DAG.getConstant(1, DL, VT)),
2915                      DAG.getConstant(0, DL, CarryVT));
2916   }
2917 
2918   if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
2919     return Combined;
2920 
2921   if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
2922     return Combined;
2923 
2924   return SDValue();
2925 }
2926 
2927 SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) {
2928   SDValue N0 = N->getOperand(0);
2929   SDValue N1 = N->getOperand(1);
2930   SDValue CarryIn = N->getOperand(2);
2931   SDLoc DL(N);
2932 
2933   // canonicalize constant to RHS
2934   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2935   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2936   if (N0C && !N1C)
2937     return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
2938 
2939   // fold (saddo_carry x, y, false) -> (saddo x, y)
2940   if (isNullConstant(CarryIn)) {
2941     if (!LegalOperations ||
2942         TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0)))
2943       return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1);
2944   }
2945 
2946   return SDValue();
2947 }
2948 
2949 /**
2950  * If we are facing some sort of diamond carry propapagtion pattern try to
2951  * break it up to generate something like:
2952  *   (addcarry X, 0, (addcarry A, B, Z):Carry)
2953  *
2954  * The end result is usually an increase in operation required, but because the
2955  * carry is now linearized, other tranforms can kick in and optimize the DAG.
2956  *
2957  * Patterns typically look something like
2958  *            (uaddo A, B)
2959  *             /       \
2960  *          Carry      Sum
2961  *            |          \
2962  *            | (addcarry *, 0, Z)
2963  *            |       /
2964  *             \   Carry
2965  *              |   /
2966  * (addcarry X, *, *)
2967  *
2968  * But numerous variation exist. Our goal is to identify A, B, X and Z and
2969  * produce a combine with a single path for carry propagation.
2970  */
2971 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
2972                                       SDValue X, SDValue Carry0, SDValue Carry1,
2973                                       SDNode *N) {
2974   if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
2975     return SDValue();
2976   if (Carry1.getOpcode() != ISD::UADDO)
2977     return SDValue();
2978 
2979   SDValue Z;
2980 
2981   /**
2982    * First look for a suitable Z. It will present itself in the form of
2983    * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2984    */
2985   if (Carry0.getOpcode() == ISD::ADDCARRY &&
2986       isNullConstant(Carry0.getOperand(1))) {
2987     Z = Carry0.getOperand(2);
2988   } else if (Carry0.getOpcode() == ISD::UADDO &&
2989              isOneConstant(Carry0.getOperand(1))) {
2990     EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
2991     Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
2992   } else {
2993     // We couldn't find a suitable Z.
2994     return SDValue();
2995   }
2996 
2997 
2998   auto cancelDiamond = [&](SDValue A,SDValue B) {
2999     SDLoc DL(N);
3000     SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
3001     Combiner.AddToWorklist(NewY.getNode());
3002     return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
3003                        DAG.getConstant(0, DL, X.getValueType()),
3004                        NewY.getValue(1));
3005   };
3006 
3007   /**
3008    *      (uaddo A, B)
3009    *           |
3010    *          Sum
3011    *           |
3012    * (addcarry *, 0, Z)
3013    */
3014   if (Carry0.getOperand(0) == Carry1.getValue(0)) {
3015     return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
3016   }
3017 
3018   /**
3019    * (addcarry A, 0, Z)
3020    *         |
3021    *        Sum
3022    *         |
3023    *  (uaddo *, B)
3024    */
3025   if (Carry1.getOperand(0) == Carry0.getValue(0)) {
3026     return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
3027   }
3028 
3029   if (Carry1.getOperand(1) == Carry0.getValue(0)) {
3030     return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
3031   }
3032 
3033   return SDValue();
3034 }
3035 
3036 // If we are facing some sort of diamond carry/borrow in/out pattern try to
3037 // match patterns like:
3038 //
3039 //          (uaddo A, B)            CarryIn
3040 //            |  \                     |
3041 //            |   \                    |
3042 //    PartialSum   PartialCarryOutX   /
3043 //            |        |             /
3044 //            |    ____|____________/
3045 //            |   /    |
3046 //     (uaddo *, *)    \________
3047 //       |  \                   \
3048 //       |   \                   |
3049 //       |    PartialCarryOutY   |
3050 //       |        \              |
3051 //       |         \            /
3052 //   AddCarrySum    |    ______/
3053 //                  |   /
3054 //   CarryOut = (or *, *)
3055 //
3056 // And generate ADDCARRY (or SUBCARRY) with two result values:
3057 //
3058 //    {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn)
3059 //
3060 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with
3061 // a single path for carry/borrow out propagation:
3062 static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
3063                                    const TargetLowering &TLI, SDValue Carry0,
3064                                    SDValue Carry1, SDNode *N) {
3065   if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1)
3066     return SDValue();
3067   unsigned Opcode = Carry0.getOpcode();
3068   if (Opcode != Carry1.getOpcode())
3069     return SDValue();
3070   if (Opcode != ISD::UADDO && Opcode != ISD::USUBO)
3071     return SDValue();
3072 
3073   // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the
3074   // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in
3075   // the above ASCII art.)
3076   if (Carry1.getOperand(0) != Carry0.getValue(0) &&
3077       Carry1.getOperand(1) != Carry0.getValue(0))
3078     std::swap(Carry0, Carry1);
3079   if (Carry1.getOperand(0) != Carry0.getValue(0) &&
3080       Carry1.getOperand(1) != Carry0.getValue(0))
3081     return SDValue();
3082 
3083   // The carry in value must be on the righthand side for subtraction.
3084   unsigned CarryInOperandNum =
3085       Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0;
3086   if (Opcode == ISD::USUBO && CarryInOperandNum != 1)
3087     return SDValue();
3088   SDValue CarryIn = Carry1.getOperand(CarryInOperandNum);
3089 
3090   unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY;
3091   if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType()))
3092     return SDValue();
3093 
3094   // Verify that the carry/borrow in is plausibly a carry/borrow bit.
3095   // TODO: make getAsCarry() aware of how partial carries are merged.
3096   if (CarryIn.getOpcode() != ISD::ZERO_EXTEND)
3097     return SDValue();
3098   CarryIn = CarryIn.getOperand(0);
3099   if (CarryIn.getValueType() != MVT::i1)
3100     return SDValue();
3101 
3102   SDLoc DL(N);
3103   SDValue Merged =
3104       DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0),
3105                   Carry0.getOperand(1), CarryIn);
3106 
3107   // Please note that because we have proven that the result of the UADDO/USUBO
3108   // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
3109   // therefore prove that if the first UADDO/USUBO overflows, the second
3110   // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
3111   // maximum value.
3112   //
3113   //   0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
3114   //   0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
3115   //
3116   // This is important because it means that OR and XOR can be used to merge
3117   // carry flags; and that AND can return a constant zero.
3118   //
3119   // TODO: match other operations that can merge flags (ADD, etc)
3120   DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0));
3121   if (N->getOpcode() == ISD::AND)
3122     return DAG.getConstant(0, DL, MVT::i1);
3123   return Merged.getValue(1);
3124 }
3125 
3126 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
3127                                        SDNode *N) {
3128   // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
3129   if (isBitwiseNot(N0))
3130     if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
3131       SDLoc DL(N);
3132       SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
3133                                 N0.getOperand(0), NotC);
3134       return CombineTo(
3135           N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
3136     }
3137 
3138   // Iff the flag result is dead:
3139   // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3140   // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3141   // or the dependency between the instructions.
3142   if ((N0.getOpcode() == ISD::ADD ||
3143        (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
3144         N0.getValue(1) != CarryIn)) &&
3145       isNullConstant(N1) && !N->hasAnyUseOfValue(1))
3146     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
3147                        N0.getOperand(0), N0.getOperand(1), CarryIn);
3148 
3149   /**
3150    * When one of the addcarry argument is itself a carry, we may be facing
3151    * a diamond carry propagation. In which case we try to transform the DAG
3152    * to ensure linear carry propagation if that is possible.
3153    */
3154   if (auto Y = getAsCarry(TLI, N1)) {
3155     // Because both are carries, Y and Z can be swapped.
3156     if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
3157       return R;
3158     if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
3159       return R;
3160   }
3161 
3162   return SDValue();
3163 }
3164 
3165 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
3166 // clamp/truncation if necessary.
3167 static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS,
3168                                    SDValue RHS, SelectionDAG &DAG,
3169                                    const SDLoc &DL) {
3170   assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() &&
3171          "Illegal truncation");
3172 
3173   if (DstVT == SrcVT)
3174     return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
3175 
3176   // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
3177   // clamping RHS.
3178   APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(),
3179                                           DstVT.getScalarSizeInBits());
3180   if (!DAG.MaskedValueIsZero(LHS, UpperBits))
3181     return SDValue();
3182 
3183   SDValue SatLimit =
3184       DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(),
3185                                            DstVT.getScalarSizeInBits()),
3186                       DL, SrcVT);
3187   RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit);
3188   RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS);
3189   LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS);
3190   return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
3191 }
3192 
3193 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
3194 // usubsat(a,b), optionally as a truncated type.
3195 SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) {
3196   if (N->getOpcode() != ISD::SUB ||
3197       !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT)))
3198     return SDValue();
3199 
3200   EVT SubVT = N->getValueType(0);
3201   SDValue Op0 = N->getOperand(0);
3202   SDValue Op1 = N->getOperand(1);
3203 
3204   // Try to find umax(a,b) - b or a - umin(a,b) patterns
3205   // they may be converted to usubsat(a,b).
3206   if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
3207     SDValue MaxLHS = Op0.getOperand(0);
3208     SDValue MaxRHS = Op0.getOperand(1);
3209     if (MaxLHS == Op1)
3210       return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N));
3211     if (MaxRHS == Op1)
3212       return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N));
3213   }
3214 
3215   if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) {
3216     SDValue MinLHS = Op1.getOperand(0);
3217     SDValue MinRHS = Op1.getOperand(1);
3218     if (MinLHS == Op0)
3219       return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N));
3220     if (MinRHS == Op0)
3221       return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N));
3222   }
3223 
3224   // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
3225   if (Op1.getOpcode() == ISD::TRUNCATE &&
3226       Op1.getOperand(0).getOpcode() == ISD::UMIN &&
3227       Op1.getOperand(0).hasOneUse()) {
3228     SDValue MinLHS = Op1.getOperand(0).getOperand(0);
3229     SDValue MinRHS = Op1.getOperand(0).getOperand(1);
3230     if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0)
3231       return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS,
3232                                  DAG, SDLoc(N));
3233     if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0)
3234       return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS,
3235                                  DAG, SDLoc(N));
3236   }
3237 
3238   return SDValue();
3239 }
3240 
3241 // Since it may not be valid to emit a fold to zero for vector initializers
3242 // check if we can before folding.
3243 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
3244                              SelectionDAG &DAG, bool LegalOperations) {
3245   if (!VT.isVector())
3246     return DAG.getConstant(0, DL, VT);
3247   if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
3248     return DAG.getConstant(0, DL, VT);
3249   return SDValue();
3250 }
3251 
3252 SDValue DAGCombiner::visitSUB(SDNode *N) {
3253   SDValue N0 = N->getOperand(0);
3254   SDValue N1 = N->getOperand(1);
3255   EVT VT = N0.getValueType();
3256   SDLoc DL(N);
3257 
3258   // fold vector ops
3259   if (VT.isVector()) {
3260     if (SDValue FoldedVOp = SimplifyVBinOp(N))
3261       return FoldedVOp;
3262 
3263     // fold (sub x, 0) -> x, vector edition
3264     if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
3265       return N0;
3266   }
3267 
3268   // fold (sub x, x) -> 0
3269   // FIXME: Refactor this and xor and other similar operations together.
3270   if (N0 == N1)
3271     return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
3272 
3273   // fold (sub c1, c2) -> c3
3274   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1}))
3275     return C;
3276 
3277   if (SDValue NewSel = foldBinOpIntoSelect(N))
3278     return NewSel;
3279 
3280   ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3281 
3282   // fold (sub x, c) -> (add x, -c)
3283   if (N1C) {
3284     return DAG.getNode(ISD::ADD, DL, VT, N0,
3285                        DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3286   }
3287 
3288   if (isNullOrNullSplat(N0)) {
3289     unsigned BitWidth = VT.getScalarSizeInBits();
3290     // Right-shifting everything out but the sign bit followed by negation is
3291     // the same as flipping arithmetic/logical shift type without the negation:
3292     // -(X >>u 31) -> (X >>s 31)
3293     // -(X >>s 31) -> (X >>u 31)
3294     if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
3295       ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
3296       if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
3297         auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
3298         if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
3299           return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
3300       }
3301     }
3302 
3303     // 0 - X --> 0 if the sub is NUW.
3304     if (N->getFlags().hasNoUnsignedWrap())
3305       return N0;
3306 
3307     if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
3308       // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3309       // N1 must be 0 because negating the minimum signed value is undefined.
3310       if (N->getFlags().hasNoSignedWrap())
3311         return N0;
3312 
3313       // 0 - X --> X if X is 0 or the minimum signed value.
3314       return N1;
3315     }
3316 
3317     // Convert 0 - abs(x).
3318     SDValue Result;
3319     if (N1->getOpcode() == ISD::ABS &&
3320         !TLI.isOperationLegalOrCustom(ISD::ABS, VT) &&
3321         TLI.expandABS(N1.getNode(), Result, DAG, true))
3322       return Result;
3323 
3324     // Fold neg(splat(neg(x)) -> splat(x)
3325     if (VT.isVector()) {
3326       SDValue N1S = DAG.getSplatValue(N1, true);
3327       if (N1S && N1S.getOpcode() == ISD::SUB &&
3328           isNullConstant(N1S.getOperand(0))) {
3329         if (VT.isScalableVector())
3330           return DAG.getSplatVector(VT, DL, N1S.getOperand(1));
3331         return DAG.getSplatBuildVector(VT, DL, N1S.getOperand(1));
3332       }
3333     }
3334   }
3335 
3336   // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3337   if (isAllOnesOrAllOnesSplat(N0))
3338     return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
3339 
3340   // fold (A - (0-B)) -> A+B
3341   if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
3342     return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
3343 
3344   // fold A-(A-B) -> B
3345   if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
3346     return N1.getOperand(1);
3347 
3348   // fold (A+B)-A -> B
3349   if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
3350     return N0.getOperand(1);
3351 
3352   // fold (A+B)-B -> A
3353   if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
3354     return N0.getOperand(0);
3355 
3356   // fold (A+C1)-C2 -> A+(C1-C2)
3357   if (N0.getOpcode() == ISD::ADD &&
3358       isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3359       isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3360     SDValue NewC =
3361         DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1});
3362     assert(NewC && "Constant folding failed");
3363     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
3364   }
3365 
3366   // fold C2-(A+C1) -> (C2-C1)-A
3367   if (N1.getOpcode() == ISD::ADD) {
3368     SDValue N11 = N1.getOperand(1);
3369     if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
3370         isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
3371       SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11});
3372       assert(NewC && "Constant folding failed");
3373       return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
3374     }
3375   }
3376 
3377   // fold (A-C1)-C2 -> A-(C1+C2)
3378   if (N0.getOpcode() == ISD::SUB &&
3379       isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3380       isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3381     SDValue NewC =
3382         DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1});
3383     assert(NewC && "Constant folding failed");
3384     return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
3385   }
3386 
3387   // fold (c1-A)-c2 -> (c1-c2)-A
3388   if (N0.getOpcode() == ISD::SUB &&
3389       isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3390       isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) {
3391     SDValue NewC =
3392         DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1});
3393     assert(NewC && "Constant folding failed");
3394     return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
3395   }
3396 
3397   // fold ((A+(B+or-C))-B) -> A+or-C
3398   if (N0.getOpcode() == ISD::ADD &&
3399       (N0.getOperand(1).getOpcode() == ISD::SUB ||
3400        N0.getOperand(1).getOpcode() == ISD::ADD) &&
3401       N0.getOperand(1).getOperand(0) == N1)
3402     return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
3403                        N0.getOperand(1).getOperand(1));
3404 
3405   // fold ((A+(C+B))-B) -> A+C
3406   if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
3407       N0.getOperand(1).getOperand(1) == N1)
3408     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
3409                        N0.getOperand(1).getOperand(0));
3410 
3411   // fold ((A-(B-C))-C) -> A-B
3412   if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
3413       N0.getOperand(1).getOperand(1) == N1)
3414     return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
3415                        N0.getOperand(1).getOperand(0));
3416 
3417   // fold (A-(B-C)) -> A+(C-B)
3418   if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
3419     return DAG.getNode(ISD::ADD, DL, VT, N0,
3420                        DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
3421                                    N1.getOperand(0)));
3422 
3423   // A - (A & B)  ->  A & (~B)
3424   if (N1.getOpcode() == ISD::AND) {
3425     SDValue A = N1.getOperand(0);
3426     SDValue B = N1.getOperand(1);
3427     if (A != N0)
3428       std::swap(A, B);
3429     if (A == N0 &&
3430         (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) {
3431       SDValue InvB =
3432           DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT));
3433       return DAG.getNode(ISD::AND, DL, VT, A, InvB);
3434     }
3435   }
3436 
3437   // fold (X - (-Y * Z)) -> (X + (Y * Z))
3438   if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
3439     if (N1.getOperand(0).getOpcode() == ISD::SUB &&
3440         isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
3441       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3442                                 N1.getOperand(0).getOperand(1),
3443                                 N1.getOperand(1));
3444       return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3445     }
3446     if (N1.getOperand(1).getOpcode() == ISD::SUB &&
3447         isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
3448       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3449                                 N1.getOperand(0),
3450                                 N1.getOperand(1).getOperand(1));
3451       return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3452     }
3453   }
3454 
3455   // If either operand of a sub is undef, the result is undef
3456   if (N0.isUndef())
3457     return N0;
3458   if (N1.isUndef())
3459     return N1;
3460 
3461   if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
3462     return V;
3463 
3464   if (SDValue V = foldAddSubOfSignBit(N, DAG))
3465     return V;
3466 
3467   if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
3468     return V;
3469 
3470   if (SDValue V = foldSubToUSubSat(VT, N))
3471     return V;
3472 
3473   // (x - y) - 1  ->  add (xor y, -1), x
3474   if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) {
3475     SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
3476                               DAG.getAllOnesConstant(DL, VT));
3477     return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
3478   }
3479 
3480   // Look for:
3481   //   sub y, (xor x, -1)
3482   // And if the target does not like this form then turn into:
3483   //   add (add x, y), 1
3484   if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
3485     SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
3486     return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
3487   }
3488 
3489   // Hoist one-use addition by non-opaque constant:
3490   //   (x + C) - y  ->  (x - y) + C
3491   if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD &&
3492       isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3493     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3494     return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
3495   }
3496   // y - (x + C)  ->  (y - x) - C
3497   if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD &&
3498       isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
3499     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
3500     return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
3501   }
3502   // (x - C) - y  ->  (x - y) - C
3503   // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3504   if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3505       isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3506     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3507     return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
3508   }
3509   // (C - x) - y  ->  C - (x + y)
3510   if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3511       isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
3512     SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
3513     return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
3514   }
3515 
3516   // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3517   // rather than 'sub 0/1' (the sext should get folded).
3518   // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3519   if (N1.getOpcode() == ISD::ZERO_EXTEND &&
3520       N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
3521       TLI.getBooleanContents(VT) ==
3522           TargetLowering::ZeroOrNegativeOneBooleanContent) {
3523     SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
3524     return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
3525   }
3526 
3527   // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3528   if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
3529     if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
3530       SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
3531       SDValue S0 = N1.getOperand(0);
3532       if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0))
3533         if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
3534           if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
3535             return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
3536     }
3537   }
3538 
3539   // If the relocation model supports it, consider symbol offsets.
3540   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
3541     if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
3542       // fold (sub Sym, c) -> Sym-c
3543       if (N1C && GA->getOpcode() == ISD::GlobalAddress)
3544         return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
3545                                     GA->getOffset() -
3546                                         (uint64_t)N1C->getSExtValue());
3547       // fold (sub Sym+c1, Sym+c2) -> c1-c2
3548       if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
3549         if (GA->getGlobal() == GB->getGlobal())
3550           return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
3551                                  DL, VT);
3552     }
3553 
3554   // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3555   if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
3556     VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
3557     if (TN->getVT() == MVT::i1) {
3558       SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
3559                                  DAG.getConstant(1, DL, VT));
3560       return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
3561     }
3562   }
3563 
3564   // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
3565   if (N1.getOpcode() == ISD::VSCALE) {
3566     const APInt &IntVal = N1.getConstantOperandAPInt(0);
3567     return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal));
3568   }
3569 
3570   // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
3571   if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) {
3572     APInt NewStep = -N1.getConstantOperandAPInt(0);
3573     return DAG.getNode(ISD::ADD, DL, VT, N0,
3574                        DAG.getStepVector(DL, VT, NewStep));
3575   }
3576 
3577   // Prefer an add for more folding potential and possibly better codegen:
3578   // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3579   if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
3580     SDValue ShAmt = N1.getOperand(1);
3581     ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
3582     if (ShAmtC &&
3583         ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
3584       SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
3585       return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
3586     }
3587   }
3588 
3589   if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) {
3590     // (sub Carry, X)  ->  (addcarry (sub 0, X), 0, Carry)
3591     if (SDValue Carry = getAsCarry(TLI, N0)) {
3592       SDValue X = N1;
3593       SDValue Zero = DAG.getConstant(0, DL, VT);
3594       SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
3595       return DAG.getNode(ISD::ADDCARRY, DL,
3596                          DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
3597                          Carry);
3598     }
3599   }
3600 
3601   return SDValue();
3602 }
3603 
3604 SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
3605   SDValue N0 = N->getOperand(0);
3606   SDValue N1 = N->getOperand(1);
3607   EVT VT = N0.getValueType();
3608   SDLoc DL(N);
3609 
3610   // fold vector ops
3611   if (VT.isVector()) {
3612     // TODO SimplifyVBinOp
3613 
3614     // fold (sub_sat x, 0) -> x, vector edition
3615     if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
3616       return N0;
3617   }
3618 
3619   // fold (sub_sat x, undef) -> 0
3620   if (N0.isUndef() || N1.isUndef())
3621     return DAG.getConstant(0, DL, VT);
3622 
3623   // fold (sub_sat x, x) -> 0
3624   if (N0 == N1)
3625     return DAG.getConstant(0, DL, VT);
3626 
3627   // fold (sub_sat c1, c2) -> c3
3628   if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1}))
3629     return C;
3630 
3631   // fold (sub_sat x, 0) -> x
3632   if (isNullConstant(N1))
3633     return N0;
3634 
3635   return SDValue();
3636 }
3637 
3638 SDValue DAGCombiner::visitSUBC(SDNode *N) {
3639   SDValue N0 = N->getOperand(0);
3640   SDValue N1 = N->getOperand(1);
3641   EVT VT = N0.getValueType();
3642   SDLoc DL(N);
3643 
3644   // If the flag result is dead, turn this into an SUB.
3645   if (!N->hasAnyUseOfValue(1))
3646     return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3647                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3648 
3649   // fold (subc x, x) -> 0 + no borrow
3650   if (N0 == N1)
3651     return CombineTo(N, DAG.getConstant(0, DL, VT),
3652                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3653 
3654   // fold (subc x, 0) -> x + no borrow
3655   if (isNullConstant(N1))
3656     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3657 
3658   // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3659   if (isAllOnesConstant(N0))
3660     return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3661                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3662 
3663   return SDValue();
3664 }
3665 
3666 SDValue DAGCombiner::visitSUBO(SDNode *N) {
3667   SDValue N0 = N->getOperand(0);
3668   SDValue N1 = N->getOperand(1);
3669   EVT VT = N0.getValueType();
3670   bool IsSigned = (ISD::SSUBO == N->getOpcode());
3671 
3672   EVT CarryVT = N->getValueType(1);
3673   SDLoc DL(N);
3674 
3675   // If the flag result is dead, turn this into an SUB.
3676   if (!N->hasAnyUseOfValue(1))
3677     return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3678                      DAG.getUNDEF(CarryVT));
3679 
3680   // fold (subo x, x) -> 0 + no borrow
3681   if (N0 == N1)
3682     return CombineTo(N, DAG.getConstant(0, DL, VT),
3683                      DAG.getConstant(0, DL, CarryVT));
3684 
3685   ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3686 
3687   // fold (subox, c) -> (addo x, -c)
3688   if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
3689     return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
3690                        DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3691   }
3692 
3693   // fold (subo x, 0) -> x + no borrow
3694   if (isNullOrNullSplat(N1))
3695     return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
3696 
3697   // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3698   if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
3699     return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3700                      DAG.getConstant(0, DL, CarryVT));
3701 
3702   return SDValue();
3703 }
3704 
3705 SDValue DAGCombiner::visitSUBE(SDNode *N) {
3706   SDValue N0 = N->getOperand(0);
3707   SDValue N1 = N->getOperand(1);
3708   SDValue CarryIn = N->getOperand(2);
3709 
3710   // fold (sube x, y, false) -> (subc x, y)
3711   if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
3712     return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
3713 
3714   return SDValue();
3715 }
3716 
3717 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
3718   SDValue N0 = N->getOperand(0);
3719   SDValue N1 = N->getOperand(1);
3720   SDValue CarryIn = N->getOperand(2);
3721 
3722   // fold (subcarry x, y, false) -> (usubo x, y)
3723   if (isNullConstant(CarryIn)) {
3724     if (!LegalOperations ||
3725         TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
3726       return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
3727   }
3728 
3729   return SDValue();
3730 }
3731 
3732 SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) {
3733   SDValue N0 = N->getOperand(0);
3734   SDValue N1 = N->getOperand(1);
3735   SDValue CarryIn = N->getOperand(2);
3736 
3737   // fold (ssubo_carry x, y, false) -> (ssubo x, y)
3738   if (isNullConstant(CarryIn)) {
3739     if (!LegalOperations ||
3740         TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0)))
3741       return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1);
3742   }
3743 
3744   return SDValue();
3745 }
3746 
3747 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
3748 // UMULFIXSAT here.
3749 SDValue DAGCombiner::visitMULFIX(SDNode *N) {
3750   SDValue N0 = N->getOperand(0);
3751   SDValue N1 = N->getOperand(1);
3752   SDValue Scale = N->getOperand(2);
3753   EVT VT = N0.getValueType();
3754 
3755   // fold (mulfix x, undef, scale) -> 0
3756   if (N0.isUndef() || N1.isUndef())
3757     return DAG.getConstant(0, SDLoc(N), VT);
3758 
3759   // Canonicalize constant to RHS (vector doesn't have to splat)
3760   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3761      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3762     return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
3763 
3764   // fold (mulfix x, 0, scale) -> 0
3765   if (isNullConstant(N1))
3766     return DAG.getConstant(0, SDLoc(N), VT);
3767 
3768   return SDValue();
3769 }
3770 
3771 SDValue DAGCombiner::visitMUL(SDNode *N) {
3772   SDValue N0 = N->getOperand(0);
3773   SDValue N1 = N->getOperand(1);
3774   EVT VT = N0.getValueType();
3775 
3776   // fold (mul x, undef) -> 0
3777   if (N0.isUndef() || N1.isUndef())
3778     return DAG.getConstant(0, SDLoc(N), VT);
3779 
3780   bool N1IsConst = false;
3781   bool N1IsOpaqueConst = false;
3782   APInt ConstValue1;
3783 
3784   // fold vector ops
3785   if (VT.isVector()) {
3786     if (SDValue FoldedVOp = SimplifyVBinOp(N))
3787       return FoldedVOp;
3788 
3789     N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
3790     assert((!N1IsConst ||
3791             ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
3792            "Splat APInt should be element width");
3793   } else {
3794     N1IsConst = isa<ConstantSDNode>(N1);
3795     if (N1IsConst) {
3796       ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
3797       N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
3798     }
3799   }
3800 
3801   // fold (mul c1, c2) -> c1*c2
3802   if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1}))
3803     return C;
3804 
3805   // canonicalize constant to RHS (vector doesn't have to splat)
3806   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3807      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3808     return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
3809 
3810   // fold (mul x, 0) -> 0
3811   if (N1IsConst && ConstValue1.isNullValue())
3812     return N1;
3813 
3814   // fold (mul x, 1) -> x
3815   if (N1IsConst && ConstValue1.isOneValue())
3816     return N0;
3817 
3818   if (SDValue NewSel = foldBinOpIntoSelect(N))
3819     return NewSel;
3820 
3821   // fold (mul x, -1) -> 0-x
3822   if (N1IsConst && ConstValue1.isAllOnesValue()) {
3823     SDLoc DL(N);
3824     return DAG.getNode(ISD::SUB, DL, VT,
3825                        DAG.getConstant(0, DL, VT), N0);
3826   }
3827 
3828   // fold (mul x, (1 << c)) -> x << c
3829   if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3830       DAG.isKnownToBeAPowerOfTwo(N1) &&
3831       (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
3832     SDLoc DL(N);
3833     SDValue LogBase2 = BuildLogBase2(N1, DL);
3834     EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3835     SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
3836     return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
3837   }
3838 
3839   // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3840   if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
3841     unsigned Log2Val = (-ConstValue1).logBase2();
3842     SDLoc DL(N);
3843     // FIXME: If the input is something that is easily negated (e.g. a
3844     // single-use add), we should put the negate there.
3845     return DAG.getNode(ISD::SUB, DL, VT,
3846                        DAG.getConstant(0, DL, VT),
3847                        DAG.getNode(ISD::SHL, DL, VT, N0,
3848                             DAG.getConstant(Log2Val, DL,
3849                                       getShiftAmountTy(N0.getValueType()))));
3850   }
3851 
3852   // Try to transform:
3853   // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3854   // mul x, (2^N + 1) --> add (shl x, N), x
3855   // mul x, (2^N - 1) --> sub (shl x, N), x
3856   // Examples: x * 33 --> (x << 5) + x
3857   //           x * 15 --> (x << 4) - x
3858   //           x * -33 --> -((x << 5) + x)
3859   //           x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3860   // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
3861   // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
3862   // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
3863   // Examples: x * 0x8800 --> (x << 15) + (x << 11)
3864   //           x * 0xf800 --> (x << 16) - (x << 11)
3865   //           x * -0x8800 --> -((x << 15) + (x << 11))
3866   //           x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
3867   if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
3868     // TODO: We could handle more general decomposition of any constant by
3869     //       having the target set a limit on number of ops and making a
3870     //       callback to determine that sequence (similar to sqrt expansion).
3871     unsigned MathOp = ISD::DELETED_NODE;
3872     APInt MulC = ConstValue1.abs();
3873     // The constant `2` should be treated as (2^0 + 1).
3874     unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros();
3875     MulC.lshrInPlace(TZeros);
3876     if ((MulC - 1).isPowerOf2())
3877       MathOp = ISD::ADD;
3878     else if ((MulC + 1).isPowerOf2())
3879       MathOp = ISD::SUB;
3880 
3881     if (MathOp != ISD::DELETED_NODE) {
3882       unsigned ShAmt =
3883           MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
3884       ShAmt += TZeros;
3885       assert(ShAmt < VT.getScalarSizeInBits() &&
3886              "multiply-by-constant generated out of bounds shift");
3887       SDLoc DL(N);
3888       SDValue Shl =
3889           DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
3890       SDValue R =
3891           TZeros ? DAG.getNode(MathOp, DL, VT, Shl,
3892                                DAG.getNode(ISD::SHL, DL, VT, N0,
3893                                            DAG.getConstant(TZeros, DL, VT)))
3894                  : DAG.getNode(MathOp, DL, VT, Shl, N0);
3895       if (ConstValue1.isNegative())
3896         R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
3897       return R;
3898     }
3899   }
3900 
3901   // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3902   if (N0.getOpcode() == ISD::SHL &&
3903       isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3904       isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3905     SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
3906     if (isConstantOrConstantVector(C3))
3907       return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
3908   }
3909 
3910   // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3911   // use.
3912   {
3913     SDValue Sh(nullptr, 0), Y(nullptr, 0);
3914 
3915     // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
3916     if (N0.getOpcode() == ISD::SHL &&
3917         isConstantOrConstantVector(N0.getOperand(1)) &&
3918         N0.getNode()->hasOneUse()) {
3919       Sh = N0; Y = N1;
3920     } else if (N1.getOpcode() == ISD::SHL &&
3921                isConstantOrConstantVector(N1.getOperand(1)) &&
3922                N1.getNode()->hasOneUse()) {
3923       Sh = N1; Y = N0;
3924     }
3925 
3926     if (Sh.getNode()) {
3927       SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
3928       return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
3929     }
3930   }
3931 
3932   // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3933   if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
3934       N0.getOpcode() == ISD::ADD &&
3935       DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
3936       isMulAddWithConstProfitable(N, N0, N1))
3937       return DAG.getNode(ISD::ADD, SDLoc(N), VT,
3938                          DAG.getNode(ISD::MUL, SDLoc(N0), VT,
3939                                      N0.getOperand(0), N1),
3940                          DAG.getNode(ISD::MUL, SDLoc(N1), VT,
3941                                      N0.getOperand(1), N1));
3942 
3943   // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
3944   if (N0.getOpcode() == ISD::VSCALE)
3945     if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) {
3946       const APInt &C0 = N0.getConstantOperandAPInt(0);
3947       const APInt &C1 = NC1->getAPIntValue();
3948       return DAG.getVScale(SDLoc(N), VT, C0 * C1);
3949     }
3950 
3951   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
3952   APInt MulVal;
3953   if (N0.getOpcode() == ISD::STEP_VECTOR)
3954     if (ISD::isConstantSplatVector(N1.getNode(), MulVal)) {
3955       const APInt &C0 = N0.getConstantOperandAPInt(0);
3956       APInt NewStep = C0 * MulVal;
3957       return DAG.getStepVector(SDLoc(N), VT, NewStep);
3958     }
3959 
3960   // Fold ((mul x, 0/undef) -> 0,
3961   //       (mul x, 1) -> x) -> x)
3962   // -> and(x, mask)
3963   // We can replace vectors with '0' and '1' factors with a clearing mask.
3964   if (VT.isFixedLengthVector()) {
3965     unsigned NumElts = VT.getVectorNumElements();
3966     SmallBitVector ClearMask;
3967     ClearMask.reserve(NumElts);
3968     auto IsClearMask = [&ClearMask](ConstantSDNode *V) {
3969       if (!V || V->isNullValue()) {
3970         ClearMask.push_back(true);
3971         return true;
3972       }
3973       ClearMask.push_back(false);
3974       return V->isOne();
3975     };
3976     if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) &&
3977         ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) {
3978       assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector");
3979       SDLoc DL(N);
3980       EVT LegalSVT = N1.getOperand(0).getValueType();
3981       SDValue Zero = DAG.getConstant(0, DL, LegalSVT);
3982       SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT);
3983       SmallVector<SDValue, 16> Mask(NumElts, AllOnes);
3984       for (unsigned I = 0; I != NumElts; ++I)
3985         if (ClearMask[I])
3986           Mask[I] = Zero;
3987       return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask));
3988     }
3989   }
3990 
3991   // reassociate mul
3992   if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
3993     return RMUL;
3994 
3995   return SDValue();
3996 }
3997 
3998 /// Return true if divmod libcall is available.
3999 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
4000                                      const TargetLowering &TLI) {
4001   RTLIB::Libcall LC;
4002   EVT NodeType = Node->getValueType(0);
4003   if (!NodeType.isSimple())
4004     return false;
4005   switch (NodeType.getSimpleVT().SimpleTy) {
4006   default: return false; // No libcall for vector types.
4007   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
4008   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
4009   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
4010   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
4011   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
4012   }
4013 
4014   return TLI.getLibcallName(LC) != nullptr;
4015 }
4016 
4017 /// Issue divrem if both quotient and remainder are needed.
4018 SDValue DAGCombiner::useDivRem(SDNode *Node) {
4019   if (Node->use_empty())
4020     return SDValue(); // This is a dead node, leave it alone.
4021 
4022   unsigned Opcode = Node->getOpcode();
4023   bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
4024   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
4025 
4026   // DivMod lib calls can still work on non-legal types if using lib-calls.
4027   EVT VT = Node->getValueType(0);
4028   if (VT.isVector() || !VT.isInteger())
4029     return SDValue();
4030 
4031   if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
4032     return SDValue();
4033 
4034   // If DIVREM is going to get expanded into a libcall,
4035   // but there is no libcall available, then don't combine.
4036   if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
4037       !isDivRemLibcallAvailable(Node, isSigned, TLI))
4038     return SDValue();
4039 
4040   // If div is legal, it's better to do the normal expansion
4041   unsigned OtherOpcode = 0;
4042   if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
4043     OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
4044     if (TLI.isOperationLegalOrCustom(Opcode, VT))
4045       return SDValue();
4046   } else {
4047     OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
4048     if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
4049       return SDValue();
4050   }
4051 
4052   SDValue Op0 = Node->getOperand(0);
4053   SDValue Op1 = Node->getOperand(1);
4054   SDValue combined;
4055   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
4056          UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
4057     SDNode *User = *UI;
4058     if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
4059         User->use_empty())
4060       continue;
4061     // Convert the other matching node(s), too;
4062     // otherwise, the DIVREM may get target-legalized into something
4063     // target-specific that we won't be able to recognize.
4064     unsigned UserOpc = User->getOpcode();
4065     if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
4066         User->getOperand(0) == Op0 &&
4067         User->getOperand(1) == Op1) {
4068       if (!combined) {
4069         if (UserOpc == OtherOpcode) {
4070           SDVTList VTs = DAG.getVTList(VT, VT);
4071           combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
4072         } else if (UserOpc == DivRemOpc) {
4073           combined = SDValue(User, 0);
4074         } else {
4075           assert(UserOpc == Opcode);
4076           continue;
4077         }
4078       }
4079       if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
4080         CombineTo(User, combined);
4081       else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
4082         CombineTo(User, combined.getValue(1));
4083     }
4084   }
4085   return combined;
4086 }
4087 
4088 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
4089   SDValue N0 = N->getOperand(0);
4090   SDValue N1 = N->getOperand(1);
4091   EVT VT = N->getValueType(0);
4092   SDLoc DL(N);
4093 
4094   unsigned Opc = N->getOpcode();
4095   bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
4096   ConstantSDNode *N1C = isConstOrConstSplat(N1);
4097 
4098   // X / undef -> undef
4099   // X % undef -> undef
4100   // X / 0 -> undef
4101   // X % 0 -> undef
4102   // NOTE: This includes vectors where any divisor element is zero/undef.
4103   if (DAG.isUndef(Opc, {N0, N1}))
4104     return DAG.getUNDEF(VT);
4105 
4106   // undef / X -> 0
4107   // undef % X -> 0
4108   if (N0.isUndef())
4109     return DAG.getConstant(0, DL, VT);
4110 
4111   // 0 / X -> 0
4112   // 0 % X -> 0
4113   ConstantSDNode *N0C = isConstOrConstSplat(N0);
4114   if (N0C && N0C->isNullValue())
4115     return N0;
4116 
4117   // X / X -> 1
4118   // X % X -> 0
4119   if (N0 == N1)
4120     return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
4121 
4122   // X / 1 -> X
4123   // X % 1 -> 0
4124   // If this is a boolean op (single-bit element type), we can't have
4125   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
4126   // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
4127   // it's a 1.
4128   if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
4129     return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
4130 
4131   return SDValue();
4132 }
4133 
4134 SDValue DAGCombiner::visitSDIV(SDNode *N) {
4135   SDValue N0 = N->getOperand(0);
4136   SDValue N1 = N->getOperand(1);
4137   EVT VT = N->getValueType(0);
4138   EVT CCVT = getSetCCResultType(VT);
4139 
4140   // fold vector ops
4141   if (VT.isVector())
4142     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4143       return FoldedVOp;
4144 
4145   SDLoc DL(N);
4146 
4147   // fold (sdiv c1, c2) -> c1/c2
4148   ConstantSDNode *N1C = isConstOrConstSplat(N1);
4149   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1}))
4150     return C;
4151 
4152   // fold (sdiv X, -1) -> 0-X
4153   if (N1C && N1C->isAllOnesValue())
4154     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
4155 
4156   // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
4157   if (N1C && N1C->getAPIntValue().isMinSignedValue())
4158     return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4159                          DAG.getConstant(1, DL, VT),
4160                          DAG.getConstant(0, DL, VT));
4161 
4162   if (SDValue V = simplifyDivRem(N, DAG))
4163     return V;
4164 
4165   if (SDValue NewSel = foldBinOpIntoSelect(N))
4166     return NewSel;
4167 
4168   // If we know the sign bits of both operands are zero, strength reduce to a
4169   // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
4170   if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
4171     return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
4172 
4173   if (SDValue V = visitSDIVLike(N0, N1, N)) {
4174     // If the corresponding remainder node exists, update its users with
4175     // (Dividend - (Quotient * Divisor).
4176     if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
4177                                               { N0, N1 })) {
4178       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
4179       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4180       AddToWorklist(Mul.getNode());
4181       AddToWorklist(Sub.getNode());
4182       CombineTo(RemNode, Sub);
4183     }
4184     return V;
4185   }
4186 
4187   // sdiv, srem -> sdivrem
4188   // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4189   // true.  Otherwise, we break the simplification logic in visitREM().
4190   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4191   if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
4192     if (SDValue DivRem = useDivRem(N))
4193         return DivRem;
4194 
4195   return SDValue();
4196 }
4197 
4198 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
4199   SDLoc DL(N);
4200   EVT VT = N->getValueType(0);
4201   EVT CCVT = getSetCCResultType(VT);
4202   unsigned BitWidth = VT.getScalarSizeInBits();
4203 
4204   // Helper for determining whether a value is a power-2 constant scalar or a
4205   // vector of such elements.
4206   auto IsPowerOfTwo = [](ConstantSDNode *C) {
4207     if (C->isNullValue() || C->isOpaque())
4208       return false;
4209     if (C->getAPIntValue().isPowerOf2())
4210       return true;
4211     if ((-C->getAPIntValue()).isPowerOf2())
4212       return true;
4213     return false;
4214   };
4215 
4216   // fold (sdiv X, pow2) -> simple ops after legalize
4217   // FIXME: We check for the exact bit here because the generic lowering gives
4218   // better results in that case. The target-specific lowering should learn how
4219   // to handle exact sdivs efficiently.
4220   if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
4221     // Target-specific implementation of sdiv x, pow2.
4222     if (SDValue Res = BuildSDIVPow2(N))
4223       return Res;
4224 
4225     // Create constants that are functions of the shift amount value.
4226     EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
4227     SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
4228     SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
4229     C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
4230     SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
4231     if (!isConstantOrConstantVector(Inexact))
4232       return SDValue();
4233 
4234     // Splat the sign bit into the register
4235     SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
4236                                DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
4237     AddToWorklist(Sign.getNode());
4238 
4239     // Add (N0 < 0) ? abs2 - 1 : 0;
4240     SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
4241     AddToWorklist(Srl.getNode());
4242     SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
4243     AddToWorklist(Add.getNode());
4244     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
4245     AddToWorklist(Sra.getNode());
4246 
4247     // Special case: (sdiv X, 1) -> X
4248     // Special Case: (sdiv X, -1) -> 0-X
4249     SDValue One = DAG.getConstant(1, DL, VT);
4250     SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
4251     SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
4252     SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
4253     SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
4254     Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
4255 
4256     // If dividing by a positive value, we're done. Otherwise, the result must
4257     // be negated.
4258     SDValue Zero = DAG.getConstant(0, DL, VT);
4259     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
4260 
4261     // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
4262     SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
4263     SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
4264     return Res;
4265   }
4266 
4267   // If integer divide is expensive and we satisfy the requirements, emit an
4268   // alternate sequence.  Targets may check function attributes for size/speed
4269   // trade-offs.
4270   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4271   if (isConstantOrConstantVector(N1) &&
4272       !TLI.isIntDivCheap(N->getValueType(0), Attr))
4273     if (SDValue Op = BuildSDIV(N))
4274       return Op;
4275 
4276   return SDValue();
4277 }
4278 
4279 SDValue DAGCombiner::visitUDIV(SDNode *N) {
4280   SDValue N0 = N->getOperand(0);
4281   SDValue N1 = N->getOperand(1);
4282   EVT VT = N->getValueType(0);
4283   EVT CCVT = getSetCCResultType(VT);
4284 
4285   // fold vector ops
4286   if (VT.isVector())
4287     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4288       return FoldedVOp;
4289 
4290   SDLoc DL(N);
4291 
4292   // fold (udiv c1, c2) -> c1/c2
4293   ConstantSDNode *N1C = isConstOrConstSplat(N1);
4294   if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1}))
4295     return C;
4296 
4297   // fold (udiv X, -1) -> select(X == -1, 1, 0)
4298   if (N1C && N1C->getAPIntValue().isAllOnesValue())
4299     return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4300                          DAG.getConstant(1, DL, VT),
4301                          DAG.getConstant(0, DL, VT));
4302 
4303   if (SDValue V = simplifyDivRem(N, DAG))
4304     return V;
4305 
4306   if (SDValue NewSel = foldBinOpIntoSelect(N))
4307     return NewSel;
4308 
4309   if (SDValue V = visitUDIVLike(N0, N1, N)) {
4310     // If the corresponding remainder node exists, update its users with
4311     // (Dividend - (Quotient * Divisor).
4312     if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
4313                                               { N0, N1 })) {
4314       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
4315       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4316       AddToWorklist(Mul.getNode());
4317       AddToWorklist(Sub.getNode());
4318       CombineTo(RemNode, Sub);
4319     }
4320     return V;
4321   }
4322 
4323   // sdiv, srem -> sdivrem
4324   // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4325   // true.  Otherwise, we break the simplification logic in visitREM().
4326   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4327   if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
4328     if (SDValue DivRem = useDivRem(N))
4329         return DivRem;
4330 
4331   return SDValue();
4332 }
4333 
4334 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
4335   SDLoc DL(N);
4336   EVT VT = N->getValueType(0);
4337 
4338   // fold (udiv x, (1 << c)) -> x >>u c
4339   if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4340       DAG.isKnownToBeAPowerOfTwo(N1)) {
4341     SDValue LogBase2 = BuildLogBase2(N1, DL);
4342     AddToWorklist(LogBase2.getNode());
4343 
4344     EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4345     SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
4346     AddToWorklist(Trunc.getNode());
4347     return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4348   }
4349 
4350   // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4351   if (N1.getOpcode() == ISD::SHL) {
4352     SDValue N10 = N1.getOperand(0);
4353     if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
4354         DAG.isKnownToBeAPowerOfTwo(N10)) {
4355       SDValue LogBase2 = BuildLogBase2(N10, DL);
4356       AddToWorklist(LogBase2.getNode());
4357 
4358       EVT ADDVT = N1.getOperand(1).getValueType();
4359       SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
4360       AddToWorklist(Trunc.getNode());
4361       SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
4362       AddToWorklist(Add.getNode());
4363       return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
4364     }
4365   }
4366 
4367   // fold (udiv x, c) -> alternate
4368   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4369   if (isConstantOrConstantVector(N1) &&
4370       !TLI.isIntDivCheap(N->getValueType(0), Attr))
4371     if (SDValue Op = BuildUDIV(N))
4372       return Op;
4373 
4374   return SDValue();
4375 }
4376 
4377 // handles ISD::SREM and ISD::UREM
4378 SDValue DAGCombiner::visitREM(SDNode *N) {
4379   unsigned Opcode = N->getOpcode();
4380   SDValue N0 = N->getOperand(0);
4381   SDValue N1 = N->getOperand(1);
4382   EVT VT = N->getValueType(0);
4383   EVT CCVT = getSetCCResultType(VT);
4384 
4385   bool isSigned = (Opcode == ISD::SREM);
4386   SDLoc DL(N);
4387 
4388   // fold (rem c1, c2) -> c1%c2
4389   ConstantSDNode *N1C = isConstOrConstSplat(N1);
4390   if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
4391     return C;
4392 
4393   // fold (urem X, -1) -> select(X == -1, 0, x)
4394   if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
4395     return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4396                          DAG.getConstant(0, DL, VT), N0);
4397 
4398   if (SDValue V = simplifyDivRem(N, DAG))
4399     return V;
4400 
4401   if (SDValue NewSel = foldBinOpIntoSelect(N))
4402     return NewSel;
4403 
4404   if (isSigned) {
4405     // If we know the sign bits of both operands are zero, strength reduce to a
4406     // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4407     if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
4408       return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
4409   } else {
4410     if (DAG.isKnownToBeAPowerOfTwo(N1)) {
4411       // fold (urem x, pow2) -> (and x, pow2-1)
4412       SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
4413       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
4414       AddToWorklist(Add.getNode());
4415       return DAG.getNode(ISD::AND, DL, VT, N0, Add);
4416     }
4417     if (N1.getOpcode() == ISD::SHL &&
4418         DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
4419       // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4420       SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
4421       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
4422       AddToWorklist(Add.getNode());
4423       return DAG.getNode(ISD::AND, DL, VT, N0, Add);
4424     }
4425   }
4426 
4427   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4428 
4429   // If X/C can be simplified by the division-by-constant logic, lower
4430   // X%C to the equivalent of X-X/C*C.
4431   // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4432   // speculative DIV must not cause a DIVREM conversion.  We guard against this
4433   // by skipping the simplification if isIntDivCheap().  When div is not cheap,
4434   // combine will not return a DIVREM.  Regardless, checking cheapness here
4435   // makes sense since the simplification results in fatter code.
4436   if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
4437     SDValue OptimizedDiv =
4438         isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
4439     if (OptimizedDiv.getNode()) {
4440       // If the equivalent Div node also exists, update its users.
4441       unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
4442       if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
4443                                                 { N0, N1 }))
4444         CombineTo(DivNode, OptimizedDiv);
4445       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
4446       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4447       AddToWorklist(OptimizedDiv.getNode());
4448       AddToWorklist(Mul.getNode());
4449       return Sub;
4450     }
4451   }
4452 
4453   // sdiv, srem -> sdivrem
4454   if (SDValue DivRem = useDivRem(N))
4455     return DivRem.getValue(1);
4456 
4457   return SDValue();
4458 }
4459 
4460 SDValue DAGCombiner::visitMULHS(SDNode *N) {
4461   SDValue N0 = N->getOperand(0);
4462   SDValue N1 = N->getOperand(1);
4463   EVT VT = N->getValueType(0);
4464   SDLoc DL(N);
4465 
4466   if (VT.isVector()) {
4467     // fold (mulhs x, 0) -> 0
4468     // do not return N0/N1, because undef node may exist.
4469     if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) ||
4470         ISD::isConstantSplatVectorAllZeros(N1.getNode()))
4471       return DAG.getConstant(0, DL, VT);
4472   }
4473 
4474   // fold (mulhs c1, c2)
4475   if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1}))
4476     return C;
4477 
4478   // canonicalize constant to RHS.
4479   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4480       !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4481     return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0);
4482 
4483   // fold (mulhs x, 0) -> 0
4484   if (isNullConstant(N1))
4485     return N1;
4486   // fold (mulhs x, 1) -> (sra x, size(x)-1)
4487   if (isOneConstant(N1))
4488     return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
4489                        DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL,
4490                                        getShiftAmountTy(N0.getValueType())));
4491 
4492   // fold (mulhs x, undef) -> 0
4493   if (N0.isUndef() || N1.isUndef())
4494     return DAG.getConstant(0, DL, VT);
4495 
4496   // If the type twice as wide is legal, transform the mulhs to a wider multiply
4497   // plus a shift.
4498   if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() &&
4499       !VT.isVector()) {
4500     MVT Simple = VT.getSimpleVT();
4501     unsigned SimpleSize = Simple.getSizeInBits();
4502     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4503     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4504       N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
4505       N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
4506       N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4507       N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4508             DAG.getConstant(SimpleSize, DL,
4509                             getShiftAmountTy(N1.getValueType())));
4510       return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4511     }
4512   }
4513 
4514   return SDValue();
4515 }
4516 
4517 SDValue DAGCombiner::visitMULHU(SDNode *N) {
4518   SDValue N0 = N->getOperand(0);
4519   SDValue N1 = N->getOperand(1);
4520   EVT VT = N->getValueType(0);
4521   SDLoc DL(N);
4522 
4523   if (VT.isVector()) {
4524     // fold (mulhu x, 0) -> 0
4525     // do not return N0/N1, because undef node may exist.
4526     if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) ||
4527         ISD::isConstantSplatVectorAllZeros(N1.getNode()))
4528       return DAG.getConstant(0, DL, VT);
4529   }
4530 
4531   // fold (mulhu c1, c2)
4532   if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1}))
4533     return C;
4534 
4535   // canonicalize constant to RHS.
4536   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4537       !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4538     return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0);
4539 
4540   // fold (mulhu x, 0) -> 0
4541   if (isNullConstant(N1))
4542     return N1;
4543   // fold (mulhu x, 1) -> 0
4544   if (isOneConstant(N1))
4545     return DAG.getConstant(0, DL, N0.getValueType());
4546   // fold (mulhu x, undef) -> 0
4547   if (N0.isUndef() || N1.isUndef())
4548     return DAG.getConstant(0, DL, VT);
4549 
4550   // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4551   if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4552       DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
4553     unsigned NumEltBits = VT.getScalarSizeInBits();
4554     SDValue LogBase2 = BuildLogBase2(N1, DL);
4555     SDValue SRLAmt = DAG.getNode(
4556         ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
4557     EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4558     SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
4559     return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4560   }
4561 
4562   // If the type twice as wide is legal, transform the mulhu to a wider multiply
4563   // plus a shift.
4564   if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() &&
4565       !VT.isVector()) {
4566     MVT Simple = VT.getSimpleVT();
4567     unsigned SimpleSize = Simple.getSizeInBits();
4568     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4569     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4570       N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
4571       N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
4572       N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4573       N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4574             DAG.getConstant(SimpleSize, DL,
4575                             getShiftAmountTy(N1.getValueType())));
4576       return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4577     }
4578   }
4579 
4580   // Simplify the operands using demanded-bits information.
4581   // We don't have demanded bits support for MULHU so this just enables constant
4582   // folding based on known bits.
4583   if (SimplifyDemandedBits(SDValue(N, 0)))
4584     return SDValue(N, 0);
4585 
4586   return SDValue();
4587 }
4588 
4589 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4590 /// give the opcodes for the two computations that are being performed. Return
4591 /// true if a simplification was made.
4592 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
4593                                                 unsigned HiOp) {
4594   // If the high half is not needed, just compute the low half.
4595   bool HiExists = N->hasAnyUseOfValue(1);
4596   if (!HiExists && (!LegalOperations ||
4597                     TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
4598     SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4599     return CombineTo(N, Res, Res);
4600   }
4601 
4602   // If the low half is not needed, just compute the high half.
4603   bool LoExists = N->hasAnyUseOfValue(0);
4604   if (!LoExists && (!LegalOperations ||
4605                     TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
4606     SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4607     return CombineTo(N, Res, Res);
4608   }
4609 
4610   // If both halves are used, return as it is.
4611   if (LoExists && HiExists)
4612     return SDValue();
4613 
4614   // If the two computed results can be simplified separately, separate them.
4615   if (LoExists) {
4616     SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4617     AddToWorklist(Lo.getNode());
4618     SDValue LoOpt = combine(Lo.getNode());
4619     if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
4620         (!LegalOperations ||
4621          TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
4622       return CombineTo(N, LoOpt, LoOpt);
4623   }
4624 
4625   if (HiExists) {
4626     SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4627     AddToWorklist(Hi.getNode());
4628     SDValue HiOpt = combine(Hi.getNode());
4629     if (HiOpt.getNode() && HiOpt != Hi &&
4630         (!LegalOperations ||
4631          TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
4632       return CombineTo(N, HiOpt, HiOpt);
4633   }
4634 
4635   return SDValue();
4636 }
4637 
4638 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
4639   if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
4640     return Res;
4641 
4642   EVT VT = N->getValueType(0);
4643   SDLoc DL(N);
4644 
4645   // If the type is twice as wide is legal, transform the mulhu to a wider
4646   // multiply plus a shift.
4647   if (VT.isSimple() && !VT.isVector()) {
4648     MVT Simple = VT.getSimpleVT();
4649     unsigned SimpleSize = Simple.getSizeInBits();
4650     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4651     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4652       SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
4653       SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
4654       Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4655       // Compute the high part as N1.
4656       Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4657             DAG.getConstant(SimpleSize, DL,
4658                             getShiftAmountTy(Lo.getValueType())));
4659       Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4660       // Compute the low part as N0.
4661       Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4662       return CombineTo(N, Lo, Hi);
4663     }
4664   }
4665 
4666   return SDValue();
4667 }
4668 
4669 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
4670   if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
4671     return Res;
4672 
4673   EVT VT = N->getValueType(0);
4674   SDLoc DL(N);
4675 
4676   // (umul_lohi N0, 0) -> (0, 0)
4677   if (isNullConstant(N->getOperand(1))) {
4678     SDValue Zero = DAG.getConstant(0, DL, VT);
4679     return CombineTo(N, Zero, Zero);
4680   }
4681 
4682   // (umul_lohi N0, 1) -> (N0, 0)
4683   if (isOneConstant(N->getOperand(1))) {
4684     SDValue Zero = DAG.getConstant(0, DL, VT);
4685     return CombineTo(N, N->getOperand(0), Zero);
4686   }
4687 
4688   // If the type is twice as wide is legal, transform the mulhu to a wider
4689   // multiply plus a shift.
4690   if (VT.isSimple() && !VT.isVector()) {
4691     MVT Simple = VT.getSimpleVT();
4692     unsigned SimpleSize = Simple.getSizeInBits();
4693     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4694     if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4695       SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
4696       SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
4697       Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4698       // Compute the high part as N1.
4699       Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4700             DAG.getConstant(SimpleSize, DL,
4701                             getShiftAmountTy(Lo.getValueType())));
4702       Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4703       // Compute the low part as N0.
4704       Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4705       return CombineTo(N, Lo, Hi);
4706     }
4707   }
4708 
4709   return SDValue();
4710 }
4711 
4712 SDValue DAGCombiner::visitMULO(SDNode *N) {
4713   SDValue N0 = N->getOperand(0);
4714   SDValue N1 = N->getOperand(1);
4715   EVT VT = N0.getValueType();
4716   bool IsSigned = (ISD::SMULO == N->getOpcode());
4717 
4718   EVT CarryVT = N->getValueType(1);
4719   SDLoc DL(N);
4720 
4721   ConstantSDNode *N0C = isConstOrConstSplat(N0);
4722   ConstantSDNode *N1C = isConstOrConstSplat(N1);
4723 
4724   // fold operation with constant operands.
4725   // TODO: Move this to FoldConstantArithmetic when it supports nodes with
4726   // multiple results.
4727   if (N0C && N1C) {
4728     bool Overflow;
4729     APInt Result =
4730         IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow)
4731                  : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow);
4732     return CombineTo(N, DAG.getConstant(Result, DL, VT),
4733                      DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT));
4734   }
4735 
4736   // canonicalize constant to RHS.
4737   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4738       !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4739     return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
4740 
4741   // fold (mulo x, 0) -> 0 + no carry out
4742   if (isNullOrNullSplat(N1))
4743     return CombineTo(N, DAG.getConstant(0, DL, VT),
4744                      DAG.getConstant(0, DL, CarryVT));
4745 
4746   // (mulo x, 2) -> (addo x, x)
4747   if (N1C && N1C->getAPIntValue() == 2)
4748     return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
4749                        N->getVTList(), N0, N0);
4750 
4751   if (IsSigned) {
4752     // A 1 bit SMULO overflows if both inputs are 1.
4753     if (VT.getScalarSizeInBits() == 1) {
4754       SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1);
4755       return CombineTo(N, And,
4756                        DAG.getSetCC(DL, CarryVT, And,
4757                                     DAG.getConstant(0, DL, VT), ISD::SETNE));
4758     }
4759 
4760     // Multiplying n * m significant bits yields a result of n + m significant
4761     // bits. If the total number of significant bits does not exceed the
4762     // result bit width (minus 1), there is no overflow.
4763     unsigned SignBits = DAG.ComputeNumSignBits(N0);
4764     if (SignBits > 1)
4765       SignBits += DAG.ComputeNumSignBits(N1);
4766     if (SignBits > VT.getScalarSizeInBits() + 1)
4767       return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
4768                        DAG.getConstant(0, DL, CarryVT));
4769   } else {
4770     KnownBits N1Known = DAG.computeKnownBits(N1);
4771     KnownBits N0Known = DAG.computeKnownBits(N0);
4772     bool Overflow;
4773     (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow);
4774     if (!Overflow)
4775       return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
4776                        DAG.getConstant(0, DL, CarryVT));
4777   }
4778 
4779   return SDValue();
4780 }
4781 
4782 SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
4783   SDValue N0 = N->getOperand(0);
4784   SDValue N1 = N->getOperand(1);
4785   EVT VT = N0.getValueType();
4786   unsigned Opcode = N->getOpcode();
4787 
4788   // fold vector ops
4789   if (VT.isVector())
4790     if (SDValue FoldedVOp = SimplifyVBinOp(N))
4791       return FoldedVOp;
4792 
4793   // fold operation with constant operands.
4794   if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1}))
4795     return C;
4796 
4797   // canonicalize constant to RHS
4798   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4799       !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4800     return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
4801 
4802   // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4803   // Only do this if the current op isn't legal and the flipped is.
4804   if (!TLI.isOperationLegal(Opcode, VT) &&
4805       (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
4806       (N1.isUndef() || DAG.SignBitIsZero(N1))) {
4807     unsigned AltOpcode;
4808     switch (Opcode) {
4809     case ISD::SMIN: AltOpcode = ISD::UMIN; break;
4810     case ISD::SMAX: AltOpcode = ISD::UMAX; break;
4811     case ISD::UMIN: AltOpcode = ISD::SMIN; break;
4812     case ISD::UMAX: AltOpcode = ISD::SMAX; break;
4813     default: llvm_unreachable("Unknown MINMAX opcode");
4814     }
4815     if (TLI.isOperationLegal(AltOpcode, VT))
4816       return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
4817   }
4818 
4819   // Simplify the operands using demanded-bits information.
4820   if (SimplifyDemandedBits(SDValue(N, 0)))
4821     return SDValue(N, 0);
4822 
4823   return SDValue();
4824 }
4825 
4826 /// If this is a bitwise logic instruction and both operands have the same
4827 /// opcode, try to sink the other opcode after the logic instruction.
4828 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
4829   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4830   EVT VT = N0.getValueType();
4831   unsigned LogicOpcode = N->getOpcode();
4832   unsigned HandOpcode = N0.getOpcode();
4833   assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
4834           LogicOpcode == ISD::XOR) && "Expected logic opcode");
4835   assert(HandOpcode == N1.getOpcode() && "Bad input!");
4836 
4837   // Bail early if none of these transforms apply.
4838   if (N0.getNumOperands() == 0)
4839     return SDValue();
4840 
4841   // FIXME: We should check number of uses of the operands to not increase
4842   //        the instruction count for all transforms.
4843 
4844   // Handle size-changing casts.
4845   SDValue X = N0.getOperand(0);
4846   SDValue Y = N1.getOperand(0);
4847   EVT XVT = X.getValueType();
4848   SDLoc DL(N);
4849   if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
4850       HandOpcode == ISD::SIGN_EXTEND) {
4851     // If both operands have other uses, this transform would create extra
4852     // instructions without eliminating anything.
4853     if (!N0.hasOneUse() && !N1.hasOneUse())
4854       return SDValue();
4855     // We need matching integer source types.
4856     if (XVT != Y.getValueType())
4857       return SDValue();
4858     // Don't create an illegal op during or after legalization. Don't ever
4859     // create an unsupported vector op.
4860     if ((VT.isVector() || LegalOperations) &&
4861         !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
4862       return SDValue();
4863     // Avoid infinite looping with PromoteIntBinOp.
4864     // TODO: Should we apply desirable/legal constraints to all opcodes?
4865     if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
4866         !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
4867       return SDValue();
4868     // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4869     SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4870     return DAG.getNode(HandOpcode, DL, VT, Logic);
4871   }
4872 
4873   // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4874   if (HandOpcode == ISD::TRUNCATE) {
4875     // If both operands have other uses, this transform would create extra
4876     // instructions without eliminating anything.
4877     if (!N0.hasOneUse() && !N1.hasOneUse())
4878       return SDValue();
4879     // We need matching source types.
4880     if (XVT != Y.getValueType())
4881       return SDValue();
4882     // Don't create an illegal op during or after legalization.
4883     if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
4884       return SDValue();
4885     // Be extra careful sinking truncate. If it's free, there's no benefit in
4886     // widening a binop. Also, don't create a logic op on an illegal type.
4887     if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
4888       return SDValue();
4889     if (!TLI.isTypeLegal(XVT))
4890       return SDValue();
4891     SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4892     return DAG.getNode(HandOpcode, DL, VT, Logic);
4893   }
4894 
4895   // For binops SHL/SRL/SRA/AND:
4896   //   logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4897   if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
4898        HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
4899       N0.getOperand(1) == N1.getOperand(1)) {
4900     // If either operand has other uses, this transform is not an improvement.
4901     if (!N0.hasOneUse() || !N1.hasOneUse())
4902       return SDValue();
4903     SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4904     return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
4905   }
4906 
4907   // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4908   if (HandOpcode == ISD::BSWAP) {
4909     // If either operand has other uses, this transform is not an improvement.
4910     if (!N0.hasOneUse() || !N1.hasOneUse())
4911       return SDValue();
4912     SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4913     return DAG.getNode(HandOpcode, DL, VT, Logic);
4914   }
4915 
4916   // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4917   // Only perform this optimization up until type legalization, before
4918   // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4919   // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4920   // we don't want to undo this promotion.
4921   // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4922   // on scalars.
4923   if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
4924        Level <= AfterLegalizeTypes) {
4925     // Input types must be integer and the same.
4926     if (XVT.isInteger() && XVT == Y.getValueType() &&
4927         !(VT.isVector() && TLI.isTypeLegal(VT) &&
4928           !XVT.isVector() && !TLI.isTypeLegal(XVT))) {
4929       SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4930       return DAG.getNode(HandOpcode, DL, VT, Logic);
4931     }
4932   }
4933 
4934   // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4935   // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4936   // If both shuffles use the same mask, and both shuffle within a single
4937   // vector, then it is worthwhile to move the swizzle after the operation.
4938   // The type-legalizer generates this pattern when loading illegal
4939   // vector types from memory. In many cases this allows additional shuffle
4940   // optimizations.
4941   // There are other cases where moving the shuffle after the xor/and/or
4942   // is profitable even if shuffles don't perform a swizzle.
4943   // If both shuffles use the same mask, and both shuffles have the same first
4944   // or second operand, then it might still be profitable to move the shuffle
4945   // after the xor/and/or operation.
4946   if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
4947     auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
4948     auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
4949     assert(X.getValueType() == Y.getValueType() &&
4950            "Inputs to shuffles are not the same type");
4951 
4952     // Check that both shuffles use the same mask. The masks are known to be of
4953     // the same length because the result vector type is the same.
4954     // Check also that shuffles have only one use to avoid introducing extra
4955     // instructions.
4956     if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
4957         !SVN0->getMask().equals(SVN1->getMask()))
4958       return SDValue();
4959 
4960     // Don't try to fold this node if it requires introducing a
4961     // build vector of all zeros that might be illegal at this stage.
4962     SDValue ShOp = N0.getOperand(1);
4963     if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4964       ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4965 
4966     // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4967     if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
4968       SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
4969                                   N0.getOperand(0), N1.getOperand(0));
4970       return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
4971     }
4972 
4973     // Don't try to fold this node if it requires introducing a
4974     // build vector of all zeros that might be illegal at this stage.
4975     ShOp = N0.getOperand(0);
4976     if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4977       ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4978 
4979     // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4980     if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
4981       SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
4982                                   N1.getOperand(1));
4983       return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
4984     }
4985   }
4986 
4987   return SDValue();
4988 }
4989 
4990 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4991 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
4992                                        const SDLoc &DL) {
4993   SDValue LL, LR, RL, RR, N0CC, N1CC;
4994   if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
4995       !isSetCCEquivalent(N1, RL, RR, N1CC))
4996     return SDValue();
4997 
4998   assert(N0.getValueType() == N1.getValueType() &&
4999          "Unexpected operand types for bitwise logic op");
5000   assert(LL.getValueType() == LR.getValueType() &&
5001          RL.getValueType() == RR.getValueType() &&
5002          "Unexpected operand types for setcc");
5003 
5004   // If we're here post-legalization or the logic op type is not i1, the logic
5005   // op type must match a setcc result type. Also, all folds require new
5006   // operations on the left and right operands, so those types must match.
5007   EVT VT = N0.getValueType();
5008   EVT OpVT = LL.getValueType();
5009   if (LegalOperations || VT.getScalarType() != MVT::i1)
5010     if (VT != getSetCCResultType(OpVT))
5011       return SDValue();
5012   if (OpVT != RL.getValueType())
5013     return SDValue();
5014 
5015   ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
5016   ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
5017   bool IsInteger = OpVT.isInteger();
5018   if (LR == RR && CC0 == CC1 && IsInteger) {
5019     bool IsZero = isNullOrNullSplat(LR);
5020     bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
5021 
5022     // All bits clear?
5023     bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
5024     // All sign bits clear?
5025     bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
5026     // Any bits set?
5027     bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
5028     // Any sign bits set?
5029     bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
5030 
5031     // (and (seteq X,  0), (seteq Y,  0)) --> (seteq (or X, Y),  0)
5032     // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
5033     // (or  (setne X,  0), (setne Y,  0)) --> (setne (or X, Y),  0)
5034     // (or  (setlt X,  0), (setlt Y,  0)) --> (setlt (or X, Y),  0)
5035     if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
5036       SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
5037       AddToWorklist(Or.getNode());
5038       return DAG.getSetCC(DL, VT, Or, LR, CC1);
5039     }
5040 
5041     // All bits set?
5042     bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
5043     // All sign bits set?
5044     bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
5045     // Any bits clear?
5046     bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
5047     // Any sign bits clear?
5048     bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
5049 
5050     // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
5051     // (and (setlt X,  0), (setlt Y,  0)) --> (setlt (and X, Y),  0)
5052     // (or  (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
5053     // (or  (setgt X, -1), (setgt Y  -1)) --> (setgt (and X, Y), -1)
5054     if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
5055       SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
5056       AddToWorklist(And.getNode());
5057       return DAG.getSetCC(DL, VT, And, LR, CC1);
5058     }
5059   }
5060 
5061   // TODO: What is the 'or' equivalent of this fold?
5062   // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
5063   if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
5064       IsInteger && CC0 == ISD::SETNE &&
5065       ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
5066        (isAllOnesConstant(LR) && isNullConstant(RR)))) {
5067     SDValue One = DAG.getConstant(1, DL, OpVT);
5068     SDValue Two = DAG.getConstant(2, DL, OpVT);
5069     SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
5070     AddToWorklist(Add.getNode());
5071     return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
5072   }
5073 
5074   // Try more general transforms if the predicates match and the only user of
5075   // the compares is the 'and' or 'or'.
5076   if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
5077       N0.hasOneUse() && N1.hasOneUse()) {
5078     // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
5079     // or  (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
5080     if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
5081       SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
5082       SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
5083       SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
5084       SDValue Zero = DAG.getConstant(0, DL, OpVT);
5085       return DAG.getSetCC(DL, VT, Or, Zero, CC1);
5086     }
5087 
5088     // Turn compare of constants whose difference is 1 bit into add+and+setcc.
5089     // TODO - support non-uniform vector amounts.
5090     if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
5091       // Match a shared variable operand and 2 non-opaque constant operands.
5092       ConstantSDNode *C0 = isConstOrConstSplat(LR);
5093       ConstantSDNode *C1 = isConstOrConstSplat(RR);
5094       if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
5095         const APInt &CMax =
5096             APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue());
5097         const APInt &CMin =
5098             APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue());
5099         // The difference of the constants must be a single bit.
5100         if ((CMax - CMin).isPowerOf2()) {
5101           // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
5102           // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
5103           SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR);
5104           SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR);
5105           SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min);
5106           SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min);
5107           SDValue Mask = DAG.getNOT(DL, Diff, OpVT);
5108           SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask);
5109           SDValue Zero = DAG.getConstant(0, DL, OpVT);
5110           return DAG.getSetCC(DL, VT, And, Zero, CC0);
5111         }
5112       }
5113     }
5114   }
5115 
5116   // Canonicalize equivalent operands to LL == RL.
5117   if (LL == RR && LR == RL) {
5118     CC1 = ISD::getSetCCSwappedOperands(CC1);
5119     std::swap(RL, RR);
5120   }
5121 
5122   // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5123   // (or  (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5124   if (LL == RL && LR == RR) {
5125     ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT)
5126                                 : ISD::getSetCCOrOperation(CC0, CC1, OpVT);
5127     if (NewCC != ISD::SETCC_INVALID &&
5128         (!LegalOperations ||
5129          (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
5130           TLI.isOperationLegal(ISD::SETCC, OpVT))))
5131       return DAG.getSetCC(DL, VT, LL, LR, NewCC);
5132   }
5133 
5134   return SDValue();
5135 }
5136 
5137 /// This contains all DAGCombine rules which reduce two values combined by
5138 /// an And operation to a single value. This makes them reusable in the context
5139 /// of visitSELECT(). Rules involving constants are not included as
5140 /// visitSELECT() already handles those cases.
5141 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
5142   EVT VT = N1.getValueType();
5143   SDLoc DL(N);
5144 
5145   // fold (and x, undef) -> 0
5146   if (N0.isUndef() || N1.isUndef())
5147     return DAG.getConstant(0, DL, VT);
5148 
5149   if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
5150     return V;
5151 
5152   if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
5153       VT.getSizeInBits() <= 64) {
5154     if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5155       if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
5156         // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
5157         // immediate for an add, but it is legal if its top c2 bits are set,
5158         // transform the ADD so the immediate doesn't need to be materialized
5159         // in a register.
5160         APInt ADDC = ADDI->getAPIntValue();
5161         APInt SRLC = SRLI->getAPIntValue();
5162         if (ADDC.getMinSignedBits() <= 64 &&
5163             SRLC.ult(VT.getSizeInBits()) &&
5164             !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
5165           APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
5166                                              SRLC.getZExtValue());
5167           if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
5168             ADDC |= Mask;
5169             if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
5170               SDLoc DL0(N0);
5171               SDValue NewAdd =
5172                 DAG.getNode(ISD::ADD, DL0, VT,
5173                             N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
5174               CombineTo(N0.getNode(), NewAdd);
5175               // Return N so it doesn't get rechecked!
5176               return SDValue(N, 0);
5177             }
5178           }
5179         }
5180       }
5181     }
5182   }
5183 
5184   // Reduce bit extract of low half of an integer to the narrower type.
5185   // (and (srl i64:x, K), KMask) ->
5186   //   (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
5187   if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5188     if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
5189       if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5190         unsigned Size = VT.getSizeInBits();
5191         const APInt &AndMask = CAnd->getAPIntValue();
5192         unsigned ShiftBits = CShift->getZExtValue();
5193 
5194         // Bail out, this node will probably disappear anyway.
5195         if (ShiftBits == 0)
5196           return SDValue();
5197 
5198         unsigned MaskBits = AndMask.countTrailingOnes();
5199         EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
5200 
5201         if (AndMask.isMask() &&
5202             // Required bits must not span the two halves of the integer and
5203             // must fit in the half size type.
5204             (ShiftBits + MaskBits <= Size / 2) &&
5205             TLI.isNarrowingProfitable(VT, HalfVT) &&
5206             TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
5207             TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
5208             TLI.isTruncateFree(VT, HalfVT) &&
5209             TLI.isZExtFree(HalfVT, VT)) {
5210           // The isNarrowingProfitable is to avoid regressions on PPC and
5211           // AArch64 which match a few 64-bit bit insert / bit extract patterns
5212           // on downstream users of this. Those patterns could probably be
5213           // extended to handle extensions mixed in.
5214 
5215           SDValue SL(N0);
5216           assert(MaskBits <= Size);
5217 
5218           // Extracting the highest bit of the low half.
5219           EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
5220           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
5221                                       N0.getOperand(0));
5222 
5223           SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
5224           SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
5225           SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
5226           SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
5227           return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
5228         }
5229       }
5230     }
5231   }
5232 
5233   return SDValue();
5234 }
5235 
5236 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
5237                                    EVT LoadResultTy, EVT &ExtVT) {
5238   if (!AndC->getAPIntValue().isMask())
5239     return false;
5240 
5241   unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
5242 
5243   ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
5244   EVT LoadedVT = LoadN->getMemoryVT();
5245 
5246   if (ExtVT == LoadedVT &&
5247       (!LegalOperations ||
5248        TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
5249     // ZEXTLOAD will match without needing to change the size of the value being
5250     // loaded.
5251     return true;
5252   }
5253 
5254   // Do not change the width of a volatile or atomic loads.
5255   if (!LoadN->isSimple())
5256     return false;
5257 
5258   // Do not generate loads of non-round integer types since these can
5259   // be expensive (and would be wrong if the type is not byte sized).
5260   if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
5261     return false;
5262 
5263   if (LegalOperations &&
5264       !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
5265     return false;
5266 
5267   if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
5268     return false;
5269 
5270   return true;
5271 }
5272 
5273 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
5274                                     ISD::LoadExtType ExtType, EVT &MemVT,
5275                                     unsigned ShAmt) {
5276   if (!LDST)
5277     return false;
5278   // Only allow byte offsets.
5279   if (ShAmt % 8)
5280     return false;
5281 
5282   // Do not generate loads of non-round integer types since these can
5283   // be expensive (and would be wrong if the type is not byte sized).
5284   if (!MemVT.isRound())
5285     return false;
5286 
5287   // Don't change the width of a volatile or atomic loads.
5288   if (!LDST->isSimple())
5289     return false;
5290 
5291   EVT LdStMemVT = LDST->getMemoryVT();
5292 
5293   // Bail out when changing the scalable property, since we can't be sure that
5294   // we're actually narrowing here.
5295   if (LdStMemVT.isScalableVector() != MemVT.isScalableVector())
5296     return false;
5297 
5298   // Verify that we are actually reducing a load width here.
5299   if (LdStMemVT.bitsLT(MemVT))
5300     return false;
5301 
5302   // Ensure that this isn't going to produce an unsupported memory access.
5303   if (ShAmt) {
5304     assert(ShAmt % 8 == 0 && "ShAmt is byte offset");
5305     const unsigned ByteShAmt = ShAmt / 8;
5306     const Align LDSTAlign = LDST->getAlign();
5307     const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt);
5308     if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
5309                                 LDST->getAddressSpace(), NarrowAlign,
5310                                 LDST->getMemOperand()->getFlags()))
5311       return false;
5312   }
5313 
5314   // It's not possible to generate a constant of extended or untyped type.
5315   EVT PtrType = LDST->getBasePtr().getValueType();
5316   if (PtrType == MVT::Untyped || PtrType.isExtended())
5317     return false;
5318 
5319   if (isa<LoadSDNode>(LDST)) {
5320     LoadSDNode *Load = cast<LoadSDNode>(LDST);
5321     // Don't transform one with multiple uses, this would require adding a new
5322     // load.
5323     if (!SDValue(Load, 0).hasOneUse())
5324       return false;
5325 
5326     if (LegalOperations &&
5327         !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
5328       return false;
5329 
5330     // For the transform to be legal, the load must produce only two values
5331     // (the value loaded and the chain).  Don't transform a pre-increment
5332     // load, for example, which produces an extra value.  Otherwise the
5333     // transformation is not equivalent, and the downstream logic to replace
5334     // uses gets things wrong.
5335     if (Load->getNumValues() > 2)
5336       return false;
5337 
5338     // If the load that we're shrinking is an extload and we're not just
5339     // discarding the extension we can't simply shrink the load. Bail.
5340     // TODO: It would be possible to merge the extensions in some cases.
5341     if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
5342         Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
5343       return false;
5344 
5345     if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
5346       return false;
5347   } else {
5348     assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
5349     StoreSDNode *Store = cast<StoreSDNode>(LDST);
5350     // Can't write outside the original store
5351     if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
5352       return false;
5353 
5354     if (LegalOperations &&
5355         !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
5356       return false;
5357   }
5358   return true;
5359 }
5360 
5361 bool DAGCombiner::SearchForAndLoads(SDNode *N,
5362                                     SmallVectorImpl<LoadSDNode*> &Loads,
5363                                     SmallPtrSetImpl<SDNode*> &NodesWithConsts,
5364                                     ConstantSDNode *Mask,
5365                                     SDNode *&NodeToMask) {
5366   // Recursively search for the operands, looking for loads which can be
5367   // narrowed.
5368   for (SDValue Op : N->op_values()) {
5369     if (Op.getValueType().isVector())
5370       return false;
5371 
5372     // Some constants may need fixing up later if they are too large.
5373     if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
5374       if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
5375           (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
5376         NodesWithConsts.insert(N);
5377       continue;
5378     }
5379 
5380     if (!Op.hasOneUse())
5381       return false;
5382 
5383     switch(Op.getOpcode()) {
5384     case ISD::LOAD: {
5385       auto *Load = cast<LoadSDNode>(Op);
5386       EVT ExtVT;
5387       if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
5388           isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
5389 
5390         // ZEXTLOAD is already small enough.
5391         if (Load->getExtensionType() == ISD::ZEXTLOAD &&
5392             ExtVT.bitsGE(Load->getMemoryVT()))
5393           continue;
5394 
5395         // Use LE to convert equal sized loads to zext.
5396         if (ExtVT.bitsLE(Load->getMemoryVT()))
5397           Loads.push_back(Load);
5398 
5399         continue;
5400       }
5401       return false;
5402     }
5403     case ISD::ZERO_EXTEND:
5404     case ISD::AssertZext: {
5405       unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
5406       EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
5407       EVT VT = Op.getOpcode() == ISD::AssertZext ?
5408         cast<VTSDNode>(Op.getOperand(1))->getVT() :
5409         Op.getOperand(0).getValueType();
5410 
5411       // We can accept extending nodes if the mask is wider or an equal
5412       // width to the original type.
5413       if (ExtVT.bitsGE(VT))
5414         continue;
5415       break;
5416     }
5417     case ISD::OR:
5418     case ISD::XOR:
5419     case ISD::AND:
5420       if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
5421                              NodeToMask))
5422         return false;
5423       continue;
5424     }
5425 
5426     // Allow one node which will masked along with any loads found.
5427     if (NodeToMask)
5428       return false;
5429 
5430     // Also ensure that the node to be masked only produces one data result.
5431     NodeToMask = Op.getNode();
5432     if (NodeToMask->getNumValues() > 1) {
5433       bool HasValue = false;
5434       for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
5435         MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
5436         if (VT != MVT::Glue && VT != MVT::Other) {
5437           if (HasValue) {
5438             NodeToMask = nullptr;
5439             return false;
5440           }
5441           HasValue = true;
5442         }
5443       }
5444       assert(HasValue && "Node to be masked has no data result?");
5445     }
5446   }
5447   return true;
5448 }
5449 
5450 bool DAGCombiner::BackwardsPropagateMask(SDNode *N) {
5451   auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
5452   if (!Mask)
5453     return false;
5454 
5455   if (!Mask->getAPIntValue().isMask())
5456     return false;
5457 
5458   // No need to do anything if the and directly uses a load.
5459   if (isa<LoadSDNode>(N->getOperand(0)))
5460     return false;
5461 
5462   SmallVector<LoadSDNode*, 8> Loads;
5463   SmallPtrSet<SDNode*, 2> NodesWithConsts;
5464   SDNode *FixupNode = nullptr;
5465   if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
5466     if (Loads.size() == 0)
5467       return false;
5468 
5469     LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
5470     SDValue MaskOp = N->getOperand(1);
5471 
5472     // If it exists, fixup the single node we allow in the tree that needs
5473     // masking.
5474     if (FixupNode) {
5475       LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
5476       SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
5477                                 FixupNode->getValueType(0),
5478                                 SDValue(FixupNode, 0), MaskOp);
5479       DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
5480       if (And.getOpcode() == ISD ::AND)
5481         DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
5482     }
5483 
5484     // Narrow any constants that need it.
5485     for (auto *LogicN : NodesWithConsts) {
5486       SDValue Op0 = LogicN->getOperand(0);
5487       SDValue Op1 = LogicN->getOperand(1);
5488 
5489       if (isa<ConstantSDNode>(Op0))
5490           std::swap(Op0, Op1);
5491 
5492       SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
5493                                 Op1, MaskOp);
5494 
5495       DAG.UpdateNodeOperands(LogicN, Op0, And);
5496     }
5497 
5498     // Create narrow loads.
5499     for (auto *Load : Loads) {
5500       LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
5501       SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
5502                                 SDValue(Load, 0), MaskOp);
5503       DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
5504       if (And.getOpcode() == ISD ::AND)
5505         And = SDValue(
5506             DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
5507       SDValue NewLoad = ReduceLoadWidth(And.getNode());
5508       assert(NewLoad &&
5509              "Shouldn't be masking the load if it can't be narrowed");
5510       CombineTo(Load, NewLoad, NewLoad.getValue(1));
5511     }
5512     DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
5513     return true;
5514   }
5515   return false;
5516 }
5517 
5518 // Unfold
5519 //    x &  (-1 'logical shift' y)
5520 // To
5521 //    (x 'opposite logical shift' y) 'logical shift' y
5522 // if it is better for performance.
5523 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
5524   assert(N->getOpcode() == ISD::AND);
5525 
5526   SDValue N0 = N->getOperand(0);
5527   SDValue N1 = N->getOperand(1);
5528 
5529   // Do we actually prefer shifts over mask?
5530   if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
5531     return SDValue();
5532 
5533   // Try to match  (-1 '[outer] logical shift' y)
5534   unsigned OuterShift;
5535   unsigned InnerShift; // The opposite direction to the OuterShift.
5536   SDValue Y;           // Shift amount.
5537   auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
5538     if (!M.hasOneUse())
5539       return false;
5540     OuterShift = M->getOpcode();
5541     if (OuterShift == ISD::SHL)
5542       InnerShift = ISD::SRL;
5543     else if (OuterShift == ISD::SRL)
5544       InnerShift = ISD::SHL;
5545     else
5546       return false;
5547     if (!isAllOnesConstant(M->getOperand(0)))
5548       return false;
5549     Y = M->getOperand(1);
5550     return true;
5551   };
5552 
5553   SDValue X;
5554   if (matchMask(N1))
5555     X = N0;
5556   else if (matchMask(N0))
5557     X = N1;
5558   else
5559     return SDValue();
5560 
5561   SDLoc DL(N);
5562   EVT VT = N->getValueType(0);
5563 
5564   //     tmp = x   'opposite logical shift' y
5565   SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
5566   //     ret = tmp 'logical shift' y
5567   SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
5568 
5569   return T1;
5570 }
5571 
5572 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
5573 /// For a target with a bit test, this is expected to become test + set and save
5574 /// at least 1 instruction.
5575 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
5576   assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
5577 
5578   // This is probably not worthwhile without a supported type.
5579   EVT VT = And->getValueType(0);
5580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5581   if (!TLI.isTypeLegal(VT))
5582     return SDValue();
5583 
5584   // Look through an optional extension and find a 'not'.
5585   // TODO: Should we favor test+set even without the 'not' op?
5586   SDValue Not = And->getOperand(0), And1 = And->getOperand(1);
5587   if (Not.getOpcode() == ISD::ANY_EXTEND)
5588     Not = Not.getOperand(0);
5589   if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1))
5590     return SDValue();
5591 
5592   // Look though an optional truncation. The source operand may not be the same
5593   // type as the original 'and', but that is ok because we are masking off
5594   // everything but the low bit.
5595   SDValue Srl = Not.getOperand(0);
5596   if (Srl.getOpcode() == ISD::TRUNCATE)
5597     Srl = Srl.getOperand(0);
5598 
5599   // Match a shift-right by constant.
5600   if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() ||
5601       !isa<ConstantSDNode>(Srl.getOperand(1)))
5602     return SDValue();
5603 
5604   // We might have looked through casts that make this transform invalid.
5605   // TODO: If the source type is wider than the result type, do the mask and
5606   //       compare in the source type.
5607   const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1);
5608   unsigned VTBitWidth = VT.getSizeInBits();
5609   if (ShiftAmt.uge(VTBitWidth))
5610     return SDValue();
5611 
5612   // Turn this into a bit-test pattern using mask op + setcc:
5613   // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5614   SDLoc DL(And);
5615   SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT);
5616   EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5617   SDValue Mask = DAG.getConstant(
5618       APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT);
5619   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask);
5620   SDValue Zero = DAG.getConstant(0, DL, VT);
5621   SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
5622   return DAG.getZExtOrTrunc(Setcc, DL, VT);
5623 }
5624 
5625 SDValue DAGCombiner::visitAND(SDNode *N) {
5626   SDValue N0 = N->getOperand(0);
5627   SDValue N1 = N->getOperand(1);
5628   EVT VT = N1.getValueType();
5629 
5630   // x & x --> x
5631   if (N0 == N1)
5632     return N0;
5633 
5634   // fold vector ops
5635   if (VT.isVector()) {
5636     if (SDValue FoldedVOp = SimplifyVBinOp(N))
5637       return FoldedVOp;
5638 
5639     // fold (and x, 0) -> 0, vector edition
5640     if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
5641       // do not return N0, because undef node may exist in N0
5642       return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
5643                              SDLoc(N), N0.getValueType());
5644     if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
5645       // do not return N1, because undef node may exist in N1
5646       return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
5647                              SDLoc(N), N1.getValueType());
5648 
5649     // fold (and x, -1) -> x, vector edition
5650     if (ISD::isConstantSplatVectorAllOnes(N0.getNode()))
5651       return N1;
5652     if (ISD::isConstantSplatVectorAllOnes(N1.getNode()))
5653       return N0;
5654 
5655     // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load
5656     auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0);
5657     auto *BVec = dyn_cast<BuildVectorSDNode>(N1);
5658     if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD &&
5659         N0.hasOneUse() && N1.hasOneUse()) {
5660       EVT LoadVT = MLoad->getMemoryVT();
5661       EVT ExtVT = VT;
5662       if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) {
5663         // For this AND to be a zero extension of the masked load the elements
5664         // of the BuildVec must mask the bottom bits of the extended element
5665         // type
5666         if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) {
5667           uint64_t ElementSize =
5668               LoadVT.getVectorElementType().getScalarSizeInBits();
5669           if (Splat->getAPIntValue().isMask(ElementSize)) {
5670             return DAG.getMaskedLoad(
5671                 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(),
5672                 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(),
5673                 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(),
5674                 ISD::ZEXTLOAD, MLoad->isExpandingLoad());
5675           }
5676         }
5677       }
5678     }
5679   }
5680 
5681   // fold (and c1, c2) -> c1&c2
5682   ConstantSDNode *N1C = isConstOrConstSplat(N1);
5683   if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1}))
5684     return C;
5685 
5686   // canonicalize constant to RHS
5687   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5688       !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5689     return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
5690 
5691   // fold (and x, -1) -> x
5692   if (isAllOnesConstant(N1))
5693     return N0;
5694 
5695   // if (and x, c) is known to be zero, return 0
5696   unsigned BitWidth = VT.getScalarSizeInBits();
5697   if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
5698                                    APInt::getAllOnesValue(BitWidth)))
5699     return DAG.getConstant(0, SDLoc(N), VT);
5700 
5701   if (SDValue NewSel = foldBinOpIntoSelect(N))
5702     return NewSel;
5703 
5704   // reassociate and
5705   if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
5706     return RAND;
5707 
5708   // Try to convert a constant mask AND into a shuffle clear mask.
5709   if (VT.isVector())
5710     if (SDValue Shuffle = XformToShuffleWithZero(N))
5711       return Shuffle;
5712 
5713   if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
5714     return Combined;
5715 
5716   // fold (and (or x, C), D) -> D if (C & D) == D
5717   auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
5718     return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
5719   };
5720   if (N0.getOpcode() == ISD::OR &&
5721       ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
5722     return N1;
5723   // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5724   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
5725     SDValue N0Op0 = N0.getOperand(0);
5726     APInt Mask = ~N1C->getAPIntValue();
5727     Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
5728     if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
5729       SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
5730                                  N0.getValueType(), N0Op0);
5731 
5732       // Replace uses of the AND with uses of the Zero extend node.
5733       CombineTo(N, Zext);
5734 
5735       // We actually want to replace all uses of the any_extend with the
5736       // zero_extend, to avoid duplicating things.  This will later cause this
5737       // AND to be folded.
5738       CombineTo(N0.getNode(), Zext);
5739       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5740     }
5741   }
5742 
5743   // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5744   // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5745   // already be zero by virtue of the width of the base type of the load.
5746   //
5747   // the 'X' node here can either be nothing or an extract_vector_elt to catch
5748   // more cases.
5749   if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5750        N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
5751        N0.getOperand(0).getOpcode() == ISD::LOAD &&
5752        N0.getOperand(0).getResNo() == 0) ||
5753       (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
5754     LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
5755                                          N0 : N0.getOperand(0) );
5756 
5757     // Get the constant (if applicable) the zero'th operand is being ANDed with.
5758     // This can be a pure constant or a vector splat, in which case we treat the
5759     // vector as a scalar and use the splat value.
5760     APInt Constant = APInt::getNullValue(1);
5761     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
5762       Constant = C->getAPIntValue();
5763     } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
5764       APInt SplatValue, SplatUndef;
5765       unsigned SplatBitSize;
5766       bool HasAnyUndefs;
5767       bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
5768                                              SplatBitSize, HasAnyUndefs);
5769       if (IsSplat) {
5770         // Undef bits can contribute to a possible optimisation if set, so
5771         // set them.
5772         SplatValue |= SplatUndef;
5773 
5774         // The splat value may be something like "0x00FFFFFF", which means 0 for
5775         // the first vector value and FF for the rest, repeating. We need a mask
5776         // that will apply equally to all members of the vector, so AND all the
5777         // lanes of the constant together.
5778         unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
5779 
5780         // If the splat value has been compressed to a bitlength lower
5781         // than the size of the vector lane, we need to re-expand it to
5782         // the lane size.
5783         if (EltBitWidth > SplatBitSize)
5784           for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
5785                SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
5786             SplatValue |= SplatValue.shl(SplatBitSize);
5787 
5788         // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5789         // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5790         if ((SplatBitSize % EltBitWidth) == 0) {
5791           Constant = APInt::getAllOnesValue(EltBitWidth);
5792           for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
5793             Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
5794         }
5795       }
5796     }
5797 
5798     // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5799     // actually legal and isn't going to get expanded, else this is a false
5800     // optimisation.
5801     bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
5802                                                     Load->getValueType(0),
5803                                                     Load->getMemoryVT());
5804 
5805     // Resize the constant to the same size as the original memory access before
5806     // extension. If it is still the AllOnesValue then this AND is completely
5807     // unneeded.
5808     Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
5809 
5810     bool B;
5811     switch (Load->getExtensionType()) {
5812     default: B = false; break;
5813     case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
5814     case ISD::ZEXTLOAD:
5815     case ISD::NON_EXTLOAD: B = true; break;
5816     }
5817 
5818     if (B && Constant.isAllOnesValue()) {
5819       // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5820       // preserve semantics once we get rid of the AND.
5821       SDValue NewLoad(Load, 0);
5822 
5823       // Fold the AND away. NewLoad may get replaced immediately.
5824       CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
5825 
5826       if (Load->getExtensionType() == ISD::EXTLOAD) {
5827         NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
5828                               Load->getValueType(0), SDLoc(Load),
5829                               Load->getChain(), Load->getBasePtr(),
5830                               Load->getOffset(), Load->getMemoryVT(),
5831                               Load->getMemOperand());
5832         // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5833         if (Load->getNumValues() == 3) {
5834           // PRE/POST_INC loads have 3 values.
5835           SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
5836                            NewLoad.getValue(2) };
5837           CombineTo(Load, To, 3, true);
5838         } else {
5839           CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
5840         }
5841       }
5842 
5843       return SDValue(N, 0); // Return N so it doesn't get rechecked!
5844     }
5845   }
5846 
5847   // fold (and (masked_gather x)) -> (zext_masked_gather x)
5848   if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
5849     EVT MemVT = GN0->getMemoryVT();
5850     EVT ScalarVT = MemVT.getScalarType();
5851 
5852     if (SDValue(GN0, 0).hasOneUse() &&
5853         isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) &&
5854         TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
5855       SDValue Ops[] = {GN0->getChain(),   GN0->getPassThru(), GN0->getMask(),
5856                        GN0->getBasePtr(), GN0->getIndex(),    GN0->getScale()};
5857 
5858       SDValue ZExtLoad = DAG.getMaskedGather(
5859           DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops,
5860           GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD);
5861 
5862       CombineTo(N, ZExtLoad);
5863       AddToWorklist(ZExtLoad.getNode());
5864       // Avoid recheck of N.
5865       return SDValue(N, 0);
5866     }
5867   }
5868 
5869   // fold (and (load x), 255) -> (zextload x, i8)
5870   // fold (and (extload x, i16), 255) -> (zextload x, i8)
5871   // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5872   if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
5873                                 (N0.getOpcode() == ISD::ANY_EXTEND &&
5874                                  N0.getOperand(0).getOpcode() == ISD::LOAD))) {
5875     if (SDValue Res = ReduceLoadWidth(N)) {
5876       LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
5877         ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
5878       AddToWorklist(N);
5879       DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
5880       return SDValue(N, 0);
5881     }
5882   }
5883 
5884   if (LegalTypes) {
5885     // Attempt to propagate the AND back up to the leaves which, if they're
5886     // loads, can be combined to narrow loads and the AND node can be removed.
5887     // Perform after legalization so that extend nodes will already be
5888     // combined into the loads.
5889     if (BackwardsPropagateMask(N))
5890       return SDValue(N, 0);
5891   }
5892 
5893   if (SDValue Combined = visitANDLike(N0, N1, N))
5894     return Combined;
5895 
5896   // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
5897   if (N0.getOpcode() == N1.getOpcode())
5898     if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
5899       return V;
5900 
5901   // Masking the negated extension of a boolean is just the zero-extended
5902   // boolean:
5903   // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5904   // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5905   //
5906   // Note: the SimplifyDemandedBits fold below can make an information-losing
5907   // transform, and then we have no way to find this better fold.
5908   if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
5909     if (isNullOrNullSplat(N0.getOperand(0))) {
5910       SDValue SubRHS = N0.getOperand(1);
5911       if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
5912           SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5913         return SubRHS;
5914       if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
5915           SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5916         return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
5917     }
5918   }
5919 
5920   // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5921   // fold (and (sra)) -> (and (srl)) when possible.
5922   if (SimplifyDemandedBits(SDValue(N, 0)))
5923     return SDValue(N, 0);
5924 
5925   // fold (zext_inreg (extload x)) -> (zextload x)
5926   // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5927   if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
5928       (ISD::isEXTLoad(N0.getNode()) ||
5929        (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
5930     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5931     EVT MemVT = LN0->getMemoryVT();
5932     // If we zero all the possible extended bits, then we can turn this into
5933     // a zextload if we are running before legalize or the operation is legal.
5934     unsigned ExtBitSize = N1.getScalarValueSizeInBits();
5935     unsigned MemBitSize = MemVT.getScalarSizeInBits();
5936     APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
5937     if (DAG.MaskedValueIsZero(N1, ExtBits) &&
5938         ((!LegalOperations && LN0->isSimple()) ||
5939          TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
5940       SDValue ExtLoad =
5941           DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
5942                          LN0->getBasePtr(), MemVT, LN0->getMemOperand());
5943       AddToWorklist(N);
5944       CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5945       return SDValue(N, 0); // Return N so it doesn't get rechecked!
5946     }
5947   }
5948 
5949   // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5950   if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
5951     if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5952                                            N0.getOperand(1), false))
5953       return BSwap;
5954   }
5955 
5956   if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
5957     return Shifts;
5958 
5959   if (TLI.hasBitTest(N0, N1))
5960     if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
5961       return V;
5962 
5963   // Recognize the following pattern:
5964   //
5965   // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
5966   //
5967   // where bitmask is a mask that clears the upper bits of AndVT. The
5968   // number of bits in bitmask must be a power of two.
5969   auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) {
5970     if (LHS->getOpcode() != ISD::SIGN_EXTEND)
5971       return false;
5972 
5973     auto *C = dyn_cast<ConstantSDNode>(RHS);
5974     if (!C)
5975       return false;
5976 
5977     if (!C->getAPIntValue().isMask(
5978             LHS.getOperand(0).getValueType().getFixedSizeInBits()))
5979       return false;
5980 
5981     return true;
5982   };
5983 
5984   // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
5985   if (IsAndZeroExtMask(N0, N1))
5986     return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0));
5987 
5988   return SDValue();
5989 }
5990 
5991 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5992 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
5993                                         bool DemandHighBits) {
5994   if (!LegalOperations)
5995     return SDValue();
5996 
5997   EVT VT = N->getValueType(0);
5998   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
5999     return SDValue();
6000   if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
6001     return SDValue();
6002 
6003   // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
6004   bool LookPassAnd0 = false;
6005   bool LookPassAnd1 = false;
6006   if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
6007       std::swap(N0, N1);
6008   if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
6009       std::swap(N0, N1);
6010   if (N0.getOpcode() == ISD::AND) {
6011     if (!N0.getNode()->hasOneUse())
6012       return SDValue();
6013     ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6014     // Also handle 0xffff since the LHS is guaranteed to have zeros there.
6015     // This is needed for X86.
6016     if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
6017                   N01C->getZExtValue() != 0xFFFF))
6018       return SDValue();
6019     N0 = N0.getOperand(0);
6020     LookPassAnd0 = true;
6021   }
6022 
6023   if (N1.getOpcode() == ISD::AND) {
6024     if (!N1.getNode()->hasOneUse())
6025       return SDValue();
6026     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6027     if (!N11C || N11C->getZExtValue() != 0xFF)
6028       return SDValue();
6029     N1 = N1.getOperand(0);
6030     LookPassAnd1 = true;
6031   }
6032 
6033   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
6034     std::swap(N0, N1);
6035   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
6036     return SDValue();
6037   if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
6038     return SDValue();
6039 
6040   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6041   ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6042   if (!N01C || !N11C)
6043     return SDValue();
6044   if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
6045     return SDValue();
6046 
6047   // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
6048   SDValue N00 = N0->getOperand(0);
6049   if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
6050     if (!N00.getNode()->hasOneUse())
6051       return SDValue();
6052     ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
6053     if (!N001C || N001C->getZExtValue() != 0xFF)
6054       return SDValue();
6055     N00 = N00.getOperand(0);
6056     LookPassAnd0 = true;
6057   }
6058 
6059   SDValue N10 = N1->getOperand(0);
6060   if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
6061     if (!N10.getNode()->hasOneUse())
6062       return SDValue();
6063     ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
6064     // Also allow 0xFFFF since the bits will be shifted out. This is needed
6065     // for X86.
6066     if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
6067                    N101C->getZExtValue() != 0xFFFF))
6068       return SDValue();
6069     N10 = N10.getOperand(0);
6070     LookPassAnd1 = true;
6071   }
6072 
6073   if (N00 != N10)
6074     return SDValue();
6075 
6076   // Make sure everything beyond the low halfword gets set to zero since the SRL
6077   // 16 will clear the top bits.
6078   unsigned OpSizeInBits = VT.getSizeInBits();
6079   if (DemandHighBits && OpSizeInBits > 16) {
6080     // If the left-shift isn't masked out then the only way this is a bswap is
6081     // if all bits beyond the low 8 are 0. In that case the entire pattern
6082     // reduces to a left shift anyway: leave it for other parts of the combiner.
6083     if (!LookPassAnd0)
6084       return SDValue();
6085 
6086     // However, if the right shift isn't masked out then it might be because
6087     // it's not needed. See if we can spot that too.
6088     if (!LookPassAnd1 &&
6089         !DAG.MaskedValueIsZero(
6090             N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
6091       return SDValue();
6092   }
6093 
6094   SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
6095   if (OpSizeInBits > 16) {
6096     SDLoc DL(N);
6097     Res = DAG.getNode(ISD::SRL, DL, VT, Res,
6098                       DAG.getConstant(OpSizeInBits - 16, DL,
6099                                       getShiftAmountTy(VT)));
6100   }
6101   return Res;
6102 }
6103 
6104 /// Return true if the specified node is an element that makes up a 32-bit
6105 /// packed halfword byteswap.
6106 /// ((x & 0x000000ff) << 8) |
6107 /// ((x & 0x0000ff00) >> 8) |
6108 /// ((x & 0x00ff0000) << 8) |
6109 /// ((x & 0xff000000) >> 8)
6110 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
6111   if (!N.getNode()->hasOneUse())
6112     return false;
6113 
6114   unsigned Opc = N.getOpcode();
6115   if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
6116     return false;
6117 
6118   SDValue N0 = N.getOperand(0);
6119   unsigned Opc0 = N0.getOpcode();
6120   if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
6121     return false;
6122 
6123   ConstantSDNode *N1C = nullptr;
6124   // SHL or SRL: look upstream for AND mask operand
6125   if (Opc == ISD::AND)
6126     N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
6127   else if (Opc0 == ISD::AND)
6128     N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6129   if (!N1C)
6130     return false;
6131 
6132   unsigned MaskByteOffset;
6133   switch (N1C->getZExtValue()) {
6134   default:
6135     return false;
6136   case 0xFF:       MaskByteOffset = 0; break;
6137   case 0xFF00:     MaskByteOffset = 1; break;
6138   case 0xFFFF:
6139     // In case demanded bits didn't clear the bits that will be shifted out.
6140     // This is needed for X86.
6141     if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
6142       MaskByteOffset = 1;
6143       break;
6144     }
6145     return false;
6146   case 0xFF0000:   MaskByteOffset = 2; break;
6147   case 0xFF000000: MaskByteOffset = 3; break;
6148   }
6149 
6150   // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
6151   if (Opc == ISD::AND) {
6152     if (MaskByteOffset == 0 || MaskByteOffset == 2) {
6153       // (x >> 8) & 0xff
6154       // (x >> 8) & 0xff0000
6155       if (Opc0 != ISD::SRL)
6156         return false;
6157       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6158       if (!C || C->getZExtValue() != 8)
6159         return false;
6160     } else {
6161       // (x << 8) & 0xff00
6162       // (x << 8) & 0xff000000
6163       if (Opc0 != ISD::SHL)
6164         return false;
6165       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6166       if (!C || C->getZExtValue() != 8)
6167         return false;
6168     }
6169   } else if (Opc == ISD::SHL) {
6170     // (x & 0xff) << 8
6171     // (x & 0xff0000) << 8
6172     if (MaskByteOffset != 0 && MaskByteOffset != 2)
6173       return false;
6174     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
6175     if (!C || C->getZExtValue() != 8)
6176       return false;
6177   } else { // Opc == ISD::SRL
6178     // (x & 0xff00) >> 8
6179     // (x & 0xff000000) >> 8
6180     if (MaskByteOffset != 1 && MaskByteOffset != 3)
6181       return false;
6182     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
6183     if (!C || C->getZExtValue() != 8)
6184       return false;
6185   }
6186 
6187   if (Parts[MaskByteOffset])
6188     return false;
6189 
6190   Parts[MaskByteOffset] = N0.getOperand(0).getNode();
6191   return true;
6192 }
6193 
6194 // Match 2 elements of a packed halfword bswap.
6195 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) {
6196   if (N.getOpcode() == ISD::OR)
6197     return isBSwapHWordElement(N.getOperand(0), Parts) &&
6198            isBSwapHWordElement(N.getOperand(1), Parts);
6199 
6200   if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
6201     ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
6202     if (!C || C->getAPIntValue() != 16)
6203       return false;
6204     Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
6205     return true;
6206   }
6207 
6208   return false;
6209 }
6210 
6211 // Match this pattern:
6212 //   (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
6213 // And rewrite this to:
6214 //   (rotr (bswap A), 16)
6215 static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI,
6216                                        SelectionDAG &DAG, SDNode *N, SDValue N0,
6217                                        SDValue N1, EVT VT, EVT ShiftAmountTy) {
6218   assert(N->getOpcode() == ISD::OR && VT == MVT::i32 &&
6219          "MatchBSwapHWordOrAndAnd: expecting i32");
6220   if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
6221     return SDValue();
6222   if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
6223     return SDValue();
6224   // TODO: this is too restrictive; lifting this restriction requires more tests
6225   if (!N0->hasOneUse() || !N1->hasOneUse())
6226     return SDValue();
6227   ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1));
6228   ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1));
6229   if (!Mask0 || !Mask1)
6230     return SDValue();
6231   if (Mask0->getAPIntValue() != 0xff00ff00 ||
6232       Mask1->getAPIntValue() != 0x00ff00ff)
6233     return SDValue();
6234   SDValue Shift0 = N0.getOperand(0);
6235   SDValue Shift1 = N1.getOperand(0);
6236   if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL)
6237     return SDValue();
6238   ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1));
6239   ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1));
6240   if (!ShiftAmt0 || !ShiftAmt1)
6241     return SDValue();
6242   if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8)
6243     return SDValue();
6244   if (Shift0.getOperand(0) != Shift1.getOperand(0))
6245     return SDValue();
6246 
6247   SDLoc DL(N);
6248   SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0));
6249   SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy);
6250   return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
6251 }
6252 
6253 /// Match a 32-bit packed halfword bswap. That is
6254 /// ((x & 0x000000ff) << 8) |
6255 /// ((x & 0x0000ff00) >> 8) |
6256 /// ((x & 0x00ff0000) << 8) |
6257 /// ((x & 0xff000000) >> 8)
6258 /// => (rotl (bswap x), 16)
6259 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
6260   if (!LegalOperations)
6261     return SDValue();
6262 
6263   EVT VT = N->getValueType(0);
6264   if (VT != MVT::i32)
6265     return SDValue();
6266   if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
6267     return SDValue();
6268 
6269   if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT,
6270                                               getShiftAmountTy(VT)))
6271   return BSwap;
6272 
6273   // Try again with commuted operands.
6274   if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT,
6275                                               getShiftAmountTy(VT)))
6276   return BSwap;
6277 
6278 
6279   // Look for either
6280   // (or (bswaphpair), (bswaphpair))
6281   // (or (or (bswaphpair), (and)), (and))
6282   // (or (or (and), (bswaphpair)), (and))
6283   SDNode *Parts[4] = {};
6284 
6285   if (isBSwapHWordPair(N0, Parts)) {
6286     // (or (or (and), (and)), (or (and), (and)))
6287     if (!isBSwapHWordPair(N1, Parts))
6288       return SDValue();
6289   } else if (N0.getOpcode() == ISD::OR) {
6290     // (or (or (or (and), (and)), (and)), (and))
6291     if (!isBSwapHWordElement(N1, Parts))
6292       return SDValue();
6293     SDValue N00 = N0.getOperand(0);
6294     SDValue N01 = N0.getOperand(1);
6295     if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
6296         !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
6297       return SDValue();
6298   } else
6299     return SDValue();
6300 
6301   // Make sure the parts are all coming from the same node.
6302   if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
6303     return SDValue();
6304 
6305   SDLoc DL(N);
6306   SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
6307                               SDValue(Parts[0], 0));
6308 
6309   // Result of the bswap should be rotated by 16. If it's not legal, then
6310   // do  (x << 16) | (x >> 16).
6311   SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
6312   if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
6313     return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
6314   if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
6315     return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
6316   return DAG.getNode(ISD::OR, DL, VT,
6317                      DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
6318                      DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
6319 }
6320 
6321 /// This contains all DAGCombine rules which reduce two values combined by
6322 /// an Or operation to a single value \see visitANDLike().
6323 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
6324   EVT VT = N1.getValueType();
6325   SDLoc DL(N);
6326 
6327   // fold (or x, undef) -> -1
6328   if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
6329     return DAG.getAllOnesConstant(DL, VT);
6330 
6331   if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
6332     return V;
6333 
6334   // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
6335   if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
6336       // Don't increase # computations.
6337       (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
6338     // We can only do this xform if we know that bits from X that are set in C2
6339     // but not in C1 are already zero.  Likewise for Y.
6340     if (const ConstantSDNode *N0O1C =
6341         getAsNonOpaqueConstant(N0.getOperand(1))) {
6342       if (const ConstantSDNode *N1O1C =
6343           getAsNonOpaqueConstant(N1.getOperand(1))) {
6344         // We can only do this xform if we know that bits from X that are set in
6345         // C2 but not in C1 are already zero.  Likewise for Y.
6346         const APInt &LHSMask = N0O1C->getAPIntValue();
6347         const APInt &RHSMask = N1O1C->getAPIntValue();
6348 
6349         if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
6350             DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
6351           SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
6352                                   N0.getOperand(0), N1.getOperand(0));
6353           return DAG.getNode(ISD::AND, DL, VT, X,
6354                              DAG.getConstant(LHSMask | RHSMask, DL, VT));
6355         }
6356       }
6357     }
6358   }
6359 
6360   // (or (and X, M), (and X, N)) -> (and X, (or M, N))
6361   if (N0.getOpcode() == ISD::AND &&
6362       N1.getOpcode() == ISD::AND &&
6363       N0.getOperand(0) == N1.getOperand(0) &&
6364       // Don't increase # computations.
6365       (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
6366     SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
6367                             N0.getOperand(1), N1.getOperand(1));
6368     return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
6369   }
6370 
6371   return SDValue();
6372 }
6373 
6374 /// OR combines for which the commuted variant will be tried as well.
6375 static SDValue visitORCommutative(
6376     SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) {
6377   EVT VT = N0.getValueType();
6378   if (N0.getOpcode() == ISD::AND) {
6379     // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
6380     if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1)
6381       return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1);
6382 
6383     // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
6384     if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1)
6385       return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1);
6386   }
6387 
6388   return SDValue();
6389 }
6390 
6391 SDValue DAGCombiner::visitOR(SDNode *N) {
6392   SDValue N0 = N->getOperand(0);
6393   SDValue N1 = N->getOperand(1);
6394   EVT VT = N1.getValueType();
6395 
6396   // x | x --> x
6397   if (N0 == N1)
6398     return N0;
6399 
6400   // fold vector ops
6401   if (VT.isVector()) {
6402     if (SDValue FoldedVOp = SimplifyVBinOp(N))
6403       return FoldedVOp;
6404 
6405     // fold (or x, 0) -> x, vector edition
6406     if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
6407       return N1;
6408     if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
6409       return N0;
6410 
6411     // fold (or x, -1) -> -1, vector edition
6412     if (ISD::isConstantSplatVectorAllOnes(N0.getNode()))
6413       // do not return N0, because undef node may exist in N0
6414       return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
6415     if (ISD::isConstantSplatVectorAllOnes(N1.getNode()))
6416       // do not return N1, because undef node may exist in N1
6417       return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
6418 
6419     // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
6420     // Do this only if the resulting shuffle is legal.
6421     if (isa<ShuffleVectorSDNode>(N0) &&
6422         isa<ShuffleVectorSDNode>(N1) &&
6423         // Avoid folding a node with illegal type.
6424         TLI.isTypeLegal(VT)) {
6425       bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
6426       bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
6427       bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
6428       bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
6429       // Ensure both shuffles have a zero input.
6430       if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
6431         assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
6432         assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
6433         const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
6434         const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
6435         bool CanFold = true;
6436         int NumElts = VT.getVectorNumElements();
6437         SmallVector<int, 4> Mask(NumElts);
6438 
6439         for (int i = 0; i != NumElts; ++i) {
6440           int M0 = SV0->getMaskElt(i);
6441           int M1 = SV1->getMaskElt(i);
6442 
6443           // Determine if either index is pointing to a zero vector.
6444           bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
6445           bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
6446 
6447           // If one element is zero and the otherside is undef, keep undef.
6448           // This also handles the case that both are undef.
6449           if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
6450             Mask[i] = -1;
6451             continue;
6452           }
6453 
6454           // Make sure only one of the elements is zero.
6455           if (M0Zero == M1Zero) {
6456             CanFold = false;
6457             break;
6458           }
6459 
6460           assert((M0 >= 0 || M1 >= 0) && "Undef index!");
6461 
6462           // We have a zero and non-zero element. If the non-zero came from
6463           // SV0 make the index a LHS index. If it came from SV1, make it
6464           // a RHS index. We need to mod by NumElts because we don't care
6465           // which operand it came from in the original shuffles.
6466           Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
6467         }
6468 
6469         if (CanFold) {
6470           SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
6471           SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
6472 
6473           SDValue LegalShuffle =
6474               TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS,
6475                                           Mask, DAG);
6476           if (LegalShuffle)
6477             return LegalShuffle;
6478         }
6479       }
6480     }
6481   }
6482 
6483   // fold (or c1, c2) -> c1|c2
6484   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6485   if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1}))
6486     return C;
6487 
6488   // canonicalize constant to RHS
6489   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
6490      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
6491     return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
6492 
6493   // fold (or x, 0) -> x
6494   if (isNullConstant(N1))
6495     return N0;
6496 
6497   // fold (or x, -1) -> -1
6498   if (isAllOnesConstant(N1))
6499     return N1;
6500 
6501   if (SDValue NewSel = foldBinOpIntoSelect(N))
6502     return NewSel;
6503 
6504   // fold (or x, c) -> c iff (x & ~c) == 0
6505   if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
6506     return N1;
6507 
6508   if (SDValue Combined = visitORLike(N0, N1, N))
6509     return Combined;
6510 
6511   if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
6512     return Combined;
6513 
6514   // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
6515   if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
6516     return BSwap;
6517   if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
6518     return BSwap;
6519 
6520   // reassociate or
6521   if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
6522     return ROR;
6523 
6524   // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
6525   // iff (c1 & c2) != 0 or c1/c2 are undef.
6526   auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
6527     return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
6528   };
6529   if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
6530       ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
6531     if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
6532                                                  {N1, N0.getOperand(1)})) {
6533       SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
6534       AddToWorklist(IOR.getNode());
6535       return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
6536     }
6537   }
6538 
6539   if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
6540     return Combined;
6541   if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
6542     return Combined;
6543 
6544   // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
6545   if (N0.getOpcode() == N1.getOpcode())
6546     if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
6547       return V;
6548 
6549   // See if this is some rotate idiom.
6550   if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N)))
6551     return Rot;
6552 
6553   if (SDValue Load = MatchLoadCombine(N))
6554     return Load;
6555 
6556   // Simplify the operands using demanded-bits information.
6557   if (SimplifyDemandedBits(SDValue(N, 0)))
6558     return SDValue(N, 0);
6559 
6560   // If OR can be rewritten into ADD, try combines based on ADD.
6561   if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
6562       DAG.haveNoCommonBitsSet(N0, N1))
6563     if (SDValue Combined = visitADDLike(N))
6564       return Combined;
6565 
6566   return SDValue();
6567 }
6568 
6569 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
6570   if (Op.getOpcode() == ISD::AND &&
6571       DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
6572     Mask = Op.getOperand(1);
6573     return Op.getOperand(0);
6574   }
6575   return Op;
6576 }
6577 
6578 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
6579 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
6580                             SDValue &Mask) {
6581   Op = stripConstantMask(DAG, Op, Mask);
6582   if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
6583     Shift = Op;
6584     return true;
6585   }
6586   return false;
6587 }
6588 
6589 /// Helper function for visitOR to extract the needed side of a rotate idiom
6590 /// from a shl/srl/mul/udiv.  This is meant to handle cases where
6591 /// InstCombine merged some outside op with one of the shifts from
6592 /// the rotate pattern.
6593 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
6594 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
6595 /// patterns:
6596 ///
6597 ///   (or (add v v) (shrl v bitwidth-1)):
6598 ///     expands (add v v) -> (shl v 1)
6599 ///
6600 ///   (or (mul v c0) (shrl (mul v c1) c2)):
6601 ///     expands (mul v c0) -> (shl (mul v c1) c3)
6602 ///
6603 ///   (or (udiv v c0) (shl (udiv v c1) c2)):
6604 ///     expands (udiv v c0) -> (shrl (udiv v c1) c3)
6605 ///
6606 ///   (or (shl v c0) (shrl (shl v c1) c2)):
6607 ///     expands (shl v c0) -> (shl (shl v c1) c3)
6608 ///
6609 ///   (or (shrl v c0) (shl (shrl v c1) c2)):
6610 ///     expands (shrl v c0) -> (shrl (shrl v c1) c3)
6611 ///
6612 /// Such that in all cases, c3+c2==bitwidth(op v c1).
6613 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
6614                                      SDValue ExtractFrom, SDValue &Mask,
6615                                      const SDLoc &DL) {
6616   assert(OppShift && ExtractFrom && "Empty SDValue");
6617   assert(
6618       (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
6619       "Existing shift must be valid as a rotate half");
6620 
6621   ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
6622 
6623   // Value and Type of the shift.
6624   SDValue OppShiftLHS = OppShift.getOperand(0);
6625   EVT ShiftedVT = OppShiftLHS.getValueType();
6626 
6627   // Amount of the existing shift.
6628   ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
6629 
6630   // (add v v) -> (shl v 1)
6631   // TODO: Should this be a general DAG canonicalization?
6632   if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
6633       ExtractFrom.getOpcode() == ISD::ADD &&
6634       ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
6635       ExtractFrom.getOperand(0) == OppShiftLHS &&
6636       OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
6637     return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
6638                        DAG.getShiftAmountConstant(1, ShiftedVT, DL));
6639 
6640   // Preconditions:
6641   //    (or (op0 v c0) (shiftl/r (op0 v c1) c2))
6642   //
6643   // Find opcode of the needed shift to be extracted from (op0 v c0).
6644   unsigned Opcode = ISD::DELETED_NODE;
6645   bool IsMulOrDiv = false;
6646   // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
6647   // opcode or its arithmetic (mul or udiv) variant.
6648   auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
6649     IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
6650     if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
6651       return false;
6652     Opcode = NeededShift;
6653     return true;
6654   };
6655   // op0 must be either the needed shift opcode or the mul/udiv equivalent
6656   // that the needed shift can be extracted from.
6657   if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
6658       (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
6659     return SDValue();
6660 
6661   // op0 must be the same opcode on both sides, have the same LHS argument,
6662   // and produce the same value type.
6663   if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
6664       OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
6665       ShiftedVT != ExtractFrom.getValueType())
6666     return SDValue();
6667 
6668   // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6669   ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
6670   // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6671   ConstantSDNode *ExtractFromCst =
6672       isConstOrConstSplat(ExtractFrom.getOperand(1));
6673   // TODO: We should be able to handle non-uniform constant vectors for these values
6674   // Check that we have constant values.
6675   if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
6676       !OppLHSCst || !OppLHSCst->getAPIntValue() ||
6677       !ExtractFromCst || !ExtractFromCst->getAPIntValue())
6678     return SDValue();
6679 
6680   // Compute the shift amount we need to extract to complete the rotate.
6681   const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
6682   if (OppShiftCst->getAPIntValue().ugt(VTWidth))
6683     return SDValue();
6684   APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
6685   // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6686   APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
6687   APInt OppLHSAmt = OppLHSCst->getAPIntValue();
6688   zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
6689 
6690   // Now try extract the needed shift from the ExtractFrom op and see if the
6691   // result matches up with the existing shift's LHS op.
6692   if (IsMulOrDiv) {
6693     // Op to extract from is a mul or udiv by a constant.
6694     // Check:
6695     //     c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6696     //     c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6697     const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
6698                                                  NeededShiftAmt.getZExtValue());
6699     APInt ResultAmt;
6700     APInt Rem;
6701     APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
6702     if (Rem != 0 || ResultAmt != OppLHSAmt)
6703       return SDValue();
6704   } else {
6705     // Op to extract from is a shift by a constant.
6706     // Check:
6707     //      c2 - (bitwidth(op0 v c0) - c1) == c0
6708     if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
6709                                           ExtractFromAmt.getBitWidth()))
6710       return SDValue();
6711   }
6712 
6713   // Return the expanded shift op that should allow a rotate to be formed.
6714   EVT ShiftVT = OppShift.getOperand(1).getValueType();
6715   EVT ResVT = ExtractFrom.getValueType();
6716   SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
6717   return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
6718 }
6719 
6720 // Return true if we can prove that, whenever Neg and Pos are both in the
6721 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that
6722 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6723 //
6724 //     (or (shift1 X, Neg), (shift2 X, Pos))
6725 //
6726 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6727 // in direction shift1 by Neg.  The range [0, EltSize) means that we only need
6728 // to consider shift amounts with defined behavior.
6729 //
6730 // The IsRotate flag should be set when the LHS of both shifts is the same.
6731 // Otherwise if matching a general funnel shift, it should be clear.
6732 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
6733                            SelectionDAG &DAG, bool IsRotate) {
6734   // If EltSize is a power of 2 then:
6735   //
6736   //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6737   //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6738   //
6739   // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6740   // for the stronger condition:
6741   //
6742   //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A]
6743   //
6744   // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6745   // we can just replace Neg with Neg' for the rest of the function.
6746   //
6747   // In other cases we check for the even stronger condition:
6748   //
6749   //     Neg == EltSize - Pos                                    [B]
6750   //
6751   // for all Neg and Pos.  Note that the (or ...) then invokes undefined
6752   // behavior if Pos == 0 (and consequently Neg == EltSize).
6753   //
6754   // We could actually use [A] whenever EltSize is a power of 2, but the
6755   // only extra cases that it would match are those uninteresting ones
6756   // where Neg and Pos are never in range at the same time.  E.g. for
6757   // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6758   // as well as (sub 32, Pos), but:
6759   //
6760   //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6761   //
6762   // always invokes undefined behavior for 32-bit X.
6763   //
6764   // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6765   //
6766   // NOTE: We can only do this when matching an AND and not a general
6767   // funnel shift.
6768   unsigned MaskLoBits = 0;
6769   if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
6770     if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
6771       KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
6772       unsigned Bits = Log2_64(EltSize);
6773       if (NegC->getAPIntValue().getActiveBits() <= Bits &&
6774           ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
6775         Neg = Neg.getOperand(0);
6776         MaskLoBits = Bits;
6777       }
6778     }
6779   }
6780 
6781   // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6782   if (Neg.getOpcode() != ISD::SUB)
6783     return false;
6784   ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
6785   if (!NegC)
6786     return false;
6787   SDValue NegOp1 = Neg.getOperand(1);
6788 
6789   // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6790   // Pos'.  The truncation is redundant for the purpose of the equality.
6791   if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
6792     if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
6793       KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
6794       if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
6795           ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
6796            MaskLoBits))
6797         Pos = Pos.getOperand(0);
6798     }
6799   }
6800 
6801   // The condition we need is now:
6802   //
6803   //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6804   //
6805   // If NegOp1 == Pos then we need:
6806   //
6807   //              EltSize & Mask == NegC & Mask
6808   //
6809   // (because "x & Mask" is a truncation and distributes through subtraction).
6810   //
6811   // We also need to account for a potential truncation of NegOp1 if the amount
6812   // has already been legalized to a shift amount type.
6813   APInt Width;
6814   if ((Pos == NegOp1) ||
6815       (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0)))
6816     Width = NegC->getAPIntValue();
6817 
6818   // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6819   // Then the condition we want to prove becomes:
6820   //
6821   //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6822   //
6823   // which, again because "x & Mask" is a truncation, becomes:
6824   //
6825   //                NegC & Mask == (EltSize - PosC) & Mask
6826   //             EltSize & Mask == (NegC + PosC) & Mask
6827   else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
6828     if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
6829       Width = PosC->getAPIntValue() + NegC->getAPIntValue();
6830     else
6831       return false;
6832   } else
6833     return false;
6834 
6835   // Now we just need to check that EltSize & Mask == Width & Mask.
6836   if (MaskLoBits)
6837     // EltSize & Mask is 0 since Mask is EltSize - 1.
6838     return Width.getLoBits(MaskLoBits) == 0;
6839   return Width == EltSize;
6840 }
6841 
6842 // A subroutine of MatchRotate used once we have found an OR of two opposite
6843 // shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces
6844 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6845 // former being preferred if supported.  InnerPos and InnerNeg are Pos and
6846 // Neg with outer conversions stripped away.
6847 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
6848                                        SDValue Neg, SDValue InnerPos,
6849                                        SDValue InnerNeg, unsigned PosOpcode,
6850                                        unsigned NegOpcode, const SDLoc &DL) {
6851   // fold (or (shl x, (*ext y)),
6852   //          (srl x, (*ext (sub 32, y)))) ->
6853   //   (rotl x, y) or (rotr x, (sub 32, y))
6854   //
6855   // fold (or (shl x, (*ext (sub 32, y))),
6856   //          (srl x, (*ext y))) ->
6857   //   (rotr x, y) or (rotl x, (sub 32, y))
6858   EVT VT = Shifted.getValueType();
6859   if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG,
6860                      /*IsRotate*/ true)) {
6861     bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
6862     return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
6863                        HasPos ? Pos : Neg);
6864   }
6865 
6866   return SDValue();
6867 }
6868 
6869 // A subroutine of MatchRotate used once we have found an OR of two opposite
6870 // shifts of N0 + N1.  If Neg == <operand size> - Pos then the OR reduces
6871 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
6872 // former being preferred if supported.  InnerPos and InnerNeg are Pos and
6873 // Neg with outer conversions stripped away.
6874 // TODO: Merge with MatchRotatePosNeg.
6875 SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos,
6876                                        SDValue Neg, SDValue InnerPos,
6877                                        SDValue InnerNeg, unsigned PosOpcode,
6878                                        unsigned NegOpcode, const SDLoc &DL) {
6879   EVT VT = N0.getValueType();
6880   unsigned EltBits = VT.getScalarSizeInBits();
6881 
6882   // fold (or (shl x0, (*ext y)),
6883   //          (srl x1, (*ext (sub 32, y)))) ->
6884   //   (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
6885   //
6886   // fold (or (shl x0, (*ext (sub 32, y))),
6887   //          (srl x1, (*ext y))) ->
6888   //   (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
6889   if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) {
6890     bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
6891     return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1,
6892                        HasPos ? Pos : Neg);
6893   }
6894 
6895   // Matching the shift+xor cases, we can't easily use the xor'd shift amount
6896   // so for now just use the PosOpcode case if its legal.
6897   // TODO: When can we use the NegOpcode case?
6898   if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) {
6899     auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) {
6900       if (Op.getOpcode() != BinOpc)
6901         return false;
6902       ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1));
6903       return Cst && (Cst->getAPIntValue() == Imm);
6904     };
6905 
6906     // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
6907     //   -> (fshl x0, x1, y)
6908     if (IsBinOpImm(N1, ISD::SRL, 1) &&
6909         IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) &&
6910         InnerPos == InnerNeg.getOperand(0) &&
6911         TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) {
6912       return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos);
6913     }
6914 
6915     // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
6916     //   -> (fshr x0, x1, y)
6917     if (IsBinOpImm(N0, ISD::SHL, 1) &&
6918         IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
6919         InnerNeg == InnerPos.getOperand(0) &&
6920         TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
6921       return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
6922     }
6923 
6924     // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y))
6925     //   -> (fshr x0, x1, y)
6926     // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
6927     if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) &&
6928         IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
6929         InnerNeg == InnerPos.getOperand(0) &&
6930         TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
6931       return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
6932     }
6933   }
6934 
6935   return SDValue();
6936 }
6937 
6938 // MatchRotate - Handle an 'or' of two operands.  If this is one of the many
6939 // idioms for rotate, and if the target supports rotation instructions, generate
6940 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but
6941 // with different shifted sources.
6942 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
6943   // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
6944   EVT VT = LHS.getValueType();
6945   if (!TLI.isTypeLegal(VT))
6946     return SDValue();
6947 
6948   // The target must have at least one rotate/funnel flavor.
6949   bool HasROTL = hasOperation(ISD::ROTL, VT);
6950   bool HasROTR = hasOperation(ISD::ROTR, VT);
6951   bool HasFSHL = hasOperation(ISD::FSHL, VT);
6952   bool HasFSHR = hasOperation(ISD::FSHR, VT);
6953   if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
6954     return SDValue();
6955 
6956   // Check for truncated rotate.
6957   if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
6958       LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
6959     assert(LHS.getValueType() == RHS.getValueType());
6960     if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
6961       return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
6962     }
6963   }
6964 
6965   // Match "(X shl/srl V1) & V2" where V2 may not be present.
6966   SDValue LHSShift;   // The shift.
6967   SDValue LHSMask;    // AND value if any.
6968   matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
6969 
6970   SDValue RHSShift;   // The shift.
6971   SDValue RHSMask;    // AND value if any.
6972   matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
6973 
6974   // If neither side matched a rotate half, bail
6975   if (!LHSShift && !RHSShift)
6976     return SDValue();
6977 
6978   // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6979   // side of the rotate, so try to handle that here. In all cases we need to
6980   // pass the matched shift from the opposite side to compute the opcode and
6981   // needed shift amount to extract.  We still want to do this if both sides
6982   // matched a rotate half because one half may be a potential overshift that
6983   // can be broken down (ie if InstCombine merged two shl or srl ops into a
6984   // single one).
6985 
6986   // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6987   if (LHSShift)
6988     if (SDValue NewRHSShift =
6989             extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
6990       RHSShift = NewRHSShift;
6991   // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6992   if (RHSShift)
6993     if (SDValue NewLHSShift =
6994             extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
6995       LHSShift = NewLHSShift;
6996 
6997   // If a side is still missing, nothing else we can do.
6998   if (!RHSShift || !LHSShift)
6999     return SDValue();
7000 
7001   // At this point we've matched or extracted a shift op on each side.
7002 
7003   if (LHSShift.getOpcode() == RHSShift.getOpcode())
7004     return SDValue(); // Shifts must disagree.
7005 
7006   bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0);
7007   if (!IsRotate && !(HasFSHL || HasFSHR))
7008     return SDValue(); // Requires funnel shift support.
7009 
7010   // Canonicalize shl to left side in a shl/srl pair.
7011   if (RHSShift.getOpcode() == ISD::SHL) {
7012     std::swap(LHS, RHS);
7013     std::swap(LHSShift, RHSShift);
7014     std::swap(LHSMask, RHSMask);
7015   }
7016 
7017   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7018   SDValue LHSShiftArg = LHSShift.getOperand(0);
7019   SDValue LHSShiftAmt = LHSShift.getOperand(1);
7020   SDValue RHSShiftArg = RHSShift.getOperand(0);
7021   SDValue RHSShiftAmt = RHSShift.getOperand(1);
7022 
7023   // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
7024   // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
7025   // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
7026   // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
7027   // iff C1+C2 == EltSizeInBits
7028   auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
7029                                         ConstantSDNode *RHS) {
7030     return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
7031   };
7032   if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
7033     SDValue Res;
7034     if (IsRotate && (HasROTL || HasROTR))
7035       Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
7036                         HasROTL ? LHSShiftAmt : RHSShiftAmt);
7037     else
7038       Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg,
7039                         RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt);
7040 
7041     // If there is an AND of either shifted operand, apply it to the result.
7042     if (LHSMask.getNode() || RHSMask.getNode()) {
7043       SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
7044       SDValue Mask = AllOnes;
7045 
7046       if (LHSMask.getNode()) {
7047         SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
7048         Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
7049                            DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
7050       }
7051       if (RHSMask.getNode()) {
7052         SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
7053         Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
7054                            DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
7055       }
7056 
7057       Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask);
7058     }
7059 
7060     return Res;
7061   }
7062 
7063   // If there is a mask here, and we have a variable shift, we can't be sure
7064   // that we're masking out the right stuff.
7065   if (LHSMask.getNode() || RHSMask.getNode())
7066     return SDValue();
7067 
7068   // If the shift amount is sign/zext/any-extended just peel it off.
7069   SDValue LExtOp0 = LHSShiftAmt;
7070   SDValue RExtOp0 = RHSShiftAmt;
7071   if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
7072        LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
7073        LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
7074        LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
7075       (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
7076        RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
7077        RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
7078        RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
7079     LExtOp0 = LHSShiftAmt.getOperand(0);
7080     RExtOp0 = RHSShiftAmt.getOperand(0);
7081   }
7082 
7083   if (IsRotate && (HasROTL || HasROTR)) {
7084     SDValue TryL =
7085         MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0,
7086                           RExtOp0, ISD::ROTL, ISD::ROTR, DL);
7087     if (TryL)
7088       return TryL;
7089 
7090     SDValue TryR =
7091         MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0,
7092                           LExtOp0, ISD::ROTR, ISD::ROTL, DL);
7093     if (TryR)
7094       return TryR;
7095   }
7096 
7097   SDValue TryL =
7098       MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt,
7099                         LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL);
7100   if (TryL)
7101     return TryL;
7102 
7103   SDValue TryR =
7104       MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
7105                         RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL);
7106   if (TryR)
7107     return TryR;
7108 
7109   return SDValue();
7110 }
7111 
7112 namespace {
7113 
7114 /// Represents known origin of an individual byte in load combine pattern. The
7115 /// value of the byte is either constant zero or comes from memory.
7116 struct ByteProvider {
7117   // For constant zero providers Load is set to nullptr. For memory providers
7118   // Load represents the node which loads the byte from memory.
7119   // ByteOffset is the offset of the byte in the value produced by the load.
7120   LoadSDNode *Load = nullptr;
7121   unsigned ByteOffset = 0;
7122 
7123   ByteProvider() = default;
7124 
7125   static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
7126     return ByteProvider(Load, ByteOffset);
7127   }
7128 
7129   static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
7130 
7131   bool isConstantZero() const { return !Load; }
7132   bool isMemory() const { return Load; }
7133 
7134   bool operator==(const ByteProvider &Other) const {
7135     return Other.Load == Load && Other.ByteOffset == ByteOffset;
7136   }
7137 
7138 private:
7139   ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
7140       : Load(Load), ByteOffset(ByteOffset) {}
7141 };
7142 
7143 } // end anonymous namespace
7144 
7145 /// Recursively traverses the expression calculating the origin of the requested
7146 /// byte of the given value. Returns None if the provider can't be calculated.
7147 ///
7148 /// For all the values except the root of the expression verifies that the value
7149 /// has exactly one use and if it's not true return None. This way if the origin
7150 /// of the byte is returned it's guaranteed that the values which contribute to
7151 /// the byte are not used outside of this expression.
7152 ///
7153 /// Because the parts of the expression are not allowed to have more than one
7154 /// use this function iterates over trees, not DAGs. So it never visits the same
7155 /// node more than once.
7156 static const Optional<ByteProvider>
7157 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
7158                       bool Root = false) {
7159   // Typical i64 by i8 pattern requires recursion up to 8 calls depth
7160   if (Depth == 10)
7161     return None;
7162 
7163   if (!Root && !Op.hasOneUse())
7164     return None;
7165 
7166   assert(Op.getValueType().isScalarInteger() && "can't handle other types");
7167   unsigned BitWidth = Op.getValueSizeInBits();
7168   if (BitWidth % 8 != 0)
7169     return None;
7170   unsigned ByteWidth = BitWidth / 8;
7171   assert(Index < ByteWidth && "invalid index requested");
7172   (void) ByteWidth;
7173 
7174   switch (Op.getOpcode()) {
7175   case ISD::OR: {
7176     auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
7177     if (!LHS)
7178       return None;
7179     auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
7180     if (!RHS)
7181       return None;
7182 
7183     if (LHS->isConstantZero())
7184       return RHS;
7185     if (RHS->isConstantZero())
7186       return LHS;
7187     return None;
7188   }
7189   case ISD::SHL: {
7190     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
7191     if (!ShiftOp)
7192       return None;
7193 
7194     uint64_t BitShift = ShiftOp->getZExtValue();
7195     if (BitShift % 8 != 0)
7196       return None;
7197     uint64_t ByteShift = BitShift / 8;
7198 
7199     return Index < ByteShift
7200                ? ByteProvider::getConstantZero()
7201                : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
7202                                        Depth + 1);
7203   }
7204   case ISD::ANY_EXTEND:
7205   case ISD::SIGN_EXTEND:
7206   case ISD::ZERO_EXTEND: {
7207     SDValue NarrowOp = Op->getOperand(0);
7208     unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
7209     if (NarrowBitWidth % 8 != 0)
7210       return None;
7211     uint64_t NarrowByteWidth = NarrowBitWidth / 8;
7212 
7213     if (Index >= NarrowByteWidth)
7214       return Op.getOpcode() == ISD::ZERO_EXTEND
7215                  ? Optional<ByteProvider>(ByteProvider::getConstantZero())
7216                  : None;
7217     return calculateByteProvider(NarrowOp, Index, Depth + 1);
7218   }
7219   case ISD::BSWAP:
7220     return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
7221                                  Depth + 1);
7222   case ISD::LOAD: {
7223     auto L = cast<LoadSDNode>(Op.getNode());
7224     if (!L->isSimple() || L->isIndexed())
7225       return None;
7226 
7227     unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
7228     if (NarrowBitWidth % 8 != 0)
7229       return None;
7230     uint64_t NarrowByteWidth = NarrowBitWidth / 8;
7231 
7232     if (Index >= NarrowByteWidth)
7233       return L->getExtensionType() == ISD::ZEXTLOAD
7234                  ? Optional<ByteProvider>(ByteProvider::getConstantZero())
7235                  : None;
7236     return ByteProvider::getMemory(L, Index);
7237   }
7238   }
7239 
7240   return None;
7241 }
7242 
7243 static unsigned littleEndianByteAt(unsigned BW, unsigned i) {
7244   return i;
7245 }
7246 
7247 static unsigned bigEndianByteAt(unsigned BW, unsigned i) {
7248   return BW - i - 1;
7249 }
7250 
7251 // Check if the bytes offsets we are looking at match with either big or
7252 // little endian value loaded. Return true for big endian, false for little
7253 // endian, and None if match failed.
7254 static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets,
7255                                   int64_t FirstOffset) {
7256   // The endian can be decided only when it is 2 bytes at least.
7257   unsigned Width = ByteOffsets.size();
7258   if (Width < 2)
7259     return None;
7260 
7261   bool BigEndian = true, LittleEndian = true;
7262   for (unsigned i = 0; i < Width; i++) {
7263     int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
7264     LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i);
7265     BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i);
7266     if (!BigEndian && !LittleEndian)
7267       return None;
7268   }
7269 
7270   assert((BigEndian != LittleEndian) && "It should be either big endian or"
7271                                         "little endian");
7272   return BigEndian;
7273 }
7274 
7275 static SDValue stripTruncAndExt(SDValue Value) {
7276   switch (Value.getOpcode()) {
7277   case ISD::TRUNCATE:
7278   case ISD::ZERO_EXTEND:
7279   case ISD::SIGN_EXTEND:
7280   case ISD::ANY_EXTEND:
7281     return stripTruncAndExt(Value.getOperand(0));
7282   }
7283   return Value;
7284 }
7285 
7286 /// Match a pattern where a wide type scalar value is stored by several narrow
7287 /// stores. Fold it into a single store or a BSWAP and a store if the targets
7288 /// supports it.
7289 ///
7290 /// Assuming little endian target:
7291 ///  i8 *p = ...
7292 ///  i32 val = ...
7293 ///  p[0] = (val >> 0) & 0xFF;
7294 ///  p[1] = (val >> 8) & 0xFF;
7295 ///  p[2] = (val >> 16) & 0xFF;
7296 ///  p[3] = (val >> 24) & 0xFF;
7297 /// =>
7298 ///  *((i32)p) = val;
7299 ///
7300 ///  i8 *p = ...
7301 ///  i32 val = ...
7302 ///  p[0] = (val >> 24) & 0xFF;
7303 ///  p[1] = (val >> 16) & 0xFF;
7304 ///  p[2] = (val >> 8) & 0xFF;
7305 ///  p[3] = (val >> 0) & 0xFF;
7306 /// =>
7307 ///  *((i32)p) = BSWAP(val);
7308 SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) {
7309   // The matching looks for "store (trunc x)" patterns that appear early but are
7310   // likely to be replaced by truncating store nodes during combining.
7311   // TODO: If there is evidence that running this later would help, this
7312   //       limitation could be removed. Legality checks may need to be added
7313   //       for the created store and optional bswap/rotate.
7314   if (LegalOperations)
7315     return SDValue();
7316 
7317   // We only handle merging simple stores of 1-4 bytes.
7318   // TODO: Allow unordered atomics when wider type is legal (see D66309)
7319   EVT MemVT = N->getMemoryVT();
7320   if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) ||
7321       !N->isSimple() || N->isIndexed())
7322     return SDValue();
7323 
7324   // Collect all of the stores in the chain.
7325   SDValue Chain = N->getChain();
7326   SmallVector<StoreSDNode *, 8> Stores = {N};
7327   while (auto *Store = dyn_cast<StoreSDNode>(Chain)) {
7328     // All stores must be the same size to ensure that we are writing all of the
7329     // bytes in the wide value.
7330     // TODO: We could allow multiple sizes by tracking each stored byte.
7331     if (Store->getMemoryVT() != MemVT || !Store->isSimple() ||
7332         Store->isIndexed())
7333       return SDValue();
7334     Stores.push_back(Store);
7335     Chain = Store->getChain();
7336   }
7337   // There is no reason to continue if we do not have at least a pair of stores.
7338   if (Stores.size() < 2)
7339     return SDValue();
7340 
7341   // Handle simple types only.
7342   LLVMContext &Context = *DAG.getContext();
7343   unsigned NumStores = Stores.size();
7344   unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits();
7345   unsigned WideNumBits = NumStores * NarrowNumBits;
7346   EVT WideVT = EVT::getIntegerVT(Context, WideNumBits);
7347   if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64)
7348     return SDValue();
7349 
7350   // Check if all bytes of the source value that we are looking at are stored
7351   // to the same base address. Collect offsets from Base address into OffsetMap.
7352   SDValue SourceValue;
7353   SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX);
7354   int64_t FirstOffset = INT64_MAX;
7355   StoreSDNode *FirstStore = nullptr;
7356   Optional<BaseIndexOffset> Base;
7357   for (auto Store : Stores) {
7358     // All the stores store different parts of the CombinedValue. A truncate is
7359     // required to get the partial value.
7360     SDValue Trunc = Store->getValue();
7361     if (Trunc.getOpcode() != ISD::TRUNCATE)
7362       return SDValue();
7363     // Other than the first/last part, a shift operation is required to get the
7364     // offset.
7365     int64_t Offset = 0;
7366     SDValue WideVal = Trunc.getOperand(0);
7367     if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) &&
7368         isa<ConstantSDNode>(WideVal.getOperand(1))) {
7369       // The shift amount must be a constant multiple of the narrow type.
7370       // It is translated to the offset address in the wide source value "y".
7371       //
7372       // x = srl y, ShiftAmtC
7373       // i8 z = trunc x
7374       // store z, ...
7375       uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1);
7376       if (ShiftAmtC % NarrowNumBits != 0)
7377         return SDValue();
7378 
7379       Offset = ShiftAmtC / NarrowNumBits;
7380       WideVal = WideVal.getOperand(0);
7381     }
7382 
7383     // Stores must share the same source value with different offsets.
7384     // Truncate and extends should be stripped to get the single source value.
7385     if (!SourceValue)
7386       SourceValue = WideVal;
7387     else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal))
7388       return SDValue();
7389     else if (SourceValue.getValueType() != WideVT) {
7390       if (WideVal.getValueType() == WideVT ||
7391           WideVal.getScalarValueSizeInBits() >
7392               SourceValue.getScalarValueSizeInBits())
7393         SourceValue = WideVal;
7394       // Give up if the source value type is smaller than the store size.
7395       if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits())
7396         return SDValue();
7397     }
7398 
7399     // Stores must share the same base address.
7400     BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
7401     int64_t ByteOffsetFromBase = 0;
7402     if (!Base)
7403       Base = Ptr;
7404     else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
7405       return SDValue();
7406 
7407     // Remember the first store.
7408     if (ByteOffsetFromBase < FirstOffset) {
7409       FirstStore = Store;
7410       FirstOffset = ByteOffsetFromBase;
7411     }
7412     // Map the offset in the store and the offset in the combined value, and
7413     // early return if it has been set before.
7414     if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX)
7415       return SDValue();
7416     OffsetMap[Offset] = ByteOffsetFromBase;
7417   }
7418 
7419   assert(FirstOffset != INT64_MAX && "First byte offset must be set");
7420   assert(FirstStore && "First store must be set");
7421 
7422   // Check that a store of the wide type is both allowed and fast on the target
7423   const DataLayout &Layout = DAG.getDataLayout();
7424   bool Fast = false;
7425   bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT,
7426                                         *FirstStore->getMemOperand(), &Fast);
7427   if (!Allowed || !Fast)
7428     return SDValue();
7429 
7430   // Check if the pieces of the value are going to the expected places in memory
7431   // to merge the stores.
7432   auto checkOffsets = [&](bool MatchLittleEndian) {
7433     if (MatchLittleEndian) {
7434       for (unsigned i = 0; i != NumStores; ++i)
7435         if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset)
7436           return false;
7437     } else { // MatchBigEndian by reversing loop counter.
7438       for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j)
7439         if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset)
7440           return false;
7441     }
7442     return true;
7443   };
7444 
7445   // Check if the offsets line up for the native data layout of this target.
7446   bool NeedBswap = false;
7447   bool NeedRotate = false;
7448   if (!checkOffsets(Layout.isLittleEndian())) {
7449     // Special-case: check if byte offsets line up for the opposite endian.
7450     if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian()))
7451       NeedBswap = true;
7452     else if (NumStores == 2 && checkOffsets(Layout.isBigEndian()))
7453       NeedRotate = true;
7454     else
7455       return SDValue();
7456   }
7457 
7458   SDLoc DL(N);
7459   if (WideVT != SourceValue.getValueType()) {
7460     assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits &&
7461            "Unexpected store value to merge");
7462     SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue);
7463   }
7464 
7465   // Before legalize we can introduce illegal bswaps/rotates which will be later
7466   // converted to an explicit bswap sequence. This way we end up with a single
7467   // store and byte shuffling instead of several stores and byte shuffling.
7468   if (NeedBswap) {
7469     SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue);
7470   } else if (NeedRotate) {
7471     assert(WideNumBits % 2 == 0 && "Unexpected type for rotate");
7472     SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT);
7473     SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt);
7474   }
7475 
7476   SDValue NewStore =
7477       DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(),
7478                    FirstStore->getPointerInfo(), FirstStore->getAlign());
7479 
7480   // Rely on other DAG combine rules to remove the other individual stores.
7481   DAG.ReplaceAllUsesWith(N, NewStore.getNode());
7482   return NewStore;
7483 }
7484 
7485 /// Match a pattern where a wide type scalar value is loaded by several narrow
7486 /// loads and combined by shifts and ors. Fold it into a single load or a load
7487 /// and a BSWAP if the targets supports it.
7488 ///
7489 /// Assuming little endian target:
7490 ///  i8 *a = ...
7491 ///  i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
7492 /// =>
7493 ///  i32 val = *((i32)a)
7494 ///
7495 ///  i8 *a = ...
7496 ///  i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
7497 /// =>
7498 ///  i32 val = BSWAP(*((i32)a))
7499 ///
7500 /// TODO: This rule matches complex patterns with OR node roots and doesn't
7501 /// interact well with the worklist mechanism. When a part of the pattern is
7502 /// updated (e.g. one of the loads) its direct users are put into the worklist,
7503 /// but the root node of the pattern which triggers the load combine is not
7504 /// necessarily a direct user of the changed node. For example, once the address
7505 /// of t28 load is reassociated load combine won't be triggered:
7506 ///             t25: i32 = add t4, Constant:i32<2>
7507 ///           t26: i64 = sign_extend t25
7508 ///        t27: i64 = add t2, t26
7509 ///       t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
7510 ///     t29: i32 = zero_extend t28
7511 ///   t32: i32 = shl t29, Constant:i8<8>
7512 /// t33: i32 = or t23, t32
7513 /// As a possible fix visitLoad can check if the load can be a part of a load
7514 /// combine pattern and add corresponding OR roots to the worklist.
7515 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
7516   assert(N->getOpcode() == ISD::OR &&
7517          "Can only match load combining against OR nodes");
7518 
7519   // Handles simple types only
7520   EVT VT = N->getValueType(0);
7521   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
7522     return SDValue();
7523   unsigned ByteWidth = VT.getSizeInBits() / 8;
7524 
7525   bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
7526   auto MemoryByteOffset = [&] (ByteProvider P) {
7527     assert(P.isMemory() && "Must be a memory byte provider");
7528     unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
7529     assert(LoadBitWidth % 8 == 0 &&
7530            "can only analyze providers for individual bytes not bit");
7531     unsigned LoadByteWidth = LoadBitWidth / 8;
7532     return IsBigEndianTarget
7533             ? bigEndianByteAt(LoadByteWidth, P.ByteOffset)
7534             : littleEndianByteAt(LoadByteWidth, P.ByteOffset);
7535   };
7536 
7537   Optional<BaseIndexOffset> Base;
7538   SDValue Chain;
7539 
7540   SmallPtrSet<LoadSDNode *, 8> Loads;
7541   Optional<ByteProvider> FirstByteProvider;
7542   int64_t FirstOffset = INT64_MAX;
7543 
7544   // Check if all the bytes of the OR we are looking at are loaded from the same
7545   // base address. Collect bytes offsets from Base address in ByteOffsets.
7546   SmallVector<int64_t, 8> ByteOffsets(ByteWidth);
7547   unsigned ZeroExtendedBytes = 0;
7548   for (int i = ByteWidth - 1; i >= 0; --i) {
7549     auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
7550     if (!P)
7551       return SDValue();
7552 
7553     if (P->isConstantZero()) {
7554       // It's OK for the N most significant bytes to be 0, we can just
7555       // zero-extend the load.
7556       if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i)))
7557         return SDValue();
7558       continue;
7559     }
7560     assert(P->isMemory() && "provenance should either be memory or zero");
7561 
7562     LoadSDNode *L = P->Load;
7563     assert(L->hasNUsesOfValue(1, 0) && L->isSimple() &&
7564            !L->isIndexed() &&
7565            "Must be enforced by calculateByteProvider");
7566     assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
7567 
7568     // All loads must share the same chain
7569     SDValue LChain = L->getChain();
7570     if (!Chain)
7571       Chain = LChain;
7572     else if (Chain != LChain)
7573       return SDValue();
7574 
7575     // Loads must share the same base address
7576     BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
7577     int64_t ByteOffsetFromBase = 0;
7578     if (!Base)
7579       Base = Ptr;
7580     else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
7581       return SDValue();
7582 
7583     // Calculate the offset of the current byte from the base address
7584     ByteOffsetFromBase += MemoryByteOffset(*P);
7585     ByteOffsets[i] = ByteOffsetFromBase;
7586 
7587     // Remember the first byte load
7588     if (ByteOffsetFromBase < FirstOffset) {
7589       FirstByteProvider = P;
7590       FirstOffset = ByteOffsetFromBase;
7591     }
7592 
7593     Loads.insert(L);
7594   }
7595   assert(!Loads.empty() && "All the bytes of the value must be loaded from "
7596          "memory, so there must be at least one load which produces the value");
7597   assert(Base && "Base address of the accessed memory location must be set");
7598   assert(FirstOffset != INT64_MAX && "First byte offset must be set");
7599 
7600   bool NeedsZext = ZeroExtendedBytes > 0;
7601 
7602   EVT MemVT =
7603       EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8);
7604 
7605   if (!MemVT.isSimple())
7606     return SDValue();
7607 
7608   // Before legalize we can introduce too wide illegal loads which will be later
7609   // split into legal sized loads. This enables us to combine i64 load by i8
7610   // patterns to a couple of i32 loads on 32 bit targets.
7611   if (LegalOperations &&
7612       !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD,
7613                             MemVT))
7614     return SDValue();
7615 
7616   // Check if the bytes of the OR we are looking at match with either big or
7617   // little endian value load
7618   Optional<bool> IsBigEndian = isBigEndian(
7619       makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset);
7620   if (!IsBigEndian.hasValue())
7621     return SDValue();
7622 
7623   assert(FirstByteProvider && "must be set");
7624 
7625   // Ensure that the first byte is loaded from zero offset of the first load.
7626   // So the combined value can be loaded from the first load address.
7627   if (MemoryByteOffset(*FirstByteProvider) != 0)
7628     return SDValue();
7629   LoadSDNode *FirstLoad = FirstByteProvider->Load;
7630 
7631   // The node we are looking at matches with the pattern, check if we can
7632   // replace it with a single (possibly zero-extended) load and bswap + shift if
7633   // needed.
7634 
7635   // If the load needs byte swap check if the target supports it
7636   bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
7637 
7638   // Before legalize we can introduce illegal bswaps which will be later
7639   // converted to an explicit bswap sequence. This way we end up with a single
7640   // load and byte shuffling instead of several loads and byte shuffling.
7641   // We do not introduce illegal bswaps when zero-extending as this tends to
7642   // introduce too many arithmetic instructions.
7643   if (NeedsBswap && (LegalOperations || NeedsZext) &&
7644       !TLI.isOperationLegal(ISD::BSWAP, VT))
7645     return SDValue();
7646 
7647   // If we need to bswap and zero extend, we have to insert a shift. Check that
7648   // it is legal.
7649   if (NeedsBswap && NeedsZext && LegalOperations &&
7650       !TLI.isOperationLegal(ISD::SHL, VT))
7651     return SDValue();
7652 
7653   // Check that a load of the wide type is both allowed and fast on the target
7654   bool Fast = false;
7655   bool Allowed =
7656       TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
7657                              *FirstLoad->getMemOperand(), &Fast);
7658   if (!Allowed || !Fast)
7659     return SDValue();
7660 
7661   SDValue NewLoad =
7662       DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT,
7663                      Chain, FirstLoad->getBasePtr(),
7664                      FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign());
7665 
7666   // Transfer chain users from old loads to the new load.
7667   for (LoadSDNode *L : Loads)
7668     DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
7669 
7670   if (!NeedsBswap)
7671     return NewLoad;
7672 
7673   SDValue ShiftedLoad =
7674       NeedsZext
7675           ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad,
7676                         DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT,
7677                                                    SDLoc(N), LegalOperations))
7678           : NewLoad;
7679   return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad);
7680 }
7681 
7682 // If the target has andn, bsl, or a similar bit-select instruction,
7683 // we want to unfold masked merge, with canonical pattern of:
7684 //   |        A  |  |B|
7685 //   ((x ^ y) & m) ^ y
7686 //    |  D  |
7687 // Into:
7688 //   (x & m) | (y & ~m)
7689 // If y is a constant, and the 'andn' does not work with immediates,
7690 // we unfold into a different pattern:
7691 //   ~(~x & m) & (m | y)
7692 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
7693 //       the very least that breaks andnpd / andnps patterns, and because those
7694 //       patterns are simplified in IR and shouldn't be created in the DAG
7695 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
7696   assert(N->getOpcode() == ISD::XOR);
7697 
7698   // Don't touch 'not' (i.e. where y = -1).
7699   if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
7700     return SDValue();
7701 
7702   EVT VT = N->getValueType(0);
7703 
7704   // There are 3 commutable operators in the pattern,
7705   // so we have to deal with 8 possible variants of the basic pattern.
7706   SDValue X, Y, M;
7707   auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
7708     if (And.getOpcode() != ISD::AND || !And.hasOneUse())
7709       return false;
7710     SDValue Xor = And.getOperand(XorIdx);
7711     if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
7712       return false;
7713     SDValue Xor0 = Xor.getOperand(0);
7714     SDValue Xor1 = Xor.getOperand(1);
7715     // Don't touch 'not' (i.e. where y = -1).
7716     if (isAllOnesOrAllOnesSplat(Xor1))
7717       return false;
7718     if (Other == Xor0)
7719       std::swap(Xor0, Xor1);
7720     if (Other != Xor1)
7721       return false;
7722     X = Xor0;
7723     Y = Xor1;
7724     M = And.getOperand(XorIdx ? 0 : 1);
7725     return true;
7726   };
7727 
7728   SDValue N0 = N->getOperand(0);
7729   SDValue N1 = N->getOperand(1);
7730   if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
7731       !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
7732     return SDValue();
7733 
7734   // Don't do anything if the mask is constant. This should not be reachable.
7735   // InstCombine should have already unfolded this pattern, and DAGCombiner
7736   // probably shouldn't produce it, too.
7737   if (isa<ConstantSDNode>(M.getNode()))
7738     return SDValue();
7739 
7740   // We can transform if the target has AndNot
7741   if (!TLI.hasAndNot(M))
7742     return SDValue();
7743 
7744   SDLoc DL(N);
7745 
7746   // If Y is a constant, check that 'andn' works with immediates.
7747   if (!TLI.hasAndNot(Y)) {
7748     assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
7749     // If not, we need to do a bit more work to make sure andn is still used.
7750     SDValue NotX = DAG.getNOT(DL, X, VT);
7751     SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
7752     SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
7753     SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
7754     return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
7755   }
7756 
7757   SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
7758   SDValue NotM = DAG.getNOT(DL, M, VT);
7759   SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
7760 
7761   return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
7762 }
7763 
7764 SDValue DAGCombiner::visitXOR(SDNode *N) {
7765   SDValue N0 = N->getOperand(0);
7766   SDValue N1 = N->getOperand(1);
7767   EVT VT = N0.getValueType();
7768 
7769   // fold vector ops
7770   if (VT.isVector()) {
7771     if (SDValue FoldedVOp = SimplifyVBinOp(N))
7772       return FoldedVOp;
7773 
7774     // fold (xor x, 0) -> x, vector edition
7775     if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
7776       return N1;
7777     if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
7778       return N0;
7779   }
7780 
7781   // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
7782   SDLoc DL(N);
7783   if (N0.isUndef() && N1.isUndef())
7784     return DAG.getConstant(0, DL, VT);
7785 
7786   // fold (xor x, undef) -> undef
7787   if (N0.isUndef())
7788     return N0;
7789   if (N1.isUndef())
7790     return N1;
7791 
7792   // fold (xor c1, c2) -> c1^c2
7793   if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1}))
7794     return C;
7795 
7796   // canonicalize constant to RHS
7797   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
7798      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
7799     return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
7800 
7801   // fold (xor x, 0) -> x
7802   if (isNullConstant(N1))
7803     return N0;
7804 
7805   if (SDValue NewSel = foldBinOpIntoSelect(N))
7806     return NewSel;
7807 
7808   // reassociate xor
7809   if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
7810     return RXOR;
7811 
7812   // fold !(x cc y) -> (x !cc y)
7813   unsigned N0Opcode = N0.getOpcode();
7814   SDValue LHS, RHS, CC;
7815   if (TLI.isConstTrueVal(N1.getNode()) &&
7816       isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) {
7817     ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
7818                                                LHS.getValueType());
7819     if (!LegalOperations ||
7820         TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
7821       switch (N0Opcode) {
7822       default:
7823         llvm_unreachable("Unhandled SetCC Equivalent!");
7824       case ISD::SETCC:
7825         return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
7826       case ISD::SELECT_CC:
7827         return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
7828                                N0.getOperand(3), NotCC);
7829       case ISD::STRICT_FSETCC:
7830       case ISD::STRICT_FSETCCS: {
7831         if (N0.hasOneUse()) {
7832           // FIXME Can we handle multiple uses? Could we token factor the chain
7833           // results from the new/old setcc?
7834           SDValue SetCC =
7835               DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC,
7836                            N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS);
7837           CombineTo(N, SetCC);
7838           DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1));
7839           recursivelyDeleteUnusedNodes(N0.getNode());
7840           return SDValue(N, 0); // Return N so it doesn't get rechecked!
7841         }
7842         break;
7843       }
7844       }
7845     }
7846   }
7847 
7848   // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
7849   if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
7850       isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
7851     SDValue V = N0.getOperand(0);
7852     SDLoc DL0(N0);
7853     V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
7854                     DAG.getConstant(1, DL0, V.getValueType()));
7855     AddToWorklist(V.getNode());
7856     return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
7857   }
7858 
7859   // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
7860   if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
7861       (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
7862     SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
7863     if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
7864       unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
7865       N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
7866       N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
7867       AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
7868       return DAG.getNode(NewOpcode, DL, VT, N00, N01);
7869     }
7870   }
7871   // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
7872   if (isAllOnesConstant(N1) && N0.hasOneUse() &&
7873       (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
7874     SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
7875     if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
7876       unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
7877       N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
7878       N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
7879       AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
7880       return DAG.getNode(NewOpcode, DL, VT, N00, N01);
7881     }
7882   }
7883 
7884   // fold (not (neg x)) -> (add X, -1)
7885   // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
7886   // Y is a constant or the subtract has a single use.
7887   if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
7888       isNullConstant(N0.getOperand(0))) {
7889     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
7890                        DAG.getAllOnesConstant(DL, VT));
7891   }
7892 
7893   // fold (not (add X, -1)) -> (neg X)
7894   if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD &&
7895       isAllOnesOrAllOnesSplat(N0.getOperand(1))) {
7896     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
7897                        N0.getOperand(0));
7898   }
7899 
7900   // fold (xor (and x, y), y) -> (and (not x), y)
7901   if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
7902     SDValue X = N0.getOperand(0);
7903     SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
7904     AddToWorklist(NotX.getNode());
7905     return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
7906   }
7907 
7908   if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
7909     ConstantSDNode *XorC = isConstOrConstSplat(N1);
7910     ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
7911     unsigned BitWidth = VT.getScalarSizeInBits();
7912     if (XorC && ShiftC) {
7913       // Don't crash on an oversized shift. We can not guarantee that a bogus
7914       // shift has been simplified to undef.
7915       uint64_t ShiftAmt = ShiftC->getLimitedValue();
7916       if (ShiftAmt < BitWidth) {
7917         APInt Ones = APInt::getAllOnesValue(BitWidth);
7918         Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
7919         if (XorC->getAPIntValue() == Ones) {
7920           // If the xor constant is a shifted -1, do a 'not' before the shift:
7921           // xor (X << ShiftC), XorC --> (not X) << ShiftC
7922           // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
7923           SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
7924           return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
7925         }
7926       }
7927     }
7928   }
7929 
7930   // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
7931   if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
7932     SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
7933     SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
7934     if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
7935       SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
7936       SDValue S0 = S.getOperand(0);
7937       if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0))
7938         if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
7939           if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
7940             return DAG.getNode(ISD::ABS, DL, VT, S0);
7941     }
7942   }
7943 
7944   // fold (xor x, x) -> 0
7945   if (N0 == N1)
7946     return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
7947 
7948   // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7949   // Here is a concrete example of this equivalence:
7950   // i16   x ==  14
7951   // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000
7952   // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7953   //
7954   // =>
7955   //
7956   // i16     ~1      == 0b1111111111111110
7957   // i16 rol(~1, 14) == 0b1011111111111111
7958   //
7959   // Some additional tips to help conceptualize this transform:
7960   // - Try to see the operation as placing a single zero in a value of all ones.
7961   // - There exists no value for x which would allow the result to contain zero.
7962   // - Values of x larger than the bitwidth are undefined and do not require a
7963   //   consistent result.
7964   // - Pushing the zero left requires shifting one bits in from the right.
7965   // A rotate left of ~1 is a nice way of achieving the desired result.
7966   if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
7967       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
7968     return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
7969                        N0.getOperand(1));
7970   }
7971 
7972   // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
7973   if (N0Opcode == N1.getOpcode())
7974     if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
7975       return V;
7976 
7977   // Unfold  ((x ^ y) & m) ^ y  into  (x & m) | (y & ~m)  if profitable
7978   if (SDValue MM = unfoldMaskedMerge(N))
7979     return MM;
7980 
7981   // Simplify the expression using non-local knowledge.
7982   if (SimplifyDemandedBits(SDValue(N, 0)))
7983     return SDValue(N, 0);
7984 
7985   if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
7986     return Combined;
7987 
7988   return SDValue();
7989 }
7990 
7991 /// If we have a shift-by-constant of a bitwise logic op that itself has a
7992 /// shift-by-constant operand with identical opcode, we may be able to convert
7993 /// that into 2 independent shifts followed by the logic op. This is a
7994 /// throughput improvement.
7995 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
7996   // Match a one-use bitwise logic op.
7997   SDValue LogicOp = Shift->getOperand(0);
7998   if (!LogicOp.hasOneUse())
7999     return SDValue();
8000 
8001   unsigned LogicOpcode = LogicOp.getOpcode();
8002   if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
8003       LogicOpcode != ISD::XOR)
8004     return SDValue();
8005 
8006   // Find a matching one-use shift by constant.
8007   unsigned ShiftOpcode = Shift->getOpcode();
8008   SDValue C1 = Shift->getOperand(1);
8009   ConstantSDNode *C1Node = isConstOrConstSplat(C1);
8010   assert(C1Node && "Expected a shift with constant operand");
8011   const APInt &C1Val = C1Node->getAPIntValue();
8012   auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
8013                              const APInt *&ShiftAmtVal) {
8014     if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
8015       return false;
8016 
8017     ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
8018     if (!ShiftCNode)
8019       return false;
8020 
8021     // Capture the shifted operand and shift amount value.
8022     ShiftOp = V.getOperand(0);
8023     ShiftAmtVal = &ShiftCNode->getAPIntValue();
8024 
8025     // Shift amount types do not have to match their operand type, so check that
8026     // the constants are the same width.
8027     if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
8028       return false;
8029 
8030     // The fold is not valid if the sum of the shift values exceeds bitwidth.
8031     if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits()))
8032       return false;
8033 
8034     return true;
8035   };
8036 
8037   // Logic ops are commutative, so check each operand for a match.
8038   SDValue X, Y;
8039   const APInt *C0Val;
8040   if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
8041     Y = LogicOp.getOperand(1);
8042   else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
8043     Y = LogicOp.getOperand(0);
8044   else
8045     return SDValue();
8046 
8047   // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
8048   SDLoc DL(Shift);
8049   EVT VT = Shift->getValueType(0);
8050   EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
8051   SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
8052   SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
8053   SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
8054   return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2);
8055 }
8056 
8057 /// Handle transforms common to the three shifts, when the shift amount is a
8058 /// constant.
8059 /// We are looking for: (shift being one of shl/sra/srl)
8060 ///   shift (binop X, C0), C1
8061 /// And want to transform into:
8062 ///   binop (shift X, C1), (shift C0, C1)
8063 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
8064   assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
8065 
8066   // Do not turn a 'not' into a regular xor.
8067   if (isBitwiseNot(N->getOperand(0)))
8068     return SDValue();
8069 
8070   // The inner binop must be one-use, since we want to replace it.
8071   SDValue LHS = N->getOperand(0);
8072   if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
8073     return SDValue();
8074 
8075   // TODO: This is limited to early combining because it may reveal regressions
8076   //       otherwise. But since we just checked a target hook to see if this is
8077   //       desirable, that should have filtered out cases where this interferes
8078   //       with some other pattern matching.
8079   if (!LegalTypes)
8080     if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
8081       return R;
8082 
8083   // We want to pull some binops through shifts, so that we have (and (shift))
8084   // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
8085   // thing happens with address calculations, so it's important to canonicalize
8086   // it.
8087   switch (LHS.getOpcode()) {
8088   default:
8089     return SDValue();
8090   case ISD::OR:
8091   case ISD::XOR:
8092   case ISD::AND:
8093     break;
8094   case ISD::ADD:
8095     if (N->getOpcode() != ISD::SHL)
8096       return SDValue(); // only shl(add) not sr[al](add).
8097     break;
8098   }
8099 
8100   // We require the RHS of the binop to be a constant and not opaque as well.
8101   ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1));
8102   if (!BinOpCst)
8103     return SDValue();
8104 
8105   // FIXME: disable this unless the input to the binop is a shift by a constant
8106   // or is copy/select. Enable this in other cases when figure out it's exactly
8107   // profitable.
8108   SDValue BinOpLHSVal = LHS.getOperand(0);
8109   bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
8110                             BinOpLHSVal.getOpcode() == ISD::SRA ||
8111                             BinOpLHSVal.getOpcode() == ISD::SRL) &&
8112                            isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
8113   bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
8114                         BinOpLHSVal.getOpcode() == ISD::SELECT;
8115 
8116   if (!IsShiftByConstant && !IsCopyOrSelect)
8117     return SDValue();
8118 
8119   if (IsCopyOrSelect && N->hasOneUse())
8120     return SDValue();
8121 
8122   // Fold the constants, shifting the binop RHS by the shift amount.
8123   SDLoc DL(N);
8124   EVT VT = N->getValueType(0);
8125   SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1),
8126                                N->getOperand(1));
8127   assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
8128 
8129   SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
8130                                  N->getOperand(1));
8131   return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
8132 }
8133 
8134 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
8135   assert(N->getOpcode() == ISD::TRUNCATE);
8136   assert(N->getOperand(0).getOpcode() == ISD::AND);
8137 
8138   // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
8139   EVT TruncVT = N->getValueType(0);
8140   if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
8141       TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
8142     SDValue N01 = N->getOperand(0).getOperand(1);
8143     if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
8144       SDLoc DL(N);
8145       SDValue N00 = N->getOperand(0).getOperand(0);
8146       SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
8147       SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
8148       AddToWorklist(Trunc00.getNode());
8149       AddToWorklist(Trunc01.getNode());
8150       return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
8151     }
8152   }
8153 
8154   return SDValue();
8155 }
8156 
8157 SDValue DAGCombiner::visitRotate(SDNode *N) {
8158   SDLoc dl(N);
8159   SDValue N0 = N->getOperand(0);
8160   SDValue N1 = N->getOperand(1);
8161   EVT VT = N->getValueType(0);
8162   unsigned Bitsize = VT.getScalarSizeInBits();
8163 
8164   // fold (rot x, 0) -> x
8165   if (isNullOrNullSplat(N1))
8166     return N0;
8167 
8168   // fold (rot x, c) -> x iff (c % BitSize) == 0
8169   if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
8170     APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
8171     if (DAG.MaskedValueIsZero(N1, ModuloMask))
8172       return N0;
8173   }
8174 
8175   // fold (rot x, c) -> (rot x, c % BitSize)
8176   bool OutOfRange = false;
8177   auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) {
8178     OutOfRange |= C->getAPIntValue().uge(Bitsize);
8179     return true;
8180   };
8181   if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) {
8182     EVT AmtVT = N1.getValueType();
8183     SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT);
8184     if (SDValue Amt =
8185             DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits}))
8186       return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt);
8187   }
8188 
8189   // rot i16 X, 8 --> bswap X
8190   auto *RotAmtC = isConstOrConstSplat(N1);
8191   if (RotAmtC && RotAmtC->getAPIntValue() == 8 &&
8192       VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT))
8193     return DAG.getNode(ISD::BSWAP, dl, VT, N0);
8194 
8195   // Simplify the operands using demanded-bits information.
8196   if (SimplifyDemandedBits(SDValue(N, 0)))
8197     return SDValue(N, 0);
8198 
8199   // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
8200   if (N1.getOpcode() == ISD::TRUNCATE &&
8201       N1.getOperand(0).getOpcode() == ISD::AND) {
8202     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8203       return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
8204   }
8205 
8206   unsigned NextOp = N0.getOpcode();
8207   // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
8208   if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
8209     SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
8210     SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
8211     if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
8212       EVT ShiftVT = C1->getValueType(0);
8213       bool SameSide = (N->getOpcode() == NextOp);
8214       unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
8215       if (SDValue CombinedShift = DAG.FoldConstantArithmetic(
8216               CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) {
8217         SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
8218         SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
8219             ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC});
8220         return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
8221                            CombinedShiftNorm);
8222       }
8223     }
8224   }
8225   return SDValue();
8226 }
8227 
8228 SDValue DAGCombiner::visitSHL(SDNode *N) {
8229   SDValue N0 = N->getOperand(0);
8230   SDValue N1 = N->getOperand(1);
8231   if (SDValue V = DAG.simplifyShift(N0, N1))
8232     return V;
8233 
8234   EVT VT = N0.getValueType();
8235   EVT ShiftVT = N1.getValueType();
8236   unsigned OpSizeInBits = VT.getScalarSizeInBits();
8237 
8238   // fold vector ops
8239   if (VT.isVector()) {
8240     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8241       return FoldedVOp;
8242 
8243     BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
8244     // If setcc produces all-one true value then:
8245     // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
8246     if (N1CV && N1CV->isConstant()) {
8247       if (N0.getOpcode() == ISD::AND) {
8248         SDValue N00 = N0->getOperand(0);
8249         SDValue N01 = N0->getOperand(1);
8250         BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
8251 
8252         if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
8253             TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
8254                 TargetLowering::ZeroOrNegativeOneBooleanContent) {
8255           if (SDValue C =
8256                   DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1}))
8257             return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
8258         }
8259       }
8260     }
8261   }
8262 
8263   ConstantSDNode *N1C = isConstOrConstSplat(N1);
8264 
8265   // fold (shl c1, c2) -> c1<<c2
8266   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1}))
8267     return C;
8268 
8269   if (SDValue NewSel = foldBinOpIntoSelect(N))
8270     return NewSel;
8271 
8272   // if (shl x, c) is known to be zero, return 0
8273   if (DAG.MaskedValueIsZero(SDValue(N, 0),
8274                             APInt::getAllOnesValue(OpSizeInBits)))
8275     return DAG.getConstant(0, SDLoc(N), VT);
8276 
8277   // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
8278   if (N1.getOpcode() == ISD::TRUNCATE &&
8279       N1.getOperand(0).getOpcode() == ISD::AND) {
8280     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8281       return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
8282   }
8283 
8284   if (SimplifyDemandedBits(SDValue(N, 0)))
8285     return SDValue(N, 0);
8286 
8287   // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
8288   if (N0.getOpcode() == ISD::SHL) {
8289     auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
8290                                           ConstantSDNode *RHS) {
8291       APInt c1 = LHS->getAPIntValue();
8292       APInt c2 = RHS->getAPIntValue();
8293       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8294       return (c1 + c2).uge(OpSizeInBits);
8295     };
8296     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
8297       return DAG.getConstant(0, SDLoc(N), VT);
8298 
8299     auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
8300                                        ConstantSDNode *RHS) {
8301       APInt c1 = LHS->getAPIntValue();
8302       APInt c2 = RHS->getAPIntValue();
8303       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8304       return (c1 + c2).ult(OpSizeInBits);
8305     };
8306     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
8307       SDLoc DL(N);
8308       SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
8309       return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
8310     }
8311   }
8312 
8313   // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
8314   // For this to be valid, the second form must not preserve any of the bits
8315   // that are shifted out by the inner shift in the first form.  This means
8316   // the outer shift size must be >= the number of bits added by the ext.
8317   // As a corollary, we don't care what kind of ext it is.
8318   if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
8319        N0.getOpcode() == ISD::ANY_EXTEND ||
8320        N0.getOpcode() == ISD::SIGN_EXTEND) &&
8321       N0.getOperand(0).getOpcode() == ISD::SHL) {
8322     SDValue N0Op0 = N0.getOperand(0);
8323     SDValue InnerShiftAmt = N0Op0.getOperand(1);
8324     EVT InnerVT = N0Op0.getValueType();
8325     uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
8326 
8327     auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
8328                                                          ConstantSDNode *RHS) {
8329       APInt c1 = LHS->getAPIntValue();
8330       APInt c2 = RHS->getAPIntValue();
8331       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8332       return c2.uge(OpSizeInBits - InnerBitwidth) &&
8333              (c1 + c2).uge(OpSizeInBits);
8334     };
8335     if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
8336                                   /*AllowUndefs*/ false,
8337                                   /*AllowTypeMismatch*/ true))
8338       return DAG.getConstant(0, SDLoc(N), VT);
8339 
8340     auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
8341                                                       ConstantSDNode *RHS) {
8342       APInt c1 = LHS->getAPIntValue();
8343       APInt c2 = RHS->getAPIntValue();
8344       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8345       return c2.uge(OpSizeInBits - InnerBitwidth) &&
8346              (c1 + c2).ult(OpSizeInBits);
8347     };
8348     if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
8349                                   /*AllowUndefs*/ false,
8350                                   /*AllowTypeMismatch*/ true)) {
8351       SDLoc DL(N);
8352       SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
8353       SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
8354       Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
8355       return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
8356     }
8357   }
8358 
8359   // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
8360   // Only fold this if the inner zext has no other uses to avoid increasing
8361   // the total number of instructions.
8362   if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
8363       N0.getOperand(0).getOpcode() == ISD::SRL) {
8364     SDValue N0Op0 = N0.getOperand(0);
8365     SDValue InnerShiftAmt = N0Op0.getOperand(1);
8366 
8367     auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
8368       APInt c1 = LHS->getAPIntValue();
8369       APInt c2 = RHS->getAPIntValue();
8370       zeroExtendToMatch(c1, c2);
8371       return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
8372     };
8373     if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
8374                                   /*AllowUndefs*/ false,
8375                                   /*AllowTypeMismatch*/ true)) {
8376       SDLoc DL(N);
8377       EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
8378       SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
8379       NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
8380       AddToWorklist(NewSHL.getNode());
8381       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
8382     }
8383   }
8384 
8385   // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2
8386   // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1  > C2
8387   // TODO - support non-uniform vector shift amounts.
8388   if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
8389       N0->getFlags().hasExact()) {
8390     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
8391       uint64_t C1 = N0C1->getZExtValue();
8392       uint64_t C2 = N1C->getZExtValue();
8393       SDLoc DL(N);
8394       if (C1 <= C2)
8395         return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
8396                            DAG.getConstant(C2 - C1, DL, ShiftVT));
8397       return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
8398                          DAG.getConstant(C1 - C2, DL, ShiftVT));
8399     }
8400   }
8401 
8402   // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
8403   //                               (and (srl x, (sub c1, c2), MASK)
8404   // Only fold this if the inner shift has no other uses -- if it does, folding
8405   // this will increase the total number of instructions.
8406   // TODO - drop hasOneUse requirement if c1 == c2?
8407   // TODO - support non-uniform vector shift amounts.
8408   if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
8409       TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
8410     if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
8411       if (N0C1->getAPIntValue().ult(OpSizeInBits)) {
8412         uint64_t c1 = N0C1->getZExtValue();
8413         uint64_t c2 = N1C->getZExtValue();
8414         APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
8415         SDValue Shift;
8416         if (c2 > c1) {
8417           Mask <<= c2 - c1;
8418           SDLoc DL(N);
8419           Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
8420                               DAG.getConstant(c2 - c1, DL, ShiftVT));
8421         } else {
8422           Mask.lshrInPlace(c1 - c2);
8423           SDLoc DL(N);
8424           Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
8425                               DAG.getConstant(c1 - c2, DL, ShiftVT));
8426         }
8427         SDLoc DL(N0);
8428         return DAG.getNode(ISD::AND, DL, VT, Shift,
8429                            DAG.getConstant(Mask, DL, VT));
8430       }
8431     }
8432   }
8433 
8434   // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
8435   if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
8436       isConstantOrConstantVector(N1, /* No Opaques */ true)) {
8437     SDLoc DL(N);
8438     SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
8439     SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
8440     return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
8441   }
8442 
8443   // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8444   // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8445   // Variant of version done on multiply, except mul by a power of 2 is turned
8446   // into a shift.
8447   if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
8448       N0.getNode()->hasOneUse() &&
8449       isConstantOrConstantVector(N1, /* No Opaques */ true) &&
8450       isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
8451       TLI.isDesirableToCommuteWithShift(N, Level)) {
8452     SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
8453     SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
8454     AddToWorklist(Shl0.getNode());
8455     AddToWorklist(Shl1.getNode());
8456     return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
8457   }
8458 
8459   // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
8460   if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
8461       isConstantOrConstantVector(N1, /* No Opaques */ true) &&
8462       isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
8463     SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
8464     if (isConstantOrConstantVector(Shl))
8465       return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
8466   }
8467 
8468   if (N1C && !N1C->isOpaque())
8469     if (SDValue NewSHL = visitShiftByConstant(N))
8470       return NewSHL;
8471 
8472   // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
8473   if (N0.getOpcode() == ISD::VSCALE)
8474     if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) {
8475       const APInt &C0 = N0.getConstantOperandAPInt(0);
8476       const APInt &C1 = NC1->getAPIntValue();
8477       return DAG.getVScale(SDLoc(N), VT, C0 << C1);
8478     }
8479 
8480   // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
8481   APInt ShlVal;
8482   if (N0.getOpcode() == ISD::STEP_VECTOR)
8483     if (ISD::isConstantSplatVector(N1.getNode(), ShlVal)) {
8484       const APInt &C0 = N0.getConstantOperandAPInt(0);
8485       if (ShlVal.ult(C0.getBitWidth())) {
8486         APInt NewStep = C0 << ShlVal;
8487         return DAG.getStepVector(SDLoc(N), VT, NewStep);
8488       }
8489     }
8490 
8491   return SDValue();
8492 }
8493 
8494 // Transform a right shift of a multiply into a multiply-high.
8495 // Examples:
8496 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
8497 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
8498 static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG,
8499                                   const TargetLowering &TLI) {
8500   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
8501          "SRL or SRA node is required here!");
8502 
8503   // Check the shift amount. Proceed with the transformation if the shift
8504   // amount is constant.
8505   ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1));
8506   if (!ShiftAmtSrc)
8507     return SDValue();
8508 
8509   SDLoc DL(N);
8510 
8511   // The operation feeding into the shift must be a multiply.
8512   SDValue ShiftOperand = N->getOperand(0);
8513   if (ShiftOperand.getOpcode() != ISD::MUL)
8514     return SDValue();
8515 
8516   // Both operands must be equivalent extend nodes.
8517   SDValue LeftOp = ShiftOperand.getOperand(0);
8518   SDValue RightOp = ShiftOperand.getOperand(1);
8519   bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND;
8520   bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND;
8521 
8522   if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode())
8523     return SDValue();
8524 
8525   EVT WideVT1 = LeftOp.getValueType();
8526   EVT WideVT2 = RightOp.getValueType();
8527   (void)WideVT2;
8528   // Proceed with the transformation if the wide types match.
8529   assert((WideVT1 == WideVT2) &&
8530          "Cannot have a multiply node with two different operand types.");
8531 
8532   EVT NarrowVT = LeftOp.getOperand(0).getValueType();
8533   // Check that the two extend nodes are the same type.
8534   if (NarrowVT !=  RightOp.getOperand(0).getValueType())
8535     return SDValue();
8536 
8537   // Proceed with the transformation if the wide type is twice as large
8538   // as the narrow type.
8539   unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits();
8540   if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize)
8541     return SDValue();
8542 
8543   // Check the shift amount with the narrow type size.
8544   // Proceed with the transformation if the shift amount is the width
8545   // of the narrow type.
8546   unsigned ShiftAmt = ShiftAmtSrc->getZExtValue();
8547   if (ShiftAmt != NarrowVTSize)
8548     return SDValue();
8549 
8550   // If the operation feeding into the MUL is a sign extend (sext),
8551   // we use mulhs. Othewise, zero extends (zext) use mulhu.
8552   unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU;
8553 
8554   // Combine to mulh if mulh is legal/custom for the narrow type on the target.
8555   if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT))
8556     return SDValue();
8557 
8558   SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0),
8559                                RightOp.getOperand(0));
8560   return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1)
8561                                      : DAG.getZExtOrTrunc(Result, DL, WideVT1));
8562 }
8563 
8564 SDValue DAGCombiner::visitSRA(SDNode *N) {
8565   SDValue N0 = N->getOperand(0);
8566   SDValue N1 = N->getOperand(1);
8567   if (SDValue V = DAG.simplifyShift(N0, N1))
8568     return V;
8569 
8570   EVT VT = N0.getValueType();
8571   unsigned OpSizeInBits = VT.getScalarSizeInBits();
8572 
8573   // Arithmetic shifting an all-sign-bit value is a no-op.
8574   // fold (sra 0, x) -> 0
8575   // fold (sra -1, x) -> -1
8576   if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
8577     return N0;
8578 
8579   // fold vector ops
8580   if (VT.isVector())
8581     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8582       return FoldedVOp;
8583 
8584   ConstantSDNode *N1C = isConstOrConstSplat(N1);
8585 
8586   // fold (sra c1, c2) -> (sra c1, c2)
8587   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1}))
8588     return C;
8589 
8590   if (SDValue NewSel = foldBinOpIntoSelect(N))
8591     return NewSel;
8592 
8593   // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
8594   // sext_inreg.
8595   if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
8596     unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
8597     EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
8598     if (VT.isVector())
8599       ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT,
8600                                VT.getVectorElementCount());
8601     if (!LegalOperations ||
8602         TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) ==
8603         TargetLowering::Legal)
8604       return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
8605                          N0.getOperand(0), DAG.getValueType(ExtVT));
8606     // Even if we can't convert to sext_inreg, we might be able to remove
8607     // this shift pair if the input is already sign extended.
8608     if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue())
8609       return N0.getOperand(0);
8610   }
8611 
8612   // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
8613   // clamp (add c1, c2) to max shift.
8614   if (N0.getOpcode() == ISD::SRA) {
8615     SDLoc DL(N);
8616     EVT ShiftVT = N1.getValueType();
8617     EVT ShiftSVT = ShiftVT.getScalarType();
8618     SmallVector<SDValue, 16> ShiftValues;
8619 
8620     auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
8621       APInt c1 = LHS->getAPIntValue();
8622       APInt c2 = RHS->getAPIntValue();
8623       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8624       APInt Sum = c1 + c2;
8625       unsigned ShiftSum =
8626           Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
8627       ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
8628       return true;
8629     };
8630     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
8631       SDValue ShiftValue;
8632       if (N1.getOpcode() == ISD::BUILD_VECTOR)
8633         ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
8634       else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
8635         assert(ShiftValues.size() == 1 &&
8636                "Expected matchBinaryPredicate to return one element for "
8637                "SPLAT_VECTORs");
8638         ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]);
8639       } else
8640         ShiftValue = ShiftValues[0];
8641       return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
8642     }
8643   }
8644 
8645   // fold (sra (shl X, m), (sub result_size, n))
8646   // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
8647   // result_size - n != m.
8648   // If truncate is free for the target sext(shl) is likely to result in better
8649   // code.
8650   if (N0.getOpcode() == ISD::SHL && N1C) {
8651     // Get the two constanst of the shifts, CN0 = m, CN = n.
8652     const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
8653     if (N01C) {
8654       LLVMContext &Ctx = *DAG.getContext();
8655       // Determine what the truncate's result bitsize and type would be.
8656       EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
8657 
8658       if (VT.isVector())
8659         TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
8660 
8661       // Determine the residual right-shift amount.
8662       int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
8663 
8664       // If the shift is not a no-op (in which case this should be just a sign
8665       // extend already), the truncated to type is legal, sign_extend is legal
8666       // on that type, and the truncate to that type is both legal and free,
8667       // perform the transform.
8668       if ((ShiftAmt > 0) &&
8669           TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
8670           TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
8671           TLI.isTruncateFree(VT, TruncVT)) {
8672         SDLoc DL(N);
8673         SDValue Amt = DAG.getConstant(ShiftAmt, DL,
8674             getShiftAmountTy(N0.getOperand(0).getValueType()));
8675         SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
8676                                     N0.getOperand(0), Amt);
8677         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
8678                                     Shift);
8679         return DAG.getNode(ISD::SIGN_EXTEND, DL,
8680                            N->getValueType(0), Trunc);
8681       }
8682     }
8683   }
8684 
8685   // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
8686   //   sra (add (shl X, N1C), AddC), N1C -->
8687   //   sext (add (trunc X to (width - N1C)), AddC')
8688   if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C &&
8689       N0.getOperand(0).getOpcode() == ISD::SHL &&
8690       N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) {
8691     if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) {
8692       SDValue Shl = N0.getOperand(0);
8693       // Determine what the truncate's type would be and ask the target if that
8694       // is a free operation.
8695       LLVMContext &Ctx = *DAG.getContext();
8696       unsigned ShiftAmt = N1C->getZExtValue();
8697       EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
8698       if (VT.isVector())
8699         TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
8700 
8701       // TODO: The simple type check probably belongs in the default hook
8702       //       implementation and/or target-specific overrides (because
8703       //       non-simple types likely require masking when legalized), but that
8704       //       restriction may conflict with other transforms.
8705       if (TruncVT.isSimple() && isTypeLegal(TruncVT) &&
8706           TLI.isTruncateFree(VT, TruncVT)) {
8707         SDLoc DL(N);
8708         SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
8709         SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).
8710                              trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT);
8711         SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
8712         return DAG.getSExtOrTrunc(Add, DL, VT);
8713       }
8714     }
8715   }
8716 
8717   // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
8718   if (N1.getOpcode() == ISD::TRUNCATE &&
8719       N1.getOperand(0).getOpcode() == ISD::AND) {
8720     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8721       return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
8722   }
8723 
8724   // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
8725   // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
8726   //      if c1 is equal to the number of bits the trunc removes
8727   // TODO - support non-uniform vector shift amounts.
8728   if (N0.getOpcode() == ISD::TRUNCATE &&
8729       (N0.getOperand(0).getOpcode() == ISD::SRL ||
8730        N0.getOperand(0).getOpcode() == ISD::SRA) &&
8731       N0.getOperand(0).hasOneUse() &&
8732       N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
8733     SDValue N0Op0 = N0.getOperand(0);
8734     if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
8735       EVT LargeVT = N0Op0.getValueType();
8736       unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
8737       if (LargeShift->getAPIntValue() == TruncBits) {
8738         SDLoc DL(N);
8739         SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL,
8740                                       getShiftAmountTy(LargeVT));
8741         SDValue SRA =
8742             DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
8743         return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
8744       }
8745     }
8746   }
8747 
8748   // Simplify, based on bits shifted out of the LHS.
8749   if (SimplifyDemandedBits(SDValue(N, 0)))
8750     return SDValue(N, 0);
8751 
8752   // If the sign bit is known to be zero, switch this to a SRL.
8753   if (DAG.SignBitIsZero(N0))
8754     return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
8755 
8756   if (N1C && !N1C->isOpaque())
8757     if (SDValue NewSRA = visitShiftByConstant(N))
8758       return NewSRA;
8759 
8760   // Try to transform this shift into a multiply-high if
8761   // it matches the appropriate pattern detected in combineShiftToMULH.
8762   if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
8763     return MULH;
8764 
8765   return SDValue();
8766 }
8767 
8768 SDValue DAGCombiner::visitSRL(SDNode *N) {
8769   SDValue N0 = N->getOperand(0);
8770   SDValue N1 = N->getOperand(1);
8771   if (SDValue V = DAG.simplifyShift(N0, N1))
8772     return V;
8773 
8774   EVT VT = N0.getValueType();
8775   unsigned OpSizeInBits = VT.getScalarSizeInBits();
8776 
8777   // fold vector ops
8778   if (VT.isVector())
8779     if (SDValue FoldedVOp = SimplifyVBinOp(N))
8780       return FoldedVOp;
8781 
8782   ConstantSDNode *N1C = isConstOrConstSplat(N1);
8783 
8784   // fold (srl c1, c2) -> c1 >>u c2
8785   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1}))
8786     return C;
8787 
8788   if (SDValue NewSel = foldBinOpIntoSelect(N))
8789     return NewSel;
8790 
8791   // if (srl x, c) is known to be zero, return 0
8792   if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
8793                                    APInt::getAllOnesValue(OpSizeInBits)))
8794     return DAG.getConstant(0, SDLoc(N), VT);
8795 
8796   // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
8797   if (N0.getOpcode() == ISD::SRL) {
8798     auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
8799                                           ConstantSDNode *RHS) {
8800       APInt c1 = LHS->getAPIntValue();
8801       APInt c2 = RHS->getAPIntValue();
8802       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8803       return (c1 + c2).uge(OpSizeInBits);
8804     };
8805     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
8806       return DAG.getConstant(0, SDLoc(N), VT);
8807 
8808     auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
8809                                        ConstantSDNode *RHS) {
8810       APInt c1 = LHS->getAPIntValue();
8811       APInt c2 = RHS->getAPIntValue();
8812       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8813       return (c1 + c2).ult(OpSizeInBits);
8814     };
8815     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
8816       SDLoc DL(N);
8817       EVT ShiftVT = N1.getValueType();
8818       SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
8819       return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
8820     }
8821   }
8822 
8823   if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
8824       N0.getOperand(0).getOpcode() == ISD::SRL) {
8825     SDValue InnerShift = N0.getOperand(0);
8826     // TODO - support non-uniform vector shift amounts.
8827     if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) {
8828       uint64_t c1 = N001C->getZExtValue();
8829       uint64_t c2 = N1C->getZExtValue();
8830       EVT InnerShiftVT = InnerShift.getValueType();
8831       EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType();
8832       uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
8833       // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
8834       // This is only valid if the OpSizeInBits + c1 = size of inner shift.
8835       if (c1 + OpSizeInBits == InnerShiftSize) {
8836         SDLoc DL(N);
8837         if (c1 + c2 >= InnerShiftSize)
8838           return DAG.getConstant(0, DL, VT);
8839         SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
8840         SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
8841                                        InnerShift.getOperand(0), NewShiftAmt);
8842         return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift);
8843       }
8844       // In the more general case, we can clear the high bits after the shift:
8845       // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
8846       if (N0.hasOneUse() && InnerShift.hasOneUse() &&
8847           c1 + c2 < InnerShiftSize) {
8848         SDLoc DL(N);
8849         SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
8850         SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
8851                                        InnerShift.getOperand(0), NewShiftAmt);
8852         SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize,
8853                                                             OpSizeInBits - c2),
8854                                        DL, InnerShiftVT);
8855         SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask);
8856         return DAG.getNode(ISD::TRUNCATE, DL, VT, And);
8857       }
8858     }
8859   }
8860 
8861   // fold (srl (shl x, c), c) -> (and x, cst2)
8862   // TODO - (srl (shl x, c1), c2).
8863   if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
8864       isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
8865     SDLoc DL(N);
8866     SDValue Mask =
8867         DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
8868     AddToWorklist(Mask.getNode());
8869     return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
8870   }
8871 
8872   // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
8873   // TODO - support non-uniform vector shift amounts.
8874   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
8875     // Shifting in all undef bits?
8876     EVT SmallVT = N0.getOperand(0).getValueType();
8877     unsigned BitSize = SmallVT.getScalarSizeInBits();
8878     if (N1C->getAPIntValue().uge(BitSize))
8879       return DAG.getUNDEF(VT);
8880 
8881     if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
8882       uint64_t ShiftAmt = N1C->getZExtValue();
8883       SDLoc DL0(N0);
8884       SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
8885                                        N0.getOperand(0),
8886                           DAG.getConstant(ShiftAmt, DL0,
8887                                           getShiftAmountTy(SmallVT)));
8888       AddToWorklist(SmallShift.getNode());
8889       APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
8890       SDLoc DL(N);
8891       return DAG.getNode(ISD::AND, DL, VT,
8892                          DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
8893                          DAG.getConstant(Mask, DL, VT));
8894     }
8895   }
8896 
8897   // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
8898   // bit, which is unmodified by sra.
8899   if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
8900     if (N0.getOpcode() == ISD::SRA)
8901       return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
8902   }
8903 
8904   // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
8905   if (N1C && N0.getOpcode() == ISD::CTLZ &&
8906       N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
8907     KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
8908 
8909     // If any of the input bits are KnownOne, then the input couldn't be all
8910     // zeros, thus the result of the srl will always be zero.
8911     if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
8912 
8913     // If all of the bits input the to ctlz node are known to be zero, then
8914     // the result of the ctlz is "32" and the result of the shift is one.
8915     APInt UnknownBits = ~Known.Zero;
8916     if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
8917 
8918     // Otherwise, check to see if there is exactly one bit input to the ctlz.
8919     if (UnknownBits.isPowerOf2()) {
8920       // Okay, we know that only that the single bit specified by UnknownBits
8921       // could be set on input to the CTLZ node. If this bit is set, the SRL
8922       // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
8923       // to an SRL/XOR pair, which is likely to simplify more.
8924       unsigned ShAmt = UnknownBits.countTrailingZeros();
8925       SDValue Op = N0.getOperand(0);
8926 
8927       if (ShAmt) {
8928         SDLoc DL(N0);
8929         Op = DAG.getNode(ISD::SRL, DL, VT, Op,
8930                   DAG.getConstant(ShAmt, DL,
8931                                   getShiftAmountTy(Op.getValueType())));
8932         AddToWorklist(Op.getNode());
8933       }
8934 
8935       SDLoc DL(N);
8936       return DAG.getNode(ISD::XOR, DL, VT,
8937                          Op, DAG.getConstant(1, DL, VT));
8938     }
8939   }
8940 
8941   // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
8942   if (N1.getOpcode() == ISD::TRUNCATE &&
8943       N1.getOperand(0).getOpcode() == ISD::AND) {
8944     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8945       return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
8946   }
8947 
8948   // fold operands of srl based on knowledge that the low bits are not
8949   // demanded.
8950   if (SimplifyDemandedBits(SDValue(N, 0)))
8951     return SDValue(N, 0);
8952 
8953   if (N1C && !N1C->isOpaque())
8954     if (SDValue NewSRL = visitShiftByConstant(N))
8955       return NewSRL;
8956 
8957   // Attempt to convert a srl of a load into a narrower zero-extending load.
8958   if (SDValue NarrowLoad = ReduceLoadWidth(N))
8959     return NarrowLoad;
8960 
8961   // Here is a common situation. We want to optimize:
8962   //
8963   //   %a = ...
8964   //   %b = and i32 %a, 2
8965   //   %c = srl i32 %b, 1
8966   //   brcond i32 %c ...
8967   //
8968   // into
8969   //
8970   //   %a = ...
8971   //   %b = and %a, 2
8972   //   %c = setcc eq %b, 0
8973   //   brcond %c ...
8974   //
8975   // However when after the source operand of SRL is optimized into AND, the SRL
8976   // itself may not be optimized further. Look for it and add the BRCOND into
8977   // the worklist.
8978   if (N->hasOneUse()) {
8979     SDNode *Use = *N->use_begin();
8980     if (Use->getOpcode() == ISD::BRCOND)
8981       AddToWorklist(Use);
8982     else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
8983       // Also look pass the truncate.
8984       Use = *Use->use_begin();
8985       if (Use->getOpcode() == ISD::BRCOND)
8986         AddToWorklist(Use);
8987     }
8988   }
8989 
8990   // Try to transform this shift into a multiply-high if
8991   // it matches the appropriate pattern detected in combineShiftToMULH.
8992   if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
8993     return MULH;
8994 
8995   return SDValue();
8996 }
8997 
8998 SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
8999   EVT VT = N->getValueType(0);
9000   SDValue N0 = N->getOperand(0);
9001   SDValue N1 = N->getOperand(1);
9002   SDValue N2 = N->getOperand(2);
9003   bool IsFSHL = N->getOpcode() == ISD::FSHL;
9004   unsigned BitWidth = VT.getScalarSizeInBits();
9005 
9006   // fold (fshl N0, N1, 0) -> N0
9007   // fold (fshr N0, N1, 0) -> N1
9008   if (isPowerOf2_32(BitWidth))
9009     if (DAG.MaskedValueIsZero(
9010             N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
9011       return IsFSHL ? N0 : N1;
9012 
9013   auto IsUndefOrZero = [](SDValue V) {
9014     return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
9015   };
9016 
9017   // TODO - support non-uniform vector shift amounts.
9018   if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
9019     EVT ShAmtTy = N2.getValueType();
9020 
9021     // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
9022     if (Cst->getAPIntValue().uge(BitWidth)) {
9023       uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
9024       return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
9025                          DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
9026     }
9027 
9028     unsigned ShAmt = Cst->getZExtValue();
9029     if (ShAmt == 0)
9030       return IsFSHL ? N0 : N1;
9031 
9032     // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
9033     // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
9034     // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
9035     // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
9036     if (IsUndefOrZero(N0))
9037       return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
9038                          DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
9039                                          SDLoc(N), ShAmtTy));
9040     if (IsUndefOrZero(N1))
9041       return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
9042                          DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
9043                                          SDLoc(N), ShAmtTy));
9044 
9045     // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
9046     // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
9047     // TODO - bigendian support once we have test coverage.
9048     // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
9049     // TODO - permit LHS EXTLOAD if extensions are shifted out.
9050     if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() &&
9051         !DAG.getDataLayout().isBigEndian()) {
9052       auto *LHS = dyn_cast<LoadSDNode>(N0);
9053       auto *RHS = dyn_cast<LoadSDNode>(N1);
9054       if (LHS && RHS && LHS->isSimple() && RHS->isSimple() &&
9055           LHS->getAddressSpace() == RHS->getAddressSpace() &&
9056           (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) &&
9057           ISD::isNON_EXTLoad(LHS)) {
9058         if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) {
9059           SDLoc DL(RHS);
9060           uint64_t PtrOff =
9061               IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8);
9062           Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff);
9063           bool Fast = false;
9064           if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
9065                                      RHS->getAddressSpace(), NewAlign,
9066                                      RHS->getMemOperand()->getFlags(), &Fast) &&
9067               Fast) {
9068             SDValue NewPtr = DAG.getMemBasePlusOffset(
9069                 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL);
9070             AddToWorklist(NewPtr.getNode());
9071             SDValue Load = DAG.getLoad(
9072                 VT, DL, RHS->getChain(), NewPtr,
9073                 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign,
9074                 RHS->getMemOperand()->getFlags(), RHS->getAAInfo());
9075             // Replace the old load's chain with the new load's chain.
9076             WorklistRemover DeadNodes(*this);
9077             DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1));
9078             return Load;
9079           }
9080         }
9081       }
9082     }
9083   }
9084 
9085   // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
9086   // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
9087   // iff We know the shift amount is in range.
9088   // TODO: when is it worth doing SUB(BW, N2) as well?
9089   if (isPowerOf2_32(BitWidth)) {
9090     APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
9091     if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
9092       return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
9093     if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
9094       return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
9095   }
9096 
9097   // fold (fshl N0, N0, N2) -> (rotl N0, N2)
9098   // fold (fshr N0, N0, N2) -> (rotr N0, N2)
9099   // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
9100   // is legal as well we might be better off avoiding non-constant (BW - N2).
9101   unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
9102   if (N0 == N1 && hasOperation(RotOpc, VT))
9103     return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
9104 
9105   // Simplify, based on bits shifted out of N0/N1.
9106   if (SimplifyDemandedBits(SDValue(N, 0)))
9107     return SDValue(N, 0);
9108 
9109   return SDValue();
9110 }
9111 
9112 // Given a ABS node, detect the following pattern:
9113 // (ABS (SUB (EXTEND a), (EXTEND b))).
9114 // Generates UABD/SABD instruction.
9115 static SDValue combineABSToABD(SDNode *N, SelectionDAG &DAG,
9116                                const TargetLowering &TLI) {
9117   SDValue AbsOp1 = N->getOperand(0);
9118   SDValue Op0, Op1;
9119 
9120   if (AbsOp1.getOpcode() != ISD::SUB)
9121     return SDValue();
9122 
9123   Op0 = AbsOp1.getOperand(0);
9124   Op1 = AbsOp1.getOperand(1);
9125 
9126   unsigned Opc0 = Op0.getOpcode();
9127   // Check if the operands of the sub are (zero|sign)-extended.
9128   if (Opc0 != Op1.getOpcode() ||
9129       (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND))
9130     return SDValue();
9131 
9132   EVT VT1 = Op0.getOperand(0).getValueType();
9133   EVT VT2 = Op1.getOperand(0).getValueType();
9134   // Check if the operands are of same type and valid size.
9135   unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU;
9136   if (VT1 != VT2 || !TLI.isOperationLegalOrCustom(ABDOpcode, VT1))
9137     return SDValue();
9138 
9139   Op0 = Op0.getOperand(0);
9140   Op1 = Op1.getOperand(0);
9141   SDValue ABD =
9142       DAG.getNode(ABDOpcode, SDLoc(N), Op0->getValueType(0), Op0, Op1);
9143   return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), ABD);
9144 }
9145 
9146 SDValue DAGCombiner::visitABS(SDNode *N) {
9147   SDValue N0 = N->getOperand(0);
9148   EVT VT = N->getValueType(0);
9149 
9150   // fold (abs c1) -> c2
9151   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9152     return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
9153   // fold (abs (abs x)) -> (abs x)
9154   if (N0.getOpcode() == ISD::ABS)
9155     return N0;
9156   // fold (abs x) -> x iff not-negative
9157   if (DAG.SignBitIsZero(N0))
9158     return N0;
9159 
9160   if (SDValue ABD = combineABSToABD(N, DAG, TLI))
9161     return ABD;
9162 
9163   return SDValue();
9164 }
9165 
9166 SDValue DAGCombiner::visitBSWAP(SDNode *N) {
9167   SDValue N0 = N->getOperand(0);
9168   EVT VT = N->getValueType(0);
9169 
9170   // fold (bswap c1) -> c2
9171   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9172     return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
9173   // fold (bswap (bswap x)) -> x
9174   if (N0.getOpcode() == ISD::BSWAP)
9175     return N0->getOperand(0);
9176   return SDValue();
9177 }
9178 
9179 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
9180   SDValue N0 = N->getOperand(0);
9181   EVT VT = N->getValueType(0);
9182 
9183   // fold (bitreverse c1) -> c2
9184   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9185     return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
9186   // fold (bitreverse (bitreverse x)) -> x
9187   if (N0.getOpcode() == ISD::BITREVERSE)
9188     return N0.getOperand(0);
9189   return SDValue();
9190 }
9191 
9192 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
9193   SDValue N0 = N->getOperand(0);
9194   EVT VT = N->getValueType(0);
9195 
9196   // fold (ctlz c1) -> c2
9197   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9198     return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
9199 
9200   // If the value is known never to be zero, switch to the undef version.
9201   if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
9202     if (DAG.isKnownNeverZero(N0))
9203       return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
9204   }
9205 
9206   return SDValue();
9207 }
9208 
9209 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
9210   SDValue N0 = N->getOperand(0);
9211   EVT VT = N->getValueType(0);
9212 
9213   // fold (ctlz_zero_undef c1) -> c2
9214   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9215     return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
9216   return SDValue();
9217 }
9218 
9219 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
9220   SDValue N0 = N->getOperand(0);
9221   EVT VT = N->getValueType(0);
9222 
9223   // fold (cttz c1) -> c2
9224   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9225     return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
9226 
9227   // If the value is known never to be zero, switch to the undef version.
9228   if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
9229     if (DAG.isKnownNeverZero(N0))
9230       return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
9231   }
9232 
9233   return SDValue();
9234 }
9235 
9236 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
9237   SDValue N0 = N->getOperand(0);
9238   EVT VT = N->getValueType(0);
9239 
9240   // fold (cttz_zero_undef c1) -> c2
9241   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9242     return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
9243   return SDValue();
9244 }
9245 
9246 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
9247   SDValue N0 = N->getOperand(0);
9248   EVT VT = N->getValueType(0);
9249 
9250   // fold (ctpop c1) -> c2
9251   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9252     return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
9253   return SDValue();
9254 }
9255 
9256 // FIXME: This should be checking for no signed zeros on individual operands, as
9257 // well as no nans.
9258 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
9259                                          SDValue RHS,
9260                                          const TargetLowering &TLI) {
9261   const TargetOptions &Options = DAG.getTarget().Options;
9262   EVT VT = LHS.getValueType();
9263 
9264   return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
9265          TLI.isProfitableToCombineMinNumMaxNum(VT) &&
9266          DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
9267 }
9268 
9269 /// Generate Min/Max node
9270 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
9271                                    SDValue RHS, SDValue True, SDValue False,
9272                                    ISD::CondCode CC, const TargetLowering &TLI,
9273                                    SelectionDAG &DAG) {
9274   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
9275     return SDValue();
9276 
9277   EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
9278   switch (CC) {
9279   case ISD::SETOLT:
9280   case ISD::SETOLE:
9281   case ISD::SETLT:
9282   case ISD::SETLE:
9283   case ISD::SETULT:
9284   case ISD::SETULE: {
9285     // Since it's known never nan to get here already, either fminnum or
9286     // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
9287     // expanded in terms of it.
9288     unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
9289     if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
9290       return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
9291 
9292     unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
9293     if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
9294       return DAG.getNode(Opcode, DL, VT, LHS, RHS);
9295     return SDValue();
9296   }
9297   case ISD::SETOGT:
9298   case ISD::SETOGE:
9299   case ISD::SETGT:
9300   case ISD::SETGE:
9301   case ISD::SETUGT:
9302   case ISD::SETUGE: {
9303     unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
9304     if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
9305       return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
9306 
9307     unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
9308     if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
9309       return DAG.getNode(Opcode, DL, VT, LHS, RHS);
9310     return SDValue();
9311   }
9312   default:
9313     return SDValue();
9314   }
9315 }
9316 
9317 /// If a (v)select has a condition value that is a sign-bit test, try to smear
9318 /// the condition operand sign-bit across the value width and use it as a mask.
9319 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) {
9320   SDValue Cond = N->getOperand(0);
9321   SDValue C1 = N->getOperand(1);
9322   SDValue C2 = N->getOperand(2);
9323   if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2))
9324     return SDValue();
9325 
9326   EVT VT = N->getValueType(0);
9327   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
9328       VT != Cond.getOperand(0).getValueType())
9329     return SDValue();
9330 
9331   // The inverted-condition + commuted-select variants of these patterns are
9332   // canonicalized to these forms in IR.
9333   SDValue X = Cond.getOperand(0);
9334   SDValue CondC = Cond.getOperand(1);
9335   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9336   if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
9337       isAllOnesOrAllOnesSplat(C2)) {
9338     // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
9339     SDLoc DL(N);
9340     SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
9341     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
9342     return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
9343   }
9344   if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
9345     // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
9346     SDLoc DL(N);
9347     SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
9348     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
9349     return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
9350   }
9351   return SDValue();
9352 }
9353 
9354 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
9355   SDValue Cond = N->getOperand(0);
9356   SDValue N1 = N->getOperand(1);
9357   SDValue N2 = N->getOperand(2);
9358   EVT VT = N->getValueType(0);
9359   EVT CondVT = Cond.getValueType();
9360   SDLoc DL(N);
9361 
9362   if (!VT.isInteger())
9363     return SDValue();
9364 
9365   auto *C1 = dyn_cast<ConstantSDNode>(N1);
9366   auto *C2 = dyn_cast<ConstantSDNode>(N2);
9367   if (!C1 || !C2)
9368     return SDValue();
9369 
9370   // Only do this before legalization to avoid conflicting with target-specific
9371   // transforms in the other direction (create a select from a zext/sext). There
9372   // is also a target-independent combine here in DAGCombiner in the other
9373   // direction for (select Cond, -1, 0) when the condition is not i1.
9374   if (CondVT == MVT::i1 && !LegalOperations) {
9375     if (C1->isNullValue() && C2->isOne()) {
9376       // select Cond, 0, 1 --> zext (!Cond)
9377       SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
9378       if (VT != MVT::i1)
9379         NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
9380       return NotCond;
9381     }
9382     if (C1->isNullValue() && C2->isAllOnesValue()) {
9383       // select Cond, 0, -1 --> sext (!Cond)
9384       SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
9385       if (VT != MVT::i1)
9386         NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
9387       return NotCond;
9388     }
9389     if (C1->isOne() && C2->isNullValue()) {
9390       // select Cond, 1, 0 --> zext (Cond)
9391       if (VT != MVT::i1)
9392         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
9393       return Cond;
9394     }
9395     if (C1->isAllOnesValue() && C2->isNullValue()) {
9396       // select Cond, -1, 0 --> sext (Cond)
9397       if (VT != MVT::i1)
9398         Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
9399       return Cond;
9400     }
9401 
9402     // Use a target hook because some targets may prefer to transform in the
9403     // other direction.
9404     if (TLI.convertSelectOfConstantsToMath(VT)) {
9405       // For any constants that differ by 1, we can transform the select into an
9406       // extend and add.
9407       const APInt &C1Val = C1->getAPIntValue();
9408       const APInt &C2Val = C2->getAPIntValue();
9409       if (C1Val - 1 == C2Val) {
9410         // select Cond, C1, C1-1 --> add (zext Cond), C1-1
9411         if (VT != MVT::i1)
9412           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
9413         return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
9414       }
9415       if (C1Val + 1 == C2Val) {
9416         // select Cond, C1, C1+1 --> add (sext Cond), C1+1
9417         if (VT != MVT::i1)
9418           Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
9419         return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
9420       }
9421 
9422       // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
9423       if (C1Val.isPowerOf2() && C2Val.isNullValue()) {
9424         if (VT != MVT::i1)
9425           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
9426         SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT);
9427         return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
9428       }
9429 
9430       if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
9431         return V;
9432     }
9433 
9434     return SDValue();
9435   }
9436 
9437   // fold (select Cond, 0, 1) -> (xor Cond, 1)
9438   // We can't do this reliably if integer based booleans have different contents
9439   // to floating point based booleans. This is because we can't tell whether we
9440   // have an integer-based boolean or a floating-point-based boolean unless we
9441   // can find the SETCC that produced it and inspect its operands. This is
9442   // fairly easy if C is the SETCC node, but it can potentially be
9443   // undiscoverable (or not reasonably discoverable). For example, it could be
9444   // in another basic block or it could require searching a complicated
9445   // expression.
9446   if (CondVT.isInteger() &&
9447       TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
9448           TargetLowering::ZeroOrOneBooleanContent &&
9449       TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
9450           TargetLowering::ZeroOrOneBooleanContent &&
9451       C1->isNullValue() && C2->isOne()) {
9452     SDValue NotCond =
9453         DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
9454     if (VT.bitsEq(CondVT))
9455       return NotCond;
9456     return DAG.getZExtOrTrunc(NotCond, DL, VT);
9457   }
9458 
9459   return SDValue();
9460 }
9461 
9462 static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) {
9463   assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) &&
9464          "Expected a (v)select");
9465   SDValue Cond = N->getOperand(0);
9466   SDValue T = N->getOperand(1), F = N->getOperand(2);
9467   EVT VT = N->getValueType(0);
9468   if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1)
9469     return SDValue();
9470 
9471   // select Cond, Cond, F --> or Cond, F
9472   // select Cond, 1, F    --> or Cond, F
9473   if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true))
9474     return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F);
9475 
9476   // select Cond, T, Cond --> and Cond, T
9477   // select Cond, T, 0    --> and Cond, T
9478   if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true))
9479     return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T);
9480 
9481   // select Cond, T, 1 --> or (not Cond), T
9482   if (isOneOrOneSplat(F, /* AllowUndefs */ true)) {
9483     SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT);
9484     return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T);
9485   }
9486 
9487   // select Cond, 0, F --> and (not Cond), F
9488   if (isNullOrNullSplat(T, /* AllowUndefs */ true)) {
9489     SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT);
9490     return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F);
9491   }
9492 
9493   return SDValue();
9494 }
9495 
9496 SDValue DAGCombiner::visitSELECT(SDNode *N) {
9497   SDValue N0 = N->getOperand(0);
9498   SDValue N1 = N->getOperand(1);
9499   SDValue N2 = N->getOperand(2);
9500   EVT VT = N->getValueType(0);
9501   EVT VT0 = N0.getValueType();
9502   SDLoc DL(N);
9503   SDNodeFlags Flags = N->getFlags();
9504 
9505   if (SDValue V = DAG.simplifySelect(N0, N1, N2))
9506     return V;
9507 
9508   if (SDValue V = foldSelectOfConstants(N))
9509     return V;
9510 
9511   if (SDValue V = foldBoolSelectToLogic(N, DAG))
9512     return V;
9513 
9514   // If we can fold this based on the true/false value, do so.
9515   if (SimplifySelectOps(N, N1, N2))
9516     return SDValue(N, 0); // Don't revisit N.
9517 
9518   if (VT0 == MVT::i1) {
9519     // The code in this block deals with the following 2 equivalences:
9520     //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
9521     //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
9522     // The target can specify its preferred form with the
9523     // shouldNormalizeToSelectSequence() callback. However we always transform
9524     // to the right anyway if we find the inner select exists in the DAG anyway
9525     // and we always transform to the left side if we know that we can further
9526     // optimize the combination of the conditions.
9527     bool normalizeToSequence =
9528         TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
9529     // select (and Cond0, Cond1), X, Y
9530     //   -> select Cond0, (select Cond1, X, Y), Y
9531     if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
9532       SDValue Cond0 = N0->getOperand(0);
9533       SDValue Cond1 = N0->getOperand(1);
9534       SDValue InnerSelect =
9535           DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
9536       if (normalizeToSequence || !InnerSelect.use_empty())
9537         return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
9538                            InnerSelect, N2, Flags);
9539       // Cleanup on failure.
9540       if (InnerSelect.use_empty())
9541         recursivelyDeleteUnusedNodes(InnerSelect.getNode());
9542     }
9543     // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
9544     if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
9545       SDValue Cond0 = N0->getOperand(0);
9546       SDValue Cond1 = N0->getOperand(1);
9547       SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
9548                                         Cond1, N1, N2, Flags);
9549       if (normalizeToSequence || !InnerSelect.use_empty())
9550         return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
9551                            InnerSelect, Flags);
9552       // Cleanup on failure.
9553       if (InnerSelect.use_empty())
9554         recursivelyDeleteUnusedNodes(InnerSelect.getNode());
9555     }
9556 
9557     // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
9558     if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
9559       SDValue N1_0 = N1->getOperand(0);
9560       SDValue N1_1 = N1->getOperand(1);
9561       SDValue N1_2 = N1->getOperand(2);
9562       if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
9563         // Create the actual and node if we can generate good code for it.
9564         if (!normalizeToSequence) {
9565           SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
9566           return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
9567                              N2, Flags);
9568         }
9569         // Otherwise see if we can optimize the "and" to a better pattern.
9570         if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
9571           return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
9572                              N2, Flags);
9573         }
9574       }
9575     }
9576     // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
9577     if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
9578       SDValue N2_0 = N2->getOperand(0);
9579       SDValue N2_1 = N2->getOperand(1);
9580       SDValue N2_2 = N2->getOperand(2);
9581       if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
9582         // Create the actual or node if we can generate good code for it.
9583         if (!normalizeToSequence) {
9584           SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
9585           return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
9586                              N2_2, Flags);
9587         }
9588         // Otherwise see if we can optimize to a better pattern.
9589         if (SDValue Combined = visitORLike(N0, N2_0, N))
9590           return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
9591                              N2_2, Flags);
9592       }
9593     }
9594   }
9595 
9596   // select (not Cond), N1, N2 -> select Cond, N2, N1
9597   if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
9598     SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
9599     SelectOp->setFlags(Flags);
9600     return SelectOp;
9601   }
9602 
9603   // Fold selects based on a setcc into other things, such as min/max/abs.
9604   if (N0.getOpcode() == ISD::SETCC) {
9605     SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
9606     ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
9607 
9608     // select (fcmp lt x, y), x, y -> fminnum x, y
9609     // select (fcmp gt x, y), x, y -> fmaxnum x, y
9610     //
9611     // This is OK if we don't care what happens if either operand is a NaN.
9612     if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
9613       if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
9614                                                 CC, TLI, DAG))
9615         return FMinMax;
9616 
9617     // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
9618     // This is conservatively limited to pre-legal-operations to give targets
9619     // a chance to reverse the transform if they want to do that. Also, it is
9620     // unlikely that the pattern would be formed late, so it's probably not
9621     // worth going through the other checks.
9622     if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
9623         CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
9624         N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
9625       auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
9626       auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
9627       if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
9628         // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
9629         // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
9630         //
9631         // The IR equivalent of this transform would have this form:
9632         //   %a = add %x, C
9633         //   %c = icmp ugt %x, ~C
9634         //   %r = select %c, -1, %a
9635         //   =>
9636         //   %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
9637         //   %u0 = extractvalue %u, 0
9638         //   %u1 = extractvalue %u, 1
9639         //   %r = select %u1, -1, %u0
9640         SDVTList VTs = DAG.getVTList(VT, VT0);
9641         SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
9642         return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
9643       }
9644     }
9645 
9646     if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
9647         (!LegalOperations &&
9648          TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
9649       // Any flags available in a select/setcc fold will be on the setcc as they
9650       // migrated from fcmp
9651       Flags = N0.getNode()->getFlags();
9652       SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
9653                                        N2, N0.getOperand(2));
9654       SelectNode->setFlags(Flags);
9655       return SelectNode;
9656     }
9657 
9658     if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2))
9659       return NewSel;
9660   }
9661 
9662   if (!VT.isVector())
9663     if (SDValue BinOp = foldSelectOfBinops(N))
9664       return BinOp;
9665 
9666   return SDValue();
9667 }
9668 
9669 // This function assumes all the vselect's arguments are CONCAT_VECTOR
9670 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
9671 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
9672   SDLoc DL(N);
9673   SDValue Cond = N->getOperand(0);
9674   SDValue LHS = N->getOperand(1);
9675   SDValue RHS = N->getOperand(2);
9676   EVT VT = N->getValueType(0);
9677   int NumElems = VT.getVectorNumElements();
9678   assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
9679          RHS.getOpcode() == ISD::CONCAT_VECTORS &&
9680          Cond.getOpcode() == ISD::BUILD_VECTOR);
9681 
9682   // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
9683   // binary ones here.
9684   if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
9685     return SDValue();
9686 
9687   // We're sure we have an even number of elements due to the
9688   // concat_vectors we have as arguments to vselect.
9689   // Skip BV elements until we find one that's not an UNDEF
9690   // After we find an UNDEF element, keep looping until we get to half the
9691   // length of the BV and see if all the non-undef nodes are the same.
9692   ConstantSDNode *BottomHalf = nullptr;
9693   for (int i = 0; i < NumElems / 2; ++i) {
9694     if (Cond->getOperand(i)->isUndef())
9695       continue;
9696 
9697     if (BottomHalf == nullptr)
9698       BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
9699     else if (Cond->getOperand(i).getNode() != BottomHalf)
9700       return SDValue();
9701   }
9702 
9703   // Do the same for the second half of the BuildVector
9704   ConstantSDNode *TopHalf = nullptr;
9705   for (int i = NumElems / 2; i < NumElems; ++i) {
9706     if (Cond->getOperand(i)->isUndef())
9707       continue;
9708 
9709     if (TopHalf == nullptr)
9710       TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
9711     else if (Cond->getOperand(i).getNode() != TopHalf)
9712       return SDValue();
9713   }
9714 
9715   assert(TopHalf && BottomHalf &&
9716          "One half of the selector was all UNDEFs and the other was all the "
9717          "same value. This should have been addressed before this function.");
9718   return DAG.getNode(
9719       ISD::CONCAT_VECTORS, DL, VT,
9720       BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
9721       TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
9722 }
9723 
9724 bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) {
9725   if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD)
9726     return false;
9727 
9728   // For now we check only the LHS of the add.
9729   SDValue LHS = Index.getOperand(0);
9730   SDValue SplatVal = DAG.getSplatValue(LHS);
9731   if (!SplatVal)
9732     return false;
9733 
9734   BasePtr = SplatVal;
9735   Index = Index.getOperand(1);
9736   return true;
9737 }
9738 
9739 // Fold sext/zext of index into index type.
9740 bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index,
9741                      bool Scaled, SelectionDAG &DAG) {
9742   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9743 
9744   if (Index.getOpcode() == ISD::ZERO_EXTEND) {
9745     SDValue Op = Index.getOperand(0);
9746     MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED);
9747     if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) {
9748       Index = Op;
9749       return true;
9750     }
9751   }
9752 
9753   if (Index.getOpcode() == ISD::SIGN_EXTEND) {
9754     SDValue Op = Index.getOperand(0);
9755     MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED);
9756     if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) {
9757       Index = Op;
9758       return true;
9759     }
9760   }
9761 
9762   return false;
9763 }
9764 
9765 SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
9766   MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
9767   SDValue Mask = MSC->getMask();
9768   SDValue Chain = MSC->getChain();
9769   SDValue Index = MSC->getIndex();
9770   SDValue Scale = MSC->getScale();
9771   SDValue StoreVal = MSC->getValue();
9772   SDValue BasePtr = MSC->getBasePtr();
9773   SDLoc DL(N);
9774 
9775   // Zap scatters with a zero mask.
9776   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
9777     return Chain;
9778 
9779   if (refineUniformBase(BasePtr, Index, DAG)) {
9780     SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
9781     return DAG.getMaskedScatter(
9782         DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops,
9783         MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore());
9784   }
9785 
9786   if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) {
9787     SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
9788     return DAG.getMaskedScatter(
9789         DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops,
9790         MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore());
9791   }
9792 
9793   return SDValue();
9794 }
9795 
9796 SDValue DAGCombiner::visitMSTORE(SDNode *N) {
9797   MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
9798   SDValue Mask = MST->getMask();
9799   SDValue Chain = MST->getChain();
9800   SDLoc DL(N);
9801 
9802   // Zap masked stores with a zero mask.
9803   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
9804     return Chain;
9805 
9806   // If this is a masked load with an all ones mask, we can use a unmasked load.
9807   // FIXME: Can we do this for indexed, compressing, or truncating stores?
9808   if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) &&
9809       MST->isUnindexed() && !MST->isCompressingStore() &&
9810       !MST->isTruncatingStore())
9811     return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(),
9812                         MST->getBasePtr(), MST->getMemOperand());
9813 
9814   // Try transforming N to an indexed store.
9815   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9816     return SDValue(N, 0);
9817 
9818   return SDValue();
9819 }
9820 
9821 SDValue DAGCombiner::visitMGATHER(SDNode *N) {
9822   MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
9823   SDValue Mask = MGT->getMask();
9824   SDValue Chain = MGT->getChain();
9825   SDValue Index = MGT->getIndex();
9826   SDValue Scale = MGT->getScale();
9827   SDValue PassThru = MGT->getPassThru();
9828   SDValue BasePtr = MGT->getBasePtr();
9829   SDLoc DL(N);
9830 
9831   // Zap gathers with a zero mask.
9832   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
9833     return CombineTo(N, PassThru, MGT->getChain());
9834 
9835   if (refineUniformBase(BasePtr, Index, DAG)) {
9836     SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
9837     return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other),
9838                                MGT->getMemoryVT(), DL, Ops,
9839                                MGT->getMemOperand(), MGT->getIndexType(),
9840                                MGT->getExtensionType());
9841   }
9842 
9843   if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) {
9844     SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
9845     return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other),
9846                                MGT->getMemoryVT(), DL, Ops,
9847                                MGT->getMemOperand(), MGT->getIndexType(),
9848                                MGT->getExtensionType());
9849   }
9850 
9851   return SDValue();
9852 }
9853 
9854 SDValue DAGCombiner::visitMLOAD(SDNode *N) {
9855   MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
9856   SDValue Mask = MLD->getMask();
9857   SDLoc DL(N);
9858 
9859   // Zap masked loads with a zero mask.
9860   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
9861     return CombineTo(N, MLD->getPassThru(), MLD->getChain());
9862 
9863   // If this is a masked load with an all ones mask, we can use a unmasked load.
9864   // FIXME: Can we do this for indexed, expanding, or extending loads?
9865   if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) &&
9866       MLD->isUnindexed() && !MLD->isExpandingLoad() &&
9867       MLD->getExtensionType() == ISD::NON_EXTLOAD) {
9868     SDValue NewLd = DAG.getLoad(N->getValueType(0), SDLoc(N), MLD->getChain(),
9869                                 MLD->getBasePtr(), MLD->getMemOperand());
9870     return CombineTo(N, NewLd, NewLd.getValue(1));
9871   }
9872 
9873   // Try transforming N to an indexed load.
9874   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9875     return SDValue(N, 0);
9876 
9877   return SDValue();
9878 }
9879 
9880 /// A vector select of 2 constant vectors can be simplified to math/logic to
9881 /// avoid a variable select instruction and possibly avoid constant loads.
9882 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
9883   SDValue Cond = N->getOperand(0);
9884   SDValue N1 = N->getOperand(1);
9885   SDValue N2 = N->getOperand(2);
9886   EVT VT = N->getValueType(0);
9887   if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
9888       !TLI.convertSelectOfConstantsToMath(VT) ||
9889       !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
9890       !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
9891     return SDValue();
9892 
9893   // Check if we can use the condition value to increment/decrement a single
9894   // constant value. This simplifies a select to an add and removes a constant
9895   // load/materialization from the general case.
9896   bool AllAddOne = true;
9897   bool AllSubOne = true;
9898   unsigned Elts = VT.getVectorNumElements();
9899   for (unsigned i = 0; i != Elts; ++i) {
9900     SDValue N1Elt = N1.getOperand(i);
9901     SDValue N2Elt = N2.getOperand(i);
9902     if (N1Elt.isUndef() || N2Elt.isUndef())
9903       continue;
9904     if (N1Elt.getValueType() != N2Elt.getValueType())
9905       continue;
9906 
9907     const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
9908     const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
9909     if (C1 != C2 + 1)
9910       AllAddOne = false;
9911     if (C1 != C2 - 1)
9912       AllSubOne = false;
9913   }
9914 
9915   // Further simplifications for the extra-special cases where the constants are
9916   // all 0 or all -1 should be implemented as folds of these patterns.
9917   SDLoc DL(N);
9918   if (AllAddOne || AllSubOne) {
9919     // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
9920     // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
9921     auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
9922     SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
9923     return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
9924   }
9925 
9926   // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
9927   APInt Pow2C;
9928   if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
9929       isNullOrNullSplat(N2)) {
9930     SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
9931     SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
9932     return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
9933   }
9934 
9935   if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
9936     return V;
9937 
9938   // The general case for select-of-constants:
9939   // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
9940   // ...but that only makes sense if a vselect is slower than 2 logic ops, so
9941   // leave that to a machine-specific pass.
9942   return SDValue();
9943 }
9944 
9945 SDValue DAGCombiner::visitVSELECT(SDNode *N) {
9946   SDValue N0 = N->getOperand(0);
9947   SDValue N1 = N->getOperand(1);
9948   SDValue N2 = N->getOperand(2);
9949   EVT VT = N->getValueType(0);
9950   SDLoc DL(N);
9951 
9952   if (SDValue V = DAG.simplifySelect(N0, N1, N2))
9953     return V;
9954 
9955   if (SDValue V = foldBoolSelectToLogic(N, DAG))
9956     return V;
9957 
9958   // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
9959   if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
9960     return DAG.getSelect(DL, VT, F, N2, N1);
9961 
9962   // Canonicalize integer abs.
9963   // vselect (setg[te] X,  0),  X, -X ->
9964   // vselect (setgt    X, -1),  X, -X ->
9965   // vselect (setl[te] X,  0), -X,  X ->
9966   // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9967   if (N0.getOpcode() == ISD::SETCC) {
9968     SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
9969     ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
9970     bool isAbs = false;
9971     bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
9972 
9973     if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9974          (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
9975         N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
9976       isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
9977     else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
9978              N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
9979       isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
9980 
9981     if (isAbs) {
9982       if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
9983         return DAG.getNode(ISD::ABS, DL, VT, LHS);
9984 
9985       SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS,
9986                                   DAG.getConstant(VT.getScalarSizeInBits() - 1,
9987                                                   DL, getShiftAmountTy(VT)));
9988       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
9989       AddToWorklist(Shift.getNode());
9990       AddToWorklist(Add.getNode());
9991       return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
9992     }
9993 
9994     // vselect x, y (fcmp lt x, y) -> fminnum x, y
9995     // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
9996     //
9997     // This is OK if we don't care about what happens if either operand is a
9998     // NaN.
9999     //
10000     if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) {
10001       if (SDValue FMinMax =
10002               combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG))
10003         return FMinMax;
10004     }
10005 
10006     // If this select has a condition (setcc) with narrower operands than the
10007     // select, try to widen the compare to match the select width.
10008     // TODO: This should be extended to handle any constant.
10009     // TODO: This could be extended to handle non-loading patterns, but that
10010     //       requires thorough testing to avoid regressions.
10011     if (isNullOrNullSplat(RHS)) {
10012       EVT NarrowVT = LHS.getValueType();
10013       EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
10014       EVT SetCCVT = getSetCCResultType(LHS.getValueType());
10015       unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
10016       unsigned WideWidth = WideVT.getScalarSizeInBits();
10017       bool IsSigned = isSignedIntSetCC(CC);
10018       auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
10019       if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
10020           SetCCWidth != 1 && SetCCWidth < WideWidth &&
10021           TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
10022           TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
10023         // Both compare operands can be widened for free. The LHS can use an
10024         // extended load, and the RHS is a constant:
10025         //   vselect (ext (setcc load(X), C)), N1, N2 -->
10026         //   vselect (setcc extload(X), C'), N1, N2
10027         auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10028         SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
10029         SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
10030         EVT WideSetCCVT = getSetCCResultType(WideVT);
10031         SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
10032         return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
10033       }
10034     }
10035 
10036     // Match VSELECTs into add with unsigned saturation.
10037     if (hasOperation(ISD::UADDSAT, VT)) {
10038       // Check if one of the arms of the VSELECT is vector with all bits set.
10039       // If it's on the left side invert the predicate to simplify logic below.
10040       SDValue Other;
10041       ISD::CondCode SatCC = CC;
10042       if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) {
10043         Other = N2;
10044         SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
10045       } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) {
10046         Other = N1;
10047       }
10048 
10049       if (Other && Other.getOpcode() == ISD::ADD) {
10050         SDValue CondLHS = LHS, CondRHS = RHS;
10051         SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
10052 
10053         // Canonicalize condition operands.
10054         if (SatCC == ISD::SETUGE) {
10055           std::swap(CondLHS, CondRHS);
10056           SatCC = ISD::SETULE;
10057         }
10058 
10059         // We can test against either of the addition operands.
10060         // x <= x+y ? x+y : ~0 --> uaddsat x, y
10061         // x+y >= x ? x+y : ~0 --> uaddsat x, y
10062         if (SatCC == ISD::SETULE && Other == CondRHS &&
10063             (OpLHS == CondLHS || OpRHS == CondLHS))
10064           return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
10065 
10066         if (OpRHS.getOpcode() == CondRHS.getOpcode() &&
10067             (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
10068              OpRHS.getOpcode() == ISD::SPLAT_VECTOR) &&
10069             CondLHS == OpLHS) {
10070           // If the RHS is a constant we have to reverse the const
10071           // canonicalization.
10072           // x >= ~C ? x+C : ~0 --> uaddsat x, C
10073           auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
10074             return Cond->getAPIntValue() == ~Op->getAPIntValue();
10075           };
10076           if (SatCC == ISD::SETULE &&
10077               ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT))
10078             return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
10079         }
10080       }
10081     }
10082 
10083     // Match VSELECTs into sub with unsigned saturation.
10084     if (hasOperation(ISD::USUBSAT, VT)) {
10085       // Check if one of the arms of the VSELECT is a zero vector. If it's on
10086       // the left side invert the predicate to simplify logic below.
10087       SDValue Other;
10088       ISD::CondCode SatCC = CC;
10089       if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) {
10090         Other = N2;
10091         SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
10092       } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) {
10093         Other = N1;
10094       }
10095 
10096       if (Other && Other.getNumOperands() == 2) {
10097         SDValue CondRHS = RHS;
10098         SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
10099 
10100         if (Other.getOpcode() == ISD::SUB &&
10101             LHS.getOpcode() == ISD::ZERO_EXTEND && LHS.getOperand(0) == OpLHS &&
10102             OpRHS.getOpcode() == ISD::TRUNCATE && OpRHS.getOperand(0) == RHS) {
10103           // Look for a general sub with unsigned saturation first.
10104           // zext(x) >= y ? x - trunc(y) : 0
10105           // --> usubsat(x,trunc(umin(y,SatLimit)))
10106           // zext(x) >  y ? x - trunc(y) : 0
10107           // --> usubsat(x,trunc(umin(y,SatLimit)))
10108           if (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT)
10109             return getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, DAG,
10110                                        DL);
10111         }
10112 
10113         if (OpLHS == LHS) {
10114           // Look for a general sub with unsigned saturation first.
10115           // x >= y ? x-y : 0 --> usubsat x, y
10116           // x >  y ? x-y : 0 --> usubsat x, y
10117           if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) &&
10118               Other.getOpcode() == ISD::SUB && OpRHS == CondRHS)
10119             return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
10120 
10121           if (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
10122               OpRHS.getOpcode() == ISD::SPLAT_VECTOR) {
10123             if (CondRHS.getOpcode() == ISD::BUILD_VECTOR ||
10124                 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) {
10125               // If the RHS is a constant we have to reverse the const
10126               // canonicalization.
10127               // x > C-1 ? x+-C : 0 --> usubsat x, C
10128               auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
10129                 return (!Op && !Cond) ||
10130                        (Op && Cond &&
10131                         Cond->getAPIntValue() == (-Op->getAPIntValue() - 1));
10132               };
10133               if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD &&
10134                   ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT,
10135                                             /*AllowUndefs*/ true)) {
10136                 OpRHS = DAG.getNode(ISD::SUB, DL, VT,
10137                                     DAG.getConstant(0, DL, VT), OpRHS);
10138                 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
10139               }
10140 
10141               // Another special case: If C was a sign bit, the sub has been
10142               // canonicalized into a xor.
10143               // FIXME: Would it be better to use computeKnownBits to determine
10144               //        whether it's safe to decanonicalize the xor?
10145               // x s< 0 ? x^C : 0 --> usubsat x, C
10146               APInt SplatValue;
10147               if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
10148                   ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) &&
10149                   ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) &&
10150                   SplatValue.isSignMask()) {
10151                 // Note that we have to rebuild the RHS constant here to
10152                 // ensure we don't rely on particular values of undef lanes.
10153                 OpRHS = DAG.getConstant(SplatValue, DL, VT);
10154                 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
10155               }
10156             }
10157           }
10158         }
10159       }
10160     }
10161   }
10162 
10163   if (SimplifySelectOps(N, N1, N2))
10164     return SDValue(N, 0);  // Don't revisit N.
10165 
10166   // Fold (vselect all_ones, N1, N2) -> N1
10167   if (ISD::isConstantSplatVectorAllOnes(N0.getNode()))
10168     return N1;
10169   // Fold (vselect all_zeros, N1, N2) -> N2
10170   if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
10171     return N2;
10172 
10173   // The ConvertSelectToConcatVector function is assuming both the above
10174   // checks for (vselect (build_vector all{ones,zeros) ...) have been made
10175   // and addressed.
10176   if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10177       N2.getOpcode() == ISD::CONCAT_VECTORS &&
10178       ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
10179     if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
10180       return CV;
10181   }
10182 
10183   if (SDValue V = foldVSelectOfConstants(N))
10184     return V;
10185 
10186   return SDValue();
10187 }
10188 
10189 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
10190   SDValue N0 = N->getOperand(0);
10191   SDValue N1 = N->getOperand(1);
10192   SDValue N2 = N->getOperand(2);
10193   SDValue N3 = N->getOperand(3);
10194   SDValue N4 = N->getOperand(4);
10195   ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
10196 
10197   // fold select_cc lhs, rhs, x, x, cc -> x
10198   if (N2 == N3)
10199     return N2;
10200 
10201   // Determine if the condition we're dealing with is constant
10202   if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
10203                                   CC, SDLoc(N), false)) {
10204     AddToWorklist(SCC.getNode());
10205 
10206     if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
10207       if (!SCCC->isNullValue())
10208         return N2;    // cond always true -> true val
10209       else
10210         return N3;    // cond always false -> false val
10211     } else if (SCC->isUndef()) {
10212       // When the condition is UNDEF, just return the first operand. This is
10213       // coherent the DAG creation, no setcc node is created in this case
10214       return N2;
10215     } else if (SCC.getOpcode() == ISD::SETCC) {
10216       // Fold to a simpler select_cc
10217       SDValue SelectOp = DAG.getNode(
10218           ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
10219           SCC.getOperand(1), N2, N3, SCC.getOperand(2));
10220       SelectOp->setFlags(SCC->getFlags());
10221       return SelectOp;
10222     }
10223   }
10224 
10225   // If we can fold this based on the true/false value, do so.
10226   if (SimplifySelectOps(N, N2, N3))
10227     return SDValue(N, 0);  // Don't revisit N.
10228 
10229   // fold select_cc into other things, such as min/max/abs
10230   return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
10231 }
10232 
10233 SDValue DAGCombiner::visitSETCC(SDNode *N) {
10234   // setcc is very commonly used as an argument to brcond. This pattern
10235   // also lend itself to numerous combines and, as a result, it is desired
10236   // we keep the argument to a brcond as a setcc as much as possible.
10237   bool PreferSetCC =
10238       N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
10239 
10240   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
10241   EVT VT = N->getValueType(0);
10242 
10243   //   SETCC(FREEZE(X), CONST, Cond)
10244   // =>
10245   //   FREEZE(SETCC(X, CONST, Cond))
10246   // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond)
10247   // isn't equivalent to true or false.
10248   // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to
10249   // FREEZE(SETCC(X, -128, SETULT)) because X can be poison.
10250   //
10251   // This transformation is beneficial because visitBRCOND can fold
10252   // BRCOND(FREEZE(X)) to BRCOND(X).
10253 
10254   // Conservatively optimize integer comparisons only.
10255   if (PreferSetCC) {
10256     // Do this only when SETCC is going to be used by BRCOND.
10257 
10258     SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
10259     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
10260     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10261     bool Updated = false;
10262 
10263     // Is 'X Cond C' always true or false?
10264     auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) {
10265       bool False = (Cond == ISD::SETULT && C->isNullValue()) ||
10266                    (Cond == ISD::SETLT  && C->isMinSignedValue()) ||
10267                    (Cond == ISD::SETUGT && C->isAllOnesValue()) ||
10268                    (Cond == ISD::SETGT  && C->isMaxSignedValue());
10269       bool True =  (Cond == ISD::SETULE && C->isAllOnesValue()) ||
10270                    (Cond == ISD::SETLE  && C->isMaxSignedValue()) ||
10271                    (Cond == ISD::SETUGE && C->isNullValue()) ||
10272                    (Cond == ISD::SETGE  && C->isMinSignedValue());
10273       return True || False;
10274     };
10275 
10276     if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) {
10277       if (!IsAlwaysTrueOrFalse(Cond, N1C)) {
10278         N0 = N0->getOperand(0);
10279         Updated = true;
10280       }
10281     }
10282     if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) {
10283       if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond),
10284                                N0C)) {
10285         N1 = N1->getOperand(0);
10286         Updated = true;
10287       }
10288     }
10289 
10290     if (Updated)
10291       return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond));
10292   }
10293 
10294   SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond,
10295                                    SDLoc(N), !PreferSetCC);
10296 
10297   if (!Combined)
10298     return SDValue();
10299 
10300   // If we prefer to have a setcc, and we don't, we'll try our best to
10301   // recreate one using rebuildSetCC.
10302   if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
10303     SDValue NewSetCC = rebuildSetCC(Combined);
10304 
10305     // We don't have anything interesting to combine to.
10306     if (NewSetCC.getNode() == N)
10307       return SDValue();
10308 
10309     if (NewSetCC)
10310       return NewSetCC;
10311   }
10312 
10313   return Combined;
10314 }
10315 
10316 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
10317   SDValue LHS = N->getOperand(0);
10318   SDValue RHS = N->getOperand(1);
10319   SDValue Carry = N->getOperand(2);
10320   SDValue Cond = N->getOperand(3);
10321 
10322   // If Carry is false, fold to a regular SETCC.
10323   if (isNullConstant(Carry))
10324     return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
10325 
10326   return SDValue();
10327 }
10328 
10329 /// Check if N satisfies:
10330 ///   N is used once.
10331 ///   N is a Load.
10332 ///   The load is compatible with ExtOpcode. It means
10333 ///     If load has explicit zero/sign extension, ExpOpcode must have the same
10334 ///     extension.
10335 ///     Otherwise returns true.
10336 static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) {
10337   if (!N.hasOneUse())
10338     return false;
10339 
10340   if (!isa<LoadSDNode>(N))
10341     return false;
10342 
10343   LoadSDNode *Load = cast<LoadSDNode>(N);
10344   ISD::LoadExtType LoadExt = Load->getExtensionType();
10345   if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD)
10346     return true;
10347 
10348   // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
10349   // extension.
10350   if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) ||
10351       (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND))
10352     return false;
10353 
10354   return true;
10355 }
10356 
10357 /// Fold
10358 ///   (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
10359 ///   (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
10360 ///   (aext (select c, load x, load y)) -> (select c, extload x, extload y)
10361 /// This function is called by the DAGCombiner when visiting sext/zext/aext
10362 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10363 static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI,
10364                                          SelectionDAG &DAG) {
10365   unsigned Opcode = N->getOpcode();
10366   SDValue N0 = N->getOperand(0);
10367   EVT VT = N->getValueType(0);
10368   SDLoc DL(N);
10369 
10370   assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
10371           Opcode == ISD::ANY_EXTEND) &&
10372          "Expected EXTEND dag node in input!");
10373 
10374   if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) ||
10375       !N0.hasOneUse())
10376     return SDValue();
10377 
10378   SDValue Op1 = N0->getOperand(1);
10379   SDValue Op2 = N0->getOperand(2);
10380   if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode))
10381     return SDValue();
10382 
10383   auto ExtLoadOpcode = ISD::EXTLOAD;
10384   if (Opcode == ISD::SIGN_EXTEND)
10385     ExtLoadOpcode = ISD::SEXTLOAD;
10386   else if (Opcode == ISD::ZERO_EXTEND)
10387     ExtLoadOpcode = ISD::ZEXTLOAD;
10388 
10389   LoadSDNode *Load1 = cast<LoadSDNode>(Op1);
10390   LoadSDNode *Load2 = cast<LoadSDNode>(Op2);
10391   if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) ||
10392       !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT()))
10393     return SDValue();
10394 
10395   SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1);
10396   SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2);
10397   return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2);
10398 }
10399 
10400 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
10401 /// a build_vector of constants.
10402 /// This function is called by the DAGCombiner when visiting sext/zext/aext
10403 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10404 /// Vector extends are not folded if operations are legal; this is to
10405 /// avoid introducing illegal build_vector dag nodes.
10406 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
10407                                          SelectionDAG &DAG, bool LegalTypes) {
10408   unsigned Opcode = N->getOpcode();
10409   SDValue N0 = N->getOperand(0);
10410   EVT VT = N->getValueType(0);
10411   SDLoc DL(N);
10412 
10413   assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
10414          Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
10415          Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
10416          && "Expected EXTEND dag node in input!");
10417 
10418   // fold (sext c1) -> c1
10419   // fold (zext c1) -> c1
10420   // fold (aext c1) -> c1
10421   if (isa<ConstantSDNode>(N0))
10422     return DAG.getNode(Opcode, DL, VT, N0);
10423 
10424   // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10425   // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
10426   // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10427   if (N0->getOpcode() == ISD::SELECT) {
10428     SDValue Op1 = N0->getOperand(1);
10429     SDValue Op2 = N0->getOperand(2);
10430     if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
10431         (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
10432       // For any_extend, choose sign extension of the constants to allow a
10433       // possible further transform to sign_extend_inreg.i.e.
10434       //
10435       // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
10436       // t2: i64 = any_extend t1
10437       // -->
10438       // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
10439       // -->
10440       // t4: i64 = sign_extend_inreg t3
10441       unsigned FoldOpc = Opcode;
10442       if (FoldOpc == ISD::ANY_EXTEND)
10443         FoldOpc = ISD::SIGN_EXTEND;
10444       return DAG.getSelect(DL, VT, N0->getOperand(0),
10445                            DAG.getNode(FoldOpc, DL, VT, Op1),
10446                            DAG.getNode(FoldOpc, DL, VT, Op2));
10447     }
10448   }
10449 
10450   // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
10451   // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
10452   // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
10453   EVT SVT = VT.getScalarType();
10454   if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
10455       ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
10456     return SDValue();
10457 
10458   // We can fold this node into a build_vector.
10459   unsigned VTBits = SVT.getSizeInBits();
10460   unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
10461   SmallVector<SDValue, 8> Elts;
10462   unsigned NumElts = VT.getVectorNumElements();
10463 
10464   // For zero-extensions, UNDEF elements still guarantee to have the upper
10465   // bits set to zero.
10466   bool IsZext =
10467       Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
10468 
10469   for (unsigned i = 0; i != NumElts; ++i) {
10470     SDValue Op = N0.getOperand(i);
10471     if (Op.isUndef()) {
10472       Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
10473       continue;
10474     }
10475 
10476     SDLoc DL(Op);
10477     // Get the constant value and if needed trunc it to the size of the type.
10478     // Nodes like build_vector might have constants wider than the scalar type.
10479     APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
10480     if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
10481       Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
10482     else
10483       Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
10484   }
10485 
10486   return DAG.getBuildVector(VT, DL, Elts);
10487 }
10488 
10489 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
10490 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
10491 // transformation. Returns true if extension are possible and the above
10492 // mentioned transformation is profitable.
10493 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
10494                                     unsigned ExtOpc,
10495                                     SmallVectorImpl<SDNode *> &ExtendNodes,
10496                                     const TargetLowering &TLI) {
10497   bool HasCopyToRegUses = false;
10498   bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
10499   for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
10500                             UE = N0.getNode()->use_end();
10501        UI != UE; ++UI) {
10502     SDNode *User = *UI;
10503     if (User == N)
10504       continue;
10505     if (UI.getUse().getResNo() != N0.getResNo())
10506       continue;
10507     // FIXME: Only extend SETCC N, N and SETCC N, c for now.
10508     if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
10509       ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
10510       if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
10511         // Sign bits will be lost after a zext.
10512         return false;
10513       bool Add = false;
10514       for (unsigned i = 0; i != 2; ++i) {
10515         SDValue UseOp = User->getOperand(i);
10516         if (UseOp == N0)
10517           continue;
10518         if (!isa<ConstantSDNode>(UseOp))
10519           return false;
10520         Add = true;
10521       }
10522       if (Add)
10523         ExtendNodes.push_back(User);
10524       continue;
10525     }
10526     // If truncates aren't free and there are users we can't
10527     // extend, it isn't worthwhile.
10528     if (!isTruncFree)
10529       return false;
10530     // Remember if this value is live-out.
10531     if (User->getOpcode() == ISD::CopyToReg)
10532       HasCopyToRegUses = true;
10533   }
10534 
10535   if (HasCopyToRegUses) {
10536     bool BothLiveOut = false;
10537     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
10538          UI != UE; ++UI) {
10539       SDUse &Use = UI.getUse();
10540       if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
10541         BothLiveOut = true;
10542         break;
10543       }
10544     }
10545     if (BothLiveOut)
10546       // Both unextended and extended values are live out. There had better be
10547       // a good reason for the transformation.
10548       return ExtendNodes.size();
10549   }
10550   return true;
10551 }
10552 
10553 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
10554                                   SDValue OrigLoad, SDValue ExtLoad,
10555                                   ISD::NodeType ExtType) {
10556   // Extend SetCC uses if necessary.
10557   SDLoc DL(ExtLoad);
10558   for (SDNode *SetCC : SetCCs) {
10559     SmallVector<SDValue, 4> Ops;
10560 
10561     for (unsigned j = 0; j != 2; ++j) {
10562       SDValue SOp = SetCC->getOperand(j);
10563       if (SOp == OrigLoad)
10564         Ops.push_back(ExtLoad);
10565       else
10566         Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
10567     }
10568 
10569     Ops.push_back(SetCC->getOperand(2));
10570     CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
10571   }
10572 }
10573 
10574 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
10575 SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
10576   SDValue N0 = N->getOperand(0);
10577   EVT DstVT = N->getValueType(0);
10578   EVT SrcVT = N0.getValueType();
10579 
10580   assert((N->getOpcode() == ISD::SIGN_EXTEND ||
10581           N->getOpcode() == ISD::ZERO_EXTEND) &&
10582          "Unexpected node type (not an extend)!");
10583 
10584   // fold (sext (load x)) to multiple smaller sextloads; same for zext.
10585   // For example, on a target with legal v4i32, but illegal v8i32, turn:
10586   //   (v8i32 (sext (v8i16 (load x))))
10587   // into:
10588   //   (v8i32 (concat_vectors (v4i32 (sextload x)),
10589   //                          (v4i32 (sextload (x + 16)))))
10590   // Where uses of the original load, i.e.:
10591   //   (v8i16 (load x))
10592   // are replaced with:
10593   //   (v8i16 (truncate
10594   //     (v8i32 (concat_vectors (v4i32 (sextload x)),
10595   //                            (v4i32 (sextload (x + 16)))))))
10596   //
10597   // This combine is only applicable to illegal, but splittable, vectors.
10598   // All legal types, and illegal non-vector types, are handled elsewhere.
10599   // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
10600   //
10601   if (N0->getOpcode() != ISD::LOAD)
10602     return SDValue();
10603 
10604   LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10605 
10606   if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
10607       !N0.hasOneUse() || !LN0->isSimple() ||
10608       !DstVT.isVector() || !DstVT.isPow2VectorType() ||
10609       !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
10610     return SDValue();
10611 
10612   SmallVector<SDNode *, 4> SetCCs;
10613   if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
10614     return SDValue();
10615 
10616   ISD::LoadExtType ExtType =
10617       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
10618 
10619   // Try to split the vector types to get down to legal types.
10620   EVT SplitSrcVT = SrcVT;
10621   EVT SplitDstVT = DstVT;
10622   while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
10623          SplitSrcVT.getVectorNumElements() > 1) {
10624     SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
10625     SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
10626   }
10627 
10628   if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
10629     return SDValue();
10630 
10631   assert(!DstVT.isScalableVector() && "Unexpected scalable vector type");
10632 
10633   SDLoc DL(N);
10634   const unsigned NumSplits =
10635       DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
10636   const unsigned Stride = SplitSrcVT.getStoreSize();
10637   SmallVector<SDValue, 4> Loads;
10638   SmallVector<SDValue, 4> Chains;
10639 
10640   SDValue BasePtr = LN0->getBasePtr();
10641   for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
10642     const unsigned Offset = Idx * Stride;
10643     const Align Align = commonAlignment(LN0->getAlign(), Offset);
10644 
10645     SDValue SplitLoad = DAG.getExtLoad(
10646         ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
10647         LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
10648         LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
10649 
10650     BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL);
10651 
10652     Loads.push_back(SplitLoad.getValue(0));
10653     Chains.push_back(SplitLoad.getValue(1));
10654   }
10655 
10656   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
10657   SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
10658 
10659   // Simplify TF.
10660   AddToWorklist(NewChain.getNode());
10661 
10662   CombineTo(N, NewValue);
10663 
10664   // Replace uses of the original load (before extension)
10665   // with a truncate of the concatenated sextloaded vectors.
10666   SDValue Trunc =
10667       DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
10668   ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
10669   CombineTo(N0.getNode(), Trunc, NewChain);
10670   return SDValue(N, 0); // Return N so it doesn't get rechecked!
10671 }
10672 
10673 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
10674 //      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
10675 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
10676   assert(N->getOpcode() == ISD::ZERO_EXTEND);
10677   EVT VT = N->getValueType(0);
10678   EVT OrigVT = N->getOperand(0).getValueType();
10679   if (TLI.isZExtFree(OrigVT, VT))
10680     return SDValue();
10681 
10682   // and/or/xor
10683   SDValue N0 = N->getOperand(0);
10684   if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
10685         N0.getOpcode() == ISD::XOR) ||
10686       N0.getOperand(1).getOpcode() != ISD::Constant ||
10687       (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
10688     return SDValue();
10689 
10690   // shl/shr
10691   SDValue N1 = N0->getOperand(0);
10692   if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
10693       N1.getOperand(1).getOpcode() != ISD::Constant ||
10694       (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
10695     return SDValue();
10696 
10697   // load
10698   if (!isa<LoadSDNode>(N1.getOperand(0)))
10699     return SDValue();
10700   LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
10701   EVT MemVT = Load->getMemoryVT();
10702   if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
10703       Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
10704     return SDValue();
10705 
10706 
10707   // If the shift op is SHL, the logic op must be AND, otherwise the result
10708   // will be wrong.
10709   if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
10710     return SDValue();
10711 
10712   if (!N0.hasOneUse() || !N1.hasOneUse())
10713     return SDValue();
10714 
10715   SmallVector<SDNode*, 4> SetCCs;
10716   if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
10717                                ISD::ZERO_EXTEND, SetCCs, TLI))
10718     return SDValue();
10719 
10720   // Actually do the transformation.
10721   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
10722                                    Load->getChain(), Load->getBasePtr(),
10723                                    Load->getMemoryVT(), Load->getMemOperand());
10724 
10725   SDLoc DL1(N1);
10726   SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
10727                               N1.getOperand(1));
10728 
10729   APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
10730   SDLoc DL0(N0);
10731   SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
10732                             DAG.getConstant(Mask, DL0, VT));
10733 
10734   ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
10735   CombineTo(N, And);
10736   if (SDValue(Load, 0).hasOneUse()) {
10737     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
10738   } else {
10739     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
10740                                 Load->getValueType(0), ExtLoad);
10741     CombineTo(Load, Trunc, ExtLoad.getValue(1));
10742   }
10743 
10744   // N0 is dead at this point.
10745   recursivelyDeleteUnusedNodes(N0.getNode());
10746 
10747   return SDValue(N,0); // Return N so it doesn't get rechecked!
10748 }
10749 
10750 /// If we're narrowing or widening the result of a vector select and the final
10751 /// size is the same size as a setcc (compare) feeding the select, then try to
10752 /// apply the cast operation to the select's operands because matching vector
10753 /// sizes for a select condition and other operands should be more efficient.
10754 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
10755   unsigned CastOpcode = Cast->getOpcode();
10756   assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
10757           CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
10758           CastOpcode == ISD::FP_ROUND) &&
10759          "Unexpected opcode for vector select narrowing/widening");
10760 
10761   // We only do this transform before legal ops because the pattern may be
10762   // obfuscated by target-specific operations after legalization. Do not create
10763   // an illegal select op, however, because that may be difficult to lower.
10764   EVT VT = Cast->getValueType(0);
10765   if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
10766     return SDValue();
10767 
10768   SDValue VSel = Cast->getOperand(0);
10769   if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
10770       VSel.getOperand(0).getOpcode() != ISD::SETCC)
10771     return SDValue();
10772 
10773   // Does the setcc have the same vector size as the casted select?
10774   SDValue SetCC = VSel.getOperand(0);
10775   EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
10776   if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
10777     return SDValue();
10778 
10779   // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
10780   SDValue A = VSel.getOperand(1);
10781   SDValue B = VSel.getOperand(2);
10782   SDValue CastA, CastB;
10783   SDLoc DL(Cast);
10784   if (CastOpcode == ISD::FP_ROUND) {
10785     // FP_ROUND (fptrunc) has an extra flag operand to pass along.
10786     CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
10787     CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
10788   } else {
10789     CastA = DAG.getNode(CastOpcode, DL, VT, A);
10790     CastB = DAG.getNode(CastOpcode, DL, VT, B);
10791   }
10792   return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
10793 }
10794 
10795 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10796 // fold ([s|z]ext (     extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10797 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
10798                                      const TargetLowering &TLI, EVT VT,
10799                                      bool LegalOperations, SDNode *N,
10800                                      SDValue N0, ISD::LoadExtType ExtLoadType) {
10801   SDNode *N0Node = N0.getNode();
10802   bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
10803                                                    : ISD::isZEXTLoad(N0Node);
10804   if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
10805       !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
10806     return SDValue();
10807 
10808   LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10809   EVT MemVT = LN0->getMemoryVT();
10810   if ((LegalOperations || !LN0->isSimple() ||
10811        VT.isVector()) &&
10812       !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
10813     return SDValue();
10814 
10815   SDValue ExtLoad =
10816       DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
10817                      LN0->getBasePtr(), MemVT, LN0->getMemOperand());
10818   Combiner.CombineTo(N, ExtLoad);
10819   DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
10820   if (LN0->use_empty())
10821     Combiner.recursivelyDeleteUnusedNodes(LN0);
10822   return SDValue(N, 0); // Return N so it doesn't get rechecked!
10823 }
10824 
10825 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10826 // Only generate vector extloads when 1) they're legal, and 2) they are
10827 // deemed desirable by the target.
10828 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
10829                                   const TargetLowering &TLI, EVT VT,
10830                                   bool LegalOperations, SDNode *N, SDValue N0,
10831                                   ISD::LoadExtType ExtLoadType,
10832                                   ISD::NodeType ExtOpc) {
10833   if (!ISD::isNON_EXTLoad(N0.getNode()) ||
10834       !ISD::isUNINDEXEDLoad(N0.getNode()) ||
10835       ((LegalOperations || VT.isVector() ||
10836         !cast<LoadSDNode>(N0)->isSimple()) &&
10837        !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
10838     return {};
10839 
10840   bool DoXform = true;
10841   SmallVector<SDNode *, 4> SetCCs;
10842   if (!N0.hasOneUse())
10843     DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
10844   if (VT.isVector())
10845     DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
10846   if (!DoXform)
10847     return {};
10848 
10849   LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10850   SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
10851                                    LN0->getBasePtr(), N0.getValueType(),
10852                                    LN0->getMemOperand());
10853   Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
10854   // If the load value is used only by N, replace it via CombineTo N.
10855   bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
10856   Combiner.CombineTo(N, ExtLoad);
10857   if (NoReplaceTrunc) {
10858     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
10859     Combiner.recursivelyDeleteUnusedNodes(LN0);
10860   } else {
10861     SDValue Trunc =
10862         DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
10863     Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
10864   }
10865   return SDValue(N, 0); // Return N so it doesn't get rechecked!
10866 }
10867 
10868 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG,
10869                                         const TargetLowering &TLI, EVT VT,
10870                                         SDNode *N, SDValue N0,
10871                                         ISD::LoadExtType ExtLoadType,
10872                                         ISD::NodeType ExtOpc) {
10873   if (!N0.hasOneUse())
10874     return SDValue();
10875 
10876   MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0);
10877   if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
10878     return SDValue();
10879 
10880   if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0)))
10881     return SDValue();
10882 
10883   if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
10884     return SDValue();
10885 
10886   SDLoc dl(Ld);
10887   SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
10888   SDValue NewLoad = DAG.getMaskedLoad(
10889       VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(),
10890       PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(),
10891       ExtLoadType, Ld->isExpandingLoad());
10892   DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
10893   return NewLoad;
10894 }
10895 
10896 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
10897                                        bool LegalOperations) {
10898   assert((N->getOpcode() == ISD::SIGN_EXTEND ||
10899           N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
10900 
10901   SDValue SetCC = N->getOperand(0);
10902   if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
10903       !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
10904     return SDValue();
10905 
10906   SDValue X = SetCC.getOperand(0);
10907   SDValue Ones = SetCC.getOperand(1);
10908   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
10909   EVT VT = N->getValueType(0);
10910   EVT XVT = X.getValueType();
10911   // setge X, C is canonicalized to setgt, so we do not need to match that
10912   // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
10913   // not require the 'not' op.
10914   if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
10915     // Invert and smear/shift the sign bit:
10916     // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
10917     // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
10918     SDLoc DL(N);
10919     unsigned ShCt = VT.getSizeInBits() - 1;
10920     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10921     if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
10922       SDValue NotX = DAG.getNOT(DL, X, VT);
10923       SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT);
10924       auto ShiftOpcode =
10925         N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
10926       return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
10927     }
10928   }
10929   return SDValue();
10930 }
10931 
10932 SDValue DAGCombiner::foldSextSetcc(SDNode *N) {
10933   SDValue N0 = N->getOperand(0);
10934   if (N0.getOpcode() != ISD::SETCC)
10935     return SDValue();
10936 
10937   SDValue N00 = N0.getOperand(0);
10938   SDValue N01 = N0.getOperand(1);
10939   ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
10940   EVT VT = N->getValueType(0);
10941   EVT N00VT = N00.getValueType();
10942   SDLoc DL(N);
10943 
10944   // On some architectures (such as SSE/NEON/etc) the SETCC result type is
10945   // the same size as the compared operands. Try to optimize sext(setcc())
10946   // if this is the case.
10947   if (VT.isVector() && !LegalOperations &&
10948       TLI.getBooleanContents(N00VT) ==
10949           TargetLowering::ZeroOrNegativeOneBooleanContent) {
10950     EVT SVT = getSetCCResultType(N00VT);
10951 
10952     // If we already have the desired type, don't change it.
10953     if (SVT != N0.getValueType()) {
10954       // We know that the # elements of the results is the same as the
10955       // # elements of the compare (and the # elements of the compare result
10956       // for that matter).  Check to see that they are the same size.  If so,
10957       // we know that the element size of the sext'd result matches the
10958       // element size of the compare operands.
10959       if (VT.getSizeInBits() == SVT.getSizeInBits())
10960         return DAG.getSetCC(DL, VT, N00, N01, CC);
10961 
10962       // If the desired elements are smaller or larger than the source
10963       // elements, we can use a matching integer vector type and then
10964       // truncate/sign extend.
10965       EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
10966       if (SVT == MatchingVecType) {
10967         SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
10968         return DAG.getSExtOrTrunc(VsetCC, DL, VT);
10969       }
10970     }
10971 
10972     // Try to eliminate the sext of a setcc by zexting the compare operands.
10973     if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) &&
10974         !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) {
10975       bool IsSignedCmp = ISD::isSignedIntSetCC(CC);
10976       unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
10977       unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10978 
10979       // We have an unsupported narrow vector compare op that would be legal
10980       // if extended to the destination type. See if the compare operands
10981       // can be freely extended to the destination type.
10982       auto IsFreeToExtend = [&](SDValue V) {
10983         if (isConstantOrConstantVector(V, /*NoOpaques*/ true))
10984           return true;
10985         // Match a simple, non-extended load that can be converted to a
10986         // legal {z/s}ext-load.
10987         // TODO: Allow widening of an existing {z/s}ext-load?
10988         if (!(ISD::isNON_EXTLoad(V.getNode()) &&
10989               ISD::isUNINDEXEDLoad(V.getNode()) &&
10990               cast<LoadSDNode>(V)->isSimple() &&
10991               TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType())))
10992           return false;
10993 
10994         // Non-chain users of this value must either be the setcc in this
10995         // sequence or extends that can be folded into the new {z/s}ext-load.
10996         for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end();
10997              UI != UE; ++UI) {
10998           // Skip uses of the chain and the setcc.
10999           SDNode *User = *UI;
11000           if (UI.getUse().getResNo() != 0 || User == N0.getNode())
11001             continue;
11002           // Extra users must have exactly the same cast we are about to create.
11003           // TODO: This restriction could be eased if ExtendUsesToFormExtLoad()
11004           //       is enhanced similarly.
11005           if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT)
11006             return false;
11007         }
11008         return true;
11009       };
11010 
11011       if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) {
11012         SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00);
11013         SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01);
11014         return DAG.getSetCC(DL, VT, Ext0, Ext1, CC);
11015       }
11016     }
11017   }
11018 
11019   // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
11020   // Here, T can be 1 or -1, depending on the type of the setcc and
11021   // getBooleanContents().
11022   unsigned SetCCWidth = N0.getScalarValueSizeInBits();
11023 
11024   // To determine the "true" side of the select, we need to know the high bit
11025   // of the value returned by the setcc if it evaluates to true.
11026   // If the type of the setcc is i1, then the true case of the select is just
11027   // sext(i1 1), that is, -1.
11028   // If the type of the setcc is larger (say, i8) then the value of the high
11029   // bit depends on getBooleanContents(), so ask TLI for a real "true" value
11030   // of the appropriate width.
11031   SDValue ExtTrueVal = (SetCCWidth == 1)
11032                            ? DAG.getAllOnesConstant(DL, VT)
11033                            : DAG.getBoolConstant(true, DL, VT, N00VT);
11034   SDValue Zero = DAG.getConstant(0, DL, VT);
11035   if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
11036     return SCC;
11037 
11038   if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
11039     EVT SetCCVT = getSetCCResultType(N00VT);
11040     // Don't do this transform for i1 because there's a select transform
11041     // that would reverse it.
11042     // TODO: We should not do this transform at all without a target hook
11043     // because a sext is likely cheaper than a select?
11044     if (SetCCVT.getScalarSizeInBits() != 1 &&
11045         (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
11046       SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
11047       return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
11048     }
11049   }
11050 
11051   return SDValue();
11052 }
11053 
11054 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
11055   SDValue N0 = N->getOperand(0);
11056   EVT VT = N->getValueType(0);
11057   SDLoc DL(N);
11058 
11059   if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
11060     return Res;
11061 
11062   // fold (sext (sext x)) -> (sext x)
11063   // fold (sext (aext x)) -> (sext x)
11064   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
11065     return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
11066 
11067   if (N0.getOpcode() == ISD::TRUNCATE) {
11068     // fold (sext (truncate (load x))) -> (sext (smaller load x))
11069     // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
11070     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
11071       SDNode *oye = N0.getOperand(0).getNode();
11072       if (NarrowLoad.getNode() != N0.getNode()) {
11073         CombineTo(N0.getNode(), NarrowLoad);
11074         // CombineTo deleted the truncate, if needed, but not what's under it.
11075         AddToWorklist(oye);
11076       }
11077       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
11078     }
11079 
11080     // See if the value being truncated is already sign extended.  If so, just
11081     // eliminate the trunc/sext pair.
11082     SDValue Op = N0.getOperand(0);
11083     unsigned OpBits   = Op.getScalarValueSizeInBits();
11084     unsigned MidBits  = N0.getScalarValueSizeInBits();
11085     unsigned DestBits = VT.getScalarSizeInBits();
11086     unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
11087 
11088     if (OpBits == DestBits) {
11089       // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
11090       // bits, it is already ready.
11091       if (NumSignBits > DestBits-MidBits)
11092         return Op;
11093     } else if (OpBits < DestBits) {
11094       // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
11095       // bits, just sext from i32.
11096       if (NumSignBits > OpBits-MidBits)
11097         return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
11098     } else {
11099       // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
11100       // bits, just truncate to i32.
11101       if (NumSignBits > OpBits-MidBits)
11102         return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
11103     }
11104 
11105     // fold (sext (truncate x)) -> (sextinreg x).
11106     if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
11107                                                  N0.getValueType())) {
11108       if (OpBits < DestBits)
11109         Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
11110       else if (OpBits > DestBits)
11111         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
11112       return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
11113                          DAG.getValueType(N0.getValueType()));
11114     }
11115   }
11116 
11117   // Try to simplify (sext (load x)).
11118   if (SDValue foldedExt =
11119           tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
11120                              ISD::SEXTLOAD, ISD::SIGN_EXTEND))
11121     return foldedExt;
11122 
11123   if (SDValue foldedExt =
11124       tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD,
11125                                ISD::SIGN_EXTEND))
11126     return foldedExt;
11127 
11128   // fold (sext (load x)) to multiple smaller sextloads.
11129   // Only on illegal but splittable vectors.
11130   if (SDValue ExtLoad = CombineExtLoad(N))
11131     return ExtLoad;
11132 
11133   // Try to simplify (sext (sextload x)).
11134   if (SDValue foldedExt = tryToFoldExtOfExtload(
11135           DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
11136     return foldedExt;
11137 
11138   // fold (sext (and/or/xor (load x), cst)) ->
11139   //      (and/or/xor (sextload x), (sext cst))
11140   if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
11141        N0.getOpcode() == ISD::XOR) &&
11142       isa<LoadSDNode>(N0.getOperand(0)) &&
11143       N0.getOperand(1).getOpcode() == ISD::Constant &&
11144       (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
11145     LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
11146     EVT MemVT = LN00->getMemoryVT();
11147     if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
11148       LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
11149       SmallVector<SDNode*, 4> SetCCs;
11150       bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
11151                                              ISD::SIGN_EXTEND, SetCCs, TLI);
11152       if (DoXform) {
11153         SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
11154                                          LN00->getChain(), LN00->getBasePtr(),
11155                                          LN00->getMemoryVT(),
11156                                          LN00->getMemOperand());
11157         APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits());
11158         SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
11159                                   ExtLoad, DAG.getConstant(Mask, DL, VT));
11160         ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
11161         bool NoReplaceTruncAnd = !N0.hasOneUse();
11162         bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
11163         CombineTo(N, And);
11164         // If N0 has multiple uses, change other uses as well.
11165         if (NoReplaceTruncAnd) {
11166           SDValue TruncAnd =
11167               DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
11168           CombineTo(N0.getNode(), TruncAnd);
11169         }
11170         if (NoReplaceTrunc) {
11171           DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
11172         } else {
11173           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
11174                                       LN00->getValueType(0), ExtLoad);
11175           CombineTo(LN00, Trunc, ExtLoad.getValue(1));
11176         }
11177         return SDValue(N,0); // Return N so it doesn't get rechecked!
11178       }
11179     }
11180   }
11181 
11182   if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
11183     return V;
11184 
11185   if (SDValue V = foldSextSetcc(N))
11186     return V;
11187 
11188   // fold (sext x) -> (zext x) if the sign bit is known zero.
11189   if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
11190       DAG.SignBitIsZero(N0))
11191     return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
11192 
11193   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
11194     return NewVSel;
11195 
11196   // Eliminate this sign extend by doing a negation in the destination type:
11197   // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
11198   if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
11199       isNullOrNullSplat(N0.getOperand(0)) &&
11200       N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
11201       TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
11202     SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
11203     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext);
11204   }
11205   // Eliminate this sign extend by doing a decrement in the destination type:
11206   // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
11207   if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
11208       isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
11209       N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
11210       TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
11211     SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
11212     return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
11213   }
11214 
11215   // fold sext (not i1 X) -> add (zext i1 X), -1
11216   // TODO: This could be extended to handle bool vectors.
11217   if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() &&
11218       (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) &&
11219                             TLI.isOperationLegal(ISD::ADD, VT)))) {
11220     // If we can eliminate the 'not', the sext form should be better
11221     if (SDValue NewXor = visitXOR(N0.getNode())) {
11222       // Returning N0 is a form of in-visit replacement that may have
11223       // invalidated N0.
11224       if (NewXor.getNode() == N0.getNode()) {
11225         // Return SDValue here as the xor should have already been replaced in
11226         // this sext.
11227         return SDValue();
11228       } else {
11229         // Return a new sext with the new xor.
11230         return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor);
11231       }
11232     }
11233 
11234     SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
11235     return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
11236   }
11237 
11238   if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
11239     return Res;
11240 
11241   return SDValue();
11242 }
11243 
11244 // isTruncateOf - If N is a truncate of some other value, return true, record
11245 // the value being truncated in Op and which of Op's bits are zero/one in Known.
11246 // This function computes KnownBits to avoid a duplicated call to
11247 // computeKnownBits in the caller.
11248 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
11249                          KnownBits &Known) {
11250   if (N->getOpcode() == ISD::TRUNCATE) {
11251     Op = N->getOperand(0);
11252     Known = DAG.computeKnownBits(Op);
11253     return true;
11254   }
11255 
11256   if (N.getOpcode() != ISD::SETCC ||
11257       N.getValueType().getScalarType() != MVT::i1 ||
11258       cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
11259     return false;
11260 
11261   SDValue Op0 = N->getOperand(0);
11262   SDValue Op1 = N->getOperand(1);
11263   assert(Op0.getValueType() == Op1.getValueType());
11264 
11265   if (isNullOrNullSplat(Op0))
11266     Op = Op1;
11267   else if (isNullOrNullSplat(Op1))
11268     Op = Op0;
11269   else
11270     return false;
11271 
11272   Known = DAG.computeKnownBits(Op);
11273 
11274   return (Known.Zero | 1).isAllOnesValue();
11275 }
11276 
11277 /// Given an extending node with a pop-count operand, if the target does not
11278 /// support a pop-count in the narrow source type but does support it in the
11279 /// destination type, widen the pop-count to the destination type.
11280 static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) {
11281   assert((Extend->getOpcode() == ISD::ZERO_EXTEND ||
11282           Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op");
11283 
11284   SDValue CtPop = Extend->getOperand(0);
11285   if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse())
11286     return SDValue();
11287 
11288   EVT VT = Extend->getValueType(0);
11289   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11290   if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) ||
11291       !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT))
11292     return SDValue();
11293 
11294   // zext (ctpop X) --> ctpop (zext X)
11295   SDLoc DL(Extend);
11296   SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT);
11297   return DAG.getNode(ISD::CTPOP, DL, VT, NewZext);
11298 }
11299 
11300 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
11301   SDValue N0 = N->getOperand(0);
11302   EVT VT = N->getValueType(0);
11303 
11304   if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
11305     return Res;
11306 
11307   // fold (zext (zext x)) -> (zext x)
11308   // fold (zext (aext x)) -> (zext x)
11309   if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
11310     return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
11311                        N0.getOperand(0));
11312 
11313   // fold (zext (truncate x)) -> (zext x) or
11314   //      (zext (truncate x)) -> (truncate x)
11315   // This is valid when the truncated bits of x are already zero.
11316   SDValue Op;
11317   KnownBits Known;
11318   if (isTruncateOf(DAG, N0, Op, Known)) {
11319     APInt TruncatedBits =
11320       (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
11321       APInt(Op.getScalarValueSizeInBits(), 0) :
11322       APInt::getBitsSet(Op.getScalarValueSizeInBits(),
11323                         N0.getScalarValueSizeInBits(),
11324                         std::min(Op.getScalarValueSizeInBits(),
11325                                  VT.getScalarSizeInBits()));
11326     if (TruncatedBits.isSubsetOf(Known.Zero))
11327       return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
11328   }
11329 
11330   // fold (zext (truncate x)) -> (and x, mask)
11331   if (N0.getOpcode() == ISD::TRUNCATE) {
11332     // fold (zext (truncate (load x))) -> (zext (smaller load x))
11333     // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
11334     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
11335       SDNode *oye = N0.getOperand(0).getNode();
11336       if (NarrowLoad.getNode() != N0.getNode()) {
11337         CombineTo(N0.getNode(), NarrowLoad);
11338         // CombineTo deleted the truncate, if needed, but not what's under it.
11339         AddToWorklist(oye);
11340       }
11341       return SDValue(N, 0); // Return N so it doesn't get rechecked!
11342     }
11343 
11344     EVT SrcVT = N0.getOperand(0).getValueType();
11345     EVT MinVT = N0.getValueType();
11346 
11347     // Try to mask before the extension to avoid having to generate a larger mask,
11348     // possibly over several sub-vectors.
11349     if (SrcVT.bitsLT(VT) && VT.isVector()) {
11350       if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
11351                                TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
11352         SDValue Op = N0.getOperand(0);
11353         Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
11354         AddToWorklist(Op.getNode());
11355         SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
11356         // Transfer the debug info; the new node is equivalent to N0.
11357         DAG.transferDbgValues(N0, ZExtOrTrunc);
11358         return ZExtOrTrunc;
11359       }
11360     }
11361 
11362     if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
11363       SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
11364       AddToWorklist(Op.getNode());
11365       SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
11366       // We may safely transfer the debug info describing the truncate node over
11367       // to the equivalent and operation.
11368       DAG.transferDbgValues(N0, And);
11369       return And;
11370     }
11371   }
11372 
11373   // Fold (zext (and (trunc x), cst)) -> (and x, cst),
11374   // if either of the casts is not free.
11375   if (N0.getOpcode() == ISD::AND &&
11376       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
11377       N0.getOperand(1).getOpcode() == ISD::Constant &&
11378       (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
11379                            N0.getValueType()) ||
11380        !TLI.isZExtFree(N0.getValueType(), VT))) {
11381     SDValue X = N0.getOperand(0).getOperand(0);
11382     X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
11383     APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
11384     SDLoc DL(N);
11385     return DAG.getNode(ISD::AND, DL, VT,
11386                        X, DAG.getConstant(Mask, DL, VT));
11387   }
11388 
11389   // Try to simplify (zext (load x)).
11390   if (SDValue foldedExt =
11391           tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
11392                              ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
11393     return foldedExt;
11394 
11395   if (SDValue foldedExt =
11396       tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD,
11397                                ISD::ZERO_EXTEND))
11398     return foldedExt;
11399 
11400   // fold (zext (load x)) to multiple smaller zextloads.
11401   // Only on illegal but splittable vectors.
11402   if (SDValue ExtLoad = CombineExtLoad(N))
11403     return ExtLoad;
11404 
11405   // fold (zext (and/or/xor (load x), cst)) ->
11406   //      (and/or/xor (zextload x), (zext cst))
11407   // Unless (and (load x) cst) will match as a zextload already and has
11408   // additional users.
11409   if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
11410        N0.getOpcode() == ISD::XOR) &&
11411       isa<LoadSDNode>(N0.getOperand(0)) &&
11412       N0.getOperand(1).getOpcode() == ISD::Constant &&
11413       (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
11414     LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
11415     EVT MemVT = LN00->getMemoryVT();
11416     if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
11417         LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
11418       bool DoXform = true;
11419       SmallVector<SDNode*, 4> SetCCs;
11420       if (!N0.hasOneUse()) {
11421         if (N0.getOpcode() == ISD::AND) {
11422           auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
11423           EVT LoadResultTy = AndC->getValueType(0);
11424           EVT ExtVT;
11425           if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
11426             DoXform = false;
11427         }
11428       }
11429       if (DoXform)
11430         DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
11431                                           ISD::ZERO_EXTEND, SetCCs, TLI);
11432       if (DoXform) {
11433         SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
11434                                          LN00->getChain(), LN00->getBasePtr(),
11435                                          LN00->getMemoryVT(),
11436                                          LN00->getMemOperand());
11437         APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
11438         SDLoc DL(N);
11439         SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
11440                                   ExtLoad, DAG.getConstant(Mask, DL, VT));
11441         ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
11442         bool NoReplaceTruncAnd = !N0.hasOneUse();
11443         bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
11444         CombineTo(N, And);
11445         // If N0 has multiple uses, change other uses as well.
11446         if (NoReplaceTruncAnd) {
11447           SDValue TruncAnd =
11448               DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
11449           CombineTo(N0.getNode(), TruncAnd);
11450         }
11451         if (NoReplaceTrunc) {
11452           DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
11453         } else {
11454           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
11455                                       LN00->getValueType(0), ExtLoad);
11456           CombineTo(LN00, Trunc, ExtLoad.getValue(1));
11457         }
11458         return SDValue(N,0); // Return N so it doesn't get rechecked!
11459       }
11460     }
11461   }
11462 
11463   // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
11464   //      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
11465   if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
11466     return ZExtLoad;
11467 
11468   // Try to simplify (zext (zextload x)).
11469   if (SDValue foldedExt = tryToFoldExtOfExtload(
11470           DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
11471     return foldedExt;
11472 
11473   if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
11474     return V;
11475 
11476   if (N0.getOpcode() == ISD::SETCC) {
11477     // Only do this before legalize for now.
11478     if (!LegalOperations && VT.isVector() &&
11479         N0.getValueType().getVectorElementType() == MVT::i1) {
11480       EVT N00VT = N0.getOperand(0).getValueType();
11481       if (getSetCCResultType(N00VT) == N0.getValueType())
11482         return SDValue();
11483 
11484       // We know that the # elements of the results is the same as the #
11485       // elements of the compare (and the # elements of the compare result for
11486       // that matter). Check to see that they are the same size. If so, we know
11487       // that the element size of the sext'd result matches the element size of
11488       // the compare operands.
11489       SDLoc DL(N);
11490       if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
11491         // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
11492         SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
11493                                      N0.getOperand(1), N0.getOperand(2));
11494         return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType());
11495       }
11496 
11497       // If the desired elements are smaller or larger than the source
11498       // elements we can use a matching integer vector type and then
11499       // truncate/any extend followed by zext_in_reg.
11500       EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
11501       SDValue VsetCC =
11502           DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
11503                       N0.getOperand(1), N0.getOperand(2));
11504       return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL,
11505                                     N0.getValueType());
11506     }
11507 
11508     // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
11509     SDLoc DL(N);
11510     EVT N0VT = N0.getValueType();
11511     EVT N00VT = N0.getOperand(0).getValueType();
11512     if (SDValue SCC = SimplifySelectCC(
11513             DL, N0.getOperand(0), N0.getOperand(1),
11514             DAG.getBoolConstant(true, DL, N0VT, N00VT),
11515             DAG.getBoolConstant(false, DL, N0VT, N00VT),
11516             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
11517       return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC);
11518   }
11519 
11520   // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
11521   if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
11522       isa<ConstantSDNode>(N0.getOperand(1)) &&
11523       N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
11524       N0.hasOneUse()) {
11525     SDValue ShAmt = N0.getOperand(1);
11526     if (N0.getOpcode() == ISD::SHL) {
11527       SDValue InnerZExt = N0.getOperand(0);
11528       // If the original shl may be shifting out bits, do not perform this
11529       // transformation.
11530       unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
11531         InnerZExt.getOperand(0).getValueSizeInBits();
11532       if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
11533         return SDValue();
11534     }
11535 
11536     SDLoc DL(N);
11537 
11538     // Ensure that the shift amount is wide enough for the shifted value.
11539     if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits())
11540       ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
11541 
11542     return DAG.getNode(N0.getOpcode(), DL, VT,
11543                        DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
11544                        ShAmt);
11545   }
11546 
11547   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
11548     return NewVSel;
11549 
11550   if (SDValue NewCtPop = widenCtPop(N, DAG))
11551     return NewCtPop;
11552 
11553   if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
11554     return Res;
11555 
11556   return SDValue();
11557 }
11558 
11559 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
11560   SDValue N0 = N->getOperand(0);
11561   EVT VT = N->getValueType(0);
11562 
11563   if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
11564     return Res;
11565 
11566   // fold (aext (aext x)) -> (aext x)
11567   // fold (aext (zext x)) -> (zext x)
11568   // fold (aext (sext x)) -> (sext x)
11569   if (N0.getOpcode() == ISD::ANY_EXTEND  ||
11570       N0.getOpcode() == ISD::ZERO_EXTEND ||
11571       N0.getOpcode() == ISD::SIGN_EXTEND)
11572     return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
11573 
11574   // fold (aext (truncate (load x))) -> (aext (smaller load x))
11575   // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
11576   if (N0.getOpcode() == ISD::TRUNCATE) {
11577     if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
11578       SDNode *oye = N0.getOperand(0).getNode();
11579       if (NarrowLoad.getNode() != N0.getNode()) {
11580         CombineTo(N0.getNode(), NarrowLoad);
11581         // CombineTo deleted the truncate, if needed, but not what's under it.
11582         AddToWorklist(oye);
11583       }
11584       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
11585     }
11586   }
11587 
11588   // fold (aext (truncate x))
11589   if (N0.getOpcode() == ISD::TRUNCATE)
11590     return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
11591 
11592   // Fold (aext (and (trunc x), cst)) -> (and x, cst)
11593   // if the trunc is not free.
11594   if (N0.getOpcode() == ISD::AND &&
11595       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
11596       N0.getOperand(1).getOpcode() == ISD::Constant &&
11597       !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
11598                           N0.getValueType())) {
11599     SDLoc DL(N);
11600     SDValue X = N0.getOperand(0).getOperand(0);
11601     X = DAG.getAnyExtOrTrunc(X, DL, VT);
11602     APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
11603     return DAG.getNode(ISD::AND, DL, VT,
11604                        X, DAG.getConstant(Mask, DL, VT));
11605   }
11606 
11607   // fold (aext (load x)) -> (aext (truncate (extload x)))
11608   // None of the supported targets knows how to perform load and any_ext
11609   // on vectors in one instruction, so attempt to fold to zext instead.
11610   if (VT.isVector()) {
11611     // Try to simplify (zext (load x)).
11612     if (SDValue foldedExt =
11613             tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
11614                                ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
11615       return foldedExt;
11616   } else if (ISD::isNON_EXTLoad(N0.getNode()) &&
11617              ISD::isUNINDEXEDLoad(N0.getNode()) &&
11618              TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
11619     bool DoXform = true;
11620     SmallVector<SDNode *, 4> SetCCs;
11621     if (!N0.hasOneUse())
11622       DoXform =
11623           ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
11624     if (DoXform) {
11625       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11626       SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
11627                                        LN0->getChain(), LN0->getBasePtr(),
11628                                        N0.getValueType(), LN0->getMemOperand());
11629       ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
11630       // If the load value is used only by N, replace it via CombineTo N.
11631       bool NoReplaceTrunc = N0.hasOneUse();
11632       CombineTo(N, ExtLoad);
11633       if (NoReplaceTrunc) {
11634         DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
11635         recursivelyDeleteUnusedNodes(LN0);
11636       } else {
11637         SDValue Trunc =
11638             DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
11639         CombineTo(LN0, Trunc, ExtLoad.getValue(1));
11640       }
11641       return SDValue(N, 0); // Return N so it doesn't get rechecked!
11642     }
11643   }
11644 
11645   // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
11646   // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
11647   // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
11648   if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
11649       ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
11650     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11651     ISD::LoadExtType ExtType = LN0->getExtensionType();
11652     EVT MemVT = LN0->getMemoryVT();
11653     if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
11654       SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
11655                                        VT, LN0->getChain(), LN0->getBasePtr(),
11656                                        MemVT, LN0->getMemOperand());
11657       CombineTo(N, ExtLoad);
11658       DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
11659       recursivelyDeleteUnusedNodes(LN0);
11660       return SDValue(N, 0);   // Return N so it doesn't get rechecked!
11661     }
11662   }
11663 
11664   if (N0.getOpcode() == ISD::SETCC) {
11665     // For vectors:
11666     // aext(setcc) -> vsetcc
11667     // aext(setcc) -> truncate(vsetcc)
11668     // aext(setcc) -> aext(vsetcc)
11669     // Only do this before legalize for now.
11670     if (VT.isVector() && !LegalOperations) {
11671       EVT N00VT = N0.getOperand(0).getValueType();
11672       if (getSetCCResultType(N00VT) == N0.getValueType())
11673         return SDValue();
11674 
11675       // We know that the # elements of the results is the same as the
11676       // # elements of the compare (and the # elements of the compare result
11677       // for that matter).  Check to see that they are the same size.  If so,
11678       // we know that the element size of the sext'd result matches the
11679       // element size of the compare operands.
11680       if (VT.getSizeInBits() == N00VT.getSizeInBits())
11681         return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
11682                              N0.getOperand(1),
11683                              cast<CondCodeSDNode>(N0.getOperand(2))->get());
11684 
11685       // If the desired elements are smaller or larger than the source
11686       // elements we can use a matching integer vector type and then
11687       // truncate/any extend
11688       EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
11689       SDValue VsetCC =
11690         DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
11691                       N0.getOperand(1),
11692                       cast<CondCodeSDNode>(N0.getOperand(2))->get());
11693       return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
11694     }
11695 
11696     // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
11697     SDLoc DL(N);
11698     if (SDValue SCC = SimplifySelectCC(
11699             DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
11700             DAG.getConstant(0, DL, VT),
11701             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
11702       return SCC;
11703   }
11704 
11705   if (SDValue NewCtPop = widenCtPop(N, DAG))
11706     return NewCtPop;
11707 
11708   if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
11709     return Res;
11710 
11711   return SDValue();
11712 }
11713 
11714 SDValue DAGCombiner::visitAssertExt(SDNode *N) {
11715   unsigned Opcode = N->getOpcode();
11716   SDValue N0 = N->getOperand(0);
11717   SDValue N1 = N->getOperand(1);
11718   EVT AssertVT = cast<VTSDNode>(N1)->getVT();
11719 
11720   // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
11721   if (N0.getOpcode() == Opcode &&
11722       AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
11723     return N0;
11724 
11725   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
11726       N0.getOperand(0).getOpcode() == Opcode) {
11727     // We have an assert, truncate, assert sandwich. Make one stronger assert
11728     // by asserting on the smallest asserted type to the larger source type.
11729     // This eliminates the later assert:
11730     // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
11731     // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
11732     SDValue BigA = N0.getOperand(0);
11733     EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
11734     assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
11735            "Asserting zero/sign-extended bits to a type larger than the "
11736            "truncated destination does not provide information");
11737 
11738     SDLoc DL(N);
11739     EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
11740     SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
11741     SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
11742                                     BigA.getOperand(0), MinAssertVTVal);
11743     return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
11744   }
11745 
11746   // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
11747   // than X. Just move the AssertZext in front of the truncate and drop the
11748   // AssertSExt.
11749   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
11750       N0.getOperand(0).getOpcode() == ISD::AssertSext &&
11751       Opcode == ISD::AssertZext) {
11752     SDValue BigA = N0.getOperand(0);
11753     EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
11754     assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
11755            "Asserting zero/sign-extended bits to a type larger than the "
11756            "truncated destination does not provide information");
11757 
11758     if (AssertVT.bitsLT(BigA_AssertVT)) {
11759       SDLoc DL(N);
11760       SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
11761                                       BigA.getOperand(0), N1);
11762       return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
11763     }
11764   }
11765 
11766   return SDValue();
11767 }
11768 
11769 SDValue DAGCombiner::visitAssertAlign(SDNode *N) {
11770   SDLoc DL(N);
11771 
11772   Align AL = cast<AssertAlignSDNode>(N)->getAlign();
11773   SDValue N0 = N->getOperand(0);
11774 
11775   // Fold (assertalign (assertalign x, AL0), AL1) ->
11776   // (assertalign x, max(AL0, AL1))
11777   if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0))
11778     return DAG.getAssertAlign(DL, N0.getOperand(0),
11779                               std::max(AL, AAN->getAlign()));
11780 
11781   // In rare cases, there are trivial arithmetic ops in source operands. Sink
11782   // this assert down to source operands so that those arithmetic ops could be
11783   // exposed to the DAG combining.
11784   switch (N0.getOpcode()) {
11785   default:
11786     break;
11787   case ISD::ADD:
11788   case ISD::SUB: {
11789     unsigned AlignShift = Log2(AL);
11790     SDValue LHS = N0.getOperand(0);
11791     SDValue RHS = N0.getOperand(1);
11792     unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros();
11793     unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11794     if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) {
11795       if (LHSAlignShift < AlignShift)
11796         LHS = DAG.getAssertAlign(DL, LHS, AL);
11797       if (RHSAlignShift < AlignShift)
11798         RHS = DAG.getAssertAlign(DL, RHS, AL);
11799       return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS);
11800     }
11801     break;
11802   }
11803   }
11804 
11805   return SDValue();
11806 }
11807 
11808 /// If the result of a wider load is shifted to right of N  bits and then
11809 /// truncated to a narrower type and where N is a multiple of number of bits of
11810 /// the narrower type, transform it to a narrower load from address + N / num of
11811 /// bits of new type. Also narrow the load if the result is masked with an AND
11812 /// to effectively produce a smaller type. If the result is to be extended, also
11813 /// fold the extension to form a extending load.
11814 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
11815   unsigned Opc = N->getOpcode();
11816 
11817   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
11818   SDValue N0 = N->getOperand(0);
11819   EVT VT = N->getValueType(0);
11820   EVT ExtVT = VT;
11821 
11822   // This transformation isn't valid for vector loads.
11823   if (VT.isVector())
11824     return SDValue();
11825 
11826   unsigned ShAmt = 0;
11827   bool HasShiftedOffset = false;
11828   // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
11829   // extended to VT.
11830   if (Opc == ISD::SIGN_EXTEND_INREG) {
11831     ExtType = ISD::SEXTLOAD;
11832     ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
11833   } else if (Opc == ISD::SRL) {
11834     // Another special-case: SRL is basically zero-extending a narrower value,
11835     // or it maybe shifting a higher subword, half or byte into the lowest
11836     // bits.
11837     ExtType = ISD::ZEXTLOAD;
11838     N0 = SDValue(N, 0);
11839 
11840     auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
11841     auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11842     if (!N01 || !LN0)
11843       return SDValue();
11844 
11845     uint64_t ShiftAmt = N01->getZExtValue();
11846     uint64_t MemoryWidth = LN0->getMemoryVT().getScalarSizeInBits();
11847     if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
11848       ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
11849     else
11850       ExtVT = EVT::getIntegerVT(*DAG.getContext(),
11851                                 VT.getScalarSizeInBits() - ShiftAmt);
11852   } else if (Opc == ISD::AND) {
11853     // An AND with a constant mask is the same as a truncate + zero-extend.
11854     auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
11855     if (!AndC)
11856       return SDValue();
11857 
11858     const APInt &Mask = AndC->getAPIntValue();
11859     unsigned ActiveBits = 0;
11860     if (Mask.isMask()) {
11861       ActiveBits = Mask.countTrailingOnes();
11862     } else if (Mask.isShiftedMask()) {
11863       ShAmt = Mask.countTrailingZeros();
11864       APInt ShiftedMask = Mask.lshr(ShAmt);
11865       ActiveBits = ShiftedMask.countTrailingOnes();
11866       HasShiftedOffset = true;
11867     } else
11868       return SDValue();
11869 
11870     ExtType = ISD::ZEXTLOAD;
11871     ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
11872   }
11873 
11874   if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
11875     SDValue SRL = N0;
11876     if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
11877       ShAmt = ConstShift->getZExtValue();
11878       unsigned EVTBits = ExtVT.getScalarSizeInBits();
11879       // Is the shift amount a multiple of size of VT?
11880       if ((ShAmt & (EVTBits-1)) == 0) {
11881         N0 = N0.getOperand(0);
11882         // Is the load width a multiple of size of VT?
11883         if ((N0.getScalarValueSizeInBits() & (EVTBits - 1)) != 0)
11884           return SDValue();
11885       }
11886 
11887       // At this point, we must have a load or else we can't do the transform.
11888       auto *LN0 = dyn_cast<LoadSDNode>(N0);
11889       if (!LN0) return SDValue();
11890 
11891       // Because a SRL must be assumed to *need* to zero-extend the high bits
11892       // (as opposed to anyext the high bits), we can't combine the zextload
11893       // lowering of SRL and an sextload.
11894       if (LN0->getExtensionType() == ISD::SEXTLOAD)
11895         return SDValue();
11896 
11897       // If the shift amount is larger than the input type then we're not
11898       // accessing any of the loaded bytes.  If the load was a zextload/extload
11899       // then the result of the shift+trunc is zero/undef (handled elsewhere).
11900       if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
11901         return SDValue();
11902 
11903       // If the SRL is only used by a masking AND, we may be able to adjust
11904       // the ExtVT to make the AND redundant.
11905       SDNode *Mask = *(SRL->use_begin());
11906       if (Mask->getOpcode() == ISD::AND &&
11907           isa<ConstantSDNode>(Mask->getOperand(1))) {
11908         const APInt& ShiftMask = Mask->getConstantOperandAPInt(1);
11909         if (ShiftMask.isMask()) {
11910           EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
11911                                            ShiftMask.countTrailingOnes());
11912           // If the mask is smaller, recompute the type.
11913           if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) &&
11914               TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
11915             ExtVT = MaskedVT;
11916         }
11917       }
11918     }
11919   }
11920 
11921   // If the load is shifted left (and the result isn't shifted back right),
11922   // we can fold the truncate through the shift.
11923   unsigned ShLeftAmt = 0;
11924   if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
11925       ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
11926     if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
11927       ShLeftAmt = N01->getZExtValue();
11928       N0 = N0.getOperand(0);
11929     }
11930   }
11931 
11932   // If we haven't found a load, we can't narrow it.
11933   if (!isa<LoadSDNode>(N0))
11934     return SDValue();
11935 
11936   LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11937   // Reducing the width of a volatile load is illegal.  For atomics, we may be
11938   // able to reduce the width provided we never widen again. (see D66309)
11939   if (!LN0->isSimple() ||
11940       !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
11941     return SDValue();
11942 
11943   auto AdjustBigEndianShift = [&](unsigned ShAmt) {
11944     unsigned LVTStoreBits =
11945         LN0->getMemoryVT().getStoreSizeInBits().getFixedSize();
11946     unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize();
11947     return LVTStoreBits - EVTStoreBits - ShAmt;
11948   };
11949 
11950   // For big endian targets, we need to adjust the offset to the pointer to
11951   // load the correct bytes.
11952   if (DAG.getDataLayout().isBigEndian())
11953     ShAmt = AdjustBigEndianShift(ShAmt);
11954 
11955   uint64_t PtrOff = ShAmt / 8;
11956   Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff);
11957   SDLoc DL(LN0);
11958   // The original load itself didn't wrap, so an offset within it doesn't.
11959   SDNodeFlags Flags;
11960   Flags.setNoUnsignedWrap(true);
11961   SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(),
11962                                             TypeSize::Fixed(PtrOff), DL, Flags);
11963   AddToWorklist(NewPtr.getNode());
11964 
11965   SDValue Load;
11966   if (ExtType == ISD::NON_EXTLOAD)
11967     Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
11968                        LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
11969                        LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
11970   else
11971     Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
11972                           LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
11973                           NewAlign, LN0->getMemOperand()->getFlags(),
11974                           LN0->getAAInfo());
11975 
11976   // Replace the old load's chain with the new load's chain.
11977   WorklistRemover DeadNodes(*this);
11978   DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
11979 
11980   // Shift the result left, if we've swallowed a left shift.
11981   SDValue Result = Load;
11982   if (ShLeftAmt != 0) {
11983     EVT ShImmTy = getShiftAmountTy(Result.getValueType());
11984     if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt))
11985       ShImmTy = VT;
11986     // If the shift amount is as large as the result size (but, presumably,
11987     // no larger than the source) then the useful bits of the result are
11988     // zero; we can't simply return the shortened shift, because the result
11989     // of that operation is undefined.
11990     if (ShLeftAmt >= VT.getScalarSizeInBits())
11991       Result = DAG.getConstant(0, DL, VT);
11992     else
11993       Result = DAG.getNode(ISD::SHL, DL, VT,
11994                           Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
11995   }
11996 
11997   if (HasShiftedOffset) {
11998     // Recalculate the shift amount after it has been altered to calculate
11999     // the offset.
12000     if (DAG.getDataLayout().isBigEndian())
12001       ShAmt = AdjustBigEndianShift(ShAmt);
12002 
12003     // We're using a shifted mask, so the load now has an offset. This means
12004     // that data has been loaded into the lower bytes than it would have been
12005     // before, so we need to shl the loaded data into the correct position in the
12006     // register.
12007     SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
12008     Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
12009     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
12010   }
12011 
12012   // Return the new loaded value.
12013   return Result;
12014 }
12015 
12016 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
12017   SDValue N0 = N->getOperand(0);
12018   SDValue N1 = N->getOperand(1);
12019   EVT VT = N->getValueType(0);
12020   EVT ExtVT = cast<VTSDNode>(N1)->getVT();
12021   unsigned VTBits = VT.getScalarSizeInBits();
12022   unsigned ExtVTBits = ExtVT.getScalarSizeInBits();
12023 
12024   // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
12025   if (N0.isUndef())
12026     return DAG.getConstant(0, SDLoc(N), VT);
12027 
12028   // fold (sext_in_reg c1) -> c1
12029   if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
12030     return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
12031 
12032   // If the input is already sign extended, just drop the extension.
12033   if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1))
12034     return N0;
12035 
12036   // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
12037   if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
12038       ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
12039     return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0),
12040                        N1);
12041 
12042   // fold (sext_in_reg (sext x)) -> (sext x)
12043   // fold (sext_in_reg (aext x)) -> (sext x)
12044   // if x is small enough or if we know that x has more than 1 sign bit and the
12045   // sign_extend_inreg is extending from one of them.
12046   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
12047     SDValue N00 = N0.getOperand(0);
12048     unsigned N00Bits = N00.getScalarValueSizeInBits();
12049     if ((N00Bits <= ExtVTBits ||
12050          (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) &&
12051         (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
12052       return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
12053   }
12054 
12055   // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
12056   // if x is small enough or if we know that x has more than 1 sign bit and the
12057   // sign_extend_inreg is extending from one of them.
12058   if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
12059       N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
12060       N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
12061     SDValue N00 = N0.getOperand(0);
12062     unsigned N00Bits = N00.getScalarValueSizeInBits();
12063     unsigned DstElts = N0.getValueType().getVectorMinNumElements();
12064     unsigned SrcElts = N00.getValueType().getVectorMinNumElements();
12065     bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
12066     APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts);
12067     if ((N00Bits == ExtVTBits ||
12068          (!IsZext && (N00Bits < ExtVTBits ||
12069                       (N00Bits - DAG.ComputeNumSignBits(N00, DemandedSrcElts)) <
12070                           ExtVTBits))) &&
12071         (!LegalOperations ||
12072          TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)))
12073       return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00);
12074   }
12075 
12076   // fold (sext_in_reg (zext x)) -> (sext x)
12077   // iff we are extending the source sign bit.
12078   if (N0.getOpcode() == ISD::ZERO_EXTEND) {
12079     SDValue N00 = N0.getOperand(0);
12080     if (N00.getScalarValueSizeInBits() == ExtVTBits &&
12081         (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
12082       return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
12083   }
12084 
12085   // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
12086   if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1)))
12087     return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT);
12088 
12089   // fold operands of sext_in_reg based on knowledge that the top bits are not
12090   // demanded.
12091   if (SimplifyDemandedBits(SDValue(N, 0)))
12092     return SDValue(N, 0);
12093 
12094   // fold (sext_in_reg (load x)) -> (smaller sextload x)
12095   // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
12096   if (SDValue NarrowLoad = ReduceLoadWidth(N))
12097     return NarrowLoad;
12098 
12099   // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
12100   // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
12101   // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
12102   if (N0.getOpcode() == ISD::SRL) {
12103     if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
12104       if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) {
12105         // We can turn this into an SRA iff the input to the SRL is already sign
12106         // extended enough.
12107         unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
12108         if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits)
12109           return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
12110                              N0.getOperand(1));
12111       }
12112   }
12113 
12114   // fold (sext_inreg (extload x)) -> (sextload x)
12115   // If sextload is not supported by target, we can only do the combine when
12116   // load has one use. Doing otherwise can block folding the extload with other
12117   // extends that the target does support.
12118   if (ISD::isEXTLoad(N0.getNode()) &&
12119       ISD::isUNINDEXEDLoad(N0.getNode()) &&
12120       ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
12121       ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
12122         N0.hasOneUse()) ||
12123        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
12124     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
12125     SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
12126                                      LN0->getChain(),
12127                                      LN0->getBasePtr(), ExtVT,
12128                                      LN0->getMemOperand());
12129     CombineTo(N, ExtLoad);
12130     CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
12131     AddToWorklist(ExtLoad.getNode());
12132     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
12133   }
12134 
12135   // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
12136   if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
12137       N0.hasOneUse() &&
12138       ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
12139       ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
12140        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
12141     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
12142     SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
12143                                      LN0->getChain(),
12144                                      LN0->getBasePtr(), ExtVT,
12145                                      LN0->getMemOperand());
12146     CombineTo(N, ExtLoad);
12147     CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
12148     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
12149   }
12150 
12151   // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
12152   // ignore it if the masked load is already sign extended
12153   if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) {
12154     if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() &&
12155         Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD &&
12156         TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) {
12157       SDValue ExtMaskedLoad = DAG.getMaskedLoad(
12158           VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(),
12159           Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(),
12160           Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad());
12161       CombineTo(N, ExtMaskedLoad);
12162       CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1));
12163       return SDValue(N, 0); // Return N so it doesn't get rechecked!
12164     }
12165   }
12166 
12167   // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
12168   if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
12169     if (SDValue(GN0, 0).hasOneUse() &&
12170         ExtVT == GN0->getMemoryVT() &&
12171         TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
12172       SDValue Ops[] = {GN0->getChain(),   GN0->getPassThru(), GN0->getMask(),
12173                        GN0->getBasePtr(), GN0->getIndex(),    GN0->getScale()};
12174 
12175       SDValue ExtLoad = DAG.getMaskedGather(
12176           DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops,
12177           GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD);
12178 
12179       CombineTo(N, ExtLoad);
12180       CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
12181       AddToWorklist(ExtLoad.getNode());
12182       return SDValue(N, 0); // Return N so it doesn't get rechecked!
12183     }
12184   }
12185 
12186   // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
12187   if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) {
12188     if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
12189                                            N0.getOperand(1), false))
12190       return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1);
12191   }
12192 
12193   return SDValue();
12194 }
12195 
12196 SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) {
12197   SDValue N0 = N->getOperand(0);
12198   EVT VT = N->getValueType(0);
12199 
12200   // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same.
12201   if (N0.isUndef())
12202     return DAG.getConstant(0, SDLoc(N), VT);
12203 
12204   if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
12205     return Res;
12206 
12207   if (SimplifyDemandedVectorElts(SDValue(N, 0)))
12208     return SDValue(N, 0);
12209 
12210   return SDValue();
12211 }
12212 
12213 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
12214   SDValue N0 = N->getOperand(0);
12215   EVT VT = N->getValueType(0);
12216   EVT SrcVT = N0.getValueType();
12217   bool isLE = DAG.getDataLayout().isLittleEndian();
12218 
12219   // noop truncate
12220   if (SrcVT == VT)
12221     return N0;
12222 
12223   // fold (truncate (truncate x)) -> (truncate x)
12224   if (N0.getOpcode() == ISD::TRUNCATE)
12225     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
12226 
12227   // fold (truncate c1) -> c1
12228   if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
12229     SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
12230     if (C.getNode() != N)
12231       return C;
12232   }
12233 
12234   // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
12235   if (N0.getOpcode() == ISD::ZERO_EXTEND ||
12236       N0.getOpcode() == ISD::SIGN_EXTEND ||
12237       N0.getOpcode() == ISD::ANY_EXTEND) {
12238     // if the source is smaller than the dest, we still need an extend.
12239     if (N0.getOperand(0).getValueType().bitsLT(VT))
12240       return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
12241     // if the source is larger than the dest, than we just need the truncate.
12242     if (N0.getOperand(0).getValueType().bitsGT(VT))
12243       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
12244     // if the source and dest are the same type, we can drop both the extend
12245     // and the truncate.
12246     return N0.getOperand(0);
12247   }
12248 
12249   // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
12250   if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
12251     return SDValue();
12252 
12253   // Fold extract-and-trunc into a narrow extract. For example:
12254   //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
12255   //   i32 y = TRUNCATE(i64 x)
12256   //        -- becomes --
12257   //   v16i8 b = BITCAST (v2i64 val)
12258   //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
12259   //
12260   // Note: We only run this optimization after type legalization (which often
12261   // creates this pattern) and before operation legalization after which
12262   // we need to be more careful about the vector instructions that we generate.
12263   if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
12264       LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
12265     EVT VecTy = N0.getOperand(0).getValueType();
12266     EVT ExTy = N0.getValueType();
12267     EVT TrTy = N->getValueType(0);
12268 
12269     auto EltCnt = VecTy.getVectorElementCount();
12270     unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
12271     auto NewEltCnt = EltCnt * SizeRatio;
12272 
12273     EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt);
12274     assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
12275 
12276     SDValue EltNo = N0->getOperand(1);
12277     if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
12278       int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12279       int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
12280 
12281       SDLoc DL(N);
12282       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
12283                          DAG.getBitcast(NVT, N0.getOperand(0)),
12284                          DAG.getVectorIdxConstant(Index, DL));
12285     }
12286   }
12287 
12288   // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
12289   if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
12290     if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
12291         TLI.isTruncateFree(SrcVT, VT)) {
12292       SDLoc SL(N0);
12293       SDValue Cond = N0.getOperand(0);
12294       SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
12295       SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
12296       return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
12297     }
12298   }
12299 
12300   // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
12301   if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
12302       (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
12303       TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
12304     SDValue Amt = N0.getOperand(1);
12305     KnownBits Known = DAG.computeKnownBits(Amt);
12306     unsigned Size = VT.getScalarSizeInBits();
12307     if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
12308       SDLoc SL(N);
12309       EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
12310 
12311       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
12312       if (AmtVT != Amt.getValueType()) {
12313         Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
12314         AddToWorklist(Amt.getNode());
12315       }
12316       return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
12317     }
12318   }
12319 
12320   if (SDValue V = foldSubToUSubSat(VT, N0.getNode()))
12321     return V;
12322 
12323   // Attempt to pre-truncate BUILD_VECTOR sources.
12324   if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
12325       TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) &&
12326       // Avoid creating illegal types if running after type legalizer.
12327       (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) {
12328     SDLoc DL(N);
12329     EVT SVT = VT.getScalarType();
12330     SmallVector<SDValue, 8> TruncOps;
12331     for (const SDValue &Op : N0->op_values()) {
12332       SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
12333       TruncOps.push_back(TruncOp);
12334     }
12335     return DAG.getBuildVector(VT, DL, TruncOps);
12336   }
12337 
12338   // Fold a series of buildvector, bitcast, and truncate if possible.
12339   // For example fold
12340   //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
12341   //   (2xi32 (buildvector x, y)).
12342   if (Level == AfterLegalizeVectorOps && VT.isVector() &&
12343       N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
12344       N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
12345       N0.getOperand(0).hasOneUse()) {
12346     SDValue BuildVect = N0.getOperand(0);
12347     EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
12348     EVT TruncVecEltTy = VT.getVectorElementType();
12349 
12350     // Check that the element types match.
12351     if (BuildVectEltTy == TruncVecEltTy) {
12352       // Now we only need to compute the offset of the truncated elements.
12353       unsigned BuildVecNumElts =  BuildVect.getNumOperands();
12354       unsigned TruncVecNumElts = VT.getVectorNumElements();
12355       unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
12356 
12357       assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
12358              "Invalid number of elements");
12359 
12360       SmallVector<SDValue, 8> Opnds;
12361       for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
12362         Opnds.push_back(BuildVect.getOperand(i));
12363 
12364       return DAG.getBuildVector(VT, SDLoc(N), Opnds);
12365     }
12366   }
12367 
12368   // See if we can simplify the input to this truncate through knowledge that
12369   // only the low bits are being used.
12370   // For example "trunc (or (shl x, 8), y)" // -> trunc y
12371   // Currently we only perform this optimization on scalars because vectors
12372   // may have different active low bits.
12373   if (!VT.isVector()) {
12374     APInt Mask =
12375         APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
12376     if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
12377       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
12378   }
12379 
12380   // fold (truncate (load x)) -> (smaller load x)
12381   // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
12382   if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
12383     if (SDValue Reduced = ReduceLoadWidth(N))
12384       return Reduced;
12385 
12386     // Handle the case where the load remains an extending load even
12387     // after truncation.
12388     if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
12389       LoadSDNode *LN0 = cast<LoadSDNode>(N0);
12390       if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) {
12391         SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
12392                                          VT, LN0->getChain(), LN0->getBasePtr(),
12393                                          LN0->getMemoryVT(),
12394                                          LN0->getMemOperand());
12395         DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
12396         return NewLoad;
12397       }
12398     }
12399   }
12400 
12401   // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
12402   // where ... are all 'undef'.
12403   if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
12404     SmallVector<EVT, 8> VTs;
12405     SDValue V;
12406     unsigned Idx = 0;
12407     unsigned NumDefs = 0;
12408 
12409     for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
12410       SDValue X = N0.getOperand(i);
12411       if (!X.isUndef()) {
12412         V = X;
12413         Idx = i;
12414         NumDefs++;
12415       }
12416       // Stop if more than one members are non-undef.
12417       if (NumDefs > 1)
12418         break;
12419 
12420       VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
12421                                      VT.getVectorElementType(),
12422                                      X.getValueType().getVectorElementCount()));
12423     }
12424 
12425     if (NumDefs == 0)
12426       return DAG.getUNDEF(VT);
12427 
12428     if (NumDefs == 1) {
12429       assert(V.getNode() && "The single defined operand is empty!");
12430       SmallVector<SDValue, 8> Opnds;
12431       for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
12432         if (i != Idx) {
12433           Opnds.push_back(DAG.getUNDEF(VTs[i]));
12434           continue;
12435         }
12436         SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
12437         AddToWorklist(NV.getNode());
12438         Opnds.push_back(NV);
12439       }
12440       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
12441     }
12442   }
12443 
12444   // Fold truncate of a bitcast of a vector to an extract of the low vector
12445   // element.
12446   //
12447   // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
12448   if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
12449     SDValue VecSrc = N0.getOperand(0);
12450     EVT VecSrcVT = VecSrc.getValueType();
12451     if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT &&
12452         (!LegalOperations ||
12453          TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) {
12454       SDLoc SL(N);
12455 
12456       unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1;
12457       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc,
12458                          DAG.getVectorIdxConstant(Idx, SL));
12459     }
12460   }
12461 
12462   // Simplify the operands using demanded-bits information.
12463   if (SimplifyDemandedBits(SDValue(N, 0)))
12464     return SDValue(N, 0);
12465 
12466   // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
12467   // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
12468   // When the adde's carry is not used.
12469   if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
12470       N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
12471       // We only do for addcarry before legalize operation
12472       ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
12473        TLI.isOperationLegal(N0.getOpcode(), VT))) {
12474     SDLoc SL(N);
12475     auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
12476     auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
12477     auto VTs = DAG.getVTList(VT, N0->getValueType(1));
12478     return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
12479   }
12480 
12481   // fold (truncate (extract_subvector(ext x))) ->
12482   //      (extract_subvector x)
12483   // TODO: This can be generalized to cover cases where the truncate and extract
12484   // do not fully cancel each other out.
12485   if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
12486     SDValue N00 = N0.getOperand(0);
12487     if (N00.getOpcode() == ISD::SIGN_EXTEND ||
12488         N00.getOpcode() == ISD::ZERO_EXTEND ||
12489         N00.getOpcode() == ISD::ANY_EXTEND) {
12490       if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
12491           VT.getVectorElementType())
12492         return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
12493                            N00.getOperand(0), N0.getOperand(1));
12494     }
12495   }
12496 
12497   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
12498     return NewVSel;
12499 
12500   // Narrow a suitable binary operation with a non-opaque constant operand by
12501   // moving it ahead of the truncate. This is limited to pre-legalization
12502   // because targets may prefer a wider type during later combines and invert
12503   // this transform.
12504   switch (N0.getOpcode()) {
12505   case ISD::ADD:
12506   case ISD::SUB:
12507   case ISD::MUL:
12508   case ISD::AND:
12509   case ISD::OR:
12510   case ISD::XOR:
12511     if (!LegalOperations && N0.hasOneUse() &&
12512         (isConstantOrConstantVector(N0.getOperand(0), true) ||
12513          isConstantOrConstantVector(N0.getOperand(1), true))) {
12514       // TODO: We already restricted this to pre-legalization, but for vectors
12515       // we are extra cautious to not create an unsupported operation.
12516       // Target-specific changes are likely needed to avoid regressions here.
12517       if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
12518         SDLoc DL(N);
12519         SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
12520         SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
12521         return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
12522       }
12523     }
12524     break;
12525   case ISD::USUBSAT:
12526     // Truncate the USUBSAT only if LHS is a known zero-extension, its not
12527     // enough to know that the upper bits are zero we must ensure that we don't
12528     // introduce an extra truncate.
12529     if (!LegalOperations && N0.hasOneUse() &&
12530         N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
12531         N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <=
12532             VT.getScalarSizeInBits() &&
12533         hasOperation(N0.getOpcode(), VT)) {
12534       return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1),
12535                                  DAG, SDLoc(N));
12536     }
12537     break;
12538   }
12539 
12540   return SDValue();
12541 }
12542 
12543 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
12544   SDValue Elt = N->getOperand(i);
12545   if (Elt.getOpcode() != ISD::MERGE_VALUES)
12546     return Elt.getNode();
12547   return Elt.getOperand(Elt.getResNo()).getNode();
12548 }
12549 
12550 /// build_pair (load, load) -> load
12551 /// if load locations are consecutive.
12552 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
12553   assert(N->getOpcode() == ISD::BUILD_PAIR);
12554 
12555   auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
12556   auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
12557 
12558   // A BUILD_PAIR is always having the least significant part in elt 0 and the
12559   // most significant part in elt 1. So when combining into one large load, we
12560   // need to consider the endianness.
12561   if (DAG.getDataLayout().isBigEndian())
12562     std::swap(LD1, LD2);
12563 
12564   if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) ||
12565       !LD1->hasOneUse() || !LD2->hasOneUse() ||
12566       LD1->getAddressSpace() != LD2->getAddressSpace())
12567     return SDValue();
12568 
12569   EVT LD1VT = LD1->getValueType(0);
12570   unsigned LD1Bytes = LD1VT.getStoreSize();
12571   if (DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
12572     Align Alignment = LD1->getAlign();
12573     Align NewAlign = DAG.getDataLayout().getABITypeAlign(
12574         VT.getTypeForEVT(*DAG.getContext()));
12575 
12576     if (NewAlign <= Alignment &&
12577         (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
12578       return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
12579                          LD1->getPointerInfo(), Alignment);
12580   }
12581 
12582   return SDValue();
12583 }
12584 
12585 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
12586   // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
12587   // and Lo parts; on big-endian machines it doesn't.
12588   return DAG.getDataLayout().isBigEndian() ? 1 : 0;
12589 }
12590 
12591 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
12592                                     const TargetLowering &TLI) {
12593   // If this is not a bitcast to an FP type or if the target doesn't have
12594   // IEEE754-compliant FP logic, we're done.
12595   EVT VT = N->getValueType(0);
12596   if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
12597     return SDValue();
12598 
12599   // TODO: Handle cases where the integer constant is a different scalar
12600   // bitwidth to the FP.
12601   SDValue N0 = N->getOperand(0);
12602   EVT SourceVT = N0.getValueType();
12603   if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
12604     return SDValue();
12605 
12606   unsigned FPOpcode;
12607   APInt SignMask;
12608   switch (N0.getOpcode()) {
12609   case ISD::AND:
12610     FPOpcode = ISD::FABS;
12611     SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
12612     break;
12613   case ISD::XOR:
12614     FPOpcode = ISD::FNEG;
12615     SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
12616     break;
12617   case ISD::OR:
12618     FPOpcode = ISD::FABS;
12619     SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
12620     break;
12621   default:
12622     return SDValue();
12623   }
12624 
12625   // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
12626   // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
12627   // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
12628   //   fneg (fabs X)
12629   SDValue LogicOp0 = N0.getOperand(0);
12630   ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
12631   if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
12632       LogicOp0.getOpcode() == ISD::BITCAST &&
12633       LogicOp0.getOperand(0).getValueType() == VT) {
12634     SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
12635     NumFPLogicOpsConv++;
12636     if (N0.getOpcode() == ISD::OR)
12637       return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
12638     return FPOp;
12639   }
12640 
12641   return SDValue();
12642 }
12643 
12644 SDValue DAGCombiner::visitBITCAST(SDNode *N) {
12645   SDValue N0 = N->getOperand(0);
12646   EVT VT = N->getValueType(0);
12647 
12648   if (N0.isUndef())
12649     return DAG.getUNDEF(VT);
12650 
12651   // If the input is a BUILD_VECTOR with all constant elements, fold this now.
12652   // Only do this before legalize types, unless both types are integer and the
12653   // scalar type is legal. Only do this before legalize ops, since the target
12654   // maybe depending on the bitcast.
12655   // First check to see if this is all constant.
12656   // TODO: Support FP bitcasts after legalize types.
12657   if (VT.isVector() &&
12658       (!LegalTypes ||
12659        (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
12660         TLI.isTypeLegal(VT.getVectorElementType()))) &&
12661       N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
12662       cast<BuildVectorSDNode>(N0)->isConstant())
12663     return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
12664                                              VT.getVectorElementType());
12665 
12666   // If the input is a constant, let getNode fold it.
12667   if (isIntOrFPConstant(N0)) {
12668     // If we can't allow illegal operations, we need to check that this is just
12669     // a fp -> int or int -> conversion and that the resulting operation will
12670     // be legal.
12671     if (!LegalOperations ||
12672         (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
12673          TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
12674         (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
12675          TLI.isOperationLegal(ISD::Constant, VT))) {
12676       SDValue C = DAG.getBitcast(VT, N0);
12677       if (C.getNode() != N)
12678         return C;
12679     }
12680   }
12681 
12682   // (conv (conv x, t1), t2) -> (conv x, t2)
12683   if (N0.getOpcode() == ISD::BITCAST)
12684     return DAG.getBitcast(VT, N0.getOperand(0));
12685 
12686   // fold (conv (load x)) -> (load (conv*)x)
12687   // If the resultant load doesn't need a higher alignment than the original!
12688   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
12689       // Do not remove the cast if the types differ in endian layout.
12690       TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
12691           TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
12692       // If the load is volatile, we only want to change the load type if the
12693       // resulting load is legal. Otherwise we might increase the number of
12694       // memory accesses. We don't care if the original type was legal or not
12695       // as we assume software couldn't rely on the number of accesses of an
12696       // illegal type.
12697       ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
12698        TLI.isOperationLegal(ISD::LOAD, VT))) {
12699     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
12700 
12701     if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
12702                                     *LN0->getMemOperand())) {
12703       SDValue Load =
12704           DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
12705                       LN0->getPointerInfo(), LN0->getAlign(),
12706                       LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
12707       DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
12708       return Load;
12709     }
12710   }
12711 
12712   if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
12713     return V;
12714 
12715   // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
12716   // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
12717   //
12718   // For ppc_fp128:
12719   // fold (bitcast (fneg x)) ->
12720   //     flipbit = signbit
12721   //     (xor (bitcast x) (build_pair flipbit, flipbit))
12722   //
12723   // fold (bitcast (fabs x)) ->
12724   //     flipbit = (and (extract_element (bitcast x), 0), signbit)
12725   //     (xor (bitcast x) (build_pair flipbit, flipbit))
12726   // This often reduces constant pool loads.
12727   if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
12728        (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
12729       N0.getNode()->hasOneUse() && VT.isInteger() &&
12730       !VT.isVector() && !N0.getValueType().isVector()) {
12731     SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
12732     AddToWorklist(NewConv.getNode());
12733 
12734     SDLoc DL(N);
12735     if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
12736       assert(VT.getSizeInBits() == 128);
12737       SDValue SignBit = DAG.getConstant(
12738           APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
12739       SDValue FlipBit;
12740       if (N0.getOpcode() == ISD::FNEG) {
12741         FlipBit = SignBit;
12742         AddToWorklist(FlipBit.getNode());
12743       } else {
12744         assert(N0.getOpcode() == ISD::FABS);
12745         SDValue Hi =
12746             DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
12747                         DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
12748                                               SDLoc(NewConv)));
12749         AddToWorklist(Hi.getNode());
12750         FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
12751         AddToWorklist(FlipBit.getNode());
12752       }
12753       SDValue FlipBits =
12754           DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
12755       AddToWorklist(FlipBits.getNode());
12756       return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
12757     }
12758     APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
12759     if (N0.getOpcode() == ISD::FNEG)
12760       return DAG.getNode(ISD::XOR, DL, VT,
12761                          NewConv, DAG.getConstant(SignBit, DL, VT));
12762     assert(N0.getOpcode() == ISD::FABS);
12763     return DAG.getNode(ISD::AND, DL, VT,
12764                        NewConv, DAG.getConstant(~SignBit, DL, VT));
12765   }
12766 
12767   // fold (bitconvert (fcopysign cst, x)) ->
12768   //         (or (and (bitconvert x), sign), (and cst, (not sign)))
12769   // Note that we don't handle (copysign x, cst) because this can always be
12770   // folded to an fneg or fabs.
12771   //
12772   // For ppc_fp128:
12773   // fold (bitcast (fcopysign cst, x)) ->
12774   //     flipbit = (and (extract_element
12775   //                     (xor (bitcast cst), (bitcast x)), 0),
12776   //                    signbit)
12777   //     (xor (bitcast cst) (build_pair flipbit, flipbit))
12778   if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
12779       isa<ConstantFPSDNode>(N0.getOperand(0)) &&
12780       VT.isInteger() && !VT.isVector()) {
12781     unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
12782     EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
12783     if (isTypeLegal(IntXVT)) {
12784       SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
12785       AddToWorklist(X.getNode());
12786 
12787       // If X has a different width than the result/lhs, sext it or truncate it.
12788       unsigned VTWidth = VT.getSizeInBits();
12789       if (OrigXWidth < VTWidth) {
12790         X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
12791         AddToWorklist(X.getNode());
12792       } else if (OrigXWidth > VTWidth) {
12793         // To get the sign bit in the right place, we have to shift it right
12794         // before truncating.
12795         SDLoc DL(X);
12796         X = DAG.getNode(ISD::SRL, DL,
12797                         X.getValueType(), X,
12798                         DAG.getConstant(OrigXWidth-VTWidth, DL,
12799                                         X.getValueType()));
12800         AddToWorklist(X.getNode());
12801         X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
12802         AddToWorklist(X.getNode());
12803       }
12804 
12805       if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
12806         APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
12807         SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
12808         AddToWorklist(Cst.getNode());
12809         SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
12810         AddToWorklist(X.getNode());
12811         SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
12812         AddToWorklist(XorResult.getNode());
12813         SDValue XorResult64 = DAG.getNode(
12814             ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
12815             DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
12816                                   SDLoc(XorResult)));
12817         AddToWorklist(XorResult64.getNode());
12818         SDValue FlipBit =
12819             DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
12820                         DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
12821         AddToWorklist(FlipBit.getNode());
12822         SDValue FlipBits =
12823             DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
12824         AddToWorklist(FlipBits.getNode());
12825         return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
12826       }
12827       APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
12828       X = DAG.getNode(ISD::AND, SDLoc(X), VT,
12829                       X, DAG.getConstant(SignBit, SDLoc(X), VT));
12830       AddToWorklist(X.getNode());
12831 
12832       SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
12833       Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
12834                         Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
12835       AddToWorklist(Cst.getNode());
12836 
12837       return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
12838     }
12839   }
12840 
12841   // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
12842   if (N0.getOpcode() == ISD::BUILD_PAIR)
12843     if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
12844       return CombineLD;
12845 
12846   // Remove double bitcasts from shuffles - this is often a legacy of
12847   // XformToShuffleWithZero being used to combine bitmaskings (of
12848   // float vectors bitcast to integer vectors) into shuffles.
12849   // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
12850   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
12851       N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
12852       VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
12853       !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
12854     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
12855 
12856     // If operands are a bitcast, peek through if it casts the original VT.
12857     // If operands are a constant, just bitcast back to original VT.
12858     auto PeekThroughBitcast = [&](SDValue Op) {
12859       if (Op.getOpcode() == ISD::BITCAST &&
12860           Op.getOperand(0).getValueType() == VT)
12861         return SDValue(Op.getOperand(0));
12862       if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
12863           ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
12864         return DAG.getBitcast(VT, Op);
12865       return SDValue();
12866     };
12867 
12868     // FIXME: If either input vector is bitcast, try to convert the shuffle to
12869     // the result type of this bitcast. This would eliminate at least one
12870     // bitcast. See the transform in InstCombine.
12871     SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
12872     SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
12873     if (!(SV0 && SV1))
12874       return SDValue();
12875 
12876     int MaskScale =
12877         VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
12878     SmallVector<int, 8> NewMask;
12879     for (int M : SVN->getMask())
12880       for (int i = 0; i != MaskScale; ++i)
12881         NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
12882 
12883     SDValue LegalShuffle =
12884         TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
12885     if (LegalShuffle)
12886       return LegalShuffle;
12887   }
12888 
12889   return SDValue();
12890 }
12891 
12892 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
12893   EVT VT = N->getValueType(0);
12894   return CombineConsecutiveLoads(N, VT);
12895 }
12896 
12897 SDValue DAGCombiner::visitFREEZE(SDNode *N) {
12898   SDValue N0 = N->getOperand(0);
12899 
12900   if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false))
12901     return N0;
12902 
12903   return SDValue();
12904 }
12905 
12906 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
12907 /// operands. DstEltVT indicates the destination element value type.
12908 SDValue DAGCombiner::
12909 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
12910   EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
12911 
12912   // If this is already the right type, we're done.
12913   if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
12914 
12915   unsigned SrcBitSize = SrcEltVT.getSizeInBits();
12916   unsigned DstBitSize = DstEltVT.getSizeInBits();
12917 
12918   // If this is a conversion of N elements of one type to N elements of another
12919   // type, convert each element.  This handles FP<->INT cases.
12920   if (SrcBitSize == DstBitSize) {
12921     SmallVector<SDValue, 8> Ops;
12922     for (SDValue Op : BV->op_values()) {
12923       // If the vector element type is not legal, the BUILD_VECTOR operands
12924       // are promoted and implicitly truncated.  Make that explicit here.
12925       if (Op.getValueType() != SrcEltVT)
12926         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
12927       Ops.push_back(DAG.getBitcast(DstEltVT, Op));
12928       AddToWorklist(Ops.back().getNode());
12929     }
12930     EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
12931                               BV->getValueType(0).getVectorNumElements());
12932     return DAG.getBuildVector(VT, SDLoc(BV), Ops);
12933   }
12934 
12935   // Otherwise, we're growing or shrinking the elements.  To avoid having to
12936   // handle annoying details of growing/shrinking FP values, we convert them to
12937   // int first.
12938   if (SrcEltVT.isFloatingPoint()) {
12939     // Convert the input float vector to a int vector where the elements are the
12940     // same sizes.
12941     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
12942     BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
12943     SrcEltVT = IntVT;
12944   }
12945 
12946   // Now we know the input is an integer vector.  If the output is a FP type,
12947   // convert to integer first, then to FP of the right size.
12948   if (DstEltVT.isFloatingPoint()) {
12949     EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
12950     SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
12951 
12952     // Next, convert to FP elements of the same size.
12953     return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
12954   }
12955 
12956   SDLoc DL(BV);
12957 
12958   // Okay, we know the src/dst types are both integers of differing types.
12959   // Handling growing first.
12960   assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
12961   if (SrcBitSize < DstBitSize) {
12962     unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
12963 
12964     SmallVector<SDValue, 8> Ops;
12965     for (unsigned i = 0, e = BV->getNumOperands(); i != e;
12966          i += NumInputsPerOutput) {
12967       bool isLE = DAG.getDataLayout().isLittleEndian();
12968       APInt NewBits = APInt(DstBitSize, 0);
12969       bool EltIsUndef = true;
12970       for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
12971         // Shift the previously computed bits over.
12972         NewBits <<= SrcBitSize;
12973         SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
12974         if (Op.isUndef()) continue;
12975         EltIsUndef = false;
12976 
12977         NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
12978                    zextOrTrunc(SrcBitSize).zext(DstBitSize);
12979       }
12980 
12981       if (EltIsUndef)
12982         Ops.push_back(DAG.getUNDEF(DstEltVT));
12983       else
12984         Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
12985     }
12986 
12987     EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
12988     return DAG.getBuildVector(VT, DL, Ops);
12989   }
12990 
12991   // Finally, this must be the case where we are shrinking elements: each input
12992   // turns into multiple outputs.
12993   unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
12994   EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
12995                             NumOutputsPerInput*BV->getNumOperands());
12996   SmallVector<SDValue, 8> Ops;
12997 
12998   for (const SDValue &Op : BV->op_values()) {
12999     if (Op.isUndef()) {
13000       Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
13001       continue;
13002     }
13003 
13004     APInt OpVal = cast<ConstantSDNode>(Op)->
13005                   getAPIntValue().zextOrTrunc(SrcBitSize);
13006 
13007     for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
13008       APInt ThisVal = OpVal.trunc(DstBitSize);
13009       Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
13010       OpVal.lshrInPlace(DstBitSize);
13011     }
13012 
13013     // For big endian targets, swap the order of the pieces of each element.
13014     if (DAG.getDataLayout().isBigEndian())
13015       std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
13016   }
13017 
13018   return DAG.getBuildVector(VT, DL, Ops);
13019 }
13020 
13021 /// Try to perform FMA combining on a given FADD node.
13022 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
13023   SDValue N0 = N->getOperand(0);
13024   SDValue N1 = N->getOperand(1);
13025   EVT VT = N->getValueType(0);
13026   SDLoc SL(N);
13027 
13028   const TargetOptions &Options = DAG.getTarget().Options;
13029 
13030   // Floating-point multiply-add with intermediate rounding.
13031   bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));
13032 
13033   // Floating-point multiply-add without intermediate rounding.
13034   bool HasFMA =
13035       TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
13036       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
13037 
13038   // No valid opcode, do not combine.
13039   if (!HasFMAD && !HasFMA)
13040     return SDValue();
13041 
13042   bool CanReassociate =
13043       Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
13044   bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
13045                               Options.UnsafeFPMath || HasFMAD);
13046   // If the addition is not contractable, do not combine.
13047   if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
13048     return SDValue();
13049 
13050   if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
13051     return SDValue();
13052 
13053   // Always prefer FMAD to FMA for precision.
13054   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
13055   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
13056 
13057   // Is the node an FMUL and contractable either due to global flags or
13058   // SDNodeFlags.
13059   auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
13060     if (N.getOpcode() != ISD::FMUL)
13061       return false;
13062     return AllowFusionGlobally || N->getFlags().hasAllowContract();
13063   };
13064   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
13065   // prefer to fold the multiply with fewer uses.
13066   if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
13067     if (N0.getNode()->use_size() > N1.getNode()->use_size())
13068       std::swap(N0, N1);
13069   }
13070 
13071   // fold (fadd (fmul x, y), z) -> (fma x, y, z)
13072   if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
13073     return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
13074                        N0.getOperand(1), N1);
13075   }
13076 
13077   // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
13078   // Note: Commutes FADD operands.
13079   if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
13080     return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0),
13081                        N1.getOperand(1), N0);
13082   }
13083 
13084   // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
13085   // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
13086   // This requires reassociation because it changes the order of operations.
13087   SDValue FMA, E;
13088   if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode &&
13089       N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() &&
13090       N0.getOperand(2).hasOneUse()) {
13091     FMA = N0;
13092     E = N1;
13093   } else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode &&
13094              N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() &&
13095              N1.getOperand(2).hasOneUse()) {
13096     FMA = N1;
13097     E = N0;
13098   }
13099   if (FMA && E) {
13100     SDValue A = FMA.getOperand(0);
13101     SDValue B = FMA.getOperand(1);
13102     SDValue C = FMA.getOperand(2).getOperand(0);
13103     SDValue D = FMA.getOperand(2).getOperand(1);
13104     SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E);
13105     return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE);
13106   }
13107 
13108   // Look through FP_EXTEND nodes to do more combining.
13109 
13110   // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
13111   if (N0.getOpcode() == ISD::FP_EXTEND) {
13112     SDValue N00 = N0.getOperand(0);
13113     if (isContractableFMUL(N00) &&
13114         TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13115                             N00.getValueType())) {
13116       return DAG.getNode(PreferredFusedOpcode, SL, VT,
13117                          DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
13118                          DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
13119                          N1);
13120     }
13121   }
13122 
13123   // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
13124   // Note: Commutes FADD operands.
13125   if (N1.getOpcode() == ISD::FP_EXTEND) {
13126     SDValue N10 = N1.getOperand(0);
13127     if (isContractableFMUL(N10) &&
13128         TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13129                             N10.getValueType())) {
13130       return DAG.getNode(PreferredFusedOpcode, SL, VT,
13131                          DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)),
13132                          DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)),
13133                          N0);
13134     }
13135   }
13136 
13137   // More folding opportunities when target permits.
13138   if (Aggressive) {
13139     // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
13140     //   -> (fma x, y, (fma (fpext u), (fpext v), z))
13141     auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
13142                                     SDValue Z) {
13143       return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
13144                          DAG.getNode(PreferredFusedOpcode, SL, VT,
13145                                      DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
13146                                      DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
13147                                      Z));
13148     };
13149     if (N0.getOpcode() == PreferredFusedOpcode) {
13150       SDValue N02 = N0.getOperand(2);
13151       if (N02.getOpcode() == ISD::FP_EXTEND) {
13152         SDValue N020 = N02.getOperand(0);
13153         if (isContractableFMUL(N020) &&
13154             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13155                                 N020.getValueType())) {
13156           return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
13157                                       N020.getOperand(0), N020.getOperand(1),
13158                                       N1);
13159         }
13160       }
13161     }
13162 
13163     // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
13164     //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
13165     // FIXME: This turns two single-precision and one double-precision
13166     // operation into two double-precision operations, which might not be
13167     // interesting for all targets, especially GPUs.
13168     auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
13169                                     SDValue Z) {
13170       return DAG.getNode(
13171           PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
13172           DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
13173           DAG.getNode(PreferredFusedOpcode, SL, VT,
13174                       DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
13175                       DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
13176     };
13177     if (N0.getOpcode() == ISD::FP_EXTEND) {
13178       SDValue N00 = N0.getOperand(0);
13179       if (N00.getOpcode() == PreferredFusedOpcode) {
13180         SDValue N002 = N00.getOperand(2);
13181         if (isContractableFMUL(N002) &&
13182             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13183                                 N00.getValueType())) {
13184           return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
13185                                       N002.getOperand(0), N002.getOperand(1),
13186                                       N1);
13187         }
13188       }
13189     }
13190 
13191     // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
13192     //   -> (fma y, z, (fma (fpext u), (fpext v), x))
13193     if (N1.getOpcode() == PreferredFusedOpcode) {
13194       SDValue N12 = N1.getOperand(2);
13195       if (N12.getOpcode() == ISD::FP_EXTEND) {
13196         SDValue N120 = N12.getOperand(0);
13197         if (isContractableFMUL(N120) &&
13198             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13199                                 N120.getValueType())) {
13200           return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
13201                                       N120.getOperand(0), N120.getOperand(1),
13202                                       N0);
13203         }
13204       }
13205     }
13206 
13207     // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
13208     //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
13209     // FIXME: This turns two single-precision and one double-precision
13210     // operation into two double-precision operations, which might not be
13211     // interesting for all targets, especially GPUs.
13212     if (N1.getOpcode() == ISD::FP_EXTEND) {
13213       SDValue N10 = N1.getOperand(0);
13214       if (N10.getOpcode() == PreferredFusedOpcode) {
13215         SDValue N102 = N10.getOperand(2);
13216         if (isContractableFMUL(N102) &&
13217             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13218                                 N10.getValueType())) {
13219           return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
13220                                       N102.getOperand(0), N102.getOperand(1),
13221                                       N0);
13222         }
13223       }
13224     }
13225   }
13226 
13227   return SDValue();
13228 }
13229 
13230 /// Try to perform FMA combining on a given FSUB node.
13231 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
13232   SDValue N0 = N->getOperand(0);
13233   SDValue N1 = N->getOperand(1);
13234   EVT VT = N->getValueType(0);
13235   SDLoc SL(N);
13236 
13237   const TargetOptions &Options = DAG.getTarget().Options;
13238   // Floating-point multiply-add with intermediate rounding.
13239   bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));
13240 
13241   // Floating-point multiply-add without intermediate rounding.
13242   bool HasFMA =
13243       TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
13244       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
13245 
13246   // No valid opcode, do not combine.
13247   if (!HasFMAD && !HasFMA)
13248     return SDValue();
13249 
13250   const SDNodeFlags Flags = N->getFlags();
13251   bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
13252                               Options.UnsafeFPMath || HasFMAD);
13253 
13254   // If the subtraction is not contractable, do not combine.
13255   if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
13256     return SDValue();
13257 
13258   if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
13259     return SDValue();
13260 
13261   // Always prefer FMAD to FMA for precision.
13262   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
13263   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
13264   bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros();
13265 
13266   // Is the node an FMUL and contractable either due to global flags or
13267   // SDNodeFlags.
13268   auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
13269     if (N.getOpcode() != ISD::FMUL)
13270       return false;
13271     return AllowFusionGlobally || N->getFlags().hasAllowContract();
13272   };
13273 
13274   // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13275   auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) {
13276     if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) {
13277       return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0),
13278                          XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z));
13279     }
13280     return SDValue();
13281   };
13282 
13283   // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13284   // Note: Commutes FSUB operands.
13285   auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) {
13286     if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) {
13287       return DAG.getNode(PreferredFusedOpcode, SL, VT,
13288                          DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)),
13289                          YZ.getOperand(1), X);
13290     }
13291     return SDValue();
13292   };
13293 
13294   // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
13295   // prefer to fold the multiply with fewer uses.
13296   if (isContractableFMUL(N0) && isContractableFMUL(N1) &&
13297       (N0.getNode()->use_size() > N1.getNode()->use_size())) {
13298     // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
13299     if (SDValue V = tryToFoldXSubYZ(N0, N1))
13300       return V;
13301     // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
13302     if (SDValue V = tryToFoldXYSubZ(N0, N1))
13303       return V;
13304   } else {
13305     // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13306     if (SDValue V = tryToFoldXYSubZ(N0, N1))
13307       return V;
13308     // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13309     if (SDValue V = tryToFoldXSubYZ(N0, N1))
13310       return V;
13311   }
13312 
13313   // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
13314   if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
13315       (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
13316     SDValue N00 = N0.getOperand(0).getOperand(0);
13317     SDValue N01 = N0.getOperand(0).getOperand(1);
13318     return DAG.getNode(PreferredFusedOpcode, SL, VT,
13319                        DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
13320                        DAG.getNode(ISD::FNEG, SL, VT, N1));
13321   }
13322 
13323   // Look through FP_EXTEND nodes to do more combining.
13324 
13325   // fold (fsub (fpext (fmul x, y)), z)
13326   //   -> (fma (fpext x), (fpext y), (fneg z))
13327   if (N0.getOpcode() == ISD::FP_EXTEND) {
13328     SDValue N00 = N0.getOperand(0);
13329     if (isContractableFMUL(N00) &&
13330         TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13331                             N00.getValueType())) {
13332       return DAG.getNode(PreferredFusedOpcode, SL, VT,
13333                          DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
13334                          DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
13335                          DAG.getNode(ISD::FNEG, SL, VT, N1));
13336     }
13337   }
13338 
13339   // fold (fsub x, (fpext (fmul y, z)))
13340   //   -> (fma (fneg (fpext y)), (fpext z), x)
13341   // Note: Commutes FSUB operands.
13342   if (N1.getOpcode() == ISD::FP_EXTEND) {
13343     SDValue N10 = N1.getOperand(0);
13344     if (isContractableFMUL(N10) &&
13345         TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13346                             N10.getValueType())) {
13347       return DAG.getNode(
13348           PreferredFusedOpcode, SL, VT,
13349           DAG.getNode(ISD::FNEG, SL, VT,
13350                       DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))),
13351           DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
13352     }
13353   }
13354 
13355   // fold (fsub (fpext (fneg (fmul, x, y))), z)
13356   //   -> (fneg (fma (fpext x), (fpext y), z))
13357   // Note: This could be removed with appropriate canonicalization of the
13358   // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13359   // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13360   // from implementing the canonicalization in visitFSUB.
13361   if (N0.getOpcode() == ISD::FP_EXTEND) {
13362     SDValue N00 = N0.getOperand(0);
13363     if (N00.getOpcode() == ISD::FNEG) {
13364       SDValue N000 = N00.getOperand(0);
13365       if (isContractableFMUL(N000) &&
13366           TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13367                               N00.getValueType())) {
13368         return DAG.getNode(
13369             ISD::FNEG, SL, VT,
13370             DAG.getNode(PreferredFusedOpcode, SL, VT,
13371                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
13372                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
13373                         N1));
13374       }
13375     }
13376   }
13377 
13378   // fold (fsub (fneg (fpext (fmul, x, y))), z)
13379   //   -> (fneg (fma (fpext x)), (fpext y), z)
13380   // Note: This could be removed with appropriate canonicalization of the
13381   // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13382   // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13383   // from implementing the canonicalization in visitFSUB.
13384   if (N0.getOpcode() == ISD::FNEG) {
13385     SDValue N00 = N0.getOperand(0);
13386     if (N00.getOpcode() == ISD::FP_EXTEND) {
13387       SDValue N000 = N00.getOperand(0);
13388       if (isContractableFMUL(N000) &&
13389           TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13390                               N000.getValueType())) {
13391         return DAG.getNode(
13392             ISD::FNEG, SL, VT,
13393             DAG.getNode(PreferredFusedOpcode, SL, VT,
13394                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
13395                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
13396                         N1));
13397       }
13398     }
13399   }
13400 
13401   auto isReassociable = [Options](SDNode *N) {
13402     return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
13403   };
13404 
13405   auto isContractableAndReassociableFMUL = [isContractableFMUL,
13406                                             isReassociable](SDValue N) {
13407     return isContractableFMUL(N) && isReassociable(N.getNode());
13408   };
13409 
13410   // More folding opportunities when target permits.
13411   if (Aggressive && isReassociable(N)) {
13412     bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract();
13413     // fold (fsub (fma x, y, (fmul u, v)), z)
13414     //   -> (fma x, y (fma u, v, (fneg z)))
13415     if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
13416         isContractableAndReassociableFMUL(N0.getOperand(2)) &&
13417         N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
13418       return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
13419                          N0.getOperand(1),
13420                          DAG.getNode(PreferredFusedOpcode, SL, VT,
13421                                      N0.getOperand(2).getOperand(0),
13422                                      N0.getOperand(2).getOperand(1),
13423                                      DAG.getNode(ISD::FNEG, SL, VT, N1)));
13424     }
13425 
13426     // fold (fsub x, (fma y, z, (fmul u, v)))
13427     //   -> (fma (fneg y), z, (fma (fneg u), v, x))
13428     if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
13429         isContractableAndReassociableFMUL(N1.getOperand(2)) &&
13430         N1->hasOneUse() && NoSignedZero) {
13431       SDValue N20 = N1.getOperand(2).getOperand(0);
13432       SDValue N21 = N1.getOperand(2).getOperand(1);
13433       return DAG.getNode(
13434           PreferredFusedOpcode, SL, VT,
13435           DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
13436           DAG.getNode(PreferredFusedOpcode, SL, VT,
13437                       DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0));
13438     }
13439 
13440     // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
13441     //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
13442     if (N0.getOpcode() == PreferredFusedOpcode &&
13443         N0->hasOneUse()) {
13444       SDValue N02 = N0.getOperand(2);
13445       if (N02.getOpcode() == ISD::FP_EXTEND) {
13446         SDValue N020 = N02.getOperand(0);
13447         if (isContractableAndReassociableFMUL(N020) &&
13448             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13449                                 N020.getValueType())) {
13450           return DAG.getNode(
13451               PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
13452               DAG.getNode(
13453                   PreferredFusedOpcode, SL, VT,
13454                   DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)),
13455                   DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)),
13456                   DAG.getNode(ISD::FNEG, SL, VT, N1)));
13457         }
13458       }
13459     }
13460 
13461     // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
13462     //   -> (fma (fpext x), (fpext y),
13463     //           (fma (fpext u), (fpext v), (fneg z)))
13464     // FIXME: This turns two single-precision and one double-precision
13465     // operation into two double-precision operations, which might not be
13466     // interesting for all targets, especially GPUs.
13467     if (N0.getOpcode() == ISD::FP_EXTEND) {
13468       SDValue N00 = N0.getOperand(0);
13469       if (N00.getOpcode() == PreferredFusedOpcode) {
13470         SDValue N002 = N00.getOperand(2);
13471         if (isContractableAndReassociableFMUL(N002) &&
13472             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13473                                 N00.getValueType())) {
13474           return DAG.getNode(
13475               PreferredFusedOpcode, SL, VT,
13476               DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
13477               DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
13478               DAG.getNode(
13479                   PreferredFusedOpcode, SL, VT,
13480                   DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)),
13481                   DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)),
13482                   DAG.getNode(ISD::FNEG, SL, VT, N1)));
13483         }
13484       }
13485     }
13486 
13487     // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
13488     //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
13489     if (N1.getOpcode() == PreferredFusedOpcode &&
13490         N1.getOperand(2).getOpcode() == ISD::FP_EXTEND &&
13491         N1->hasOneUse()) {
13492       SDValue N120 = N1.getOperand(2).getOperand(0);
13493       if (isContractableAndReassociableFMUL(N120) &&
13494           TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13495                               N120.getValueType())) {
13496         SDValue N1200 = N120.getOperand(0);
13497         SDValue N1201 = N120.getOperand(1);
13498         return DAG.getNode(
13499             PreferredFusedOpcode, SL, VT,
13500             DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
13501             DAG.getNode(PreferredFusedOpcode, SL, VT,
13502                         DAG.getNode(ISD::FNEG, SL, VT,
13503                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)),
13504                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0));
13505       }
13506     }
13507 
13508     // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
13509     //   -> (fma (fneg (fpext y)), (fpext z),
13510     //           (fma (fneg (fpext u)), (fpext v), x))
13511     // FIXME: This turns two single-precision and one double-precision
13512     // operation into two double-precision operations, which might not be
13513     // interesting for all targets, especially GPUs.
13514     if (N1.getOpcode() == ISD::FP_EXTEND &&
13515         N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
13516       SDValue CvtSrc = N1.getOperand(0);
13517       SDValue N100 = CvtSrc.getOperand(0);
13518       SDValue N101 = CvtSrc.getOperand(1);
13519       SDValue N102 = CvtSrc.getOperand(2);
13520       if (isContractableAndReassociableFMUL(N102) &&
13521           TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13522                               CvtSrc.getValueType())) {
13523         SDValue N1020 = N102.getOperand(0);
13524         SDValue N1021 = N102.getOperand(1);
13525         return DAG.getNode(
13526             PreferredFusedOpcode, SL, VT,
13527             DAG.getNode(ISD::FNEG, SL, VT,
13528                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)),
13529             DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
13530             DAG.getNode(PreferredFusedOpcode, SL, VT,
13531                         DAG.getNode(ISD::FNEG, SL, VT,
13532                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)),
13533                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0));
13534       }
13535     }
13536   }
13537 
13538   return SDValue();
13539 }
13540 
13541 /// Try to perform FMA combining on a given FMUL node based on the distributive
13542 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
13543 /// subtraction instead of addition).
13544 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
13545   SDValue N0 = N->getOperand(0);
13546   SDValue N1 = N->getOperand(1);
13547   EVT VT = N->getValueType(0);
13548   SDLoc SL(N);
13549 
13550   assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
13551 
13552   const TargetOptions &Options = DAG.getTarget().Options;
13553 
13554   // The transforms below are incorrect when x == 0 and y == inf, because the
13555   // intermediate multiplication produces a nan.
13556   if (!Options.NoInfsFPMath)
13557     return SDValue();
13558 
13559   // Floating-point multiply-add without intermediate rounding.
13560   bool HasFMA =
13561       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
13562       TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
13563       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
13564 
13565   // Floating-point multiply-add with intermediate rounding. This can result
13566   // in a less precise result due to the changed rounding order.
13567   bool HasFMAD = Options.UnsafeFPMath &&
13568                  (LegalOperations && TLI.isFMADLegal(DAG, N));
13569 
13570   // No valid opcode, do not combine.
13571   if (!HasFMAD && !HasFMA)
13572     return SDValue();
13573 
13574   // Always prefer FMAD to FMA for precision.
13575   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
13576   bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
13577 
13578   // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
13579   // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
13580   auto FuseFADD = [&](SDValue X, SDValue Y) {
13581     if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
13582       if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
13583         if (C->isExactlyValue(+1.0))
13584           return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
13585                              Y);
13586         if (C->isExactlyValue(-1.0))
13587           return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
13588                              DAG.getNode(ISD::FNEG, SL, VT, Y));
13589       }
13590     }
13591     return SDValue();
13592   };
13593 
13594   if (SDValue FMA = FuseFADD(N0, N1))
13595     return FMA;
13596   if (SDValue FMA = FuseFADD(N1, N0))
13597     return FMA;
13598 
13599   // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
13600   // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
13601   // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
13602   // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
13603   auto FuseFSUB = [&](SDValue X, SDValue Y) {
13604     if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
13605       if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
13606         if (C0->isExactlyValue(+1.0))
13607           return DAG.getNode(PreferredFusedOpcode, SL, VT,
13608                              DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
13609                              Y);
13610         if (C0->isExactlyValue(-1.0))
13611           return DAG.getNode(PreferredFusedOpcode, SL, VT,
13612                              DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
13613                              DAG.getNode(ISD::FNEG, SL, VT, Y));
13614       }
13615       if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
13616         if (C1->isExactlyValue(+1.0))
13617           return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
13618                              DAG.getNode(ISD::FNEG, SL, VT, Y));
13619         if (C1->isExactlyValue(-1.0))
13620           return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
13621                              Y);
13622       }
13623     }
13624     return SDValue();
13625   };
13626 
13627   if (SDValue FMA = FuseFSUB(N0, N1))
13628     return FMA;
13629   if (SDValue FMA = FuseFSUB(N1, N0))
13630     return FMA;
13631 
13632   return SDValue();
13633 }
13634 
13635 SDValue DAGCombiner::visitFADD(SDNode *N) {
13636   SDValue N0 = N->getOperand(0);
13637   SDValue N1 = N->getOperand(1);
13638   bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
13639   bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
13640   EVT VT = N->getValueType(0);
13641   SDLoc DL(N);
13642   const TargetOptions &Options = DAG.getTarget().Options;
13643   SDNodeFlags Flags = N->getFlags();
13644   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13645 
13646   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
13647     return R;
13648 
13649   // fold vector ops
13650   if (VT.isVector())
13651     if (SDValue FoldedVOp = SimplifyVBinOp(N))
13652       return FoldedVOp;
13653 
13654   // fold (fadd c1, c2) -> c1 + c2
13655   if (N0CFP && N1CFP)
13656     return DAG.getNode(ISD::FADD, DL, VT, N0, N1);
13657 
13658   // canonicalize constant to RHS
13659   if (N0CFP && !N1CFP)
13660     return DAG.getNode(ISD::FADD, DL, VT, N1, N0);
13661 
13662   // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
13663   ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
13664   if (N1C && N1C->isZero())
13665     if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
13666       return N0;
13667 
13668   if (SDValue NewSel = foldBinOpIntoSelect(N))
13669     return NewSel;
13670 
13671   // fold (fadd A, (fneg B)) -> (fsub A, B)
13672   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
13673     if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
13674             N1, DAG, LegalOperations, ForCodeSize))
13675       return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1);
13676 
13677   // fold (fadd (fneg A), B) -> (fsub B, A)
13678   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
13679     if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
13680             N0, DAG, LegalOperations, ForCodeSize))
13681       return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0);
13682 
13683   auto isFMulNegTwo = [](SDValue FMul) {
13684     if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
13685       return false;
13686     auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
13687     return C && C->isExactlyValue(-2.0);
13688   };
13689 
13690   // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
13691   if (isFMulNegTwo(N0)) {
13692     SDValue B = N0.getOperand(0);
13693     SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
13694     return DAG.getNode(ISD::FSUB, DL, VT, N1, Add);
13695   }
13696   // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
13697   if (isFMulNegTwo(N1)) {
13698     SDValue B = N1.getOperand(0);
13699     SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
13700     return DAG.getNode(ISD::FSUB, DL, VT, N0, Add);
13701   }
13702 
13703   // No FP constant should be created after legalization as Instruction
13704   // Selection pass has a hard time dealing with FP constants.
13705   bool AllowNewConst = (Level < AfterLegalizeDAG);
13706 
13707   // If nnan is enabled, fold lots of things.
13708   if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
13709     // If allowed, fold (fadd (fneg x), x) -> 0.0
13710     if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
13711       return DAG.getConstantFP(0.0, DL, VT);
13712 
13713     // If allowed, fold (fadd x, (fneg x)) -> 0.0
13714     if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
13715       return DAG.getConstantFP(0.0, DL, VT);
13716   }
13717 
13718   // If 'unsafe math' or reassoc and nsz, fold lots of things.
13719   // TODO: break out portions of the transformations below for which Unsafe is
13720   //       considered and which do not require both nsz and reassoc
13721   if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
13722        (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
13723       AllowNewConst) {
13724     // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
13725     if (N1CFP && N0.getOpcode() == ISD::FADD &&
13726         DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
13727       SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1);
13728       return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC);
13729     }
13730 
13731     // We can fold chains of FADD's of the same value into multiplications.
13732     // This transform is not safe in general because we are reducing the number
13733     // of rounding steps.
13734     if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
13735       if (N0.getOpcode() == ISD::FMUL) {
13736         bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
13737         bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
13738 
13739         // (fadd (fmul x, c), x) -> (fmul x, c+1)
13740         if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
13741           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
13742                                        DAG.getConstantFP(1.0, DL, VT));
13743           return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP);
13744         }
13745 
13746         // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
13747         if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
13748             N1.getOperand(0) == N1.getOperand(1) &&
13749             N0.getOperand(0) == N1.getOperand(0)) {
13750           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
13751                                        DAG.getConstantFP(2.0, DL, VT));
13752           return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP);
13753         }
13754       }
13755 
13756       if (N1.getOpcode() == ISD::FMUL) {
13757         bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
13758         bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
13759 
13760         // (fadd x, (fmul x, c)) -> (fmul x, c+1)
13761         if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
13762           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
13763                                        DAG.getConstantFP(1.0, DL, VT));
13764           return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP);
13765         }
13766 
13767         // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
13768         if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
13769             N0.getOperand(0) == N0.getOperand(1) &&
13770             N1.getOperand(0) == N0.getOperand(0)) {
13771           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
13772                                        DAG.getConstantFP(2.0, DL, VT));
13773           return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP);
13774         }
13775       }
13776 
13777       if (N0.getOpcode() == ISD::FADD) {
13778         bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
13779         // (fadd (fadd x, x), x) -> (fmul x, 3.0)
13780         if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
13781             (N0.getOperand(0) == N1)) {
13782           return DAG.getNode(ISD::FMUL, DL, VT, N1,
13783                              DAG.getConstantFP(3.0, DL, VT));
13784         }
13785       }
13786 
13787       if (N1.getOpcode() == ISD::FADD) {
13788         bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
13789         // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
13790         if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
13791             N1.getOperand(0) == N0) {
13792           return DAG.getNode(ISD::FMUL, DL, VT, N0,
13793                              DAG.getConstantFP(3.0, DL, VT));
13794         }
13795       }
13796 
13797       // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
13798       if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
13799           N0.getOperand(0) == N0.getOperand(1) &&
13800           N1.getOperand(0) == N1.getOperand(1) &&
13801           N0.getOperand(0) == N1.getOperand(0)) {
13802         return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
13803                            DAG.getConstantFP(4.0, DL, VT));
13804       }
13805     }
13806   } // enable-unsafe-fp-math
13807 
13808   // FADD -> FMA combines:
13809   if (SDValue Fused = visitFADDForFMACombine(N)) {
13810     AddToWorklist(Fused.getNode());
13811     return Fused;
13812   }
13813   return SDValue();
13814 }
13815 
13816 SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) {
13817   SDValue Chain = N->getOperand(0);
13818   SDValue N0 = N->getOperand(1);
13819   SDValue N1 = N->getOperand(2);
13820   EVT VT = N->getValueType(0);
13821   EVT ChainVT = N->getValueType(1);
13822   SDLoc DL(N);
13823   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13824 
13825   // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
13826   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
13827     if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
13828             N1, DAG, LegalOperations, ForCodeSize)) {
13829       return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
13830                          {Chain, N0, NegN1});
13831     }
13832 
13833   // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
13834   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
13835     if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
13836             N0, DAG, LegalOperations, ForCodeSize)) {
13837       return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
13838                          {Chain, N1, NegN0});
13839     }
13840   return SDValue();
13841 }
13842 
13843 SDValue DAGCombiner::visitFSUB(SDNode *N) {
13844   SDValue N0 = N->getOperand(0);
13845   SDValue N1 = N->getOperand(1);
13846   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
13847   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
13848   EVT VT = N->getValueType(0);
13849   SDLoc DL(N);
13850   const TargetOptions &Options = DAG.getTarget().Options;
13851   const SDNodeFlags Flags = N->getFlags();
13852   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13853 
13854   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
13855     return R;
13856 
13857   // fold vector ops
13858   if (VT.isVector())
13859     if (SDValue FoldedVOp = SimplifyVBinOp(N))
13860       return FoldedVOp;
13861 
13862   // fold (fsub c1, c2) -> c1-c2
13863   if (N0CFP && N1CFP)
13864     return DAG.getNode(ISD::FSUB, DL, VT, N0, N1);
13865 
13866   if (SDValue NewSel = foldBinOpIntoSelect(N))
13867     return NewSel;
13868 
13869   // (fsub A, 0) -> A
13870   if (N1CFP && N1CFP->isZero()) {
13871     if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
13872         Flags.hasNoSignedZeros()) {
13873       return N0;
13874     }
13875   }
13876 
13877   if (N0 == N1) {
13878     // (fsub x, x) -> 0.0
13879     if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
13880       return DAG.getConstantFP(0.0f, DL, VT);
13881   }
13882 
13883   // (fsub -0.0, N1) -> -N1
13884   if (N0CFP && N0CFP->isZero()) {
13885     if (N0CFP->isNegative() ||
13886         (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
13887       // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
13888       // flushed to zero, unless all users treat denorms as zero (DAZ).
13889       // FIXME: This transform will change the sign of a NaN and the behavior
13890       // of a signaling NaN. It is only valid when a NoNaN flag is present.
13891       DenormalMode DenormMode = DAG.getDenormalMode(VT);
13892       if (DenormMode == DenormalMode::getIEEE()) {
13893         if (SDValue NegN1 =
13894                 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
13895           return NegN1;
13896         if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
13897           return DAG.getNode(ISD::FNEG, DL, VT, N1);
13898       }
13899     }
13900   }
13901 
13902   if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
13903        (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
13904       N1.getOpcode() == ISD::FADD) {
13905     // X - (X + Y) -> -Y
13906     if (N0 == N1->getOperand(0))
13907       return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1));
13908     // X - (Y + X) -> -Y
13909     if (N0 == N1->getOperand(1))
13910       return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0));
13911   }
13912 
13913   // fold (fsub A, (fneg B)) -> (fadd A, B)
13914   if (SDValue NegN1 =
13915           TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
13916     return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1);
13917 
13918   // FSUB -> FMA combines:
13919   if (SDValue Fused = visitFSUBForFMACombine(N)) {
13920     AddToWorklist(Fused.getNode());
13921     return Fused;
13922   }
13923 
13924   return SDValue();
13925 }
13926 
13927 SDValue DAGCombiner::visitFMUL(SDNode *N) {
13928   SDValue N0 = N->getOperand(0);
13929   SDValue N1 = N->getOperand(1);
13930   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
13931   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
13932   EVT VT = N->getValueType(0);
13933   SDLoc DL(N);
13934   const TargetOptions &Options = DAG.getTarget().Options;
13935   const SDNodeFlags Flags = N->getFlags();
13936   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13937 
13938   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
13939     return R;
13940 
13941   // fold vector ops
13942   if (VT.isVector()) {
13943     // This just handles C1 * C2 for vectors. Other vector folds are below.
13944     if (SDValue FoldedVOp = SimplifyVBinOp(N))
13945       return FoldedVOp;
13946   }
13947 
13948   // fold (fmul c1, c2) -> c1*c2
13949   if (N0CFP && N1CFP)
13950     return DAG.getNode(ISD::FMUL, DL, VT, N0, N1);
13951 
13952   // canonicalize constant to RHS
13953   if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
13954      !DAG.isConstantFPBuildVectorOrConstantFP(N1))
13955     return DAG.getNode(ISD::FMUL, DL, VT, N1, N0);
13956 
13957   if (SDValue NewSel = foldBinOpIntoSelect(N))
13958     return NewSel;
13959 
13960   if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
13961     // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
13962     if (DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
13963         N0.getOpcode() == ISD::FMUL) {
13964       SDValue N00 = N0.getOperand(0);
13965       SDValue N01 = N0.getOperand(1);
13966       // Avoid an infinite loop by making sure that N00 is not a constant
13967       // (the inner multiply has not been constant folded yet).
13968       if (DAG.isConstantFPBuildVectorOrConstantFP(N01) &&
13969           !DAG.isConstantFPBuildVectorOrConstantFP(N00)) {
13970         SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1);
13971         return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts);
13972       }
13973     }
13974 
13975     // Match a special-case: we convert X * 2.0 into fadd.
13976     // fmul (fadd X, X), C -> fmul X, 2.0 * C
13977     if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
13978         N0.getOperand(0) == N0.getOperand(1)) {
13979       const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
13980       SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1);
13981       return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts);
13982     }
13983   }
13984 
13985   // fold (fmul X, 2.0) -> (fadd X, X)
13986   if (N1CFP && N1CFP->isExactlyValue(+2.0))
13987     return DAG.getNode(ISD::FADD, DL, VT, N0, N0);
13988 
13989   // fold (fmul X, -1.0) -> (fneg X)
13990   if (N1CFP && N1CFP->isExactlyValue(-1.0))
13991     if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
13992       return DAG.getNode(ISD::FNEG, DL, VT, N0);
13993 
13994   // -N0 * -N1 --> N0 * N1
13995   TargetLowering::NegatibleCost CostN0 =
13996       TargetLowering::NegatibleCost::Expensive;
13997   TargetLowering::NegatibleCost CostN1 =
13998       TargetLowering::NegatibleCost::Expensive;
13999   SDValue NegN0 =
14000       TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
14001   SDValue NegN1 =
14002       TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
14003   if (NegN0 && NegN1 &&
14004       (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
14005        CostN1 == TargetLowering::NegatibleCost::Cheaper))
14006     return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1);
14007 
14008   // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
14009   // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
14010   if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
14011       (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
14012       TLI.isOperationLegal(ISD::FABS, VT)) {
14013     SDValue Select = N0, X = N1;
14014     if (Select.getOpcode() != ISD::SELECT)
14015       std::swap(Select, X);
14016 
14017     SDValue Cond = Select.getOperand(0);
14018     auto TrueOpnd  = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
14019     auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
14020 
14021     if (TrueOpnd && FalseOpnd &&
14022         Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
14023         isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
14024         cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
14025       ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14026       switch (CC) {
14027       default: break;
14028       case ISD::SETOLT:
14029       case ISD::SETULT:
14030       case ISD::SETOLE:
14031       case ISD::SETULE:
14032       case ISD::SETLT:
14033       case ISD::SETLE:
14034         std::swap(TrueOpnd, FalseOpnd);
14035         LLVM_FALLTHROUGH;
14036       case ISD::SETOGT:
14037       case ISD::SETUGT:
14038       case ISD::SETOGE:
14039       case ISD::SETUGE:
14040       case ISD::SETGT:
14041       case ISD::SETGE:
14042         if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
14043             TLI.isOperationLegal(ISD::FNEG, VT))
14044           return DAG.getNode(ISD::FNEG, DL, VT,
14045                    DAG.getNode(ISD::FABS, DL, VT, X));
14046         if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
14047           return DAG.getNode(ISD::FABS, DL, VT, X);
14048 
14049         break;
14050       }
14051     }
14052   }
14053 
14054   // FMUL -> FMA combines:
14055   if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
14056     AddToWorklist(Fused.getNode());
14057     return Fused;
14058   }
14059 
14060   return SDValue();
14061 }
14062 
14063 SDValue DAGCombiner::visitFMA(SDNode *N) {
14064   SDValue N0 = N->getOperand(0);
14065   SDValue N1 = N->getOperand(1);
14066   SDValue N2 = N->getOperand(2);
14067   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
14068   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
14069   EVT VT = N->getValueType(0);
14070   SDLoc DL(N);
14071   const TargetOptions &Options = DAG.getTarget().Options;
14072   // FMA nodes have flags that propagate to the created nodes.
14073   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14074 
14075   bool UnsafeFPMath =
14076       Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
14077 
14078   // Constant fold FMA.
14079   if (isa<ConstantFPSDNode>(N0) &&
14080       isa<ConstantFPSDNode>(N1) &&
14081       isa<ConstantFPSDNode>(N2)) {
14082     return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
14083   }
14084 
14085   // (-N0 * -N1) + N2 --> (N0 * N1) + N2
14086   TargetLowering::NegatibleCost CostN0 =
14087       TargetLowering::NegatibleCost::Expensive;
14088   TargetLowering::NegatibleCost CostN1 =
14089       TargetLowering::NegatibleCost::Expensive;
14090   SDValue NegN0 =
14091       TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
14092   SDValue NegN1 =
14093       TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
14094   if (NegN0 && NegN1 &&
14095       (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
14096        CostN1 == TargetLowering::NegatibleCost::Cheaper))
14097     return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2);
14098 
14099   if (UnsafeFPMath) {
14100     if (N0CFP && N0CFP->isZero())
14101       return N2;
14102     if (N1CFP && N1CFP->isZero())
14103       return N2;
14104   }
14105 
14106   if (N0CFP && N0CFP->isExactlyValue(1.0))
14107     return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
14108   if (N1CFP && N1CFP->isExactlyValue(1.0))
14109     return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
14110 
14111   // Canonicalize (fma c, x, y) -> (fma x, c, y)
14112   if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
14113      !DAG.isConstantFPBuildVectorOrConstantFP(N1))
14114     return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
14115 
14116   if (UnsafeFPMath) {
14117     // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
14118     if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
14119         DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
14120         DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
14121       return DAG.getNode(ISD::FMUL, DL, VT, N0,
14122                          DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1)));
14123     }
14124 
14125     // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
14126     if (N0.getOpcode() == ISD::FMUL &&
14127         DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
14128         DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
14129       return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
14130                          DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)),
14131                          N2);
14132     }
14133   }
14134 
14135   // (fma x, -1, y) -> (fadd (fneg x), y)
14136   if (N1CFP) {
14137     if (N1CFP->isExactlyValue(1.0))
14138       return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
14139 
14140     if (N1CFP->isExactlyValue(-1.0) &&
14141         (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
14142       SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
14143       AddToWorklist(RHSNeg.getNode());
14144       return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
14145     }
14146 
14147     // fma (fneg x), K, y -> fma x -K, y
14148     if (N0.getOpcode() == ISD::FNEG &&
14149         (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
14150          (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
14151                                               ForCodeSize)))) {
14152       return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
14153                          DAG.getNode(ISD::FNEG, DL, VT, N1), N2);
14154     }
14155   }
14156 
14157   if (UnsafeFPMath) {
14158     // (fma x, c, x) -> (fmul x, (c+1))
14159     if (N1CFP && N0 == N2) {
14160       return DAG.getNode(
14161           ISD::FMUL, DL, VT, N0,
14162           DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT)));
14163     }
14164 
14165     // (fma x, c, (fneg x)) -> (fmul x, (c-1))
14166     if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
14167       return DAG.getNode(
14168           ISD::FMUL, DL, VT, N0,
14169           DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT)));
14170     }
14171   }
14172 
14173   // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
14174   // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
14175   if (!TLI.isFNegFree(VT))
14176     if (SDValue Neg = TLI.getCheaperNegatedExpression(
14177             SDValue(N, 0), DAG, LegalOperations, ForCodeSize))
14178       return DAG.getNode(ISD::FNEG, DL, VT, Neg);
14179   return SDValue();
14180 }
14181 
14182 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
14183 // reciprocal.
14184 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
14185 // Notice that this is not always beneficial. One reason is different targets
14186 // may have different costs for FDIV and FMUL, so sometimes the cost of two
14187 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
14188 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
14189 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
14190   // TODO: Limit this transform based on optsize/minsize - it always creates at
14191   //       least 1 extra instruction. But the perf win may be substantial enough
14192   //       that only minsize should restrict this.
14193   bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
14194   const SDNodeFlags Flags = N->getFlags();
14195   if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal()))
14196     return SDValue();
14197 
14198   // Skip if current node is a reciprocal/fneg-reciprocal.
14199   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
14200   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
14201   if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
14202     return SDValue();
14203 
14204   // Exit early if the target does not want this transform or if there can't
14205   // possibly be enough uses of the divisor to make the transform worthwhile.
14206   unsigned MinUses = TLI.combineRepeatedFPDivisors();
14207 
14208   // For splat vectors, scale the number of uses by the splat factor. If we can
14209   // convert the division into a scalar op, that will likely be much faster.
14210   unsigned NumElts = 1;
14211   EVT VT = N->getValueType(0);
14212   if (VT.isVector() && DAG.isSplatValue(N1))
14213     NumElts = VT.getVectorNumElements();
14214 
14215   if (!MinUses || (N1->use_size() * NumElts) < MinUses)
14216     return SDValue();
14217 
14218   // Find all FDIV users of the same divisor.
14219   // Use a set because duplicates may be present in the user list.
14220   SetVector<SDNode *> Users;
14221   for (auto *U : N1->uses()) {
14222     if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
14223       // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
14224       if (U->getOperand(1).getOpcode() == ISD::FSQRT &&
14225           U->getOperand(0) == U->getOperand(1).getOperand(0) &&
14226           U->getFlags().hasAllowReassociation() &&
14227           U->getFlags().hasNoSignedZeros())
14228         continue;
14229 
14230       // This division is eligible for optimization only if global unsafe math
14231       // is enabled or if this division allows reciprocal formation.
14232       if (UnsafeMath || U->getFlags().hasAllowReciprocal())
14233         Users.insert(U);
14234     }
14235   }
14236 
14237   // Now that we have the actual number of divisor uses, make sure it meets
14238   // the minimum threshold specified by the target.
14239   if ((Users.size() * NumElts) < MinUses)
14240     return SDValue();
14241 
14242   SDLoc DL(N);
14243   SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
14244   SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
14245 
14246   // Dividend / Divisor -> Dividend * Reciprocal
14247   for (auto *U : Users) {
14248     SDValue Dividend = U->getOperand(0);
14249     if (Dividend != FPOne) {
14250       SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
14251                                     Reciprocal, Flags);
14252       CombineTo(U, NewNode);
14253     } else if (U != Reciprocal.getNode()) {
14254       // In the absence of fast-math-flags, this user node is always the
14255       // same node as Reciprocal, but with FMF they may be different nodes.
14256       CombineTo(U, Reciprocal);
14257     }
14258   }
14259   return SDValue(N, 0);  // N was replaced.
14260 }
14261 
14262 SDValue DAGCombiner::visitFDIV(SDNode *N) {
14263   SDValue N0 = N->getOperand(0);
14264   SDValue N1 = N->getOperand(1);
14265   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
14266   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
14267   EVT VT = N->getValueType(0);
14268   SDLoc DL(N);
14269   const TargetOptions &Options = DAG.getTarget().Options;
14270   SDNodeFlags Flags = N->getFlags();
14271   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14272 
14273   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
14274     return R;
14275 
14276   // fold vector ops
14277   if (VT.isVector())
14278     if (SDValue FoldedVOp = SimplifyVBinOp(N))
14279       return FoldedVOp;
14280 
14281   // fold (fdiv c1, c2) -> c1/c2
14282   if (N0CFP && N1CFP)
14283     return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
14284 
14285   if (SDValue NewSel = foldBinOpIntoSelect(N))
14286     return NewSel;
14287 
14288   if (SDValue V = combineRepeatedFPDivisors(N))
14289     return V;
14290 
14291   if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
14292     // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
14293     if (N1CFP) {
14294       // Compute the reciprocal 1.0 / c2.
14295       const APFloat &N1APF = N1CFP->getValueAPF();
14296       APFloat Recip(N1APF.getSemantics(), 1); // 1.0
14297       APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
14298       // Only do the transform if the reciprocal is a legal fp immediate that
14299       // isn't too nasty (eg NaN, denormal, ...).
14300       if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
14301           (!LegalOperations ||
14302            // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
14303            // backend)... we should handle this gracefully after Legalize.
14304            // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
14305            TLI.isOperationLegal(ISD::ConstantFP, VT) ||
14306            TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
14307         return DAG.getNode(ISD::FMUL, DL, VT, N0,
14308                            DAG.getConstantFP(Recip, DL, VT));
14309     }
14310 
14311     // If this FDIV is part of a reciprocal square root, it may be folded
14312     // into a target-specific square root estimate instruction.
14313     if (N1.getOpcode() == ISD::FSQRT) {
14314       if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
14315         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
14316     } else if (N1.getOpcode() == ISD::FP_EXTEND &&
14317                N1.getOperand(0).getOpcode() == ISD::FSQRT) {
14318       if (SDValue RV =
14319               buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
14320         RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
14321         AddToWorklist(RV.getNode());
14322         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
14323       }
14324     } else if (N1.getOpcode() == ISD::FP_ROUND &&
14325                N1.getOperand(0).getOpcode() == ISD::FSQRT) {
14326       if (SDValue RV =
14327               buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
14328         RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
14329         AddToWorklist(RV.getNode());
14330         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
14331       }
14332     } else if (N1.getOpcode() == ISD::FMUL) {
14333       // Look through an FMUL. Even though this won't remove the FDIV directly,
14334       // it's still worthwhile to get rid of the FSQRT if possible.
14335       SDValue Sqrt, Y;
14336       if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
14337         Sqrt = N1.getOperand(0);
14338         Y = N1.getOperand(1);
14339       } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
14340         Sqrt = N1.getOperand(1);
14341         Y = N1.getOperand(0);
14342       }
14343       if (Sqrt.getNode()) {
14344         // If the other multiply operand is known positive, pull it into the
14345         // sqrt. That will eliminate the division if we convert to an estimate.
14346         if (Flags.hasAllowReassociation() && N1.hasOneUse() &&
14347             N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) {
14348           SDValue A;
14349           if (Y.getOpcode() == ISD::FABS && Y.hasOneUse())
14350             A = Y.getOperand(0);
14351           else if (Y == Sqrt.getOperand(0))
14352             A = Y;
14353           if (A) {
14354             // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
14355             // X / (A * sqrt(A))       --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
14356             SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A);
14357             SDValue AAZ =
14358                 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0));
14359             if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags))
14360               return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt);
14361 
14362             // Estimate creation failed. Clean up speculatively created nodes.
14363             recursivelyDeleteUnusedNodes(AAZ.getNode());
14364           }
14365         }
14366 
14367         // We found a FSQRT, so try to make this fold:
14368         // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
14369         if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) {
14370           SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y);
14371           AddToWorklist(Div.getNode());
14372           return DAG.getNode(ISD::FMUL, DL, VT, N0, Div);
14373         }
14374       }
14375     }
14376 
14377     // Fold into a reciprocal estimate and multiply instead of a real divide.
14378     if (Options.NoInfsFPMath || Flags.hasNoInfs())
14379       if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
14380         return RV;
14381   }
14382 
14383   // Fold X/Sqrt(X) -> Sqrt(X)
14384   if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
14385       (Options.UnsafeFPMath || Flags.hasAllowReassociation()))
14386     if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0))
14387       return N1;
14388 
14389   // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
14390   TargetLowering::NegatibleCost CostN0 =
14391       TargetLowering::NegatibleCost::Expensive;
14392   TargetLowering::NegatibleCost CostN1 =
14393       TargetLowering::NegatibleCost::Expensive;
14394   SDValue NegN0 =
14395       TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
14396   SDValue NegN1 =
14397       TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
14398   if (NegN0 && NegN1 &&
14399       (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
14400        CostN1 == TargetLowering::NegatibleCost::Cheaper))
14401     return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1);
14402 
14403   return SDValue();
14404 }
14405 
14406 SDValue DAGCombiner::visitFREM(SDNode *N) {
14407   SDValue N0 = N->getOperand(0);
14408   SDValue N1 = N->getOperand(1);
14409   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
14410   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
14411   EVT VT = N->getValueType(0);
14412   SDNodeFlags Flags = N->getFlags();
14413   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14414 
14415   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
14416     return R;
14417 
14418   // fold (frem c1, c2) -> fmod(c1,c2)
14419   if (N0CFP && N1CFP)
14420     return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
14421 
14422   if (SDValue NewSel = foldBinOpIntoSelect(N))
14423     return NewSel;
14424 
14425   return SDValue();
14426 }
14427 
14428 SDValue DAGCombiner::visitFSQRT(SDNode *N) {
14429   SDNodeFlags Flags = N->getFlags();
14430   const TargetOptions &Options = DAG.getTarget().Options;
14431 
14432   // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
14433   // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
14434   if (!Flags.hasApproximateFuncs() ||
14435       (!Options.NoInfsFPMath && !Flags.hasNoInfs()))
14436     return SDValue();
14437 
14438   SDValue N0 = N->getOperand(0);
14439   if (TLI.isFsqrtCheap(N0, DAG))
14440     return SDValue();
14441 
14442   // FSQRT nodes have flags that propagate to the created nodes.
14443   // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
14444   //       transform the fdiv, we may produce a sub-optimal estimate sequence
14445   //       because the reciprocal calculation may not have to filter out a
14446   //       0.0 input.
14447   return buildSqrtEstimate(N0, Flags);
14448 }
14449 
14450 /// copysign(x, fp_extend(y)) -> copysign(x, y)
14451 /// copysign(x, fp_round(y)) -> copysign(x, y)
14452 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
14453   SDValue N1 = N->getOperand(1);
14454   if ((N1.getOpcode() == ISD::FP_EXTEND ||
14455        N1.getOpcode() == ISD::FP_ROUND)) {
14456     EVT N1VT = N1->getValueType(0);
14457     EVT N1Op0VT = N1->getOperand(0).getValueType();
14458 
14459     // Always fold no-op FP casts.
14460     if (N1VT == N1Op0VT)
14461       return true;
14462 
14463     // Do not optimize out type conversion of f128 type yet.
14464     // For some targets like x86_64, configuration is changed to keep one f128
14465     // value in one SSE register, but instruction selection cannot handle
14466     // FCOPYSIGN on SSE registers yet.
14467     if (N1Op0VT == MVT::f128)
14468       return false;
14469 
14470     // Avoid mismatched vector operand types, for better instruction selection.
14471     if (N1Op0VT.isVector())
14472       return false;
14473 
14474     return true;
14475   }
14476   return false;
14477 }
14478 
14479 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
14480   SDValue N0 = N->getOperand(0);
14481   SDValue N1 = N->getOperand(1);
14482   bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
14483   bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
14484   EVT VT = N->getValueType(0);
14485 
14486   if (N0CFP && N1CFP) // Constant fold
14487     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
14488 
14489   if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
14490     const APFloat &V = N1C->getValueAPF();
14491     // copysign(x, c1) -> fabs(x)       iff ispos(c1)
14492     // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
14493     if (!V.isNegative()) {
14494       if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
14495         return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
14496     } else {
14497       if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
14498         return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
14499                            DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
14500     }
14501   }
14502 
14503   // copysign(fabs(x), y) -> copysign(x, y)
14504   // copysign(fneg(x), y) -> copysign(x, y)
14505   // copysign(copysign(x,z), y) -> copysign(x, y)
14506   if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
14507       N0.getOpcode() == ISD::FCOPYSIGN)
14508     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
14509 
14510   // copysign(x, abs(y)) -> abs(x)
14511   if (N1.getOpcode() == ISD::FABS)
14512     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
14513 
14514   // copysign(x, copysign(y,z)) -> copysign(x, z)
14515   if (N1.getOpcode() == ISD::FCOPYSIGN)
14516     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
14517 
14518   // copysign(x, fp_extend(y)) -> copysign(x, y)
14519   // copysign(x, fp_round(y)) -> copysign(x, y)
14520   if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
14521     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
14522 
14523   return SDValue();
14524 }
14525 
14526 SDValue DAGCombiner::visitFPOW(SDNode *N) {
14527   ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
14528   if (!ExponentC)
14529     return SDValue();
14530   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14531 
14532   // Try to convert x ** (1/3) into cube root.
14533   // TODO: Handle the various flavors of long double.
14534   // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
14535   //       Some range near 1/3 should be fine.
14536   EVT VT = N->getValueType(0);
14537   if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
14538       (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
14539     // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
14540     // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
14541     // pow(-val, 1/3) =  nan; cbrt(-val) = -num.
14542     // For regular numbers, rounding may cause the results to differ.
14543     // Therefore, we require { nsz ninf nnan afn } for this transform.
14544     // TODO: We could select out the special cases if we don't have nsz/ninf.
14545     SDNodeFlags Flags = N->getFlags();
14546     if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
14547         !Flags.hasApproximateFuncs())
14548       return SDValue();
14549 
14550     // Do not create a cbrt() libcall if the target does not have it, and do not
14551     // turn a pow that has lowering support into a cbrt() libcall.
14552     if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
14553         (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
14554          DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
14555       return SDValue();
14556 
14557     return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0));
14558   }
14559 
14560   // Try to convert x ** (1/4) and x ** (3/4) into square roots.
14561   // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
14562   // TODO: This could be extended (using a target hook) to handle smaller
14563   // power-of-2 fractional exponents.
14564   bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
14565   bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
14566   if (ExponentIs025 || ExponentIs075) {
14567     // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
14568     // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) =  NaN.
14569     // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
14570     // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) =  NaN.
14571     // For regular numbers, rounding may cause the results to differ.
14572     // Therefore, we require { nsz ninf afn } for this transform.
14573     // TODO: We could select out the special cases if we don't have nsz/ninf.
14574     SDNodeFlags Flags = N->getFlags();
14575 
14576     // We only need no signed zeros for the 0.25 case.
14577     if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
14578         !Flags.hasApproximateFuncs())
14579       return SDValue();
14580 
14581     // Don't double the number of libcalls. We are trying to inline fast code.
14582     if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
14583       return SDValue();
14584 
14585     // Assume that libcalls are the smallest code.
14586     // TODO: This restriction should probably be lifted for vectors.
14587     if (ForCodeSize)
14588       return SDValue();
14589 
14590     // pow(X, 0.25) --> sqrt(sqrt(X))
14591     SDLoc DL(N);
14592     SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0));
14593     SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt);
14594     if (ExponentIs025)
14595       return SqrtSqrt;
14596     // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
14597     return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt);
14598   }
14599 
14600   return SDValue();
14601 }
14602 
14603 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
14604                                const TargetLowering &TLI) {
14605   // This optimization is guarded by a function attribute because it may produce
14606   // unexpected results. Ie, programs may be relying on the platform-specific
14607   // undefined behavior when the float-to-int conversion overflows.
14608   const Function &F = DAG.getMachineFunction().getFunction();
14609   Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
14610   if (StrictOverflow.getValueAsString().equals("false"))
14611     return SDValue();
14612 
14613   // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
14614   // replacing casts with a libcall. We also must be allowed to ignore -0.0
14615   // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
14616   // conversions would return +0.0.
14617   // FIXME: We should be able to use node-level FMF here.
14618   // TODO: If strict math, should we use FABS (+ range check for signed cast)?
14619   EVT VT = N->getValueType(0);
14620   if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
14621       !DAG.getTarget().Options.NoSignedZerosFPMath)
14622     return SDValue();
14623 
14624   // fptosi/fptoui round towards zero, so converting from FP to integer and
14625   // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
14626   SDValue N0 = N->getOperand(0);
14627   if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
14628       N0.getOperand(0).getValueType() == VT)
14629     return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
14630 
14631   if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
14632       N0.getOperand(0).getValueType() == VT)
14633     return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
14634 
14635   return SDValue();
14636 }
14637 
14638 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
14639   SDValue N0 = N->getOperand(0);
14640   EVT VT = N->getValueType(0);
14641   EVT OpVT = N0.getValueType();
14642 
14643   // [us]itofp(undef) = 0, because the result value is bounded.
14644   if (N0.isUndef())
14645     return DAG.getConstantFP(0.0, SDLoc(N), VT);
14646 
14647   // fold (sint_to_fp c1) -> c1fp
14648   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
14649       // ...but only if the target supports immediate floating-point values
14650       (!LegalOperations ||
14651        TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
14652     return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
14653 
14654   // If the input is a legal type, and SINT_TO_FP is not legal on this target,
14655   // but UINT_TO_FP is legal on this target, try to convert.
14656   if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
14657       hasOperation(ISD::UINT_TO_FP, OpVT)) {
14658     // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
14659     if (DAG.SignBitIsZero(N0))
14660       return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
14661   }
14662 
14663   // The next optimizations are desirable only if SELECT_CC can be lowered.
14664   // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
14665   if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
14666       !VT.isVector() &&
14667       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
14668     SDLoc DL(N);
14669     return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT),
14670                          DAG.getConstantFP(0.0, DL, VT));
14671   }
14672 
14673   // fold (sint_to_fp (zext (setcc x, y, cc))) ->
14674   //      (select (setcc x, y, cc), 1.0, 0.0)
14675   if (N0.getOpcode() == ISD::ZERO_EXTEND &&
14676       N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() &&
14677       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
14678     SDLoc DL(N);
14679     return DAG.getSelect(DL, VT, N0.getOperand(0),
14680                          DAG.getConstantFP(1.0, DL, VT),
14681                          DAG.getConstantFP(0.0, DL, VT));
14682   }
14683 
14684   if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
14685     return FTrunc;
14686 
14687   return SDValue();
14688 }
14689 
14690 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
14691   SDValue N0 = N->getOperand(0);
14692   EVT VT = N->getValueType(0);
14693   EVT OpVT = N0.getValueType();
14694 
14695   // [us]itofp(undef) = 0, because the result value is bounded.
14696   if (N0.isUndef())
14697     return DAG.getConstantFP(0.0, SDLoc(N), VT);
14698 
14699   // fold (uint_to_fp c1) -> c1fp
14700   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
14701       // ...but only if the target supports immediate floating-point values
14702       (!LegalOperations ||
14703        TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
14704     return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
14705 
14706   // If the input is a legal type, and UINT_TO_FP is not legal on this target,
14707   // but SINT_TO_FP is legal on this target, try to convert.
14708   if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
14709       hasOperation(ISD::SINT_TO_FP, OpVT)) {
14710     // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
14711     if (DAG.SignBitIsZero(N0))
14712       return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
14713   }
14714 
14715   // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
14716   if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
14717       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
14718     SDLoc DL(N);
14719     return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT),
14720                          DAG.getConstantFP(0.0, DL, VT));
14721   }
14722 
14723   if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
14724     return FTrunc;
14725 
14726   return SDValue();
14727 }
14728 
14729 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
14730 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
14731   SDValue N0 = N->getOperand(0);
14732   EVT VT = N->getValueType(0);
14733 
14734   if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
14735     return SDValue();
14736 
14737   SDValue Src = N0.getOperand(0);
14738   EVT SrcVT = Src.getValueType();
14739   bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
14740   bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
14741 
14742   // We can safely assume the conversion won't overflow the output range,
14743   // because (for example) (uint8_t)18293.f is undefined behavior.
14744 
14745   // Since we can assume the conversion won't overflow, our decision as to
14746   // whether the input will fit in the float should depend on the minimum
14747   // of the input range and output range.
14748 
14749   // This means this is also safe for a signed input and unsigned output, since
14750   // a negative input would lead to undefined behavior.
14751   unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
14752   unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
14753   unsigned ActualSize = std::min(InputSize, OutputSize);
14754   const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
14755 
14756   // We can only fold away the float conversion if the input range can be
14757   // represented exactly in the float range.
14758   if (APFloat::semanticsPrecision(sem) >= ActualSize) {
14759     if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
14760       unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
14761                                                        : ISD::ZERO_EXTEND;
14762       return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
14763     }
14764     if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
14765       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
14766     return DAG.getBitcast(VT, Src);
14767   }
14768   return SDValue();
14769 }
14770 
14771 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
14772   SDValue N0 = N->getOperand(0);
14773   EVT VT = N->getValueType(0);
14774 
14775   // fold (fp_to_sint undef) -> undef
14776   if (N0.isUndef())
14777     return DAG.getUNDEF(VT);
14778 
14779   // fold (fp_to_sint c1fp) -> c1
14780   if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14781     return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
14782 
14783   return FoldIntToFPToInt(N, DAG);
14784 }
14785 
14786 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
14787   SDValue N0 = N->getOperand(0);
14788   EVT VT = N->getValueType(0);
14789 
14790   // fold (fp_to_uint undef) -> undef
14791   if (N0.isUndef())
14792     return DAG.getUNDEF(VT);
14793 
14794   // fold (fp_to_uint c1fp) -> c1
14795   if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14796     return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
14797 
14798   return FoldIntToFPToInt(N, DAG);
14799 }
14800 
14801 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
14802   SDValue N0 = N->getOperand(0);
14803   SDValue N1 = N->getOperand(1);
14804   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
14805   EVT VT = N->getValueType(0);
14806 
14807   // fold (fp_round c1fp) -> c1fp
14808   if (N0CFP)
14809     return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
14810 
14811   // fold (fp_round (fp_extend x)) -> x
14812   if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
14813     return N0.getOperand(0);
14814 
14815   // fold (fp_round (fp_round x)) -> (fp_round x)
14816   if (N0.getOpcode() == ISD::FP_ROUND) {
14817     const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
14818     const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
14819 
14820     // Skip this folding if it results in an fp_round from f80 to f16.
14821     //
14822     // f80 to f16 always generates an expensive (and as yet, unimplemented)
14823     // libcall to __truncxfhf2 instead of selecting native f16 conversion
14824     // instructions from f32 or f64.  Moreover, the first (value-preserving)
14825     // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
14826     // x86.
14827     if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
14828       return SDValue();
14829 
14830     // If the first fp_round isn't a value preserving truncation, it might
14831     // introduce a tie in the second fp_round, that wouldn't occur in the
14832     // single-step fp_round we want to fold to.
14833     // In other words, double rounding isn't the same as rounding.
14834     // Also, this is a value preserving truncation iff both fp_round's are.
14835     if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
14836       SDLoc DL(N);
14837       return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
14838                          DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
14839     }
14840   }
14841 
14842   // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
14843   if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
14844     SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
14845                               N0.getOperand(0), N1);
14846     AddToWorklist(Tmp.getNode());
14847     return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
14848                        Tmp, N0.getOperand(1));
14849   }
14850 
14851   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
14852     return NewVSel;
14853 
14854   return SDValue();
14855 }
14856 
14857 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
14858   SDValue N0 = N->getOperand(0);
14859   EVT VT = N->getValueType(0);
14860 
14861   // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
14862   if (N->hasOneUse() &&
14863       N->use_begin()->getOpcode() == ISD::FP_ROUND)
14864     return SDValue();
14865 
14866   // fold (fp_extend c1fp) -> c1fp
14867   if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14868     return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
14869 
14870   // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
14871   if (N0.getOpcode() == ISD::FP16_TO_FP &&
14872       TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
14873     return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
14874 
14875   // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
14876   // value of X.
14877   if (N0.getOpcode() == ISD::FP_ROUND
14878       && N0.getConstantOperandVal(1) == 1) {
14879     SDValue In = N0.getOperand(0);
14880     if (In.getValueType() == VT) return In;
14881     if (VT.bitsLT(In.getValueType()))
14882       return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
14883                          In, N0.getOperand(1));
14884     return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
14885   }
14886 
14887   // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
14888   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
14889        TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
14890     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14891     SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
14892                                      LN0->getChain(),
14893                                      LN0->getBasePtr(), N0.getValueType(),
14894                                      LN0->getMemOperand());
14895     CombineTo(N, ExtLoad);
14896     CombineTo(N0.getNode(),
14897               DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
14898                           N0.getValueType(), ExtLoad,
14899                           DAG.getIntPtrConstant(1, SDLoc(N0))),
14900               ExtLoad.getValue(1));
14901     return SDValue(N, 0);   // Return N so it doesn't get rechecked!
14902   }
14903 
14904   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
14905     return NewVSel;
14906 
14907   return SDValue();
14908 }
14909 
14910 SDValue DAGCombiner::visitFCEIL(SDNode *N) {
14911   SDValue N0 = N->getOperand(0);
14912   EVT VT = N->getValueType(0);
14913 
14914   // fold (fceil c1) -> fceil(c1)
14915   if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14916     return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
14917 
14918   return SDValue();
14919 }
14920 
14921 SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
14922   SDValue N0 = N->getOperand(0);
14923   EVT VT = N->getValueType(0);
14924 
14925   // fold (ftrunc c1) -> ftrunc(c1)
14926   if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14927     return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
14928 
14929   // fold ftrunc (known rounded int x) -> x
14930   // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
14931   // likely to be generated to extract integer from a rounded floating value.
14932   switch (N0.getOpcode()) {
14933   default: break;
14934   case ISD::FRINT:
14935   case ISD::FTRUNC:
14936   case ISD::FNEARBYINT:
14937   case ISD::FFLOOR:
14938   case ISD::FCEIL:
14939     return N0;
14940   }
14941 
14942   return SDValue();
14943 }
14944 
14945 SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
14946   SDValue N0 = N->getOperand(0);
14947   EVT VT = N->getValueType(0);
14948 
14949   // fold (ffloor c1) -> ffloor(c1)
14950   if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14951     return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
14952 
14953   return SDValue();
14954 }
14955 
14956 SDValue DAGCombiner::visitFNEG(SDNode *N) {
14957   SDValue N0 = N->getOperand(0);
14958   EVT VT = N->getValueType(0);
14959   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14960 
14961   // Constant fold FNEG.
14962   if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14963     return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
14964 
14965   if (SDValue NegN0 =
14966           TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize))
14967     return NegN0;
14968 
14969   // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
14970   // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
14971   // know it was called from a context with a nsz flag if the input fsub does
14972   // not.
14973   if (N0.getOpcode() == ISD::FSUB &&
14974       (DAG.getTarget().Options.NoSignedZerosFPMath ||
14975        N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) {
14976     return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1),
14977                        N0.getOperand(0));
14978   }
14979 
14980   if (SDValue Cast = foldSignChangeInBitcast(N))
14981     return Cast;
14982 
14983   return SDValue();
14984 }
14985 
14986 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
14987                             APFloat (*Op)(const APFloat &, const APFloat &)) {
14988   SDValue N0 = N->getOperand(0);
14989   SDValue N1 = N->getOperand(1);
14990   EVT VT = N->getValueType(0);
14991   const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
14992   const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
14993   const SDNodeFlags Flags = N->getFlags();
14994   unsigned Opc = N->getOpcode();
14995   bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM;
14996   bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM;
14997   SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14998 
14999   if (N0CFP && N1CFP) {
15000     const APFloat &C0 = N0CFP->getValueAPF();
15001     const APFloat &C1 = N1CFP->getValueAPF();
15002     return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
15003   }
15004 
15005   // Canonicalize to constant on RHS.
15006   if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
15007       !DAG.isConstantFPBuildVectorOrConstantFP(N1))
15008     return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
15009 
15010   if (N1CFP) {
15011     const APFloat &AF = N1CFP->getValueAPF();
15012 
15013     // minnum(X, nan) -> X
15014     // maxnum(X, nan) -> X
15015     // minimum(X, nan) -> nan
15016     // maximum(X, nan) -> nan
15017     if (AF.isNaN())
15018       return PropagatesNaN ? N->getOperand(1) : N->getOperand(0);
15019 
15020     // In the following folds, inf can be replaced with the largest finite
15021     // float, if the ninf flag is set.
15022     if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) {
15023       // minnum(X, -inf) -> -inf
15024       // maxnum(X, +inf) -> +inf
15025       // minimum(X, -inf) -> -inf if nnan
15026       // maximum(X, +inf) -> +inf if nnan
15027       if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs()))
15028         return N->getOperand(1);
15029 
15030       // minnum(X, +inf) -> X if nnan
15031       // maxnum(X, -inf) -> X if nnan
15032       // minimum(X, +inf) -> X
15033       // maximum(X, -inf) -> X
15034       if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs()))
15035         return N->getOperand(0);
15036     }
15037   }
15038 
15039   return SDValue();
15040 }
15041 
15042 SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
15043   return visitFMinMax(DAG, N, minnum);
15044 }
15045 
15046 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
15047   return visitFMinMax(DAG, N, maxnum);
15048 }
15049 
15050 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
15051   return visitFMinMax(DAG, N, minimum);
15052 }
15053 
15054 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
15055   return visitFMinMax(DAG, N, maximum);
15056 }
15057 
15058 SDValue DAGCombiner::visitFABS(SDNode *N) {
15059   SDValue N0 = N->getOperand(0);
15060   EVT VT = N->getValueType(0);
15061 
15062   // fold (fabs c1) -> fabs(c1)
15063   if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
15064     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
15065 
15066   // fold (fabs (fabs x)) -> (fabs x)
15067   if (N0.getOpcode() == ISD::FABS)
15068     return N->getOperand(0);
15069 
15070   // fold (fabs (fneg x)) -> (fabs x)
15071   // fold (fabs (fcopysign x, y)) -> (fabs x)
15072   if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
15073     return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
15074 
15075   if (SDValue Cast = foldSignChangeInBitcast(N))
15076     return Cast;
15077 
15078   return SDValue();
15079 }
15080 
15081 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
15082   SDValue Chain = N->getOperand(0);
15083   SDValue N1 = N->getOperand(1);
15084   SDValue N2 = N->getOperand(2);
15085 
15086   // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
15087   // nondeterministic jumps).
15088   if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) {
15089     return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain,
15090                        N1->getOperand(0), N2);
15091   }
15092 
15093   // If N is a constant we could fold this into a fallthrough or unconditional
15094   // branch. However that doesn't happen very often in normal code, because
15095   // Instcombine/SimplifyCFG should have handled the available opportunities.
15096   // If we did this folding here, it would be necessary to update the
15097   // MachineBasicBlock CFG, which is awkward.
15098 
15099   // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
15100   // on the target.
15101   if (N1.getOpcode() == ISD::SETCC &&
15102       TLI.isOperationLegalOrCustom(ISD::BR_CC,
15103                                    N1.getOperand(0).getValueType())) {
15104     return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
15105                        Chain, N1.getOperand(2),
15106                        N1.getOperand(0), N1.getOperand(1), N2);
15107   }
15108 
15109   if (N1.hasOneUse()) {
15110     // rebuildSetCC calls visitXor which may change the Chain when there is a
15111     // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
15112     HandleSDNode ChainHandle(Chain);
15113     if (SDValue NewN1 = rebuildSetCC(N1))
15114       return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other,
15115                          ChainHandle.getValue(), NewN1, N2);
15116   }
15117 
15118   return SDValue();
15119 }
15120 
15121 SDValue DAGCombiner::rebuildSetCC(SDValue N) {
15122   if (N.getOpcode() == ISD::SRL ||
15123       (N.getOpcode() == ISD::TRUNCATE &&
15124        (N.getOperand(0).hasOneUse() &&
15125         N.getOperand(0).getOpcode() == ISD::SRL))) {
15126     // Look pass the truncate.
15127     if (N.getOpcode() == ISD::TRUNCATE)
15128       N = N.getOperand(0);
15129 
15130     // Match this pattern so that we can generate simpler code:
15131     //
15132     //   %a = ...
15133     //   %b = and i32 %a, 2
15134     //   %c = srl i32 %b, 1
15135     //   brcond i32 %c ...
15136     //
15137     // into
15138     //
15139     //   %a = ...
15140     //   %b = and i32 %a, 2
15141     //   %c = setcc eq %b, 0
15142     //   brcond %c ...
15143     //
15144     // This applies only when the AND constant value has one bit set and the
15145     // SRL constant is equal to the log2 of the AND constant. The back-end is
15146     // smart enough to convert the result into a TEST/JMP sequence.
15147     SDValue Op0 = N.getOperand(0);
15148     SDValue Op1 = N.getOperand(1);
15149 
15150     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
15151       SDValue AndOp1 = Op0.getOperand(1);
15152 
15153       if (AndOp1.getOpcode() == ISD::Constant) {
15154         const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
15155 
15156         if (AndConst.isPowerOf2() &&
15157             cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
15158           SDLoc DL(N);
15159           return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
15160                               Op0, DAG.getConstant(0, DL, Op0.getValueType()),
15161                               ISD::SETNE);
15162         }
15163       }
15164     }
15165   }
15166 
15167   // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
15168   // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
15169   if (N.getOpcode() == ISD::XOR) {
15170     // Because we may call this on a speculatively constructed
15171     // SimplifiedSetCC Node, we need to simplify this node first.
15172     // Ideally this should be folded into SimplifySetCC and not
15173     // here. For now, grab a handle to N so we don't lose it from
15174     // replacements interal to the visit.
15175     HandleSDNode XORHandle(N);
15176     while (N.getOpcode() == ISD::XOR) {
15177       SDValue Tmp = visitXOR(N.getNode());
15178       // No simplification done.
15179       if (!Tmp.getNode())
15180         break;
15181       // Returning N is form in-visit replacement that may invalidated
15182       // N. Grab value from Handle.
15183       if (Tmp.getNode() == N.getNode())
15184         N = XORHandle.getValue();
15185       else // Node simplified. Try simplifying again.
15186         N = Tmp;
15187     }
15188 
15189     if (N.getOpcode() != ISD::XOR)
15190       return N;
15191 
15192     SDValue Op0 = N->getOperand(0);
15193     SDValue Op1 = N->getOperand(1);
15194 
15195     if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
15196       bool Equal = false;
15197       // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
15198       if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR &&
15199           Op0.getValueType() == MVT::i1) {
15200         N = Op0;
15201         Op0 = N->getOperand(0);
15202         Op1 = N->getOperand(1);
15203         Equal = true;
15204       }
15205 
15206       EVT SetCCVT = N.getValueType();
15207       if (LegalTypes)
15208         SetCCVT = getSetCCResultType(SetCCVT);
15209       // Replace the uses of XOR with SETCC
15210       return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1,
15211                           Equal ? ISD::SETEQ : ISD::SETNE);
15212     }
15213   }
15214 
15215   return SDValue();
15216 }
15217 
15218 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
15219 //
15220 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
15221   CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
15222   SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
15223 
15224   // If N is a constant we could fold this into a fallthrough or unconditional
15225   // branch. However that doesn't happen very often in normal code, because
15226   // Instcombine/SimplifyCFG should have handled the available opportunities.
15227   // If we did this folding here, it would be necessary to update the
15228   // MachineBasicBlock CFG, which is awkward.
15229 
15230   // Use SimplifySetCC to simplify SETCC's.
15231   SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
15232                                CondLHS, CondRHS, CC->get(), SDLoc(N),
15233                                false);
15234   if (Simp.getNode()) AddToWorklist(Simp.getNode());
15235 
15236   // fold to a simpler setcc
15237   if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
15238     return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
15239                        N->getOperand(0), Simp.getOperand(2),
15240                        Simp.getOperand(0), Simp.getOperand(1),
15241                        N->getOperand(4));
15242 
15243   return SDValue();
15244 }
15245 
15246 static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec,
15247                                      bool &IsLoad, bool &IsMasked, SDValue &Ptr,
15248                                      const TargetLowering &TLI) {
15249   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
15250     if (LD->isIndexed())
15251       return false;
15252     EVT VT = LD->getMemoryVT();
15253     if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT))
15254       return false;
15255     Ptr = LD->getBasePtr();
15256   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
15257     if (ST->isIndexed())
15258       return false;
15259     EVT VT = ST->getMemoryVT();
15260     if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT))
15261       return false;
15262     Ptr = ST->getBasePtr();
15263     IsLoad = false;
15264   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
15265     if (LD->isIndexed())
15266       return false;
15267     EVT VT = LD->getMemoryVT();
15268     if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) &&
15269         !TLI.isIndexedMaskedLoadLegal(Dec, VT))
15270       return false;
15271     Ptr = LD->getBasePtr();
15272     IsMasked = true;
15273   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
15274     if (ST->isIndexed())
15275       return false;
15276     EVT VT = ST->getMemoryVT();
15277     if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) &&
15278         !TLI.isIndexedMaskedStoreLegal(Dec, VT))
15279       return false;
15280     Ptr = ST->getBasePtr();
15281     IsLoad = false;
15282     IsMasked = true;
15283   } else {
15284     return false;
15285   }
15286   return true;
15287 }
15288 
15289 /// Try turning a load/store into a pre-indexed load/store when the base
15290 /// pointer is an add or subtract and it has other uses besides the load/store.
15291 /// After the transformation, the new indexed load/store has effectively folded
15292 /// the add/subtract in and all of its other uses are redirected to the
15293 /// new load/store.
15294 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
15295   if (Level < AfterLegalizeDAG)
15296     return false;
15297 
15298   bool IsLoad = true;
15299   bool IsMasked = false;
15300   SDValue Ptr;
15301   if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked,
15302                                 Ptr, TLI))
15303     return false;
15304 
15305   // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
15306   // out.  There is no reason to make this a preinc/predec.
15307   if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
15308       Ptr.getNode()->hasOneUse())
15309     return false;
15310 
15311   // Ask the target to do addressing mode selection.
15312   SDValue BasePtr;
15313   SDValue Offset;
15314   ISD::MemIndexedMode AM = ISD::UNINDEXED;
15315   if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
15316     return false;
15317 
15318   // Backends without true r+i pre-indexed forms may need to pass a
15319   // constant base with a variable offset so that constant coercion
15320   // will work with the patterns in canonical form.
15321   bool Swapped = false;
15322   if (isa<ConstantSDNode>(BasePtr)) {
15323     std::swap(BasePtr, Offset);
15324     Swapped = true;
15325   }
15326 
15327   // Don't create a indexed load / store with zero offset.
15328   if (isNullConstant(Offset))
15329     return false;
15330 
15331   // Try turning it into a pre-indexed load / store except when:
15332   // 1) The new base ptr is a frame index.
15333   // 2) If N is a store and the new base ptr is either the same as or is a
15334   //    predecessor of the value being stored.
15335   // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
15336   //    that would create a cycle.
15337   // 4) All uses are load / store ops that use it as old base ptr.
15338 
15339   // Check #1.  Preinc'ing a frame index would require copying the stack pointer
15340   // (plus the implicit offset) to a register to preinc anyway.
15341   if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
15342     return false;
15343 
15344   // Check #2.
15345   if (!IsLoad) {
15346     SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue()
15347                            : cast<StoreSDNode>(N)->getValue();
15348 
15349     // Would require a copy.
15350     if (Val == BasePtr)
15351       return false;
15352 
15353     // Would create a cycle.
15354     if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
15355       return false;
15356   }
15357 
15358   // Caches for hasPredecessorHelper.
15359   SmallPtrSet<const SDNode *, 32> Visited;
15360   SmallVector<const SDNode *, 16> Worklist;
15361   Worklist.push_back(N);
15362 
15363   // If the offset is a constant, there may be other adds of constants that
15364   // can be folded with this one. We should do this to avoid having to keep
15365   // a copy of the original base pointer.
15366   SmallVector<SDNode *, 16> OtherUses;
15367   if (isa<ConstantSDNode>(Offset))
15368     for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
15369                               UE = BasePtr.getNode()->use_end();
15370          UI != UE; ++UI) {
15371       SDUse &Use = UI.getUse();
15372       // Skip the use that is Ptr and uses of other results from BasePtr's
15373       // node (important for nodes that return multiple results).
15374       if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
15375         continue;
15376 
15377       if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
15378         continue;
15379 
15380       if (Use.getUser()->getOpcode() != ISD::ADD &&
15381           Use.getUser()->getOpcode() != ISD::SUB) {
15382         OtherUses.clear();
15383         break;
15384       }
15385 
15386       SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
15387       if (!isa<ConstantSDNode>(Op1)) {
15388         OtherUses.clear();
15389         break;
15390       }
15391 
15392       // FIXME: In some cases, we can be smarter about this.
15393       if (Op1.getValueType() != Offset.getValueType()) {
15394         OtherUses.clear();
15395         break;
15396       }
15397 
15398       OtherUses.push_back(Use.getUser());
15399     }
15400 
15401   if (Swapped)
15402     std::swap(BasePtr, Offset);
15403 
15404   // Now check for #3 and #4.
15405   bool RealUse = false;
15406 
15407   for (SDNode *Use : Ptr.getNode()->uses()) {
15408     if (Use == N)
15409       continue;
15410     if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
15411       return false;
15412 
15413     // If Ptr may be folded in addressing mode of other use, then it's
15414     // not profitable to do this transformation.
15415     if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
15416       RealUse = true;
15417   }
15418 
15419   if (!RealUse)
15420     return false;
15421 
15422   SDValue Result;
15423   if (!IsMasked) {
15424     if (IsLoad)
15425       Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
15426     else
15427       Result =
15428           DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
15429   } else {
15430     if (IsLoad)
15431       Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
15432                                         Offset, AM);
15433     else
15434       Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr,
15435                                          Offset, AM);
15436   }
15437   ++PreIndexedNodes;
15438   ++NodesCombined;
15439   LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
15440              Result.getNode()->dump(&DAG); dbgs() << '\n');
15441   WorklistRemover DeadNodes(*this);
15442   if (IsLoad) {
15443     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
15444     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
15445   } else {
15446     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
15447   }
15448 
15449   // Finally, since the node is now dead, remove it from the graph.
15450   deleteAndRecombine(N);
15451 
15452   if (Swapped)
15453     std::swap(BasePtr, Offset);
15454 
15455   // Replace other uses of BasePtr that can be updated to use Ptr
15456   for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
15457     unsigned OffsetIdx = 1;
15458     if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
15459       OffsetIdx = 0;
15460     assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
15461            BasePtr.getNode() && "Expected BasePtr operand");
15462 
15463     // We need to replace ptr0 in the following expression:
15464     //   x0 * offset0 + y0 * ptr0 = t0
15465     // knowing that
15466     //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
15467     //
15468     // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
15469     // indexed load/store and the expression that needs to be re-written.
15470     //
15471     // Therefore, we have:
15472     //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
15473 
15474     auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
15475     const APInt &Offset0 = CN->getAPIntValue();
15476     const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
15477     int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
15478     int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
15479     int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
15480     int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
15481 
15482     unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
15483 
15484     APInt CNV = Offset0;
15485     if (X0 < 0) CNV = -CNV;
15486     if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
15487     else CNV = CNV - Offset1;
15488 
15489     SDLoc DL(OtherUses[i]);
15490 
15491     // We can now generate the new expression.
15492     SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
15493     SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0);
15494 
15495     SDValue NewUse = DAG.getNode(Opcode,
15496                                  DL,
15497                                  OtherUses[i]->getValueType(0), NewOp1, NewOp2);
15498     DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
15499     deleteAndRecombine(OtherUses[i]);
15500   }
15501 
15502   // Replace the uses of Ptr with uses of the updated base value.
15503   DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0));
15504   deleteAndRecombine(Ptr.getNode());
15505   AddToWorklist(Result.getNode());
15506 
15507   return true;
15508 }
15509 
15510 static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse,
15511                                    SDValue &BasePtr, SDValue &Offset,
15512                                    ISD::MemIndexedMode &AM,
15513                                    SelectionDAG &DAG,
15514                                    const TargetLowering &TLI) {
15515   if (PtrUse == N ||
15516       (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB))
15517     return false;
15518 
15519   if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG))
15520     return false;
15521 
15522   // Don't create a indexed load / store with zero offset.
15523   if (isNullConstant(Offset))
15524     return false;
15525 
15526   if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
15527     return false;
15528 
15529   SmallPtrSet<const SDNode *, 32> Visited;
15530   for (SDNode *Use : BasePtr.getNode()->uses()) {
15531     if (Use == Ptr.getNode())
15532       continue;
15533 
15534     // No if there's a later user which could perform the index instead.
15535     if (isa<MemSDNode>(Use)) {
15536       bool IsLoad = true;
15537       bool IsMasked = false;
15538       SDValue OtherPtr;
15539       if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad,
15540                                    IsMasked, OtherPtr, TLI)) {
15541         SmallVector<const SDNode *, 2> Worklist;
15542         Worklist.push_back(Use);
15543         if (SDNode::hasPredecessorHelper(N, Visited, Worklist))
15544           return false;
15545       }
15546     }
15547 
15548     // If all the uses are load / store addresses, then don't do the
15549     // transformation.
15550     if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) {
15551       for (SDNode *UseUse : Use->uses())
15552         if (canFoldInAddressingMode(Use, UseUse, DAG, TLI))
15553           return false;
15554     }
15555   }
15556   return true;
15557 }
15558 
15559 static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad,
15560                                          bool &IsMasked, SDValue &Ptr,
15561                                          SDValue &BasePtr, SDValue &Offset,
15562                                          ISD::MemIndexedMode &AM,
15563                                          SelectionDAG &DAG,
15564                                          const TargetLowering &TLI) {
15565   if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad,
15566                                 IsMasked, Ptr, TLI) ||
15567       Ptr.getNode()->hasOneUse())
15568     return nullptr;
15569 
15570   // Try turning it into a post-indexed load / store except when
15571   // 1) All uses are load / store ops that use it as base ptr (and
15572   //    it may be folded as addressing mmode).
15573   // 2) Op must be independent of N, i.e. Op is neither a predecessor
15574   //    nor a successor of N. Otherwise, if Op is folded that would
15575   //    create a cycle.
15576   for (SDNode *Op : Ptr->uses()) {
15577     // Check for #1.
15578     if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI))
15579       continue;
15580 
15581     // Check for #2.
15582     SmallPtrSet<const SDNode *, 32> Visited;
15583     SmallVector<const SDNode *, 8> Worklist;
15584     // Ptr is predecessor to both N and Op.
15585     Visited.insert(Ptr.getNode());
15586     Worklist.push_back(N);
15587     Worklist.push_back(Op);
15588     if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
15589         !SDNode::hasPredecessorHelper(Op, Visited, Worklist))
15590       return Op;
15591   }
15592   return nullptr;
15593 }
15594 
15595 /// Try to combine a load/store with a add/sub of the base pointer node into a
15596 /// post-indexed load/store. The transformation folded the add/subtract into the
15597 /// new indexed load/store effectively and all of its uses are redirected to the
15598 /// new load/store.
15599 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
15600   if (Level < AfterLegalizeDAG)
15601     return false;
15602 
15603   bool IsLoad = true;
15604   bool IsMasked = false;
15605   SDValue Ptr;
15606   SDValue BasePtr;
15607   SDValue Offset;
15608   ISD::MemIndexedMode AM = ISD::UNINDEXED;
15609   SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr,
15610                                          Offset, AM, DAG, TLI);
15611   if (!Op)
15612     return false;
15613 
15614   SDValue Result;
15615   if (!IsMasked)
15616     Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
15617                                          Offset, AM)
15618                     : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N),
15619                                           BasePtr, Offset, AM);
15620   else
15621     Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N),
15622                                                BasePtr, Offset, AM)
15623                     : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N),
15624                                                 BasePtr, Offset, AM);
15625   ++PostIndexedNodes;
15626   ++NodesCombined;
15627   LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
15628              dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
15629              dbgs() << '\n');
15630   WorklistRemover DeadNodes(*this);
15631   if (IsLoad) {
15632     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
15633     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
15634   } else {
15635     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
15636   }
15637 
15638   // Finally, since the node is now dead, remove it from the graph.
15639   deleteAndRecombine(N);
15640 
15641   // Replace the uses of Use with uses of the updated base value.
15642   DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
15643                                 Result.getValue(IsLoad ? 1 : 0));
15644   deleteAndRecombine(Op);
15645   return true;
15646 }
15647 
15648 /// Return the base-pointer arithmetic from an indexed \p LD.
15649 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
15650   ISD::MemIndexedMode AM = LD->getAddressingMode();
15651   assert(AM != ISD::UNINDEXED);
15652   SDValue BP = LD->getOperand(1);
15653   SDValue Inc = LD->getOperand(2);
15654 
15655   // Some backends use TargetConstants for load offsets, but don't expect
15656   // TargetConstants in general ADD nodes. We can convert these constants into
15657   // regular Constants (if the constant is not opaque).
15658   assert((Inc.getOpcode() != ISD::TargetConstant ||
15659           !cast<ConstantSDNode>(Inc)->isOpaque()) &&
15660          "Cannot split out indexing using opaque target constants");
15661   if (Inc.getOpcode() == ISD::TargetConstant) {
15662     ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
15663     Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
15664                           ConstInc->getValueType(0));
15665   }
15666 
15667   unsigned Opc =
15668       (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
15669   return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
15670 }
15671 
15672 static inline ElementCount numVectorEltsOrZero(EVT T) {
15673   return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0);
15674 }
15675 
15676 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
15677   Val = ST->getValue();
15678   EVT STType = Val.getValueType();
15679   EVT STMemType = ST->getMemoryVT();
15680   if (STType == STMemType)
15681     return true;
15682   if (isTypeLegal(STMemType))
15683     return false; // fail.
15684   if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
15685       TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
15686     Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
15687     return true;
15688   }
15689   if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
15690       STType.isInteger() && STMemType.isInteger()) {
15691     Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
15692     return true;
15693   }
15694   if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
15695     Val = DAG.getBitcast(STMemType, Val);
15696     return true;
15697   }
15698   return false; // fail.
15699 }
15700 
15701 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
15702   EVT LDMemType = LD->getMemoryVT();
15703   EVT LDType = LD->getValueType(0);
15704   assert(Val.getValueType() == LDMemType &&
15705          "Attempting to extend value of non-matching type");
15706   if (LDType == LDMemType)
15707     return true;
15708   if (LDMemType.isInteger() && LDType.isInteger()) {
15709     switch (LD->getExtensionType()) {
15710     case ISD::NON_EXTLOAD:
15711       Val = DAG.getBitcast(LDType, Val);
15712       return true;
15713     case ISD::EXTLOAD:
15714       Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
15715       return true;
15716     case ISD::SEXTLOAD:
15717       Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
15718       return true;
15719     case ISD::ZEXTLOAD:
15720       Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
15721       return true;
15722     }
15723   }
15724   return false;
15725 }
15726 
15727 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
15728   if (OptLevel == CodeGenOpt::None || !LD->isSimple())
15729     return SDValue();
15730   SDValue Chain = LD->getOperand(0);
15731   StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
15732   // TODO: Relax this restriction for unordered atomics (see D66309)
15733   if (!ST || !ST->isSimple())
15734     return SDValue();
15735 
15736   EVT LDType = LD->getValueType(0);
15737   EVT LDMemType = LD->getMemoryVT();
15738   EVT STMemType = ST->getMemoryVT();
15739   EVT STType = ST->getValue().getValueType();
15740 
15741   // There are two cases to consider here:
15742   //  1. The store is fixed width and the load is scalable. In this case we
15743   //     don't know at compile time if the store completely envelops the load
15744   //     so we abandon the optimisation.
15745   //  2. The store is scalable and the load is fixed width. We could
15746   //     potentially support a limited number of cases here, but there has been
15747   //     no cost-benefit analysis to prove it's worth it.
15748   bool LdStScalable = LDMemType.isScalableVector();
15749   if (LdStScalable != STMemType.isScalableVector())
15750     return SDValue();
15751 
15752   // If we are dealing with scalable vectors on a big endian platform the
15753   // calculation of offsets below becomes trickier, since we do not know at
15754   // compile time the absolute size of the vector. Until we've done more
15755   // analysis on big-endian platforms it seems better to bail out for now.
15756   if (LdStScalable && DAG.getDataLayout().isBigEndian())
15757     return SDValue();
15758 
15759   BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
15760   BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
15761   int64_t Offset;
15762   if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
15763     return SDValue();
15764 
15765   // Normalize for Endianness. After this Offset=0 will denote that the least
15766   // significant bit in the loaded value maps to the least significant bit in
15767   // the stored value). With Offset=n (for n > 0) the loaded value starts at the
15768   // n:th least significant byte of the stored value.
15769   if (DAG.getDataLayout().isBigEndian())
15770     Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() -
15771               (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) /
15772                  8 -
15773              Offset;
15774 
15775   // Check that the stored value cover all bits that are loaded.
15776   bool STCoversLD;
15777 
15778   TypeSize LdMemSize = LDMemType.getSizeInBits();
15779   TypeSize StMemSize = STMemType.getSizeInBits();
15780   if (LdStScalable)
15781     STCoversLD = (Offset == 0) && LdMemSize == StMemSize;
15782   else
15783     STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <=
15784                                    StMemSize.getFixedSize());
15785 
15786   auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
15787     if (LD->isIndexed()) {
15788       // Cannot handle opaque target constants and we must respect the user's
15789       // request not to split indexes from loads.
15790       if (!canSplitIdx(LD))
15791         return SDValue();
15792       SDValue Idx = SplitIndexingFromLoad(LD);
15793       SDValue Ops[] = {Val, Idx, Chain};
15794       return CombineTo(LD, Ops, 3);
15795     }
15796     return CombineTo(LD, Val, Chain);
15797   };
15798 
15799   if (!STCoversLD)
15800     return SDValue();
15801 
15802   // Memory as copy space (potentially masked).
15803   if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
15804     // Simple case: Direct non-truncating forwarding
15805     if (LDType.getSizeInBits() == LdMemSize)
15806       return ReplaceLd(LD, ST->getValue(), Chain);
15807     // Can we model the truncate and extension with an and mask?
15808     if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
15809         !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
15810       // Mask to size of LDMemType
15811       auto Mask =
15812           DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(),
15813                                                StMemSize.getFixedSize()),
15814                           SDLoc(ST), STType);
15815       auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
15816       return ReplaceLd(LD, Val, Chain);
15817     }
15818   }
15819 
15820   // TODO: Deal with nonzero offset.
15821   if (LD->getBasePtr().isUndef() || Offset != 0)
15822     return SDValue();
15823   // Model necessary truncations / extenstions.
15824   SDValue Val;
15825   // Truncate Value To Stored Memory Size.
15826   do {
15827     if (!getTruncatedStoreValue(ST, Val))
15828       continue;
15829     if (!isTypeLegal(LDMemType))
15830       continue;
15831     if (STMemType != LDMemType) {
15832       // TODO: Support vectors? This requires extract_subvector/bitcast.
15833       if (!STMemType.isVector() && !LDMemType.isVector() &&
15834           STMemType.isInteger() && LDMemType.isInteger())
15835         Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
15836       else
15837         continue;
15838     }
15839     if (!extendLoadedValueToExtension(LD, Val))
15840       continue;
15841     return ReplaceLd(LD, Val, Chain);
15842   } while (false);
15843 
15844   // On failure, cleanup dead nodes we may have created.
15845   if (Val->use_empty())
15846     deleteAndRecombine(Val.getNode());
15847   return SDValue();
15848 }
15849 
15850 SDValue DAGCombiner::visitLOAD(SDNode *N) {
15851   LoadSDNode *LD  = cast<LoadSDNode>(N);
15852   SDValue Chain = LD->getChain();
15853   SDValue Ptr   = LD->getBasePtr();
15854 
15855   // If load is not volatile and there are no uses of the loaded value (and
15856   // the updated indexed value in case of indexed loads), change uses of the
15857   // chain value into uses of the chain input (i.e. delete the dead load).
15858   // TODO: Allow this for unordered atomics (see D66309)
15859   if (LD->isSimple()) {
15860     if (N->getValueType(1) == MVT::Other) {
15861       // Unindexed loads.
15862       if (!N->hasAnyUseOfValue(0)) {
15863         // It's not safe to use the two value CombineTo variant here. e.g.
15864         // v1, chain2 = load chain1, loc
15865         // v2, chain3 = load chain2, loc
15866         // v3         = add v2, c
15867         // Now we replace use of chain2 with chain1.  This makes the second load
15868         // isomorphic to the one we are deleting, and thus makes this load live.
15869         LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
15870                    dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
15871                    dbgs() << "\n");
15872         WorklistRemover DeadNodes(*this);
15873         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
15874         AddUsersToWorklist(Chain.getNode());
15875         if (N->use_empty())
15876           deleteAndRecombine(N);
15877 
15878         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
15879       }
15880     } else {
15881       // Indexed loads.
15882       assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
15883 
15884       // If this load has an opaque TargetConstant offset, then we cannot split
15885       // the indexing into an add/sub directly (that TargetConstant may not be
15886       // valid for a different type of node, and we cannot convert an opaque
15887       // target constant into a regular constant).
15888       bool CanSplitIdx = canSplitIdx(LD);
15889 
15890       if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) {
15891         SDValue Undef = DAG.getUNDEF(N->getValueType(0));
15892         SDValue Index;
15893         if (N->hasAnyUseOfValue(1) && CanSplitIdx) {
15894           Index = SplitIndexingFromLoad(LD);
15895           // Try to fold the base pointer arithmetic into subsequent loads and
15896           // stores.
15897           AddUsersToWorklist(N);
15898         } else
15899           Index = DAG.getUNDEF(N->getValueType(1));
15900         LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
15901                    dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
15902                    dbgs() << " and 2 other values\n");
15903         WorklistRemover DeadNodes(*this);
15904         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
15905         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
15906         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
15907         deleteAndRecombine(N);
15908         return SDValue(N, 0);   // Return N so it doesn't get rechecked!
15909       }
15910     }
15911   }
15912 
15913   // If this load is directly stored, replace the load value with the stored
15914   // value.
15915   if (auto V = ForwardStoreValueToDirectLoad(LD))
15916     return V;
15917 
15918   // Try to infer better alignment information than the load already has.
15919   if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) {
15920     if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
15921       if (*Alignment > LD->getAlign() &&
15922           isAligned(*Alignment, LD->getSrcValueOffset())) {
15923         SDValue NewLoad = DAG.getExtLoad(
15924             LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
15925             LD->getPointerInfo(), LD->getMemoryVT(), *Alignment,
15926             LD->getMemOperand()->getFlags(), LD->getAAInfo());
15927         // NewLoad will always be N as we are only refining the alignment
15928         assert(NewLoad.getNode() == N);
15929         (void)NewLoad;
15930       }
15931     }
15932   }
15933 
15934   if (LD->isUnindexed()) {
15935     // Walk up chain skipping non-aliasing memory nodes.
15936     SDValue BetterChain = FindBetterChain(LD, Chain);
15937 
15938     // If there is a better chain.
15939     if (Chain != BetterChain) {
15940       SDValue ReplLoad;
15941 
15942       // Replace the chain to void dependency.
15943       if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
15944         ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
15945                                BetterChain, Ptr, LD->getMemOperand());
15946       } else {
15947         ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
15948                                   LD->getValueType(0),
15949                                   BetterChain, Ptr, LD->getMemoryVT(),
15950                                   LD->getMemOperand());
15951       }
15952 
15953       // Create token factor to keep old chain connected.
15954       SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
15955                                   MVT::Other, Chain, ReplLoad.getValue(1));
15956 
15957       // Replace uses with load result and token factor
15958       return CombineTo(N, ReplLoad.getValue(0), Token);
15959     }
15960   }
15961 
15962   // Try transforming N to an indexed load.
15963   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
15964     return SDValue(N, 0);
15965 
15966   // Try to slice up N to more direct loads if the slices are mapped to
15967   // different register banks or pairing can take place.
15968   if (SliceUpLoad(N))
15969     return SDValue(N, 0);
15970 
15971   return SDValue();
15972 }
15973 
15974 namespace {
15975 
15976 /// Helper structure used to slice a load in smaller loads.
15977 /// Basically a slice is obtained from the following sequence:
15978 /// Origin = load Ty1, Base
15979 /// Shift = srl Ty1 Origin, CstTy Amount
15980 /// Inst = trunc Shift to Ty2
15981 ///
15982 /// Then, it will be rewritten into:
15983 /// Slice = load SliceTy, Base + SliceOffset
15984 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
15985 ///
15986 /// SliceTy is deduced from the number of bits that are actually used to
15987 /// build Inst.
15988 struct LoadedSlice {
15989   /// Helper structure used to compute the cost of a slice.
15990   struct Cost {
15991     /// Are we optimizing for code size.
15992     bool ForCodeSize = false;
15993 
15994     /// Various cost.
15995     unsigned Loads = 0;
15996     unsigned Truncates = 0;
15997     unsigned CrossRegisterBanksCopies = 0;
15998     unsigned ZExts = 0;
15999     unsigned Shift = 0;
16000 
16001     explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
16002 
16003     /// Get the cost of one isolated slice.
16004     Cost(const LoadedSlice &LS, bool ForCodeSize)
16005         : ForCodeSize(ForCodeSize), Loads(1) {
16006       EVT TruncType = LS.Inst->getValueType(0);
16007       EVT LoadedType = LS.getLoadedType();
16008       if (TruncType != LoadedType &&
16009           !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
16010         ZExts = 1;
16011     }
16012 
16013     /// Account for slicing gain in the current cost.
16014     /// Slicing provide a few gains like removing a shift or a
16015     /// truncate. This method allows to grow the cost of the original
16016     /// load with the gain from this slice.
16017     void addSliceGain(const LoadedSlice &LS) {
16018       // Each slice saves a truncate.
16019       const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
16020       if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
16021                               LS.Inst->getValueType(0)))
16022         ++Truncates;
16023       // If there is a shift amount, this slice gets rid of it.
16024       if (LS.Shift)
16025         ++Shift;
16026       // If this slice can merge a cross register bank copy, account for it.
16027       if (LS.canMergeExpensiveCrossRegisterBankCopy())
16028         ++CrossRegisterBanksCopies;
16029     }
16030 
16031     Cost &operator+=(const Cost &RHS) {
16032       Loads += RHS.Loads;
16033       Truncates += RHS.Truncates;
16034       CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
16035       ZExts += RHS.ZExts;
16036       Shift += RHS.Shift;
16037       return *this;
16038     }
16039 
16040     bool operator==(const Cost &RHS) const {
16041       return Loads == RHS.Loads && Truncates == RHS.Truncates &&
16042              CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
16043              ZExts == RHS.ZExts && Shift == RHS.Shift;
16044     }
16045 
16046     bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
16047 
16048     bool operator<(const Cost &RHS) const {
16049       // Assume cross register banks copies are as expensive as loads.
16050       // FIXME: Do we want some more target hooks?
16051       unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
16052       unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
16053       // Unless we are optimizing for code size, consider the
16054       // expensive operation first.
16055       if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
16056         return ExpensiveOpsLHS < ExpensiveOpsRHS;
16057       return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
16058              (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
16059     }
16060 
16061     bool operator>(const Cost &RHS) const { return RHS < *this; }
16062 
16063     bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
16064 
16065     bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
16066   };
16067 
16068   // The last instruction that represent the slice. This should be a
16069   // truncate instruction.
16070   SDNode *Inst;
16071 
16072   // The original load instruction.
16073   LoadSDNode *Origin;
16074 
16075   // The right shift amount in bits from the original load.
16076   unsigned Shift;
16077 
16078   // The DAG from which Origin came from.
16079   // This is used to get some contextual information about legal types, etc.
16080   SelectionDAG *DAG;
16081 
16082   LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
16083               unsigned Shift = 0, SelectionDAG *DAG = nullptr)
16084       : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
16085 
16086   /// Get the bits used in a chunk of bits \p BitWidth large.
16087   /// \return Result is \p BitWidth and has used bits set to 1 and
16088   ///         not used bits set to 0.
16089   APInt getUsedBits() const {
16090     // Reproduce the trunc(lshr) sequence:
16091     // - Start from the truncated value.
16092     // - Zero extend to the desired bit width.
16093     // - Shift left.
16094     assert(Origin && "No original load to compare against.");
16095     unsigned BitWidth = Origin->getValueSizeInBits(0);
16096     assert(Inst && "This slice is not bound to an instruction");
16097     assert(Inst->getValueSizeInBits(0) <= BitWidth &&
16098            "Extracted slice is bigger than the whole type!");
16099     APInt UsedBits(Inst->getValueSizeInBits(0), 0);
16100     UsedBits.setAllBits();
16101     UsedBits = UsedBits.zext(BitWidth);
16102     UsedBits <<= Shift;
16103     return UsedBits;
16104   }
16105 
16106   /// Get the size of the slice to be loaded in bytes.
16107   unsigned getLoadedSize() const {
16108     unsigned SliceSize = getUsedBits().countPopulation();
16109     assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
16110     return SliceSize / 8;
16111   }
16112 
16113   /// Get the type that will be loaded for this slice.
16114   /// Note: This may not be the final type for the slice.
16115   EVT getLoadedType() const {
16116     assert(DAG && "Missing context");
16117     LLVMContext &Ctxt = *DAG->getContext();
16118     return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
16119   }
16120 
16121   /// Get the alignment of the load used for this slice.
16122   Align getAlign() const {
16123     Align Alignment = Origin->getAlign();
16124     uint64_t Offset = getOffsetFromBase();
16125     if (Offset != 0)
16126       Alignment = commonAlignment(Alignment, Alignment.value() + Offset);
16127     return Alignment;
16128   }
16129 
16130   /// Check if this slice can be rewritten with legal operations.
16131   bool isLegal() const {
16132     // An invalid slice is not legal.
16133     if (!Origin || !Inst || !DAG)
16134       return false;
16135 
16136     // Offsets are for indexed load only, we do not handle that.
16137     if (!Origin->getOffset().isUndef())
16138       return false;
16139 
16140     const TargetLowering &TLI = DAG->getTargetLoweringInfo();
16141 
16142     // Check that the type is legal.
16143     EVT SliceType = getLoadedType();
16144     if (!TLI.isTypeLegal(SliceType))
16145       return false;
16146 
16147     // Check that the load is legal for this type.
16148     if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
16149       return false;
16150 
16151     // Check that the offset can be computed.
16152     // 1. Check its type.
16153     EVT PtrType = Origin->getBasePtr().getValueType();
16154     if (PtrType == MVT::Untyped || PtrType.isExtended())
16155       return false;
16156 
16157     // 2. Check that it fits in the immediate.
16158     if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
16159       return false;
16160 
16161     // 3. Check that the computation is legal.
16162     if (!TLI.isOperationLegal(ISD::ADD, PtrType))
16163       return false;
16164 
16165     // Check that the zext is legal if it needs one.
16166     EVT TruncateType = Inst->getValueType(0);
16167     if (TruncateType != SliceType &&
16168         !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
16169       return false;
16170 
16171     return true;
16172   }
16173 
16174   /// Get the offset in bytes of this slice in the original chunk of
16175   /// bits.
16176   /// \pre DAG != nullptr.
16177   uint64_t getOffsetFromBase() const {
16178     assert(DAG && "Missing context.");
16179     bool IsBigEndian = DAG->getDataLayout().isBigEndian();
16180     assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
16181     uint64_t Offset = Shift / 8;
16182     unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
16183     assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
16184            "The size of the original loaded type is not a multiple of a"
16185            " byte.");
16186     // If Offset is bigger than TySizeInBytes, it means we are loading all
16187     // zeros. This should have been optimized before in the process.
16188     assert(TySizeInBytes > Offset &&
16189            "Invalid shift amount for given loaded size");
16190     if (IsBigEndian)
16191       Offset = TySizeInBytes - Offset - getLoadedSize();
16192     return Offset;
16193   }
16194 
16195   /// Generate the sequence of instructions to load the slice
16196   /// represented by this object and redirect the uses of this slice to
16197   /// this new sequence of instructions.
16198   /// \pre this->Inst && this->Origin are valid Instructions and this
16199   /// object passed the legal check: LoadedSlice::isLegal returned true.
16200   /// \return The last instruction of the sequence used to load the slice.
16201   SDValue loadSlice() const {
16202     assert(Inst && Origin && "Unable to replace a non-existing slice.");
16203     const SDValue &OldBaseAddr = Origin->getBasePtr();
16204     SDValue BaseAddr = OldBaseAddr;
16205     // Get the offset in that chunk of bytes w.r.t. the endianness.
16206     int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
16207     assert(Offset >= 0 && "Offset too big to fit in int64_t!");
16208     if (Offset) {
16209       // BaseAddr = BaseAddr + Offset.
16210       EVT ArithType = BaseAddr.getValueType();
16211       SDLoc DL(Origin);
16212       BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
16213                               DAG->getConstant(Offset, DL, ArithType));
16214     }
16215 
16216     // Create the type of the loaded slice according to its size.
16217     EVT SliceType = getLoadedType();
16218 
16219     // Create the load for the slice.
16220     SDValue LastInst =
16221         DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
16222                      Origin->getPointerInfo().getWithOffset(Offset), getAlign(),
16223                      Origin->getMemOperand()->getFlags());
16224     // If the final type is not the same as the loaded type, this means that
16225     // we have to pad with zero. Create a zero extend for that.
16226     EVT FinalType = Inst->getValueType(0);
16227     if (SliceType != FinalType)
16228       LastInst =
16229           DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
16230     return LastInst;
16231   }
16232 
16233   /// Check if this slice can be merged with an expensive cross register
16234   /// bank copy. E.g.,
16235   /// i = load i32
16236   /// f = bitcast i32 i to float
16237   bool canMergeExpensiveCrossRegisterBankCopy() const {
16238     if (!Inst || !Inst->hasOneUse())
16239       return false;
16240     SDNode *Use = *Inst->use_begin();
16241     if (Use->getOpcode() != ISD::BITCAST)
16242       return false;
16243     assert(DAG && "Missing context");
16244     const TargetLowering &TLI = DAG->getTargetLoweringInfo();
16245     EVT ResVT = Use->getValueType(0);
16246     const TargetRegisterClass *ResRC =
16247         TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
16248     const TargetRegisterClass *ArgRC =
16249         TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
16250                            Use->getOperand(0)->isDivergent());
16251     if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
16252       return false;
16253 
16254     // At this point, we know that we perform a cross-register-bank copy.
16255     // Check if it is expensive.
16256     const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
16257     // Assume bitcasts are cheap, unless both register classes do not
16258     // explicitly share a common sub class.
16259     if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
16260       return false;
16261 
16262     // Check if it will be merged with the load.
16263     // 1. Check the alignment constraint.
16264     Align RequiredAlignment = DAG->getDataLayout().getABITypeAlign(
16265         ResVT.getTypeForEVT(*DAG->getContext()));
16266 
16267     if (RequiredAlignment > getAlign())
16268       return false;
16269 
16270     // 2. Check that the load is a legal operation for that type.
16271     if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
16272       return false;
16273 
16274     // 3. Check that we do not have a zext in the way.
16275     if (Inst->getValueType(0) != getLoadedType())
16276       return false;
16277 
16278     return true;
16279   }
16280 };
16281 
16282 } // end anonymous namespace
16283 
16284 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
16285 /// \p UsedBits looks like 0..0 1..1 0..0.
16286 static bool areUsedBitsDense(const APInt &UsedBits) {
16287   // If all the bits are one, this is dense!
16288   if (UsedBits.isAllOnesValue())
16289     return true;
16290 
16291   // Get rid of the unused bits on the right.
16292   APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
16293   // Get rid of the unused bits on the left.
16294   if (NarrowedUsedBits.countLeadingZeros())
16295     NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
16296   // Check that the chunk of bits is completely used.
16297   return NarrowedUsedBits.isAllOnesValue();
16298 }
16299 
16300 /// Check whether or not \p First and \p Second are next to each other
16301 /// in memory. This means that there is no hole between the bits loaded
16302 /// by \p First and the bits loaded by \p Second.
16303 static bool areSlicesNextToEachOther(const LoadedSlice &First,
16304                                      const LoadedSlice &Second) {
16305   assert(First.Origin == Second.Origin && First.Origin &&
16306          "Unable to match different memory origins.");
16307   APInt UsedBits = First.getUsedBits();
16308   assert((UsedBits & Second.getUsedBits()) == 0 &&
16309          "Slices are not supposed to overlap.");
16310   UsedBits |= Second.getUsedBits();
16311   return areUsedBitsDense(UsedBits);
16312 }
16313 
16314 /// Adjust the \p GlobalLSCost according to the target
16315 /// paring capabilities and the layout of the slices.
16316 /// \pre \p GlobalLSCost should account for at least as many loads as
16317 /// there is in the slices in \p LoadedSlices.
16318 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
16319                                  LoadedSlice::Cost &GlobalLSCost) {
16320   unsigned NumberOfSlices = LoadedSlices.size();
16321   // If there is less than 2 elements, no pairing is possible.
16322   if (NumberOfSlices < 2)
16323     return;
16324 
16325   // Sort the slices so that elements that are likely to be next to each
16326   // other in memory are next to each other in the list.
16327   llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
16328     assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
16329     return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
16330   });
16331   const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
16332   // First (resp. Second) is the first (resp. Second) potentially candidate
16333   // to be placed in a paired load.
16334   const LoadedSlice *First = nullptr;
16335   const LoadedSlice *Second = nullptr;
16336   for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
16337                 // Set the beginning of the pair.
16338                                                            First = Second) {
16339     Second = &LoadedSlices[CurrSlice];
16340 
16341     // If First is NULL, it means we start a new pair.
16342     // Get to the next slice.
16343     if (!First)
16344       continue;
16345 
16346     EVT LoadedType = First->getLoadedType();
16347 
16348     // If the types of the slices are different, we cannot pair them.
16349     if (LoadedType != Second->getLoadedType())
16350       continue;
16351 
16352     // Check if the target supplies paired loads for this type.
16353     Align RequiredAlignment;
16354     if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
16355       // move to the next pair, this type is hopeless.
16356       Second = nullptr;
16357       continue;
16358     }
16359     // Check if we meet the alignment requirement.
16360     if (First->getAlign() < RequiredAlignment)
16361       continue;
16362 
16363     // Check that both loads are next to each other in memory.
16364     if (!areSlicesNextToEachOther(*First, *Second))
16365       continue;
16366 
16367     assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
16368     --GlobalLSCost.Loads;
16369     // Move to the next pair.
16370     Second = nullptr;
16371   }
16372 }
16373 
16374 /// Check the profitability of all involved LoadedSlice.
16375 /// Currently, it is considered profitable if there is exactly two
16376 /// involved slices (1) which are (2) next to each other in memory, and
16377 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
16378 ///
16379 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
16380 /// the elements themselves.
16381 ///
16382 /// FIXME: When the cost model will be mature enough, we can relax
16383 /// constraints (1) and (2).
16384 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
16385                                 const APInt &UsedBits, bool ForCodeSize) {
16386   unsigned NumberOfSlices = LoadedSlices.size();
16387   if (StressLoadSlicing)
16388     return NumberOfSlices > 1;
16389 
16390   // Check (1).
16391   if (NumberOfSlices != 2)
16392     return false;
16393 
16394   // Check (2).
16395   if (!areUsedBitsDense(UsedBits))
16396     return false;
16397 
16398   // Check (3).
16399   LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
16400   // The original code has one big load.
16401   OrigCost.Loads = 1;
16402   for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
16403     const LoadedSlice &LS = LoadedSlices[CurrSlice];
16404     // Accumulate the cost of all the slices.
16405     LoadedSlice::Cost SliceCost(LS, ForCodeSize);
16406     GlobalSlicingCost += SliceCost;
16407 
16408     // Account as cost in the original configuration the gain obtained
16409     // with the current slices.
16410     OrigCost.addSliceGain(LS);
16411   }
16412 
16413   // If the target supports paired load, adjust the cost accordingly.
16414   adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
16415   return OrigCost > GlobalSlicingCost;
16416 }
16417 
16418 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
16419 /// operations, split it in the various pieces being extracted.
16420 ///
16421 /// This sort of thing is introduced by SROA.
16422 /// This slicing takes care not to insert overlapping loads.
16423 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
16424 bool DAGCombiner::SliceUpLoad(SDNode *N) {
16425   if (Level < AfterLegalizeDAG)
16426     return false;
16427 
16428   LoadSDNode *LD = cast<LoadSDNode>(N);
16429   if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
16430       !LD->getValueType(0).isInteger())
16431     return false;
16432 
16433   // The algorithm to split up a load of a scalable vector into individual
16434   // elements currently requires knowing the length of the loaded type,
16435   // so will need adjusting to work on scalable vectors.
16436   if (LD->getValueType(0).isScalableVector())
16437     return false;
16438 
16439   // Keep track of already used bits to detect overlapping values.
16440   // In that case, we will just abort the transformation.
16441   APInt UsedBits(LD->getValueSizeInBits(0), 0);
16442 
16443   SmallVector<LoadedSlice, 4> LoadedSlices;
16444 
16445   // Check if this load is used as several smaller chunks of bits.
16446   // Basically, look for uses in trunc or trunc(lshr) and record a new chain
16447   // of computation for each trunc.
16448   for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
16449        UI != UIEnd; ++UI) {
16450     // Skip the uses of the chain.
16451     if (UI.getUse().getResNo() != 0)
16452       continue;
16453 
16454     SDNode *User = *UI;
16455     unsigned Shift = 0;
16456 
16457     // Check if this is a trunc(lshr).
16458     if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
16459         isa<ConstantSDNode>(User->getOperand(1))) {
16460       Shift = User->getConstantOperandVal(1);
16461       User = *User->use_begin();
16462     }
16463 
16464     // At this point, User is a Truncate, iff we encountered, trunc or
16465     // trunc(lshr).
16466     if (User->getOpcode() != ISD::TRUNCATE)
16467       return false;
16468 
16469     // The width of the type must be a power of 2 and greater than 8-bits.
16470     // Otherwise the load cannot be represented in LLVM IR.
16471     // Moreover, if we shifted with a non-8-bits multiple, the slice
16472     // will be across several bytes. We do not support that.
16473     unsigned Width = User->getValueSizeInBits(0);
16474     if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
16475       return false;
16476 
16477     // Build the slice for this chain of computations.
16478     LoadedSlice LS(User, LD, Shift, &DAG);
16479     APInt CurrentUsedBits = LS.getUsedBits();
16480 
16481     // Check if this slice overlaps with another.
16482     if ((CurrentUsedBits & UsedBits) != 0)
16483       return false;
16484     // Update the bits used globally.
16485     UsedBits |= CurrentUsedBits;
16486 
16487     // Check if the new slice would be legal.
16488     if (!LS.isLegal())
16489       return false;
16490 
16491     // Record the slice.
16492     LoadedSlices.push_back(LS);
16493   }
16494 
16495   // Abort slicing if it does not seem to be profitable.
16496   if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
16497     return false;
16498 
16499   ++SlicedLoads;
16500 
16501   // Rewrite each chain to use an independent load.
16502   // By construction, each chain can be represented by a unique load.
16503 
16504   // Prepare the argument for the new token factor for all the slices.
16505   SmallVector<SDValue, 8> ArgChains;
16506   for (const LoadedSlice &LS : LoadedSlices) {
16507     SDValue SliceInst = LS.loadSlice();
16508     CombineTo(LS.Inst, SliceInst, true);
16509     if (SliceInst.getOpcode() != ISD::LOAD)
16510       SliceInst = SliceInst.getOperand(0);
16511     assert(SliceInst->getOpcode() == ISD::LOAD &&
16512            "It takes more than a zext to get to the loaded slice!!");
16513     ArgChains.push_back(SliceInst.getValue(1));
16514   }
16515 
16516   SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
16517                               ArgChains);
16518   DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
16519   AddToWorklist(Chain.getNode());
16520   return true;
16521 }
16522 
16523 /// Check to see if V is (and load (ptr), imm), where the load is having
16524 /// specific bytes cleared out.  If so, return the byte size being masked out
16525 /// and the shift amount.
16526 static std::pair<unsigned, unsigned>
16527 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
16528   std::pair<unsigned, unsigned> Result(0, 0);
16529 
16530   // Check for the structure we're looking for.
16531   if (V->getOpcode() != ISD::AND ||
16532       !isa<ConstantSDNode>(V->getOperand(1)) ||
16533       !ISD::isNormalLoad(V->getOperand(0).getNode()))
16534     return Result;
16535 
16536   // Check the chain and pointer.
16537   LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
16538   if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
16539 
16540   // This only handles simple types.
16541   if (V.getValueType() != MVT::i16 &&
16542       V.getValueType() != MVT::i32 &&
16543       V.getValueType() != MVT::i64)
16544     return Result;
16545 
16546   // Check the constant mask.  Invert it so that the bits being masked out are
16547   // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
16548   // follow the sign bit for uniformity.
16549   uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
16550   unsigned NotMaskLZ = countLeadingZeros(NotMask);
16551   if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
16552   unsigned NotMaskTZ = countTrailingZeros(NotMask);
16553   if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
16554   if (NotMaskLZ == 64) return Result;  // All zero mask.
16555 
16556   // See if we have a continuous run of bits.  If so, we have 0*1+0*
16557   if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
16558     return Result;
16559 
16560   // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
16561   if (V.getValueType() != MVT::i64 && NotMaskLZ)
16562     NotMaskLZ -= 64-V.getValueSizeInBits();
16563 
16564   unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
16565   switch (MaskedBytes) {
16566   case 1:
16567   case 2:
16568   case 4: break;
16569   default: return Result; // All one mask, or 5-byte mask.
16570   }
16571 
16572   // Verify that the first bit starts at a multiple of mask so that the access
16573   // is aligned the same as the access width.
16574   if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
16575 
16576   // For narrowing to be valid, it must be the case that the load the
16577   // immediately preceding memory operation before the store.
16578   if (LD == Chain.getNode())
16579     ; // ok.
16580   else if (Chain->getOpcode() == ISD::TokenFactor &&
16581            SDValue(LD, 1).hasOneUse()) {
16582     // LD has only 1 chain use so they are no indirect dependencies.
16583     if (!LD->isOperandOf(Chain.getNode()))
16584       return Result;
16585   } else
16586     return Result; // Fail.
16587 
16588   Result.first = MaskedBytes;
16589   Result.second = NotMaskTZ/8;
16590   return Result;
16591 }
16592 
16593 /// Check to see if IVal is something that provides a value as specified by
16594 /// MaskInfo. If so, replace the specified store with a narrower store of
16595 /// truncated IVal.
16596 static SDValue
16597 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
16598                                 SDValue IVal, StoreSDNode *St,
16599                                 DAGCombiner *DC) {
16600   unsigned NumBytes = MaskInfo.first;
16601   unsigned ByteShift = MaskInfo.second;
16602   SelectionDAG &DAG = DC->getDAG();
16603 
16604   // Check to see if IVal is all zeros in the part being masked in by the 'or'
16605   // that uses this.  If not, this is not a replacement.
16606   APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
16607                                   ByteShift*8, (ByteShift+NumBytes)*8);
16608   if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
16609 
16610   // Check that it is legal on the target to do this.  It is legal if the new
16611   // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
16612   // legalization (and the target doesn't explicitly think this is a bad idea).
16613   MVT VT = MVT::getIntegerVT(NumBytes * 8);
16614   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16615   if (!DC->isTypeLegal(VT))
16616     return SDValue();
16617   if (St->getMemOperand() &&
16618       !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
16619                               *St->getMemOperand()))
16620     return SDValue();
16621 
16622   // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
16623   // shifted by ByteShift and truncated down to NumBytes.
16624   if (ByteShift) {
16625     SDLoc DL(IVal);
16626     IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
16627                        DAG.getConstant(ByteShift*8, DL,
16628                                     DC->getShiftAmountTy(IVal.getValueType())));
16629   }
16630 
16631   // Figure out the offset for the store and the alignment of the access.
16632   unsigned StOffset;
16633   if (DAG.getDataLayout().isLittleEndian())
16634     StOffset = ByteShift;
16635   else
16636     StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
16637 
16638   SDValue Ptr = St->getBasePtr();
16639   if (StOffset) {
16640     SDLoc DL(IVal);
16641     Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL);
16642   }
16643 
16644   // Truncate down to the new size.
16645   IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
16646 
16647   ++OpsNarrowed;
16648   return DAG
16649       .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
16650                 St->getPointerInfo().getWithOffset(StOffset),
16651                 St->getOriginalAlign());
16652 }
16653 
16654 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
16655 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
16656 /// narrowing the load and store if it would end up being a win for performance
16657 /// or code size.
16658 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
16659   StoreSDNode *ST  = cast<StoreSDNode>(N);
16660   if (!ST->isSimple())
16661     return SDValue();
16662 
16663   SDValue Chain = ST->getChain();
16664   SDValue Value = ST->getValue();
16665   SDValue Ptr   = ST->getBasePtr();
16666   EVT VT = Value.getValueType();
16667 
16668   if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
16669     return SDValue();
16670 
16671   unsigned Opc = Value.getOpcode();
16672 
16673   // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
16674   // is a byte mask indicating a consecutive number of bytes, check to see if
16675   // Y is known to provide just those bytes.  If so, we try to replace the
16676   // load + replace + store sequence with a single (narrower) store, which makes
16677   // the load dead.
16678   if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) {
16679     std::pair<unsigned, unsigned> MaskedLoad;
16680     MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
16681     if (MaskedLoad.first)
16682       if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
16683                                                   Value.getOperand(1), ST,this))
16684         return NewST;
16685 
16686     // Or is commutative, so try swapping X and Y.
16687     MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
16688     if (MaskedLoad.first)
16689       if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
16690                                                   Value.getOperand(0), ST,this))
16691         return NewST;
16692   }
16693 
16694   if (!EnableReduceLoadOpStoreWidth)
16695     return SDValue();
16696 
16697   if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
16698       Value.getOperand(1).getOpcode() != ISD::Constant)
16699     return SDValue();
16700 
16701   SDValue N0 = Value.getOperand(0);
16702   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
16703       Chain == SDValue(N0.getNode(), 1)) {
16704     LoadSDNode *LD = cast<LoadSDNode>(N0);
16705     if (LD->getBasePtr() != Ptr ||
16706         LD->getPointerInfo().getAddrSpace() !=
16707         ST->getPointerInfo().getAddrSpace())
16708       return SDValue();
16709 
16710     // Find the type to narrow it the load / op / store to.
16711     SDValue N1 = Value.getOperand(1);
16712     unsigned BitWidth = N1.getValueSizeInBits();
16713     APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
16714     if (Opc == ISD::AND)
16715       Imm ^= APInt::getAllOnesValue(BitWidth);
16716     if (Imm == 0 || Imm.isAllOnesValue())
16717       return SDValue();
16718     unsigned ShAmt = Imm.countTrailingZeros();
16719     unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
16720     unsigned NewBW = NextPowerOf2(MSB - ShAmt);
16721     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
16722     // The narrowing should be profitable, the load/store operation should be
16723     // legal (or custom) and the store size should be equal to the NewVT width.
16724     while (NewBW < BitWidth &&
16725            (NewVT.getStoreSizeInBits() != NewBW ||
16726             !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
16727             !TLI.isNarrowingProfitable(VT, NewVT))) {
16728       NewBW = NextPowerOf2(NewBW);
16729       NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
16730     }
16731     if (NewBW >= BitWidth)
16732       return SDValue();
16733 
16734     // If the lsb changed does not start at the type bitwidth boundary,
16735     // start at the previous one.
16736     if (ShAmt % NewBW)
16737       ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
16738     APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
16739                                    std::min(BitWidth, ShAmt + NewBW));
16740     if ((Imm & Mask) == Imm) {
16741       APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
16742       if (Opc == ISD::AND)
16743         NewImm ^= APInt::getAllOnesValue(NewBW);
16744       uint64_t PtrOff = ShAmt / 8;
16745       // For big endian targets, we need to adjust the offset to the pointer to
16746       // load the correct bytes.
16747       if (DAG.getDataLayout().isBigEndian())
16748         PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
16749 
16750       Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
16751       Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
16752       if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy))
16753         return SDValue();
16754 
16755       SDValue NewPtr =
16756           DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD));
16757       SDValue NewLD =
16758           DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
16759                       LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
16760                       LD->getMemOperand()->getFlags(), LD->getAAInfo());
16761       SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
16762                                    DAG.getConstant(NewImm, SDLoc(Value),
16763                                                    NewVT));
16764       SDValue NewST =
16765           DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
16766                        ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
16767 
16768       AddToWorklist(NewPtr.getNode());
16769       AddToWorklist(NewLD.getNode());
16770       AddToWorklist(NewVal.getNode());
16771       WorklistRemover DeadNodes(*this);
16772       DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
16773       ++OpsNarrowed;
16774       return NewST;
16775     }
16776   }
16777 
16778   return SDValue();
16779 }
16780 
16781 /// For a given floating point load / store pair, if the load value isn't used
16782 /// by any other operations, then consider transforming the pair to integer
16783 /// load / store operations if the target deems the transformation profitable.
16784 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
16785   StoreSDNode *ST  = cast<StoreSDNode>(N);
16786   SDValue Value = ST->getValue();
16787   if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
16788       Value.hasOneUse()) {
16789     LoadSDNode *LD = cast<LoadSDNode>(Value);
16790     EVT VT = LD->getMemoryVT();
16791     if (!VT.isFloatingPoint() ||
16792         VT != ST->getMemoryVT() ||
16793         LD->isNonTemporal() ||
16794         ST->isNonTemporal() ||
16795         LD->getPointerInfo().getAddrSpace() != 0 ||
16796         ST->getPointerInfo().getAddrSpace() != 0)
16797       return SDValue();
16798 
16799     TypeSize VTSize = VT.getSizeInBits();
16800 
16801     // We don't know the size of scalable types at compile time so we cannot
16802     // create an integer of the equivalent size.
16803     if (VTSize.isScalable())
16804       return SDValue();
16805 
16806     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize());
16807     if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
16808         !TLI.isOperationLegal(ISD::STORE, IntVT) ||
16809         !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
16810         !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
16811       return SDValue();
16812 
16813     Align LDAlign = LD->getAlign();
16814     Align STAlign = ST->getAlign();
16815     Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
16816     Align ABIAlign = DAG.getDataLayout().getABITypeAlign(IntVTTy);
16817     if (LDAlign < ABIAlign || STAlign < ABIAlign)
16818       return SDValue();
16819 
16820     SDValue NewLD =
16821         DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
16822                     LD->getPointerInfo(), LDAlign);
16823 
16824     SDValue NewST =
16825         DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
16826                      ST->getPointerInfo(), STAlign);
16827 
16828     AddToWorklist(NewLD.getNode());
16829     AddToWorklist(NewST.getNode());
16830     WorklistRemover DeadNodes(*this);
16831     DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
16832     ++LdStFP2Int;
16833     return NewST;
16834   }
16835 
16836   return SDValue();
16837 }
16838 
16839 // This is a helper function for visitMUL to check the profitability
16840 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
16841 // MulNode is the original multiply, AddNode is (add x, c1),
16842 // and ConstNode is c2.
16843 //
16844 // If the (add x, c1) has multiple uses, we could increase
16845 // the number of adds if we make this transformation.
16846 // It would only be worth doing this if we can remove a
16847 // multiply in the process. Check for that here.
16848 // To illustrate:
16849 //     (A + c1) * c3
16850 //     (A + c2) * c3
16851 // We're checking for cases where we have common "c3 * A" expressions.
16852 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
16853                                               SDValue &AddNode,
16854                                               SDValue &ConstNode) {
16855   APInt Val;
16856 
16857   // If the add only has one use, this would be OK to do.
16858   if (AddNode.getNode()->hasOneUse())
16859     return true;
16860 
16861   // Walk all the users of the constant with which we're multiplying.
16862   for (SDNode *Use : ConstNode->uses()) {
16863     if (Use == MulNode) // This use is the one we're on right now. Skip it.
16864       continue;
16865 
16866     if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
16867       SDNode *OtherOp;
16868       SDNode *MulVar = AddNode.getOperand(0).getNode();
16869 
16870       // OtherOp is what we're multiplying against the constant.
16871       if (Use->getOperand(0) == ConstNode)
16872         OtherOp = Use->getOperand(1).getNode();
16873       else
16874         OtherOp = Use->getOperand(0).getNode();
16875 
16876       // Check to see if multiply is with the same operand of our "add".
16877       //
16878       //     ConstNode  = CONST
16879       //     Use = ConstNode * A  <-- visiting Use. OtherOp is A.
16880       //     ...
16881       //     AddNode  = (A + c1)  <-- MulVar is A.
16882       //         = AddNode * ConstNode   <-- current visiting instruction.
16883       //
16884       // If we make this transformation, we will have a common
16885       // multiply (ConstNode * A) that we can save.
16886       if (OtherOp == MulVar)
16887         return true;
16888 
16889       // Now check to see if a future expansion will give us a common
16890       // multiply.
16891       //
16892       //     ConstNode  = CONST
16893       //     AddNode    = (A + c1)
16894       //     ...   = AddNode * ConstNode <-- current visiting instruction.
16895       //     ...
16896       //     OtherOp = (A + c2)
16897       //     Use     = OtherOp * ConstNode <-- visiting Use.
16898       //
16899       // If we make this transformation, we will have a common
16900       // multiply (CONST * A) after we also do the same transformation
16901       // to the "t2" instruction.
16902       if (OtherOp->getOpcode() == ISD::ADD &&
16903           DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
16904           OtherOp->getOperand(0).getNode() == MulVar)
16905         return true;
16906     }
16907   }
16908 
16909   // Didn't find a case where this would be profitable.
16910   return false;
16911 }
16912 
16913 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
16914                                          unsigned NumStores) {
16915   SmallVector<SDValue, 8> Chains;
16916   SmallPtrSet<const SDNode *, 8> Visited;
16917   SDLoc StoreDL(StoreNodes[0].MemNode);
16918 
16919   for (unsigned i = 0; i < NumStores; ++i) {
16920     Visited.insert(StoreNodes[i].MemNode);
16921   }
16922 
16923   // don't include nodes that are children or repeated nodes.
16924   for (unsigned i = 0; i < NumStores; ++i) {
16925     if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
16926       Chains.push_back(StoreNodes[i].MemNode->getChain());
16927   }
16928 
16929   assert(Chains.size() > 0 && "Chain should have generated a chain");
16930   return DAG.getTokenFactor(StoreDL, Chains);
16931 }
16932 
16933 bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
16934     SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
16935     bool IsConstantSrc, bool UseVector, bool UseTrunc) {
16936   // Make sure we have something to merge.
16937   if (NumStores < 2)
16938     return false;
16939 
16940   assert((!UseTrunc || !UseVector) &&
16941          "This optimization cannot emit a vector truncating store");
16942 
16943   // The latest Node in the DAG.
16944   SDLoc DL(StoreNodes[0].MemNode);
16945 
16946   TypeSize ElementSizeBits = MemVT.getStoreSizeInBits();
16947   unsigned SizeInBits = NumStores * ElementSizeBits;
16948   unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
16949 
16950   EVT StoreTy;
16951   if (UseVector) {
16952     unsigned Elts = NumStores * NumMemElts;
16953     // Get the type for the merged vector store.
16954     StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
16955   } else
16956     StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
16957 
16958   SDValue StoredVal;
16959   if (UseVector) {
16960     if (IsConstantSrc) {
16961       SmallVector<SDValue, 8> BuildVector;
16962       for (unsigned I = 0; I != NumStores; ++I) {
16963         StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
16964         SDValue Val = St->getValue();
16965         // If constant is of the wrong type, convert it now.
16966         if (MemVT != Val.getValueType()) {
16967           Val = peekThroughBitcasts(Val);
16968           // Deal with constants of wrong size.
16969           if (ElementSizeBits != Val.getValueSizeInBits()) {
16970             EVT IntMemVT =
16971                 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
16972             if (isa<ConstantFPSDNode>(Val)) {
16973               // Not clear how to truncate FP values.
16974               return false;
16975             } else if (auto *C = dyn_cast<ConstantSDNode>(Val))
16976               Val = DAG.getConstant(C->getAPIntValue()
16977                                         .zextOrTrunc(Val.getValueSizeInBits())
16978                                         .zextOrTrunc(ElementSizeBits),
16979                                     SDLoc(C), IntMemVT);
16980           }
16981           // Make sure correctly size type is the correct type.
16982           Val = DAG.getBitcast(MemVT, Val);
16983         }
16984         BuildVector.push_back(Val);
16985       }
16986       StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
16987                                                : ISD::BUILD_VECTOR,
16988                               DL, StoreTy, BuildVector);
16989     } else {
16990       SmallVector<SDValue, 8> Ops;
16991       for (unsigned i = 0; i < NumStores; ++i) {
16992         StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
16993         SDValue Val = peekThroughBitcasts(St->getValue());
16994         // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
16995         // type MemVT. If the underlying value is not the correct
16996         // type, but it is an extraction of an appropriate vector we
16997         // can recast Val to be of the correct type. This may require
16998         // converting between EXTRACT_VECTOR_ELT and
16999         // EXTRACT_SUBVECTOR.
17000         if ((MemVT != Val.getValueType()) &&
17001             (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
17002              Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
17003           EVT MemVTScalarTy = MemVT.getScalarType();
17004           // We may need to add a bitcast here to get types to line up.
17005           if (MemVTScalarTy != Val.getValueType().getScalarType()) {
17006             Val = DAG.getBitcast(MemVT, Val);
17007           } else {
17008             unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
17009                                             : ISD::EXTRACT_VECTOR_ELT;
17010             SDValue Vec = Val.getOperand(0);
17011             SDValue Idx = Val.getOperand(1);
17012             Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
17013           }
17014         }
17015         Ops.push_back(Val);
17016       }
17017 
17018       // Build the extracted vector elements back into a vector.
17019       StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
17020                                                : ISD::BUILD_VECTOR,
17021                               DL, StoreTy, Ops);
17022     }
17023   } else {
17024     // We should always use a vector store when merging extracted vector
17025     // elements, so this path implies a store of constants.
17026     assert(IsConstantSrc && "Merged vector elements should use vector store");
17027 
17028     APInt StoreInt(SizeInBits, 0);
17029 
17030     // Construct a single integer constant which is made of the smaller
17031     // constant inputs.
17032     bool IsLE = DAG.getDataLayout().isLittleEndian();
17033     for (unsigned i = 0; i < NumStores; ++i) {
17034       unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
17035       StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
17036 
17037       SDValue Val = St->getValue();
17038       Val = peekThroughBitcasts(Val);
17039       StoreInt <<= ElementSizeBits;
17040       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
17041         StoreInt |= C->getAPIntValue()
17042                         .zextOrTrunc(ElementSizeBits)
17043                         .zextOrTrunc(SizeInBits);
17044       } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
17045         StoreInt |= C->getValueAPF()
17046                         .bitcastToAPInt()
17047                         .zextOrTrunc(ElementSizeBits)
17048                         .zextOrTrunc(SizeInBits);
17049         // If fp truncation is necessary give up for now.
17050         if (MemVT.getSizeInBits() != ElementSizeBits)
17051           return false;
17052       } else {
17053         llvm_unreachable("Invalid constant element type");
17054       }
17055     }
17056 
17057     // Create the new Load and Store operations.
17058     StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
17059   }
17060 
17061   LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
17062   SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
17063 
17064   // make sure we use trunc store if it's necessary to be legal.
17065   SDValue NewStore;
17066   if (!UseTrunc) {
17067     NewStore =
17068         DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
17069                      FirstInChain->getPointerInfo(), FirstInChain->getAlign());
17070   } else { // Must be realized as a trunc store
17071     EVT LegalizedStoredValTy =
17072         TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
17073     unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
17074     ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
17075     SDValue ExtendedStoreVal =
17076         DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
17077                         LegalizedStoredValTy);
17078     NewStore = DAG.getTruncStore(
17079         NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
17080         FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
17081         FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
17082   }
17083 
17084   // Replace all merged stores with the new store.
17085   for (unsigned i = 0; i < NumStores; ++i)
17086     CombineTo(StoreNodes[i].MemNode, NewStore);
17087 
17088   AddToWorklist(NewChain.getNode());
17089   return true;
17090 }
17091 
17092 void DAGCombiner::getStoreMergeCandidates(
17093     StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
17094     SDNode *&RootNode) {
17095   // This holds the base pointer, index, and the offset in bytes from the base
17096   // pointer. We must have a base and an offset. Do not handle stores to undef
17097   // base pointers.
17098   BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
17099   if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef())
17100     return;
17101 
17102   SDValue Val = peekThroughBitcasts(St->getValue());
17103   StoreSource StoreSrc = getStoreSource(Val);
17104   assert(StoreSrc != StoreSource::Unknown && "Expected known source for store");
17105 
17106   // Match on loadbaseptr if relevant.
17107   EVT MemVT = St->getMemoryVT();
17108   BaseIndexOffset LBasePtr;
17109   EVT LoadVT;
17110   if (StoreSrc == StoreSource::Load) {
17111     auto *Ld = cast<LoadSDNode>(Val);
17112     LBasePtr = BaseIndexOffset::match(Ld, DAG);
17113     LoadVT = Ld->getMemoryVT();
17114     // Load and store should be the same type.
17115     if (MemVT != LoadVT)
17116       return;
17117     // Loads must only have one use.
17118     if (!Ld->hasNUsesOfValue(1, 0))
17119       return;
17120     // The memory operands must not be volatile/indexed/atomic.
17121     // TODO: May be able to relax for unordered atomics (see D66309)
17122     if (!Ld->isSimple() || Ld->isIndexed())
17123       return;
17124   }
17125   auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
17126                             int64_t &Offset) -> bool {
17127     // The memory operands must not be volatile/indexed/atomic.
17128     // TODO: May be able to relax for unordered atomics (see D66309)
17129     if (!Other->isSimple() || Other->isIndexed())
17130       return false;
17131     // Don't mix temporal stores with non-temporal stores.
17132     if (St->isNonTemporal() != Other->isNonTemporal())
17133       return false;
17134     SDValue OtherBC = peekThroughBitcasts(Other->getValue());
17135     // Allow merging constants of different types as integers.
17136     bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
17137                                            : Other->getMemoryVT() != MemVT;
17138     switch (StoreSrc) {
17139     case StoreSource::Load: {
17140       if (NoTypeMatch)
17141         return false;
17142       // The Load's Base Ptr must also match.
17143       auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC);
17144       if (!OtherLd)
17145         return false;
17146       BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
17147       if (LoadVT != OtherLd->getMemoryVT())
17148         return false;
17149       // Loads must only have one use.
17150       if (!OtherLd->hasNUsesOfValue(1, 0))
17151         return false;
17152       // The memory operands must not be volatile/indexed/atomic.
17153       // TODO: May be able to relax for unordered atomics (see D66309)
17154       if (!OtherLd->isSimple() || OtherLd->isIndexed())
17155         return false;
17156       // Don't mix temporal loads with non-temporal loads.
17157       if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
17158         return false;
17159       if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
17160         return false;
17161       break;
17162     }
17163     case StoreSource::Constant:
17164       if (NoTypeMatch)
17165         return false;
17166       if (!isIntOrFPConstant(OtherBC))
17167         return false;
17168       break;
17169     case StoreSource::Extract:
17170       // Do not merge truncated stores here.
17171       if (Other->isTruncatingStore())
17172         return false;
17173       if (!MemVT.bitsEq(OtherBC.getValueType()))
17174         return false;
17175       if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
17176           OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
17177         return false;
17178       break;
17179     default:
17180       llvm_unreachable("Unhandled store source for merging");
17181     }
17182     Ptr = BaseIndexOffset::match(Other, DAG);
17183     return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
17184   };
17185 
17186   // Check if the pair of StoreNode and the RootNode already bail out many
17187   // times which is over the limit in dependence check.
17188   auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
17189                                         SDNode *RootNode) -> bool {
17190     auto RootCount = StoreRootCountMap.find(StoreNode);
17191     return RootCount != StoreRootCountMap.end() &&
17192            RootCount->second.first == RootNode &&
17193            RootCount->second.second > StoreMergeDependenceLimit;
17194   };
17195 
17196   auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) {
17197     // This must be a chain use.
17198     if (UseIter.getOperandNo() != 0)
17199       return;
17200     if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) {
17201       BaseIndexOffset Ptr;
17202       int64_t PtrDiff;
17203       if (CandidateMatch(OtherStore, Ptr, PtrDiff) &&
17204           !OverLimitInDependenceCheck(OtherStore, RootNode))
17205         StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff));
17206     }
17207   };
17208 
17209   // We looking for a root node which is an ancestor to all mergable
17210   // stores. We search up through a load, to our root and then down
17211   // through all children. For instance we will find Store{1,2,3} if
17212   // St is Store1, Store2. or Store3 where the root is not a load
17213   // which always true for nonvolatile ops. TODO: Expand
17214   // the search to find all valid candidates through multiple layers of loads.
17215   //
17216   // Root
17217   // |-------|-------|
17218   // Load    Load    Store3
17219   // |       |
17220   // Store1   Store2
17221   //
17222   // FIXME: We should be able to climb and
17223   // descend TokenFactors to find candidates as well.
17224 
17225   RootNode = St->getChain().getNode();
17226 
17227   unsigned NumNodesExplored = 0;
17228   const unsigned MaxSearchNodes = 1024;
17229   if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
17230     RootNode = Ldn->getChain().getNode();
17231     for (auto I = RootNode->use_begin(), E = RootNode->use_end();
17232          I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) {
17233       if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain
17234         for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
17235           TryToAddCandidate(I2);
17236       }
17237     }
17238   } else {
17239     for (auto I = RootNode->use_begin(), E = RootNode->use_end();
17240          I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored)
17241       TryToAddCandidate(I);
17242   }
17243 }
17244 
17245 // We need to check that merging these stores does not cause a loop in
17246 // the DAG. Any store candidate may depend on another candidate
17247 // indirectly through its operand (we already consider dependencies
17248 // through the chain). Check in parallel by searching up from
17249 // non-chain operands of candidates.
17250 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
17251     SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
17252     SDNode *RootNode) {
17253   // FIXME: We should be able to truncate a full search of
17254   // predecessors by doing a BFS and keeping tabs the originating
17255   // stores from which worklist nodes come from in a similar way to
17256   // TokenFactor simplfication.
17257 
17258   SmallPtrSet<const SDNode *, 32> Visited;
17259   SmallVector<const SDNode *, 8> Worklist;
17260 
17261   // RootNode is a predecessor to all candidates so we need not search
17262   // past it. Add RootNode (peeking through TokenFactors). Do not count
17263   // these towards size check.
17264 
17265   Worklist.push_back(RootNode);
17266   while (!Worklist.empty()) {
17267     auto N = Worklist.pop_back_val();
17268     if (!Visited.insert(N).second)
17269       continue; // Already present in Visited.
17270     if (N->getOpcode() == ISD::TokenFactor) {
17271       for (SDValue Op : N->ops())
17272         Worklist.push_back(Op.getNode());
17273     }
17274   }
17275 
17276   // Don't count pruning nodes towards max.
17277   unsigned int Max = 1024 + Visited.size();
17278   // Search Ops of store candidates.
17279   for (unsigned i = 0; i < NumStores; ++i) {
17280     SDNode *N = StoreNodes[i].MemNode;
17281     // Of the 4 Store Operands:
17282     //   * Chain (Op 0) -> We have already considered these
17283     //                    in candidate selection and can be
17284     //                    safely ignored
17285     //   * Value (Op 1) -> Cycles may happen (e.g. through load chains)
17286     //   * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
17287     //                       but aren't necessarily fromt the same base node, so
17288     //                       cycles possible (e.g. via indexed store).
17289     //   * (Op 3) -> Represents the pre or post-indexing offset (or undef for
17290     //               non-indexed stores). Not constant on all targets (e.g. ARM)
17291     //               and so can participate in a cycle.
17292     for (unsigned j = 1; j < N->getNumOperands(); ++j)
17293       Worklist.push_back(N->getOperand(j).getNode());
17294   }
17295   // Search through DAG. We can stop early if we find a store node.
17296   for (unsigned i = 0; i < NumStores; ++i)
17297     if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
17298                                      Max)) {
17299       // If the searching bail out, record the StoreNode and RootNode in the
17300       // StoreRootCountMap. If we have seen the pair many times over a limit,
17301       // we won't add the StoreNode into StoreNodes set again.
17302       if (Visited.size() >= Max) {
17303         auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
17304         if (RootCount.first == RootNode)
17305           RootCount.second++;
17306         else
17307           RootCount = {RootNode, 1};
17308       }
17309       return false;
17310     }
17311   return true;
17312 }
17313 
17314 unsigned
17315 DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
17316                                   int64_t ElementSizeBytes) const {
17317   while (true) {
17318     // Find a store past the width of the first store.
17319     size_t StartIdx = 0;
17320     while ((StartIdx + 1 < StoreNodes.size()) &&
17321            StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
17322               StoreNodes[StartIdx + 1].OffsetFromBase)
17323       ++StartIdx;
17324 
17325     // Bail if we don't have enough candidates to merge.
17326     if (StartIdx + 1 >= StoreNodes.size())
17327       return 0;
17328 
17329     // Trim stores that overlapped with the first store.
17330     if (StartIdx)
17331       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
17332 
17333     // Scan the memory operations on the chain and find the first
17334     // non-consecutive store memory address.
17335     unsigned NumConsecutiveStores = 1;
17336     int64_t StartAddress = StoreNodes[0].OffsetFromBase;
17337     // Check that the addresses are consecutive starting from the second
17338     // element in the list of stores.
17339     for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
17340       int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
17341       if (CurrAddress - StartAddress != (ElementSizeBytes * i))
17342         break;
17343       NumConsecutiveStores = i + 1;
17344     }
17345     if (NumConsecutiveStores > 1)
17346       return NumConsecutiveStores;
17347 
17348     // There are no consecutive stores at the start of the list.
17349     // Remove the first store and try again.
17350     StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1);
17351   }
17352 }
17353 
17354 bool DAGCombiner::tryStoreMergeOfConstants(
17355     SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
17356     EVT MemVT, SDNode *RootNode, bool AllowVectors) {
17357   LLVMContext &Context = *DAG.getContext();
17358   const DataLayout &DL = DAG.getDataLayout();
17359   int64_t ElementSizeBytes = MemVT.getStoreSize();
17360   unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
17361   bool MadeChange = false;
17362 
17363   // Store the constants into memory as one consecutive store.
17364   while (NumConsecutiveStores >= 2) {
17365     LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
17366     unsigned FirstStoreAS = FirstInChain->getAddressSpace();
17367     unsigned FirstStoreAlign = FirstInChain->getAlignment();
17368     unsigned LastLegalType = 1;
17369     unsigned LastLegalVectorType = 1;
17370     bool LastIntegerTrunc = false;
17371     bool NonZero = false;
17372     unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
17373     for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
17374       StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
17375       SDValue StoredVal = ST->getValue();
17376       bool IsElementZero = false;
17377       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
17378         IsElementZero = C->isNullValue();
17379       else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
17380         IsElementZero = C->getConstantFPValue()->isNullValue();
17381       if (IsElementZero) {
17382         if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
17383           FirstZeroAfterNonZero = i;
17384       }
17385       NonZero |= !IsElementZero;
17386 
17387       // Find a legal type for the constant store.
17388       unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
17389       EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
17390       bool IsFast = false;
17391 
17392       // Break early when size is too large to be legal.
17393       if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
17394         break;
17395 
17396       if (TLI.isTypeLegal(StoreTy) &&
17397           TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
17398                                DAG.getMachineFunction()) &&
17399           TLI.allowsMemoryAccess(Context, DL, StoreTy,
17400                                  *FirstInChain->getMemOperand(), &IsFast) &&
17401           IsFast) {
17402         LastIntegerTrunc = false;
17403         LastLegalType = i + 1;
17404         // Or check whether a truncstore is legal.
17405       } else if (TLI.getTypeAction(Context, StoreTy) ==
17406                  TargetLowering::TypePromoteInteger) {
17407         EVT LegalizedStoredValTy =
17408             TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
17409         if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
17410             TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy,
17411                                  DAG.getMachineFunction()) &&
17412             TLI.allowsMemoryAccess(Context, DL, StoreTy,
17413                                    *FirstInChain->getMemOperand(), &IsFast) &&
17414             IsFast) {
17415           LastIntegerTrunc = true;
17416           LastLegalType = i + 1;
17417         }
17418       }
17419 
17420       // We only use vectors if the constant is known to be zero or the
17421       // target allows it and the function is not marked with the
17422       // noimplicitfloat attribute.
17423       if ((!NonZero ||
17424            TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
17425           AllowVectors) {
17426         // Find a legal type for the vector store.
17427         unsigned Elts = (i + 1) * NumMemElts;
17428         EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
17429         if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
17430             TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) &&
17431             TLI.allowsMemoryAccess(Context, DL, Ty,
17432                                    *FirstInChain->getMemOperand(), &IsFast) &&
17433             IsFast)
17434           LastLegalVectorType = i + 1;
17435       }
17436     }
17437 
17438     bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors;
17439     unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
17440     bool UseTrunc = LastIntegerTrunc && !UseVector;
17441 
17442     // Check if we found a legal integer type that creates a meaningful
17443     // merge.
17444     if (NumElem < 2) {
17445       // We know that candidate stores are in order and of correct
17446       // shape. While there is no mergeable sequence from the
17447       // beginning one may start later in the sequence. The only
17448       // reason a merge of size N could have failed where another of
17449       // the same size would not have, is if the alignment has
17450       // improved or we've dropped a non-zero value. Drop as many
17451       // candidates as we can here.
17452       unsigned NumSkip = 1;
17453       while ((NumSkip < NumConsecutiveStores) &&
17454              (NumSkip < FirstZeroAfterNonZero) &&
17455              (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
17456         NumSkip++;
17457 
17458       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
17459       NumConsecutiveStores -= NumSkip;
17460       continue;
17461     }
17462 
17463     // Check that we can merge these candidates without causing a cycle.
17464     if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
17465                                                   RootNode)) {
17466       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
17467       NumConsecutiveStores -= NumElem;
17468       continue;
17469     }
17470 
17471     MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
17472                                                   /*IsConstantSrc*/ true,
17473                                                   UseVector, UseTrunc);
17474 
17475     // Remove merged stores for next iteration.
17476     StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
17477     NumConsecutiveStores -= NumElem;
17478   }
17479   return MadeChange;
17480 }
17481 
17482 bool DAGCombiner::tryStoreMergeOfExtracts(
17483     SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
17484     EVT MemVT, SDNode *RootNode) {
17485   LLVMContext &Context = *DAG.getContext();
17486   const DataLayout &DL = DAG.getDataLayout();
17487   unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
17488   bool MadeChange = false;
17489 
17490   // Loop on Consecutive Stores on success.
17491   while (NumConsecutiveStores >= 2) {
17492     LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
17493     unsigned FirstStoreAS = FirstInChain->getAddressSpace();
17494     unsigned FirstStoreAlign = FirstInChain->getAlignment();
17495     unsigned NumStoresToMerge = 1;
17496     for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
17497       // Find a legal type for the vector store.
17498       unsigned Elts = (i + 1) * NumMemElts;
17499       EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
17500       bool IsFast = false;
17501 
17502       // Break early when size is too large to be legal.
17503       if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
17504         break;
17505 
17506       if (TLI.isTypeLegal(Ty) &&
17507           TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) &&
17508           TLI.allowsMemoryAccess(Context, DL, Ty,
17509                                  *FirstInChain->getMemOperand(), &IsFast) &&
17510           IsFast)
17511         NumStoresToMerge = i + 1;
17512     }
17513 
17514     // Check if we found a legal integer type creating a meaningful
17515     // merge.
17516     if (NumStoresToMerge < 2) {
17517       // We know that candidate stores are in order and of correct
17518       // shape. While there is no mergeable sequence from the
17519       // beginning one may start later in the sequence. The only
17520       // reason a merge of size N could have failed where another of
17521       // the same size would not have, is if the alignment has
17522       // improved. Drop as many candidates as we can here.
17523       unsigned NumSkip = 1;
17524       while ((NumSkip < NumConsecutiveStores) &&
17525              (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
17526         NumSkip++;
17527 
17528       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
17529       NumConsecutiveStores -= NumSkip;
17530       continue;
17531     }
17532 
17533     // Check that we can merge these candidates without causing a cycle.
17534     if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge,
17535                                                   RootNode)) {
17536       StoreNodes.erase(StoreNodes.begin(),
17537                        StoreNodes.begin() + NumStoresToMerge);
17538       NumConsecutiveStores -= NumStoresToMerge;
17539       continue;
17540     }
17541 
17542     MadeChange |= mergeStoresOfConstantsOrVecElts(
17543         StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false,
17544         /*UseVector*/ true, /*UseTrunc*/ false);
17545 
17546     StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge);
17547     NumConsecutiveStores -= NumStoresToMerge;
17548   }
17549   return MadeChange;
17550 }
17551 
17552 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
17553                                        unsigned NumConsecutiveStores, EVT MemVT,
17554                                        SDNode *RootNode, bool AllowVectors,
17555                                        bool IsNonTemporalStore,
17556                                        bool IsNonTemporalLoad) {
17557   LLVMContext &Context = *DAG.getContext();
17558   const DataLayout &DL = DAG.getDataLayout();
17559   int64_t ElementSizeBytes = MemVT.getStoreSize();
17560   unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
17561   bool MadeChange = false;
17562 
17563   // Look for load nodes which are used by the stored values.
17564   SmallVector<MemOpLink, 8> LoadNodes;
17565 
17566   // Find acceptable loads. Loads need to have the same chain (token factor),
17567   // must not be zext, volatile, indexed, and they must be consecutive.
17568   BaseIndexOffset LdBasePtr;
17569 
17570   for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
17571     StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
17572     SDValue Val = peekThroughBitcasts(St->getValue());
17573     LoadSDNode *Ld = cast<LoadSDNode>(Val);
17574 
17575     BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
17576     // If this is not the first ptr that we check.
17577     int64_t LdOffset = 0;
17578     if (LdBasePtr.getBase().getNode()) {
17579       // The base ptr must be the same.
17580       if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
17581         break;
17582     } else {
17583       // Check that all other base pointers are the same as this one.
17584       LdBasePtr = LdPtr;
17585     }
17586 
17587     // We found a potential memory operand to merge.
17588     LoadNodes.push_back(MemOpLink(Ld, LdOffset));
17589   }
17590 
17591   while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
17592     Align RequiredAlignment;
17593     bool NeedRotate = false;
17594     if (LoadNodes.size() == 2) {
17595       // If we have load/store pair instructions and we only have two values,
17596       // don't bother merging.
17597       if (TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
17598           StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) {
17599         StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
17600         LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
17601         break;
17602       }
17603       // If the loads are reversed, see if we can rotate the halves into place.
17604       int64_t Offset0 = LoadNodes[0].OffsetFromBase;
17605       int64_t Offset1 = LoadNodes[1].OffsetFromBase;
17606       EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2);
17607       if (Offset0 - Offset1 == ElementSizeBytes &&
17608           (hasOperation(ISD::ROTL, PairVT) ||
17609            hasOperation(ISD::ROTR, PairVT))) {
17610         std::swap(LoadNodes[0], LoadNodes[1]);
17611         NeedRotate = true;
17612       }
17613     }
17614     LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
17615     unsigned FirstStoreAS = FirstInChain->getAddressSpace();
17616     Align FirstStoreAlign = FirstInChain->getAlign();
17617     LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
17618 
17619     // Scan the memory operations on the chain and find the first
17620     // non-consecutive load memory address. These variables hold the index in
17621     // the store node array.
17622 
17623     unsigned LastConsecutiveLoad = 1;
17624 
17625     // This variable refers to the size and not index in the array.
17626     unsigned LastLegalVectorType = 1;
17627     unsigned LastLegalIntegerType = 1;
17628     bool isDereferenceable = true;
17629     bool DoIntegerTruncate = false;
17630     int64_t StartAddress = LoadNodes[0].OffsetFromBase;
17631     SDValue LoadChain = FirstLoad->getChain();
17632     for (unsigned i = 1; i < LoadNodes.size(); ++i) {
17633       // All loads must share the same chain.
17634       if (LoadNodes[i].MemNode->getChain() != LoadChain)
17635         break;
17636 
17637       int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
17638       if (CurrAddress - StartAddress != (ElementSizeBytes * i))
17639         break;
17640       LastConsecutiveLoad = i;
17641 
17642       if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
17643         isDereferenceable = false;
17644 
17645       // Find a legal type for the vector store.
17646       unsigned Elts = (i + 1) * NumMemElts;
17647       EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
17648 
17649       // Break early when size is too large to be legal.
17650       if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
17651         break;
17652 
17653       bool IsFastSt = false;
17654       bool IsFastLd = false;
17655       if (TLI.isTypeLegal(StoreTy) &&
17656           TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
17657                                DAG.getMachineFunction()) &&
17658           TLI.allowsMemoryAccess(Context, DL, StoreTy,
17659                                  *FirstInChain->getMemOperand(), &IsFastSt) &&
17660           IsFastSt &&
17661           TLI.allowsMemoryAccess(Context, DL, StoreTy,
17662                                  *FirstLoad->getMemOperand(), &IsFastLd) &&
17663           IsFastLd) {
17664         LastLegalVectorType = i + 1;
17665       }
17666 
17667       // Find a legal type for the integer store.
17668       unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
17669       StoreTy = EVT::getIntegerVT(Context, SizeInBits);
17670       if (TLI.isTypeLegal(StoreTy) &&
17671           TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
17672                                DAG.getMachineFunction()) &&
17673           TLI.allowsMemoryAccess(Context, DL, StoreTy,
17674                                  *FirstInChain->getMemOperand(), &IsFastSt) &&
17675           IsFastSt &&
17676           TLI.allowsMemoryAccess(Context, DL, StoreTy,
17677                                  *FirstLoad->getMemOperand(), &IsFastLd) &&
17678           IsFastLd) {
17679         LastLegalIntegerType = i + 1;
17680         DoIntegerTruncate = false;
17681         // Or check whether a truncstore and extload is legal.
17682       } else if (TLI.getTypeAction(Context, StoreTy) ==
17683                  TargetLowering::TypePromoteInteger) {
17684         EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
17685         if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
17686             TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy,
17687                                  DAG.getMachineFunction()) &&
17688             TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) &&
17689             TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) &&
17690             TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
17691             TLI.allowsMemoryAccess(Context, DL, StoreTy,
17692                                    *FirstInChain->getMemOperand(), &IsFastSt) &&
17693             IsFastSt &&
17694             TLI.allowsMemoryAccess(Context, DL, StoreTy,
17695                                    *FirstLoad->getMemOperand(), &IsFastLd) &&
17696             IsFastLd) {
17697           LastLegalIntegerType = i + 1;
17698           DoIntegerTruncate = true;
17699         }
17700       }
17701     }
17702 
17703     // Only use vector types if the vector type is larger than the integer
17704     // type. If they are the same, use integers.
17705     bool UseVectorTy =
17706         LastLegalVectorType > LastLegalIntegerType && AllowVectors;
17707     unsigned LastLegalType =
17708         std::max(LastLegalVectorType, LastLegalIntegerType);
17709 
17710     // We add +1 here because the LastXXX variables refer to location while
17711     // the NumElem refers to array/index size.
17712     unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
17713     NumElem = std::min(LastLegalType, NumElem);
17714     Align FirstLoadAlign = FirstLoad->getAlign();
17715 
17716     if (NumElem < 2) {
17717       // We know that candidate stores are in order and of correct
17718       // shape. While there is no mergeable sequence from the
17719       // beginning one may start later in the sequence. The only
17720       // reason a merge of size N could have failed where another of
17721       // the same size would not have is if the alignment or either
17722       // the load or store has improved. Drop as many candidates as we
17723       // can here.
17724       unsigned NumSkip = 1;
17725       while ((NumSkip < LoadNodes.size()) &&
17726              (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) &&
17727              (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
17728         NumSkip++;
17729       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
17730       LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
17731       NumConsecutiveStores -= NumSkip;
17732       continue;
17733     }
17734 
17735     // Check that we can merge these candidates without causing a cycle.
17736     if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
17737                                                   RootNode)) {
17738       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
17739       LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
17740       NumConsecutiveStores -= NumElem;
17741       continue;
17742     }
17743 
17744     // Find if it is better to use vectors or integers to load and store
17745     // to memory.
17746     EVT JointMemOpVT;
17747     if (UseVectorTy) {
17748       // Find a legal type for the vector store.
17749       unsigned Elts = NumElem * NumMemElts;
17750       JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
17751     } else {
17752       unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
17753       JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
17754     }
17755 
17756     SDLoc LoadDL(LoadNodes[0].MemNode);
17757     SDLoc StoreDL(StoreNodes[0].MemNode);
17758 
17759     // The merged loads are required to have the same incoming chain, so
17760     // using the first's chain is acceptable.
17761 
17762     SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
17763     AddToWorklist(NewStoreChain.getNode());
17764 
17765     MachineMemOperand::Flags LdMMOFlags =
17766         isDereferenceable ? MachineMemOperand::MODereferenceable
17767                           : MachineMemOperand::MONone;
17768     if (IsNonTemporalLoad)
17769       LdMMOFlags |= MachineMemOperand::MONonTemporal;
17770 
17771     MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore
17772                                               ? MachineMemOperand::MONonTemporal
17773                                               : MachineMemOperand::MONone;
17774 
17775     SDValue NewLoad, NewStore;
17776     if (UseVectorTy || !DoIntegerTruncate) {
17777       NewLoad = DAG.getLoad(
17778           JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
17779           FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags);
17780       SDValue StoreOp = NewLoad;
17781       if (NeedRotate) {
17782         unsigned LoadWidth = ElementSizeBytes * 8 * 2;
17783         assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&
17784                "Unexpected type for rotate-able load pair");
17785         SDValue RotAmt =
17786             DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL);
17787         // Target can convert to the identical ROTR if it does not have ROTL.
17788         StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt);
17789       }
17790       NewStore = DAG.getStore(
17791           NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(),
17792           FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
17793     } else { // This must be the truncstore/extload case
17794       EVT ExtendedTy =
17795           TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
17796       NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
17797                                FirstLoad->getChain(), FirstLoad->getBasePtr(),
17798                                FirstLoad->getPointerInfo(), JointMemOpVT,
17799                                FirstLoadAlign, LdMMOFlags);
17800       NewStore = DAG.getTruncStore(
17801           NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
17802           FirstInChain->getPointerInfo(), JointMemOpVT,
17803           FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
17804     }
17805 
17806     // Transfer chain users from old loads to the new load.
17807     for (unsigned i = 0; i < NumElem; ++i) {
17808       LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
17809       DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
17810                                     SDValue(NewLoad.getNode(), 1));
17811     }
17812 
17813     // Replace all stores with the new store. Recursively remove corresponding
17814     // values if they are no longer used.
17815     for (unsigned i = 0; i < NumElem; ++i) {
17816       SDValue Val = StoreNodes[i].MemNode->getOperand(1);
17817       CombineTo(StoreNodes[i].MemNode, NewStore);
17818       if (Val.getNode()->use_empty())
17819         recursivelyDeleteUnusedNodes(Val.getNode());
17820     }
17821 
17822     MadeChange = true;
17823     StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
17824     LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
17825     NumConsecutiveStores -= NumElem;
17826   }
17827   return MadeChange;
17828 }
17829 
17830 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) {
17831   if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
17832     return false;
17833 
17834   // TODO: Extend this function to merge stores of scalable vectors.
17835   // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
17836   // store since we know <vscale x 16 x i8> is exactly twice as large as
17837   // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
17838   EVT MemVT = St->getMemoryVT();
17839   if (MemVT.isScalableVector())
17840     return false;
17841   if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
17842     return false;
17843 
17844   // This function cannot currently deal with non-byte-sized memory sizes.
17845   int64_t ElementSizeBytes = MemVT.getStoreSize();
17846   if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits())
17847     return false;
17848 
17849   // Do not bother looking at stored values that are not constants, loads, or
17850   // extracted vector elements.
17851   SDValue StoredVal = peekThroughBitcasts(St->getValue());
17852   const StoreSource StoreSrc = getStoreSource(StoredVal);
17853   if (StoreSrc == StoreSource::Unknown)
17854     return false;
17855 
17856   SmallVector<MemOpLink, 8> StoreNodes;
17857   SDNode *RootNode;
17858   // Find potential store merge candidates by searching through chain sub-DAG
17859   getStoreMergeCandidates(St, StoreNodes, RootNode);
17860 
17861   // Check if there is anything to merge.
17862   if (StoreNodes.size() < 2)
17863     return false;
17864 
17865   // Sort the memory operands according to their distance from the
17866   // base pointer.
17867   llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
17868     return LHS.OffsetFromBase < RHS.OffsetFromBase;
17869   });
17870 
17871   bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute(
17872       Attribute::NoImplicitFloat);
17873   bool IsNonTemporalStore = St->isNonTemporal();
17874   bool IsNonTemporalLoad = StoreSrc == StoreSource::Load &&
17875                            cast<LoadSDNode>(StoredVal)->isNonTemporal();
17876 
17877   // Store Merge attempts to merge the lowest stores. This generally
17878   // works out as if successful, as the remaining stores are checked
17879   // after the first collection of stores is merged. However, in the
17880   // case that a non-mergeable store is found first, e.g., {p[-2],
17881   // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
17882   // mergeable cases. To prevent this, we prune such stores from the
17883   // front of StoreNodes here.
17884   bool MadeChange = false;
17885   while (StoreNodes.size() > 1) {
17886     unsigned NumConsecutiveStores =
17887         getConsecutiveStores(StoreNodes, ElementSizeBytes);
17888     // There are no more stores in the list to examine.
17889     if (NumConsecutiveStores == 0)
17890       return MadeChange;
17891 
17892     // We have at least 2 consecutive stores. Try to merge them.
17893     assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores");
17894     switch (StoreSrc) {
17895     case StoreSource::Constant:
17896       MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores,
17897                                              MemVT, RootNode, AllowVectors);
17898       break;
17899 
17900     case StoreSource::Extract:
17901       MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores,
17902                                             MemVT, RootNode);
17903       break;
17904 
17905     case StoreSource::Load:
17906       MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores,
17907                                          MemVT, RootNode, AllowVectors,
17908                                          IsNonTemporalStore, IsNonTemporalLoad);
17909       break;
17910 
17911     default:
17912       llvm_unreachable("Unhandled store source type");
17913     }
17914   }
17915   return MadeChange;
17916 }
17917 
17918 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
17919   SDLoc SL(ST);
17920   SDValue ReplStore;
17921 
17922   // Replace the chain to avoid dependency.
17923   if (ST->isTruncatingStore()) {
17924     ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
17925                                   ST->getBasePtr(), ST->getMemoryVT(),
17926                                   ST->getMemOperand());
17927   } else {
17928     ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
17929                              ST->getMemOperand());
17930   }
17931 
17932   // Create token to keep both nodes around.
17933   SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
17934                               MVT::Other, ST->getChain(), ReplStore);
17935 
17936   // Make sure the new and old chains are cleaned up.
17937   AddToWorklist(Token.getNode());
17938 
17939   // Don't add users to work list.
17940   return CombineTo(ST, Token, false);
17941 }
17942 
17943 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
17944   SDValue Value = ST->getValue();
17945   if (Value.getOpcode() == ISD::TargetConstantFP)
17946     return SDValue();
17947 
17948   if (!ISD::isNormalStore(ST))
17949     return SDValue();
17950 
17951   SDLoc DL(ST);
17952 
17953   SDValue Chain = ST->getChain();
17954   SDValue Ptr = ST->getBasePtr();
17955 
17956   const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
17957 
17958   // NOTE: If the original store is volatile, this transform must not increase
17959   // the number of stores.  For example, on x86-32 an f64 can be stored in one
17960   // processor operation but an i64 (which is not legal) requires two.  So the
17961   // transform should not be done in this case.
17962 
17963   SDValue Tmp;
17964   switch (CFP->getSimpleValueType(0).SimpleTy) {
17965   default:
17966     llvm_unreachable("Unknown FP type");
17967   case MVT::f16:    // We don't do this for these yet.
17968   case MVT::f80:
17969   case MVT::f128:
17970   case MVT::ppcf128:
17971     return SDValue();
17972   case MVT::f32:
17973     if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
17974         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
17975       ;
17976       Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
17977                             bitcastToAPInt().getZExtValue(), SDLoc(CFP),
17978                             MVT::i32);
17979       return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
17980     }
17981 
17982     return SDValue();
17983   case MVT::f64:
17984     if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
17985          ST->isSimple()) ||
17986         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
17987       ;
17988       Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
17989                             getZExtValue(), SDLoc(CFP), MVT::i64);
17990       return DAG.getStore(Chain, DL, Tmp,
17991                           Ptr, ST->getMemOperand());
17992     }
17993 
17994     if (ST->isSimple() &&
17995         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
17996       // Many FP stores are not made apparent until after legalize, e.g. for
17997       // argument passing.  Since this is so common, custom legalize the
17998       // 64-bit integer store into two 32-bit stores.
17999       uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
18000       SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
18001       SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
18002       if (DAG.getDataLayout().isBigEndian())
18003         std::swap(Lo, Hi);
18004 
18005       MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
18006       AAMDNodes AAInfo = ST->getAAInfo();
18007 
18008       SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
18009                                  ST->getOriginalAlign(), MMOFlags, AAInfo);
18010       Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL);
18011       SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
18012                                  ST->getPointerInfo().getWithOffset(4),
18013                                  ST->getOriginalAlign(), MMOFlags, AAInfo);
18014       return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
18015                          St0, St1);
18016     }
18017 
18018     return SDValue();
18019   }
18020 }
18021 
18022 SDValue DAGCombiner::visitSTORE(SDNode *N) {
18023   StoreSDNode *ST  = cast<StoreSDNode>(N);
18024   SDValue Chain = ST->getChain();
18025   SDValue Value = ST->getValue();
18026   SDValue Ptr   = ST->getBasePtr();
18027 
18028   // If this is a store of a bit convert, store the input value if the
18029   // resultant store does not need a higher alignment than the original.
18030   if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
18031       ST->isUnindexed()) {
18032     EVT SVT = Value.getOperand(0).getValueType();
18033     // If the store is volatile, we only want to change the store type if the
18034     // resulting store is legal. Otherwise we might increase the number of
18035     // memory accesses. We don't care if the original type was legal or not
18036     // as we assume software couldn't rely on the number of accesses of an
18037     // illegal type.
18038     // TODO: May be able to relax for unordered atomics (see D66309)
18039     if (((!LegalOperations && ST->isSimple()) ||
18040          TLI.isOperationLegal(ISD::STORE, SVT)) &&
18041         TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
18042                                      DAG, *ST->getMemOperand())) {
18043       return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
18044                           ST->getMemOperand());
18045     }
18046   }
18047 
18048   // Turn 'store undef, Ptr' -> nothing.
18049   if (Value.isUndef() && ST->isUnindexed())
18050     return Chain;
18051 
18052   // Try to infer better alignment information than the store already has.
18053   if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) {
18054     if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
18055       if (*Alignment > ST->getAlign() &&
18056           isAligned(*Alignment, ST->getSrcValueOffset())) {
18057         SDValue NewStore =
18058             DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
18059                               ST->getMemoryVT(), *Alignment,
18060                               ST->getMemOperand()->getFlags(), ST->getAAInfo());
18061         // NewStore will always be N as we are only refining the alignment
18062         assert(NewStore.getNode() == N);
18063         (void)NewStore;
18064       }
18065     }
18066   }
18067 
18068   // Try transforming a pair floating point load / store ops to integer
18069   // load / store ops.
18070   if (SDValue NewST = TransformFPLoadStorePair(N))
18071     return NewST;
18072 
18073   // Try transforming several stores into STORE (BSWAP).
18074   if (SDValue Store = mergeTruncStores(ST))
18075     return Store;
18076 
18077   if (ST->isUnindexed()) {
18078     // Walk up chain skipping non-aliasing memory nodes, on this store and any
18079     // adjacent stores.
18080     if (findBetterNeighborChains(ST)) {
18081       // replaceStoreChain uses CombineTo, which handled all of the worklist
18082       // manipulation. Return the original node to not do anything else.
18083       return SDValue(ST, 0);
18084     }
18085     Chain = ST->getChain();
18086   }
18087 
18088   // FIXME: is there such a thing as a truncating indexed store?
18089   if (ST->isTruncatingStore() && ST->isUnindexed() &&
18090       Value.getValueType().isInteger() &&
18091       (!isa<ConstantSDNode>(Value) ||
18092        !cast<ConstantSDNode>(Value)->isOpaque())) {
18093     APInt TruncDemandedBits =
18094         APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
18095                              ST->getMemoryVT().getScalarSizeInBits());
18096 
18097     // See if we can simplify the input to this truncstore with knowledge that
18098     // only the low bits are being used.  For example:
18099     // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
18100     AddToWorklist(Value.getNode());
18101     if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits))
18102       return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
18103                                ST->getMemOperand());
18104 
18105     // Otherwise, see if we can simplify the operation with
18106     // SimplifyDemandedBits, which only works if the value has a single use.
18107     if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
18108       // Re-visit the store if anything changed and the store hasn't been merged
18109       // with another node (N is deleted) SimplifyDemandedBits will add Value's
18110       // node back to the worklist if necessary, but we also need to re-visit
18111       // the Store node itself.
18112       if (N->getOpcode() != ISD::DELETED_NODE)
18113         AddToWorklist(N);
18114       return SDValue(N, 0);
18115     }
18116   }
18117 
18118   // If this is a load followed by a store to the same location, then the store
18119   // is dead/noop.
18120   // TODO: Can relax for unordered atomics (see D66309)
18121   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
18122     if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
18123         ST->isUnindexed() && ST->isSimple() &&
18124         Ld->getAddressSpace() == ST->getAddressSpace() &&
18125         // There can't be any side effects between the load and store, such as
18126         // a call or store.
18127         Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
18128       // The store is dead, remove it.
18129       return Chain;
18130     }
18131   }
18132 
18133   // TODO: Can relax for unordered atomics (see D66309)
18134   if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
18135     if (ST->isUnindexed() && ST->isSimple() &&
18136         ST1->isUnindexed() && ST1->isSimple()) {
18137       if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value &&
18138           ST->getMemoryVT() == ST1->getMemoryVT() &&
18139           ST->getAddressSpace() == ST1->getAddressSpace()) {
18140         // If this is a store followed by a store with the same value to the
18141         // same location, then the store is dead/noop.
18142         return Chain;
18143       }
18144 
18145       if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
18146           !ST1->getBasePtr().isUndef() &&
18147           // BaseIndexOffset and the code below requires knowing the size
18148           // of a vector, so bail out if MemoryVT is scalable.
18149           !ST->getMemoryVT().isScalableVector() &&
18150           !ST1->getMemoryVT().isScalableVector() &&
18151           ST->getAddressSpace() == ST1->getAddressSpace()) {
18152         const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
18153         const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
18154         unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits();
18155         unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits();
18156         // If this is a store who's preceding store to a subset of the current
18157         // location and no one other node is chained to that store we can
18158         // effectively drop the store. Do not remove stores to undef as they may
18159         // be used as data sinks.
18160         if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
18161           CombineTo(ST1, ST1->getChain());
18162           return SDValue();
18163         }
18164       }
18165     }
18166   }
18167 
18168   // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
18169   // truncating store.  We can do this even if this is already a truncstore.
18170   if ((Value.getOpcode() == ISD::FP_ROUND ||
18171        Value.getOpcode() == ISD::TRUNCATE) &&
18172       Value.getNode()->hasOneUse() && ST->isUnindexed() &&
18173       TLI.canCombineTruncStore(Value.getOperand(0).getValueType(),
18174                                ST->getMemoryVT(), LegalOperations)) {
18175     return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
18176                              Ptr, ST->getMemoryVT(), ST->getMemOperand());
18177   }
18178 
18179   // Always perform this optimization before types are legal. If the target
18180   // prefers, also try this after legalization to catch stores that were created
18181   // by intrinsics or other nodes.
18182   if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
18183     while (true) {
18184       // There can be multiple store sequences on the same chain.
18185       // Keep trying to merge store sequences until we are unable to do so
18186       // or until we merge the last store on the chain.
18187       bool Changed = mergeConsecutiveStores(ST);
18188       if (!Changed) break;
18189       // Return N as merge only uses CombineTo and no worklist clean
18190       // up is necessary.
18191       if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
18192         return SDValue(N, 0);
18193     }
18194   }
18195 
18196   // Try transforming N to an indexed store.
18197   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
18198     return SDValue(N, 0);
18199 
18200   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
18201   //
18202   // Make sure to do this only after attempting to merge stores in order to
18203   //  avoid changing the types of some subset of stores due to visit order,
18204   //  preventing their merging.
18205   if (isa<ConstantFPSDNode>(ST->getValue())) {
18206     if (SDValue NewSt = replaceStoreOfFPConstant(ST))
18207       return NewSt;
18208   }
18209 
18210   if (SDValue NewSt = splitMergedValStore(ST))
18211     return NewSt;
18212 
18213   return ReduceLoadOpStoreWidth(N);
18214 }
18215 
18216 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
18217   const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
18218   if (!LifetimeEnd->hasOffset())
18219     return SDValue();
18220 
18221   const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
18222                                         LifetimeEnd->getOffset(), false);
18223 
18224   // We walk up the chains to find stores.
18225   SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
18226   while (!Chains.empty()) {
18227     SDValue Chain = Chains.pop_back_val();
18228     if (!Chain.hasOneUse())
18229       continue;
18230     switch (Chain.getOpcode()) {
18231     case ISD::TokenFactor:
18232       for (unsigned Nops = Chain.getNumOperands(); Nops;)
18233         Chains.push_back(Chain.getOperand(--Nops));
18234       break;
18235     case ISD::LIFETIME_START:
18236     case ISD::LIFETIME_END:
18237       // We can forward past any lifetime start/end that can be proven not to
18238       // alias the node.
18239       if (!isAlias(Chain.getNode(), N))
18240         Chains.push_back(Chain.getOperand(0));
18241       break;
18242     case ISD::STORE: {
18243       StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
18244       // TODO: Can relax for unordered atomics (see D66309)
18245       if (!ST->isSimple() || ST->isIndexed())
18246         continue;
18247       const TypeSize StoreSize = ST->getMemoryVT().getStoreSize();
18248       // The bounds of a scalable store are not known until runtime, so this
18249       // store cannot be elided.
18250       if (StoreSize.isScalable())
18251         continue;
18252       const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
18253       // If we store purely within object bounds just before its lifetime ends,
18254       // we can remove the store.
18255       if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
18256                                    StoreSize.getFixedSize() * 8)) {
18257         LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
18258                    dbgs() << "\nwithin LIFETIME_END of : ";
18259                    LifetimeEndBase.dump(); dbgs() << "\n");
18260         CombineTo(ST, ST->getChain());
18261         return SDValue(N, 0);
18262       }
18263     }
18264     }
18265   }
18266   return SDValue();
18267 }
18268 
18269 /// For the instruction sequence of store below, F and I values
18270 /// are bundled together as an i64 value before being stored into memory.
18271 /// Sometimes it is more efficent to generate separate stores for F and I,
18272 /// which can remove the bitwise instructions or sink them to colder places.
18273 ///
18274 ///   (store (or (zext (bitcast F to i32) to i64),
18275 ///              (shl (zext I to i64), 32)), addr)  -->
18276 ///   (store F, addr) and (store I, addr+4)
18277 ///
18278 /// Similarly, splitting for other merged store can also be beneficial, like:
18279 /// For pair of {i32, i32}, i64 store --> two i32 stores.
18280 /// For pair of {i32, i16}, i64 store --> two i32 stores.
18281 /// For pair of {i16, i16}, i32 store --> two i16 stores.
18282 /// For pair of {i16, i8},  i32 store --> two i16 stores.
18283 /// For pair of {i8, i8},   i16 store --> two i8 stores.
18284 ///
18285 /// We allow each target to determine specifically which kind of splitting is
18286 /// supported.
18287 ///
18288 /// The store patterns are commonly seen from the simple code snippet below
18289 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
18290 ///   void goo(const std::pair<int, float> &);
18291 ///   hoo() {
18292 ///     ...
18293 ///     goo(std::make_pair(tmp, ftmp));
18294 ///     ...
18295 ///   }
18296 ///
18297 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
18298   if (OptLevel == CodeGenOpt::None)
18299     return SDValue();
18300 
18301   // Can't change the number of memory accesses for a volatile store or break
18302   // atomicity for an atomic one.
18303   if (!ST->isSimple())
18304     return SDValue();
18305 
18306   SDValue Val = ST->getValue();
18307   SDLoc DL(ST);
18308 
18309   // Match OR operand.
18310   if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
18311     return SDValue();
18312 
18313   // Match SHL operand and get Lower and Higher parts of Val.
18314   SDValue Op1 = Val.getOperand(0);
18315   SDValue Op2 = Val.getOperand(1);
18316   SDValue Lo, Hi;
18317   if (Op1.getOpcode() != ISD::SHL) {
18318     std::swap(Op1, Op2);
18319     if (Op1.getOpcode() != ISD::SHL)
18320       return SDValue();
18321   }
18322   Lo = Op2;
18323   Hi = Op1.getOperand(0);
18324   if (!Op1.hasOneUse())
18325     return SDValue();
18326 
18327   // Match shift amount to HalfValBitSize.
18328   unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
18329   ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
18330   if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
18331     return SDValue();
18332 
18333   // Lo and Hi are zero-extended from int with size less equal than 32
18334   // to i64.
18335   if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
18336       !Lo.getOperand(0).getValueType().isScalarInteger() ||
18337       Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
18338       Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
18339       !Hi.getOperand(0).getValueType().isScalarInteger() ||
18340       Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
18341     return SDValue();
18342 
18343   // Use the EVT of low and high parts before bitcast as the input
18344   // of target query.
18345   EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
18346                   ? Lo.getOperand(0).getValueType()
18347                   : Lo.getValueType();
18348   EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
18349                    ? Hi.getOperand(0).getValueType()
18350                    : Hi.getValueType();
18351   if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
18352     return SDValue();
18353 
18354   // Start to split store.
18355   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
18356   AAMDNodes AAInfo = ST->getAAInfo();
18357 
18358   // Change the sizes of Lo and Hi's value types to HalfValBitSize.
18359   EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
18360   Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
18361   Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
18362 
18363   SDValue Chain = ST->getChain();
18364   SDValue Ptr = ST->getBasePtr();
18365   // Lower value store.
18366   SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
18367                              ST->getOriginalAlign(), MMOFlags, AAInfo);
18368   Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL);
18369   // Higher value store.
18370   SDValue St1 = DAG.getStore(
18371       St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
18372       ST->getOriginalAlign(), MMOFlags, AAInfo);
18373   return St1;
18374 }
18375 
18376 /// Convert a disguised subvector insertion into a shuffle:
18377 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
18378   assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
18379          "Expected extract_vector_elt");
18380   SDValue InsertVal = N->getOperand(1);
18381   SDValue Vec = N->getOperand(0);
18382 
18383   // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
18384   // InsIndex)
18385   //   --> (vector_shuffle X, Y) and variations where shuffle operands may be
18386   //   CONCAT_VECTORS.
18387   if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() &&
18388       InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
18389       isa<ConstantSDNode>(InsertVal.getOperand(1))) {
18390     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode());
18391     ArrayRef<int> Mask = SVN->getMask();
18392 
18393     SDValue X = Vec.getOperand(0);
18394     SDValue Y = Vec.getOperand(1);
18395 
18396     // Vec's operand 0 is using indices from 0 to N-1 and
18397     // operand 1 from N to 2N - 1, where N is the number of
18398     // elements in the vectors.
18399     SDValue InsertVal0 = InsertVal.getOperand(0);
18400     int ElementOffset = -1;
18401 
18402     // We explore the inputs of the shuffle in order to see if we find the
18403     // source of the extract_vector_elt. If so, we can use it to modify the
18404     // shuffle rather than perform an insert_vector_elt.
18405     SmallVector<std::pair<int, SDValue>, 8> ArgWorkList;
18406     ArgWorkList.emplace_back(Mask.size(), Y);
18407     ArgWorkList.emplace_back(0, X);
18408 
18409     while (!ArgWorkList.empty()) {
18410       int ArgOffset;
18411       SDValue ArgVal;
18412       std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val();
18413 
18414       if (ArgVal == InsertVal0) {
18415         ElementOffset = ArgOffset;
18416         break;
18417       }
18418 
18419       // Peek through concat_vector.
18420       if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) {
18421         int CurrentArgOffset =
18422             ArgOffset + ArgVal.getValueType().getVectorNumElements();
18423         int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements();
18424         for (SDValue Op : reverse(ArgVal->ops())) {
18425           CurrentArgOffset -= Step;
18426           ArgWorkList.emplace_back(CurrentArgOffset, Op);
18427         }
18428 
18429         // Make sure we went through all the elements and did not screw up index
18430         // computation.
18431         assert(CurrentArgOffset == ArgOffset);
18432       }
18433     }
18434 
18435     if (ElementOffset != -1) {
18436       SmallVector<int, 16> NewMask(Mask.begin(), Mask.end());
18437 
18438       auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1));
18439       NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue();
18440       assert(NewMask[InsIndex] <
18441                  (int)(2 * Vec.getValueType().getVectorNumElements()) &&
18442              NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound");
18443 
18444       SDValue LegalShuffle =
18445               TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X,
18446                                           Y, NewMask, DAG);
18447       if (LegalShuffle)
18448         return LegalShuffle;
18449     }
18450   }
18451 
18452   // insert_vector_elt V, (bitcast X from vector type), IdxC -->
18453   // bitcast(shuffle (bitcast V), (extended X), Mask)
18454   // Note: We do not use an insert_subvector node because that requires a
18455   // legal subvector type.
18456   if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
18457       !InsertVal.getOperand(0).getValueType().isVector())
18458     return SDValue();
18459 
18460   SDValue SubVec = InsertVal.getOperand(0);
18461   SDValue DestVec = N->getOperand(0);
18462   EVT SubVecVT = SubVec.getValueType();
18463   EVT VT = DestVec.getValueType();
18464   unsigned NumSrcElts = SubVecVT.getVectorNumElements();
18465   // If the source only has a single vector element, the cost of creating adding
18466   // it to a vector is likely to exceed the cost of a insert_vector_elt.
18467   if (NumSrcElts == 1)
18468     return SDValue();
18469   unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
18470   unsigned NumMaskVals = ExtendRatio * NumSrcElts;
18471 
18472   // Step 1: Create a shuffle mask that implements this insert operation. The
18473   // vector that we are inserting into will be operand 0 of the shuffle, so
18474   // those elements are just 'i'. The inserted subvector is in the first
18475   // positions of operand 1 of the shuffle. Example:
18476   // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
18477   SmallVector<int, 16> Mask(NumMaskVals);
18478   for (unsigned i = 0; i != NumMaskVals; ++i) {
18479     if (i / NumSrcElts == InsIndex)
18480       Mask[i] = (i % NumSrcElts) + NumMaskVals;
18481     else
18482       Mask[i] = i;
18483   }
18484 
18485   // Bail out if the target can not handle the shuffle we want to create.
18486   EVT SubVecEltVT = SubVecVT.getVectorElementType();
18487   EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
18488   if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
18489     return SDValue();
18490 
18491   // Step 2: Create a wide vector from the inserted source vector by appending
18492   // undefined elements. This is the same size as our destination vector.
18493   SDLoc DL(N);
18494   SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
18495   ConcatOps[0] = SubVec;
18496   SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
18497 
18498   // Step 3: Shuffle in the padded subvector.
18499   SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
18500   SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
18501   AddToWorklist(PaddedSubV.getNode());
18502   AddToWorklist(DestVecBC.getNode());
18503   AddToWorklist(Shuf.getNode());
18504   return DAG.getBitcast(VT, Shuf);
18505 }
18506 
18507 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
18508   SDValue InVec = N->getOperand(0);
18509   SDValue InVal = N->getOperand(1);
18510   SDValue EltNo = N->getOperand(2);
18511   SDLoc DL(N);
18512 
18513   EVT VT = InVec.getValueType();
18514   auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
18515 
18516   // Insert into out-of-bounds element is undefined.
18517   if (IndexC && VT.isFixedLengthVector() &&
18518       IndexC->getZExtValue() >= VT.getVectorNumElements())
18519     return DAG.getUNDEF(VT);
18520 
18521   // Remove redundant insertions:
18522   // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
18523   if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
18524       InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
18525     return InVec;
18526 
18527   if (!IndexC) {
18528     // If this is variable insert to undef vector, it might be better to splat:
18529     // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
18530     if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
18531       if (VT.isScalableVector())
18532         return DAG.getSplatVector(VT, DL, InVal);
18533       else {
18534         SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal);
18535         return DAG.getBuildVector(VT, DL, Ops);
18536       }
18537     }
18538     return SDValue();
18539   }
18540 
18541   if (VT.isScalableVector())
18542     return SDValue();
18543 
18544   unsigned NumElts = VT.getVectorNumElements();
18545 
18546   // We must know which element is being inserted for folds below here.
18547   unsigned Elt = IndexC->getZExtValue();
18548   if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
18549     return Shuf;
18550 
18551   // Canonicalize insert_vector_elt dag nodes.
18552   // Example:
18553   // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
18554   // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
18555   //
18556   // Do this only if the child insert_vector node has one use; also
18557   // do this only if indices are both constants and Idx1 < Idx0.
18558   if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
18559       && isa<ConstantSDNode>(InVec.getOperand(2))) {
18560     unsigned OtherElt = InVec.getConstantOperandVal(2);
18561     if (Elt < OtherElt) {
18562       // Swap nodes.
18563       SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
18564                                   InVec.getOperand(0), InVal, EltNo);
18565       AddToWorklist(NewOp.getNode());
18566       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
18567                          VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
18568     }
18569   }
18570 
18571   // If we can't generate a legal BUILD_VECTOR, exit
18572   if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
18573     return SDValue();
18574 
18575   // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
18576   // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
18577   // vector elements.
18578   SmallVector<SDValue, 8> Ops;
18579   // Do not combine these two vectors if the output vector will not replace
18580   // the input vector.
18581   if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
18582     Ops.append(InVec.getNode()->op_begin(),
18583                InVec.getNode()->op_end());
18584   } else if (InVec.isUndef()) {
18585     Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
18586   } else {
18587     return SDValue();
18588   }
18589   assert(Ops.size() == NumElts && "Unexpected vector size");
18590 
18591   // Insert the element
18592   if (Elt < Ops.size()) {
18593     // All the operands of BUILD_VECTOR must have the same type;
18594     // we enforce that here.
18595     EVT OpVT = Ops[0].getValueType();
18596     Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
18597   }
18598 
18599   // Return the new vector
18600   return DAG.getBuildVector(VT, DL, Ops);
18601 }
18602 
18603 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
18604                                                   SDValue EltNo,
18605                                                   LoadSDNode *OriginalLoad) {
18606   assert(OriginalLoad->isSimple());
18607 
18608   EVT ResultVT = EVE->getValueType(0);
18609   EVT VecEltVT = InVecVT.getVectorElementType();
18610 
18611   // If the vector element type is not a multiple of a byte then we are unable
18612   // to correctly compute an address to load only the extracted element as a
18613   // scalar.
18614   if (!VecEltVT.isByteSized())
18615     return SDValue();
18616 
18617   Align Alignment = OriginalLoad->getAlign();
18618   Align NewAlign = DAG.getDataLayout().getABITypeAlign(
18619       VecEltVT.getTypeForEVT(*DAG.getContext()));
18620 
18621   if (NewAlign > Alignment ||
18622       !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
18623     return SDValue();
18624 
18625   ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
18626     ISD::NON_EXTLOAD : ISD::EXTLOAD;
18627   if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
18628     return SDValue();
18629 
18630   Alignment = NewAlign;
18631 
18632   MachinePointerInfo MPI;
18633   SDLoc DL(EVE);
18634   if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
18635     int Elt = ConstEltNo->getZExtValue();
18636     unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
18637     MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
18638   } else {
18639     // Discard the pointer info except the address space because the memory
18640     // operand can't represent this new access since the offset is variable.
18641     MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
18642   }
18643   SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(),
18644                                                InVecVT, EltNo);
18645 
18646   // The replacement we need to do here is a little tricky: we need to
18647   // replace an extractelement of a load with a load.
18648   // Use ReplaceAllUsesOfValuesWith to do the replacement.
18649   // Note that this replacement assumes that the extractvalue is the only
18650   // use of the load; that's okay because we don't want to perform this
18651   // transformation in other cases anyway.
18652   SDValue Load;
18653   SDValue Chain;
18654   if (ResultVT.bitsGT(VecEltVT)) {
18655     // If the result type of vextract is wider than the load, then issue an
18656     // extending load instead.
18657     ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
18658                                                   VecEltVT)
18659                                    ? ISD::ZEXTLOAD
18660                                    : ISD::EXTLOAD;
18661     Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
18662                           OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
18663                           Alignment, OriginalLoad->getMemOperand()->getFlags(),
18664                           OriginalLoad->getAAInfo());
18665     Chain = Load.getValue(1);
18666   } else {
18667     Load = DAG.getLoad(
18668         VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment,
18669         OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo());
18670     Chain = Load.getValue(1);
18671     if (ResultVT.bitsLT(VecEltVT))
18672       Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
18673     else
18674       Load = DAG.getBitcast(ResultVT, Load);
18675   }
18676   WorklistRemover DeadNodes(*this);
18677   SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
18678   SDValue To[] = { Load, Chain };
18679   DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
18680   // Make sure to revisit this node to clean it up; it will usually be dead.
18681   AddToWorklist(EVE);
18682   // Since we're explicitly calling ReplaceAllUses, add the new node to the
18683   // worklist explicitly as well.
18684   AddToWorklistWithUsers(Load.getNode());
18685   ++OpsNarrowed;
18686   return SDValue(EVE, 0);
18687 }
18688 
18689 /// Transform a vector binary operation into a scalar binary operation by moving
18690 /// the math/logic after an extract element of a vector.
18691 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
18692                                        bool LegalOperations) {
18693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18694   SDValue Vec = ExtElt->getOperand(0);
18695   SDValue Index = ExtElt->getOperand(1);
18696   auto *IndexC = dyn_cast<ConstantSDNode>(Index);
18697   if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
18698       Vec.getNode()->getNumValues() != 1)
18699     return SDValue();
18700 
18701   // Targets may want to avoid this to prevent an expensive register transfer.
18702   if (!TLI.shouldScalarizeBinop(Vec))
18703     return SDValue();
18704 
18705   // Extracting an element of a vector constant is constant-folded, so this
18706   // transform is just replacing a vector op with a scalar op while moving the
18707   // extract.
18708   SDValue Op0 = Vec.getOperand(0);
18709   SDValue Op1 = Vec.getOperand(1);
18710   if (isAnyConstantBuildVector(Op0, true) ||
18711       isAnyConstantBuildVector(Op1, true)) {
18712     // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
18713     // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
18714     SDLoc DL(ExtElt);
18715     EVT VT = ExtElt->getValueType(0);
18716     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
18717     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
18718     return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
18719   }
18720 
18721   return SDValue();
18722 }
18723 
18724 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
18725   SDValue VecOp = N->getOperand(0);
18726   SDValue Index = N->getOperand(1);
18727   EVT ScalarVT = N->getValueType(0);
18728   EVT VecVT = VecOp.getValueType();
18729   if (VecOp.isUndef())
18730     return DAG.getUNDEF(ScalarVT);
18731 
18732   // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
18733   //
18734   // This only really matters if the index is non-constant since other combines
18735   // on the constant elements already work.
18736   SDLoc DL(N);
18737   if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
18738       Index == VecOp.getOperand(2)) {
18739     SDValue Elt = VecOp.getOperand(1);
18740     return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
18741   }
18742 
18743   // (vextract (scalar_to_vector val, 0) -> val
18744   if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
18745     // Only 0'th element of SCALAR_TO_VECTOR is defined.
18746     if (DAG.isKnownNeverZero(Index))
18747       return DAG.getUNDEF(ScalarVT);
18748 
18749     // Check if the result type doesn't match the inserted element type. A
18750     // SCALAR_TO_VECTOR may truncate the inserted element and the
18751     // EXTRACT_VECTOR_ELT may widen the extracted vector.
18752     SDValue InOp = VecOp.getOperand(0);
18753     if (InOp.getValueType() != ScalarVT) {
18754       assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
18755       return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
18756     }
18757     return InOp;
18758   }
18759 
18760   // extract_vector_elt of out-of-bounds element -> UNDEF
18761   auto *IndexC = dyn_cast<ConstantSDNode>(Index);
18762   if (IndexC && VecVT.isFixedLengthVector() &&
18763       IndexC->getAPIntValue().uge(VecVT.getVectorNumElements()))
18764     return DAG.getUNDEF(ScalarVT);
18765 
18766   // extract_vector_elt (build_vector x, y), 1 -> y
18767   if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) ||
18768        VecOp.getOpcode() == ISD::SPLAT_VECTOR) &&
18769       TLI.isTypeLegal(VecVT) &&
18770       (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
18771     assert((VecOp.getOpcode() != ISD::BUILD_VECTOR ||
18772             VecVT.isFixedLengthVector()) &&
18773            "BUILD_VECTOR used for scalable vectors");
18774     unsigned IndexVal =
18775         VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0;
18776     SDValue Elt = VecOp.getOperand(IndexVal);
18777     EVT InEltVT = Elt.getValueType();
18778 
18779     // Sometimes build_vector's scalar input types do not match result type.
18780     if (ScalarVT == InEltVT)
18781       return Elt;
18782 
18783     // TODO: It may be useful to truncate if free if the build_vector implicitly
18784     // converts.
18785   }
18786 
18787   if (VecVT.isScalableVector())
18788     return SDValue();
18789 
18790   // All the code from this point onwards assumes fixed width vectors, but it's
18791   // possible that some of the combinations could be made to work for scalable
18792   // vectors too.
18793   unsigned NumElts = VecVT.getVectorNumElements();
18794   unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
18795 
18796   // TODO: These transforms should not require the 'hasOneUse' restriction, but
18797   // there are regressions on multiple targets without it. We can end up with a
18798   // mess of scalar and vector code if we reduce only part of the DAG to scalar.
18799   if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
18800       VecOp.hasOneUse()) {
18801     // The vector index of the LSBs of the source depend on the endian-ness.
18802     bool IsLE = DAG.getDataLayout().isLittleEndian();
18803     unsigned ExtractIndex = IndexC->getZExtValue();
18804     // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
18805     unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
18806     SDValue BCSrc = VecOp.getOperand(0);
18807     if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
18808       return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
18809 
18810     if (LegalTypes && BCSrc.getValueType().isInteger() &&
18811         BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
18812       // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
18813       // trunc i64 X to i32
18814       SDValue X = BCSrc.getOperand(0);
18815       assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
18816              "Extract element and scalar to vector can't change element type "
18817              "from FP to integer.");
18818       unsigned XBitWidth = X.getValueSizeInBits();
18819       BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
18820 
18821       // An extract element return value type can be wider than its vector
18822       // operand element type. In that case, the high bits are undefined, so
18823       // it's possible that we may need to extend rather than truncate.
18824       if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
18825         assert(XBitWidth % VecEltBitWidth == 0 &&
18826                "Scalar bitwidth must be a multiple of vector element bitwidth");
18827         return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
18828       }
18829     }
18830   }
18831 
18832   if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
18833     return BO;
18834 
18835   // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
18836   // We only perform this optimization before the op legalization phase because
18837   // we may introduce new vector instructions which are not backed by TD
18838   // patterns. For example on AVX, extracting elements from a wide vector
18839   // without using extract_subvector. However, if we can find an underlying
18840   // scalar value, then we can always use that.
18841   if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
18842     auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
18843     // Find the new index to extract from.
18844     int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
18845 
18846     // Extracting an undef index is undef.
18847     if (OrigElt == -1)
18848       return DAG.getUNDEF(ScalarVT);
18849 
18850     // Select the right vector half to extract from.
18851     SDValue SVInVec;
18852     if (OrigElt < (int)NumElts) {
18853       SVInVec = VecOp.getOperand(0);
18854     } else {
18855       SVInVec = VecOp.getOperand(1);
18856       OrigElt -= NumElts;
18857     }
18858 
18859     if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
18860       SDValue InOp = SVInVec.getOperand(OrigElt);
18861       if (InOp.getValueType() != ScalarVT) {
18862         assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
18863         InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
18864       }
18865 
18866       return InOp;
18867     }
18868 
18869     // FIXME: We should handle recursing on other vector shuffles and
18870     // scalar_to_vector here as well.
18871 
18872     if (!LegalOperations ||
18873         // FIXME: Should really be just isOperationLegalOrCustom.
18874         TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
18875         TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
18876       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
18877                          DAG.getVectorIdxConstant(OrigElt, DL));
18878     }
18879   }
18880 
18881   // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
18882   // simplify it based on the (valid) extraction indices.
18883   if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
18884         return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
18885                Use->getOperand(0) == VecOp &&
18886                isa<ConstantSDNode>(Use->getOperand(1));
18887       })) {
18888     APInt DemandedElts = APInt::getNullValue(NumElts);
18889     for (SDNode *Use : VecOp->uses()) {
18890       auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
18891       if (CstElt->getAPIntValue().ult(NumElts))
18892         DemandedElts.setBit(CstElt->getZExtValue());
18893     }
18894     if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
18895       // We simplified the vector operand of this extract element. If this
18896       // extract is not dead, visit it again so it is folded properly.
18897       if (N->getOpcode() != ISD::DELETED_NODE)
18898         AddToWorklist(N);
18899       return SDValue(N, 0);
18900     }
18901     APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth);
18902     if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) {
18903       // We simplified the vector operand of this extract element. If this
18904       // extract is not dead, visit it again so it is folded properly.
18905       if (N->getOpcode() != ISD::DELETED_NODE)
18906         AddToWorklist(N);
18907       return SDValue(N, 0);
18908     }
18909   }
18910 
18911   // Everything under here is trying to match an extract of a loaded value.
18912   // If the result of load has to be truncated, then it's not necessarily
18913   // profitable.
18914   bool BCNumEltsChanged = false;
18915   EVT ExtVT = VecVT.getVectorElementType();
18916   EVT LVT = ExtVT;
18917   if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
18918     return SDValue();
18919 
18920   if (VecOp.getOpcode() == ISD::BITCAST) {
18921     // Don't duplicate a load with other uses.
18922     if (!VecOp.hasOneUse())
18923       return SDValue();
18924 
18925     EVT BCVT = VecOp.getOperand(0).getValueType();
18926     if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
18927       return SDValue();
18928     if (NumElts != BCVT.getVectorNumElements())
18929       BCNumEltsChanged = true;
18930     VecOp = VecOp.getOperand(0);
18931     ExtVT = BCVT.getVectorElementType();
18932   }
18933 
18934   // extract (vector load $addr), i --> load $addr + i * size
18935   if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
18936       ISD::isNormalLoad(VecOp.getNode()) &&
18937       !Index->hasPredecessor(VecOp.getNode())) {
18938     auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
18939     if (VecLoad && VecLoad->isSimple())
18940       return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
18941   }
18942 
18943   // Perform only after legalization to ensure build_vector / vector_shuffle
18944   // optimizations have already been done.
18945   if (!LegalOperations || !IndexC)
18946     return SDValue();
18947 
18948   // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
18949   // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
18950   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
18951   int Elt = IndexC->getZExtValue();
18952   LoadSDNode *LN0 = nullptr;
18953   if (ISD::isNormalLoad(VecOp.getNode())) {
18954     LN0 = cast<LoadSDNode>(VecOp);
18955   } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
18956              VecOp.getOperand(0).getValueType() == ExtVT &&
18957              ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
18958     // Don't duplicate a load with other uses.
18959     if (!VecOp.hasOneUse())
18960       return SDValue();
18961 
18962     LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
18963   }
18964   if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
18965     // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
18966     // =>
18967     // (load $addr+1*size)
18968 
18969     // Don't duplicate a load with other uses.
18970     if (!VecOp.hasOneUse())
18971       return SDValue();
18972 
18973     // If the bit convert changed the number of elements, it is unsafe
18974     // to examine the mask.
18975     if (BCNumEltsChanged)
18976       return SDValue();
18977 
18978     // Select the input vector, guarding against out of range extract vector.
18979     int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
18980     VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
18981 
18982     if (VecOp.getOpcode() == ISD::BITCAST) {
18983       // Don't duplicate a load with other uses.
18984       if (!VecOp.hasOneUse())
18985         return SDValue();
18986 
18987       VecOp = VecOp.getOperand(0);
18988     }
18989     if (ISD::isNormalLoad(VecOp.getNode())) {
18990       LN0 = cast<LoadSDNode>(VecOp);
18991       Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
18992       Index = DAG.getConstant(Elt, DL, Index.getValueType());
18993     }
18994   } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged &&
18995              VecVT.getVectorElementType() == ScalarVT &&
18996              (!LegalTypes ||
18997               TLI.isTypeLegal(
18998                   VecOp.getOperand(0).getValueType().getVectorElementType()))) {
18999     // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
19000     //      -> extract_vector_elt a, 0
19001     // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
19002     //      -> extract_vector_elt a, 1
19003     // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
19004     //      -> extract_vector_elt b, 0
19005     // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
19006     //      -> extract_vector_elt b, 1
19007     SDLoc SL(N);
19008     EVT ConcatVT = VecOp.getOperand(0).getValueType();
19009     unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
19010     SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL,
19011                                      Index.getValueType());
19012 
19013     SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts);
19014     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL,
19015                               ConcatVT.getVectorElementType(),
19016                               ConcatOp, NewIdx);
19017     return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt);
19018   }
19019 
19020   // Make sure we found a non-volatile load and the extractelement is
19021   // the only use.
19022   if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
19023     return SDValue();
19024 
19025   // If Idx was -1 above, Elt is going to be -1, so just return undef.
19026   if (Elt == -1)
19027     return DAG.getUNDEF(LVT);
19028 
19029   return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
19030 }
19031 
19032 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
19033 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
19034   // We perform this optimization post type-legalization because
19035   // the type-legalizer often scalarizes integer-promoted vectors.
19036   // Performing this optimization before may create bit-casts which
19037   // will be type-legalized to complex code sequences.
19038   // We perform this optimization only before the operation legalizer because we
19039   // may introduce illegal operations.
19040   if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
19041     return SDValue();
19042 
19043   unsigned NumInScalars = N->getNumOperands();
19044   SDLoc DL(N);
19045   EVT VT = N->getValueType(0);
19046 
19047   // Check to see if this is a BUILD_VECTOR of a bunch of values
19048   // which come from any_extend or zero_extend nodes. If so, we can create
19049   // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
19050   // optimizations. We do not handle sign-extend because we can't fill the sign
19051   // using shuffles.
19052   EVT SourceType = MVT::Other;
19053   bool AllAnyExt = true;
19054 
19055   for (unsigned i = 0; i != NumInScalars; ++i) {
19056     SDValue In = N->getOperand(i);
19057     // Ignore undef inputs.
19058     if (In.isUndef()) continue;
19059 
19060     bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
19061     bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
19062 
19063     // Abort if the element is not an extension.
19064     if (!ZeroExt && !AnyExt) {
19065       SourceType = MVT::Other;
19066       break;
19067     }
19068 
19069     // The input is a ZeroExt or AnyExt. Check the original type.
19070     EVT InTy = In.getOperand(0).getValueType();
19071 
19072     // Check that all of the widened source types are the same.
19073     if (SourceType == MVT::Other)
19074       // First time.
19075       SourceType = InTy;
19076     else if (InTy != SourceType) {
19077       // Multiple income types. Abort.
19078       SourceType = MVT::Other;
19079       break;
19080     }
19081 
19082     // Check if all of the extends are ANY_EXTENDs.
19083     AllAnyExt &= AnyExt;
19084   }
19085 
19086   // In order to have valid types, all of the inputs must be extended from the
19087   // same source type and all of the inputs must be any or zero extend.
19088   // Scalar sizes must be a power of two.
19089   EVT OutScalarTy = VT.getScalarType();
19090   bool ValidTypes = SourceType != MVT::Other &&
19091                  isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
19092                  isPowerOf2_32(SourceType.getSizeInBits());
19093 
19094   // Create a new simpler BUILD_VECTOR sequence which other optimizations can
19095   // turn into a single shuffle instruction.
19096   if (!ValidTypes)
19097     return SDValue();
19098 
19099   // If we already have a splat buildvector, then don't fold it if it means
19100   // introducing zeros.
19101   if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true))
19102     return SDValue();
19103 
19104   bool isLE = DAG.getDataLayout().isLittleEndian();
19105   unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
19106   assert(ElemRatio > 1 && "Invalid element size ratio");
19107   SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
19108                                DAG.getConstant(0, DL, SourceType);
19109 
19110   unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
19111   SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
19112 
19113   // Populate the new build_vector
19114   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
19115     SDValue Cast = N->getOperand(i);
19116     assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
19117             Cast.getOpcode() == ISD::ZERO_EXTEND ||
19118             Cast.isUndef()) && "Invalid cast opcode");
19119     SDValue In;
19120     if (Cast.isUndef())
19121       In = DAG.getUNDEF(SourceType);
19122     else
19123       In = Cast->getOperand(0);
19124     unsigned Index = isLE ? (i * ElemRatio) :
19125                             (i * ElemRatio + (ElemRatio - 1));
19126 
19127     assert(Index < Ops.size() && "Invalid index");
19128     Ops[Index] = In;
19129   }
19130 
19131   // The type of the new BUILD_VECTOR node.
19132   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
19133   assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
19134          "Invalid vector size");
19135   // Check if the new vector type is legal.
19136   if (!isTypeLegal(VecVT) ||
19137       (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
19138        TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
19139     return SDValue();
19140 
19141   // Make the new BUILD_VECTOR.
19142   SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
19143 
19144   // The new BUILD_VECTOR node has the potential to be further optimized.
19145   AddToWorklist(BV.getNode());
19146   // Bitcast to the desired type.
19147   return DAG.getBitcast(VT, BV);
19148 }
19149 
19150 // Simplify (build_vec (trunc $1)
19151 //                     (trunc (srl $1 half-width))
19152 //                     (trunc (srl $1 (2 * half-width))) …)
19153 // to (bitcast $1)
19154 SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) {
19155   assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
19156 
19157   // Only for little endian
19158   if (!DAG.getDataLayout().isLittleEndian())
19159     return SDValue();
19160 
19161   SDLoc DL(N);
19162   EVT VT = N->getValueType(0);
19163   EVT OutScalarTy = VT.getScalarType();
19164   uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits();
19165 
19166   // Only for power of two types to be sure that bitcast works well
19167   if (!isPowerOf2_64(ScalarTypeBitsize))
19168     return SDValue();
19169 
19170   unsigned NumInScalars = N->getNumOperands();
19171 
19172   // Look through bitcasts
19173   auto PeekThroughBitcast = [](SDValue Op) {
19174     if (Op.getOpcode() == ISD::BITCAST)
19175       return Op.getOperand(0);
19176     return Op;
19177   };
19178 
19179   // The source value where all the parts are extracted.
19180   SDValue Src;
19181   for (unsigned i = 0; i != NumInScalars; ++i) {
19182     SDValue In = PeekThroughBitcast(N->getOperand(i));
19183     // Ignore undef inputs.
19184     if (In.isUndef()) continue;
19185 
19186     if (In.getOpcode() != ISD::TRUNCATE)
19187       return SDValue();
19188 
19189     In = PeekThroughBitcast(In.getOperand(0));
19190 
19191     if (In.getOpcode() != ISD::SRL) {
19192       // For now only build_vec without shuffling, handle shifts here in the
19193       // future.
19194       if (i != 0)
19195         return SDValue();
19196 
19197       Src = In;
19198     } else {
19199       // In is SRL
19200       SDValue part = PeekThroughBitcast(In.getOperand(0));
19201 
19202       if (!Src) {
19203         Src = part;
19204       } else if (Src != part) {
19205         // Vector parts do not stem from the same variable
19206         return SDValue();
19207       }
19208 
19209       SDValue ShiftAmtVal = In.getOperand(1);
19210       if (!isa<ConstantSDNode>(ShiftAmtVal))
19211         return SDValue();
19212 
19213       uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1);
19214 
19215       // The extracted value is not extracted at the right position
19216       if (ShiftAmt != i * ScalarTypeBitsize)
19217         return SDValue();
19218     }
19219   }
19220 
19221   // Only cast if the size is the same
19222   if (Src.getValueType().getSizeInBits() != VT.getSizeInBits())
19223     return SDValue();
19224 
19225   return DAG.getBitcast(VT, Src);
19226 }
19227 
19228 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
19229                                            ArrayRef<int> VectorMask,
19230                                            SDValue VecIn1, SDValue VecIn2,
19231                                            unsigned LeftIdx, bool DidSplitVec) {
19232   SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
19233 
19234   EVT VT = N->getValueType(0);
19235   EVT InVT1 = VecIn1.getValueType();
19236   EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
19237 
19238   unsigned NumElems = VT.getVectorNumElements();
19239   unsigned ShuffleNumElems = NumElems;
19240 
19241   // If we artificially split a vector in two already, then the offsets in the
19242   // operands will all be based off of VecIn1, even those in VecIn2.
19243   unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
19244 
19245   uint64_t VTSize = VT.getFixedSizeInBits();
19246   uint64_t InVT1Size = InVT1.getFixedSizeInBits();
19247   uint64_t InVT2Size = InVT2.getFixedSizeInBits();
19248 
19249   assert(InVT2Size <= InVT1Size &&
19250          "Inputs must be sorted to be in non-increasing vector size order.");
19251 
19252   // We can't generate a shuffle node with mismatched input and output types.
19253   // Try to make the types match the type of the output.
19254   if (InVT1 != VT || InVT2 != VT) {
19255     if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) {
19256       // If the output vector length is a multiple of both input lengths,
19257       // we can concatenate them and pad the rest with undefs.
19258       unsigned NumConcats = VTSize / InVT1Size;
19259       assert(NumConcats >= 2 && "Concat needs at least two inputs!");
19260       SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
19261       ConcatOps[0] = VecIn1;
19262       ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
19263       VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
19264       VecIn2 = SDValue();
19265     } else if (InVT1Size == VTSize * 2) {
19266       if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
19267         return SDValue();
19268 
19269       if (!VecIn2.getNode()) {
19270         // If we only have one input vector, and it's twice the size of the
19271         // output, split it in two.
19272         VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
19273                              DAG.getVectorIdxConstant(NumElems, DL));
19274         VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
19275         // Since we now have shorter input vectors, adjust the offset of the
19276         // second vector's start.
19277         Vec2Offset = NumElems;
19278       } else {
19279         assert(InVT2Size <= InVT1Size &&
19280                "Second input is not going to be larger than the first one.");
19281 
19282         // VecIn1 is wider than the output, and we have another, possibly
19283         // smaller input. Pad the smaller input with undefs, shuffle at the
19284         // input vector width, and extract the output.
19285         // The shuffle type is different than VT, so check legality again.
19286         if (LegalOperations &&
19287             !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
19288           return SDValue();
19289 
19290         // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
19291         // lower it back into a BUILD_VECTOR. So if the inserted type is
19292         // illegal, don't even try.
19293         if (InVT1 != InVT2) {
19294           if (!TLI.isTypeLegal(InVT2))
19295             return SDValue();
19296           VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
19297                                DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
19298         }
19299         ShuffleNumElems = NumElems * 2;
19300       }
19301     } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) {
19302       SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
19303       ConcatOps[0] = VecIn2;
19304       VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
19305     } else {
19306       // TODO: Support cases where the length mismatch isn't exactly by a
19307       // factor of 2.
19308       // TODO: Move this check upwards, so that if we have bad type
19309       // mismatches, we don't create any DAG nodes.
19310       return SDValue();
19311     }
19312   }
19313 
19314   // Initialize mask to undef.
19315   SmallVector<int, 8> Mask(ShuffleNumElems, -1);
19316 
19317   // Only need to run up to the number of elements actually used, not the
19318   // total number of elements in the shuffle - if we are shuffling a wider
19319   // vector, the high lanes should be set to undef.
19320   for (unsigned i = 0; i != NumElems; ++i) {
19321     if (VectorMask[i] <= 0)
19322       continue;
19323 
19324     unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
19325     if (VectorMask[i] == (int)LeftIdx) {
19326       Mask[i] = ExtIndex;
19327     } else if (VectorMask[i] == (int)LeftIdx + 1) {
19328       Mask[i] = Vec2Offset + ExtIndex;
19329     }
19330   }
19331 
19332   // The type the input vectors may have changed above.
19333   InVT1 = VecIn1.getValueType();
19334 
19335   // If we already have a VecIn2, it should have the same type as VecIn1.
19336   // If we don't, get an undef/zero vector of the appropriate type.
19337   VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
19338   assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
19339 
19340   SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
19341   if (ShuffleNumElems > NumElems)
19342     Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
19343 
19344   return Shuffle;
19345 }
19346 
19347 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
19348   assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
19349 
19350   // First, determine where the build vector is not undef.
19351   // TODO: We could extend this to handle zero elements as well as undefs.
19352   int NumBVOps = BV->getNumOperands();
19353   int ZextElt = -1;
19354   for (int i = 0; i != NumBVOps; ++i) {
19355     SDValue Op = BV->getOperand(i);
19356     if (Op.isUndef())
19357       continue;
19358     if (ZextElt == -1)
19359       ZextElt = i;
19360     else
19361       return SDValue();
19362   }
19363   // Bail out if there's no non-undef element.
19364   if (ZextElt == -1)
19365     return SDValue();
19366 
19367   // The build vector contains some number of undef elements and exactly
19368   // one other element. That other element must be a zero-extended scalar
19369   // extracted from a vector at a constant index to turn this into a shuffle.
19370   // Also, require that the build vector does not implicitly truncate/extend
19371   // its elements.
19372   // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
19373   EVT VT = BV->getValueType(0);
19374   SDValue Zext = BV->getOperand(ZextElt);
19375   if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
19376       Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
19377       !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
19378       Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
19379     return SDValue();
19380 
19381   // The zero-extend must be a multiple of the source size, and we must be
19382   // building a vector of the same size as the source of the extract element.
19383   SDValue Extract = Zext.getOperand(0);
19384   unsigned DestSize = Zext.getValueSizeInBits();
19385   unsigned SrcSize = Extract.getValueSizeInBits();
19386   if (DestSize % SrcSize != 0 ||
19387       Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
19388     return SDValue();
19389 
19390   // Create a shuffle mask that will combine the extracted element with zeros
19391   // and undefs.
19392   int ZextRatio = DestSize / SrcSize;
19393   int NumMaskElts = NumBVOps * ZextRatio;
19394   SmallVector<int, 32> ShufMask(NumMaskElts, -1);
19395   for (int i = 0; i != NumMaskElts; ++i) {
19396     if (i / ZextRatio == ZextElt) {
19397       // The low bits of the (potentially translated) extracted element map to
19398       // the source vector. The high bits map to zero. We will use a zero vector
19399       // as the 2nd source operand of the shuffle, so use the 1st element of
19400       // that vector (mask value is number-of-elements) for the high bits.
19401       if (i % ZextRatio == 0)
19402         ShufMask[i] = Extract.getConstantOperandVal(1);
19403       else
19404         ShufMask[i] = NumMaskElts;
19405     }
19406 
19407     // Undef elements of the build vector remain undef because we initialize
19408     // the shuffle mask with -1.
19409   }
19410 
19411   // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
19412   // bitcast (shuffle V, ZeroVec, VectorMask)
19413   SDLoc DL(BV);
19414   EVT VecVT = Extract.getOperand(0).getValueType();
19415   SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
19416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19417   SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
19418                                              ZeroVec, ShufMask, DAG);
19419   if (!Shuf)
19420     return SDValue();
19421   return DAG.getBitcast(VT, Shuf);
19422 }
19423 
19424 // FIXME: promote to STLExtras.
19425 template <typename R, typename T>
19426 static auto getFirstIndexOf(R &&Range, const T &Val) {
19427   auto I = find(Range, Val);
19428   if (I == Range.end())
19429     return static_cast<decltype(std::distance(Range.begin(), I))>(-1);
19430   return std::distance(Range.begin(), I);
19431 }
19432 
19433 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
19434 // operations. If the types of the vectors we're extracting from allow it,
19435 // turn this into a vector_shuffle node.
19436 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
19437   SDLoc DL(N);
19438   EVT VT = N->getValueType(0);
19439 
19440   // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
19441   if (!isTypeLegal(VT))
19442     return SDValue();
19443 
19444   if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
19445     return V;
19446 
19447   // May only combine to shuffle after legalize if shuffle is legal.
19448   if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
19449     return SDValue();
19450 
19451   bool UsesZeroVector = false;
19452   unsigned NumElems = N->getNumOperands();
19453 
19454   // Record, for each element of the newly built vector, which input vector
19455   // that element comes from. -1 stands for undef, 0 for the zero vector,
19456   // and positive values for the input vectors.
19457   // VectorMask maps each element to its vector number, and VecIn maps vector
19458   // numbers to their initial SDValues.
19459 
19460   SmallVector<int, 8> VectorMask(NumElems, -1);
19461   SmallVector<SDValue, 8> VecIn;
19462   VecIn.push_back(SDValue());
19463 
19464   for (unsigned i = 0; i != NumElems; ++i) {
19465     SDValue Op = N->getOperand(i);
19466 
19467     if (Op.isUndef())
19468       continue;
19469 
19470     // See if we can use a blend with a zero vector.
19471     // TODO: Should we generalize this to a blend with an arbitrary constant
19472     // vector?
19473     if (isNullConstant(Op) || isNullFPConstant(Op)) {
19474       UsesZeroVector = true;
19475       VectorMask[i] = 0;
19476       continue;
19477     }
19478 
19479     // Not an undef or zero. If the input is something other than an
19480     // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
19481     if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
19482         !isa<ConstantSDNode>(Op.getOperand(1)))
19483       return SDValue();
19484     SDValue ExtractedFromVec = Op.getOperand(0);
19485 
19486     if (ExtractedFromVec.getValueType().isScalableVector())
19487       return SDValue();
19488 
19489     const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
19490     if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
19491       return SDValue();
19492 
19493     // All inputs must have the same element type as the output.
19494     if (VT.getVectorElementType() !=
19495         ExtractedFromVec.getValueType().getVectorElementType())
19496       return SDValue();
19497 
19498     // Have we seen this input vector before?
19499     // The vectors are expected to be tiny (usually 1 or 2 elements), so using
19500     // a map back from SDValues to numbers isn't worth it.
19501     int Idx = getFirstIndexOf(VecIn, ExtractedFromVec);
19502     if (Idx == -1) { // A new source vector?
19503       Idx = VecIn.size();
19504       VecIn.push_back(ExtractedFromVec);
19505     }
19506 
19507     VectorMask[i] = Idx;
19508   }
19509 
19510   // If we didn't find at least one input vector, bail out.
19511   if (VecIn.size() < 2)
19512     return SDValue();
19513 
19514   // If all the Operands of BUILD_VECTOR extract from same
19515   // vector, then split the vector efficiently based on the maximum
19516   // vector access index and adjust the VectorMask and
19517   // VecIn accordingly.
19518   bool DidSplitVec = false;
19519   if (VecIn.size() == 2) {
19520     unsigned MaxIndex = 0;
19521     unsigned NearestPow2 = 0;
19522     SDValue Vec = VecIn.back();
19523     EVT InVT = Vec.getValueType();
19524     SmallVector<unsigned, 8> IndexVec(NumElems, 0);
19525 
19526     for (unsigned i = 0; i < NumElems; i++) {
19527       if (VectorMask[i] <= 0)
19528         continue;
19529       unsigned Index = N->getOperand(i).getConstantOperandVal(1);
19530       IndexVec[i] = Index;
19531       MaxIndex = std::max(MaxIndex, Index);
19532     }
19533 
19534     NearestPow2 = PowerOf2Ceil(MaxIndex);
19535     if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
19536         NumElems * 2 < NearestPow2) {
19537       unsigned SplitSize = NearestPow2 / 2;
19538       EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
19539                                      InVT.getVectorElementType(), SplitSize);
19540       if (TLI.isTypeLegal(SplitVT) &&
19541           SplitSize + SplitVT.getVectorNumElements() <=
19542               InVT.getVectorNumElements()) {
19543         SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
19544                                      DAG.getVectorIdxConstant(SplitSize, DL));
19545         SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
19546                                      DAG.getVectorIdxConstant(0, DL));
19547         VecIn.pop_back();
19548         VecIn.push_back(VecIn1);
19549         VecIn.push_back(VecIn2);
19550         DidSplitVec = true;
19551 
19552         for (unsigned i = 0; i < NumElems; i++) {
19553           if (VectorMask[i] <= 0)
19554             continue;
19555           VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
19556         }
19557       }
19558     }
19559   }
19560 
19561   // Sort input vectors by decreasing vector element count,
19562   // while preserving the relative order of equally-sized vectors.
19563   // Note that we keep the first "implicit zero vector as-is.
19564   SmallVector<SDValue, 8> SortedVecIn(VecIn);
19565   llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(),
19566                     [](const SDValue &a, const SDValue &b) {
19567                       return a.getValueType().getVectorNumElements() >
19568                              b.getValueType().getVectorNumElements();
19569                     });
19570 
19571   // We now also need to rebuild the VectorMask, because it referenced element
19572   // order in VecIn, and we just sorted them.
19573   for (int &SourceVectorIndex : VectorMask) {
19574     if (SourceVectorIndex <= 0)
19575       continue;
19576     unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]);
19577     assert(Idx > 0 && Idx < SortedVecIn.size() &&
19578            VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure");
19579     SourceVectorIndex = Idx;
19580   }
19581 
19582   VecIn = std::move(SortedVecIn);
19583 
19584   // TODO: Should this fire if some of the input vectors has illegal type (like
19585   // it does now), or should we let legalization run its course first?
19586 
19587   // Shuffle phase:
19588   // Take pairs of vectors, and shuffle them so that the result has elements
19589   // from these vectors in the correct places.
19590   // For example, given:
19591   // t10: i32 = extract_vector_elt t1, Constant:i64<0>
19592   // t11: i32 = extract_vector_elt t2, Constant:i64<0>
19593   // t12: i32 = extract_vector_elt t3, Constant:i64<0>
19594   // t13: i32 = extract_vector_elt t1, Constant:i64<1>
19595   // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
19596   // We will generate:
19597   // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
19598   // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
19599   SmallVector<SDValue, 4> Shuffles;
19600   for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
19601     unsigned LeftIdx = 2 * In + 1;
19602     SDValue VecLeft = VecIn[LeftIdx];
19603     SDValue VecRight =
19604         (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
19605 
19606     if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
19607                                                 VecRight, LeftIdx, DidSplitVec))
19608       Shuffles.push_back(Shuffle);
19609     else
19610       return SDValue();
19611   }
19612 
19613   // If we need the zero vector as an "ingredient" in the blend tree, add it
19614   // to the list of shuffles.
19615   if (UsesZeroVector)
19616     Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
19617                                       : DAG.getConstantFP(0.0, DL, VT));
19618 
19619   // If we only have one shuffle, we're done.
19620   if (Shuffles.size() == 1)
19621     return Shuffles[0];
19622 
19623   // Update the vector mask to point to the post-shuffle vectors.
19624   for (int &Vec : VectorMask)
19625     if (Vec == 0)
19626       Vec = Shuffles.size() - 1;
19627     else
19628       Vec = (Vec - 1) / 2;
19629 
19630   // More than one shuffle. Generate a binary tree of blends, e.g. if from
19631   // the previous step we got the set of shuffles t10, t11, t12, t13, we will
19632   // generate:
19633   // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
19634   // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
19635   // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
19636   // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
19637   // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
19638   // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
19639   // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
19640 
19641   // Make sure the initial size of the shuffle list is even.
19642   if (Shuffles.size() % 2)
19643     Shuffles.push_back(DAG.getUNDEF(VT));
19644 
19645   for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
19646     if (CurSize % 2) {
19647       Shuffles[CurSize] = DAG.getUNDEF(VT);
19648       CurSize++;
19649     }
19650     for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
19651       int Left = 2 * In;
19652       int Right = 2 * In + 1;
19653       SmallVector<int, 8> Mask(NumElems, -1);
19654       for (unsigned i = 0; i != NumElems; ++i) {
19655         if (VectorMask[i] == Left) {
19656           Mask[i] = i;
19657           VectorMask[i] = In;
19658         } else if (VectorMask[i] == Right) {
19659           Mask[i] = i + NumElems;
19660           VectorMask[i] = In;
19661         }
19662       }
19663 
19664       Shuffles[In] =
19665           DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
19666     }
19667   }
19668   return Shuffles[0];
19669 }
19670 
19671 // Try to turn a build vector of zero extends of extract vector elts into a
19672 // a vector zero extend and possibly an extract subvector.
19673 // TODO: Support sign extend?
19674 // TODO: Allow undef elements?
19675 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
19676   if (LegalOperations)
19677     return SDValue();
19678 
19679   EVT VT = N->getValueType(0);
19680 
19681   bool FoundZeroExtend = false;
19682   SDValue Op0 = N->getOperand(0);
19683   auto checkElem = [&](SDValue Op) -> int64_t {
19684     unsigned Opc = Op.getOpcode();
19685     FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
19686     if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
19687         Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
19688         Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
19689       if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
19690         return C->getZExtValue();
19691     return -1;
19692   };
19693 
19694   // Make sure the first element matches
19695   // (zext (extract_vector_elt X, C))
19696   int64_t Offset = checkElem(Op0);
19697   if (Offset < 0)
19698     return SDValue();
19699 
19700   unsigned NumElems = N->getNumOperands();
19701   SDValue In = Op0.getOperand(0).getOperand(0);
19702   EVT InSVT = In.getValueType().getScalarType();
19703   EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
19704 
19705   // Don't create an illegal input type after type legalization.
19706   if (LegalTypes && !TLI.isTypeLegal(InVT))
19707     return SDValue();
19708 
19709   // Ensure all the elements come from the same vector and are adjacent.
19710   for (unsigned i = 1; i != NumElems; ++i) {
19711     if ((Offset + i) != checkElem(N->getOperand(i)))
19712       return SDValue();
19713   }
19714 
19715   SDLoc DL(N);
19716   In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
19717                    Op0.getOperand(0).getOperand(1));
19718   return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
19719                      VT, In);
19720 }
19721 
19722 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
19723   EVT VT = N->getValueType(0);
19724 
19725   // A vector built entirely of undefs is undef.
19726   if (ISD::allOperandsUndef(N))
19727     return DAG.getUNDEF(VT);
19728 
19729   // If this is a splat of a bitcast from another vector, change to a
19730   // concat_vector.
19731   // For example:
19732   //   (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
19733   //     (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
19734   //
19735   // If X is a build_vector itself, the concat can become a larger build_vector.
19736   // TODO: Maybe this is useful for non-splat too?
19737   if (!LegalOperations) {
19738     if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
19739       Splat = peekThroughBitcasts(Splat);
19740       EVT SrcVT = Splat.getValueType();
19741       if (SrcVT.isVector()) {
19742         unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
19743         EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
19744                                      SrcVT.getVectorElementType(), NumElts);
19745         if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
19746           SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
19747           SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
19748                                        NewVT, Ops);
19749           return DAG.getBitcast(VT, Concat);
19750         }
19751       }
19752     }
19753   }
19754 
19755   // Check if we can express BUILD VECTOR via subvector extract.
19756   if (!LegalTypes && (N->getNumOperands() > 1)) {
19757     SDValue Op0 = N->getOperand(0);
19758     auto checkElem = [&](SDValue Op) -> uint64_t {
19759       if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
19760           (Op0.getOperand(0) == Op.getOperand(0)))
19761         if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
19762           return CNode->getZExtValue();
19763       return -1;
19764     };
19765 
19766     int Offset = checkElem(Op0);
19767     for (unsigned i = 0; i < N->getNumOperands(); ++i) {
19768       if (Offset + i != checkElem(N->getOperand(i))) {
19769         Offset = -1;
19770         break;
19771       }
19772     }
19773 
19774     if ((Offset == 0) &&
19775         (Op0.getOperand(0).getValueType() == N->getValueType(0)))
19776       return Op0.getOperand(0);
19777     if ((Offset != -1) &&
19778         ((Offset % N->getValueType(0).getVectorNumElements()) ==
19779          0)) // IDX must be multiple of output size.
19780       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
19781                          Op0.getOperand(0), Op0.getOperand(1));
19782   }
19783 
19784   if (SDValue V = convertBuildVecZextToZext(N))
19785     return V;
19786 
19787   if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
19788     return V;
19789 
19790   if (SDValue V = reduceBuildVecTruncToBitCast(N))
19791     return V;
19792 
19793   if (SDValue V = reduceBuildVecToShuffle(N))
19794     return V;
19795 
19796   // A splat of a single element is a SPLAT_VECTOR if supported on the target.
19797   // Do this late as some of the above may replace the splat.
19798   if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand)
19799     if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) {
19800       assert(!V.isUndef() && "Splat of undef should have been handled earlier");
19801       return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
19802     }
19803 
19804   return SDValue();
19805 }
19806 
19807 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
19808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19809   EVT OpVT = N->getOperand(0).getValueType();
19810 
19811   // If the operands are legal vectors, leave them alone.
19812   if (TLI.isTypeLegal(OpVT))
19813     return SDValue();
19814 
19815   SDLoc DL(N);
19816   EVT VT = N->getValueType(0);
19817   SmallVector<SDValue, 8> Ops;
19818 
19819   EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
19820   SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
19821 
19822   // Keep track of what we encounter.
19823   bool AnyInteger = false;
19824   bool AnyFP = false;
19825   for (const SDValue &Op : N->ops()) {
19826     if (ISD::BITCAST == Op.getOpcode() &&
19827         !Op.getOperand(0).getValueType().isVector())
19828       Ops.push_back(Op.getOperand(0));
19829     else if (ISD::UNDEF == Op.getOpcode())
19830       Ops.push_back(ScalarUndef);
19831     else
19832       return SDValue();
19833 
19834     // Note whether we encounter an integer or floating point scalar.
19835     // If it's neither, bail out, it could be something weird like x86mmx.
19836     EVT LastOpVT = Ops.back().getValueType();
19837     if (LastOpVT.isFloatingPoint())
19838       AnyFP = true;
19839     else if (LastOpVT.isInteger())
19840       AnyInteger = true;
19841     else
19842       return SDValue();
19843   }
19844 
19845   // If any of the operands is a floating point scalar bitcast to a vector,
19846   // use floating point types throughout, and bitcast everything.
19847   // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
19848   if (AnyFP) {
19849     SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
19850     ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
19851     if (AnyInteger) {
19852       for (SDValue &Op : Ops) {
19853         if (Op.getValueType() == SVT)
19854           continue;
19855         if (Op.isUndef())
19856           Op = ScalarUndef;
19857         else
19858           Op = DAG.getBitcast(SVT, Op);
19859       }
19860     }
19861   }
19862 
19863   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
19864                                VT.getSizeInBits() / SVT.getSizeInBits());
19865   return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
19866 }
19867 
19868 // Attempt to merge nested concat_vectors/undefs.
19869 // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d))
19870 //  --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d)
19871 static SDValue combineConcatVectorOfConcatVectors(SDNode *N,
19872                                                   SelectionDAG &DAG) {
19873   EVT VT = N->getValueType(0);
19874 
19875   // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types.
19876   EVT SubVT;
19877   SDValue FirstConcat;
19878   for (const SDValue &Op : N->ops()) {
19879     if (Op.isUndef())
19880       continue;
19881     if (Op.getOpcode() != ISD::CONCAT_VECTORS)
19882       return SDValue();
19883     if (!FirstConcat) {
19884       SubVT = Op.getOperand(0).getValueType();
19885       if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
19886         return SDValue();
19887       FirstConcat = Op;
19888       continue;
19889     }
19890     if (SubVT != Op.getOperand(0).getValueType())
19891       return SDValue();
19892   }
19893   assert(FirstConcat && "Concat of all-undefs found");
19894 
19895   SmallVector<SDValue> ConcatOps;
19896   for (const SDValue &Op : N->ops()) {
19897     if (Op.isUndef()) {
19898       ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT));
19899       continue;
19900     }
19901     ConcatOps.append(Op->op_begin(), Op->op_end());
19902   }
19903   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps);
19904 }
19905 
19906 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
19907 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
19908 // most two distinct vectors the same size as the result, attempt to turn this
19909 // into a legal shuffle.
19910 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
19911   EVT VT = N->getValueType(0);
19912   EVT OpVT = N->getOperand(0).getValueType();
19913 
19914   // We currently can't generate an appropriate shuffle for a scalable vector.
19915   if (VT.isScalableVector())
19916     return SDValue();
19917 
19918   int NumElts = VT.getVectorNumElements();
19919   int NumOpElts = OpVT.getVectorNumElements();
19920 
19921   SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
19922   SmallVector<int, 8> Mask;
19923 
19924   for (SDValue Op : N->ops()) {
19925     Op = peekThroughBitcasts(Op);
19926 
19927     // UNDEF nodes convert to UNDEF shuffle mask values.
19928     if (Op.isUndef()) {
19929       Mask.append((unsigned)NumOpElts, -1);
19930       continue;
19931     }
19932 
19933     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
19934       return SDValue();
19935 
19936     // What vector are we extracting the subvector from and at what index?
19937     SDValue ExtVec = Op.getOperand(0);
19938     int ExtIdx = Op.getConstantOperandVal(1);
19939 
19940     // We want the EVT of the original extraction to correctly scale the
19941     // extraction index.
19942     EVT ExtVT = ExtVec.getValueType();
19943     ExtVec = peekThroughBitcasts(ExtVec);
19944 
19945     // UNDEF nodes convert to UNDEF shuffle mask values.
19946     if (ExtVec.isUndef()) {
19947       Mask.append((unsigned)NumOpElts, -1);
19948       continue;
19949     }
19950 
19951     // Ensure that we are extracting a subvector from a vector the same
19952     // size as the result.
19953     if (ExtVT.getSizeInBits() != VT.getSizeInBits())
19954       return SDValue();
19955 
19956     // Scale the subvector index to account for any bitcast.
19957     int NumExtElts = ExtVT.getVectorNumElements();
19958     if (0 == (NumExtElts % NumElts))
19959       ExtIdx /= (NumExtElts / NumElts);
19960     else if (0 == (NumElts % NumExtElts))
19961       ExtIdx *= (NumElts / NumExtElts);
19962     else
19963       return SDValue();
19964 
19965     // At most we can reference 2 inputs in the final shuffle.
19966     if (SV0.isUndef() || SV0 == ExtVec) {
19967       SV0 = ExtVec;
19968       for (int i = 0; i != NumOpElts; ++i)
19969         Mask.push_back(i + ExtIdx);
19970     } else if (SV1.isUndef() || SV1 == ExtVec) {
19971       SV1 = ExtVec;
19972       for (int i = 0; i != NumOpElts; ++i)
19973         Mask.push_back(i + ExtIdx + NumElts);
19974     } else {
19975       return SDValue();
19976     }
19977   }
19978 
19979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19980   return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
19981                                      DAG.getBitcast(VT, SV1), Mask, DAG);
19982 }
19983 
19984 static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) {
19985   unsigned CastOpcode = N->getOperand(0).getOpcode();
19986   switch (CastOpcode) {
19987   case ISD::SINT_TO_FP:
19988   case ISD::UINT_TO_FP:
19989   case ISD::FP_TO_SINT:
19990   case ISD::FP_TO_UINT:
19991     // TODO: Allow more opcodes?
19992     //  case ISD::BITCAST:
19993     //  case ISD::TRUNCATE:
19994     //  case ISD::ZERO_EXTEND:
19995     //  case ISD::SIGN_EXTEND:
19996     //  case ISD::FP_EXTEND:
19997     break;
19998   default:
19999     return SDValue();
20000   }
20001 
20002   EVT SrcVT = N->getOperand(0).getOperand(0).getValueType();
20003   if (!SrcVT.isVector())
20004     return SDValue();
20005 
20006   // All operands of the concat must be the same kind of cast from the same
20007   // source type.
20008   SmallVector<SDValue, 4> SrcOps;
20009   for (SDValue Op : N->ops()) {
20010     if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() ||
20011         Op.getOperand(0).getValueType() != SrcVT)
20012       return SDValue();
20013     SrcOps.push_back(Op.getOperand(0));
20014   }
20015 
20016   // The wider cast must be supported by the target. This is unusual because
20017   // the operation support type parameter depends on the opcode. In addition,
20018   // check the other type in the cast to make sure this is really legal.
20019   EVT VT = N->getValueType(0);
20020   EVT SrcEltVT = SrcVT.getVectorElementType();
20021   ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands();
20022   EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts);
20023   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20024   switch (CastOpcode) {
20025   case ISD::SINT_TO_FP:
20026   case ISD::UINT_TO_FP:
20027     if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) ||
20028         !TLI.isTypeLegal(VT))
20029       return SDValue();
20030     break;
20031   case ISD::FP_TO_SINT:
20032   case ISD::FP_TO_UINT:
20033     if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) ||
20034         !TLI.isTypeLegal(ConcatSrcVT))
20035       return SDValue();
20036     break;
20037   default:
20038     llvm_unreachable("Unexpected cast opcode");
20039   }
20040 
20041   // concat (cast X), (cast Y)... -> cast (concat X, Y...)
20042   SDLoc DL(N);
20043   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps);
20044   return DAG.getNode(CastOpcode, DL, VT, NewConcat);
20045 }
20046 
20047 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
20048   // If we only have one input vector, we don't need to do any concatenation.
20049   if (N->getNumOperands() == 1)
20050     return N->getOperand(0);
20051 
20052   // Check if all of the operands are undefs.
20053   EVT VT = N->getValueType(0);
20054   if (ISD::allOperandsUndef(N))
20055     return DAG.getUNDEF(VT);
20056 
20057   // Optimize concat_vectors where all but the first of the vectors are undef.
20058   if (all_of(drop_begin(N->ops()),
20059              [](const SDValue &Op) { return Op.isUndef(); })) {
20060     SDValue In = N->getOperand(0);
20061     assert(In.getValueType().isVector() && "Must concat vectors");
20062 
20063     // If the input is a concat_vectors, just make a larger concat by padding
20064     // with smaller undefs.
20065     if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
20066       unsigned NumOps = N->getNumOperands() * In.getNumOperands();
20067       SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
20068       Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
20069       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
20070     }
20071 
20072     SDValue Scalar = peekThroughOneUseBitcasts(In);
20073 
20074     // concat_vectors(scalar_to_vector(scalar), undef) ->
20075     //     scalar_to_vector(scalar)
20076     if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
20077          Scalar.hasOneUse()) {
20078       EVT SVT = Scalar.getValueType().getVectorElementType();
20079       if (SVT == Scalar.getOperand(0).getValueType())
20080         Scalar = Scalar.getOperand(0);
20081     }
20082 
20083     // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
20084     if (!Scalar.getValueType().isVector()) {
20085       // If the bitcast type isn't legal, it might be a trunc of a legal type;
20086       // look through the trunc so we can still do the transform:
20087       //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
20088       if (Scalar->getOpcode() == ISD::TRUNCATE &&
20089           !TLI.isTypeLegal(Scalar.getValueType()) &&
20090           TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
20091         Scalar = Scalar->getOperand(0);
20092 
20093       EVT SclTy = Scalar.getValueType();
20094 
20095       if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
20096         return SDValue();
20097 
20098       // Bail out if the vector size is not a multiple of the scalar size.
20099       if (VT.getSizeInBits() % SclTy.getSizeInBits())
20100         return SDValue();
20101 
20102       unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
20103       if (VNTNumElms < 2)
20104         return SDValue();
20105 
20106       EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
20107       if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
20108         return SDValue();
20109 
20110       SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
20111       return DAG.getBitcast(VT, Res);
20112     }
20113   }
20114 
20115   // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
20116   // We have already tested above for an UNDEF only concatenation.
20117   // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
20118   // -> (BUILD_VECTOR A, B, ..., C, D, ...)
20119   auto IsBuildVectorOrUndef = [](const SDValue &Op) {
20120     return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
20121   };
20122   if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
20123     SmallVector<SDValue, 8> Opnds;
20124     EVT SVT = VT.getScalarType();
20125 
20126     EVT MinVT = SVT;
20127     if (!SVT.isFloatingPoint()) {
20128       // If BUILD_VECTOR are from built from integer, they may have different
20129       // operand types. Get the smallest type and truncate all operands to it.
20130       bool FoundMinVT = false;
20131       for (const SDValue &Op : N->ops())
20132         if (ISD::BUILD_VECTOR == Op.getOpcode()) {
20133           EVT OpSVT = Op.getOperand(0).getValueType();
20134           MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
20135           FoundMinVT = true;
20136         }
20137       assert(FoundMinVT && "Concat vector type mismatch");
20138     }
20139 
20140     for (const SDValue &Op : N->ops()) {
20141       EVT OpVT = Op.getValueType();
20142       unsigned NumElts = OpVT.getVectorNumElements();
20143 
20144       if (ISD::UNDEF == Op.getOpcode())
20145         Opnds.append(NumElts, DAG.getUNDEF(MinVT));
20146 
20147       if (ISD::BUILD_VECTOR == Op.getOpcode()) {
20148         if (SVT.isFloatingPoint()) {
20149           assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
20150           Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
20151         } else {
20152           for (unsigned i = 0; i != NumElts; ++i)
20153             Opnds.push_back(
20154                 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
20155         }
20156       }
20157     }
20158 
20159     assert(VT.getVectorNumElements() == Opnds.size() &&
20160            "Concat vector type mismatch");
20161     return DAG.getBuildVector(VT, SDLoc(N), Opnds);
20162   }
20163 
20164   // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
20165   // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...).
20166   if (SDValue V = combineConcatVectorOfScalars(N, DAG))
20167     return V;
20168 
20169   if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
20170     // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE.
20171     if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG))
20172       return V;
20173 
20174     // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
20175     if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
20176       return V;
20177   }
20178 
20179   if (SDValue V = combineConcatVectorOfCasts(N, DAG))
20180     return V;
20181 
20182   // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
20183   // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
20184   // operands and look for a CONCAT operations that place the incoming vectors
20185   // at the exact same location.
20186   //
20187   // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
20188   SDValue SingleSource = SDValue();
20189   unsigned PartNumElem =
20190       N->getOperand(0).getValueType().getVectorMinNumElements();
20191 
20192   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
20193     SDValue Op = N->getOperand(i);
20194 
20195     if (Op.isUndef())
20196       continue;
20197 
20198     // Check if this is the identity extract:
20199     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
20200       return SDValue();
20201 
20202     // Find the single incoming vector for the extract_subvector.
20203     if (SingleSource.getNode()) {
20204       if (Op.getOperand(0) != SingleSource)
20205         return SDValue();
20206     } else {
20207       SingleSource = Op.getOperand(0);
20208 
20209       // Check the source type is the same as the type of the result.
20210       // If not, this concat may extend the vector, so we can not
20211       // optimize it away.
20212       if (SingleSource.getValueType() != N->getValueType(0))
20213         return SDValue();
20214     }
20215 
20216     // Check that we are reading from the identity index.
20217     unsigned IdentityIndex = i * PartNumElem;
20218     if (Op.getConstantOperandAPInt(1) != IdentityIndex)
20219       return SDValue();
20220   }
20221 
20222   if (SingleSource.getNode())
20223     return SingleSource;
20224 
20225   return SDValue();
20226 }
20227 
20228 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
20229 // if the subvector can be sourced for free.
20230 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
20231   if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
20232       V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
20233     return V.getOperand(1);
20234   }
20235   auto *IndexC = dyn_cast<ConstantSDNode>(Index);
20236   if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
20237       V.getOperand(0).getValueType() == SubVT &&
20238       (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) {
20239     uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements();
20240     return V.getOperand(SubIdx);
20241   }
20242   return SDValue();
20243 }
20244 
20245 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
20246                                               SelectionDAG &DAG,
20247                                               bool LegalOperations) {
20248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20249   SDValue BinOp = Extract->getOperand(0);
20250   unsigned BinOpcode = BinOp.getOpcode();
20251   if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1)
20252     return SDValue();
20253 
20254   EVT VecVT = BinOp.getValueType();
20255   SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
20256   if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
20257     return SDValue();
20258 
20259   SDValue Index = Extract->getOperand(1);
20260   EVT SubVT = Extract->getValueType(0);
20261   if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations))
20262     return SDValue();
20263 
20264   SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
20265   SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
20266 
20267   // TODO: We could handle the case where only 1 operand is being inserted by
20268   //       creating an extract of the other operand, but that requires checking
20269   //       number of uses and/or costs.
20270   if (!Sub0 || !Sub1)
20271     return SDValue();
20272 
20273   // We are inserting both operands of the wide binop only to extract back
20274   // to the narrow vector size. Eliminate all of the insert/extract:
20275   // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
20276   return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
20277                      BinOp->getFlags());
20278 }
20279 
20280 /// If we are extracting a subvector produced by a wide binary operator try
20281 /// to use a narrow binary operator and/or avoid concatenation and extraction.
20282 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG,
20283                                           bool LegalOperations) {
20284   // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
20285   // some of these bailouts with other transforms.
20286 
20287   if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations))
20288     return V;
20289 
20290   // The extract index must be a constant, so we can map it to a concat operand.
20291   auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
20292   if (!ExtractIndexC)
20293     return SDValue();
20294 
20295   // We are looking for an optionally bitcasted wide vector binary operator
20296   // feeding an extract subvector.
20297   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20298   SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
20299   unsigned BOpcode = BinOp.getOpcode();
20300   if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1)
20301     return SDValue();
20302 
20303   // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
20304   // reduced to the unary fneg when it is visited, and we probably want to deal
20305   // with fneg in a target-specific way.
20306   if (BOpcode == ISD::FSUB) {
20307     auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true);
20308     if (C && C->getValueAPF().isNegZero())
20309       return SDValue();
20310   }
20311 
20312   // The binop must be a vector type, so we can extract some fraction of it.
20313   EVT WideBVT = BinOp.getValueType();
20314   // The optimisations below currently assume we are dealing with fixed length
20315   // vectors. It is possible to add support for scalable vectors, but at the
20316   // moment we've done no analysis to prove whether they are profitable or not.
20317   if (!WideBVT.isFixedLengthVector())
20318     return SDValue();
20319 
20320   EVT VT = Extract->getValueType(0);
20321   unsigned ExtractIndex = ExtractIndexC->getZExtValue();
20322   assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
20323          "Extract index is not a multiple of the vector length.");
20324 
20325   // Bail out if this is not a proper multiple width extraction.
20326   unsigned WideWidth = WideBVT.getSizeInBits();
20327   unsigned NarrowWidth = VT.getSizeInBits();
20328   if (WideWidth % NarrowWidth != 0)
20329     return SDValue();
20330 
20331   // Bail out if we are extracting a fraction of a single operation. This can
20332   // occur because we potentially looked through a bitcast of the binop.
20333   unsigned NarrowingRatio = WideWidth / NarrowWidth;
20334   unsigned WideNumElts = WideBVT.getVectorNumElements();
20335   if (WideNumElts % NarrowingRatio != 0)
20336     return SDValue();
20337 
20338   // Bail out if the target does not support a narrower version of the binop.
20339   EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
20340                                    WideNumElts / NarrowingRatio);
20341   if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
20342     return SDValue();
20343 
20344   // If extraction is cheap, we don't need to look at the binop operands
20345   // for concat ops. The narrow binop alone makes this transform profitable.
20346   // We can't just reuse the original extract index operand because we may have
20347   // bitcasted.
20348   unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
20349   unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
20350   if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
20351       BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
20352     // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
20353     SDLoc DL(Extract);
20354     SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL);
20355     SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
20356                             BinOp.getOperand(0), NewExtIndex);
20357     SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
20358                             BinOp.getOperand(1), NewExtIndex);
20359     SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
20360                                       BinOp.getNode()->getFlags());
20361     return DAG.getBitcast(VT, NarrowBinOp);
20362   }
20363 
20364   // Only handle the case where we are doubling and then halving. A larger ratio
20365   // may require more than two narrow binops to replace the wide binop.
20366   if (NarrowingRatio != 2)
20367     return SDValue();
20368 
20369   // TODO: The motivating case for this transform is an x86 AVX1 target. That
20370   // target has temptingly almost legal versions of bitwise logic ops in 256-bit
20371   // flavors, but no other 256-bit integer support. This could be extended to
20372   // handle any binop, but that may require fixing/adding other folds to avoid
20373   // codegen regressions.
20374   if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
20375     return SDValue();
20376 
20377   // We need at least one concatenation operation of a binop operand to make
20378   // this transform worthwhile. The concat must double the input vector sizes.
20379   auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
20380     if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
20381       return V.getOperand(ConcatOpNum);
20382     return SDValue();
20383   };
20384   SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
20385   SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
20386 
20387   if (SubVecL || SubVecR) {
20388     // If a binop operand was not the result of a concat, we must extract a
20389     // half-sized operand for our new narrow binop:
20390     // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
20391     // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
20392     // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
20393     SDLoc DL(Extract);
20394     SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL);
20395     SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
20396                         : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
20397                                       BinOp.getOperand(0), IndexC);
20398 
20399     SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
20400                         : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
20401                                       BinOp.getOperand(1), IndexC);
20402 
20403     SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
20404     return DAG.getBitcast(VT, NarrowBinOp);
20405   }
20406 
20407   return SDValue();
20408 }
20409 
20410 /// If we are extracting a subvector from a wide vector load, convert to a
20411 /// narrow load to eliminate the extraction:
20412 /// (extract_subvector (load wide vector)) --> (load narrow vector)
20413 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
20414   // TODO: Add support for big-endian. The offset calculation must be adjusted.
20415   if (DAG.getDataLayout().isBigEndian())
20416     return SDValue();
20417 
20418   auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
20419   auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
20420   if (!Ld || Ld->getExtensionType() || !Ld->isSimple() ||
20421       !ExtIdx)
20422     return SDValue();
20423 
20424   // Allow targets to opt-out.
20425   EVT VT = Extract->getValueType(0);
20426 
20427   // We can only create byte sized loads.
20428   if (!VT.isByteSized())
20429     return SDValue();
20430 
20431   unsigned Index = ExtIdx->getZExtValue();
20432   unsigned NumElts = VT.getVectorMinNumElements();
20433 
20434   // The definition of EXTRACT_SUBVECTOR states that the index must be a
20435   // multiple of the minimum number of elements in the result type.
20436   assert(Index % NumElts == 0 && "The extract subvector index is not a "
20437                                  "multiple of the result's element count");
20438 
20439   // It's fine to use TypeSize here as we know the offset will not be negative.
20440   TypeSize Offset = VT.getStoreSize() * (Index / NumElts);
20441 
20442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20443   if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
20444     return SDValue();
20445 
20446   // The narrow load will be offset from the base address of the old load if
20447   // we are extracting from something besides index 0 (little-endian).
20448   SDLoc DL(Extract);
20449 
20450   // TODO: Use "BaseIndexOffset" to make this more effective.
20451   SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL);
20452 
20453   uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize());
20454   MachineFunction &MF = DAG.getMachineFunction();
20455   MachineMemOperand *MMO;
20456   if (Offset.isScalable()) {
20457     MachinePointerInfo MPI =
20458         MachinePointerInfo(Ld->getPointerInfo().getAddrSpace());
20459     MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize);
20460   } else
20461     MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(),
20462                                   StoreSize);
20463 
20464   SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
20465   DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
20466   return NewLd;
20467 }
20468 
20469 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
20470   EVT NVT = N->getValueType(0);
20471   SDValue V = N->getOperand(0);
20472   uint64_t ExtIdx = N->getConstantOperandVal(1);
20473 
20474   // Extract from UNDEF is UNDEF.
20475   if (V.isUndef())
20476     return DAG.getUNDEF(NVT);
20477 
20478   if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
20479     if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
20480       return NarrowLoad;
20481 
20482   // Combine an extract of an extract into a single extract_subvector.
20483   // ext (ext X, C), 0 --> ext X, C
20484   if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) {
20485     if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
20486                                     V.getConstantOperandVal(1)) &&
20487         TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
20488       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
20489                          V.getOperand(1));
20490     }
20491   }
20492 
20493   // Try to move vector bitcast after extract_subv by scaling extraction index:
20494   // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
20495   if (V.getOpcode() == ISD::BITCAST &&
20496       V.getOperand(0).getValueType().isVector() &&
20497       (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) {
20498     SDValue SrcOp = V.getOperand(0);
20499     EVT SrcVT = SrcOp.getValueType();
20500     unsigned SrcNumElts = SrcVT.getVectorMinNumElements();
20501     unsigned DestNumElts = V.getValueType().getVectorMinNumElements();
20502     if ((SrcNumElts % DestNumElts) == 0) {
20503       unsigned SrcDestRatio = SrcNumElts / DestNumElts;
20504       ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio;
20505       EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
20506                                       NewExtEC);
20507       if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
20508         SDLoc DL(N);
20509         SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL);
20510         SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
20511                                          V.getOperand(0), NewIndex);
20512         return DAG.getBitcast(NVT, NewExtract);
20513       }
20514     }
20515     if ((DestNumElts % SrcNumElts) == 0) {
20516       unsigned DestSrcRatio = DestNumElts / SrcNumElts;
20517       if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) {
20518         ElementCount NewExtEC =
20519             NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio);
20520         EVT ScalarVT = SrcVT.getScalarType();
20521         if ((ExtIdx % DestSrcRatio) == 0) {
20522           SDLoc DL(N);
20523           unsigned IndexValScaled = ExtIdx / DestSrcRatio;
20524           EVT NewExtVT =
20525               EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC);
20526           if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
20527             SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
20528             SDValue NewExtract =
20529                 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
20530                             V.getOperand(0), NewIndex);
20531             return DAG.getBitcast(NVT, NewExtract);
20532           }
20533           if (NewExtEC.isScalar() &&
20534               TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) {
20535             SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
20536             SDValue NewExtract =
20537                 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT,
20538                             V.getOperand(0), NewIndex);
20539             return DAG.getBitcast(NVT, NewExtract);
20540           }
20541         }
20542       }
20543     }
20544   }
20545 
20546   if (V.getOpcode() == ISD::CONCAT_VECTORS) {
20547     unsigned ExtNumElts = NVT.getVectorMinNumElements();
20548     EVT ConcatSrcVT = V.getOperand(0).getValueType();
20549     assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() &&
20550            "Concat and extract subvector do not change element type");
20551     assert((ExtIdx % ExtNumElts) == 0 &&
20552            "Extract index is not a multiple of the input vector length.");
20553 
20554     unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements();
20555     unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts;
20556 
20557     // If the concatenated source types match this extract, it's a direct
20558     // simplification:
20559     // extract_subvec (concat V1, V2, ...), i --> Vi
20560     if (ConcatSrcNumElts == ExtNumElts)
20561       return V.getOperand(ConcatOpIdx);
20562 
20563     // If the concatenated source vectors are a multiple length of this extract,
20564     // then extract a fraction of one of those source vectors directly from a
20565     // concat operand. Example:
20566     //   v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
20567     //   v2i8 extract_subvec v8i8 Y, 6
20568     if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) {
20569       SDLoc DL(N);
20570       unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts;
20571       assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts &&
20572              "Trying to extract from >1 concat operand?");
20573       assert(NewExtIdx % ExtNumElts == 0 &&
20574              "Extract index is not a multiple of the input vector length.");
20575       SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL);
20576       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT,
20577                          V.getOperand(ConcatOpIdx), NewIndexC);
20578     }
20579   }
20580 
20581   V = peekThroughBitcasts(V);
20582 
20583   // If the input is a build vector. Try to make a smaller build vector.
20584   if (V.getOpcode() == ISD::BUILD_VECTOR) {
20585     EVT InVT = V.getValueType();
20586     unsigned ExtractSize = NVT.getSizeInBits();
20587     unsigned EltSize = InVT.getScalarSizeInBits();
20588     // Only do this if we won't split any elements.
20589     if (ExtractSize % EltSize == 0) {
20590       unsigned NumElems = ExtractSize / EltSize;
20591       EVT EltVT = InVT.getVectorElementType();
20592       EVT ExtractVT =
20593           NumElems == 1 ? EltVT
20594                         : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
20595       if ((Level < AfterLegalizeDAG ||
20596            (NumElems == 1 ||
20597             TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
20598           (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
20599         unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize;
20600 
20601         if (NumElems == 1) {
20602           SDValue Src = V->getOperand(IdxVal);
20603           if (EltVT != Src.getValueType())
20604             Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
20605           return DAG.getBitcast(NVT, Src);
20606         }
20607 
20608         // Extract the pieces from the original build_vector.
20609         SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N),
20610                                               V->ops().slice(IdxVal, NumElems));
20611         return DAG.getBitcast(NVT, BuildVec);
20612       }
20613     }
20614   }
20615 
20616   if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
20617     // Handle only simple case where vector being inserted and vector
20618     // being extracted are of same size.
20619     EVT SmallVT = V.getOperand(1).getValueType();
20620     if (!NVT.bitsEq(SmallVT))
20621       return SDValue();
20622 
20623     // Combine:
20624     //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
20625     // Into:
20626     //    indices are equal or bit offsets are equal => V1
20627     //    otherwise => (extract_subvec V1, ExtIdx)
20628     uint64_t InsIdx = V.getConstantOperandVal(2);
20629     if (InsIdx * SmallVT.getScalarSizeInBits() ==
20630         ExtIdx * NVT.getScalarSizeInBits()) {
20631       if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT))
20632         return SDValue();
20633 
20634       return DAG.getBitcast(NVT, V.getOperand(1));
20635     }
20636     return DAG.getNode(
20637         ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
20638         DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
20639         N->getOperand(1));
20640   }
20641 
20642   if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations))
20643     return NarrowBOp;
20644 
20645   if (SimplifyDemandedVectorElts(SDValue(N, 0)))
20646     return SDValue(N, 0);
20647 
20648   return SDValue();
20649 }
20650 
20651 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
20652 /// followed by concatenation. Narrow vector ops may have better performance
20653 /// than wide ops, and this can unlock further narrowing of other vector ops.
20654 /// Targets can invert this transform later if it is not profitable.
20655 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
20656                                          SelectionDAG &DAG) {
20657   SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
20658   if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
20659       N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
20660       !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
20661     return SDValue();
20662 
20663   // Split the wide shuffle mask into halves. Any mask element that is accessing
20664   // operand 1 is offset down to account for narrowing of the vectors.
20665   ArrayRef<int> Mask = Shuf->getMask();
20666   EVT VT = Shuf->getValueType(0);
20667   unsigned NumElts = VT.getVectorNumElements();
20668   unsigned HalfNumElts = NumElts / 2;
20669   SmallVector<int, 16> Mask0(HalfNumElts, -1);
20670   SmallVector<int, 16> Mask1(HalfNumElts, -1);
20671   for (unsigned i = 0; i != NumElts; ++i) {
20672     if (Mask[i] == -1)
20673       continue;
20674     // If we reference the upper (undef) subvector then the element is undef.
20675     if ((Mask[i] % NumElts) >= HalfNumElts)
20676       continue;
20677     int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
20678     if (i < HalfNumElts)
20679       Mask0[i] = M;
20680     else
20681       Mask1[i - HalfNumElts] = M;
20682   }
20683 
20684   // Ask the target if this is a valid transform.
20685   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20686   EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
20687                                 HalfNumElts);
20688   if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
20689       !TLI.isShuffleMaskLegal(Mask1, HalfVT))
20690     return SDValue();
20691 
20692   // shuffle (concat X, undef), (concat Y, undef), Mask -->
20693   // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
20694   SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
20695   SDLoc DL(Shuf);
20696   SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
20697   SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
20698   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
20699 }
20700 
20701 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
20702 // or turn a shuffle of a single concat into simpler shuffle then concat.
20703 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
20704   EVT VT = N->getValueType(0);
20705   unsigned NumElts = VT.getVectorNumElements();
20706 
20707   SDValue N0 = N->getOperand(0);
20708   SDValue N1 = N->getOperand(1);
20709   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
20710   ArrayRef<int> Mask = SVN->getMask();
20711 
20712   SmallVector<SDValue, 4> Ops;
20713   EVT ConcatVT = N0.getOperand(0).getValueType();
20714   unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
20715   unsigned NumConcats = NumElts / NumElemsPerConcat;
20716 
20717   auto IsUndefMaskElt = [](int i) { return i == -1; };
20718 
20719   // Special case: shuffle(concat(A,B)) can be more efficiently represented
20720   // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
20721   // half vector elements.
20722   if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
20723       llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
20724                    IsUndefMaskElt)) {
20725     N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
20726                               N0.getOperand(1),
20727                               Mask.slice(0, NumElemsPerConcat));
20728     N1 = DAG.getUNDEF(ConcatVT);
20729     return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
20730   }
20731 
20732   // Look at every vector that's inserted. We're looking for exact
20733   // subvector-sized copies from a concatenated vector
20734   for (unsigned I = 0; I != NumConcats; ++I) {
20735     unsigned Begin = I * NumElemsPerConcat;
20736     ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
20737 
20738     // Make sure we're dealing with a copy.
20739     if (llvm::all_of(SubMask, IsUndefMaskElt)) {
20740       Ops.push_back(DAG.getUNDEF(ConcatVT));
20741       continue;
20742     }
20743 
20744     int OpIdx = -1;
20745     for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
20746       if (IsUndefMaskElt(SubMask[i]))
20747         continue;
20748       if ((SubMask[i] % (int)NumElemsPerConcat) != i)
20749         return SDValue();
20750       int EltOpIdx = SubMask[i] / NumElemsPerConcat;
20751       if (0 <= OpIdx && EltOpIdx != OpIdx)
20752         return SDValue();
20753       OpIdx = EltOpIdx;
20754     }
20755     assert(0 <= OpIdx && "Unknown concat_vectors op");
20756 
20757     if (OpIdx < (int)N0.getNumOperands())
20758       Ops.push_back(N0.getOperand(OpIdx));
20759     else
20760       Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
20761   }
20762 
20763   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
20764 }
20765 
20766 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
20767 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
20768 //
20769 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
20770 // a simplification in some sense, but it isn't appropriate in general: some
20771 // BUILD_VECTORs are substantially cheaper than others. The general case
20772 // of a BUILD_VECTOR requires inserting each element individually (or
20773 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
20774 // all constants is a single constant pool load.  A BUILD_VECTOR where each
20775 // element is identical is a splat.  A BUILD_VECTOR where most of the operands
20776 // are undef lowers to a small number of element insertions.
20777 //
20778 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
20779 // We don't fold shuffles where one side is a non-zero constant, and we don't
20780 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
20781 // non-constant operands. This seems to work out reasonably well in practice.
20782 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
20783                                        SelectionDAG &DAG,
20784                                        const TargetLowering &TLI) {
20785   EVT VT = SVN->getValueType(0);
20786   unsigned NumElts = VT.getVectorNumElements();
20787   SDValue N0 = SVN->getOperand(0);
20788   SDValue N1 = SVN->getOperand(1);
20789 
20790   if (!N0->hasOneUse())
20791     return SDValue();
20792 
20793   // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
20794   // discussed above.
20795   if (!N1.isUndef()) {
20796     if (!N1->hasOneUse())
20797       return SDValue();
20798 
20799     bool N0AnyConst = isAnyConstantBuildVector(N0);
20800     bool N1AnyConst = isAnyConstantBuildVector(N1);
20801     if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
20802       return SDValue();
20803     if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
20804       return SDValue();
20805   }
20806 
20807   // If both inputs are splats of the same value then we can safely merge this
20808   // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
20809   bool IsSplat = false;
20810   auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
20811   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
20812   if (BV0 && BV1)
20813     if (SDValue Splat0 = BV0->getSplatValue())
20814       IsSplat = (Splat0 == BV1->getSplatValue());
20815 
20816   SmallVector<SDValue, 8> Ops;
20817   SmallSet<SDValue, 16> DuplicateOps;
20818   for (int M : SVN->getMask()) {
20819     SDValue Op = DAG.getUNDEF(VT.getScalarType());
20820     if (M >= 0) {
20821       int Idx = M < (int)NumElts ? M : M - NumElts;
20822       SDValue &S = (M < (int)NumElts ? N0 : N1);
20823       if (S.getOpcode() == ISD::BUILD_VECTOR) {
20824         Op = S.getOperand(Idx);
20825       } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
20826         SDValue Op0 = S.getOperand(0);
20827         Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
20828       } else {
20829         // Operand can't be combined - bail out.
20830         return SDValue();
20831       }
20832     }
20833 
20834     // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
20835     // generating a splat; semantically, this is fine, but it's likely to
20836     // generate low-quality code if the target can't reconstruct an appropriate
20837     // shuffle.
20838     if (!Op.isUndef() && !isIntOrFPConstant(Op))
20839       if (!IsSplat && !DuplicateOps.insert(Op).second)
20840         return SDValue();
20841 
20842     Ops.push_back(Op);
20843   }
20844 
20845   // BUILD_VECTOR requires all inputs to be of the same type, find the
20846   // maximum type and extend them all.
20847   EVT SVT = VT.getScalarType();
20848   if (SVT.isInteger())
20849     for (SDValue &Op : Ops)
20850       SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
20851   if (SVT != VT.getScalarType())
20852     for (SDValue &Op : Ops)
20853       Op = TLI.isZExtFree(Op.getValueType(), SVT)
20854                ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
20855                : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
20856   return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
20857 }
20858 
20859 // Match shuffles that can be converted to any_vector_extend_in_reg.
20860 // This is often generated during legalization.
20861 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
20862 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
20863 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
20864                                             SelectionDAG &DAG,
20865                                             const TargetLowering &TLI,
20866                                             bool LegalOperations) {
20867   EVT VT = SVN->getValueType(0);
20868   bool IsBigEndian = DAG.getDataLayout().isBigEndian();
20869 
20870   // TODO Add support for big-endian when we have a test case.
20871   if (!VT.isInteger() || IsBigEndian)
20872     return SDValue();
20873 
20874   unsigned NumElts = VT.getVectorNumElements();
20875   unsigned EltSizeInBits = VT.getScalarSizeInBits();
20876   ArrayRef<int> Mask = SVN->getMask();
20877   SDValue N0 = SVN->getOperand(0);
20878 
20879   // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
20880   auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
20881     for (unsigned i = 0; i != NumElts; ++i) {
20882       if (Mask[i] < 0)
20883         continue;
20884       if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
20885         continue;
20886       return false;
20887     }
20888     return true;
20889   };
20890 
20891   // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
20892   // power-of-2 extensions as they are the most likely.
20893   for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
20894     // Check for non power of 2 vector sizes
20895     if (NumElts % Scale != 0)
20896       continue;
20897     if (!isAnyExtend(Scale))
20898       continue;
20899 
20900     EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
20901     EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
20902     // Never create an illegal type. Only create unsupported operations if we
20903     // are pre-legalization.
20904     if (TLI.isTypeLegal(OutVT))
20905       if (!LegalOperations ||
20906           TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
20907         return DAG.getBitcast(VT,
20908                               DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
20909                                           SDLoc(SVN), OutVT, N0));
20910   }
20911 
20912   return SDValue();
20913 }
20914 
20915 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
20916 // each source element of a large type into the lowest elements of a smaller
20917 // destination type. This is often generated during legalization.
20918 // If the source node itself was a '*_extend_vector_inreg' node then we should
20919 // then be able to remove it.
20920 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
20921                                         SelectionDAG &DAG) {
20922   EVT VT = SVN->getValueType(0);
20923   bool IsBigEndian = DAG.getDataLayout().isBigEndian();
20924 
20925   // TODO Add support for big-endian when we have a test case.
20926   if (!VT.isInteger() || IsBigEndian)
20927     return SDValue();
20928 
20929   SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
20930 
20931   unsigned Opcode = N0.getOpcode();
20932   if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
20933       Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
20934       Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
20935     return SDValue();
20936 
20937   SDValue N00 = N0.getOperand(0);
20938   ArrayRef<int> Mask = SVN->getMask();
20939   unsigned NumElts = VT.getVectorNumElements();
20940   unsigned EltSizeInBits = VT.getScalarSizeInBits();
20941   unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
20942   unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
20943 
20944   if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
20945     return SDValue();
20946   unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
20947 
20948   // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
20949   // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
20950   // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
20951   auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
20952     for (unsigned i = 0; i != NumElts; ++i) {
20953       if (Mask[i] < 0)
20954         continue;
20955       if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
20956         continue;
20957       return false;
20958     }
20959     return true;
20960   };
20961 
20962   // At the moment we just handle the case where we've truncated back to the
20963   // same size as before the extension.
20964   // TODO: handle more extension/truncation cases as cases arise.
20965   if (EltSizeInBits != ExtSrcSizeInBits)
20966     return SDValue();
20967 
20968   // We can remove *extend_vector_inreg only if the truncation happens at
20969   // the same scale as the extension.
20970   if (isTruncate(ExtScale))
20971     return DAG.getBitcast(VT, N00);
20972 
20973   return SDValue();
20974 }
20975 
20976 // Combine shuffles of splat-shuffles of the form:
20977 // shuffle (shuffle V, undef, splat-mask), undef, M
20978 // If splat-mask contains undef elements, we need to be careful about
20979 // introducing undef's in the folded mask which are not the result of composing
20980 // the masks of the shuffles.
20981 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
20982                                         SelectionDAG &DAG) {
20983   if (!Shuf->getOperand(1).isUndef())
20984     return SDValue();
20985   auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
20986   if (!Splat || !Splat->isSplat())
20987     return SDValue();
20988 
20989   ArrayRef<int> ShufMask = Shuf->getMask();
20990   ArrayRef<int> SplatMask = Splat->getMask();
20991   assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
20992 
20993   // Prefer simplifying to the splat-shuffle, if possible. This is legal if
20994   // every undef mask element in the splat-shuffle has a corresponding undef
20995   // element in the user-shuffle's mask or if the composition of mask elements
20996   // would result in undef.
20997   // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
20998   // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
20999   //   In this case it is not legal to simplify to the splat-shuffle because we
21000   //   may be exposing the users of the shuffle an undef element at index 1
21001   //   which was not there before the combine.
21002   // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
21003   //   In this case the composition of masks yields SplatMask, so it's ok to
21004   //   simplify to the splat-shuffle.
21005   // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
21006   //   In this case the composed mask includes all undef elements of SplatMask
21007   //   and in addition sets element zero to undef. It is safe to simplify to
21008   //   the splat-shuffle.
21009   auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
21010                                        ArrayRef<int> SplatMask) {
21011     for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
21012       if (UserMask[i] != -1 && SplatMask[i] == -1 &&
21013           SplatMask[UserMask[i]] != -1)
21014         return false;
21015     return true;
21016   };
21017   if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
21018     return Shuf->getOperand(0);
21019 
21020   // Create a new shuffle with a mask that is composed of the two shuffles'
21021   // masks.
21022   SmallVector<int, 32> NewMask;
21023   for (int Idx : ShufMask)
21024     NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
21025 
21026   return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
21027                               Splat->getOperand(0), Splat->getOperand(1),
21028                               NewMask);
21029 }
21030 
21031 /// Combine shuffle of shuffle of the form:
21032 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
21033 static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf,
21034                                      SelectionDAG &DAG) {
21035   if (!OuterShuf->getOperand(1).isUndef())
21036     return SDValue();
21037   auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0));
21038   if (!InnerShuf || !InnerShuf->getOperand(1).isUndef())
21039     return SDValue();
21040 
21041   ArrayRef<int> OuterMask = OuterShuf->getMask();
21042   ArrayRef<int> InnerMask = InnerShuf->getMask();
21043   unsigned NumElts = OuterMask.size();
21044   assert(NumElts == InnerMask.size() && "Mask length mismatch");
21045   SmallVector<int, 32> CombinedMask(NumElts, -1);
21046   int SplatIndex = -1;
21047   for (unsigned i = 0; i != NumElts; ++i) {
21048     // Undef lanes remain undef.
21049     int OuterMaskElt = OuterMask[i];
21050     if (OuterMaskElt == -1)
21051       continue;
21052 
21053     // Peek through the shuffle masks to get the underlying source element.
21054     int InnerMaskElt = InnerMask[OuterMaskElt];
21055     if (InnerMaskElt == -1)
21056       continue;
21057 
21058     // Initialize the splatted element.
21059     if (SplatIndex == -1)
21060       SplatIndex = InnerMaskElt;
21061 
21062     // Non-matching index - this is not a splat.
21063     if (SplatIndex != InnerMaskElt)
21064       return SDValue();
21065 
21066     CombinedMask[i] = InnerMaskElt;
21067   }
21068   assert((all_of(CombinedMask, [](int M) { return M == -1; }) ||
21069           getSplatIndex(CombinedMask) != -1) &&
21070          "Expected a splat mask");
21071 
21072   // TODO: The transform may be a win even if the mask is not legal.
21073   EVT VT = OuterShuf->getValueType(0);
21074   assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types");
21075   if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT))
21076     return SDValue();
21077 
21078   return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0),
21079                               InnerShuf->getOperand(1), CombinedMask);
21080 }
21081 
21082 /// If the shuffle mask is taking exactly one element from the first vector
21083 /// operand and passing through all other elements from the second vector
21084 /// operand, return the index of the mask element that is choosing an element
21085 /// from the first operand. Otherwise, return -1.
21086 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
21087   int MaskSize = Mask.size();
21088   int EltFromOp0 = -1;
21089   // TODO: This does not match if there are undef elements in the shuffle mask.
21090   // Should we ignore undefs in the shuffle mask instead? The trade-off is
21091   // removing an instruction (a shuffle), but losing the knowledge that some
21092   // vector lanes are not needed.
21093   for (int i = 0; i != MaskSize; ++i) {
21094     if (Mask[i] >= 0 && Mask[i] < MaskSize) {
21095       // We're looking for a shuffle of exactly one element from operand 0.
21096       if (EltFromOp0 != -1)
21097         return -1;
21098       EltFromOp0 = i;
21099     } else if (Mask[i] != i + MaskSize) {
21100       // Nothing from operand 1 can change lanes.
21101       return -1;
21102     }
21103   }
21104   return EltFromOp0;
21105 }
21106 
21107 /// If a shuffle inserts exactly one element from a source vector operand into
21108 /// another vector operand and we can access the specified element as a scalar,
21109 /// then we can eliminate the shuffle.
21110 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
21111                                       SelectionDAG &DAG) {
21112   // First, check if we are taking one element of a vector and shuffling that
21113   // element into another vector.
21114   ArrayRef<int> Mask = Shuf->getMask();
21115   SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
21116   SDValue Op0 = Shuf->getOperand(0);
21117   SDValue Op1 = Shuf->getOperand(1);
21118   int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
21119   if (ShufOp0Index == -1) {
21120     // Commute mask and check again.
21121     ShuffleVectorSDNode::commuteMask(CommutedMask);
21122     ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
21123     if (ShufOp0Index == -1)
21124       return SDValue();
21125     // Commute operands to match the commuted shuffle mask.
21126     std::swap(Op0, Op1);
21127     Mask = CommutedMask;
21128   }
21129 
21130   // The shuffle inserts exactly one element from operand 0 into operand 1.
21131   // Now see if we can access that element as a scalar via a real insert element
21132   // instruction.
21133   // TODO: We can try harder to locate the element as a scalar. Examples: it
21134   // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
21135   assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
21136          "Shuffle mask value must be from operand 0");
21137   if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
21138     return SDValue();
21139 
21140   auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
21141   if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
21142     return SDValue();
21143 
21144   // There's an existing insertelement with constant insertion index, so we
21145   // don't need to check the legality/profitability of a replacement operation
21146   // that differs at most in the constant value. The target should be able to
21147   // lower any of those in a similar way. If not, legalization will expand this
21148   // to a scalar-to-vector plus shuffle.
21149   //
21150   // Note that the shuffle may move the scalar from the position that the insert
21151   // element used. Therefore, our new insert element occurs at the shuffle's
21152   // mask index value, not the insert's index value.
21153   // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
21154   SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
21155   return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
21156                      Op1, Op0.getOperand(1), NewInsIndex);
21157 }
21158 
21159 /// If we have a unary shuffle of a shuffle, see if it can be folded away
21160 /// completely. This has the potential to lose undef knowledge because the first
21161 /// shuffle may not have an undef mask element where the second one does. So
21162 /// only call this after doing simplifications based on demanded elements.
21163 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
21164   // shuf (shuf0 X, Y, Mask0), undef, Mask
21165   auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
21166   if (!Shuf0 || !Shuf->getOperand(1).isUndef())
21167     return SDValue();
21168 
21169   ArrayRef<int> Mask = Shuf->getMask();
21170   ArrayRef<int> Mask0 = Shuf0->getMask();
21171   for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
21172     // Ignore undef elements.
21173     if (Mask[i] == -1)
21174       continue;
21175     assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
21176 
21177     // Is the element of the shuffle operand chosen by this shuffle the same as
21178     // the element chosen by the shuffle operand itself?
21179     if (Mask0[Mask[i]] != Mask0[i])
21180       return SDValue();
21181   }
21182   // Every element of this shuffle is identical to the result of the previous
21183   // shuffle, so we can replace this value.
21184   return Shuf->getOperand(0);
21185 }
21186 
21187 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
21188   EVT VT = N->getValueType(0);
21189   unsigned NumElts = VT.getVectorNumElements();
21190 
21191   SDValue N0 = N->getOperand(0);
21192   SDValue N1 = N->getOperand(1);
21193 
21194   assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
21195 
21196   // Canonicalize shuffle undef, undef -> undef
21197   if (N0.isUndef() && N1.isUndef())
21198     return DAG.getUNDEF(VT);
21199 
21200   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
21201 
21202   // Canonicalize shuffle v, v -> v, undef
21203   if (N0 == N1) {
21204     SmallVector<int, 8> NewMask;
21205     for (unsigned i = 0; i != NumElts; ++i) {
21206       int Idx = SVN->getMaskElt(i);
21207       if (Idx >= (int)NumElts) Idx -= NumElts;
21208       NewMask.push_back(Idx);
21209     }
21210     return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
21211   }
21212 
21213   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
21214   if (N0.isUndef())
21215     return DAG.getCommutedVectorShuffle(*SVN);
21216 
21217   // Remove references to rhs if it is undef
21218   if (N1.isUndef()) {
21219     bool Changed = false;
21220     SmallVector<int, 8> NewMask;
21221     for (unsigned i = 0; i != NumElts; ++i) {
21222       int Idx = SVN->getMaskElt(i);
21223       if (Idx >= (int)NumElts) {
21224         Idx = -1;
21225         Changed = true;
21226       }
21227       NewMask.push_back(Idx);
21228     }
21229     if (Changed)
21230       return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
21231   }
21232 
21233   if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
21234     return InsElt;
21235 
21236   // A shuffle of a single vector that is a splatted value can always be folded.
21237   if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
21238     return V;
21239 
21240   if (SDValue V = formSplatFromShuffles(SVN, DAG))
21241     return V;
21242 
21243   // If it is a splat, check if the argument vector is another splat or a
21244   // build_vector.
21245   if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
21246     int SplatIndex = SVN->getSplatIndex();
21247     if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
21248         TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) {
21249       // splat (vector_bo L, R), Index -->
21250       // splat (scalar_bo (extelt L, Index), (extelt R, Index))
21251       SDValue L = N0.getOperand(0), R = N0.getOperand(1);
21252       SDLoc DL(N);
21253       EVT EltVT = VT.getScalarType();
21254       SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL);
21255       SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
21256       SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
21257       SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR,
21258                                   N0.getNode()->getFlags());
21259       SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
21260       SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
21261       return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
21262     }
21263 
21264     // If this is a bit convert that changes the element type of the vector but
21265     // not the number of vector elements, look through it.  Be careful not to
21266     // look though conversions that change things like v4f32 to v2f64.
21267     SDNode *V = N0.getNode();
21268     if (V->getOpcode() == ISD::BITCAST) {
21269       SDValue ConvInput = V->getOperand(0);
21270       if (ConvInput.getValueType().isVector() &&
21271           ConvInput.getValueType().getVectorNumElements() == NumElts)
21272         V = ConvInput.getNode();
21273     }
21274 
21275     if (V->getOpcode() == ISD::BUILD_VECTOR) {
21276       assert(V->getNumOperands() == NumElts &&
21277              "BUILD_VECTOR has wrong number of operands");
21278       SDValue Base;
21279       bool AllSame = true;
21280       for (unsigned i = 0; i != NumElts; ++i) {
21281         if (!V->getOperand(i).isUndef()) {
21282           Base = V->getOperand(i);
21283           break;
21284         }
21285       }
21286       // Splat of <u, u, u, u>, return <u, u, u, u>
21287       if (!Base.getNode())
21288         return N0;
21289       for (unsigned i = 0; i != NumElts; ++i) {
21290         if (V->getOperand(i) != Base) {
21291           AllSame = false;
21292           break;
21293         }
21294       }
21295       // Splat of <x, x, x, x>, return <x, x, x, x>
21296       if (AllSame)
21297         return N0;
21298 
21299       // Canonicalize any other splat as a build_vector.
21300       SDValue Splatted = V->getOperand(SplatIndex);
21301       SmallVector<SDValue, 8> Ops(NumElts, Splatted);
21302       SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
21303 
21304       // We may have jumped through bitcasts, so the type of the
21305       // BUILD_VECTOR may not match the type of the shuffle.
21306       if (V->getValueType(0) != VT)
21307         NewBV = DAG.getBitcast(VT, NewBV);
21308       return NewBV;
21309     }
21310   }
21311 
21312   // Simplify source operands based on shuffle mask.
21313   if (SimplifyDemandedVectorElts(SDValue(N, 0)))
21314     return SDValue(N, 0);
21315 
21316   // This is intentionally placed after demanded elements simplification because
21317   // it could eliminate knowledge of undef elements created by this shuffle.
21318   if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
21319     return ShufOp;
21320 
21321   // Match shuffles that can be converted to any_vector_extend_in_reg.
21322   if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
21323     return V;
21324 
21325   // Combine "truncate_vector_in_reg" style shuffles.
21326   if (SDValue V = combineTruncationShuffle(SVN, DAG))
21327     return V;
21328 
21329   if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
21330       Level < AfterLegalizeVectorOps &&
21331       (N1.isUndef() ||
21332       (N1.getOpcode() == ISD::CONCAT_VECTORS &&
21333        N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
21334     if (SDValue V = partitionShuffleOfConcats(N, DAG))
21335       return V;
21336   }
21337 
21338   // A shuffle of a concat of the same narrow vector can be reduced to use
21339   // only low-half elements of a concat with undef:
21340   // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
21341   if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() &&
21342       N0.getNumOperands() == 2 &&
21343       N0.getOperand(0) == N0.getOperand(1)) {
21344     int HalfNumElts = (int)NumElts / 2;
21345     SmallVector<int, 8> NewMask;
21346     for (unsigned i = 0; i != NumElts; ++i) {
21347       int Idx = SVN->getMaskElt(i);
21348       if (Idx >= HalfNumElts) {
21349         assert(Idx < (int)NumElts && "Shuffle mask chooses undef op");
21350         Idx -= HalfNumElts;
21351       }
21352       NewMask.push_back(Idx);
21353     }
21354     if (TLI.isShuffleMaskLegal(NewMask, VT)) {
21355       SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType());
21356       SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
21357                                    N0.getOperand(0), UndefVec);
21358       return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask);
21359     }
21360   }
21361 
21362   // See if we can replace a shuffle with an insert_subvector.
21363   // e.g. v2i32 into v8i32:
21364   // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7).
21365   // --> insert_subvector(lhs,rhs1,4).
21366   if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) &&
21367       TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) {
21368     auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) {
21369       // Ensure RHS subvectors are legal.
21370       assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors");
21371       EVT SubVT = RHS.getOperand(0).getValueType();
21372       int NumSubVecs = RHS.getNumOperands();
21373       int NumSubElts = SubVT.getVectorNumElements();
21374       assert((NumElts % NumSubElts) == 0 && "Subvector mismatch");
21375       if (!TLI.isTypeLegal(SubVT))
21376         return SDValue();
21377 
21378       // Don't bother if we have an unary shuffle (matches undef + LHS elts).
21379       if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; }))
21380         return SDValue();
21381 
21382       // Search [NumSubElts] spans for RHS sequence.
21383       // TODO: Can we avoid nested loops to increase performance?
21384       SmallVector<int> InsertionMask(NumElts);
21385       for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) {
21386         for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) {
21387           // Reset mask to identity.
21388           std::iota(InsertionMask.begin(), InsertionMask.end(), 0);
21389 
21390           // Add subvector insertion.
21391           std::iota(InsertionMask.begin() + SubIdx,
21392                     InsertionMask.begin() + SubIdx + NumSubElts,
21393                     NumElts + (SubVec * NumSubElts));
21394 
21395           // See if the shuffle mask matches the reference insertion mask.
21396           bool MatchingShuffle = true;
21397           for (int i = 0; i != (int)NumElts; ++i) {
21398             int ExpectIdx = InsertionMask[i];
21399             int ActualIdx = Mask[i];
21400             if (0 <= ActualIdx && ExpectIdx != ActualIdx) {
21401               MatchingShuffle = false;
21402               break;
21403             }
21404           }
21405 
21406           if (MatchingShuffle)
21407             return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS,
21408                                RHS.getOperand(SubVec),
21409                                DAG.getVectorIdxConstant(SubIdx, SDLoc(N)));
21410         }
21411       }
21412       return SDValue();
21413     };
21414     ArrayRef<int> Mask = SVN->getMask();
21415     if (N1.getOpcode() == ISD::CONCAT_VECTORS)
21416       if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask))
21417         return InsertN1;
21418     if (N0.getOpcode() == ISD::CONCAT_VECTORS) {
21419       SmallVector<int> CommuteMask(Mask.begin(), Mask.end());
21420       ShuffleVectorSDNode::commuteMask(CommuteMask);
21421       if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask))
21422         return InsertN0;
21423     }
21424   }
21425 
21426   // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
21427   // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
21428   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
21429     if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
21430       return Res;
21431 
21432   // If this shuffle only has a single input that is a bitcasted shuffle,
21433   // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
21434   // back to their original types.
21435   if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
21436       N1.isUndef() && Level < AfterLegalizeVectorOps &&
21437       TLI.isTypeLegal(VT)) {
21438 
21439     SDValue BC0 = peekThroughOneUseBitcasts(N0);
21440     if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
21441       EVT SVT = VT.getScalarType();
21442       EVT InnerVT = BC0->getValueType(0);
21443       EVT InnerSVT = InnerVT.getScalarType();
21444 
21445       // Determine which shuffle works with the smaller scalar type.
21446       EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
21447       EVT ScaleSVT = ScaleVT.getScalarType();
21448 
21449       if (TLI.isTypeLegal(ScaleVT) &&
21450           0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
21451           0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
21452         int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
21453         int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
21454 
21455         // Scale the shuffle masks to the smaller scalar type.
21456         ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
21457         SmallVector<int, 8> InnerMask;
21458         SmallVector<int, 8> OuterMask;
21459         narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask);
21460         narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask);
21461 
21462         // Merge the shuffle masks.
21463         SmallVector<int, 8> NewMask;
21464         for (int M : OuterMask)
21465           NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
21466 
21467         // Test for shuffle mask legality over both commutations.
21468         SDValue SV0 = BC0->getOperand(0);
21469         SDValue SV1 = BC0->getOperand(1);
21470         bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
21471         if (!LegalMask) {
21472           std::swap(SV0, SV1);
21473           ShuffleVectorSDNode::commuteMask(NewMask);
21474           LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
21475         }
21476 
21477         if (LegalMask) {
21478           SV0 = DAG.getBitcast(ScaleVT, SV0);
21479           SV1 = DAG.getBitcast(ScaleVT, SV1);
21480           return DAG.getBitcast(
21481               VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
21482         }
21483       }
21484     }
21485   }
21486 
21487   // Compute the combined shuffle mask for a shuffle with SV0 as the first
21488   // operand, and SV1 as the second operand.
21489   // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
21490   //      Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
21491   auto MergeInnerShuffle =
21492       [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN,
21493                      ShuffleVectorSDNode *OtherSVN, SDValue N1,
21494                      const TargetLowering &TLI, SDValue &SV0, SDValue &SV1,
21495                      SmallVectorImpl<int> &Mask) -> bool {
21496     // Don't try to fold splats; they're likely to simplify somehow, or they
21497     // might be free.
21498     if (OtherSVN->isSplat())
21499       return false;
21500 
21501     SV0 = SV1 = SDValue();
21502     Mask.clear();
21503 
21504     for (unsigned i = 0; i != NumElts; ++i) {
21505       int Idx = SVN->getMaskElt(i);
21506       if (Idx < 0) {
21507         // Propagate Undef.
21508         Mask.push_back(Idx);
21509         continue;
21510       }
21511 
21512       if (Commute)
21513         Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts);
21514 
21515       SDValue CurrentVec;
21516       if (Idx < (int)NumElts) {
21517         // This shuffle index refers to the inner shuffle N0. Lookup the inner
21518         // shuffle mask to identify which vector is actually referenced.
21519         Idx = OtherSVN->getMaskElt(Idx);
21520         if (Idx < 0) {
21521           // Propagate Undef.
21522           Mask.push_back(Idx);
21523           continue;
21524         }
21525         CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0)
21526                                           : OtherSVN->getOperand(1);
21527       } else {
21528         // This shuffle index references an element within N1.
21529         CurrentVec = N1;
21530       }
21531 
21532       // Simple case where 'CurrentVec' is UNDEF.
21533       if (CurrentVec.isUndef()) {
21534         Mask.push_back(-1);
21535         continue;
21536       }
21537 
21538       // Canonicalize the shuffle index. We don't know yet if CurrentVec
21539       // will be the first or second operand of the combined shuffle.
21540       Idx = Idx % NumElts;
21541       if (!SV0.getNode() || SV0 == CurrentVec) {
21542         // Ok. CurrentVec is the left hand side.
21543         // Update the mask accordingly.
21544         SV0 = CurrentVec;
21545         Mask.push_back(Idx);
21546         continue;
21547       }
21548       if (!SV1.getNode() || SV1 == CurrentVec) {
21549         // Ok. CurrentVec is the right hand side.
21550         // Update the mask accordingly.
21551         SV1 = CurrentVec;
21552         Mask.push_back(Idx + NumElts);
21553         continue;
21554       }
21555 
21556       // Last chance - see if the vector is another shuffle and if it
21557       // uses one of the existing candidate shuffle ops.
21558       if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) {
21559         int InnerIdx = CurrentSVN->getMaskElt(Idx);
21560         if (InnerIdx < 0) {
21561           Mask.push_back(-1);
21562           continue;
21563         }
21564         SDValue InnerVec = (InnerIdx < (int)NumElts)
21565                                ? CurrentSVN->getOperand(0)
21566                                : CurrentSVN->getOperand(1);
21567         if (InnerVec.isUndef()) {
21568           Mask.push_back(-1);
21569           continue;
21570         }
21571         InnerIdx %= NumElts;
21572         if (InnerVec == SV0) {
21573           Mask.push_back(InnerIdx);
21574           continue;
21575         }
21576         if (InnerVec == SV1) {
21577           Mask.push_back(InnerIdx + NumElts);
21578           continue;
21579         }
21580       }
21581 
21582       // Bail out if we cannot convert the shuffle pair into a single shuffle.
21583       return false;
21584     }
21585 
21586     if (llvm::all_of(Mask, [](int M) { return M < 0; }))
21587       return true;
21588 
21589     // Avoid introducing shuffles with illegal mask.
21590     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
21591     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
21592     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
21593     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
21594     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
21595     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
21596     if (TLI.isShuffleMaskLegal(Mask, VT))
21597       return true;
21598 
21599     std::swap(SV0, SV1);
21600     ShuffleVectorSDNode::commuteMask(Mask);
21601     return TLI.isShuffleMaskLegal(Mask, VT);
21602   };
21603 
21604   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
21605     // Canonicalize shuffles according to rules:
21606     //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
21607     //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
21608     //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
21609     if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
21610         N0.getOpcode() != ISD::VECTOR_SHUFFLE) {
21611       // The incoming shuffle must be of the same type as the result of the
21612       // current shuffle.
21613       assert(N1->getOperand(0).getValueType() == VT &&
21614              "Shuffle types don't match");
21615 
21616       SDValue SV0 = N1->getOperand(0);
21617       SDValue SV1 = N1->getOperand(1);
21618       bool HasSameOp0 = N0 == SV0;
21619       bool IsSV1Undef = SV1.isUndef();
21620       if (HasSameOp0 || IsSV1Undef || N0 == SV1)
21621         // Commute the operands of this shuffle so merging below will trigger.
21622         return DAG.getCommutedVectorShuffle(*SVN);
21623     }
21624 
21625     // Canonicalize splat shuffles to the RHS to improve merging below.
21626     //  shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
21627     if (N0.getOpcode() == ISD::VECTOR_SHUFFLE &&
21628         N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
21629         cast<ShuffleVectorSDNode>(N0)->isSplat() &&
21630         !cast<ShuffleVectorSDNode>(N1)->isSplat()) {
21631       return DAG.getCommutedVectorShuffle(*SVN);
21632     }
21633 
21634     // Try to fold according to rules:
21635     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
21636     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
21637     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
21638     // Don't try to fold shuffles with illegal type.
21639     // Only fold if this shuffle is the only user of the other shuffle.
21640     // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
21641     for (int i = 0; i != 2; ++i) {
21642       if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE &&
21643           N->isOnlyUserOf(N->getOperand(i).getNode())) {
21644         // The incoming shuffle must be of the same type as the result of the
21645         // current shuffle.
21646         auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i));
21647         assert(OtherSV->getOperand(0).getValueType() == VT &&
21648                "Shuffle types don't match");
21649 
21650         SDValue SV0, SV1;
21651         SmallVector<int, 4> Mask;
21652         if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI,
21653                               SV0, SV1, Mask)) {
21654           // Check if all indices in Mask are Undef. In case, propagate Undef.
21655           if (llvm::all_of(Mask, [](int M) { return M < 0; }))
21656             return DAG.getUNDEF(VT);
21657 
21658           return DAG.getVectorShuffle(VT, SDLoc(N),
21659                                       SV0 ? SV0 : DAG.getUNDEF(VT),
21660                                       SV1 ? SV1 : DAG.getUNDEF(VT), Mask);
21661         }
21662       }
21663     }
21664 
21665     // Merge shuffles through binops if we are able to merge it with at least
21666     // one other shuffles.
21667     // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
21668     // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
21669     unsigned SrcOpcode = N0.getOpcode();
21670     if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) &&
21671         (N1.isUndef() ||
21672          (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) {
21673       // Get binop source ops, or just pass on the undef.
21674       SDValue Op00 = N0.getOperand(0);
21675       SDValue Op01 = N0.getOperand(1);
21676       SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0);
21677       SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1);
21678       // TODO: We might be able to relax the VT check but we don't currently
21679       // have any isBinOp() that has different result/ops VTs so play safe until
21680       // we have test coverage.
21681       if (Op00.getValueType() == VT && Op10.getValueType() == VT &&
21682           Op01.getValueType() == VT && Op11.getValueType() == VT &&
21683           (Op00.getOpcode() == ISD::VECTOR_SHUFFLE ||
21684            Op10.getOpcode() == ISD::VECTOR_SHUFFLE ||
21685            Op01.getOpcode() == ISD::VECTOR_SHUFFLE ||
21686            Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) {
21687         auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1,
21688                                         SmallVectorImpl<int> &Mask, bool LeftOp,
21689                                         bool Commute) {
21690           SDValue InnerN = Commute ? N1 : N0;
21691           SDValue Op0 = LeftOp ? Op00 : Op01;
21692           SDValue Op1 = LeftOp ? Op10 : Op11;
21693           if (Commute)
21694             std::swap(Op0, Op1);
21695           // Only accept the merged shuffle if we don't introduce undef elements,
21696           // or the inner shuffle already contained undef elements.
21697           auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0);
21698           return SVN0 && InnerN->isOnlyUserOf(SVN0) &&
21699                  MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1,
21700                                    Mask) &&
21701                  (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) ||
21702                   llvm::none_of(Mask, [](int M) { return M < 0; }));
21703         };
21704 
21705         // Ensure we don't increase the number of shuffles - we must merge a
21706         // shuffle from at least one of the LHS and RHS ops.
21707         bool MergedLeft = false;
21708         SDValue LeftSV0, LeftSV1;
21709         SmallVector<int, 4> LeftMask;
21710         if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) ||
21711             CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) {
21712           MergedLeft = true;
21713         } else {
21714           LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end());
21715           LeftSV0 = Op00, LeftSV1 = Op10;
21716         }
21717 
21718         bool MergedRight = false;
21719         SDValue RightSV0, RightSV1;
21720         SmallVector<int, 4> RightMask;
21721         if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) ||
21722             CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) {
21723           MergedRight = true;
21724         } else {
21725           RightMask.assign(SVN->getMask().begin(), SVN->getMask().end());
21726           RightSV0 = Op01, RightSV1 = Op11;
21727         }
21728 
21729         if (MergedLeft || MergedRight) {
21730           SDLoc DL(N);
21731           SDValue LHS = DAG.getVectorShuffle(
21732               VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT),
21733               LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask);
21734           SDValue RHS = DAG.getVectorShuffle(
21735               VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT),
21736               RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask);
21737           return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS);
21738         }
21739       }
21740     }
21741   }
21742 
21743   if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
21744     return V;
21745 
21746   return SDValue();
21747 }
21748 
21749 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
21750   SDValue InVal = N->getOperand(0);
21751   EVT VT = N->getValueType(0);
21752 
21753   // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
21754   // with a VECTOR_SHUFFLE and possible truncate.
21755   if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
21756       VT.isFixedLengthVector() &&
21757       InVal->getOperand(0).getValueType().isFixedLengthVector()) {
21758     SDValue InVec = InVal->getOperand(0);
21759     SDValue EltNo = InVal->getOperand(1);
21760     auto InVecT = InVec.getValueType();
21761     if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
21762       SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
21763       int Elt = C0->getZExtValue();
21764       NewMask[0] = Elt;
21765       // If we have an implict truncate do truncate here as long as it's legal.
21766       // if it's not legal, this should
21767       if (VT.getScalarType() != InVal.getValueType() &&
21768           InVal.getValueType().isScalarInteger() &&
21769           isTypeLegal(VT.getScalarType())) {
21770         SDValue Val =
21771             DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
21772         return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
21773       }
21774       if (VT.getScalarType() == InVecT.getScalarType() &&
21775           VT.getVectorNumElements() <= InVecT.getVectorNumElements()) {
21776         SDValue LegalShuffle =
21777           TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec,
21778                                       DAG.getUNDEF(InVecT), NewMask, DAG);
21779         if (LegalShuffle) {
21780           // If the initial vector is the correct size this shuffle is a
21781           // valid result.
21782           if (VT == InVecT)
21783             return LegalShuffle;
21784           // If not we must truncate the vector.
21785           if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
21786             SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N));
21787             EVT SubVT = EVT::getVectorVT(*DAG.getContext(),
21788                                          InVecT.getVectorElementType(),
21789                                          VT.getVectorNumElements());
21790             return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT,
21791                                LegalShuffle, ZeroIdx);
21792           }
21793         }
21794       }
21795     }
21796   }
21797 
21798   return SDValue();
21799 }
21800 
21801 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
21802   EVT VT = N->getValueType(0);
21803   SDValue N0 = N->getOperand(0);
21804   SDValue N1 = N->getOperand(1);
21805   SDValue N2 = N->getOperand(2);
21806   uint64_t InsIdx = N->getConstantOperandVal(2);
21807 
21808   // If inserting an UNDEF, just return the original vector.
21809   if (N1.isUndef())
21810     return N0;
21811 
21812   // If this is an insert of an extracted vector into an undef vector, we can
21813   // just use the input to the extract.
21814   if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
21815       N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
21816     return N1.getOperand(0);
21817 
21818   // If we are inserting a bitcast value into an undef, with the same
21819   // number of elements, just use the bitcast input of the extract.
21820   // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
21821   //        BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
21822   if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
21823       N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
21824       N1.getOperand(0).getOperand(1) == N2 &&
21825       N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() ==
21826           VT.getVectorElementCount() &&
21827       N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
21828           VT.getSizeInBits()) {
21829     return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
21830   }
21831 
21832   // If both N1 and N2 are bitcast values on which insert_subvector
21833   // would makes sense, pull the bitcast through.
21834   // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
21835   //        BITCAST (INSERT_SUBVECTOR N0 N1 N2)
21836   if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
21837     SDValue CN0 = N0.getOperand(0);
21838     SDValue CN1 = N1.getOperand(0);
21839     EVT CN0VT = CN0.getValueType();
21840     EVT CN1VT = CN1.getValueType();
21841     if (CN0VT.isVector() && CN1VT.isVector() &&
21842         CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
21843         CN0VT.getVectorElementCount() == VT.getVectorElementCount()) {
21844       SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
21845                                       CN0.getValueType(), CN0, CN1, N2);
21846       return DAG.getBitcast(VT, NewINSERT);
21847     }
21848   }
21849 
21850   // Combine INSERT_SUBVECTORs where we are inserting to the same index.
21851   // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
21852   // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
21853   if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
21854       N0.getOperand(1).getValueType() == N1.getValueType() &&
21855       N0.getOperand(2) == N2)
21856     return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
21857                        N1, N2);
21858 
21859   // Eliminate an intermediate insert into an undef vector:
21860   // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
21861   // insert_subvector undef, X, N2
21862   if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
21863       N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
21864     return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
21865                        N1.getOperand(1), N2);
21866 
21867   // Push subvector bitcasts to the output, adjusting the index as we go.
21868   // insert_subvector(bitcast(v), bitcast(s), c1)
21869   // -> bitcast(insert_subvector(v, s, c2))
21870   if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
21871       N1.getOpcode() == ISD::BITCAST) {
21872     SDValue N0Src = peekThroughBitcasts(N0);
21873     SDValue N1Src = peekThroughBitcasts(N1);
21874     EVT N0SrcSVT = N0Src.getValueType().getScalarType();
21875     EVT N1SrcSVT = N1Src.getValueType().getScalarType();
21876     if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
21877         N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
21878       EVT NewVT;
21879       SDLoc DL(N);
21880       SDValue NewIdx;
21881       LLVMContext &Ctx = *DAG.getContext();
21882       ElementCount NumElts = VT.getVectorElementCount();
21883       unsigned EltSizeInBits = VT.getScalarSizeInBits();
21884       if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
21885         unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
21886         NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
21887         NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL);
21888       } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
21889         unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
21890         if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) {
21891           NewVT = EVT::getVectorVT(Ctx, N1SrcSVT,
21892                                    NumElts.divideCoefficientBy(Scale));
21893           NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL);
21894         }
21895       }
21896       if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
21897         SDValue Res = DAG.getBitcast(NewVT, N0Src);
21898         Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
21899         return DAG.getBitcast(VT, Res);
21900       }
21901     }
21902   }
21903 
21904   // Canonicalize insert_subvector dag nodes.
21905   // Example:
21906   // (insert_subvector (insert_subvector A, Idx0), Idx1)
21907   // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
21908   if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
21909       N1.getValueType() == N0.getOperand(1).getValueType()) {
21910     unsigned OtherIdx = N0.getConstantOperandVal(2);
21911     if (InsIdx < OtherIdx) {
21912       // Swap nodes.
21913       SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
21914                                   N0.getOperand(0), N1, N2);
21915       AddToWorklist(NewOp.getNode());
21916       return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
21917                          VT, NewOp, N0.getOperand(1), N0.getOperand(2));
21918     }
21919   }
21920 
21921   // If the input vector is a concatenation, and the insert replaces
21922   // one of the pieces, we can optimize into a single concat_vectors.
21923   if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
21924       N0.getOperand(0).getValueType() == N1.getValueType() &&
21925       N0.getOperand(0).getValueType().isScalableVector() ==
21926           N1.getValueType().isScalableVector()) {
21927     unsigned Factor = N1.getValueType().getVectorMinNumElements();
21928     SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
21929     Ops[InsIdx / Factor] = N1;
21930     return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
21931   }
21932 
21933   // Simplify source operands based on insertion.
21934   if (SimplifyDemandedVectorElts(SDValue(N, 0)))
21935     return SDValue(N, 0);
21936 
21937   return SDValue();
21938 }
21939 
21940 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
21941   SDValue N0 = N->getOperand(0);
21942 
21943   // fold (fp_to_fp16 (fp16_to_fp op)) -> op
21944   if (N0->getOpcode() == ISD::FP16_TO_FP)
21945     return N0->getOperand(0);
21946 
21947   return SDValue();
21948 }
21949 
21950 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
21951   SDValue N0 = N->getOperand(0);
21952 
21953   // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
21954   if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) {
21955     ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
21956     if (AndConst && AndConst->getAPIntValue() == 0xffff) {
21957       return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
21958                          N0.getOperand(0));
21959     }
21960   }
21961 
21962   return SDValue();
21963 }
21964 
21965 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
21966   SDValue N0 = N->getOperand(0);
21967   EVT VT = N0.getValueType();
21968   unsigned Opcode = N->getOpcode();
21969 
21970   // VECREDUCE over 1-element vector is just an extract.
21971   if (VT.getVectorElementCount().isScalar()) {
21972     SDLoc dl(N);
21973     SDValue Res =
21974         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
21975                     DAG.getVectorIdxConstant(0, dl));
21976     if (Res.getValueType() != N->getValueType(0))
21977       Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
21978     return Res;
21979   }
21980 
21981   // On an boolean vector an and/or reduction is the same as a umin/umax
21982   // reduction. Convert them if the latter is legal while the former isn't.
21983   if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
21984     unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
21985         ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
21986     if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
21987         TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
21988         DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
21989       return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
21990   }
21991 
21992   return SDValue();
21993 }
21994 
21995 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
21996 /// with the destination vector and a zero vector.
21997 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
21998 ///      vector_shuffle V, Zero, <0, 4, 2, 4>
21999 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
22000   assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
22001 
22002   EVT VT = N->getValueType(0);
22003   SDValue LHS = N->getOperand(0);
22004   SDValue RHS = peekThroughBitcasts(N->getOperand(1));
22005   SDLoc DL(N);
22006 
22007   // Make sure we're not running after operation legalization where it
22008   // may have custom lowered the vector shuffles.
22009   if (LegalOperations)
22010     return SDValue();
22011 
22012   if (RHS.getOpcode() != ISD::BUILD_VECTOR)
22013     return SDValue();
22014 
22015   EVT RVT = RHS.getValueType();
22016   unsigned NumElts = RHS.getNumOperands();
22017 
22018   // Attempt to create a valid clear mask, splitting the mask into
22019   // sub elements and checking to see if each is
22020   // all zeros or all ones - suitable for shuffle masking.
22021   auto BuildClearMask = [&](int Split) {
22022     int NumSubElts = NumElts * Split;
22023     int NumSubBits = RVT.getScalarSizeInBits() / Split;
22024 
22025     SmallVector<int, 8> Indices;
22026     for (int i = 0; i != NumSubElts; ++i) {
22027       int EltIdx = i / Split;
22028       int SubIdx = i % Split;
22029       SDValue Elt = RHS.getOperand(EltIdx);
22030       // X & undef --> 0 (not undef). So this lane must be converted to choose
22031       // from the zero constant vector (same as if the element had all 0-bits).
22032       if (Elt.isUndef()) {
22033         Indices.push_back(i + NumSubElts);
22034         continue;
22035       }
22036 
22037       APInt Bits;
22038       if (isa<ConstantSDNode>(Elt))
22039         Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
22040       else if (isa<ConstantFPSDNode>(Elt))
22041         Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
22042       else
22043         return SDValue();
22044 
22045       // Extract the sub element from the constant bit mask.
22046       if (DAG.getDataLayout().isBigEndian())
22047         Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits);
22048       else
22049         Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits);
22050 
22051       if (Bits.isAllOnesValue())
22052         Indices.push_back(i);
22053       else if (Bits == 0)
22054         Indices.push_back(i + NumSubElts);
22055       else
22056         return SDValue();
22057     }
22058 
22059     // Let's see if the target supports this vector_shuffle.
22060     EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
22061     EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
22062     if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
22063       return SDValue();
22064 
22065     SDValue Zero = DAG.getConstant(0, DL, ClearVT);
22066     return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
22067                                                    DAG.getBitcast(ClearVT, LHS),
22068                                                    Zero, Indices));
22069   };
22070 
22071   // Determine maximum split level (byte level masking).
22072   int MaxSplit = 1;
22073   if (RVT.getScalarSizeInBits() % 8 == 0)
22074     MaxSplit = RVT.getScalarSizeInBits() / 8;
22075 
22076   for (int Split = 1; Split <= MaxSplit; ++Split)
22077     if (RVT.getScalarSizeInBits() % Split == 0)
22078       if (SDValue S = BuildClearMask(Split))
22079         return S;
22080 
22081   return SDValue();
22082 }
22083 
22084 /// If a vector binop is performed on splat values, it may be profitable to
22085 /// extract, scalarize, and insert/splat.
22086 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) {
22087   SDValue N0 = N->getOperand(0);
22088   SDValue N1 = N->getOperand(1);
22089   unsigned Opcode = N->getOpcode();
22090   EVT VT = N->getValueType(0);
22091   EVT EltVT = VT.getVectorElementType();
22092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22093 
22094   // TODO: Remove/replace the extract cost check? If the elements are available
22095   //       as scalars, then there may be no extract cost. Should we ask if
22096   //       inserting a scalar back into a vector is cheap instead?
22097   int Index0, Index1;
22098   SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
22099   SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
22100   if (!Src0 || !Src1 || Index0 != Index1 ||
22101       Src0.getValueType().getVectorElementType() != EltVT ||
22102       Src1.getValueType().getVectorElementType() != EltVT ||
22103       !TLI.isExtractVecEltCheap(VT, Index0) ||
22104       !TLI.isOperationLegalOrCustom(Opcode, EltVT))
22105     return SDValue();
22106 
22107   SDLoc DL(N);
22108   SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
22109   SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC);
22110   SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC);
22111   SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
22112 
22113   // If all lanes but 1 are undefined, no need to splat the scalar result.
22114   // TODO: Keep track of undefs and use that info in the general case.
22115   if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
22116       count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
22117       count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
22118     // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
22119     // build_vec ..undef, (bo X, Y), undef...
22120     SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
22121     Ops[Index0] = ScalarBO;
22122     return DAG.getBuildVector(VT, DL, Ops);
22123   }
22124 
22125   // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
22126   SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
22127   return DAG.getBuildVector(VT, DL, Ops);
22128 }
22129 
22130 /// Visit a binary vector operation, like ADD.
22131 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
22132   assert(N->getValueType(0).isVector() &&
22133          "SimplifyVBinOp only works on vectors!");
22134 
22135   SDValue LHS = N->getOperand(0);
22136   SDValue RHS = N->getOperand(1);
22137   SDValue Ops[] = {LHS, RHS};
22138   EVT VT = N->getValueType(0);
22139   unsigned Opcode = N->getOpcode();
22140   SDNodeFlags Flags = N->getFlags();
22141 
22142   // See if we can constant fold the vector operation.
22143   if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
22144           Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
22145     return Fold;
22146 
22147   // Move unary shuffles with identical masks after a vector binop:
22148   // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
22149   //   --> shuffle (VBinOp A, B), Undef, Mask
22150   // This does not require type legality checks because we are creating the
22151   // same types of operations that are in the original sequence. We do have to
22152   // restrict ops like integer div that have immediate UB (eg, div-by-zero)
22153   // though. This code is adapted from the identical transform in instcombine.
22154   if (Opcode != ISD::UDIV && Opcode != ISD::SDIV &&
22155       Opcode != ISD::UREM && Opcode != ISD::SREM &&
22156       Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) {
22157     auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
22158     auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
22159     if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
22160         LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
22161         (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
22162       SDLoc DL(N);
22163       SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
22164                                      RHS.getOperand(0), Flags);
22165       SDValue UndefV = LHS.getOperand(1);
22166       return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
22167     }
22168 
22169     // Try to sink a splat shuffle after a binop with a uniform constant.
22170     // This is limited to cases where neither the shuffle nor the constant have
22171     // undefined elements because that could be poison-unsafe or inhibit
22172     // demanded elements analysis. It is further limited to not change a splat
22173     // of an inserted scalar because that may be optimized better by
22174     // load-folding or other target-specific behaviors.
22175     if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) &&
22176         Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() &&
22177         Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
22178       // binop (splat X), (splat C) --> splat (binop X, C)
22179       SDLoc DL(N);
22180       SDValue X = Shuf0->getOperand(0);
22181       SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags);
22182       return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
22183                                   Shuf0->getMask());
22184     }
22185     if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) &&
22186         Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() &&
22187         Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
22188       // binop (splat C), (splat X) --> splat (binop C, X)
22189       SDLoc DL(N);
22190       SDValue X = Shuf1->getOperand(0);
22191       SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags);
22192       return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
22193                                   Shuf1->getMask());
22194     }
22195   }
22196 
22197   // The following pattern is likely to emerge with vector reduction ops. Moving
22198   // the binary operation ahead of insertion may allow using a narrower vector
22199   // instruction that has better performance than the wide version of the op:
22200   // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
22201   if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
22202       RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
22203       LHS.getOperand(2) == RHS.getOperand(2) &&
22204       (LHS.hasOneUse() || RHS.hasOneUse())) {
22205     SDValue X = LHS.getOperand(1);
22206     SDValue Y = RHS.getOperand(1);
22207     SDValue Z = LHS.getOperand(2);
22208     EVT NarrowVT = X.getValueType();
22209     if (NarrowVT == Y.getValueType() &&
22210         TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT,
22211                                               LegalOperations)) {
22212       // (binop undef, undef) may not return undef, so compute that result.
22213       SDLoc DL(N);
22214       SDValue VecC =
22215           DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
22216       SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
22217       return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
22218     }
22219   }
22220 
22221   // Make sure all but the first op are undef or constant.
22222   auto ConcatWithConstantOrUndef = [](SDValue Concat) {
22223     return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
22224            all_of(drop_begin(Concat->ops()), [](const SDValue &Op) {
22225              return Op.isUndef() ||
22226                     ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
22227            });
22228   };
22229 
22230   // The following pattern is likely to emerge with vector reduction ops. Moving
22231   // the binary operation ahead of the concat may allow using a narrower vector
22232   // instruction that has better performance than the wide version of the op:
22233   // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
22234   //   concat (VBinOp X, Y), VecC
22235   if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
22236       (LHS.hasOneUse() || RHS.hasOneUse())) {
22237     EVT NarrowVT = LHS.getOperand(0).getValueType();
22238     if (NarrowVT == RHS.getOperand(0).getValueType() &&
22239         TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
22240       SDLoc DL(N);
22241       unsigned NumOperands = LHS.getNumOperands();
22242       SmallVector<SDValue, 4> ConcatOps;
22243       for (unsigned i = 0; i != NumOperands; ++i) {
22244         // This constant fold for operands 1 and up.
22245         ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
22246                                         RHS.getOperand(i)));
22247       }
22248 
22249       return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
22250     }
22251   }
22252 
22253   if (SDValue V = scalarizeBinOpOfSplats(N, DAG))
22254     return V;
22255 
22256   return SDValue();
22257 }
22258 
22259 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
22260                                     SDValue N2) {
22261   assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
22262 
22263   SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
22264                                  cast<CondCodeSDNode>(N0.getOperand(2))->get());
22265 
22266   // If we got a simplified select_cc node back from SimplifySelectCC, then
22267   // break it down into a new SETCC node, and a new SELECT node, and then return
22268   // the SELECT node, since we were called with a SELECT node.
22269   if (SCC.getNode()) {
22270     // Check to see if we got a select_cc back (to turn into setcc/select).
22271     // Otherwise, just return whatever node we got back, like fabs.
22272     if (SCC.getOpcode() == ISD::SELECT_CC) {
22273       const SDNodeFlags Flags = N0.getNode()->getFlags();
22274       SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
22275                                   N0.getValueType(),
22276                                   SCC.getOperand(0), SCC.getOperand(1),
22277                                   SCC.getOperand(4), Flags);
22278       AddToWorklist(SETCC.getNode());
22279       SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
22280                                          SCC.getOperand(2), SCC.getOperand(3));
22281       SelectNode->setFlags(Flags);
22282       return SelectNode;
22283     }
22284 
22285     return SCC;
22286   }
22287   return SDValue();
22288 }
22289 
22290 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
22291 /// being selected between, see if we can simplify the select.  Callers of this
22292 /// should assume that TheSelect is deleted if this returns true.  As such, they
22293 /// should return the appropriate thing (e.g. the node) back to the top-level of
22294 /// the DAG combiner loop to avoid it being looked at.
22295 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
22296                                     SDValue RHS) {
22297   // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
22298   // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
22299   if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
22300     if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
22301       // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
22302       SDValue Sqrt = RHS;
22303       ISD::CondCode CC;
22304       SDValue CmpLHS;
22305       const ConstantFPSDNode *Zero = nullptr;
22306 
22307       if (TheSelect->getOpcode() == ISD::SELECT_CC) {
22308         CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
22309         CmpLHS = TheSelect->getOperand(0);
22310         Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
22311       } else {
22312         // SELECT or VSELECT
22313         SDValue Cmp = TheSelect->getOperand(0);
22314         if (Cmp.getOpcode() == ISD::SETCC) {
22315           CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
22316           CmpLHS = Cmp.getOperand(0);
22317           Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
22318         }
22319       }
22320       if (Zero && Zero->isZero() &&
22321           Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
22322           CC == ISD::SETULT || CC == ISD::SETLT)) {
22323         // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
22324         CombineTo(TheSelect, Sqrt);
22325         return true;
22326       }
22327     }
22328   }
22329   // Cannot simplify select with vector condition
22330   if (TheSelect->getOperand(0).getValueType().isVector()) return false;
22331 
22332   // If this is a select from two identical things, try to pull the operation
22333   // through the select.
22334   if (LHS.getOpcode() != RHS.getOpcode() ||
22335       !LHS.hasOneUse() || !RHS.hasOneUse())
22336     return false;
22337 
22338   // If this is a load and the token chain is identical, replace the select
22339   // of two loads with a load through a select of the address to load from.
22340   // This triggers in things like "select bool X, 10.0, 123.0" after the FP
22341   // constants have been dropped into the constant pool.
22342   if (LHS.getOpcode() == ISD::LOAD) {
22343     LoadSDNode *LLD = cast<LoadSDNode>(LHS);
22344     LoadSDNode *RLD = cast<LoadSDNode>(RHS);
22345 
22346     // Token chains must be identical.
22347     if (LHS.getOperand(0) != RHS.getOperand(0) ||
22348         // Do not let this transformation reduce the number of volatile loads.
22349         // Be conservative for atomics for the moment
22350         // TODO: This does appear to be legal for unordered atomics (see D66309)
22351         !LLD->isSimple() || !RLD->isSimple() ||
22352         // FIXME: If either is a pre/post inc/dec load,
22353         // we'd need to split out the address adjustment.
22354         LLD->isIndexed() || RLD->isIndexed() ||
22355         // If this is an EXTLOAD, the VT's must match.
22356         LLD->getMemoryVT() != RLD->getMemoryVT() ||
22357         // If this is an EXTLOAD, the kind of extension must match.
22358         (LLD->getExtensionType() != RLD->getExtensionType() &&
22359          // The only exception is if one of the extensions is anyext.
22360          LLD->getExtensionType() != ISD::EXTLOAD &&
22361          RLD->getExtensionType() != ISD::EXTLOAD) ||
22362         // FIXME: this discards src value information.  This is
22363         // over-conservative. It would be beneficial to be able to remember
22364         // both potential memory locations.  Since we are discarding
22365         // src value info, don't do the transformation if the memory
22366         // locations are not in the default address space.
22367         LLD->getPointerInfo().getAddrSpace() != 0 ||
22368         RLD->getPointerInfo().getAddrSpace() != 0 ||
22369         // We can't produce a CMOV of a TargetFrameIndex since we won't
22370         // generate the address generation required.
22371         LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
22372         RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
22373         !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
22374                                       LLD->getBasePtr().getValueType()))
22375       return false;
22376 
22377     // The loads must not depend on one another.
22378     if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
22379       return false;
22380 
22381     // Check that the select condition doesn't reach either load.  If so,
22382     // folding this will induce a cycle into the DAG.  If not, this is safe to
22383     // xform, so create a select of the addresses.
22384 
22385     SmallPtrSet<const SDNode *, 32> Visited;
22386     SmallVector<const SDNode *, 16> Worklist;
22387 
22388     // Always fail if LLD and RLD are not independent. TheSelect is a
22389     // predecessor to all Nodes in question so we need not search past it.
22390 
22391     Visited.insert(TheSelect);
22392     Worklist.push_back(LLD);
22393     Worklist.push_back(RLD);
22394 
22395     if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
22396         SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
22397       return false;
22398 
22399     SDValue Addr;
22400     if (TheSelect->getOpcode() == ISD::SELECT) {
22401       // We cannot do this optimization if any pair of {RLD, LLD} is a
22402       // predecessor to {RLD, LLD, CondNode}. As we've already compared the
22403       // Loads, we only need to check if CondNode is a successor to one of the
22404       // loads. We can further avoid this if there's no use of their chain
22405       // value.
22406       SDNode *CondNode = TheSelect->getOperand(0).getNode();
22407       Worklist.push_back(CondNode);
22408 
22409       if ((LLD->hasAnyUseOfValue(1) &&
22410            SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
22411           (RLD->hasAnyUseOfValue(1) &&
22412            SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
22413         return false;
22414 
22415       Addr = DAG.getSelect(SDLoc(TheSelect),
22416                            LLD->getBasePtr().getValueType(),
22417                            TheSelect->getOperand(0), LLD->getBasePtr(),
22418                            RLD->getBasePtr());
22419     } else {  // Otherwise SELECT_CC
22420       // We cannot do this optimization if any pair of {RLD, LLD} is a
22421       // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
22422       // the Loads, we only need to check if CondLHS/CondRHS is a successor to
22423       // one of the loads. We can further avoid this if there's no use of their
22424       // chain value.
22425 
22426       SDNode *CondLHS = TheSelect->getOperand(0).getNode();
22427       SDNode *CondRHS = TheSelect->getOperand(1).getNode();
22428       Worklist.push_back(CondLHS);
22429       Worklist.push_back(CondRHS);
22430 
22431       if ((LLD->hasAnyUseOfValue(1) &&
22432            SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
22433           (RLD->hasAnyUseOfValue(1) &&
22434            SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
22435         return false;
22436 
22437       Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
22438                          LLD->getBasePtr().getValueType(),
22439                          TheSelect->getOperand(0),
22440                          TheSelect->getOperand(1),
22441                          LLD->getBasePtr(), RLD->getBasePtr(),
22442                          TheSelect->getOperand(4));
22443     }
22444 
22445     SDValue Load;
22446     // It is safe to replace the two loads if they have different alignments,
22447     // but the new load must be the minimum (most restrictive) alignment of the
22448     // inputs.
22449     Align Alignment = std::min(LLD->getAlign(), RLD->getAlign());
22450     MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
22451     if (!RLD->isInvariant())
22452       MMOFlags &= ~MachineMemOperand::MOInvariant;
22453     if (!RLD->isDereferenceable())
22454       MMOFlags &= ~MachineMemOperand::MODereferenceable;
22455     if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
22456       // FIXME: Discards pointer and AA info.
22457       Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
22458                          LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
22459                          MMOFlags);
22460     } else {
22461       // FIXME: Discards pointer and AA info.
22462       Load = DAG.getExtLoad(
22463           LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
22464                                                   : LLD->getExtensionType(),
22465           SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
22466           MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
22467     }
22468 
22469     // Users of the select now use the result of the load.
22470     CombineTo(TheSelect, Load);
22471 
22472     // Users of the old loads now use the new load's chain.  We know the
22473     // old-load value is dead now.
22474     CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
22475     CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
22476     return true;
22477   }
22478 
22479   return false;
22480 }
22481 
22482 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
22483 /// bitwise 'and'.
22484 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
22485                                             SDValue N1, SDValue N2, SDValue N3,
22486                                             ISD::CondCode CC) {
22487   // If this is a select where the false operand is zero and the compare is a
22488   // check of the sign bit, see if we can perform the "gzip trick":
22489   // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
22490   // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
22491   EVT XType = N0.getValueType();
22492   EVT AType = N2.getValueType();
22493   if (!isNullConstant(N3) || !XType.bitsGE(AType))
22494     return SDValue();
22495 
22496   // If the comparison is testing for a positive value, we have to invert
22497   // the sign bit mask, so only do that transform if the target has a bitwise
22498   // 'and not' instruction (the invert is free).
22499   if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
22500     // (X > -1) ? A : 0
22501     // (X >  0) ? X : 0 <-- This is canonical signed max.
22502     if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
22503       return SDValue();
22504   } else if (CC == ISD::SETLT) {
22505     // (X <  0) ? A : 0
22506     // (X <  1) ? X : 0 <-- This is un-canonicalized signed min.
22507     if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
22508       return SDValue();
22509   } else {
22510     return SDValue();
22511   }
22512 
22513   // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
22514   // constant.
22515   EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
22516   auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
22517   if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
22518     unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
22519     if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) {
22520       SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
22521       SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
22522       AddToWorklist(Shift.getNode());
22523 
22524       if (XType.bitsGT(AType)) {
22525         Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
22526         AddToWorklist(Shift.getNode());
22527       }
22528 
22529       if (CC == ISD::SETGT)
22530         Shift = DAG.getNOT(DL, Shift, AType);
22531 
22532       return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
22533     }
22534   }
22535 
22536   unsigned ShCt = XType.getSizeInBits() - 1;
22537   if (TLI.shouldAvoidTransformToShift(XType, ShCt))
22538     return SDValue();
22539 
22540   SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
22541   SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
22542   AddToWorklist(Shift.getNode());
22543 
22544   if (XType.bitsGT(AType)) {
22545     Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
22546     AddToWorklist(Shift.getNode());
22547   }
22548 
22549   if (CC == ISD::SETGT)
22550     Shift = DAG.getNOT(DL, Shift, AType);
22551 
22552   return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
22553 }
22554 
22555 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc.
22556 SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) {
22557   SDValue N0 = N->getOperand(0);
22558   SDValue N1 = N->getOperand(1);
22559   SDValue N2 = N->getOperand(2);
22560   EVT VT = N->getValueType(0);
22561   SDLoc DL(N);
22562 
22563   unsigned BinOpc = N1.getOpcode();
22564   if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc))
22565     return SDValue();
22566 
22567   if (!N->isOnlyUserOf(N0.getNode()) || !N->isOnlyUserOf(N1.getNode()))
22568     return SDValue();
22569 
22570   // Fold select(cond, binop(x, y), binop(z, y))
22571   //  --> binop(select(cond, x, z), y)
22572   if (N1.getOperand(1) == N2.getOperand(1)) {
22573     SDValue NewSel =
22574         DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0));
22575     SDValue NewBinOp = DAG.getNode(BinOpc, DL, VT, NewSel, N1.getOperand(1));
22576     NewBinOp->setFlags(N1->getFlags());
22577     NewBinOp->intersectFlagsWith(N2->getFlags());
22578     return NewBinOp;
22579   }
22580 
22581   // Fold select(cond, binop(x, y), binop(x, z))
22582   //  --> binop(x, select(cond, y, z))
22583   // Second op VT might be different (e.g. shift amount type)
22584   if (N1.getOperand(0) == N2.getOperand(0) &&
22585       VT == N1.getOperand(1).getValueType() &&
22586       VT == N2.getOperand(1).getValueType()) {
22587     SDValue NewSel =
22588         DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1));
22589     SDValue NewBinOp = DAG.getNode(BinOpc, DL, VT, N1.getOperand(0), NewSel);
22590     NewBinOp->setFlags(N1->getFlags());
22591     NewBinOp->intersectFlagsWith(N2->getFlags());
22592     return NewBinOp;
22593   }
22594 
22595   // TODO: Handle isCommutativeBinOp patterns as well?
22596   return SDValue();
22597 }
22598 
22599 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
22600 SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) {
22601   SDValue N0 = N->getOperand(0);
22602   EVT VT = N->getValueType(0);
22603   bool IsFabs = N->getOpcode() == ISD::FABS;
22604   bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);
22605 
22606   if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse())
22607     return SDValue();
22608 
22609   SDValue Int = N0.getOperand(0);
22610   EVT IntVT = Int.getValueType();
22611 
22612   // The operand to cast should be integer.
22613   if (!IntVT.isInteger() || IntVT.isVector())
22614     return SDValue();
22615 
22616   // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
22617   // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
22618   APInt SignMask;
22619   if (N0.getValueType().isVector()) {
22620     // For vector, create a sign mask (0x80...) or its inverse (for fabs,
22621     // 0x7f...) per element and splat it.
22622     SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
22623     if (IsFabs)
22624       SignMask = ~SignMask;
22625     SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
22626   } else {
22627     // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
22628     SignMask = APInt::getSignMask(IntVT.getSizeInBits());
22629     if (IsFabs)
22630       SignMask = ~SignMask;
22631   }
22632   SDLoc DL(N0);
22633   Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int,
22634                     DAG.getConstant(SignMask, DL, IntVT));
22635   AddToWorklist(Int.getNode());
22636   return DAG.getBitcast(VT, Int);
22637 }
22638 
22639 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
22640 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
22641 /// in it. This may be a win when the constant is not otherwise available
22642 /// because it replaces two constant pool loads with one.
22643 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
22644     const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
22645     ISD::CondCode CC) {
22646   if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType()))
22647     return SDValue();
22648 
22649   // If we are before legalize types, we want the other legalization to happen
22650   // first (for example, to avoid messing with soft float).
22651   auto *TV = dyn_cast<ConstantFPSDNode>(N2);
22652   auto *FV = dyn_cast<ConstantFPSDNode>(N3);
22653   EVT VT = N2.getValueType();
22654   if (!TV || !FV || !TLI.isTypeLegal(VT))
22655     return SDValue();
22656 
22657   // If a constant can be materialized without loads, this does not make sense.
22658   if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
22659       TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
22660       TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
22661     return SDValue();
22662 
22663   // If both constants have multiple uses, then we won't need to do an extra
22664   // load. The values are likely around in registers for other users.
22665   if (!TV->hasOneUse() && !FV->hasOneUse())
22666     return SDValue();
22667 
22668   Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
22669                        const_cast<ConstantFP*>(TV->getConstantFPValue()) };
22670   Type *FPTy = Elts[0]->getType();
22671   const DataLayout &TD = DAG.getDataLayout();
22672 
22673   // Create a ConstantArray of the two constants.
22674   Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
22675   SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
22676                                       TD.getPrefTypeAlign(FPTy));
22677   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
22678 
22679   // Get offsets to the 0 and 1 elements of the array, so we can select between
22680   // them.
22681   SDValue Zero = DAG.getIntPtrConstant(0, DL);
22682   unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
22683   SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
22684   SDValue Cond =
22685       DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
22686   AddToWorklist(Cond.getNode());
22687   SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
22688   AddToWorklist(CstOffset.getNode());
22689   CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
22690   AddToWorklist(CPIdx.getNode());
22691   return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
22692                      MachinePointerInfo::getConstantPool(
22693                          DAG.getMachineFunction()), Alignment);
22694 }
22695 
22696 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
22697 /// where 'cond' is the comparison specified by CC.
22698 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
22699                                       SDValue N2, SDValue N3, ISD::CondCode CC,
22700                                       bool NotExtCompare) {
22701   // (x ? y : y) -> y.
22702   if (N2 == N3) return N2;
22703 
22704   EVT CmpOpVT = N0.getValueType();
22705   EVT CmpResVT = getSetCCResultType(CmpOpVT);
22706   EVT VT = N2.getValueType();
22707   auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
22708   auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
22709   auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
22710 
22711   // Determine if the condition we're dealing with is constant.
22712   if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
22713     AddToWorklist(SCC.getNode());
22714     if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
22715       // fold select_cc true, x, y -> x
22716       // fold select_cc false, x, y -> y
22717       return !(SCCC->isNullValue()) ? N2 : N3;
22718     }
22719   }
22720 
22721   if (SDValue V =
22722           convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
22723     return V;
22724 
22725   if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
22726     return V;
22727 
22728   // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
22729   // where y is has a single bit set.
22730   // A plaintext description would be, we can turn the SELECT_CC into an AND
22731   // when the condition can be materialized as an all-ones register.  Any
22732   // single bit-test can be materialized as an all-ones register with
22733   // shift-left and shift-right-arith.
22734   if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
22735       N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
22736     SDValue AndLHS = N0->getOperand(0);
22737     auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
22738     if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
22739       // Shift the tested bit over the sign bit.
22740       const APInt &AndMask = ConstAndRHS->getAPIntValue();
22741       unsigned ShCt = AndMask.getBitWidth() - 1;
22742       if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
22743         SDValue ShlAmt =
22744           DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
22745                           getShiftAmountTy(AndLHS.getValueType()));
22746         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
22747 
22748         // Now arithmetic right shift it all the way over, so the result is
22749         // either all-ones, or zero.
22750         SDValue ShrAmt =
22751           DAG.getConstant(ShCt, SDLoc(Shl),
22752                           getShiftAmountTy(Shl.getValueType()));
22753         SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
22754 
22755         return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
22756       }
22757     }
22758   }
22759 
22760   // fold select C, 16, 0 -> shl C, 4
22761   bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
22762   bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
22763 
22764   if ((Fold || Swap) &&
22765       TLI.getBooleanContents(CmpOpVT) ==
22766           TargetLowering::ZeroOrOneBooleanContent &&
22767       (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
22768 
22769     if (Swap) {
22770       CC = ISD::getSetCCInverse(CC, CmpOpVT);
22771       std::swap(N2C, N3C);
22772     }
22773 
22774     // If the caller doesn't want us to simplify this into a zext of a compare,
22775     // don't do it.
22776     if (NotExtCompare && N2C->isOne())
22777       return SDValue();
22778 
22779     SDValue Temp, SCC;
22780     // zext (setcc n0, n1)
22781     if (LegalTypes) {
22782       SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
22783       if (VT.bitsLT(SCC.getValueType()))
22784         Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
22785       else
22786         Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
22787     } else {
22788       SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
22789       Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
22790     }
22791 
22792     AddToWorklist(SCC.getNode());
22793     AddToWorklist(Temp.getNode());
22794 
22795     if (N2C->isOne())
22796       return Temp;
22797 
22798     unsigned ShCt = N2C->getAPIntValue().logBase2();
22799     if (TLI.shouldAvoidTransformToShift(VT, ShCt))
22800       return SDValue();
22801 
22802     // shl setcc result by log2 n2c
22803     return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
22804                        DAG.getConstant(ShCt, SDLoc(Temp),
22805                                        getShiftAmountTy(Temp.getValueType())));
22806   }
22807 
22808   // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
22809   // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
22810   // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
22811   // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
22812   // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
22813   // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
22814   // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
22815   // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
22816   if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
22817     SDValue ValueOnZero = N2;
22818     SDValue Count = N3;
22819     // If the condition is NE instead of E, swap the operands.
22820     if (CC == ISD::SETNE)
22821       std::swap(ValueOnZero, Count);
22822     // Check if the value on zero is a constant equal to the bits in the type.
22823     if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
22824       if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
22825         // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
22826         // legal, combine to just cttz.
22827         if ((Count.getOpcode() == ISD::CTTZ ||
22828              Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
22829             N0 == Count.getOperand(0) &&
22830             (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
22831           return DAG.getNode(ISD::CTTZ, DL, VT, N0);
22832         // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
22833         // legal, combine to just ctlz.
22834         if ((Count.getOpcode() == ISD::CTLZ ||
22835              Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
22836             N0 == Count.getOperand(0) &&
22837             (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
22838           return DAG.getNode(ISD::CTLZ, DL, VT, N0);
22839       }
22840     }
22841   }
22842 
22843   return SDValue();
22844 }
22845 
22846 /// This is a stub for TargetLowering::SimplifySetCC.
22847 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
22848                                    ISD::CondCode Cond, const SDLoc &DL,
22849                                    bool foldBooleans) {
22850   TargetLowering::DAGCombinerInfo
22851     DagCombineInfo(DAG, Level, false, this);
22852   return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
22853 }
22854 
22855 /// Given an ISD::SDIV node expressing a divide by constant, return
22856 /// a DAG expression to select that will generate the same value by multiplying
22857 /// by a magic number.
22858 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
22859 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
22860   // when optimising for minimum size, we don't want to expand a div to a mul
22861   // and a shift.
22862   if (DAG.getMachineFunction().getFunction().hasMinSize())
22863     return SDValue();
22864 
22865   SmallVector<SDNode *, 8> Built;
22866   if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
22867     for (SDNode *N : Built)
22868       AddToWorklist(N);
22869     return S;
22870   }
22871 
22872   return SDValue();
22873 }
22874 
22875 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
22876 /// DAG expression that will generate the same value by right shifting.
22877 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
22878   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
22879   if (!C)
22880     return SDValue();
22881 
22882   // Avoid division by zero.
22883   if (C->isNullValue())
22884     return SDValue();
22885 
22886   SmallVector<SDNode *, 8> Built;
22887   if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
22888     for (SDNode *N : Built)
22889       AddToWorklist(N);
22890     return S;
22891   }
22892 
22893   return SDValue();
22894 }
22895 
22896 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
22897 /// expression that will generate the same value by multiplying by a magic
22898 /// number.
22899 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
22900 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
22901   // when optimising for minimum size, we don't want to expand a div to a mul
22902   // and a shift.
22903   if (DAG.getMachineFunction().getFunction().hasMinSize())
22904     return SDValue();
22905 
22906   SmallVector<SDNode *, 8> Built;
22907   if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
22908     for (SDNode *N : Built)
22909       AddToWorklist(N);
22910     return S;
22911   }
22912 
22913   return SDValue();
22914 }
22915 
22916 /// Determines the LogBase2 value for a non-null input value using the
22917 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
22918 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
22919   EVT VT = V.getValueType();
22920   SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
22921   SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
22922   SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
22923   return LogBase2;
22924 }
22925 
22926 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22927 /// For the reciprocal, we need to find the zero of the function:
22928 ///   F(X) = 1/X - A [which has a zero at X = 1/A]
22929 ///     =>
22930 ///   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
22931 ///     does not require additional intermediate precision]
22932 /// For the last iteration, put numerator N into it to gain more precision:
22933 ///   Result = N X_i + X_i (N - N A X_i)
22934 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
22935                                       SDNodeFlags Flags) {
22936   if (LegalDAG)
22937     return SDValue();
22938 
22939   // TODO: Handle half and/or extended types?
22940   EVT VT = Op.getValueType();
22941   if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
22942     return SDValue();
22943 
22944   // If estimates are explicitly disabled for this function, we're done.
22945   MachineFunction &MF = DAG.getMachineFunction();
22946   int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
22947   if (Enabled == TLI.ReciprocalEstimate::Disabled)
22948     return SDValue();
22949 
22950   // Estimates may be explicitly enabled for this type with a custom number of
22951   // refinement steps.
22952   int Iterations = TLI.getDivRefinementSteps(VT, MF);
22953   if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
22954     AddToWorklist(Est.getNode());
22955 
22956     SDLoc DL(Op);
22957     if (Iterations) {
22958       SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
22959 
22960       // Newton iterations: Est = Est + Est (N - Arg * Est)
22961       // If this is the last iteration, also multiply by the numerator.
22962       for (int i = 0; i < Iterations; ++i) {
22963         SDValue MulEst = Est;
22964 
22965         if (i == Iterations - 1) {
22966           MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
22967           AddToWorklist(MulEst.getNode());
22968         }
22969 
22970         SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
22971         AddToWorklist(NewEst.getNode());
22972 
22973         NewEst = DAG.getNode(ISD::FSUB, DL, VT,
22974                              (i == Iterations - 1 ? N : FPOne), NewEst, Flags);
22975         AddToWorklist(NewEst.getNode());
22976 
22977         NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
22978         AddToWorklist(NewEst.getNode());
22979 
22980         Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
22981         AddToWorklist(Est.getNode());
22982       }
22983     } else {
22984       // If no iterations are available, multiply with N.
22985       Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
22986       AddToWorklist(Est.getNode());
22987     }
22988 
22989     return Est;
22990   }
22991 
22992   return SDValue();
22993 }
22994 
22995 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22996 /// For the reciprocal sqrt, we need to find the zero of the function:
22997 ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
22998 ///     =>
22999 ///   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
23000 /// As a result, we precompute A/2 prior to the iteration loop.
23001 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
23002                                          unsigned Iterations,
23003                                          SDNodeFlags Flags, bool Reciprocal) {
23004   EVT VT = Arg.getValueType();
23005   SDLoc DL(Arg);
23006   SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
23007 
23008   // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
23009   // this entire sequence requires only one FP constant.
23010   SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
23011   HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
23012 
23013   // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
23014   for (unsigned i = 0; i < Iterations; ++i) {
23015     SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
23016     NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
23017     NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
23018     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
23019   }
23020 
23021   // If non-reciprocal square root is requested, multiply the result by Arg.
23022   if (!Reciprocal)
23023     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
23024 
23025   return Est;
23026 }
23027 
23028 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
23029 /// For the reciprocal sqrt, we need to find the zero of the function:
23030 ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
23031 ///     =>
23032 ///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
23033 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
23034                                          unsigned Iterations,
23035                                          SDNodeFlags Flags, bool Reciprocal) {
23036   EVT VT = Arg.getValueType();
23037   SDLoc DL(Arg);
23038   SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
23039   SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
23040 
23041   // This routine must enter the loop below to work correctly
23042   // when (Reciprocal == false).
23043   assert(Iterations > 0);
23044 
23045   // Newton iterations for reciprocal square root:
23046   // E = (E * -0.5) * ((A * E) * E + -3.0)
23047   for (unsigned i = 0; i < Iterations; ++i) {
23048     SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
23049     SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
23050     SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
23051 
23052     // When calculating a square root at the last iteration build:
23053     // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
23054     // (notice a common subexpression)
23055     SDValue LHS;
23056     if (Reciprocal || (i + 1) < Iterations) {
23057       // RSQRT: LHS = (E * -0.5)
23058       LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
23059     } else {
23060       // SQRT: LHS = (A * E) * -0.5
23061       LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
23062     }
23063 
23064     Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
23065   }
23066 
23067   return Est;
23068 }
23069 
23070 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
23071 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
23072 /// Op can be zero.
23073 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
23074                                            bool Reciprocal) {
23075   if (LegalDAG)
23076     return SDValue();
23077 
23078   // TODO: Handle half and/or extended types?
23079   EVT VT = Op.getValueType();
23080   if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
23081     return SDValue();
23082 
23083   // If estimates are explicitly disabled for this function, we're done.
23084   MachineFunction &MF = DAG.getMachineFunction();
23085   int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
23086   if (Enabled == TLI.ReciprocalEstimate::Disabled)
23087     return SDValue();
23088 
23089   // Estimates may be explicitly enabled for this type with a custom number of
23090   // refinement steps.
23091   int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
23092 
23093   bool UseOneConstNR = false;
23094   if (SDValue Est =
23095       TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
23096                           Reciprocal)) {
23097     AddToWorklist(Est.getNode());
23098 
23099     if (Iterations)
23100       Est = UseOneConstNR
23101             ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
23102             : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
23103     if (!Reciprocal) {
23104       SDLoc DL(Op);
23105       // Try the target specific test first.
23106       SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT));
23107 
23108       // The estimate is now completely wrong if the input was exactly 0.0 or
23109       // possibly a denormal. Force the answer to 0.0 or value provided by
23110       // target for those cases.
23111       Est = DAG.getNode(
23112           Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
23113           Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est);
23114     }
23115     return Est;
23116   }
23117 
23118   return SDValue();
23119 }
23120 
23121 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
23122   return buildSqrtEstimateImpl(Op, Flags, true);
23123 }
23124 
23125 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
23126   return buildSqrtEstimateImpl(Op, Flags, false);
23127 }
23128 
23129 /// Return true if there is any possibility that the two addresses overlap.
23130 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const {
23131 
23132   struct MemUseCharacteristics {
23133     bool IsVolatile;
23134     bool IsAtomic;
23135     SDValue BasePtr;
23136     int64_t Offset;
23137     Optional<int64_t> NumBytes;
23138     MachineMemOperand *MMO;
23139   };
23140 
23141   auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
23142     if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
23143       int64_t Offset = 0;
23144       if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
23145         Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
23146                      ? C->getSExtValue()
23147                      : (LSN->getAddressingMode() == ISD::PRE_DEC)
23148                            ? -1 * C->getSExtValue()
23149                            : 0;
23150       uint64_t Size =
23151           MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize());
23152       return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(),
23153               Offset /*base offset*/,
23154               Optional<int64_t>(Size),
23155               LSN->getMemOperand()};
23156     }
23157     if (const auto *LN = cast<LifetimeSDNode>(N))
23158       return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1),
23159               (LN->hasOffset()) ? LN->getOffset() : 0,
23160               (LN->hasOffset()) ? Optional<int64_t>(LN->getSize())
23161                                 : Optional<int64_t>(),
23162               (MachineMemOperand *)nullptr};
23163     // Default.
23164     return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
23165             (int64_t)0 /*offset*/,
23166             Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr};
23167   };
23168 
23169   MemUseCharacteristics MUC0 = getCharacteristics(Op0),
23170                         MUC1 = getCharacteristics(Op1);
23171 
23172   // If they are to the same address, then they must be aliases.
23173   if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
23174       MUC0.Offset == MUC1.Offset)
23175     return true;
23176 
23177   // If they are both volatile then they cannot be reordered.
23178   if (MUC0.IsVolatile && MUC1.IsVolatile)
23179     return true;
23180 
23181   // Be conservative about atomics for the moment
23182   // TODO: This is way overconservative for unordered atomics (see D66309)
23183   if (MUC0.IsAtomic && MUC1.IsAtomic)
23184     return true;
23185 
23186   if (MUC0.MMO && MUC1.MMO) {
23187     if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
23188         (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
23189       return false;
23190   }
23191 
23192   // Try to prove that there is aliasing, or that there is no aliasing. Either
23193   // way, we can return now. If nothing can be proved, proceed with more tests.
23194   bool IsAlias;
23195   if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
23196                                        DAG, IsAlias))
23197     return IsAlias;
23198 
23199   // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
23200   // either are not known.
23201   if (!MUC0.MMO || !MUC1.MMO)
23202     return true;
23203 
23204   // If one operation reads from invariant memory, and the other may store, they
23205   // cannot alias. These should really be checking the equivalent of mayWrite,
23206   // but it only matters for memory nodes other than load /store.
23207   if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
23208       (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
23209     return false;
23210 
23211   // If we know required SrcValue1 and SrcValue2 have relatively large
23212   // alignment compared to the size and offset of the access, we may be able
23213   // to prove they do not alias. This check is conservative for now to catch
23214   // cases created by splitting vector types, it only works when the offsets are
23215   // multiples of the size of the data.
23216   int64_t SrcValOffset0 = MUC0.MMO->getOffset();
23217   int64_t SrcValOffset1 = MUC1.MMO->getOffset();
23218   Align OrigAlignment0 = MUC0.MMO->getBaseAlign();
23219   Align OrigAlignment1 = MUC1.MMO->getBaseAlign();
23220   auto &Size0 = MUC0.NumBytes;
23221   auto &Size1 = MUC1.NumBytes;
23222   if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
23223       Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 &&
23224       OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 &&
23225       SrcValOffset1 % *Size1 == 0) {
23226     int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value();
23227     int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value();
23228 
23229     // There is no overlap between these relatively aligned accesses of
23230     // similar size. Return no alias.
23231     if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0)
23232       return false;
23233   }
23234 
23235   bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
23236                    ? CombinerGlobalAA
23237                    : DAG.getSubtarget().useAA();
23238 #ifndef NDEBUG
23239   if (CombinerAAOnlyFunc.getNumOccurrences() &&
23240       CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
23241     UseAA = false;
23242 #endif
23243 
23244   if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
23245       Size0.hasValue() && Size1.hasValue()) {
23246     // Use alias analysis information.
23247     int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
23248     int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset;
23249     int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset;
23250     if (AA->isNoAlias(
23251             MemoryLocation(MUC0.MMO->getValue(), Overlap0,
23252                            UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
23253             MemoryLocation(MUC1.MMO->getValue(), Overlap1,
23254                            UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())))
23255       return false;
23256   }
23257 
23258   // Otherwise we have to assume they alias.
23259   return true;
23260 }
23261 
23262 /// Walk up chain skipping non-aliasing memory nodes,
23263 /// looking for aliasing nodes and adding them to the Aliases vector.
23264 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
23265                                    SmallVectorImpl<SDValue> &Aliases) {
23266   SmallVector<SDValue, 8> Chains;     // List of chains to visit.
23267   SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
23268 
23269   // Get alias information for node.
23270   // TODO: relax aliasing for unordered atomics (see D66309)
23271   const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
23272 
23273   // Starting off.
23274   Chains.push_back(OriginalChain);
23275   unsigned Depth = 0;
23276 
23277   // Attempt to improve chain by a single step
23278   std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool {
23279     switch (C.getOpcode()) {
23280     case ISD::EntryToken:
23281       // No need to mark EntryToken.
23282       C = SDValue();
23283       return true;
23284     case ISD::LOAD:
23285     case ISD::STORE: {
23286       // Get alias information for C.
23287       // TODO: Relax aliasing for unordered atomics (see D66309)
23288       bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
23289                       cast<LSBaseSDNode>(C.getNode())->isSimple();
23290       if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) {
23291         // Look further up the chain.
23292         C = C.getOperand(0);
23293         return true;
23294       }
23295       // Alias, so stop here.
23296       return false;
23297     }
23298 
23299     case ISD::CopyFromReg:
23300       // Always forward past past CopyFromReg.
23301       C = C.getOperand(0);
23302       return true;
23303 
23304     case ISD::LIFETIME_START:
23305     case ISD::LIFETIME_END: {
23306       // We can forward past any lifetime start/end that can be proven not to
23307       // alias the memory access.
23308       if (!isAlias(N, C.getNode())) {
23309         // Look further up the chain.
23310         C = C.getOperand(0);
23311         return true;
23312       }
23313       return false;
23314     }
23315     default:
23316       return false;
23317     }
23318   };
23319 
23320   // Look at each chain and determine if it is an alias.  If so, add it to the
23321   // aliases list.  If not, then continue up the chain looking for the next
23322   // candidate.
23323   while (!Chains.empty()) {
23324     SDValue Chain = Chains.pop_back_val();
23325 
23326     // Don't bother if we've seen Chain before.
23327     if (!Visited.insert(Chain.getNode()).second)
23328       continue;
23329 
23330     // For TokenFactor nodes, look at each operand and only continue up the
23331     // chain until we reach the depth limit.
23332     //
23333     // FIXME: The depth check could be made to return the last non-aliasing
23334     // chain we found before we hit a tokenfactor rather than the original
23335     // chain.
23336     if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
23337       Aliases.clear();
23338       Aliases.push_back(OriginalChain);
23339       return;
23340     }
23341 
23342     if (Chain.getOpcode() == ISD::TokenFactor) {
23343       // We have to check each of the operands of the token factor for "small"
23344       // token factors, so we queue them up.  Adding the operands to the queue
23345       // (stack) in reverse order maintains the original order and increases the
23346       // likelihood that getNode will find a matching token factor (CSE.)
23347       if (Chain.getNumOperands() > 16) {
23348         Aliases.push_back(Chain);
23349         continue;
23350       }
23351       for (unsigned n = Chain.getNumOperands(); n;)
23352         Chains.push_back(Chain.getOperand(--n));
23353       ++Depth;
23354       continue;
23355     }
23356     // Everything else
23357     if (ImproveChain(Chain)) {
23358       // Updated Chain Found, Consider new chain if one exists.
23359       if (Chain.getNode())
23360         Chains.push_back(Chain);
23361       ++Depth;
23362       continue;
23363     }
23364     // No Improved Chain Possible, treat as Alias.
23365     Aliases.push_back(Chain);
23366   }
23367 }
23368 
23369 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
23370 /// (aliasing node.)
23371 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
23372   if (OptLevel == CodeGenOpt::None)
23373     return OldChain;
23374 
23375   // Ops for replacing token factor.
23376   SmallVector<SDValue, 8> Aliases;
23377 
23378   // Accumulate all the aliases to this node.
23379   GatherAllAliases(N, OldChain, Aliases);
23380 
23381   // If no operands then chain to entry token.
23382   if (Aliases.size() == 0)
23383     return DAG.getEntryNode();
23384 
23385   // If a single operand then chain to it.  We don't need to revisit it.
23386   if (Aliases.size() == 1)
23387     return Aliases[0];
23388 
23389   // Construct a custom tailored token factor.
23390   return DAG.getTokenFactor(SDLoc(N), Aliases);
23391 }
23392 
23393 namespace {
23394 // TODO: Replace with with std::monostate when we move to C++17.
23395 struct UnitT { } Unit;
23396 bool operator==(const UnitT &, const UnitT &) { return true; }
23397 bool operator!=(const UnitT &, const UnitT &) { return false; }
23398 } // namespace
23399 
23400 // This function tries to collect a bunch of potentially interesting
23401 // nodes to improve the chains of, all at once. This might seem
23402 // redundant, as this function gets called when visiting every store
23403 // node, so why not let the work be done on each store as it's visited?
23404 //
23405 // I believe this is mainly important because mergeConsecutiveStores
23406 // is unable to deal with merging stores of different sizes, so unless
23407 // we improve the chains of all the potential candidates up-front
23408 // before running mergeConsecutiveStores, it might only see some of
23409 // the nodes that will eventually be candidates, and then not be able
23410 // to go from a partially-merged state to the desired final
23411 // fully-merged state.
23412 
23413 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
23414   SmallVector<StoreSDNode *, 8> ChainedStores;
23415   StoreSDNode *STChain = St;
23416   // Intervals records which offsets from BaseIndex have been covered. In
23417   // the common case, every store writes to the immediately previous address
23418   // space and thus merged with the previous interval at insertion time.
23419 
23420   using IMap =
23421       llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
23422   IMap::Allocator A;
23423   IMap Intervals(A);
23424 
23425   // This holds the base pointer, index, and the offset in bytes from the base
23426   // pointer.
23427   const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
23428 
23429   // We must have a base and an offset.
23430   if (!BasePtr.getBase().getNode())
23431     return false;
23432 
23433   // Do not handle stores to undef base pointers.
23434   if (BasePtr.getBase().isUndef())
23435     return false;
23436 
23437   // Do not handle stores to opaque types
23438   if (St->getMemoryVT().isZeroSized())
23439     return false;
23440 
23441   // BaseIndexOffset assumes that offsets are fixed-size, which
23442   // is not valid for scalable vectors where the offsets are
23443   // scaled by `vscale`, so bail out early.
23444   if (St->getMemoryVT().isScalableVector())
23445     return false;
23446 
23447   // Add ST's interval.
23448   Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
23449 
23450   while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
23451     if (Chain->getMemoryVT().isScalableVector())
23452       return false;
23453 
23454     // If the chain has more than one use, then we can't reorder the mem ops.
23455     if (!SDValue(Chain, 0)->hasOneUse())
23456       break;
23457     // TODO: Relax for unordered atomics (see D66309)
23458     if (!Chain->isSimple() || Chain->isIndexed())
23459       break;
23460 
23461     // Find the base pointer and offset for this memory node.
23462     const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
23463     // Check that the base pointer is the same as the original one.
23464     int64_t Offset;
23465     if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
23466       break;
23467     int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
23468     // Make sure we don't overlap with other intervals by checking the ones to
23469     // the left or right before inserting.
23470     auto I = Intervals.find(Offset);
23471     // If there's a next interval, we should end before it.
23472     if (I != Intervals.end() && I.start() < (Offset + Length))
23473       break;
23474     // If there's a previous interval, we should start after it.
23475     if (I != Intervals.begin() && (--I).stop() <= Offset)
23476       break;
23477     Intervals.insert(Offset, Offset + Length, Unit);
23478 
23479     ChainedStores.push_back(Chain);
23480     STChain = Chain;
23481   }
23482 
23483   // If we didn't find a chained store, exit.
23484   if (ChainedStores.size() == 0)
23485     return false;
23486 
23487   // Improve all chained stores (St and ChainedStores members) starting from
23488   // where the store chain ended and return single TokenFactor.
23489   SDValue NewChain = STChain->getChain();
23490   SmallVector<SDValue, 8> TFOps;
23491   for (unsigned I = ChainedStores.size(); I;) {
23492     StoreSDNode *S = ChainedStores[--I];
23493     SDValue BetterChain = FindBetterChain(S, NewChain);
23494     S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
23495         S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
23496     TFOps.push_back(SDValue(S, 0));
23497     ChainedStores[I] = S;
23498   }
23499 
23500   // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
23501   SDValue BetterChain = FindBetterChain(St, NewChain);
23502   SDValue NewST;
23503   if (St->isTruncatingStore())
23504     NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
23505                               St->getBasePtr(), St->getMemoryVT(),
23506                               St->getMemOperand());
23507   else
23508     NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
23509                          St->getBasePtr(), St->getMemOperand());
23510 
23511   TFOps.push_back(NewST);
23512 
23513   // If we improved every element of TFOps, then we've lost the dependence on
23514   // NewChain to successors of St and we need to add it back to TFOps. Do so at
23515   // the beginning to keep relative order consistent with FindBetterChains.
23516   auto hasImprovedChain = [&](SDValue ST) -> bool {
23517     return ST->getOperand(0) != NewChain;
23518   };
23519   bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
23520   if (AddNewChain)
23521     TFOps.insert(TFOps.begin(), NewChain);
23522 
23523   SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
23524   CombineTo(St, TF);
23525 
23526   // Add TF and its operands to the worklist.
23527   AddToWorklist(TF.getNode());
23528   for (const SDValue &Op : TF->ops())
23529     AddToWorklist(Op.getNode());
23530   AddToWorklist(STChain);
23531   return true;
23532 }
23533 
23534 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
23535   if (OptLevel == CodeGenOpt::None)
23536     return false;
23537 
23538   const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
23539 
23540   // We must have a base and an offset.
23541   if (!BasePtr.getBase().getNode())
23542     return false;
23543 
23544   // Do not handle stores to undef base pointers.
23545   if (BasePtr.getBase().isUndef())
23546     return false;
23547 
23548   // Directly improve a chain of disjoint stores starting at St.
23549   if (parallelizeChainedStores(St))
23550     return true;
23551 
23552   // Improve St's Chain..
23553   SDValue BetterChain = FindBetterChain(St, St->getChain());
23554   if (St->getChain() != BetterChain) {
23555     replaceStoreChain(St, BetterChain);
23556     return true;
23557   }
23558   return false;
23559 }
23560 
23561 /// This is the entry point for the file.
23562 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
23563                            CodeGenOpt::Level OptLevel) {
23564   /// This is the main entry point to this class.
23565   DAGCombiner(*this, AA, OptLevel).Run(Level);
23566 }
23567