1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 11 // both before and after the DAG is legalized. 12 // 13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 14 // primarily intended to handle simplification opportunities that are implicit 15 // in the LLVM IR and exposed by the various codegen lowering phases. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "dagcombine" 45 46 STATISTIC(NodesCombined , "Number of dag nodes combined"); 47 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 48 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 49 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 50 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 51 STATISTIC(SlicedLoads, "Number of load sliced"); 52 53 namespace { 54 static cl::opt<bool> 55 CombinerAA("combiner-alias-analysis", cl::Hidden, 56 cl::desc("Enable DAG combiner alias-analysis heuristics")); 57 58 static cl::opt<bool> 59 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 60 cl::desc("Enable DAG combiner's use of IR alias analysis")); 61 62 static cl::opt<bool> 63 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 64 cl::desc("Enable DAG combiner's use of TBAA")); 65 66 #ifndef NDEBUG 67 static cl::opt<std::string> 68 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 69 cl::desc("Only use DAG-combiner alias analysis in this" 70 " function")); 71 #endif 72 73 /// Hidden option to stress test load slicing, i.e., when this option 74 /// is enabled, load slicing bypasses most of its profitability guards. 75 static cl::opt<bool> 76 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 77 cl::desc("Bypass the profitability model of load " 78 "slicing"), 79 cl::init(false)); 80 81 static cl::opt<bool> 82 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 83 cl::desc("DAG combiner may split indexing from loads")); 84 85 //------------------------------ DAGCombiner ---------------------------------// 86 87 class DAGCombiner { 88 SelectionDAG &DAG; 89 const TargetLowering &TLI; 90 CombineLevel Level; 91 CodeGenOpt::Level OptLevel; 92 bool LegalOperations; 93 bool LegalTypes; 94 bool ForCodeSize; 95 96 /// \brief Worklist of all of the nodes that need to be simplified. 97 /// 98 /// This must behave as a stack -- new nodes to process are pushed onto the 99 /// back and when processing we pop off of the back. 100 /// 101 /// The worklist will not contain duplicates but may contain null entries 102 /// due to nodes being deleted from the underlying DAG. 103 SmallVector<SDNode *, 64> Worklist; 104 105 /// \brief Mapping from an SDNode to its position on the worklist. 106 /// 107 /// This is used to find and remove nodes from the worklist (by nulling 108 /// them) when they are deleted from the underlying DAG. It relies on 109 /// stable indices of nodes within the worklist. 110 DenseMap<SDNode *, unsigned> WorklistMap; 111 112 /// \brief Set of nodes which have been combined (at least once). 113 /// 114 /// This is used to allow us to reliably add any operands of a DAG node 115 /// which have not yet been combined to the worklist. 116 SmallPtrSet<SDNode *, 32> CombinedNodes; 117 118 // AA - Used for DAG load/store alias analysis. 119 AliasAnalysis &AA; 120 121 /// When an instruction is simplified, add all users of the instruction to 122 /// the work lists because they might get more simplified now. 123 void AddUsersToWorklist(SDNode *N) { 124 for (SDNode *Node : N->uses()) 125 AddToWorklist(Node); 126 } 127 128 /// Call the node-specific routine that folds each particular type of node. 129 SDValue visit(SDNode *N); 130 131 public: 132 /// Add to the worklist making sure its instance is at the back (next to be 133 /// processed.) 134 void AddToWorklist(SDNode *N) { 135 // Skip handle nodes as they can't usefully be combined and confuse the 136 // zero-use deletion strategy. 137 if (N->getOpcode() == ISD::HANDLENODE) 138 return; 139 140 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 141 Worklist.push_back(N); 142 } 143 144 /// Remove all instances of N from the worklist. 145 void removeFromWorklist(SDNode *N) { 146 CombinedNodes.erase(N); 147 148 auto It = WorklistMap.find(N); 149 if (It == WorklistMap.end()) 150 return; // Not in the worklist. 151 152 // Null out the entry rather than erasing it to avoid a linear operation. 153 Worklist[It->second] = nullptr; 154 WorklistMap.erase(It); 155 } 156 157 void deleteAndRecombine(SDNode *N); 158 bool recursivelyDeleteUnusedNodes(SDNode *N); 159 160 /// Replaces all uses of the results of one DAG node with new values. 161 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 162 bool AddTo = true); 163 164 /// Replaces all uses of the results of one DAG node with new values. 165 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 166 return CombineTo(N, &Res, 1, AddTo); 167 } 168 169 /// Replaces all uses of the results of one DAG node with new values. 170 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 171 bool AddTo = true) { 172 SDValue To[] = { Res0, Res1 }; 173 return CombineTo(N, To, 2, AddTo); 174 } 175 176 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 177 178 private: 179 180 /// Check the specified integer node value to see if it can be simplified or 181 /// if things it uses can be simplified by bit propagation. 182 /// If so, return true. 183 bool SimplifyDemandedBits(SDValue Op) { 184 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 185 APInt Demanded = APInt::getAllOnesValue(BitWidth); 186 return SimplifyDemandedBits(Op, Demanded); 187 } 188 189 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 190 191 bool CombineToPreIndexedLoadStore(SDNode *N); 192 bool CombineToPostIndexedLoadStore(SDNode *N); 193 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 194 bool SliceUpLoad(SDNode *N); 195 196 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 197 /// load. 198 /// 199 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 200 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 201 /// \param EltNo index of the vector element to load. 202 /// \param OriginalLoad load that EVE came from to be replaced. 203 /// \returns EVE on success SDValue() on failure. 204 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 205 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 206 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 207 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 208 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 209 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 210 SDValue PromoteIntBinOp(SDValue Op); 211 SDValue PromoteIntShiftOp(SDValue Op); 212 SDValue PromoteExtend(SDValue Op); 213 bool PromoteLoad(SDValue Op); 214 215 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 216 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 217 ISD::NodeType ExtType); 218 219 /// Call the node-specific routine that knows how to fold each 220 /// particular type of node. If that doesn't do anything, try the 221 /// target-specific DAG combines. 222 SDValue combine(SDNode *N); 223 224 // Visitation implementation - Implement dag node combining for different 225 // node types. The semantics are as follows: 226 // Return Value: 227 // SDValue.getNode() == 0 - No change was made 228 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 229 // otherwise - N should be replaced by the returned Operand. 230 // 231 SDValue visitTokenFactor(SDNode *N); 232 SDValue visitMERGE_VALUES(SDNode *N); 233 SDValue visitADD(SDNode *N); 234 SDValue visitSUB(SDNode *N); 235 SDValue visitADDC(SDNode *N); 236 SDValue visitSUBC(SDNode *N); 237 SDValue visitADDE(SDNode *N); 238 SDValue visitSUBE(SDNode *N); 239 SDValue visitMUL(SDNode *N); 240 SDValue useDivRem(SDNode *N); 241 SDValue visitSDIV(SDNode *N); 242 SDValue visitUDIV(SDNode *N); 243 SDValue visitREM(SDNode *N); 244 SDValue visitMULHU(SDNode *N); 245 SDValue visitMULHS(SDNode *N); 246 SDValue visitSMUL_LOHI(SDNode *N); 247 SDValue visitUMUL_LOHI(SDNode *N); 248 SDValue visitSMULO(SDNode *N); 249 SDValue visitUMULO(SDNode *N); 250 SDValue visitIMINMAX(SDNode *N); 251 SDValue visitAND(SDNode *N); 252 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); 253 SDValue visitOR(SDNode *N); 254 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); 255 SDValue visitXOR(SDNode *N); 256 SDValue SimplifyVBinOp(SDNode *N); 257 SDValue visitSHL(SDNode *N); 258 SDValue visitSRA(SDNode *N); 259 SDValue visitSRL(SDNode *N); 260 SDValue visitRotate(SDNode *N); 261 SDValue visitBSWAP(SDNode *N); 262 SDValue visitBITREVERSE(SDNode *N); 263 SDValue visitCTLZ(SDNode *N); 264 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 265 SDValue visitCTTZ(SDNode *N); 266 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 267 SDValue visitCTPOP(SDNode *N); 268 SDValue visitSELECT(SDNode *N); 269 SDValue visitVSELECT(SDNode *N); 270 SDValue visitSELECT_CC(SDNode *N); 271 SDValue visitSETCC(SDNode *N); 272 SDValue visitSETCCE(SDNode *N); 273 SDValue visitSIGN_EXTEND(SDNode *N); 274 SDValue visitZERO_EXTEND(SDNode *N); 275 SDValue visitANY_EXTEND(SDNode *N); 276 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 277 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 278 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 279 SDValue visitTRUNCATE(SDNode *N); 280 SDValue visitBITCAST(SDNode *N); 281 SDValue visitBUILD_PAIR(SDNode *N); 282 SDValue visitFADD(SDNode *N); 283 SDValue visitFSUB(SDNode *N); 284 SDValue visitFMUL(SDNode *N); 285 SDValue visitFMA(SDNode *N); 286 SDValue visitFDIV(SDNode *N); 287 SDValue visitFREM(SDNode *N); 288 SDValue visitFSQRT(SDNode *N); 289 SDValue visitFCOPYSIGN(SDNode *N); 290 SDValue visitSINT_TO_FP(SDNode *N); 291 SDValue visitUINT_TO_FP(SDNode *N); 292 SDValue visitFP_TO_SINT(SDNode *N); 293 SDValue visitFP_TO_UINT(SDNode *N); 294 SDValue visitFP_ROUND(SDNode *N); 295 SDValue visitFP_ROUND_INREG(SDNode *N); 296 SDValue visitFP_EXTEND(SDNode *N); 297 SDValue visitFNEG(SDNode *N); 298 SDValue visitFABS(SDNode *N); 299 SDValue visitFCEIL(SDNode *N); 300 SDValue visitFTRUNC(SDNode *N); 301 SDValue visitFFLOOR(SDNode *N); 302 SDValue visitFMINNUM(SDNode *N); 303 SDValue visitFMAXNUM(SDNode *N); 304 SDValue visitBRCOND(SDNode *N); 305 SDValue visitBR_CC(SDNode *N); 306 SDValue visitLOAD(SDNode *N); 307 308 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 309 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 310 311 SDValue visitSTORE(SDNode *N); 312 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 313 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 314 SDValue visitBUILD_VECTOR(SDNode *N); 315 SDValue visitCONCAT_VECTORS(SDNode *N); 316 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 317 SDValue visitVECTOR_SHUFFLE(SDNode *N); 318 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 319 SDValue visitINSERT_SUBVECTOR(SDNode *N); 320 SDValue visitMLOAD(SDNode *N); 321 SDValue visitMSTORE(SDNode *N); 322 SDValue visitMGATHER(SDNode *N); 323 SDValue visitMSCATTER(SDNode *N); 324 SDValue visitFP_TO_FP16(SDNode *N); 325 SDValue visitFP16_TO_FP(SDNode *N); 326 327 SDValue visitFADDForFMACombine(SDNode *N); 328 SDValue visitFSUBForFMACombine(SDNode *N); 329 SDValue visitFMULForFMACombine(SDNode *N); 330 331 SDValue XformToShuffleWithZero(SDNode *N); 332 SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); 333 334 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 335 336 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 337 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 338 SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2); 339 SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2, 340 SDValue N3, ISD::CondCode CC, 341 bool NotExtCompare = false); 342 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 343 SDLoc DL, bool foldBooleans = true); 344 345 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 346 SDValue &CC) const; 347 bool isOneUseSetCC(SDValue N) const; 348 349 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 350 unsigned HiOp); 351 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 352 SDValue CombineExtLoad(SDNode *N); 353 SDValue combineRepeatedFPDivisors(SDNode *N); 354 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 355 SDValue BuildSDIV(SDNode *N); 356 SDValue BuildSDIVPow2(SDNode *N); 357 SDValue BuildUDIV(SDNode *N); 358 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); 359 SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); 360 SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, 361 SDNodeFlags *Flags); 362 SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, 363 SDNodeFlags *Flags); 364 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 365 bool DemandHighBits = true); 366 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 367 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 368 SDValue InnerPos, SDValue InnerNeg, 369 unsigned PosOpcode, unsigned NegOpcode, 370 SDLoc DL); 371 SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL); 372 SDValue ReduceLoadWidth(SDNode *N); 373 SDValue ReduceLoadOpStoreWidth(SDNode *N); 374 SDValue TransformFPLoadStorePair(SDNode *N); 375 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 376 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 377 378 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 379 380 /// Walk up chain skipping non-aliasing memory nodes, 381 /// looking for aliasing nodes and adding them to the Aliases vector. 382 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 383 SmallVectorImpl<SDValue> &Aliases); 384 385 /// Return true if there is any possibility that the two addresses overlap. 386 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 387 388 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 389 /// chain (aliasing node.) 390 SDValue FindBetterChain(SDNode *N, SDValue Chain); 391 392 /// Do FindBetterChain for a store and any possibly adjacent stores on 393 /// consecutive chains. 394 bool findBetterNeighborChains(StoreSDNode *St); 395 396 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 397 bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask); 398 399 /// Holds a pointer to an LSBaseSDNode as well as information on where it 400 /// is located in a sequence of memory operations connected by a chain. 401 struct MemOpLink { 402 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 403 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 404 // Ptr to the mem node. 405 LSBaseSDNode *MemNode; 406 // Offset from the base ptr. 407 int64_t OffsetFromBase; 408 // What is the sequence number of this mem node. 409 // Lowest mem operand in the DAG starts at zero. 410 unsigned SequenceNum; 411 }; 412 413 /// This is a helper function for visitMUL to check the profitability 414 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 415 /// MulNode is the original multiply, AddNode is (add x, c1), 416 /// and ConstNode is c2. 417 bool isMulAddWithConstProfitable(SDNode *MulNode, 418 SDValue &AddNode, 419 SDValue &ConstNode); 420 421 /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a 422 /// constant build_vector of the stored constant values in Stores. 423 SDValue getMergedConstantVectorStore(SelectionDAG &DAG, 424 SDLoc SL, 425 ArrayRef<MemOpLink> Stores, 426 SmallVectorImpl<SDValue> &Chains, 427 EVT Ty) const; 428 429 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 430 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 431 /// the type of the loaded value to be extended. LoadedVT returns the type 432 /// of the original loaded value. NarrowLoad returns whether the load would 433 /// need to be narrowed in order to match. 434 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 435 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 436 bool &NarrowLoad); 437 438 /// This is a helper function for MergeConsecutiveStores. When the source 439 /// elements of the consecutive stores are all constants or all extracted 440 /// vector elements, try to merge them into one larger store. 441 /// \return True if a merged store was created. 442 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 443 EVT MemVT, unsigned NumStores, 444 bool IsConstantSrc, bool UseVector); 445 446 /// This is a helper function for MergeConsecutiveStores. 447 /// Stores that may be merged are placed in StoreNodes. 448 /// Loads that may alias with those stores are placed in AliasLoadNodes. 449 void getStoreMergeAndAliasCandidates( 450 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 451 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); 452 453 /// Helper function for MergeConsecutiveStores. Checks if 454 /// Candidate stores have indirect dependency through their 455 /// operands. \return True if safe to merge 456 bool checkMergeStoreCandidatesForDependencies( 457 SmallVectorImpl<MemOpLink> &StoreNodes); 458 459 /// Merge consecutive store operations into a wide store. 460 /// This optimization uses wide integers or vectors when possible. 461 /// \return True if some memory operations were changed. 462 bool MergeConsecutiveStores(StoreSDNode *N); 463 464 /// \brief Try to transform a truncation where C is a constant: 465 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 466 /// 467 /// \p N needs to be a truncation and its first operand an AND. Other 468 /// requirements are checked by the function (e.g. that trunc is 469 /// single-use) and if missed an empty SDValue is returned. 470 SDValue distributeTruncateThroughAnd(SDNode *N); 471 472 public: 473 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 474 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 475 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 476 ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); 477 } 478 479 /// Runs the dag combiner on all nodes in the work list 480 void Run(CombineLevel AtLevel); 481 482 SelectionDAG &getDAG() const { return DAG; } 483 484 /// Returns a type large enough to hold any valid shift amount - before type 485 /// legalization these can be huge. 486 EVT getShiftAmountTy(EVT LHSTy) { 487 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 488 if (LHSTy.isVector()) 489 return LHSTy; 490 auto &DL = DAG.getDataLayout(); 491 return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) 492 : TLI.getPointerTy(DL); 493 } 494 495 /// This method returns true if we are running before type legalization or 496 /// if the specified VT is legal. 497 bool isTypeLegal(const EVT &VT) { 498 if (!LegalTypes) return true; 499 return TLI.isTypeLegal(VT); 500 } 501 502 /// Convenience wrapper around TargetLowering::getSetCCResultType 503 EVT getSetCCResultType(EVT VT) const { 504 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 505 } 506 }; 507 } 508 509 510 namespace { 511 /// This class is a DAGUpdateListener that removes any deleted 512 /// nodes from the worklist. 513 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 514 DAGCombiner &DC; 515 public: 516 explicit WorklistRemover(DAGCombiner &dc) 517 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 518 519 void NodeDeleted(SDNode *N, SDNode *E) override { 520 DC.removeFromWorklist(N); 521 } 522 }; 523 } 524 525 //===----------------------------------------------------------------------===// 526 // TargetLowering::DAGCombinerInfo implementation 527 //===----------------------------------------------------------------------===// 528 529 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 530 ((DAGCombiner*)DC)->AddToWorklist(N); 531 } 532 533 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { 534 ((DAGCombiner*)DC)->removeFromWorklist(N); 535 } 536 537 SDValue TargetLowering::DAGCombinerInfo:: 538 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 539 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 540 } 541 542 SDValue TargetLowering::DAGCombinerInfo:: 543 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 544 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 545 } 546 547 548 SDValue TargetLowering::DAGCombinerInfo:: 549 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 550 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 551 } 552 553 void TargetLowering::DAGCombinerInfo:: 554 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 555 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 556 } 557 558 //===----------------------------------------------------------------------===// 559 // Helper Functions 560 //===----------------------------------------------------------------------===// 561 562 void DAGCombiner::deleteAndRecombine(SDNode *N) { 563 removeFromWorklist(N); 564 565 // If the operands of this node are only used by the node, they will now be 566 // dead. Make sure to re-visit them and recursively delete dead nodes. 567 for (const SDValue &Op : N->ops()) 568 // For an operand generating multiple values, one of the values may 569 // become dead allowing further simplification (e.g. split index 570 // arithmetic from an indexed load). 571 if (Op->hasOneUse() || Op->getNumValues() > 1) 572 AddToWorklist(Op.getNode()); 573 574 DAG.DeleteNode(N); 575 } 576 577 /// Return 1 if we can compute the negated form of the specified expression for 578 /// the same cost as the expression itself, or 2 if we can compute the negated 579 /// form more cheaply than the expression itself. 580 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 581 const TargetLowering &TLI, 582 const TargetOptions *Options, 583 unsigned Depth = 0) { 584 // fneg is removable even if it has multiple uses. 585 if (Op.getOpcode() == ISD::FNEG) return 2; 586 587 // Don't allow anything with multiple uses. 588 if (!Op.hasOneUse()) return 0; 589 590 // Don't recurse exponentially. 591 if (Depth > 6) return 0; 592 593 switch (Op.getOpcode()) { 594 default: return false; 595 case ISD::ConstantFP: 596 // Don't invert constant FP values after legalize. The negated constant 597 // isn't necessarily legal. 598 return LegalOperations ? 0 : 1; 599 case ISD::FADD: 600 // FIXME: determine better conditions for this xform. 601 if (!Options->UnsafeFPMath) return 0; 602 603 // After operation legalization, it might not be legal to create new FSUBs. 604 if (LegalOperations && 605 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 606 return 0; 607 608 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 609 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 610 Options, Depth + 1)) 611 return V; 612 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 613 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 614 Depth + 1); 615 case ISD::FSUB: 616 // We can't turn -(A-B) into B-A when we honor signed zeros. 617 if (!Options->UnsafeFPMath) return 0; 618 619 // fold (fneg (fsub A, B)) -> (fsub B, A) 620 return 1; 621 622 case ISD::FMUL: 623 case ISD::FDIV: 624 if (Options->HonorSignDependentRoundingFPMath()) return 0; 625 626 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 627 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 628 Options, Depth + 1)) 629 return V; 630 631 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 632 Depth + 1); 633 634 case ISD::FP_EXTEND: 635 case ISD::FP_ROUND: 636 case ISD::FSIN: 637 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 638 Depth + 1); 639 } 640 } 641 642 /// If isNegatibleForFree returns true, return the newly negated expression. 643 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 644 bool LegalOperations, unsigned Depth = 0) { 645 const TargetOptions &Options = DAG.getTarget().Options; 646 // fneg is removable even if it has multiple uses. 647 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 648 649 // Don't allow anything with multiple uses. 650 assert(Op.hasOneUse() && "Unknown reuse!"); 651 652 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 653 654 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 655 656 switch (Op.getOpcode()) { 657 default: llvm_unreachable("Unknown code"); 658 case ISD::ConstantFP: { 659 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 660 V.changeSign(); 661 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 662 } 663 case ISD::FADD: 664 // FIXME: determine better conditions for this xform. 665 assert(Options.UnsafeFPMath); 666 667 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 668 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 669 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 670 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 671 GetNegatedExpression(Op.getOperand(0), DAG, 672 LegalOperations, Depth+1), 673 Op.getOperand(1), Flags); 674 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 675 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 676 GetNegatedExpression(Op.getOperand(1), DAG, 677 LegalOperations, Depth+1), 678 Op.getOperand(0), Flags); 679 case ISD::FSUB: 680 // We can't turn -(A-B) into B-A when we honor signed zeros. 681 assert(Options.UnsafeFPMath); 682 683 // fold (fneg (fsub 0, B)) -> B 684 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 685 if (N0CFP->isZero()) 686 return Op.getOperand(1); 687 688 // fold (fneg (fsub A, B)) -> (fsub B, A) 689 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 690 Op.getOperand(1), Op.getOperand(0), Flags); 691 692 case ISD::FMUL: 693 case ISD::FDIV: 694 assert(!Options.HonorSignDependentRoundingFPMath()); 695 696 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 697 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 698 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 699 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 700 GetNegatedExpression(Op.getOperand(0), DAG, 701 LegalOperations, Depth+1), 702 Op.getOperand(1), Flags); 703 704 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 705 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 706 Op.getOperand(0), 707 GetNegatedExpression(Op.getOperand(1), DAG, 708 LegalOperations, Depth+1), Flags); 709 710 case ISD::FP_EXTEND: 711 case ISD::FSIN: 712 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 713 GetNegatedExpression(Op.getOperand(0), DAG, 714 LegalOperations, Depth+1)); 715 case ISD::FP_ROUND: 716 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 717 GetNegatedExpression(Op.getOperand(0), DAG, 718 LegalOperations, Depth+1), 719 Op.getOperand(1)); 720 } 721 } 722 723 // Return true if this node is a setcc, or is a select_cc 724 // that selects between the target values used for true and false, making it 725 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 726 // the appropriate nodes based on the type of node we are checking. This 727 // simplifies life a bit for the callers. 728 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 729 SDValue &CC) const { 730 if (N.getOpcode() == ISD::SETCC) { 731 LHS = N.getOperand(0); 732 RHS = N.getOperand(1); 733 CC = N.getOperand(2); 734 return true; 735 } 736 737 if (N.getOpcode() != ISD::SELECT_CC || 738 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 739 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 740 return false; 741 742 if (TLI.getBooleanContents(N.getValueType()) == 743 TargetLowering::UndefinedBooleanContent) 744 return false; 745 746 LHS = N.getOperand(0); 747 RHS = N.getOperand(1); 748 CC = N.getOperand(4); 749 return true; 750 } 751 752 /// Return true if this is a SetCC-equivalent operation with only one use. 753 /// If this is true, it allows the users to invert the operation for free when 754 /// it is profitable to do so. 755 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 756 SDValue N0, N1, N2; 757 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 758 return true; 759 return false; 760 } 761 762 /// Returns true if N is a BUILD_VECTOR node whose 763 /// elements are all the same constant or undefined. 764 static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) { 765 BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N); 766 if (!C) 767 return false; 768 769 APInt SplatUndef; 770 unsigned SplatBitSize; 771 bool HasAnyUndefs; 772 EVT EltVT = N->getValueType(0).getVectorElementType(); 773 return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 774 HasAnyUndefs) && 775 EltVT.getSizeInBits() >= SplatBitSize); 776 } 777 778 // \brief Returns the SDNode if it is a constant float BuildVector 779 // or constant float. 780 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 781 if (isa<ConstantFPSDNode>(N)) 782 return N.getNode(); 783 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 784 return N.getNode(); 785 return nullptr; 786 } 787 788 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 789 // int. 790 static ConstantSDNode *isConstOrConstSplat(SDValue N) { 791 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 792 return CN; 793 794 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 795 BitVector UndefElements; 796 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 797 798 // BuildVectors can truncate their operands. Ignore that case here. 799 // FIXME: We blindly ignore splats which include undef which is overly 800 // pessimistic. 801 if (CN && UndefElements.none() && 802 CN->getValueType(0) == N.getValueType().getScalarType()) 803 return CN; 804 } 805 806 return nullptr; 807 } 808 809 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 810 // float. 811 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { 812 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 813 return CN; 814 815 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 816 BitVector UndefElements; 817 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 818 819 if (CN && UndefElements.none()) 820 return CN; 821 } 822 823 return nullptr; 824 } 825 826 SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL, 827 SDValue N0, SDValue N1) { 828 EVT VT = N0.getValueType(); 829 if (N0.getOpcode() == Opc) { 830 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 831 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 832 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 833 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) 834 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 835 return SDValue(); 836 } 837 if (N0.hasOneUse()) { 838 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 839 // use 840 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 841 if (!OpNode.getNode()) 842 return SDValue(); 843 AddToWorklist(OpNode.getNode()); 844 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 845 } 846 } 847 } 848 849 if (N1.getOpcode() == Opc) { 850 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { 851 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 852 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 853 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) 854 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 855 return SDValue(); 856 } 857 if (N1.hasOneUse()) { 858 // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one 859 // use 860 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); 861 if (!OpNode.getNode()) 862 return SDValue(); 863 AddToWorklist(OpNode.getNode()); 864 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 865 } 866 } 867 } 868 869 return SDValue(); 870 } 871 872 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 873 bool AddTo) { 874 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 875 ++NodesCombined; 876 DEBUG(dbgs() << "\nReplacing.1 "; 877 N->dump(&DAG); 878 dbgs() << "\nWith: "; 879 To[0].getNode()->dump(&DAG); 880 dbgs() << " and " << NumTo-1 << " other values\n"); 881 for (unsigned i = 0, e = NumTo; i != e; ++i) 882 assert((!To[i].getNode() || 883 N->getValueType(i) == To[i].getValueType()) && 884 "Cannot combine value to value of different type!"); 885 886 WorklistRemover DeadNodes(*this); 887 DAG.ReplaceAllUsesWith(N, To); 888 if (AddTo) { 889 // Push the new nodes and any users onto the worklist 890 for (unsigned i = 0, e = NumTo; i != e; ++i) { 891 if (To[i].getNode()) { 892 AddToWorklist(To[i].getNode()); 893 AddUsersToWorklist(To[i].getNode()); 894 } 895 } 896 } 897 898 // Finally, if the node is now dead, remove it from the graph. The node 899 // may not be dead if the replacement process recursively simplified to 900 // something else needing this node. 901 if (N->use_empty()) 902 deleteAndRecombine(N); 903 return SDValue(N, 0); 904 } 905 906 void DAGCombiner:: 907 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 908 // Replace all uses. If any nodes become isomorphic to other nodes and 909 // are deleted, make sure to remove them from our worklist. 910 WorklistRemover DeadNodes(*this); 911 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 912 913 // Push the new node and any (possibly new) users onto the worklist. 914 AddToWorklist(TLO.New.getNode()); 915 AddUsersToWorklist(TLO.New.getNode()); 916 917 // Finally, if the node is now dead, remove it from the graph. The node 918 // may not be dead if the replacement process recursively simplified to 919 // something else needing this node. 920 if (TLO.Old.getNode()->use_empty()) 921 deleteAndRecombine(TLO.Old.getNode()); 922 } 923 924 /// Check the specified integer node value to see if it can be simplified or if 925 /// things it uses can be simplified by bit propagation. If so, return true. 926 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 927 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 928 APInt KnownZero, KnownOne; 929 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 930 return false; 931 932 // Revisit the node. 933 AddToWorklist(Op.getNode()); 934 935 // Replace the old value with the new one. 936 ++NodesCombined; 937 DEBUG(dbgs() << "\nReplacing.2 "; 938 TLO.Old.getNode()->dump(&DAG); 939 dbgs() << "\nWith: "; 940 TLO.New.getNode()->dump(&DAG); 941 dbgs() << '\n'); 942 943 CommitTargetLoweringOpt(TLO); 944 return true; 945 } 946 947 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 948 SDLoc dl(Load); 949 EVT VT = Load->getValueType(0); 950 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); 951 952 DEBUG(dbgs() << "\nReplacing.9 "; 953 Load->dump(&DAG); 954 dbgs() << "\nWith: "; 955 Trunc.getNode()->dump(&DAG); 956 dbgs() << '\n'); 957 WorklistRemover DeadNodes(*this); 958 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 959 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 960 deleteAndRecombine(Load); 961 AddToWorklist(Trunc.getNode()); 962 } 963 964 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 965 Replace = false; 966 SDLoc dl(Op); 967 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 968 LoadSDNode *LD = cast<LoadSDNode>(Op); 969 EVT MemVT = LD->getMemoryVT(); 970 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 971 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 972 : ISD::EXTLOAD) 973 : LD->getExtensionType(); 974 Replace = true; 975 return DAG.getExtLoad(ExtType, dl, PVT, 976 LD->getChain(), LD->getBasePtr(), 977 MemVT, LD->getMemOperand()); 978 } 979 980 unsigned Opc = Op.getOpcode(); 981 switch (Opc) { 982 default: break; 983 case ISD::AssertSext: 984 return DAG.getNode(ISD::AssertSext, dl, PVT, 985 SExtPromoteOperand(Op.getOperand(0), PVT), 986 Op.getOperand(1)); 987 case ISD::AssertZext: 988 return DAG.getNode(ISD::AssertZext, dl, PVT, 989 ZExtPromoteOperand(Op.getOperand(0), PVT), 990 Op.getOperand(1)); 991 case ISD::Constant: { 992 unsigned ExtOpc = 993 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 994 return DAG.getNode(ExtOpc, dl, PVT, Op); 995 } 996 } 997 998 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 999 return SDValue(); 1000 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); 1001 } 1002 1003 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 1004 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 1005 return SDValue(); 1006 EVT OldVT = Op.getValueType(); 1007 SDLoc dl(Op); 1008 bool Replace = false; 1009 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1010 if (!NewOp.getNode()) 1011 return SDValue(); 1012 AddToWorklist(NewOp.getNode()); 1013 1014 if (Replace) 1015 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1016 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, 1017 DAG.getValueType(OldVT)); 1018 } 1019 1020 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1021 EVT OldVT = Op.getValueType(); 1022 SDLoc dl(Op); 1023 bool Replace = false; 1024 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1025 if (!NewOp.getNode()) 1026 return SDValue(); 1027 AddToWorklist(NewOp.getNode()); 1028 1029 if (Replace) 1030 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1031 return DAG.getZeroExtendInReg(NewOp, dl, OldVT); 1032 } 1033 1034 /// Promote the specified integer binary operation if the target indicates it is 1035 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1036 /// i32 since i16 instructions are longer. 1037 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1038 if (!LegalOperations) 1039 return SDValue(); 1040 1041 EVT VT = Op.getValueType(); 1042 if (VT.isVector() || !VT.isInteger()) 1043 return SDValue(); 1044 1045 // If operation type is 'undesirable', e.g. i16 on x86, consider 1046 // promoting it. 1047 unsigned Opc = Op.getOpcode(); 1048 if (TLI.isTypeDesirableForOp(Opc, VT)) 1049 return SDValue(); 1050 1051 EVT PVT = VT; 1052 // Consult target whether it is a good idea to promote this operation and 1053 // what's the right type to promote it to. 1054 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1055 assert(PVT != VT && "Don't know what type to promote to!"); 1056 1057 bool Replace0 = false; 1058 SDValue N0 = Op.getOperand(0); 1059 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1060 if (!NN0.getNode()) 1061 return SDValue(); 1062 1063 bool Replace1 = false; 1064 SDValue N1 = Op.getOperand(1); 1065 SDValue NN1; 1066 if (N0 == N1) 1067 NN1 = NN0; 1068 else { 1069 NN1 = PromoteOperand(N1, PVT, Replace1); 1070 if (!NN1.getNode()) 1071 return SDValue(); 1072 } 1073 1074 AddToWorklist(NN0.getNode()); 1075 if (NN1.getNode()) 1076 AddToWorklist(NN1.getNode()); 1077 1078 if (Replace0) 1079 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1080 if (Replace1) 1081 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1082 1083 DEBUG(dbgs() << "\nPromoting "; 1084 Op.getNode()->dump(&DAG)); 1085 SDLoc dl(Op); 1086 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1087 DAG.getNode(Opc, dl, PVT, NN0, NN1)); 1088 } 1089 return SDValue(); 1090 } 1091 1092 /// Promote the specified integer shift operation if the target indicates it is 1093 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1094 /// i32 since i16 instructions are longer. 1095 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1096 if (!LegalOperations) 1097 return SDValue(); 1098 1099 EVT VT = Op.getValueType(); 1100 if (VT.isVector() || !VT.isInteger()) 1101 return SDValue(); 1102 1103 // If operation type is 'undesirable', e.g. i16 on x86, consider 1104 // promoting it. 1105 unsigned Opc = Op.getOpcode(); 1106 if (TLI.isTypeDesirableForOp(Opc, VT)) 1107 return SDValue(); 1108 1109 EVT PVT = VT; 1110 // Consult target whether it is a good idea to promote this operation and 1111 // what's the right type to promote it to. 1112 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1113 assert(PVT != VT && "Don't know what type to promote to!"); 1114 1115 bool Replace = false; 1116 SDValue N0 = Op.getOperand(0); 1117 if (Opc == ISD::SRA) 1118 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 1119 else if (Opc == ISD::SRL) 1120 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 1121 else 1122 N0 = PromoteOperand(N0, PVT, Replace); 1123 if (!N0.getNode()) 1124 return SDValue(); 1125 1126 AddToWorklist(N0.getNode()); 1127 if (Replace) 1128 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1129 1130 DEBUG(dbgs() << "\nPromoting "; 1131 Op.getNode()->dump(&DAG)); 1132 SDLoc dl(Op); 1133 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1134 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); 1135 } 1136 return SDValue(); 1137 } 1138 1139 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1140 if (!LegalOperations) 1141 return SDValue(); 1142 1143 EVT VT = Op.getValueType(); 1144 if (VT.isVector() || !VT.isInteger()) 1145 return SDValue(); 1146 1147 // If operation type is 'undesirable', e.g. i16 on x86, consider 1148 // promoting it. 1149 unsigned Opc = Op.getOpcode(); 1150 if (TLI.isTypeDesirableForOp(Opc, VT)) 1151 return SDValue(); 1152 1153 EVT PVT = VT; 1154 // Consult target whether it is a good idea to promote this operation and 1155 // what's the right type to promote it to. 1156 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1157 assert(PVT != VT && "Don't know what type to promote to!"); 1158 // fold (aext (aext x)) -> (aext x) 1159 // fold (aext (zext x)) -> (zext x) 1160 // fold (aext (sext x)) -> (sext x) 1161 DEBUG(dbgs() << "\nPromoting "; 1162 Op.getNode()->dump(&DAG)); 1163 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1164 } 1165 return SDValue(); 1166 } 1167 1168 bool DAGCombiner::PromoteLoad(SDValue Op) { 1169 if (!LegalOperations) 1170 return false; 1171 1172 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1173 return false; 1174 1175 EVT VT = Op.getValueType(); 1176 if (VT.isVector() || !VT.isInteger()) 1177 return false; 1178 1179 // If operation type is 'undesirable', e.g. i16 on x86, consider 1180 // promoting it. 1181 unsigned Opc = Op.getOpcode(); 1182 if (TLI.isTypeDesirableForOp(Opc, VT)) 1183 return false; 1184 1185 EVT PVT = VT; 1186 // Consult target whether it is a good idea to promote this operation and 1187 // what's the right type to promote it to. 1188 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1189 assert(PVT != VT && "Don't know what type to promote to!"); 1190 1191 SDLoc dl(Op); 1192 SDNode *N = Op.getNode(); 1193 LoadSDNode *LD = cast<LoadSDNode>(N); 1194 EVT MemVT = LD->getMemoryVT(); 1195 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1196 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1197 : ISD::EXTLOAD) 1198 : LD->getExtensionType(); 1199 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, 1200 LD->getChain(), LD->getBasePtr(), 1201 MemVT, LD->getMemOperand()); 1202 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); 1203 1204 DEBUG(dbgs() << "\nPromoting "; 1205 N->dump(&DAG); 1206 dbgs() << "\nTo: "; 1207 Result.getNode()->dump(&DAG); 1208 dbgs() << '\n'); 1209 WorklistRemover DeadNodes(*this); 1210 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1211 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1212 deleteAndRecombine(N); 1213 AddToWorklist(Result.getNode()); 1214 return true; 1215 } 1216 return false; 1217 } 1218 1219 /// \brief Recursively delete a node which has no uses and any operands for 1220 /// which it is the only use. 1221 /// 1222 /// Note that this both deletes the nodes and removes them from the worklist. 1223 /// It also adds any nodes who have had a user deleted to the worklist as they 1224 /// may now have only one use and subject to other combines. 1225 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1226 if (!N->use_empty()) 1227 return false; 1228 1229 SmallSetVector<SDNode *, 16> Nodes; 1230 Nodes.insert(N); 1231 do { 1232 N = Nodes.pop_back_val(); 1233 if (!N) 1234 continue; 1235 1236 if (N->use_empty()) { 1237 for (const SDValue &ChildN : N->op_values()) 1238 Nodes.insert(ChildN.getNode()); 1239 1240 removeFromWorklist(N); 1241 DAG.DeleteNode(N); 1242 } else { 1243 AddToWorklist(N); 1244 } 1245 } while (!Nodes.empty()); 1246 return true; 1247 } 1248 1249 //===----------------------------------------------------------------------===// 1250 // Main DAG Combiner implementation 1251 //===----------------------------------------------------------------------===// 1252 1253 void DAGCombiner::Run(CombineLevel AtLevel) { 1254 // set the instance variables, so that the various visit routines may use it. 1255 Level = AtLevel; 1256 LegalOperations = Level >= AfterLegalizeVectorOps; 1257 LegalTypes = Level >= AfterLegalizeTypes; 1258 1259 // Add all the dag nodes to the worklist. 1260 for (SDNode &Node : DAG.allnodes()) 1261 AddToWorklist(&Node); 1262 1263 // Create a dummy node (which is not added to allnodes), that adds a reference 1264 // to the root node, preventing it from being deleted, and tracking any 1265 // changes of the root. 1266 HandleSDNode Dummy(DAG.getRoot()); 1267 1268 // While the worklist isn't empty, find a node and try to combine it. 1269 while (!WorklistMap.empty()) { 1270 SDNode *N; 1271 // The Worklist holds the SDNodes in order, but it may contain null entries. 1272 do { 1273 N = Worklist.pop_back_val(); 1274 } while (!N); 1275 1276 bool GoodWorklistEntry = WorklistMap.erase(N); 1277 (void)GoodWorklistEntry; 1278 assert(GoodWorklistEntry && 1279 "Found a worklist entry without a corresponding map entry!"); 1280 1281 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1282 // N is deleted from the DAG, since they too may now be dead or may have a 1283 // reduced number of uses, allowing other xforms. 1284 if (recursivelyDeleteUnusedNodes(N)) 1285 continue; 1286 1287 WorklistRemover DeadNodes(*this); 1288 1289 // If this combine is running after legalizing the DAG, re-legalize any 1290 // nodes pulled off the worklist. 1291 if (Level == AfterLegalizeDAG) { 1292 SmallSetVector<SDNode *, 16> UpdatedNodes; 1293 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1294 1295 for (SDNode *LN : UpdatedNodes) { 1296 AddToWorklist(LN); 1297 AddUsersToWorklist(LN); 1298 } 1299 if (!NIsValid) 1300 continue; 1301 } 1302 1303 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1304 1305 // Add any operands of the new node which have not yet been combined to the 1306 // worklist as well. Because the worklist uniques things already, this 1307 // won't repeatedly process the same operand. 1308 CombinedNodes.insert(N); 1309 for (const SDValue &ChildN : N->op_values()) 1310 if (!CombinedNodes.count(ChildN.getNode())) 1311 AddToWorklist(ChildN.getNode()); 1312 1313 SDValue RV = combine(N); 1314 1315 if (!RV.getNode()) 1316 continue; 1317 1318 ++NodesCombined; 1319 1320 // If we get back the same node we passed in, rather than a new node or 1321 // zero, we know that the node must have defined multiple values and 1322 // CombineTo was used. Since CombineTo takes care of the worklist 1323 // mechanics for us, we have no work to do in this case. 1324 if (RV.getNode() == N) 1325 continue; 1326 1327 assert(N->getOpcode() != ISD::DELETED_NODE && 1328 RV.getNode()->getOpcode() != ISD::DELETED_NODE && 1329 "Node was deleted but visit returned new node!"); 1330 1331 DEBUG(dbgs() << " ... into: "; 1332 RV.getNode()->dump(&DAG)); 1333 1334 // Transfer debug value. 1335 DAG.TransferDbgValues(SDValue(N, 0), RV); 1336 if (N->getNumValues() == RV.getNode()->getNumValues()) 1337 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1338 else { 1339 assert(N->getValueType(0) == RV.getValueType() && 1340 N->getNumValues() == 1 && "Type mismatch"); 1341 SDValue OpV = RV; 1342 DAG.ReplaceAllUsesWith(N, &OpV); 1343 } 1344 1345 // Push the new node and any users onto the worklist 1346 AddToWorklist(RV.getNode()); 1347 AddUsersToWorklist(RV.getNode()); 1348 1349 // Finally, if the node is now dead, remove it from the graph. The node 1350 // may not be dead if the replacement process recursively simplified to 1351 // something else needing this node. This will also take care of adding any 1352 // operands which have lost a user to the worklist. 1353 recursivelyDeleteUnusedNodes(N); 1354 } 1355 1356 // If the root changed (e.g. it was a dead load, update the root). 1357 DAG.setRoot(Dummy.getValue()); 1358 DAG.RemoveDeadNodes(); 1359 } 1360 1361 SDValue DAGCombiner::visit(SDNode *N) { 1362 switch (N->getOpcode()) { 1363 default: break; 1364 case ISD::TokenFactor: return visitTokenFactor(N); 1365 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1366 case ISD::ADD: return visitADD(N); 1367 case ISD::SUB: return visitSUB(N); 1368 case ISD::ADDC: return visitADDC(N); 1369 case ISD::SUBC: return visitSUBC(N); 1370 case ISD::ADDE: return visitADDE(N); 1371 case ISD::SUBE: return visitSUBE(N); 1372 case ISD::MUL: return visitMUL(N); 1373 case ISD::SDIV: return visitSDIV(N); 1374 case ISD::UDIV: return visitUDIV(N); 1375 case ISD::SREM: 1376 case ISD::UREM: return visitREM(N); 1377 case ISD::MULHU: return visitMULHU(N); 1378 case ISD::MULHS: return visitMULHS(N); 1379 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1380 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1381 case ISD::SMULO: return visitSMULO(N); 1382 case ISD::UMULO: return visitUMULO(N); 1383 case ISD::SMIN: 1384 case ISD::SMAX: 1385 case ISD::UMIN: 1386 case ISD::UMAX: return visitIMINMAX(N); 1387 case ISD::AND: return visitAND(N); 1388 case ISD::OR: return visitOR(N); 1389 case ISD::XOR: return visitXOR(N); 1390 case ISD::SHL: return visitSHL(N); 1391 case ISD::SRA: return visitSRA(N); 1392 case ISD::SRL: return visitSRL(N); 1393 case ISD::ROTR: 1394 case ISD::ROTL: return visitRotate(N); 1395 case ISD::BSWAP: return visitBSWAP(N); 1396 case ISD::BITREVERSE: return visitBITREVERSE(N); 1397 case ISD::CTLZ: return visitCTLZ(N); 1398 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1399 case ISD::CTTZ: return visitCTTZ(N); 1400 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1401 case ISD::CTPOP: return visitCTPOP(N); 1402 case ISD::SELECT: return visitSELECT(N); 1403 case ISD::VSELECT: return visitVSELECT(N); 1404 case ISD::SELECT_CC: return visitSELECT_CC(N); 1405 case ISD::SETCC: return visitSETCC(N); 1406 case ISD::SETCCE: return visitSETCCE(N); 1407 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1408 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1409 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1410 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1411 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1412 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1413 case ISD::TRUNCATE: return visitTRUNCATE(N); 1414 case ISD::BITCAST: return visitBITCAST(N); 1415 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1416 case ISD::FADD: return visitFADD(N); 1417 case ISD::FSUB: return visitFSUB(N); 1418 case ISD::FMUL: return visitFMUL(N); 1419 case ISD::FMA: return visitFMA(N); 1420 case ISD::FDIV: return visitFDIV(N); 1421 case ISD::FREM: return visitFREM(N); 1422 case ISD::FSQRT: return visitFSQRT(N); 1423 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1424 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1425 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1426 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1427 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1428 case ISD::FP_ROUND: return visitFP_ROUND(N); 1429 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1430 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1431 case ISD::FNEG: return visitFNEG(N); 1432 case ISD::FABS: return visitFABS(N); 1433 case ISD::FFLOOR: return visitFFLOOR(N); 1434 case ISD::FMINNUM: return visitFMINNUM(N); 1435 case ISD::FMAXNUM: return visitFMAXNUM(N); 1436 case ISD::FCEIL: return visitFCEIL(N); 1437 case ISD::FTRUNC: return visitFTRUNC(N); 1438 case ISD::BRCOND: return visitBRCOND(N); 1439 case ISD::BR_CC: return visitBR_CC(N); 1440 case ISD::LOAD: return visitLOAD(N); 1441 case ISD::STORE: return visitSTORE(N); 1442 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1443 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1444 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1445 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1446 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1447 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1448 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1449 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1450 case ISD::MGATHER: return visitMGATHER(N); 1451 case ISD::MLOAD: return visitMLOAD(N); 1452 case ISD::MSCATTER: return visitMSCATTER(N); 1453 case ISD::MSTORE: return visitMSTORE(N); 1454 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1455 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1456 } 1457 return SDValue(); 1458 } 1459 1460 SDValue DAGCombiner::combine(SDNode *N) { 1461 SDValue RV = visit(N); 1462 1463 // If nothing happened, try a target-specific DAG combine. 1464 if (!RV.getNode()) { 1465 assert(N->getOpcode() != ISD::DELETED_NODE && 1466 "Node was deleted but visit returned NULL!"); 1467 1468 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1469 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1470 1471 // Expose the DAG combiner to the target combiner impls. 1472 TargetLowering::DAGCombinerInfo 1473 DagCombineInfo(DAG, Level, false, this); 1474 1475 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1476 } 1477 } 1478 1479 // If nothing happened still, try promoting the operation. 1480 if (!RV.getNode()) { 1481 switch (N->getOpcode()) { 1482 default: break; 1483 case ISD::ADD: 1484 case ISD::SUB: 1485 case ISD::MUL: 1486 case ISD::AND: 1487 case ISD::OR: 1488 case ISD::XOR: 1489 RV = PromoteIntBinOp(SDValue(N, 0)); 1490 break; 1491 case ISD::SHL: 1492 case ISD::SRA: 1493 case ISD::SRL: 1494 RV = PromoteIntShiftOp(SDValue(N, 0)); 1495 break; 1496 case ISD::SIGN_EXTEND: 1497 case ISD::ZERO_EXTEND: 1498 case ISD::ANY_EXTEND: 1499 RV = PromoteExtend(SDValue(N, 0)); 1500 break; 1501 case ISD::LOAD: 1502 if (PromoteLoad(SDValue(N, 0))) 1503 RV = SDValue(N, 0); 1504 break; 1505 } 1506 } 1507 1508 // If N is a commutative binary node, try commuting it to enable more 1509 // sdisel CSE. 1510 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 1511 N->getNumValues() == 1) { 1512 SDValue N0 = N->getOperand(0); 1513 SDValue N1 = N->getOperand(1); 1514 1515 // Constant operands are canonicalized to RHS. 1516 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 1517 SDValue Ops[] = {N1, N0}; 1518 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1519 N->getFlags()); 1520 if (CSENode) 1521 return SDValue(CSENode, 0); 1522 } 1523 } 1524 1525 return RV; 1526 } 1527 1528 /// Given a node, return its input chain if it has one, otherwise return a null 1529 /// sd operand. 1530 static SDValue getInputChainForNode(SDNode *N) { 1531 if (unsigned NumOps = N->getNumOperands()) { 1532 if (N->getOperand(0).getValueType() == MVT::Other) 1533 return N->getOperand(0); 1534 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1535 return N->getOperand(NumOps-1); 1536 for (unsigned i = 1; i < NumOps-1; ++i) 1537 if (N->getOperand(i).getValueType() == MVT::Other) 1538 return N->getOperand(i); 1539 } 1540 return SDValue(); 1541 } 1542 1543 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1544 // If N has two operands, where one has an input chain equal to the other, 1545 // the 'other' chain is redundant. 1546 if (N->getNumOperands() == 2) { 1547 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1548 return N->getOperand(0); 1549 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1550 return N->getOperand(1); 1551 } 1552 1553 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1554 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1555 SmallPtrSet<SDNode*, 16> SeenOps; 1556 bool Changed = false; // If we should replace this token factor. 1557 1558 // Start out with this token factor. 1559 TFs.push_back(N); 1560 1561 // Iterate through token factors. The TFs grows when new token factors are 1562 // encountered. 1563 for (unsigned i = 0; i < TFs.size(); ++i) { 1564 SDNode *TF = TFs[i]; 1565 1566 // Check each of the operands. 1567 for (const SDValue &Op : TF->op_values()) { 1568 1569 switch (Op.getOpcode()) { 1570 case ISD::EntryToken: 1571 // Entry tokens don't need to be added to the list. They are 1572 // redundant. 1573 Changed = true; 1574 break; 1575 1576 case ISD::TokenFactor: 1577 if (Op.hasOneUse() && 1578 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { 1579 // Queue up for processing. 1580 TFs.push_back(Op.getNode()); 1581 // Clean up in case the token factor is removed. 1582 AddToWorklist(Op.getNode()); 1583 Changed = true; 1584 break; 1585 } 1586 // Fall thru 1587 1588 default: 1589 // Only add if it isn't already in the list. 1590 if (SeenOps.insert(Op.getNode()).second) 1591 Ops.push_back(Op); 1592 else 1593 Changed = true; 1594 break; 1595 } 1596 } 1597 } 1598 1599 SDValue Result; 1600 1601 // If we've changed things around then replace token factor. 1602 if (Changed) { 1603 if (Ops.empty()) { 1604 // The entry token is the only possible outcome. 1605 Result = DAG.getEntryNode(); 1606 } else { 1607 // New and improved token factor. 1608 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 1609 } 1610 1611 // Add users to worklist if AA is enabled, since it may introduce 1612 // a lot of new chained token factors while removing memory deps. 1613 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 1614 : DAG.getSubtarget().useAA(); 1615 return CombineTo(N, Result, UseAA /*add to worklist*/); 1616 } 1617 1618 return Result; 1619 } 1620 1621 /// MERGE_VALUES can always be eliminated. 1622 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1623 WorklistRemover DeadNodes(*this); 1624 // Replacing results may cause a different MERGE_VALUES to suddenly 1625 // be CSE'd with N, and carry its uses with it. Iterate until no 1626 // uses remain, to ensure that the node can be safely deleted. 1627 // First add the users of this node to the work list so that they 1628 // can be tried again once they have new operands. 1629 AddUsersToWorklist(N); 1630 do { 1631 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1632 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 1633 } while (!N->use_empty()); 1634 deleteAndRecombine(N); 1635 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1636 } 1637 1638 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 1639 /// ConstantSDNode pointer else nullptr. 1640 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1641 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1642 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1643 } 1644 1645 SDValue DAGCombiner::visitADD(SDNode *N) { 1646 SDValue N0 = N->getOperand(0); 1647 SDValue N1 = N->getOperand(1); 1648 EVT VT = N0.getValueType(); 1649 1650 // fold vector ops 1651 if (VT.isVector()) { 1652 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1653 return FoldedVOp; 1654 1655 // fold (add x, 0) -> x, vector edition 1656 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1657 return N0; 1658 if (ISD::isBuildVectorAllZeros(N0.getNode())) 1659 return N1; 1660 } 1661 1662 // fold (add x, undef) -> undef 1663 if (N0.isUndef()) 1664 return N0; 1665 if (N1.isUndef()) 1666 return N1; 1667 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 1668 // canonicalize constant to RHS 1669 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 1670 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); 1671 // fold (add c1, c2) -> c1+c2 1672 return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, 1673 N0.getNode(), N1.getNode()); 1674 } 1675 // fold (add x, 0) -> x 1676 if (isNullConstant(N1)) 1677 return N0; 1678 // fold ((c1-A)+c2) -> (c1+c2)-A 1679 if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1)) { 1680 if (N0.getOpcode() == ISD::SUB) 1681 if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) { 1682 SDLoc DL(N); 1683 return DAG.getNode(ISD::SUB, DL, VT, 1684 DAG.getConstant(N1C->getAPIntValue()+ 1685 N0C->getAPIntValue(), DL, VT), 1686 N0.getOperand(1)); 1687 } 1688 } 1689 // reassociate add 1690 if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1)) 1691 return RADD; 1692 // fold ((0-A) + B) -> B-A 1693 if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0))) 1694 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); 1695 // fold (A + (0-B)) -> A-B 1696 if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0))) 1697 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); 1698 // fold (A+(B-A)) -> B 1699 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 1700 return N1.getOperand(0); 1701 // fold ((B-A)+A) -> B 1702 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 1703 return N0.getOperand(0); 1704 // fold (A+(B-(A+C))) to (B-C) 1705 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1706 N0 == N1.getOperand(1).getOperand(0)) 1707 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1708 N1.getOperand(1).getOperand(1)); 1709 // fold (A+(B-(C+A))) to (B-C) 1710 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1711 N0 == N1.getOperand(1).getOperand(1)) 1712 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1713 N1.getOperand(1).getOperand(0)); 1714 // fold (A+((B-A)+or-C)) to (B+or-C) 1715 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 1716 N1.getOperand(0).getOpcode() == ISD::SUB && 1717 N0 == N1.getOperand(0).getOperand(1)) 1718 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, 1719 N1.getOperand(0).getOperand(0), N1.getOperand(1)); 1720 1721 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 1722 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 1723 SDValue N00 = N0.getOperand(0); 1724 SDValue N01 = N0.getOperand(1); 1725 SDValue N10 = N1.getOperand(0); 1726 SDValue N11 = N1.getOperand(1); 1727 1728 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) 1729 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1730 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 1731 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 1732 } 1733 1734 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 1735 return SDValue(N, 0); 1736 1737 // fold (a+b) -> (a|b) iff a and b share no bits. 1738 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::OR, VT)) && 1739 VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1)) 1740 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); 1741 1742 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 1743 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 1744 isNullConstant(N1.getOperand(0).getOperand(0))) 1745 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, 1746 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1747 N1.getOperand(0).getOperand(1), 1748 N1.getOperand(1))); 1749 if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && 1750 isNullConstant(N0.getOperand(0).getOperand(0))) 1751 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, 1752 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1753 N0.getOperand(0).getOperand(1), 1754 N0.getOperand(1))); 1755 1756 if (N1.getOpcode() == ISD::AND) { 1757 SDValue AndOp0 = N1.getOperand(0); 1758 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 1759 unsigned DestBits = VT.getScalarType().getSizeInBits(); 1760 1761 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 1762 // and similar xforms where the inner op is either ~0 or 0. 1763 if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) { 1764 SDLoc DL(N); 1765 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 1766 } 1767 } 1768 1769 // add (sext i1), X -> sub X, (zext i1) 1770 if (N0.getOpcode() == ISD::SIGN_EXTEND && 1771 N0.getOperand(0).getValueType() == MVT::i1 && 1772 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 1773 SDLoc DL(N); 1774 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 1775 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 1776 } 1777 1778 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 1779 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1780 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1781 if (TN->getVT() == MVT::i1) { 1782 SDLoc DL(N); 1783 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1784 DAG.getConstant(1, DL, VT)); 1785 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 1786 } 1787 } 1788 1789 return SDValue(); 1790 } 1791 1792 SDValue DAGCombiner::visitADDC(SDNode *N) { 1793 SDValue N0 = N->getOperand(0); 1794 SDValue N1 = N->getOperand(1); 1795 EVT VT = N0.getValueType(); 1796 1797 // If the flag result is dead, turn this into an ADD. 1798 if (!N->hasAnyUseOfValue(1)) 1799 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 1800 DAG.getNode(ISD::CARRY_FALSE, 1801 SDLoc(N), MVT::Glue)); 1802 1803 // canonicalize constant to RHS. 1804 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1805 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1806 if (N0C && !N1C) 1807 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 1808 1809 // fold (addc x, 0) -> x + no carry out 1810 if (isNullConstant(N1)) 1811 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 1812 SDLoc(N), MVT::Glue)); 1813 1814 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 1815 APInt LHSZero, LHSOne; 1816 APInt RHSZero, RHSOne; 1817 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1818 1819 if (LHSZero.getBoolValue()) { 1820 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1821 1822 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1823 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1824 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 1825 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 1826 DAG.getNode(ISD::CARRY_FALSE, 1827 SDLoc(N), MVT::Glue)); 1828 } 1829 1830 return SDValue(); 1831 } 1832 1833 SDValue DAGCombiner::visitADDE(SDNode *N) { 1834 SDValue N0 = N->getOperand(0); 1835 SDValue N1 = N->getOperand(1); 1836 SDValue CarryIn = N->getOperand(2); 1837 1838 // canonicalize constant to RHS 1839 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1840 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1841 if (N0C && !N1C) 1842 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 1843 N1, N0, CarryIn); 1844 1845 // fold (adde x, y, false) -> (addc x, y) 1846 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1847 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 1848 1849 return SDValue(); 1850 } 1851 1852 // Since it may not be valid to emit a fold to zero for vector initializers 1853 // check if we can before folding. 1854 static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT, 1855 SelectionDAG &DAG, 1856 bool LegalOperations, bool LegalTypes) { 1857 if (!VT.isVector()) 1858 return DAG.getConstant(0, DL, VT); 1859 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 1860 return DAG.getConstant(0, DL, VT); 1861 return SDValue(); 1862 } 1863 1864 SDValue DAGCombiner::visitSUB(SDNode *N) { 1865 SDValue N0 = N->getOperand(0); 1866 SDValue N1 = N->getOperand(1); 1867 EVT VT = N0.getValueType(); 1868 1869 // fold vector ops 1870 if (VT.isVector()) { 1871 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1872 return FoldedVOp; 1873 1874 // fold (sub x, 0) -> x, vector edition 1875 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1876 return N0; 1877 } 1878 1879 // fold (sub x, x) -> 0 1880 // FIXME: Refactor this and xor and other similar operations together. 1881 if (N0 == N1) 1882 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 1883 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 1884 DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1885 // fold (sub c1, c2) -> c1-c2 1886 return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, 1887 N0.getNode(), N1.getNode()); 1888 } 1889 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1890 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1891 // fold (sub x, c) -> (add x, -c) 1892 if (N1C) { 1893 SDLoc DL(N); 1894 return DAG.getNode(ISD::ADD, DL, VT, N0, 1895 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 1896 } 1897 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 1898 if (isAllOnesConstant(N0)) 1899 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 1900 // fold A-(A-B) -> B 1901 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 1902 return N1.getOperand(1); 1903 // fold (A+B)-A -> B 1904 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 1905 return N0.getOperand(1); 1906 // fold (A+B)-B -> A 1907 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 1908 return N0.getOperand(0); 1909 // fold C2-(A+C1) -> (C2-C1)-A 1910 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : 1911 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); 1912 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { 1913 SDLoc DL(N); 1914 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), 1915 DL, VT); 1916 return DAG.getNode(ISD::SUB, DL, VT, NewC, 1917 N1.getOperand(0)); 1918 } 1919 // fold ((A+(B+or-C))-B) -> A+or-C 1920 if (N0.getOpcode() == ISD::ADD && 1921 (N0.getOperand(1).getOpcode() == ISD::SUB || 1922 N0.getOperand(1).getOpcode() == ISD::ADD) && 1923 N0.getOperand(1).getOperand(0) == N1) 1924 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, 1925 N0.getOperand(0), N0.getOperand(1).getOperand(1)); 1926 // fold ((A+(C+B))-B) -> A+C 1927 if (N0.getOpcode() == ISD::ADD && 1928 N0.getOperand(1).getOpcode() == ISD::ADD && 1929 N0.getOperand(1).getOperand(1) == N1) 1930 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 1931 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1932 // fold ((A-(B-C))-C) -> A-B 1933 if (N0.getOpcode() == ISD::SUB && 1934 N0.getOperand(1).getOpcode() == ISD::SUB && 1935 N0.getOperand(1).getOperand(1) == N1) 1936 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1937 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1938 1939 // If either operand of a sub is undef, the result is undef 1940 if (N0.isUndef()) 1941 return N0; 1942 if (N1.isUndef()) 1943 return N1; 1944 1945 // If the relocation model supports it, consider symbol offsets. 1946 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1947 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 1948 // fold (sub Sym, c) -> Sym-c 1949 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 1950 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1951 GA->getOffset() - 1952 (uint64_t)N1C->getSExtValue()); 1953 // fold (sub Sym+c1, Sym+c2) -> c1-c2 1954 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 1955 if (GA->getGlobal() == GB->getGlobal()) 1956 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 1957 SDLoc(N), VT); 1958 } 1959 1960 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 1961 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1962 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1963 if (TN->getVT() == MVT::i1) { 1964 SDLoc DL(N); 1965 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1966 DAG.getConstant(1, DL, VT)); 1967 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 1968 } 1969 } 1970 1971 return SDValue(); 1972 } 1973 1974 SDValue DAGCombiner::visitSUBC(SDNode *N) { 1975 SDValue N0 = N->getOperand(0); 1976 SDValue N1 = N->getOperand(1); 1977 EVT VT = N0.getValueType(); 1978 SDLoc DL(N); 1979 1980 // If the flag result is dead, turn this into an SUB. 1981 if (!N->hasAnyUseOfValue(1)) 1982 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 1983 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1984 1985 // fold (subc x, x) -> 0 + no borrow 1986 if (N0 == N1) 1987 return CombineTo(N, DAG.getConstant(0, DL, VT), 1988 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1989 1990 // fold (subc x, 0) -> x + no borrow 1991 if (isNullConstant(N1)) 1992 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1993 1994 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 1995 if (isAllOnesConstant(N0)) 1996 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 1997 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1998 1999 return SDValue(); 2000 } 2001 2002 SDValue DAGCombiner::visitSUBE(SDNode *N) { 2003 SDValue N0 = N->getOperand(0); 2004 SDValue N1 = N->getOperand(1); 2005 SDValue CarryIn = N->getOperand(2); 2006 2007 // fold (sube x, y, false) -> (subc x, y) 2008 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 2009 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 2010 2011 return SDValue(); 2012 } 2013 2014 SDValue DAGCombiner::visitMUL(SDNode *N) { 2015 SDValue N0 = N->getOperand(0); 2016 SDValue N1 = N->getOperand(1); 2017 EVT VT = N0.getValueType(); 2018 2019 // fold (mul x, undef) -> 0 2020 if (N0.isUndef() || N1.isUndef()) 2021 return DAG.getConstant(0, SDLoc(N), VT); 2022 2023 bool N0IsConst = false; 2024 bool N1IsConst = false; 2025 bool N1IsOpaqueConst = false; 2026 bool N0IsOpaqueConst = false; 2027 APInt ConstValue0, ConstValue1; 2028 // fold vector ops 2029 if (VT.isVector()) { 2030 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2031 return FoldedVOp; 2032 2033 N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0); 2034 N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1); 2035 } else { 2036 N0IsConst = isa<ConstantSDNode>(N0); 2037 if (N0IsConst) { 2038 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 2039 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 2040 } 2041 N1IsConst = isa<ConstantSDNode>(N1); 2042 if (N1IsConst) { 2043 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 2044 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 2045 } 2046 } 2047 2048 // fold (mul c1, c2) -> c1*c2 2049 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 2050 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 2051 N0.getNode(), N1.getNode()); 2052 2053 // canonicalize constant to RHS (vector doesn't have to splat) 2054 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2055 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2056 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 2057 // fold (mul x, 0) -> 0 2058 if (N1IsConst && ConstValue1 == 0) 2059 return N1; 2060 // We require a splat of the entire scalar bit width for non-contiguous 2061 // bit patterns. 2062 bool IsFullSplat = 2063 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); 2064 // fold (mul x, 1) -> x 2065 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 2066 return N0; 2067 // fold (mul x, -1) -> 0-x 2068 if (N1IsConst && ConstValue1.isAllOnesValue()) { 2069 SDLoc DL(N); 2070 return DAG.getNode(ISD::SUB, DL, VT, 2071 DAG.getConstant(0, DL, VT), N0); 2072 } 2073 // fold (mul x, (1 << c)) -> x << c 2074 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && 2075 IsFullSplat) { 2076 SDLoc DL(N); 2077 return DAG.getNode(ISD::SHL, DL, VT, N0, 2078 DAG.getConstant(ConstValue1.logBase2(), DL, 2079 getShiftAmountTy(N0.getValueType()))); 2080 } 2081 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 2082 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && 2083 IsFullSplat) { 2084 unsigned Log2Val = (-ConstValue1).logBase2(); 2085 SDLoc DL(N); 2086 // FIXME: If the input is something that is easily negated (e.g. a 2087 // single-use add), we should put the negate there. 2088 return DAG.getNode(ISD::SUB, DL, VT, 2089 DAG.getConstant(0, DL, VT), 2090 DAG.getNode(ISD::SHL, DL, VT, N0, 2091 DAG.getConstant(Log2Val, DL, 2092 getShiftAmountTy(N0.getValueType())))); 2093 } 2094 2095 APInt Val; 2096 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 2097 if (N1IsConst && N0.getOpcode() == ISD::SHL && 2098 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2099 isa<ConstantSDNode>(N0.getOperand(1)))) { 2100 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, 2101 N1, N0.getOperand(1)); 2102 AddToWorklist(C3.getNode()); 2103 return DAG.getNode(ISD::MUL, SDLoc(N), VT, 2104 N0.getOperand(0), C3); 2105 } 2106 2107 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 2108 // use. 2109 { 2110 SDValue Sh(nullptr,0), Y(nullptr,0); 2111 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 2112 if (N0.getOpcode() == ISD::SHL && 2113 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2114 isa<ConstantSDNode>(N0.getOperand(1))) && 2115 N0.getNode()->hasOneUse()) { 2116 Sh = N0; Y = N1; 2117 } else if (N1.getOpcode() == ISD::SHL && 2118 isa<ConstantSDNode>(N1.getOperand(1)) && 2119 N1.getNode()->hasOneUse()) { 2120 Sh = N1; Y = N0; 2121 } 2122 2123 if (Sh.getNode()) { 2124 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 2125 Sh.getOperand(0), Y); 2126 return DAG.getNode(ISD::SHL, SDLoc(N), VT, 2127 Mul, Sh.getOperand(1)); 2128 } 2129 } 2130 2131 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 2132 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 2133 N0.getOpcode() == ISD::ADD && 2134 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 2135 isMulAddWithConstProfitable(N, N0, N1)) 2136 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 2137 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 2138 N0.getOperand(0), N1), 2139 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 2140 N0.getOperand(1), N1)); 2141 2142 // reassociate mul 2143 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) 2144 return RMUL; 2145 2146 return SDValue(); 2147 } 2148 2149 /// Return true if divmod libcall is available. 2150 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2151 const TargetLowering &TLI) { 2152 RTLIB::Libcall LC; 2153 EVT NodeType = Node->getValueType(0); 2154 if (!NodeType.isSimple()) 2155 return false; 2156 switch (NodeType.getSimpleVT().SimpleTy) { 2157 default: return false; // No libcall for vector types. 2158 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2159 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2160 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2161 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2162 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2163 } 2164 2165 return TLI.getLibcallName(LC) != nullptr; 2166 } 2167 2168 /// Issue divrem if both quotient and remainder are needed. 2169 SDValue DAGCombiner::useDivRem(SDNode *Node) { 2170 if (Node->use_empty()) 2171 return SDValue(); // This is a dead node, leave it alone. 2172 2173 unsigned Opcode = Node->getOpcode(); 2174 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 2175 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2176 2177 // DivMod lib calls can still work on non-legal types if using lib-calls. 2178 EVT VT = Node->getValueType(0); 2179 if (VT.isVector() || !VT.isInteger()) 2180 return SDValue(); 2181 2182 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 2183 return SDValue(); 2184 2185 // If DIVREM is going to get expanded into a libcall, 2186 // but there is no libcall available, then don't combine. 2187 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 2188 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 2189 return SDValue(); 2190 2191 // If div is legal, it's better to do the normal expansion 2192 unsigned OtherOpcode = 0; 2193 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 2194 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 2195 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 2196 return SDValue(); 2197 } else { 2198 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2199 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 2200 return SDValue(); 2201 } 2202 2203 SDValue Op0 = Node->getOperand(0); 2204 SDValue Op1 = Node->getOperand(1); 2205 SDValue combined; 2206 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2207 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2208 SDNode *User = *UI; 2209 if (User == Node || User->use_empty()) 2210 continue; 2211 // Convert the other matching node(s), too; 2212 // otherwise, the DIVREM may get target-legalized into something 2213 // target-specific that we won't be able to recognize. 2214 unsigned UserOpc = User->getOpcode(); 2215 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 2216 User->getOperand(0) == Op0 && 2217 User->getOperand(1) == Op1) { 2218 if (!combined) { 2219 if (UserOpc == OtherOpcode) { 2220 SDVTList VTs = DAG.getVTList(VT, VT); 2221 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 2222 } else if (UserOpc == DivRemOpc) { 2223 combined = SDValue(User, 0); 2224 } else { 2225 assert(UserOpc == Opcode); 2226 continue; 2227 } 2228 } 2229 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 2230 CombineTo(User, combined); 2231 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 2232 CombineTo(User, combined.getValue(1)); 2233 } 2234 } 2235 return combined; 2236 } 2237 2238 SDValue DAGCombiner::visitSDIV(SDNode *N) { 2239 SDValue N0 = N->getOperand(0); 2240 SDValue N1 = N->getOperand(1); 2241 EVT VT = N->getValueType(0); 2242 2243 // fold vector ops 2244 if (VT.isVector()) 2245 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2246 return FoldedVOp; 2247 2248 SDLoc DL(N); 2249 2250 // fold (sdiv c1, c2) -> c1/c2 2251 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2252 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2253 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 2254 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); 2255 // fold (sdiv X, 1) -> X 2256 if (N1C && N1C->isOne()) 2257 return N0; 2258 // fold (sdiv X, -1) -> 0-X 2259 if (N1C && N1C->isAllOnesValue()) 2260 return DAG.getNode(ISD::SUB, DL, VT, 2261 DAG.getConstant(0, DL, VT), N0); 2262 2263 // If we know the sign bits of both operands are zero, strength reduce to a 2264 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 2265 if (!VT.isVector()) { 2266 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2267 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 2268 } 2269 2270 // fold (sdiv X, pow2) -> simple ops after legalize 2271 // FIXME: We check for the exact bit here because the generic lowering gives 2272 // better results in that case. The target-specific lowering should learn how 2273 // to handle exact sdivs efficiently. 2274 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2275 !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && 2276 (N1C->getAPIntValue().isPowerOf2() || 2277 (-N1C->getAPIntValue()).isPowerOf2())) { 2278 // Target-specific implementation of sdiv x, pow2. 2279 if (SDValue Res = BuildSDIVPow2(N)) 2280 return Res; 2281 2282 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 2283 2284 // Splat the sign bit into the register 2285 SDValue SGN = 2286 DAG.getNode(ISD::SRA, DL, VT, N0, 2287 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, 2288 getShiftAmountTy(N0.getValueType()))); 2289 AddToWorklist(SGN.getNode()); 2290 2291 // Add (N0 < 0) ? abs2 - 1 : 0; 2292 SDValue SRL = 2293 DAG.getNode(ISD::SRL, DL, VT, SGN, 2294 DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, 2295 getShiftAmountTy(SGN.getValueType()))); 2296 SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); 2297 AddToWorklist(SRL.getNode()); 2298 AddToWorklist(ADD.getNode()); // Divide by pow2 2299 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, 2300 DAG.getConstant(lg2, DL, 2301 getShiftAmountTy(ADD.getValueType()))); 2302 2303 // If we're dividing by a positive value, we're done. Otherwise, we must 2304 // negate the result. 2305 if (N1C->getAPIntValue().isNonNegative()) 2306 return SRA; 2307 2308 AddToWorklist(SRA.getNode()); 2309 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 2310 } 2311 2312 // If integer divide is expensive and we satisfy the requirements, emit an 2313 // alternate sequence. Targets may check function attributes for size/speed 2314 // trade-offs. 2315 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2316 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2317 if (SDValue Op = BuildSDIV(N)) 2318 return Op; 2319 2320 // sdiv, srem -> sdivrem 2321 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2322 // Otherwise, we break the simplification logic in visitREM(). 2323 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2324 if (SDValue DivRem = useDivRem(N)) 2325 return DivRem; 2326 2327 // undef / X -> 0 2328 if (N0.isUndef()) 2329 return DAG.getConstant(0, DL, VT); 2330 // X / undef -> undef 2331 if (N1.isUndef()) 2332 return N1; 2333 2334 return SDValue(); 2335 } 2336 2337 SDValue DAGCombiner::visitUDIV(SDNode *N) { 2338 SDValue N0 = N->getOperand(0); 2339 SDValue N1 = N->getOperand(1); 2340 EVT VT = N->getValueType(0); 2341 2342 // fold vector ops 2343 if (VT.isVector()) 2344 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2345 return FoldedVOp; 2346 2347 SDLoc DL(N); 2348 2349 // fold (udiv c1, c2) -> c1/c2 2350 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2351 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2352 if (N0C && N1C) 2353 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, 2354 N0C, N1C)) 2355 return Folded; 2356 // fold (udiv x, (1 << c)) -> x >>u c 2357 if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) 2358 return DAG.getNode(ISD::SRL, DL, VT, N0, 2359 DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, 2360 getShiftAmountTy(N0.getValueType()))); 2361 2362 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 2363 if (N1.getOpcode() == ISD::SHL) { 2364 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2365 if (SHC->getAPIntValue().isPowerOf2()) { 2366 EVT ADDVT = N1.getOperand(1).getValueType(); 2367 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, 2368 N1.getOperand(1), 2369 DAG.getConstant(SHC->getAPIntValue() 2370 .logBase2(), 2371 DL, ADDVT)); 2372 AddToWorklist(Add.getNode()); 2373 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 2374 } 2375 } 2376 } 2377 2378 // fold (udiv x, c) -> alternate 2379 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2380 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2381 if (SDValue Op = BuildUDIV(N)) 2382 return Op; 2383 2384 // sdiv, srem -> sdivrem 2385 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2386 // Otherwise, we break the simplification logic in visitREM(). 2387 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2388 if (SDValue DivRem = useDivRem(N)) 2389 return DivRem; 2390 2391 // undef / X -> 0 2392 if (N0.isUndef()) 2393 return DAG.getConstant(0, DL, VT); 2394 // X / undef -> undef 2395 if (N1.isUndef()) 2396 return N1; 2397 2398 return SDValue(); 2399 } 2400 2401 // handles ISD::SREM and ISD::UREM 2402 SDValue DAGCombiner::visitREM(SDNode *N) { 2403 unsigned Opcode = N->getOpcode(); 2404 SDValue N0 = N->getOperand(0); 2405 SDValue N1 = N->getOperand(1); 2406 EVT VT = N->getValueType(0); 2407 bool isSigned = (Opcode == ISD::SREM); 2408 SDLoc DL(N); 2409 2410 // fold (rem c1, c2) -> c1%c2 2411 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2412 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2413 if (N0C && N1C) 2414 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) 2415 return Folded; 2416 2417 if (isSigned) { 2418 // If we know the sign bits of both operands are zero, strength reduce to a 2419 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 2420 if (!VT.isVector()) { 2421 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2422 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 2423 } 2424 } else { 2425 // fold (urem x, pow2) -> (and x, pow2-1) 2426 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2427 N1C->getAPIntValue().isPowerOf2()) { 2428 return DAG.getNode(ISD::AND, DL, VT, N0, 2429 DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); 2430 } 2431 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 2432 if (N1.getOpcode() == ISD::SHL) { 2433 ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0)); 2434 if (SHC && SHC->getAPIntValue().isPowerOf2()) { 2435 APInt NegOne = APInt::getAllOnesValue(VT.getSizeInBits()); 2436 SDValue Add = 2437 DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT)); 2438 AddToWorklist(Add.getNode()); 2439 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 2440 } 2441 } 2442 } 2443 2444 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2445 2446 // If X/C can be simplified by the division-by-constant logic, lower 2447 // X%C to the equivalent of X-X/C*C. 2448 // To avoid mangling nodes, this simplification requires that the combine() 2449 // call for the speculative DIV must not cause a DIVREM conversion. We guard 2450 // against this by skipping the simplification if isIntDivCheap(). When 2451 // div is not cheap, combine will not return a DIVREM. Regardless, 2452 // checking cheapness here makes sense since the simplification results in 2453 // fatter code. 2454 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { 2455 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2456 SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); 2457 AddToWorklist(Div.getNode()); 2458 SDValue OptimizedDiv = combine(Div.getNode()); 2459 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2460 assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && 2461 (OptimizedDiv.getOpcode() != ISD::SDIVREM)); 2462 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 2463 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 2464 AddToWorklist(Mul.getNode()); 2465 return Sub; 2466 } 2467 } 2468 2469 // sdiv, srem -> sdivrem 2470 if (SDValue DivRem = useDivRem(N)) 2471 return DivRem.getValue(1); 2472 2473 // undef % X -> 0 2474 if (N0.isUndef()) 2475 return DAG.getConstant(0, DL, VT); 2476 // X % undef -> undef 2477 if (N1.isUndef()) 2478 return N1; 2479 2480 return SDValue(); 2481 } 2482 2483 SDValue DAGCombiner::visitMULHS(SDNode *N) { 2484 SDValue N0 = N->getOperand(0); 2485 SDValue N1 = N->getOperand(1); 2486 EVT VT = N->getValueType(0); 2487 SDLoc DL(N); 2488 2489 // fold (mulhs x, 0) -> 0 2490 if (isNullConstant(N1)) 2491 return N1; 2492 // fold (mulhs x, 1) -> (sra x, size(x)-1) 2493 if (isOneConstant(N1)) { 2494 SDLoc DL(N); 2495 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 2496 DAG.getConstant(N0.getValueType().getSizeInBits() - 1, 2497 DL, 2498 getShiftAmountTy(N0.getValueType()))); 2499 } 2500 // fold (mulhs x, undef) -> 0 2501 if (N0.isUndef() || N1.isUndef()) 2502 return DAG.getConstant(0, SDLoc(N), VT); 2503 2504 // If the type twice as wide is legal, transform the mulhs to a wider multiply 2505 // plus a shift. 2506 if (VT.isSimple() && !VT.isVector()) { 2507 MVT Simple = VT.getSimpleVT(); 2508 unsigned SimpleSize = Simple.getSizeInBits(); 2509 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2510 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2511 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 2512 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 2513 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2514 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2515 DAG.getConstant(SimpleSize, DL, 2516 getShiftAmountTy(N1.getValueType()))); 2517 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2518 } 2519 } 2520 2521 return SDValue(); 2522 } 2523 2524 SDValue DAGCombiner::visitMULHU(SDNode *N) { 2525 SDValue N0 = N->getOperand(0); 2526 SDValue N1 = N->getOperand(1); 2527 EVT VT = N->getValueType(0); 2528 SDLoc DL(N); 2529 2530 // fold (mulhu x, 0) -> 0 2531 if (isNullConstant(N1)) 2532 return N1; 2533 // fold (mulhu x, 1) -> 0 2534 if (isOneConstant(N1)) 2535 return DAG.getConstant(0, DL, N0.getValueType()); 2536 // fold (mulhu x, undef) -> 0 2537 if (N0.isUndef() || N1.isUndef()) 2538 return DAG.getConstant(0, DL, VT); 2539 2540 // If the type twice as wide is legal, transform the mulhu to a wider multiply 2541 // plus a shift. 2542 if (VT.isSimple() && !VT.isVector()) { 2543 MVT Simple = VT.getSimpleVT(); 2544 unsigned SimpleSize = Simple.getSizeInBits(); 2545 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2546 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2547 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 2548 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 2549 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2550 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2551 DAG.getConstant(SimpleSize, DL, 2552 getShiftAmountTy(N1.getValueType()))); 2553 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2554 } 2555 } 2556 2557 return SDValue(); 2558 } 2559 2560 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 2561 /// give the opcodes for the two computations that are being performed. Return 2562 /// true if a simplification was made. 2563 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 2564 unsigned HiOp) { 2565 // If the high half is not needed, just compute the low half. 2566 bool HiExists = N->hasAnyUseOfValue(1); 2567 if (!HiExists && 2568 (!LegalOperations || 2569 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 2570 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2571 return CombineTo(N, Res, Res); 2572 } 2573 2574 // If the low half is not needed, just compute the high half. 2575 bool LoExists = N->hasAnyUseOfValue(0); 2576 if (!LoExists && 2577 (!LegalOperations || 2578 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 2579 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2580 return CombineTo(N, Res, Res); 2581 } 2582 2583 // If both halves are used, return as it is. 2584 if (LoExists && HiExists) 2585 return SDValue(); 2586 2587 // If the two computed results can be simplified separately, separate them. 2588 if (LoExists) { 2589 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2590 AddToWorklist(Lo.getNode()); 2591 SDValue LoOpt = combine(Lo.getNode()); 2592 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 2593 (!LegalOperations || 2594 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 2595 return CombineTo(N, LoOpt, LoOpt); 2596 } 2597 2598 if (HiExists) { 2599 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2600 AddToWorklist(Hi.getNode()); 2601 SDValue HiOpt = combine(Hi.getNode()); 2602 if (HiOpt.getNode() && HiOpt != Hi && 2603 (!LegalOperations || 2604 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 2605 return CombineTo(N, HiOpt, HiOpt); 2606 } 2607 2608 return SDValue(); 2609 } 2610 2611 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 2612 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 2613 return Res; 2614 2615 EVT VT = N->getValueType(0); 2616 SDLoc DL(N); 2617 2618 // If the type is twice as wide is legal, transform the mulhu to a wider 2619 // multiply plus a shift. 2620 if (VT.isSimple() && !VT.isVector()) { 2621 MVT Simple = VT.getSimpleVT(); 2622 unsigned SimpleSize = Simple.getSizeInBits(); 2623 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2624 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2625 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 2626 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 2627 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2628 // Compute the high part as N1. 2629 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2630 DAG.getConstant(SimpleSize, DL, 2631 getShiftAmountTy(Lo.getValueType()))); 2632 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2633 // Compute the low part as N0. 2634 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2635 return CombineTo(N, Lo, Hi); 2636 } 2637 } 2638 2639 return SDValue(); 2640 } 2641 2642 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 2643 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 2644 return Res; 2645 2646 EVT VT = N->getValueType(0); 2647 SDLoc DL(N); 2648 2649 // If the type is twice as wide is legal, transform the mulhu to a wider 2650 // multiply plus a shift. 2651 if (VT.isSimple() && !VT.isVector()) { 2652 MVT Simple = VT.getSimpleVT(); 2653 unsigned SimpleSize = Simple.getSizeInBits(); 2654 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2655 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2656 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 2657 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 2658 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2659 // Compute the high part as N1. 2660 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2661 DAG.getConstant(SimpleSize, DL, 2662 getShiftAmountTy(Lo.getValueType()))); 2663 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2664 // Compute the low part as N0. 2665 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2666 return CombineTo(N, Lo, Hi); 2667 } 2668 } 2669 2670 return SDValue(); 2671 } 2672 2673 SDValue DAGCombiner::visitSMULO(SDNode *N) { 2674 // (smulo x, 2) -> (saddo x, x) 2675 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2676 if (C2->getAPIntValue() == 2) 2677 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 2678 N->getOperand(0), N->getOperand(0)); 2679 2680 return SDValue(); 2681 } 2682 2683 SDValue DAGCombiner::visitUMULO(SDNode *N) { 2684 // (umulo x, 2) -> (uaddo x, x) 2685 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2686 if (C2->getAPIntValue() == 2) 2687 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 2688 N->getOperand(0), N->getOperand(0)); 2689 2690 return SDValue(); 2691 } 2692 2693 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 2694 SDValue N0 = N->getOperand(0); 2695 SDValue N1 = N->getOperand(1); 2696 EVT VT = N0.getValueType(); 2697 2698 // fold vector ops 2699 if (VT.isVector()) 2700 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2701 return FoldedVOp; 2702 2703 // fold (add c1, c2) -> c1+c2 2704 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2705 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2706 if (N0C && N1C) 2707 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 2708 2709 // canonicalize constant to RHS 2710 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2711 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2712 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 2713 2714 return SDValue(); 2715 } 2716 2717 /// If this is a binary operator with two operands of the same opcode, try to 2718 /// simplify it. 2719 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 2720 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 2721 EVT VT = N0.getValueType(); 2722 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 2723 2724 // Bail early if none of these transforms apply. 2725 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 2726 2727 // For each of OP in AND/OR/XOR: 2728 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 2729 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 2730 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 2731 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) 2732 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 2733 // 2734 // do not sink logical op inside of a vector extend, since it may combine 2735 // into a vsetcc. 2736 EVT Op0VT = N0.getOperand(0).getValueType(); 2737 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 2738 N0.getOpcode() == ISD::SIGN_EXTEND || 2739 N0.getOpcode() == ISD::BSWAP || 2740 // Avoid infinite looping with PromoteIntBinOp. 2741 (N0.getOpcode() == ISD::ANY_EXTEND && 2742 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 2743 (N0.getOpcode() == ISD::TRUNCATE && 2744 (!TLI.isZExtFree(VT, Op0VT) || 2745 !TLI.isTruncateFree(Op0VT, VT)) && 2746 TLI.isTypeLegal(Op0VT))) && 2747 !VT.isVector() && 2748 Op0VT == N1.getOperand(0).getValueType() && 2749 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 2750 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2751 N0.getOperand(0).getValueType(), 2752 N0.getOperand(0), N1.getOperand(0)); 2753 AddToWorklist(ORNode.getNode()); 2754 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 2755 } 2756 2757 // For each of OP in SHL/SRL/SRA/AND... 2758 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 2759 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 2760 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 2761 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 2762 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 2763 N0.getOperand(1) == N1.getOperand(1)) { 2764 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2765 N0.getOperand(0).getValueType(), 2766 N0.getOperand(0), N1.getOperand(0)); 2767 AddToWorklist(ORNode.getNode()); 2768 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 2769 ORNode, N0.getOperand(1)); 2770 } 2771 2772 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 2773 // Only perform this optimization up until type legalization, before 2774 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 2775 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 2776 // we don't want to undo this promotion. 2777 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 2778 // on scalars. 2779 if ((N0.getOpcode() == ISD::BITCAST || 2780 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 2781 Level <= AfterLegalizeTypes) { 2782 SDValue In0 = N0.getOperand(0); 2783 SDValue In1 = N1.getOperand(0); 2784 EVT In0Ty = In0.getValueType(); 2785 EVT In1Ty = In1.getValueType(); 2786 SDLoc DL(N); 2787 // If both incoming values are integers, and the original types are the 2788 // same. 2789 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 2790 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 2791 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 2792 AddToWorklist(Op.getNode()); 2793 return BC; 2794 } 2795 } 2796 2797 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 2798 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 2799 // If both shuffles use the same mask, and both shuffle within a single 2800 // vector, then it is worthwhile to move the swizzle after the operation. 2801 // The type-legalizer generates this pattern when loading illegal 2802 // vector types from memory. In many cases this allows additional shuffle 2803 // optimizations. 2804 // There are other cases where moving the shuffle after the xor/and/or 2805 // is profitable even if shuffles don't perform a swizzle. 2806 // If both shuffles use the same mask, and both shuffles have the same first 2807 // or second operand, then it might still be profitable to move the shuffle 2808 // after the xor/and/or operation. 2809 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 2810 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 2811 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 2812 2813 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 2814 "Inputs to shuffles are not the same type"); 2815 2816 // Check that both shuffles use the same mask. The masks are known to be of 2817 // the same length because the result vector type is the same. 2818 // Check also that shuffles have only one use to avoid introducing extra 2819 // instructions. 2820 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 2821 SVN0->getMask().equals(SVN1->getMask())) { 2822 SDValue ShOp = N0->getOperand(1); 2823 2824 // Don't try to fold this node if it requires introducing a 2825 // build vector of all zeros that might be illegal at this stage. 2826 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2827 if (!LegalTypes) 2828 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2829 else 2830 ShOp = SDValue(); 2831 } 2832 2833 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 2834 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 2835 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 2836 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 2837 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2838 N0->getOperand(0), N1->getOperand(0)); 2839 AddToWorklist(NewNode.getNode()); 2840 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 2841 &SVN0->getMask()[0]); 2842 } 2843 2844 // Don't try to fold this node if it requires introducing a 2845 // build vector of all zeros that might be illegal at this stage. 2846 ShOp = N0->getOperand(0); 2847 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2848 if (!LegalTypes) 2849 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2850 else 2851 ShOp = SDValue(); 2852 } 2853 2854 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 2855 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 2856 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 2857 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 2858 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2859 N0->getOperand(1), N1->getOperand(1)); 2860 AddToWorklist(NewNode.getNode()); 2861 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 2862 &SVN0->getMask()[0]); 2863 } 2864 } 2865 } 2866 2867 return SDValue(); 2868 } 2869 2870 /// This contains all DAGCombine rules which reduce two values combined by 2871 /// an And operation to a single value. This makes them reusable in the context 2872 /// of visitSELECT(). Rules involving constants are not included as 2873 /// visitSELECT() already handles those cases. 2874 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, 2875 SDNode *LocReference) { 2876 EVT VT = N1.getValueType(); 2877 2878 // fold (and x, undef) -> 0 2879 if (N0.isUndef() || N1.isUndef()) 2880 return DAG.getConstant(0, SDLoc(LocReference), VT); 2881 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 2882 SDValue LL, LR, RL, RR, CC0, CC1; 2883 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 2884 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 2885 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 2886 2887 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 2888 LL.getValueType().isInteger()) { 2889 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 2890 if (isNullConstant(LR) && Op1 == ISD::SETEQ) { 2891 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2892 LR.getValueType(), LL, RL); 2893 AddToWorklist(ORNode.getNode()); 2894 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2895 } 2896 if (isAllOnesConstant(LR)) { 2897 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 2898 if (Op1 == ISD::SETEQ) { 2899 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 2900 LR.getValueType(), LL, RL); 2901 AddToWorklist(ANDNode.getNode()); 2902 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 2903 } 2904 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 2905 if (Op1 == ISD::SETGT) { 2906 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2907 LR.getValueType(), LL, RL); 2908 AddToWorklist(ORNode.getNode()); 2909 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2910 } 2911 } 2912 } 2913 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 2914 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 2915 Op0 == Op1 && LL.getValueType().isInteger() && 2916 Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || 2917 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 2918 SDLoc DL(N0); 2919 SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), 2920 LL, DAG.getConstant(1, DL, 2921 LL.getValueType())); 2922 AddToWorklist(ADDNode.getNode()); 2923 return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, 2924 DAG.getConstant(2, DL, LL.getValueType()), 2925 ISD::SETUGE); 2926 } 2927 // canonicalize equivalent to ll == rl 2928 if (LL == RR && LR == RL) { 2929 Op1 = ISD::getSetCCSwappedOperands(Op1); 2930 std::swap(RL, RR); 2931 } 2932 if (LL == RL && LR == RR) { 2933 bool isInteger = LL.getValueType().isInteger(); 2934 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 2935 if (Result != ISD::SETCC_INVALID && 2936 (!LegalOperations || 2937 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 2938 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 2939 EVT CCVT = getSetCCResultType(LL.getValueType()); 2940 if (N0.getValueType() == CCVT || 2941 (!LegalOperations && N0.getValueType() == MVT::i1)) 2942 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 2943 LL, LR, Result); 2944 } 2945 } 2946 } 2947 2948 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 2949 VT.getSizeInBits() <= 64) { 2950 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2951 APInt ADDC = ADDI->getAPIntValue(); 2952 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2953 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 2954 // immediate for an add, but it is legal if its top c2 bits are set, 2955 // transform the ADD so the immediate doesn't need to be materialized 2956 // in a register. 2957 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 2958 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 2959 SRLI->getZExtValue()); 2960 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 2961 ADDC |= Mask; 2962 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2963 SDLoc DL(N0); 2964 SDValue NewAdd = 2965 DAG.getNode(ISD::ADD, DL, VT, 2966 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 2967 CombineTo(N0.getNode(), NewAdd); 2968 // Return N so it doesn't get rechecked! 2969 return SDValue(LocReference, 0); 2970 } 2971 } 2972 } 2973 } 2974 } 2975 } 2976 2977 // Reduce bit extract of low half of an integer to the narrower type. 2978 // (and (srl i64:x, K), KMask) -> 2979 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 2980 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 2981 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 2982 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2983 unsigned Size = VT.getSizeInBits(); 2984 const APInt &AndMask = CAnd->getAPIntValue(); 2985 unsigned ShiftBits = CShift->getZExtValue(); 2986 unsigned MaskBits = AndMask.countTrailingOnes(); 2987 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 2988 2989 if (APIntOps::isMask(AndMask) && 2990 // Required bits must not span the two halves of the integer and 2991 // must fit in the half size type. 2992 (ShiftBits + MaskBits <= Size / 2) && 2993 TLI.isNarrowingProfitable(VT, HalfVT) && 2994 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 2995 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 2996 TLI.isTruncateFree(VT, HalfVT) && 2997 TLI.isZExtFree(HalfVT, VT)) { 2998 // The isNarrowingProfitable is to avoid regressions on PPC and 2999 // AArch64 which match a few 64-bit bit insert / bit extract patterns 3000 // on downstream users of this. Those patterns could probably be 3001 // extended to handle extensions mixed in. 3002 3003 SDValue SL(N0); 3004 assert(ShiftBits != 0 && MaskBits <= Size); 3005 3006 // Extracting the highest bit of the low half. 3007 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 3008 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 3009 N0.getOperand(0)); 3010 3011 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 3012 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 3013 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 3014 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 3015 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 3016 } 3017 } 3018 } 3019 } 3020 3021 return SDValue(); 3022 } 3023 3024 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 3025 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 3026 bool &NarrowLoad) { 3027 uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); 3028 3029 if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue())) 3030 return false; 3031 3032 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 3033 LoadedVT = LoadN->getMemoryVT(); 3034 3035 if (ExtVT == LoadedVT && 3036 (!LegalOperations || 3037 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 3038 // ZEXTLOAD will match without needing to change the size of the value being 3039 // loaded. 3040 NarrowLoad = false; 3041 return true; 3042 } 3043 3044 // Do not change the width of a volatile load. 3045 if (LoadN->isVolatile()) 3046 return false; 3047 3048 // Do not generate loads of non-round integer types since these can 3049 // be expensive (and would be wrong if the type is not byte sized). 3050 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 3051 return false; 3052 3053 if (LegalOperations && 3054 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 3055 return false; 3056 3057 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 3058 return false; 3059 3060 NarrowLoad = true; 3061 return true; 3062 } 3063 3064 SDValue DAGCombiner::visitAND(SDNode *N) { 3065 SDValue N0 = N->getOperand(0); 3066 SDValue N1 = N->getOperand(1); 3067 EVT VT = N1.getValueType(); 3068 3069 // fold vector ops 3070 if (VT.isVector()) { 3071 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3072 return FoldedVOp; 3073 3074 // fold (and x, 0) -> 0, vector edition 3075 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3076 // do not return N0, because undef node may exist in N0 3077 return DAG.getConstant( 3078 APInt::getNullValue( 3079 N0.getValueType().getScalarType().getSizeInBits()), 3080 SDLoc(N), N0.getValueType()); 3081 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3082 // do not return N1, because undef node may exist in N1 3083 return DAG.getConstant( 3084 APInt::getNullValue( 3085 N1.getValueType().getScalarType().getSizeInBits()), 3086 SDLoc(N), N1.getValueType()); 3087 3088 // fold (and x, -1) -> x, vector edition 3089 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3090 return N1; 3091 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3092 return N0; 3093 } 3094 3095 // fold (and c1, c2) -> c1&c2 3096 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3097 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3098 if (N0C && N1C && !N1C->isOpaque()) 3099 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 3100 // canonicalize constant to RHS 3101 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3102 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3103 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 3104 // fold (and x, -1) -> x 3105 if (isAllOnesConstant(N1)) 3106 return N0; 3107 // if (and x, c) is known to be zero, return 0 3108 unsigned BitWidth = VT.getScalarType().getSizeInBits(); 3109 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 3110 APInt::getAllOnesValue(BitWidth))) 3111 return DAG.getConstant(0, SDLoc(N), VT); 3112 // reassociate and 3113 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) 3114 return RAND; 3115 // fold (and (or x, C), D) -> D if (C & D) == D 3116 if (N1C && N0.getOpcode() == ISD::OR) 3117 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 3118 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 3119 return N1; 3120 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 3121 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 3122 SDValue N0Op0 = N0.getOperand(0); 3123 APInt Mask = ~N1C->getAPIntValue(); 3124 Mask = Mask.trunc(N0Op0.getValueSizeInBits()); 3125 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 3126 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 3127 N0.getValueType(), N0Op0); 3128 3129 // Replace uses of the AND with uses of the Zero extend node. 3130 CombineTo(N, Zext); 3131 3132 // We actually want to replace all uses of the any_extend with the 3133 // zero_extend, to avoid duplicating things. This will later cause this 3134 // AND to be folded. 3135 CombineTo(N0.getNode(), Zext); 3136 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3137 } 3138 } 3139 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 3140 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 3141 // already be zero by virtue of the width of the base type of the load. 3142 // 3143 // the 'X' node here can either be nothing or an extract_vector_elt to catch 3144 // more cases. 3145 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3146 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 3147 N0.getOperand(0).getOpcode() == ISD::LOAD && 3148 N0.getOperand(0).getResNo() == 0) || 3149 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 3150 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 3151 N0 : N0.getOperand(0) ); 3152 3153 // Get the constant (if applicable) the zero'th operand is being ANDed with. 3154 // This can be a pure constant or a vector splat, in which case we treat the 3155 // vector as a scalar and use the splat value. 3156 APInt Constant = APInt::getNullValue(1); 3157 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 3158 Constant = C->getAPIntValue(); 3159 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 3160 APInt SplatValue, SplatUndef; 3161 unsigned SplatBitSize; 3162 bool HasAnyUndefs; 3163 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 3164 SplatBitSize, HasAnyUndefs); 3165 if (IsSplat) { 3166 // Undef bits can contribute to a possible optimisation if set, so 3167 // set them. 3168 SplatValue |= SplatUndef; 3169 3170 // The splat value may be something like "0x00FFFFFF", which means 0 for 3171 // the first vector value and FF for the rest, repeating. We need a mask 3172 // that will apply equally to all members of the vector, so AND all the 3173 // lanes of the constant together. 3174 EVT VT = Vector->getValueType(0); 3175 unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); 3176 3177 // If the splat value has been compressed to a bitlength lower 3178 // than the size of the vector lane, we need to re-expand it to 3179 // the lane size. 3180 if (BitWidth > SplatBitSize) 3181 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 3182 SplatBitSize < BitWidth; 3183 SplatBitSize = SplatBitSize * 2) 3184 SplatValue |= SplatValue.shl(SplatBitSize); 3185 3186 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 3187 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 3188 if (SplatBitSize % BitWidth == 0) { 3189 Constant = APInt::getAllOnesValue(BitWidth); 3190 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 3191 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 3192 } 3193 } 3194 } 3195 3196 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 3197 // actually legal and isn't going to get expanded, else this is a false 3198 // optimisation. 3199 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 3200 Load->getValueType(0), 3201 Load->getMemoryVT()); 3202 3203 // Resize the constant to the same size as the original memory access before 3204 // extension. If it is still the AllOnesValue then this AND is completely 3205 // unneeded. 3206 Constant = 3207 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); 3208 3209 bool B; 3210 switch (Load->getExtensionType()) { 3211 default: B = false; break; 3212 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 3213 case ISD::ZEXTLOAD: 3214 case ISD::NON_EXTLOAD: B = true; break; 3215 } 3216 3217 if (B && Constant.isAllOnesValue()) { 3218 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 3219 // preserve semantics once we get rid of the AND. 3220 SDValue NewLoad(Load, 0); 3221 if (Load->getExtensionType() == ISD::EXTLOAD) { 3222 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 3223 Load->getValueType(0), SDLoc(Load), 3224 Load->getChain(), Load->getBasePtr(), 3225 Load->getOffset(), Load->getMemoryVT(), 3226 Load->getMemOperand()); 3227 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 3228 if (Load->getNumValues() == 3) { 3229 // PRE/POST_INC loads have 3 values. 3230 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 3231 NewLoad.getValue(2) }; 3232 CombineTo(Load, To, 3, true); 3233 } else { 3234 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 3235 } 3236 } 3237 3238 // Fold the AND away, taking care not to fold to the old load node if we 3239 // replaced it. 3240 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 3241 3242 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3243 } 3244 } 3245 3246 // fold (and (load x), 255) -> (zextload x, i8) 3247 // fold (and (extload x, i16), 255) -> (zextload x, i8) 3248 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 3249 if (N1C && (N0.getOpcode() == ISD::LOAD || 3250 (N0.getOpcode() == ISD::ANY_EXTEND && 3251 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 3252 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 3253 LoadSDNode *LN0 = HasAnyExt 3254 ? cast<LoadSDNode>(N0.getOperand(0)) 3255 : cast<LoadSDNode>(N0); 3256 if (LN0->getExtensionType() != ISD::SEXTLOAD && 3257 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 3258 auto NarrowLoad = false; 3259 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 3260 EVT ExtVT, LoadedVT; 3261 if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, 3262 NarrowLoad)) { 3263 if (!NarrowLoad) { 3264 SDValue NewLoad = 3265 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3266 LN0->getChain(), LN0->getBasePtr(), ExtVT, 3267 LN0->getMemOperand()); 3268 AddToWorklist(N); 3269 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 3270 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3271 } else { 3272 EVT PtrType = LN0->getOperand(1).getValueType(); 3273 3274 unsigned Alignment = LN0->getAlignment(); 3275 SDValue NewPtr = LN0->getBasePtr(); 3276 3277 // For big endian targets, we need to add an offset to the pointer 3278 // to load the correct bytes. For little endian systems, we merely 3279 // need to read fewer bytes from the same pointer. 3280 if (DAG.getDataLayout().isBigEndian()) { 3281 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 3282 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 3283 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 3284 SDLoc DL(LN0); 3285 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, 3286 NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); 3287 Alignment = MinAlign(Alignment, PtrOff); 3288 } 3289 3290 AddToWorklist(NewPtr.getNode()); 3291 3292 SDValue Load = 3293 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3294 LN0->getChain(), NewPtr, 3295 LN0->getPointerInfo(), 3296 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 3297 LN0->isInvariant(), Alignment, LN0->getAAInfo()); 3298 AddToWorklist(N); 3299 CombineTo(LN0, Load, Load.getValue(1)); 3300 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3301 } 3302 } 3303 } 3304 } 3305 3306 if (SDValue Combined = visitANDLike(N0, N1, N)) 3307 return Combined; 3308 3309 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 3310 if (N0.getOpcode() == N1.getOpcode()) 3311 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3312 return Tmp; 3313 3314 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 3315 // fold (and (sra)) -> (and (srl)) when possible. 3316 if (!VT.isVector() && 3317 SimplifyDemandedBits(SDValue(N, 0))) 3318 return SDValue(N, 0); 3319 3320 // fold (zext_inreg (extload x)) -> (zextload x) 3321 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 3322 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3323 EVT MemVT = LN0->getMemoryVT(); 3324 // If we zero all the possible extended bits, then we can turn this into 3325 // a zextload if we are running before legalize or the operation is legal. 3326 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3327 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3328 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3329 ((!LegalOperations && !LN0->isVolatile()) || 3330 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3331 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3332 LN0->getChain(), LN0->getBasePtr(), 3333 MemVT, LN0->getMemOperand()); 3334 AddToWorklist(N); 3335 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3336 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3337 } 3338 } 3339 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 3340 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 3341 N0.hasOneUse()) { 3342 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3343 EVT MemVT = LN0->getMemoryVT(); 3344 // If we zero all the possible extended bits, then we can turn this into 3345 // a zextload if we are running before legalize or the operation is legal. 3346 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3347 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3348 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3349 ((!LegalOperations && !LN0->isVolatile()) || 3350 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3351 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3352 LN0->getChain(), LN0->getBasePtr(), 3353 MemVT, LN0->getMemOperand()); 3354 AddToWorklist(N); 3355 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3356 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3357 } 3358 } 3359 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 3360 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 3361 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 3362 N0.getOperand(1), false)) 3363 return BSwap; 3364 } 3365 3366 return SDValue(); 3367 } 3368 3369 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 3370 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 3371 bool DemandHighBits) { 3372 if (!LegalOperations) 3373 return SDValue(); 3374 3375 EVT VT = N->getValueType(0); 3376 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 3377 return SDValue(); 3378 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3379 return SDValue(); 3380 3381 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 3382 bool LookPassAnd0 = false; 3383 bool LookPassAnd1 = false; 3384 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 3385 std::swap(N0, N1); 3386 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 3387 std::swap(N0, N1); 3388 if (N0.getOpcode() == ISD::AND) { 3389 if (!N0.getNode()->hasOneUse()) 3390 return SDValue(); 3391 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3392 if (!N01C || N01C->getZExtValue() != 0xFF00) 3393 return SDValue(); 3394 N0 = N0.getOperand(0); 3395 LookPassAnd0 = true; 3396 } 3397 3398 if (N1.getOpcode() == ISD::AND) { 3399 if (!N1.getNode()->hasOneUse()) 3400 return SDValue(); 3401 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3402 if (!N11C || N11C->getZExtValue() != 0xFF) 3403 return SDValue(); 3404 N1 = N1.getOperand(0); 3405 LookPassAnd1 = true; 3406 } 3407 3408 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 3409 std::swap(N0, N1); 3410 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 3411 return SDValue(); 3412 if (!N0.getNode()->hasOneUse() || 3413 !N1.getNode()->hasOneUse()) 3414 return SDValue(); 3415 3416 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3417 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3418 if (!N01C || !N11C) 3419 return SDValue(); 3420 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 3421 return SDValue(); 3422 3423 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 3424 SDValue N00 = N0->getOperand(0); 3425 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 3426 if (!N00.getNode()->hasOneUse()) 3427 return SDValue(); 3428 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 3429 if (!N001C || N001C->getZExtValue() != 0xFF) 3430 return SDValue(); 3431 N00 = N00.getOperand(0); 3432 LookPassAnd0 = true; 3433 } 3434 3435 SDValue N10 = N1->getOperand(0); 3436 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 3437 if (!N10.getNode()->hasOneUse()) 3438 return SDValue(); 3439 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 3440 if (!N101C || N101C->getZExtValue() != 0xFF00) 3441 return SDValue(); 3442 N10 = N10.getOperand(0); 3443 LookPassAnd1 = true; 3444 } 3445 3446 if (N00 != N10) 3447 return SDValue(); 3448 3449 // Make sure everything beyond the low halfword gets set to zero since the SRL 3450 // 16 will clear the top bits. 3451 unsigned OpSizeInBits = VT.getSizeInBits(); 3452 if (DemandHighBits && OpSizeInBits > 16) { 3453 // If the left-shift isn't masked out then the only way this is a bswap is 3454 // if all bits beyond the low 8 are 0. In that case the entire pattern 3455 // reduces to a left shift anyway: leave it for other parts of the combiner. 3456 if (!LookPassAnd0) 3457 return SDValue(); 3458 3459 // However, if the right shift isn't masked out then it might be because 3460 // it's not needed. See if we can spot that too. 3461 if (!LookPassAnd1 && 3462 !DAG.MaskedValueIsZero( 3463 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 3464 return SDValue(); 3465 } 3466 3467 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 3468 if (OpSizeInBits > 16) { 3469 SDLoc DL(N); 3470 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 3471 DAG.getConstant(OpSizeInBits - 16, DL, 3472 getShiftAmountTy(VT))); 3473 } 3474 return Res; 3475 } 3476 3477 /// Return true if the specified node is an element that makes up a 32-bit 3478 /// packed halfword byteswap. 3479 /// ((x & 0x000000ff) << 8) | 3480 /// ((x & 0x0000ff00) >> 8) | 3481 /// ((x & 0x00ff0000) << 8) | 3482 /// ((x & 0xff000000) >> 8) 3483 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 3484 if (!N.getNode()->hasOneUse()) 3485 return false; 3486 3487 unsigned Opc = N.getOpcode(); 3488 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 3489 return false; 3490 3491 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3492 if (!N1C) 3493 return false; 3494 3495 unsigned Num; 3496 switch (N1C->getZExtValue()) { 3497 default: 3498 return false; 3499 case 0xFF: Num = 0; break; 3500 case 0xFF00: Num = 1; break; 3501 case 0xFF0000: Num = 2; break; 3502 case 0xFF000000: Num = 3; break; 3503 } 3504 3505 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 3506 SDValue N0 = N.getOperand(0); 3507 if (Opc == ISD::AND) { 3508 if (Num == 0 || Num == 2) { 3509 // (x >> 8) & 0xff 3510 // (x >> 8) & 0xff0000 3511 if (N0.getOpcode() != ISD::SRL) 3512 return false; 3513 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3514 if (!C || C->getZExtValue() != 8) 3515 return false; 3516 } else { 3517 // (x << 8) & 0xff00 3518 // (x << 8) & 0xff000000 3519 if (N0.getOpcode() != ISD::SHL) 3520 return false; 3521 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3522 if (!C || C->getZExtValue() != 8) 3523 return false; 3524 } 3525 } else if (Opc == ISD::SHL) { 3526 // (x & 0xff) << 8 3527 // (x & 0xff0000) << 8 3528 if (Num != 0 && Num != 2) 3529 return false; 3530 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3531 if (!C || C->getZExtValue() != 8) 3532 return false; 3533 } else { // Opc == ISD::SRL 3534 // (x & 0xff00) >> 8 3535 // (x & 0xff000000) >> 8 3536 if (Num != 1 && Num != 3) 3537 return false; 3538 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3539 if (!C || C->getZExtValue() != 8) 3540 return false; 3541 } 3542 3543 if (Parts[Num]) 3544 return false; 3545 3546 Parts[Num] = N0.getOperand(0).getNode(); 3547 return true; 3548 } 3549 3550 /// Match a 32-bit packed halfword bswap. That is 3551 /// ((x & 0x000000ff) << 8) | 3552 /// ((x & 0x0000ff00) >> 8) | 3553 /// ((x & 0x00ff0000) << 8) | 3554 /// ((x & 0xff000000) >> 8) 3555 /// => (rotl (bswap x), 16) 3556 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 3557 if (!LegalOperations) 3558 return SDValue(); 3559 3560 EVT VT = N->getValueType(0); 3561 if (VT != MVT::i32) 3562 return SDValue(); 3563 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3564 return SDValue(); 3565 3566 // Look for either 3567 // (or (or (and), (and)), (or (and), (and))) 3568 // (or (or (or (and), (and)), (and)), (and)) 3569 if (N0.getOpcode() != ISD::OR) 3570 return SDValue(); 3571 SDValue N00 = N0.getOperand(0); 3572 SDValue N01 = N0.getOperand(1); 3573 SDNode *Parts[4] = {}; 3574 3575 if (N1.getOpcode() == ISD::OR && 3576 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 3577 // (or (or (and), (and)), (or (and), (and))) 3578 SDValue N000 = N00.getOperand(0); 3579 if (!isBSwapHWordElement(N000, Parts)) 3580 return SDValue(); 3581 3582 SDValue N001 = N00.getOperand(1); 3583 if (!isBSwapHWordElement(N001, Parts)) 3584 return SDValue(); 3585 SDValue N010 = N01.getOperand(0); 3586 if (!isBSwapHWordElement(N010, Parts)) 3587 return SDValue(); 3588 SDValue N011 = N01.getOperand(1); 3589 if (!isBSwapHWordElement(N011, Parts)) 3590 return SDValue(); 3591 } else { 3592 // (or (or (or (and), (and)), (and)), (and)) 3593 if (!isBSwapHWordElement(N1, Parts)) 3594 return SDValue(); 3595 if (!isBSwapHWordElement(N01, Parts)) 3596 return SDValue(); 3597 if (N00.getOpcode() != ISD::OR) 3598 return SDValue(); 3599 SDValue N000 = N00.getOperand(0); 3600 if (!isBSwapHWordElement(N000, Parts)) 3601 return SDValue(); 3602 SDValue N001 = N00.getOperand(1); 3603 if (!isBSwapHWordElement(N001, Parts)) 3604 return SDValue(); 3605 } 3606 3607 // Make sure the parts are all coming from the same node. 3608 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 3609 return SDValue(); 3610 3611 SDLoc DL(N); 3612 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 3613 SDValue(Parts[0], 0)); 3614 3615 // Result of the bswap should be rotated by 16. If it's not legal, then 3616 // do (x << 16) | (x >> 16). 3617 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 3618 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 3619 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 3620 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 3621 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 3622 return DAG.getNode(ISD::OR, DL, VT, 3623 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 3624 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 3625 } 3626 3627 /// This contains all DAGCombine rules which reduce two values combined by 3628 /// an Or operation to a single value \see visitANDLike(). 3629 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { 3630 EVT VT = N1.getValueType(); 3631 // fold (or x, undef) -> -1 3632 if (!LegalOperations && 3633 (N0.isUndef() || N1.isUndef())) { 3634 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 3635 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), 3636 SDLoc(LocReference), VT); 3637 } 3638 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 3639 SDValue LL, LR, RL, RR, CC0, CC1; 3640 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 3641 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 3642 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 3643 3644 if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { 3645 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 3646 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 3647 if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 3648 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 3649 LR.getValueType(), LL, RL); 3650 AddToWorklist(ORNode.getNode()); 3651 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 3652 } 3653 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 3654 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 3655 if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 3656 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 3657 LR.getValueType(), LL, RL); 3658 AddToWorklist(ANDNode.getNode()); 3659 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 3660 } 3661 } 3662 // canonicalize equivalent to ll == rl 3663 if (LL == RR && LR == RL) { 3664 Op1 = ISD::getSetCCSwappedOperands(Op1); 3665 std::swap(RL, RR); 3666 } 3667 if (LL == RL && LR == RR) { 3668 bool isInteger = LL.getValueType().isInteger(); 3669 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 3670 if (Result != ISD::SETCC_INVALID && 3671 (!LegalOperations || 3672 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3673 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3674 EVT CCVT = getSetCCResultType(LL.getValueType()); 3675 if (N0.getValueType() == CCVT || 3676 (!LegalOperations && N0.getValueType() == MVT::i1)) 3677 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3678 LL, LR, Result); 3679 } 3680 } 3681 } 3682 3683 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 3684 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 3685 // Don't increase # computations. 3686 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3687 // We can only do this xform if we know that bits from X that are set in C2 3688 // but not in C1 are already zero. Likewise for Y. 3689 if (const ConstantSDNode *N0O1C = 3690 getAsNonOpaqueConstant(N0.getOperand(1))) { 3691 if (const ConstantSDNode *N1O1C = 3692 getAsNonOpaqueConstant(N1.getOperand(1))) { 3693 // We can only do this xform if we know that bits from X that are set in 3694 // C2 but not in C1 are already zero. Likewise for Y. 3695 const APInt &LHSMask = N0O1C->getAPIntValue(); 3696 const APInt &RHSMask = N1O1C->getAPIntValue(); 3697 3698 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 3699 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 3700 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3701 N0.getOperand(0), N1.getOperand(0)); 3702 SDLoc DL(LocReference); 3703 return DAG.getNode(ISD::AND, DL, VT, X, 3704 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 3705 } 3706 } 3707 } 3708 } 3709 3710 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 3711 if (N0.getOpcode() == ISD::AND && 3712 N1.getOpcode() == ISD::AND && 3713 N0.getOperand(0) == N1.getOperand(0) && 3714 // Don't increase # computations. 3715 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3716 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3717 N0.getOperand(1), N1.getOperand(1)); 3718 return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); 3719 } 3720 3721 return SDValue(); 3722 } 3723 3724 SDValue DAGCombiner::visitOR(SDNode *N) { 3725 SDValue N0 = N->getOperand(0); 3726 SDValue N1 = N->getOperand(1); 3727 EVT VT = N1.getValueType(); 3728 3729 // fold vector ops 3730 if (VT.isVector()) { 3731 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3732 return FoldedVOp; 3733 3734 // fold (or x, 0) -> x, vector edition 3735 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3736 return N1; 3737 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3738 return N0; 3739 3740 // fold (or x, -1) -> -1, vector edition 3741 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3742 // do not return N0, because undef node may exist in N0 3743 return DAG.getConstant( 3744 APInt::getAllOnesValue( 3745 N0.getValueType().getScalarType().getSizeInBits()), 3746 SDLoc(N), N0.getValueType()); 3747 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3748 // do not return N1, because undef node may exist in N1 3749 return DAG.getConstant( 3750 APInt::getAllOnesValue( 3751 N1.getValueType().getScalarType().getSizeInBits()), 3752 SDLoc(N), N1.getValueType()); 3753 3754 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1) 3755 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2) 3756 // Do this only if the resulting shuffle is legal. 3757 if (isa<ShuffleVectorSDNode>(N0) && 3758 isa<ShuffleVectorSDNode>(N1) && 3759 // Avoid folding a node with illegal type. 3760 TLI.isTypeLegal(VT) && 3761 N0->getOperand(1) == N1->getOperand(1) && 3762 ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) { 3763 bool CanFold = true; 3764 unsigned NumElts = VT.getVectorNumElements(); 3765 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 3766 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 3767 // We construct two shuffle masks: 3768 // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand 3769 // and N1 as the second operand. 3770 // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand 3771 // and N0 as the second operand. 3772 // We do this because OR is commutable and therefore there might be 3773 // two ways to fold this node into a shuffle. 3774 SmallVector<int,4> Mask1; 3775 SmallVector<int,4> Mask2; 3776 3777 for (unsigned i = 0; i != NumElts && CanFold; ++i) { 3778 int M0 = SV0->getMaskElt(i); 3779 int M1 = SV1->getMaskElt(i); 3780 3781 // Both shuffle indexes are undef. Propagate Undef. 3782 if (M0 < 0 && M1 < 0) { 3783 Mask1.push_back(M0); 3784 Mask2.push_back(M0); 3785 continue; 3786 } 3787 3788 if (M0 < 0 || M1 < 0 || 3789 (M0 < (int)NumElts && M1 < (int)NumElts) || 3790 (M0 >= (int)NumElts && M1 >= (int)NumElts)) { 3791 CanFold = false; 3792 break; 3793 } 3794 3795 Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts); 3796 Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts); 3797 } 3798 3799 if (CanFold) { 3800 // Fold this sequence only if the resulting shuffle is 'legal'. 3801 if (TLI.isShuffleMaskLegal(Mask1, VT)) 3802 return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), 3803 N1->getOperand(0), &Mask1[0]); 3804 if (TLI.isShuffleMaskLegal(Mask2, VT)) 3805 return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0), 3806 N0->getOperand(0), &Mask2[0]); 3807 } 3808 } 3809 } 3810 3811 // fold (or c1, c2) -> c1|c2 3812 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3813 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3814 if (N0C && N1C && !N1C->isOpaque()) 3815 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 3816 // canonicalize constant to RHS 3817 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3818 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3819 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 3820 // fold (or x, 0) -> x 3821 if (isNullConstant(N1)) 3822 return N0; 3823 // fold (or x, -1) -> -1 3824 if (isAllOnesConstant(N1)) 3825 return N1; 3826 // fold (or x, c) -> c iff (x & ~c) == 0 3827 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 3828 return N1; 3829 3830 if (SDValue Combined = visitORLike(N0, N1, N)) 3831 return Combined; 3832 3833 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 3834 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 3835 return BSwap; 3836 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 3837 return BSwap; 3838 3839 // reassociate or 3840 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) 3841 return ROR; 3842 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 3843 // iff (c1 & c2) == 0. 3844 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 3845 isa<ConstantSDNode>(N0.getOperand(1))) { 3846 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 3847 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 3848 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 3849 N1C, C1)) 3850 return DAG.getNode( 3851 ISD::AND, SDLoc(N), VT, 3852 DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); 3853 return SDValue(); 3854 } 3855 } 3856 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 3857 if (N0.getOpcode() == N1.getOpcode()) 3858 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3859 return Tmp; 3860 3861 // See if this is some rotate idiom. 3862 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 3863 return SDValue(Rot, 0); 3864 3865 // Simplify the operands using demanded-bits information. 3866 if (!VT.isVector() && 3867 SimplifyDemandedBits(SDValue(N, 0))) 3868 return SDValue(N, 0); 3869 3870 return SDValue(); 3871 } 3872 3873 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 3874 bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 3875 if (Op.getOpcode() == ISD::AND) { 3876 if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 3877 Mask = Op.getOperand(1); 3878 Op = Op.getOperand(0); 3879 } else { 3880 return false; 3881 } 3882 } 3883 3884 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 3885 Shift = Op; 3886 return true; 3887 } 3888 3889 return false; 3890 } 3891 3892 // Return true if we can prove that, whenever Neg and Pos are both in the 3893 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 3894 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 3895 // 3896 // (or (shift1 X, Neg), (shift2 X, Pos)) 3897 // 3898 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 3899 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 3900 // to consider shift amounts with defined behavior. 3901 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { 3902 // If EltSize is a power of 2 then: 3903 // 3904 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 3905 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 3906 // 3907 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 3908 // for the stronger condition: 3909 // 3910 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 3911 // 3912 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 3913 // we can just replace Neg with Neg' for the rest of the function. 3914 // 3915 // In other cases we check for the even stronger condition: 3916 // 3917 // Neg == EltSize - Pos [B] 3918 // 3919 // for all Neg and Pos. Note that the (or ...) then invokes undefined 3920 // behavior if Pos == 0 (and consequently Neg == EltSize). 3921 // 3922 // We could actually use [A] whenever EltSize is a power of 2, but the 3923 // only extra cases that it would match are those uninteresting ones 3924 // where Neg and Pos are never in range at the same time. E.g. for 3925 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 3926 // as well as (sub 32, Pos), but: 3927 // 3928 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 3929 // 3930 // always invokes undefined behavior for 32-bit X. 3931 // 3932 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 3933 unsigned MaskLoBits = 0; 3934 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 3935 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 3936 if (NegC->getAPIntValue() == EltSize - 1) { 3937 Neg = Neg.getOperand(0); 3938 MaskLoBits = Log2_64(EltSize); 3939 } 3940 } 3941 } 3942 3943 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 3944 if (Neg.getOpcode() != ISD::SUB) 3945 return false; 3946 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 3947 if (!NegC) 3948 return false; 3949 SDValue NegOp1 = Neg.getOperand(1); 3950 3951 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 3952 // Pos'. The truncation is redundant for the purpose of the equality. 3953 if (MaskLoBits && Pos.getOpcode() == ISD::AND) 3954 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 3955 if (PosC->getAPIntValue() == EltSize - 1) 3956 Pos = Pos.getOperand(0); 3957 3958 // The condition we need is now: 3959 // 3960 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 3961 // 3962 // If NegOp1 == Pos then we need: 3963 // 3964 // EltSize & Mask == NegC & Mask 3965 // 3966 // (because "x & Mask" is a truncation and distributes through subtraction). 3967 APInt Width; 3968 if (Pos == NegOp1) 3969 Width = NegC->getAPIntValue(); 3970 3971 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 3972 // Then the condition we want to prove becomes: 3973 // 3974 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 3975 // 3976 // which, again because "x & Mask" is a truncation, becomes: 3977 // 3978 // NegC & Mask == (EltSize - PosC) & Mask 3979 // EltSize & Mask == (NegC + PosC) & Mask 3980 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 3981 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 3982 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 3983 else 3984 return false; 3985 } else 3986 return false; 3987 3988 // Now we just need to check that EltSize & Mask == Width & Mask. 3989 if (MaskLoBits) 3990 // EltSize & Mask is 0 since Mask is EltSize - 1. 3991 return Width.getLoBits(MaskLoBits) == 0; 3992 return Width == EltSize; 3993 } 3994 3995 // A subroutine of MatchRotate used once we have found an OR of two opposite 3996 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 3997 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 3998 // former being preferred if supported. InnerPos and InnerNeg are Pos and 3999 // Neg with outer conversions stripped away. 4000 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 4001 SDValue Neg, SDValue InnerPos, 4002 SDValue InnerNeg, unsigned PosOpcode, 4003 unsigned NegOpcode, SDLoc DL) { 4004 // fold (or (shl x, (*ext y)), 4005 // (srl x, (*ext (sub 32, y)))) -> 4006 // (rotl x, y) or (rotr x, (sub 32, y)) 4007 // 4008 // fold (or (shl x, (*ext (sub 32, y))), 4009 // (srl x, (*ext y))) -> 4010 // (rotr x, y) or (rotl x, (sub 32, y)) 4011 EVT VT = Shifted.getValueType(); 4012 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { 4013 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 4014 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 4015 HasPos ? Pos : Neg).getNode(); 4016 } 4017 4018 return nullptr; 4019 } 4020 4021 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 4022 // idioms for rotate, and if the target supports rotation instructions, generate 4023 // a rot[lr]. 4024 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) { 4025 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 4026 EVT VT = LHS.getValueType(); 4027 if (!TLI.isTypeLegal(VT)) return nullptr; 4028 4029 // The target must have at least one rotate flavor. 4030 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 4031 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 4032 if (!HasROTL && !HasROTR) return nullptr; 4033 4034 // Match "(X shl/srl V1) & V2" where V2 may not be present. 4035 SDValue LHSShift; // The shift. 4036 SDValue LHSMask; // AND value if any. 4037 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 4038 return nullptr; // Not part of a rotate. 4039 4040 SDValue RHSShift; // The shift. 4041 SDValue RHSMask; // AND value if any. 4042 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 4043 return nullptr; // Not part of a rotate. 4044 4045 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 4046 return nullptr; // Not shifting the same value. 4047 4048 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 4049 return nullptr; // Shifts must disagree. 4050 4051 // Canonicalize shl to left side in a shl/srl pair. 4052 if (RHSShift.getOpcode() == ISD::SHL) { 4053 std::swap(LHS, RHS); 4054 std::swap(LHSShift, RHSShift); 4055 std::swap(LHSMask, RHSMask); 4056 } 4057 4058 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4059 SDValue LHSShiftArg = LHSShift.getOperand(0); 4060 SDValue LHSShiftAmt = LHSShift.getOperand(1); 4061 SDValue RHSShiftArg = RHSShift.getOperand(0); 4062 SDValue RHSShiftAmt = RHSShift.getOperand(1); 4063 4064 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 4065 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 4066 if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { 4067 uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); 4068 uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); 4069 if ((LShVal + RShVal) != EltSizeInBits) 4070 return nullptr; 4071 4072 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 4073 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 4074 4075 // If there is an AND of either shifted operand, apply it to the result. 4076 if (LHSMask.getNode() || RHSMask.getNode()) { 4077 APInt AllBits = APInt::getAllOnesValue(EltSizeInBits); 4078 SDValue Mask = DAG.getConstant(AllBits, DL, VT); 4079 4080 if (LHSMask.getNode()) { 4081 APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); 4082 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4083 DAG.getNode(ISD::OR, DL, VT, LHSMask, 4084 DAG.getConstant(RHSBits, DL, VT))); 4085 } 4086 if (RHSMask.getNode()) { 4087 APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); 4088 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4089 DAG.getNode(ISD::OR, DL, VT, RHSMask, 4090 DAG.getConstant(LHSBits, DL, VT))); 4091 } 4092 4093 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); 4094 } 4095 4096 return Rot.getNode(); 4097 } 4098 4099 // If there is a mask here, and we have a variable shift, we can't be sure 4100 // that we're masking out the right stuff. 4101 if (LHSMask.getNode() || RHSMask.getNode()) 4102 return nullptr; 4103 4104 // If the shift amount is sign/zext/any-extended just peel it off. 4105 SDValue LExtOp0 = LHSShiftAmt; 4106 SDValue RExtOp0 = RHSShiftAmt; 4107 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4108 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4109 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4110 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 4111 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4112 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4113 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4114 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 4115 LExtOp0 = LHSShiftAmt.getOperand(0); 4116 RExtOp0 = RHSShiftAmt.getOperand(0); 4117 } 4118 4119 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 4120 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 4121 if (TryL) 4122 return TryL; 4123 4124 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 4125 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 4126 if (TryR) 4127 return TryR; 4128 4129 return nullptr; 4130 } 4131 4132 SDValue DAGCombiner::visitXOR(SDNode *N) { 4133 SDValue N0 = N->getOperand(0); 4134 SDValue N1 = N->getOperand(1); 4135 EVT VT = N0.getValueType(); 4136 4137 // fold vector ops 4138 if (VT.isVector()) { 4139 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4140 return FoldedVOp; 4141 4142 // fold (xor x, 0) -> x, vector edition 4143 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4144 return N1; 4145 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4146 return N0; 4147 } 4148 4149 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 4150 if (N0.isUndef() && N1.isUndef()) 4151 return DAG.getConstant(0, SDLoc(N), VT); 4152 // fold (xor x, undef) -> undef 4153 if (N0.isUndef()) 4154 return N0; 4155 if (N1.isUndef()) 4156 return N1; 4157 // fold (xor c1, c2) -> c1^c2 4158 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4159 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4160 if (N0C && N1C) 4161 return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); 4162 // canonicalize constant to RHS 4163 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4164 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4165 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 4166 // fold (xor x, 0) -> x 4167 if (isNullConstant(N1)) 4168 return N0; 4169 // reassociate xor 4170 if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) 4171 return RXOR; 4172 4173 // fold !(x cc y) -> (x !cc y) 4174 SDValue LHS, RHS, CC; 4175 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 4176 bool isInt = LHS.getValueType().isInteger(); 4177 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 4178 isInt); 4179 4180 if (!LegalOperations || 4181 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 4182 switch (N0.getOpcode()) { 4183 default: 4184 llvm_unreachable("Unhandled SetCC Equivalent!"); 4185 case ISD::SETCC: 4186 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 4187 case ISD::SELECT_CC: 4188 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 4189 N0.getOperand(3), NotCC); 4190 } 4191 } 4192 } 4193 4194 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 4195 if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && 4196 N0.getNode()->hasOneUse() && 4197 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 4198 SDValue V = N0.getOperand(0); 4199 SDLoc DL(N0); 4200 V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, 4201 DAG.getConstant(1, DL, V.getValueType())); 4202 AddToWorklist(V.getNode()); 4203 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 4204 } 4205 4206 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 4207 if (isOneConstant(N1) && VT == MVT::i1 && 4208 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4209 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4210 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 4211 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4212 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4213 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4214 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4215 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4216 } 4217 } 4218 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 4219 if (isAllOnesConstant(N1) && 4220 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4221 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4222 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 4223 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4224 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4225 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4226 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4227 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4228 } 4229 } 4230 // fold (xor (and x, y), y) -> (and (not x), y) 4231 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 4232 N0->getOperand(1) == N1) { 4233 SDValue X = N0->getOperand(0); 4234 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 4235 AddToWorklist(NotX.getNode()); 4236 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 4237 } 4238 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 4239 if (N1C && N0.getOpcode() == ISD::XOR) { 4240 if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { 4241 SDLoc DL(N); 4242 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 4243 DAG.getConstant(N1C->getAPIntValue() ^ 4244 N00C->getAPIntValue(), DL, VT)); 4245 } 4246 if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { 4247 SDLoc DL(N); 4248 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 4249 DAG.getConstant(N1C->getAPIntValue() ^ 4250 N01C->getAPIntValue(), DL, VT)); 4251 } 4252 } 4253 // fold (xor x, x) -> 0 4254 if (N0 == N1) 4255 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 4256 4257 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 4258 // Here is a concrete example of this equivalence: 4259 // i16 x == 14 4260 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 4261 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 4262 // 4263 // => 4264 // 4265 // i16 ~1 == 0b1111111111111110 4266 // i16 rol(~1, 14) == 0b1011111111111111 4267 // 4268 // Some additional tips to help conceptualize this transform: 4269 // - Try to see the operation as placing a single zero in a value of all ones. 4270 // - There exists no value for x which would allow the result to contain zero. 4271 // - Values of x larger than the bitwidth are undefined and do not require a 4272 // consistent result. 4273 // - Pushing the zero left requires shifting one bits in from the right. 4274 // A rotate left of ~1 is a nice way of achieving the desired result. 4275 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL 4276 && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 4277 SDLoc DL(N); 4278 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 4279 N0.getOperand(1)); 4280 } 4281 4282 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 4283 if (N0.getOpcode() == N1.getOpcode()) 4284 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 4285 return Tmp; 4286 4287 // Simplify the expression using non-local knowledge. 4288 if (!VT.isVector() && 4289 SimplifyDemandedBits(SDValue(N, 0))) 4290 return SDValue(N, 0); 4291 4292 return SDValue(); 4293 } 4294 4295 /// Handle transforms common to the three shifts, when the shift amount is a 4296 /// constant. 4297 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 4298 SDNode *LHS = N->getOperand(0).getNode(); 4299 if (!LHS->hasOneUse()) return SDValue(); 4300 4301 // We want to pull some binops through shifts, so that we have (and (shift)) 4302 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 4303 // thing happens with address calculations, so it's important to canonicalize 4304 // it. 4305 bool HighBitSet = false; // Can we transform this if the high bit is set? 4306 4307 switch (LHS->getOpcode()) { 4308 default: return SDValue(); 4309 case ISD::OR: 4310 case ISD::XOR: 4311 HighBitSet = false; // We can only transform sra if the high bit is clear. 4312 break; 4313 case ISD::AND: 4314 HighBitSet = true; // We can only transform sra if the high bit is set. 4315 break; 4316 case ISD::ADD: 4317 if (N->getOpcode() != ISD::SHL) 4318 return SDValue(); // only shl(add) not sr[al](add). 4319 HighBitSet = false; // We can only transform sra if the high bit is clear. 4320 break; 4321 } 4322 4323 // We require the RHS of the binop to be a constant and not opaque as well. 4324 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 4325 if (!BinOpCst) return SDValue(); 4326 4327 // FIXME: disable this unless the input to the binop is a shift by a constant. 4328 // If it is not a shift, it pessimizes some common cases like: 4329 // 4330 // void foo(int *X, int i) { X[i & 1235] = 1; } 4331 // int bar(int *X, int i) { return X[i & 255]; } 4332 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 4333 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 4334 BinOpLHSVal->getOpcode() != ISD::SRA && 4335 BinOpLHSVal->getOpcode() != ISD::SRL) || 4336 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 4337 return SDValue(); 4338 4339 EVT VT = N->getValueType(0); 4340 4341 // If this is a signed shift right, and the high bit is modified by the 4342 // logical operation, do not perform the transformation. The highBitSet 4343 // boolean indicates the value of the high bit of the constant which would 4344 // cause it to be modified for this operation. 4345 if (N->getOpcode() == ISD::SRA) { 4346 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 4347 if (BinOpRHSSignSet != HighBitSet) 4348 return SDValue(); 4349 } 4350 4351 if (!TLI.isDesirableToCommuteWithShift(LHS)) 4352 return SDValue(); 4353 4354 // Fold the constants, shifting the binop RHS by the shift amount. 4355 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 4356 N->getValueType(0), 4357 LHS->getOperand(1), N->getOperand(1)); 4358 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 4359 4360 // Create the new shift. 4361 SDValue NewShift = DAG.getNode(N->getOpcode(), 4362 SDLoc(LHS->getOperand(0)), 4363 VT, LHS->getOperand(0), N->getOperand(1)); 4364 4365 // Create the new binop. 4366 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 4367 } 4368 4369 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 4370 assert(N->getOpcode() == ISD::TRUNCATE); 4371 assert(N->getOperand(0).getOpcode() == ISD::AND); 4372 4373 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 4374 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 4375 SDValue N01 = N->getOperand(0).getOperand(1); 4376 4377 if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { 4378 if (!N01C->isOpaque()) { 4379 EVT TruncVT = N->getValueType(0); 4380 SDValue N00 = N->getOperand(0).getOperand(0); 4381 APInt TruncC = N01C->getAPIntValue(); 4382 TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); 4383 SDLoc DL(N); 4384 4385 return DAG.getNode(ISD::AND, DL, TruncVT, 4386 DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), 4387 DAG.getConstant(TruncC, DL, TruncVT)); 4388 } 4389 } 4390 } 4391 4392 return SDValue(); 4393 } 4394 4395 SDValue DAGCombiner::visitRotate(SDNode *N) { 4396 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 4397 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 4398 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 4399 if (SDValue NewOp1 = 4400 distributeTruncateThroughAnd(N->getOperand(1).getNode())) 4401 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 4402 N->getOperand(0), NewOp1); 4403 } 4404 return SDValue(); 4405 } 4406 4407 SDValue DAGCombiner::visitSHL(SDNode *N) { 4408 SDValue N0 = N->getOperand(0); 4409 SDValue N1 = N->getOperand(1); 4410 EVT VT = N0.getValueType(); 4411 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4412 4413 // fold vector ops 4414 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4415 if (VT.isVector()) { 4416 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4417 return FoldedVOp; 4418 4419 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 4420 // If setcc produces all-one true value then: 4421 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 4422 if (N1CV && N1CV->isConstant()) { 4423 if (N0.getOpcode() == ISD::AND) { 4424 SDValue N00 = N0->getOperand(0); 4425 SDValue N01 = N0->getOperand(1); 4426 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 4427 4428 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 4429 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 4430 TargetLowering::ZeroOrNegativeOneBooleanContent) { 4431 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 4432 N01CV, N1CV)) 4433 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 4434 } 4435 } else { 4436 N1C = isConstOrConstSplat(N1); 4437 } 4438 } 4439 } 4440 4441 // fold (shl c1, c2) -> c1<<c2 4442 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4443 if (N0C && N1C && !N1C->isOpaque()) 4444 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 4445 // fold (shl 0, x) -> 0 4446 if (isNullConstant(N0)) 4447 return N0; 4448 // fold (shl x, c >= size(x)) -> undef 4449 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4450 return DAG.getUNDEF(VT); 4451 // fold (shl x, 0) -> x 4452 if (N1C && N1C->isNullValue()) 4453 return N0; 4454 // fold (shl undef, x) -> 0 4455 if (N0.isUndef()) 4456 return DAG.getConstant(0, SDLoc(N), VT); 4457 // if (shl x, c) is known to be zero, return 0 4458 if (DAG.MaskedValueIsZero(SDValue(N, 0), 4459 APInt::getAllOnesValue(OpSizeInBits))) 4460 return DAG.getConstant(0, SDLoc(N), VT); 4461 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 4462 if (N1.getOpcode() == ISD::TRUNCATE && 4463 N1.getOperand(0).getOpcode() == ISD::AND) { 4464 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4465 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 4466 } 4467 4468 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4469 return SDValue(N, 0); 4470 4471 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 4472 if (N1C && N0.getOpcode() == ISD::SHL) { 4473 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4474 uint64_t c1 = N0C1->getZExtValue(); 4475 uint64_t c2 = N1C->getZExtValue(); 4476 SDLoc DL(N); 4477 if (c1 + c2 >= OpSizeInBits) 4478 return DAG.getConstant(0, DL, VT); 4479 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4480 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4481 } 4482 } 4483 4484 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 4485 // For this to be valid, the second form must not preserve any of the bits 4486 // that are shifted out by the inner shift in the first form. This means 4487 // the outer shift size must be >= the number of bits added by the ext. 4488 // As a corollary, we don't care what kind of ext it is. 4489 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 4490 N0.getOpcode() == ISD::ANY_EXTEND || 4491 N0.getOpcode() == ISD::SIGN_EXTEND) && 4492 N0.getOperand(0).getOpcode() == ISD::SHL) { 4493 SDValue N0Op0 = N0.getOperand(0); 4494 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4495 uint64_t c1 = N0Op0C1->getZExtValue(); 4496 uint64_t c2 = N1C->getZExtValue(); 4497 EVT InnerShiftVT = N0Op0.getValueType(); 4498 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4499 if (c2 >= OpSizeInBits - InnerShiftSize) { 4500 SDLoc DL(N0); 4501 if (c1 + c2 >= OpSizeInBits) 4502 return DAG.getConstant(0, DL, VT); 4503 return DAG.getNode(ISD::SHL, DL, VT, 4504 DAG.getNode(N0.getOpcode(), DL, VT, 4505 N0Op0->getOperand(0)), 4506 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4507 } 4508 } 4509 } 4510 4511 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 4512 // Only fold this if the inner zext has no other uses to avoid increasing 4513 // the total number of instructions. 4514 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 4515 N0.getOperand(0).getOpcode() == ISD::SRL) { 4516 SDValue N0Op0 = N0.getOperand(0); 4517 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4518 uint64_t c1 = N0Op0C1->getZExtValue(); 4519 if (c1 < VT.getScalarSizeInBits()) { 4520 uint64_t c2 = N1C->getZExtValue(); 4521 if (c1 == c2) { 4522 SDValue NewOp0 = N0.getOperand(0); 4523 EVT CountVT = NewOp0.getOperand(1).getValueType(); 4524 SDLoc DL(N); 4525 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 4526 NewOp0, 4527 DAG.getConstant(c2, DL, CountVT)); 4528 AddToWorklist(NewSHL.getNode()); 4529 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 4530 } 4531 } 4532 } 4533 } 4534 4535 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 4536 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 4537 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 4538 cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { 4539 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4540 uint64_t C1 = N0C1->getZExtValue(); 4541 uint64_t C2 = N1C->getZExtValue(); 4542 SDLoc DL(N); 4543 if (C1 <= C2) 4544 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4545 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 4546 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 4547 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 4548 } 4549 } 4550 4551 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 4552 // (and (srl x, (sub c1, c2), MASK) 4553 // Only fold this if the inner shift has no other uses -- if it does, folding 4554 // this will increase the total number of instructions. 4555 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4556 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4557 uint64_t c1 = N0C1->getZExtValue(); 4558 if (c1 < OpSizeInBits) { 4559 uint64_t c2 = N1C->getZExtValue(); 4560 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 4561 SDValue Shift; 4562 if (c2 > c1) { 4563 Mask = Mask.shl(c2 - c1); 4564 SDLoc DL(N); 4565 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4566 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 4567 } else { 4568 Mask = Mask.lshr(c1 - c2); 4569 SDLoc DL(N); 4570 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4571 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 4572 } 4573 SDLoc DL(N0); 4574 return DAG.getNode(ISD::AND, DL, VT, Shift, 4575 DAG.getConstant(Mask, DL, VT)); 4576 } 4577 } 4578 } 4579 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 4580 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { 4581 unsigned BitSize = VT.getScalarSizeInBits(); 4582 SDLoc DL(N); 4583 SDValue HiBitsMask = 4584 DAG.getConstant(APInt::getHighBitsSet(BitSize, 4585 BitSize - N1C->getZExtValue()), 4586 DL, VT); 4587 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4588 HiBitsMask); 4589 } 4590 4591 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4592 // Variant of version done on multiply, except mul by a power of 2 is turned 4593 // into a shift. 4594 APInt Val; 4595 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 4596 (isa<ConstantSDNode>(N0.getOperand(1)) || 4597 isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { 4598 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 4599 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4600 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 4601 } 4602 4603 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 4604 if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { 4605 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4606 if (SDValue Folded = 4607 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) 4608 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); 4609 } 4610 } 4611 4612 if (N1C && !N1C->isOpaque()) 4613 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 4614 return NewSHL; 4615 4616 return SDValue(); 4617 } 4618 4619 SDValue DAGCombiner::visitSRA(SDNode *N) { 4620 SDValue N0 = N->getOperand(0); 4621 SDValue N1 = N->getOperand(1); 4622 EVT VT = N0.getValueType(); 4623 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4624 4625 // fold vector ops 4626 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4627 if (VT.isVector()) { 4628 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4629 return FoldedVOp; 4630 4631 N1C = isConstOrConstSplat(N1); 4632 } 4633 4634 // fold (sra c1, c2) -> (sra c1, c2) 4635 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4636 if (N0C && N1C && !N1C->isOpaque()) 4637 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 4638 // fold (sra 0, x) -> 0 4639 if (isNullConstant(N0)) 4640 return N0; 4641 // fold (sra -1, x) -> -1 4642 if (isAllOnesConstant(N0)) 4643 return N0; 4644 // fold (sra x, (setge c, size(x))) -> undef 4645 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4646 return DAG.getUNDEF(VT); 4647 // fold (sra x, 0) -> x 4648 if (N1C && N1C->isNullValue()) 4649 return N0; 4650 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 4651 // sext_inreg. 4652 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 4653 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 4654 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 4655 if (VT.isVector()) 4656 ExtVT = EVT::getVectorVT(*DAG.getContext(), 4657 ExtVT, VT.getVectorNumElements()); 4658 if ((!LegalOperations || 4659 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 4660 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 4661 N0.getOperand(0), DAG.getValueType(ExtVT)); 4662 } 4663 4664 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 4665 if (N1C && N0.getOpcode() == ISD::SRA) { 4666 if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { 4667 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); 4668 if (Sum >= OpSizeInBits) 4669 Sum = OpSizeInBits - 1; 4670 SDLoc DL(N); 4671 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), 4672 DAG.getConstant(Sum, DL, N1.getValueType())); 4673 } 4674 } 4675 4676 // fold (sra (shl X, m), (sub result_size, n)) 4677 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 4678 // result_size - n != m. 4679 // If truncate is free for the target sext(shl) is likely to result in better 4680 // code. 4681 if (N0.getOpcode() == ISD::SHL && N1C) { 4682 // Get the two constanst of the shifts, CN0 = m, CN = n. 4683 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 4684 if (N01C) { 4685 LLVMContext &Ctx = *DAG.getContext(); 4686 // Determine what the truncate's result bitsize and type would be. 4687 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 4688 4689 if (VT.isVector()) 4690 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 4691 4692 // Determine the residual right-shift amount. 4693 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 4694 4695 // If the shift is not a no-op (in which case this should be just a sign 4696 // extend already), the truncated to type is legal, sign_extend is legal 4697 // on that type, and the truncate to that type is both legal and free, 4698 // perform the transform. 4699 if ((ShiftAmt > 0) && 4700 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 4701 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 4702 TLI.isTruncateFree(VT, TruncVT)) { 4703 4704 SDLoc DL(N); 4705 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 4706 getShiftAmountTy(N0.getOperand(0).getValueType())); 4707 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 4708 N0.getOperand(0), Amt); 4709 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 4710 Shift); 4711 return DAG.getNode(ISD::SIGN_EXTEND, DL, 4712 N->getValueType(0), Trunc); 4713 } 4714 } 4715 } 4716 4717 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 4718 if (N1.getOpcode() == ISD::TRUNCATE && 4719 N1.getOperand(0).getOpcode() == ISD::AND) { 4720 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4721 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 4722 } 4723 4724 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 4725 // if c1 is equal to the number of bits the trunc removes 4726 if (N0.getOpcode() == ISD::TRUNCATE && 4727 (N0.getOperand(0).getOpcode() == ISD::SRL || 4728 N0.getOperand(0).getOpcode() == ISD::SRA) && 4729 N0.getOperand(0).hasOneUse() && 4730 N0.getOperand(0).getOperand(1).hasOneUse() && 4731 N1C) { 4732 SDValue N0Op0 = N0.getOperand(0); 4733 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 4734 unsigned LargeShiftVal = LargeShift->getZExtValue(); 4735 EVT LargeVT = N0Op0.getValueType(); 4736 4737 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 4738 SDLoc DL(N); 4739 SDValue Amt = 4740 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 4741 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 4742 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 4743 N0Op0.getOperand(0), Amt); 4744 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 4745 } 4746 } 4747 } 4748 4749 // Simplify, based on bits shifted out of the LHS. 4750 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4751 return SDValue(N, 0); 4752 4753 4754 // If the sign bit is known to be zero, switch this to a SRL. 4755 if (DAG.SignBitIsZero(N0)) 4756 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 4757 4758 if (N1C && !N1C->isOpaque()) 4759 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 4760 return NewSRA; 4761 4762 return SDValue(); 4763 } 4764 4765 SDValue DAGCombiner::visitSRL(SDNode *N) { 4766 SDValue N0 = N->getOperand(0); 4767 SDValue N1 = N->getOperand(1); 4768 EVT VT = N0.getValueType(); 4769 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4770 4771 // fold vector ops 4772 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4773 if (VT.isVector()) { 4774 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4775 return FoldedVOp; 4776 4777 N1C = isConstOrConstSplat(N1); 4778 } 4779 4780 // fold (srl c1, c2) -> c1 >>u c2 4781 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4782 if (N0C && N1C && !N1C->isOpaque()) 4783 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 4784 // fold (srl 0, x) -> 0 4785 if (isNullConstant(N0)) 4786 return N0; 4787 // fold (srl x, c >= size(x)) -> undef 4788 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4789 return DAG.getUNDEF(VT); 4790 // fold (srl x, 0) -> x 4791 if (N1C && N1C->isNullValue()) 4792 return N0; 4793 // if (srl x, c) is known to be zero, return 0 4794 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4795 APInt::getAllOnesValue(OpSizeInBits))) 4796 return DAG.getConstant(0, SDLoc(N), VT); 4797 4798 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 4799 if (N1C && N0.getOpcode() == ISD::SRL) { 4800 if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { 4801 uint64_t c1 = N01C->getZExtValue(); 4802 uint64_t c2 = N1C->getZExtValue(); 4803 SDLoc DL(N); 4804 if (c1 + c2 >= OpSizeInBits) 4805 return DAG.getConstant(0, DL, VT); 4806 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4807 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4808 } 4809 } 4810 4811 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 4812 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 4813 N0.getOperand(0).getOpcode() == ISD::SRL && 4814 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 4815 uint64_t c1 = 4816 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 4817 uint64_t c2 = N1C->getZExtValue(); 4818 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 4819 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 4820 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); 4821 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 4822 if (c1 + OpSizeInBits == InnerShiftSize) { 4823 SDLoc DL(N0); 4824 if (c1 + c2 >= InnerShiftSize) 4825 return DAG.getConstant(0, DL, VT); 4826 return DAG.getNode(ISD::TRUNCATE, DL, VT, 4827 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 4828 N0.getOperand(0)->getOperand(0), 4829 DAG.getConstant(c1 + c2, DL, 4830 ShiftCountVT))); 4831 } 4832 } 4833 4834 // fold (srl (shl x, c), c) -> (and x, cst2) 4835 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { 4836 unsigned BitSize = N0.getScalarValueSizeInBits(); 4837 if (BitSize <= 64) { 4838 uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; 4839 SDLoc DL(N); 4840 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4841 DAG.getConstant(~0ULL >> ShAmt, DL, VT)); 4842 } 4843 } 4844 4845 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 4846 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4847 // Shifting in all undef bits? 4848 EVT SmallVT = N0.getOperand(0).getValueType(); 4849 unsigned BitSize = SmallVT.getScalarSizeInBits(); 4850 if (N1C->getZExtValue() >= BitSize) 4851 return DAG.getUNDEF(VT); 4852 4853 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 4854 uint64_t ShiftAmt = N1C->getZExtValue(); 4855 SDLoc DL0(N0); 4856 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 4857 N0.getOperand(0), 4858 DAG.getConstant(ShiftAmt, DL0, 4859 getShiftAmountTy(SmallVT))); 4860 AddToWorklist(SmallShift.getNode()); 4861 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 4862 SDLoc DL(N); 4863 return DAG.getNode(ISD::AND, DL, VT, 4864 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 4865 DAG.getConstant(Mask, DL, VT)); 4866 } 4867 } 4868 4869 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 4870 // bit, which is unmodified by sra. 4871 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 4872 if (N0.getOpcode() == ISD::SRA) 4873 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 4874 } 4875 4876 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 4877 if (N1C && N0.getOpcode() == ISD::CTLZ && 4878 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 4879 APInt KnownZero, KnownOne; 4880 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 4881 4882 // If any of the input bits are KnownOne, then the input couldn't be all 4883 // zeros, thus the result of the srl will always be zero. 4884 if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 4885 4886 // If all of the bits input the to ctlz node are known to be zero, then 4887 // the result of the ctlz is "32" and the result of the shift is one. 4888 APInt UnknownBits = ~KnownZero; 4889 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 4890 4891 // Otherwise, check to see if there is exactly one bit input to the ctlz. 4892 if ((UnknownBits & (UnknownBits - 1)) == 0) { 4893 // Okay, we know that only that the single bit specified by UnknownBits 4894 // could be set on input to the CTLZ node. If this bit is set, the SRL 4895 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 4896 // to an SRL/XOR pair, which is likely to simplify more. 4897 unsigned ShAmt = UnknownBits.countTrailingZeros(); 4898 SDValue Op = N0.getOperand(0); 4899 4900 if (ShAmt) { 4901 SDLoc DL(N0); 4902 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4903 DAG.getConstant(ShAmt, DL, 4904 getShiftAmountTy(Op.getValueType()))); 4905 AddToWorklist(Op.getNode()); 4906 } 4907 4908 SDLoc DL(N); 4909 return DAG.getNode(ISD::XOR, DL, VT, 4910 Op, DAG.getConstant(1, DL, VT)); 4911 } 4912 } 4913 4914 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 4915 if (N1.getOpcode() == ISD::TRUNCATE && 4916 N1.getOperand(0).getOpcode() == ISD::AND) { 4917 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4918 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 4919 } 4920 4921 // fold operands of srl based on knowledge that the low bits are not 4922 // demanded. 4923 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4924 return SDValue(N, 0); 4925 4926 if (N1C && !N1C->isOpaque()) 4927 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 4928 return NewSRL; 4929 4930 // Attempt to convert a srl of a load into a narrower zero-extending load. 4931 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 4932 return NarrowLoad; 4933 4934 // Here is a common situation. We want to optimize: 4935 // 4936 // %a = ... 4937 // %b = and i32 %a, 2 4938 // %c = srl i32 %b, 1 4939 // brcond i32 %c ... 4940 // 4941 // into 4942 // 4943 // %a = ... 4944 // %b = and %a, 2 4945 // %c = setcc eq %b, 0 4946 // brcond %c ... 4947 // 4948 // However when after the source operand of SRL is optimized into AND, the SRL 4949 // itself may not be optimized further. Look for it and add the BRCOND into 4950 // the worklist. 4951 if (N->hasOneUse()) { 4952 SDNode *Use = *N->use_begin(); 4953 if (Use->getOpcode() == ISD::BRCOND) 4954 AddToWorklist(Use); 4955 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 4956 // Also look pass the truncate. 4957 Use = *Use->use_begin(); 4958 if (Use->getOpcode() == ISD::BRCOND) 4959 AddToWorklist(Use); 4960 } 4961 } 4962 4963 return SDValue(); 4964 } 4965 4966 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 4967 SDValue N0 = N->getOperand(0); 4968 EVT VT = N->getValueType(0); 4969 4970 // fold (bswap c1) -> c2 4971 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 4972 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 4973 // fold (bswap (bswap x)) -> x 4974 if (N0.getOpcode() == ISD::BSWAP) 4975 return N0->getOperand(0); 4976 return SDValue(); 4977 } 4978 4979 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 4980 SDValue N0 = N->getOperand(0); 4981 4982 // fold (bitreverse (bitreverse x)) -> x 4983 if (N0.getOpcode() == ISD::BITREVERSE) 4984 return N0.getOperand(0); 4985 return SDValue(); 4986 } 4987 4988 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 4989 SDValue N0 = N->getOperand(0); 4990 EVT VT = N->getValueType(0); 4991 4992 // fold (ctlz c1) -> c2 4993 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 4994 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 4995 return SDValue(); 4996 } 4997 4998 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 4999 SDValue N0 = N->getOperand(0); 5000 EVT VT = N->getValueType(0); 5001 5002 // fold (ctlz_zero_undef c1) -> c2 5003 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5004 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5005 return SDValue(); 5006 } 5007 5008 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 5009 SDValue N0 = N->getOperand(0); 5010 EVT VT = N->getValueType(0); 5011 5012 // fold (cttz c1) -> c2 5013 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5014 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 5015 return SDValue(); 5016 } 5017 5018 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 5019 SDValue N0 = N->getOperand(0); 5020 EVT VT = N->getValueType(0); 5021 5022 // fold (cttz_zero_undef c1) -> c2 5023 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5024 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5025 return SDValue(); 5026 } 5027 5028 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 5029 SDValue N0 = N->getOperand(0); 5030 EVT VT = N->getValueType(0); 5031 5032 // fold (ctpop c1) -> c2 5033 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5034 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 5035 return SDValue(); 5036 } 5037 5038 5039 /// \brief Generate Min/Max node 5040 static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS, 5041 SDValue True, SDValue False, 5042 ISD::CondCode CC, const TargetLowering &TLI, 5043 SelectionDAG &DAG) { 5044 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 5045 return SDValue(); 5046 5047 switch (CC) { 5048 case ISD::SETOLT: 5049 case ISD::SETOLE: 5050 case ISD::SETLT: 5051 case ISD::SETLE: 5052 case ISD::SETULT: 5053 case ISD::SETULE: { 5054 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 5055 if (TLI.isOperationLegal(Opcode, VT)) 5056 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5057 return SDValue(); 5058 } 5059 case ISD::SETOGT: 5060 case ISD::SETOGE: 5061 case ISD::SETGT: 5062 case ISD::SETGE: 5063 case ISD::SETUGT: 5064 case ISD::SETUGE: { 5065 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 5066 if (TLI.isOperationLegal(Opcode, VT)) 5067 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5068 return SDValue(); 5069 } 5070 default: 5071 return SDValue(); 5072 } 5073 } 5074 5075 SDValue DAGCombiner::visitSELECT(SDNode *N) { 5076 SDValue N0 = N->getOperand(0); 5077 SDValue N1 = N->getOperand(1); 5078 SDValue N2 = N->getOperand(2); 5079 EVT VT = N->getValueType(0); 5080 EVT VT0 = N0.getValueType(); 5081 5082 // fold (select C, X, X) -> X 5083 if (N1 == N2) 5084 return N1; 5085 if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { 5086 // fold (select true, X, Y) -> X 5087 // fold (select false, X, Y) -> Y 5088 return !N0C->isNullValue() ? N1 : N2; 5089 } 5090 // fold (select C, 1, X) -> (or C, X) 5091 if (VT == MVT::i1 && isOneConstant(N1)) 5092 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5093 // fold (select C, 0, 1) -> (xor C, 1) 5094 // We can't do this reliably if integer based booleans have different contents 5095 // to floating point based booleans. This is because we can't tell whether we 5096 // have an integer-based boolean or a floating-point-based boolean unless we 5097 // can find the SETCC that produced it and inspect its operands. This is 5098 // fairly easy if C is the SETCC node, but it can potentially be 5099 // undiscoverable (or not reasonably discoverable). For example, it could be 5100 // in another basic block or it could require searching a complicated 5101 // expression. 5102 if (VT.isInteger() && 5103 (VT0 == MVT::i1 || (VT0.isInteger() && 5104 TLI.getBooleanContents(false, false) == 5105 TLI.getBooleanContents(false, true) && 5106 TLI.getBooleanContents(false, false) == 5107 TargetLowering::ZeroOrOneBooleanContent)) && 5108 isNullConstant(N1) && isOneConstant(N2)) { 5109 SDValue XORNode; 5110 if (VT == VT0) { 5111 SDLoc DL(N); 5112 return DAG.getNode(ISD::XOR, DL, VT0, 5113 N0, DAG.getConstant(1, DL, VT0)); 5114 } 5115 SDLoc DL0(N0); 5116 XORNode = DAG.getNode(ISD::XOR, DL0, VT0, 5117 N0, DAG.getConstant(1, DL0, VT0)); 5118 AddToWorklist(XORNode.getNode()); 5119 if (VT.bitsGT(VT0)) 5120 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); 5121 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); 5122 } 5123 // fold (select C, 0, X) -> (and (not C), X) 5124 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 5125 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5126 AddToWorklist(NOTNode.getNode()); 5127 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 5128 } 5129 // fold (select C, X, 1) -> (or (not C), X) 5130 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 5131 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5132 AddToWorklist(NOTNode.getNode()); 5133 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 5134 } 5135 // fold (select C, X, 0) -> (and C, X) 5136 if (VT == MVT::i1 && isNullConstant(N2)) 5137 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5138 // fold (select X, X, Y) -> (or X, Y) 5139 // fold (select X, 1, Y) -> (or X, Y) 5140 if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 5141 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5142 // fold (select X, Y, X) -> (and X, Y) 5143 // fold (select X, Y, 0) -> (and X, Y) 5144 if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 5145 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5146 5147 // If we can fold this based on the true/false value, do so. 5148 if (SimplifySelectOps(N, N1, N2)) 5149 return SDValue(N, 0); // Don't revisit N. 5150 5151 if (VT0 == MVT::i1) { 5152 // The code in this block deals with the following 2 equivalences: 5153 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 5154 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 5155 // The target can specify its prefered form with the 5156 // shouldNormalizeToSelectSequence() callback. However we always transform 5157 // to the right anyway if we find the inner select exists in the DAG anyway 5158 // and we always transform to the left side if we know that we can further 5159 // optimize the combination of the conditions. 5160 bool normalizeToSequence 5161 = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 5162 // select (and Cond0, Cond1), X, Y 5163 // -> select Cond0, (select Cond1, X, Y), Y 5164 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 5165 SDValue Cond0 = N0->getOperand(0); 5166 SDValue Cond1 = N0->getOperand(1); 5167 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5168 N1.getValueType(), Cond1, N1, N2); 5169 if (normalizeToSequence || !InnerSelect.use_empty()) 5170 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, 5171 InnerSelect, N2); 5172 } 5173 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 5174 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 5175 SDValue Cond0 = N0->getOperand(0); 5176 SDValue Cond1 = N0->getOperand(1); 5177 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5178 N1.getValueType(), Cond1, N1, N2); 5179 if (normalizeToSequence || !InnerSelect.use_empty()) 5180 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, 5181 InnerSelect); 5182 } 5183 5184 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 5185 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 5186 SDValue N1_0 = N1->getOperand(0); 5187 SDValue N1_1 = N1->getOperand(1); 5188 SDValue N1_2 = N1->getOperand(2); 5189 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 5190 // Create the actual and node if we can generate good code for it. 5191 if (!normalizeToSequence) { 5192 SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), 5193 N0, N1_0); 5194 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, 5195 N1_1, N2); 5196 } 5197 // Otherwise see if we can optimize the "and" to a better pattern. 5198 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 5199 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5200 N1_1, N2); 5201 } 5202 } 5203 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 5204 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 5205 SDValue N2_0 = N2->getOperand(0); 5206 SDValue N2_1 = N2->getOperand(1); 5207 SDValue N2_2 = N2->getOperand(2); 5208 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 5209 // Create the actual or node if we can generate good code for it. 5210 if (!normalizeToSequence) { 5211 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), 5212 N0, N2_0); 5213 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, 5214 N1, N2_2); 5215 } 5216 // Otherwise see if we can optimize to a better pattern. 5217 if (SDValue Combined = visitORLike(N0, N2_0, N)) 5218 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5219 N1, N2_2); 5220 } 5221 } 5222 } 5223 5224 // fold selects based on a setcc into other things, such as min/max/abs 5225 if (N0.getOpcode() == ISD::SETCC) { 5226 // select x, y (fcmp lt x, y) -> fminnum x, y 5227 // select x, y (fcmp gt x, y) -> fmaxnum x, y 5228 // 5229 // This is OK if we don't care about what happens if either operand is a 5230 // NaN. 5231 // 5232 5233 // FIXME: Instead of testing for UnsafeFPMath, this should be checking for 5234 // no signed zeros as well as no nans. 5235 const TargetOptions &Options = DAG.getTarget().Options; 5236 if (Options.UnsafeFPMath && 5237 VT.isFloatingPoint() && N0.hasOneUse() && 5238 DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { 5239 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5240 5241 if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), 5242 N0.getOperand(1), N1, N2, CC, 5243 TLI, DAG)) 5244 return FMinMax; 5245 } 5246 5247 if ((!LegalOperations && 5248 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 5249 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 5250 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 5251 N0.getOperand(0), N0.getOperand(1), 5252 N1, N2, N0.getOperand(2)); 5253 return SimplifySelect(SDLoc(N), N0, N1, N2); 5254 } 5255 5256 return SDValue(); 5257 } 5258 5259 static 5260 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 5261 SDLoc DL(N); 5262 EVT LoVT, HiVT; 5263 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 5264 5265 // Split the inputs. 5266 SDValue Lo, Hi, LL, LH, RL, RH; 5267 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 5268 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 5269 5270 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 5271 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 5272 5273 return std::make_pair(Lo, Hi); 5274 } 5275 5276 // This function assumes all the vselect's arguments are CONCAT_VECTOR 5277 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 5278 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 5279 SDLoc dl(N); 5280 SDValue Cond = N->getOperand(0); 5281 SDValue LHS = N->getOperand(1); 5282 SDValue RHS = N->getOperand(2); 5283 EVT VT = N->getValueType(0); 5284 int NumElems = VT.getVectorNumElements(); 5285 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 5286 RHS.getOpcode() == ISD::CONCAT_VECTORS && 5287 Cond.getOpcode() == ISD::BUILD_VECTOR); 5288 5289 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 5290 // binary ones here. 5291 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 5292 return SDValue(); 5293 5294 // We're sure we have an even number of elements due to the 5295 // concat_vectors we have as arguments to vselect. 5296 // Skip BV elements until we find one that's not an UNDEF 5297 // After we find an UNDEF element, keep looping until we get to half the 5298 // length of the BV and see if all the non-undef nodes are the same. 5299 ConstantSDNode *BottomHalf = nullptr; 5300 for (int i = 0; i < NumElems / 2; ++i) { 5301 if (Cond->getOperand(i)->isUndef()) 5302 continue; 5303 5304 if (BottomHalf == nullptr) 5305 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5306 else if (Cond->getOperand(i).getNode() != BottomHalf) 5307 return SDValue(); 5308 } 5309 5310 // Do the same for the second half of the BuildVector 5311 ConstantSDNode *TopHalf = nullptr; 5312 for (int i = NumElems / 2; i < NumElems; ++i) { 5313 if (Cond->getOperand(i)->isUndef()) 5314 continue; 5315 5316 if (TopHalf == nullptr) 5317 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5318 else if (Cond->getOperand(i).getNode() != TopHalf) 5319 return SDValue(); 5320 } 5321 5322 assert(TopHalf && BottomHalf && 5323 "One half of the selector was all UNDEFs and the other was all the " 5324 "same value. This should have been addressed before this function."); 5325 return DAG.getNode( 5326 ISD::CONCAT_VECTORS, dl, VT, 5327 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 5328 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 5329 } 5330 5331 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 5332 5333 if (Level >= AfterLegalizeTypes) 5334 return SDValue(); 5335 5336 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 5337 SDValue Mask = MSC->getMask(); 5338 SDValue Data = MSC->getValue(); 5339 SDLoc DL(N); 5340 5341 // If the MSCATTER data type requires splitting and the mask is provided by a 5342 // SETCC, then split both nodes and its operands before legalization. This 5343 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5344 // and enables future optimizations (e.g. min/max pattern matching on X86). 5345 if (Mask.getOpcode() != ISD::SETCC) 5346 return SDValue(); 5347 5348 // Check if any splitting is required. 5349 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5350 TargetLowering::TypeSplitVector) 5351 return SDValue(); 5352 SDValue MaskLo, MaskHi, Lo, Hi; 5353 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5354 5355 EVT LoVT, HiVT; 5356 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 5357 5358 SDValue Chain = MSC->getChain(); 5359 5360 EVT MemoryVT = MSC->getMemoryVT(); 5361 unsigned Alignment = MSC->getOriginalAlignment(); 5362 5363 EVT LoMemVT, HiMemVT; 5364 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5365 5366 SDValue DataLo, DataHi; 5367 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5368 5369 SDValue BasePtr = MSC->getBasePtr(); 5370 SDValue IndexLo, IndexHi; 5371 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 5372 5373 MachineMemOperand *MMO = DAG.getMachineFunction(). 5374 getMachineMemOperand(MSC->getPointerInfo(), 5375 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5376 Alignment, MSC->getAAInfo(), MSC->getRanges()); 5377 5378 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; 5379 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), 5380 DL, OpsLo, MMO); 5381 5382 SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; 5383 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 5384 DL, OpsHi, MMO); 5385 5386 AddToWorklist(Lo.getNode()); 5387 AddToWorklist(Hi.getNode()); 5388 5389 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5390 } 5391 5392 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 5393 5394 if (Level >= AfterLegalizeTypes) 5395 return SDValue(); 5396 5397 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); 5398 SDValue Mask = MST->getMask(); 5399 SDValue Data = MST->getValue(); 5400 SDLoc DL(N); 5401 5402 // If the MSTORE data type requires splitting and the mask is provided by a 5403 // SETCC, then split both nodes and its operands before legalization. This 5404 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5405 // and enables future optimizations (e.g. min/max pattern matching on X86). 5406 if (Mask.getOpcode() == ISD::SETCC) { 5407 5408 // Check if any splitting is required. 5409 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5410 TargetLowering::TypeSplitVector) 5411 return SDValue(); 5412 5413 SDValue MaskLo, MaskHi, Lo, Hi; 5414 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5415 5416 EVT LoVT, HiVT; 5417 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); 5418 5419 SDValue Chain = MST->getChain(); 5420 SDValue Ptr = MST->getBasePtr(); 5421 5422 EVT MemoryVT = MST->getMemoryVT(); 5423 unsigned Alignment = MST->getOriginalAlignment(); 5424 5425 // if Alignment is equal to the vector size, 5426 // take the half of it for the second part 5427 unsigned SecondHalfAlignment = 5428 (Alignment == Data->getValueType(0).getSizeInBits()/8) ? 5429 Alignment/2 : Alignment; 5430 5431 EVT LoMemVT, HiMemVT; 5432 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5433 5434 SDValue DataLo, DataHi; 5435 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5436 5437 MachineMemOperand *MMO = DAG.getMachineFunction(). 5438 getMachineMemOperand(MST->getPointerInfo(), 5439 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5440 Alignment, MST->getAAInfo(), MST->getRanges()); 5441 5442 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 5443 MST->isTruncatingStore()); 5444 5445 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5446 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5447 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5448 5449 MMO = DAG.getMachineFunction(). 5450 getMachineMemOperand(MST->getPointerInfo(), 5451 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), 5452 SecondHalfAlignment, MST->getAAInfo(), 5453 MST->getRanges()); 5454 5455 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 5456 MST->isTruncatingStore()); 5457 5458 AddToWorklist(Lo.getNode()); 5459 AddToWorklist(Hi.getNode()); 5460 5461 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5462 } 5463 return SDValue(); 5464 } 5465 5466 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 5467 5468 if (Level >= AfterLegalizeTypes) 5469 return SDValue(); 5470 5471 MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); 5472 SDValue Mask = MGT->getMask(); 5473 SDLoc DL(N); 5474 5475 // If the MGATHER result requires splitting and the mask is provided by a 5476 // SETCC, then split both nodes and its operands before legalization. This 5477 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5478 // and enables future optimizations (e.g. min/max pattern matching on X86). 5479 5480 if (Mask.getOpcode() != ISD::SETCC) 5481 return SDValue(); 5482 5483 EVT VT = N->getValueType(0); 5484 5485 // Check if any splitting is required. 5486 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5487 TargetLowering::TypeSplitVector) 5488 return SDValue(); 5489 5490 SDValue MaskLo, MaskHi, Lo, Hi; 5491 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5492 5493 SDValue Src0 = MGT->getValue(); 5494 SDValue Src0Lo, Src0Hi; 5495 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5496 5497 EVT LoVT, HiVT; 5498 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 5499 5500 SDValue Chain = MGT->getChain(); 5501 EVT MemoryVT = MGT->getMemoryVT(); 5502 unsigned Alignment = MGT->getOriginalAlignment(); 5503 5504 EVT LoMemVT, HiMemVT; 5505 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5506 5507 SDValue BasePtr = MGT->getBasePtr(); 5508 SDValue Index = MGT->getIndex(); 5509 SDValue IndexLo, IndexHi; 5510 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 5511 5512 MachineMemOperand *MMO = DAG.getMachineFunction(). 5513 getMachineMemOperand(MGT->getPointerInfo(), 5514 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5515 Alignment, MGT->getAAInfo(), MGT->getRanges()); 5516 5517 SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; 5518 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 5519 MMO); 5520 5521 SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; 5522 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 5523 MMO); 5524 5525 AddToWorklist(Lo.getNode()); 5526 AddToWorklist(Hi.getNode()); 5527 5528 // Build a factor node to remember that this load is independent of the 5529 // other one. 5530 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5531 Hi.getValue(1)); 5532 5533 // Legalized the chain result - switch anything that used the old chain to 5534 // use the new one. 5535 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 5536 5537 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5538 5539 SDValue RetOps[] = { GatherRes, Chain }; 5540 return DAG.getMergeValues(RetOps, DL); 5541 } 5542 5543 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 5544 5545 if (Level >= AfterLegalizeTypes) 5546 return SDValue(); 5547 5548 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); 5549 SDValue Mask = MLD->getMask(); 5550 SDLoc DL(N); 5551 5552 // If the MLOAD result requires splitting and the mask is provided by a 5553 // SETCC, then split both nodes and its operands before legalization. This 5554 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5555 // and enables future optimizations (e.g. min/max pattern matching on X86). 5556 5557 if (Mask.getOpcode() == ISD::SETCC) { 5558 EVT VT = N->getValueType(0); 5559 5560 // Check if any splitting is required. 5561 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5562 TargetLowering::TypeSplitVector) 5563 return SDValue(); 5564 5565 SDValue MaskLo, MaskHi, Lo, Hi; 5566 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5567 5568 SDValue Src0 = MLD->getSrc0(); 5569 SDValue Src0Lo, Src0Hi; 5570 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5571 5572 EVT LoVT, HiVT; 5573 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 5574 5575 SDValue Chain = MLD->getChain(); 5576 SDValue Ptr = MLD->getBasePtr(); 5577 EVT MemoryVT = MLD->getMemoryVT(); 5578 unsigned Alignment = MLD->getOriginalAlignment(); 5579 5580 // if Alignment is equal to the vector size, 5581 // take the half of it for the second part 5582 unsigned SecondHalfAlignment = 5583 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 5584 Alignment/2 : Alignment; 5585 5586 EVT LoMemVT, HiMemVT; 5587 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5588 5589 MachineMemOperand *MMO = DAG.getMachineFunction(). 5590 getMachineMemOperand(MLD->getPointerInfo(), 5591 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5592 Alignment, MLD->getAAInfo(), MLD->getRanges()); 5593 5594 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, 5595 ISD::NON_EXTLOAD); 5596 5597 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5598 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5599 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5600 5601 MMO = DAG.getMachineFunction(). 5602 getMachineMemOperand(MLD->getPointerInfo(), 5603 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), 5604 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); 5605 5606 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, 5607 ISD::NON_EXTLOAD); 5608 5609 AddToWorklist(Lo.getNode()); 5610 AddToWorklist(Hi.getNode()); 5611 5612 // Build a factor node to remember that this load is independent of the 5613 // other one. 5614 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5615 Hi.getValue(1)); 5616 5617 // Legalized the chain result - switch anything that used the old chain to 5618 // use the new one. 5619 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 5620 5621 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5622 5623 SDValue RetOps[] = { LoadRes, Chain }; 5624 return DAG.getMergeValues(RetOps, DL); 5625 } 5626 return SDValue(); 5627 } 5628 5629 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 5630 SDValue N0 = N->getOperand(0); 5631 SDValue N1 = N->getOperand(1); 5632 SDValue N2 = N->getOperand(2); 5633 SDLoc DL(N); 5634 5635 // Canonicalize integer abs. 5636 // vselect (setg[te] X, 0), X, -X -> 5637 // vselect (setgt X, -1), X, -X -> 5638 // vselect (setl[te] X, 0), -X, X -> 5639 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 5640 if (N0.getOpcode() == ISD::SETCC) { 5641 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 5642 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5643 bool isAbs = false; 5644 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 5645 5646 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 5647 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 5648 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 5649 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 5650 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 5651 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 5652 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5653 5654 if (isAbs) { 5655 EVT VT = LHS.getValueType(); 5656 SDValue Shift = DAG.getNode( 5657 ISD::SRA, DL, VT, LHS, 5658 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT)); 5659 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 5660 AddToWorklist(Shift.getNode()); 5661 AddToWorklist(Add.getNode()); 5662 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 5663 } 5664 } 5665 5666 if (SimplifySelectOps(N, N1, N2)) 5667 return SDValue(N, 0); // Don't revisit N. 5668 5669 // If the VSELECT result requires splitting and the mask is provided by a 5670 // SETCC, then split both nodes and its operands before legalization. This 5671 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5672 // and enables future optimizations (e.g. min/max pattern matching on X86). 5673 if (N0.getOpcode() == ISD::SETCC) { 5674 EVT VT = N->getValueType(0); 5675 5676 // Check if any splitting is required. 5677 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5678 TargetLowering::TypeSplitVector) 5679 return SDValue(); 5680 5681 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 5682 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 5683 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 5684 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 5685 5686 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 5687 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 5688 5689 // Add the new VSELECT nodes to the work list in case they need to be split 5690 // again. 5691 AddToWorklist(Lo.getNode()); 5692 AddToWorklist(Hi.getNode()); 5693 5694 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5695 } 5696 5697 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 5698 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5699 return N1; 5700 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 5701 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5702 return N2; 5703 5704 // The ConvertSelectToConcatVector function is assuming both the above 5705 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 5706 // and addressed. 5707 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 5708 N2.getOpcode() == ISD::CONCAT_VECTORS && 5709 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 5710 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 5711 return CV; 5712 } 5713 5714 return SDValue(); 5715 } 5716 5717 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 5718 SDValue N0 = N->getOperand(0); 5719 SDValue N1 = N->getOperand(1); 5720 SDValue N2 = N->getOperand(2); 5721 SDValue N3 = N->getOperand(3); 5722 SDValue N4 = N->getOperand(4); 5723 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 5724 5725 // fold select_cc lhs, rhs, x, x, cc -> x 5726 if (N2 == N3) 5727 return N2; 5728 5729 // Determine if the condition we're dealing with is constant 5730 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 5731 CC, SDLoc(N), false)) { 5732 AddToWorklist(SCC.getNode()); 5733 5734 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 5735 if (!SCCC->isNullValue()) 5736 return N2; // cond always true -> true val 5737 else 5738 return N3; // cond always false -> false val 5739 } else if (SCC->isUndef()) { 5740 // When the condition is UNDEF, just return the first operand. This is 5741 // coherent the DAG creation, no setcc node is created in this case 5742 return N2; 5743 } else if (SCC.getOpcode() == ISD::SETCC) { 5744 // Fold to a simpler select_cc 5745 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 5746 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 5747 SCC.getOperand(2)); 5748 } 5749 } 5750 5751 // If we can fold this based on the true/false value, do so. 5752 if (SimplifySelectOps(N, N2, N3)) 5753 return SDValue(N, 0); // Don't revisit N. 5754 5755 // fold select_cc into other things, such as min/max/abs 5756 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 5757 } 5758 5759 SDValue DAGCombiner::visitSETCC(SDNode *N) { 5760 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 5761 cast<CondCodeSDNode>(N->getOperand(2))->get(), 5762 SDLoc(N)); 5763 } 5764 5765 SDValue DAGCombiner::visitSETCCE(SDNode *N) { 5766 SDValue LHS = N->getOperand(0); 5767 SDValue RHS = N->getOperand(1); 5768 SDValue Carry = N->getOperand(2); 5769 SDValue Cond = N->getOperand(3); 5770 5771 // If Carry is false, fold to a regular SETCC. 5772 if (Carry.getOpcode() == ISD::CARRY_FALSE) 5773 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 5774 5775 return SDValue(); 5776 } 5777 5778 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 5779 /// a build_vector of constants. 5780 /// This function is called by the DAGCombiner when visiting sext/zext/aext 5781 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 5782 /// Vector extends are not folded if operations are legal; this is to 5783 /// avoid introducing illegal build_vector dag nodes. 5784 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 5785 SelectionDAG &DAG, bool LegalTypes, 5786 bool LegalOperations) { 5787 unsigned Opcode = N->getOpcode(); 5788 SDValue N0 = N->getOperand(0); 5789 EVT VT = N->getValueType(0); 5790 5791 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 5792 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5793 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 5794 && "Expected EXTEND dag node in input!"); 5795 5796 // fold (sext c1) -> c1 5797 // fold (zext c1) -> c1 5798 // fold (aext c1) -> c1 5799 if (isa<ConstantSDNode>(N0)) 5800 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 5801 5802 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 5803 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 5804 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 5805 EVT SVT = VT.getScalarType(); 5806 if (!(VT.isVector() && 5807 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 5808 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 5809 return nullptr; 5810 5811 // We can fold this node into a build_vector. 5812 unsigned VTBits = SVT.getSizeInBits(); 5813 unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); 5814 SmallVector<SDValue, 8> Elts; 5815 unsigned NumElts = VT.getVectorNumElements(); 5816 SDLoc DL(N); 5817 5818 for (unsigned i=0; i != NumElts; ++i) { 5819 SDValue Op = N0->getOperand(i); 5820 if (Op->isUndef()) { 5821 Elts.push_back(DAG.getUNDEF(SVT)); 5822 continue; 5823 } 5824 5825 SDLoc DL(Op); 5826 // Get the constant value and if needed trunc it to the size of the type. 5827 // Nodes like build_vector might have constants wider than the scalar type. 5828 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 5829 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5830 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 5831 else 5832 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 5833 } 5834 5835 return DAG.getBuildVector(VT, DL, Elts).getNode(); 5836 } 5837 5838 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 5839 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 5840 // transformation. Returns true if extension are possible and the above 5841 // mentioned transformation is profitable. 5842 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 5843 unsigned ExtOpc, 5844 SmallVectorImpl<SDNode *> &ExtendNodes, 5845 const TargetLowering &TLI) { 5846 bool HasCopyToRegUses = false; 5847 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 5848 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 5849 UE = N0.getNode()->use_end(); 5850 UI != UE; ++UI) { 5851 SDNode *User = *UI; 5852 if (User == N) 5853 continue; 5854 if (UI.getUse().getResNo() != N0.getResNo()) 5855 continue; 5856 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 5857 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 5858 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 5859 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 5860 // Sign bits will be lost after a zext. 5861 return false; 5862 bool Add = false; 5863 for (unsigned i = 0; i != 2; ++i) { 5864 SDValue UseOp = User->getOperand(i); 5865 if (UseOp == N0) 5866 continue; 5867 if (!isa<ConstantSDNode>(UseOp)) 5868 return false; 5869 Add = true; 5870 } 5871 if (Add) 5872 ExtendNodes.push_back(User); 5873 continue; 5874 } 5875 // If truncates aren't free and there are users we can't 5876 // extend, it isn't worthwhile. 5877 if (!isTruncFree) 5878 return false; 5879 // Remember if this value is live-out. 5880 if (User->getOpcode() == ISD::CopyToReg) 5881 HasCopyToRegUses = true; 5882 } 5883 5884 if (HasCopyToRegUses) { 5885 bool BothLiveOut = false; 5886 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5887 UI != UE; ++UI) { 5888 SDUse &Use = UI.getUse(); 5889 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 5890 BothLiveOut = true; 5891 break; 5892 } 5893 } 5894 if (BothLiveOut) 5895 // Both unextended and extended values are live out. There had better be 5896 // a good reason for the transformation. 5897 return ExtendNodes.size(); 5898 } 5899 return true; 5900 } 5901 5902 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 5903 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 5904 ISD::NodeType ExtType) { 5905 // Extend SetCC uses if necessary. 5906 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 5907 SDNode *SetCC = SetCCs[i]; 5908 SmallVector<SDValue, 4> Ops; 5909 5910 for (unsigned j = 0; j != 2; ++j) { 5911 SDValue SOp = SetCC->getOperand(j); 5912 if (SOp == Trunc) 5913 Ops.push_back(ExtLoad); 5914 else 5915 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 5916 } 5917 5918 Ops.push_back(SetCC->getOperand(2)); 5919 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5920 } 5921 } 5922 5923 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 5924 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 5925 SDValue N0 = N->getOperand(0); 5926 EVT DstVT = N->getValueType(0); 5927 EVT SrcVT = N0.getValueType(); 5928 5929 assert((N->getOpcode() == ISD::SIGN_EXTEND || 5930 N->getOpcode() == ISD::ZERO_EXTEND) && 5931 "Unexpected node type (not an extend)!"); 5932 5933 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 5934 // For example, on a target with legal v4i32, but illegal v8i32, turn: 5935 // (v8i32 (sext (v8i16 (load x)))) 5936 // into: 5937 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5938 // (v4i32 (sextload (x + 16))))) 5939 // Where uses of the original load, i.e.: 5940 // (v8i16 (load x)) 5941 // are replaced with: 5942 // (v8i16 (truncate 5943 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5944 // (v4i32 (sextload (x + 16))))))) 5945 // 5946 // This combine is only applicable to illegal, but splittable, vectors. 5947 // All legal types, and illegal non-vector types, are handled elsewhere. 5948 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 5949 // 5950 if (N0->getOpcode() != ISD::LOAD) 5951 return SDValue(); 5952 5953 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5954 5955 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 5956 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 5957 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 5958 return SDValue(); 5959 5960 SmallVector<SDNode *, 4> SetCCs; 5961 if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) 5962 return SDValue(); 5963 5964 ISD::LoadExtType ExtType = 5965 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 5966 5967 // Try to split the vector types to get down to legal types. 5968 EVT SplitSrcVT = SrcVT; 5969 EVT SplitDstVT = DstVT; 5970 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 5971 SplitSrcVT.getVectorNumElements() > 1) { 5972 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 5973 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 5974 } 5975 5976 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 5977 return SDValue(); 5978 5979 SDLoc DL(N); 5980 const unsigned NumSplits = 5981 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 5982 const unsigned Stride = SplitSrcVT.getStoreSize(); 5983 SmallVector<SDValue, 4> Loads; 5984 SmallVector<SDValue, 4> Chains; 5985 5986 SDValue BasePtr = LN0->getBasePtr(); 5987 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 5988 const unsigned Offset = Idx * Stride; 5989 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 5990 5991 SDValue SplitLoad = DAG.getExtLoad( 5992 ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, 5993 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, 5994 LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), 5995 Align, LN0->getAAInfo()); 5996 5997 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 5998 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 5999 6000 Loads.push_back(SplitLoad.getValue(0)); 6001 Chains.push_back(SplitLoad.getValue(1)); 6002 } 6003 6004 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 6005 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 6006 6007 CombineTo(N, NewValue); 6008 6009 // Replace uses of the original load (before extension) 6010 // with a truncate of the concatenated sextloaded vectors. 6011 SDValue Trunc = 6012 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 6013 CombineTo(N0.getNode(), Trunc, NewChain); 6014 ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, 6015 (ISD::NodeType)N->getOpcode()); 6016 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6017 } 6018 6019 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 6020 SDValue N0 = N->getOperand(0); 6021 EVT VT = N->getValueType(0); 6022 6023 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6024 LegalOperations)) 6025 return SDValue(Res, 0); 6026 6027 // fold (sext (sext x)) -> (sext x) 6028 // fold (sext (aext x)) -> (sext x) 6029 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6030 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 6031 N0.getOperand(0)); 6032 6033 if (N0.getOpcode() == ISD::TRUNCATE) { 6034 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 6035 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 6036 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6037 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6038 if (NarrowLoad.getNode() != N0.getNode()) { 6039 CombineTo(N0.getNode(), NarrowLoad); 6040 // CombineTo deleted the truncate, if needed, but not what's under it. 6041 AddToWorklist(oye); 6042 } 6043 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6044 } 6045 6046 // See if the value being truncated is already sign extended. If so, just 6047 // eliminate the trunc/sext pair. 6048 SDValue Op = N0.getOperand(0); 6049 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); 6050 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); 6051 unsigned DestBits = VT.getScalarType().getSizeInBits(); 6052 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 6053 6054 if (OpBits == DestBits) { 6055 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 6056 // bits, it is already ready. 6057 if (NumSignBits > DestBits-MidBits) 6058 return Op; 6059 } else if (OpBits < DestBits) { 6060 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 6061 // bits, just sext from i32. 6062 if (NumSignBits > OpBits-MidBits) 6063 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 6064 } else { 6065 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 6066 // bits, just truncate to i32. 6067 if (NumSignBits > OpBits-MidBits) 6068 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6069 } 6070 6071 // fold (sext (truncate x)) -> (sextinreg x). 6072 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 6073 N0.getValueType())) { 6074 if (OpBits < DestBits) 6075 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 6076 else if (OpBits > DestBits) 6077 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 6078 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 6079 DAG.getValueType(N0.getValueType())); 6080 } 6081 } 6082 6083 // fold (sext (load x)) -> (sext (truncate (sextload x))) 6084 // Only generate vector extloads when 1) they're legal, and 2) they are 6085 // deemed desirable by the target. 6086 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6087 ((!LegalOperations && !VT.isVector() && 6088 !cast<LoadSDNode>(N0)->isVolatile()) || 6089 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { 6090 bool DoXform = true; 6091 SmallVector<SDNode*, 4> SetCCs; 6092 if (!N0.hasOneUse()) 6093 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 6094 if (VT.isVector()) 6095 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6096 if (DoXform) { 6097 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6098 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6099 LN0->getChain(), 6100 LN0->getBasePtr(), N0.getValueType(), 6101 LN0->getMemOperand()); 6102 CombineTo(N, ExtLoad); 6103 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6104 N0.getValueType(), ExtLoad); 6105 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6106 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6107 ISD::SIGN_EXTEND); 6108 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6109 } 6110 } 6111 6112 // fold (sext (load x)) to multiple smaller sextloads. 6113 // Only on illegal but splittable vectors. 6114 if (SDValue ExtLoad = CombineExtLoad(N)) 6115 return ExtLoad; 6116 6117 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 6118 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 6119 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6120 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6121 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6122 EVT MemVT = LN0->getMemoryVT(); 6123 if ((!LegalOperations && !LN0->isVolatile()) || 6124 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { 6125 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6126 LN0->getChain(), 6127 LN0->getBasePtr(), MemVT, 6128 LN0->getMemOperand()); 6129 CombineTo(N, ExtLoad); 6130 CombineTo(N0.getNode(), 6131 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6132 N0.getValueType(), ExtLoad), 6133 ExtLoad.getValue(1)); 6134 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6135 } 6136 } 6137 6138 // fold (sext (and/or/xor (load x), cst)) -> 6139 // (and/or/xor (sextload x), (sext cst)) 6140 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6141 N0.getOpcode() == ISD::XOR) && 6142 isa<LoadSDNode>(N0.getOperand(0)) && 6143 N0.getOperand(1).getOpcode() == ISD::Constant && 6144 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && 6145 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6146 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6147 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 6148 bool DoXform = true; 6149 SmallVector<SDNode*, 4> SetCCs; 6150 if (!N0.hasOneUse()) 6151 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 6152 SetCCs, TLI); 6153 if (DoXform) { 6154 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 6155 LN0->getChain(), LN0->getBasePtr(), 6156 LN0->getMemoryVT(), 6157 LN0->getMemOperand()); 6158 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6159 Mask = Mask.sext(VT.getSizeInBits()); 6160 SDLoc DL(N); 6161 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6162 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6163 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6164 SDLoc(N0.getOperand(0)), 6165 N0.getOperand(0).getValueType(), ExtLoad); 6166 CombineTo(N, And); 6167 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6168 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6169 ISD::SIGN_EXTEND); 6170 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6171 } 6172 } 6173 } 6174 6175 if (N0.getOpcode() == ISD::SETCC) { 6176 EVT N0VT = N0.getOperand(0).getValueType(); 6177 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 6178 // Only do this before legalize for now. 6179 if (VT.isVector() && !LegalOperations && 6180 TLI.getBooleanContents(N0VT) == 6181 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6182 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 6183 // of the same size as the compared operands. Only optimize sext(setcc()) 6184 // if this is the case. 6185 EVT SVT = getSetCCResultType(N0VT); 6186 6187 // We know that the # elements of the results is the same as the 6188 // # elements of the compare (and the # elements of the compare result 6189 // for that matter). Check to see that they are the same size. If so, 6190 // we know that the element size of the sext'd result matches the 6191 // element size of the compare operands. 6192 if (VT.getSizeInBits() == SVT.getSizeInBits()) 6193 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6194 N0.getOperand(1), 6195 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6196 6197 // If the desired elements are smaller or larger than the source 6198 // elements we can use a matching integer vector type and then 6199 // truncate/sign extend 6200 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6201 if (SVT == MatchingVectorType) { 6202 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 6203 N0.getOperand(0), N0.getOperand(1), 6204 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6205 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 6206 } 6207 } 6208 6209 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) 6210 unsigned ElementWidth = VT.getScalarType().getSizeInBits(); 6211 SDLoc DL(N); 6212 SDValue NegOne = 6213 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT); 6214 if (SDValue SCC = SimplifySelectCC( 6215 DL, N0.getOperand(0), N0.getOperand(1), NegOne, 6216 DAG.getConstant(0, DL, VT), 6217 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6218 return SCC; 6219 6220 if (!VT.isVector()) { 6221 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 6222 if (!LegalOperations || 6223 TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { 6224 SDLoc DL(N); 6225 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 6226 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, 6227 N0.getOperand(0), N0.getOperand(1), CC); 6228 return DAG.getSelect(DL, VT, SetCC, 6229 NegOne, DAG.getConstant(0, DL, VT)); 6230 } 6231 } 6232 } 6233 6234 // fold (sext x) -> (zext x) if the sign bit is known zero. 6235 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 6236 DAG.SignBitIsZero(N0)) 6237 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 6238 6239 return SDValue(); 6240 } 6241 6242 // isTruncateOf - If N is a truncate of some other value, return true, record 6243 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 6244 // This function computes KnownZero to avoid a duplicated call to 6245 // computeKnownBits in the caller. 6246 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 6247 APInt &KnownZero) { 6248 APInt KnownOne; 6249 if (N->getOpcode() == ISD::TRUNCATE) { 6250 Op = N->getOperand(0); 6251 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6252 return true; 6253 } 6254 6255 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 6256 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 6257 return false; 6258 6259 SDValue Op0 = N->getOperand(0); 6260 SDValue Op1 = N->getOperand(1); 6261 assert(Op0.getValueType() == Op1.getValueType()); 6262 6263 if (isNullConstant(Op0)) 6264 Op = Op1; 6265 else if (isNullConstant(Op1)) 6266 Op = Op0; 6267 else 6268 return false; 6269 6270 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6271 6272 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 6273 return false; 6274 6275 return true; 6276 } 6277 6278 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 6279 SDValue N0 = N->getOperand(0); 6280 EVT VT = N->getValueType(0); 6281 6282 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6283 LegalOperations)) 6284 return SDValue(Res, 0); 6285 6286 // fold (zext (zext x)) -> (zext x) 6287 // fold (zext (aext x)) -> (zext x) 6288 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6289 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 6290 N0.getOperand(0)); 6291 6292 // fold (zext (truncate x)) -> (zext x) or 6293 // (zext (truncate x)) -> (truncate x) 6294 // This is valid when the truncated bits of x are already zero. 6295 // FIXME: We should extend this to work for vectors too. 6296 SDValue Op; 6297 APInt KnownZero; 6298 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 6299 APInt TruncatedBits = 6300 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 6301 APInt(Op.getValueSizeInBits(), 0) : 6302 APInt::getBitsSet(Op.getValueSizeInBits(), 6303 N0.getValueSizeInBits(), 6304 std::min(Op.getValueSizeInBits(), 6305 VT.getSizeInBits())); 6306 if (TruncatedBits == (KnownZero & TruncatedBits)) { 6307 if (VT.bitsGT(Op.getValueType())) 6308 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 6309 if (VT.bitsLT(Op.getValueType())) 6310 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6311 6312 return Op; 6313 } 6314 } 6315 6316 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6317 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 6318 if (N0.getOpcode() == ISD::TRUNCATE) { 6319 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6320 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6321 if (NarrowLoad.getNode() != N0.getNode()) { 6322 CombineTo(N0.getNode(), NarrowLoad); 6323 // CombineTo deleted the truncate, if needed, but not what's under it. 6324 AddToWorklist(oye); 6325 } 6326 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6327 } 6328 } 6329 6330 // fold (zext (truncate x)) -> (and x, mask) 6331 if (N0.getOpcode() == ISD::TRUNCATE) { 6332 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6333 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 6334 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6335 SDNode *oye = N0.getNode()->getOperand(0).getNode(); 6336 if (NarrowLoad.getNode() != N0.getNode()) { 6337 CombineTo(N0.getNode(), NarrowLoad); 6338 // CombineTo deleted the truncate, if needed, but not what's under it. 6339 AddToWorklist(oye); 6340 } 6341 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6342 } 6343 6344 EVT SrcVT = N0.getOperand(0).getValueType(); 6345 EVT MinVT = N0.getValueType(); 6346 6347 // Try to mask before the extension to avoid having to generate a larger mask, 6348 // possibly over several sub-vectors. 6349 if (SrcVT.bitsLT(VT)) { 6350 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 6351 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 6352 SDValue Op = N0.getOperand(0); 6353 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6354 AddToWorklist(Op.getNode()); 6355 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 6356 } 6357 } 6358 6359 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 6360 SDValue Op = N0.getOperand(0); 6361 if (SrcVT.bitsLT(VT)) { 6362 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 6363 AddToWorklist(Op.getNode()); 6364 } else if (SrcVT.bitsGT(VT)) { 6365 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6366 AddToWorklist(Op.getNode()); 6367 } 6368 return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6369 } 6370 } 6371 6372 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 6373 // if either of the casts is not free. 6374 if (N0.getOpcode() == ISD::AND && 6375 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6376 N0.getOperand(1).getOpcode() == ISD::Constant && 6377 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6378 N0.getValueType()) || 6379 !TLI.isZExtFree(N0.getValueType(), VT))) { 6380 SDValue X = N0.getOperand(0).getOperand(0); 6381 if (X.getValueType().bitsLT(VT)) { 6382 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 6383 } else if (X.getValueType().bitsGT(VT)) { 6384 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6385 } 6386 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6387 Mask = Mask.zext(VT.getSizeInBits()); 6388 SDLoc DL(N); 6389 return DAG.getNode(ISD::AND, DL, VT, 6390 X, DAG.getConstant(Mask, DL, VT)); 6391 } 6392 6393 // fold (zext (load x)) -> (zext (truncate (zextload x))) 6394 // Only generate vector extloads when 1) they're legal, and 2) they are 6395 // deemed desirable by the target. 6396 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6397 ((!LegalOperations && !VT.isVector() && 6398 !cast<LoadSDNode>(N0)->isVolatile()) || 6399 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { 6400 bool DoXform = true; 6401 SmallVector<SDNode*, 4> SetCCs; 6402 if (!N0.hasOneUse()) 6403 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 6404 if (VT.isVector()) 6405 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6406 if (DoXform) { 6407 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6408 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6409 LN0->getChain(), 6410 LN0->getBasePtr(), N0.getValueType(), 6411 LN0->getMemOperand()); 6412 CombineTo(N, ExtLoad); 6413 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6414 N0.getValueType(), ExtLoad); 6415 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6416 6417 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6418 ISD::ZERO_EXTEND); 6419 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6420 } 6421 } 6422 6423 // fold (zext (load x)) to multiple smaller zextloads. 6424 // Only on illegal but splittable vectors. 6425 if (SDValue ExtLoad = CombineExtLoad(N)) 6426 return ExtLoad; 6427 6428 // fold (zext (and/or/xor (load x), cst)) -> 6429 // (and/or/xor (zextload x), (zext cst)) 6430 // Unless (and (load x) cst) will match as a zextload already and has 6431 // additional users. 6432 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6433 N0.getOpcode() == ISD::XOR) && 6434 isa<LoadSDNode>(N0.getOperand(0)) && 6435 N0.getOperand(1).getOpcode() == ISD::Constant && 6436 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && 6437 (!LegalOperations && TLI.isOperationLegalOrCustom(N0.getOpcode(), VT))) { 6438 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6439 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 6440 bool DoXform = true; 6441 SmallVector<SDNode*, 4> SetCCs; 6442 if (!N0.hasOneUse()) { 6443 if (N0.getOpcode() == ISD::AND) { 6444 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 6445 auto NarrowLoad = false; 6446 EVT LoadResultTy = AndC->getValueType(0); 6447 EVT ExtVT, LoadedVT; 6448 if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, 6449 NarrowLoad)) 6450 DoXform = false; 6451 } 6452 if (DoXform) 6453 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), 6454 ISD::ZERO_EXTEND, SetCCs, TLI); 6455 } 6456 if (DoXform) { 6457 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 6458 LN0->getChain(), LN0->getBasePtr(), 6459 LN0->getMemoryVT(), 6460 LN0->getMemOperand()); 6461 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6462 Mask = Mask.zext(VT.getSizeInBits()); 6463 SDLoc DL(N); 6464 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6465 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6466 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6467 SDLoc(N0.getOperand(0)), 6468 N0.getOperand(0).getValueType(), ExtLoad); 6469 CombineTo(N, And); 6470 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6471 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6472 ISD::ZERO_EXTEND); 6473 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6474 } 6475 } 6476 } 6477 6478 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 6479 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 6480 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6481 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6482 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6483 EVT MemVT = LN0->getMemoryVT(); 6484 if ((!LegalOperations && !LN0->isVolatile()) || 6485 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { 6486 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6487 LN0->getChain(), 6488 LN0->getBasePtr(), MemVT, 6489 LN0->getMemOperand()); 6490 CombineTo(N, ExtLoad); 6491 CombineTo(N0.getNode(), 6492 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 6493 ExtLoad), 6494 ExtLoad.getValue(1)); 6495 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6496 } 6497 } 6498 6499 if (N0.getOpcode() == ISD::SETCC) { 6500 if (!LegalOperations && VT.isVector() && 6501 N0.getValueType().getVectorElementType() == MVT::i1) { 6502 EVT N0VT = N0.getOperand(0).getValueType(); 6503 if (getSetCCResultType(N0VT) == N0.getValueType()) 6504 return SDValue(); 6505 6506 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 6507 // Only do this before legalize for now. 6508 SDLoc DL(N); 6509 SDValue VecOnes = DAG.getConstant(1, DL, VT); 6510 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6511 // We know that the # elements of the results is the same as the 6512 // # elements of the compare (and the # elements of the compare result 6513 // for that matter). Check to see that they are the same size. If so, 6514 // we know that the element size of the sext'd result matches the 6515 // element size of the compare operands. 6516 return DAG.getNode(ISD::AND, DL, VT, 6517 DAG.getSetCC(DL, VT, N0.getOperand(0), 6518 N0.getOperand(1), 6519 cast<CondCodeSDNode>(N0.getOperand(2))->get()), 6520 VecOnes); 6521 6522 // If the desired elements are smaller or larger than the source 6523 // elements we can use a matching integer vector type and then 6524 // truncate/sign extend 6525 EVT MatchingElementType = 6526 EVT::getIntegerVT(*DAG.getContext(), 6527 N0VT.getScalarType().getSizeInBits()); 6528 EVT MatchingVectorType = 6529 EVT::getVectorVT(*DAG.getContext(), MatchingElementType, 6530 N0VT.getVectorNumElements()); 6531 SDValue VsetCC = 6532 DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0), 6533 N0.getOperand(1), 6534 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6535 return DAG.getNode(ISD::AND, DL, VT, 6536 DAG.getSExtOrTrunc(VsetCC, DL, VT), 6537 VecOnes); 6538 } 6539 6540 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6541 SDLoc DL(N); 6542 if (SDValue SCC = SimplifySelectCC( 6543 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6544 DAG.getConstant(0, DL, VT), 6545 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6546 return SCC; 6547 } 6548 6549 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 6550 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 6551 isa<ConstantSDNode>(N0.getOperand(1)) && 6552 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 6553 N0.hasOneUse()) { 6554 SDValue ShAmt = N0.getOperand(1); 6555 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 6556 if (N0.getOpcode() == ISD::SHL) { 6557 SDValue InnerZExt = N0.getOperand(0); 6558 // If the original shl may be shifting out bits, do not perform this 6559 // transformation. 6560 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - 6561 InnerZExt.getOperand(0).getValueType().getSizeInBits(); 6562 if (ShAmtVal > KnownZeroBits) 6563 return SDValue(); 6564 } 6565 6566 SDLoc DL(N); 6567 6568 // Ensure that the shift amount is wide enough for the shifted value. 6569 if (VT.getSizeInBits() >= 256) 6570 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 6571 6572 return DAG.getNode(N0.getOpcode(), DL, VT, 6573 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 6574 ShAmt); 6575 } 6576 6577 return SDValue(); 6578 } 6579 6580 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 6581 SDValue N0 = N->getOperand(0); 6582 EVT VT = N->getValueType(0); 6583 6584 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6585 LegalOperations)) 6586 return SDValue(Res, 0); 6587 6588 // fold (aext (aext x)) -> (aext x) 6589 // fold (aext (zext x)) -> (zext x) 6590 // fold (aext (sext x)) -> (sext x) 6591 if (N0.getOpcode() == ISD::ANY_EXTEND || 6592 N0.getOpcode() == ISD::ZERO_EXTEND || 6593 N0.getOpcode() == ISD::SIGN_EXTEND) 6594 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 6595 6596 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 6597 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 6598 if (N0.getOpcode() == ISD::TRUNCATE) { 6599 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6600 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6601 if (NarrowLoad.getNode() != N0.getNode()) { 6602 CombineTo(N0.getNode(), NarrowLoad); 6603 // CombineTo deleted the truncate, if needed, but not what's under it. 6604 AddToWorklist(oye); 6605 } 6606 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6607 } 6608 } 6609 6610 // fold (aext (truncate x)) 6611 if (N0.getOpcode() == ISD::TRUNCATE) { 6612 SDValue TruncOp = N0.getOperand(0); 6613 if (TruncOp.getValueType() == VT) 6614 return TruncOp; // x iff x size == zext size. 6615 if (TruncOp.getValueType().bitsGT(VT)) 6616 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 6617 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 6618 } 6619 6620 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 6621 // if the trunc is not free. 6622 if (N0.getOpcode() == ISD::AND && 6623 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6624 N0.getOperand(1).getOpcode() == ISD::Constant && 6625 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6626 N0.getValueType())) { 6627 SDValue X = N0.getOperand(0).getOperand(0); 6628 if (X.getValueType().bitsLT(VT)) { 6629 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 6630 } else if (X.getValueType().bitsGT(VT)) { 6631 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 6632 } 6633 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6634 Mask = Mask.zext(VT.getSizeInBits()); 6635 SDLoc DL(N); 6636 return DAG.getNode(ISD::AND, DL, VT, 6637 X, DAG.getConstant(Mask, DL, VT)); 6638 } 6639 6640 // fold (aext (load x)) -> (aext (truncate (extload x))) 6641 // None of the supported targets knows how to perform load and any_ext 6642 // on vectors in one instruction. We only perform this transformation on 6643 // scalars. 6644 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 6645 ISD::isUNINDEXEDLoad(N0.getNode()) && 6646 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 6647 bool DoXform = true; 6648 SmallVector<SDNode*, 4> SetCCs; 6649 if (!N0.hasOneUse()) 6650 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 6651 if (DoXform) { 6652 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6653 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 6654 LN0->getChain(), 6655 LN0->getBasePtr(), N0.getValueType(), 6656 LN0->getMemOperand()); 6657 CombineTo(N, ExtLoad); 6658 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6659 N0.getValueType(), ExtLoad); 6660 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6661 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6662 ISD::ANY_EXTEND); 6663 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6664 } 6665 } 6666 6667 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 6668 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 6669 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 6670 if (N0.getOpcode() == ISD::LOAD && 6671 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6672 N0.hasOneUse()) { 6673 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6674 ISD::LoadExtType ExtType = LN0->getExtensionType(); 6675 EVT MemVT = LN0->getMemoryVT(); 6676 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 6677 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 6678 VT, LN0->getChain(), LN0->getBasePtr(), 6679 MemVT, LN0->getMemOperand()); 6680 CombineTo(N, ExtLoad); 6681 CombineTo(N0.getNode(), 6682 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6683 N0.getValueType(), ExtLoad), 6684 ExtLoad.getValue(1)); 6685 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6686 } 6687 } 6688 6689 if (N0.getOpcode() == ISD::SETCC) { 6690 // For vectors: 6691 // aext(setcc) -> vsetcc 6692 // aext(setcc) -> truncate(vsetcc) 6693 // aext(setcc) -> aext(vsetcc) 6694 // Only do this before legalize for now. 6695 if (VT.isVector() && !LegalOperations) { 6696 EVT N0VT = N0.getOperand(0).getValueType(); 6697 // We know that the # elements of the results is the same as the 6698 // # elements of the compare (and the # elements of the compare result 6699 // for that matter). Check to see that they are the same size. If so, 6700 // we know that the element size of the sext'd result matches the 6701 // element size of the compare operands. 6702 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6703 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6704 N0.getOperand(1), 6705 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6706 // If the desired elements are smaller or larger than the source 6707 // elements we can use a matching integer vector type and then 6708 // truncate/any extend 6709 else { 6710 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6711 SDValue VsetCC = 6712 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 6713 N0.getOperand(1), 6714 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6715 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 6716 } 6717 } 6718 6719 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6720 SDLoc DL(N); 6721 if (SDValue SCC = SimplifySelectCC( 6722 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6723 DAG.getConstant(0, DL, VT), 6724 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6725 return SCC; 6726 } 6727 6728 return SDValue(); 6729 } 6730 6731 /// See if the specified operand can be simplified with the knowledge that only 6732 /// the bits specified by Mask are used. If so, return the simpler operand, 6733 /// otherwise return a null SDValue. 6734 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 6735 switch (V.getOpcode()) { 6736 default: break; 6737 case ISD::Constant: { 6738 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 6739 assert(CV && "Const value should be ConstSDNode."); 6740 const APInt &CVal = CV->getAPIntValue(); 6741 APInt NewVal = CVal & Mask; 6742 if (NewVal != CVal) 6743 return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); 6744 break; 6745 } 6746 case ISD::OR: 6747 case ISD::XOR: 6748 // If the LHS or RHS don't contribute bits to the or, drop them. 6749 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 6750 return V.getOperand(1); 6751 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 6752 return V.getOperand(0); 6753 break; 6754 case ISD::SRL: 6755 // Only look at single-use SRLs. 6756 if (!V.getNode()->hasOneUse()) 6757 break; 6758 if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { 6759 // See if we can recursively simplify the LHS. 6760 unsigned Amt = RHSC->getZExtValue(); 6761 6762 // Watch out for shift count overflow though. 6763 if (Amt >= Mask.getBitWidth()) break; 6764 APInt NewMask = Mask << Amt; 6765 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 6766 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 6767 SimplifyLHS, V.getOperand(1)); 6768 } 6769 } 6770 return SDValue(); 6771 } 6772 6773 /// If the result of a wider load is shifted to right of N bits and then 6774 /// truncated to a narrower type and where N is a multiple of number of bits of 6775 /// the narrower type, transform it to a narrower load from address + N / num of 6776 /// bits of new type. If the result is to be extended, also fold the extension 6777 /// to form a extending load. 6778 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 6779 unsigned Opc = N->getOpcode(); 6780 6781 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 6782 SDValue N0 = N->getOperand(0); 6783 EVT VT = N->getValueType(0); 6784 EVT ExtVT = VT; 6785 6786 // This transformation isn't valid for vector loads. 6787 if (VT.isVector()) 6788 return SDValue(); 6789 6790 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 6791 // extended to VT. 6792 if (Opc == ISD::SIGN_EXTEND_INREG) { 6793 ExtType = ISD::SEXTLOAD; 6794 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6795 } else if (Opc == ISD::SRL) { 6796 // Another special-case: SRL is basically zero-extending a narrower value. 6797 ExtType = ISD::ZEXTLOAD; 6798 N0 = SDValue(N, 0); 6799 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6800 if (!N01) return SDValue(); 6801 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 6802 VT.getSizeInBits() - N01->getZExtValue()); 6803 } 6804 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) 6805 return SDValue(); 6806 6807 unsigned EVTBits = ExtVT.getSizeInBits(); 6808 6809 // Do not generate loads of non-round integer types since these can 6810 // be expensive (and would be wrong if the type is not byte sized). 6811 if (!ExtVT.isRound()) 6812 return SDValue(); 6813 6814 unsigned ShAmt = 0; 6815 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 6816 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6817 ShAmt = N01->getZExtValue(); 6818 // Is the shift amount a multiple of size of VT? 6819 if ((ShAmt & (EVTBits-1)) == 0) { 6820 N0 = N0.getOperand(0); 6821 // Is the load width a multiple of size of VT? 6822 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) 6823 return SDValue(); 6824 } 6825 6826 // At this point, we must have a load or else we can't do the transform. 6827 if (!isa<LoadSDNode>(N0)) return SDValue(); 6828 6829 // Because a SRL must be assumed to *need* to zero-extend the high bits 6830 // (as opposed to anyext the high bits), we can't combine the zextload 6831 // lowering of SRL and an sextload. 6832 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 6833 return SDValue(); 6834 6835 // If the shift amount is larger than the input type then we're not 6836 // accessing any of the loaded bytes. If the load was a zextload/extload 6837 // then the result of the shift+trunc is zero/undef (handled elsewhere). 6838 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 6839 return SDValue(); 6840 } 6841 } 6842 6843 // If the load is shifted left (and the result isn't shifted back right), 6844 // we can fold the truncate through the shift. 6845 unsigned ShLeftAmt = 0; 6846 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 6847 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 6848 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6849 ShLeftAmt = N01->getZExtValue(); 6850 N0 = N0.getOperand(0); 6851 } 6852 } 6853 6854 // If we haven't found a load, we can't narrow it. Don't transform one with 6855 // multiple uses, this would require adding a new load. 6856 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 6857 return SDValue(); 6858 6859 // Don't change the width of a volatile load. 6860 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6861 if (LN0->isVolatile()) 6862 return SDValue(); 6863 6864 // Verify that we are actually reducing a load width here. 6865 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 6866 return SDValue(); 6867 6868 // For the transform to be legal, the load must produce only two values 6869 // (the value loaded and the chain). Don't transform a pre-increment 6870 // load, for example, which produces an extra value. Otherwise the 6871 // transformation is not equivalent, and the downstream logic to replace 6872 // uses gets things wrong. 6873 if (LN0->getNumValues() > 2) 6874 return SDValue(); 6875 6876 // If the load that we're shrinking is an extload and we're not just 6877 // discarding the extension we can't simply shrink the load. Bail. 6878 // TODO: It would be possible to merge the extensions in some cases. 6879 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 6880 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 6881 return SDValue(); 6882 6883 if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) 6884 return SDValue(); 6885 6886 EVT PtrType = N0.getOperand(1).getValueType(); 6887 6888 if (PtrType == MVT::Untyped || PtrType.isExtended()) 6889 // It's not possible to generate a constant of extended or untyped type. 6890 return SDValue(); 6891 6892 // For big endian targets, we need to adjust the offset to the pointer to 6893 // load the correct bytes. 6894 if (DAG.getDataLayout().isBigEndian()) { 6895 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 6896 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 6897 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 6898 } 6899 6900 uint64_t PtrOff = ShAmt / 8; 6901 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 6902 SDLoc DL(LN0); 6903 // The original load itself didn't wrap, so an offset within it doesn't. 6904 SDNodeFlags Flags; 6905 Flags.setNoUnsignedWrap(true); 6906 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 6907 PtrType, LN0->getBasePtr(), 6908 DAG.getConstant(PtrOff, DL, PtrType), 6909 &Flags); 6910 AddToWorklist(NewPtr.getNode()); 6911 6912 SDValue Load; 6913 if (ExtType == ISD::NON_EXTLOAD) 6914 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 6915 LN0->getPointerInfo().getWithOffset(PtrOff), 6916 LN0->isVolatile(), LN0->isNonTemporal(), 6917 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6918 else 6919 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, 6920 LN0->getPointerInfo().getWithOffset(PtrOff), 6921 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 6922 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6923 6924 // Replace the old load's chain with the new load's chain. 6925 WorklistRemover DeadNodes(*this); 6926 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 6927 6928 // Shift the result left, if we've swallowed a left shift. 6929 SDValue Result = Load; 6930 if (ShLeftAmt != 0) { 6931 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 6932 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 6933 ShImmTy = VT; 6934 // If the shift amount is as large as the result size (but, presumably, 6935 // no larger than the source) then the useful bits of the result are 6936 // zero; we can't simply return the shortened shift, because the result 6937 // of that operation is undefined. 6938 SDLoc DL(N0); 6939 if (ShLeftAmt >= VT.getSizeInBits()) 6940 Result = DAG.getConstant(0, DL, VT); 6941 else 6942 Result = DAG.getNode(ISD::SHL, DL, VT, 6943 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 6944 } 6945 6946 // Return the new loaded value. 6947 return Result; 6948 } 6949 6950 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 6951 SDValue N0 = N->getOperand(0); 6952 SDValue N1 = N->getOperand(1); 6953 EVT VT = N->getValueType(0); 6954 EVT EVT = cast<VTSDNode>(N1)->getVT(); 6955 unsigned VTBits = VT.getScalarType().getSizeInBits(); 6956 unsigned EVTBits = EVT.getScalarType().getSizeInBits(); 6957 6958 if (N0.isUndef()) 6959 return DAG.getUNDEF(VT); 6960 6961 // fold (sext_in_reg c1) -> c1 6962 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 6963 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 6964 6965 // If the input is already sign extended, just drop the extension. 6966 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 6967 return N0; 6968 6969 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 6970 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 6971 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 6972 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6973 N0.getOperand(0), N1); 6974 6975 // fold (sext_in_reg (sext x)) -> (sext x) 6976 // fold (sext_in_reg (aext x)) -> (sext x) 6977 // if x is small enough. 6978 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 6979 SDValue N00 = N0.getOperand(0); 6980 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && 6981 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 6982 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 6983 } 6984 6985 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 6986 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 6987 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); 6988 6989 // fold operands of sext_in_reg based on knowledge that the top bits are not 6990 // demanded. 6991 if (SimplifyDemandedBits(SDValue(N, 0))) 6992 return SDValue(N, 0); 6993 6994 // fold (sext_in_reg (load x)) -> (smaller sextload x) 6995 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 6996 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 6997 return NarrowLoad; 6998 6999 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 7000 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 7001 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 7002 if (N0.getOpcode() == ISD::SRL) { 7003 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 7004 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 7005 // We can turn this into an SRA iff the input to the SRL is already sign 7006 // extended enough. 7007 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 7008 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 7009 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 7010 N0.getOperand(0), N0.getOperand(1)); 7011 } 7012 } 7013 7014 // fold (sext_inreg (extload x)) -> (sextload x) 7015 if (ISD::isEXTLoad(N0.getNode()) && 7016 ISD::isUNINDEXEDLoad(N0.getNode()) && 7017 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7018 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7019 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7020 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7021 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7022 LN0->getChain(), 7023 LN0->getBasePtr(), EVT, 7024 LN0->getMemOperand()); 7025 CombineTo(N, ExtLoad); 7026 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7027 AddToWorklist(ExtLoad.getNode()); 7028 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7029 } 7030 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 7031 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 7032 N0.hasOneUse() && 7033 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7034 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7035 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7036 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7037 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7038 LN0->getChain(), 7039 LN0->getBasePtr(), EVT, 7040 LN0->getMemOperand()); 7041 CombineTo(N, ExtLoad); 7042 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7043 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7044 } 7045 7046 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 7047 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 7048 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 7049 N0.getOperand(1), false)) 7050 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7051 BSwap, N1); 7052 } 7053 7054 return SDValue(); 7055 } 7056 7057 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 7058 SDValue N0 = N->getOperand(0); 7059 EVT VT = N->getValueType(0); 7060 7061 if (N0.isUndef()) 7062 return DAG.getUNDEF(VT); 7063 7064 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7065 LegalOperations)) 7066 return SDValue(Res, 0); 7067 7068 return SDValue(); 7069 } 7070 7071 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 7072 SDValue N0 = N->getOperand(0); 7073 EVT VT = N->getValueType(0); 7074 7075 if (N0.isUndef()) 7076 return DAG.getUNDEF(VT); 7077 7078 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7079 LegalOperations)) 7080 return SDValue(Res, 0); 7081 7082 return SDValue(); 7083 } 7084 7085 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 7086 SDValue N0 = N->getOperand(0); 7087 EVT VT = N->getValueType(0); 7088 bool isLE = DAG.getDataLayout().isLittleEndian(); 7089 7090 // noop truncate 7091 if (N0.getValueType() == N->getValueType(0)) 7092 return N0; 7093 // fold (truncate c1) -> c1 7094 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7095 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 7096 // fold (truncate (truncate x)) -> (truncate x) 7097 if (N0.getOpcode() == ISD::TRUNCATE) 7098 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7099 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 7100 if (N0.getOpcode() == ISD::ZERO_EXTEND || 7101 N0.getOpcode() == ISD::SIGN_EXTEND || 7102 N0.getOpcode() == ISD::ANY_EXTEND) { 7103 // if the source is smaller than the dest, we still need an extend. 7104 if (N0.getOperand(0).getValueType().bitsLT(VT)) 7105 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 7106 // if the source is larger than the dest, than we just need the truncate. 7107 if (N0.getOperand(0).getValueType().bitsGT(VT)) 7108 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7109 // if the source and dest are the same type, we can drop both the extend 7110 // and the truncate. 7111 return N0.getOperand(0); 7112 } 7113 7114 // Fold extract-and-trunc into a narrow extract. For example: 7115 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 7116 // i32 y = TRUNCATE(i64 x) 7117 // -- becomes -- 7118 // v16i8 b = BITCAST (v2i64 val) 7119 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 7120 // 7121 // Note: We only run this optimization after type legalization (which often 7122 // creates this pattern) and before operation legalization after which 7123 // we need to be more careful about the vector instructions that we generate. 7124 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7125 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 7126 7127 EVT VecTy = N0.getOperand(0).getValueType(); 7128 EVT ExTy = N0.getValueType(); 7129 EVT TrTy = N->getValueType(0); 7130 7131 unsigned NumElem = VecTy.getVectorNumElements(); 7132 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 7133 7134 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 7135 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 7136 7137 SDValue EltNo = N0->getOperand(1); 7138 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 7139 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 7140 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7141 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 7142 7143 SDLoc DL(N); 7144 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 7145 DAG.getBitcast(NVT, N0.getOperand(0)), 7146 DAG.getConstant(Index, DL, IndexTy)); 7147 } 7148 } 7149 7150 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 7151 if (N0.getOpcode() == ISD::SELECT) { 7152 EVT SrcVT = N0.getValueType(); 7153 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 7154 TLI.isTruncateFree(SrcVT, VT)) { 7155 SDLoc SL(N0); 7156 SDValue Cond = N0.getOperand(0); 7157 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 7158 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 7159 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 7160 } 7161 } 7162 7163 // trunc (shl x, K) -> shl (trunc x), K => K < vt.size / 2 7164 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 7165 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) && 7166 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 7167 if (const ConstantSDNode *CAmt = isConstOrConstSplat(N0.getOperand(1))) { 7168 uint64_t Amt = CAmt->getZExtValue(); 7169 unsigned Size = VT.getSizeInBits(); 7170 7171 if (Amt < Size / 2) { 7172 SDLoc SL(N); 7173 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 7174 7175 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 7176 return DAG.getNode(ISD::SHL, SL, VT, Trunc, 7177 DAG.getConstant(Amt, SL, AmtVT)); 7178 } 7179 } 7180 } 7181 7182 // Fold a series of buildvector, bitcast, and truncate if possible. 7183 // For example fold 7184 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 7185 // (2xi32 (buildvector x, y)). 7186 if (Level == AfterLegalizeVectorOps && VT.isVector() && 7187 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 7188 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 7189 N0.getOperand(0).hasOneUse()) { 7190 7191 SDValue BuildVect = N0.getOperand(0); 7192 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 7193 EVT TruncVecEltTy = VT.getVectorElementType(); 7194 7195 // Check that the element types match. 7196 if (BuildVectEltTy == TruncVecEltTy) { 7197 // Now we only need to compute the offset of the truncated elements. 7198 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 7199 unsigned TruncVecNumElts = VT.getVectorNumElements(); 7200 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 7201 7202 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 7203 "Invalid number of elements"); 7204 7205 SmallVector<SDValue, 8> Opnds; 7206 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 7207 Opnds.push_back(BuildVect.getOperand(i)); 7208 7209 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 7210 } 7211 } 7212 7213 // See if we can simplify the input to this truncate through knowledge that 7214 // only the low bits are being used. 7215 // For example "trunc (or (shl x, 8), y)" // -> trunc y 7216 // Currently we only perform this optimization on scalars because vectors 7217 // may have different active low bits. 7218 if (!VT.isVector()) { 7219 if (SDValue Shorter = 7220 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 7221 VT.getSizeInBits()))) 7222 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 7223 } 7224 // fold (truncate (load x)) -> (smaller load x) 7225 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 7226 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 7227 if (SDValue Reduced = ReduceLoadWidth(N)) 7228 return Reduced; 7229 7230 // Handle the case where the load remains an extending load even 7231 // after truncation. 7232 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 7233 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7234 if (!LN0->isVolatile() && 7235 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 7236 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 7237 VT, LN0->getChain(), LN0->getBasePtr(), 7238 LN0->getMemoryVT(), 7239 LN0->getMemOperand()); 7240 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 7241 return NewLoad; 7242 } 7243 } 7244 } 7245 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 7246 // where ... are all 'undef'. 7247 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 7248 SmallVector<EVT, 8> VTs; 7249 SDValue V; 7250 unsigned Idx = 0; 7251 unsigned NumDefs = 0; 7252 7253 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 7254 SDValue X = N0.getOperand(i); 7255 if (!X.isUndef()) { 7256 V = X; 7257 Idx = i; 7258 NumDefs++; 7259 } 7260 // Stop if more than one members are non-undef. 7261 if (NumDefs > 1) 7262 break; 7263 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 7264 VT.getVectorElementType(), 7265 X.getValueType().getVectorNumElements())); 7266 } 7267 7268 if (NumDefs == 0) 7269 return DAG.getUNDEF(VT); 7270 7271 if (NumDefs == 1) { 7272 assert(V.getNode() && "The single defined operand is empty!"); 7273 SmallVector<SDValue, 8> Opnds; 7274 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 7275 if (i != Idx) { 7276 Opnds.push_back(DAG.getUNDEF(VTs[i])); 7277 continue; 7278 } 7279 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 7280 AddToWorklist(NV.getNode()); 7281 Opnds.push_back(NV); 7282 } 7283 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 7284 } 7285 } 7286 7287 // Fold truncate of a bitcast of a vector to an extract of the low vector 7288 // element. 7289 // 7290 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, 0 7291 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 7292 SDValue VecSrc = N0.getOperand(0); 7293 EVT SrcVT = VecSrc.getValueType(); 7294 if (SrcVT.isVector() && SrcVT.getScalarType() == VT && 7295 (!LegalOperations || 7296 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { 7297 SDLoc SL(N); 7298 7299 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 7300 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, 7301 VecSrc, DAG.getConstant(0, SL, IdxVT)); 7302 } 7303 } 7304 7305 // Simplify the operands using demanded-bits information. 7306 if (!VT.isVector() && 7307 SimplifyDemandedBits(SDValue(N, 0))) 7308 return SDValue(N, 0); 7309 7310 return SDValue(); 7311 } 7312 7313 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 7314 SDValue Elt = N->getOperand(i); 7315 if (Elt.getOpcode() != ISD::MERGE_VALUES) 7316 return Elt.getNode(); 7317 return Elt.getOperand(Elt.getResNo()).getNode(); 7318 } 7319 7320 /// build_pair (load, load) -> load 7321 /// if load locations are consecutive. 7322 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 7323 assert(N->getOpcode() == ISD::BUILD_PAIR); 7324 7325 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 7326 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 7327 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 7328 LD1->getAddressSpace() != LD2->getAddressSpace()) 7329 return SDValue(); 7330 EVT LD1VT = LD1->getValueType(0); 7331 unsigned LD1Bytes = LD1VT.getSizeInBits() / 8; 7332 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 7333 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 7334 unsigned Align = LD1->getAlignment(); 7335 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 7336 VT.getTypeForEVT(*DAG.getContext())); 7337 7338 if (NewAlign <= Align && 7339 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 7340 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), 7341 LD1->getBasePtr(), LD1->getPointerInfo(), 7342 false, false, false, Align); 7343 } 7344 7345 return SDValue(); 7346 } 7347 7348 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 7349 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 7350 // and Lo parts; on big-endian machines it doesn't. 7351 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 7352 } 7353 7354 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 7355 const TargetLowering &TLI) { 7356 // If this is not a bitcast to an FP type or if the target doesn't have 7357 // IEEE754-compliant FP logic, we're done. 7358 EVT VT = N->getValueType(0); 7359 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 7360 return SDValue(); 7361 7362 // TODO: Use splat values for the constant-checking below and remove this 7363 // restriction. 7364 SDValue N0 = N->getOperand(0); 7365 EVT SourceVT = N0.getValueType(); 7366 if (SourceVT.isVector()) 7367 return SDValue(); 7368 7369 unsigned FPOpcode; 7370 APInt SignMask; 7371 switch (N0.getOpcode()) { 7372 case ISD::AND: 7373 FPOpcode = ISD::FABS; 7374 SignMask = ~APInt::getSignBit(SourceVT.getSizeInBits()); 7375 break; 7376 case ISD::XOR: 7377 FPOpcode = ISD::FNEG; 7378 SignMask = APInt::getSignBit(SourceVT.getSizeInBits()); 7379 break; 7380 // TODO: ISD::OR --> ISD::FNABS? 7381 default: 7382 return SDValue(); 7383 } 7384 7385 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 7386 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 7387 SDValue LogicOp0 = N0.getOperand(0); 7388 ConstantSDNode *LogicOp1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 7389 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 7390 LogicOp0.getOpcode() == ISD::BITCAST && 7391 LogicOp0->getOperand(0).getValueType() == VT) 7392 return DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0->getOperand(0)); 7393 7394 return SDValue(); 7395 } 7396 7397 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 7398 SDValue N0 = N->getOperand(0); 7399 EVT VT = N->getValueType(0); 7400 7401 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 7402 // Only do this before legalize, since afterward the target may be depending 7403 // on the bitconvert. 7404 // First check to see if this is all constant. 7405 if (!LegalTypes && 7406 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 7407 VT.isVector()) { 7408 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 7409 7410 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 7411 assert(!DestEltVT.isVector() && 7412 "Element type of vector ValueType must not be vector!"); 7413 if (isSimple) 7414 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 7415 } 7416 7417 // If the input is a constant, let getNode fold it. 7418 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 7419 // If we can't allow illegal operations, we need to check that this is just 7420 // a fp -> int or int -> conversion and that the resulting operation will 7421 // be legal. 7422 if (!LegalOperations || 7423 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 7424 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 7425 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 7426 TLI.isOperationLegal(ISD::Constant, VT))) 7427 return DAG.getBitcast(VT, N0); 7428 } 7429 7430 // (conv (conv x, t1), t2) -> (conv x, t2) 7431 if (N0.getOpcode() == ISD::BITCAST) 7432 return DAG.getBitcast(VT, N0.getOperand(0)); 7433 7434 // fold (conv (load x)) -> (load (conv*)x) 7435 // If the resultant load doesn't need a higher alignment than the original! 7436 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 7437 // Do not change the width of a volatile load. 7438 !cast<LoadSDNode>(N0)->isVolatile() && 7439 // Do not remove the cast if the types differ in endian layout. 7440 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 7441 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 7442 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 7443 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 7444 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7445 unsigned OrigAlign = LN0->getAlignment(); 7446 7447 bool Fast = false; 7448 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 7449 LN0->getAddressSpace(), OrigAlign, &Fast) && 7450 Fast) { 7451 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), 7452 LN0->getBasePtr(), LN0->getPointerInfo(), 7453 LN0->isVolatile(), LN0->isNonTemporal(), 7454 LN0->isInvariant(), OrigAlign, 7455 LN0->getAAInfo()); 7456 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7457 return Load; 7458 } 7459 } 7460 7461 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 7462 return V; 7463 7464 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7465 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7466 // 7467 // For ppc_fp128: 7468 // fold (bitcast (fneg x)) -> 7469 // flipbit = signbit 7470 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7471 // 7472 // fold (bitcast (fabs x)) -> 7473 // flipbit = (and (extract_element (bitcast x), 0), signbit) 7474 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7475 // This often reduces constant pool loads. 7476 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 7477 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 7478 N0.getNode()->hasOneUse() && VT.isInteger() && 7479 !VT.isVector() && !N0.getValueType().isVector()) { 7480 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 7481 AddToWorklist(NewConv.getNode()); 7482 7483 SDLoc DL(N); 7484 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7485 assert(VT.getSizeInBits() == 128); 7486 SDValue SignBit = DAG.getConstant( 7487 APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 7488 SDValue FlipBit; 7489 if (N0.getOpcode() == ISD::FNEG) { 7490 FlipBit = SignBit; 7491 AddToWorklist(FlipBit.getNode()); 7492 } else { 7493 assert(N0.getOpcode() == ISD::FABS); 7494 SDValue Hi = 7495 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 7496 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7497 SDLoc(NewConv))); 7498 AddToWorklist(Hi.getNode()); 7499 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 7500 AddToWorklist(FlipBit.getNode()); 7501 } 7502 SDValue FlipBits = 7503 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7504 AddToWorklist(FlipBits.getNode()); 7505 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 7506 } 7507 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7508 if (N0.getOpcode() == ISD::FNEG) 7509 return DAG.getNode(ISD::XOR, DL, VT, 7510 NewConv, DAG.getConstant(SignBit, DL, VT)); 7511 assert(N0.getOpcode() == ISD::FABS); 7512 return DAG.getNode(ISD::AND, DL, VT, 7513 NewConv, DAG.getConstant(~SignBit, DL, VT)); 7514 } 7515 7516 // fold (bitconvert (fcopysign cst, x)) -> 7517 // (or (and (bitconvert x), sign), (and cst, (not sign))) 7518 // Note that we don't handle (copysign x, cst) because this can always be 7519 // folded to an fneg or fabs. 7520 // 7521 // For ppc_fp128: 7522 // fold (bitcast (fcopysign cst, x)) -> 7523 // flipbit = (and (extract_element 7524 // (xor (bitcast cst), (bitcast x)), 0), 7525 // signbit) 7526 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 7527 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 7528 isa<ConstantFPSDNode>(N0.getOperand(0)) && 7529 VT.isInteger() && !VT.isVector()) { 7530 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); 7531 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 7532 if (isTypeLegal(IntXVT)) { 7533 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 7534 AddToWorklist(X.getNode()); 7535 7536 // If X has a different width than the result/lhs, sext it or truncate it. 7537 unsigned VTWidth = VT.getSizeInBits(); 7538 if (OrigXWidth < VTWidth) { 7539 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 7540 AddToWorklist(X.getNode()); 7541 } else if (OrigXWidth > VTWidth) { 7542 // To get the sign bit in the right place, we have to shift it right 7543 // before truncating. 7544 SDLoc DL(X); 7545 X = DAG.getNode(ISD::SRL, DL, 7546 X.getValueType(), X, 7547 DAG.getConstant(OrigXWidth-VTWidth, DL, 7548 X.getValueType())); 7549 AddToWorklist(X.getNode()); 7550 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 7551 AddToWorklist(X.getNode()); 7552 } 7553 7554 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7555 APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2); 7556 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7557 AddToWorklist(Cst.getNode()); 7558 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 7559 AddToWorklist(X.getNode()); 7560 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 7561 AddToWorklist(XorResult.getNode()); 7562 SDValue XorResult64 = DAG.getNode( 7563 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 7564 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7565 SDLoc(XorResult))); 7566 AddToWorklist(XorResult64.getNode()); 7567 SDValue FlipBit = 7568 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 7569 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 7570 AddToWorklist(FlipBit.getNode()); 7571 SDValue FlipBits = 7572 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7573 AddToWorklist(FlipBits.getNode()); 7574 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 7575 } 7576 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7577 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 7578 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 7579 AddToWorklist(X.getNode()); 7580 7581 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7582 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 7583 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 7584 AddToWorklist(Cst.getNode()); 7585 7586 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 7587 } 7588 } 7589 7590 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 7591 if (N0.getOpcode() == ISD::BUILD_PAIR) 7592 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 7593 return CombineLD; 7594 7595 // Remove double bitcasts from shuffles - this is often a legacy of 7596 // XformToShuffleWithZero being used to combine bitmaskings (of 7597 // float vectors bitcast to integer vectors) into shuffles. 7598 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 7599 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 7600 N0->getOpcode() == ISD::VECTOR_SHUFFLE && 7601 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 7602 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 7603 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 7604 7605 // If operands are a bitcast, peek through if it casts the original VT. 7606 // If operands are a constant, just bitcast back to original VT. 7607 auto PeekThroughBitcast = [&](SDValue Op) { 7608 if (Op.getOpcode() == ISD::BITCAST && 7609 Op.getOperand(0).getValueType() == VT) 7610 return SDValue(Op.getOperand(0)); 7611 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 7612 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 7613 return DAG.getBitcast(VT, Op); 7614 return SDValue(); 7615 }; 7616 7617 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 7618 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 7619 if (!(SV0 && SV1)) 7620 return SDValue(); 7621 7622 int MaskScale = 7623 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 7624 SmallVector<int, 8> NewMask; 7625 for (int M : SVN->getMask()) 7626 for (int i = 0; i != MaskScale; ++i) 7627 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 7628 7629 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7630 if (!LegalMask) { 7631 std::swap(SV0, SV1); 7632 ShuffleVectorSDNode::commuteMask(NewMask); 7633 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7634 } 7635 7636 if (LegalMask) 7637 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 7638 } 7639 7640 return SDValue(); 7641 } 7642 7643 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 7644 EVT VT = N->getValueType(0); 7645 return CombineConsecutiveLoads(N, VT); 7646 } 7647 7648 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 7649 /// operands. DstEltVT indicates the destination element value type. 7650 SDValue DAGCombiner:: 7651 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 7652 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 7653 7654 // If this is already the right type, we're done. 7655 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 7656 7657 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 7658 unsigned DstBitSize = DstEltVT.getSizeInBits(); 7659 7660 // If this is a conversion of N elements of one type to N elements of another 7661 // type, convert each element. This handles FP<->INT cases. 7662 if (SrcBitSize == DstBitSize) { 7663 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7664 BV->getValueType(0).getVectorNumElements()); 7665 7666 // Due to the FP element handling below calling this routine recursively, 7667 // we can end up with a scalar-to-vector node here. 7668 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 7669 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 7670 DAG.getBitcast(DstEltVT, BV->getOperand(0))); 7671 7672 SmallVector<SDValue, 8> Ops; 7673 for (SDValue Op : BV->op_values()) { 7674 // If the vector element type is not legal, the BUILD_VECTOR operands 7675 // are promoted and implicitly truncated. Make that explicit here. 7676 if (Op.getValueType() != SrcEltVT) 7677 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 7678 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 7679 AddToWorklist(Ops.back().getNode()); 7680 } 7681 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 7682 } 7683 7684 // Otherwise, we're growing or shrinking the elements. To avoid having to 7685 // handle annoying details of growing/shrinking FP values, we convert them to 7686 // int first. 7687 if (SrcEltVT.isFloatingPoint()) { 7688 // Convert the input float vector to a int vector where the elements are the 7689 // same sizes. 7690 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 7691 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 7692 SrcEltVT = IntVT; 7693 } 7694 7695 // Now we know the input is an integer vector. If the output is a FP type, 7696 // convert to integer first, then to FP of the right size. 7697 if (DstEltVT.isFloatingPoint()) { 7698 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 7699 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 7700 7701 // Next, convert to FP elements of the same size. 7702 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 7703 } 7704 7705 SDLoc DL(BV); 7706 7707 // Okay, we know the src/dst types are both integers of differing types. 7708 // Handling growing first. 7709 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 7710 if (SrcBitSize < DstBitSize) { 7711 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 7712 7713 SmallVector<SDValue, 8> Ops; 7714 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 7715 i += NumInputsPerOutput) { 7716 bool isLE = DAG.getDataLayout().isLittleEndian(); 7717 APInt NewBits = APInt(DstBitSize, 0); 7718 bool EltIsUndef = true; 7719 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 7720 // Shift the previously computed bits over. 7721 NewBits <<= SrcBitSize; 7722 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 7723 if (Op.isUndef()) continue; 7724 EltIsUndef = false; 7725 7726 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 7727 zextOrTrunc(SrcBitSize).zext(DstBitSize); 7728 } 7729 7730 if (EltIsUndef) 7731 Ops.push_back(DAG.getUNDEF(DstEltVT)); 7732 else 7733 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 7734 } 7735 7736 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 7737 return DAG.getBuildVector(VT, DL, Ops); 7738 } 7739 7740 // Finally, this must be the case where we are shrinking elements: each input 7741 // turns into multiple outputs. 7742 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 7743 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7744 NumOutputsPerInput*BV->getNumOperands()); 7745 SmallVector<SDValue, 8> Ops; 7746 7747 for (const SDValue &Op : BV->op_values()) { 7748 if (Op.isUndef()) { 7749 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 7750 continue; 7751 } 7752 7753 APInt OpVal = cast<ConstantSDNode>(Op)-> 7754 getAPIntValue().zextOrTrunc(SrcBitSize); 7755 7756 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 7757 APInt ThisVal = OpVal.trunc(DstBitSize); 7758 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 7759 OpVal = OpVal.lshr(DstBitSize); 7760 } 7761 7762 // For big endian targets, swap the order of the pieces of each element. 7763 if (DAG.getDataLayout().isBigEndian()) 7764 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 7765 } 7766 7767 return DAG.getBuildVector(VT, DL, Ops); 7768 } 7769 7770 /// Try to perform FMA combining on a given FADD node. 7771 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 7772 SDValue N0 = N->getOperand(0); 7773 SDValue N1 = N->getOperand(1); 7774 EVT VT = N->getValueType(0); 7775 SDLoc SL(N); 7776 7777 const TargetOptions &Options = DAG.getTarget().Options; 7778 bool AllowFusion = 7779 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7780 7781 // Floating-point multiply-add with intermediate rounding. 7782 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7783 7784 // Floating-point multiply-add without intermediate rounding. 7785 bool HasFMA = 7786 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7787 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7788 7789 // No valid opcode, do not combine. 7790 if (!HasFMAD && !HasFMA) 7791 return SDValue(); 7792 7793 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 7794 ; 7795 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 7796 return SDValue(); 7797 7798 // Always prefer FMAD to FMA for precision. 7799 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7800 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7801 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7802 7803 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 7804 // prefer to fold the multiply with fewer uses. 7805 if (Aggressive && N0.getOpcode() == ISD::FMUL && 7806 N1.getOpcode() == ISD::FMUL) { 7807 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 7808 std::swap(N0, N1); 7809 } 7810 7811 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 7812 if (N0.getOpcode() == ISD::FMUL && 7813 (Aggressive || N0->hasOneUse())) { 7814 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7815 N0.getOperand(0), N0.getOperand(1), N1); 7816 } 7817 7818 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 7819 // Note: Commutes FADD operands. 7820 if (N1.getOpcode() == ISD::FMUL && 7821 (Aggressive || N1->hasOneUse())) { 7822 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7823 N1.getOperand(0), N1.getOperand(1), N0); 7824 } 7825 7826 // Look through FP_EXTEND nodes to do more combining. 7827 if (AllowFusion && LookThroughFPExt) { 7828 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 7829 if (N0.getOpcode() == ISD::FP_EXTEND) { 7830 SDValue N00 = N0.getOperand(0); 7831 if (N00.getOpcode() == ISD::FMUL) 7832 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7833 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7834 N00.getOperand(0)), 7835 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7836 N00.getOperand(1)), N1); 7837 } 7838 7839 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 7840 // Note: Commutes FADD operands. 7841 if (N1.getOpcode() == ISD::FP_EXTEND) { 7842 SDValue N10 = N1.getOperand(0); 7843 if (N10.getOpcode() == ISD::FMUL) 7844 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7845 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7846 N10.getOperand(0)), 7847 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7848 N10.getOperand(1)), N0); 7849 } 7850 } 7851 7852 // More folding opportunities when target permits. 7853 if ((AllowFusion || HasFMAD) && Aggressive) { 7854 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 7855 if (N0.getOpcode() == PreferredFusedOpcode && 7856 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7857 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7858 N0.getOperand(0), N0.getOperand(1), 7859 DAG.getNode(PreferredFusedOpcode, SL, VT, 7860 N0.getOperand(2).getOperand(0), 7861 N0.getOperand(2).getOperand(1), 7862 N1)); 7863 } 7864 7865 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 7866 if (N1->getOpcode() == PreferredFusedOpcode && 7867 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7868 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7869 N1.getOperand(0), N1.getOperand(1), 7870 DAG.getNode(PreferredFusedOpcode, SL, VT, 7871 N1.getOperand(2).getOperand(0), 7872 N1.getOperand(2).getOperand(1), 7873 N0)); 7874 } 7875 7876 if (AllowFusion && LookThroughFPExt) { 7877 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 7878 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 7879 auto FoldFAddFMAFPExtFMul = [&] ( 7880 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7881 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 7882 DAG.getNode(PreferredFusedOpcode, SL, VT, 7883 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7884 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7885 Z)); 7886 }; 7887 if (N0.getOpcode() == PreferredFusedOpcode) { 7888 SDValue N02 = N0.getOperand(2); 7889 if (N02.getOpcode() == ISD::FP_EXTEND) { 7890 SDValue N020 = N02.getOperand(0); 7891 if (N020.getOpcode() == ISD::FMUL) 7892 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 7893 N020.getOperand(0), N020.getOperand(1), 7894 N1); 7895 } 7896 } 7897 7898 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 7899 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 7900 // FIXME: This turns two single-precision and one double-precision 7901 // operation into two double-precision operations, which might not be 7902 // interesting for all targets, especially GPUs. 7903 auto FoldFAddFPExtFMAFMul = [&] ( 7904 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7905 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7906 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 7907 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 7908 DAG.getNode(PreferredFusedOpcode, SL, VT, 7909 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7910 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7911 Z)); 7912 }; 7913 if (N0.getOpcode() == ISD::FP_EXTEND) { 7914 SDValue N00 = N0.getOperand(0); 7915 if (N00.getOpcode() == PreferredFusedOpcode) { 7916 SDValue N002 = N00.getOperand(2); 7917 if (N002.getOpcode() == ISD::FMUL) 7918 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 7919 N002.getOperand(0), N002.getOperand(1), 7920 N1); 7921 } 7922 } 7923 7924 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 7925 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 7926 if (N1.getOpcode() == PreferredFusedOpcode) { 7927 SDValue N12 = N1.getOperand(2); 7928 if (N12.getOpcode() == ISD::FP_EXTEND) { 7929 SDValue N120 = N12.getOperand(0); 7930 if (N120.getOpcode() == ISD::FMUL) 7931 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 7932 N120.getOperand(0), N120.getOperand(1), 7933 N0); 7934 } 7935 } 7936 7937 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 7938 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 7939 // FIXME: This turns two single-precision and one double-precision 7940 // operation into two double-precision operations, which might not be 7941 // interesting for all targets, especially GPUs. 7942 if (N1.getOpcode() == ISD::FP_EXTEND) { 7943 SDValue N10 = N1.getOperand(0); 7944 if (N10.getOpcode() == PreferredFusedOpcode) { 7945 SDValue N102 = N10.getOperand(2); 7946 if (N102.getOpcode() == ISD::FMUL) 7947 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 7948 N102.getOperand(0), N102.getOperand(1), 7949 N0); 7950 } 7951 } 7952 } 7953 } 7954 7955 return SDValue(); 7956 } 7957 7958 /// Try to perform FMA combining on a given FSUB node. 7959 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 7960 SDValue N0 = N->getOperand(0); 7961 SDValue N1 = N->getOperand(1); 7962 EVT VT = N->getValueType(0); 7963 SDLoc SL(N); 7964 7965 const TargetOptions &Options = DAG.getTarget().Options; 7966 bool AllowFusion = 7967 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7968 7969 // Floating-point multiply-add with intermediate rounding. 7970 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7971 7972 // Floating-point multiply-add without intermediate rounding. 7973 bool HasFMA = 7974 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7975 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7976 7977 // No valid opcode, do not combine. 7978 if (!HasFMAD && !HasFMA) 7979 return SDValue(); 7980 7981 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 7982 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 7983 return SDValue(); 7984 7985 // Always prefer FMAD to FMA for precision. 7986 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7987 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7988 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7989 7990 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 7991 if (N0.getOpcode() == ISD::FMUL && 7992 (Aggressive || N0->hasOneUse())) { 7993 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7994 N0.getOperand(0), N0.getOperand(1), 7995 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7996 } 7997 7998 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 7999 // Note: Commutes FSUB operands. 8000 if (N1.getOpcode() == ISD::FMUL && 8001 (Aggressive || N1->hasOneUse())) 8002 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8003 DAG.getNode(ISD::FNEG, SL, VT, 8004 N1.getOperand(0)), 8005 N1.getOperand(1), N0); 8006 8007 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 8008 if (N0.getOpcode() == ISD::FNEG && 8009 N0.getOperand(0).getOpcode() == ISD::FMUL && 8010 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 8011 SDValue N00 = N0.getOperand(0).getOperand(0); 8012 SDValue N01 = N0.getOperand(0).getOperand(1); 8013 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8014 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 8015 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8016 } 8017 8018 // Look through FP_EXTEND nodes to do more combining. 8019 if (AllowFusion && LookThroughFPExt) { 8020 // fold (fsub (fpext (fmul x, y)), z) 8021 // -> (fma (fpext x), (fpext y), (fneg z)) 8022 if (N0.getOpcode() == ISD::FP_EXTEND) { 8023 SDValue N00 = N0.getOperand(0); 8024 if (N00.getOpcode() == ISD::FMUL) 8025 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8026 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8027 N00.getOperand(0)), 8028 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8029 N00.getOperand(1)), 8030 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8031 } 8032 8033 // fold (fsub x, (fpext (fmul y, z))) 8034 // -> (fma (fneg (fpext y)), (fpext z), x) 8035 // Note: Commutes FSUB operands. 8036 if (N1.getOpcode() == ISD::FP_EXTEND) { 8037 SDValue N10 = N1.getOperand(0); 8038 if (N10.getOpcode() == ISD::FMUL) 8039 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8040 DAG.getNode(ISD::FNEG, SL, VT, 8041 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8042 N10.getOperand(0))), 8043 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8044 N10.getOperand(1)), 8045 N0); 8046 } 8047 8048 // fold (fsub (fpext (fneg (fmul, x, y))), z) 8049 // -> (fneg (fma (fpext x), (fpext y), z)) 8050 // Note: This could be removed with appropriate canonicalization of the 8051 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8052 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8053 // from implementing the canonicalization in visitFSUB. 8054 if (N0.getOpcode() == ISD::FP_EXTEND) { 8055 SDValue N00 = N0.getOperand(0); 8056 if (N00.getOpcode() == ISD::FNEG) { 8057 SDValue N000 = N00.getOperand(0); 8058 if (N000.getOpcode() == ISD::FMUL) { 8059 return DAG.getNode(ISD::FNEG, SL, VT, 8060 DAG.getNode(PreferredFusedOpcode, SL, VT, 8061 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8062 N000.getOperand(0)), 8063 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8064 N000.getOperand(1)), 8065 N1)); 8066 } 8067 } 8068 } 8069 8070 // fold (fsub (fneg (fpext (fmul, x, y))), z) 8071 // -> (fneg (fma (fpext x)), (fpext y), z) 8072 // Note: This could be removed with appropriate canonicalization of the 8073 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8074 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8075 // from implementing the canonicalization in visitFSUB. 8076 if (N0.getOpcode() == ISD::FNEG) { 8077 SDValue N00 = N0.getOperand(0); 8078 if (N00.getOpcode() == ISD::FP_EXTEND) { 8079 SDValue N000 = N00.getOperand(0); 8080 if (N000.getOpcode() == ISD::FMUL) { 8081 return DAG.getNode(ISD::FNEG, SL, VT, 8082 DAG.getNode(PreferredFusedOpcode, SL, VT, 8083 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8084 N000.getOperand(0)), 8085 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8086 N000.getOperand(1)), 8087 N1)); 8088 } 8089 } 8090 } 8091 8092 } 8093 8094 // More folding opportunities when target permits. 8095 if ((AllowFusion || HasFMAD) && Aggressive) { 8096 // fold (fsub (fma x, y, (fmul u, v)), z) 8097 // -> (fma x, y (fma u, v, (fneg z))) 8098 if (N0.getOpcode() == PreferredFusedOpcode && 8099 N0.getOperand(2).getOpcode() == ISD::FMUL) { 8100 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8101 N0.getOperand(0), N0.getOperand(1), 8102 DAG.getNode(PreferredFusedOpcode, SL, VT, 8103 N0.getOperand(2).getOperand(0), 8104 N0.getOperand(2).getOperand(1), 8105 DAG.getNode(ISD::FNEG, SL, VT, 8106 N1))); 8107 } 8108 8109 // fold (fsub x, (fma y, z, (fmul u, v))) 8110 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 8111 if (N1.getOpcode() == PreferredFusedOpcode && 8112 N1.getOperand(2).getOpcode() == ISD::FMUL) { 8113 SDValue N20 = N1.getOperand(2).getOperand(0); 8114 SDValue N21 = N1.getOperand(2).getOperand(1); 8115 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8116 DAG.getNode(ISD::FNEG, SL, VT, 8117 N1.getOperand(0)), 8118 N1.getOperand(1), 8119 DAG.getNode(PreferredFusedOpcode, SL, VT, 8120 DAG.getNode(ISD::FNEG, SL, VT, N20), 8121 8122 N21, N0)); 8123 } 8124 8125 if (AllowFusion && LookThroughFPExt) { 8126 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 8127 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 8128 if (N0.getOpcode() == PreferredFusedOpcode) { 8129 SDValue N02 = N0.getOperand(2); 8130 if (N02.getOpcode() == ISD::FP_EXTEND) { 8131 SDValue N020 = N02.getOperand(0); 8132 if (N020.getOpcode() == ISD::FMUL) 8133 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8134 N0.getOperand(0), N0.getOperand(1), 8135 DAG.getNode(PreferredFusedOpcode, SL, VT, 8136 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8137 N020.getOperand(0)), 8138 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8139 N020.getOperand(1)), 8140 DAG.getNode(ISD::FNEG, SL, VT, 8141 N1))); 8142 } 8143 } 8144 8145 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 8146 // -> (fma (fpext x), (fpext y), 8147 // (fma (fpext u), (fpext v), (fneg z))) 8148 // FIXME: This turns two single-precision and one double-precision 8149 // operation into two double-precision operations, which might not be 8150 // interesting for all targets, especially GPUs. 8151 if (N0.getOpcode() == ISD::FP_EXTEND) { 8152 SDValue N00 = N0.getOperand(0); 8153 if (N00.getOpcode() == PreferredFusedOpcode) { 8154 SDValue N002 = N00.getOperand(2); 8155 if (N002.getOpcode() == ISD::FMUL) 8156 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8157 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8158 N00.getOperand(0)), 8159 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8160 N00.getOperand(1)), 8161 DAG.getNode(PreferredFusedOpcode, SL, VT, 8162 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8163 N002.getOperand(0)), 8164 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8165 N002.getOperand(1)), 8166 DAG.getNode(ISD::FNEG, SL, VT, 8167 N1))); 8168 } 8169 } 8170 8171 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 8172 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 8173 if (N1.getOpcode() == PreferredFusedOpcode && 8174 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 8175 SDValue N120 = N1.getOperand(2).getOperand(0); 8176 if (N120.getOpcode() == ISD::FMUL) { 8177 SDValue N1200 = N120.getOperand(0); 8178 SDValue N1201 = N120.getOperand(1); 8179 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8180 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 8181 N1.getOperand(1), 8182 DAG.getNode(PreferredFusedOpcode, SL, VT, 8183 DAG.getNode(ISD::FNEG, SL, VT, 8184 DAG.getNode(ISD::FP_EXTEND, SL, 8185 VT, N1200)), 8186 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8187 N1201), 8188 N0)); 8189 } 8190 } 8191 8192 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 8193 // -> (fma (fneg (fpext y)), (fpext z), 8194 // (fma (fneg (fpext u)), (fpext v), x)) 8195 // FIXME: This turns two single-precision and one double-precision 8196 // operation into two double-precision operations, which might not be 8197 // interesting for all targets, especially GPUs. 8198 if (N1.getOpcode() == ISD::FP_EXTEND && 8199 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 8200 SDValue N100 = N1.getOperand(0).getOperand(0); 8201 SDValue N101 = N1.getOperand(0).getOperand(1); 8202 SDValue N102 = N1.getOperand(0).getOperand(2); 8203 if (N102.getOpcode() == ISD::FMUL) { 8204 SDValue N1020 = N102.getOperand(0); 8205 SDValue N1021 = N102.getOperand(1); 8206 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8207 DAG.getNode(ISD::FNEG, SL, VT, 8208 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8209 N100)), 8210 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 8211 DAG.getNode(PreferredFusedOpcode, SL, VT, 8212 DAG.getNode(ISD::FNEG, SL, VT, 8213 DAG.getNode(ISD::FP_EXTEND, SL, 8214 VT, N1020)), 8215 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8216 N1021), 8217 N0)); 8218 } 8219 } 8220 } 8221 } 8222 8223 return SDValue(); 8224 } 8225 8226 /// Try to perform FMA combining on a given FMUL node. 8227 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { 8228 SDValue N0 = N->getOperand(0); 8229 SDValue N1 = N->getOperand(1); 8230 EVT VT = N->getValueType(0); 8231 SDLoc SL(N); 8232 8233 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 8234 8235 const TargetOptions &Options = DAG.getTarget().Options; 8236 bool AllowFusion = 8237 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 8238 8239 // Floating-point multiply-add with intermediate rounding. 8240 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 8241 8242 // Floating-point multiply-add without intermediate rounding. 8243 bool HasFMA = 8244 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 8245 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 8246 8247 // No valid opcode, do not combine. 8248 if (!HasFMAD && !HasFMA) 8249 return SDValue(); 8250 8251 // Always prefer FMAD to FMA for precision. 8252 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 8253 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 8254 8255 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) 8256 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) 8257 auto FuseFADD = [&](SDValue X, SDValue Y) { 8258 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 8259 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8260 if (XC1 && XC1->isExactlyValue(+1.0)) 8261 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8262 if (XC1 && XC1->isExactlyValue(-1.0)) 8263 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8264 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8265 } 8266 return SDValue(); 8267 }; 8268 8269 if (SDValue FMA = FuseFADD(N0, N1)) 8270 return FMA; 8271 if (SDValue FMA = FuseFADD(N1, N0)) 8272 return FMA; 8273 8274 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) 8275 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) 8276 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) 8277 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) 8278 auto FuseFSUB = [&](SDValue X, SDValue Y) { 8279 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 8280 auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); 8281 if (XC0 && XC0->isExactlyValue(+1.0)) 8282 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8283 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8284 Y); 8285 if (XC0 && XC0->isExactlyValue(-1.0)) 8286 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8287 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8288 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8289 8290 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8291 if (XC1 && XC1->isExactlyValue(+1.0)) 8292 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8293 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8294 if (XC1 && XC1->isExactlyValue(-1.0)) 8295 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8296 } 8297 return SDValue(); 8298 }; 8299 8300 if (SDValue FMA = FuseFSUB(N0, N1)) 8301 return FMA; 8302 if (SDValue FMA = FuseFSUB(N1, N0)) 8303 return FMA; 8304 8305 return SDValue(); 8306 } 8307 8308 SDValue DAGCombiner::visitFADD(SDNode *N) { 8309 SDValue N0 = N->getOperand(0); 8310 SDValue N1 = N->getOperand(1); 8311 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 8312 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 8313 EVT VT = N->getValueType(0); 8314 SDLoc DL(N); 8315 const TargetOptions &Options = DAG.getTarget().Options; 8316 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8317 8318 // fold vector ops 8319 if (VT.isVector()) 8320 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8321 return FoldedVOp; 8322 8323 // fold (fadd c1, c2) -> c1 + c2 8324 if (N0CFP && N1CFP) 8325 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 8326 8327 // canonicalize constant to RHS 8328 if (N0CFP && !N1CFP) 8329 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 8330 8331 // fold (fadd A, (fneg B)) -> (fsub A, B) 8332 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8333 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 8334 return DAG.getNode(ISD::FSUB, DL, VT, N0, 8335 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8336 8337 // fold (fadd (fneg A), B) -> (fsub B, A) 8338 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8339 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 8340 return DAG.getNode(ISD::FSUB, DL, VT, N1, 8341 GetNegatedExpression(N0, DAG, LegalOperations), Flags); 8342 8343 // If 'unsafe math' is enabled, fold lots of things. 8344 if (Options.UnsafeFPMath) { 8345 // No FP constant should be created after legalization as Instruction 8346 // Selection pass has a hard time dealing with FP constants. 8347 bool AllowNewConst = (Level < AfterLegalizeDAG); 8348 8349 // fold (fadd A, 0) -> A 8350 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) 8351 if (N1C->isZero()) 8352 return N0; 8353 8354 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 8355 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 8356 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) 8357 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), 8358 DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, 8359 Flags), 8360 Flags); 8361 8362 // If allowed, fold (fadd (fneg x), x) -> 0.0 8363 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 8364 return DAG.getConstantFP(0.0, DL, VT); 8365 8366 // If allowed, fold (fadd x, (fneg x)) -> 0.0 8367 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 8368 return DAG.getConstantFP(0.0, DL, VT); 8369 8370 // We can fold chains of FADD's of the same value into multiplications. 8371 // This transform is not safe in general because we are reducing the number 8372 // of rounding steps. 8373 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 8374 if (N0.getOpcode() == ISD::FMUL) { 8375 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8376 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 8377 8378 // (fadd (fmul x, c), x) -> (fmul x, c+1) 8379 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 8380 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8381 DAG.getConstantFP(1.0, DL, VT), Flags); 8382 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 8383 } 8384 8385 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 8386 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 8387 N1.getOperand(0) == N1.getOperand(1) && 8388 N0.getOperand(0) == N1.getOperand(0)) { 8389 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8390 DAG.getConstantFP(2.0, DL, VT), Flags); 8391 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 8392 } 8393 } 8394 8395 if (N1.getOpcode() == ISD::FMUL) { 8396 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8397 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 8398 8399 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 8400 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 8401 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8402 DAG.getConstantFP(1.0, DL, VT), Flags); 8403 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 8404 } 8405 8406 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 8407 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 8408 N0.getOperand(0) == N0.getOperand(1) && 8409 N1.getOperand(0) == N0.getOperand(0)) { 8410 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8411 DAG.getConstantFP(2.0, DL, VT), Flags); 8412 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 8413 } 8414 } 8415 8416 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 8417 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8418 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 8419 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 8420 (N0.getOperand(0) == N1)) { 8421 return DAG.getNode(ISD::FMUL, DL, VT, 8422 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 8423 } 8424 } 8425 8426 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 8427 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8428 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 8429 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 8430 N1.getOperand(0) == N0) { 8431 return DAG.getNode(ISD::FMUL, DL, VT, 8432 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 8433 } 8434 } 8435 8436 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 8437 if (AllowNewConst && 8438 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 8439 N0.getOperand(0) == N0.getOperand(1) && 8440 N1.getOperand(0) == N1.getOperand(1) && 8441 N0.getOperand(0) == N1.getOperand(0)) { 8442 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 8443 DAG.getConstantFP(4.0, DL, VT), Flags); 8444 } 8445 } 8446 } // enable-unsafe-fp-math 8447 8448 // FADD -> FMA combines: 8449 if (SDValue Fused = visitFADDForFMACombine(N)) { 8450 AddToWorklist(Fused.getNode()); 8451 return Fused; 8452 } 8453 return SDValue(); 8454 } 8455 8456 SDValue DAGCombiner::visitFSUB(SDNode *N) { 8457 SDValue N0 = N->getOperand(0); 8458 SDValue N1 = N->getOperand(1); 8459 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8460 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8461 EVT VT = N->getValueType(0); 8462 SDLoc dl(N); 8463 const TargetOptions &Options = DAG.getTarget().Options; 8464 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8465 8466 // fold vector ops 8467 if (VT.isVector()) 8468 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8469 return FoldedVOp; 8470 8471 // fold (fsub c1, c2) -> c1-c2 8472 if (N0CFP && N1CFP) 8473 return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags); 8474 8475 // fold (fsub A, (fneg B)) -> (fadd A, B) 8476 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8477 return DAG.getNode(ISD::FADD, dl, VT, N0, 8478 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8479 8480 // If 'unsafe math' is enabled, fold lots of things. 8481 if (Options.UnsafeFPMath) { 8482 // (fsub A, 0) -> A 8483 if (N1CFP && N1CFP->isZero()) 8484 return N0; 8485 8486 // (fsub 0, B) -> -B 8487 if (N0CFP && N0CFP->isZero()) { 8488 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8489 return GetNegatedExpression(N1, DAG, LegalOperations); 8490 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8491 return DAG.getNode(ISD::FNEG, dl, VT, N1); 8492 } 8493 8494 // (fsub x, x) -> 0.0 8495 if (N0 == N1) 8496 return DAG.getConstantFP(0.0f, dl, VT); 8497 8498 // (fsub x, (fadd x, y)) -> (fneg y) 8499 // (fsub x, (fadd y, x)) -> (fneg y) 8500 if (N1.getOpcode() == ISD::FADD) { 8501 SDValue N10 = N1->getOperand(0); 8502 SDValue N11 = N1->getOperand(1); 8503 8504 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 8505 return GetNegatedExpression(N11, DAG, LegalOperations); 8506 8507 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 8508 return GetNegatedExpression(N10, DAG, LegalOperations); 8509 } 8510 } 8511 8512 // FSUB -> FMA combines: 8513 if (SDValue Fused = visitFSUBForFMACombine(N)) { 8514 AddToWorklist(Fused.getNode()); 8515 return Fused; 8516 } 8517 8518 return SDValue(); 8519 } 8520 8521 SDValue DAGCombiner::visitFMUL(SDNode *N) { 8522 SDValue N0 = N->getOperand(0); 8523 SDValue N1 = N->getOperand(1); 8524 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8525 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8526 EVT VT = N->getValueType(0); 8527 SDLoc DL(N); 8528 const TargetOptions &Options = DAG.getTarget().Options; 8529 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8530 8531 // fold vector ops 8532 if (VT.isVector()) { 8533 // This just handles C1 * C2 for vectors. Other vector folds are below. 8534 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8535 return FoldedVOp; 8536 } 8537 8538 // fold (fmul c1, c2) -> c1*c2 8539 if (N0CFP && N1CFP) 8540 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 8541 8542 // canonicalize constant to RHS 8543 if (isConstantFPBuildVectorOrConstantFP(N0) && 8544 !isConstantFPBuildVectorOrConstantFP(N1)) 8545 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 8546 8547 // fold (fmul A, 1.0) -> A 8548 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8549 return N0; 8550 8551 if (Options.UnsafeFPMath) { 8552 // fold (fmul A, 0) -> 0 8553 if (N1CFP && N1CFP->isZero()) 8554 return N1; 8555 8556 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 8557 if (N0.getOpcode() == ISD::FMUL) { 8558 // Fold scalars or any vector constants (not just splats). 8559 // This fold is done in general by InstCombine, but extra fmul insts 8560 // may have been generated during lowering. 8561 SDValue N00 = N0.getOperand(0); 8562 SDValue N01 = N0.getOperand(1); 8563 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 8564 auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); 8565 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 8566 8567 // Check 1: Make sure that the first operand of the inner multiply is NOT 8568 // a constant. Otherwise, we may induce infinite looping. 8569 if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { 8570 // Check 2: Make sure that the second operand of the inner multiply and 8571 // the second operand of the outer multiply are constants. 8572 if ((N1CFP && isConstOrConstSplatFP(N01)) || 8573 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 8574 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 8575 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 8576 } 8577 } 8578 } 8579 8580 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 8581 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 8582 // during an early run of DAGCombiner can prevent folding with fmuls 8583 // inserted during lowering. 8584 if (N0.getOpcode() == ISD::FADD && 8585 (N0.getOperand(0) == N0.getOperand(1)) && 8586 N0.hasOneUse()) { 8587 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 8588 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 8589 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 8590 } 8591 } 8592 8593 // fold (fmul X, 2.0) -> (fadd X, X) 8594 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 8595 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 8596 8597 // fold (fmul X, -1.0) -> (fneg X) 8598 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 8599 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8600 return DAG.getNode(ISD::FNEG, DL, VT, N0); 8601 8602 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 8603 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8604 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8605 // Both can be negated for free, check to see if at least one is cheaper 8606 // negated. 8607 if (LHSNeg == 2 || RHSNeg == 2) 8608 return DAG.getNode(ISD::FMUL, DL, VT, 8609 GetNegatedExpression(N0, DAG, LegalOperations), 8610 GetNegatedExpression(N1, DAG, LegalOperations), 8611 Flags); 8612 } 8613 } 8614 8615 // FMUL -> FMA combines: 8616 if (SDValue Fused = visitFMULForFMACombine(N)) { 8617 AddToWorklist(Fused.getNode()); 8618 return Fused; 8619 } 8620 8621 return SDValue(); 8622 } 8623 8624 SDValue DAGCombiner::visitFMA(SDNode *N) { 8625 SDValue N0 = N->getOperand(0); 8626 SDValue N1 = N->getOperand(1); 8627 SDValue N2 = N->getOperand(2); 8628 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8629 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8630 EVT VT = N->getValueType(0); 8631 SDLoc dl(N); 8632 const TargetOptions &Options = DAG.getTarget().Options; 8633 8634 // Constant fold FMA. 8635 if (isa<ConstantFPSDNode>(N0) && 8636 isa<ConstantFPSDNode>(N1) && 8637 isa<ConstantFPSDNode>(N2)) { 8638 return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); 8639 } 8640 8641 if (Options.UnsafeFPMath) { 8642 if (N0CFP && N0CFP->isZero()) 8643 return N2; 8644 if (N1CFP && N1CFP->isZero()) 8645 return N2; 8646 } 8647 // TODO: The FMA node should have flags that propagate to these nodes. 8648 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8649 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 8650 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8651 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 8652 8653 // Canonicalize (fma c, x, y) -> (fma x, c, y) 8654 if (isConstantFPBuildVectorOrConstantFP(N0) && 8655 !isConstantFPBuildVectorOrConstantFP(N1)) 8656 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 8657 8658 // TODO: FMA nodes should have flags that propagate to the created nodes. 8659 // For now, create a Flags object for use with all unsafe math transforms. 8660 SDNodeFlags Flags; 8661 Flags.setUnsafeAlgebra(true); 8662 8663 if (Options.UnsafeFPMath) { 8664 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 8665 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 8666 isConstantFPBuildVectorOrConstantFP(N1) && 8667 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 8668 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8669 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1), 8670 &Flags), &Flags); 8671 } 8672 8673 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 8674 if (N0.getOpcode() == ISD::FMUL && 8675 isConstantFPBuildVectorOrConstantFP(N1) && 8676 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 8677 return DAG.getNode(ISD::FMA, dl, VT, 8678 N0.getOperand(0), 8679 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1), 8680 &Flags), 8681 N2); 8682 } 8683 } 8684 8685 // (fma x, 1, y) -> (fadd x, y) 8686 // (fma x, -1, y) -> (fadd (fneg x), y) 8687 if (N1CFP) { 8688 if (N1CFP->isExactlyValue(1.0)) 8689 // TODO: The FMA node should have flags that propagate to this node. 8690 return DAG.getNode(ISD::FADD, dl, VT, N0, N2); 8691 8692 if (N1CFP->isExactlyValue(-1.0) && 8693 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 8694 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); 8695 AddToWorklist(RHSNeg.getNode()); 8696 // TODO: The FMA node should have flags that propagate to this node. 8697 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); 8698 } 8699 } 8700 8701 if (Options.UnsafeFPMath) { 8702 // (fma x, c, x) -> (fmul x, (c+1)) 8703 if (N1CFP && N0 == N2) { 8704 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8705 DAG.getNode(ISD::FADD, dl, VT, 8706 N1, DAG.getConstantFP(1.0, dl, VT), 8707 &Flags), &Flags); 8708 } 8709 8710 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 8711 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 8712 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8713 DAG.getNode(ISD::FADD, dl, VT, 8714 N1, DAG.getConstantFP(-1.0, dl, VT), 8715 &Flags), &Flags); 8716 } 8717 } 8718 8719 return SDValue(); 8720 } 8721 8722 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 8723 // reciprocal. 8724 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 8725 // Notice that this is not always beneficial. One reason is different target 8726 // may have different costs for FDIV and FMUL, so sometimes the cost of two 8727 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 8728 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 8729 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 8730 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 8731 const SDNodeFlags *Flags = N->getFlags(); 8732 if (!UnsafeMath && !Flags->hasAllowReciprocal()) 8733 return SDValue(); 8734 8735 // Skip if current node is a reciprocal. 8736 SDValue N0 = N->getOperand(0); 8737 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8738 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8739 return SDValue(); 8740 8741 // Exit early if the target does not want this transform or if there can't 8742 // possibly be enough uses of the divisor to make the transform worthwhile. 8743 SDValue N1 = N->getOperand(1); 8744 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 8745 if (!MinUses || N1->use_size() < MinUses) 8746 return SDValue(); 8747 8748 // Find all FDIV users of the same divisor. 8749 // Use a set because duplicates may be present in the user list. 8750 SetVector<SDNode *> Users; 8751 for (auto *U : N1->uses()) { 8752 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 8753 // This division is eligible for optimization only if global unsafe math 8754 // is enabled or if this division allows reciprocal formation. 8755 if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) 8756 Users.insert(U); 8757 } 8758 } 8759 8760 // Now that we have the actual number of divisor uses, make sure it meets 8761 // the minimum threshold specified by the target. 8762 if (Users.size() < MinUses) 8763 return SDValue(); 8764 8765 EVT VT = N->getValueType(0); 8766 SDLoc DL(N); 8767 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 8768 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 8769 8770 // Dividend / Divisor -> Dividend * Reciprocal 8771 for (auto *U : Users) { 8772 SDValue Dividend = U->getOperand(0); 8773 if (Dividend != FPOne) { 8774 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 8775 Reciprocal, Flags); 8776 CombineTo(U, NewNode); 8777 } else if (U != Reciprocal.getNode()) { 8778 // In the absence of fast-math-flags, this user node is always the 8779 // same node as Reciprocal, but with FMF they may be different nodes. 8780 CombineTo(U, Reciprocal); 8781 } 8782 } 8783 return SDValue(N, 0); // N was replaced. 8784 } 8785 8786 SDValue DAGCombiner::visitFDIV(SDNode *N) { 8787 SDValue N0 = N->getOperand(0); 8788 SDValue N1 = N->getOperand(1); 8789 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8790 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8791 EVT VT = N->getValueType(0); 8792 SDLoc DL(N); 8793 const TargetOptions &Options = DAG.getTarget().Options; 8794 SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8795 8796 // fold vector ops 8797 if (VT.isVector()) 8798 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8799 return FoldedVOp; 8800 8801 // fold (fdiv c1, c2) -> c1/c2 8802 if (N0CFP && N1CFP) 8803 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 8804 8805 if (Options.UnsafeFPMath) { 8806 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 8807 if (N1CFP) { 8808 // Compute the reciprocal 1.0 / c2. 8809 APFloat N1APF = N1CFP->getValueAPF(); 8810 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 8811 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 8812 // Only do the transform if the reciprocal is a legal fp immediate that 8813 // isn't too nasty (eg NaN, denormal, ...). 8814 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 8815 (!LegalOperations || 8816 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 8817 // backend)... we should handle this gracefully after Legalize. 8818 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 8819 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 8820 TLI.isFPImmLegal(Recip, VT))) 8821 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8822 DAG.getConstantFP(Recip, DL, VT), Flags); 8823 } 8824 8825 // If this FDIV is part of a reciprocal square root, it may be folded 8826 // into a target-specific square root estimate instruction. 8827 if (N1.getOpcode() == ISD::FSQRT) { 8828 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) { 8829 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8830 } 8831 } else if (N1.getOpcode() == ISD::FP_EXTEND && 8832 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8833 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8834 Flags)) { 8835 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 8836 AddToWorklist(RV.getNode()); 8837 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8838 } 8839 } else if (N1.getOpcode() == ISD::FP_ROUND && 8840 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8841 if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8842 Flags)) { 8843 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 8844 AddToWorklist(RV.getNode()); 8845 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8846 } 8847 } else if (N1.getOpcode() == ISD::FMUL) { 8848 // Look through an FMUL. Even though this won't remove the FDIV directly, 8849 // it's still worthwhile to get rid of the FSQRT if possible. 8850 SDValue SqrtOp; 8851 SDValue OtherOp; 8852 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8853 SqrtOp = N1.getOperand(0); 8854 OtherOp = N1.getOperand(1); 8855 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 8856 SqrtOp = N1.getOperand(1); 8857 OtherOp = N1.getOperand(0); 8858 } 8859 if (SqrtOp.getNode()) { 8860 // We found a FSQRT, so try to make this fold: 8861 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 8862 if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 8863 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 8864 AddToWorklist(RV.getNode()); 8865 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8866 } 8867 } 8868 } 8869 8870 // Fold into a reciprocal estimate and multiply instead of a real divide. 8871 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 8872 AddToWorklist(RV.getNode()); 8873 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8874 } 8875 } 8876 8877 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 8878 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8879 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8880 // Both can be negated for free, check to see if at least one is cheaper 8881 // negated. 8882 if (LHSNeg == 2 || RHSNeg == 2) 8883 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 8884 GetNegatedExpression(N0, DAG, LegalOperations), 8885 GetNegatedExpression(N1, DAG, LegalOperations), 8886 Flags); 8887 } 8888 } 8889 8890 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) 8891 return CombineRepeatedDivisors; 8892 8893 return SDValue(); 8894 } 8895 8896 SDValue DAGCombiner::visitFREM(SDNode *N) { 8897 SDValue N0 = N->getOperand(0); 8898 SDValue N1 = N->getOperand(1); 8899 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8900 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8901 EVT VT = N->getValueType(0); 8902 8903 // fold (frem c1, c2) -> fmod(c1,c2) 8904 if (N0CFP && N1CFP) 8905 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, 8906 &cast<BinaryWithFlagsSDNode>(N)->Flags); 8907 8908 return SDValue(); 8909 } 8910 8911 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 8912 if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap()) 8913 return SDValue(); 8914 8915 // TODO: FSQRT nodes should have flags that propagate to the created nodes. 8916 // For now, create a Flags object for use with all unsafe math transforms. 8917 SDNodeFlags Flags; 8918 Flags.setUnsafeAlgebra(true); 8919 8920 // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5) 8921 SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags); 8922 if (!RV) 8923 return SDValue(); 8924 8925 EVT VT = RV.getValueType(); 8926 SDLoc DL(N); 8927 RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags); 8928 AddToWorklist(RV.getNode()); 8929 8930 // Unfortunately, RV is now NaN if the input was exactly 0. 8931 // Select out this case and force the answer to 0. 8932 SDValue Zero = DAG.getConstantFP(0.0, DL, VT); 8933 EVT CCVT = getSetCCResultType(VT); 8934 SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ); 8935 AddToWorklist(ZeroCmp.getNode()); 8936 AddToWorklist(RV.getNode()); 8937 8938 return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, 8939 ZeroCmp, Zero, RV); 8940 } 8941 8942 /// copysign(x, fp_extend(y)) -> copysign(x, y) 8943 /// copysign(x, fp_round(y)) -> copysign(x, y) 8944 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 8945 SDValue N1 = N->getOperand(1); 8946 if ((N1.getOpcode() == ISD::FP_EXTEND || 8947 N1.getOpcode() == ISD::FP_ROUND)) { 8948 // Do not optimize out type conversion of f128 type yet. 8949 // For some targets like x86_64, configuration is changed to keep one f128 8950 // value in one SSE register, but instruction selection cannot handle 8951 // FCOPYSIGN on SSE registers yet. 8952 EVT N1VT = N1->getValueType(0); 8953 EVT N1Op0VT = N1->getOperand(0)->getValueType(0); 8954 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 8955 } 8956 return false; 8957 } 8958 8959 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 8960 SDValue N0 = N->getOperand(0); 8961 SDValue N1 = N->getOperand(1); 8962 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8963 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8964 EVT VT = N->getValueType(0); 8965 8966 if (N0CFP && N1CFP) // Constant fold 8967 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 8968 8969 if (N1CFP) { 8970 const APFloat& V = N1CFP->getValueAPF(); 8971 // copysign(x, c1) -> fabs(x) iff ispos(c1) 8972 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 8973 if (!V.isNegative()) { 8974 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 8975 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8976 } else { 8977 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8978 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 8979 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 8980 } 8981 } 8982 8983 // copysign(fabs(x), y) -> copysign(x, y) 8984 // copysign(fneg(x), y) -> copysign(x, y) 8985 // copysign(copysign(x,z), y) -> copysign(x, y) 8986 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 8987 N0.getOpcode() == ISD::FCOPYSIGN) 8988 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8989 N0.getOperand(0), N1); 8990 8991 // copysign(x, abs(y)) -> abs(x) 8992 if (N1.getOpcode() == ISD::FABS) 8993 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8994 8995 // copysign(x, copysign(y,z)) -> copysign(x, z) 8996 if (N1.getOpcode() == ISD::FCOPYSIGN) 8997 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8998 N0, N1.getOperand(1)); 8999 9000 // copysign(x, fp_extend(y)) -> copysign(x, y) 9001 // copysign(x, fp_round(y)) -> copysign(x, y) 9002 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 9003 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 9004 N0, N1.getOperand(0)); 9005 9006 return SDValue(); 9007 } 9008 9009 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 9010 SDValue N0 = N->getOperand(0); 9011 EVT VT = N->getValueType(0); 9012 EVT OpVT = N0.getValueType(); 9013 9014 // fold (sint_to_fp c1) -> c1fp 9015 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 9016 // ...but only if the target supports immediate floating-point values 9017 (!LegalOperations || 9018 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 9019 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 9020 9021 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 9022 // but UINT_TO_FP is legal on this target, try to convert. 9023 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 9024 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 9025 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 9026 if (DAG.SignBitIsZero(N0)) 9027 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 9028 } 9029 9030 // The next optimizations are desirable only if SELECT_CC can be lowered. 9031 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9032 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9033 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 9034 !VT.isVector() && 9035 (!LegalOperations || 9036 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9037 SDLoc DL(N); 9038 SDValue Ops[] = 9039 { N0.getOperand(0), N0.getOperand(1), 9040 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9041 N0.getOperand(2) }; 9042 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9043 } 9044 9045 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 9046 // (select_cc x, y, 1.0, 0.0,, cc) 9047 if (N0.getOpcode() == ISD::ZERO_EXTEND && 9048 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 9049 (!LegalOperations || 9050 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9051 SDLoc DL(N); 9052 SDValue Ops[] = 9053 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 9054 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9055 N0.getOperand(0).getOperand(2) }; 9056 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9057 } 9058 } 9059 9060 return SDValue(); 9061 } 9062 9063 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 9064 SDValue N0 = N->getOperand(0); 9065 EVT VT = N->getValueType(0); 9066 EVT OpVT = N0.getValueType(); 9067 9068 // fold (uint_to_fp c1) -> c1fp 9069 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 9070 // ...but only if the target supports immediate floating-point values 9071 (!LegalOperations || 9072 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 9073 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 9074 9075 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 9076 // but SINT_TO_FP is legal on this target, try to convert. 9077 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 9078 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 9079 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 9080 if (DAG.SignBitIsZero(N0)) 9081 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 9082 } 9083 9084 // The next optimizations are desirable only if SELECT_CC can be lowered. 9085 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9086 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9087 9088 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 9089 (!LegalOperations || 9090 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9091 SDLoc DL(N); 9092 SDValue Ops[] = 9093 { N0.getOperand(0), N0.getOperand(1), 9094 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9095 N0.getOperand(2) }; 9096 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9097 } 9098 } 9099 9100 return SDValue(); 9101 } 9102 9103 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 9104 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 9105 SDValue N0 = N->getOperand(0); 9106 EVT VT = N->getValueType(0); 9107 9108 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 9109 return SDValue(); 9110 9111 SDValue Src = N0.getOperand(0); 9112 EVT SrcVT = Src.getValueType(); 9113 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 9114 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 9115 9116 // We can safely assume the conversion won't overflow the output range, 9117 // because (for example) (uint8_t)18293.f is undefined behavior. 9118 9119 // Since we can assume the conversion won't overflow, our decision as to 9120 // whether the input will fit in the float should depend on the minimum 9121 // of the input range and output range. 9122 9123 // This means this is also safe for a signed input and unsigned output, since 9124 // a negative input would lead to undefined behavior. 9125 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 9126 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 9127 unsigned ActualSize = std::min(InputSize, OutputSize); 9128 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 9129 9130 // We can only fold away the float conversion if the input range can be 9131 // represented exactly in the float range. 9132 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 9133 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 9134 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 9135 : ISD::ZERO_EXTEND; 9136 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 9137 } 9138 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 9139 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 9140 return DAG.getBitcast(VT, Src); 9141 } 9142 return SDValue(); 9143 } 9144 9145 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 9146 SDValue N0 = N->getOperand(0); 9147 EVT VT = N->getValueType(0); 9148 9149 // fold (fp_to_sint c1fp) -> c1 9150 if (isConstantFPBuildVectorOrConstantFP(N0)) 9151 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 9152 9153 return FoldIntToFPToInt(N, DAG); 9154 } 9155 9156 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 9157 SDValue N0 = N->getOperand(0); 9158 EVT VT = N->getValueType(0); 9159 9160 // fold (fp_to_uint c1fp) -> c1 9161 if (isConstantFPBuildVectorOrConstantFP(N0)) 9162 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 9163 9164 return FoldIntToFPToInt(N, DAG); 9165 } 9166 9167 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 9168 SDValue N0 = N->getOperand(0); 9169 SDValue N1 = N->getOperand(1); 9170 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9171 EVT VT = N->getValueType(0); 9172 9173 // fold (fp_round c1fp) -> c1fp 9174 if (N0CFP) 9175 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 9176 9177 // fold (fp_round (fp_extend x)) -> x 9178 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 9179 return N0.getOperand(0); 9180 9181 // fold (fp_round (fp_round x)) -> (fp_round x) 9182 if (N0.getOpcode() == ISD::FP_ROUND) { 9183 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 9184 const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; 9185 9186 // Skip this folding if it results in an fp_round from f80 to f16. 9187 // 9188 // f80 to f16 always generates an expensive (and as yet, unimplemented) 9189 // libcall to __truncxfhf2 instead of selecting native f16 conversion 9190 // instructions from f32 or f64. Moreover, the first (value-preserving) 9191 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 9192 // x86. 9193 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 9194 return SDValue(); 9195 9196 // If the first fp_round isn't a value preserving truncation, it might 9197 // introduce a tie in the second fp_round, that wouldn't occur in the 9198 // single-step fp_round we want to fold to. 9199 // In other words, double rounding isn't the same as rounding. 9200 // Also, this is a value preserving truncation iff both fp_round's are. 9201 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 9202 SDLoc DL(N); 9203 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 9204 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 9205 } 9206 } 9207 9208 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 9209 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 9210 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 9211 N0.getOperand(0), N1); 9212 AddToWorklist(Tmp.getNode()); 9213 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 9214 Tmp, N0.getOperand(1)); 9215 } 9216 9217 return SDValue(); 9218 } 9219 9220 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 9221 SDValue N0 = N->getOperand(0); 9222 EVT VT = N->getValueType(0); 9223 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 9224 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9225 9226 // fold (fp_round_inreg c1fp) -> c1fp 9227 if (N0CFP && isTypeLegal(EVT)) { 9228 SDLoc DL(N); 9229 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 9230 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 9231 } 9232 9233 return SDValue(); 9234 } 9235 9236 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 9237 SDValue N0 = N->getOperand(0); 9238 EVT VT = N->getValueType(0); 9239 9240 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 9241 if (N->hasOneUse() && 9242 N->use_begin()->getOpcode() == ISD::FP_ROUND) 9243 return SDValue(); 9244 9245 // fold (fp_extend c1fp) -> c1fp 9246 if (isConstantFPBuildVectorOrConstantFP(N0)) 9247 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 9248 9249 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 9250 if (N0.getOpcode() == ISD::FP16_TO_FP && 9251 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 9252 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 9253 9254 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 9255 // value of X. 9256 if (N0.getOpcode() == ISD::FP_ROUND 9257 && N0.getNode()->getConstantOperandVal(1) == 1) { 9258 SDValue In = N0.getOperand(0); 9259 if (In.getValueType() == VT) return In; 9260 if (VT.bitsLT(In.getValueType())) 9261 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 9262 In, N0.getOperand(1)); 9263 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 9264 } 9265 9266 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 9267 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 9268 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 9269 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9270 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 9271 LN0->getChain(), 9272 LN0->getBasePtr(), N0.getValueType(), 9273 LN0->getMemOperand()); 9274 CombineTo(N, ExtLoad); 9275 CombineTo(N0.getNode(), 9276 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 9277 N0.getValueType(), ExtLoad, 9278 DAG.getIntPtrConstant(1, SDLoc(N0))), 9279 ExtLoad.getValue(1)); 9280 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9281 } 9282 9283 return SDValue(); 9284 } 9285 9286 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 9287 SDValue N0 = N->getOperand(0); 9288 EVT VT = N->getValueType(0); 9289 9290 // fold (fceil c1) -> fceil(c1) 9291 if (isConstantFPBuildVectorOrConstantFP(N0)) 9292 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 9293 9294 return SDValue(); 9295 } 9296 9297 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 9298 SDValue N0 = N->getOperand(0); 9299 EVT VT = N->getValueType(0); 9300 9301 // fold (ftrunc c1) -> ftrunc(c1) 9302 if (isConstantFPBuildVectorOrConstantFP(N0)) 9303 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 9304 9305 return SDValue(); 9306 } 9307 9308 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 9309 SDValue N0 = N->getOperand(0); 9310 EVT VT = N->getValueType(0); 9311 9312 // fold (ffloor c1) -> ffloor(c1) 9313 if (isConstantFPBuildVectorOrConstantFP(N0)) 9314 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 9315 9316 return SDValue(); 9317 } 9318 9319 // FIXME: FNEG and FABS have a lot in common; refactor. 9320 SDValue DAGCombiner::visitFNEG(SDNode *N) { 9321 SDValue N0 = N->getOperand(0); 9322 EVT VT = N->getValueType(0); 9323 9324 // Constant fold FNEG. 9325 if (isConstantFPBuildVectorOrConstantFP(N0)) 9326 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 9327 9328 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 9329 &DAG.getTarget().Options)) 9330 return GetNegatedExpression(N0, DAG, LegalOperations); 9331 9332 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 9333 // constant pool values. 9334 if (!TLI.isFNegFree(VT) && 9335 N0.getOpcode() == ISD::BITCAST && 9336 N0.getNode()->hasOneUse()) { 9337 SDValue Int = N0.getOperand(0); 9338 EVT IntVT = Int.getValueType(); 9339 if (IntVT.isInteger() && !IntVT.isVector()) { 9340 APInt SignMask; 9341 if (N0.getValueType().isVector()) { 9342 // For a vector, get a mask such as 0x80... per scalar element 9343 // and splat it. 9344 SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9345 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9346 } else { 9347 // For a scalar, just generate 0x80... 9348 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 9349 } 9350 SDLoc DL0(N0); 9351 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 9352 DAG.getConstant(SignMask, DL0, IntVT)); 9353 AddToWorklist(Int.getNode()); 9354 return DAG.getBitcast(VT, Int); 9355 } 9356 } 9357 9358 // (fneg (fmul c, x)) -> (fmul -c, x) 9359 if (N0.getOpcode() == ISD::FMUL && 9360 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 9361 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9362 if (CFP1) { 9363 APFloat CVal = CFP1->getValueAPF(); 9364 CVal.changeSign(); 9365 if (Level >= AfterLegalizeDAG && 9366 (TLI.isFPImmLegal(CVal, VT) || 9367 TLI.isOperationLegal(ISD::ConstantFP, VT))) 9368 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 9369 DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9370 N0.getOperand(1)), 9371 &cast<BinaryWithFlagsSDNode>(N0)->Flags); 9372 } 9373 } 9374 9375 return SDValue(); 9376 } 9377 9378 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 9379 SDValue N0 = N->getOperand(0); 9380 SDValue N1 = N->getOperand(1); 9381 EVT VT = N->getValueType(0); 9382 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9383 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9384 9385 if (N0CFP && N1CFP) { 9386 const APFloat &C0 = N0CFP->getValueAPF(); 9387 const APFloat &C1 = N1CFP->getValueAPF(); 9388 return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); 9389 } 9390 9391 // Canonicalize to constant on RHS. 9392 if (isConstantFPBuildVectorOrConstantFP(N0) && 9393 !isConstantFPBuildVectorOrConstantFP(N1)) 9394 return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); 9395 9396 return SDValue(); 9397 } 9398 9399 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 9400 SDValue N0 = N->getOperand(0); 9401 SDValue N1 = N->getOperand(1); 9402 EVT VT = N->getValueType(0); 9403 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9404 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9405 9406 if (N0CFP && N1CFP) { 9407 const APFloat &C0 = N0CFP->getValueAPF(); 9408 const APFloat &C1 = N1CFP->getValueAPF(); 9409 return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); 9410 } 9411 9412 // Canonicalize to constant on RHS. 9413 if (isConstantFPBuildVectorOrConstantFP(N0) && 9414 !isConstantFPBuildVectorOrConstantFP(N1)) 9415 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); 9416 9417 return SDValue(); 9418 } 9419 9420 SDValue DAGCombiner::visitFABS(SDNode *N) { 9421 SDValue N0 = N->getOperand(0); 9422 EVT VT = N->getValueType(0); 9423 9424 // fold (fabs c1) -> fabs(c1) 9425 if (isConstantFPBuildVectorOrConstantFP(N0)) 9426 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9427 9428 // fold (fabs (fabs x)) -> (fabs x) 9429 if (N0.getOpcode() == ISD::FABS) 9430 return N->getOperand(0); 9431 9432 // fold (fabs (fneg x)) -> (fabs x) 9433 // fold (fabs (fcopysign x, y)) -> (fabs x) 9434 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 9435 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 9436 9437 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 9438 // constant pool values. 9439 if (!TLI.isFAbsFree(VT) && 9440 N0.getOpcode() == ISD::BITCAST && 9441 N0.getNode()->hasOneUse()) { 9442 SDValue Int = N0.getOperand(0); 9443 EVT IntVT = Int.getValueType(); 9444 if (IntVT.isInteger() && !IntVT.isVector()) { 9445 APInt SignMask; 9446 if (N0.getValueType().isVector()) { 9447 // For a vector, get a mask such as 0x7f... per scalar element 9448 // and splat it. 9449 SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9450 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9451 } else { 9452 // For a scalar, just generate 0x7f... 9453 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 9454 } 9455 SDLoc DL(N0); 9456 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 9457 DAG.getConstant(SignMask, DL, IntVT)); 9458 AddToWorklist(Int.getNode()); 9459 return DAG.getBitcast(N->getValueType(0), Int); 9460 } 9461 } 9462 9463 return SDValue(); 9464 } 9465 9466 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 9467 SDValue Chain = N->getOperand(0); 9468 SDValue N1 = N->getOperand(1); 9469 SDValue N2 = N->getOperand(2); 9470 9471 // If N is a constant we could fold this into a fallthrough or unconditional 9472 // branch. However that doesn't happen very often in normal code, because 9473 // Instcombine/SimplifyCFG should have handled the available opportunities. 9474 // If we did this folding here, it would be necessary to update the 9475 // MachineBasicBlock CFG, which is awkward. 9476 9477 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 9478 // on the target. 9479 if (N1.getOpcode() == ISD::SETCC && 9480 TLI.isOperationLegalOrCustom(ISD::BR_CC, 9481 N1.getOperand(0).getValueType())) { 9482 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9483 Chain, N1.getOperand(2), 9484 N1.getOperand(0), N1.getOperand(1), N2); 9485 } 9486 9487 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 9488 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 9489 (N1.getOperand(0).hasOneUse() && 9490 N1.getOperand(0).getOpcode() == ISD::SRL))) { 9491 SDNode *Trunc = nullptr; 9492 if (N1.getOpcode() == ISD::TRUNCATE) { 9493 // Look pass the truncate. 9494 Trunc = N1.getNode(); 9495 N1 = N1.getOperand(0); 9496 } 9497 9498 // Match this pattern so that we can generate simpler code: 9499 // 9500 // %a = ... 9501 // %b = and i32 %a, 2 9502 // %c = srl i32 %b, 1 9503 // brcond i32 %c ... 9504 // 9505 // into 9506 // 9507 // %a = ... 9508 // %b = and i32 %a, 2 9509 // %c = setcc eq %b, 0 9510 // brcond %c ... 9511 // 9512 // This applies only when the AND constant value has one bit set and the 9513 // SRL constant is equal to the log2 of the AND constant. The back-end is 9514 // smart enough to convert the result into a TEST/JMP sequence. 9515 SDValue Op0 = N1.getOperand(0); 9516 SDValue Op1 = N1.getOperand(1); 9517 9518 if (Op0.getOpcode() == ISD::AND && 9519 Op1.getOpcode() == ISD::Constant) { 9520 SDValue AndOp1 = Op0.getOperand(1); 9521 9522 if (AndOp1.getOpcode() == ISD::Constant) { 9523 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 9524 9525 if (AndConst.isPowerOf2() && 9526 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 9527 SDLoc DL(N); 9528 SDValue SetCC = 9529 DAG.getSetCC(DL, 9530 getSetCCResultType(Op0.getValueType()), 9531 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 9532 ISD::SETNE); 9533 9534 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, 9535 MVT::Other, Chain, SetCC, N2); 9536 // Don't add the new BRCond into the worklist or else SimplifySelectCC 9537 // will convert it back to (X & C1) >> C2. 9538 CombineTo(N, NewBRCond, false); 9539 // Truncate is dead. 9540 if (Trunc) 9541 deleteAndRecombine(Trunc); 9542 // Replace the uses of SRL with SETCC 9543 WorklistRemover DeadNodes(*this); 9544 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9545 deleteAndRecombine(N1.getNode()); 9546 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9547 } 9548 } 9549 } 9550 9551 if (Trunc) 9552 // Restore N1 if the above transformation doesn't match. 9553 N1 = N->getOperand(1); 9554 } 9555 9556 // Transform br(xor(x, y)) -> br(x != y) 9557 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 9558 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 9559 SDNode *TheXor = N1.getNode(); 9560 SDValue Op0 = TheXor->getOperand(0); 9561 SDValue Op1 = TheXor->getOperand(1); 9562 if (Op0.getOpcode() == Op1.getOpcode()) { 9563 // Avoid missing important xor optimizations. 9564 if (SDValue Tmp = visitXOR(TheXor)) { 9565 if (Tmp.getNode() != TheXor) { 9566 DEBUG(dbgs() << "\nReplacing.8 "; 9567 TheXor->dump(&DAG); 9568 dbgs() << "\nWith: "; 9569 Tmp.getNode()->dump(&DAG); 9570 dbgs() << '\n'); 9571 WorklistRemover DeadNodes(*this); 9572 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 9573 deleteAndRecombine(TheXor); 9574 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9575 MVT::Other, Chain, Tmp, N2); 9576 } 9577 9578 // visitXOR has changed XOR's operands or replaced the XOR completely, 9579 // bail out. 9580 return SDValue(N, 0); 9581 } 9582 } 9583 9584 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 9585 bool Equal = false; 9586 if (isOneConstant(Op0) && Op0.hasOneUse() && 9587 Op0.getOpcode() == ISD::XOR) { 9588 TheXor = Op0.getNode(); 9589 Equal = true; 9590 } 9591 9592 EVT SetCCVT = N1.getValueType(); 9593 if (LegalTypes) 9594 SetCCVT = getSetCCResultType(SetCCVT); 9595 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 9596 SetCCVT, 9597 Op0, Op1, 9598 Equal ? ISD::SETEQ : ISD::SETNE); 9599 // Replace the uses of XOR with SETCC 9600 WorklistRemover DeadNodes(*this); 9601 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9602 deleteAndRecombine(N1.getNode()); 9603 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9604 MVT::Other, Chain, SetCC, N2); 9605 } 9606 } 9607 9608 return SDValue(); 9609 } 9610 9611 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 9612 // 9613 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 9614 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 9615 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 9616 9617 // If N is a constant we could fold this into a fallthrough or unconditional 9618 // branch. However that doesn't happen very often in normal code, because 9619 // Instcombine/SimplifyCFG should have handled the available opportunities. 9620 // If we did this folding here, it would be necessary to update the 9621 // MachineBasicBlock CFG, which is awkward. 9622 9623 // Use SimplifySetCC to simplify SETCC's. 9624 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 9625 CondLHS, CondRHS, CC->get(), SDLoc(N), 9626 false); 9627 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 9628 9629 // fold to a simpler setcc 9630 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 9631 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9632 N->getOperand(0), Simp.getOperand(2), 9633 Simp.getOperand(0), Simp.getOperand(1), 9634 N->getOperand(4)); 9635 9636 return SDValue(); 9637 } 9638 9639 /// Return true if 'Use' is a load or a store that uses N as its base pointer 9640 /// and that N may be folded in the load / store addressing mode. 9641 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 9642 SelectionDAG &DAG, 9643 const TargetLowering &TLI) { 9644 EVT VT; 9645 unsigned AS; 9646 9647 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 9648 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 9649 return false; 9650 VT = LD->getMemoryVT(); 9651 AS = LD->getAddressSpace(); 9652 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 9653 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 9654 return false; 9655 VT = ST->getMemoryVT(); 9656 AS = ST->getAddressSpace(); 9657 } else 9658 return false; 9659 9660 TargetLowering::AddrMode AM; 9661 if (N->getOpcode() == ISD::ADD) { 9662 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9663 if (Offset) 9664 // [reg +/- imm] 9665 AM.BaseOffs = Offset->getSExtValue(); 9666 else 9667 // [reg +/- reg] 9668 AM.Scale = 1; 9669 } else if (N->getOpcode() == ISD::SUB) { 9670 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9671 if (Offset) 9672 // [reg +/- imm] 9673 AM.BaseOffs = -Offset->getSExtValue(); 9674 else 9675 // [reg +/- reg] 9676 AM.Scale = 1; 9677 } else 9678 return false; 9679 9680 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 9681 VT.getTypeForEVT(*DAG.getContext()), AS); 9682 } 9683 9684 /// Try turning a load/store into a pre-indexed load/store when the base 9685 /// pointer is an add or subtract and it has other uses besides the load/store. 9686 /// After the transformation, the new indexed load/store has effectively folded 9687 /// the add/subtract in and all of its other uses are redirected to the 9688 /// new load/store. 9689 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 9690 if (Level < AfterLegalizeDAG) 9691 return false; 9692 9693 bool isLoad = true; 9694 SDValue Ptr; 9695 EVT VT; 9696 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9697 if (LD->isIndexed()) 9698 return false; 9699 VT = LD->getMemoryVT(); 9700 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 9701 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 9702 return false; 9703 Ptr = LD->getBasePtr(); 9704 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9705 if (ST->isIndexed()) 9706 return false; 9707 VT = ST->getMemoryVT(); 9708 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 9709 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 9710 return false; 9711 Ptr = ST->getBasePtr(); 9712 isLoad = false; 9713 } else { 9714 return false; 9715 } 9716 9717 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 9718 // out. There is no reason to make this a preinc/predec. 9719 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 9720 Ptr.getNode()->hasOneUse()) 9721 return false; 9722 9723 // Ask the target to do addressing mode selection. 9724 SDValue BasePtr; 9725 SDValue Offset; 9726 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9727 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 9728 return false; 9729 9730 // Backends without true r+i pre-indexed forms may need to pass a 9731 // constant base with a variable offset so that constant coercion 9732 // will work with the patterns in canonical form. 9733 bool Swapped = false; 9734 if (isa<ConstantSDNode>(BasePtr)) { 9735 std::swap(BasePtr, Offset); 9736 Swapped = true; 9737 } 9738 9739 // Don't create a indexed load / store with zero offset. 9740 if (isNullConstant(Offset)) 9741 return false; 9742 9743 // Try turning it into a pre-indexed load / store except when: 9744 // 1) The new base ptr is a frame index. 9745 // 2) If N is a store and the new base ptr is either the same as or is a 9746 // predecessor of the value being stored. 9747 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 9748 // that would create a cycle. 9749 // 4) All uses are load / store ops that use it as old base ptr. 9750 9751 // Check #1. Preinc'ing a frame index would require copying the stack pointer 9752 // (plus the implicit offset) to a register to preinc anyway. 9753 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9754 return false; 9755 9756 // Check #2. 9757 if (!isLoad) { 9758 SDValue Val = cast<StoreSDNode>(N)->getValue(); 9759 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 9760 return false; 9761 } 9762 9763 // Caches for hasPredecessorHelper. 9764 SmallPtrSet<const SDNode *, 32> Visited; 9765 SmallVector<const SDNode *, 16> Worklist; 9766 Worklist.push_back(N); 9767 9768 // If the offset is a constant, there may be other adds of constants that 9769 // can be folded with this one. We should do this to avoid having to keep 9770 // a copy of the original base pointer. 9771 SmallVector<SDNode *, 16> OtherUses; 9772 if (isa<ConstantSDNode>(Offset)) 9773 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 9774 UE = BasePtr.getNode()->use_end(); 9775 UI != UE; ++UI) { 9776 SDUse &Use = UI.getUse(); 9777 // Skip the use that is Ptr and uses of other results from BasePtr's 9778 // node (important for nodes that return multiple results). 9779 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 9780 continue; 9781 9782 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 9783 continue; 9784 9785 if (Use.getUser()->getOpcode() != ISD::ADD && 9786 Use.getUser()->getOpcode() != ISD::SUB) { 9787 OtherUses.clear(); 9788 break; 9789 } 9790 9791 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 9792 if (!isa<ConstantSDNode>(Op1)) { 9793 OtherUses.clear(); 9794 break; 9795 } 9796 9797 // FIXME: In some cases, we can be smarter about this. 9798 if (Op1.getValueType() != Offset.getValueType()) { 9799 OtherUses.clear(); 9800 break; 9801 } 9802 9803 OtherUses.push_back(Use.getUser()); 9804 } 9805 9806 if (Swapped) 9807 std::swap(BasePtr, Offset); 9808 9809 // Now check for #3 and #4. 9810 bool RealUse = false; 9811 9812 for (SDNode *Use : Ptr.getNode()->uses()) { 9813 if (Use == N) 9814 continue; 9815 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 9816 return false; 9817 9818 // If Ptr may be folded in addressing mode of other use, then it's 9819 // not profitable to do this transformation. 9820 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 9821 RealUse = true; 9822 } 9823 9824 if (!RealUse) 9825 return false; 9826 9827 SDValue Result; 9828 if (isLoad) 9829 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9830 BasePtr, Offset, AM); 9831 else 9832 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9833 BasePtr, Offset, AM); 9834 ++PreIndexedNodes; 9835 ++NodesCombined; 9836 DEBUG(dbgs() << "\nReplacing.4 "; 9837 N->dump(&DAG); 9838 dbgs() << "\nWith: "; 9839 Result.getNode()->dump(&DAG); 9840 dbgs() << '\n'); 9841 WorklistRemover DeadNodes(*this); 9842 if (isLoad) { 9843 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9844 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9845 } else { 9846 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9847 } 9848 9849 // Finally, since the node is now dead, remove it from the graph. 9850 deleteAndRecombine(N); 9851 9852 if (Swapped) 9853 std::swap(BasePtr, Offset); 9854 9855 // Replace other uses of BasePtr that can be updated to use Ptr 9856 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 9857 unsigned OffsetIdx = 1; 9858 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 9859 OffsetIdx = 0; 9860 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 9861 BasePtr.getNode() && "Expected BasePtr operand"); 9862 9863 // We need to replace ptr0 in the following expression: 9864 // x0 * offset0 + y0 * ptr0 = t0 9865 // knowing that 9866 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 9867 // 9868 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 9869 // indexed load/store and the expresion that needs to be re-written. 9870 // 9871 // Therefore, we have: 9872 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 9873 9874 ConstantSDNode *CN = 9875 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 9876 int X0, X1, Y0, Y1; 9877 APInt Offset0 = CN->getAPIntValue(); 9878 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 9879 9880 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 9881 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 9882 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 9883 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 9884 9885 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 9886 9887 APInt CNV = Offset0; 9888 if (X0 < 0) CNV = -CNV; 9889 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 9890 else CNV = CNV - Offset1; 9891 9892 SDLoc DL(OtherUses[i]); 9893 9894 // We can now generate the new expression. 9895 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 9896 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 9897 9898 SDValue NewUse = DAG.getNode(Opcode, 9899 DL, 9900 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 9901 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 9902 deleteAndRecombine(OtherUses[i]); 9903 } 9904 9905 // Replace the uses of Ptr with uses of the updated base value. 9906 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 9907 deleteAndRecombine(Ptr.getNode()); 9908 9909 return true; 9910 } 9911 9912 /// Try to combine a load/store with a add/sub of the base pointer node into a 9913 /// post-indexed load/store. The transformation folded the add/subtract into the 9914 /// new indexed load/store effectively and all of its uses are redirected to the 9915 /// new load/store. 9916 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 9917 if (Level < AfterLegalizeDAG) 9918 return false; 9919 9920 bool isLoad = true; 9921 SDValue Ptr; 9922 EVT VT; 9923 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9924 if (LD->isIndexed()) 9925 return false; 9926 VT = LD->getMemoryVT(); 9927 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 9928 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 9929 return false; 9930 Ptr = LD->getBasePtr(); 9931 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9932 if (ST->isIndexed()) 9933 return false; 9934 VT = ST->getMemoryVT(); 9935 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 9936 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 9937 return false; 9938 Ptr = ST->getBasePtr(); 9939 isLoad = false; 9940 } else { 9941 return false; 9942 } 9943 9944 if (Ptr.getNode()->hasOneUse()) 9945 return false; 9946 9947 for (SDNode *Op : Ptr.getNode()->uses()) { 9948 if (Op == N || 9949 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 9950 continue; 9951 9952 SDValue BasePtr; 9953 SDValue Offset; 9954 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9955 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 9956 // Don't create a indexed load / store with zero offset. 9957 if (isNullConstant(Offset)) 9958 continue; 9959 9960 // Try turning it into a post-indexed load / store except when 9961 // 1) All uses are load / store ops that use it as base ptr (and 9962 // it may be folded as addressing mmode). 9963 // 2) Op must be independent of N, i.e. Op is neither a predecessor 9964 // nor a successor of N. Otherwise, if Op is folded that would 9965 // create a cycle. 9966 9967 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9968 continue; 9969 9970 // Check for #1. 9971 bool TryNext = false; 9972 for (SDNode *Use : BasePtr.getNode()->uses()) { 9973 if (Use == Ptr.getNode()) 9974 continue; 9975 9976 // If all the uses are load / store addresses, then don't do the 9977 // transformation. 9978 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 9979 bool RealUse = false; 9980 for (SDNode *UseUse : Use->uses()) { 9981 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 9982 RealUse = true; 9983 } 9984 9985 if (!RealUse) { 9986 TryNext = true; 9987 break; 9988 } 9989 } 9990 } 9991 9992 if (TryNext) 9993 continue; 9994 9995 // Check for #2 9996 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 9997 SDValue Result = isLoad 9998 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9999 BasePtr, Offset, AM) 10000 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 10001 BasePtr, Offset, AM); 10002 ++PostIndexedNodes; 10003 ++NodesCombined; 10004 DEBUG(dbgs() << "\nReplacing.5 "; 10005 N->dump(&DAG); 10006 dbgs() << "\nWith: "; 10007 Result.getNode()->dump(&DAG); 10008 dbgs() << '\n'); 10009 WorklistRemover DeadNodes(*this); 10010 if (isLoad) { 10011 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 10012 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 10013 } else { 10014 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 10015 } 10016 10017 // Finally, since the node is now dead, remove it from the graph. 10018 deleteAndRecombine(N); 10019 10020 // Replace the uses of Use with uses of the updated base value. 10021 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 10022 Result.getValue(isLoad ? 1 : 0)); 10023 deleteAndRecombine(Op); 10024 return true; 10025 } 10026 } 10027 } 10028 10029 return false; 10030 } 10031 10032 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 10033 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 10034 ISD::MemIndexedMode AM = LD->getAddressingMode(); 10035 assert(AM != ISD::UNINDEXED); 10036 SDValue BP = LD->getOperand(1); 10037 SDValue Inc = LD->getOperand(2); 10038 10039 // Some backends use TargetConstants for load offsets, but don't expect 10040 // TargetConstants in general ADD nodes. We can convert these constants into 10041 // regular Constants (if the constant is not opaque). 10042 assert((Inc.getOpcode() != ISD::TargetConstant || 10043 !cast<ConstantSDNode>(Inc)->isOpaque()) && 10044 "Cannot split out indexing using opaque target constants"); 10045 if (Inc.getOpcode() == ISD::TargetConstant) { 10046 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 10047 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 10048 ConstInc->getValueType(0)); 10049 } 10050 10051 unsigned Opc = 10052 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 10053 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 10054 } 10055 10056 SDValue DAGCombiner::visitLOAD(SDNode *N) { 10057 LoadSDNode *LD = cast<LoadSDNode>(N); 10058 SDValue Chain = LD->getChain(); 10059 SDValue Ptr = LD->getBasePtr(); 10060 10061 // If load is not volatile and there are no uses of the loaded value (and 10062 // the updated indexed value in case of indexed loads), change uses of the 10063 // chain value into uses of the chain input (i.e. delete the dead load). 10064 if (!LD->isVolatile()) { 10065 if (N->getValueType(1) == MVT::Other) { 10066 // Unindexed loads. 10067 if (!N->hasAnyUseOfValue(0)) { 10068 // It's not safe to use the two value CombineTo variant here. e.g. 10069 // v1, chain2 = load chain1, loc 10070 // v2, chain3 = load chain2, loc 10071 // v3 = add v2, c 10072 // Now we replace use of chain2 with chain1. This makes the second load 10073 // isomorphic to the one we are deleting, and thus makes this load live. 10074 DEBUG(dbgs() << "\nReplacing.6 "; 10075 N->dump(&DAG); 10076 dbgs() << "\nWith chain: "; 10077 Chain.getNode()->dump(&DAG); 10078 dbgs() << "\n"); 10079 WorklistRemover DeadNodes(*this); 10080 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10081 10082 if (N->use_empty()) 10083 deleteAndRecombine(N); 10084 10085 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10086 } 10087 } else { 10088 // Indexed loads. 10089 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 10090 10091 // If this load has an opaque TargetConstant offset, then we cannot split 10092 // the indexing into an add/sub directly (that TargetConstant may not be 10093 // valid for a different type of node, and we cannot convert an opaque 10094 // target constant into a regular constant). 10095 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 10096 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 10097 10098 if (!N->hasAnyUseOfValue(0) && 10099 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 10100 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 10101 SDValue Index; 10102 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 10103 Index = SplitIndexingFromLoad(LD); 10104 // Try to fold the base pointer arithmetic into subsequent loads and 10105 // stores. 10106 AddUsersToWorklist(N); 10107 } else 10108 Index = DAG.getUNDEF(N->getValueType(1)); 10109 DEBUG(dbgs() << "\nReplacing.7 "; 10110 N->dump(&DAG); 10111 dbgs() << "\nWith: "; 10112 Undef.getNode()->dump(&DAG); 10113 dbgs() << " and 2 other values\n"); 10114 WorklistRemover DeadNodes(*this); 10115 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 10116 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 10117 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 10118 deleteAndRecombine(N); 10119 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10120 } 10121 } 10122 } 10123 10124 // If this load is directly stored, replace the load value with the stored 10125 // value. 10126 // TODO: Handle store large -> read small portion. 10127 // TODO: Handle TRUNCSTORE/LOADEXT 10128 if (ISD::isNormalLoad(N) && !LD->isVolatile()) { 10129 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 10130 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 10131 if (PrevST->getBasePtr() == Ptr && 10132 PrevST->getValue().getValueType() == N->getValueType(0)) 10133 return CombineTo(N, Chain.getOperand(1), Chain); 10134 } 10135 } 10136 10137 // Try to infer better alignment information than the load already has. 10138 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 10139 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 10140 if (Align > LD->getMemOperand()->getBaseAlignment()) { 10141 SDValue NewLoad = 10142 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N), 10143 LD->getValueType(0), 10144 Chain, Ptr, LD->getPointerInfo(), 10145 LD->getMemoryVT(), 10146 LD->isVolatile(), LD->isNonTemporal(), 10147 LD->isInvariant(), Align, LD->getAAInfo()); 10148 if (NewLoad.getNode() != N) 10149 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 10150 } 10151 } 10152 } 10153 10154 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 10155 : DAG.getSubtarget().useAA(); 10156 #ifndef NDEBUG 10157 if (CombinerAAOnlyFunc.getNumOccurrences() && 10158 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 10159 UseAA = false; 10160 #endif 10161 if (UseAA && LD->isUnindexed()) { 10162 // Walk up chain skipping non-aliasing memory nodes. 10163 SDValue BetterChain = FindBetterChain(N, Chain); 10164 10165 // If there is a better chain. 10166 if (Chain != BetterChain) { 10167 SDValue ReplLoad; 10168 10169 // Replace the chain to void dependency. 10170 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 10171 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 10172 BetterChain, Ptr, LD->getMemOperand()); 10173 } else { 10174 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 10175 LD->getValueType(0), 10176 BetterChain, Ptr, LD->getMemoryVT(), 10177 LD->getMemOperand()); 10178 } 10179 10180 // Create token factor to keep old chain connected. 10181 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 10182 MVT::Other, Chain, ReplLoad.getValue(1)); 10183 10184 // Make sure the new and old chains are cleaned up. 10185 AddToWorklist(Token.getNode()); 10186 10187 // Replace uses with load result and token factor. Don't add users 10188 // to work list. 10189 return CombineTo(N, ReplLoad.getValue(0), Token, false); 10190 } 10191 } 10192 10193 // Try transforming N to an indexed load. 10194 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10195 return SDValue(N, 0); 10196 10197 // Try to slice up N to more direct loads if the slices are mapped to 10198 // different register banks or pairing can take place. 10199 if (SliceUpLoad(N)) 10200 return SDValue(N, 0); 10201 10202 return SDValue(); 10203 } 10204 10205 namespace { 10206 /// \brief Helper structure used to slice a load in smaller loads. 10207 /// Basically a slice is obtained from the following sequence: 10208 /// Origin = load Ty1, Base 10209 /// Shift = srl Ty1 Origin, CstTy Amount 10210 /// Inst = trunc Shift to Ty2 10211 /// 10212 /// Then, it will be rewriten into: 10213 /// Slice = load SliceTy, Base + SliceOffset 10214 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 10215 /// 10216 /// SliceTy is deduced from the number of bits that are actually used to 10217 /// build Inst. 10218 struct LoadedSlice { 10219 /// \brief Helper structure used to compute the cost of a slice. 10220 struct Cost { 10221 /// Are we optimizing for code size. 10222 bool ForCodeSize; 10223 /// Various cost. 10224 unsigned Loads; 10225 unsigned Truncates; 10226 unsigned CrossRegisterBanksCopies; 10227 unsigned ZExts; 10228 unsigned Shift; 10229 10230 Cost(bool ForCodeSize = false) 10231 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 10232 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 10233 10234 /// \brief Get the cost of one isolated slice. 10235 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 10236 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 10237 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 10238 EVT TruncType = LS.Inst->getValueType(0); 10239 EVT LoadedType = LS.getLoadedType(); 10240 if (TruncType != LoadedType && 10241 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 10242 ZExts = 1; 10243 } 10244 10245 /// \brief Account for slicing gain in the current cost. 10246 /// Slicing provide a few gains like removing a shift or a 10247 /// truncate. This method allows to grow the cost of the original 10248 /// load with the gain from this slice. 10249 void addSliceGain(const LoadedSlice &LS) { 10250 // Each slice saves a truncate. 10251 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 10252 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 10253 LS.Inst->getValueType(0))) 10254 ++Truncates; 10255 // If there is a shift amount, this slice gets rid of it. 10256 if (LS.Shift) 10257 ++Shift; 10258 // If this slice can merge a cross register bank copy, account for it. 10259 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 10260 ++CrossRegisterBanksCopies; 10261 } 10262 10263 Cost &operator+=(const Cost &RHS) { 10264 Loads += RHS.Loads; 10265 Truncates += RHS.Truncates; 10266 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 10267 ZExts += RHS.ZExts; 10268 Shift += RHS.Shift; 10269 return *this; 10270 } 10271 10272 bool operator==(const Cost &RHS) const { 10273 return Loads == RHS.Loads && Truncates == RHS.Truncates && 10274 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 10275 ZExts == RHS.ZExts && Shift == RHS.Shift; 10276 } 10277 10278 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 10279 10280 bool operator<(const Cost &RHS) const { 10281 // Assume cross register banks copies are as expensive as loads. 10282 // FIXME: Do we want some more target hooks? 10283 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 10284 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 10285 // Unless we are optimizing for code size, consider the 10286 // expensive operation first. 10287 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 10288 return ExpensiveOpsLHS < ExpensiveOpsRHS; 10289 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 10290 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 10291 } 10292 10293 bool operator>(const Cost &RHS) const { return RHS < *this; } 10294 10295 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 10296 10297 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 10298 }; 10299 // The last instruction that represent the slice. This should be a 10300 // truncate instruction. 10301 SDNode *Inst; 10302 // The original load instruction. 10303 LoadSDNode *Origin; 10304 // The right shift amount in bits from the original load. 10305 unsigned Shift; 10306 // The DAG from which Origin came from. 10307 // This is used to get some contextual information about legal types, etc. 10308 SelectionDAG *DAG; 10309 10310 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 10311 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 10312 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 10313 10314 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 10315 /// \return Result is \p BitWidth and has used bits set to 1 and 10316 /// not used bits set to 0. 10317 APInt getUsedBits() const { 10318 // Reproduce the trunc(lshr) sequence: 10319 // - Start from the truncated value. 10320 // - Zero extend to the desired bit width. 10321 // - Shift left. 10322 assert(Origin && "No original load to compare against."); 10323 unsigned BitWidth = Origin->getValueSizeInBits(0); 10324 assert(Inst && "This slice is not bound to an instruction"); 10325 assert(Inst->getValueSizeInBits(0) <= BitWidth && 10326 "Extracted slice is bigger than the whole type!"); 10327 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 10328 UsedBits.setAllBits(); 10329 UsedBits = UsedBits.zext(BitWidth); 10330 UsedBits <<= Shift; 10331 return UsedBits; 10332 } 10333 10334 /// \brief Get the size of the slice to be loaded in bytes. 10335 unsigned getLoadedSize() const { 10336 unsigned SliceSize = getUsedBits().countPopulation(); 10337 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 10338 return SliceSize / 8; 10339 } 10340 10341 /// \brief Get the type that will be loaded for this slice. 10342 /// Note: This may not be the final type for the slice. 10343 EVT getLoadedType() const { 10344 assert(DAG && "Missing context"); 10345 LLVMContext &Ctxt = *DAG->getContext(); 10346 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 10347 } 10348 10349 /// \brief Get the alignment of the load used for this slice. 10350 unsigned getAlignment() const { 10351 unsigned Alignment = Origin->getAlignment(); 10352 unsigned Offset = getOffsetFromBase(); 10353 if (Offset != 0) 10354 Alignment = MinAlign(Alignment, Alignment + Offset); 10355 return Alignment; 10356 } 10357 10358 /// \brief Check if this slice can be rewritten with legal operations. 10359 bool isLegal() const { 10360 // An invalid slice is not legal. 10361 if (!Origin || !Inst || !DAG) 10362 return false; 10363 10364 // Offsets are for indexed load only, we do not handle that. 10365 if (!Origin->getOffset().isUndef()) 10366 return false; 10367 10368 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10369 10370 // Check that the type is legal. 10371 EVT SliceType = getLoadedType(); 10372 if (!TLI.isTypeLegal(SliceType)) 10373 return false; 10374 10375 // Check that the load is legal for this type. 10376 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 10377 return false; 10378 10379 // Check that the offset can be computed. 10380 // 1. Check its type. 10381 EVT PtrType = Origin->getBasePtr().getValueType(); 10382 if (PtrType == MVT::Untyped || PtrType.isExtended()) 10383 return false; 10384 10385 // 2. Check that it fits in the immediate. 10386 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 10387 return false; 10388 10389 // 3. Check that the computation is legal. 10390 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 10391 return false; 10392 10393 // Check that the zext is legal if it needs one. 10394 EVT TruncateType = Inst->getValueType(0); 10395 if (TruncateType != SliceType && 10396 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 10397 return false; 10398 10399 return true; 10400 } 10401 10402 /// \brief Get the offset in bytes of this slice in the original chunk of 10403 /// bits. 10404 /// \pre DAG != nullptr. 10405 uint64_t getOffsetFromBase() const { 10406 assert(DAG && "Missing context."); 10407 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 10408 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 10409 uint64_t Offset = Shift / 8; 10410 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 10411 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 10412 "The size of the original loaded type is not a multiple of a" 10413 " byte."); 10414 // If Offset is bigger than TySizeInBytes, it means we are loading all 10415 // zeros. This should have been optimized before in the process. 10416 assert(TySizeInBytes > Offset && 10417 "Invalid shift amount for given loaded size"); 10418 if (IsBigEndian) 10419 Offset = TySizeInBytes - Offset - getLoadedSize(); 10420 return Offset; 10421 } 10422 10423 /// \brief Generate the sequence of instructions to load the slice 10424 /// represented by this object and redirect the uses of this slice to 10425 /// this new sequence of instructions. 10426 /// \pre this->Inst && this->Origin are valid Instructions and this 10427 /// object passed the legal check: LoadedSlice::isLegal returned true. 10428 /// \return The last instruction of the sequence used to load the slice. 10429 SDValue loadSlice() const { 10430 assert(Inst && Origin && "Unable to replace a non-existing slice."); 10431 const SDValue &OldBaseAddr = Origin->getBasePtr(); 10432 SDValue BaseAddr = OldBaseAddr; 10433 // Get the offset in that chunk of bytes w.r.t. the endianess. 10434 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 10435 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 10436 if (Offset) { 10437 // BaseAddr = BaseAddr + Offset. 10438 EVT ArithType = BaseAddr.getValueType(); 10439 SDLoc DL(Origin); 10440 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 10441 DAG->getConstant(Offset, DL, ArithType)); 10442 } 10443 10444 // Create the type of the loaded slice according to its size. 10445 EVT SliceType = getLoadedType(); 10446 10447 // Create the load for the slice. 10448 SDValue LastInst = DAG->getLoad( 10449 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 10450 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(), 10451 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment()); 10452 // If the final type is not the same as the loaded type, this means that 10453 // we have to pad with zero. Create a zero extend for that. 10454 EVT FinalType = Inst->getValueType(0); 10455 if (SliceType != FinalType) 10456 LastInst = 10457 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 10458 return LastInst; 10459 } 10460 10461 /// \brief Check if this slice can be merged with an expensive cross register 10462 /// bank copy. E.g., 10463 /// i = load i32 10464 /// f = bitcast i32 i to float 10465 bool canMergeExpensiveCrossRegisterBankCopy() const { 10466 if (!Inst || !Inst->hasOneUse()) 10467 return false; 10468 SDNode *Use = *Inst->use_begin(); 10469 if (Use->getOpcode() != ISD::BITCAST) 10470 return false; 10471 assert(DAG && "Missing context"); 10472 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10473 EVT ResVT = Use->getValueType(0); 10474 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 10475 const TargetRegisterClass *ArgRC = 10476 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 10477 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 10478 return false; 10479 10480 // At this point, we know that we perform a cross-register-bank copy. 10481 // Check if it is expensive. 10482 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 10483 // Assume bitcasts are cheap, unless both register classes do not 10484 // explicitly share a common sub class. 10485 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 10486 return false; 10487 10488 // Check if it will be merged with the load. 10489 // 1. Check the alignment constraint. 10490 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 10491 ResVT.getTypeForEVT(*DAG->getContext())); 10492 10493 if (RequiredAlignment > getAlignment()) 10494 return false; 10495 10496 // 2. Check that the load is a legal operation for that type. 10497 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 10498 return false; 10499 10500 // 3. Check that we do not have a zext in the way. 10501 if (Inst->getValueType(0) != getLoadedType()) 10502 return false; 10503 10504 return true; 10505 } 10506 }; 10507 } 10508 10509 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 10510 /// \p UsedBits looks like 0..0 1..1 0..0. 10511 static bool areUsedBitsDense(const APInt &UsedBits) { 10512 // If all the bits are one, this is dense! 10513 if (UsedBits.isAllOnesValue()) 10514 return true; 10515 10516 // Get rid of the unused bits on the right. 10517 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 10518 // Get rid of the unused bits on the left. 10519 if (NarrowedUsedBits.countLeadingZeros()) 10520 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 10521 // Check that the chunk of bits is completely used. 10522 return NarrowedUsedBits.isAllOnesValue(); 10523 } 10524 10525 /// \brief Check whether or not \p First and \p Second are next to each other 10526 /// in memory. This means that there is no hole between the bits loaded 10527 /// by \p First and the bits loaded by \p Second. 10528 static bool areSlicesNextToEachOther(const LoadedSlice &First, 10529 const LoadedSlice &Second) { 10530 assert(First.Origin == Second.Origin && First.Origin && 10531 "Unable to match different memory origins."); 10532 APInt UsedBits = First.getUsedBits(); 10533 assert((UsedBits & Second.getUsedBits()) == 0 && 10534 "Slices are not supposed to overlap."); 10535 UsedBits |= Second.getUsedBits(); 10536 return areUsedBitsDense(UsedBits); 10537 } 10538 10539 /// \brief Adjust the \p GlobalLSCost according to the target 10540 /// paring capabilities and the layout of the slices. 10541 /// \pre \p GlobalLSCost should account for at least as many loads as 10542 /// there is in the slices in \p LoadedSlices. 10543 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10544 LoadedSlice::Cost &GlobalLSCost) { 10545 unsigned NumberOfSlices = LoadedSlices.size(); 10546 // If there is less than 2 elements, no pairing is possible. 10547 if (NumberOfSlices < 2) 10548 return; 10549 10550 // Sort the slices so that elements that are likely to be next to each 10551 // other in memory are next to each other in the list. 10552 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 10553 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 10554 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 10555 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 10556 }); 10557 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 10558 // First (resp. Second) is the first (resp. Second) potentially candidate 10559 // to be placed in a paired load. 10560 const LoadedSlice *First = nullptr; 10561 const LoadedSlice *Second = nullptr; 10562 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 10563 // Set the beginning of the pair. 10564 First = Second) { 10565 10566 Second = &LoadedSlices[CurrSlice]; 10567 10568 // If First is NULL, it means we start a new pair. 10569 // Get to the next slice. 10570 if (!First) 10571 continue; 10572 10573 EVT LoadedType = First->getLoadedType(); 10574 10575 // If the types of the slices are different, we cannot pair them. 10576 if (LoadedType != Second->getLoadedType()) 10577 continue; 10578 10579 // Check if the target supplies paired loads for this type. 10580 unsigned RequiredAlignment = 0; 10581 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 10582 // move to the next pair, this type is hopeless. 10583 Second = nullptr; 10584 continue; 10585 } 10586 // Check if we meet the alignment requirement. 10587 if (RequiredAlignment > First->getAlignment()) 10588 continue; 10589 10590 // Check that both loads are next to each other in memory. 10591 if (!areSlicesNextToEachOther(*First, *Second)) 10592 continue; 10593 10594 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 10595 --GlobalLSCost.Loads; 10596 // Move to the next pair. 10597 Second = nullptr; 10598 } 10599 } 10600 10601 /// \brief Check the profitability of all involved LoadedSlice. 10602 /// Currently, it is considered profitable if there is exactly two 10603 /// involved slices (1) which are (2) next to each other in memory, and 10604 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 10605 /// 10606 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 10607 /// the elements themselves. 10608 /// 10609 /// FIXME: When the cost model will be mature enough, we can relax 10610 /// constraints (1) and (2). 10611 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10612 const APInt &UsedBits, bool ForCodeSize) { 10613 unsigned NumberOfSlices = LoadedSlices.size(); 10614 if (StressLoadSlicing) 10615 return NumberOfSlices > 1; 10616 10617 // Check (1). 10618 if (NumberOfSlices != 2) 10619 return false; 10620 10621 // Check (2). 10622 if (!areUsedBitsDense(UsedBits)) 10623 return false; 10624 10625 // Check (3). 10626 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 10627 // The original code has one big load. 10628 OrigCost.Loads = 1; 10629 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 10630 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 10631 // Accumulate the cost of all the slices. 10632 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 10633 GlobalSlicingCost += SliceCost; 10634 10635 // Account as cost in the original configuration the gain obtained 10636 // with the current slices. 10637 OrigCost.addSliceGain(LS); 10638 } 10639 10640 // If the target supports paired load, adjust the cost accordingly. 10641 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 10642 return OrigCost > GlobalSlicingCost; 10643 } 10644 10645 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 10646 /// operations, split it in the various pieces being extracted. 10647 /// 10648 /// This sort of thing is introduced by SROA. 10649 /// This slicing takes care not to insert overlapping loads. 10650 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 10651 bool DAGCombiner::SliceUpLoad(SDNode *N) { 10652 if (Level < AfterLegalizeDAG) 10653 return false; 10654 10655 LoadSDNode *LD = cast<LoadSDNode>(N); 10656 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 10657 !LD->getValueType(0).isInteger()) 10658 return false; 10659 10660 // Keep track of already used bits to detect overlapping values. 10661 // In that case, we will just abort the transformation. 10662 APInt UsedBits(LD->getValueSizeInBits(0), 0); 10663 10664 SmallVector<LoadedSlice, 4> LoadedSlices; 10665 10666 // Check if this load is used as several smaller chunks of bits. 10667 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 10668 // of computation for each trunc. 10669 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 10670 UI != UIEnd; ++UI) { 10671 // Skip the uses of the chain. 10672 if (UI.getUse().getResNo() != 0) 10673 continue; 10674 10675 SDNode *User = *UI; 10676 unsigned Shift = 0; 10677 10678 // Check if this is a trunc(lshr). 10679 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 10680 isa<ConstantSDNode>(User->getOperand(1))) { 10681 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 10682 User = *User->use_begin(); 10683 } 10684 10685 // At this point, User is a Truncate, iff we encountered, trunc or 10686 // trunc(lshr). 10687 if (User->getOpcode() != ISD::TRUNCATE) 10688 return false; 10689 10690 // The width of the type must be a power of 2 and greater than 8-bits. 10691 // Otherwise the load cannot be represented in LLVM IR. 10692 // Moreover, if we shifted with a non-8-bits multiple, the slice 10693 // will be across several bytes. We do not support that. 10694 unsigned Width = User->getValueSizeInBits(0); 10695 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 10696 return 0; 10697 10698 // Build the slice for this chain of computations. 10699 LoadedSlice LS(User, LD, Shift, &DAG); 10700 APInt CurrentUsedBits = LS.getUsedBits(); 10701 10702 // Check if this slice overlaps with another. 10703 if ((CurrentUsedBits & UsedBits) != 0) 10704 return false; 10705 // Update the bits used globally. 10706 UsedBits |= CurrentUsedBits; 10707 10708 // Check if the new slice would be legal. 10709 if (!LS.isLegal()) 10710 return false; 10711 10712 // Record the slice. 10713 LoadedSlices.push_back(LS); 10714 } 10715 10716 // Abort slicing if it does not seem to be profitable. 10717 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 10718 return false; 10719 10720 ++SlicedLoads; 10721 10722 // Rewrite each chain to use an independent load. 10723 // By construction, each chain can be represented by a unique load. 10724 10725 // Prepare the argument for the new token factor for all the slices. 10726 SmallVector<SDValue, 8> ArgChains; 10727 for (SmallVectorImpl<LoadedSlice>::const_iterator 10728 LSIt = LoadedSlices.begin(), 10729 LSItEnd = LoadedSlices.end(); 10730 LSIt != LSItEnd; ++LSIt) { 10731 SDValue SliceInst = LSIt->loadSlice(); 10732 CombineTo(LSIt->Inst, SliceInst, true); 10733 if (SliceInst.getNode()->getOpcode() != ISD::LOAD) 10734 SliceInst = SliceInst.getOperand(0); 10735 assert(SliceInst->getOpcode() == ISD::LOAD && 10736 "It takes more than a zext to get to the loaded slice!!"); 10737 ArgChains.push_back(SliceInst.getValue(1)); 10738 } 10739 10740 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 10741 ArgChains); 10742 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10743 return true; 10744 } 10745 10746 /// Check to see if V is (and load (ptr), imm), where the load is having 10747 /// specific bytes cleared out. If so, return the byte size being masked out 10748 /// and the shift amount. 10749 static std::pair<unsigned, unsigned> 10750 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 10751 std::pair<unsigned, unsigned> Result(0, 0); 10752 10753 // Check for the structure we're looking for. 10754 if (V->getOpcode() != ISD::AND || 10755 !isa<ConstantSDNode>(V->getOperand(1)) || 10756 !ISD::isNormalLoad(V->getOperand(0).getNode())) 10757 return Result; 10758 10759 // Check the chain and pointer. 10760 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 10761 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 10762 10763 // The store should be chained directly to the load or be an operand of a 10764 // tokenfactor. 10765 if (LD == Chain.getNode()) 10766 ; // ok. 10767 else if (Chain->getOpcode() != ISD::TokenFactor) 10768 return Result; // Fail. 10769 else { 10770 bool isOk = false; 10771 for (const SDValue &ChainOp : Chain->op_values()) 10772 if (ChainOp.getNode() == LD) { 10773 isOk = true; 10774 break; 10775 } 10776 if (!isOk) return Result; 10777 } 10778 10779 // This only handles simple types. 10780 if (V.getValueType() != MVT::i16 && 10781 V.getValueType() != MVT::i32 && 10782 V.getValueType() != MVT::i64) 10783 return Result; 10784 10785 // Check the constant mask. Invert it so that the bits being masked out are 10786 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 10787 // follow the sign bit for uniformity. 10788 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 10789 unsigned NotMaskLZ = countLeadingZeros(NotMask); 10790 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 10791 unsigned NotMaskTZ = countTrailingZeros(NotMask); 10792 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 10793 if (NotMaskLZ == 64) return Result; // All zero mask. 10794 10795 // See if we have a continuous run of bits. If so, we have 0*1+0* 10796 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 10797 return Result; 10798 10799 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 10800 if (V.getValueType() != MVT::i64 && NotMaskLZ) 10801 NotMaskLZ -= 64-V.getValueSizeInBits(); 10802 10803 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 10804 switch (MaskedBytes) { 10805 case 1: 10806 case 2: 10807 case 4: break; 10808 default: return Result; // All one mask, or 5-byte mask. 10809 } 10810 10811 // Verify that the first bit starts at a multiple of mask so that the access 10812 // is aligned the same as the access width. 10813 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 10814 10815 Result.first = MaskedBytes; 10816 Result.second = NotMaskTZ/8; 10817 return Result; 10818 } 10819 10820 10821 /// Check to see if IVal is something that provides a value as specified by 10822 /// MaskInfo. If so, replace the specified store with a narrower store of 10823 /// truncated IVal. 10824 static SDNode * 10825 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 10826 SDValue IVal, StoreSDNode *St, 10827 DAGCombiner *DC) { 10828 unsigned NumBytes = MaskInfo.first; 10829 unsigned ByteShift = MaskInfo.second; 10830 SelectionDAG &DAG = DC->getDAG(); 10831 10832 // Check to see if IVal is all zeros in the part being masked in by the 'or' 10833 // that uses this. If not, this is not a replacement. 10834 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 10835 ByteShift*8, (ByteShift+NumBytes)*8); 10836 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 10837 10838 // Check that it is legal on the target to do this. It is legal if the new 10839 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 10840 // legalization. 10841 MVT VT = MVT::getIntegerVT(NumBytes*8); 10842 if (!DC->isTypeLegal(VT)) 10843 return nullptr; 10844 10845 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 10846 // shifted by ByteShift and truncated down to NumBytes. 10847 if (ByteShift) { 10848 SDLoc DL(IVal); 10849 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 10850 DAG.getConstant(ByteShift*8, DL, 10851 DC->getShiftAmountTy(IVal.getValueType()))); 10852 } 10853 10854 // Figure out the offset for the store and the alignment of the access. 10855 unsigned StOffset; 10856 unsigned NewAlign = St->getAlignment(); 10857 10858 if (DAG.getDataLayout().isLittleEndian()) 10859 StOffset = ByteShift; 10860 else 10861 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 10862 10863 SDValue Ptr = St->getBasePtr(); 10864 if (StOffset) { 10865 SDLoc DL(IVal); 10866 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 10867 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 10868 NewAlign = MinAlign(NewAlign, StOffset); 10869 } 10870 10871 // Truncate down to the new size. 10872 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 10873 10874 ++OpsNarrowed; 10875 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr, 10876 St->getPointerInfo().getWithOffset(StOffset), 10877 false, false, NewAlign).getNode(); 10878 } 10879 10880 10881 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 10882 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 10883 /// narrowing the load and store if it would end up being a win for performance 10884 /// or code size. 10885 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 10886 StoreSDNode *ST = cast<StoreSDNode>(N); 10887 if (ST->isVolatile()) 10888 return SDValue(); 10889 10890 SDValue Chain = ST->getChain(); 10891 SDValue Value = ST->getValue(); 10892 SDValue Ptr = ST->getBasePtr(); 10893 EVT VT = Value.getValueType(); 10894 10895 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 10896 return SDValue(); 10897 10898 unsigned Opc = Value.getOpcode(); 10899 10900 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 10901 // is a byte mask indicating a consecutive number of bytes, check to see if 10902 // Y is known to provide just those bytes. If so, we try to replace the 10903 // load + replace + store sequence with a single (narrower) store, which makes 10904 // the load dead. 10905 if (Opc == ISD::OR) { 10906 std::pair<unsigned, unsigned> MaskedLoad; 10907 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 10908 if (MaskedLoad.first) 10909 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10910 Value.getOperand(1), ST,this)) 10911 return SDValue(NewST, 0); 10912 10913 // Or is commutative, so try swapping X and Y. 10914 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 10915 if (MaskedLoad.first) 10916 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10917 Value.getOperand(0), ST,this)) 10918 return SDValue(NewST, 0); 10919 } 10920 10921 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 10922 Value.getOperand(1).getOpcode() != ISD::Constant) 10923 return SDValue(); 10924 10925 SDValue N0 = Value.getOperand(0); 10926 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 10927 Chain == SDValue(N0.getNode(), 1)) { 10928 LoadSDNode *LD = cast<LoadSDNode>(N0); 10929 if (LD->getBasePtr() != Ptr || 10930 LD->getPointerInfo().getAddrSpace() != 10931 ST->getPointerInfo().getAddrSpace()) 10932 return SDValue(); 10933 10934 // Find the type to narrow it the load / op / store to. 10935 SDValue N1 = Value.getOperand(1); 10936 unsigned BitWidth = N1.getValueSizeInBits(); 10937 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 10938 if (Opc == ISD::AND) 10939 Imm ^= APInt::getAllOnesValue(BitWidth); 10940 if (Imm == 0 || Imm.isAllOnesValue()) 10941 return SDValue(); 10942 unsigned ShAmt = Imm.countTrailingZeros(); 10943 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 10944 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 10945 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10946 // The narrowing should be profitable, the load/store operation should be 10947 // legal (or custom) and the store size should be equal to the NewVT width. 10948 while (NewBW < BitWidth && 10949 (NewVT.getStoreSizeInBits() != NewBW || 10950 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 10951 !TLI.isNarrowingProfitable(VT, NewVT))) { 10952 NewBW = NextPowerOf2(NewBW); 10953 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10954 } 10955 if (NewBW >= BitWidth) 10956 return SDValue(); 10957 10958 // If the lsb changed does not start at the type bitwidth boundary, 10959 // start at the previous one. 10960 if (ShAmt % NewBW) 10961 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 10962 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 10963 std::min(BitWidth, ShAmt + NewBW)); 10964 if ((Imm & Mask) == Imm) { 10965 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 10966 if (Opc == ISD::AND) 10967 NewImm ^= APInt::getAllOnesValue(NewBW); 10968 uint64_t PtrOff = ShAmt / 8; 10969 // For big endian targets, we need to adjust the offset to the pointer to 10970 // load the correct bytes. 10971 if (DAG.getDataLayout().isBigEndian()) 10972 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 10973 10974 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 10975 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 10976 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 10977 return SDValue(); 10978 10979 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 10980 Ptr.getValueType(), Ptr, 10981 DAG.getConstant(PtrOff, SDLoc(LD), 10982 Ptr.getValueType())); 10983 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0), 10984 LD->getChain(), NewPtr, 10985 LD->getPointerInfo().getWithOffset(PtrOff), 10986 LD->isVolatile(), LD->isNonTemporal(), 10987 LD->isInvariant(), NewAlign, 10988 LD->getAAInfo()); 10989 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 10990 DAG.getConstant(NewImm, SDLoc(Value), 10991 NewVT)); 10992 SDValue NewST = DAG.getStore(Chain, SDLoc(N), 10993 NewVal, NewPtr, 10994 ST->getPointerInfo().getWithOffset(PtrOff), 10995 false, false, NewAlign); 10996 10997 AddToWorklist(NewPtr.getNode()); 10998 AddToWorklist(NewLD.getNode()); 10999 AddToWorklist(NewVal.getNode()); 11000 WorklistRemover DeadNodes(*this); 11001 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 11002 ++OpsNarrowed; 11003 return NewST; 11004 } 11005 } 11006 11007 return SDValue(); 11008 } 11009 11010 /// For a given floating point load / store pair, if the load value isn't used 11011 /// by any other operations, then consider transforming the pair to integer 11012 /// load / store operations if the target deems the transformation profitable. 11013 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 11014 StoreSDNode *ST = cast<StoreSDNode>(N); 11015 SDValue Chain = ST->getChain(); 11016 SDValue Value = ST->getValue(); 11017 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 11018 Value.hasOneUse() && 11019 Chain == SDValue(Value.getNode(), 1)) { 11020 LoadSDNode *LD = cast<LoadSDNode>(Value); 11021 EVT VT = LD->getMemoryVT(); 11022 if (!VT.isFloatingPoint() || 11023 VT != ST->getMemoryVT() || 11024 LD->isNonTemporal() || 11025 ST->isNonTemporal() || 11026 LD->getPointerInfo().getAddrSpace() != 0 || 11027 ST->getPointerInfo().getAddrSpace() != 0) 11028 return SDValue(); 11029 11030 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 11031 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 11032 !TLI.isOperationLegal(ISD::STORE, IntVT) || 11033 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 11034 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 11035 return SDValue(); 11036 11037 unsigned LDAlign = LD->getAlignment(); 11038 unsigned STAlign = ST->getAlignment(); 11039 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 11040 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 11041 if (LDAlign < ABIAlign || STAlign < ABIAlign) 11042 return SDValue(); 11043 11044 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), 11045 LD->getChain(), LD->getBasePtr(), 11046 LD->getPointerInfo(), 11047 false, false, false, LDAlign); 11048 11049 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N), 11050 NewLD, ST->getBasePtr(), 11051 ST->getPointerInfo(), 11052 false, false, STAlign); 11053 11054 AddToWorklist(NewLD.getNode()); 11055 AddToWorklist(NewST.getNode()); 11056 WorklistRemover DeadNodes(*this); 11057 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 11058 ++LdStFP2Int; 11059 return NewST; 11060 } 11061 11062 return SDValue(); 11063 } 11064 11065 namespace { 11066 /// Helper struct to parse and store a memory address as base + index + offset. 11067 /// We ignore sign extensions when it is safe to do so. 11068 /// The following two expressions are not equivalent. To differentiate we need 11069 /// to store whether there was a sign extension involved in the index 11070 /// computation. 11071 /// (load (i64 add (i64 copyfromreg %c) 11072 /// (i64 signextend (add (i8 load %index) 11073 /// (i8 1)))) 11074 /// vs 11075 /// 11076 /// (load (i64 add (i64 copyfromreg %c) 11077 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 11078 /// (i32 1))))) 11079 struct BaseIndexOffset { 11080 SDValue Base; 11081 SDValue Index; 11082 int64_t Offset; 11083 bool IsIndexSignExt; 11084 11085 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 11086 11087 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 11088 bool IsIndexSignExt) : 11089 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 11090 11091 bool equalBaseIndex(const BaseIndexOffset &Other) { 11092 return Other.Base == Base && Other.Index == Index && 11093 Other.IsIndexSignExt == IsIndexSignExt; 11094 } 11095 11096 /// Parses tree in Ptr for base, index, offset addresses. 11097 static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG) { 11098 bool IsIndexSignExt = false; 11099 11100 // Split up a folded GlobalAddress+Offset into its component parts. 11101 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr)) 11102 if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) { 11103 return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(), 11104 SDLoc(GA), 11105 GA->getValueType(0), 11106 /*Offset=*/0, 11107 /*isTargetGA=*/false, 11108 GA->getTargetFlags()), 11109 SDValue(), 11110 GA->getOffset(), 11111 IsIndexSignExt); 11112 } 11113 11114 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 11115 // instruction, then it could be just the BASE or everything else we don't 11116 // know how to handle. Just use Ptr as BASE and give up. 11117 if (Ptr->getOpcode() != ISD::ADD) 11118 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11119 11120 // We know that we have at least an ADD instruction. Try to pattern match 11121 // the simple case of BASE + OFFSET. 11122 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 11123 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 11124 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 11125 IsIndexSignExt); 11126 } 11127 11128 // Inside a loop the current BASE pointer is calculated using an ADD and a 11129 // MUL instruction. In this case Ptr is the actual BASE pointer. 11130 // (i64 add (i64 %array_ptr) 11131 // (i64 mul (i64 %induction_var) 11132 // (i64 %element_size))) 11133 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 11134 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11135 11136 // Look at Base + Index + Offset cases. 11137 SDValue Base = Ptr->getOperand(0); 11138 SDValue IndexOffset = Ptr->getOperand(1); 11139 11140 // Skip signextends. 11141 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 11142 IndexOffset = IndexOffset->getOperand(0); 11143 IsIndexSignExt = true; 11144 } 11145 11146 // Either the case of Base + Index (no offset) or something else. 11147 if (IndexOffset->getOpcode() != ISD::ADD) 11148 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 11149 11150 // Now we have the case of Base + Index + offset. 11151 SDValue Index = IndexOffset->getOperand(0); 11152 SDValue Offset = IndexOffset->getOperand(1); 11153 11154 if (!isa<ConstantSDNode>(Offset)) 11155 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11156 11157 // Ignore signextends. 11158 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 11159 Index = Index->getOperand(0); 11160 IsIndexSignExt = true; 11161 } else IsIndexSignExt = false; 11162 11163 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 11164 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 11165 } 11166 }; 11167 } // namespace 11168 11169 // This is a helper function for visitMUL to check the profitability 11170 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 11171 // MulNode is the original multiply, AddNode is (add x, c1), 11172 // and ConstNode is c2. 11173 // 11174 // If the (add x, c1) has multiple uses, we could increase 11175 // the number of adds if we make this transformation. 11176 // It would only be worth doing this if we can remove a 11177 // multiply in the process. Check for that here. 11178 // To illustrate: 11179 // (A + c1) * c3 11180 // (A + c2) * c3 11181 // We're checking for cases where we have common "c3 * A" expressions. 11182 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 11183 SDValue &AddNode, 11184 SDValue &ConstNode) { 11185 APInt Val; 11186 11187 // If the add only has one use, this would be OK to do. 11188 if (AddNode.getNode()->hasOneUse()) 11189 return true; 11190 11191 // Walk all the users of the constant with which we're multiplying. 11192 for (SDNode *Use : ConstNode->uses()) { 11193 11194 if (Use == MulNode) // This use is the one we're on right now. Skip it. 11195 continue; 11196 11197 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 11198 SDNode *OtherOp; 11199 SDNode *MulVar = AddNode.getOperand(0).getNode(); 11200 11201 // OtherOp is what we're multiplying against the constant. 11202 if (Use->getOperand(0) == ConstNode) 11203 OtherOp = Use->getOperand(1).getNode(); 11204 else 11205 OtherOp = Use->getOperand(0).getNode(); 11206 11207 // Check to see if multiply is with the same operand of our "add". 11208 // 11209 // ConstNode = CONST 11210 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 11211 // ... 11212 // AddNode = (A + c1) <-- MulVar is A. 11213 // = AddNode * ConstNode <-- current visiting instruction. 11214 // 11215 // If we make this transformation, we will have a common 11216 // multiply (ConstNode * A) that we can save. 11217 if (OtherOp == MulVar) 11218 return true; 11219 11220 // Now check to see if a future expansion will give us a common 11221 // multiply. 11222 // 11223 // ConstNode = CONST 11224 // AddNode = (A + c1) 11225 // ... = AddNode * ConstNode <-- current visiting instruction. 11226 // ... 11227 // OtherOp = (A + c2) 11228 // Use = OtherOp * ConstNode <-- visiting Use. 11229 // 11230 // If we make this transformation, we will have a common 11231 // multiply (CONST * A) after we also do the same transformation 11232 // to the "t2" instruction. 11233 if (OtherOp->getOpcode() == ISD::ADD && 11234 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 11235 OtherOp->getOperand(0).getNode() == MulVar) 11236 return true; 11237 } 11238 } 11239 11240 // Didn't find a case where this would be profitable. 11241 return false; 11242 } 11243 11244 SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG, 11245 SDLoc SL, 11246 ArrayRef<MemOpLink> Stores, 11247 SmallVectorImpl<SDValue> &Chains, 11248 EVT Ty) const { 11249 SmallVector<SDValue, 8> BuildVector; 11250 11251 for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { 11252 StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); 11253 Chains.push_back(St->getChain()); 11254 BuildVector.push_back(St->getValue()); 11255 } 11256 11257 return DAG.getBuildVector(Ty, SL, BuildVector); 11258 } 11259 11260 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 11261 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, 11262 unsigned NumStores, bool IsConstantSrc, bool UseVector) { 11263 // Make sure we have something to merge. 11264 if (NumStores < 2) 11265 return false; 11266 11267 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11268 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11269 unsigned LatestNodeUsed = 0; 11270 11271 for (unsigned i=0; i < NumStores; ++i) { 11272 // Find a chain for the new wide-store operand. Notice that some 11273 // of the store nodes that we found may not be selected for inclusion 11274 // in the wide store. The chain we use needs to be the chain of the 11275 // latest store node which is *used* and replaced by the wide store. 11276 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11277 LatestNodeUsed = i; 11278 } 11279 11280 SmallVector<SDValue, 8> Chains; 11281 11282 // The latest Node in the DAG. 11283 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11284 SDLoc DL(StoreNodes[0].MemNode); 11285 11286 SDValue StoredVal; 11287 if (UseVector) { 11288 bool IsVec = MemVT.isVector(); 11289 unsigned Elts = NumStores; 11290 if (IsVec) { 11291 // When merging vector stores, get the total number of elements. 11292 Elts *= MemVT.getVectorNumElements(); 11293 } 11294 // Get the type for the merged vector store. 11295 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11296 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 11297 11298 if (IsConstantSrc) { 11299 StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); 11300 } else { 11301 SmallVector<SDValue, 8> Ops; 11302 for (unsigned i = 0; i < NumStores; ++i) { 11303 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11304 SDValue Val = St->getValue(); 11305 // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. 11306 if (Val.getValueType() != MemVT) 11307 return false; 11308 Ops.push_back(Val); 11309 Chains.push_back(St->getChain()); 11310 } 11311 11312 // Build the extracted vector elements back into a vector. 11313 StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 11314 DL, Ty, Ops); } 11315 } else { 11316 // We should always use a vector store when merging extracted vector 11317 // elements, so this path implies a store of constants. 11318 assert(IsConstantSrc && "Merged vector elements should use vector store"); 11319 11320 unsigned SizeInBits = NumStores * ElementSizeBytes * 8; 11321 APInt StoreInt(SizeInBits, 0); 11322 11323 // Construct a single integer constant which is made of the smaller 11324 // constant inputs. 11325 bool IsLE = DAG.getDataLayout().isLittleEndian(); 11326 for (unsigned i = 0; i < NumStores; ++i) { 11327 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 11328 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 11329 Chains.push_back(St->getChain()); 11330 11331 SDValue Val = St->getValue(); 11332 StoreInt <<= ElementSizeBytes * 8; 11333 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 11334 StoreInt |= C->getAPIntValue().zext(SizeInBits); 11335 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 11336 StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); 11337 } else { 11338 llvm_unreachable("Invalid constant element type"); 11339 } 11340 } 11341 11342 // Create the new Load and Store operations. 11343 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 11344 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 11345 } 11346 11347 assert(!Chains.empty()); 11348 11349 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11350 SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, 11351 FirstInChain->getBasePtr(), 11352 FirstInChain->getPointerInfo(), 11353 false, false, 11354 FirstInChain->getAlignment()); 11355 11356 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11357 : DAG.getSubtarget().useAA(); 11358 if (UseAA) { 11359 // Replace all merged stores with the new store. 11360 for (unsigned i = 0; i < NumStores; ++i) 11361 CombineTo(StoreNodes[i].MemNode, NewStore); 11362 } else { 11363 // Replace the last store with the new store. 11364 CombineTo(LatestOp, NewStore); 11365 // Erase all other stores. 11366 for (unsigned i = 0; i < NumStores; ++i) { 11367 if (StoreNodes[i].MemNode == LatestOp) 11368 continue; 11369 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11370 // ReplaceAllUsesWith will replace all uses that existed when it was 11371 // called, but graph optimizations may cause new ones to appear. For 11372 // example, the case in pr14333 looks like 11373 // 11374 // St's chain -> St -> another store -> X 11375 // 11376 // And the only difference from St to the other store is the chain. 11377 // When we change it's chain to be St's chain they become identical, 11378 // get CSEed and the net result is that X is now a use of St. 11379 // Since we know that St is redundant, just iterate. 11380 while (!St->use_empty()) 11381 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 11382 deleteAndRecombine(St); 11383 } 11384 } 11385 11386 return true; 11387 } 11388 11389 void DAGCombiner::getStoreMergeAndAliasCandidates( 11390 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 11391 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { 11392 // This holds the base pointer, index, and the offset in bytes from the base 11393 // pointer. 11394 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 11395 11396 // We must have a base and an offset. 11397 if (!BasePtr.Base.getNode()) 11398 return; 11399 11400 // Do not handle stores to undef base pointers. 11401 if (BasePtr.Base.isUndef()) 11402 return; 11403 11404 // Walk up the chain and look for nodes with offsets from the same 11405 // base pointer. Stop when reaching an instruction with a different kind 11406 // or instruction which has a different base pointer. 11407 EVT MemVT = St->getMemoryVT(); 11408 unsigned Seq = 0; 11409 StoreSDNode *Index = St; 11410 11411 11412 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11413 : DAG.getSubtarget().useAA(); 11414 11415 if (UseAA) { 11416 // Look at other users of the same chain. Stores on the same chain do not 11417 // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized 11418 // to be on the same chain, so don't bother looking at adjacent chains. 11419 11420 SDValue Chain = St->getChain(); 11421 for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { 11422 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 11423 if (I.getOperandNo() != 0) 11424 continue; 11425 11426 if (OtherST->isVolatile() || OtherST->isIndexed()) 11427 continue; 11428 11429 if (OtherST->getMemoryVT() != MemVT) 11430 continue; 11431 11432 BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr(), DAG); 11433 11434 if (Ptr.equalBaseIndex(BasePtr)) 11435 StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); 11436 } 11437 } 11438 11439 return; 11440 } 11441 11442 while (Index) { 11443 // If the chain has more than one use, then we can't reorder the mem ops. 11444 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 11445 break; 11446 11447 // Find the base pointer and offset for this memory node. 11448 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 11449 11450 // Check that the base pointer is the same as the original one. 11451 if (!Ptr.equalBaseIndex(BasePtr)) 11452 break; 11453 11454 // The memory operands must not be volatile. 11455 if (Index->isVolatile() || Index->isIndexed()) 11456 break; 11457 11458 // No truncation. 11459 if (Index->isTruncatingStore()) 11460 break; 11461 11462 // The stored memory type must be the same. 11463 if (Index->getMemoryVT() != MemVT) 11464 break; 11465 11466 // We do not allow under-aligned stores in order to prevent 11467 // overriding stores. NOTE: this is a bad hack. Alignment SHOULD 11468 // be irrelevant here; what MATTERS is that we not move memory 11469 // operations that potentially overlap past each-other. 11470 if (Index->getAlignment() < MemVT.getStoreSize()) 11471 break; 11472 11473 // We found a potential memory operand to merge. 11474 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 11475 11476 // Find the next memory operand in the chain. If the next operand in the 11477 // chain is a store then move up and continue the scan with the next 11478 // memory operand. If the next operand is a load save it and use alias 11479 // information to check if it interferes with anything. 11480 SDNode *NextInChain = Index->getChain().getNode(); 11481 while (1) { 11482 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 11483 // We found a store node. Use it for the next iteration. 11484 Index = STn; 11485 break; 11486 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 11487 if (Ldn->isVolatile()) { 11488 Index = nullptr; 11489 break; 11490 } 11491 11492 // Save the load node for later. Continue the scan. 11493 AliasLoadNodes.push_back(Ldn); 11494 NextInChain = Ldn->getChain().getNode(); 11495 continue; 11496 } else { 11497 Index = nullptr; 11498 break; 11499 } 11500 } 11501 } 11502 } 11503 11504 // We need to check that merging these stores does not cause a loop 11505 // in the DAG. Any store candidate may depend on another candidate 11506 // indirectly through its operand (we already consider dependencies 11507 // through the chain). Check in parallel by searching up from 11508 // non-chain operands of candidates. 11509 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 11510 SmallVectorImpl<MemOpLink> &StoreNodes) { 11511 SmallPtrSet<const SDNode *, 16> Visited; 11512 SmallVector<const SDNode *, 8> Worklist; 11513 // search ops of store candidates 11514 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11515 SDNode *n = StoreNodes[i].MemNode; 11516 // Potential loops may happen only through non-chain operands 11517 for (unsigned j = 1; j < n->getNumOperands(); ++j) 11518 Worklist.push_back(n->getOperand(j).getNode()); 11519 } 11520 // search through DAG. We can stop early if we find a storenode 11521 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11522 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist)) 11523 return false; 11524 } 11525 return true; 11526 } 11527 11528 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 11529 if (OptLevel == CodeGenOpt::None) 11530 return false; 11531 11532 EVT MemVT = St->getMemoryVT(); 11533 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11534 bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( 11535 Attribute::NoImplicitFloat); 11536 11537 // This function cannot currently deal with non-byte-sized memory sizes. 11538 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 11539 return false; 11540 11541 if (!MemVT.isSimple()) 11542 return false; 11543 11544 // Perform an early exit check. Do not bother looking at stored values that 11545 // are not constants, loads, or extracted vector elements. 11546 SDValue StoredVal = St->getValue(); 11547 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 11548 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 11549 isa<ConstantFPSDNode>(StoredVal); 11550 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 11551 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 11552 11553 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 11554 return false; 11555 11556 // Don't merge vectors into wider vectors if the source data comes from loads. 11557 // TODO: This restriction can be lifted by using logic similar to the 11558 // ExtractVecSrc case. 11559 if (MemVT.isVector() && IsLoadSrc) 11560 return false; 11561 11562 // Only look at ends of store sequences. 11563 SDValue Chain = SDValue(St, 0); 11564 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 11565 return false; 11566 11567 // Save the LoadSDNodes that we find in the chain. 11568 // We need to make sure that these nodes do not interfere with 11569 // any of the store nodes. 11570 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 11571 11572 // Save the StoreSDNodes that we find in the chain. 11573 SmallVector<MemOpLink, 8> StoreNodes; 11574 11575 getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); 11576 11577 // Check if there is anything to merge. 11578 if (StoreNodes.size() < 2) 11579 return false; 11580 11581 // only do dep endence check in AA case 11582 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11583 : DAG.getSubtarget().useAA(); 11584 if (UseAA && !checkMergeStoreCandidatesForDependencies(StoreNodes)) 11585 return false; 11586 11587 // Sort the memory operands according to their distance from the 11588 // base pointer. As a secondary criteria: make sure stores coming 11589 // later in the code come first in the list. This is important for 11590 // the non-UseAA case, because we're merging stores into the FINAL 11591 // store along a chain which potentially contains aliasing stores. 11592 // Thus, if there are multiple stores to the same address, the last 11593 // one can be considered for merging but not the others. 11594 std::sort(StoreNodes.begin(), StoreNodes.end(), 11595 [](MemOpLink LHS, MemOpLink RHS) { 11596 return LHS.OffsetFromBase < RHS.OffsetFromBase || 11597 (LHS.OffsetFromBase == RHS.OffsetFromBase && 11598 LHS.SequenceNum < RHS.SequenceNum); 11599 }); 11600 11601 // Scan the memory operations on the chain and find the first non-consecutive 11602 // store memory address. 11603 unsigned LastConsecutiveStore = 0; 11604 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 11605 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 11606 11607 // Check that the addresses are consecutive starting from the second 11608 // element in the list of stores. 11609 if (i > 0) { 11610 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 11611 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11612 break; 11613 } 11614 11615 // Check if this store interferes with any of the loads that we found. 11616 // If we find a load that alias with this store. Stop the sequence. 11617 if (std::any_of(AliasLoadNodes.begin(), AliasLoadNodes.end(), 11618 [&](LSBaseSDNode* Ldn) { 11619 return isAlias(Ldn, StoreNodes[i].MemNode); 11620 })) 11621 break; 11622 11623 // Mark this node as useful. 11624 LastConsecutiveStore = i; 11625 } 11626 11627 // The node with the lowest store address. 11628 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11629 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 11630 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 11631 LLVMContext &Context = *DAG.getContext(); 11632 const DataLayout &DL = DAG.getDataLayout(); 11633 11634 // Store the constants into memory as one consecutive store. 11635 if (IsConstantSrc) { 11636 unsigned LastLegalType = 0; 11637 unsigned LastLegalVectorType = 0; 11638 bool NonZero = false; 11639 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11640 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11641 SDValue StoredVal = St->getValue(); 11642 11643 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 11644 NonZero |= !C->isNullValue(); 11645 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 11646 NonZero |= !C->getConstantFPValue()->isNullValue(); 11647 } else { 11648 // Non-constant. 11649 break; 11650 } 11651 11652 // Find a legal type for the constant store. 11653 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11654 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11655 bool IsFast; 11656 if (TLI.isTypeLegal(StoreTy) && 11657 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11658 FirstStoreAlign, &IsFast) && IsFast) { 11659 LastLegalType = i+1; 11660 // Or check whether a truncstore is legal. 11661 } else if (TLI.getTypeAction(Context, StoreTy) == 11662 TargetLowering::TypePromoteInteger) { 11663 EVT LegalizedStoredValueTy = 11664 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 11665 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11666 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11667 FirstStoreAS, FirstStoreAlign, &IsFast) && 11668 IsFast) { 11669 LastLegalType = i + 1; 11670 } 11671 } 11672 11673 // We only use vectors if the constant is known to be zero or the target 11674 // allows it and the function is not marked with the noimplicitfloat 11675 // attribute. 11676 if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, 11677 FirstStoreAS)) && 11678 !NoVectors) { 11679 // Find a legal type for the vector store. 11680 EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); 11681 if (TLI.isTypeLegal(Ty) && 11682 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11683 FirstStoreAlign, &IsFast) && IsFast) 11684 LastLegalVectorType = i + 1; 11685 } 11686 } 11687 11688 // Check if we found a legal integer type to store. 11689 if (LastLegalType == 0 && LastLegalVectorType == 0) 11690 return false; 11691 11692 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 11693 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 11694 11695 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 11696 true, UseVector); 11697 } 11698 11699 // When extracting multiple vector elements, try to store them 11700 // in one vector store rather than a sequence of scalar stores. 11701 if (IsExtractVecSrc) { 11702 unsigned NumStoresToMerge = 0; 11703 bool IsVec = MemVT.isVector(); 11704 for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { 11705 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11706 unsigned StoreValOpcode = St->getValue().getOpcode(); 11707 // This restriction could be loosened. 11708 // Bail out if any stored values are not elements extracted from a vector. 11709 // It should be possible to handle mixed sources, but load sources need 11710 // more careful handling (see the block of code below that handles 11711 // consecutive loads). 11712 if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && 11713 StoreValOpcode != ISD::EXTRACT_SUBVECTOR) 11714 return false; 11715 11716 // Find a legal type for the vector store. 11717 unsigned Elts = i + 1; 11718 if (IsVec) { 11719 // When merging vector stores, get the total number of elements. 11720 Elts *= MemVT.getVectorNumElements(); 11721 } 11722 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11723 bool IsFast; 11724 if (TLI.isTypeLegal(Ty) && 11725 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11726 FirstStoreAlign, &IsFast) && IsFast) 11727 NumStoresToMerge = i + 1; 11728 } 11729 11730 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, 11731 false, true); 11732 } 11733 11734 // Below we handle the case of multiple consecutive stores that 11735 // come from multiple consecutive loads. We merge them into a single 11736 // wide load and a single wide store. 11737 11738 // Look for load nodes which are used by the stored values. 11739 SmallVector<MemOpLink, 8> LoadNodes; 11740 11741 // Find acceptable loads. Loads need to have the same chain (token factor), 11742 // must not be zext, volatile, indexed, and they must be consecutive. 11743 BaseIndexOffset LdBasePtr; 11744 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11745 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11746 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 11747 if (!Ld) break; 11748 11749 // Loads must only have one use. 11750 if (!Ld->hasNUsesOfValue(1, 0)) 11751 break; 11752 11753 // The memory operands must not be volatile. 11754 if (Ld->isVolatile() || Ld->isIndexed()) 11755 break; 11756 11757 // We do not accept ext loads. 11758 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 11759 break; 11760 11761 // The stored memory type must be the same. 11762 if (Ld->getMemoryVT() != MemVT) 11763 break; 11764 11765 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG); 11766 // If this is not the first ptr that we check. 11767 if (LdBasePtr.Base.getNode()) { 11768 // The base ptr must be the same. 11769 if (!LdPtr.equalBaseIndex(LdBasePtr)) 11770 break; 11771 } else { 11772 // Check that all other base pointers are the same as this one. 11773 LdBasePtr = LdPtr; 11774 } 11775 11776 // We found a potential memory operand to merge. 11777 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 11778 } 11779 11780 if (LoadNodes.size() < 2) 11781 return false; 11782 11783 // If we have load/store pair instructions and we only have two values, 11784 // don't bother. 11785 unsigned RequiredAlignment; 11786 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 11787 St->getAlignment() >= RequiredAlignment) 11788 return false; 11789 11790 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 11791 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 11792 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 11793 11794 // Scan the memory operations on the chain and find the first non-consecutive 11795 // load memory address. These variables hold the index in the store node 11796 // array. 11797 unsigned LastConsecutiveLoad = 0; 11798 // This variable refers to the size and not index in the array. 11799 unsigned LastLegalVectorType = 0; 11800 unsigned LastLegalIntegerType = 0; 11801 StartAddress = LoadNodes[0].OffsetFromBase; 11802 SDValue FirstChain = FirstLoad->getChain(); 11803 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 11804 // All loads must share the same chain. 11805 if (LoadNodes[i].MemNode->getChain() != FirstChain) 11806 break; 11807 11808 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 11809 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11810 break; 11811 LastConsecutiveLoad = i; 11812 // Find a legal type for the vector store. 11813 EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); 11814 bool IsFastSt, IsFastLd; 11815 if (TLI.isTypeLegal(StoreTy) && 11816 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11817 FirstStoreAlign, &IsFastSt) && IsFastSt && 11818 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11819 FirstLoadAlign, &IsFastLd) && IsFastLd) { 11820 LastLegalVectorType = i + 1; 11821 } 11822 11823 // Find a legal type for the integer store. 11824 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11825 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11826 if (TLI.isTypeLegal(StoreTy) && 11827 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11828 FirstStoreAlign, &IsFastSt) && IsFastSt && 11829 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11830 FirstLoadAlign, &IsFastLd) && IsFastLd) 11831 LastLegalIntegerType = i + 1; 11832 // Or check whether a truncstore and extload is legal. 11833 else if (TLI.getTypeAction(Context, StoreTy) == 11834 TargetLowering::TypePromoteInteger) { 11835 EVT LegalizedStoredValueTy = 11836 TLI.getTypeToTransformTo(Context, StoreTy); 11837 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11838 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11839 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11840 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && 11841 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11842 FirstStoreAS, FirstStoreAlign, &IsFastSt) && 11843 IsFastSt && 11844 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11845 FirstLoadAS, FirstLoadAlign, &IsFastLd) && 11846 IsFastLd) 11847 LastLegalIntegerType = i+1; 11848 } 11849 } 11850 11851 // Only use vector types if the vector type is larger than the integer type. 11852 // If they are the same, use integers. 11853 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 11854 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 11855 11856 // We add +1 here because the LastXXX variables refer to location while 11857 // the NumElem refers to array/index size. 11858 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 11859 NumElem = std::min(LastLegalType, NumElem); 11860 11861 if (NumElem < 2) 11862 return false; 11863 11864 // Collect the chains from all merged stores. 11865 SmallVector<SDValue, 8> MergeStoreChains; 11866 MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); 11867 11868 // The latest Node in the DAG. 11869 unsigned LatestNodeUsed = 0; 11870 for (unsigned i=1; i<NumElem; ++i) { 11871 // Find a chain for the new wide-store operand. Notice that some 11872 // of the store nodes that we found may not be selected for inclusion 11873 // in the wide store. The chain we use needs to be the chain of the 11874 // latest store node which is *used* and replaced by the wide store. 11875 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11876 LatestNodeUsed = i; 11877 11878 MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); 11879 } 11880 11881 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11882 11883 // Find if it is better to use vectors or integers to load and store 11884 // to memory. 11885 EVT JointMemOpVT; 11886 if (UseVectorTy) { 11887 JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); 11888 } else { 11889 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 11890 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 11891 } 11892 11893 SDLoc LoadDL(LoadNodes[0].MemNode); 11894 SDLoc StoreDL(StoreNodes[0].MemNode); 11895 11896 // The merged loads are required to have the same incoming chain, so 11897 // using the first's chain is acceptable. 11898 SDValue NewLoad = DAG.getLoad( 11899 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 11900 FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign); 11901 11902 SDValue NewStoreChain = 11903 DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); 11904 11905 SDValue NewStore = DAG.getStore( 11906 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 11907 FirstInChain->getPointerInfo(), false, false, FirstStoreAlign); 11908 11909 // Transfer chain users from old loads to the new load. 11910 for (unsigned i = 0; i < NumElem; ++i) { 11911 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 11912 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 11913 SDValue(NewLoad.getNode(), 1)); 11914 } 11915 11916 if (UseAA) { 11917 // Replace the all stores with the new store. 11918 for (unsigned i = 0; i < NumElem; ++i) 11919 CombineTo(StoreNodes[i].MemNode, NewStore); 11920 } else { 11921 // Replace the last store with the new store. 11922 CombineTo(LatestOp, NewStore); 11923 // Erase all other stores. 11924 for (unsigned i = 0; i < NumElem; ++i) { 11925 // Remove all Store nodes. 11926 if (StoreNodes[i].MemNode == LatestOp) 11927 continue; 11928 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11929 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 11930 deleteAndRecombine(St); 11931 } 11932 } 11933 11934 return true; 11935 } 11936 11937 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 11938 SDLoc SL(ST); 11939 SDValue ReplStore; 11940 11941 // Replace the chain to avoid dependency. 11942 if (ST->isTruncatingStore()) { 11943 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 11944 ST->getBasePtr(), ST->getMemoryVT(), 11945 ST->getMemOperand()); 11946 } else { 11947 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 11948 ST->getMemOperand()); 11949 } 11950 11951 // Create token to keep both nodes around. 11952 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 11953 MVT::Other, ST->getChain(), ReplStore); 11954 11955 // Make sure the new and old chains are cleaned up. 11956 AddToWorklist(Token.getNode()); 11957 11958 // Don't add users to work list. 11959 return CombineTo(ST, Token, false); 11960 } 11961 11962 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 11963 SDValue Value = ST->getValue(); 11964 if (Value.getOpcode() == ISD::TargetConstantFP) 11965 return SDValue(); 11966 11967 SDLoc DL(ST); 11968 11969 SDValue Chain = ST->getChain(); 11970 SDValue Ptr = ST->getBasePtr(); 11971 11972 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 11973 11974 // NOTE: If the original store is volatile, this transform must not increase 11975 // the number of stores. For example, on x86-32 an f64 can be stored in one 11976 // processor operation but an i64 (which is not legal) requires two. So the 11977 // transform should not be done in this case. 11978 11979 SDValue Tmp; 11980 switch (CFP->getSimpleValueType(0).SimpleTy) { 11981 default: 11982 llvm_unreachable("Unknown FP type"); 11983 case MVT::f16: // We don't do this for these yet. 11984 case MVT::f80: 11985 case MVT::f128: 11986 case MVT::ppcf128: 11987 return SDValue(); 11988 case MVT::f32: 11989 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 11990 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11991 ; 11992 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 11993 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 11994 MVT::i32); 11995 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 11996 } 11997 11998 return SDValue(); 11999 case MVT::f64: 12000 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 12001 !ST->isVolatile()) || 12002 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 12003 ; 12004 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 12005 getZExtValue(), SDLoc(CFP), MVT::i64); 12006 return DAG.getStore(Chain, DL, Tmp, 12007 Ptr, ST->getMemOperand()); 12008 } 12009 12010 if (!ST->isVolatile() && 12011 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 12012 // Many FP stores are not made apparent until after legalize, e.g. for 12013 // argument passing. Since this is so common, custom legalize the 12014 // 64-bit integer store into two 32-bit stores. 12015 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 12016 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 12017 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 12018 if (DAG.getDataLayout().isBigEndian()) 12019 std::swap(Lo, Hi); 12020 12021 unsigned Alignment = ST->getAlignment(); 12022 bool isVolatile = ST->isVolatile(); 12023 bool isNonTemporal = ST->isNonTemporal(); 12024 AAMDNodes AAInfo = ST->getAAInfo(); 12025 12026 SDValue St0 = DAG.getStore(Chain, DL, Lo, 12027 Ptr, ST->getPointerInfo(), 12028 isVolatile, isNonTemporal, 12029 ST->getAlignment(), AAInfo); 12030 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 12031 DAG.getConstant(4, DL, Ptr.getValueType())); 12032 Alignment = MinAlign(Alignment, 4U); 12033 SDValue St1 = DAG.getStore(Chain, DL, Hi, 12034 Ptr, ST->getPointerInfo().getWithOffset(4), 12035 isVolatile, isNonTemporal, 12036 Alignment, AAInfo); 12037 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 12038 St0, St1); 12039 } 12040 12041 return SDValue(); 12042 } 12043 } 12044 12045 SDValue DAGCombiner::visitSTORE(SDNode *N) { 12046 StoreSDNode *ST = cast<StoreSDNode>(N); 12047 SDValue Chain = ST->getChain(); 12048 SDValue Value = ST->getValue(); 12049 SDValue Ptr = ST->getBasePtr(); 12050 12051 // If this is a store of a bit convert, store the input value if the 12052 // resultant store does not need a higher alignment than the original. 12053 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 12054 ST->isUnindexed()) { 12055 EVT SVT = Value.getOperand(0).getValueType(); 12056 if (((!LegalOperations && !ST->isVolatile()) || 12057 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)) && 12058 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { 12059 unsigned OrigAlign = ST->getAlignment(); 12060 bool Fast = false; 12061 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, 12062 ST->getAddressSpace(), OrigAlign, &Fast) && 12063 Fast) { 12064 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), 12065 Ptr, ST->getPointerInfo(), ST->isVolatile(), 12066 ST->isNonTemporal(), OrigAlign, 12067 ST->getAAInfo()); 12068 } 12069 } 12070 } 12071 12072 // Turn 'store undef, Ptr' -> nothing. 12073 if (Value.isUndef() && ST->isUnindexed()) 12074 return Chain; 12075 12076 // Try to infer better alignment information than the store already has. 12077 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 12078 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 12079 if (Align > ST->getAlignment()) { 12080 SDValue NewStore = 12081 DAG.getTruncStore(Chain, SDLoc(N), Value, 12082 Ptr, ST->getPointerInfo(), ST->getMemoryVT(), 12083 ST->isVolatile(), ST->isNonTemporal(), Align, 12084 ST->getAAInfo()); 12085 if (NewStore.getNode() != N) 12086 return CombineTo(ST, NewStore, true); 12087 } 12088 } 12089 } 12090 12091 // Try transforming a pair floating point load / store ops to integer 12092 // load / store ops. 12093 if (SDValue NewST = TransformFPLoadStorePair(N)) 12094 return NewST; 12095 12096 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 12097 : DAG.getSubtarget().useAA(); 12098 #ifndef NDEBUG 12099 if (CombinerAAOnlyFunc.getNumOccurrences() && 12100 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 12101 UseAA = false; 12102 #endif 12103 if (UseAA && ST->isUnindexed()) { 12104 // FIXME: We should do this even without AA enabled. AA will just allow 12105 // FindBetterChain to work in more situations. The problem with this is that 12106 // any combine that expects memory operations to be on consecutive chains 12107 // first needs to be updated to look for users of the same chain. 12108 12109 // Walk up chain skipping non-aliasing memory nodes, on this store and any 12110 // adjacent stores. 12111 if (findBetterNeighborChains(ST)) { 12112 // replaceStoreChain uses CombineTo, which handled all of the worklist 12113 // manipulation. Return the original node to not do anything else. 12114 return SDValue(ST, 0); 12115 } 12116 } 12117 12118 // Try transforming N to an indexed store. 12119 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 12120 return SDValue(N, 0); 12121 12122 // FIXME: is there such a thing as a truncating indexed store? 12123 if (ST->isTruncatingStore() && ST->isUnindexed() && 12124 Value.getValueType().isInteger()) { 12125 // See if we can simplify the input to this truncstore with knowledge that 12126 // only the low bits are being used. For example: 12127 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 12128 SDValue Shorter = 12129 GetDemandedBits(Value, 12130 APInt::getLowBitsSet( 12131 Value.getValueType().getScalarType().getSizeInBits(), 12132 ST->getMemoryVT().getScalarType().getSizeInBits())); 12133 AddToWorklist(Value.getNode()); 12134 if (Shorter.getNode()) 12135 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 12136 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12137 12138 // Otherwise, see if we can simplify the operation with 12139 // SimplifyDemandedBits, which only works if the value has a single use. 12140 if (SimplifyDemandedBits(Value, 12141 APInt::getLowBitsSet( 12142 Value.getValueType().getScalarType().getSizeInBits(), 12143 ST->getMemoryVT().getScalarType().getSizeInBits()))) 12144 return SDValue(N, 0); 12145 } 12146 12147 // If this is a load followed by a store to the same location, then the store 12148 // is dead/noop. 12149 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 12150 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 12151 ST->isUnindexed() && !ST->isVolatile() && 12152 // There can't be any side effects between the load and store, such as 12153 // a call or store. 12154 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 12155 // The store is dead, remove it. 12156 return Chain; 12157 } 12158 } 12159 12160 // If this is a store followed by a store with the same value to the same 12161 // location, then the store is dead/noop. 12162 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 12163 if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && 12164 ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && 12165 ST1->isUnindexed() && !ST1->isVolatile()) { 12166 // The store is dead, remove it. 12167 return Chain; 12168 } 12169 } 12170 12171 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 12172 // truncating store. We can do this even if this is already a truncstore. 12173 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 12174 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 12175 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 12176 ST->getMemoryVT())) { 12177 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 12178 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12179 } 12180 12181 // Only perform this optimization before the types are legal, because we 12182 // don't want to perform this optimization on every DAGCombine invocation. 12183 if (!LegalTypes) { 12184 bool EverChanged = false; 12185 12186 do { 12187 // There can be multiple store sequences on the same chain. 12188 // Keep trying to merge store sequences until we are unable to do so 12189 // or until we merge the last store on the chain. 12190 bool Changed = MergeConsecutiveStores(ST); 12191 EverChanged |= Changed; 12192 if (!Changed) break; 12193 } while (ST->getOpcode() != ISD::DELETED_NODE); 12194 12195 if (EverChanged) 12196 return SDValue(N, 0); 12197 } 12198 12199 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 12200 // 12201 // Make sure to do this only after attempting to merge stores in order to 12202 // avoid changing the types of some subset of stores due to visit order, 12203 // preventing their merging. 12204 if (isa<ConstantFPSDNode>(Value)) { 12205 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 12206 return NewSt; 12207 } 12208 12209 return ReduceLoadOpStoreWidth(N); 12210 } 12211 12212 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 12213 SDValue InVec = N->getOperand(0); 12214 SDValue InVal = N->getOperand(1); 12215 SDValue EltNo = N->getOperand(2); 12216 SDLoc dl(N); 12217 12218 // If the inserted element is an UNDEF, just use the input vector. 12219 if (InVal.isUndef()) 12220 return InVec; 12221 12222 EVT VT = InVec.getValueType(); 12223 12224 // If we can't generate a legal BUILD_VECTOR, exit 12225 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 12226 return SDValue(); 12227 12228 // Check that we know which element is being inserted 12229 if (!isa<ConstantSDNode>(EltNo)) 12230 return SDValue(); 12231 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12232 12233 // Canonicalize insert_vector_elt dag nodes. 12234 // Example: 12235 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 12236 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 12237 // 12238 // Do this only if the child insert_vector node has one use; also 12239 // do this only if indices are both constants and Idx1 < Idx0. 12240 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 12241 && isa<ConstantSDNode>(InVec.getOperand(2))) { 12242 unsigned OtherElt = 12243 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 12244 if (Elt < OtherElt) { 12245 // Swap nodes. 12246 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT, 12247 InVec.getOperand(0), InVal, EltNo); 12248 AddToWorklist(NewOp.getNode()); 12249 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 12250 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 12251 } 12252 } 12253 12254 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 12255 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 12256 // vector elements. 12257 SmallVector<SDValue, 8> Ops; 12258 // Do not combine these two vectors if the output vector will not replace 12259 // the input vector. 12260 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 12261 Ops.append(InVec.getNode()->op_begin(), 12262 InVec.getNode()->op_end()); 12263 } else if (InVec.isUndef()) { 12264 unsigned NElts = VT.getVectorNumElements(); 12265 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 12266 } else { 12267 return SDValue(); 12268 } 12269 12270 // Insert the element 12271 if (Elt < Ops.size()) { 12272 // All the operands of BUILD_VECTOR must have the same type; 12273 // we enforce that here. 12274 EVT OpVT = Ops[0].getValueType(); 12275 if (InVal.getValueType() != OpVT) 12276 InVal = OpVT.bitsGT(InVal.getValueType()) ? 12277 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : 12278 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); 12279 Ops[Elt] = InVal; 12280 } 12281 12282 // Return the new vector 12283 return DAG.getBuildVector(VT, dl, Ops); 12284 } 12285 12286 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 12287 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 12288 EVT ResultVT = EVE->getValueType(0); 12289 EVT VecEltVT = InVecVT.getVectorElementType(); 12290 unsigned Align = OriginalLoad->getAlignment(); 12291 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 12292 VecEltVT.getTypeForEVT(*DAG.getContext())); 12293 12294 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 12295 return SDValue(); 12296 12297 Align = NewAlign; 12298 12299 SDValue NewPtr = OriginalLoad->getBasePtr(); 12300 SDValue Offset; 12301 EVT PtrType = NewPtr.getValueType(); 12302 MachinePointerInfo MPI; 12303 SDLoc DL(EVE); 12304 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 12305 int Elt = ConstEltNo->getZExtValue(); 12306 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 12307 Offset = DAG.getConstant(PtrOff, DL, PtrType); 12308 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 12309 } else { 12310 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 12311 Offset = DAG.getNode( 12312 ISD::MUL, DL, PtrType, Offset, 12313 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 12314 MPI = OriginalLoad->getPointerInfo(); 12315 } 12316 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 12317 12318 // The replacement we need to do here is a little tricky: we need to 12319 // replace an extractelement of a load with a load. 12320 // Use ReplaceAllUsesOfValuesWith to do the replacement. 12321 // Note that this replacement assumes that the extractvalue is the only 12322 // use of the load; that's okay because we don't want to perform this 12323 // transformation in other cases anyway. 12324 SDValue Load; 12325 SDValue Chain; 12326 if (ResultVT.bitsGT(VecEltVT)) { 12327 // If the result type of vextract is wider than the load, then issue an 12328 // extending load instead. 12329 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 12330 VecEltVT) 12331 ? ISD::ZEXTLOAD 12332 : ISD::EXTLOAD; 12333 Load = DAG.getExtLoad( 12334 ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI, 12335 VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 12336 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 12337 Chain = Load.getValue(1); 12338 } else { 12339 Load = DAG.getLoad( 12340 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, 12341 OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 12342 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 12343 Chain = Load.getValue(1); 12344 if (ResultVT.bitsLT(VecEltVT)) 12345 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 12346 else 12347 Load = DAG.getBitcast(ResultVT, Load); 12348 } 12349 WorklistRemover DeadNodes(*this); 12350 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 12351 SDValue To[] = { Load, Chain }; 12352 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 12353 // Since we're explicitly calling ReplaceAllUses, add the new node to the 12354 // worklist explicitly as well. 12355 AddToWorklist(Load.getNode()); 12356 AddUsersToWorklist(Load.getNode()); // Add users too 12357 // Make sure to revisit this node to clean it up; it will usually be dead. 12358 AddToWorklist(EVE); 12359 ++OpsNarrowed; 12360 return SDValue(EVE, 0); 12361 } 12362 12363 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 12364 // (vextract (scalar_to_vector val, 0) -> val 12365 SDValue InVec = N->getOperand(0); 12366 EVT VT = InVec.getValueType(); 12367 EVT NVT = N->getValueType(0); 12368 12369 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 12370 // Check if the result type doesn't match the inserted element type. A 12371 // SCALAR_TO_VECTOR may truncate the inserted element and the 12372 // EXTRACT_VECTOR_ELT may widen the extracted vector. 12373 SDValue InOp = InVec.getOperand(0); 12374 if (InOp.getValueType() != NVT) { 12375 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12376 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 12377 } 12378 return InOp; 12379 } 12380 12381 SDValue EltNo = N->getOperand(1); 12382 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 12383 12384 // extract_vector_elt (build_vector x, y), 1 -> y 12385 if (ConstEltNo && 12386 InVec.getOpcode() == ISD::BUILD_VECTOR && 12387 TLI.isTypeLegal(VT) && 12388 (InVec.hasOneUse() || 12389 TLI.aggressivelyPreferBuildVectorSources(VT))) { 12390 SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); 12391 EVT InEltVT = Elt.getValueType(); 12392 12393 // Sometimes build_vector's scalar input types do not match result type. 12394 if (NVT == InEltVT) 12395 return Elt; 12396 12397 // TODO: It may be useful to truncate if free if the build_vector implicitly 12398 // converts. 12399 } 12400 12401 // extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x) 12402 if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() && 12403 ConstEltNo->isNullValue() && VT.isInteger()) { 12404 SDValue BCSrc = InVec.getOperand(0); 12405 if (BCSrc.getValueType().isScalarInteger()) 12406 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc); 12407 } 12408 12409 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 12410 // We only perform this optimization before the op legalization phase because 12411 // we may introduce new vector instructions which are not backed by TD 12412 // patterns. For example on AVX, extracting elements from a wide vector 12413 // without using extract_subvector. However, if we can find an underlying 12414 // scalar value, then we can always use that. 12415 if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { 12416 int NumElem = VT.getVectorNumElements(); 12417 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 12418 // Find the new index to extract from. 12419 int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); 12420 12421 // Extracting an undef index is undef. 12422 if (OrigElt == -1) 12423 return DAG.getUNDEF(NVT); 12424 12425 // Select the right vector half to extract from. 12426 SDValue SVInVec; 12427 if (OrigElt < NumElem) { 12428 SVInVec = InVec->getOperand(0); 12429 } else { 12430 SVInVec = InVec->getOperand(1); 12431 OrigElt -= NumElem; 12432 } 12433 12434 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 12435 SDValue InOp = SVInVec.getOperand(OrigElt); 12436 if (InOp.getValueType() != NVT) { 12437 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12438 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 12439 } 12440 12441 return InOp; 12442 } 12443 12444 // FIXME: We should handle recursing on other vector shuffles and 12445 // scalar_to_vector here as well. 12446 12447 if (!LegalOperations) { 12448 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12449 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, 12450 DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); 12451 } 12452 } 12453 12454 bool BCNumEltsChanged = false; 12455 EVT ExtVT = VT.getVectorElementType(); 12456 EVT LVT = ExtVT; 12457 12458 // If the result of load has to be truncated, then it's not necessarily 12459 // profitable. 12460 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 12461 return SDValue(); 12462 12463 if (InVec.getOpcode() == ISD::BITCAST) { 12464 // Don't duplicate a load with other uses. 12465 if (!InVec.hasOneUse()) 12466 return SDValue(); 12467 12468 EVT BCVT = InVec.getOperand(0).getValueType(); 12469 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 12470 return SDValue(); 12471 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 12472 BCNumEltsChanged = true; 12473 InVec = InVec.getOperand(0); 12474 ExtVT = BCVT.getVectorElementType(); 12475 } 12476 12477 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 12478 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 12479 ISD::isNormalLoad(InVec.getNode()) && 12480 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 12481 SDValue Index = N->getOperand(1); 12482 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) 12483 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 12484 OrigLoad); 12485 } 12486 12487 // Perform only after legalization to ensure build_vector / vector_shuffle 12488 // optimizations have already been done. 12489 if (!LegalOperations) return SDValue(); 12490 12491 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 12492 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 12493 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 12494 12495 if (ConstEltNo) { 12496 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12497 12498 LoadSDNode *LN0 = nullptr; 12499 const ShuffleVectorSDNode *SVN = nullptr; 12500 if (ISD::isNormalLoad(InVec.getNode())) { 12501 LN0 = cast<LoadSDNode>(InVec); 12502 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 12503 InVec.getOperand(0).getValueType() == ExtVT && 12504 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 12505 // Don't duplicate a load with other uses. 12506 if (!InVec.hasOneUse()) 12507 return SDValue(); 12508 12509 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 12510 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 12511 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 12512 // => 12513 // (load $addr+1*size) 12514 12515 // Don't duplicate a load with other uses. 12516 if (!InVec.hasOneUse()) 12517 return SDValue(); 12518 12519 // If the bit convert changed the number of elements, it is unsafe 12520 // to examine the mask. 12521 if (BCNumEltsChanged) 12522 return SDValue(); 12523 12524 // Select the input vector, guarding against out of range extract vector. 12525 unsigned NumElems = VT.getVectorNumElements(); 12526 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 12527 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 12528 12529 if (InVec.getOpcode() == ISD::BITCAST) { 12530 // Don't duplicate a load with other uses. 12531 if (!InVec.hasOneUse()) 12532 return SDValue(); 12533 12534 InVec = InVec.getOperand(0); 12535 } 12536 if (ISD::isNormalLoad(InVec.getNode())) { 12537 LN0 = cast<LoadSDNode>(InVec); 12538 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 12539 EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); 12540 } 12541 } 12542 12543 // Make sure we found a non-volatile load and the extractelement is 12544 // the only use. 12545 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 12546 return SDValue(); 12547 12548 // If Idx was -1 above, Elt is going to be -1, so just return undef. 12549 if (Elt == -1) 12550 return DAG.getUNDEF(LVT); 12551 12552 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 12553 } 12554 12555 return SDValue(); 12556 } 12557 12558 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 12559 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 12560 // We perform this optimization post type-legalization because 12561 // the type-legalizer often scalarizes integer-promoted vectors. 12562 // Performing this optimization before may create bit-casts which 12563 // will be type-legalized to complex code sequences. 12564 // We perform this optimization only before the operation legalizer because we 12565 // may introduce illegal operations. 12566 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 12567 return SDValue(); 12568 12569 unsigned NumInScalars = N->getNumOperands(); 12570 SDLoc dl(N); 12571 EVT VT = N->getValueType(0); 12572 12573 // Check to see if this is a BUILD_VECTOR of a bunch of values 12574 // which come from any_extend or zero_extend nodes. If so, we can create 12575 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 12576 // optimizations. We do not handle sign-extend because we can't fill the sign 12577 // using shuffles. 12578 EVT SourceType = MVT::Other; 12579 bool AllAnyExt = true; 12580 12581 for (unsigned i = 0; i != NumInScalars; ++i) { 12582 SDValue In = N->getOperand(i); 12583 // Ignore undef inputs. 12584 if (In.isUndef()) continue; 12585 12586 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 12587 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 12588 12589 // Abort if the element is not an extension. 12590 if (!ZeroExt && !AnyExt) { 12591 SourceType = MVT::Other; 12592 break; 12593 } 12594 12595 // The input is a ZeroExt or AnyExt. Check the original type. 12596 EVT InTy = In.getOperand(0).getValueType(); 12597 12598 // Check that all of the widened source types are the same. 12599 if (SourceType == MVT::Other) 12600 // First time. 12601 SourceType = InTy; 12602 else if (InTy != SourceType) { 12603 // Multiple income types. Abort. 12604 SourceType = MVT::Other; 12605 break; 12606 } 12607 12608 // Check if all of the extends are ANY_EXTENDs. 12609 AllAnyExt &= AnyExt; 12610 } 12611 12612 // In order to have valid types, all of the inputs must be extended from the 12613 // same source type and all of the inputs must be any or zero extend. 12614 // Scalar sizes must be a power of two. 12615 EVT OutScalarTy = VT.getScalarType(); 12616 bool ValidTypes = SourceType != MVT::Other && 12617 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 12618 isPowerOf2_32(SourceType.getSizeInBits()); 12619 12620 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 12621 // turn into a single shuffle instruction. 12622 if (!ValidTypes) 12623 return SDValue(); 12624 12625 bool isLE = DAG.getDataLayout().isLittleEndian(); 12626 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 12627 assert(ElemRatio > 1 && "Invalid element size ratio"); 12628 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 12629 DAG.getConstant(0, SDLoc(N), SourceType); 12630 12631 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 12632 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 12633 12634 // Populate the new build_vector 12635 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12636 SDValue Cast = N->getOperand(i); 12637 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 12638 Cast.getOpcode() == ISD::ZERO_EXTEND || 12639 Cast.isUndef()) && "Invalid cast opcode"); 12640 SDValue In; 12641 if (Cast.isUndef()) 12642 In = DAG.getUNDEF(SourceType); 12643 else 12644 In = Cast->getOperand(0); 12645 unsigned Index = isLE ? (i * ElemRatio) : 12646 (i * ElemRatio + (ElemRatio - 1)); 12647 12648 assert(Index < Ops.size() && "Invalid index"); 12649 Ops[Index] = In; 12650 } 12651 12652 // The type of the new BUILD_VECTOR node. 12653 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 12654 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 12655 "Invalid vector size"); 12656 // Check if the new vector type is legal. 12657 if (!isTypeLegal(VecVT)) return SDValue(); 12658 12659 // Make the new BUILD_VECTOR. 12660 SDValue BV = DAG.getBuildVector(VecVT, dl, Ops); 12661 12662 // The new BUILD_VECTOR node has the potential to be further optimized. 12663 AddToWorklist(BV.getNode()); 12664 // Bitcast to the desired type. 12665 return DAG.getBitcast(VT, BV); 12666 } 12667 12668 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 12669 EVT VT = N->getValueType(0); 12670 12671 unsigned NumInScalars = N->getNumOperands(); 12672 SDLoc dl(N); 12673 12674 EVT SrcVT = MVT::Other; 12675 unsigned Opcode = ISD::DELETED_NODE; 12676 unsigned NumDefs = 0; 12677 12678 for (unsigned i = 0; i != NumInScalars; ++i) { 12679 SDValue In = N->getOperand(i); 12680 unsigned Opc = In.getOpcode(); 12681 12682 if (Opc == ISD::UNDEF) 12683 continue; 12684 12685 // If all scalar values are floats and converted from integers. 12686 if (Opcode == ISD::DELETED_NODE && 12687 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 12688 Opcode = Opc; 12689 } 12690 12691 if (Opc != Opcode) 12692 return SDValue(); 12693 12694 EVT InVT = In.getOperand(0).getValueType(); 12695 12696 // If all scalar values are typed differently, bail out. It's chosen to 12697 // simplify BUILD_VECTOR of integer types. 12698 if (SrcVT == MVT::Other) 12699 SrcVT = InVT; 12700 if (SrcVT != InVT) 12701 return SDValue(); 12702 NumDefs++; 12703 } 12704 12705 // If the vector has just one element defined, it's not worth to fold it into 12706 // a vectorized one. 12707 if (NumDefs < 2) 12708 return SDValue(); 12709 12710 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 12711 && "Should only handle conversion from integer to float."); 12712 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 12713 12714 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 12715 12716 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 12717 return SDValue(); 12718 12719 // Just because the floating-point vector type is legal does not necessarily 12720 // mean that the corresponding integer vector type is. 12721 if (!isTypeLegal(NVT)) 12722 return SDValue(); 12723 12724 SmallVector<SDValue, 8> Opnds; 12725 for (unsigned i = 0; i != NumInScalars; ++i) { 12726 SDValue In = N->getOperand(i); 12727 12728 if (In.isUndef()) 12729 Opnds.push_back(DAG.getUNDEF(SrcVT)); 12730 else 12731 Opnds.push_back(In.getOperand(0)); 12732 } 12733 SDValue BV = DAG.getBuildVector(NVT, dl, Opnds); 12734 AddToWorklist(BV.getNode()); 12735 12736 return DAG.getNode(Opcode, dl, VT, BV); 12737 } 12738 12739 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 12740 unsigned NumInScalars = N->getNumOperands(); 12741 SDLoc dl(N); 12742 EVT VT = N->getValueType(0); 12743 12744 // A vector built entirely of undefs is undef. 12745 if (ISD::allOperandsUndef(N)) 12746 return DAG.getUNDEF(VT); 12747 12748 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 12749 return V; 12750 12751 if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) 12752 return V; 12753 12754 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 12755 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from 12756 // at most two distinct vectors, turn this into a shuffle node. 12757 12758 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 12759 if (!isTypeLegal(VT)) 12760 return SDValue(); 12761 12762 // May only combine to shuffle after legalize if shuffle is legal. 12763 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 12764 return SDValue(); 12765 12766 SDValue VecIn1, VecIn2; 12767 bool UsesZeroVector = false; 12768 for (unsigned i = 0; i != NumInScalars; ++i) { 12769 SDValue Op = N->getOperand(i); 12770 // Ignore undef inputs. 12771 if (Op.isUndef()) continue; 12772 12773 // See if we can combine this build_vector into a blend with a zero vector. 12774 if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) { 12775 UsesZeroVector = true; 12776 continue; 12777 } 12778 12779 // If this input is something other than a EXTRACT_VECTOR_ELT with a 12780 // constant index, bail out. 12781 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12782 !isa<ConstantSDNode>(Op.getOperand(1))) { 12783 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12784 break; 12785 } 12786 12787 // We allow up to two distinct input vectors. 12788 SDValue ExtractedFromVec = Op.getOperand(0); 12789 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) 12790 continue; 12791 12792 if (!VecIn1.getNode()) { 12793 VecIn1 = ExtractedFromVec; 12794 } else if (!VecIn2.getNode() && !UsesZeroVector) { 12795 VecIn2 = ExtractedFromVec; 12796 } else { 12797 // Too many inputs. 12798 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12799 break; 12800 } 12801 } 12802 12803 // If everything is good, we can make a shuffle operation. 12804 if (VecIn1.getNode()) { 12805 unsigned InNumElements = VecIn1.getValueType().getVectorNumElements(); 12806 SmallVector<int, 8> Mask; 12807 for (unsigned i = 0; i != NumInScalars; ++i) { 12808 unsigned Opcode = N->getOperand(i).getOpcode(); 12809 if (Opcode == ISD::UNDEF) { 12810 Mask.push_back(-1); 12811 continue; 12812 } 12813 12814 // Operands can also be zero. 12815 if (Opcode != ISD::EXTRACT_VECTOR_ELT) { 12816 assert(UsesZeroVector && 12817 (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) && 12818 "Unexpected node found!"); 12819 Mask.push_back(NumInScalars+i); 12820 continue; 12821 } 12822 12823 // If extracting from the first vector, just use the index directly. 12824 SDValue Extract = N->getOperand(i); 12825 SDValue ExtVal = Extract.getOperand(1); 12826 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); 12827 if (Extract.getOperand(0) == VecIn1) { 12828 Mask.push_back(ExtIndex); 12829 continue; 12830 } 12831 12832 // Otherwise, use InIdx + InputVecSize 12833 Mask.push_back(InNumElements + ExtIndex); 12834 } 12835 12836 // Avoid introducing illegal shuffles with zero. 12837 if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT)) 12838 return SDValue(); 12839 12840 // We can't generate a shuffle node with mismatched input and output types. 12841 // Attempt to transform a single input vector to the correct type. 12842 if ((VT != VecIn1.getValueType())) { 12843 // If the input vector type has a different base type to the output 12844 // vector type, bail out. 12845 EVT VTElemType = VT.getVectorElementType(); 12846 if ((VecIn1.getValueType().getVectorElementType() != VTElemType) || 12847 (VecIn2.getNode() && 12848 (VecIn2.getValueType().getVectorElementType() != VTElemType))) 12849 return SDValue(); 12850 12851 // If the input vector is too small, widen it. 12852 // We only support widening of vectors which are half the size of the 12853 // output registers. For example XMM->YMM widening on X86 with AVX. 12854 EVT VecInT = VecIn1.getValueType(); 12855 if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) { 12856 // If we only have one small input, widen it by adding undef values. 12857 if (!VecIn2.getNode()) 12858 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, 12859 DAG.getUNDEF(VecIn1.getValueType())); 12860 else if (VecIn1.getValueType() == VecIn2.getValueType()) { 12861 // If we have two small inputs of the same type, try to concat them. 12862 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2); 12863 VecIn2 = SDValue(nullptr, 0); 12864 } else 12865 return SDValue(); 12866 } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) { 12867 // If the input vector is too large, try to split it. 12868 // We don't support having two input vectors that are too large. 12869 // If the zero vector was used, we can not split the vector, 12870 // since we'd need 3 inputs. 12871 if (UsesZeroVector || VecIn2.getNode()) 12872 return SDValue(); 12873 12874 if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements())) 12875 return SDValue(); 12876 12877 // Try to replace VecIn1 with two extract_subvectors 12878 // No need to update the masks, they should still be correct. 12879 VecIn2 = DAG.getNode( 12880 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12881 DAG.getConstant(VT.getVectorNumElements(), dl, 12882 TLI.getVectorIdxTy(DAG.getDataLayout()))); 12883 VecIn1 = DAG.getNode( 12884 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12885 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 12886 } else 12887 return SDValue(); 12888 } 12889 12890 if (UsesZeroVector) 12891 VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) : 12892 DAG.getConstantFP(0.0, dl, VT); 12893 else 12894 // If VecIn2 is unused then change it to undef. 12895 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); 12896 12897 // Check that we were able to transform all incoming values to the same 12898 // type. 12899 if (VecIn2.getValueType() != VecIn1.getValueType() || 12900 VecIn1.getValueType() != VT) 12901 return SDValue(); 12902 12903 // Return the new VECTOR_SHUFFLE node. 12904 SDValue Ops[2]; 12905 Ops[0] = VecIn1; 12906 Ops[1] = VecIn2; 12907 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]); 12908 } 12909 12910 return SDValue(); 12911 } 12912 12913 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 12914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12915 EVT OpVT = N->getOperand(0).getValueType(); 12916 12917 // If the operands are legal vectors, leave them alone. 12918 if (TLI.isTypeLegal(OpVT)) 12919 return SDValue(); 12920 12921 SDLoc DL(N); 12922 EVT VT = N->getValueType(0); 12923 SmallVector<SDValue, 8> Ops; 12924 12925 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 12926 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12927 12928 // Keep track of what we encounter. 12929 bool AnyInteger = false; 12930 bool AnyFP = false; 12931 for (const SDValue &Op : N->ops()) { 12932 if (ISD::BITCAST == Op.getOpcode() && 12933 !Op.getOperand(0).getValueType().isVector()) 12934 Ops.push_back(Op.getOperand(0)); 12935 else if (ISD::UNDEF == Op.getOpcode()) 12936 Ops.push_back(ScalarUndef); 12937 else 12938 return SDValue(); 12939 12940 // Note whether we encounter an integer or floating point scalar. 12941 // If it's neither, bail out, it could be something weird like x86mmx. 12942 EVT LastOpVT = Ops.back().getValueType(); 12943 if (LastOpVT.isFloatingPoint()) 12944 AnyFP = true; 12945 else if (LastOpVT.isInteger()) 12946 AnyInteger = true; 12947 else 12948 return SDValue(); 12949 } 12950 12951 // If any of the operands is a floating point scalar bitcast to a vector, 12952 // use floating point types throughout, and bitcast everything. 12953 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 12954 if (AnyFP) { 12955 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 12956 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12957 if (AnyInteger) { 12958 for (SDValue &Op : Ops) { 12959 if (Op.getValueType() == SVT) 12960 continue; 12961 if (Op.isUndef()) 12962 Op = ScalarUndef; 12963 else 12964 Op = DAG.getBitcast(SVT, Op); 12965 } 12966 } 12967 } 12968 12969 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 12970 VT.getSizeInBits() / SVT.getSizeInBits()); 12971 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 12972 } 12973 12974 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 12975 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 12976 // most two distinct vectors the same size as the result, attempt to turn this 12977 // into a legal shuffle. 12978 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 12979 EVT VT = N->getValueType(0); 12980 EVT OpVT = N->getOperand(0).getValueType(); 12981 int NumElts = VT.getVectorNumElements(); 12982 int NumOpElts = OpVT.getVectorNumElements(); 12983 12984 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 12985 SmallVector<int, 8> Mask; 12986 12987 for (SDValue Op : N->ops()) { 12988 // Peek through any bitcast. 12989 while (Op.getOpcode() == ISD::BITCAST) 12990 Op = Op.getOperand(0); 12991 12992 // UNDEF nodes convert to UNDEF shuffle mask values. 12993 if (Op.isUndef()) { 12994 Mask.append((unsigned)NumOpElts, -1); 12995 continue; 12996 } 12997 12998 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12999 return SDValue(); 13000 13001 // What vector are we extracting the subvector from and at what index? 13002 SDValue ExtVec = Op.getOperand(0); 13003 13004 // We want the EVT of the original extraction to correctly scale the 13005 // extraction index. 13006 EVT ExtVT = ExtVec.getValueType(); 13007 13008 // Peek through any bitcast. 13009 while (ExtVec.getOpcode() == ISD::BITCAST) 13010 ExtVec = ExtVec.getOperand(0); 13011 13012 // UNDEF nodes convert to UNDEF shuffle mask values. 13013 if (ExtVec.isUndef()) { 13014 Mask.append((unsigned)NumOpElts, -1); 13015 continue; 13016 } 13017 13018 if (!isa<ConstantSDNode>(Op.getOperand(1))) 13019 return SDValue(); 13020 int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 13021 13022 // Ensure that we are extracting a subvector from a vector the same 13023 // size as the result. 13024 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 13025 return SDValue(); 13026 13027 // Scale the subvector index to account for any bitcast. 13028 int NumExtElts = ExtVT.getVectorNumElements(); 13029 if (0 == (NumExtElts % NumElts)) 13030 ExtIdx /= (NumExtElts / NumElts); 13031 else if (0 == (NumElts % NumExtElts)) 13032 ExtIdx *= (NumElts / NumExtElts); 13033 else 13034 return SDValue(); 13035 13036 // At most we can reference 2 inputs in the final shuffle. 13037 if (SV0.isUndef() || SV0 == ExtVec) { 13038 SV0 = ExtVec; 13039 for (int i = 0; i != NumOpElts; ++i) 13040 Mask.push_back(i + ExtIdx); 13041 } else if (SV1.isUndef() || SV1 == ExtVec) { 13042 SV1 = ExtVec; 13043 for (int i = 0; i != NumOpElts; ++i) 13044 Mask.push_back(i + ExtIdx + NumElts); 13045 } else { 13046 return SDValue(); 13047 } 13048 } 13049 13050 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 13051 return SDValue(); 13052 13053 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 13054 DAG.getBitcast(VT, SV1), Mask); 13055 } 13056 13057 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 13058 // If we only have one input vector, we don't need to do any concatenation. 13059 if (N->getNumOperands() == 1) 13060 return N->getOperand(0); 13061 13062 // Check if all of the operands are undefs. 13063 EVT VT = N->getValueType(0); 13064 if (ISD::allOperandsUndef(N)) 13065 return DAG.getUNDEF(VT); 13066 13067 // Optimize concat_vectors where all but the first of the vectors are undef. 13068 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 13069 return Op.isUndef(); 13070 })) { 13071 SDValue In = N->getOperand(0); 13072 assert(In.getValueType().isVector() && "Must concat vectors"); 13073 13074 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 13075 if (In->getOpcode() == ISD::BITCAST && 13076 !In->getOperand(0)->getValueType(0).isVector()) { 13077 SDValue Scalar = In->getOperand(0); 13078 13079 // If the bitcast type isn't legal, it might be a trunc of a legal type; 13080 // look through the trunc so we can still do the transform: 13081 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 13082 if (Scalar->getOpcode() == ISD::TRUNCATE && 13083 !TLI.isTypeLegal(Scalar.getValueType()) && 13084 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 13085 Scalar = Scalar->getOperand(0); 13086 13087 EVT SclTy = Scalar->getValueType(0); 13088 13089 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 13090 return SDValue(); 13091 13092 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 13093 VT.getSizeInBits() / SclTy.getSizeInBits()); 13094 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 13095 return SDValue(); 13096 13097 SDLoc dl = SDLoc(N); 13098 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar); 13099 return DAG.getBitcast(VT, Res); 13100 } 13101 } 13102 13103 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 13104 // We have already tested above for an UNDEF only concatenation. 13105 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 13106 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 13107 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 13108 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 13109 }; 13110 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 13111 SmallVector<SDValue, 8> Opnds; 13112 EVT SVT = VT.getScalarType(); 13113 13114 EVT MinVT = SVT; 13115 if (!SVT.isFloatingPoint()) { 13116 // If BUILD_VECTOR are from built from integer, they may have different 13117 // operand types. Get the smallest type and truncate all operands to it. 13118 bool FoundMinVT = false; 13119 for (const SDValue &Op : N->ops()) 13120 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13121 EVT OpSVT = Op.getOperand(0)->getValueType(0); 13122 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 13123 FoundMinVT = true; 13124 } 13125 assert(FoundMinVT && "Concat vector type mismatch"); 13126 } 13127 13128 for (const SDValue &Op : N->ops()) { 13129 EVT OpVT = Op.getValueType(); 13130 unsigned NumElts = OpVT.getVectorNumElements(); 13131 13132 if (ISD::UNDEF == Op.getOpcode()) 13133 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 13134 13135 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13136 if (SVT.isFloatingPoint()) { 13137 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 13138 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 13139 } else { 13140 for (unsigned i = 0; i != NumElts; ++i) 13141 Opnds.push_back( 13142 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 13143 } 13144 } 13145 } 13146 13147 assert(VT.getVectorNumElements() == Opnds.size() && 13148 "Concat vector type mismatch"); 13149 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 13150 } 13151 13152 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 13153 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 13154 return V; 13155 13156 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 13157 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 13158 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 13159 return V; 13160 13161 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 13162 // nodes often generate nop CONCAT_VECTOR nodes. 13163 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 13164 // place the incoming vectors at the exact same location. 13165 SDValue SingleSource = SDValue(); 13166 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 13167 13168 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 13169 SDValue Op = N->getOperand(i); 13170 13171 if (Op.isUndef()) 13172 continue; 13173 13174 // Check if this is the identity extract: 13175 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 13176 return SDValue(); 13177 13178 // Find the single incoming vector for the extract_subvector. 13179 if (SingleSource.getNode()) { 13180 if (Op.getOperand(0) != SingleSource) 13181 return SDValue(); 13182 } else { 13183 SingleSource = Op.getOperand(0); 13184 13185 // Check the source type is the same as the type of the result. 13186 // If not, this concat may extend the vector, so we can not 13187 // optimize it away. 13188 if (SingleSource.getValueType() != N->getValueType(0)) 13189 return SDValue(); 13190 } 13191 13192 unsigned IdentityIndex = i * PartNumElem; 13193 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 13194 // The extract index must be constant. 13195 if (!CS) 13196 return SDValue(); 13197 13198 // Check that we are reading from the identity index. 13199 if (CS->getZExtValue() != IdentityIndex) 13200 return SDValue(); 13201 } 13202 13203 if (SingleSource.getNode()) 13204 return SingleSource; 13205 13206 return SDValue(); 13207 } 13208 13209 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 13210 EVT NVT = N->getValueType(0); 13211 SDValue V = N->getOperand(0); 13212 13213 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 13214 // Combine: 13215 // (extract_subvec (concat V1, V2, ...), i) 13216 // Into: 13217 // Vi if possible 13218 // Only operand 0 is checked as 'concat' assumes all inputs of the same 13219 // type. 13220 if (V->getOperand(0).getValueType() != NVT) 13221 return SDValue(); 13222 unsigned Idx = N->getConstantOperandVal(1); 13223 unsigned NumElems = NVT.getVectorNumElements(); 13224 assert((Idx % NumElems) == 0 && 13225 "IDX in concat is not a multiple of the result vector length."); 13226 return V->getOperand(Idx / NumElems); 13227 } 13228 13229 // Skip bitcasting 13230 if (V->getOpcode() == ISD::BITCAST) 13231 V = V.getOperand(0); 13232 13233 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 13234 SDLoc dl(N); 13235 // Handle only simple case where vector being inserted and vector 13236 // being extracted are of same type, and are half size of larger vectors. 13237 EVT BigVT = V->getOperand(0).getValueType(); 13238 EVT SmallVT = V->getOperand(1).getValueType(); 13239 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 13240 return SDValue(); 13241 13242 // Only handle cases where both indexes are constants with the same type. 13243 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13244 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13245 13246 if (InsIdx && ExtIdx && 13247 InsIdx->getValueType(0).getSizeInBits() <= 64 && 13248 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 13249 // Combine: 13250 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 13251 // Into: 13252 // indices are equal or bit offsets are equal => V1 13253 // otherwise => (extract_subvec V1, ExtIdx) 13254 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() == 13255 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits()) 13256 return DAG.getBitcast(NVT, V->getOperand(1)); 13257 return DAG.getNode( 13258 ISD::EXTRACT_SUBVECTOR, dl, NVT, 13259 DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)), 13260 N->getOperand(1)); 13261 } 13262 } 13263 13264 return SDValue(); 13265 } 13266 13267 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, 13268 SDValue V, SelectionDAG &DAG) { 13269 SDLoc DL(V); 13270 EVT VT = V.getValueType(); 13271 13272 switch (V.getOpcode()) { 13273 default: 13274 return V; 13275 13276 case ISD::CONCAT_VECTORS: { 13277 EVT OpVT = V->getOperand(0).getValueType(); 13278 int OpSize = OpVT.getVectorNumElements(); 13279 SmallBitVector OpUsedElements(OpSize, false); 13280 bool FoundSimplification = false; 13281 SmallVector<SDValue, 4> NewOps; 13282 NewOps.reserve(V->getNumOperands()); 13283 for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { 13284 SDValue Op = V->getOperand(i); 13285 bool OpUsed = false; 13286 for (int j = 0; j < OpSize; ++j) 13287 if (UsedElements[i * OpSize + j]) { 13288 OpUsedElements[j] = true; 13289 OpUsed = true; 13290 } 13291 NewOps.push_back( 13292 OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) 13293 : DAG.getUNDEF(OpVT)); 13294 FoundSimplification |= Op == NewOps.back(); 13295 OpUsedElements.reset(); 13296 } 13297 if (FoundSimplification) 13298 V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); 13299 return V; 13300 } 13301 13302 case ISD::INSERT_SUBVECTOR: { 13303 SDValue BaseV = V->getOperand(0); 13304 SDValue SubV = V->getOperand(1); 13305 auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13306 if (!IdxN) 13307 return V; 13308 13309 int SubSize = SubV.getValueType().getVectorNumElements(); 13310 int Idx = IdxN->getZExtValue(); 13311 bool SubVectorUsed = false; 13312 SmallBitVector SubUsedElements(SubSize, false); 13313 for (int i = 0; i < SubSize; ++i) 13314 if (UsedElements[i + Idx]) { 13315 SubVectorUsed = true; 13316 SubUsedElements[i] = true; 13317 UsedElements[i + Idx] = false; 13318 } 13319 13320 // Now recurse on both the base and sub vectors. 13321 SDValue SimplifiedSubV = 13322 SubVectorUsed 13323 ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) 13324 : DAG.getUNDEF(SubV.getValueType()); 13325 SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); 13326 if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) 13327 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 13328 SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); 13329 return V; 13330 } 13331 } 13332 } 13333 13334 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, 13335 SDValue N1, SelectionDAG &DAG) { 13336 EVT VT = SVN->getValueType(0); 13337 int NumElts = VT.getVectorNumElements(); 13338 SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); 13339 for (int M : SVN->getMask()) 13340 if (M >= 0 && M < NumElts) 13341 N0UsedElements[M] = true; 13342 else if (M >= NumElts) 13343 N1UsedElements[M - NumElts] = true; 13344 13345 SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); 13346 SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); 13347 if (S0 == N0 && S1 == N1) 13348 return SDValue(); 13349 13350 return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); 13351 } 13352 13353 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 13354 // or turn a shuffle of a single concat into simpler shuffle then concat. 13355 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 13356 EVT VT = N->getValueType(0); 13357 unsigned NumElts = VT.getVectorNumElements(); 13358 13359 SDValue N0 = N->getOperand(0); 13360 SDValue N1 = N->getOperand(1); 13361 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13362 13363 SmallVector<SDValue, 4> Ops; 13364 EVT ConcatVT = N0.getOperand(0).getValueType(); 13365 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 13366 unsigned NumConcats = NumElts / NumElemsPerConcat; 13367 13368 // Special case: shuffle(concat(A,B)) can be more efficiently represented 13369 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 13370 // half vector elements. 13371 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 13372 std::all_of(SVN->getMask().begin() + NumElemsPerConcat, 13373 SVN->getMask().end(), [](int i) { return i == -1; })) { 13374 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), 13375 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); 13376 N1 = DAG.getUNDEF(ConcatVT); 13377 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 13378 } 13379 13380 // Look at every vector that's inserted. We're looking for exact 13381 // subvector-sized copies from a concatenated vector 13382 for (unsigned I = 0; I != NumConcats; ++I) { 13383 // Make sure we're dealing with a copy. 13384 unsigned Begin = I * NumElemsPerConcat; 13385 bool AllUndef = true, NoUndef = true; 13386 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 13387 if (SVN->getMaskElt(J) >= 0) 13388 AllUndef = false; 13389 else 13390 NoUndef = false; 13391 } 13392 13393 if (NoUndef) { 13394 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 13395 return SDValue(); 13396 13397 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 13398 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 13399 return SDValue(); 13400 13401 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 13402 if (FirstElt < N0.getNumOperands()) 13403 Ops.push_back(N0.getOperand(FirstElt)); 13404 else 13405 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 13406 13407 } else if (AllUndef) { 13408 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 13409 } else { // Mixed with general masks and undefs, can't do optimization. 13410 return SDValue(); 13411 } 13412 } 13413 13414 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 13415 } 13416 13417 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 13418 EVT VT = N->getValueType(0); 13419 unsigned NumElts = VT.getVectorNumElements(); 13420 13421 SDValue N0 = N->getOperand(0); 13422 SDValue N1 = N->getOperand(1); 13423 13424 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 13425 13426 // Canonicalize shuffle undef, undef -> undef 13427 if (N0.isUndef() && N1.isUndef()) 13428 return DAG.getUNDEF(VT); 13429 13430 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13431 13432 // Canonicalize shuffle v, v -> v, undef 13433 if (N0 == N1) { 13434 SmallVector<int, 8> NewMask; 13435 for (unsigned i = 0; i != NumElts; ++i) { 13436 int Idx = SVN->getMaskElt(i); 13437 if (Idx >= (int)NumElts) Idx -= NumElts; 13438 NewMask.push_back(Idx); 13439 } 13440 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 13441 &NewMask[0]); 13442 } 13443 13444 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 13445 if (N0.isUndef()) { 13446 SmallVector<int, 8> NewMask; 13447 for (unsigned i = 0; i != NumElts; ++i) { 13448 int Idx = SVN->getMaskElt(i); 13449 if (Idx >= 0) { 13450 if (Idx >= (int)NumElts) 13451 Idx -= NumElts; 13452 else 13453 Idx = -1; // remove reference to lhs 13454 } 13455 NewMask.push_back(Idx); 13456 } 13457 return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT), 13458 &NewMask[0]); 13459 } 13460 13461 // Remove references to rhs if it is undef 13462 if (N1.isUndef()) { 13463 bool Changed = false; 13464 SmallVector<int, 8> NewMask; 13465 for (unsigned i = 0; i != NumElts; ++i) { 13466 int Idx = SVN->getMaskElt(i); 13467 if (Idx >= (int)NumElts) { 13468 Idx = -1; 13469 Changed = true; 13470 } 13471 NewMask.push_back(Idx); 13472 } 13473 if (Changed) 13474 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]); 13475 } 13476 13477 // If it is a splat, check if the argument vector is another splat or a 13478 // build_vector. 13479 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 13480 SDNode *V = N0.getNode(); 13481 13482 // If this is a bit convert that changes the element type of the vector but 13483 // not the number of vector elements, look through it. Be careful not to 13484 // look though conversions that change things like v4f32 to v2f64. 13485 if (V->getOpcode() == ISD::BITCAST) { 13486 SDValue ConvInput = V->getOperand(0); 13487 if (ConvInput.getValueType().isVector() && 13488 ConvInput.getValueType().getVectorNumElements() == NumElts) 13489 V = ConvInput.getNode(); 13490 } 13491 13492 if (V->getOpcode() == ISD::BUILD_VECTOR) { 13493 assert(V->getNumOperands() == NumElts && 13494 "BUILD_VECTOR has wrong number of operands"); 13495 SDValue Base; 13496 bool AllSame = true; 13497 for (unsigned i = 0; i != NumElts; ++i) { 13498 if (!V->getOperand(i).isUndef()) { 13499 Base = V->getOperand(i); 13500 break; 13501 } 13502 } 13503 // Splat of <u, u, u, u>, return <u, u, u, u> 13504 if (!Base.getNode()) 13505 return N0; 13506 for (unsigned i = 0; i != NumElts; ++i) { 13507 if (V->getOperand(i) != Base) { 13508 AllSame = false; 13509 break; 13510 } 13511 } 13512 // Splat of <x, x, x, x>, return <x, x, x, x> 13513 if (AllSame) 13514 return N0; 13515 13516 // Canonicalize any other splat as a build_vector. 13517 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); 13518 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 13519 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 13520 13521 // We may have jumped through bitcasts, so the type of the 13522 // BUILD_VECTOR may not match the type of the shuffle. 13523 if (V->getValueType(0) != VT) 13524 NewBV = DAG.getBitcast(VT, NewBV); 13525 return NewBV; 13526 } 13527 } 13528 13529 // There are various patterns used to build up a vector from smaller vectors, 13530 // subvectors, or elements. Scan chains of these and replace unused insertions 13531 // or components with undef. 13532 if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) 13533 return S; 13534 13535 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13536 Level < AfterLegalizeVectorOps && 13537 (N1.isUndef() || 13538 (N1.getOpcode() == ISD::CONCAT_VECTORS && 13539 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 13540 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 13541 return V; 13542 } 13543 13544 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 13545 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 13546 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 13547 SmallVector<SDValue, 8> Ops; 13548 for (int M : SVN->getMask()) { 13549 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 13550 if (M >= 0) { 13551 int Idx = M % NumElts; 13552 SDValue &S = (M < (int)NumElts ? N0 : N1); 13553 if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { 13554 Op = S.getOperand(Idx); 13555 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { 13556 if (Idx == 0) 13557 Op = S.getOperand(0); 13558 } else { 13559 // Operand can't be combined - bail out. 13560 break; 13561 } 13562 } 13563 Ops.push_back(Op); 13564 } 13565 if (Ops.size() == VT.getVectorNumElements()) { 13566 // BUILD_VECTOR requires all inputs to be of the same type, find the 13567 // maximum type and extend them all. 13568 EVT SVT = VT.getScalarType(); 13569 if (SVT.isInteger()) 13570 for (SDValue &Op : Ops) 13571 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 13572 if (SVT != VT.getScalarType()) 13573 for (SDValue &Op : Ops) 13574 Op = TLI.isZExtFree(Op.getValueType(), SVT) 13575 ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) 13576 : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); 13577 return DAG.getBuildVector(VT, SDLoc(N), Ops); 13578 } 13579 } 13580 13581 // If this shuffle only has a single input that is a bitcasted shuffle, 13582 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 13583 // back to their original types. 13584 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13585 N1.isUndef() && Level < AfterLegalizeVectorOps && 13586 TLI.isTypeLegal(VT)) { 13587 13588 // Peek through the bitcast only if there is one user. 13589 SDValue BC0 = N0; 13590 while (BC0.getOpcode() == ISD::BITCAST) { 13591 if (!BC0.hasOneUse()) 13592 break; 13593 BC0 = BC0.getOperand(0); 13594 } 13595 13596 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 13597 if (Scale == 1) 13598 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 13599 13600 SmallVector<int, 8> NewMask; 13601 for (int M : Mask) 13602 for (int s = 0; s != Scale; ++s) 13603 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 13604 return NewMask; 13605 }; 13606 13607 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 13608 EVT SVT = VT.getScalarType(); 13609 EVT InnerVT = BC0->getValueType(0); 13610 EVT InnerSVT = InnerVT.getScalarType(); 13611 13612 // Determine which shuffle works with the smaller scalar type. 13613 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 13614 EVT ScaleSVT = ScaleVT.getScalarType(); 13615 13616 if (TLI.isTypeLegal(ScaleVT) && 13617 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 13618 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 13619 13620 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13621 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13622 13623 // Scale the shuffle masks to the smaller scalar type. 13624 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 13625 SmallVector<int, 8> InnerMask = 13626 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 13627 SmallVector<int, 8> OuterMask = 13628 ScaleShuffleMask(SVN->getMask(), OuterScale); 13629 13630 // Merge the shuffle masks. 13631 SmallVector<int, 8> NewMask; 13632 for (int M : OuterMask) 13633 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 13634 13635 // Test for shuffle mask legality over both commutations. 13636 SDValue SV0 = BC0->getOperand(0); 13637 SDValue SV1 = BC0->getOperand(1); 13638 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13639 if (!LegalMask) { 13640 std::swap(SV0, SV1); 13641 ShuffleVectorSDNode::commuteMask(NewMask); 13642 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13643 } 13644 13645 if (LegalMask) { 13646 SV0 = DAG.getBitcast(ScaleVT, SV0); 13647 SV1 = DAG.getBitcast(ScaleVT, SV1); 13648 return DAG.getBitcast( 13649 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 13650 } 13651 } 13652 } 13653 } 13654 13655 // Canonicalize shuffles according to rules: 13656 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 13657 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 13658 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 13659 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 13660 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 13661 TLI.isTypeLegal(VT)) { 13662 // The incoming shuffle must be of the same type as the result of the 13663 // current shuffle. 13664 assert(N1->getOperand(0).getValueType() == VT && 13665 "Shuffle types don't match"); 13666 13667 SDValue SV0 = N1->getOperand(0); 13668 SDValue SV1 = N1->getOperand(1); 13669 bool HasSameOp0 = N0 == SV0; 13670 bool IsSV1Undef = SV1.isUndef(); 13671 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 13672 // Commute the operands of this shuffle so that next rule 13673 // will trigger. 13674 return DAG.getCommutedVectorShuffle(*SVN); 13675 } 13676 13677 // Try to fold according to rules: 13678 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13679 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13680 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13681 // Don't try to fold shuffles with illegal type. 13682 // Only fold if this shuffle is the only user of the other shuffle. 13683 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 13684 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 13685 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 13686 13687 // The incoming shuffle must be of the same type as the result of the 13688 // current shuffle. 13689 assert(OtherSV->getOperand(0).getValueType() == VT && 13690 "Shuffle types don't match"); 13691 13692 SDValue SV0, SV1; 13693 SmallVector<int, 4> Mask; 13694 // Compute the combined shuffle mask for a shuffle with SV0 as the first 13695 // operand, and SV1 as the second operand. 13696 for (unsigned i = 0; i != NumElts; ++i) { 13697 int Idx = SVN->getMaskElt(i); 13698 if (Idx < 0) { 13699 // Propagate Undef. 13700 Mask.push_back(Idx); 13701 continue; 13702 } 13703 13704 SDValue CurrentVec; 13705 if (Idx < (int)NumElts) { 13706 // This shuffle index refers to the inner shuffle N0. Lookup the inner 13707 // shuffle mask to identify which vector is actually referenced. 13708 Idx = OtherSV->getMaskElt(Idx); 13709 if (Idx < 0) { 13710 // Propagate Undef. 13711 Mask.push_back(Idx); 13712 continue; 13713 } 13714 13715 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 13716 : OtherSV->getOperand(1); 13717 } else { 13718 // This shuffle index references an element within N1. 13719 CurrentVec = N1; 13720 } 13721 13722 // Simple case where 'CurrentVec' is UNDEF. 13723 if (CurrentVec.isUndef()) { 13724 Mask.push_back(-1); 13725 continue; 13726 } 13727 13728 // Canonicalize the shuffle index. We don't know yet if CurrentVec 13729 // will be the first or second operand of the combined shuffle. 13730 Idx = Idx % NumElts; 13731 if (!SV0.getNode() || SV0 == CurrentVec) { 13732 // Ok. CurrentVec is the left hand side. 13733 // Update the mask accordingly. 13734 SV0 = CurrentVec; 13735 Mask.push_back(Idx); 13736 continue; 13737 } 13738 13739 // Bail out if we cannot convert the shuffle pair into a single shuffle. 13740 if (SV1.getNode() && SV1 != CurrentVec) 13741 return SDValue(); 13742 13743 // Ok. CurrentVec is the right hand side. 13744 // Update the mask accordingly. 13745 SV1 = CurrentVec; 13746 Mask.push_back(Idx + NumElts); 13747 } 13748 13749 // Check if all indices in Mask are Undef. In case, propagate Undef. 13750 bool isUndefMask = true; 13751 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 13752 isUndefMask &= Mask[i] < 0; 13753 13754 if (isUndefMask) 13755 return DAG.getUNDEF(VT); 13756 13757 if (!SV0.getNode()) 13758 SV0 = DAG.getUNDEF(VT); 13759 if (!SV1.getNode()) 13760 SV1 = DAG.getUNDEF(VT); 13761 13762 // Avoid introducing shuffles with illegal mask. 13763 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 13764 ShuffleVectorSDNode::commuteMask(Mask); 13765 13766 if (!TLI.isShuffleMaskLegal(Mask, VT)) 13767 return SDValue(); 13768 13769 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 13770 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 13771 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 13772 std::swap(SV0, SV1); 13773 } 13774 13775 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13776 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13777 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13778 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]); 13779 } 13780 13781 return SDValue(); 13782 } 13783 13784 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 13785 SDValue InVal = N->getOperand(0); 13786 EVT VT = N->getValueType(0); 13787 13788 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 13789 // with a VECTOR_SHUFFLE. 13790 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13791 SDValue InVec = InVal->getOperand(0); 13792 SDValue EltNo = InVal->getOperand(1); 13793 13794 // FIXME: We could support implicit truncation if the shuffle can be 13795 // scaled to a smaller vector scalar type. 13796 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); 13797 if (C0 && VT == InVec.getValueType() && 13798 VT.getScalarType() == InVal.getValueType()) { 13799 SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); 13800 int Elt = C0->getZExtValue(); 13801 NewMask[0] = Elt; 13802 13803 if (TLI.isShuffleMaskLegal(NewMask, VT)) 13804 return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), 13805 NewMask); 13806 } 13807 } 13808 13809 return SDValue(); 13810 } 13811 13812 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 13813 SDValue N0 = N->getOperand(0); 13814 SDValue N1 = N->getOperand(1); 13815 SDValue N2 = N->getOperand(2); 13816 13817 if (N0.getValueType() != N1.getValueType()) 13818 return SDValue(); 13819 13820 // If the input vector is a concatenation, and the insert replaces 13821 // one of the halves, we can optimize into a single concat_vectors. 13822 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0->getNumOperands() == 2 && 13823 N2.getOpcode() == ISD::Constant) { 13824 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 13825 EVT VT = N->getValueType(0); 13826 13827 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13828 // (concat_vectors Z, Y) 13829 if (InsIdx == 0) 13830 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N1, 13831 N0.getOperand(1)); 13832 13833 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13834 // (concat_vectors X, Z) 13835 if (InsIdx == VT.getVectorNumElements() / 2) 13836 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0.getOperand(0), 13837 N1); 13838 } 13839 13840 return SDValue(); 13841 } 13842 13843 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 13844 SDValue N0 = N->getOperand(0); 13845 13846 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 13847 if (N0->getOpcode() == ISD::FP16_TO_FP) 13848 return N0->getOperand(0); 13849 13850 return SDValue(); 13851 } 13852 13853 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 13854 SDValue N0 = N->getOperand(0); 13855 13856 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 13857 if (N0->getOpcode() == ISD::AND) { 13858 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 13859 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 13860 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 13861 N0.getOperand(0)); 13862 } 13863 } 13864 13865 return SDValue(); 13866 } 13867 13868 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 13869 /// with the destination vector and a zero vector. 13870 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 13871 /// vector_shuffle V, Zero, <0, 4, 2, 4> 13872 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 13873 EVT VT = N->getValueType(0); 13874 SDValue LHS = N->getOperand(0); 13875 SDValue RHS = N->getOperand(1); 13876 SDLoc dl(N); 13877 13878 // Make sure we're not running after operation legalization where it 13879 // may have custom lowered the vector shuffles. 13880 if (LegalOperations) 13881 return SDValue(); 13882 13883 if (N->getOpcode() != ISD::AND) 13884 return SDValue(); 13885 13886 if (RHS.getOpcode() == ISD::BITCAST) 13887 RHS = RHS.getOperand(0); 13888 13889 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 13890 return SDValue(); 13891 13892 EVT RVT = RHS.getValueType(); 13893 unsigned NumElts = RHS.getNumOperands(); 13894 13895 // Attempt to create a valid clear mask, splitting the mask into 13896 // sub elements and checking to see if each is 13897 // all zeros or all ones - suitable for shuffle masking. 13898 auto BuildClearMask = [&](int Split) { 13899 int NumSubElts = NumElts * Split; 13900 int NumSubBits = RVT.getScalarSizeInBits() / Split; 13901 13902 SmallVector<int, 8> Indices; 13903 for (int i = 0; i != NumSubElts; ++i) { 13904 int EltIdx = i / Split; 13905 int SubIdx = i % Split; 13906 SDValue Elt = RHS.getOperand(EltIdx); 13907 if (Elt.isUndef()) { 13908 Indices.push_back(-1); 13909 continue; 13910 } 13911 13912 APInt Bits; 13913 if (isa<ConstantSDNode>(Elt)) 13914 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 13915 else if (isa<ConstantFPSDNode>(Elt)) 13916 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 13917 else 13918 return SDValue(); 13919 13920 // Extract the sub element from the constant bit mask. 13921 if (DAG.getDataLayout().isBigEndian()) { 13922 Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); 13923 } else { 13924 Bits = Bits.lshr(SubIdx * NumSubBits); 13925 } 13926 13927 if (Split > 1) 13928 Bits = Bits.trunc(NumSubBits); 13929 13930 if (Bits.isAllOnesValue()) 13931 Indices.push_back(i); 13932 else if (Bits == 0) 13933 Indices.push_back(i + NumSubElts); 13934 else 13935 return SDValue(); 13936 } 13937 13938 // Let's see if the target supports this vector_shuffle. 13939 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 13940 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 13941 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 13942 return SDValue(); 13943 13944 SDValue Zero = DAG.getConstant(0, dl, ClearVT); 13945 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl, 13946 DAG.getBitcast(ClearVT, LHS), 13947 Zero, &Indices[0])); 13948 }; 13949 13950 // Determine maximum split level (byte level masking). 13951 int MaxSplit = 1; 13952 if (RVT.getScalarSizeInBits() % 8 == 0) 13953 MaxSplit = RVT.getScalarSizeInBits() / 8; 13954 13955 for (int Split = 1; Split <= MaxSplit; ++Split) 13956 if (RVT.getScalarSizeInBits() % Split == 0) 13957 if (SDValue S = BuildClearMask(Split)) 13958 return S; 13959 13960 return SDValue(); 13961 } 13962 13963 /// Visit a binary vector operation, like ADD. 13964 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 13965 assert(N->getValueType(0).isVector() && 13966 "SimplifyVBinOp only works on vectors!"); 13967 13968 SDValue LHS = N->getOperand(0); 13969 SDValue RHS = N->getOperand(1); 13970 SDValue Ops[] = {LHS, RHS}; 13971 13972 // See if we can constant fold the vector operation. 13973 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 13974 N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 13975 return Fold; 13976 13977 // Try to convert a constant mask AND into a shuffle clear mask. 13978 if (SDValue Shuffle = XformToShuffleWithZero(N)) 13979 return Shuffle; 13980 13981 // Type legalization might introduce new shuffles in the DAG. 13982 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 13983 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 13984 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 13985 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 13986 LHS.getOperand(1).isUndef() && 13987 RHS.getOperand(1).isUndef()) { 13988 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 13989 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 13990 13991 if (SVN0->getMask().equals(SVN1->getMask())) { 13992 EVT VT = N->getValueType(0); 13993 SDValue UndefVector = LHS.getOperand(1); 13994 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 13995 LHS.getOperand(0), RHS.getOperand(0), 13996 N->getFlags()); 13997 AddUsersToWorklist(N); 13998 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 13999 &SVN0->getMask()[0]); 14000 } 14001 } 14002 14003 return SDValue(); 14004 } 14005 14006 SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0, 14007 SDValue N1, SDValue N2){ 14008 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 14009 14010 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 14011 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 14012 14013 // If we got a simplified select_cc node back from SimplifySelectCC, then 14014 // break it down into a new SETCC node, and a new SELECT node, and then return 14015 // the SELECT node, since we were called with a SELECT node. 14016 if (SCC.getNode()) { 14017 // Check to see if we got a select_cc back (to turn into setcc/select). 14018 // Otherwise, just return whatever node we got back, like fabs. 14019 if (SCC.getOpcode() == ISD::SELECT_CC) { 14020 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 14021 N0.getValueType(), 14022 SCC.getOperand(0), SCC.getOperand(1), 14023 SCC.getOperand(4)); 14024 AddToWorklist(SETCC.getNode()); 14025 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 14026 SCC.getOperand(2), SCC.getOperand(3)); 14027 } 14028 14029 return SCC; 14030 } 14031 return SDValue(); 14032 } 14033 14034 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 14035 /// being selected between, see if we can simplify the select. Callers of this 14036 /// should assume that TheSelect is deleted if this returns true. As such, they 14037 /// should return the appropriate thing (e.g. the node) back to the top-level of 14038 /// the DAG combiner loop to avoid it being looked at. 14039 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 14040 SDValue RHS) { 14041 14042 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14043 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 14044 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 14045 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 14046 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 14047 SDValue Sqrt = RHS; 14048 ISD::CondCode CC; 14049 SDValue CmpLHS; 14050 const ConstantFPSDNode *Zero = nullptr; 14051 14052 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 14053 CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 14054 CmpLHS = TheSelect->getOperand(0); 14055 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 14056 } else { 14057 // SELECT or VSELECT 14058 SDValue Cmp = TheSelect->getOperand(0); 14059 if (Cmp.getOpcode() == ISD::SETCC) { 14060 CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 14061 CmpLHS = Cmp.getOperand(0); 14062 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 14063 } 14064 } 14065 if (Zero && Zero->isZero() && 14066 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 14067 CC == ISD::SETULT || CC == ISD::SETLT)) { 14068 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14069 CombineTo(TheSelect, Sqrt); 14070 return true; 14071 } 14072 } 14073 } 14074 // Cannot simplify select with vector condition 14075 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 14076 14077 // If this is a select from two identical things, try to pull the operation 14078 // through the select. 14079 if (LHS.getOpcode() != RHS.getOpcode() || 14080 !LHS.hasOneUse() || !RHS.hasOneUse()) 14081 return false; 14082 14083 // If this is a load and the token chain is identical, replace the select 14084 // of two loads with a load through a select of the address to load from. 14085 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 14086 // constants have been dropped into the constant pool. 14087 if (LHS.getOpcode() == ISD::LOAD) { 14088 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 14089 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 14090 14091 // Token chains must be identical. 14092 if (LHS.getOperand(0) != RHS.getOperand(0) || 14093 // Do not let this transformation reduce the number of volatile loads. 14094 LLD->isVolatile() || RLD->isVolatile() || 14095 // FIXME: If either is a pre/post inc/dec load, 14096 // we'd need to split out the address adjustment. 14097 LLD->isIndexed() || RLD->isIndexed() || 14098 // If this is an EXTLOAD, the VT's must match. 14099 LLD->getMemoryVT() != RLD->getMemoryVT() || 14100 // If this is an EXTLOAD, the kind of extension must match. 14101 (LLD->getExtensionType() != RLD->getExtensionType() && 14102 // The only exception is if one of the extensions is anyext. 14103 LLD->getExtensionType() != ISD::EXTLOAD && 14104 RLD->getExtensionType() != ISD::EXTLOAD) || 14105 // FIXME: this discards src value information. This is 14106 // over-conservative. It would be beneficial to be able to remember 14107 // both potential memory locations. Since we are discarding 14108 // src value info, don't do the transformation if the memory 14109 // locations are not in the default address space. 14110 LLD->getPointerInfo().getAddrSpace() != 0 || 14111 RLD->getPointerInfo().getAddrSpace() != 0 || 14112 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 14113 LLD->getBasePtr().getValueType())) 14114 return false; 14115 14116 // Check that the select condition doesn't reach either load. If so, 14117 // folding this will induce a cycle into the DAG. If not, this is safe to 14118 // xform, so create a select of the addresses. 14119 SDValue Addr; 14120 if (TheSelect->getOpcode() == ISD::SELECT) { 14121 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 14122 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 14123 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 14124 return false; 14125 // The loads must not depend on one another. 14126 if (LLD->isPredecessorOf(RLD) || 14127 RLD->isPredecessorOf(LLD)) 14128 return false; 14129 Addr = DAG.getSelect(SDLoc(TheSelect), 14130 LLD->getBasePtr().getValueType(), 14131 TheSelect->getOperand(0), LLD->getBasePtr(), 14132 RLD->getBasePtr()); 14133 } else { // Otherwise SELECT_CC 14134 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 14135 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 14136 14137 if ((LLD->hasAnyUseOfValue(1) && 14138 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 14139 (RLD->hasAnyUseOfValue(1) && 14140 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 14141 return false; 14142 14143 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 14144 LLD->getBasePtr().getValueType(), 14145 TheSelect->getOperand(0), 14146 TheSelect->getOperand(1), 14147 LLD->getBasePtr(), RLD->getBasePtr(), 14148 TheSelect->getOperand(4)); 14149 } 14150 14151 SDValue Load; 14152 // It is safe to replace the two loads if they have different alignments, 14153 // but the new load must be the minimum (most restrictive) alignment of the 14154 // inputs. 14155 bool isInvariant = LLD->isInvariant() & RLD->isInvariant(); 14156 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 14157 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 14158 Load = DAG.getLoad(TheSelect->getValueType(0), 14159 SDLoc(TheSelect), 14160 // FIXME: Discards pointer and AA info. 14161 LLD->getChain(), Addr, MachinePointerInfo(), 14162 LLD->isVolatile(), LLD->isNonTemporal(), 14163 isInvariant, Alignment); 14164 } else { 14165 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? 14166 RLD->getExtensionType() : LLD->getExtensionType(), 14167 SDLoc(TheSelect), 14168 TheSelect->getValueType(0), 14169 // FIXME: Discards pointer and AA info. 14170 LLD->getChain(), Addr, MachinePointerInfo(), 14171 LLD->getMemoryVT(), LLD->isVolatile(), 14172 LLD->isNonTemporal(), isInvariant, Alignment); 14173 } 14174 14175 // Users of the select now use the result of the load. 14176 CombineTo(TheSelect, Load); 14177 14178 // Users of the old loads now use the new load's chain. We know the 14179 // old-load value is dead now. 14180 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 14181 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 14182 return true; 14183 } 14184 14185 return false; 14186 } 14187 14188 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 14189 /// where 'cond' is the comparison specified by CC. 14190 SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, 14191 SDValue N2, SDValue N3, 14192 ISD::CondCode CC, bool NotExtCompare) { 14193 // (x ? y : y) -> y. 14194 if (N2 == N3) return N2; 14195 14196 EVT VT = N2.getValueType(); 14197 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 14198 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 14199 14200 // Determine if the condition we're dealing with is constant 14201 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 14202 N0, N1, CC, DL, false); 14203 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 14204 14205 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { 14206 // fold select_cc true, x, y -> x 14207 // fold select_cc false, x, y -> y 14208 return !SCCC->isNullValue() ? N2 : N3; 14209 } 14210 14211 // Check to see if we can simplify the select into an fabs node 14212 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 14213 // Allow either -0.0 or 0.0 14214 if (CFP->isZero()) { 14215 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 14216 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 14217 N0 == N2 && N3.getOpcode() == ISD::FNEG && 14218 N2 == N3.getOperand(0)) 14219 return DAG.getNode(ISD::FABS, DL, VT, N0); 14220 14221 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 14222 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 14223 N0 == N3 && N2.getOpcode() == ISD::FNEG && 14224 N2.getOperand(0) == N3) 14225 return DAG.getNode(ISD::FABS, DL, VT, N3); 14226 } 14227 } 14228 14229 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 14230 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 14231 // in it. This is a win when the constant is not otherwise available because 14232 // it replaces two constant pool loads with one. We only do this if the FP 14233 // type is known to be legal, because if it isn't, then we are before legalize 14234 // types an we want the other legalization to happen first (e.g. to avoid 14235 // messing with soft float) and if the ConstantFP is not legal, because if 14236 // it is legal, we may not need to store the FP constant in a constant pool. 14237 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 14238 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 14239 if (TLI.isTypeLegal(N2.getValueType()) && 14240 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 14241 TargetLowering::Legal && 14242 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 14243 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 14244 // If both constants have multiple uses, then we won't need to do an 14245 // extra load, they are likely around in registers for other users. 14246 (TV->hasOneUse() || FV->hasOneUse())) { 14247 Constant *Elts[] = { 14248 const_cast<ConstantFP*>(FV->getConstantFPValue()), 14249 const_cast<ConstantFP*>(TV->getConstantFPValue()) 14250 }; 14251 Type *FPTy = Elts[0]->getType(); 14252 const DataLayout &TD = DAG.getDataLayout(); 14253 14254 // Create a ConstantArray of the two constants. 14255 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 14256 SDValue CPIdx = 14257 DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 14258 TD.getPrefTypeAlignment(FPTy)); 14259 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 14260 14261 // Get the offsets to the 0 and 1 element of the array so that we can 14262 // select between them. 14263 SDValue Zero = DAG.getIntPtrConstant(0, DL); 14264 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 14265 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 14266 14267 SDValue Cond = DAG.getSetCC(DL, 14268 getSetCCResultType(N0.getValueType()), 14269 N0, N1, CC); 14270 AddToWorklist(Cond.getNode()); 14271 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 14272 Cond, One, Zero); 14273 AddToWorklist(CstOffset.getNode()); 14274 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 14275 CstOffset); 14276 AddToWorklist(CPIdx.getNode()); 14277 return DAG.getLoad( 14278 TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 14279 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 14280 false, false, false, Alignment); 14281 } 14282 } 14283 14284 // Check to see if we can perform the "gzip trick", transforming 14285 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 14286 if (isNullConstant(N3) && CC == ISD::SETLT && 14287 (isNullConstant(N1) || // (a < 0) ? b : 0 14288 (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0 14289 EVT XType = N0.getValueType(); 14290 EVT AType = N2.getValueType(); 14291 if (XType.bitsGE(AType)) { 14292 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 14293 // single-bit constant. 14294 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 14295 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 14296 ShCtV = XType.getSizeInBits() - ShCtV - 1; 14297 SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), 14298 getShiftAmountTy(N0.getValueType())); 14299 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 14300 XType, N0, ShCt); 14301 AddToWorklist(Shift.getNode()); 14302 14303 if (XType.bitsGT(AType)) { 14304 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14305 AddToWorklist(Shift.getNode()); 14306 } 14307 14308 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14309 } 14310 14311 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 14312 XType, N0, 14313 DAG.getConstant(XType.getSizeInBits() - 1, 14314 SDLoc(N0), 14315 getShiftAmountTy(N0.getValueType()))); 14316 AddToWorklist(Shift.getNode()); 14317 14318 if (XType.bitsGT(AType)) { 14319 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14320 AddToWorklist(Shift.getNode()); 14321 } 14322 14323 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14324 } 14325 } 14326 14327 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 14328 // where y is has a single bit set. 14329 // A plaintext description would be, we can turn the SELECT_CC into an AND 14330 // when the condition can be materialized as an all-ones register. Any 14331 // single bit-test can be materialized as an all-ones register with 14332 // shift-left and shift-right-arith. 14333 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 14334 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 14335 SDValue AndLHS = N0->getOperand(0); 14336 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 14337 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 14338 // Shift the tested bit over the sign bit. 14339 APInt AndMask = ConstAndRHS->getAPIntValue(); 14340 SDValue ShlAmt = 14341 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 14342 getShiftAmountTy(AndLHS.getValueType())); 14343 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 14344 14345 // Now arithmetic right shift it all the way over, so the result is either 14346 // all-ones, or zero. 14347 SDValue ShrAmt = 14348 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 14349 getShiftAmountTy(Shl.getValueType())); 14350 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 14351 14352 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 14353 } 14354 } 14355 14356 // fold select C, 16, 0 -> shl C, 4 14357 if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && 14358 TLI.getBooleanContents(N0.getValueType()) == 14359 TargetLowering::ZeroOrOneBooleanContent) { 14360 14361 // If the caller doesn't want us to simplify this into a zext of a compare, 14362 // don't do it. 14363 if (NotExtCompare && N2C->isOne()) 14364 return SDValue(); 14365 14366 // Get a SetCC of the condition 14367 // NOTE: Don't create a SETCC if it's not legal on this target. 14368 if (!LegalOperations || 14369 TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { 14370 SDValue Temp, SCC; 14371 // cast from setcc result type to select result type 14372 if (LegalTypes) { 14373 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 14374 N0, N1, CC); 14375 if (N2.getValueType().bitsLT(SCC.getValueType())) 14376 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 14377 N2.getValueType()); 14378 else 14379 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14380 N2.getValueType(), SCC); 14381 } else { 14382 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 14383 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14384 N2.getValueType(), SCC); 14385 } 14386 14387 AddToWorklist(SCC.getNode()); 14388 AddToWorklist(Temp.getNode()); 14389 14390 if (N2C->isOne()) 14391 return Temp; 14392 14393 // shl setcc result by log2 n2c 14394 return DAG.getNode( 14395 ISD::SHL, DL, N2.getValueType(), Temp, 14396 DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), 14397 getShiftAmountTy(Temp.getValueType()))); 14398 } 14399 } 14400 14401 // Check to see if this is an integer abs. 14402 // select_cc setg[te] X, 0, X, -X -> 14403 // select_cc setgt X, -1, X, -X -> 14404 // select_cc setl[te] X, 0, -X, X -> 14405 // select_cc setlt X, 1, -X, X -> 14406 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 14407 if (N1C) { 14408 ConstantSDNode *SubC = nullptr; 14409 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 14410 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 14411 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 14412 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 14413 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 14414 (N1C->isOne() && CC == ISD::SETLT)) && 14415 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 14416 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 14417 14418 EVT XType = N0.getValueType(); 14419 if (SubC && SubC->isNullValue() && XType.isInteger()) { 14420 SDLoc DL(N0); 14421 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, 14422 N0, 14423 DAG.getConstant(XType.getSizeInBits() - 1, DL, 14424 getShiftAmountTy(N0.getValueType()))); 14425 SDValue Add = DAG.getNode(ISD::ADD, DL, 14426 XType, N0, Shift); 14427 AddToWorklist(Shift.getNode()); 14428 AddToWorklist(Add.getNode()); 14429 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 14430 } 14431 } 14432 14433 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 14434 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 14435 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 14436 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 14437 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 14438 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 14439 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 14440 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 14441 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 14442 SDValue ValueOnZero = N2; 14443 SDValue Count = N3; 14444 // If the condition is NE instead of E, swap the operands. 14445 if (CC == ISD::SETNE) 14446 std::swap(ValueOnZero, Count); 14447 // Check if the value on zero is a constant equal to the bits in the type. 14448 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 14449 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 14450 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 14451 // legal, combine to just cttz. 14452 if ((Count.getOpcode() == ISD::CTTZ || 14453 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 14454 N0 == Count.getOperand(0) && 14455 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 14456 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 14457 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 14458 // legal, combine to just ctlz. 14459 if ((Count.getOpcode() == ISD::CTLZ || 14460 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 14461 N0 == Count.getOperand(0) && 14462 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 14463 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 14464 } 14465 } 14466 } 14467 14468 return SDValue(); 14469 } 14470 14471 /// This is a stub for TargetLowering::SimplifySetCC. 14472 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, 14473 SDValue N1, ISD::CondCode Cond, 14474 SDLoc DL, bool foldBooleans) { 14475 TargetLowering::DAGCombinerInfo 14476 DagCombineInfo(DAG, Level, false, this); 14477 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 14478 } 14479 14480 /// Given an ISD::SDIV node expressing a divide by constant, return 14481 /// a DAG expression to select that will generate the same value by multiplying 14482 /// by a magic number. 14483 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14484 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 14485 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14486 if (!C) 14487 return SDValue(); 14488 14489 // Avoid division by zero. 14490 if (C->isNullValue()) 14491 return SDValue(); 14492 14493 std::vector<SDNode*> Built; 14494 SDValue S = 14495 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14496 14497 for (SDNode *N : Built) 14498 AddToWorklist(N); 14499 return S; 14500 } 14501 14502 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 14503 /// DAG expression that will generate the same value by right shifting. 14504 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 14505 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14506 if (!C) 14507 return SDValue(); 14508 14509 // Avoid division by zero. 14510 if (C->isNullValue()) 14511 return SDValue(); 14512 14513 std::vector<SDNode *> Built; 14514 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 14515 14516 for (SDNode *N : Built) 14517 AddToWorklist(N); 14518 return S; 14519 } 14520 14521 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 14522 /// expression that will generate the same value by multiplying by a magic 14523 /// number. 14524 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14525 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 14526 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14527 if (!C) 14528 return SDValue(); 14529 14530 // Avoid division by zero. 14531 if (C->isNullValue()) 14532 return SDValue(); 14533 14534 std::vector<SDNode*> Built; 14535 SDValue S = 14536 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14537 14538 for (SDNode *N : Built) 14539 AddToWorklist(N); 14540 return S; 14541 } 14542 14543 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { 14544 if (Level >= AfterLegalizeDAG) 14545 return SDValue(); 14546 14547 // Expose the DAG combiner to the target combiner implementations. 14548 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14549 14550 unsigned Iterations = 0; 14551 if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { 14552 if (Iterations) { 14553 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14554 // For the reciprocal, we need to find the zero of the function: 14555 // F(X) = A X - 1 [which has a zero at X = 1/A] 14556 // => 14557 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 14558 // does not require additional intermediate precision] 14559 EVT VT = Op.getValueType(); 14560 SDLoc DL(Op); 14561 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14562 14563 AddToWorklist(Est.getNode()); 14564 14565 // Newton iterations: Est = Est + Est (1 - Arg * Est) 14566 for (unsigned i = 0; i < Iterations; ++i) { 14567 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 14568 AddToWorklist(NewEst.getNode()); 14569 14570 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 14571 AddToWorklist(NewEst.getNode()); 14572 14573 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14574 AddToWorklist(NewEst.getNode()); 14575 14576 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 14577 AddToWorklist(Est.getNode()); 14578 } 14579 } 14580 return Est; 14581 } 14582 14583 return SDValue(); 14584 } 14585 14586 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14587 /// For the reciprocal sqrt, we need to find the zero of the function: 14588 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14589 /// => 14590 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 14591 /// As a result, we precompute A/2 prior to the iteration loop. 14592 SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est, 14593 unsigned Iterations, 14594 SDNodeFlags *Flags) { 14595 EVT VT = Arg.getValueType(); 14596 SDLoc DL(Arg); 14597 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 14598 14599 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 14600 // this entire sequence requires only one FP constant. 14601 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 14602 AddToWorklist(HalfArg.getNode()); 14603 14604 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 14605 AddToWorklist(HalfArg.getNode()); 14606 14607 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 14608 for (unsigned i = 0; i < Iterations; ++i) { 14609 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14610 AddToWorklist(NewEst.getNode()); 14611 14612 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 14613 AddToWorklist(NewEst.getNode()); 14614 14615 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 14616 AddToWorklist(NewEst.getNode()); 14617 14618 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14619 AddToWorklist(Est.getNode()); 14620 } 14621 return Est; 14622 } 14623 14624 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14625 /// For the reciprocal sqrt, we need to find the zero of the function: 14626 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14627 /// => 14628 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 14629 SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est, 14630 unsigned Iterations, 14631 SDNodeFlags *Flags) { 14632 EVT VT = Arg.getValueType(); 14633 SDLoc DL(Arg); 14634 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 14635 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 14636 14637 // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est) 14638 for (unsigned i = 0; i < Iterations; ++i) { 14639 SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 14640 AddToWorklist(HalfEst.getNode()); 14641 14642 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14643 AddToWorklist(Est.getNode()); 14644 14645 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 14646 AddToWorklist(Est.getNode()); 14647 14648 Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags); 14649 AddToWorklist(Est.getNode()); 14650 14651 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags); 14652 AddToWorklist(Est.getNode()); 14653 } 14654 return Est; 14655 } 14656 14657 SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 14658 if (Level >= AfterLegalizeDAG) 14659 return SDValue(); 14660 14661 // Expose the DAG combiner to the target combiner implementations. 14662 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14663 unsigned Iterations = 0; 14664 bool UseOneConstNR = false; 14665 if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { 14666 AddToWorklist(Est.getNode()); 14667 if (Iterations) { 14668 Est = UseOneConstNR ? 14669 BuildRsqrtNROneConst(Op, Est, Iterations, Flags) : 14670 BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags); 14671 } 14672 return Est; 14673 } 14674 14675 return SDValue(); 14676 } 14677 14678 /// Return true if base is a frame index, which is known not to alias with 14679 /// anything but itself. Provides base object and offset as results. 14680 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 14681 const GlobalValue *&GV, const void *&CV) { 14682 // Assume it is a primitive operation. 14683 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 14684 14685 // If it's an adding a simple constant then integrate the offset. 14686 if (Base.getOpcode() == ISD::ADD) { 14687 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 14688 Base = Base.getOperand(0); 14689 Offset += C->getZExtValue(); 14690 } 14691 } 14692 14693 // Return the underlying GlobalValue, and update the Offset. Return false 14694 // for GlobalAddressSDNode since the same GlobalAddress may be represented 14695 // by multiple nodes with different offsets. 14696 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 14697 GV = G->getGlobal(); 14698 Offset += G->getOffset(); 14699 return false; 14700 } 14701 14702 // Return the underlying Constant value, and update the Offset. Return false 14703 // for ConstantSDNodes since the same constant pool entry may be represented 14704 // by multiple nodes with different offsets. 14705 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 14706 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 14707 : (const void *)C->getConstVal(); 14708 Offset += C->getOffset(); 14709 return false; 14710 } 14711 // If it's any of the following then it can't alias with anything but itself. 14712 return isa<FrameIndexSDNode>(Base); 14713 } 14714 14715 /// Return true if there is any possibility that the two addresses overlap. 14716 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 14717 // If they are the same then they must be aliases. 14718 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 14719 14720 // If they are both volatile then they cannot be reordered. 14721 if (Op0->isVolatile() && Op1->isVolatile()) return true; 14722 14723 // If one operation reads from invariant memory, and the other may store, they 14724 // cannot alias. These should really be checking the equivalent of mayWrite, 14725 // but it only matters for memory nodes other than load /store. 14726 if (Op0->isInvariant() && Op1->writeMem()) 14727 return false; 14728 14729 if (Op1->isInvariant() && Op0->writeMem()) 14730 return false; 14731 14732 // Gather base node and offset information. 14733 SDValue Base1, Base2; 14734 int64_t Offset1, Offset2; 14735 const GlobalValue *GV1, *GV2; 14736 const void *CV1, *CV2; 14737 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 14738 Base1, Offset1, GV1, CV1); 14739 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 14740 Base2, Offset2, GV2, CV2); 14741 14742 // If they have a same base address then check to see if they overlap. 14743 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 14744 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14745 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14746 14747 // It is possible for different frame indices to alias each other, mostly 14748 // when tail call optimization reuses return address slots for arguments. 14749 // To catch this case, look up the actual index of frame indices to compute 14750 // the real alias relationship. 14751 if (isFrameIndex1 && isFrameIndex2) { 14752 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 14753 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 14754 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 14755 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14756 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14757 } 14758 14759 // Otherwise, if we know what the bases are, and they aren't identical, then 14760 // we know they cannot alias. 14761 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 14762 return false; 14763 14764 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 14765 // compared to the size and offset of the access, we may be able to prove they 14766 // do not alias. This check is conservative for now to catch cases created by 14767 // splitting vector types. 14768 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 14769 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 14770 (Op0->getMemoryVT().getSizeInBits() >> 3 == 14771 Op1->getMemoryVT().getSizeInBits() >> 3) && 14772 (Op0->getOriginalAlignment() > (Op0->getMemoryVT().getSizeInBits() >> 3))) { 14773 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 14774 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 14775 14776 // There is no overlap between these relatively aligned accesses of similar 14777 // size, return no alias. 14778 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 14779 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 14780 return false; 14781 } 14782 14783 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 14784 ? CombinerGlobalAA 14785 : DAG.getSubtarget().useAA(); 14786 #ifndef NDEBUG 14787 if (CombinerAAOnlyFunc.getNumOccurrences() && 14788 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 14789 UseAA = false; 14790 #endif 14791 if (UseAA && 14792 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 14793 // Use alias analysis information. 14794 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 14795 Op1->getSrcValueOffset()); 14796 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 14797 Op0->getSrcValueOffset() - MinOffset; 14798 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 14799 Op1->getSrcValueOffset() - MinOffset; 14800 AliasResult AAResult = 14801 AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, 14802 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 14803 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, 14804 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 14805 if (AAResult == NoAlias) 14806 return false; 14807 } 14808 14809 // Otherwise we have to assume they alias. 14810 return true; 14811 } 14812 14813 /// Walk up chain skipping non-aliasing memory nodes, 14814 /// looking for aliasing nodes and adding them to the Aliases vector. 14815 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 14816 SmallVectorImpl<SDValue> &Aliases) { 14817 SmallVector<SDValue, 8> Chains; // List of chains to visit. 14818 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 14819 14820 // Get alias information for node. 14821 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 14822 14823 // Starting off. 14824 Chains.push_back(OriginalChain); 14825 unsigned Depth = 0; 14826 14827 // Look at each chain and determine if it is an alias. If so, add it to the 14828 // aliases list. If not, then continue up the chain looking for the next 14829 // candidate. 14830 while (!Chains.empty()) { 14831 SDValue Chain = Chains.pop_back_val(); 14832 14833 // For TokenFactor nodes, look at each operand and only continue up the 14834 // chain until we reach the depth limit. 14835 // 14836 // FIXME: The depth check could be made to return the last non-aliasing 14837 // chain we found before we hit a tokenfactor rather than the original 14838 // chain. 14839 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 14840 Aliases.clear(); 14841 Aliases.push_back(OriginalChain); 14842 return; 14843 } 14844 14845 // Don't bother if we've been before. 14846 if (!Visited.insert(Chain.getNode()).second) 14847 continue; 14848 14849 switch (Chain.getOpcode()) { 14850 case ISD::EntryToken: 14851 // Entry token is ideal chain operand, but handled in FindBetterChain. 14852 break; 14853 14854 case ISD::LOAD: 14855 case ISD::STORE: { 14856 // Get alias information for Chain. 14857 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 14858 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 14859 14860 // If chain is alias then stop here. 14861 if (!(IsLoad && IsOpLoad) && 14862 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 14863 Aliases.push_back(Chain); 14864 } else { 14865 // Look further up the chain. 14866 Chains.push_back(Chain.getOperand(0)); 14867 ++Depth; 14868 } 14869 break; 14870 } 14871 14872 case ISD::TokenFactor: 14873 // We have to check each of the operands of the token factor for "small" 14874 // token factors, so we queue them up. Adding the operands to the queue 14875 // (stack) in reverse order maintains the original order and increases the 14876 // likelihood that getNode will find a matching token factor (CSE.) 14877 if (Chain.getNumOperands() > 16) { 14878 Aliases.push_back(Chain); 14879 break; 14880 } 14881 for (unsigned n = Chain.getNumOperands(); n;) 14882 Chains.push_back(Chain.getOperand(--n)); 14883 ++Depth; 14884 break; 14885 14886 default: 14887 // For all other instructions we will just have to take what we can get. 14888 Aliases.push_back(Chain); 14889 break; 14890 } 14891 } 14892 } 14893 14894 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 14895 /// (aliasing node.) 14896 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 14897 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 14898 14899 // Accumulate all the aliases to this node. 14900 GatherAllAliases(N, OldChain, Aliases); 14901 14902 // If no operands then chain to entry token. 14903 if (Aliases.size() == 0) 14904 return DAG.getEntryNode(); 14905 14906 // If a single operand then chain to it. We don't need to revisit it. 14907 if (Aliases.size() == 1) 14908 return Aliases[0]; 14909 14910 // Construct a custom tailored token factor. 14911 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 14912 } 14913 14914 bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) { 14915 // This holds the base pointer, index, and the offset in bytes from the base 14916 // pointer. 14917 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 14918 14919 // We must have a base and an offset. 14920 if (!BasePtr.Base.getNode()) 14921 return false; 14922 14923 // Do not handle stores to undef base pointers. 14924 if (BasePtr.Base.isUndef()) 14925 return false; 14926 14927 SmallVector<StoreSDNode *, 8> ChainedStores; 14928 ChainedStores.push_back(St); 14929 14930 // Walk up the chain and look for nodes with offsets from the same 14931 // base pointer. Stop when reaching an instruction with a different kind 14932 // or instruction which has a different base pointer. 14933 StoreSDNode *Index = St; 14934 while (Index) { 14935 // If the chain has more than one use, then we can't reorder the mem ops. 14936 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 14937 break; 14938 14939 if (Index->isVolatile() || Index->isIndexed()) 14940 break; 14941 14942 // Find the base pointer and offset for this memory node. 14943 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 14944 14945 // Check that the base pointer is the same as the original one. 14946 if (!Ptr.equalBaseIndex(BasePtr)) 14947 break; 14948 14949 // Find the next memory operand in the chain. If the next operand in the 14950 // chain is a store then move up and continue the scan with the next 14951 // memory operand. If the next operand is a load save it and use alias 14952 // information to check if it interferes with anything. 14953 SDNode *NextInChain = Index->getChain().getNode(); 14954 while (true) { 14955 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 14956 // We found a store node. Use it for the next iteration. 14957 if (STn->isVolatile() || STn->isIndexed()) { 14958 Index = nullptr; 14959 break; 14960 } 14961 ChainedStores.push_back(STn); 14962 Index = STn; 14963 break; 14964 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 14965 NextInChain = Ldn->getChain().getNode(); 14966 continue; 14967 } else { 14968 Index = nullptr; 14969 break; 14970 } 14971 } 14972 } 14973 14974 bool MadeChange = false; 14975 SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; 14976 14977 for (StoreSDNode *ChainedStore : ChainedStores) { 14978 SDValue Chain = ChainedStore->getChain(); 14979 SDValue BetterChain = FindBetterChain(ChainedStore, Chain); 14980 14981 if (Chain != BetterChain) { 14982 MadeChange = true; 14983 BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); 14984 } 14985 } 14986 14987 // Do all replacements after finding the replacements to make to avoid making 14988 // the chains more complicated by introducing new TokenFactors. 14989 for (auto Replacement : BetterChains) 14990 replaceStoreChain(Replacement.first, Replacement.second); 14991 14992 return MadeChange; 14993 } 14994 14995 /// This is the entry point for the file. 14996 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 14997 CodeGenOpt::Level OptLevel) { 14998 /// This is the main entry point to this class. 14999 DAGCombiner(*this, AA, OptLevel).Run(Level); 15000 } 15001